Sample records for launch system als

  1. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  2. Advanced Launch System (ALS) actuation and power systems impact operability and cost

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  3. Advanced Launch System (ALS): Electrical actuation and power systems improve operability and cost picture

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  4. Advanced launch system (ALS) - Electrical actuation and power systems improve operability and cost picture

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrrical power system and controls for all aviation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a sdpecific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military ans civilian aircraft, lunar/Martian vehicles, and a multitude of comercial applications.

  5. A view toward future launch vehicles - A civil perspective

    NASA Technical Reports Server (NTRS)

    Darwin, Charles R.; Austin, Gene; Varnado, Lee; Eudy, Glenn

    1989-01-01

    Prospective NASA launch vehicle development efforts, which in addition to follow-on developments of the Space Shuttle encompass the Shuttle-C cargo version, various possible Advanced Launch System (ALS) configurations, and various Heavy Lift Launch System (HLLS) design options. Fully and partially reusable manned vehicle alternatives are also under consideration. In addition to improving on the current Space Shuttle's reliability and flexibility, ALS and HLLV development efforts are expected to concentrate on the reduction of operating costs for the given payload-launch capability.

  6. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix F: Performance and trajectory for ALS/LRB launch vehicles

    NASA Technical Reports Server (NTRS)

    1989-01-01

    By simply combining two baseline pump-fed LOX/RP-1 Liquid Rocket Boosters (LRBs) with the Denver core, a launch vehicle (Option 1 Advanced Launch System (ALS)) is obtained that can perform both the 28.5 deg (ALS) mission and the polar orbit ALS mission. The Option 2 LRB was obtained by finding the optimum LOX/LH2 engine for the STS/LRB reference mission (70.5 K lb payload). Then this engine and booster were used to estimate ALS payload for the 28.5 deg inclination ALS mission. Previous studies indicated that the optimum number of STS/LRB engines is four. When the engine/booster sizing was performed, each engine had 478 K lb sea level thrust and the booster carried 625,000 lb of useable propellant. Two of these LRBs combined with the Denver core provided a launch vehicle that meets the payload requirements for both the ALS and STS reference missions. The Option 3 LRB uses common engines for the cores and boosters. The booster engines do not have the nozzle extension. These engines were sized as common ALS engines. An ALS launch vehicle that has six core engines and five engines per booster provides 109,100 lb payload for the 28.5 deg mission. Each of these LOX/LH2 LRBs carries 714,100 lb of useable propellant. It is estimated that the STS/LRB reference mission payload would be 75,900 lb.

  7. Next generation solid boosters

    NASA Technical Reports Server (NTRS)

    Lund, R. K.

    1991-01-01

    Space transportation solid rocket motor systems; Shuttle derived heavy lift launch vehicles; advanced launch system (ALS) derived heavy lift launch vehicles; large launch solid booster vehicles are outlined. Performance capabilities and concept objectives are presented. Small launch vehicle concepts; enabling technologies; reusable flyback booster system; and high-performance solid motors for space are briefly described. This presentation is represented by viewgraphs.

  8. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO. Program cost estimates document

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1993-01-01

    This report describes Rockwell International's cost analysis results of manned launch vehicle concepts for two way transportation system payloads to low earth orbit during the basic and option 1 period of performance for contract NAS8-39207, advanced transportation system studies. Vehicles analyzed include the space shuttle, personnel launch system (PLS) with advanced launch system (ALS) and national launch system (NLS) boosters, foreign launch vehicles, NLS-2 derived launch vehicles, liquid rocket booster (LRB) derived launch vehicle, and cargo transfer and return vehicle (CTRV).

  9. Advanced Launch System Multi-Path Redundant Avionics Architecture Analysis and Characterization

    NASA Technical Reports Server (NTRS)

    Baker, Robert L.

    1993-01-01

    The objective of the Multi-Path Redundant Avionics Suite (MPRAS) program is the development of a set of avionic architectural modules which will be applicable to the family of launch vehicles required to support the Advanced Launch System (ALS). To enable ALS cost/performance requirements to be met, the MPRAS must support autonomy, maintenance, and testability capabilities which exceed those present in conventional launch vehicles. The multi-path redundant or fault tolerance characteristics of the MPRAS are necessary to offset a reduction in avionics reliability due to the increased complexity needed to support these new cost reduction and performance capabilities and to meet avionics reliability requirements which will provide cost-effective reductions in overall ALS recurring costs. A complex, real-time distributed computing system is needed to meet the ALS avionics system requirements. General Dynamics, Boeing Aerospace, and C.S. Draper Laboratory have proposed system architectures as candidates for the ALS MPRAS. The purpose of this document is to report the results of independent performance and reliability characterization and assessment analyses of each proposed candidate architecture and qualitative assessments of testability, maintainability, and fault tolerance mechanisms. These independent analyses were conducted as part of the MPRAS Part 2 program and were carried under NASA Langley Research Contract NAS1-17964, Task Assignment 28.

  10. Evaluation of advanced propulsion options for the next manned transportation system: Propulsion evolution study

    NASA Technical Reports Server (NTRS)

    Spears, L. T.; Kramer, R. D.

    1990-01-01

    The objectives were to examine launch vehicle applications and propulsion requirements for potential future manned space transportation systems and to support planning toward the evolution of Space Shuttle Main Engine (SSME) and Space Transportation Main Engine (STME) engines beyond their current or initial launch vehicle applications. As a basis for examinations of potential future manned launch vehicle applications, we used three classes of manned space transportation concepts currently under study: Space Transportation System Evolution, Personal Launch System (PLS), and Advanced Manned Launch System (AMLS). Tasks included studies of launch vehicle applications and requirements for hydrogen-oxygen rocket engines; the development of suggestions for STME engine evolution beyond the mid-1990's; the development of suggestions for STME evolution beyond the Advanced Launch System (ALS) application; the study of booster propulsion options, including LOX-Hydrocarbon options; the analysis of the prospects and requirements for utilization of a single engine configuration over the full range of vehicle applications, including manned vehicles plus ALS and Shuttle C; and a brief review of on-going and planned LOX-Hydrogen propulsion technology activities.

  11. Artificial intelligent decision support for low-cost launch vehicle integrated mission operations

    NASA Astrophysics Data System (ADS)

    Szatkowski, Gerard P.; Schultz, Roger

    1988-11-01

    The feasibility, benefits, and risks associated with Artificial Intelligence (AI) Expert Systems applied to low cost space expendable launch vehicle systems are reviewed. This study is in support of the joint USAF/NASA effort to define the next generation of a heavy-lift Advanced Launch System (ALS) which will provide economical and routine access to space. The significant technical goals of the ALS program include: a 10 fold reduction in cost per pound to orbit, launch processing in under 3 weeks, and higher reliability and safety standards than current expendables. Knowledge-based system techniques are being explored for the purpose of automating decision support processes in onboard and ground systems for pre-launch checkout and in-flight operations. Issues such as: satisfying real-time requirements, providing safety validation, hardware and Data Base Management System (DBMS) interfacing, system synergistic effects, human interfaces, and ease of maintainability, have an effect on the viability of expert systems as a useful tool.

  12. Artificial intelligent decision support for low-cost launch vehicle integrated mission operations

    NASA Technical Reports Server (NTRS)

    Szatkowski, Gerard P.; Schultz, Roger

    1988-01-01

    The feasibility, benefits, and risks associated with Artificial Intelligence (AI) Expert Systems applied to low cost space expendable launch vehicle systems are reviewed. This study is in support of the joint USAF/NASA effort to define the next generation of a heavy-lift Advanced Launch System (ALS) which will provide economical and routine access to space. The significant technical goals of the ALS program include: a 10 fold reduction in cost per pound to orbit, launch processing in under 3 weeks, and higher reliability and safety standards than current expendables. Knowledge-based system techniques are being explored for the purpose of automating decision support processes in onboard and ground systems for pre-launch checkout and in-flight operations. Issues such as: satisfying real-time requirements, providing safety validation, hardware and Data Base Management System (DBMS) interfacing, system synergistic effects, human interfaces, and ease of maintainability, have an effect on the viability of expert systems as a useful tool.

  13. Advanced Information Processing System (AIPS)-based fault tolerant avionics architecture for launch vehicles

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1990-01-01

    An avionics architecture for the advanced launch system (ALS) that uses validated hardware and software building blocks developed under the advanced information processing system program is presented. The AIPS for ALS architecture defined is preliminary, and reliability requirements can be met by the AIPS hardware and software building blocks that are built using the state-of-the-art technology available in the 1992-93 time frame. The level of detail in the architecture definition reflects the level of detail available in the ALS requirements. As the avionics requirements are refined, the architecture can also be refined and defined in greater detail with the help of analysis and simulation tools. A useful methodology is demonstrated for investigating the impact of the avionics suite to the recurring cost of the ALS. It is shown that allowing the vehicle to launch with selected detected failures can potentially reduce the recurring launch costs. A comparative analysis shows that validated fault-tolerant avionics built out of Class B parts can result in lower life-cycle-cost in comparison to simplex avionics built out of Class S parts or other redundant architectures.

  14. Advanced information processing system for advanced launch system: Hardware technology survey and projections

    NASA Technical Reports Server (NTRS)

    Cole, Richard

    1991-01-01

    The major goals of this effort are as follows: (1) to examine technology insertion options to optimize Advanced Information Processing System (AIPS) performance in the Advanced Launch System (ALS) environment; (2) to examine the AIPS concepts to ensure that valuable new technologies are not excluded from the AIPS/ALS implementations; (3) to examine advanced microprocessors applicable to AIPS/ALS, (4) to examine radiation hardening technologies applicable to AIPS/ALS; (5) to reach conclusions on AIPS hardware building blocks implementation technologies; and (6) reach conclusions on appropriate architectural improvements. The hardware building blocks are the Fault-Tolerant Processor, the Input/Output Sequencers (IOS), and the Intercomputer Interface Sequencers (ICIS).

  15. Preliminary Assessment of Using Gelled and Hybrid Propellant Propulsion for VTOL/SSTO Launch Systems

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; OLeary, Robert; Pelaccio, Dennis G.

    1998-01-01

    A novel, reusable, Vertical-Takeoff-and-Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named AUGMENT-SSTO, is presented in this paper to help quantify the advantages of employing gelled and hybrid propellant propulsion system options for such applications. The launch vehicle system concept considered uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LO2/LH2) propulsion system, that is used only for launch, while a gelled or hybrid propellant propulsion system auxiliary propulsion system is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. Using a gelled or hybrid propellant propulsion system for major orbit maneuver burns and landing has many advantages over conventional VTOL/SSTO concepts that use LO2/LH2 propulsion system(s) burns for all phases of flight. The applicability of three gelled propellant systems, O2/H2/Al, O2/RP-1/Al, and NTO/MMH/Al, and a state-of-the-art (SOA) hybrid propulsion system are examined in this study. Additionally, this paper addresses the applicability of a high performance gelled O2/H2 propulsion system to perform the primary, as well as the auxiliary propulsion system functions of the vehicle.

  16. Cultural changes in aerospace

    NASA Technical Reports Server (NTRS)

    Strobl, Bill

    1991-01-01

    Cultural changes; people and jobs; examples of cultural changes required; advanced launch system (ALS) philosophy; ALS operability capabilities; and ALS operability in design are outlined. This presentation is represented by viewgraphs.

  17. Using Technology Readiness Level (TRL), Life Cycle Cost (LCC), and Other Metrics to Supplement Equivalent System Mass (ESM) in Advanced Life Support (ALS)

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2003-01-01

    The ALS project plan goals are reducing cost, improving performance, and achieving flight readiness. ALS selects projects to advance the mission readiness of low cost, high performance technologies. The role of metrics is to help select good projects and report progress. The Equivalent Mass (EM) of a system is the sum of the estimated mass of the hardware, of its required materials and spares, and of the pressurized volume, power supply, and cooling system needed to support the hardware in space. EM is the total payload launch mass needed to provide and support a system. EM is directly proportional to the launch cost.

  18. Aerodynamics of the advanced launch system (ALS) propulsion and avionics (P/A) module

    NASA Technical Reports Server (NTRS)

    Ferguson, Stan; Savage, Dick

    1992-01-01

    This paper discusses the design and testing of candidate Advanced Launch System (ALS) Propulsion and Avionics (P/A) Module configurations. The P/A Module is a key element of future launch systems because it is essential to the recovery and reuse of high-value propulsion and avionics hardware. The ALS approach involves landing of first stage (booster) and/or second stage (core) P/A modules near the launch site to minimize logistics and refurbishment cost. The key issue addressed herein is the aerodynamic design of the P/A module, including the stability characteristics and the lift-to-drag (L/D) performance required to achieve the necessary landing guidance accuracy. The reference P/A module configuration was found to be statically stable for the desired flight regime, to provide adequate L/D for targeting, and to have effective modulation of the L/D performance using a body flap. The hypersonic aerodynamic trends for nose corner radius, boattail angle and body flap deflections were consistent with pretest predictions. However, the levels for the L/D and axial force for hypersonic Mach numbers were overpredicted by impact theories.

  19. Advanced Launch System advanced development oxidizer turbopump program: Technical implementation plan

    NASA Technical Reports Server (NTRS)

    Ferlita, F.

    1989-01-01

    The Advanced Launch Systems (ALS) Advanced Development Oxidizer Turbopump Program has designed, fabricated and demonstrated a low cost, highly reliable oxidizer turbopump for the Space Transportation Engine that minimizes the recurring cost for the ALS engines. Pratt and Whitney's (P and W's) plan for integrating the analyses, testing, fabrication, and other program efforts is addressed. This plan offers a comprehensive description of the total effort required to design, fabricate, and test the ALS oxidizer turbopump. The proposed ALS oxidizer turbopump reduces turbopump costs over current designs by taking advantage of design simplicity and state-of-the-art materials and producibility features without compromising system reliability. This is accomplished by selecting turbopump operating conditions that are within known successful operating regions and by using proven manufacturing techniques.

  20. A study to identify and compare airborne systems for in-situ measurements of launch vehicle effluents

    NASA Technical Reports Server (NTRS)

    Thomas, T. J.; Chace, A. S.

    1974-01-01

    An in-situ system for monitoring the concentration of HCl, CO, CO2, and Al2O3 in the cloud of reaction products that form as a result of a launch of solid propellant launch vehicle is studied. A wide array of instrumentation and platforms are reviewed to yield the recommended system. An airborne system suited to monitoring pollution concentrations over urban areas for the purpose of calibrating remote sensors is then selected using a similar methodology to yield the optimal configuration.

  1. 2018 NASA Student Launch event, Bragg Farms, Toney, Al

    NASA Image and Video Library

    2018-04-10

    After eight months of designing, building and testing, the middle school, high school and college and university teams launched their rockets as part of NASA Student Launch on Sunday, April 8. The rockets and their payloads are designed to fly to 1-mile in altitude before deploying recovery systems that brings them safely to the ground.

  2. 2018 NASA Student Launch event, Bragg Farms, Toney, Al

    NASA Image and Video Library

    2018-04-09

    After eight months of designing, building and testing, the middle school, high school and college and university teams launched their rockets as part of NASA Student Launch on Sunday, April 8. The rockets and their payloads are designed to fly to 1-mile in altitude before deploying recovery systems that brings them safely to the ground.

  3. Preliminary base heating environments for a generalized ALS LO2/LH2 launch vehicle, appendix 1 and 2

    NASA Technical Reports Server (NTRS)

    Bender, Robert L.; Reardon, John E.

    1989-01-01

    A secondary objective of contract NAS8-39141 is to provide base heating assessments, as required, to support Advanced Launch System (ALS) preliminary launch vehicle and propulsion system design studies. The ALS propulsion systems integration working group meeting (No. 3) recently completed in San Diego, California, focused attention on the need for base heating environment determination to provide preliminary requirements for LO2/LH2 propulsion systems currently being considered for ALS. We were requested to provide these environments for a range of possible propellant mixture and nozzle area ratios. Base heating environments can only be determined as a function of altitude when the engine operating conditions and vehicle base region geometry (engine arrangement) are known. If time dependent environments are needed to assess thermal loads, a trajectory must also be provided. These parameters are not fixed at this time since the ALS configurations and propulsion operating conditions are varied and continue to be studied by Phase B contractors. Therefore, for this study, a generalized LO2/LH2 system was selected along with a vehicle configuration consisting of a seven-engine booster and a three-engine core. MSFC provided guidance for the selection. We also selected a limited number of body points on the booster and core vehicles and engines for the environment estimates. Environments at these locations are representative of maximum heating conditions in the base region and are provided as a function of altitude only. Guidelines and assumptions for this assessment, methodology for determining the environments, and preliminary results are provided in this technical note. Refinements in the environments will be provided as the ALS design matures.

  4. Robust flight design for an advanced launch system vehicle

    NASA Astrophysics Data System (ADS)

    Dhand, Sanjeev K.; Wong, Kelvin K.

    Current launch vehicle trajectory design philosophies are generally based on maximizing payload capability. This approach results in an expensive trajectory design process for each mission. Two concepts of robust flight design have been developed to significantly reduce this cost: Standardized Trajectories and Command Multiplier Steering (CMS). These concepts were analyzed for an Advanced Launch System (ALS) vehicle, although their applicability is not restricted to any particular vehicle. Preliminary analysis has demonstrated the feasibility of these concepts at minimal loss in payload capability.

  5. Personnel launch system autoland development study

    NASA Technical Reports Server (NTRS)

    Bossi, J. A.; Langehough, M. A.; Tollefson, J. C.

    1991-01-01

    The Personnel Launch System (PLS) Autoland Development Study focused on development of the guidance and control system for the approach and landing (A/L) phase and the terminal area energy management (TAEM) phase. In the A/L phase, a straight-in trajectory profile was developed with an initial high glide slope, a pull-up and flare to lower glide slope, and the final flare touchdown. The TAEM system consisted of using a heading alignment cone spiral profile. The PLS autopilot was developed using integral LQG design techniques. The guidance and control design was verified using a nonlinear 6 DOF simulation. Simulation results demonstrated accurate steering during the TAEM phase and adequate autoland performance in the presence of wind turbulence and wind shear.

  6. Senator Doug Jones (D-AL) Tour of MSFC Facilities

    NASA Image and Video Library

    2018-02-22

    Senator Doug Jones (D-AL.) and wife, Louise, tour Marshall Space Flight facilities. Steve Doering, manager, Stages Element, Space Launch System (SLS) program at MSFC, along with Senator and Mrs. Jones, viewed the MSFC campus from the top of test stand 4693.

  7. Electromagnetic Aircraft Launching System: Do the Benefits Outweigh the Costs?

    DTIC Science & Technology

    2010-03-29

    Launching System: N/A Do the Benefits Outweigh the Costs? 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER ’ N/A 6. AUTHOR(S) 5d. PROJECT NUMBER Hartman...levitation (MAGLEV) trains. State-of-the-art systems make up the components of the system. There are several benefits the EIV1ALS has over the current...Do the Benefits Outweigh the Costs? SUBMITTED IN PARTIAL I:tJLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF MILITARY STUDIES Author

  8. Aluminum 2195 T8 Gore Development for Space Launch System Core and Upper Stage

    NASA Technical Reports Server (NTRS)

    Volz, Martin

    2015-01-01

    Gores are pie-shaped panels that are welded together to form the dome ends of rocket fuel tanks as shown in figure 1. Replacing aluminum alloy 2219 with aluminum (Al)-lithium (Li) alloy 2195 as the Space Launch System (SLS) cryogenic tank material would save enormous amounts of weight. In fact, it has been calculated that simply replacing Al 2219 gores with Al 2195 gores on the SLS core stage domes could save approximately 3,800 pound-mass. This is because the Al-Li 2195 alloy exhibits both higher mechanical properties and lower density than the SLS baseline Al 2219 alloy. Indeed, the known advantages of Al 2195 led to its use as a replacement for Al 2219 in the shuttle external tank program. The required thicknesses of Al 2195 gores for either SLS core stage tanks or upper stage tanks will depend on the specific design configurations. The required thicknesses or widths may exceed the current experience base in the manufacture of such gores by the stretch-forming process. Accordingly, the primary objective of this project was to enhance the formability of Al 2195 by optimizing the heat treatment and stretch-forming process for gore thicknesses up to 0.75 inches, which envelop the maximum expected gore thicknesses for SLS tank configurations.

  9. Space Logistics: Launch Capabilities

    NASA Technical Reports Server (NTRS)

    Furnas, Randall B.

    1989-01-01

    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  10. Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 2: Ground operations problems

    NASA Technical Reports Server (NTRS)

    Waldrop, Glen S.

    1990-01-01

    Operations problems and cost drivers were identified for current propulsion systems and design and technology approaches were identified to increase the operational efficiency and to reduce operations costs for future propulsion systems. To provide readily usable data for the ALS program, the results of the OEPSS study were organized into a series of OEPSS Data Books. This volume presents a detailed description of 25 major problems encountered during launch processing of current expendable and reusable launch vehicles. A concise description of each problem and its operational impact on launch processing is presented, along with potential solutions and technology recommendation.

  11. Senator Doug Jones (D-AL) Tour of MSFC Facilities

    NASA Image and Video Library

    2018-02-22

    Senator Doug Jones (D-AL.) and wife, Louise, tour Marshall Space Flight facilities. Steve Doering, manager, Stages Element, Space Launch System (SLS) program at MSFC, views the test stand 4693 where key SLS structural elements will be subjected to stress testing simulating space flight.

  12. Senator Doug Jones (D-AL) Tour of MSFC Facilities

    NASA Image and Video Library

    2018-02-22

    Senator Doug Jones (D-AL.) and wife, Louise, tour Marshall Space Flight facilities. Steve Doering, manager, Stages Element, Space Launch System (SLS) program at MSFC, explains the stages of the SLS rocket with the scale model rocket located in the lobby of building 4200.

  13. National Launch System: Structures and materials

    NASA Technical Reports Server (NTRS)

    Bunting, Jack O.

    1993-01-01

    The National Launch System provides an opportunity to realize the potential of Al-Li. Advanced structures can reduce weights by 5-40 percent as well as relax propulsion system performance specifications and reduce requirements for labor and materials. The effect on costs will be substantial. Advanced assembly and process control technologies also offer the potential for greatly reduced labor during the manufacturing and inspection processes. Current practices are very labor-intensive and, as a result, labor costs far outweigh material costs for operational space transportation systems. The technological readiness of new structural materials depends on their commercial availability, producibility and materials properties. Martin Marietta is vigorously pursuing the development of its Weldalite 049 Al-Li alloys in each of these areas. Martin Marietta is also preparing to test an automated work cell concept that it has developed using discrete event simulation.

  14. Senator Doug Jones (D-AL) Tour of MSFC Facilities

    NASA Image and Video Library

    2018-02-22

    Senator Doug Jones (D-AL.) and wife, Louise, tour Marshall Space Flight facilities. Steve Doering, manager, Stages Element, Space Launch System (SLS) program at MSFC, also tour the Payload Operations Integration Center (POIC) where Marshall controllers oversee stowage requirements aboard the International Space Station (ISS) as well as scientific experiments.

  15. Development tests of LOX/LH2 tank for H-I launch vehicle

    NASA Astrophysics Data System (ADS)

    Takamatsu, H.; Imagawa, K.; Ichimaru, Y.

    1984-10-01

    The design and preliminary test performance of an integrated LOX/LH2 tank for the second-stage propulsion system of the H-I launch be vehicle being developed by NASDA are presented and illustrated with drawings, diagrams, photographs, graphs, and tables. The tank has length 5.7 m, diameter 2.5 m, and capacity 8.7 tons and is constructed of 2219 Al alloy. The common bulkhead of Al-alloy-covered GFRP honeycomb, identified as the most critical component, has successfully completed extensive mechanical and thermal testing of both subscale and prototype models.

  16. Concepts for the Next Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Margulis, M.; Tenerelli, D.

    1996-12-01

    In collaboration with NASA GSFC, we have examined a wide range of potential concepts for a large, passively cooled space telescope. Our design goals were to achieve a theoretical imaging sensitivity in the near-IR of 1 nJy and an angular resolution at 1 micron of 0.06 arcsec. Concepts examined included a telescope/spacecraft system with a 6-m diameter monolithic primary mirror, a variety of telescope/spacecraft systems with deployable primary mirror segments to achieve an 8-m diameter aperture, and a 12-element sparse aperture phased array telescope. Trade studies indicate that all three concept categories can achieve the required sensitivity and resolution, but that considerable technology development is required to bring any of the concepts to fruition. One attractive option is the system with the 6-m diameter monolithic primary. This option achieves high sensitivity without telescope deployments and includes a stiff structure for robust attitude and figure control. This system capitalizes on coming advances in launch vehicle and shroud technology, which should enable launch of large, monolithic payloads into orbit positions where background noise due to zodiacal dust is low. Our large space telescope study was performed by a consortium of organizations and individuals including: Domenick Tenerelli et al. (Lockheed Martin Corp.), Roger Angel et al. (U. Ariz.), Tom Casey et al. (Eastman Kodak Co.), Jim Gunn (Princeton), Shel Kulick (Composite Optics, Inc.), Jim Westphal (CIT), Johnny Batache et al. (Harris Corp.), Costas Cassapakis et al. (L'Garde, Inc.), Dave Sandler et al. (ThermoTrex Corp.), David Miller et al. (MIT), Ephrahim Garcia et al. (Garman Systems Inc.), Mark Enright (New Focus Inc.), Chris Burrows (STScI), Roc Cutri (IPAC), and Art Bradley (Allied Signal Aerospace).

  17. NASA's Spaceliner 100 Investment Area Technology Activities

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner100 Investment Area, third generation technologies are being pursued in the areas of propulsion, airframes, integrated vehicle health management (IVHM), launch systems, and operations and range. The ASTP program will mature these technologies through ground system testing. Flight testing where required, will be advocated on a case by case basis.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, Alexander D.; Banishev, Alexandr A.; Shaw, William L.

    We investigated the launch and target impact of laser-driven Al flyer plates using photon Doppler velocimetry (PDV). We studied different flyer designs launched by laser pulses of different energies, pulse durations and beam diameters, that produced km s{sup −1} impacts with transparent target materials. Laser-launching Al flyers 25–100 μm thick cemented to glass substrates is usually thought to involve laser vaporization of a portion of the flyer, which creates many difficulties associated with loss of integrity and heating of the flyer material. However, in the system used here, the launch mechanism was surprising and unexpected: it involved optical damage atmore » the glass/cement/flyer interface, with very little laser light reaching the flyer itself. In fact the flyers launched in this manner behaved almost identically to multilayer flyers that were optically shielded from the laser pulses and insulated from heat generated by the pulses. Launching flyers with nanosecond laser pulses creates undesirable reverberating shocks in the flyer. In some cases, with 10 ns launch pulses, the thickest flyers were observed to lose integrity. But with stretched 20 ns pulses, we showed that the reverberations damped out prior to impact with targets, and that the flyers maintained their integrity during flight. Flyer impacts with salt, glass, fused silica, and acrylic polymer were studied by PDV, and the durations of fully supported shocks in those media were determined, and could be varied from 5 to 23 ns.« less

  19. Hybrid propulsion technology program: Phase 1, volume 2

    NASA Technical Reports Server (NTRS)

    Schuler, A. L.; Wiley, D. R.

    1989-01-01

    The program objectives of developing hybrid propulsion technology (HPT) to enable its application for manned and unmanned high thrust, high performance space launch vehicles are examined. The studies indicate that the hybrid propulsion (HP) is very attractive, especially when applied to large boosters for programs such as the Advanced Launch System (ALS) and the second generation Space Shuttle. Some of the advantages of HP are identified. Space launch vehicles using HP are less costly than those flying today because their propellant and insulation costs are much less and there are fewer operational restraints due to reduced safety requirements. Boosters using HP have safety features that are highly desirable, particularly for manned flights. HP systems will have a clean exhaust and high performance. Boosters using HP readily integrate with launch vehicles and their launch operations, because they are very compact for the amount of energy contained. Hybrid propulsion will increase the probability of mission success. In order to properly develop the technologies of HP, preliminary HP concepts are evaluated. System analyses and trade studies were performed to identify technologies applicable to HP.

  20. Recent Advances in Near-Net-Shape Fabrication of Al-Li Alloy 2195 for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Wagner, John; Domack, Marcia; Hoffman, Eric

    2007-01-01

    Recent applications in launch vehicles use 2195 processed to Super Lightweight Tank specifications. Potential benefits exist by tailoring heat treatment and other processing parameters to the application. Assess the potential benefits and advocate application of Al-Li near-net-shape technologies for other launch vehicle structural components. Work with manufacturing and material producers to optimize Al-Li ingot shape and size for enhanced near-net-shape processing. Examine time dependent properties of 2195 critical for reusable applications.

  1. KSC-2011-6822

    NASA Image and Video Library

    2011-09-08

    CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station in Florida, members of NASA's Gravity Recovery and Interior Laboratory (GRAIL) launch team monitor GRAIL's launch countdown from the Mission Directors Center in Hangar AE. From left are Dana Grieco, launch operations manager, Analex, NASA's Launch Services Program (LSP); Bruce Reid, GRAIL mission manager, LSP; Al Sierra, manager of the Flight Project Office, LSP; Omar Baez, GRAIL assistant launch director, LSP; and Tim Dunn, GRAIL launch director, LSP; David Lehman, spacecraft mission director and GRAIL project manager, NASA's Jet Propulsion Laboratory (JPL); and John Henk, GRAIL program manager, Lockheed Martin Space Systems. Launch is scheduled for 8:37:06 a.m. EDT Sept. 8 from Space Launch Complex 17B on Cape Canaveral Air Force Station. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett

  2. Senator Doug Jones (D-AL) Tour of MSFC Facilities

    NASA Image and Video Library

    2018-02-22

    Senator Doug Jones (D-AL.) and wife, Louise, tour Marshall Space Flight facilities. Steve Doering, manager, Stages Element, Space Launch System (SLS) program at MSFC, also tour the Payload Operations Integration Center (POIC) where Marshall controllers oversee stowage requirements aboard the International Space Station (ISS) as well as scientific experiments. Different positions in the room are explained to Senator Jones by MSFC controller Beau Simpson.

  3. Development Status of the Advanced Life Support On-Line Project Information System

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Hogan, John A.; Cavazzoni, Jim; Brodbeck, Christina; Morrow, Rich; Ho, Michael; Kaehms, Bob; Whitaker, Dawn R.

    2005-01-01

    The Advanced Life Support Program has recently accelerated an effort to develop an On-line Project Information System (OPIS) for research project and technology development data centralization and sharing. The core functionality of OPIS will launch in October of 2005. This paper presents the current OPIS development status. OPIS core functionality involves a Web-based annual solicitation of project and technology data directly from ALS Principal Investigators (PIS) through customized data collection forms. Data provided by PIs will be reviewed by a Technical Task Monitor (TTM) before posting the information to OPIS for ALS Community viewing via the Web. The data will be stored in an object-oriented relational database (created in MySQL(R)) located on a secure server at NASA ARC. Upon launch, OPIS can be utilized by Managers to identify research and technology development gaps and to assess task performance. Analysts can employ OPIS to obtain.

  4. Base heating methodology improvements, volume 1

    NASA Technical Reports Server (NTRS)

    Bender, Robert L.; Reardon, John E.; Somers, Richard E.; Fulton, Michael S.; Smith, Sheldon D.; Pergament, Harold

    1992-01-01

    This document is the final report for NASA MSFC Contract NAS8-38141. The contracted effort had the broad objective of improving the launch vehicles ascent base heating methodology to improve and simplify the determination of that environment for Advanced Launch System (ALS) concepts. It was pursued as an Advanced Development Plan (ADP) for the Joint DoD/NASA ALS program office with project management assigned to NASA/MSFC. The original study was to be completed in 26 months beginning Sep. 1989. Because of several program changes and emphasis on evolving launch vehicle concepts, the period of performance was extended to the current completion date of Nov. 1992. A computer code incorporating the methodology improvements into a quick prediction tool was developed and is operational for basic configuration and propulsion concepts. The code and its users guide are also provided as part of the contract documentation. Background information describing the specific objectives, limitations, and goals of the contract is summarized. A brief chronology of the ALS/NLS program history is also presented to provide the reader with an overview of the many variables influencing the development of the code over the past three years.

  5. Annual ADP planning document

    NASA Technical Reports Server (NTRS)

    Mogilevsky, M.

    1973-01-01

    The Category A computer systems at KSC (Al and A2) which perform scientific and business/administrative operations are described. This data division is responsible for scientific requirements supporting Saturn, Atlas/Centaur, Titan/Centaur, Titan III, and Delta vehicles, and includes realtime functions, Apollo-Soyuz Test Project (ASTP), and the Space Shuttle. The work is performed chiefly on the GEL-635 (Al) system located in the Central Instrumentation Facility (CIF). The Al system can perform computations and process data in three modes: (1) real-time critical mode; (2) real-time batch mode; and (3) batch mode. The Division's IBM-360/50 (A2) system, also at the CIF, performs business/administrative data processing such as personnel, procurement, reliability, financial management and payroll, real-time inventory management, GSE accounting, preventive maintenance, and integrated launch vehicle modification status.

  6. The Impact of QuikScat on Weather Analysis and Forecasting

    NASA Technical Reports Server (NTRS)

    Atlas, Robert; Bloom, S. C.; Ardizzone, J.; Brin, E.; Terry, J.; Yu, T.-W.

    2001-01-01

    Scatterometer observations of the ocean surface wind speed and direction improve the depiction and prediction of storms at sea. These data are especially valuable where observations are otherwise sparse, mostly in the Southern Hemisphere and tropics, but also on occasion in the North Atlantic and North Pacific The SeaWinds scatterometer on the QuikScat satellite was launched in June 1999 and it represents a dramatic departure in design from the other scatterometer instruments launched during the past decade (ERS-1,2 and NSCAT). More details on the SeaWinds instrument can be found in Atlas et al. (2001) and Bloom et al. (1999). This presentation shows the influence of QuikScat data in data assimilation systems both from the NASA Data Assimilation Office (GEOS-3) and from NCEP (GDAS).

  7. A Personnel Launch System for safe and efficient manned operations

    NASA Astrophysics Data System (ADS)

    Petro, Andrew J.; Andrews, Dana G.; Wetzel, Eric D.

    1990-10-01

    Several Conceptual designs for a simple, rugged Personnel Launch System (PLS) are presented. This system could transport people to and from Low Earth Orbit (LEO) starting in the late 1990's using a new modular Advanced Launch System (ALS) developed for the Space Exploration Initiative (SEI). The PLS is designed to be one element of a new space transportation architecture including heavy-lift cargo vehicles, lunar transfer vehicles, and multiple-role spcecraft such as the current Space Shuttle. The primary role of the PLS would be to deliver crews embarking on lunar or planetary missions to the Space Station, but it would also be used for earth-orbit sortie missions, space rescue missions, and some satellite servicing missions. The PLS design takes advantage of emerging electronic and structures technologies to offer a robust vehicle with autonomous operating and quick turnaround capabilities. Key features include an intact abort capability anywhere in the operating envelope, and elimination of all toxic propellants to streamline ground operations.

  8. NASA's Integrated Space Transportation Plan — 3 rd generation reusable launch vehicle technology update

    NASA Astrophysics Data System (ADS)

    Cook, Stephen; Hueter, Uwe

    2003-08-01

    NASA's Integrated Space Transportation Plan (ISTP) calls for investments in Space Shuttle safety upgrades, second generation Reusable Launch Vehicle (RLV) advanced development and third generation RLV and in-space research and technology. NASA's third generation launch systems are to be fully reusable and operation by 2025. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current systems. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

  9. Intelligent systems for KSC ground processing

    NASA Technical Reports Server (NTRS)

    Heard, Astrid E.

    1992-01-01

    The ground processing and launch of Shuttle vehicles and their payloads is the primary task of Kennedy Space Center. It is a process which is largely manual and contains little inherent automation. Business is conducted today much as it was during previous NASA programs such as Apollo. In light of new programs and decreasing budgets, NASA must find more cost effective ways in which to do business while retaining the quality and safety of activities. Advanced technologies including artificial intelligence could cut manpower and processing time. This paper is an overview of the research and development in Al technology at KSC with descriptions of the systems which have been implemented, as well as a few under development which are promising additions to ground processing software. Projects discussed cover many facets of ground processing activities, including computer sustaining engineering, subsystem monitor and diagnosis tools and launch team assistants. The deployed Al applications have proven an effectiveness which has helped to demonstrate the benefits of utilizing intelligent software in the ground processing task.

  10. Pyro thruster for performing rocket booster attachment, disconnect, and jettison functions

    NASA Technical Reports Server (NTRS)

    Hornyak, Stephen

    1989-01-01

    The concept of a pyro thruster, combining an automatic structural attachment with quick disconnect and thrusting capability, is described. The purpose of the invention is to simplify booster installation, disengagement, and jettison functions for the U.S. Air Force Advanced Launch Systems (ALS) program.

  11. Compression Buckling Behavior of Large-Scale Friction Stir Welded and Riveted 2090-T83 Al-Li Alloy Skin-Stiffener Panels

    NASA Technical Reports Server (NTRS)

    Hoffman, Eric K.; Hafley, Robert A.; Wagner, John A.; Jegley, Dawn C.; Pecquet, Robert W.; Blum, Celia M.; Arbegast, William J.

    2002-01-01

    To evaluate the potential of friction stir welding (FSW) as a replacement for traditional rivet fastening for launch vehicle dry bay construction, a large-scale friction stir welded 2090-T83 aluminum-lithium (Al-Li) alloy skin-stiffener panel was designed and fabricated by Lockheed-Martin Space Systems Company - Michoud Operations (LMSS) as part of NASA Space Act Agreement (SAA) 446. The friction stir welded panel and a conventional riveted panel were tested to failure in compression at the NASA Langley Research Center (LaRC). The present paper describes the compression test results, stress analysis, and associated failure behavior of these panels. The test results provide useful data to support future optimization of FSW processes and structural design configurations for launch vehicle dry bay structures.

  12. Advanced Launch System (ALS) Space Transportation Expert System Study

    DTIC Science & Technology

    1991-03-01

    goal (i.e. it develops a plan). The expert system checks the configuration, issues control commands, and reads sensor inputs to determine facts. The...than a conceptual design issue - a statement does not imply consequences, and only invokes database slot-filler actions such as inheriting an ancestor’s...Subclasses all other classes Private Components Public Components Functions Flatten -> storableForm Action : Creates a flat storable form of the object

  13. An improved authenticated key agreement protocol for telecare medicine information system.

    PubMed

    Liu, Wenhao; Xie, Qi; Wang, Shengbao; Hu, Bin

    2016-01-01

    In telecare medicine information systems (TMIS), identity authentication of patients plays an important role and has been widely studied in the research field. Generally, it is realized by an authenticated key agreement protocol, and many such protocols were proposed in the literature. Recently, Zhang et al. pointed out that Islam et al.'s protocol suffers from the following security weaknesses: (1) Any legal but malicious patient can reveal other user's identity; (2) An attacker can launch off-line password guessing attack and the impersonation attack if the patient's identity is compromised. Zhang et al. also proposed an improved authenticated key agreement scheme with privacy protection for TMIS. However, in this paper, we point out that Zhang et al.'s scheme cannot resist off-line password guessing attack, and it fails to provide the revocation of lost/stolen smartcard. In order to overcome these weaknesses, we propose an improved protocol, the security and authentication of which can be proven using applied pi calculus based formal verification tool ProVerif.

  14. Low-energy impact resistance of graphite-epoxy plates and ALS honeycomb sandwich panels

    NASA Technical Reports Server (NTRS)

    Hui, David

    1989-01-01

    Low energy impact may be potentially dangerous for many highly optimized stiff structures. Impact by foreign objects such as birds, ice, and runways stones or dropping of tools occur frequently and the resulting damage and stress concentrations may be unacceptable from a designer's standpoint. The barely visible, yet potentially dangerous dents due to impact of foreign objects on the Advanced Launch System (ALS) structure are studied. Of particular interest is the computation of the maximum peak impact force for a given impactor mass and initial velocity. The theoretical impact forces will be compared with the experimental dropweight results for the ALS face sheets alone as well as the ALS honeycomb sandwich panels.

  15. Electromechanical actuation for thrust vector control applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen

    1990-01-01

    The advanced launch system (ALS), is a launch vehicle that is designed to be cost-effective, highly reliable, and operationally efficient with a goal of reducing the cost per pound to orbit. An electromechanical actuation (EMA) system is being developed as an attractive alternative to the hydraulic systems. The controller will integrate 20 kHz resonant link power management and distribution (PMAD) technology and pulse population modulation (PPM) techniques to implement field-oriented vector control (FOVC) of a new advanced induction motor. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a built-in test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance, and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA thrust vector control (TVC) system. The EMA system and work proposed for the future are discussed.

  16. Environmental Impact Analysis Process. Preliminary Environmental Constraints Survey U.S. Air Force, Space Division Advanced Launch System (ALS)

    DTIC Science & Technology

    1988-09-01

    of Mauna Loa and Kilauea volcanoes . Both are shield volcanoes , having a broad summit and base. The southeastern flanks of the volcanoes are riddled...potential of volcanic activity (Telling, et al. 1987). Lava flows from the Kilauea volcano frequently inundate the area a few miles north of Palima Point...The Hawaii Volcanoes National Park, which is between 1.5 and 25 miles from the proposed project sites, has been designated as a Class I area by the

  17. Development Approach of the Advanced Life Support On-line Project Information System

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Hogan, John A.; Morrow, Rich; Ho, Michael C.; Kaehms, Bob; Cavazzoni, Jim; Brodbeck, Christina A.; Whitaker, Dawn R.

    2005-01-01

    The Advanced Life Support (ALS) Program has recently accelerated an effort to develop an On-line Project Information System (OPIS) for research project and technology development data centralization and sharing. There has been significant advancement in the On-line Project Information System (OPIS) over the past year (Hogan et al, 2004). This paper presents the resultant OPIS development approach. OPIS is being built as an application framework consisting of an uderlying Linux/Apache/MySQL/PHP (LAMP) stack, and supporting class libraries that provides database abstraction and automatic code generation, simplifying the ongoing development and maintenance process. Such a development approach allows for quick adaptation to serve multiple Programs, although initial deployment is for an ALS module. OPIS core functionality will involve a Web-based annual solicitation of project and technology data directly from ALS Principal Investigators (PIs) through customized data collection forms. Data provided by PIs will be reviewed by a Technical Task Monitor (TTM) before posting the information to OPIS for ALS Community viewing via the Web. Such Annual Reports will be permanent, citable references within OPIS. OPlS core functionality will also include Project Home Sites, which will allow PIS to provide updated technology information to the Community in between Annual Report updates. All data will be stored in an object-oriented relational database, created in MySQL(Reistered Trademark) and located on a secure server at NASA Ames Research Center (ARC). Upon launch, OPlS can be utilized by Managers to identify research and technology development (R&TD) gaps and to assess task performance. Analysts can employ OPlS to obtain the current, comprehensive, accurate information about advanced technologies that is required to perform trade studies of various life support system options. ALS researchers and technology developers can use OPlS to achieve an improved understanding of the NASA and ALS Program needs and to understand how other researchers and technology developers are addressing those needs. OPlS core functionality will launch for 'Ihe ALS Program in October, 2005. However, the system has been developed with the ability to evolve with Program needs. Because of open-source construction, software costs are minimized. Any functionality that is technologically feasible can be built into OPIS, and OPlS can expand through module cloning and adaptation, to any level deemed useful to the Agency.

  18. Operationally efficient propulsion system study (OEPSS) data book. Volume 9; Preliminary Development Plan for an Integrated Booster Propulsion Module (BPM)

    NASA Technical Reports Server (NTRS)

    DiBlasi, Angelo G.

    1992-01-01

    A preliminary development plan for an integrated propulsion module (IPM) is described. The IPM, similar to the Space Transportation Main engine (STME) engine, is applicable to the Advanced Launch System (ALS) baseline vehicle. The same STME development program ground rules and time schedule were assumed for the IPM. However, the unique advantages of testing an integrated engine element, in terms of reduced number of hardware and number of system and reliability tests, compared to single standalone engine and MPTA, are highlighted. The potential ability of the IPM to meet the ALS program goals for robustness, operability and reliability is emphasized.

  19. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Volume 2: Addendum 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The potential of a common Liquid Rocket Booster (LRB) design was evaluated for use with both the Space Transportation System (STS) and the Advanced Launch System (ALS). A goal is to have a common Liquid Oxygen/Liquid Hydrogen (LO2/LH2) engine developed for both the ALS booster and the core stage. The LO2/LH2 option for the STS was evaluated to identify potential LRB program cost reductions. The objective was to identify the structural impacts to the external tank (ET), and to determine if any significant ET re-development costs are required as a result of the larger LO2/LH2 LRB. The potential ET impacts evaluated are presented.

  20. The IBEX Flight Segment

    NASA Astrophysics Data System (ADS)

    Scherrer, J.; Carrico, J.; Crock, J.; Cross, W.; Delossantos, A.; Dunn, A.; Dunn, G.; Epperly, M.; Fields, B.; Fowler, E.; Gaio, T.; Gerhardus, J.; Grossman, W.; Hanley, J.; Hautamaki, B.; Hawes, D.; Holemans, W.; Kinaman, S.; Kirn, S.; Loeffler, C.; McComas, D. J.; Osovets, A.; Perry, T.; Peterson, M.; Phillips, M.; Pope, S.; Rahal, G.; Tapley, M.; Tyler, R.; Ungar, B.; Walter, E.; Wesley, S.; Wiegand, T.

    2009-08-01

    IBEX provides the observations needed for detailed modeling and in-depth understanding of the interstellar interaction (McComas et al. in Physics of the Outer Heliosphere, Third Annual IGPP Conference, pp. 162-181, 2004; Space Sci. Rev., 2009a, this issue). From mission design to launch and acquisition, this goal drove all flight system development. This paper describes the management, design, testing and integration of IBEX’s flight system, which successfully launched from Kwajalein Atoll on October 19, 2008. The payload is supported by a simple, Sun-pointing, spin-stabilized spacecraft with no deployables. The spacecraft bus consists of the following subsystems: attitude control, command and data handling, electrical power, hydrazine propulsion, RF, thermal, and structures. A novel 3-step orbit approach was employed to put IBEX in its highly elliptical, 8-day final orbit using a Solid Rocket Motor, which provided large delta-V after IBEX separated from the Pegasus launch vehicle; an adapter cone, which interfaced between the SRM and Pegasus; Motorized Lightbands, which performed separation from the Pegasus, ejection of the adapter cone, and separation of the spent SRM from the spacecraft; a ShockRing isolation system to lower expected launch loads; and the onboard Hydrazine Propulsion System. After orbit raising, IBEX transitioned from commissioning to nominal operations and science acquisition. At every phase of development, the Systems Engineering and Mission Assurance teams supervised the design, testing and integration of all IBEX flight elements.

  1. A white paper: Operational efficiency. New approaches to future propulsion systems

    NASA Technical Reports Server (NTRS)

    Rhodes, Russel; Wong, George

    1991-01-01

    Advanced launch systems for the next generation of space transportation systems (1995 to 2010) must deliver large payloads (125,000 to 500,000 lbs) to low earth orbit (LEO) at one tenth of today's cost, or 300 to 400 $/lb of payload. This cost represents an order of magnitude reduction from the Titan unmanned vehicle cost of delivering payload to orbit. To achieve this sizable reduction, the operations cost as well as the engine cost must both be lower than current engine system. The Advanced Launch System (ALS) is studying advanced engine designs, such as the Space Transportation Main Engine (STME), which has achieved notable reduction in cost. The results are presented of a current study wherein another level of cost reduction can be achieved by designing the propulsion module utilizing these advanced engines for enhanced operations efficiency and reduced operations cost.

  2. Lockheed Martin Skunk Works Single Stage to Orbit/Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Lockheed Martin Skunk Works has compiled an Annual Performance Report of the X-33/RLV Program. This report consists of individual reports from all industry team members, as well as NASA team centers. This portion of the report is comprised of a status report of Lockheed Martin's contribution to the program. The following is a summary of the Lockheed Martin Centers involved and work reviewed under their portion of the agreement: (1) Lockheed Martin Skunk Works - Vehicle Development, Operations Development, X-33 and RLV Systems Engineering, Manufacturing, Ground Operations, Reliability, Maintainability/Testability, Supportability, & Special Analysis Team, and X-33 Flight Assurance; (2) Lockheed Martin Technical Operations - Launch Support Systems, Ground Support Equipment, Flight Test Operations, and RLV Operations Development Support; (3) Lockheed Martin Space Operations - TAEM and A/L Guidance and Flight Control Design, Evaluation of Vehicle Configuration, TAEM and A/L Dispersion Analysis, Modeling and Simulations, Frequency Domain Analysis, Verification and Validation Activities, and Ancillary Support; (4) Lockheed Martin Astronautics-Denver - Systems Engineering, X-33 Development; (5) Sanders - A Lockheed Martin Company - Vehicle Health Management Subsystem Progress, GSS Progress; and (6) Lockheed Martin Michoud Space Systems - X-33 Liquid Oxygen (LOX) Tank, Key Challenges, Lessons Learned, X-33/RLV Composite Technology, Reusable Cyrogenic Insulation (RCI) and Vehicle Health Monitoring, Main Propulsion Systems (MPS), Structural Testing, X-33 System Integration and Analysis, and Cyrogenic Systems Operations.

  3. New developments in the field of launchers

    NASA Astrophysics Data System (ADS)

    Koelle, H. H.; Arend, H.

    The current status of launch-system technology is discussed in a global survey. Topics addressed include the factors influencing launcher cost effectiveness; the capabilities of state-of-the-art Soviet, U.S., European, Chinese, and Japanese systems; possible improvements to the current launchers; alternative technologies (the ESA Hermes shuttle, SSTO vehicles, etc.); and future trends in the commercial launch market. Particular attention is given to the Neptun two-stage reusable ballistic launcher proposed by Apel et al. (1985). It is suggested that it may be possible to lower specific transport costs to about $500/kg, or even to $100/kg if the lifetime cargo capacity of reusable launchers can be extended to the order of 2 Tg. Extensive diagrams, drawings, and tables of numerical data are provided.

  4. KENNEDY SPACE CENTER, FLA. - STS-81 Mission Specialist Jeff Wisoff prepares to enter the Space Shuttle Atlantis at Launch Pad 39B with help from White Room closeout crew members Danny Wyatt (center) and Al Rochford.

    NASA Image and Video Library

    1997-01-12

    KENNEDY SPACE CENTER, FLA. - STS-81 Mission Specialist Jeff Wisoff prepares to enter the Space Shuttle Atlantis at Launch Pad 39B with help from White Room closeout crew members Danny Wyatt (center) and Al Rochford.

  5. NASA's Space Launch System Takes Shape

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Robinson, Kimberly F.

    2017-01-01

    Significant hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of new capability for deep-space human exploration. (Figure 1) At NASA's Michoud Assembly Facility (MAF) near New Orleans, LA, full-scale test articles are being joined by flight hardware. Structural test stands are nearing completion at NASA's Marshall Space Flight Center (MSFC), Huntsville, AL. An SLS booster solid rocket motor underwent test firing, while flight motor segments were cast. An RS-25 and Engine Control Unit (ECU) for early SLS flights were tested at NASA's Stennis Space Center (SSC). The upper stage for the first flight was completed, and NASA completed Preliminary Design Review (PDR) for a new, powerful upper stage. The pace of production and testing is expected to increase in 2017. This paper will discuss the technical and programmatic highlights and challenges of 2016 and look ahead to plans for 2017.

  6. An Approach to Establishing System Benefits for Technology in NASA's Hypersonics Investment Area

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Pannell, Bill; Cook, Stephen (Technical Monitor)

    2001-01-01

    NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current systems. The Advanced Space Transportation Program (ASTP) Office at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Hypersonics Investment Area, third generation technologies are being pursued. The Hypersonics Investment Area's primary objective is to mature vehicle technologies to enable substantial increases in the design and operating margins of third generation RLVs (current Space Shuttle is considered the first generation RLV) by incorporating advanced propulsion systems, materials, structures, thermal protection systems, power, and avionics technologies. The paper describes the system process, tools and concepts used to determine the technology benefits. Preliminary results will be presented along with the current technology investments that are being made by ASTP's Hypersonics Investment Area.

  7. NASA's Advanced Space Transportation Hypersonic Program

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; McClinton, Charles; Cook, Stephen (Technical Monitor)

    2002-01-01

    NASA's has established long term goals for access-to-space. NASA's third generation launch systems are to be fully reusable and operational in approximately 25 years. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

  8. Advanced Launch Vehicle Upper Stages Using Liquid Propulsion and Metallized Propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1990-01-01

    Metallized propellants are liquid propellants with a metal additive suspended in a gelled fuel or oxidizer. Typically, aluminum (Al) particles are the metal additive. These propellants provide increase in the density and/or the specific impulse of the propulsion system. Using metallized propellant for volume-and mass-constrained upper stages can deliver modest increases in performance for low earth orbit to geosynchronous earth orbit (LEO-GEO) and other earth orbital transfer missions. Metallized propellants, however, can enable very fast planetary missions with a single-stage upper stage system. Trade studies comparing metallized propellant stage performance with non-metallized upper stages and the Inertial Upper Stage (IUS) are presented. These upper stages are both one- and two-stage vehicles that provide the added energy to send payloads to altitudes and onto trajectories that are unattainable with only the launch vehicle. The stage designs are controlled by the volume and the mass constraints of the Space Transportation System (STS) and Space Transportation System-Cargo (STS-C) launch vehicles. The influences of the density and specific impulse increases enabled by metallized propellants are examined for a variety of different stage and propellant combinations.

  9. Propulsion Systems Panel

    NASA Technical Reports Server (NTRS)

    Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; Mcgaw, Mike; Munafo, Paul M.

    1993-01-01

    Topics addressed are: (1) cryogenic tankage; (2) launch vehicle TPS/insulation; (3) durable passive thermal control devices and/or coatings; (4) development and characterization of processing methods to reduce anisotropy of material properties in Al-Li; (5) durable thermal protection system (TPS); (6) unpressurized Al-Li structures (interstages, thrust structures); (7) near net shape sections; (8) pressurized structures; (9) welding and joining; (10) micrometeoroid and debris hypervelocity shields; (11) state-of-the-art shell buckling structure optimizer program to serve as a rapid design tool; (12) test philosophy; (13) reduced load cycle time; (14) structural analysis methods; (15) optimization of structural criteria; and (16) develop an engineering approach to properly trade material and structural concepts selection, fabrication, facilities, and cost.

  10. Intermetallics for Thermal Protection Systems

    NASA Astrophysics Data System (ADS)

    Marcos, J.

    2009-01-01

    Future Reusable Launch Vehicles (RLV's) will require improved Thermal Protection Systems (TPS) to achieve the ambitious goal of reducing the cost of delivering a payload to orbit by, at least, an order of magnitude. In this context, metallic materials are good candidates for their use in TPS and hot structures. Up to date, only two major type of materials have been considered and developed in Europe for such type of applications: Oxide Dispersion Strengthened (ODS) and intermetallics (ϒ-TiAl). INASMET, during last years, has been working with the orthorhombic titanium aluminides, whose specific properties are comparable, to those of ODS and ϒ-TiAl materials. The EXPERT mission represents a unique opportunity to test under re-entry conditions this material.

  11. Propulsion Systems Panel

    NASA Astrophysics Data System (ADS)

    Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; McGaw, Mike; Munafo, Paul M.

    1993-02-01

    Topics addressed are: (1) cryogenic tankage; (2) launch vehicle TPS/insulation; (3) durable passive thermal control devices and/or coatings; (4) development and characterization of processing methods to reduce anisotropy of material properties in Al-Li; (5) durable thermal protection system (TPS); (6) unpressurized Al-Li structures (interstages, thrust structures); (7) near net shape sections; (8) pressurized structures; (9) welding and joining; (10) micrometeoroid and debris hypervelocity shields; (11) state-of-the-art shell buckling structure optimizer program to serve as a rapid design tool; (12) test philosophy; (13) reduced load cycle time; (14) structural analysis methods; (15) optimization of structural criteria; and (16) develop an engineering approach to properly trade material and structural concepts selection, fabrication, facilities, and cost.

  12. Development of LOX/LH2 tank system for H-I launch vehicle

    NASA Astrophysics Data System (ADS)

    Nozaki, Y.; Takamatsu, H.; Morino, Y.; Imagawa, K.

    Design features of the second stage of the prospective Japanese H-1 launch vehicle are described. The stage will use an LO2/LH2 fueled engine. The fuels will be contained in a 2219 Al alloy tank insulated with sprayed polyurethane foam. The total stage length will be 5.5 m, the volume 6.8 m, pressure 3.2 kg/sq cm (LOX) and 2.5 kg/sq cm (LH2). The diameter is 2.5 m and total fuel mass is 8.7 tons. Design verification tests, consisting of burning tests and thermal evaluation, are scheduled for the near future.

  13. Cyclic Cryogenic Thermal-Mechanical Testing of an X-33/RLV Liquid Oxygen Tank Concept

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin

    1999-01-01

    An important step in developing a cost-effective, reusable, launch vehicle is the development of durable, lightweight, insulated, cryogenic propellant tanks. Current cryogenic tanks are expendable so most of the existing technology is not directly applicable to future launch vehicles. As part of the X-33/Reusable Launch Vehicle (RLV) Program, an experimental apparatus developed at the NASA Langley Research Center for evaluating the effects of combined, cyclic, thermal and mechanical loading on cryogenic tank concepts was used to evaluate cryogenic propellant tank concepts for Lockheed-Martin Michoud Space Systems. An aluminum-lithium (Al 2195) liquid oxygen tank concept, insulated with SS-1171 and PDL-1034 cryogenic insulation, is tested under simulated mission conditions, and the results of those tests are reported. The tests consists of twenty-five simulated Launch/Abort missions and twenty-five simulated flight missions with temperatures ranging from -320 F to 350 F and a maximum mechanical load of 71,300 lb. in tension.

  14. Using System Mass (SM), Equivalent Mass (EM), Equivalent System Mass (ESM) or Life Cycle Mass (LCM) in Advanced Life Support (ALS) Reporting

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2003-01-01

    The Advanced Life Support (ALS) has used a single number, Equivalent System Mass (ESM), for both reporting progress and technology selection. ESM is the launch mass required to provide a space system. ESM indicates launch cost. ESM alone is inadequate for technology selection, which should include other metrics such as Technology Readiness Level (TRL) and Life Cycle Cost (LCC) and also consider perfom.arxe 2nd risk. ESM has proven difficult to implement as a reporting metric, partly because it includes non-mass technology selection factors. Since it will not be used exclusively for technology selection, a new reporting metric can be made easier to compute and explain. Systems design trades-off performance, cost, and risk, but a risk weighted cost/benefit metric would be too complex to report. Since life support has fixed requirements, different systems usually have roughly equal performance. Risk is important since failure can harm the crew, but it is difficult to treat simply. Cost is not easy to estimate, but preliminary space system cost estimates are usually based on mass, which is better estimated than cost. Amass-based cost estimate, similar to ESM, would be a good single reporting metric. The paper defines and compares four mass-based cost estimates, Equivalent Mass (EM), Equivalent System Mass (ESM), Life Cycle Mass (LCM), and System Mass (SM). EM is traditional in life support and includes mass, volume, power, cooling and logistics. ESM is the specifically defined ALS metric, which adds crew time and possibly other cost factors to EM. LCM is a new metric, a mass-based estimate of LCC measured in mass units. SM includes only the factors of EM that are originally measured in mass, the hardware and logistics mass. All four mass-based metrics usually give similar comparisons. SM is by far the simplest to compute and easiest to explain.

  15. 4. Photographic copy of photograph, dated June 1993 (original print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photographic copy of photograph, dated June 1993 (original print in possession of CSSD-HO, Huntsville, AL). Gerald Greenwood, photographer. View of Spartan silo "headworks." In front center is personnel access hatch leading to launch preparation equipment vault (LPEV); On right is launch area antenna; behind are the two launch cell protective covers - Stanley R. Mickelsen Safeguard Complex, Missile Launch Area, Within Exclusion Area, Nekoma, Cavalier County, ND

  16. Balancing low cost with reliable operation in the rotordynamic design of the ALS Liquid Hydrogen Fuel Turbopump

    NASA Technical Reports Server (NTRS)

    Greenhill, L. M.

    1990-01-01

    The Air Force/NASA Advanced Launch System (ALS) Liquid Hydrogen Fuel Turbopump (FTP) has primary design goals of low cost and high reliability, with performance and weight having less importance. This approach is atypical compared with other rocket engine turbopump design efforts, such as on the Space Shuttle Main Engine (SSME), which emphasized high performance and low weight. Similar to the SSME turbopumps, the ALS FTP operates supercritically, which implies that stability and bearing loads strongly influence the design. In addition, the use of low cost/high reliability features in the ALS FTP such as hydrostatic bearings, relaxed seal clearances, and unshrouded turbine blades also have a negative influence on rotordynamics. This paper discusses the analysis conducted to achieve a balance between low cost and acceptable rotordynamic behavior, to ensure that the ALS FTP will operate reliably without subsynchronous instabilities or excessive bearing loads.

  17. Evaluation of thermal barrier coating systems on novel substrates

    NASA Astrophysics Data System (ADS)

    Pint, B. A.; Wright, I. G.; Brindley, W. J.

    2000-06-01

    Testing was conducted on both plasma-sprayed (PS) and electron beam-physical vapor deposited (EB-PVD) Y2O3-stabilized ZrO2 (YSZ) thermal barrier coatings (TBCs) applied directly to oxidation-resistant substrates such as β-NiAl, oxide-dispersed FeCrAl, and NiCr. On an alloy that forms a very adherent alumina scale, β-NiAl+Zr, the coating lifetime of YSZ in furnace cyclic tests was 6 or more times longer than on state-of-the-art, YSZ coatings on single-crystal Ni-base superalloys with MCrAlY or Pt aluminide bond coats. Coatings on FeCrAl alloys appear to be a viable option for applications such as the external skin of the X-33, single stage to orbit, reusable launch vehicle. Model chromia-forming bond coat compositions also show promise for power generation applications at temperatures where hot corrosion may be a major problem. In general, while this work examined unique materials systems, many of the same fundamental failure mechanisms observed in conventional TBCs were observed.

  18. 17. HISTORIC VIEW OF ROCKET & LAUNCH STAND DESIGNED BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. HISTORIC VIEW OF ROCKET & LAUNCH STAND DESIGNED BY HERMANN OBERTH AND RUDOLF NEBEL FOR THE MOVIE DIE FRAU IM MOND (THE WOMAN ON THE MOON). THE LAUNCH STAND WAS MODIFIED BY THE VFR FOR THE FIRST TEST STAND AT RAKETENFLUGPLATZ NEAR BERLIN. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  19. Design of Sounding Rocket Payloads.

    DTIC Science & Technology

    1981-07-01

    AD-AlB 271 NORTHEASTERN UNIV BOSTON MASS ELECTRONICS RESEARCH LAB F/6 19/7 DESIGN OF SOUNDING ROCKET PAYLOADS. (U) JUL Al R L MORIN, L .J O’CONNOR...Morin Lawrence J. O’Connor NORTHEASTERN UNIVERSITY Electronics Research Laboratory D T I Boston, Massachusetts 02115 ELECTE S DEC 9 19813 FINAL REPORT... Research Range on 21 February 1978. The payload was re-assembled, checked and mated to the launch vehicle on 27 February. Launch -8- criteria were

  20. Computer-Aided Software Engineering - An approach to real-time software development

    NASA Technical Reports Server (NTRS)

    Walker, Carrie K.; Turkovich, John J.

    1989-01-01

    A new software engineering discipline is Computer-Aided Software Engineering (CASE), a technology aimed at automating the software development process. This paper explores the development of CASE technology, particularly in the area of real-time/scientific/engineering software, and a history of CASE is given. The proposed software development environment for the Advanced Launch System (ALS CASE) is described as an example of an advanced software development system for real-time/scientific/engineering (RT/SE) software. The Automated Programming Subsystem of ALS CASE automatically generates executable code and corresponding documentation from a suitably formatted specification of the software requirements. Software requirements are interactively specified in the form of engineering block diagrams. Several demonstrations of the Automated Programming Subsystem are discussed.

  1. JPL Contamination Control Engineering

    NASA Technical Reports Server (NTRS)

    Blakkolb, Brian

    2013-01-01

    JPL has extensive expertise fielding contamination sensitive missions-in house and with our NASA/industry/academic partners.t Development and implementation of performance-driven cleanliness requirements for a wide range missions and payloads - UV-Vis-IR: GALEX, Dawn, Juno, WFPC-II, AIRS, TES, et al - Propulsion, thermal control, robotic sample acquisition systems. Contamination control engineering across the mission life cycle: - System and payload requirements derivation, analysis, and contamination control implementation plans - Hardware Design, Risk trades, Requirements V-V - Assembly, Integration & Test planning and implementation - Launch site operations and launch vehicle/payload integration - Flight ops center dot Personnel on staff have expertise with space materials development and flight experiments. JPL has capabilities and expertise to successfully address contamination issues presented by space and habitable environments. JPL has extensive experience fielding and managing contamination sensitive missions. Excellent working relationship with the aerospace contamination control engineering community/.

  2. Meteorological assessment of SRM exhaust products' environmental impact

    NASA Technical Reports Server (NTRS)

    Dingle, A. N.

    1982-01-01

    The environmental impact of solid rocket motor (SRM) exhaust products discharged into the free air stream upon the launching of space vehicles that depend upon SRM boosters to obtain large thrust was assessed. The emission of Al2O3 to the troposphere from the SRMs in each Shuttle launch is considered. The Al2O3 appears as particles suitable for heterogeneous nucleation of hydrochloric acid which under frequently occurring atmospheric conditions may form a highly acidic rain capable of damaging property and crops and of impacting upon the health of human and animal populations. The cloud processes leading to the formation of acid rain and the concentration of the acid that then reaches the ground, and the atmospheric situations that lead to the production of cloud and rain at and near a launch site, and the prediction of weather conditions that may permit or prohibit a launch operation are studied.

  3. Monitoring Direct Effects of Delta, Atlas, and Titan Launches from Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.; Boyle, Shannon R.; Hall, Patrice; Oddy, Donna M.; Hensley, Melissa A.; Stolen, Eric D.; Duncan, Brean W.

    1998-01-01

    Launches of Delta, Atlas, and Titan rockets from Cape Canaveral Air Station (CCAS) have potential environmental effects that could arise from direct impacts of the launch exhaust (e.g., blast, heat), deposition of exhaust products of the solid rocket motors (hydrogen chloride, aluminum oxide), or other effects such as noise. Here we: 1) review previous reports, environmental assessments, and environmental impact statements for Delta, Atlas, and Titan vehicles and pad areas to clarity the magnitude of potential impacts; 2) summarize observed effects of 15 Delta, 22 Atlas, and 8 Titan launches; and 3) develop a spatial database of the distribution of effects from individual launches and cumulative effects of launches. The review of previous studies indicated that impacts from these launches can occur from the launch exhaust heat, deposition of exhaust products from the solid rocket motors, and noise. The principal effluents from solid rocket motors are hydrogen chloride (HCl), aluminum oxide (Al2O3), water (H2O), hydrogen (H2), carbon monoxide (CO), and carbon dioxide (CO2). The exhaust plume interacts with the launch complex structure and water deluge system to generate a launch cloud. Fall out or rain out of material from this cloud can produce localized effects from acid or particulate deposition. Delta, Atlas, and Titan launch vehicles differ in the number and size of solid rocket boosters and in the amount of deluge water used. All are smaller and use less water than the Space Shuttle. Acid deposition can cause damage to plants and animals exposed to it, acidify surface water and soil, and cause long-term changes to community composition and structure from repeated exposure. The magnitude of these effects depends on the intensity and frequency of acid deposition.

  4. Al Roker Interview with NASA for GOES-R Mission

    NASA Image and Video Library

    2016-11-19

    During the countdown for the launch of NOAA's Geostationary Operational Environmental Satellite, or GOES-R, Stephanie Martin of NASA Communications, right, interviews Al Roker, weather forecaster on NBC's "Today Show." GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  5. Al Roker Interview with NASA for GOES-R Mission

    NASA Image and Video Library

    2016-11-19

    During the countdown for the launch of NOAA's Geostationary Operational Environmental Satellite, or GOES-R, Stephanie Martin of NASA Communications, left, interviews Al Roker, weather forecaster on NBC's "Today Show." GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  6. Environmental Impact Analysis Process. Environment Assessment. U.S. Air Force, Space Division Advanced Launch System (ALS) Concept Selection

    DTIC Science & Technology

    1988-08-01

    Mauna Loa and Kilauea volcanoes . Both are shield volcanoes , having a broad summit and base. The southeastern flanks of the volcanoes are riddled with... Kilauea volcano frequently inundate the area a few miles north of Palima Point. The large system of cracks and fissures which are common in the...the island is the Mauna Kea volcano , which emits substantial quantities of S0 2 . The island of Hawaii is currently in attainment for all criteria

  7. Characterization of Cold Sprayed CuCrAl Coated GRCop-84 Substrates for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S . V.; Barrett, C. A.; Lerch, B. A.; Karthikeyan, J.; Ghosn, L. J.; Haynes, J.

    2005-01-01

    An advanced Cu-8(at.%)Cr-4%Nb alloy developed at NASA's Glenn Research Center, and designated as GRCop-84, is currently being considered for use as combustor liners and nozzles in NASA's future generations of reusable launch vehicles (RLVs). Despite the fact that this alloy has superior mechanical and oxidation properties compared to many commercially available copper alloys, it is felt that its high temperature and environmental resistance capabilities can be further enhanced with the development and use of suitable coatings. Several coatings and processes are currently being evaluated for their suitability and future down selection. A newly developed CuCrAl has shown excellent oxidation resistance compared to current generation Cu-Cr coating alloys. Cold spray technology for depositing the CuCrAl coating on a GRCop-84 substrate is currently being developed under NASA's Next Generation Launch Technology (NGLT) Propulsion Research and Technology (PR&T) project. The microstructures, mechanical and thermophysical properties of overlay coated GRCop-84 substrates are discussed.

  8. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  9. Theater Land Attack Cruise Missile Defense: Guarding the Back Door

    DTIC Science & Technology

    1999-06-01

    employ radio command, laser, anti- radiation homing, or electro-optical guidance systems. TASMs will benefit from the same technological developments...mile-range Al-Husayn missile within range of all major Israeli cities, and its nuclear facilities in the Negev desert. The existence of these sites...solutions (“engage on remote”), or simply launch missiles without radiating , and allow the AFCR to guide the missiles to the target

  10. Trajectory optimization for an asymmetric launch vehicle. M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Sullivan, Jeanne Marie

    1990-01-01

    A numerical optimization technique is used to fully automate the trajectory design process for an symmetric configuration of the proposed Advanced Launch System (ALS). The objective of the ALS trajectory design process is the maximization of the vehicle mass when it reaches the desired orbit. The trajectories used were based on a simple shape that could be described by a small set of parameters. The use of a simple trajectory model can significantly reduce the computation time required for trajectory optimization. A predictive simulation was developed to determine the on-orbit mass given an initial vehicle state, wind information, and a set of trajectory parameters. This simulation utilizes an idealized control system to speed computation by increasing the integration time step. The conjugate gradient method is used for the numerical optimization of on-orbit mass. The method requires only the evaluation of the on-orbit mass function using the predictive simulation, and the gradient of the on-orbit mass function with respect to the trajectory parameters. The gradient is approximated with finite differencing. Prelaunch trajectory designs were carried out using the optimization procedure. The predictive simulation is used in flight to redesign the trajectory to account for trajectory deviations produced by off-nominal conditions, e.g., stronger than expected head winds.

  11. Fates of satellite ejecta in the Saturn system, II

    NASA Astrophysics Data System (ADS)

    Alvarellos, José Luis; Dobrovolskis, Anthony R.; Zahnle, Kevin J.; Hamill, Patrick; Dones, Luke; Robbins, Stuart

    2017-03-01

    We assess the fates of ejecta from the large craters Aeneas on Dione and Ali Baba on Enceladus (161 and 39 km in diameter, respectively), as well as that from Herschel (130 km in diameter) on Mimas. The ejecta are treated either as 'spalls' launched from hard surfaces, or as 'rubble' launched from a weak rubble pile regolith. Once in orbit we consider the ejecta as massless test particles subject to the gravity of Saturn and its classical satellites. The great majority of escaped ejecta get swept up by the source moons. The best fit to the ejecta population decay is a stretched exponential with exponent near 1/2 (Dobrovolskis et al., Icarus 188, 481-505, 2007). We bracket the characteristic ejecta sizes corresponding to Grady-Kipp fragments and spalls. Based on this and computed impact velocities and incidence angles, the resulting sesquinary craters, if they exist, should have diameters on the order of a few meters to a few km. The observed longitude distribution of small craters on Mimas along with the findings of Bierhaus et al. that small moons should not have a secondary crater population (Icarus 218, 602-621, 2012) suggest that the most likely place to find sesquinary craters in the Saturn system is the antapex of Mimas.

  12. Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 5: Special emphasis studies

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1979-01-01

    Specific areas were analyzed and identified as high priority for more in-depth analysis. These areas were: (1) rectenna constructability; (2) satellite constructability; (3) support systems constructability; (4) space environmental analysis, and (5) special end-to-end analyses. Baseline requirements specified coplanar solar blankets and an end mounted antenna, utilizing either GaAlAs solar cells and employing a CR of 2, or Si cells. Several configurations were analyzed. Utilizing the preferred configuration as a baseline, a satellite construction base was defined, precursor operations incident to establishment of orbital support facilities identified, and the satellite construction sequence and procedures developed. Since the baseline specifies sixty instead of one hundred and twenty satellites to be constructed in a thirty year period, mass flow to orbit requirements were revised and new traffic models established. Launch site requirements (exclusive of actual launch operations) in terms of manpower and building space were defined.

  13. Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 4: OEPSS design concepts

    NASA Technical Reports Server (NTRS)

    Wong, George S.; Ziese, James M.; Farhangi, Shahram

    1990-01-01

    This study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the OEPSS study have been organized into a series of OEPSS Data Books. This volume describes three propulsion concepts that will simplify the propulsion system design and significantly reduce operational requirements. The concepts include: (1) a fully integrated, booster propulsion module concept for the ALS that avoids the complex system created by using autonomous engines with numerous artificial interfaces; (2) an LOX tank aft concept which avoids potentially dangerous geysering in long LOX propellant lines; and (3) an air augmented, rocket engine nozzle afterburning propulsion concept that will significantly reduce LOX propellant requirements, reduce vehicle size and simplify ground operations and ground support equipment and facilities.

  14. Systems integration and demonstration of advanced reusable structure for ALS

    NASA Technical Reports Server (NTRS)

    Gibbins, Martin N.

    1991-01-01

    The objective was to investigate the potential of advanced material to achieve life cycle cost (LCC) benefits for reusable structure on the advanced launch system. Three structural elements were investigated - all components of an Advanced Launch System reusable propulsion/avionics module. Leading aeroshell configurations included sandwich structure using titanium, graphite/polyimide (Gr/PI), or high-temperature aluminum (HTA) face sheets. Thrust structure truss concepts used titanium, graphite/epoxy, or silicon carbide/aluminum struts. Leading aft bulkhead concepts employed graphite epoxy and aluminum. The technical effort focused on the aeroshell because the greatest benefits were expected there. Thermal analyses show the structural temperature profiles during operation. Finite element analyses show stresses during splash-down. Weight statements and manufacturing cost estimates were prepared for calculation of LCC for each design. The Gr/PI aeroshell showed the lowest potential LCC, but the HTA aeroshell was judged to be lower risk. A technology development plan was prepared to validate the applicable structural technology.

  15. Guidance, steering, load relief and control of an asymmetric launch vehicle. M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Boelitz, Frederick W.

    1989-01-01

    A new guidance, steering, and control concept is described and evaluated for the Third Phase of an asymmetrical configuration of the Advanced Launch System (ALS). The study also includes the consideration of trajectory shaping issues and trajectory design as well as the development of angular rate, angular acceleration, angle of attack, and dynamic pressure estimators. The Third Phase guidance, steering and control system is based on controlling the acceleration-direction of the vehicle after an initial launch maneuver. Unlike traditional concepts, the alignment of the estimated and commanded acceleration-directions is unimpaired by an add-on load relief. Instead, the acceleration-direction steering-control system features a control override that limits the product of estimated dynamic pressure and estimated angle of attack. When this product is not being limited, control is based exclusively on the commanded acceleration-direction without load relief. During limiting, control is based on nulling the error between the limited angle of attack and the estimated angle of attack. This limiting feature provides full freedom to the acceleration-direction steering and control to shape the trajectory within the limit, and also gives full priority to the limiting of angle of attack when necessary. The flight software concepts were analyzed on the basis of their effects on pitch plane motion.

  16. 8. Photographic copy of photograph, dated 1 October 1970 (original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photographic copy of photograph, dated 1 October 1970 (original print in possession of CSSD-HO, Huntsville, AL). Morrison-Knudsen Company and Associates, photographer. View of 43-foot high midsection of Spartan launch tube and exhaust chamber as it was being prepared for sprint missile silo liners, prior to their installation within the subsurface holes at the missile launch site (June 1971). Note the silo liner at right; atop this is the launch preparation equipment chamber (LPEC) - Stanley R. Mickelsen Safeguard Complex, Missile Launch Area, Within Exclusion Area, Nekoma, Cavalier County, ND

  17. Photographic copy of photograph, dated September 1973 (original in possession ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph, dated September 1973 (original in possession of CSSD-HO, Huntsville, AL). Photographer unknown. Aerial view (northwest to southeast) of remote sprint launch site #4 during construction. In the background are the waste stabilization ponds. In the foreground, left to right, are the remote launch operations building, the exclusion area sentry stations, and the sprint launch cells - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 4, North of State Highway 17, approximately 9 miles Northwest of Adams, ND, Nekoma, Cavalier County, ND

  18. Evaluation of actuator energy storage and power sources for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Young, Fred M.

    1993-01-01

    The objective of this evaluation is to determine an optimum energy storage/power source combination for electrical actuation systems for existing (Solid Rocket Booster (SRB), Shuttle) and future (Advanced Launch System (ALS), Shuttle Derivative) vehicles. Characteristic of these applications is the requirement for high power pulses (50-200 kW) for short times (milliseconds to seconds), coupled with longer-term base or 'housekeeping' requirements (5-16 kW). Specific study parameters (e.g., weight, volume, etc.) as stated in the proposal and specified in the Statement of Work (SOW) are included.

  19. 6. Photographic copy of a photograph taken from pasteup negatives ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photographic copy of a photograph taken from paste-up negatives for U.S. Army Corps of Engineers document GF-500-MCP, entitled "Grand Forks Site RLS Army Operating Drawings, Master Composite Photographs for SAFEGUARD TSE Systems and Equipment," Page 9, dated 1 September 1974 (original document and negatives in possession of U.S. Army Corps of Engineers, Huntsville, AL). Photographer unknown. View of remote launch operations building, power generation room #124, showing no-break units NB-1002 (A) and NB-1001 (B). This equipment consisted of a 150 horsepower, d.c. operational motor which drove, on each end of the extended shaft, a 70 kw generator and a 30 kw generator unit. It was designed to provide continuous power service for launch equipment. In particular, the photo is an excellent representation of the shock isolation scheme, as evidenced by the supporting air springs and equipment platform - Stanley R. Mickelsen Safeguard Complex, Remote Launch Operations Building, Near Service Road exit from Patrol Road, Nekoma, Cavalier County, ND

  20. Selection of Optical Cavity Surface Coatings for 1micron Laser Based Missions

    NASA Technical Reports Server (NTRS)

    Hedgeland, Randy J.; Straka, Sharon; Matsumura, Mark; Hammerbacher, Joseph

    2004-01-01

    The particulate surface cleanliness level on several coatings for aluminum and beryllium substrates were examined for use in the optical cavities of high pulse energy Nd:YAG Q-switched, diode-pumped lasers for space flight applications. Because of the high intensity of the lasers, any contaminants in the laser beam path could damage optical coatings and limit the instrument mission objectives at the operating wavelength of 1 micron (micrometer). Our goal was to achieve an EST-STD-CC1246D Level 100 particulate distribution or better to ensure particulate redistribution during launch would not adversely affect the performance objectives. Tapelifts were performed to quantify the amount of particles using in-house developed procedures. The primary candidate coatings included chromate conversion coating aluminum (Al), uncoated Al electroless Nickel (Ni) on Al, Ni-gold (Au) on Al, anodized Al, and gold (Au)/Ni on Beryllium (Be). The results indicate that there were advantages in Ni and Au coating applications for the two major substrates, Al and Be, when considering applications that need to meet launch environments.

  1. 9. Photographic copy of photograph, dated June 1971 (original print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photographic copy of photograph, dated June 1971 (original print in possession of James E. Zielinski, Earth Tech, Huntsville, AL). Photographer unknown. View of sprint missile silo liners, prior to their installation within the subsurface holes at the missile launch site (June 1971). Not the silo liner at right; atop this is the launch preparation equipment chamber (LPEC). - Stanley R. Mickelsen Safeguard Complex, Missile Launch Area, Within Exclusion Area, Nekoma, Cavalier County, ND

  2. Liquid Rocket Booster Study. Volume 2, Book 1

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The recommended Liquid Rocket Booster (LRB) concept is shown which uses a common main engine with the Advanced Launch System (ALS) which burns LO2 and LH2. The central rationale is based on the belief that the U.S. can only afford one big new rocket engine development in the 1990's. A LO2/LH2 engine in the half million pound thrust class could satisfy STS LRB, ALS, and Shuttle C (instead of SSMEs). Development costs and higher production rates can be shared by NASA and USAF. If the ALS program does not occur, the LO2/RP-1 propellants would produce slight lower costs for and STS LRB. When the planned Booster Engine portion of the Civil Space Transportation Initiatives has provided data on large pressure fed LO2/RP-1 engines, then the choice should be reevaluated.

  3. High-throughput shock investigation of thin film thermites and thermites in fluoropolymer binder

    NASA Astrophysics Data System (ADS)

    Matveev, Sergey; Basset, Will; Dlott, Dana; Lee, Evyn; Maria, Jon-Paul; University of Illinois at Urbana-Champaign Collaboration; North Carolina State University Collaboration

    2017-06-01

    Investigation of nanofabricated thermite systems with respect to their energy release is presented. The knowledge obtained by utilization of a high-throughput tabletop shock-system provides essential information that can be used to tune properties of reactive materials towards a desired application. Our shock system launches 0.25-0.75 mm flyer plates, which can reach velocities of 0.5-6 km s-1 and shock durations of 4 - 16 ns. In current studies, emission was detected by a home-built pyrometer. Various reactive materials with differing composition (Al/CuO and Zr/CuO nanolaminates; Al/CuO/PVDF); Al, Zr, CuO standards) and varying interfacial area, were impacted at velocities spanning the available range to ascertain reaction thresholds. Our results show that reaction-impact threshold for the thermite systems under consideration is <1 km/s and that reaction starts at a time as short as 20 ns. Utilization of graybody approximation provides temperature profiles along the reaction time. In future, our goal is to expand detection capabilities utilizing infrared absorption to analyze formation of the products after the shock. The work is supported by the U.S. Army Research Office under Award W911NF-16-1-0406.

  4. Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 3: Operations technology

    NASA Technical Reports Server (NTRS)

    Vilja, John O.

    1990-01-01

    The study was initiated to identify operational problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the OEPSS study were organized into a series of OEPSS Data Books. This volume describes operations technologies that will enhance operational efficiency of propulsion systems. A total of 15 operations technologies were identified that will eliminate or mitigate operations problems described in Volume 2. A recommended development plan is presented for eight promising technologies that will simplify the propulsion system and reduce operational requirements.

  5. Detectability of molecular signatures in the atmospheres of Giant and Terrestrial Exoplanets

    NASA Astrophysics Data System (ADS)

    Tinetti, G. T.; Vidal-Madjar, A.; Lecavelier Des Etangs, A.; Ehrenreich, D.; Liang, M. C.; Yung, Y.

    In the past decade over 160 planets orbiting other stars extrasolar planets were discovered using indirect detection techniques The known sample is constrained by the currently achievable detection techniques which are more sensitive to larger worlds To extend the detection ability down to Earth-sized planets both the European Space Agency ESA and National Aeronautics and Space Administration NASA are developing large and technologically challenging space-borne observatories The first of these missions is due for launch as early as 2015 and will provide our first opportunity to spectroscopically study the global characteristics of Earth-like planets beyond our solar system to search for signs of habitability and life Almost a decade in advance to the launch of ESA-Darwin or NASA-Terrestrial Planet Finders most recent observations of primary and secondary eclipses with Hubble Space Telescope and Spitzer of transiting extrasolar giant planets EGPs Charbonneau et al 2002 2005 Vidal-Madjar et al 2003 2004 Deming et al 2005 suggest that emitted and transmission spectra of EGPs can be used to infer many properties of their atmospheres and internal structure including chemical element abundances hydrodynamic escape cloud heights temperature-pressure profiles density composition and evolution The next generation of space telescopes James Webb Space Telescope JWST will have the capability of acquiring more precise spectra in the visible and infrared of these extrasolar worlds The ultimate extension of such searches will be to

  6. KSC-2011-6819

    NASA Image and Video Library

    2011-09-08

    CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station in Florida, members of NASA's Gravity Recovery and Interior Laboratory (GRAIL) launch team monitor GRAIL's launch countdown from the Mission Directors Center in Hangar AE. From left are Dana Grieco, launch operations manager, Analex, NASA's Launch Services Program (LSP); Bruce Reid, GRAIL mission manager, LSP; Al Sierra, manager of the Flight Project Office, LSP; Omar Baez, GRAIL assistant launch director, LSP; and Tim Dunn, GRAIL launch director, LSP. Launch is scheduled for 8:37:06 a.m. EDT Sept. 8 from Space Launch Complex 17B on Cape Canaveral Air Force Station. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett

  7. Electrochemical Impedance Spectroscopy of Alloys in a Simulated Space Shuttle Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; Kolody, M. R.; Vinje, R. D.

    2004-01-01

    Type 304L stainless steel (304L SS) tubing is currently used in various supply lines that service the Orbiter at NASA's John F. Kennedy Space Center Launch Pads in Florida (USA). The atmosphere at the Space Shuffle launch site is very corrosive due to a combination of factors, such as the proximity of the Atlantic Ocean and the concentrated hydrochloric acid produced by the fuel combustion reaction in the solid rocket boosters. The acidic chloride environment is aggressive to most metals and causes severe pitting in many of the common stainless steel alloys such as 304L SS. Stainless steel tubing is susceptible to pitting corrosion that can cause cracking and rupture of both high-pressure gas and fluid systems. Outages in the systems where failures occur can impact the normal operation of the shuttle and launch schedules. The use of a more corrosion resistant tubing alloy for launch pad applications would greatly reduce the probability of failure, improve safety, lessen maintenance costs, and reduce downtime. A study which included ten alloys was undertaken to find a more corrosion resistant material to replace the existing 304L SS tubing. The study included atmospheric exposure at NASA's John F. Kennedy Space Center outdoor corrosion test site near the launch pads and electrochemical measurements in the laboratory which included DC techniques and electrochemical impedance spectroscopy (EIS). This paper presents the results from EIS measurements on three of the alloys: AL6XN (UN N08367), 254SMO (UNS S32l54), and 304L SS (UNS S30403). Type 304L SS was included in the study as a control. The alloys were tested in three electrolyte solutions which consisted of neutral 3.55% NaC1, 3.55% NaCl in O.1N HC1, and 3.55% NaCl in 1.ON HC1. The solutions were chosen to simulate environments that were expected to be less, similar, and more aggressive, respectively, than those present at the Space Shuttle launch pads. The results from the EIS measurements were analyzed to evaluate the corrosion susceptibility of the alloys and to predict the long-term corrosion performance of the subject materials. The results from the EIS measurements for the three alloys indicated that the higher-alloyed 254SMO and AL6XN exhibited a significantly improved resistance to corrosion than the 304L SS as the concentration of hydrochloric acid in the 3.55% NaC1 solution was increased. The polarization resistance values obtained from the EIS measurements were consistent with those from linear polarization measurements, and were indicative of the actual long-term corrosion performance of the alloys during a two-year atmospheric exposure study.

  8. Study on fault-tolerant processors for advanced launch system

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Liu, Jyh-Charn

    1990-01-01

    Issues related to the reliability of a redundant system with large main memory are addressed. The Fault-Tolerant Processor (FTP) for the Advanced Launch System (ALS) is used as a basis for the presentation. When the system is free of latent faults, the probability of system crash due to multiple channel faults is shown to be insignificant even when voting on the outputs of computing channels is infrequent. Using channel error maskers (CEMs) is shown to improve reliability more effectively than increasing redundancy or the number of channels for applications with long mission times. Even without using a voter, most memory errors can be immediately corrected by those CEMs implemented with conventional coding techniques. In addition to their ability to enhance system reliability, CEMs (with a very low hardware overhead) can be used to dramatically reduce not only the need of memory realignment, but also the time required to realign channel memories in case, albeit rare, such a need arises. Using CEMs, two different schemes were developed to solve the memory realignment problem. In both schemes, most errors are corrected by CEMs, and the remaining errors are masked by a voter.

  9. Corrosion Performance of Stainless Steels in a Simulated Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Vinje, Rubiela D.; MacDowell, Louis

    2004-01-01

    At the Kennedy Space Center, NASA relies on stainless steel (SS) tubing to supply the gases and fluids required to launch the Space Shuttle. 300 series SS tubing has been used for decades but the highly corrosive environment at the launch pad has proven to be detrimental to these alloys. An upgrade with higher alloy content materials has become necessary in order to provide a safer and long lasting launch facility. In the effort to find the most suitable material to replace the existing AISI 304L SS ([iNS S30403) and AISI 316L SS (UNS S31603) shuttle tubing, a study involving atmospheric exposure at the corrosion test site near the launch pads and electrochemical measurements is being conducted. This paper presents the results of an investigation in which stainless steels of the 300 series, 304L, 316L, and AISI 317L SS (UNS S31703) as well as highly alloyed stainless steels 254-SMO (UNS S32154), AL-6XN (N08367) and AL29-4C ([iNS S44735) were evaluated using direct current (DC) electrochemical techniques under conditions designed to simulate those found at the Space Shuttle Launch pad. The electrochemical results were compared to the atmospheric exposure data and evaluated for their ability to predict the long-term corrosion performance of the alloys.

  10. TacSat-2: Path finder for a Close Space Support Asset

    NASA Astrophysics Data System (ADS)

    Bhopale, A.; Finley, C.

    2008-08-01

    With th e launch of TacSat-2, the Oper ationally Responsive Sp ace (O RS) commun ity had its f irst on- orbit asset and opportunity to prove or disprove the premise that small, in expensiv e, and quickly constructed spacecraf t could perform useful operation al missions when needed and for as long as need ed. All of the components of the comp lex TacSat-2 system had to work together to answer the basic questions, "In a crisis, can a lab-developed spacecraf t and ground architecture competen tly p erform th e mission of systems that cost twen ty times the price and tak e four times as long to develop? Mor eover, can th is system actu ally improve on the responsiveness of Nation al Systems to a certain set of underserv ed Oper ational customers?" When all w as said and done, TacSat-2 was a sp acecraf t that h ad to: 1) Carry th irteen tactical and scientific payloads to orbit, many of which doubled as essen tial, non-redundant subsystems; 2) Launch from an unproven launch base on a last minute "rep lacement" launch vehicle; and 3) Fulfill about 140 on-orbit mission requirements. It had tactical sensors, two unproven communication links, numerous next-gen eration single- string componen ts (e.g., h igh-efficiency propulsion system, thin-film so lar arrays, low-power versatile star camera) , and autonomous softw are to mak e the system more friendly and familiar to Tactical, rather than Spacecraf t Op erators. However, the mission was as mu ch about the implementation as it w as about the components. TacSat-2 was designed for and emp loyed with a different concept of operations ( CONOPS) than tradition al N ational Operational Assets. It w as designed to be th e fir st-ev er Clo se Space Support platform and operated in a manner more analogous to Close Air Support aircraf t than to tr aditional spacecraft. Therefore, th e primary objective of the TacSat-2 mission was to use th e TacSat-2 system to id entify those parts of the spacecr aft, ground system, and CON OPS that mak e it eff ectiv e and su itable for a Tactical Operator emp loying it as a Close Space Support asset. The TacSat-2 story was tru ly a story of survival in the low-budget, high-expectation spacecraft world . The mission su ccesses w ere signif icant and ground- breaking, but they w ere, almost w ithou t exception, compromised successes. Most importan tly, you w ill see an asset th at was unquestionably bo th effective and suitable for military operators, but only worth the investmen t if curren t responsiveness deficiencies dr ive leadership towards a so lution where Close Space Support platforms are a pursued alternativ e. This p aper w ill present the objective positive and negative r esults of the TacSat-2 system' s space/ground components and CONO PS and w ill use these resu lts to project th e co mplexion of an OpSat-X that could best fulfill the role of a Close Sp ace Support p latform directly employed by a front-lin e tactical oper ator to responsively return a product that meets an immediate need.

  11. Launch Vehicle Stage Adapter Move

    NASA Image and Video Library

    2017-08-24

    A NASA KAMAG transporter moves the Space Launch System’s launch vehicle stage adapter (LVSA) to an area where spray-on foam insulation will be applied. The LVSA recently completed manufacturing on a 30 foot welding tool at NASA’s Marshall Space Flight Center in Huntsville, Al. The LVSA will be coated with insulation that will protect it during it’s trip to space. The LVSA provides structural support and connects the core stage and the interim cryogenic propulsion stage during the first integrated flight of SLS and Orion.

  12. Reduced Flexibility in Processing Titan IV Space Launch Vehicles at Cape Canaveral Air Force Station.

    DTIC Science & Technology

    1988-04-01

    processing Titan expendable launch vehicles. This study explores the history of those decisions and their effects. It identifies the throughput...HIGH ELL 5PIF ERST BAY TITANI SAM aL’L FIGURE 1.1 SOLID MOTOR ASSEMBLY BUILDING Therefore, DOD decided to convert two of the four Titan solid rocket...required to process a component is based on a 22-year history of assembling and launching Titan vehicles. During this time, the contractor has become

  13. Photographic copy of a photograph, dated June 1993 (original print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of a photograph, dated June 1993 (original print in the possession of CSSD-HO, Huntsville, AL). Gerald Greenwood, photographer. Close-up view of sprint cell at missile field of remote sprint launch site #3, with launch cell cover marked "inert". Adjacent and to the right is the launch preparation equipment chamber (LPEC) cover. Other cell covers can be seen in the background - Stanley R. Mickelsen Safeguard Complex, Exclusion Area Sentry Station, At Service Road entrance to Missile Field, Nekoma, Cavalier County, ND

  14. Photographic copy of photograph, dated September 1971, (original print in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph, dated September 1971, (original print in possession of CSSD-HO, Huntsville, AL). Photographer unknown. Aerial view looking north of remote sprint launch site #2, during construction. In the foreground is the remote launch operations building (RLOB); sprint silos are being installed in the background - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 2, West of Mile Marker 220 on State Route 1, 6.0 miles North of Langdon, ND, Nekoma, Cavalier County, ND

  15. Space Launch System Base Heating Test: Environments and Base Flow Physics

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Knox, Kyle; Seaford, Mark; Dufrene, Aaron

    2016-01-01

    NASA MSFC and CUBRC designed and developed a 2% scale SLS propulsive wind tunnel test program to investigate base flow effects during flight from lift-off to MECO. This type of test program has not been conducted in 40+ years during the NASA Shuttle Program. Dufrene et al paper described the operation, instrumentation type and layout, facility and propulsion performance, test matrix and conditions and some raw results. This paper will focus on the SLS base flow physics and the generation and results of the design environments being used to design the thermal protection system.

  16. Alternate propellants for the space shuttle solid rocket booster motors. [for reducing environmental impact of launches

    NASA Technical Reports Server (NTRS)

    1973-01-01

    As part of the Shuttle Exhaust Effects Panel (SEEP) program for fiscal year 1973, a limited study was performed to determine the feasibility of minimizing the environmental impact associated with the operation of the solid rocket booster motors (SRBMs) in projected space shuttle launches. Eleven hypothetical and two existing limited-experience propellants were evaluated as possible alternates to a well-proven state-of-the-art reference propellant with respect to reducing emissions of primary concern: namely, hydrogen chloride (HCl) and aluminum oxide (Al2O3). The study showed that it would be possible to develop a new propellant to effect a considerable reduction of HCl or Al2O3 emissions. At the one extreme, a 23% reduction of HCl is possible along with a ll% reduction in Al2O3, whereas, at the other extreme, a 75% reduction of Al2O3 is possible, but with a resultant 5% increase in HCl.

  17. Space transportation booster engine configuration study. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the Space Transportation Booster Engine (STBE) Configuration Study were to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and to explore innovative approaches to the follow-on full-scale development (FSD) phase for the STBE.

  18. Policing Toward a De-Clawed Jihad: Antiterrorism Intelligence Techniques for Law Enforcement

    DTIC Science & Technology

    2006-12-01

    particularly young Muslim adults who prefer the Internet as their primary news source over traditional print and broadcast media.35 Al-Qa’eda boasts a...first-hand knowledge and helped me give this thesis some real-world perspective. And whenever I’d feel the crunch, I’d reflect on Chuck Daenzer’s...Qa’eda hackers might disrupt an electronic commerce system or launch a denial of service attack, temporarily disabling part of a network, but such an

  19. On Contending with Unruly Neighbors in the Global Village: Viewing Information Systems as Both Weapon and Target

    DTIC Science & Technology

    2011-04-01

    pornographic sites [Moaveni, 2002]. This demonstrates the flipside of launching online attacks: one tends to live within a ―glass house‖ created by the cycle of...also apparently has at times been in business running pornographic websites may somehow seem ironic given the target of its efforts. 302 Volume 28...National Security and What to Do About It, New York, NY: HarperCollins. CNN.com (2002) ― Pornographer Says He Hacked al Qaeda‖, Aug. 8, http

  20. NCAR Integrated Sounding System Observations during the SOAS / SAS Field Campaign

    NASA Astrophysics Data System (ADS)

    Brown, W. O.; Moore, J.

    2013-12-01

    The National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL) deployed an Integrated Sounding Systems (ISS) for the SOAS (Southern Oxidant and Aerosol Study) field campaign in Alabama in the summer of 2013. The ISS was split between two sites: a former NWS site approximately 1km from the main SOAS chemistry ground site near Centerville AL, and about 20km to the south at the Alabama fish hatchery site approximately 1km from the flux tower site near Marion, AL. At the former-NWS site we launched 106 radiosonde soundings, operated a 915 MHz boundary layer radar wind profiler with RASS (Radio Acoustic Sounding System), ceilometer and various surface meteorological sensors. At the AABC site we operated a Lesosphere WIndcube 200S Doppler lidar and a Metek mini-Doppler sodar. Other NCAR facilities at the AABC site included a 45-m instrumented flux tower. This poster will present a sampling observations made by these instruments, including examples of boundary layer evolution and structure, and summarize the performance of the instrumentation.

  1. Operationally Efficient Propulsion System Study (OEPSS) data book. Executive summary

    NASA Technical Reports Server (NTRS)

    Wong, George S.

    1990-01-01

    The study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the Operationally Efficient Propulsion System Study (OEPSS) were organized into a series of OEPSS Data Books as follows: Volume 1, Generic Ground Operations Data; Volume 2, Ground Operations Problems; Volume 3, Operations Technology; Volume 4, OEPSS Design Concepts; and Volume 5, OEPSS Final Review Briefing, which summarizes the activities and results of the study. Summarized here are the salient results of the first year. A synopsis of each volume listed above is presented.

  2. Modeling the Solar Dust Environment at 9.5 Solar Radii: Revealing Radiance Trends with MESSENGER Star Tracker Data

    NASA Astrophysics Data System (ADS)

    Strong, S. B.; Strikwerda, T.; Lario, D.; Raouafi, N.; Decker, R.

    2010-12-01

    The main components of interplanetary dust are created through destruction, erosion, and collision of asteroids and comets (e.g. Mann et al. 2006). Solar radiation forces distribute these interplanetary dust particles throughout the solar system. The percent contribution of these source particulates to the net interplanetary dust distribution can reveal information about solar nebula conditions, within which these objects are formed. In the absence of observational data (e.g. Helios, Pioneer), specifically at distances less than 0.3 AU, the precise dust distributions remain unknown and limited to 1 AU extrapolative models (e.g. Mann et al. 2003). We have developed a model suitable for the investigation of scattered dust and electron irradiance incident on a sensor for distances inward of 1 AU. The model utilizes the Grün et al. (1985) and Mann et al. (2004) dust distribution theory combined with Mie theory and Thomson electron scattering to determine the magnitude of solar irradiance scattered towards an optical sensor as a function of helio-ecliptic latitude and longitude. MESSENGER star tracker observations (launch to 2010) of the ambient celestial background combined with Helios data (Lienert et al. 1982) reveal trends in support of the model predictions. This analysis further emphasizes the need to characterize the inner solar system dust environment in anticipation of near-Solar missions.

  3. On high explosive launching of projectiles for shock physics experiments

    NASA Astrophysics Data System (ADS)

    Swift, Damian C.; Forest, Charles A.; Clark, David A.; Buttler, William T.; Marr-Lyon, Mark; Rightley, Paul

    2007-06-01

    The hydrodynamic operation of the "Forest Flyer" type of explosive launching system for shock physics projectiles was investigated in detail using one and two dimensional continuum dynamics simulations. The simulations were numerically converged and insensitive to uncertainties in the material properties; they reproduced the speed of the projectile and the shape of its rear surface. The most commonly used variant, with an Al alloy case, was predicted to produce a slightly curved projectile, subjected to some shock heating and likely exhibiting some porosity from tensile damage. The curvature is caused by a shock reflected from the case; tensile damage is caused by the interaction of the Taylor wave pressure profile from the detonation wave with the free surface of the projectile. The simulations gave only an indication of tensile damage in the projectile, as damage is not understood well enough for predictions in this loading regime. The flatness can be improved by using a case of lower shock impedance, such as polymethyl methacrylate. High-impedance cases, including Al alloys but with denser materials improving the launching efficiency, can be used if designed according to the physics of oblique shock reflection, which indicates an appropriate case taper for any combination of explosive and case material. The tensile stress induced in the projectile depends on the relative thickness of the explosive, expansion gap, and projectile. The thinner the projectile with respect to the explosive, the smaller the tensile stress. Thus if the explosive is initiated with a plane wave lens, the tensile stress is lower than that for initiation with multiple detonators over a plane. The previous plane wave lens designs did, however, induce a tensile stress close to the spall strength of the projectile. The tensile stress can be reduced by changes in the component thicknesses. Experiments verifying the operation of explosively launched projectiles should attempt to measure porosity induced in the projectile: arrival time measurements are likely to be insensitive to porous regions caused by damaged or recollected material.

  4. 50 Years of Electronic Check Out and Launch Systems at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Starr, Stanley O.

    2007-01-01

    When NASA was created in 1958 one of the elements incorporated into this new agency was the Army Ballistic Missile Agency (ABMA) in Huntsville, AL and its subordinate Missile Firing Laboratory (MFL) in Cape Canaveral. Under NASA, the MFL became the Launch Operations Directorate of the George C. Marshall Space Flight Center in Huntsville, but expanding operations in the build up to Apollo dictated that it be given the status of a full fledged Center in July, 1 962[ 1]. The next year it was renamed the John F. Kennedy Space Center (KS C) after the president whose vision transformed its first decade of operation. The ABMA was under the technical leadership of Dr. Werner Von Braun. The MEL was run by his deputy Dr. Kurt Debus, an electrical engineer whose experience in the field began in the early days of V-2 testing in war time Germany. In 1952 a group led by Debus arrived in Cape Canaveral to begin test launches of the new Redstone missile [2]. During the 50's, The MFL built several launch complexes and tested the Redstone, Jupiter and Jupiter C missiles. This small experienced team of engineers and technicians formed the seed from which has grown the KSC team of today. This article briefly reviews the evolution of the KSC electronic technologies for integration, check-out and launch of space vehicles and payloads during NASA's first 50 years.

  5. The common engine concept for ALS application - A cost reduction approach

    NASA Technical Reports Server (NTRS)

    Bair, E. K.; Schindler, C. M.

    1989-01-01

    Future launch systems require the application of propulsion systems which have been designed and developed to meet mission model needs while providing high degrees of reliability and cost effectiveness. Vehicle configurations which utilize different propellant combinations for booster and core stages can benefit from a common engine approach where a single engine design can be configured to operate on either set of propellants and thus serve as either a booster or core engine. Engine design concepts and mission application for a vehicle employing a common engine are discussed. Engine program cost estimates were made and cost savings, over the design and development of two unique engines, estimated.

  6. Compact Magnetic Antennas for Directional Excitation of Surface Plasmons

    DTIC Science & Technology

    2012-07-01

    Steininger, G.; Koch, M.; von Plessen, G.; Feldmann, J. Launching surface plasmons into nanoholes in metal films. Appl. Phys. Lett. 2000, 76, 140−142...plasmons at single nanoholes in Au films. Appl. Phys. Lett. 2004, 85, 467−469. (14) Baudrion, A.-L.; et al. Coupling efficiency of light to surface

  7. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix D: EOS configuration design data. Part 1: Spacecraft configuration

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of structural studies of the Earth Observatory Satellite (EOS) which define the member sizes to meet the vehicle design requirements are presented. The most significant requirements in sizing the members are the stiffness required to meet the launch vehicle design frequencies both in the late al and in the longitudinal directions. The selected configurations, both baseline and preferred, for the Delta and Titan launch vehicles were evaluated for stiffness requirements. The structural idealization used to estimate the stiffness of each structural arrangement, was based on an evaluation of primary loads paths, effectivity of structural members, and estimated sizes for the preferred configurations. The study included an evaluation of the following structural materials: (1) aluminum alloys, (2) titanium alloys, (3) beryllium, (4) beryllium/aluminum alloy, and (5) composite materials.

  8. 4. Photographic copy of a photograph taken from pasteup negatives ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photographic copy of a photograph taken from paste-up negatives for U.S. Army Corps of Engineers document GF-500-MCP, entitled "Grand Forks Site RLS Army Operating Drawings, Master Composite Photographs for SAFEGUARD TSE Systems and Equipment," Page 9, dated 1 September 1974 (original document and negatives in possession of U.S. Army Corps of Engineers, Huntsville, AL). Photographer unknown. View of remote launch operations building exterior (southwest corner), prior to earth mounding. A,B,C, and D are heat exchangers HX-1102B, HX-1102A, HX-1101B, and HX-1101 A, respectively. The heat exchangers transferred heat from the cooling water to the outside air during the normal operating mode. On the far right is the air exhaust shaft - Stanley R. Mickelsen Safeguard Complex, Remote Launch Operations Building, Near Service Road exit from Patrol Road, Nekoma, Cavalier County, ND

  9. 3. Photographic copy of a photograph, dated June 1993 (original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photographic copy of a photograph, dated June 1993 (original print in the possession of CSSD-HO, Huntsville, AL). Gerald Greenwood, photographer. Interior of remote launch operations building, room unknown, demonstrating the result of salvaging operations. Note the ceiling tiles have been removed - Stanley R. Mickelsen Safeguard Complex, Remote Launch Operations Building, Near Service Road exit from Patrol Road, Nekoma, Cavalier County, ND

  10. Electrochemical Impedance Spectroscopy of Alloys in a Simulated Space Shuttle Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; Kolody, M. R.; Vinje, R. D.; Whitten, M. C.; Li, D.

    2005-01-01

    Corrosion studies began at NASA/Kennedy Space Center in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. An outdoor exposure facility on the beach near the launch pad was established for this purpose at that time. The site has provided over 35 years of technical information on the evaluation of the long-term corrosion performance of many materials and coatings as well as on maintenance procedures. Results from these evaluations have helped NASA find new materials and processes that increase the safety and reliability of our flight hardware, launch structures, and ground support equipment. The launch environment at the Kennedy Space Center (KSC) is extremely corrosive due to the combination of ocean salt spray, heat, humidity, and sunlight. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. Over the years, many materials have been evaluated for their corrosion performance under conditions similar to those found at the launch pads. These studies have typically included atmospheric exposure and evaluation with conventional electrochemical methods such as open circuit potential (OCP) measurements, polarization techniques, and electrochemical impedance spectroscopy (EIS). The atmosphere at the Space Shuttle launch site is aggressive to most metals and causes severe pitting in many of the common stainless steel alloys such as type 304L stainless steel (304L SS). A study was undertaken to find a more corrosion resistant material to replace the existing 304L SS tubing. This paper presents the results from atmospheric exposure as well as electrochemical measurements on the corrosion resistance of AL-6XN (UNS N08367) and 254-SMO (UNS S32154). Type 304L SS (UNS S30403) was used as a control. Conditions at the Space Shuttle launch pad were simulated by using a hydrochloric acid (HC1) and alumina (Al203) slurry rinse for the atmospheric exposure and an electrolyte consisting of 3.55% sodium chloride (NaC1) with increased concentrations of hydrochloric acid (HC1) for the electrochemical measurements. The results from both types of measurements revealed the superior corrosion performance of the higher-alloyed materials. Unlike 304L SS, 254-SMO and AL-6XN exhibited a significantly improved resistance to corrosion as the concentration of hydrochloric acid in he 3.55% NaCl electrolyte solution was increased.

  11. ALS turbomachinery technology

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Faulkner, C.; Ferlita, F.

    1990-01-01

    Advanced Development Programs are being pursued by Rocketdyne, Aerojet, and Pratt and Whitney to define and validate design approaches toward producing low-cost, reliable liquid-hydrogen and liquid-oxygen turbopumps for a 2580 kN (580 klb) thrust Advanced Launch System. The generic approach, which is evolving after 18 months of trade studies and conceptual and preliminary design efforts, is explained. In addition, the preliminary liquid-hydrogen turbopump designs produced in parallel tasks by Rocketdyne and Aerojet and the liquid-oxygen turbopump design produced by Pratt and Whitney are described, and technology features and issues are discussed.

  12. Space transportation booster engine configuration study. Volume 2: Design definition document and environmental analysis

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the space Transportation Booster Engine (STBE) Configuration Study were: (1) to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and (2) to explore innovative approaches to the follow-on Full-Scale Development (FSD) phase for the STBE.

  13. Vented Launch Vehicle Adaptor for a Manned Spacecraft with "Pusher" Launch Abort System

    NASA Technical Reports Server (NTRS)

    Vandervort, Robert E. (Inventor)

    2017-01-01

    A system, method, and apparatus for a vented launch vehicle adaptor (LVA) for a manned spacecraft with a "pusher" launch abort system are disclosed. The disclosed LVA provides a structural interface between a commercial crew vehicle (CCV) crew module/service module (CM/SM) spacecraft and an expendable launch vehicle. The LVA provides structural attachment of the module to the launch vehicle. It also provides a means to control the exhaust plume from a pusher-type launch abort system that is integrated into the module. In case of an on-pad or ascent abort, which requires the module to jettison away from the launch vehicle, the launch abort system exhaust plume must be safely directed away from critical and dangerous portions of the launch vehicle in order to achieve a safe and successful jettison.

  14. 5. Photographic copy of photograph, dated June 1993 (original print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photographic copy of photograph, dated June 1993 (original print in possession of CSSD-HO, Huntsville, AL). Gerald Greenwood, photographer. View within Spartan missile silo. Launch rail is located in the north section of all silos. At right is mechanical electrical equipment vault. Top of photo is up, bottom is down - Stanley R. Mickelsen Safeguard Complex, Missile Launch Area, Within Exclusion Area, Nekoma, Cavalier County, ND

  15. Modeling of "Stripe" Wave Phenomena Seen by the CHARM II and ACES Sounding Rockets

    NASA Astrophysics Data System (ADS)

    Dombrowski, M. P.; Labelle, J. W.

    2010-12-01

    Two recent sounding-rocket missions—CHARM II and ACES—have been launched from Poker Flat Research Range, carrying the Dartmouth High-Frequency Experiment (HFE) among their primary instruments. The HFE is a receiver system which effectively yields continuous (100% duty cycle) E-field waveform measurements up to 5 MHz. The CHARM II sounding rocket was launched 9:49 UT on 15 February 2010 into a substorm, while the ACES mission consisted of two rockets, launched into quiet aurora at 9:49 and 9:50 UT on 29 January 2009. At approximately 350 km on CHARM II and the ACES High-Flyer, the HFE detected short (~2s) bursts of broadband (200-500 kHz) noise with a 'stripe' pattern of nulls imposed on it. These nulls have 10 to 20 kHz width and spacing, and many show a regular, non-linear frequency-time relation. These events are different from the 'stripes' discussed by Samara and LaBelle [2006] and Colpitts et al. [2010], because of the density of the stripes, the non-linearity, and the appearance of being an absorptive rather than emissive phenomenon. These events are similar to 'stripe' features reported by Brittain et al. [1983] in the VLF range, explained as an interference pattern between a downward-traveling whistler-mode wave and its reflection off the bottom of the ionosphere. Following their analysis method, we modeled our stripes as higher-frequency interfering whistlers reflecting off of a density gradient. This model predicts the near-hyperbolic frequency-time curves and high density of the nulls, and therefore shows promise at explaining the new observations.

  16. Development of a Hazard Classification Procedure for Inprocess Propellant and Explosive Materials

    DTIC Science & Technology

    1980-11-01

    Manual of Sensitiveness Tests," Canadian Armament Research and Development Establishment, February 1966. 8-4 Dorough, G. D., et al ., "The SUSAN Test...Materials," RAD 100.10, Final Engineering Report on Production Engineering Project PE-489 (Preliminary), AMCMS Code 4932.05.4289. 8-10 Avramic, L., et al ...Performance Tests for Energetic Materials. 8-14 Leining, R. B.. et al , "Air Launched Missile Motor Behavior," AFRPL-TR-78-54, Technical

  17. State Machine Modeling of the Space Launch System Solid Rocket Boosters

    NASA Technical Reports Server (NTRS)

    Harris, Joshua A.; Patterson-Hine, Ann

    2013-01-01

    The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.

  18. Development of Oxidation Protection Coatings for Gamma Titanium Aluminide Alloys

    NASA Technical Reports Server (NTRS)

    Wallace, T. A.; Bird, R. K.; Sankaran, S. N.

    2003-01-01

    Metallic material systems play a key role in meeting the stringent weight and durability requirements for reusable launch vehicle (RLV) airframe hot structures. Gamma titanium aluminides (gamma-TiAl) have been identified as high-payoff materials for high-temperature applications. The low density and good elevated temperature mechanical properties of gamma-TiAl alloys make them attractive candidates for durable lightweight hot structure and thermal protection systems at temperatures as high as 871 C. However, oxidation significantly degrades gamma-TiAl alloys under the high-temperature service conditions associated with the RLV operating environment. This paper discusses ongoing efforts at NASA Langley Research Center to develop durable ultrathin coatings for protecting gamma-TiAl alloys from high-temperature oxidation environments. In addition to offering oxidation protection, these multifunctional coatings are being engineered to provide thermal control features to help minimize heat input into the hot structures. This paper describes the coating development effort and discusses the effects of long-term high-temperature exposures on the microstructure of coated and uncoated gamma-TiAl alloys. The alloy of primary consideration was the Plansee alloy gamma-Met, but limited studies of the newer alloy gamma-Met-PX were also included. The oxidation behavior of the uncoated materials was evaluated over the temperature range of 704 C to 871 C. Sol-gel-based coatings were applied to the gamma-TiAl samples by dipping and spraying, and the performance evaluated at 871 C. Results showed that the coatings improve the oxidation resistance, but that further development is necessary.

  19. NASA's Space Launch System Takes Shape

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Robinson, Kimberly F.

    2017-01-01

    Major hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of a major new capability for deep space human exploration. SLS continues to pursue a 2018 first launch of Exploration Mission 1 (EM-1). At NASA's Michoud Assembly Facility near New Orleans, LA, Boeing completed welding of structural test and flight liquid hydrogen tanks, and engine sections. Test stands for core stage structural tests at NASA's Marshall Space Flight Center, Huntsville, AL. neared completion. The B2 test stand at NASA's Stennis Space Center, MS, completed major structural renovation to support core stage green run testing in 2018. Orbital ATK successfully test fired its second qualification solid rocket motor in the Utah desert and began casting the motor segments for EM-1. Aerojet Rocketdyne completed its series of test firings to adapt the heritage RS-25 engine to SLS performance requirements. Production is under way on the first five new engine controllers. NASA also signed a contract with Aerojet Rocketdyne for propulsion of the RL10 engines for the Exploration Upper Stage. United Launch Alliance delivered the structural test article for the Interim Cryogenic Propulsion Stage to MSFC for tests and construction was under way on the flight stage. Flight software testing at MSFC, including power quality and command and data handling, was completed. Substantial progress is planned for 2017. Liquid oxygen tank production will be completed at Michoud. Structural testing at Marshall will get under way. RS-25 hotfire testing will verify the new engine controllers. Core stage horizontal integration will begin. The core stage pathfinder mockup will arrive at the B2 test stand for fit checks and tests. EUS will complete preliminary design review. This paper will discuss the technical and programmatic successes and challenges of 2016 and look ahead to plans for 2017.

  20. Global implications of ozone loss in a space shuttle wake

    NASA Astrophysics Data System (ADS)

    Danilin, Michael Y.; Ko, Malcolm K. W.; Weisenstein, Debra K.

    2001-02-01

    Existing global model calculations of ozone depletion due to solid-fueled rocket motor (SRM) launches [Prather et al., 1990; Jackman et al., 1998] take into account the effect of globally dispersed chlorine emissions and ignore the ozone loss in the rocket wake. This ozone depletion in the wake could be substantial (up to 100% in the lower stratosphere during the first hour after exhaust [Ross et al., 1997a, 2000]). In this paper, we provide an estimate of whether wake ozone loss could accumulate after each SRM launch, leading to a larger ozone depletion on the global scale. To address this issue, we estimate an upper bound of the ozone loss in a space shuttle wake and use the Atmospheric and Environmental Research, Inc. two-dimensional model to simulate the global effect. For the scenarios considered, the global impact of the localized ozone loss in the wakes is at least an order of magnitude less than the effects from global dispersion of the SRM chlorine emissions alone (on the order of 10-3-10-4% versus 10-2% in the ozone column near 30°N). Additional sensitivity studies performed for different wake dilution rates, seasons, locations, and local times of the shuttle launches and accounting for chlorine activation via ClONO2 + HCl → Cl2 + HNO3 on alumina particles did not change this conclusion.

  1. STS-51G Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The STS-51G flight crew, Commander Daniel C. Brandenstein, Pilot John O. Creighton, Mission Specialists Shannon W. Lucid, John M. Fabian, and Steven R Nagel, and Payload Specialists Patrick, Baudry, and Sultan Salman Al-Saud are seen performing pre-launch activities such as eating of the traditional breakfast, ride out to the launch pad, and crew suit-up for an early morning launch. Also, included are various panoramic views of Discovery on the pad. The main objective of this mission is to deploy three communication satellites. The satellites being deployed are MORE LOS-A, for Mexico; ARABSAT-A, for the Arab Satellite Communications Organization; and TELSTAR-3D, for AT&T. The crew also retrieve the SPARTAN-1 satellite. Scenes include the crew in the mess deck via video link with Mission Control Center in celebration of the 100th American in space. Al-Saud also spoke with his father in Saudi Arabia via video link. Views of certain experiments are also seen. Al-Saud is seen conducting the postural experiment, and Baudry is seen conducting the equilibrium experiments. Panoramic views of the Hawaiian Island Archipelago, and Wadi Habawnah, Saudi Arabia are also visible from the shuttle. Live footage ends with the re-entry of the vehicle into the Earth's Atmosphere, an early morning touchdown at Edwards Air Force Base and crew departure from the craft.

  2. Orion Launch Abort System Performance During Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel; Davidson, John; Gonzalez, Guillo

    2015-01-01

    The Orion Launch Abort System Office is taking part in flight testing to enable certification that the system is capable of delivering the astronauts aboard the Orion Crew Module to a safe environment during both nominal and abort conditions. Orion is a NASA program, Exploration Flight Test 1 is managed and led by the Orion prime contractor, Lockheed Martin, and launched on a United Launch Alliance Delta IV Heavy rocket. Although the Launch Abort System Office has tested the critical systems to the Launch Abort System jettison event on the ground, the launch environment cannot be replicated completely on Earth. During Exploration Flight Test 1, the Launch Abort System was to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Exploration Flight Test 1 was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. This was the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. Exploration Flight Test 1 provides critical data that enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The Exploration Flight Test 1 separation event occurred at six minutes and twenty seconds after liftoff. The separation of the Launch Abort System jettison occurs once Orion is safely through the most dynamic portion of the launch. This paper will present a brief overview of the objectives of the Launch Abort System during a nominal Orion flight. Secondly, the paper will present the performance of the Launch Abort System at it fulfilled those objectives. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly contribute to the vehicle architecture of a human-rated space launch vehicle.

  3. STS 51-G crewmembers depart KSC's operations and checkout building

    NASA Image and Video Library

    1985-05-20

    51G-S-117 (17 June 1985) --- 51-G crewmembers depart the Kennedy Space Center's operations and checkout building on their way to the launch pad for the launch of the Discovery. Leading the seven are Daniel C. Brandenstein, commander; and John O. Creighton, pilot. Following are Payload specialist Sultan Salman Abdelazize Al-Saud; John M. Fabian, mission specialist; Patrick Baudry, payload specialist; Shannon Lucid and Steven R. Nagel, mission specialists.

  4. Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels: The AIRS Version 6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002 together with ASMU-A and HSB to form a next generation polar orbiting infrared and microwave atmosphere sounding system (Pagano et al 2003). The theoretical approach used to analyze AIRS/AMSU/HSB data in the presence of clouds in the AIRS Science Team Version 3 at-launch algorithm, and that used in the Version 4 post-launch algorithm, have been published previously. Significant theoretical and practical improvements have been made in the analysis of AIRS/AMSU data since the Version 4 algorithm. Most of these have already been incorporated in the AIRS Science Team Version 5 algorithm (Susskind et al 2010), now being used operationally at the Goddard DISC. The AIRS Version 5 retrieval algorithm contains three significant improvements over Version 4. Improved physics in Version 5 allowed for use of AIRS clear column radiances (R(sub i)) in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations were used primarily in the generation of clear column radiances (R(sub i)) for all channels. This new approach allowed for the generation of accurate Quality Controlled values of R(sub i) and T(p) under more stressing cloud conditions. Secondly, Version 5 contained a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 contained for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Susskind et al 2010 shows that Version 5 AIRS Only sounding are only slightly degraded from the AIRS/AMSU soundings, even at large fractional cloud cover.

  5. Photographic copy of photograph, dated September 1973 (original in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph, dated September 1973 (original in the possession of CSSD-HO, Huntsville AL). Photographer unknown. Aerial photograph (west to 0 east) of remote sprint launch site #1. In background are waste stabilization pounds. On next row are the sprint cells. In foreground are the remote launch operations building on left and the limited area sentry station on right. The view illustrates the relatively flat topography of the SRMSC area Benjamin Halpern, 5-18 October 1992 - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 1, Just South of Ramsey-Cavalier County line & 3 miles West of Hampden, ND, Nekoma, Cavalier County, ND

  6. 14 CFR 417.405 - Ground safety analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... hazard from affecting the public. A launch operator must incorporate the launch site operator's systems... personnel who are knowledgeable of launch vehicle systems, launch processing, ground systems, operations...) Begin a ground safety analysis by identifying the systems and operations to be analyzed; (2) Define the...

  7. 14 CFR 417.405 - Ground safety analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... hazard from affecting the public. A launch operator must incorporate the launch site operator's systems... personnel who are knowledgeable of launch vehicle systems, launch processing, ground systems, operations...) Begin a ground safety analysis by identifying the systems and operations to be analyzed; (2) Define the...

  8. System and Method for Air Launch from a Towed Aircraft

    NASA Technical Reports Server (NTRS)

    Budd, Gerald D (Inventor)

    2018-01-01

    The invention is a system and method of air launching a powered launch vehicle into space or high altitude. More specifically, the invention is a tow aircraft which tows an unpowered glider, with the powered launch vehicle attached thereto, to launch altitude. The powered launch vehicle is released from the unpowered glider and powered on for launch.

  9. Magnetic Launch Assist System-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This illustration is an artist's concept of a Magnetic Launch Assist System, formerly referred as the Magnetic Levitation (Maglev) system, for space launch. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist System technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, landing gear and the wing size, as well as the elimination of propellant weight resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  10. Feasibility of a responsive, hybrid propulsion augmented, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit launch system

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.

    1996-03-01

    A novel, reusable, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named HYP-SSTO, is presented in this paper. This launch vehicle system concept uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LOX/LH2) propulsion system, that is used only for launch, with a hybrid auxiliary propulsion system which is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. By using a hybrid propulsion system for major orbit maneuver burns and landing, this launch system concept has many advantages over conventional VTOL/SSTO concepts that use LOX/LH2 propulsion system(s) burns for all phases of flight. Because hybrid propulsion systems are relatively simple and inert by their nature, this concept has the potential to support short turnaround times between launches, be economical to develop, and be competitive in terms of overall system life-cycle cost. This paper provides a technical description of the novel, reusable HYP-SSTO launch system concept. Launch capability performance, as well as major design and operational system attributes, are identified and discussed.

  11. Approaches to Improve the Performances of the Sea Launch System Performances

    NASA Astrophysics Data System (ADS)

    Tatarevs'kyy, K.

    2002-01-01

    The paper dwells on the outlines of the techniques of on-line pre-launch analysis on possibility of safe and reliable LV launch off floating launch system, when actual launch conditions (weather, launcher motion parameters) are beyond design limitations. The technique guarantees to follow the take-off LV trajectory limitations (the shock-free launch) and allows the improvement of the operat- ing characteristics of the floating launch systems at the expense of possibility to authorize the launch even if a number of weather and launcher motion parameters restrictions are exceeded. This paper ideas are applied for LV of Zenit-type launches off tilting launch platform, operative within Sea Launch. The importance, novelty and urgency of the approach under consideration is explained by the fact that the application during floating launch systems operation allows the bringing down of the num- ber of weather-conditioned launch abort cases. And this, in its part, increases the trustworthiness of the mission fulfillment on specific spacecraft injection, since, in the long run, the launch abort may cause the crossing of allowable wait threshold and accordingly the mission abort. All previous launch kinds for these LV did not require the development of the special technique of pre-launch analysis on launch possibility, since weather limitations for stationary launcher condi- tions are basically reduced to the wind velocity limitations. This parameter is reliably monitored and is sure to influence the launch dynamics. So the measured wind velocity allows the thorough picture on the possibility of the launch off the ground-based launcher. Since the floating launch systems commit complex and continuous movements under the exposure of the wind and the waves, the number of parameters is increased and, combined differently, they do not always make the issue on shockless launch critical. The proposed technique of the pre-launch analysis of the forthcoming launch dynamics with the consideration of the launch conditions (weather, launcher motion parameters, actual LV and carried SC performance) allow the evaluation of the actual combination of launch environment influence on the possibility of shockless launch. On the basis of the analysis the launch permissibility deci- sion is taken, even if some separate parameters are beyond the design range.

  12. Current results from AlRS/AMSU/HSB

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Atlas, Robert; Barnet, Christopher; Blaisdell, Jon; Iredell, Lena; Bri, Genia; Jusem, Juan Carlos; Keita, Fricky; Kouvaris, Louis; Molnar, Gyula

    2004-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU/HSB are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1K, and layer precipitable water with an rms error of 20%, in cases with up to 80% effective cloud cover. Pre-launch simulation studies indicated that these results should be achievable. Minor modifications have been made to the pre-launch retrieval algorithm as alluded to in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and temperature profiles are validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small. Select fields are also compared to those contained in the ECMWF analysis, done without the benefit of AIRS data, to demonstrate information that AIRS can add to that already contained in the ECMWF analysis. Assimilation of AIRS temperature soundings in up to 80% cloud cover for the month of January 2003 into the GSFC FVSSI data assimilation system resulted in improved 5 day forecasts globally, both with regard to anomaly correction coefficients and the prediction of location and intensity of cyclones.

  13. Orion Launch Abort System Jettison Motor Performance During Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel J.; Davidson, John B.; Winski, Richard G.

    2015-01-01

    This paper presents an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System performing Orion nominal flight mission critical objectives. Although the Orion Program has tested a number of the critical systems of the Orion spacecraft on the ground, the launch environment cannot be replicated completely on Earth. Data from this flight will be used to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Selected Launch Abort System flight test data is presented and discussed in the paper. Through flight test data, Launch Abort System performance trends have been derived that will prove valuable to future flights as well as the manned space program.

  14. The Launch Processing System for Space Shuttle.

    NASA Technical Reports Server (NTRS)

    Springer, D. A.

    1973-01-01

    In order to reduce costs and accelerate vehicle turnaround, a single automated system will be developed to support shuttle launch site operations, replacing a multiplicity of systems used in previous programs. The Launch Processing System will provide real-time control, data analysis, and information display for the checkout, servicing, launch, landing, and refurbishment of the launch vehicles, payloads, and all ground support systems. It will also provide real-time and historical data retrieval for management and sustaining engineering (test records and procedures, logistics, configuration control, scheduling, etc.).

  15. Aerospace induction motor actuators driven from a 20-kHz power link

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Aerospace electromechanical actuators utilizing induction motors are under development in sizes up to 40 kW. While these actuators have immediate application to the Advanced Launch System (ALS) program, several potential applications are currently under study including the Advanced Aircraft Program. Several recent advances developed for the Space Station Freedom have allowed induction motors to be selected as a first choice for such applications. Among these technologies are bi-directional electronics and high frequency power distribution techniques. Each of these technologies are discussed with emphasis on their impact upon induction motor operation.

  16. Advanced Concept

    NASA Image and Video Library

    1999-10-21

    This artist’s concept depicts a Magnetic Launch Assist vehicle in orbit. Formerly referred to as the Magnetic Levitation (Maglev) system, the Magnetic Launch Assist system is a launch system developed and tested by engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  17. Artist's Concept of Magnetic Launch Assisted Air-Breathing Rocket

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle in orbit. Formerly referred to as the Magnetic Levitation (Maglev) system, the Magnetic Launch Assist system is a launch system developed and tested by engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  18. Magnetic Launch Assist Vehicle-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  19. The ARIEL Instrument Control Unit design - For the M4 Mission Selection Review of the ESA's Cosmic Vision Program

    NASA Astrophysics Data System (ADS)

    Focardi, M.; Pace, E.; Farina, M.; Di Giorgio, A. M.; Ferrer, J. Colomé; Ribas, I.; Roig, C. Sierra; Bote, L. Gesa; Morales, J. C.; Amiaux, J.; Cara, C.; Augurés, J. L.; Pascale, E.; Morgante, G.; Da Deppo, V.; Pancrazzi, M.; Noce, V.; Pezzuto, S.; Frericks, M.; Zwart, F.; Bishop, G.; Middleton, K.; Eccleston, P.; Micela, G.; Tinetti, G.

    2017-11-01

    The Atmospheric Remote-sensing Infrared Exoplanet Large-survey mission (ARIEL) (Tinetti et al. 2017) is one of the three present candidates for the ESA M4 (the fourth medium mission) launch opportunity. The proposed Payload (Eccleston et al. 2017; Morgante et al. 2017; Da Deppo et al. 2017) will perform a large unbiased spectroscopic survey from space concerning the nature of exoplanets atmospheres and their interiors to determine the key factors affecting the formation and evolution of planetary systems. ARIEL will observe a large number (> 500) of warm and hot transiting gas giants, Neptunes and super-Earths around a wide range of host star types, targeting planets hotter than 600 K to take advantage of their well-mixed atmospheres. It will exploit primary and secondary transits spectroscopy in the 1.2 - 8μ m spectral range and broad-band photometry in the optical and Near IR (NIR). The main instrument of the ARIEL Payload is the IR Spectrometer (AIRS) (Amiaux et al. 2017) providing low-resolution spectroscopy in two IR channels: C h a n n e l 0 (C H 0) for the 1.95 - 3.90μ m band and C h a n n e l 1 (C H 1) for the 3.90 - 7.80μ m range. It is located at the intermediate focal plane of the telescope (Da Deppo et al. 2016, 2017, 2017) and common optical system and it hosts two IR sensors and two cold front-end electronics (CFEE) for detectors readout, a well defined process calibrated for the selected target brightness and driven by the Payload's Instrument Control Unit (ICU).

  20. Design and development of the redundant launcher stabilization system for the Atlas 2 launch vehicle

    NASA Technical Reports Server (NTRS)

    Nakamura, M.

    1991-01-01

    The Launcher Stabilization System (LSS) is a pneumatic/hydraulic ground system used to support an Atlas launch vehicle prior to launch. The redesign and development activity undertaken to achieve an LSS with increased load capacity and a redundant hydraulic system for the Atlas 2 launch vehicle are described.

  1. Effects of space shuttle launches STS-1 through STS-9 on terrestrial vegetation of John F. Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Schmalzer, P. A.; Hinkle, C. R.; Breininger, D.; Knott, W. M., III (Editor); Koller, A. M., Jr. (Editor)

    1985-01-01

    Space Shuttle launches produce a cloud containing hydrochloric acid (HCl), aluminum oxide (Al203), and other substances. Acidities of less than 0.5 pH have been measured routinely in association with the launch cloud. In an area of about 22 ha regularly exposed to the exhaust cloud during most Shuttle launches, acute vegetation damage has resulted from the first nine Shuttle launches. Changes include loss of sensitive species, loss of plant community structure, reduction in total cover, and replacement of some species by weedy invaders. Community level changes define a retrogressive sequence. One-time impacts to strand and dune vegetation occurred after launches of STS-8 and STS-9. Acute vegetation damage occurred especially to sensitive species. Within six months, however, recovery was nearly complete. Sensitivity of species to the launch cloud was partially predicted by previous laboratory studies. Far-field acidic and dry fallout from the cloud as it rises to stabilization and moves with the prevailing winds causes vegetation spotting. Damage from this deposition is minor; typically at most 1% to 5% of leaf surface area is affected. No plant mortality or community changes have occurred from far-field deposition.

  2. Space X-3 Social Media Tour of KSC Facilities

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A group of news media and social media tweeters toured the Launch Abort System Facility and viewed the launch abort system for the Orion spacecraft at NASA's Kennedy Space Center in Florida. Speaking to the group is Scott Wilson, manager of Production Operations for the Orion Program. The group also toured the Launch Control Center and Vehicle Assembly Building, legacy facilities that are being upgraded by the Ground Systems Development and Operations Program at Kennedy to prepare for processing and launch of NASA's Space Launch System and Orion spacecraft. NASA is developing the Space Launch System and Orion spacecraft to provide an entirely new capability for human exploration beyond low-Earth orbit, with the flexibility to launch spacecraft for crew and cargo missions, including to an asteroid and Mars. Orion’s first unpiloted test flight is scheduled to launch later this year atop a Delta IV rocket. A second uncrewed flight test is scheduled for fiscal year 2018 on the Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  3. AI mass spectrometers for space shuttle health monitoring

    NASA Technical Reports Server (NTRS)

    Adams, F. W.

    1991-01-01

    The facility Hazardous Gas Detection System (HGDS) at Kennedy Space Center (KSC) is a mass spectrometer based gas analyzer. Two instruments make up the HGDS, which is installed in a prime/backup arrangement, with the option of using both analyzers on the same sample line, or on two different lines simultaneously. It is used for monitoring the Shuttle during fuel loading, countdown, and drainback, if necessary. The use of complex instruments, operated over many shifts, has caused problems in tracking the status of the ground support equipment (GSE) and the vehicle. A requirement for overall system reliability has been a major force in the development of Shuttle GSE, and is the ultimate driver in the choice to pursue artificial intelligence (AI) techniques for Shuttle and Advanced Launch System (ALS) mass spectrometer systems. Shuttle applications of AI are detailed.

  4. Response of selected plant and insect species to simulated solid rocket exhaust mixtures and to exhaust components from solid rocket fuels

    NASA Technical Reports Server (NTRS)

    Heck, W. W.; Knott, W. M.; Stahel, E. P.; Ambrose, J. T.; Mccrimmon, J. N.; Engle, M.; Romanow, L. A.; Sawyer, A. G.; Tyson, J. D.

    1980-01-01

    The effects of solid rocket fuel (SRF) exhaust on selected plant and and insect species in the Merritt Island, Florida area was investigated in order to determine if the exhaust clouds generated by shuttle launches would adversely affect the native, plants of the Merritt Island Wildlife Refuge, the citrus production, or the beekeeping industry of the island. Conditions were simulated in greenhouse exposure chambers and field chambers constructed to model the ideal continuous stirred tank reactor. A plant exposure system was developed for dispensing and monitoring the two major chemicals in SRF exhaust, HCl and Al203, and for dispensing and monitoring SRF exhaust (controlled fuel burns). Plants native to Merritt Island, Florida were grown and used as test species. Dose-response relationships were determined for short term exposure of selected plant species to HCl, Al203, and mixtures of the two to SRF exhaust.

  5. Using the Light Microscopy Module (LMM) on the International Space Station (ISS), The Advanced Colloids Experiment (ACE) and MacroMolecular Biophysics (MMB)

    NASA Technical Reports Server (NTRS)

    Meyer, William; Foster, William M.; Motil, Brian J.; Sicker, Ronald; Abbott-Hearn, Amber; Chao, David; Chiaramonte, Fran; Atherton, Arthur; Beltram, Alexander; Bodzioney, Christopher M.; hide

    2016-01-01

    The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began science operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2016, if all goes as planned, three experiments will be completed: [1] Advanced Colloids Experiments with Heated base-2 (ACE-H2) and [2] Advanced Colloids Experiments with Temperature control (ACE-T1). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al. and [2] from Chungnam National University, Daejeon, S. Korea: Chang-Soo Lee, et al.

  6. Light Microscopy Module: International Space Station Premier Automated Microscope

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Foster, William M.; Motil, Brian J.; Meyer, William V.; Chiaramonte, Francis P.; Abbott-Hearn, Amber; Atherton, Arthur; Beltram, Alexander; Bodzioney, Christopher; Brinkman, John; hide

    2016-01-01

    The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began hardware operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2016, if all goes as planned, three experiments will be completed: [1] Advanced Colloids Experiments with Heated base-2 (ACE-H2) and [2] Advanced Colloids Experiments with Temperature control (ACE-T1). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al. and [2] from Chungnam National University, Daejeon, S. Korea: Chang-Soo Lee, et al.

  7. 14 CFR 415.109 - Launch description.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Identification of any facilities at the launch site that will be used for launch processing and flight. (b... dimensions and weight; (iii) Location of all safety critical systems, including any flight termination hardware, tracking aids, or telemetry systems; (iv) Location of all major launch vehicle control systems...

  8. 14 CFR 415.109 - Launch description.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Identification of any facilities at the launch site that will be used for launch processing and flight. (b... dimensions and weight; (iii) Location of all safety critical systems, including any flight termination hardware, tracking aids, or telemetry systems; (iv) Location of all major launch vehicle control systems...

  9. 14 CFR 415.109 - Launch description.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Identification of any facilities at the launch site that will be used for launch processing and flight. (b... dimensions and weight; (iii) Location of all safety critical systems, including any flight termination hardware, tracking aids, or telemetry systems; (iv) Location of all major launch vehicle control systems...

  10. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.

    2012-01-01

    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  11. Design of an airborne launch vehicle for an air launched space booster

    NASA Technical Reports Server (NTRS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-01-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  12. Design of an airborne launch vehicle for an air launched space booster

    NASA Astrophysics Data System (ADS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-12-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  13. Dynamic Modeling of Ascent Abort Scenarios for Crewed Launches

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Boyer, Roger L.

    2015-01-01

    For the last 30 years, the United States's human space program has been focused on low Earth orbit exploration and operations with the Space Shuttle and International Space Station programs. After nearly 50 years, the U.S. is again working to return humans beyond Earth orbit. To do so, NASA is developing a new launch vehicle and spacecraft to provide this capability. The launch vehicle is referred to as the Space Launch System (SLS) and the spacecraft is called Orion. The new launch system is being developed with an abort system that will enable the crew to escape launch failures that would otherwise be catastrophic as well as probabilistic design requirements set for probability of loss of crew (LOC) and loss of mission (LOM). In order to optimize the risk associated with designing this new launch system, as well as verifying the associated requirements, NASA has developed a comprehensive Probabilistic Risk Assessment (PRA) of the integrated ascent phase of the mission that includes the launch vehicle, spacecraft and ground launch facilities. Given the dynamic nature of rocket launches and the potential for things to go wrong, developing a PRA to assess the risk can be a very challenging effort. Prior to launch and after the crew has boarded the spacecraft, the risk exposure time can be on the order of three hours. During this time, events may initiate from either of the spacecraft, the launch vehicle, or the ground systems, thus requiring an emergency egress from the spacecraft to a safe ground location or a pad abort via the spacecraft's launch abort system. Following launch, again either the spacecraft or the launch vehicle can initiate the need for the crew to abort the mission and return to the home. Obviously, there are thousands of scenarios whose outcome depends on when the abort is initiated during ascent as to how the abort is performed. This includes modeling the risk associated with explosions and benign system failures that require aborting a spacecraft under very dynamic conditions, particularly in the lower atmosphere, and returning the crew home safely. This paper will provide an overview of the PRA model that has been developed of this new launch system, including some of the challenges that are associated with this effort. Key Words: PRA, space launches, human space program, ascent abort, spacecraft, launch vehicles

  14. Electromechanical actuation for thrust vector control applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen

    1990-01-01

    At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type control algorithms. Integrated testing of the controller and actuator will be conducted at a facility yet to be named. The EMA system described above is discussed in detail.

  15. 14 CFR 401.5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Expendable launch vehicle means a launch vehicle whose propulsive stages are flown only once. Experimental... during a launch or reentry. Flight safety system means a system designed to limit or restrict the hazards... States. Launch includes the flight of a launch vehicle and includes pre- and post-flight ground...

  16. 14 CFR 401.5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Expendable launch vehicle means a launch vehicle whose propulsive stages are flown only once. Experimental... during a launch or reentry. Flight safety system means a system designed to limit or restrict the hazards... States. Launch includes the flight of a launch vehicle and includes pre- and post-flight ground...

  17. 14 CFR 401.5 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Expendable launch vehicle means a launch vehicle whose propulsive stages are flown only once. Experimental... during a launch or reentry. Flight safety system means a system designed to limit or restrict the hazards... States. Launch includes the flight of a launch vehicle and includes pre- and post-flight ground...

  18. Use of DES Modeling for Determining Launch Availability for SLS

    NASA Technical Reports Server (NTRS)

    Watson, Michael; Staton, Eric; Cates, Grant; Finn, Ronald; Altino, Karen M.; Burns, K. Lee

    2014-01-01

    (1) NASA is developing a new heavy lift launch system for human and scientific exploration beyond Earth orbit comprising of the Space Launch System (SLS), Orion Multi-Purpose Crew Vehicle (MPCV), and Ground Systems Development and Operations (GSDO); (2) The desire of the system is to ensure a high confidence of successfully launching the exploration missions, especially those that require multiple launches, have a narrow Earth departure window, and high investment costs; and (3) This presentation discusses the process used by a Cross-Program team to develop the Exploration Systems Development (ESD) Launch Availability (LA) Technical Performance Measure (TPM) and allocate it to each of the Programs through the use of Discrete Event Simulations (DES).

  19. Launch Pad Dedication

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Noted author and previous Marshall Space Flight Center employee Mr. Homer Hickam Jr. poses in front of a placque commemorating his achievement in realizing his dreams of becoming a rocket scientist. The dedication site is located at the U. S. Space and Rocket Center in Huntsville, AL, and is used by amature rocket builders attending the Space Camp to launch their self-made rockets like Mr. Hickam did as a youth growing up in rural West Virginia. Posing with Mr. Hickam is the Madison County Commissioner Mr. Mike Gillispie.

  20. 7. Photographic copy of photograph, date unknown (original print in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photographic copy of photograph, date unknown (original print in possession of James E. Zielinski Earth Tech, Huntsville, AL). Pan American World Airways, photographer. Aerial view (north to south) of missile launch area. Warhead handling building can be seen at the bottom center of the picture and the universal missile building in the middle right. In the distance can be seen the missile site control building and related structures - Stanley R. Mickelsen Safeguard Complex, Missile Launch Area, Within Exclusion Area, Nekoma, Cavalier County, ND

  1. Reliability, Maintainability, and Availability: Consideration During the Design Phase in Ground Systems to Ensure Successful Launch Support

    NASA Technical Reports Server (NTRS)

    Gillespie, Amanda M.

    2012-01-01

    The future of Space Exploration includes missions to the moon, asteroids, Mars, and beyond. To get there, the mission concept is to launch multiple launch vehicles months, even years apart. In order to achieve this, launch vehicles, payloads (satellites and crew capsules), and ground systems must be highly reliable and/or available, to include maintenance concepts and procedures in the event of a launch scrub. In order to achieve this high probability of mission success, Ground Systems Development and Operations (GSDO) has allocated Reliability, Maintainability, and Availability (RMA) requirements to all hardware and software required for both launch operations and, in the event of a launch scrub, required to support a repair of the ground systems, launch vehicle, or payload. This is done concurrently with the design process (30/60/90 reviews).

  2. Advanced Concept

    NASA Image and Video Library

    1999-01-01

    This artist’s concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  3. Extreme Ultraviolet Imaging Telescope (EIT)

    NASA Technical Reports Server (NTRS)

    Lemen, J. R.; Freeland, S. L.

    1997-01-01

    Efforts concentrated on development and implementation of the SolarSoft (SSW) data analysis system. From an EIT analysis perspective, this system was designed to facilitate efficient reuse and conversion of software developed for Yohkoh/SXT and to take advantage of a large existing body of software developed by the SDAC, Yohkoh, and SOHO instrument teams. Another strong motivation for this system was to provide an EIT analysis environment which permits coordinated analysis of EIT data in conjunction with data from important supporting instruments, including Yohkoh/SXT and the other SOHO coronal instruments; CDS, SUMER, and LASCO. In addition, the SSW system will support coordinated EIT/TRACE analysis (by design) when TRACE data is available; TRACE launch is currently planned for March 1998. Working with Jeff Newmark, the Chianti software package (K.P. Dere et al) and UV /EUV data base was fully integrated into the SSW system to facilitate EIT temperature and emission analysis.

  4. Anvil Forecast Tool in the Advanced Weather Interactive Processing System (AWIPS)

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Launch Weather Officers (LWOs) from the 45th Weather Squadron (45 WS) and forecasters from the National Weather Service (NWS) Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violating the Lightning Launch Commit Criteria (LLCC) (Krider et al. 2006; Space Shuttle Flight Rules (FR), NASA/JSC 2004)). As a result, the Applied Meteorology Unit (AMU) developed a tool that creates an anvil threat corridor graphic that can be overlaid on satellite imagery using the Meteorological Interactive Data Display System (MIDDS, Short and Wheeler, 2002). The tool helps forecasters estimate the locations of thunderstorm anvils at one, two, and three hours into the future. It has been used extensively in launch and landing operations by both the 45 WS and SMG. The Advanced Weather Interactive Processing System (AWIPS) is now used along with MIDDS for weather analysis and display at SMG. In Phase I of this task, SMG tasked the AMU to transition the tool from MIDDS to AWIPS (Barrett et aI., 2007). For Phase II, SMG requested the AMU make the Anvil Forecast Tool in AWIPS more configurable by creating the capability to read model gridded data from user-defined model files instead of hard-coded files. An NWS local AWIPS application called AGRID was used to accomplish this. In addition, SMG needed to be able to define the pressure levels for the model data, instead of hard-coding the bottom level as 300 mb and the top level as 150 mb. This paper describes the initial development of the Anvil Forecast Tool for MIDDS, followed by the migration of the tool to AWIPS in Phase I. It then gives a detailed presentation of the Phase II improvements to the AWIPS tool.

  5. Advanced Concept

    NASA Image and Video Library

    1999-01-01

    This illustration is an artist’s concept of a Magnetic Launch Assist System, formerly referred as the Magnetic Levitation (Maglev) system, for space launch. Overcoming the grip of Earth’s gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist System technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, landing gear and the wing size, as well as the elimination of propellant weight resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  6. Terra and Aqua MODIS Design, Radiometry, and Geometry in Support of Land Remote Sensing

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Wolfe, Robert; Barnes, William; Guenther, Bruce; Vermote, Eric; Saleous, Nazmi; Salomonson, Vincent

    2011-01-01

    The NASA Earth Observing System (EOS) mission includes the construction and launch of two nearly identical Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. The MODIS proto-flight model (PFM) is onboard the EOS Terra satellite (formerly EOS AM-1) launched on December 18, 1999 and hereafter referred to as Terra MODIS. Flight model-1 (FM1) is onboard the EOS Aqua satellite (formerly EOS PM-1) launched on May 04, 2002 and referred to as Aqua MODIS. MODIS was developed based on the science community s desire to collect multiyear continuous datasets for monitoring changes in the Earth s land, oceans and atmosphere, and the human contributions to these changes. It was designed to measure discrete spectral bands, which includes many used by a number of heritage sensors, and thus extends the heritage datasets to better understand both long- and short-term changes in the global environment (Barnes and Salomonson 1993; Salomonson et al. 2002; Barnes et al. 2002). The MODIS development, launch, and operation were managed by NASA/Goddard Space Flight Center (GSFC), Greenbelt, Maryland. The sensors were designed, built, and tested by Raytheon/ Santa Barbara Remote Sensing (SBRS), Goleta, California. Each MODIS instrument offers 36 spectral bands, which span the spectral region from the visible (0.41 m) to long-wave infrared (14.4 m). MODIS collects data at three different nadir spatial resolutions: 0.25, 0.5, and 1 km. Key design specifications, such as spectral bandwidths, typical scene radiances, required signal-to-noise ratios (SNR) or noise equivalent temperature differences (NEDT), and primary applications of each MODIS spectral band are summarized in Table 7.1. These parameters were the basis for the MODIS design. More details on the evolution of the NASA EOS and development of the MODIS instruments are provided in Chap. 1. This chapter focuses on the MODIS sensor design, radiometry, and geometry as they apply to land remote sensing. With near-daily coverage of the Earth's surface, MODIS provides comprehensive measurements that enable scientists and policy makers to better understand and effectively manage the natural resources on both regional and global scales. Terra, the first large multisensor EOS satellite, is operated in a 10:30 am (local equatorial crossing time, descending southwards) polar orbit. Aqua, the second multisensor EOS satellite is operated in a 1:30 pm (local equatorial crossing time, ascending northwards) polar orbit. With complementing morning and afternoon observations, the Terra and Aqua MODIS, together with other sensors housed on both satellites, have greatly improved our understanding of the dynamics of the global environmental system.

  7. Magnetic Launch Assist System Demonstration

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie demonstrates the Magnetic Launch Assist system, previously referred to as the Magnetic Levitation (Maglev) system, for space launch using a 5 foot model of a reusable Bantam Class launch vehicle on a 50 foot track that provided 6-g acceleration and 6-g de-acceleration. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the takeoff, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  8. Throttleable GOX/ABS launch assist hybrid rocket motor for small scale air launch platform

    NASA Astrophysics Data System (ADS)

    Spurrier, Zachary S.

    Aircraft-based space-launch platforms allow operational flexibility and offer the potential for significant propellant savings for small-to-medium orbital payloads. The NASA Armstrong Flight Research Center's Towed Glider Air-Launch System (TGALS) is a small-scale flight research project investigating the feasibility for a remotely-piloted, towed, glider system to act as a versatile air launch platform for nano-scale satellites. Removing the crew from the launch vehicle means that the system does not have to be human rated, and offers a potential for considerable cost savings. Utah State University is developing a small throttled launch-assist system for the TGALS platform. This "stage zero" design allows the TGALS platform to achieve the required flight path angle for the launch point, a condition that the TGALS cannot achieve without external propulsion. Throttling is required in order to achieve and sustain the proper launch attitude without structurally overloading the airframe. The hybrid rocket system employs gaseous-oxygen and acrylonitrile butadiene styrene (ABS) as propellants. This thesis summarizes the development and testing campaign, and presents results from the clean-sheet design through ground-based static fire testing. Development of the closed-loop throttle control system is presented.

  9. Hypervelocity Impact Test Results for a Metallic Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Karr, Katherine L.; Poteet, Carl C.; Blosser, Max L.

    2003-01-01

    Hypervelocity impact tests have been performed on specimens representing metallic thermal protection systems (TPS) developed at NASA Langley Research Center for use on next-generation reusable launch vehicles (RLV). The majority of the specimens tested consists of a foil gauge exterior honeycomb panel, composed of either Inconel 617 or Ti-6Al-4V, backed with 2.0 in. of fibrous insulation and a final Ti-6Al-4V foil layer. Other tested specimens include titanium multi-wall sandwich coupons as well as TPS using a second honeycomb sandwich in place of the foil backing. Hypervelocity impact tests were performed at the NASA Marshall Space Flight Center Orbital Debris Simulation Facility. An improved test fixture was designed and fabricated to hold specimens firmly in place during impact. Projectile diameter, honeycomb sandwich material, honeycomb sandwich facesheet thickness, and honeycomb core cell size were examined to determine the influence of TPS configuration on the level of protection provided to the substructure (crew, cabin, fuel tank, etc.) against micrometeoroid or orbit debris impacts. Pictures and descriptions of the damage to each specimen are included.

  10. Endosafe(R)-Portable Test System (PTS)

    NASA Technical Reports Server (NTRS)

    Maule, Jake; Wainwright, Norm; Burbank, Dan

    2005-01-01

    The Portable Test System (PTS) is a hand-held device for monitoring the presence of potentially hazardous bacteria in the environment. It uses an immunological method derived from the horseshoe crab (Limulus polyphemus) to detect bacterial cell membranes and other molecular components of a cell. Further modifications of the PTS will allow detection of individual hazardous species of bacteria. This study was a follow-up of previous PTS and other immunological tests performed on the KC-135 during 2002-2003 (Maule et al., 2003, J. Gravit. Physiol.) and in the underwater habitat Aquarius during NEEMO 5 (Maule et al., 2005, Appl. Environ. Microbiol in prep.). The experiments described here were part of a final testing phase prior to use of the PTS on the International Space Station (ISS), scheduled for launch on 12A.1 on February 9th 2006. The specific aspects of PTS operation studied were those involving a fluid component: pumping, mixing, incubations and pipetting into the instrument. The PTS uses a stepper motor to move fluid along small channels, which may be affected by reduced gravity.

  11. Mechanical Design and Optimization of Swarm-Capable UAV Launch Systems

    DTIC Science & Technology

    2015-06-01

    stakeholders. The end result was the successful development and demonstration of a launching system prototype specifically developed to rapidly launch a...requirements for the stakeholders. The end result was the successful development and demonstration of a launching system prototype specifically developed to... Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7 Conclusion 125 7.1 Summary of Findings

  12. eLaunch Hypersonics: An Advanced Launch System

    NASA Technical Reports Server (NTRS)

    Starr, Stanley

    2010-01-01

    This presentation describes a new space launch system that NASA can and should develop. This approach can significantly reduce ground processing and launch costs, improve reliability, and broaden the scope of what we do in near earth orbit. The concept (not new) is to launch a re-usable air-breathing hypersonic vehicle from a ground based electric track. This vehicle launches a final rocket stage at high altitude/velocity for the final leg to orbit. The proposal here differs from past studies in that we will launch above Mach 1.5 (above transonic pinch point) which further improves the efficiency of air breathing, horizontal take-off launch systems. The approach described here significantly reduces cost per kilogram to orbit, increases safety and reliability of the boost systems, and reduces ground costs due to horizontal-processing. Finally, this approach provides significant technology transfer benefits for our national infrastructure.

  13. Corrosion Study Using Electrochemical Impedance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Farooq, Muhammad Umar

    2003-01-01

    Corrosion is a common phenomenon. It is the destructive result of chemical reaction between a metal or metal alloy and its environment. Stainless steel tubing is used at Kennedy Space Center for various supply lines which service the orbiter. The launch pads are also made of stainless steel. The environment at the launch site has very high chloride content due to the proximity to the Atlantic Ocean. Also, during a launch, the exhaust products in the solid rocket boosters include concentrated hydrogen chloride. The purpose of this project was to study various alloys by Electrochemical Impedance Spectroscopy in corrosive environments similar to the launch sites. This report includes data and analysis of the measurements for 304L, 254SMO and AL-6XN in primarily neutral 3.55% NaCl. One set of data for 304L in neutral 3.55%NaCl + 0.1N HCl is also included.

  14. Mobile-Based Nutrition and Child Health Monitoring to Inform Program Development: An Experience From Liberia.

    PubMed

    Guyon, Agnes; Bock, Ariella; Buback, Laura; Knittel, Barbara

    2016-12-23

    Implementing complex nutrition and other public health projects and tracking nutrition interventions, such as women's diet and supplementation and infant and young child feeding practices, requires reliable routine data to identify potential program gaps and to monitor trends in behaviors in real time. However, current monitoring and evaluation practices generally do not create an environment for this real-time tracking. This article describes the development and application of a mobile-based nutrition and health monitoring system, which collected monitoring data on project activities, women's nutrition, and infant and young child feeding practices in real time. The Liberia Agricultural Upgrading Nutrition and Child Health (LAUNCH) project implemented a nutrition and health monitoring system between April 2012 and June 2014. The LAUNCH project analyzed project monitoring and outcome data from the system and shared selected behavioral and programmatic indicators with program managers through a short report, which later evolved into a visual data dashboard, during program-update meetings. The project designed protocols to ensure representativeness of program participants. LAUNCH made programmatic adjustments in response to findings from the monitoring system; these changes were then reflected in subsequent quarterly trends, indicating that the availability of timely data allowed for the project to react quickly to issues and adapt the program appropriately. Such issues included lack of participation in community groups and insufficient numbers of food distribution points. Likewise, the system captured trends in key outcome indicators such as breastfeeding and complementary feeding practices, linking them to project activities and external factors including seasonal changes and national health campaigns. Digital data collection platforms can play a vital role in improving routine programmatic functions. Fixed gathering locations such as food distribution points represent an opportunity to easily access program participants and enable managers to identify strengths and weaknesses in project implementation. For programs that track individuals over time, a mobile tool combined with a strong database can greatly improve efficiency and data visibility and reduce resource leakages. © Guyon et al.

  15. National space transportation systems planning

    NASA Technical Reports Server (NTRS)

    Lucas, W. R.

    1985-01-01

    In the fall of 1984, the DOD and NASA had been asked to identify launch vehicle technologies which could be made available for use in 1995 to 2010. The results of the studies of the two groups were integrated, and a consumer report, dated December 1984, was forwarded to the President. Aspects of mission planning and analysis are discussed along with a combined mission model, future launch system requirements, a launch vehicle planning background, Shuttle derivative vehicle program options, payload modularization, launch vehicle technology implications, a new engine program for the mid-1990's. Future launch systems goals are to achieve an order of magnitude reduction in future launch cost and meet the lift requirements and launch rates. Attention is given to an advanced cryogenic engine, advanced LOX/hydrocarbon engine, advanced power systems, aerodynamics/flight mechanics, reentry/recovery systems, avionics/software, advanced manufacturing techniques, autonomous ground and mission operations, advanced structures/materials, and air breathing propulsion.

  16. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Hefner, Keith; Hitt, David

    2015-01-01

    Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. The vehicle will be able to deliver greater mass to orbit than any contemporary launch vehicle. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads.

  17. Analysis of Proposed 2007-2008 Revisions to the Lightning Launch Commit Criteria for United States Space Launches

    NASA Technical Reports Server (NTRS)

    Dye, James E.; Krider, E. Phillip; Merceret, Francis J.; Willett, John C.; Bateman, Monte G.; Mach, Douglas M.; Walterscheid, Richard; O'Brien, T. Paul; Christian, Hugh J.

    2008-01-01

    Ascending space vehicles are vulnerable to both natural and triggered lightning. Launches under the jurisdiction of the United States are generally subject to a set of rules called the Lightning Launch Commit Criteria (LLCC) (Krider etal., 1999; Krider etal., 2006). The LLCC protect both the vehicle and the public by assuring that the launch does not take place in conditions posing a significant risk of a lightning strike to the ascending vehicle. Such a strike could destroy the vehicle and its payload, thus causing failure of the mission while releasing both toxic materials and debris. To assure safety, the LLCC are conservative and sometimes they may seriously limit the ability of the launch operator to fly as scheduled even when conditions are benign. In order to safely reduce the number of launch scrubs and delays attributable to the LLCC, the Airborne Field Mill (ABFM II) program was undertaken in 2000 - 2001. The effort was directed to collecting detailed high-quality data on the electrical, microphysical, radar and meteorological properties of thunderstorm-associated clouds. Details may be found in Dye et al., 2007. The expectation was that this additional knowledge would provide a better physical basis for the LLCC and allow them to be revised to be less restrictive while remaining at least as safe. That expectation was fulfilled, leading to significant revisions to the LLCC in 2003 and 2005. The 2005 revisions included the application of a new radar-derived quantity called the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) in the rules governing flight through anvil clouds. VAHIRR is the product of the volume averaged radar reflectivity times the radardetermined cloud thickness. The reflectivity average extends horizontally 5 km west, east, south and north of a point along the flight track and vertically from the 0 C isotherm to the top of the radar cloud. This region is defined as the "Specified Volume". See Dye et al., 2006 and Merceret et al., 2006 for a more thorough description of VAHIRR. The units are dBZ km (not dBZ per kilometer) and the threshold is 10 dBZ km. It is safe to fly through an anvil cloud for which VAHIRR is below this threshold everywhere along the flight track as long as (1) the entire cloud within 5 nmi. (9.26 km) of the flight track is colder than 0 C, (2) the points at which VAHIRR must be evaluated are at least 20 km from any active convective cores and recent lightning, and (3) the radar return is not being attenuated within the Specified Volume around those points.

  18. Application of System Operational Effectiveness Methodology to Space Launch Vehicle Development and Operations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Kelley, Gary W.

    2012-01-01

    The Department of Defense (DoD) defined System Operational Effectiveness (SOE) model provides an exceptional framework for an affordable approach to the development and operation of space launch vehicles and their supporting infrastructure. The SOE model provides a focal point from which to direct and measure technical effectiveness and process efficiencies of space launch vehicles. The application of the SOE model to a space launch vehicle's development and operation effort leads to very specific approaches and measures that require consideration during the design phase. This paper provides a mapping of the SOE model to the development of space launch vehicles for human exploration by addressing the SOE model key points of measurement including System Performance, System Availability, Technical Effectiveness, Process Efficiency, System Effectiveness, Life Cycle Cost, and Affordable Operational Effectiveness. In addition, the application of the SOE model to the launch vehicle development process is defined providing the unique aspects of space launch vehicle production and operations in lieu of the traditional broader SOE context that examines large quantities of fielded systems. The tailoring and application of the SOE model to space launch vehicles provides some key insights into the operational design drivers, capability phasing, and operational support systems.

  19. Dynamic Modeling of Ascent Abort Scenarios for Crewed Launches

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Boyer, Roger L.

    2015-01-01

    For the last 30 years, the United States' human space program has been focused on low Earth orbit exploration and operations with the Space Shuttle and International Space Station programs. After over 40 years, the U.S. is again working to return humans beyond Earth orbit. To do so, NASA is developing a new launch vehicle and spacecraft to provide this capability. The launch vehicle is referred to as the Space Launch System (SLS) and the spacecraft is called Orion. The new launch system is being developed with an abort system that will enable the crew to escape launch failures that would otherwise be catastrophic as well as probabilistic design requirements set for probability of loss of crew (LOC) and loss of mission (LOM). In order to optimize the risk associated with designing this new launch system, as well as verifying the associated requirements, NASA has developed a comprehensive Probabilistic Risk Assessment (PRA) of the integrated ascent phase of the mission that includes the launch vehicle, spacecraft and ground launch facilities. Given the dynamic nature of rocket launches and the potential for things to go wrong, developing a PRA to assess the risk can be a very challenging effort. Prior to launch and after the crew has boarded the spacecraft, the risk exposure time can be on the order of three hours. During this time, events may initiate from either the spacecraft, the launch vehicle, or the ground systems, thus requiring an emergency egress from the spacecraft to a safe ground location or a pad abort via the spacecraft's launch abort system. Following launch, again either the spacecraft or the launch vehicle can initiate the need for the crew to abort the mission and return home. Obviously, there are thousands of scenarios whose outcome depends on when the abort is initiated during ascent and how the abort is performed. This includes modeling the risk associated with explosions and benign system failures that require aborting a spacecraft under very dynamic conditions, particularly in the lower atmosphere, and returning the crew home safely. This paper will provide an overview of the PRA model that has been developed of this new launch system, including some of the challenges that are associated with this effort.

  20. Implications of Gun Launch to Space for Nanosatellite Architectures

    NASA Technical Reports Server (NTRS)

    Palmer, Miles R.

    1995-01-01

    Engineering and economic scaling factors for gun launch to space (GLTS) systems are compared to conventional rocket launch systems. It is argued that GLTS might reduce the cost of small satellite development and launch in the mid to far term, thereby inducing a shift away from large centralized geosynchronous communications satellites to small proliferated low earth orbit systems.

  1. 46 CFR 133.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Marine evacuation system launching arrangements. 133.145... LIFESAVING SYSTEMS Requirements for All OSVs § 133.145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system must have the following arrangements: (1) Each marine evacuation...

  2. 46 CFR 133.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Marine evacuation system launching arrangements. 133.145... LIFESAVING SYSTEMS Requirements for All OSVs § 133.145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system must have the following arrangements: (1) Each marine evacuation...

  3. 46 CFR 133.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Marine evacuation system launching arrangements. 133.145... LIFESAVING SYSTEMS Requirements for All OSVs § 133.145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system must have the following arrangements: (1) Each marine evacuation...

  4. 46 CFR 133.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Marine evacuation system launching arrangements. 133.145... LIFESAVING SYSTEMS Requirements for All OSVs § 133.145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system must have the following arrangements: (1) Each marine evacuation...

  5. A strategy for developing a launch vehicle system for orbit insertion: Methodological aspects

    NASA Astrophysics Data System (ADS)

    Klyushnikov, V. Yu.; Kuznetsov, I. I.; Osadchenko, A. S.

    2014-12-01

    The article addresses methodological aspects of a development strategy to design a launch vehicle system for orbit insertion. The development and implementation of the strategy are broadly outlined. An analysis is provided of the criterial base and input data needed to define the main requirements for the launch vehicle system. Approaches are suggested for solving individual problems in working out the launch vehicle system development strategy.

  6. KSC-97PC1613

    NASA Image and Video Library

    1997-11-05

    STS-87 Payload Specialist Leonid Kadenyuk, at right, of the National Space Agency of Ukraine (NSAU) is assisted into his orange launch and entry spacesuit ensemble by NASA Suit Technician Al Rochford, at left, before participating in Terminal Countdown Demonstration Test (TCDT) activities. The crew of the STS-87 mission is scheduled for launch Nov. 19 aboard the Space Shuttle Columbia. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay

  7. Low Cost Micro-Mini-Satellite Remote Sensing Capabilities: in-Orbit Results &Imminent Missions

    NASA Astrophysics Data System (ADS)

    Stephens, Paul; Sun, Wei; Sweeting, Martin, , Sir

    Micro- and mini-satellites are in the process or revolutionising the economics of Earth observation. This will jointly affect the space super-powers who have, since the dawn of the space age, enjoyed an effective monopoly of Earth observation from the high vantage-point of space and also the commercial provision of EO data to value added information producers. The monopoly has been due to the enormous cost hitherto required to build, launch and operate EO satellites. SSTL (UK) has pioneered the development of successful micro and mini-satellites which have demonstrated highly capable Earth Observation functions at a mission cost at least an order of magnitude less than conventional such missions. This dramatic development has brought independent ownership of Earth observation satellites within the affordable reach of every developing nation and even medium-sized commercial concerns. Indeed, the performance of these tiny satellites now exceeds the capability of many of the civil EO satellites in operation only 5 years ago. In 2002, SSTL will launch the first satellite in a constellation that will deliver the first routine 24-hour revisit EO data released into the commercial marketplace. This paper describes the in-orbit EO image data produced by typical micro and minisatellites including the latest imagery from the UoSAT-12 mini satellite launched in April 1999 which carries a 32-metre ground sampling distance multispectral imager and a 10-metre GSD panchromatic camera. In addition, data is presented from the TiungSat-1 and Tsinghua-1 microsatellites launched in 2000, and AlSat-1 (launch scheduled in September 2002). AlSat-1 carries a unique imaging system designed as part of the innovative Disaster Monitoring Constellation providing 32-metre GSD multispectral images with a 600km swath width - together with its five companion microsatellites, the Disaster Monitoring Constellation can provide daily revisit imaging world-wide from orbit. The paper also describes the latest advances in imaging using two new low cost small satellites being built at Surrey. The commercial RapidEye constellation of 4-6 microsatellites is designed to provide daily imaging at 6.5-metre GSD in 6 spectral band over Europe for precision farming applications. At a higher resolution, TopSat is a pilot mission for the UK Ministry of Defence carrying a 2.5-metre GSD panchromatic camera on a highly agile microsatellite, designed to deliver images direct to mobile groundstations in the field.

  8. The kinetic activation-relaxation technique: an off-lattice, self-learning kinetic Monte Carlo algorithm with on-the-fly event search

    NASA Astrophysics Data System (ADS)

    Mousseau, Nomand

    2012-02-01

    While kinetic Monte Carlo algorithm has been proposed almost 40 years ago, its application in materials science has been mostly limited to lattice-based motion due to the difficulties associated with identifying new events and building usable catalogs when atoms moved into off-lattice position. Here, I present the kinetic activation-relaxation technique (kinetic ART) is an off-lattice, self-learning kinetic Monte Carlo algorithm with on-the-fly event search [1]. It combines ART nouveau [2], a very efficient unbiased open-ended activated method for finding transition states, with a topological classification [3] that allows a discrete cataloguing of local environments in complex systems, including disordered materials. In kinetic ART, local topologies are first identified for all atoms in a system. ART nouveau event searches are then launched for new topologies, building an extensive catalog of barriers and events. Next, all low energy events are fully reconstructed and relaxed, allowing to take complete account of elastic effects in the system's kinetics. Using standard kinetic Monte Carlo, the clock is brought forward and an event is then selected and applied before a new search for topologies is launched. In addition to presenting the various elements of the algorithm, I will discuss three recent applications to ion-bombarded silicon, defect diffusion in Fe and structural relaxation in amorphous silicon.[4pt] This work was done in collaboration with Laurent Karim B'eland, Peter Brommer, Fedwa El-Mellouhi, Jean-Francois Joly and Laurent Lewis.[4pt] [1] F. El-Mellouhi, N. Mousseau and L.J. Lewis, Phys. Rev. B. 78, 153202 (2008); L.K. B'eland et al., Phys. Rev. E 84, 046704 (2011).[2] G.T. Barkema and N. Mousseau, Phys. Rev. Lett. 77, 4358 (1996); E. Machado-Charry et al., J. Chem Phys. 135, 034102, (2011).[3] B.D. McKay, Congressus Numerantium 30, 45 (1981).

  9. Determination of the Trajectory of Ballistic Missiles Using a Dense GPS Array

    NASA Astrophysics Data System (ADS)

    Heki, K.; Ozeki, M.

    2009-12-01

    The dense array of ~1000 Global Positioning System (GPS) receivers in Japan provides useful information on atmosphere and ionosphere in terms of delays of microwaves in propagation media. Here we introduce its brand-new application, determination of the trajectories of ballistic missiles by using their electron depletion signatures in ionosphere. Booker (1961) first detected F-region ion depletion associated with a missile passage. Later, formation of an ionospheric hole by the launch of Skylab was observed, and Mendillo et al. (1975) attributed the electron depletion to the water molecules in the rocket exhaust. In Japan, ionospheric depletion after the launch of the H-IIA rocket was observed at GPS receivers in southern Japan using differences in phases between the two carrier frequencies L1 and L2 (Furuya & Heki, 2008). The so-called Taepodong-1, and -2 (the North Korean government claims that they successfully launched satellites), ballistic missiles with liquid fuel engines, were launched from Musudanri, North Korea, in August 1998, and April 2009, respectively. Their first stage engines splashed down onto the Japan Sea, and their second stage engines flew over northeastern Japan and reached the Pacific Ocean. We investigated GPS data before and after the launches, and detected that linear electron depletion areas appear in the northern part of the Japan Sea (~300 km east of the launch pad) approximately six minutes after the launch. Such electron depletion occurs as a result of exchange of positive charges between oxygen ions and water molecules, and dissociative recombination of water with electrons. The ionospheric hole rapidly grows and gradually decays as the water molecules diffuse. By comparing the numerical simulation results of ionospheric hole formation (water diffusion and chemical reaction) and the observed change in ionospheric total electron content (TEC), we conclude that the Taepodong-1 exhaust included water molecules ~0.5 percent of those in the H-IIA rocket. Taepodong-2, on the other hand, made a larger and longer-lasting hole and water molecules in its exhaust appear to be eight times as many as in Taepodong-1. This perhaps reflects improvement in thrust of the Taepodong series. We estimated the most likely trajectory of the Taepodong-2 constraining the coordinates of the launch pad and splashdown point. The missile reached the ionospheric F region in six minutes after the launch and flew above northeastern Japan about 9-10 minutes after the launch.

  10. 46 CFR 199.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Marine evacuation system launching arrangements. 199.145....145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system... from the marine evacuation system platform by a person either in the liferaft or on the platform; (4...

  11. 46 CFR 199.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Marine evacuation system launching arrangements. 199.145....145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system... from the marine evacuation system platform by a person either in the liferaft or on the platform; (4...

  12. 46 CFR 199.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Marine evacuation system launching arrangements. 199.145....145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system... from the marine evacuation system platform by a person either in the liferaft or on the platform; (4...

  13. 46 CFR 199.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Marine evacuation system launching arrangements. 199.145....145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system... from the marine evacuation system platform by a person either in the liferaft or on the platform; (4...

  14. 46 CFR 199.145 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Marine evacuation system launching arrangements. 199.145....145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system... from the marine evacuation system platform by a person either in the liferaft or on the platform; (4...

  15. On the status report of the H-II launch vehicle

    NASA Astrophysics Data System (ADS)

    Eto, Takao; Shibato, Yoji; Takatsuka, H.; Fukushima, Y.

    1988-10-01

    This paper describes the present status of the design and the development of the H-II launch vehicle which is being presently developed by NASDA to meet the demand for larger satellite launches at a lower cost. The H-II systems, including its solid rocket boosters and the guidance and control system, are discussed together with the launch facilities and launch operation. The paper includes diagrams of the H-II systems and a table listing H-II characteristics.

  16. Virginia Space Grant Consortium Upper Atmospheric Payload Balloon System (Vps)

    NASA Technical Reports Server (NTRS)

    Marz, Bryan E.; Ash, Robert L.

    1996-01-01

    This document provides a summary of the launch and post-launch activities of Virginia Space Grant Consortium Upper Atmospheric Payload Balloon System, V(ps). It is a comprehensive overview covering launch activities, post-launch activities, experimental results, and future flight recommendations.

  17. National launch strategy vehicle data management system

    NASA Technical Reports Server (NTRS)

    Cordes, David

    1990-01-01

    The national launch strategy vehicle data management system (NLS/VDMS) was developed as part of the 1990 NASA Summer Faculty Fellowship Program. The system was developed under the guidance of the Engineering Systems Branch of the Information Systems Office, and is intended for use within the Program Development Branch PD34. The NLS/VDMS is an on-line database system that permits the tracking of various launch vehicle configurations within the program development office. The system is designed to permit the definition of new launch vehicles, as well as the ability to display and edit existing launch vehicles. Vehicles can be grouped in logical architectures within the system. Reports generated from this package include vehicle data sheets, architecture data sheets, and vehicle flight rate reports. The topics covered include: (1) system overview; (2) initial system development; (3) supercard hypermedia authoring system; (4) the ORACLE database; and (5) system evaluation.

  18. Launch Processing System. [for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Byrne, F.; Doolittle, G. V.; Hockenberger, R. W.

    1976-01-01

    This paper presents a functional description of the Launch Processing System, which provides automatic ground checkout and control of the Space Shuttle launch site and airborne systems, with emphasis placed on the Checkout, Control, and Monitor Subsystem. Hardware and software modular design concepts for the distributed computer system are reviewed relative to performing system tests, launch operations control, and status monitoring during ground operations. The communication network design, which uses a Common Data Buffer interface to all computers to allow computer-to-computer communication, is discussed in detail.

  19. Much Lower Launch Costs Make Resupply Cheaper than Recycling for Space Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2017-01-01

    The development of commercial launch vehicles by SpaceX has greatly reduced the cost of launching mass to Low Earth Orbit (LEO). Reusable launch vehicles may further reduce the launch cost per kilogram. The new low launch cost makes open loop life support much cheaper than before. Open loop systems resupply water and oxygen in tanks for crew use and provide disposable lithium hydroxide (LiOH) in canisters to remove carbon dioxide. Short human space missions such as Apollo and shuttle have used open loop life support, but the long duration International Space Station (ISS) recycles water and oxygen and removes carbon dioxide with a regenerative molecular sieve. These ISS regenerative and recycling life support systems have significantly reduced the total launch mass needed for life support. But, since the development cost of recycling systems is much higher than the cost of tanks and canisters, the relative cost savings have been much less than the launch mass savings. The Life Cycle Cost (LCC) includes development, launch, and operations. If another space station was built in LEO, resupply life support would be much cheaper than the current recycling systems. The mission most favorable to recycling would be a long term lunar base, since the resupply mass would be large, the proximity to Earth would reduce the need for recycling reliability and spares, and the launch cost would be much higher than for LEO due to the need for lunar transit and descent propulsion systems. For a ten-year lunar base, the new low launch costs make resupply cheaper than recycling systems similar to ISS life support.

  20. Using Discrete Event Simulation to Model Integrated Commodities Consumption for a Launch Campaign of the Space Launch System

    NASA Technical Reports Server (NTRS)

    Leonard, Daniel; Parsons, Jeremy W.; Cates, Grant

    2014-01-01

    In May 2013, NASA's GSDO Program requested a study to develop a discrete event simulation (DES) model that analyzes the launch campaign process of the Space Launch System (SLS) from an integrated commodities perspective. The scope of the study includes launch countdown and scrub turnaround and focuses on four core launch commodities: hydrogen, oxygen, nitrogen, and helium. Previously, the commodities were only analyzed individually and deterministically for their launch support capability, but this study was the first to integrate them to examine the impact of their interactions on a launch campaign as well as the effects of process variability on commodity availability. The study produced a validated DES model with Rockwell Arena that showed that Kennedy Space Center's ground systems were capable of supporting a 48-hour scrub turnaround for the SLS. The model will be maintained and updated to provide commodity consumption analysis of future ground system and SLS configurations.

  1. 23. HISTORIC VIEW OF ONE STICK REPULSOR OF RAKETENFLUGPLATZ GROUP. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. HISTORIC VIEW OF ONE STICK REPULSOR OF RAKETENFLUGPLATZ GROUP. POSSIBLY 1931, THE STAND IS FOR LAUNCHING NOT FOR STATIC TESTS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  2. Launch Control Systems: Moving Towards a Scalable, Universal Platform for Future Space Endeavors

    NASA Technical Reports Server (NTRS)

    Sun, Jonathan

    2011-01-01

    The redirection of NASA away from the Constellation program calls for heavy reliance on commercial launch vehicles for the near future in order to reduce costs and shift focus to research and long term space exploration. To support them, NASA will renovate Kennedy Space Center's launch facilities and make them available for commercial use. However, NASA's current launch software is deeply connected with the now-retired Space Shuttle and is otherwise not massively compatible. Therefore, a new Launch Control System must be designed that is adaptable to a variety of different launch protocols and vehicles. This paper exposits some of the features and advantages of the new system both from the perspective of the software developers and the launch engineers.

  3. The Aquila launch service for small satellites

    NASA Astrophysics Data System (ADS)

    Whittinghill, George R.; McKinney, Bevin C.

    1992-07-01

    The Aquila launch vehicle is described emphasizing its use in the deployment of small satellites for the commercial sector. The Aquila is designed to use a guidance, navigation, and control system, and the rocket is based on hybrid propulsion incorporating a liquid oxidizer with a solid polybutadiene fuel. The launch vehicle for the system is a ground-launched four-stage vehicle that can deliver 3,200 lbs of payload into a 185-km circular orbit at 90-deg inclination. Aquila avionics include inertial navigation, radar transponder, and an S-band telemetry transmitter. The payload environment minimizes in-flight acoustic levels, and the launch-ascent profile is characterized by low acceleration. The launch vehicle uses low-cost rocket motors, a high-performance LO(x) feed system, and erector launch capability which contribute to efficient launches for commercial payloads for low polar earth orbits.

  4. Recent US and Chinese Antisatellite Activities

    DTIC Science & Technology

    2009-01-01

    late 1950s, high­ lighted by the launch of a Bold Orion missile from a B-47 bomber. Pres. Gerald R . Ford’s directive of 1975 allowed explo­ ration of...story_generic.jsp?channel = awst &id=news/aw021808p2.xml&headline=U.S.%20To%20Shoot%20Down%20Satellite (accessed 30 October 2008). The Air Force launched NRO...Michael R . Mantz, The New Sword: A Theory of Space Combat Power, research report no. AU-ARI­ 94-6 (Maxwell AFB, AL: Air University Press, May 1995), 99

  5. 46 CFR 108.545 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Marine evacuation system launching arrangements. 108.545... DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.545 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation system must have the following arrangements: (1) Each...

  6. SLI Artist `s Launch Concept

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle during launch. For SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  7. Design and Prototype Implementation of non-Triggered Database-driven Real-time Tsunami Forecast System using Multi-index Method

    NASA Astrophysics Data System (ADS)

    Yamamoto, N.; Aoi, S.; Suzuki, W.; Hirata, K.; Takahashi, N.; Kunugi, T.; Nakamura, H.

    2016-12-01

    We have launched a new project to develop real-time tsunami inundation forecast system for the Pacific coast of Chiba prefecture (Kujukuri-Sotobo region), Japan (Aoi et al., 2015, AGU). In this study, we design a database-driven real-time tsunami forecast system using the multi-index method (Yamamoto et al., 2016, EPS) and implement a prototype system. In the previous study (Yamamoto et al., 2015, AGU), we assumed that the origin-time of tsunami was known before a forecast based on comparing observed and calculated ocean-bottom pressure waveforms stored in the Tsunami Scenario Bank (TSB). As shown in the figure, we assume the scenario origin-times by defining the scenario elapsed timeτp to compare observed and calculated waveforms. In this design, when several appropriate tsunami scenarios were selected by multiple indices (two variance reductions and correlation coefficient), the system could make tsunami forecast using the selected tsunami scenarios for the target coastal region without any triggered information derived from observed seismic and/or tsunami data. In addition, we define the time range Tq shown in the figure for masking perturbations contaminated by ocean-acoustic and seismic waves on the observed pressure records (Saito, 2015, JpGU). Following the proposed design, we implement a prototype system of real-time tsunami inundation forecast system for the exclusive use of the target coastal region using ocean-bottom pressure data from the Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench (S-net) (Kanazawa et al., 2012, JpGU; Uehira et al., 2015, IUGG), which is constructed by National Research institute for Earth Science and Disaster Resilience (NIED). For the prototype system, we construct a prototype TSB using interplate earthquake fault models located along the Japan Trench (Mw 7.6-9.8), the Sagami Trough (Mw 7.6-8.6), and the Nankai Trough (Mw 7.6-8.6) as well as intraplate earthquake fault models (Mw 7.6-8.6) within the subducting Pacific plate, which could affect the target coastal region. This work was partially supported by the Council for Science, Technology and Innovation (CSTI) through the Cross-ministerial Strategic Innovation Promotion Program (SIP), titled "Enhancement of societal resiliency against natural disasters" (Funding agency: JST).

  8. Launch Order, Launch Separation, and Loiter in the Constellation 1 1/2-Launch Solution

    NASA Technical Reports Server (NTRS)

    Stromgren, Chel; Cates, Grant; Cirillo, William

    2009-01-01

    The NASA Constellation Program (CxP) is developing a two-element Earth-to-Orbit launch system to enable human exploration of the Moon. The first element, Ares I, is a human-rated system that consists of a first stage based on the Space Shuttle Program's solid rocket booster (SRB) and an upper stage that consists of a four-crew Orion capsule, a service module, and a Launch Escape System. The second element, Ares V, is a Saturn V-plus category launch system that consists of the core stage with a cluster of six RS-68B engines and augmented with two 5.5-segment SRBs, a Saturn-derived J-2X engine powering an Earth Departure Stage (EDS), and the lunar-lander vehicle payload, Altair. Initial plans called for the Ares V to be launched first, followed the next day by the Ares I. After the EDS performs the final portion of ascent and subsequent orbit circularization, the Orion spacecraft then performs a rendezvous and docks with the EDS and its Altair payload. Following checkout, the integrated stack loiters in low Earth orbit (LEO) until the appropriate Trans-Lunar Injection (TLI) window opportunity opens, at which time the EDS propels the integrated Orion Altair to the Moon. Successful completion of this 1 1/2-launch solution carries risks related to both the orbital lifetime of the assets and the probability of achieving the launch of the second vehicle within the orbital lifetime of the first. These risks, which are significant in terms of overall system design choices and probability of mission success, dictated a thorough reevaluation of the launch strategy, including the order of vehicle launch and the planned time period between launches. The goal of the effort described in this paper was to select a launch strategy that would result in the greatest possible expected system performance, while accounting for launch risks and the cost of increased orbital lifetime. Discrete Event Simulation (DES) model of the launch strategies was created to determine the probability of a second launch not occurring in a timely fashion (i.e., before the assets waiting in LEO expire). An overview of the launch strategy evaluation process is presented, along with results of specific cases that were analyzed. A high-level comparison of options is then presented, along with the conclusion derived from the analysis.

  9. An Approach to Establishing System Benefits for Technologies In NASA's Spaceliner Investment Area

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Pannell, Bill; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current systems. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner Investment Area, third generation technologies are being pursued. The Spaceliner Investment Area's primary objective is to mature vehicle technologies to enable substantial increases in the design and operating margins of third generation RLVs (current Space Shuttle is considered the first generation RLV) by incorporating advanced propulsion systems, materials, structures, thermal protection systems, power, and avionics technologies. Advancements in design tools and better characterization of the operational environment will result in reduced design and operational variabilities leading to improvements in margins. Improvements in operational efficiencies will be obtained through the introduction of integrated vehicle health management, operations and range technologies. Investments in these technologies will enable the reduction in the high operational costs associated with today's vehicles by allowing components to operate well below their design points resulting in improved component operating life, reliability, and safety which in turn reduces both maintenance and refurbishment costs. The introduction of advanced technologies may enable horizontal takeoff by significantly reducing the takeoff weight and allowing use of existing infrastructure. This would be a major step toward the goal of airline-like operation. These factors in conjunction with increased flight rates, resulting from reductions in transportation costs, will result in significant improvements of future vehicles. The real-world problem is that resources are limited and technologies need to be prioritized to assure the resources are spent on technologies that provide the highest system level benefits. Toward that end, a systems approach is being taken to determine the benefits of technologies for the Spaceliner Investment Area. Technologies identified to be enabling will be funded. However, the other technologies will be funded based on their system's benefits. Since the final launch system concept will not be decided for many years, several vehicle concepts are being evaluated to determine technology benefits. Not only performance, but also cost and operability are being assessed. This will become an annual process to assess these technologies against their goals and the benefits to various launch systems concepts. The paper describes the system process, tools and concepts used to determine the technology benefits. Preliminary results will be presented along with the current technology investments that are being made by ASTP's Spaceliner Investment Area.

  10. Closed End Launch Tube (CELT)

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E.; Parrish, Clyde F.; Delgado, H. (Technical Monitor)

    2000-01-01

    As an alternative to magnetic propulsion for launch assist, the authors propose a pneumatic launch assist system. Using off the shelf components, coupled with familiar steel and concrete construction, a launch assist system can be brought from the initial feasibility stage, through a flight capable 5000 kg. demonstrator to a deployed full size launch assist system in 10 years. The final system would be capable of accelerating a 450,000 kg. vehicle to 270 meters per second. The CELT system uses commercially available compressors and valves to build a fail-safe system in less than half the time of a full Mag-Lev (magnetic levitation) system, and at a small fraction of the development cost. The resulting system could be ready in time to support some Gen 2 (generation 2) vehicles, as well as the proposed Gen 3 vehicle.

  11. NASA's Spaceliner Investment Area Technology Activities

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current conditions. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner Investment Area, third generation technologies are being pursued in the areas of propulsion, airframes, integrated vehicle health management (IVHM), avionics, power, operations, and range. The ASTP program will mature these technologies through both ground and flight system testing. The Spaceliner Investment Area plans to mature vehicle technologies to reduce the implementation risks for future commercially developed reusable launch vehicles (RLV). The plan is to substantially increase the design and operating margins of the third generation RLV (the Space Shuttle is the first generation) by incorporating advanced technologies in propulsion, materials, structures, thermal protection systems, avionics, and power. Advancements in design tools and better characterization of the operational environment will allow improvements in design margins. Improvements in operational efficiencies will be provided through use of advanced integrated health management, operations, and range technologies. The increase in margins will allow components to operate well below their design points resulting in improved component operating life, reliability, and safety which in turn reduces both maintenance and refurbishment costs. These technologies have the potential of enabling horizontal takeoff by reducing the takeoff weight and achieving the goal of airline-like operation. These factors in conjunction with increased flight rates from an expanding market will result in significant improvements in safety and reductions in operational costs of future vehicles. The paper describes current status, future plans and technologies that are being matured by the Spaceliner Investment Area under the Advanced Space Transportation Program Office.

  12. Coherent quantum dynamics launched by incoherent relaxation in a quantum circuit simulator of a light-harvesting complex

    NASA Astrophysics Data System (ADS)

    Chin, A. W.; Mangaud, E.; Atabek, O.; Desouter-Lecomte, M.

    2018-06-01

    Engineering and harnessing coherent excitonic transport in organic nanostructures has recently been suggested as a promising way towards improving manmade light-harvesting materials. However, realizing and testing the dissipative system-environment models underlying these proposals is presently very challenging in supramolecular materials. A promising alternative is to use simpler and highly tunable "quantum simulators" built from programmable qubits, as recently achieved in a superconducting circuit by Potočnik et al. [A. Potočnik et al., Nat. Commun. 9, 904 (2018), 10.1038/s41467-018-03312-x]. We simulate the real-time dynamics of an exciton coupled to a quantum bath as it moves through a network based on the quantum circuit of Potočnik et al. Using the numerically exact hierarchical equations of motion to capture the open quantum system dynamics, we find that an ultrafast but completely incoherent relaxation from a high-lying "bright" exciton into a doublet of closely spaced "dark" excitons can spontaneously generate electronic coherences and oscillatory real-space motion across the network (quantum beats). Importantly, we show that this behavior also survives when the environmental noise is classically stochastic (effectively high temperature), as in present experiments. These predictions highlight the possibilities of designing matched electronic and spectral noise structures for robust coherence generation that do not require coherent excitation or cold environments.

  13. Al Sahawa - The Awakening. Volume V: Al Anbar Province, Area of Operations Raleigh, Fallujah

    DTIC Science & Technology

    2016-08-01

    Arabic. 2 The Corridor defines a 70-mile stretch of communities along the Euphrates from Hadithah to Hit. 3 Fallujah was operationally important to...analysis and lessons, many of which are transferrable to current and future conflicts. The ultimate product is a multimedia instructional package to...stretch of communities along the Euphrates from Hadithah to Hit. 22 Fallujah was operationally important to the insurgents as a launching pad for attacks

  14. AlGaN UV LED and Photodiodes Radiation Hardness and Space Qualifications and Their Applications in Space Science and High Energy Density Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, K. X.

    2011-05-31

    This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.

  15. NASA's Space Launch System: Progress Toward the Proving Ground

    NASA Technical Reports Server (NTRS)

    Jackman, Angie

    2017-01-01

    Space Launch System will be able to offer payload accommodations with five times more volume than any contemporary launch vehicle. center dot Payload fairings of up to 10-meter diameter are planned. Space Launch System will offer an initial capability of greater than 70 metric tons to low Earth orbit; current U.S. launch vehicle maximum is 28 t. center dot Evolved version of SLS will offer greatest-ever capability of greater than 130 t to LEO. SLS offers reduced transit times to the outer solar system by half or greater. center dot Higher characteristic energy (C3) also enables larger payloads to destination.

  16. Integration of health management and support systems is key to achieving cost reduction and operational concept goals of the 2nd generation reusable launch vehicle

    NASA Astrophysics Data System (ADS)

    Koon, Phillip L.; Greene, Scott

    2002-07-01

    Our aerospace customers are demanding that we drastically reduce the cost of operating and supporting our products. Our space customer in particular is looking for the next generation of reusable launch vehicle systems to support more aircraft like operation. To achieve this goal requires more than an evolution in materials, processes and systems, what is required is a paradigm shift in the design of the launch vehicles and the processing systems that support the launch vehicles. This paper describes the Automated Informed Maintenance System (AIM) we are developing for NASA's Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle (RLV). Our system includes an Integrated Health Management (IHM) system for the launch vehicles and ground support systems, which features model based diagnostics and prognostics. Health Management data is used by our AIM decision support and process aids to automatically plan maintenance, generate work orders and schedule maintenance activities along with the resources required to execute these processes. Our system will automate the ground processing for a spaceport handling multiple RLVs executing multiple missions. To accomplish this task we are applying the latest web based distributed computing technologies and application development techniques.

  17. 76 FR 62961 - Lifesaving Equipment: Production Testing and Harmonization With International Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... CFR Parts 108, 117, et al. Lifesaving Equipment: Production Testing and Harmonization With... Equipment: Production Testing and Harmonization With International Standards AGENCY: Coast Guard, DHS... equipment, including launching appliances (winches and davits), release mechanisms, survival craft...

  18. Structural Analysis of Lightning Protection System for New Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cope, Anne; Moore, Steve; Pruss, Richard

    2008-01-01

    This project includes the design and specification of a lightning protection system for Launch Complex 39 B (LC39B) at Kennedy Space Center, FL in support of the Constellation Program. The purpose of the lightning protection system is to protect the Crew Launch Vehicle (CLV) or Cargo Launch Vehicle (CaLV) and associated launch equipment from direct lightning strikes during launch processing and other activities prior to flight. The design includes a three-tower, overhead catenary wire system to protect the vehicle and equipment on LC39B as described in the study that preceded this design effort: KSC-DX-8234 "Study: Construct Lightning Protection System LC3 9B". The study was a collaborative effort between Reynolds, Smith, and Hills (RS&H) and ASRC Aerospace (ASRC), where ASRC was responsible for the theoretical design and risk analysis of the lightning protection system and RS&H was responsible for the development of the civil and structural components; the mechanical systems; the electrical and grounding systems; and the siting of the lightning protection system. The study determined that a triangular network of overhead catenary cables and down conductors supported by three triangular free-standing towers approximately 594 ft tall (each equipped with a man lift, ladder, electrical systems, and communications systems) would provide a level of lightning protection for the Constellation Program CLV and CaLV on Launch Pad 39B that exceeds the design requirements.

  19. Technology Innovations from NASA's Next Generation Launch Technology Program

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.

    2004-01-01

    NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.

  20. Operationally efficient propulsion system study (OEPSS) data book. Volume 7; Launch Operations Index (LOI) Design Features and Options

    NASA Technical Reports Server (NTRS)

    Ziese, James M.

    1992-01-01

    A design tool of figure of merit was developed that allows the operability of a propulsion system design to be measured. This Launch Operations Index (LOI) relates Operations Efficiency to System Complexity. The figure of Merit can be used by conceptual designers to compare different propulsion system designs based on their impact on launch operations. The LOI will improve the design process by making sure direct launch operations experience is a necessary feedback to the design process.

  1. Bulk-buy practices by satellite operators foster further commercialization of launch services industry : Quarterly Launch Report : special report

    DOT National Transportation Integrated Search

    1997-01-01

    The satellite launch industry has steadily grown and matured to take on the features of a truly commercial industry. This year, commercial launches outnumber government launches for the first time. New launch systems, such as the Delta 3, Sea Launch,...

  2. Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 1: Generic ground operations data

    NASA Technical Reports Server (NTRS)

    Byrd, Raymond J.

    1990-01-01

    This study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advance Launch System (ALS) program, the results of the Operationally Efficient Propulsion System Study (OEPSS) were organized into a series of OEPSS Data Books as follows: Volume 1, Generic Ground Operations Data; Volume 2, Ground Operations Problems; Volume 3, Operations Technology; Volume 4, OEPSS Design Concepts; and Volume 5, OEPSS Final Review Briefing, which summarizes the activities and results of the study. This volume presents ground processing data for a generic LOX/LH2 booster and core propulsion system based on current STS experience. The data presented includes: top logic diagram, process flow, activities bar-chart, loaded timelines, manpower requirements in terms of duration, headcount and skill mix per operations and maintenance instruction (OMI), and critical path tasks and durations.

  3. Evolution of the 3-dimensional video system for facial motion analysis: ten years' experiences and recent developments.

    PubMed

    Tzou, Chieh-Han John; Pona, Igor; Placheta, Eva; Hold, Alina; Michaelidou, Maria; Artner, Nicole; Kropatsch, Walter; Gerber, Hans; Frey, Manfred

    2012-08-01

    Since the implementation of the computer-aided system for assessing facial palsy in 1999 by Frey et al (Plast Reconstr Surg. 1999;104:2032-2039), no similar system that can make an objective, three-dimensional, quantitative analysis of facial movements has been marketed. This system has been in routine use since its launch, and it has proven to be reliable, clinically applicable, and therapeutically accurate. With the cooperation of international partners, more than 200 patients were analyzed. Recent developments in computer vision--mostly in the area of generative face models, applying active--appearance models (and extensions), optical flow, and video-tracking-have been successfully incorporated to automate the prototype system. Further market-ready development and a business partner will be needed to enable the production of this system to enhance clinical methodology in diagnostic and prognostic accuracy as a personalized therapy concept, leading to better results and higher quality of life for patients with impaired facial function.

  4. StarTram: An Ultra Low Cost Launch System to Enable Large Scale Exploration of the Solar System

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Paniagua, John

    2006-01-01

    StarTram is a new approach for low launch to space using Maglev technology. Spacecraft are magnetically levitated and accelerated without propellants to orbital speeds in an evacuated tunnel at ground level using only electrical energy. The cost of the electric energy for acceleration to 8 kilometers per second is only 60 cents per kilogram of payload. After reaching orbital speed, the StarTram spacecraft coast upwards inside an evacuated levitated launch tube to an altitude, of 10 kilometers or more, where they enter the low-pressure ambient atmosphere. The launch tube is magnetically levitated by the repulsive force between a set of high current superconducting cables on it and oppositely directed currents in a set of superconducting cables on the ground beneath. High strength Kevlar tethers anchor the launch tube against crosswinds and prevent it from moving laterally or vertically. A Magneto Hydro Dynamic (MHD) pump at the exit of the evacuated launch tube prevents air from entering the tube. Two StarTram systems are described, a high G (30G) system for cargo only launch and a moderate G (2.5 G) system for passenger/cargo spacecraft. StarTram's projected unit cost is $30 per kilogram of payload launched, including operating and amortization costs. A single StarTram facility could launch more than 100,000 tons of cargo per year and many thousands of passengers. StarTram would use existing superconductors and materials, together with Maglev technology similar to that now operating. The StarTram cargo launch system could be implemented by 2020 AD and the passenger system by 2030 AD.

  5. Monitoring biological impacts of space shuttle launches from Vandenberg Air Force Base: Establishment of baseline conditions

    NASA Technical Reports Server (NTRS)

    Schmaizer, Paul A.; Hinkle, C. Ross

    1987-01-01

    Space shuttle launches produce environmental impacts resulting from the formation of an exhaust cloud containing hydrogen chloride aerosols and aluminum oxide particulates. Studies have shown that most impacts occur near-field (within 1.5 km) of the launch site while deposition from launches occurs far-field (as distant as 22 km). In order to establish baseline conditions of vegetation and soils in the areas likely to be impacted by shuttle launches from Vandenberg Air Force Base (VAFB), vegetation and soils in the vicinity of Space Launch Complex-6 (SLC-6) were sampled and a vegetation map prepared. The areas likely to be impacted by launches were determined considering the structure of the launch complex, the prevailing winds, the terrain, and predictions of the Rocket Exhaust Effluent Diffusion Model (REEDM). Fifty vegetation transects were established and sampled in March 1986 and resampled in September 1986. A vegetation map was prepared for six Master Planning maps surrounding SLC-6 using LANDSAT Thematic Mapper imagery as well as color and color infrared aerial photography. Soil samples were collected form the 0 to 7.5 cm layer at all transects in the wet season and at a subsample of the transects in the dry season and analyzed for pH, organic matter, conductivity, cation exchange capacity, exchangeable Ca, Mg, Na, K, and Al, available NH3-N, PO4-P, Cu, Fe, Mn, Zn, and TKN.

  6. Acoustically-driven surface and hyperbolic plasmon-phonon polaritons in graphene/h-BN heterostructures on piezoelectric substrates

    NASA Astrophysics Data System (ADS)

    Fandan, R.; Pedrós, J.; Schiefele, J.; Boscá, A.; Martínez, J.; Calle, F.

    2018-05-01

    Surface plasmon polaritons in graphene couple strongly to surface phonons in polar substrates leading to hybridized surface plasmon-phonon polaritons (SPPPs). We demonstrate that a surface acoustic wave (SAW) can be used to launch propagating SPPPs in graphene/h-BN heterostructures on a piezoelectric substrate like AlN, where the SAW-induced surface modulation acts as a dynamic diffraction grating. The efficiency of the light coupling is greatly enhanced by the introduction of the h-BN film as compared to the bare graphene/AlN system. The h-BN interlayer not only significantly changes the dispersion of the SPPPs but also enhances their lifetime. The strengthening of the SPPPs is shown to be related to both the higher carrier mobility induced in graphene and the coupling with h-BN and AlN surface phonons. In addition to surface phonons, hyperbolic phonons polaritons (HPPs) appear in the case of multilayer h-BN films leading to hybridized hyperbolic plasmon-phonon polaritons (HPPPs) that are also mediated by the SAW. These results pave the way for engineering SAW-based graphene/h-BN plasmonic devices and metamaterials covering the mid-IR to THz range.

  7. Crew Exploration Vehicle Launch Abort System Flight Test Overview

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2007-01-01

    The Constellation program is an organization within NASA whose mission is to create the new generation of spacecraft that will replace the Space Shuttle after its planned retirement in 2010. In the event of a catastrophic failure on the launch pad or launch vehicle during ascent, the successful use of the launch abort system will allow crew members to escape harm. The Flight Test Office is the organization within the Constellation project that will flight-test the launch abort system on the Orion crew exploration vehicle. The Flight Test Office has proposed six tests that will demonstrate the use of the launch abort system. These flight tests will be performed at the White Sands Missile Range in New Mexico and are similar in nature to the Apollo Little Joe II tests performed in the 1960s. An overview of the launch abort system flight tests for the Orion crew exploration vehicle is given. Details on the configuration of the first pad abort flight test are discussed. Sample flight trajectories for two of the six flight tests are shown.

  8. Tropospheric Wind Monitoring During Day-of-Launch Operations for National Aeronautics and Space Administration's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Leach, Richard

    2004-01-01

    The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center (NASA/MSFC) monitors the winds aloft at Kennedy Space Center (KSC) during the countdown for all Space Shuttle launches. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution Jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. Data generated by the systems are used to assess spatial and temporal wind variability during launch countdown to ensure wind change observed does not violate wind change criteria constraints.

  9. A Cubesat Asteroid Mission: Propulsion Trade-offs

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Oleson, Steven R.; McGuire, Melissa L.; Bur, Michael J.; Burke, Laura M.; Fittje, James E.; Kohout, Lisa L.; Fincannon, James; Packard, Thomas W.; Martini, Michael C.

    2014-01-01

    A conceptual design was performed for a 6-U cubesat for a technology demonstration to be launched on the NASA Space Launch System (SLS) test launch EM-1, to be launched into a free-return translunar trajectory. The mission purpose was to demonstrate use of electric propulsion systems on a small satellite platform. The candidate objective chosen was a mission to visit a Near-Earth asteroid. Both asteroid fly-by and asteroid rendezvous missions were analyzed. Propulsion systems analyzed included cold-gas thruster systems, Hall and ion thrusters, incorporating either Xenon or Iodine propellant, and an electrospray thruster. The mission takes advantage of the ability of the SLS launch to place it into an initial trajectory of C3=0.

  10. KSC-2013-1515

    NASA Image and Video Library

    2013-02-13

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, various fluid interface connections have been installed at Launch Pad 39B. New system connections include chilled water supply-and-return and conditioned air that will be used to provide the mobile launcher with the necessary commodities during launch operations. The Ground Systems Development and Operations Program office at Kennedy is overseeing upgrades and modifications to Pad B to support the launch of NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft. The pads supported space shuttle launches for 30 years. Photo credit: NASA/Frankie Martin

  11. KSC-2013-1514

    NASA Image and Video Library

    2013-02-13

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, various fluid interface connections have been installed at Launch Pad 39B. New system connections include chilled water supply-and-return and conditioned air that will be used to provide the mobile launcher with the necessary commodities during launch operations. The Ground Systems Development and Operations Program office at Kennedy is overseeing upgrades and modifications to Pad B to support the launch of NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft. The pads supported space shuttle launches for 30 years. Photo credit: NASA/Frankie Martin

  12. KSC-2013-1512

    NASA Image and Video Library

    2013-02-13

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, various fluid interface connections have been installed at Launch Pad 39B. New system connections include chilled water supply-and-return and conditioned air that will be used to provide the mobile launcher with the necessary commodities during launch operations. The Ground Systems Development and Operations Program office at Kennedy is overseeing upgrades and modifications to Pad B to support the launch of NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft. The pads supported space shuttle launches for 30 years. Photo credit: NASA/Frankie Martin

  13. KSC-2013-1517

    NASA Image and Video Library

    2013-02-13

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, various fluid interface connections have been installed at Launch Pad 39B. New system connections include chilled water supply-and-return and conditioned air that will be used to provide the mobile launcher with the necessary commodities during launch operations. The Ground Systems Development and Operations Program office at Kennedy is overseeing upgrades and modifications to Pad B to support the launch of NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft. The pads supported space shuttle launches for 30 years. Photo credit: NASA/Frankie Martin

  14. KSC-2013-1516

    NASA Image and Video Library

    2013-02-13

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, various fluid interface connections have been installed at Launch Pad 39B. New system connections include chilled water supply-and-return and conditioned air that will be used to provide the mobile launcher with the necessary commodities during launch operations. The Ground Systems Development and Operations Program office at Kennedy is overseeing upgrades and modifications to Pad B to support the launch of NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft. The pads supported space shuttle launches for 30 years. Photo credit: NASA/Frankie Martin

  15. ALS liquid hydrogen turbopump: Advanced Development Program

    NASA Technical Reports Server (NTRS)

    Shimp, Nancy R.; Claffy, George J.

    1989-01-01

    The point of departure (POD) turbopump concept was reviewed and finalized. The basis for the POD was the configuration presented in the Aerojet proposal. After reviewing this proposal concept, several modifications were made. These modifications include the following: (1) the dual pump discharge arrangement was changed to a single discharge; (2) commonality of the turbine inlet manifold with the advanced launch system (ALS) liquid oxygen (LOX) TPA was dropped for this program; (3) the turbine housing flange arrangement was improved by relocating it away from the first stage nozzles; (4) a ten percent margin (five percent diameter increase) was built into the impeller design to ensure meeting the required discharge pressure without the need for increasing speed; (5) a ten percent turbine power margin was imposed which is to be obtained by increasing turbine inlet pressure if required; and (6) the backup concept, as an alternative to the use of cast impellers, now incorporates forged/machined shrouded impellers, rather than the unshrouded type originally planned.

  16. 46 CFR 108.545 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Marine evacuation system launching arrangements. 108.545 Section 108.545 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.545 Marine evacuation system launching...

  17. 46 CFR 108.545 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Marine evacuation system launching arrangements. 108.545 Section 108.545 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.545 Marine evacuation system launching...

  18. 46 CFR 108.545 - Marine evacuation system launching arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Marine evacuation system launching arrangements. 108.545 Section 108.545 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.545 Marine evacuation system launching...

  19. Large Field of View PIV Measurements of Air Entrainment by SLS SMAT Water Sound Suppression System

    NASA Astrophysics Data System (ADS)

    Stegmeir, Matthew; Pothos, Stamatios; Bissell, Dan

    2015-11-01

    Water-based sound suppressions systems have been used to reduce the acoustic impact of space vehicle launches. Water flows at a high rate during launch in order to suppress Engine Generated Acoustics and other potentially damaging sources of noise. For the Space Shuttle, peak flow rates exceeded 900,000 gallons per minute. Such large water flow rates have the potential to induce substantial entrainment of the surrounding air, affecting the launch conditions and generating airflow around the launch vehicle. Validation testing is necessary to quantify this impact for future space launch systems. In this study, PIV measurements were performed to map the flow field above the SMAT sub-scale launch vehicle scaled launch stand. Air entrainment effects generated by a water-based sound suppression system were studied. Mean and fluctuating fluid velocities were mapped up to 1m above the test stand deck and compared to simulation results. Measurements performed with NASA MSFC.

  20. Unit Testing and Remote Display Development

    NASA Technical Reports Server (NTRS)

    Costa, Nicholas

    2014-01-01

    The Kennedy Space Center is currently undergoing an extremely interesting transitional phase. The final Space Shuttle mission, STS-135, was completed in July of 2011. NASA is now approaching a new era of space exploration. The development of the Orion Multi- Purpose Crew Vehicle (MPCV) and the Space Launch System (SLS) launch vehicle that will launch the Orion are currently in progress. An important part of this transition involves replacing the Launch Processing System (LPS) which was previously used to process and launch Space Shuttles and their associated hardware. NASA is creating the Spaceport Command and Control System (SCCS) to replace the LPS. The SCCS will be much simpler to maintain and improve during the lifetime of the spaceflight program that it will support. The Launch Control System (LCS) is a portion of the SCCS that will be responsible for launching the rockets and spacecraft. The Integrated Launch Operations Applications (ILOA) group of SCCS is responsible for creating displays and scripts, both remote and local, that will be used to monitor and control hardware and systems needed to launch a spacecraft. It is crucial that the software contained within be thoroughly tested to ensure that it functions as intended. Unit tests must be written in Application Control Language (ACL), the scripting language used by LCS. These unit tests must ensure complete code coverage to safely guarantee there are no bugs or any kind of issue with the software.

  1. Community Radiative Transfer Model for Inter-Satellites Calibration and Verification

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Nalli, N. R.; Ignatov, A.; Garrett, K.; Chen, Y.; Weng, F.; Boukabara, S. A.; van Delst, P. F.; Groff, D. N.; Collard, A.; Joseph, E.; Morris, V. R.; Minnett, P. J.

    2014-12-01

    Developed at the Joint Center for Satellite Data Assimilation, the Community Radiative Transfer Model (CRTM) [1], operationally supports satellite radiance assimilation for weather forecasting. The CRTM also supports JPSS/NPP and GOES-R missions [2] for instrument calibration, validation, monitoring long-term trending, and satellite retrieved products [3]. The CRTM is used daily at the NOAA NCEP to quantify the biases and standard deviations between radiance simulations and satellite radiance measurements in a time series and angular dependency. The purposes of monitoring the data assimilation system are to ensure the proper performance of the assimilation system and to diagnose problems with the system for future improvements. The CRTM is a very useful tool for cross-sensor verifications. Using the double difference method, it can remove the biases caused by slight differences in spectral response and geometric angles between measurements of the two instruments. The CRTM is particularly useful to reduce the difference between instruments for climate studies [4]. In this study, we will carry out the assessment of the Suomi National Polar-orbiting Partnership (SNPP) [5] Cross-track Infrared Sounder (CrIS) data [6], Advanced Technology Microwave Sounder (ATMS) data, and data for Visible Infrared Imaging Radiometer Suite (VIIRS) [7][8] thermal emissive bands. We use dedicated radiosondes and surface data acquired from NOAA Aerosols and Ocean Science Expeditions (AEROSE) [9]. The high quality radiosondes were launched when Suomi NPP flew over NOAA Ship Ronald H. Brown situated in the tropical Atlantic Ocean. The atmospheric data include profiles of temperature, water vapor, and ozone, as well as total aerosol optical depths. The surface data includes air temperature and humidity at 2 meters, skin temperature (Marine Atmospheric Emitted Radiance Interferometer, M-AERI [10]), surface temperature, and surface wind vector. [1] Liu, Q., and F. Weng, 2006: JAS [2] Liu, Q., and S. Boukabara, 2013: RSE [3] Boukabara et al., 2011: TGARS [4] Wang, LK, Zou C-Z. 2013: JGR [5] Weng et al, 2012: JGR [6] Han, Y., et al., 2013: JGR [7] Caoet al, 2013: GR [8] Liang, X, A. Ignatov, 2013: JGR [9] Nalliet al 2011: BAMS [10] Minnett et al, 2001: JAOT

  2. 14 CFR 417.233 - Analysis for an unguided suborbital launch vehicle flown with a wind weighting safety system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... vehicle flown with a wind weighting safety system. 417.233 Section 417.233 Aeronautics and Space... with a wind weighting safety system. For each launch of an unguided suborbital launch vehicle flown with a wind weighting safety system, in addition to the other requirements in this subpart outlined in...

  3. 14 CFR 417.233 - Analysis for an unguided suborbital launch vehicle flown with a wind weighting safety system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... vehicle flown with a wind weighting safety system. 417.233 Section 417.233 Aeronautics and Space... with a wind weighting safety system. For each launch of an unguided suborbital launch vehicle flown with a wind weighting safety system, in addition to the other requirements in this subpart outlined in...

  4. 14 CFR 417.233 - Analysis for an unguided suborbital launch vehicle flown with a wind weighting safety system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... vehicle flown with a wind weighting safety system. 417.233 Section 417.233 Aeronautics and Space... with a wind weighting safety system. For each launch of an unguided suborbital launch vehicle flown with a wind weighting safety system, in addition to the other requirements in this subpart outlined in...

  5. 14 CFR 417.233 - Analysis for an unguided suborbital launch vehicle flown with a wind weighting safety system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... vehicle flown with a wind weighting safety system. 417.233 Section 417.233 Aeronautics and Space... with a wind weighting safety system. For each launch of an unguided suborbital launch vehicle flown with a wind weighting safety system, in addition to the other requirements in this subpart outlined in...

  6. 14 CFR 417.233 - Analysis for an unguided suborbital launch vehicle flown with a wind weighting safety system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... vehicle flown with a wind weighting safety system. 417.233 Section 417.233 Aeronautics and Space... with a wind weighting safety system. For each launch of an unguided suborbital launch vehicle flown with a wind weighting safety system, in addition to the other requirements in this subpart outlined in...

  7. Estimating the Life Cycle Cost of Space Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2015-01-01

    A space system's Life Cycle Cost (LCC) includes design and development, launch and emplacement, and operations and maintenance. Each of these cost factors is usually estimated separately. NASA uses three different parametric models for the design and development cost of crewed space systems; the commercial PRICE-H space hardware cost model, the NASA-Air Force Cost Model (NAFCOM), and the Advanced Missions Cost Model (AMCM). System mass is an important parameter in all three models. System mass also determines the launch and emplacement cost, which directly depends on the cost per kilogram to launch mass to Low Earth Orbit (LEO). The launch and emplacement cost is the cost to launch to LEO the system itself and also the rockets, propellant, and lander needed to emplace it. The ratio of the total launch mass to payload mass depends on the mission scenario and destination. The operations and maintenance costs include any material and spares provided, the ground control crew, and sustaining engineering. The Mission Operations Cost Model (MOCM) estimates these costs as a percentage of the system development cost per year.

  8. Arne - Exploring the Mare Tranquillitatis Pit

    NASA Astrophysics Data System (ADS)

    Robinson, M. S.; Thangavelautham, J.; Wagner, R.; Hernandez, V. A.; Finch, J.

    2014-12-01

    Lunar mare "pits" are key science and exploration targets. The first three pits were discovered within Selene observations [1,2] and were proposed to represent collapses into lava tubes. Subsequent LROC images revealed 5 new mare pits and showed that the Mare Tranquillitatis pit (MTP; 8.335°N, 33.222°E) opens into a sublunarean void at least 20-meters in extent [3,4]. A key remaining task is determining pit subsurface extents, and thus fully understanding their exploration and scientific value. We propose a simple and cost effective reconnaissance of the MTP using a small lander (<130 kg) named Arne, that carries three flying microbots (or pit-bots) [5,6,7]. Key measurement objectives include decimeter scale characterization of the pit walls, 5-cm scale imaging of the eastern floor, determination of the extent of sublunarean void(s), and measurement of the magnetic and thermal environment. After landing and initial surface systems check Arne will transmit full resolution descent and surface images. Within two hours the first pit-bot will launch and fly into the eastern void. Depending on results from the first pit-bot the second and third will launch and perform follow-up observations. The primary mission is expected to last 48-hours; before the Sun sets on the lander there should be enough time to execute ten flights with each pit-bot. The pit-bots are 30-cm diameter spherical flying robots [5,6,7] equipped with stereo cameras, temperature sensors, sensors for obstacle avoidance and a laser rangefinder. Lithium hydride [5,6] and water/hydrogen peroxide power three micro-thrusters and achieve a specific impulse of 350-400 s. Each pit-bot can fly for 2 min at 2 m/s for more than 100 cycles; recharge time is 20 min. Arne will carry a magnetometer, thermometer, 2 high resolution cameras, and 6 wide angle cameras and obstacle avoidance infrared sensors enabling detailed characterization of extant sublunarean voids. [1] Haruyama et al. (2010) 41st LPSC, #1285. [2] Haruyama et al. (2010) GRL, 36, dx.doi.org/ 10.1029/2009GL0406355. [3] Robinson et al (2012) PSS, 69, dx.doi.org/ 10.1016/j.pss.2012.05.008 [4] Wagner and Robinson (2014) Icarus, dx.doi.org/10.1016/j.icarus.2014.04.002. [5] Thangavelautham et al. (2012) IEEE ICRA [6] Strawser et al. (2014) J. Hydrogen Energy. [7] Dubowsky et al. (2007) Proc. CLAWAR.

  9. Space Launch Complex 6 Wastewater Treatment Facilities Evaluation, Vandenberg AFB, California.

    DTIC Science & Technology

    1987-02-01

    Sgt Tammy Johnson, AiC Roberto Rolon and AlC Pete Davis without whose valuable assistance this survey could never have been accomplished. We also...lLt Francis E. Slavich, MSgt Horace C. Burbage, Sgt Tammy Johnson, AlCs Roberto Rolon and Pete Davis. The objectives of the survey were to evaluate the...TSK Brooks AFB TX 78235-5301 Defense Technical Information Center (DTIC) 2 Cameron Station Alexandria VA 22319 HQ USAF/LEEV 1 Bolling AFB DC 20330

  10. Delta launch vehicle inertial guidance system (DIGS)

    NASA Technical Reports Server (NTRS)

    Duck, K. I.

    1973-01-01

    The Delta inertial guidance system, part of the Delta launch vehicle improvement effort, has been flown on three launches and was found to perform as expected for a variety of mission profiles and vehicle configurations.

  11. Delta II JPSS-1 Launch Vehicle on Stand

    NASA Image and Video Library

    2016-07-12

    The first stage of the United Launch Alliance Delta II rocket that will launch the Joint Polar Satellite System-1 (JPSS-1) is raised at Space Launch Complex 2 on Vandenberg Air Force Base in California. JPSS, a next-generation environmental satellite system, is a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA.

  12. Hypervelocity impact survivability experiments for carbonaceous impactors, part 2

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Paque, Julie M.; Becker, Luann; Vedder, James F.; Erlichman, Jozef

    1995-01-01

    Hypervelocity impact experiments were performed to further test the survivability of carbonaceous impactors and to determine potential products that may have been synthesized during impact. Diamonds were launched by the Ames two-stage light gas gun into Al plate at velocities of 2.75 and 3.1 km sec(exp -1). FESEM imagery confirms that diamond fragments survived in both experiments. Earlier experiments found that diamonds were destroyed on impact above 4.3 km sec(exp -1). Thus, the upper stability limit for diamond on impact into Al, as determined from our experimental conditions, is between 3.1 and 4.3 km sec(exp -1). Particles of the carbonaceous chondrite Nogoya were also launched into Al at a velocity of 6.2 km sec (exp -1). Laser desorption (L (exp 2) MS) analyses of the impactor residues indicate that the lowest and highest mass polycyclic aromatic hydrocarbons (PAH's) were largely destroyed on impact; those of intermediate mass (202-220 amu) remained at the same level or increased in abundance. In addition, alkyl-substituted homologs of the most abundant pre-impacted PAH's were synthesized during impact. These results suggest that an unknown fraction of some organic compounds can survive low to moderate impact velocities and that synthesized products can be expected to form up to velocities of, at least, 6.5 km sec(exp -1). We also present examples of craters formed by a unique microparticle accelerator that could launch micron-sized particles of almost any coherent material at velocities up to approximately 15 km sec(exp -1). Many of the experiments have a direct bearing on the interpretation of LDEF craters.

  13. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    Space Launch System and Orion launch team engineers and managers monitor operations from their console in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  14. Small, Low Cost, Launch Capability Development

    NASA Technical Reports Server (NTRS)

    Brown, Thomas

    2014-01-01

    A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, high risk university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed.

  15. Ground-to-orbit laser propulsion: Advanced applications

    NASA Technical Reports Server (NTRS)

    Kare, Jordin T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance, particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10 to 1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of an order of $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for larger systems. Although the individual payload size would be smaller, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities - geosynchronous transfer, Earth escape, or beyond - at a relatively small premium over launches to LEO. The status of pulsed laser propulsion is briefly reviewed including proposals for advanced vehicles. Several applications appropriate to the early part of the next century and perhaps valuable well into the next millennium are discussed qualitatively: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  16. Reusable Launch Vehicle Technology Program

    NASA Technical Reports Server (NTRS)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1996-01-01

    Industry/NASA Reusable Launch Vehicle (RLV) Technology Program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low-cost program. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion, and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight tests. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost-effective, reusable launch vehicle systems.

  17. KSC-2014-3637

    NASA Image and Video Library

    2014-08-22

    CAPE CANAVERAL, Fla. – NASA astronauts tour the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. From left, are Scott Tingle, Jack Fischer, Mark Vande Hei and Katie Rubins. They are standing near the Ogive panels for the Orion Launch Abort System. During processing, the Ogive panels will enclose and protect the Orion spacecraft for Exploration Flight Test-1 and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis

  18. Earth Observatory Satellite system definition study. Report 1: Orbit/launch vehicle trade-off studies and recommendations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A summary of the constraints and requirements on the Earth Observatory Satellite (EOS-A) orbit and launch vehicle analysis is presented. The propulsion system (hydrazine) and the launch vehicle (Delta 2910) selected for EOS-A are examined. The rationale for the selection of the recommended orbital altitude of 418 nautical miles is explained. The original analysis was based on the EOS-A mission with the Thematic Mapper and the High Resolution Pointable Imager. The impact of the revised mission model is analyzed to show how the new mission model affects the previously defined propulsion system, launch vehicle, and orbit. A table is provided to show all aspects of the EOS multiple mission concepts. The subjects considered include the following: (1) mission orbit analysis, (2) spacecraft parametric performance analysis, (3) launch system performance analysis, and (4) orbits/launch vehicle selection.

  19. Aircraft operability methods applied to space launch vehicles

    NASA Astrophysics Data System (ADS)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  20. EB welding of launch vehicles

    NASA Astrophysics Data System (ADS)

    Szabo, Attila

    While large structural components can be electron beam (EB) welded, equipment and operating costs increase with the requisite vacuum chamber's size. Attention is presently given to cost-effective ways of EB welding launch-vehicle assemblies without compromise of weld quality in such alloys as 2219, 2090, Weldalite, and HP9-4-30/20. Weld strengths at both room and cryogenic temperatures that were 50 percent higher than those obtainable for such materials with arc welding have been demonstrated. Fracture toughnesses were also 40-50 percent higher than arc-welded values. Attention is given to EB joint fit-up allowables for 2219-T87 Al alloy.

  1. Downwind hazard calculations for space shuttle launches at Kennedy Space Center and Vandenberg Air Force Base

    NASA Technical Reports Server (NTRS)

    Susko, M.; Hill, C. K.; Kaufman, J. W.

    1974-01-01

    The quantitative estimates are presented of pollutant concentrations associated with the emission of the major combustion products (HCl, CO, and Al2O3) to the lower atmosphere during normal launches of the space shuttle. The NASA/MSFC Multilayer Diffusion Model was used to obtain these calculations. Results are presented for nine sets of typical meteorological conditions at Kennedy Space Center, including fall, spring, and a sea-breeze condition, and six sets at Vandenberg AFB. In none of the selected typical meteorological regimes studied was a 10-min limit of 4 ppm exceeded.

  2. KSC-2014-2235

    NASA Image and Video Library

    2014-04-17

    CAPE CANAVERAL, Fla. - The second set of two Ogive panels for the Orion Launch Abort System have arrived at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the Ogive panels has been uncrated and is being moved by crane for placement on a work stand. The launch abort system is positioned on a work stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett

  3. KSC-2013-2848

    NASA Image and Video Library

    2013-06-07

    CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, technicians prepare the launch abort motor for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  4. KSC-2013-2847

    NASA Image and Video Library

    2013-06-07

    CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort motor has been prepared for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  5. KSC-2013-2844

    NASA Image and Video Library

    2013-06-07

    CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a technician prepares the launch abort motor for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  6. KSC-2013-2845

    NASA Image and Video Library

    2013-06-07

    CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a technician prepares the launch abort motor for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  7. KSC-2013-2846

    NASA Image and Video Library

    2013-06-07

    CAPE CANAVERAL, Fla. -- Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a technician prepares the launch abort motor for connection to the attitude control motor. Both are segments of Orion’s Launch Abort System, which is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  8. On the economics of staging for reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Griffin, Michael D.; Claybaugh, William R.

    1996-03-01

    There has been much recent discussion concerning possible replacement systems for the current U.S. fleet of launch vehicles, including both the shuttle and expendable vehicles. Attention has been focused upon the feasibility and potential benefits of reusable single-stage-to-orbit (SSTO) launch systems for future access to low Earth orbit (LEO). In this paper we assume the technical feasibility of such vehicles, as well as the benefits to be derived from system reusability. We then consider the benefits of launch vehicle staging from the perspective of economic advantage rather than performance necessity. Conditions are derived under which two-stage-to-orbit (TSTO) launch systems, utilizing SSTO-class vehicle technology, offer a relative economic advantage for access to LEO.

  9. Experimental investigation of coaxial-gun-formed plasmas injected into a background transverse magnetic field or plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Fisher, Dustin M.; Gilmore, Mark; Hsu, Scott C.; Lynn, Alan G.

    2018-05-01

    Injection of coaxial-gun-formed magnetized plasmas into a background transverse vacuum magnetic field or into a background magnetized plasma has been studied in the helicon-cathode (HelCat) linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys. 81, 345810104 (2015)]. A magnetized plasma jet launched into a background transverse magnetic field shows emergent kink stabilization of the jet due to the formation of a sheared flow in the jet above the kink stabilization threshold 0.1kVA [Y. Zhang et al., Phys. Plasmas 24, 110702 (2017)]. Injection of a spheromak-like plasma into a transverse background magnetic field led to the observation of finger-like structures on the side with a stronger magnetic field null between the spheromak and the background field. The finger-like structures are consistent with magneto-Rayleigh-Taylor instability. Jets or spheromaks launched into a background, low-β magnetized plasma show similar behavior as above, respectively, in both cases.

  10. Surface reflectance retrieval from CALIPSO mission

    NASA Astrophysics Data System (ADS)

    Lu, X.; Hu, Y.; Yang, Y.

    2017-12-01

    CALIOP, the dual wavelength (1064 nm, 532 nm), polarization sensitive lidar flying aboard the CALIPSO satellite, has been operating since June 2006. It provides vertical profiles of the elastic backscattering from a near nadir-viewing during both day and night between 82ºN and 82ºS (Hunt, et al. 2009; Winker, et al. 2009). Though largely ignored prior to launch, the signals from CALIOP surface returns have since been mined for a wealth of unanticipated new discoveries (Behrenfeld, et al. 2013; Behrenfeld, et al. 2017; He, et al. 2016; Lu, et al. 2017; Lu, et al. 2016; Venkata and Reagan 2016). These valuable signals can provide a wealth of unique information to complement existing Terra, Aqua and Suomi NPP data products, including nighttime measurements, measurements underneath aerosols and non-opaque clouds, measurements in polar regions during all seasons and over sea-ice, and direct measurements of depolarization ratio at 532 nm. In this paper, we will provide CALIOP land and ocean science algorithm development and data product during both day and night.

  11. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1993-01-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo transportation systems (CTRV's) were also examined. The study provided detailed design and analysis of the performance, reliability, and operations of these concepts. The study analyzed these concepts as unique systems and also analyzed several combined CTRV/booster configurations as integrated launch systems (such as for launch abort analyses). Included in the set of CTRV concepts analyzed were the medium CTRV, the integral CTRV (in both a pressurized and unpressurized configuration), the winged CTRV, and an attached cargo carrier for the PLS system known as the PLS caboose.

  12. Next generation earth-to-orbit space transportation systems: Unmanned vehicles and liquid/hybrid boosters

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    1991-01-01

    The United States civil space effort when viewed from a launch vehicle perspective tends to categorize into pre-Shuttle and Shuttle eras. The pre-Shuttle era consisted of expendable launch vehicles where a broad set of capabilities were matured in a range of vehicles, followed by a clear reluctance to build on and utilize those systems. The Shuttle era marked the beginning of the U.S. venture into reusable space launch vehicles and the consolidation of launch systems used to this one vehicle. This led to a tremendous capability, but utilized men on a few missions where it was not essential and compromised launch capability resiliency in the long term. Launch vehicle failures, between the period of Aug. 1985 and May 1986, of the Titan 34D, Shuttle Challenger, and the Delta vehicles resulted in a reassessment of U.S. launch vehicle capability. The reassessment resulted in President Reagan issuing a new National Space Policy in 1988 calling for more coordination between Federal agencies, broadening the launch capabilities and preparing for manned flight beyond the Earth into the solar system. As a result, the Department of Defense (DoD) and NASA are jointly assessing the requirements and needs for this nations's future transportation system. Reliability/safety, balanced fleet, and resiliency are the cornerstone to the future. An insight is provided into the current thinking in establishing future unmanned earth-to-orbit (ETO) space transportation needs and capabilities. A background of previous launch capabilities, future needs, current and proposed near term systems, and system considerations to assure future mission need will be met, are presented. The focus is on propulsion options associated with unmanned cargo vehicles and liquid booster required to assure future mission needs will be met.

  13. KSC-2009-5191

    NASA Image and Video Library

    2009-09-23

    CAPE CANAVERAL, Fla. – The mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station rolls back to reveal the United Launch Alliance Delta II rocket that will launch the Space Tracking and Surveillance System - Demonstrator into orbit. It is being launched by NASA for the Missile Defense System. The hour-long launch window opens at 8 a.m. EDT today. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. Photo credit: NASA/Dimitri Gerondidakis

  14. KSC-2009-5193

    NASA Image and Video Library

    2009-09-23

    CAPE CANAVERAL, Fla. – The mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station has been rolled back to reveal the United Launch Alliance Delta II rocket ready to launch the Space Tracking and Surveillance System - Demonstrator into orbit. It is being launched by NASA for the Missile Defense System. The hour-long launch window opens at 8 a.m. EDT today. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. Photo credit: NASA/Dimitri Gerondidakis

  15. KSC-2009-5192

    NASA Image and Video Library

    2009-09-23

    CAPE CANAVERAL, Fla. – The mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station has been rolled back to reveal the United Launch Alliance Delta II rocket that will launch the Space Tracking and Surveillance System - Demonstrator into orbit. It is being launched by NASA for the Missile Defense System. The hour-long launch window opens at 8 a.m. EDT today. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. Photo credit: NASA/Dimitri Gerondidakis

  16. KSC-2013-1513

    NASA Image and Video Library

    2013-02-13

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, the Launch Pad 39B elevator has been upgraded and painted. Also, various fluid interface connections have been installed on the pad. New system connections include chilled water supply-and-return and conditioned air that will be used to provide the mobile launcher with the necessary commodities during launch operations. The Ground Systems Development and Operations Program office at Kennedy is overseeing upgrades and modifications to Pad B to support the launch of NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft. The pads supported space shuttle launches for 30 years. Photo credit: NASA/Frankie Martin

  17. Comparison of Two Recent Launch Abort Platforms

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.; Harding, Adam

    2011-01-01

    The development of new and safer manned space vehicles is a top priority at NASA. Recently two different approaches of how to accomplish this mission of keeping astronauts safe was successfully demonstrated. With work already underway on an Apollo-like launch abort system for the Orion Crew Exploration Vehicle (CEV), an alternative design concept named the Max Launch Abort System, or MLAS, was developed as a parallel effort. The Orion system, managed by the Constellation office, is based on the design of a single solid launch abort motor in a tower positioned above the capsule. The MLAS design takes a different approach placing the solid launch abort motor underneath the capsule. This effort was led by the NASA Engineering and Safety Center (NESC). Both escape systems were designed with the Ares I Rocket as the launch vehicle and had the same primary requirement to safely propel a crew module away from any emergency event either on the launch pad or during accent. Beyond these two parameters, there was little else in common between the two projects, except that they both concluded in successful launches that will further promote the development of crew launch abort systems. A comparison of these projects from the standpoint of technical requirements; program management and flight test objectives will be done to highlight the synergistic lessons learned by two engineers who worked on each program. This comparison will demonstrate how the scope of the project architecture and management involvement in innovation should be tailored to meet the specific needs of the system under development.

  18. Using Dawn to Observe SEP Events Past 2 AU

    NASA Astrophysics Data System (ADS)

    Villarreal, M. N.; Russell, C. T.; Prettyman, T. H.

    2017-12-01

    The launch of the STEREO spacecraft provided much insight into the longitudinal and radial distribution of solar energetic particles (SEPs) relative to their origin site. However, almost all of the observations of SEP events have been made exclusively near 1 AU. The Dawn mission, which orbited around Vesta before arriving at Ceres, provides an opportunity to analyze these events at much further distances. Although Dawn's Gamma Ray and Neutron Detector (GRaND) is not optimized for SEP characterization, it is sensitive to protons greater than 4 MeV, making it capable of detecting a solar energetic particle event in its vicinity. Solar energetic particles in this area of the solar system are important as they are believed to cause sputtering at bodies such as Ceres and comets (Villarreal et al., 2017; Wurz et al., 2015). In this study, we use Dawn's GRaND data from 2011-2015 when Dawn was at distances between 2-3 AU. We compare the SEP events seen by Dawn with particle measurements at 1 AU using STEREO, Wind, and ACE to understand how the SEP events evolved past 1 AU.References: Villarreal, M. N., et al. (2017), The dependence of the Cerean exosphere on solar energetic particle events, Astrophys. J. Lett., 838, L8.Wurz, P. et al. (2015), Solar wind sputtering of dust on the surface of 67P/Churyumov-Gerasimenko, A&A, 583, A22.

  19. Using Dawn to Observe SEP Events Past 2 AU

    NASA Astrophysics Data System (ADS)

    Villarreal, Michaela; Russell, Christopher T.; Prettyman, Thomas H.

    2017-10-01

    The launch of the STEREO spacecraft provided much insight into the longitudinal and radial distribution of solar energetic particles (SEPs) relative to their origin site. However, almost all of the observations of SEP events have been made exclusively near 1 AU. The Dawn mission, which orbited around Vesta before arriving at Ceres, provides an opportunity to analyze these events at much further distances. Although Dawn's Gamma Ray and Neutron Detector (GRaND) is not optimized for SEP characterization, it is sensitive to protons greater than 4 MeV, making it capable of detecting a solar energetic particle event in its vicinity. Solar energetic particles in this area of the solar system are important as they are believed to cause sputtering at bodies such as Ceres and comets (Villarreal et al., 2017; Wurz et al., 2015). In this study, we use Dawn’s GRaND data from 2011-2015 when Dawn was at distances between 2-3 AU. We compare the SEP events seen by Dawn with particle measurements at 1 AU using STEREO, Wind, and ACE to understand how the SEP events evolved past 1 AU.References: Villarreal, M. N., et al. (2017), The dependence of the Cerean exosphere on solar energetic particle events, Astrophys. J. Lett., 838, L8.Wurz, P. et al. (2015), Solar wind sputtering of dust on the surface of 67P/Churyumov-Gerasimenko, A&A, 583, A22.

  20. Seasat. Volume 2: Flight systems

    NASA Technical Reports Server (NTRS)

    Pounder, E. (Editor)

    1980-01-01

    Flight systems used in the Seasat Project are described. Included are (1) launch operation; (2) satellite performance after launch; (3) sensors that collected data; and (4) the launch vehicle that placed the satellite into Earth orbit. Techniques for sensor management are explained.

  1. NASA's Next Generation Launch Technology Program - Strategy and Plans

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    2003-01-01

    The National Aeronautics and Space Administration established a new program office, Next Generation Launch Technology (NGLT) Program Office, last year to pursue technologies for future space launch systems. NGLT will fund research in key technology areas such as propulsion, launch vehicles, operations and system analyses. NGLT is part of NASA s Integrated Space Technology Plan. The NGLT Program is sponsored by NASA s Office of Aerospace Technology and is part of the Space Launch Initiative theme that includes both NGLT and Orbital Space Plane. NGLT will focus on technology development to increase safety and reliability and reduce overall costs associated with building, flying and maintaining the nation s next-generations of space launch vehicles. These investments will be guided by systems engineering and analysis with a focus on the needs of National customers.

  2. Web-based Weather Expert System (WES) for Space Shuttle Launch

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.; Rajkumar, T.

    2003-01-01

    The Web-based Weather Expert System (WES) is a critical module of the Virtual Test Bed development to support 'go/no go' decisions for Space Shuttle operations in the Intelligent Launch and Range Operations program of NASA. The weather rules characterize certain aspects of the environment related to the launching or landing site, the time of the day or night, the pad or runway conditions, the mission durations, the runway equipment and landing type. Expert system rules are derived from weather contingency rules, which were developed over years by NASA. Backward chaining, a goal-directed inference method is adopted, because a particular consequence or goal clause is evaluated first, and then chained backward through the rules. Once a rule is satisfied or true, then that particular rule is fired and the decision is expressed. The expert system is continuously verifying the rules against the past one-hour weather conditions and the decisions are made. The normal procedure of operations requires a formal pre-launch weather briefing held on Launch minus 1 day, which is a specific weather briefing for all areas of Space Shuttle launch operations. In this paper, the Web-based Weather Expert System of the Intelligent Launch and range Operations program is presented.

  3. Integration and Testing of LCS Software

    NASA Technical Reports Server (NTRS)

    Wang, John

    2014-01-01

    Kennedy Space Center is in the midst of developing a command and control system for the launch of the next generation manned space vehicle. The Space Launch System (SLS) will launch using the new Spaceport Command and Control System (SCCS). As a member of the Software Integration and Test (SWIT) Team, command scripts, and bash scripts were written to assist in integration and testing of the Launch Control System (LCS), which is a component of SCCS. The short term and midterm tasks are for the most part completed. The long term tasks if time permits will require a presentation and demonstration.

  4. ULA Emergency Egress System (EES) Demonstration

    NASA Image and Video Library

    2017-03-14

    A team of engineers recently tested a newly installed emergency egress system at Space Launch Complex 41 at Cape Canaveral Air Force Station to prepare for crew launches for NASA’s Commercial Crew Program. Boeing’s CST-100 Starliner spacecraft and United Launch Alliance Atlas V rocket that will boost astronauts to the International Space Station, will have many safety elements built into the systems. The Starliner emergency egress system operates a lot like a zip line, with four egress cables connecting at level 12 of the Crew Access Tower to a landing zone about 1,300 feet away from the launch vehicle. Five individual seats on four separate lines can transport up to 20 people off of the tower in the unlikely event there is an emergency on the launch pad. NASA has partnered with private industry to take astronauts to the space station. Boeing and SpaceX are building their own unique systems that meet NASA safety and mission requirements. The systems also will include launch abort systems and additional controls that astronauts can use during flight to enhance crew safety. KSC Contact - Joshua Finch (321)867-2468 Headquarters Contact - Tabatha Thompson (202)358-1100 More Info - www.nasa.gov/commercialcrew

  5. NASA Ares I Launch Vehicle First Stage Roll Control System Cold Flow Development Test Program Overview

    NASA Technical Reports Server (NTRS)

    Butt, Adam; Popp, Christopher G.; Holt, Kimberly A.; Pitts, Hank M.

    2010-01-01

    The Ares I launch vehicle is the selected design, chosen to return humans to the moon, Mars, and beyond. It is configured in two inline stages: the First Stage is a Space Shuttle derived five-segment Solid Rocket Booster and the Upper Stage is powered by a Saturn V derived J-2X engine. During launch, roll control for the First Stage (FS) is handled by a dedicated Roll Control System (RoCS) located on the connecting Interstage. That system will provide the Ares I with the ability to counteract induced roll torque while any induced yaw or pitch moments are handled by vectoring of the booster nozzle. This paper provides an overview of NASA s Ares I FS RoCS cold flow development test program including detailed test objectives, types of tests run to meet those objectives, an overview of the results, and applicable lessons learned. The test article was built and tested at the NASA Marshall Space Flight Center in Huntsville, AL. The FS RoCS System Development Test Article (SDTA) is a full scale, flight representative water flow test article whose primary objective was to obtain fluid system performance data to evaluate integrated system level performance characteristics and verify analytical models. Development testing and model correlation was deemed necessary as there is little historical precedent for similar large flow, pulsing systems such as the FS RoCS. The cold flow development test program consisted of flight-similar tanks, pressure regulators, and thruster valves, as well as plumbing simulating flight geometries, combined with other facility grade components and structure. Orifices downstream of the thruster valves were used to simulate the pressure drop through the thrusters. Additional primary objectives of this test program were to: evaluate system surge pressure (waterhammer) characteristics due to thruster valve operation over a range of mission duty cycles at various feed system pressures, evaluate temperature transients and heat transfer in the pressurization system, including regulator blowdown and propellant ullage performance, measure system pressure drops for comparison to analysis of tubing and components, and validate system activation and re-activation procedures for the helium pressurant system. Secondary objectives included: validating system processes for loading, unloading, and purging, validating procedures and system response for multiple failure scenarios, including relief valve operation, and evaluating system performance for contingency scenarios. The test results of the cold flow development test program are essential in validating the performance and interaction of the Roll Control System and anchoring analysis tools and results to a Critical Design Review level of fidelity.

  6. The association between price, competition, and demand factors on private sector anti-malarial stocking and sales in western Kenya: considerations for the AMFm subsidy.

    PubMed

    O'Meara, Wendy Prudhomme; Obala, Andrew; Thirumurthy, Harsha; Khwa-Otsyula, Barasa

    2013-06-05

    Households in sub-Saharan Africa are highly reliant on the retail sector for obtaining treatment for malaria fevers and other illnesses. As donors and governments seek to promote the use of artemisinin combination therapy in malaria-endemic areas through subsidized anti-malarials offered in the retail sector, understanding the stocking and pricing decisions of retail outlets is vital. A survey of all medicine retailers serving Bungoma East District in western Kenya was conducted three months after the launch of the AMFm subsidy in Kenya. The survey obtained information on each anti-malarial in stock: brand name, price, sales volume, outlet characteristics and GPS co-ordinates. These data were matched to household-level data from the Webuye Health and Demographic Surveillance System, from which population density and fever prevalence near each shop were determined. Regression analysis was used to identify the factors associated with retailers' likelihood of stocking subsidized artemether lumefantrine (AL) and the association between price and sales for AL, quinine and sulphadoxine-pyrimethamine (SP). Ninety-seven retail outlets in the study area were surveyed; 11% of outlets stocked subsidized AL. Size of the outlet and having a pharmacist on staff were associated with greater likelihood of stocking subsidized AL. In the multivariable model, total volume of anti-malarial sales was associated with greater likelihood of stocking subsidized AL and competition was important; likelihood of stocking subsidized AL was considerably higher if the nearest neighbour stocked subsidized AL. Price was a significant predictor of sales volume for all three types of anti-malarials but the relationship varied, with the largest price sensitivity found for SP drugs. The results suggest that helping small outlets overcome the constraints to stocking subsidized AL should be a priority. Competition between retailers and prices can play an important role in greater adoption of AL.

  7. Al 1s-2p absorption spectroscopy of shock-wave heating and compression in laser-driven planar foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Regan, S. P.; Radha, P. B.

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (T{sub e}{approx}10-40 eV, {rho}{approx}3-11 g/cm{sup 3}) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10{sup 14}-10{sup 15} W/cm{sup 2} and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4-1.7 keV. The laser ablation process launches 10-70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectramore » were analyzed using the atomic physic code PRISMSPECT to infer T{sub e} and {rho} in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f=0.06 and f=0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f=0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less

  8. Al 1s-2p Absorption Spectroscopy of Shock-Wave Heating and Compression in Laser-Driven Planar Foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Regan, S.P.; Radha, P.B.

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (Te ~ 10–40 eV, rho ~ 3–11 g/cm^3) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10^14–10^15 W/cm^2 and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4–1.7 keV. The laser ablation process launches 10–70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectra weremore » analyzed using the atomic physic code PRISMSPECT to infer Te and rho in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f =0.06 and f =0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f = 0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less

  9. The association between price, competition, and demand factors on private sector anti-malarial stocking and sales in western Kenya: considerations for the AMFm subsidy

    PubMed Central

    2013-01-01

    Background Households in sub-Saharan Africa are highly reliant on the retail sector for obtaining treatment for malaria fevers and other illnesses. As donors and governments seek to promote the use of artemisinin combination therapy in malaria-endemic areas through subsidized anti-malarials offered in the retail sector, understanding the stocking and pricing decisions of retail outlets is vital. Methods A survey of all medicine retailers serving Bungoma East District in western Kenya was conducted three months after the launch of the AMFm subsidy in Kenya. The survey obtained information on each anti-malarial in stock: brand name, price, sales volume, outlet characteristics and GPS co-ordinates. These data were matched to household-level data from the Webuye Health and Demographic Surveillance System, from which population density and fever prevalence near each shop were determined. Regression analysis was used to identify the factors associated with retailers’ likelihood of stocking subsidized artemether lumefantrine (AL) and the association between price and sales for AL, quinine and sulphadoxine-pyrimethamine (SP). Results Ninety-seven retail outlets in the study area were surveyed; 11% of outlets stocked subsidized AL. Size of the outlet and having a pharmacist on staff were associated with greater likelihood of stocking subsidized AL. In the multivariable model, total volume of anti-malarial sales was associated with greater likelihood of stocking subsidized AL and competition was important; likelihood of stocking subsidized AL was considerably higher if the nearest neighbour stocked subsidized AL. Price was a significant predictor of sales volume for all three types of anti-malarials but the relationship varied, with the largest price sensitivity found for SP drugs. Conclusion The results suggest that helping small outlets overcome the constraints to stocking subsidized AL should be a priority. Competition between retailers and prices can play an important role in greater adoption of AL. PMID:23738604

  10. KSC-2014-2060

    NASA Image and Video Library

    2014-04-10

    CAPE CANAVERAL, Fla. - A container carrying the first set of Ogive panels for the Orion Launch Abort System is transferred into the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper

  11. KSC-2014-2056

    NASA Image and Video Library

    2014-04-10

    CAPE CANAVERAL, Fla. - Containers carrying the first set of Ogive panels for the Orion Launch Abort System are being offloaded for transfer into the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper

  12. KSC-2014-2054

    NASA Image and Video Library

    2014-04-10

    CAPE CANAVERAL, Fla. - The first set of Ogive panels for the Orion Launch Abort System arrives by truck at the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper

  13. KSC-2014-2059

    NASA Image and Video Library

    2014-04-10

    CAPE CANAVERAL, Fla. - Containers carrying the first set of Ogive panels for the Orion Launch Abort System aretransferred into the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper

  14. KSC-2014-2052

    NASA Image and Video Library

    2014-04-10

    CAPE CANAVERAL, Fla. - The first set of Ogive panels for the Orion Launch Abort System arrives by truck at NASA’s Kennedy Space Center in Florida. The Ogive panels will be delivered to the Launch Abort System Facility. During processing, the panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper

  15. KSC-2014-2057

    NASA Image and Video Library

    2014-04-10

    CAPE CANAVERAL, Fla. - Containers carrying the first set of Ogive panels for the Orion Launch Abort System have been transferred into the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper

  16. KSC-2014-2055

    NASA Image and Video Library

    2014-04-10

    CAPE CANAVERAL, Fla. - The first set of Ogive panels for the Orion Launch Abort System arrives by truck at the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper

  17. KSC-2014-2058

    NASA Image and Video Library

    2014-04-10

    CAPE CANAVERAL, Fla. - A container carrying the first set of Ogive panels for the Orion Launch Abort System is offloaded for transfer into the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper

  18. KSC-2014-2053

    NASA Image and Video Library

    2014-04-10

    CAPE CANAVERAL, Fla. - The first set of Ogive panels for the Orion Launch Abort System arrives by truck at the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. During processing, the Ogive panels will enclose and protect the Orion spacecraft and attach to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Daniel Casper

  19. KSC-2009-1473

    NASA Image and Video Library

    2009-02-04

    VANDENBERG AIR FORCE BASE, Calif. -- The mobile service tower moves away from the Delta II rocket with NASA's NOAA-N Prime satellite aboard on the Space Launch Complex 2 at Vandenberg Air Force Base in California. The launch of the NOAA-N Prime weather satellite was scrubbed at 5 a.m. EST Feb. 3 when a launch pad gaseous nitrogen pressurization system failed. This system maintains pressurization and purges to various systems of the Delta II rocket prior to launch. Immediate repair to this system was being taken. The next launch attempt will be no earlier than 5:22 a.m. EST Feb. 5, weather permitting. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. Photo credit: NASA/Carleton Bailie, VAFB-ULA

  20. Arianespace Launch Service Operator Policy for Space Safety (Regulations and Standards for Safety)

    NASA Astrophysics Data System (ADS)

    Jourdainne, Laurent

    2013-09-01

    Since December 10, 2010, the French Space Act has entered into force. This French Law, referenced as LOS N°2008-518 ("Loi relative aux Opérations Spatiales"), is compliant with international rules. This French Space Act (LOS) is now applicable for any French private company whose business is dealing with rocket launch or in orbit satellites operations. Under CNES leadership, Arianespace contributed to the consolidation of technical regulation applicable to launch service operators.Now for each launch operation, the operator Arianespace has to apply for an authorization to proceed to the French ministry in charge of space activities. In the files issued for this purpose, the operator is able to justify a high level of warranties in the management of risks through robust processes in relation with the qualification maintenance, the configuration management, the treatment of technical facts and relevant conclusions and risks reduction implementation when needed.Thanks to the historic success of Ariane launch systems through its more than 30 years of exploitation experience (54 successes in a row for latest Ariane 5 launches), Arianespace as well as European public and industrial partners developed key experiences and knowledge as well as competences in space security and safety. Soyuz-ST and Vega launch systems are now in operation from Guiana Space Center with identical and proved risks management processes. Already existing processes have been slightly adapted to cope with the new roles and responsibilities of each actor contributing to the launch preparation and additional requirements like potential collision avoidance with inhabited space objects.Up to now, more than 12 Ariane 5 launches and 4 Soyuz-ST launches have been authorized under the French Space Act regulations. Ariane 5 and Soyuz- ST generic demonstration of conformity have been issued, including exhaustive danger and impact studies for each launch system.This article will detail how Arianespace succeeded to contribute to the maturation of the LOS. How Arianespace managed to demonstrate t he full compliance to the technical regulation for the two launch systems under exploitation (Ariane 5 andSoyuz-ST). Up to now, Vega launch system organization is still in an intermediate transition phase between development and exploitation prior to its second flight. Vega launch system will benefit of Arianespace experience capitalized through Ariane and Soyuz."Safet y is not an option". For our company regarding the mid and long term interest of space business of the launch operations and associated customers, it is a must!

  1. Liquid rocket booster integration study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is the executive summary of the five volume series.

  2. Liquid rocket booster integration study. Volume 5, part 1: Appendices

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is the appendices of the five volume series.

  3. Liquid Rocket Booster Integration Study. Volume 2: Study synopsis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is the study summary of the five volume series.

  4. Launch system development in the Pacific Rim

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Page, John R.

    1993-01-01

    Several Western Pacific Rim nations are beginning to challenge the domination of the United States, Europe, and the former Soviet Union in the international market for commercial launch sevices. This paper examines the current development of launch systems in China, Japan, and Australia. China began commercial launch services with their Long March-3 in April 1990, and is making enhancements to vehicles in this family. Japan is developing the H-2 rocket which will be marketed on a commercial basis. In Australia, British Aerospace Ltd. is leading a team conducting a project definition study for an Australian Launch Vehicle, aimed at launching the new generation of satellites into low Earth orbit.

  5. Designing a Gamma-Ray Telescope on a Budget

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-05-01

    Major space-based observatories are imperative in astronomy, but they take a long time to plan, build, and launch and they arent cheap. A new study examines an interesting compromise: a low-cost, space-based gamma-ray detector that we could use while we wait for the next big observatory to launch.Coverage and sensitivity of past and future missions for the X-ray to gamma-ray energy range (click for a better look!). The only past mission to explore the 1 MeV region was COMPTEL, on board CGRO. e-ASTROGAM is a proposed future space mission that would explore this range. [Lucchetta et al. 2017]A Gap in CoverageIn the last few decades, weve significantly expanded our X-ray and gamma-ray viewof the sky. One part of the electromagnetic spectrum remains poorly explored, however: the approximate transition point between X-rays and gamma rays near 1 MeV.Space-based gamma-ray telescopes have been proposed for the future to better explore this energy range. But these major observatories have costs of around half a billion Euros and will take roughly a decade to build and launch. Is there a way to get eyes on this energy range sooner?Scaling Down with CubeSatA team of scientists led by Giulio Lucchetta (University of Padova and INFN Padova, Italy) has proposed an intriguing solution for the more immediate future: a nano-satellite telescope based on the CubeSat standard.Structure of the proposed gamma-ray detector, in a 2U CubeSat design. [Lucchetta et al. 2017]A CubeSat is a miniaturized satellite design that can be easily deployed in space, either from the International Space Station or by hitching a ride as a secondary payload on a large rocket. The size of a CubeSat is a standardized unit of measurement: a single CubeSat unit, or 1U, is a mere 10x10x10 cm and a maximum of 1.33 kg in weight.The gamma-ray telescope proposed by Lucchetta and collaborators would use a 2U standard for the instrument, so the instrument would be only 10x10x20 cm in size! The design for the telescope as a whole including the on-board electronics and flight system would likely require a 4U model.The teams proposed nanoscale observatory would be capable of detecting gamma rays from 100 keV up to a few MeV. In comparison to the major space-based observatories, this project would be very low-cost, at only half a million Euros and such a telescope could go from build to launch in about a year.Evaluating PerformanceEstimated sensitivity of the proposed nanoscale satellite telescope (for tracked, untracked, and pair production events) compared to that of COMPTEL. [Lucchetta et al. 2017]Cheaper and faster is great, but how would this project do in terms of quality? The authors performed simulations to examine the scientific performance of the proposed detector, evaluating its effective area, energy resolution, and angular resolution. Luchetta and collaborators show that while the scientific performance would be well below that expected for large future missions, it would likely be on par with the last detector to observe this region COMPTEL, on board the Compton Gamma Ray Observatory.It seems that a nanoscale satellite like this one would helpfully cover the gap around 1 MeV and allow us to learn more about low-energy gamma rays while we wait for large future missions to launch. As an additional benefit, such a project could serve as a pathfinder mission to test technologies and algorithms to be used in larger missions in the future.CitationGiulio Lucchetta et al 2017 AJ 153 237. doi:10.3847/1538-3881/aa6a1b

  6. NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing

    NASA Technical Reports Server (NTRS)

    Clements, Greg

    2011-01-01

    This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather forecasting for example for the effect of these process improvements on our daily lives.

  7. Magnetic Launch Assist System Demonstration Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  8. KSC All Hands

    NASA Image and Video Library

    2018-01-11

    Mic Woltman, chief of the Fleet Systems Integration Branch of NASA's Launch Services Program, speaks to Kennedy Space Center employees about plans for the coming year. The event took place in the Lunar Theater at the Kennedy Space Center Visitor Complex’s Apollo Saturn V Center. The year will be highlighted with NASA's partners preparing test flights for crewed missions to the International Space Station as part of the agency's Commercial Crew Program and six launches by the Launch Services Program. Exploration Ground Systems will be completing facilities to support the Space Launch System rocket and Orion spacecraft. Exploration Research and Technology Programs will continue to provide supplies to the space station launched as part of the Commercial Resupply Services effort.

  9. Launch Commit Criteria Monitoring Agent

    NASA Technical Reports Server (NTRS)

    Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Dan A.; Kelly, Andrew O.; Boeloeni, Ladislau

    2005-01-01

    The Spaceport Processing Systems Branch at NASA Kennedy Space Center has developed and deployed a software agent to monitor the Space Shuttle's ground processing telemetry stream. The application, the Launch Commit Criteria Monitoring Agent, increases situational awareness for system and hardware engineers during Shuttle launch countdown. The agent provides autonomous monitoring of the telemetry stream, automatically alerts system engineers when predefined criteria have been met, identifies limit warnings and violations of launch commit criteria, aids Shuttle engineers through troubleshooting procedures, and provides additional insight to verify appropriate troubleshooting of problems by contractors. The agent has successfully detected launch commit criteria warnings and violations on a simulated playback data stream. Efficiency and safety are improved through increased automation.

  10. KSC-2009-5194

    NASA Image and Video Library

    2009-09-23

    CAPE CANAVERAL, Fla. – The mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station has been rolled back as the countdown proceeds to launch of the United Launch Alliance Delta II rocket with the Space Tracking and Surveillance System - Demonstrator spacecraft aboard. It is being launched by NASA for the Missile Defense System. The hour-long launch window opens at 8 a.m. EDT today. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. Photo credit: NASA/Dimitri Gerondidakis

  11. Design optimization of space launch vehicles using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bayley, Douglas James

    The United States Air Force (USAF) continues to have a need for assured access to space. In addition to flexible and responsive spacelift, a reduction in the cost per launch of space launch vehicles is also desirable. For this purpose, an investigation of the design optimization of space launch vehicles has been conducted. Using a suite of custom codes, the performance aspects of an entire space launch vehicle were analyzed. A genetic algorithm (GA) was employed to optimize the design of the space launch vehicle. A cost model was incorporated into the optimization process with the goal of minimizing the overall vehicle cost. The other goals of the design optimization included obtaining the proper altitude and velocity to achieve a low-Earth orbit. Specific mission parameters that are particular to USAF space endeavors were specified at the start of the design optimization process. Solid propellant motors, liquid fueled rockets, and air-launched systems in various configurations provided the propulsion systems for two, three and four-stage launch vehicles. Mass properties models, an aerodynamics model, and a six-degree-of-freedom (6DOF) flight dynamics simulator were all used to model the system. The results show the feasibility of this method in designing launch vehicles that meet mission requirements. Comparisons to existing real world systems provide the validation for the physical system models. However, the ability to obtain a truly minimized cost was elusive. The cost model uses an industry standard approach, however, validation of this portion of the model was challenging due to the proprietary nature of cost figures and due to the dependence of many existing systems on surplus hardware.

  12. KSC-2013-4342

    NASA Image and Video Library

    2013-12-11

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, from the left, Leandro James, rocket avionics lead, Gary Dahlke, high powered rocket subject matter expert, and Julio Najarro of Mechanical Systems make final adjustments to a small rocket prior to launch as part of Rocket University. The launch will test systems designed by the student engineers. As part of Rocket University, the engineers are given an opportunity to work a fast-track project to develop skills in developing spacecraft systems of the future. As NASA plans for future spaceflight programs to low-Earth orbit and beyond, teams of engineers at Kennedy are gaining experience in designing and flying launch vehicle systems on a small scale. Four teams of five to eight members from Kennedy are designing rockets complete with avionics and recovery systems. Launch operations require coordination with federal agencies, just as they would with rockets launched in support of a NASA mission. Photo credit: NASA/Jim Grossmann

  13. KSC-2013-4343

    NASA Image and Video Library

    2013-12-11

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, from the left, Leandro James, rocket avionics lead, and Julio Najarro of Mechanical Systems make final adjustments to a small rocket prior to launch as part of Rocket University. The launch will test systems designed by the student engineers. As part of Rocket University, the engineers are given an opportunity to work a fast-track project to develop skills in developing spacecraft systems of the future. As NASA plans for future spaceflight programs to low-Earth orbit and beyond, teams of engineers at Kennedy are gaining experience in designing and flying launch vehicle systems on a small scale. Four teams of five to eight members from Kennedy are designing rockets complete with avionics and recovery systems. Launch operations require coordination with federal agencies, just as they would with rockets launched in support of a NASA mission. Photo credit: NASA/Jim Grossmann

  14. 14 CFR 415.105 - Pre-application consultation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... following information: (1) Launch vehicle. Description of: (i) Launch vehicle; (ii) Any flight termination system; and (iii) All hazards associated with the launch vehicle and any payload, including the type and... Launch Vehicle From a Non-Federal Launch Site § 415.105 Pre-application consultation. (a) An applicant...

  15. 14 CFR 415.105 - Pre-application consultation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... following information: (1) Launch vehicle. Description of: (i) Launch vehicle; (ii) Any flight termination system; and (iii) All hazards associated with the launch vehicle and any payload, including the type and... Launch Vehicle From a Non-Federal Launch Site § 415.105 Pre-application consultation. (a) An applicant...

  16. 14 CFR 415.105 - Pre-application consultation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... following information: (1) Launch vehicle. Description of: (i) Launch vehicle; (ii) Any flight termination system; and (iii) All hazards associated with the launch vehicle and any payload, including the type and... Launch Vehicle From a Non-Federal Launch Site § 415.105 Pre-application consultation. (a) An applicant...

  17. 14 CFR 415.105 - Pre-application consultation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... following information: (1) Launch vehicle. Description of: (i) Launch vehicle; (ii) Any flight termination system; and (iii) All hazards associated with the launch vehicle and any payload, including the type and... Launch Vehicle From a Non-Federal Launch Site § 415.105 Pre-application consultation. (a) An applicant...

  18. 14 CFR 415.105 - Pre-application consultation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... following information: (1) Launch vehicle. Description of: (i) Launch vehicle; (ii) Any flight termination system; and (iii) All hazards associated with the launch vehicle and any payload, including the type and... Launch Vehicle From a Non-Federal Launch Site § 415.105 Pre-application consultation. (a) An applicant...

  19. Launch vehicle operations cost reduction through artificial intelligence techniques

    NASA Technical Reports Server (NTRS)

    Davis, Tom C., Jr.

    1988-01-01

    NASA's Kennedy Space Center has attempted to develop AI methods in order to reduce the cost of launch vehicle ground operations as well as to improve the reliability and safety of such operations. Attention is presently given to cost savings estimates for systems involving launch vehicle firing-room software and hardware real-time diagnostics, as well as the nature of configuration control and the real-time autonomous diagnostics of launch-processing systems by these means. Intelligent launch decisions and intelligent weather forecasting are additional applications of AI being considered.

  20. Flame Deflector Complete at Launch Complex 39B

    NASA Image and Video Library

    2018-05-16

    Construction is complete on the main flame deflector in the flame trench at Launch Complex 39B at NASA's Kennedy Space Center in Florida. The flame deflector will safely deflect the plume exhaust from NASA's Space Launch System rocket during launch. It will divert the rocket's exhaust, pressure and intense heat to the north at liftoff. The Exploration Ground Systems Program at Kennedy is refurbishing the pad to support the launch of the SLS rocket and Orion on Exploration Mission-1, and helping to transform the space center into a multi-user spaceport.

  1. Rain erosion considerations for launch vehicle insulation systems

    NASA Technical Reports Server (NTRS)

    Daniels, D. J.; Sieker, W. D.

    1977-01-01

    In recent years the Delta launch vehicle has incorporated the capability to be launched through rain. This capability was developed to eliminate a design constraint which could result in a costly launch delay. This paper presents the methodology developed to implement rain erosion protection for the insulated exterior vehicle surfaces. The effect of the interaction between insulation material rain erosion resistance, rainstorm models, surface geometry and trajectory variations is examined. It is concluded that rain erosion can significantly impact the performance of launch vehicle insulation systems and should be considered in their design.

  2. Saturn's periodicities: New results from an MHD simulation of magnetospheric response to rotating ionospheric vortices

    NASA Astrophysics Data System (ADS)

    Kivelson, M.; Jia, X.

    2013-12-01

    In previous work we demonstrated that a magnetohydrodynamic (MHD) simulation of Saturn's magnetosphere in which periodicity is imposed by rotating vortical flows in the ionosphere reproduces many reported periodically varying properties of the system. Here we shall show that previously unreported features of the MHD simulation of Saturn's magnetosphere illuminate additional measured properties of the system. By averaging over a rotation period, we identify a global electric field whose magnitude is a few tenths of a mV/m (see Figure 1). The electric field intensity decreases with radial distance in the middle magnetosphere, consistent with drift speeds v=E/B of a few km/s towards the morning side and relatively independent of radial distance. The electric field within 10 RS in the equatorial plane is oriented from post-noon to post-midnight, in excellent agreement with observations [e.g., Thomsen et al., 2012; Andriopoulou et al., 2012, 2013; Wilson et al., 2013]. By following the electric field over a full rotation phase we identify oscillatory behavior whose magnitude is consistent with the reported fluctuations of measured electric fields. Of particular interest is the nature of the fast mode perturbations that produce periodic displacement of the magnetopause and flapping of the current sheet. Figure (2) shows the total perturbation pressure (the sum of magnetic and thermal pressure) in the equatorial plane at a rotation phase for which the ionospheric flow near noon is equatorward. By following the perturbations over a full rotation period, we demonstrate properties of the fast mode wave launched by the rotating flow structures and thereby characterize the 'cam' signal originally proposed by Espinosa et al. [2003].

  3. Intercept-Resend-Measure Attack Towards Quantum Private Comparison Protocol Using Genuine Four-Particle Entangled States and its Improvement

    NASA Astrophysics Data System (ADS)

    Pan, Hong-Ming

    2018-03-01

    Recently, Jia et al. proposed the quantum private comparison protocol with the genuine four-particle entangled states (Jia et al., Int. J. Theor. Phys. 51(4), 1187-1194 (2012)). Jia et al. claimed that in this protocol, TP cannot obtain Alice and Bob's secrets and only knows their comparison result. However, in this paper, we demonstrate that if TP is a genuine semi-honest third party, he can totally obtain Alice and Bob's secrets by launching a particular intercept-resend-measure attack. After suggesting the intercept-resend-measure attack strategy from TP first, we put forward one corresponding improvement to prevent this attack.

  4. WAM: an improved algorithm for modelling antibodies on the WEB.

    PubMed

    Whitelegg, N R; Rees, A R

    2000-12-01

    An improved antibody modelling algorithm has been developed which incorporates significant improvements to the earlier versions developed by Martin et al. (1989, 1991), Pedersen et al. (1992) and Rees et al. (1996) and known as AbM (Oxford Molecular). The new algorithm, WAM (for Web Antibody Modelling), has been launched as an online modelling service and is located at URL http://antibody.bath.ac.uk. Here we provide a summary only of the important features of WAM. Readers interested in further details are directed to the website, which gives extensive background information on the methods employed. A brief description of the rationale behind some of the newer methodology (specifically, the knowledge-based screens) is also given.

  5. Actualizing Flexible National Security Space Systems

    DTIC Science & Technology

    2011-01-01

    single launch vehicle is a decision unique to small satellites that adds an extra dimension to the launch risk calculation. While bundling...following a launch failure. The ability to bundle multiple payloads on a single launch vehicle is a decision unique to small satellites that adds an extra ... dimension to the launch risk calculation. While bundling multiple small satellites on a single launch vehicle spreads the initial launch cost across

  6. KSC-2014-2246

    NASA Image and Video Library

    2014-04-16

    CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the panels is secured on a storage stand at the other end of the facility. Technicians monitor the progress as the second panel is being moved to join the first panel on the storage stand. To the right is the Launch Abort system secured on a work stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper

  7. Software and Human-Machine Interface Development for Environmental Controls Subsystem Support

    NASA Technical Reports Server (NTRS)

    Dobson, Matthew

    2018-01-01

    The Space Launch System (SLS) is the next premier launch vehicle for NASA. It is the next stage of manned space exploration from American soil, and will be the platform in which we push further beyond Earth orbit. In preparation of the SLS maiden voyage on Exploration Mission 1 (EM-1), the existing ground support architecture at Kennedy Space Center required significant overhaul and updating. A comprehensive upgrade of controls systems was necessary, including programmable logic controller software, as well as Launch Control Center (LCC) firing room and local launch pad displays for technician use. Environmental control acts as an integral component in these systems, being the foremost system for conditioning the pad and extremely sensitive launch vehicle until T-0. The Environmental Controls Subsystem (ECS) required testing and modification to meet the requirements of the designed system, as well as the human factors requirements of NASA software for Validation and Verification (V&V). This term saw significant strides in the progress and functionality of the human-machine interfaces used at the launch pad, and improved integration with the controller code.

  8. Mass Analyzers Facilitate Research on Addiction

    NASA Technical Reports Server (NTRS)

    2012-01-01

    The famous go/no go command for Space Shuttle launches comes from a place called the Firing Room. Located at Kennedy Space Center in the Launch Control Center (LCC), there are actually four Firing Rooms that take up most of the third floor of the LCC. These rooms comprise the nerve center for Space Shuttle launch and processing. Test engineers in the Firing Rooms operate the Launch Processing System (LPS), which is a highly automated, computer-controlled system for assembly, checkout, and launch of the Space Shuttle. LPS monitors thousands of measurements on the Space Shuttle and its ground support equipment, compares them to predefined tolerance levels, and then displays values that are out of tolerance. Firing Room operators view the data and send commands about everything from propellant levels inside the external tank to temperatures inside the crew compartment. In many cases, LPS will automatically react to abnormal conditions and perform related functions without test engineer intervention; however, firing room engineers continue to look at each and every happening to ensure a safe launch. Some of the systems monitored during launch operations include electrical, cooling, communications, and computers. One of the thousands of measurements derived from these systems is the amount of hydrogen and oxygen inside the shuttle during launch.

  9. 46 CFR 112.43-11 - Illumination for launching operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...

  10. 46 CFR 112.43-11 - Illumination for launching operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...

  11. 46 CFR 112.43-11 - Illumination for launching operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...

  12. 46 CFR 112.43-11 - Illumination for launching operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...

  13. 46 CFR 112.43-11 - Illumination for launching operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...

  14. 76 FR 72686 - 36(b)(1) Arms Sales Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ... Electromagnetic Aircraft Launch System/Advanced Arresting Gear (EMALS/AAG). The EMALS long lead sub-assemblies... United Kingdom--Electromagnetic Aircraft Launch System Long Lead Sub- Assemblies The Government of the United Kingdom (UK) has requested the long lead sub-assemblies for the Electromagnetic Aircraft Launch...

  15. Small Space Launch: Origins & Challenges

    NASA Astrophysics Data System (ADS)

    Freeman, T.; Delarosa, J.

    2010-09-01

    The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft, and in the development of constellations of spacecraft. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by an old, unresponsive and relatively expensive set of launchers in the Expandable, Expendable Launch Vehicles (EELV) platforms; Delta IV and Atlas V. The United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. On 1 Aug 06, Air Force Space Command activated the Space Development & Test Wing (SDTW) to perform development, test and evaluation of Air Force space systems and to execute advanced space deployment and demonstration projects to exploit new concepts and technologies, and rapidly migrate capabilities to the warfighter. The SDTW charged the Launch Test Squadron (LTS) with the mission to develop the capability of small space launch, supporting government research and development space launches and missile defense target missions, with operationally responsive spacelift for Low-Earth-Orbit Space Situational Awareness assets as a future mission. This new mission created new challenges for LTS. The LTS mission tenets of developing space launches and missile defense target vehicles were an evolution from the squadrons previous mission of providing sounding rockets under the Rocket Sounding Launch Program (RSLP). The new mission tenets include shortened operational response periods criteria for the warfighter, while reducing the life-cycle development, production and launch costs of space launch systems. This presentation will focus on the technical challenges in transforming and integrating space launch vehicles and space craft vehicles for small space launch missions.

  16. KSC-2013-3797

    NASA Image and Video Library

    2013-09-27

    CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, components are horizontally stacked as processing continues for the Orion Exploration Flight Test-1 mission. Components of the LAS are the launch abort motor, the attitude control motor, the jettison motor and the fairing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  17. KSC-2013-3798

    NASA Image and Video Library

    2013-09-27

    CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, the launch abort system, or LAS, components are horizontally stacked as processing continues for the Orion Exploration Flight Test-1 mission. Components of the LAS are the launch abort motor, the attitude control motor, the jettison motor and the fairing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  18. COMPASS Final Report: Enceladus Solar Electric Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2011-01-01

    The results of the NASA Glenn Research Center (GRC) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) internal Solar Electric Propulsion (SEP) stage design are documented in this report (Figure 1.1). The SEP Stage was designed to deliver a science probe to Saturn (the probe design was performed separately by the NASA Goddard Space Flight Center s (GSFC) Integrated Mission Design Center (IMDC)). The SEP Stage delivers the 2444 kg probe on a Saturn trajectory with a hyperbolic arrival velocity of 5.4 km/s. The design carried 30 percent mass, 10 percent power, and 6 percent propellant margins. The SEP Stage relies on the probe for substantial guidance, navigation and control (GN&C), command and data handling (C&DH), and Communications functions. The stage is configured to carry the probe and to minimize the packaging interference between the probe and the stage. The propulsion system consisted of a 1+1 (one active, one spare) configuration of gimbaled 7 kW NASA Evolutionary Xenon Thruster (NEXT) ion propulsion thrusters with a throughput of 309 kg Xe propellant. Two 9350 W GaAs triple junction (at 1 Astronomical Unit (AU), includes 10 percent margin) ultra-flex solar arrays provided power to the stage, with Li-ion batteries for launch and contingency operations power. The base structure was an Al-Li hexagonal skin-stringer frame built to withstand launch loads. A passive thermal control system consisted of heat pipes to north and south radiator panels, multilayer insulation (MLI) and heaters for the Xe tank. All systems except tanks and solar arrays were designed to be single fault tolerant.

  19. Magnetic Launch Assist Demonstration Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  20. Atmospheric statistics for aerospace vehicle operations

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Batts, G. W.

    1993-01-01

    Statistical analysis of atmospheric variables was performed for the Shuttle Transportation System (STS) design trade studies and the establishment of launch commit criteria. Atmospheric constraint statistics have been developed for the NASP test flight, the Advanced Launch System, and the National Launch System. The concepts and analysis techniques discussed in the paper are applicable to the design and operations of any future aerospace vehicle.

  1. Separation and Staging Mechanisms for the Indian SLV-3 Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Abdulmajeed, M. K.; Matarajan, K.; Krishnankutty, V. K.

    1984-01-01

    A unique separation and jettison system for the ascent fairing and a staging system for the apogee motor of the first Indian satellite launch vehicle are described. Design features, development problems, and mission constraints are discussed in addition to the solutions adopted. A qualification summary is included for each system, and flight results obtained from SLV-3 launches are described.

  2. Asteroids and Meteorites from Venus? Only the Earth Goddess Knows

    NASA Astrophysics Data System (ADS)

    Dones, Henry; Zahnle, Kevin J.; Alvarellos, José L.

    2018-04-01

    No meteorites from Venus have been found; indeed, some find theirexistence unlikely because of the perceived difficulty of launchingrocks at speeds above 10 km/s and traversing the planet's 93 baratmosphere. [1] Nonetheless, we keep hope alive, since cosmochemistssay they can identify Cytherean meteorites, should candidates be found[2]. Gladman et al. [3] modeled the exchange of impact ejecta betweenthe terrestrial planets, but did not consider meteorites launched fromVenus in any detail. At the time of Gladman's work, no asteroids thatremained entirely within Earth's orbit were known. 14 suchEarth-interior objects with good orbits have now been discovered, andare known as Atiras, for the Pawnee goddess of the Earth. The largestknown member of the class is 163693 Atira, a binary whose componentshave diameters of approximately 4.8 and 1 km. Discovery of Atiras isvery incomplete because they can only be seen at small solarelongations [4]. Greenstreet et al. [5] modeled the orbitaldistribution of Atiras from main-belt asteroidal and cometary sourceregions, while Ribeiro et al. [6] mapped the stability region ofhypothetical Atiras and integrated the orbits of clones of 12 realAtiras for 1 million years. 97% of the clones survived for 1 Myrimpact with Venus was the most common fate of those that met theirends. We have performed orbital integrations of 1000 clones of each ofthe known Atiras, and of hypothetical ejecta that escape Venus afterasteroid impacts, for 10-100 Myr. The latter calculations usetechniques like those of Alvarellos et al. [7] and Zahnle et al. [8]for transfer amongst Jupiter's galilean satellites. Our goals are toestimate the fraction of Atiras that are ejecta launched from Venus,the time spent in space by hypothetical meteorites from Venus, and therate at which such meteorites strike the Earth.[1] Gilmore M., et al (2017). Space Sci. Rev. 212, 1511. [2] JourdanF., Eroglu E. (2017). MAPS 52, 884. [3] Gladman B.J., etal. (1996). Science 271, 1387. [4] Masi G. (2003). Icarus 163,389. [5] Greenstreet S., Ngo H., Gladman B. (2012). Icarus 217,355. [6] Ribeiro A.O., et al. (2016). MNRAS 458, 4471. [7] Alvarellos,J.L., et al. (2008). Icarus 194, 636. [8] Zahnle, K., etal. (2008). Icarus 194, 660.

  3. Nanosatellite Launch Adapter System (NLAS)

    NASA Technical Reports Server (NTRS)

    Chartres, James; Cappuccio, Gelsomina

    2015-01-01

    The Nanosatellite Launch Adapter System (NLAS) was developed to increase access to space while simplifying the integration process of miniature satellites, called nanosats or CubeSats, onto launch vehicles. A standard CubeSat measures about 10 cm square, and is referred to as a 1-unit (1U) CubeSat. A single NLAS provides the capability to deploy 24U of CubeSats. The system is designed to accommodate satellites measuring 1U, 1.5U, 2U, 3U and 6U sizes for deployment into orbit. The NLAS may be configured for use on different launch vehicles. The system also enables flight demonstrations of new technologies in the space environment.

  4. Shuttle Hitchhiker Experiment Launcher System (SHELS)

    NASA Technical Reports Server (NTRS)

    Daelemans, Gerry

    1999-01-01

    NASA's Goddard Space Flight Center Shuttle Small Payloads Project (SSPP), in partnership with the United States Air Force and NASA's Explorer Program, is developing a Shuttle based launch system called SHELS (Shuttle Hitchhiker Experiment Launcher System), which shall be capable of launching up to a 400 pound spacecraft from the Shuttle cargo bay. SHELS consists of a Marman band clamp push-plate ejection system mounted to a launch structure; the launch structure is mounted to one Orbiter sidewall adapter beam. Avionics mounted to the adapter beam will interface with Orbiter electrical services and provide optional umbilical services and ejection circuitry. SHELS provides an array of manifesting possibilities to a wide range of satellites.

  5. KSC-2014-4196

    NASA Image and Video Library

    2014-10-03

    CAPE CANAVERAL, Fla. – The launch abort system is lowered by crane for installation on the Orion spacecraft for Exploration Flight Test-1 inside the Launch Abort System Facility, or LASF, at NASA's Kennedy Space Center in Florida. The completed crew and service modules will be tested and verified together with the launch abort system. Orion will remain inside the LASF until mid-November, when the United Launch Alliance Delta IV Heavy rocket is ready for integration with the spacecraft. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December atop the Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  6. KSC-2014-4195

    NASA Image and Video Library

    2014-10-03

    CAPE CANAVERAL, Fla. – The launch abort system is lowered by crane for installation on the Orion spacecraft for Exploration Flight Test-1 inside the Launch Abort System Facility, or LASF, at NASA's Kennedy Space Center in Florida. The completed crew and service modules will be tested and verified together with the launch abort system. Orion will remain inside the LASF until mid-November, when the United Launch Alliance Delta IV Heavy rocket is ready for integration with the spacecraft. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December atop the Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  7. KSC-2014-4192

    NASA Image and Video Library

    2014-10-03

    CAPE CANAVERAL, Fla. – A crane is used to lift and move the launch abort system for installation on the Orion spacecraft for Exploration Flight Test-1 inside the Launch Abort System Facility, or LASF, at NASA's Kennedy Space Center in Florida. The completed crew and service modules will be tested and verified together with the launch abort system. Orion will remain inside the LASF until mid-November, when the United Launch Alliance Delta IV Heavy rocket is ready for integration with the spacecraft. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December atop the Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  8. KSC-2014-4193

    NASA Image and Video Library

    2014-10-03

    CAPE CANAVERAL, Fla. – A crane is used to move the launch abort system closer for installation on the Orion spacecraft for Exploration Flight Test-1 inside the Launch Abort System Facility, or LASF, at NASA's Kennedy Space Center in Florida. The completed crew and service modules will be tested and verified together with the launch abort system. Orion will remain inside the LASF until mid-November, when the United Launch Alliance Delta IV Heavy rocket is ready for integration with the spacecraft. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December atop the Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  9. KSC-2014-4194

    NASA Image and Video Library

    2014-10-03

    CAPE CANAVERAL, Fla. – A crane is used to lower the launch abort system closer for installation on the Orion spacecraft for Exploration Flight Test-1 inside the Launch Abort System Facility, or LASF, at NASA's Kennedy Space Center in Florida. The completed crew and service modules will be tested and verified together with the launch abort system. Orion will remain inside the LASF until mid-November, when the United Launch Alliance Delta IV Heavy rocket is ready for integration with the spacecraft. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in December atop the Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  10. Flight Performance Feasibility Studies for the Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Tarabini, Paul V.; Gilbert, Michael G.; Beaty, James R.

    2013-01-01

    In 2007, the NASA Engineering and Safety Center (NESC) initiated the Max Launch Abort System Project to explore crew escape system concepts designed to be fully encapsulated within an aerodynamic fairing and smoothly integrated onto a launch vehicle. One objective of this design was to develop a more compact launch escape vehicle that eliminated the need for an escape tower, as was used in the Mercury and Apollo escape systems and what is planned for the Orion Multi-Purpose Crew Vehicle (MPCV). The benefits for the launch vehicle of eliminating a tower from the escape vehicle design include lower structural weights, reduced bending moments during atmospheric flight, and a decrease in induced aero-acoustic loads. This paper discusses the development of encapsulated, towerless launch escape vehicle concepts, especially as it pertains to the flight performance and systems analysis trade studies conducted to establish mission feasibility and assess system-level performance. Two different towerless escape vehicle designs are discussed in depth: one with allpropulsive control using liquid attitude control thrusters, and a second employing deployable aft swept grid fins to provide passive stability during coast. Simulation results are presented for a range of nominal and off-nominal escape conditions.

  11. Constellation Ground Systems Launch Availability Analysis: Enhancing Highly Reliable Launch Systems Design

    NASA Technical Reports Server (NTRS)

    Gernand, Jeffrey L.; Gillespie, Amanda M.; Monaghan, Mark W.; Cummings, Nicholas H.

    2010-01-01

    Success of the Constellation Program's lunar architecture requires successfully launching two vehicles, Ares I/Orion and Ares V/Altair, in a very limited time period. The reliability and maintainability of flight vehicles and ground systems must deliver a high probability of successfully launching the second vehicle in order to avoid wasting the on-orbit asset launched by the first vehicle. The Ground Operations Project determined which ground subsystems had the potential to affect the probability of the second launch and allocated quantitative availability requirements to these subsystems. The Ground Operations Project also developed a methodology to estimate subsystem reliability, availability and maintainability to ensure that ground subsystems complied with allocated launch availability and maintainability requirements. The verification analysis developed quantitative estimates of subsystem availability based on design documentation; testing results, and other information. Where appropriate, actual performance history was used for legacy subsystems or comparative components that will support Constellation. The results of the verification analysis will be used to verify compliance with requirements and to highlight design or performance shortcomings for further decision-making. This case study will discuss the subsystem requirements allocation process, describe the ground systems methodology for completing quantitative reliability, availability and maintainability analysis, and present findings and observation based on analysis leading to the Ground Systems Preliminary Design Review milestone.

  12. Kennedy Space Center's Command and Control System - "Toasters to Rocket Ships"

    NASA Technical Reports Server (NTRS)

    Lougheed, Kirk; Mako, Cheryle

    2011-01-01

    This slide presentation reviews the history of the development of the command and control system at Kennedy Space Center. From a system that could be brought to Florida in the trunk of a car in the 1950's. Including the development of larger and more complex launch vehicles with the Apollo program where human launch controllers managed the launch process with a hardware only system that required a dedicated human interface to perform every function until the Apollo vehicle lifted off from the pad. Through the development of the digital computer that interfaced with ground launch processing systems with the Space Shuttle program. Finally, showing the future control room being developed to control the missions to return to the moon and Mars, which will maximize the use of Commercial-Off-The Shelf (COTS) hardware and software which was standards based and not tied to a single vendor. The system is designed to be flexible and adaptable to support the requirements of future spacecraft and launch vehicles.

  13. Groundwater and Terrestrial Water Storage

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2014-01-01

    Terrestrial water storage (TWS) comprises groundwater, soil moisture, surface water, snow,and ice. Groundwater typically varies more slowly than the other TWS components because itis not in direct contact with the atmosphere, but often it has a larger range of variability onmultiannual timescales (Rodell and Famiglietti, 2001; Alley et al., 2002). In situ groundwaterdata are only archived and made available by a few countries. However, monthly TWSvariations observed by the Gravity Recovery and Climate Experiment (GRACE; Tapley et al.,2004) satellite mission, which launched in 2002, are a reasonable proxy for unconfinedgroundwater at climatic scales.

  14. KSC-2014-2232

    NASA Image and Video Library

    2014-04-17

    CAPE CANAVERAL, Fla. - The second set of two Ogive panels for the Orion Launch Abort System have arrived at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. The Ogive panels are being uncrated for storage inside the LASF. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett

  15. KSC-2014-2230

    NASA Image and Video Library

    2014-04-17

    CAPE CANAVERAL, Fla. - The second set of two Ogive panels for the Orion Launch Abort System arrives by truck at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. The Ogive panels will be uncrated inside the LASF. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett

  16. KSC-2014-2229

    NASA Image and Video Library

    2014-04-17

    CAPE CANAVERAL, Fla. - The second set of two Ogive panels for the Orion Launch Abort System arrives by truck at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. The Ogive panels will be uncrated inside the LASF. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett

  17. KSC-2014-2231

    NASA Image and Video Library

    2014-04-17

    CAPE CANAVERAL, Fla. - The second set of two Ogive panels for the Orion Launch Abort System have arrived by truck at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. The Ogive panels will be uncrated inside the LASF. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett

  18. The design of an ECRH system for JET-EP

    NASA Astrophysics Data System (ADS)

    Verhoeven, A. G. A.; Bongers, W. A.; Elzendoorn, B. S. Q.; Graswinckel, M.; Hellingman, P.; Kooijman, W.; Kruijt, O. G.; Maagdenberg, J.; Ronden, D.; Stakenborg, J.; Sterk, A. B.; Tichler, J.; Alberti, S.; Goodman, T.; Henderson, M.; Hoekzema, J. A.; Oosterbeek, J. W.; Fernandez, A.; Likin, K.; Bruschi, A.; Cirant, S.; Novak, S.; Piosczyk, B.; Thumm, M.; Bindslev, H.; Kaye, A.; Fleming, C.; Zohm, H.

    2003-11-01

    An electron cyclotron resonance heating (ECRH) system has been designed for JET in the framework of the JET enhanced performance project (JET-EP) under the European fusion development agreement. Due to financial constraints it has been decided not to implement this project. Nevertheless, the design work conducted from April 2000 to January 2002 shows a number of features that can be relevant in preparation of future ECRH systems, e.g. for ITER. The ECRH system was foreseen to comprise six gyrotrons, 1 MW each, in order to deliver 5 MW into the plasma (Verhoeven A.G.A. et al 2001 The ECRH system for JET 26th Int. Conf. on Infrared and Millimeter Waves (Toulouse, 10 14 September 2001) p 83; Verhoeven A.G.A. et al 2003 The 113 GHz ECRH system for JET Proc. 12th Joint Workshop on ECE and ECRH (13 16 May 2002) ed G. Giruzzi (Aix-en-Provence: World Scientific) pp 511 16). The main aim was to enable the control of neo-classical tearing modes. The paper will concentrate on: the power-supply and modulation system, including series IGBT switches, to enable independent control of each gyrotron and an all-solid-state body power supply to stabilize the gyrotron output power and to enable fast modulations up to 10 kHz and a plug-in launcher that is steerable in both toroidal and poloidal angles and able to handle eight separate mm-wave beams. Four steerable launching mirrors were foreseen to handle two mm-wave beams each. Water cooling of all the mirrors was a particularly ITER-relevant feature.

  19. KSC-2009-2935

    NASA Image and Video Library

    2009-05-05

    VANDENBERG AIR FORCE BASE, Calif. -- A United Launch Alliance Delta II rocket, on behalf of the NASA Launch Services Program, is poised on its Space Launch Complex-2 launch pad at Vandenberg AFB, Calif., ready for launch. The Delta II will carry the Missile Defense Agency's Space Tracking and Surveillance System (STSS) Advanced Technology Risk Reduction (ATRR) payload into orbit. The launch is scheduled for 1:24 p.m. PDT. Photo by Carleton Bailie, United Launch Alliance.

  20. Liquid rocket booster integration study. Volume 3: Study products. Part 2: Sections 8-19

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is part two of the study products section of the five volume series.

  1. Distributed Web-Based Expert System for Launch Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar

    2005-01-01

    The simulation and modeling of launch operations is based on a representation of the organization of the operations suitable to experiment of the physical, procedural, software, hardware and psychological aspects of space flight operations. The virtual test bed consists of a weather expert system to advice on the effect of weather to the launch operations. It also simulates toxic gas dispersion model, and the risk impact on human health. Since all modeling and simulation is based on the internet, it could reduce the cost of operations of launch and range safety by conducting extensive research before a particular launch. Each model has an independent decision making module to derive the best decision for launch.

  2. Liquid rocket booster integration study. Volume 3, part 1: Study products

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is part one of the study products section of the five volume series.

  3. Launch Abort System Flight Test Overview

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy; Bosworth, John T.

    2007-01-01

    This viewgraph presentation is an overview of the Launch Abort System (LAS) for the Constellation Program. The purpose of the paper is to review the planned tests for the LAS. The program will evaluate the performance of the crew escape functions of the Launch Abort System (LAS) specifically: the ability of the LAS to separate from the crew module, to gather flight test data for future design and implementation and to reduce system development risks.

  4. Navier-Stokes simulation of plume/Vertical Launching System interaction flowfields

    NASA Astrophysics Data System (ADS)

    York, B. J.; Sinha, N.; Dash, S. M.; Anderson, L.; Gominho, L.

    1992-01-01

    The application of Navier-Stokes methodology to the analysis of Vertical Launching System/missile exhaust plume interactions is discussed. The complex 3D flowfields related to the Vertical Launching System are computed utilizing the PARCH/RNP Navier-Stokes code. PARCH/RNP solves the fully-coupled system of fluid, two-equation turbulence (k-epsilon) and chemical species equations via the implicit, approximately factored, Beam-Warming algorithm utilizing a block-tridiagonal inversion procedure.

  5. Effluent sampling of Scout D and Delta launch vehicle exhausts

    NASA Technical Reports Server (NTRS)

    Hulten, W. C.; Storey, R. W.; Gregory, G. L.; Woods, D. C.; Harris, F. S., Jr.

    1974-01-01

    Characterization of engine-exhaust effluents (hydrogen chloride, aluminum oxide, carbon dioxide, and carbon monoxide) has been attempted by conducting field experiments monitoring the exhaust cloud from a Scout-Algol III vehicle launch and a Delta-Thor vehicle launch. The exhaust cloud particulate size number distribution (total number of particles as a function of particle diameter), mass loading, morphology, and elemental composition have been determined within limitations. The gaseous species in the exhaust cloud have been identified. In addition to the ground-based measurements, instrumented aircraft flights through the low-altitude, stabilized-exhaust cloud provided measurements which identified CO and HCI gases and Al2O3 particles. Measurements of the initial exhaust cloud during formation and downwind at several distances have established sampling techniques which will be used for experimental verification of model predictions of effluent dispersion and fallout from exhaust clouds.

  6. Impact of combustion products from Space Shuttle launches on ambient air quality

    NASA Technical Reports Server (NTRS)

    Dumbauld, R. K.; Bowers, J. F.; Cramer, H. E.

    1974-01-01

    The present work describes some multilayer diffusion models and a computer program for these models developed to predict the impact of ground clouds formed during Space Shuttle launches on ambient air quality. The diffusion models are based on the Gaussian plume equation for an instantaneous volume source. Cloud growth is estimated on the basis of measurable meteorological parameters: standard deviation of the wind azimuth angle, standard deviation of wind elevation angle, vertical wind-speed shear, vertical wind-direction shear, and depth of the surface mixing layer. Calculations using these models indicate that Space Shuttle launches under a variety of meteorological regimes at Kennedy Space Center and Vandenberg AFB are unlikely to endanger the exposure standards for HCl; similar results have been obtained for CO and Al2O3. However, the possibility that precipitation scavenging of the ground cloud might result in an acidic rain that could damage vegetation has not been investigated.

  7. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane arrives at the turn basin at the Launch Complex 39 Area on NASA's Kennedy Space Center. The crane with its 70-foot boom will be moved to Launch Pad 39B and used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  8. Photographic copy of photograph (original print in possession of James ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph (original print in possession of James E. Zelinski, Earth Tech, Huntsville, AL). Photographer unknown. Aerial view (southwest to northeast) of remote sprint launch site #2, nearing completion. The RLOB has been earth-mounded. The limited access sentry station can be seen in the PAR right foreground, behind it are the waste stabilization ponds. Barely discernible is the exclusion area sentry station at the entrance to the sprint field - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 2, West of Mile Marker 220 on State Route 1, 6.0 miles North of Langdon, ND, Nekoma, Cavalier County, ND

  9. KSC-97PC1013

    NASA Image and Video Library

    1997-07-02

    Workers from the Johns Hopkins University’s Applied Physics Laboratory (APL) install the Cosmic Ray Isotope Spectrometer (CRIS) on the Advanced Composition Explorer (ACE) spacecraft in KSC’s Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). From left, are Al Sadilek, Marcos Gonzalez and Cliff Willey. CRIS is one of nine instruments on ACE, which will investigate the origin and evolution of solar phenomenon, the formation of the solar corona, solar flares and the acceleration of the solar wind. ACE was developed for NASA by the APL. The spacecraft is scheduled to be launched Aug. 21 aboard a two-stage Delta II 7920-8 rocket from Space Launch Complex 17, Pad A

  10. KSC-2012-6185

    NASA Image and Video Library

    2012-11-06

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 moves along the crawler way toward Launch Pad 39A following modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the launch pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann

  11. Tropospheric Wind Monitoring During Day-of-Launch Operations for NASA's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Decker, Ryan; Leach, Richard

    2004-01-01

    The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center monitors the winds aloft above Kennedy Space Center (KSC) in support of the Space Shuttle Program day-of-launch operations. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. All independent sources are compared against each other for accuracy. To assess spatial and temporal wind variability during launch countdown each jimsphere profile is compared against a design wind database to ensure wind change does not violate wind change criteria.

  12. Ascent abort capability for the HL-20

    NASA Technical Reports Server (NTRS)

    Naftel, J. C.; Talay, T. A.

    1993-01-01

    The HL-20 has been designed with the capability for rescue of the crew during all phases of powered ascent from on the launch pad until orbital injection. A launch-escape system, consisting of solid rocket motors located on the adapter between the HL-20 and the launch vehicle, provides the thrust that propels the HL-20 to a safe distance from a malfunctioning launch vehicle. After these launch-escape motors have burned out, the adapter is jettisoned and the HL-20 executes one of four abort modes. In three abort modes - return-to-launch-site, transatlantic-abort-landing, and abort-to-orbit - not only is the crew rescued, but the HL-20 is recovered intact. In the ocean-landing-by-parachute abort mode, which occurs in between the return-to-launch-site and the transatlantic-abort-landing modes, the crew is rescued, but the HL-20 would likely sustain damage from the ocean landing. This paper describes the launch-escape system and the four abort modes for an ascent on a Titan III launch vehicle.

  13. Sensor-scheduling simulation of disparate sensors for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Hobson, T.; Clarkson, I.

    2011-09-01

    The art and science of space situational awareness (SSA) has been practised and developed from the time of Sputnik. However, recent developments, such as the accelerating pace of satellite launch, the proliferation of launch capable agencies, both commercial and sovereign, and recent well-publicised collisions involving man-made space objects, has further magnified the importance of timely and accurate SSA. The United States Strategic Command (USSTRATCOM) operates the Space Surveillance Network (SSN), a global network of sensors tasked with maintaining SSA. The rapidly increasing number of resident space objects will require commensurate improvements in the SSN. Sensors are scarce resources that must be scheduled judiciously to obtain measurements of maximum utility. Improvements in sensor scheduling and fusion, can serve to reduce the number of additional sensors that may be required. Recently, Hill et al. [1] have proposed and developed a simulation environment named TASMAN (Tasking Autonomous Sensors in a Multiple Application Network) to enable testing of alternative scheduling strategies within a simulated multi-sensor, multi-target environment. TASMAN simulates a high-fidelity, hardware-in-the-loop system by running multiple machines with different roles in parallel. At present, TASMAN is limited to simulations involving electro-optic sensors. Its high fidelity is at once a feature and a limitation, since supercomputing is required to run simulations of appreciable scale. In this paper, we describe an alternative, modular and scalable SSA simulation system that can extend the work of Hill et al with reduced complexity, albeit also with reduced fidelity. The tool has been developed in MATLAB and therefore can be run on a very wide range of computing platforms. It can also make use of MATLAB’s parallel processing capabilities to obtain considerable speed-up. The speed and flexibility so obtained can be used to quickly test scheduling algorithms even with a relatively large number of space objects. We further describe an application of the tool by exploring how the relative mixture of electro-optical and radar sensors can impact the scheduling, fusion and achievable accuracy of an SSA system. By varying the mixture of sensor types, we are able to characterise the main advantages and disadvantages of each configuration.

  14. Integrated Vehicle Ground Vibration Testing in Support of Launch Vehicle Loads and Controls Analysis

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Davis, Susan R.; Salyer, Blaine H.; Tuma, Margaret L.

    2008-01-01

    All structural systems possess a basic set of physical characteristics unique to that system. These unique physical characteristics include items such as mass distribution and damping. When specified, they allow engineers to understand and predict how a structural system behaves under given loading conditions and different methods of control. These physical properties of launch vehicles may be predicted by analysis or measured by certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified by testing before the vehicle becomes operational. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. NASA manned launch vehicles have undergone ground vibration testing leading to the development of successful launch vehicles. A GVT was not performed on the inaugural launch of the unmanned Delta III which was lost during launch. Subsequent analyses indicated had a GVT been performed, it would have identified instability issues avoiding loss of the vehicle. This discussion will address GVT planning, set-up, execution and analyses, for the Saturn and Shuttle programs, and will also focus on the current and on-going planning for the Ares I and V Integrated Vehicle Ground Vibration Test (IVGVT).

  15. 14 CFR 417.301 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operator demonstrates, in accordance with § 406.3(b), that the launch achieves an equivalent level of... termination system that satisfies appendices D, E, and F of this part; (2) A command control system that... that satisfies § 417.311. (d) Compliance—(1)Non-Federal launch site. For launch from a non-Federal...

  16. Theoretical quantification of shock-timing sensitivities for direct-drive inertial confinement fusion implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Cao, D.; Boehly, T. R.; Gregor, M. C.; Polsin, D. N.; Davis, A. K.; Radha, P. B.; Regan, S. P.; Goncharov, V. N.

    2018-05-01

    Using temporally shaped laser pulses, multiple shocks can be launched in direct-drive inertial confinement fusion implosion experiments to set the shell on a desired isentrope or adiabat. The velocity of the first shock and the times at which subsequent shocks catch up to it are measured through the velocity interferometry system for any reflector diagnostic [T. R. Boehly et al., Phys. Plasmas 18, 092706 (2011)] on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Simulations reproduce these velocity and shock-merger time measurements when using laser pulses designed for setting mid-adiabat (α ˜ 3) implosions, but agreement degrades for lower-adiabat (α ˜ 1) designs. Simulation results indicate that the shock timing discrepancy is most sensitive to details of the density and temperature profiles in the coronal plasma, which influences the laser energy coupled into the target, and only marginally sensitive to the target offset and beam power imbalance. To aid in verifying the coronal profile's influence, a new technique under development to infer coronal profiles using x-ray self-emission imaging [A. K. Davis et al., Bull. Am. Phys. Soc. 61, BAPS.2016.DPP.NO8.7 (2016)] can be applied to the pulse shapes used in shock-timing experiments.

  17. Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark

    2011-01-01

    A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.

  18. Orion Launch from UCS-3

    NASA Image and Video Library

    2014-12-05

    A Delta IV Heavy rocket lifts off from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida carrying NASA's Orion spacecraft on an unpiloted flight test to Earth orbit. Liftoff was at 7:05 a.m. EST. During the two-orbit, four-and-a-half hour mission, engineers will evaluate the systems critical to crew safety, the launch abort system, the heat shield and the parachute system.

  19. Orion Launch

    NASA Image and Video Library

    2014-12-05

    A Delta IV Heavy rocket lifts off from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida carrying NASA's Orion spacecraft on an unpiloted flight test to Earth orbit. Liftoff was at 7:05 a.m. EST. During the two-orbit, four-and-a-half hour mission, engineers will evaluate the systems critical to crew safety, the launch abort system, the heat shield and the parachute system.

  20. In-Flight Suppression of a De-Stabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    NASA Technical Reports Server (NTRS)

    Wall, John; VanZwieten, Tannen; Giiligan Eric; Miller, Chris; Hanson, Curtis; Orr, Jeb

    2015-01-01

    Adaptive Augmenting Control (AAC) has been developed for NASA's Space Launch System (SLS) family of launch vehicles and implemented as a baseline part of its flight control system (FCS). To raise the technical readiness level of the SLS AAC algorithm, the Launch Vehicle Adaptive Control (LVAC) flight test program was conducted in which the SLS FCS prototype software was employed to control the pitch axis of Dryden's specially outfitted F/A-18, the Full Scale Advanced Systems Test Bed (FAST). This presentation focuses on a set of special test cases which demonstrate the successful mitigation of the unstable coupling of an F/A-18 airframe structural mode with the SLS FCS.

  1. Commonality of Ground Systems in Launch Operations

    NASA Technical Reports Server (NTRS)

    Quinn, Shawn M.

    2008-01-01

    NASA is examining the utility of requiring a certain degree of commonality in both flight and ground systems in the Constellation Program. While the benefits of commonality seem obvious in terms of minimizing upfront development and long-term operations and maintenance costs, success in real, large-scale engineering systems used to support launch operations is relatively unknown. A broad literature review conducted for this paper did not yield a single paper specifically addressing the application of commonality for ground systems at any launch site in the United States or abroad. This paper provides a broad overview of the ground systems, captures historical and current application of commonality at the launch site, and offers suggestions for additional research to further develop commonality approaches.

  2. Refractory Materials for Flame Deflector Protection System Corrosion Control: Coatings Systems Literature Survey

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Sampson, Jeffrey W.; Coffman, Brekke E.; Coffman, Brekke E.; Curran, Jerome P.; Kolody, Mark R.; Whitten, Mary; Perisich, Steven; hide

    2009-01-01

    When space vehicles are launched, extreme heat, exhaust, and chemicals are produced and these form a very aggressive exposure environment at the launch complex. The facilities in the launch complex are exposed to this aggressive environment. The vehicle exhaust directly impacts the flame deflectors, making these systems very susceptible to high wear and potential failure. A project was formulated to develop or identify new materials or systems such that the wear and/or damage to the flame deflector system, as a result of the severe environmental exposure conditions during launches, can be mitigated. This report provides a survey of potential protective coatings for the refractory concrete lining on the steel base structure on the flame deflectors at Kennedy Space Center (KSC).

  3. V-type asteroids investigation in support to the NASA DAWN mission

    NASA Astrophysics Data System (ADS)

    de Sanctis, Maria Cristina; Migliorini, Alessandra; Lazzaro, Daniela; Luzia, Flavia; Ammannito, Eleonora; Capria, Maria Teresa; Filacchione, Gianrico; Mottola, Stefano; Boschin, Walter; Fiorenzano, Aldo; Ghinassi, Francesca

    4Vesta crust composition suggests that it has undergone extensive differentiation and resur-facing. It is the only large basaltic asteroid known at present (McCord, (1970); McFadden et al., (1977); Binzel, et al., (1997)), and it could be the smallest differentiated body of the Solar System. The NASA mission DAWN, launched on September 2007, is intended to deeper investigate the mineralogical properties of 4Vesta, in order to shed light on this puzzle (Russell et al., 2007). Although 4Vesta is the only large object in the Solar System which shows an almost intact basaltic crust, however an increasing number of small asteroids with a similar surface composition as 4Vesta were discovered thanks to ground-based telescopes (Xu et al., (1995); Burbine et al., (2001); Alvarez-Candal, et al. (2006)), posing the fundamental problem of the presence and distribution of basaltic material in the Solar System. Many of these asteroids were found to be spectrally and dynamically linked to 4Vesta, and they are known as the Vesta family. However, the scenario is much more complicated, because many Main Belt Asteroids, classified as V-type asteroids, were discovered near but not dynamically linked to 4Vesta. However, numerical simulations indicate that a relatively large fraction of the original Vesta family members may have evolved out of the family borders (Nesvorny et al., 2008); on the other hand, this seems not to be true for the low inclined asteroids, for which instead a different origin must be assumed. At present, more than 500 asteroids are classified as potentially V-type asteroids, thanks to new photometric investigation (Roig and Gil-Hutton, (2006); Roig et al., (2008); Moskoviz et al., (2008)). Some of these objects possibly belong to the Vesta-family, according to dynamical considerations, while other asteroids seem to be not clearly related to Vesta. Ground-based observations allow to investigate the spectral properties and hence the miner-alogical composition of such asteroids, which are thought to be linked to 4Vesta, because of their colors, but they are still unclassified. Asteroids were selected among the Vesta and non-Vesta family. The selected asteroids are potentially fragments coming from 4Vesta, after a cratering event on the asteroid. The possible co-existence of distinct mineralogical groups among the V-type asteroids is suggested by previous asteroid observations (Duffard et al., 2004). In this work, we present spectra of V type asteroids. Asteroids belonging to the Vesta family and those classified as non-Vesta family are compared, in order to point out similarities and differences. Results are based on observations obtained with the Telescopio Nazionale Galileo, a 3.5m-telescope in LaPalma. The proposed work is intended to support the future observations of 4Vesta, by DAWN.

  4. Maglev Launch: Ultra-low Cost, Ultra-high Volume Access to Space for Cargo and Humans

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Rather, John

    2010-01-01

    Despite decades of efforts to reduce rocket launch costs, improvements are marginal. Launch cost to LEO for cargo is ~$10,000 per kg of payload, and to higher orbit and beyond much greater. Human access to the ISS costs $20 million for a single passenger. Unless launch costs are greatly reduced, large scale commercial use and human exploration of the solar system will not occur. A new approach for ultra low cost access to space-Maglev Launch-magnetically accelerates levitated spacecraft to orbital speeds, 8 km/sec or more, in evacuated tunnels on the surface, using Maglev technology like that operating in Japan for high speed passenger transport. The cost of electric energy to reach orbital speed is less than $1 per kilogram of payload. Two Maglev launch systems are described, the Gen-1System for unmanned cargo craft to orbit and Gen-2, for large-scale access of human to space. Magnetically levitated and propelled Gen-1 cargo craft accelerate in a 100 kilometer long evacuated tunnel, entering the atmosphere at the tunnel exit, which is located in high altitude terrain (~5000 meters) through an electrically powered ``MHD Window'' that prevents outside air from flowing into the tunnel. The Gen-1 cargo craft then coasts upwards to space where a small rocket burn, ~0.5 km/sec establishes, the final orbit. The Gen-1 reference design launches a 40 ton, 2 meter diameter spacecraft with 35 tons of payload. At 12 launches per day, a single Gen-1 facility could launch 150,000 tons annually. Using present costs for tunneling, superconductors, cryogenic equipment, materials, etc., the projected construction cost for the Gen-1 facility is 20 billion dollars. Amortization cost, plus Spacecraft and O&M costs, total $43 per kg of payload. For polar orbit launches, sites exist in Alaska, Russia, and China. For equatorial orbit launches, sites exist in the Andes and Africa. With funding, the Gen-1 system could operate by 2020 AD. The Gen-2 system requires more advanced technology. Passenger spacecraft enter the atmosphere at 70,000 feet, where deceleration is acceptable. A levitated evacuated launch tube is used, with the levitation force generated by magnetic interaction between superconducting cables on the levitated launch tube and superconducting cables on the ground beneath. The Gen-2 system could launch 100's of thousands of passengers per year, and operate by 2030 AD. Maglev launch will enable large human scale exploration of space, thousands of gigawatts of space solar power satellites for beamed power to Earth, a robust defense against asteroids and comets, and many other applications not possible now.

  5. Jets from Merging Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    With the recent discovery of gravitational waves from the merger of two black holes, its especially important to understand the electromagnetic signals resulting from mergers of compact objects. New simulations successfully follow a merger of two neutron stars that produces a short burst of energy via a jet consistent with short gamma-ray burst (sGRB) detections.Still from the authors simulation showing the two neutron stars, and their magnetic fields, before merger. [Adapted from Ruiz et al. 2016]Challenging SystemWe have long suspected that sGRBs are produced by the mergers of compact objects, but this model has been difficult to prove. One major hitch is that modeling the process of merger and sGRB launch is very difficult, due to the fact that these extreme systems involve magnetic fields, fluids and full general relativity.Traditionally, simulations are only able to track such mergers over short periods of time. But in a recent study, Milton Ruiz (University of Illinois at Urbana-Champaign and Industrial University of Santander, Colombia) and coauthors Ryan Lang, Vasileios Paschalidis and Stuart Shapiro have modeled a binary neutron star system all the way through the process of inspiral, merger, and the launch of a jet.A Merger TimelineHow does this happen? Lets walk through one of the teams simulations, in which dipole magnetic field lines thread through the interior of each neutron star and extend beyond its surface(like magnetic fields found in pulsars). In this example, the two neutron stars each have a mass of 1.625 solar masses.Simulation start (0 ms)Loss of energy via gravitational waves cause the neutron stars to inspiral.Merger (3.5 ms)The neutron stars are stretched by tidal effects and make contact. Their merger produces a hypermassive neutron star that is supported against collapse by its differential (nonuniform) rotation.Delayed collapse into a black hole (21.5 ms)Once the differential rotation is redistributed by magnetic fields and partially radiated away in gravitational waves, the hypermassive neutron star loses its support and collapses to a black hole.Plasma velocities turn around (51.5 ms)Initially the plasma was falling inward, but as the disk of neutron-star debris is accreted onto the black hole, energy is released. This turns the plasma near the black hole poles around and flings it outward.Magnetic field forms a helical funnel (62.5 ms)The fields near the poles of the black hole amplify as they are wound around, creating a funnel that provides the wall of the jet.Jet outflow extends to heights greater than 445 km (64.5 ms)The disk is all accreted and, since the fuel is exhausted, the outflow shuts off (within 100ms)Neutron-Star SuccessPlot showing the gravitational wave signature for one of the authors simulations. The moments of merger of the neutron stars and collapse to a black hole are marked. [Adapted from Ruiz et al. 2016]These simulations show that no initial black hole is needed to launch outflows; a merger of two neutron stars can result in an sGRB-like jet. Another interesting result is that the magnetic field configuration doesnt affect the formation of a jet: neutron stars with magnetic fields confined to their interiors launch jets as effectively as those with pulsar-like magnetic fields. The accretion timescale for both cases is consistent with the duration of an sGRB.While this simulation models milliseconds of real time, its enormously computationally challenging and takes months to simulate. The successes of this simulation represent exciting advances in numerical relativity, as well as in our understanding of the electromagnetic counterparts that may accompany gravitational waves.BonusCheck out this awesome video of the authors simulations. The colors differentiate the plasma density and the white lines depict the pulsar-like magnetic field that initially threads the two merging neutron stars. Watch as the neutron stars evolve through the different stages outlined above, eventually forming a black hole and launching a powerful jet.[Simulations and visualization by M. Ruiz, R. Lang, V. Paschalidis, S. Shapiro and the Illinois Relativity Group REU team: S. Connelly, C. Fan, A. Khan, and P. Wongsutthikoson]CitationMilton Ruiz et al 2016 ApJ 824 L6. doi:10.3847/2041-8205/824/1/L6

  6. Prediction and warning system of SEP events and solar flares for risk estimation in space launch operations

    NASA Astrophysics Data System (ADS)

    García-Rigo, Alberto; Núñez, Marlon; Qahwaji, Rami; Ashamari, Omar; Jiggens, Piers; Pérez, Gustau; Hernández-Pajares, Manuel; Hilgers, Alain

    2016-07-01

    A web-based prototype system for predicting solar energetic particle (SEP) events and solar flares for use by space launch operators is presented. The system has been developed as a result of the European Space Agency (ESA) project SEPsFLAREs (Solar Events Prediction system For space LAunch Risk Estimation). The system consists of several modules covering the prediction of solar flares and early SEP Warnings (labeled Warning tool), the prediction of SEP event occurrence and onset, and the prediction of SEP event peak and duration. In addition, the system acquires data for solar flare nowcasting from Global Navigation Satellite Systems (GNSS)-based techniques (GNSS Solar Flare Detector, GSFLAD and the Sunlit Ionosphere Sudden Total Electron Content Enhancement Detector, SISTED) as additional independent products that may also prove useful for space launch operators.

  7. KSC-2011-7851

    NASA Image and Video Library

    2011-11-21

    CAPE CANAVERAL, Fla. – Members of the media tour several facilities, including the Multi-Payload Processing Facility, during the 21st Century Ground Systems Program Tour at Kennedy Space Center in Florida. Other tour stops were the Launch Equipment Test Facility, the Operations & Checkout Building and the Canister Rotation Facility. NASA’s 21st Century Ground Systems Program was initiated at Kennedy Space Center to establish the needed launch and processing infrastructure to support the Space Launch System Program and to work toward transforming the landscape of the launch site for a multi-faceted user community. Photo credit: NASA/Jim Grossmann

  8. KSC-2011-7846

    NASA Image and Video Library

    2011-11-21

    CAPE CANAVERAL, Fla. – Members of the media tour several facilities, including the Launch Equipment Test Facility in the Industrial Area, during the 21st Century Ground Systems Program Tour at Kennedy Space Center in Florida. Other tour stops were the Operations & Checkout Building, the Multi-Payload Processing Facility and the Canister Rotation Facility. NASA’s 21st Century Ground Systems Program was initiated at Kennedy Space Center to establish the needed launch and processing infrastructure to support the Space Launch System Program and to work toward transforming the landscape of the launch site for a multi-faceted user community. Photo credit: NASA/Jim Grossmann

  9. KSC-2011-7847

    NASA Image and Video Library

    2011-11-21

    CAPE CANAVERAL, Fla. – Members of the media tour several facilities, including the Launch Equipment Test Facility in the Industrial Area, during the 21st Century Ground Systems Program Tour at Kennedy Space Center in Florida. Other tour stops were the Operations & Checkout Building, the Multi-Payload Processing Facility and the Canister Rotation Facility. NASA’s 21st Century Ground Systems Program was initiated at Kennedy Space Center to establish the needed launch and processing infrastructure to support the Space Launch System Program and to work toward transforming the landscape of the launch site for a multi-faceted user community. Photo credit: NASA/Jim Grossmann

  10. SLS Overview and Progress

    NASA Technical Reports Server (NTRS)

    Honeycutt, John

    2017-01-01

    Space Launch System will be able to offer payload accommodations with five times more volume than any contemporary launch vehicle Payload fairings of up to 10-meter diameter are being studied Space Launch System will offer an initial capability of greater than 70 metric tons to low Earth orbit; current U.S. launch vehicle maximum is 28 t Evolved version of SLS will offer Mars-enabling capability of greater than 130 metric tons to LEO SLS offers reduced transit times to the outer solar system by half or greater Higher characteristic energy (C3) also enables larger payloads to destination

  11. Crew Access Arm Installation onto Mobile Launcher

    NASA Image and Video Library

    2018-02-26

    Viewed from the 274-foot level mobile launcher (ML), the Orion crew access arm (CAA) is beign installed on the tower. The CAA will support the Space launch System (SLS) rocket at NASA's Kennedy Space Center in Florida. NASA's Exploration Ground Systems organization has been overseeing installation of umbilicals and other launch accessories on the 380-foot-tall ML in preparation for stacking the first launch of the Space launch System, or SLS, rocket with an Orion spacecraft. The CAA is designed to rotate from its retracted position and line up with Orion's crew hatch providing entry for astronauts and technicians.

  12. Crew Access Arm Installation onto Mobile Launcher

    NASA Image and Video Library

    2018-02-26

    Viewed from the 274-foot level mobile launcher (ML), a technician begins installation of the Orion crew access arm (CAA) to the tower. The CAA will support the Space launch System (SLS) rocket at NASA's Kennedy Space Center in Florida. NASA's Exploration Ground Systems organization has been overseeing installation of umbilicals and other launch accessories on the 380-foot-tall ML in preparation for stacking the first launch of the Space launch System, or SLS, rocket with an Orion spacecraft. The CAA is designed to rotate from its retracted position and line up with Orion's crew hatch providing entry for astronauts and technicians.

  13. Mars Pathfinder Status at Launch

    NASA Technical Reports Server (NTRS)

    Spear, A. J.; Freeman, Delma C., Jr.; Braun, Robert D.

    1996-01-01

    The Mars Pathfinder Flight System is in final test, assembly and launch preparations at the Kennedy Space Center in Florida. Launch is scheduled for 2 Dec. 1996. The Flight System development, in particular the Entry, Descent, and Landing (EDL) system, was a major team effort involving JPL, other NASA centers and industry. This paper provides a summary Mars Pathfinder description and status at launch. In addition, a section by NASA's Langley Research Center, a key EDL contributor, is provided on their support to Mars Pathfinder. This section is included as an example of the work performed by Pathfinder team members outside JPL.

  14. Recommendations for a wind profiling network to support Space Shuttle launches

    NASA Technical Reports Server (NTRS)

    Zamora, R. J.

    1992-01-01

    The feasibility is examined of a network of clear air radar wind profilers to forecast wind conditions before Space Shuttle launches during winter. Currently, winds are measured only in the vicinity of the shuttle launch site and wind loads on the launch vehicle are estimated using these measurements. Wind conditions upstream of the Cape are not monitored. Since large changes in the wind shear profile can be associated with weather systems moving over the Cape, it may be possible to improve wind forecasts over the launch site if wind measurements are made upstream. A radar wind profiling system is in use at the Space Shuttle launch site. This system can monitor the wind profile continuously. The existing profiler could be combined with a number of radars located upstream of the launch site. Thus, continuous wind measurements would be available upstream and at the Cape. NASA-Marshall representatives have set the requirements for radar wind profiling network. The minimum vertical resolution of the network must be set so that the wind shears over the depths greater than or = 1 km will be detected. The network should allow scientists and engineers to predict the wind profile over the Cape 6 hours before a Space Shuttle launch.

  15. 5. Photographic copy of a photograph taken from pasteup negatives ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photographic copy of a photograph taken from paste-up negatives for U.S. Army Corps of Engineers document GF-500-MCP, entitled "Grand Forks Site RLS Army Operating Drawings, Master Composite Photographs for SAFEGUARD TSE Systems and Equipment," Page 9, dated 1 September 1974 (original document and negatives in possession of U.S. Army Corps of Engineers, Huntsville, AL). Photographer unknown. View of pneumatic control panel regulating entrance to waiting room #116. The panel activated the pneumatic cylinder for opening and closing of blast doors #116 and #118. A rotary air motor actuated locking and unlocking of the doors. - Stanley R. Mickelsen Safeguard Complex, Remote Launch Operations Building, Near Service Road exit from Patrol Road, Nekoma, Cavalier County, ND

  16. COSMOS Launch Services

    NASA Astrophysics Data System (ADS)

    Kalnins, Indulis

    2002-01-01

    COSMOS-3M is a two stage launcher with liquid propellant rocket engines. Since 1960's COSMOS has launched satellites of up to 1.500kg in both circular low Earth and elliptical orbits with high inclination. The direct SSO ascent is available from Plesetsk launch site. The very high number of 759 launches and the achieved success rate of 97,4% makes this space transportation system one of the most reliable and successful launchers in the world. The German small satellite company OHB System co-operates since 1994 with the COSMOS manufacturer POLYOT, Omsk, in Russia. They have created the joint venture COSMOS International and successfully launched five German and Italian satellites in 1999 and 2000. The next commercial launches are contracted for 2002 and 2003. In 2005 -2007 COSMOS will be also used for the new German reconnaissance satellite launches. This paper provides an overview of COSMOS-3M launcher: its heritage and performance, examples of scientific and commercial primary and piggyback payload launches, the launch service organization and international cooperation. The COSMOS launch service business strategy main points are depicted. The current and future position of COSMOS in the worldwide market of launch services is outlined.

  17. KSC-98pc970

    NASA Image and Video Library

    1998-08-20

    In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprised of KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29

  18. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane begins moving away from the turn basin at the Launch Complex 39 Area on NASA's Kennedy Space Center. The crane with its 70-foot boom will be moved to Launch Pad 39B and used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  19. NASA's Space Launch System: Systems Engineering Approach for Affordability and Mission Success

    NASA Technical Reports Server (NTRS)

    Hutt, John J.; Whitehead, Josh; Hanson, John

    2017-01-01

    NASA is working toward the first launch of the Space Launch System, a new, unmatched capability for deep space exploration with launch readiness planned for 2019. Since program start in 2011, SLS has passed several major formal design milestones, and every major element of the vehicle has produced test and flight hardware. The SLS approach to systems engineering has been key to the program's success. Key aspects of the SLS SE&I approach include: 1) minimizing the number of requirements, 2) elimination of explicit verification requirements, 3) use of certified models of subsystem capability in lieu of requirements when appropriate and 4) certification of capability beyond minimum required capability.

  20. KSC-2009-1446

    NASA Image and Video Library

    2009-01-31

    CAPE CANAVERAL, Fla. – The Ares I-X launch abort system that will form the tip of the Ares rocket arrives in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The launch abort system will provide safe evacuation if a launch vehicle failure occurs. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller

  1. Use of DES Modeling for Determining Launch Availability for SLS

    NASA Technical Reports Server (NTRS)

    Watson, Mike; Staton, Eric; Cates, Grant; Finn, Ron; Altino, Karen; Burns, Lee

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is developing new capabilities for human and scientific exploration beyond Earth's orbit. This effort includes the Space Shuttle derived Space Launch System (SLS), the Multi-Purpose Crew Vehicle (MPCV) "Orion", and the Ground Systems Development and Operations (GSDO). There are several requirements and Technical Performance Measures (TPMs) that have been levied by the Exploration Systems Development (ESD) upon the SLS, MPCV, and GSDO Programs including an integrated Launch Availability (LA) TPM. The LA TPM is used to drive into the SLS, Orion and GSDO designs a high confidence of successfully launching exploration missions that have narrow Earth departure windows. The LA TPM takes into consideration the reliability of the overall system (SLS, Orion and GSDO), natural environments, likelihood of a failure, and the time required to recover from an anomaly. A challenge with the LA TPM is the interrelationships between SLS, Orion, GSDO and the natural environments during launch countdown and launch delays that makes it impossible to develop an analytical solution for calculating the integrated launch probability. This paper provides an overview of how Discrete Event Simulation (DES) modeling was used to develop the LA TPM, how it was allocated down to the individual programs, and how the LA analysis is being used to inform and drive the SLS, Orion, and GSDO designs to ensure adequate launch availability for future human exploration.

  2. Use of DES Modeling for Determining Launch Availability for SLS

    NASA Technical Reports Server (NTRS)

    Staton, Eric; Cates, Grant; Finn, Ronald; Altino, Karen M.; Burns, K. Lee; Watson, Michael D.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is developing new capabilities for human and scientific exploration beyond Earth's orbit. This effort includes the Space Shuttle derived Space Launch System (SLS), the Orion Multi-Purpose Crew Vehicle (MPCV), and the Ground Systems Development and Operations (GSDO). There are several requirements and Technical Performance Measures (TPMs) that have been levied by the Exploration Systems Development (ESD) upon the SLS, Orion, and GSDO Programs including an integrated Launch Availability (LA) TPM. The LA TPM is used to drive into the SLS, Orion and GSDO designs a high confidence of successfully launching exploration missions that have narrow Earth departure windows. The LA TPM takes into consideration the reliability of the overall system (SLS, Orion and GSDO), natural environments, likelihood of a failure, and the time required to recover from an anomaly. A challenge with the LA TPM is the interrelationships between SLS, Orion, GSDO and the natural environments during launch countdown and launch delays that makes it impossible to develop an analytical solution for calculating the integrated launch probability. This paper provides an overview of how Discrete Event Simulation (DES) modeling was used to develop the LA TPM, how it was allocated down to the individual programs, and how the LA analysis is being used to inform and drive the SLS, Orion, and GSDO designs to ensure adequate launch availability for future human exploration.

  3. Trends in space launch services : globalization and commercial development : Quarterly Launch Report : special report

    DOT National Transportation Integrated Search

    1996-01-01

    Launch service providers are leading the globalization of the space industry by forming international partnerships. The end of the Cold : War has created an environment that favors cooperation between manufacturers of high technology launch systems, ...

  4. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2002-10-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education, and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle. For the SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second- generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  5. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2002-10-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle during separation of stages. For SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first-generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado; a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  6. KSC-2014-2249

    NASA Image and Video Library

    2014-04-16

    CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. Both panels were moved by crane and lowered onto a storage stand at the far end of the facility. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper

  7. KSC-2014-2243

    NASA Image and Video Library

    2014-04-16

    CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the panels is being lifted by crane for the move to a storage stand at the other end of the facility. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper

  8. KSC-2014-2248

    NASA Image and Video Library

    2014-04-16

    CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. The first panel is secured on a storage stand while the second panel is being lowered by crane onto the storage stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper

  9. KSC-2014-2234

    NASA Image and Video Library

    2014-04-17

    CAPE CANAVERAL, Fla. - The second set of two Ogive panels for the Orion Launch Abort System have arrived at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the Ogive panels has been uncrated and is being lifted by crane for placement on a work stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett

  10. KSC-2014-2244

    NASA Image and Video Library

    2014-04-16

    CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the panels has been lifted by crane and technicians are preparing it for the move to a storage stand at the other end of the facility. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper

  11. KSC-2014-2242

    NASA Image and Video Library

    2014-04-16

    CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the panels is being lifted by crane for the move to a storage stand at the other end of the facility. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper

  12. KSC-2014-2233

    NASA Image and Video Library

    2014-04-17

    CAPE CANAVERAL, Fla. - The second set of two Ogive panels for the Orion Launch Abort System have arrived at the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. One of the Ogive panels has been uncrated and is being lifted by crane for placement on a work stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Kim Shiflett

  13. KSC-2014-2247

    NASA Image and Video Library

    2014-04-16

    CAPE CANAVERAL, Fla. - The first set of two Ogive panels for the Orion Launch Abort System was uncrated inside the Launch Abort System Facility, or LASF, at NASA’s Kennedy Space Center in Florida. The second panel is being lifted by crane and technicians are monitoring the progress as it is being moved to join the first panel on the storage stand. During processing, the panels will be secured around the Orion crew module and attached to the Launch Abort System. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dan Casper

  14. Heavy Lift Launch Vehicles for 1995 and Beyond

    NASA Technical Reports Server (NTRS)

    Toelle, R. (Compiler)

    1985-01-01

    A Heavy Lift Launch Vehicle (HLLV) designed to deliver 300,000 lb to a 540 n mi circular polar orbit may be required to meet national needs for 1995 and beyond. The vehicle described herein can accommodate payload envelopes up to 50 ft diameter by 200 ft in length. Design requirements include reusability for the more expensive components such as avionics and propulsion systems, rapid launch turnaround time, minimum hardware inventory, stage and component flexibility and commonality, and low operational costs. All ascent propulsion systems utilize liquid propellants, and overall launch vehicle stack height is minimized while maintaining a reasonable vehicle diameter. The ascent propulsion systems are based on the development of a new liquid oxygen/hydrocarbon booster engine and liquid oxygen/liquid hydrogen upper stage engine derived from today's SSME technology. Wherever possible, propulsion and avionics systems are contained in reusable propulsion/avionics modules that are recovered after each launch.

  15. Orion Service Module Umbilical (OSMU) Testing Complete

    NASA Image and Video Library

    2016-10-19

    Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.

  16. SLI Artist's Concept

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education, and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle. For the SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second- generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  17. SLI Artist's Concept-Stage Separation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle during separation of stages. For SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first-generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado; a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.

  18. Time Domain Stability Margin Assessment of the NASA Space Launch System GN&C Design for Exploration Mission One

    NASA Technical Reports Server (NTRS)

    Clements, Keith; Wall, John

    2017-01-01

    The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation.

  19. Time Domain Stability Margin Assessment of the NS Space Launch System GN&C Design for Exploration Mission One

    NASA Technical Reports Server (NTRS)

    Clements, Keith; Wall, John

    2017-01-01

    The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation.

  20. SSTO rockets. A practical possibility

    NASA Technical Reports Server (NTRS)

    Bekey, Ivan

    1994-01-01

    Most experts agree that single-stage-to-orbit (SSTO) rockets would become feasible if more advanced technologies were available to reduce the vehicle dry weight, increase propulsion system performance, or both. However, these technologies are usually judged to be very ambitious and very far off. This notion persists despite major advances in technology and vehicle design in the past decade. There appears to be four major misperceptions about SSTOs, regarding their mass fraction, their presumed inadequate performance margin, their supposedly small payloads, and their extreme sensitivity to unanticipated vehicle weight growth. These misperceptions can be dispelled for SSTO rockets using advanced technologies that could be matured and demonstrated in the near term. These include a graphite-composite primary structure, graphite-composite and Al-Li propellant tanks with integral reusable thermal protection, long-life tripropellant or LOX-hydrogen engines, and several technologies related to operational effectiveness, including vehicle health monitoring, autonomous avionics/flight control, and operable launch and ground handling systems.

  1. SSTO rockets. A practical possibility

    NASA Astrophysics Data System (ADS)

    Bekey, Ivan

    1994-07-01

    Most experts agree that single-stage-to-orbit (SSTO) rockets would become feasible if more advanced technologies were available to reduce the vehicle dry weight, increase propulsion system performance, or both. However, these technologies are usually judged to be very ambitious and very far off. This notion persists despite major advances in technology and vehicle design in the past decade. There appears to be four major misperceptions about SSTOs, regarding their mass fraction, their presumed inadequate performance margin, their supposedly small payloads, and their extreme sensitivity to unanticipated vehicle weight growth. These misperceptions can be dispelled for SSTO rockets using advanced technologies that could be matured and demonstrated in the near term. These include a graphite-composite primary structure, graphite-composite and Al-Li propellant tanks with integral reusable thermal protection, long-life tripropellant or LOX-hydrogen engines, and several technologies related to operational effectiveness, including vehicle health monitoring, autonomous avionics/flight control, and operable launch and ground handling systems.

  2. The stability of the oscillation motion of charged grains in the Saturnian ring system

    NASA Astrophysics Data System (ADS)

    Xu, R.-L.; Houpis, L. F.

    1985-02-01

    A perturbation approach for the gravitoelectrodynamic forces encountered in the corotating plasma environment of Saturn is used to determine the stability of charged grains, given a random initial velocity. Attention is given to the implications of the Northrop and Hill (1982) and Mendis et al. (1982) results for the formation of the Saturnian ring system, and it is suggested that the marginal z stability radius at 1.5245 Saturn radii for Kepler-launched particles is due to an erosion process with ejecta of the order 0.05-0.5 microns, rather than that of the previously suggested plasma. The diffuseness of the Saturnian rings beyond the F ring is also explained in terms of instability, while a new critical radius for r instability is suggestd for the optical depth feature at 1.72 Saturn radii. The F ring is analyzed in detail.

  3. A Tailored Concept of Operations for NASA LSP Integrated Operations

    NASA Technical Reports Server (NTRS)

    Owens, Clark V.

    2016-01-01

    An integral part of the Systems Engineering process is the creation of a Concept of Operations (ConOps) for a given system, with the ConOps initially established early in the system design process and evolved as the system definition and design matures. As Integration Engineers in NASA's Launch Services Program (LSP) at Kennedy Space Center (KSC), our job is to manage the interface requirements for all the robotic space missions that come to our Program for a Launch Service. LSP procures and manages a launch service from one of our many commercial Launch Vehicle Contractors (LVCs) and these commercial companies are then responsible for developing the Interface Control Document (ICD), the verification of the requirements in that document, and all the services pertaining to integrating the spacecraft and launching it into orbit. However, one of the systems engineering tools that have not been employed within LSP to date is a Concept of Operations. The goal of this project is to research the format and content that goes into these various aerospace industry ConOps and tailor the format and content into template form, so the template may be used as an engineering tool for spacecraft integration with future LSP procured launch services.

  4. The commercial implications of the EELV program

    NASA Astrophysics Data System (ADS)

    Sasso, Steven E.

    1998-01-01

    There have been several studies over the past 15 years intended to define and develop a space launch system that would meet future needs of the United States Government (USG). While these past studies (Advanced Launch System, National Launch System, Spacelifter, etc) yielded valuable data, none were carried to fruition. Overriding issues included high development cost, changing requirements, and uncertainty in the mission model, as well lack of a clear direction for where this nation should be headed. In 1995, the Air Force embarked on the Evolved Expendable Launch Vehicle (EELV) program as a way of defining and developing the next-generation expendable launch system. This time groundrules for this effort were clearly defined-the program relied on the use of evolving a system rather than developing a high-technology solution to reduce development cost, and the commercial market was factored in as a way of reducing cost to the USG. The EELV program is nearing the engineering manufacturing development (EMD) phase by mid-1998 with first flight planned for early 2001. This paper describes the planned Lockheed Martin EELV program and its ability to utilize the commercial market to benefit the USG in its need to develop the next-generation expendable launch vehicle.

  5. 73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED NEAR CENTER OF SOUTH WALL OF SLC-3E CONTROL ROOM. FROM LEFT TO RIGHT ON WALL IN BACKGROUND: COMMUNICATIONS HEADSET AND FOOT PEDAL IN FORGROUND. ACCIDENT REPORTING EMERGENCY NOTIFICATION SYSTEM TELEPHONE, ATLAS H FUEL COUNTER, AND DIGITAL COUNTDOWN CLOCK. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  6. Research Technology

    NASA Image and Video Library

    2001-03-01

    This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  7. Equivalent Mass versus Life Cycle Cost for Life Support Technology Selection

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2003-01-01

    The decision to develop a particular life support technology or to select it for flight usually depends on the cost to develop and fly it. Other criteria - performance, safety, reliability, crew time, and risk - are considered, but cost is always an important factor. Because launch cost accounts for most of the cost of planetary missions, and because launch cost is directly proportional to the mass launched, equivalent mass has been used instead of cost to select life support technology. The equivalent mass of a life support system includes the estimated masses of the hardware and of the pressurized volume, power supply, and cooling system that the hardware requires. The equivalent mass is defined as the total payload launch mass needed to provide and support the system. An extension of equivalent mass, Equivalent System Mass (ESM), has been established for use in Advanced Life Support. A crew time mass-equivalent and sometimes other non-mass factors are added to equivalent mass to create ESM. Equivalent mass is an estimate of the launch cost only. For earth orbit rather than planetary missions, the launch cost is usually exceeded by the cost of Design, Development, Test, and Evaluation (DDT&E). Equivalent mass is used only in life support analysis. Life Cycle Cost (LCC) is much more commonly used. LCC includes DDT&E, launch, and operations costs. Since LCC includes launch cost, it is always a more accurate cost estimator than equivalent mass. The relative costs of development, launch, and operations vary depending on the mission design, destination, and duration. Since DDT&E or operations may cost more than launch, LCC may give a more accurate cost ranking than equivalent mass. To be sure of identifying the lowest cost technology for a particular mission, we should use LCC rather than equivalent mass.

  8. Vehicle health management for guidance, navigation and control systems

    NASA Technical Reports Server (NTRS)

    Radke, Kathleen; Frazzini, Ron; Bursch, Paul; Wald, Jerry; Brown, Don

    1993-01-01

    The objective of the program was to architect a vehicle health management (VHM) system for space systems avionics that assures system readiness for launch vehicles and for space-based dormant vehicles. The platforms which were studied and considered for application of VHM for guidance, navigation and control (GN&C) included the Advanced Manned Launch System (AMLS), the Horizontal Landing-20/Personnel Launch System (HL-20/PLS), the Assured Crew Return Vehicle (ACRV) and the Extended Duration Orbiter (EDO). This set was selected because dormancy and/or availability requirements are driving the designs of these future systems.

  9. Design and Flight Performance of the Orion Pre-Launch Navigation System

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato

    2016-01-01

    Launched in December 2014 atop a Delta IV Heavy from the Kennedy Space Center, the Orion vehicle's Exploration Flight Test-1 (EFT-1) successfully completed the objective to test the prelaunch and entry components of the system. Orion's pre-launch absolute navigation design is presented, together with its EFT-1 performance.

  10. Reflectivity of the AL-N coating: results of mechanical and environmental tests

    NASA Astrophysics Data System (ADS)

    Anisimov, Vladimir P.; Anisimova, Irina A.; Kashirin, Victor A.; Moldosanov, Kamil A.; Skrynnikov, Alexander M.

    2002-09-01

    This paper concerns a behavior of the total hemispherical reflectance (THR) of the Al-N coating in the course of mechanical and environmental tests. The Al-N coating has been designed to reduce the stray sunlight background in the satellite-borne optical instruments and charge-particles-analyzing apparatus operating in open space under intensive solar radiation. Usually, this problem arises when a density of instruments installed on the satellite is high and it is difficult to avoid getting to instrument the light reflected by neighboring devices. Resolution of this problem is also important in connection with development of the extra-atmosphere Far UV astronomy. The THR measurement results are presented for 10 wavelengths wihtin a range from 400 to 927 nm, and also at 121.6 nm, the most intensive line of the solar UV spectrum able to result in considerable contribution to the detector noise in space devices. The samples of the Al-N coating were exposed to standard mechanical loads including the vibratory loads, linear overloads, and impacts, to which the space equipment may be subjected when shipping to the space-vehicle launching site and also when lauching. The samples were also exposed to environmental tests simulating the vacuum, humidity, and cyclic temperature conditions, which may influence the space instruments while shipping, storing, launching, in flight, and under operating conditions. The THR measurements of the samples were made following exposure to each test. The THRs of tested samples at the wavelength of 121.6 nm were as low as 1.5-2%.

  11. Intelsat communications satellite scheduled for launch

    NASA Technical Reports Server (NTRS)

    1983-01-01

    To be placed into a highly elliptical transfer orbit by the Atlas Centaur (AC-61) launch vehicle, the INTELSAT V-F satellite has 12,000 voice circuits and 2 color television channels and incorporates a maritime communication system for ship to shore communications. The stages of the launch vehicle and the launch operations are described. A table shows the launch sequence.

  12. From Earth to Orbit: An assessment of transportation options

    NASA Technical Reports Server (NTRS)

    Gavin, Joseph G., Jr.; Blond, Edmund; Brill, Yvonne C.; Budiansky, Bernard; Cooper, Robert S.; Demisch, Wolfgang H.; Hawk, Clark W.; Kerrebrock, Jack L.; Lichtenberg, Byron K.; Mager, Artur

    1992-01-01

    The report assesses the requirements, benefits, technological feasibility, and roles of Earth-to-Orbit transportation systems and options that could be developed in support of future national space programs. Transportation requirements, including those for Mission-to-Planet Earth, Space Station Freedom assembly and operation, human exploration of space, space science missions, and other major civil space missions are examined. These requirements are compared with existing, planned, and potential launch capabilities, including expendable launch vehicles (ELV's), the Space Shuttle, the National Launch System (NLS), and new launch options. In addition, the report examines propulsion systems in the context of various launch vehicles. These include the Advanced Solid Rocket Motor (ASRM), the Redesigned Solid Rocket Motor (RSRM), the Solid Rocket Motor Upgrade (SRMU), the Space Shuttle Main Engine (SSME), the Space Transportation Main Engine (STME), existing expendable launch vehicle engines, and liquid-oxygen/hydrocarbon engines. Consideration is given to systems that have been proposed to accomplish the national interests in relatively cost effective ways, with the recognition that safety and reliability contribute to cost-effectiveness. Related resources, including technology, propulsion test facilities, and manufacturing capabilities are also discussed.

  13. KSC-2013-3796

    NASA Image and Video Library

    2013-09-27

    CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, technicians prepare to work on the launch abort system, or LAS, for the Orion Exploration Flight Test-1 mission. Horizontally stacked together are the components of the LAS, the launch abort motor, the attitude control motor, the jettison motor and the fairing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  14. KSC-2013-3795

    NASA Image and Video Library

    2013-09-27

    CAPE CANAVERAL, Fla. – Inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a technician works on the launch abort system, or LAS, for the Orion Exploration Flight Test-1 mission. Horizontally stacked together are the components of the LAS, the launch abort motor, the attitude control motor, the jettison motor and the fairing. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The LAS is designed to safely pull the Orion crew module away from the launch vehicle in the event of an emergency on the launch pad or during the initial ascent of NASA’s Space Launch System, or SLS, rocket. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on the SLS rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  15. Implementing planetary protection on the Atlas V fairing and ground systems used to launch the Mars Science Laboratory.

    PubMed

    Benardini, James N; La Duc, Myron T; Ballou, David; Koukol, Robert

    2014-01-01

    On November 26, 2011, the Mars Science Laboratory (MSL) launched from Florida's Cape Canaveral Air Force Station aboard an Atlas V 541 rocket, taking its first step toward exploring the past habitability of Mars' Gale Crater. Because microbial contamination could profoundly impact the integrity of the mission, and compliance with international treaty was a necessity, planetary protection measures were implemented on all MSL hardware to verify that bioburden levels complied with NASA regulations. The cleanliness of the Atlas V payload fairing (PLF) and associated ground support systems used to launch MSL were also evaluated. By applying proper recontamination countermeasures early and often in the encapsulation process, the PLF was kept extremely clean and was shown to pose little threat of recontaminating the enclosed MSL flight system upon launch. Contrary to prelaunch estimates that assumed that the interior PLF spore burden ranged from 500 to 1000 spores/m², the interior surfaces of the Atlas V PLF were extremely clean, housing a mere 4.65 spores/m². Reported here are the practices and results of the campaign to implement and verify planetary protection measures on the Atlas V launch vehicle and associated ground support systems used to launch MSL. All these facilities and systems were very well kept and exceeded the levels of cleanliness and rigor required in launching the MSL payload.

  16. Orion EFT-1 Launch from NASA Causeway

    NASA Image and Video Library

    2014-12-05

    A Delta IV Heavy rocket lifts off from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida carrying NASA's Orion spacecraft on an unpiloted flight test to Earth orbit. Liftoff was at 7:05 a.m. EST. During the two-orbit, four-and-a-half hour mission, engineers will evaluate the systems critical to crew safety, the launch abort system, the heat shield and the parachute system.

  17. Orion Launch from UCS-3

    NASA Image and Video Library

    2014-12-05

    A Delta IV Heavy rocket soars after liftoff from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida carrying NASA's Orion spacecraft on an unpiloted flight test to Earth orbit. Liftoff was at 7:05 a.m. EST. During the two-orbit, four-and-a-half hour mission, engineers will evaluate the systems critical to crew safety, the launch abort system, the heat shield and the parachute system.

  18. Mission Success of U.S. Launch Vehicle Flights from a Propulsion Stage-Based Perspective: 1980-2015

    NASA Technical Reports Server (NTRS)

    Go, Susie; Lawrence, Scott L.; Mathias, Donovan L.; Powell, Ryann

    2017-01-01

    This report documents a study of the historical safety and reliability trends of U.S. space launch vehicles from 1980 to 2015. The launch data history is examined to determine whether propulsion technology choices drove launch system risk and is used to understand how different propulsion system failures manifested into different failure scenarios. The historical data is processed by launch vehicle stage, where a stage is limited by definition to a single propulsion technology, either liquid or solid. Results are aggregated in terms of failure trends and manifestations as a functions of different propulsion stages. Failure manifestations are analyzed in order to understand the types and frequencies of accident environments in which an abort system for a crewed vehicle would be required to operate.

  19. Method and system for determining the torque required to launch a vehicle having a hybrid drive-train

    DOEpatents

    Hughes, Douglas A.

    2006-04-04

    A method and system are provided for determining the torque required to launch a vehicle having a hybrid drive-train that includes at least two independently operable prime movers. The method includes the steps of determining the value of at least one control parameter indicative of a vehicle operating condition, determining the torque required to launch the vehicle from the at least one determined control parameter, comparing the torque available from the prime movers to the torque required to launch the vehicle, and controlling operation of the prime movers to launch the vehicle in response to the comparing step. The system of the present invention includes a control unit configured to perform the steps of the method outlined above.

  20. Commercial Titan ELV - Filling a need in the national Space Transportation System

    NASA Astrophysics Data System (ADS)

    Jenkins, T. M.; Davis, R. M., Jr.

    1983-06-01

    The design and performance capabilities of the Titan 34D launch vehicle are reviewed, noting that it is proven launch system that is capable of complementing the Shuttle in terms of having an available, large payload-capacity launch system for domestic satellites. The Titan's development began in the 1950s as an ICBM, and the Titan III configuration was first flown in 1966, followed by 121 operational launches with a 99 percent success rate. The current configuration features a fairing large enough to hold a 150 in. diam payload. Satellites up to 12,500 lb can be launched into GEO, 27,600 lb into polar orbits, and 34,100 lb into LEO. The Titan 34D is reconfigurable and can carry payloads that would otherwise be handled by the Shuttle.

  1. Tabletop Experimental Track for Magnetic Launch Assist

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Marshall Space Flight Center's (MSFC's) Advanced Space Transportation Program has developed the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) technology that could give a space vehicle a running start to break free from Earth's gravity. A Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at speeds up to 600 mph. The vehicle would shift to rocket engines for launch into orbit. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically propel a space vehicle along the track. The tabletop experimental track for the system shown in this photograph is 44-feet long, with 22-feet of powered acceleration and 22-feet of passive braking. A 10-pound carrier with permanent magnets on its sides swiftly glides by copper coils, producing a levitation force. The track uses a linear synchronous motor, which means the track is synchronized to turn the coils on just before the carrier comes in contact with them, and off once the carrier passes. Sensors are positioned on the side of the track to determine the carrier's position so the appropriate drive coils can be energized. MSFC engineers have conducted tests on the indoor track and a 50-foot outdoor track. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  2. Impacts of Launch Vehicle Fairing Size on Human Exploration Architectures

    NASA Technical Reports Server (NTRS)

    Jefferies, Sharon; Collins, Tim; Dwyer Cianciolo, Alicia; Polsgrove, Tara

    2017-01-01

    Human missions to Mars, particularly to the Martian surface, are grand endeavors that place extensive demands on ground infrastructure, launch capabilities, and mission systems. The interplay of capabilities and limitations among these areas can have significant impacts on the costs and ability to conduct Mars missions and campaigns. From a mission and campaign perspective, decisions that affect element designs, including those based on launch vehicle and ground considerations, can create effects that ripple through all phases of the mission and have significant impact on the overall campaign. These effects result in impacts to element designs and performance, launch and surface manifesting, and mission operations. In current Evolvable Mars Campaign concepts, the NASA Space Launch System (SLS) is the primary launch vehicle for delivering crew and payloads to cis-lunar space. SLS is currently developing an 8.4m diameter cargo fairing, with a planned upgrade to a 10m diameter fairing in the future. Fairing diameter is a driving factor that impacts many aspects of system design, vehicle performance, and operational concepts. It creates a ripple effect that influences all aspects of a Mars mission, including: element designs, grounds operations, launch vehicle design, payload packaging on the lander, launch vehicle adapter design to meet structural launch requirements, control and thermal protection during entry and descent at Mars, landing stability, and surface operations. Analyses have been performed in each of these areas to assess and, where possible, quantify the impacts of fairing diameter selection on all aspects of a Mars mission. Several potential impacts of launch fairing diameter selection are identified in each of these areas, along with changes to system designs that result. Solutions for addressing these impacts generally result in increased systems mass and propellant needs, which can further exacerbate packaging and flight challenges. This paper presents the results of the analyses performed, the potential changes to mission architectures and campaigns that result, and the general trends that are more broadly applicable to any element design or mission planning for human exploration.

  3. Deployable Camera (DCAM3) System for Observation of Hayabusa2 Impact Experiment

    NASA Astrophysics Data System (ADS)

    Sawada, Hirotaka; Ogawa, Kazunori; Shirai, Kei; Kimura, Shinichi; Hiromori, Yuichi; Mimasu, Yuya

    2017-07-01

    An asteroid exploration probe "Hayabusa2", that was developed by Japan Aerospace Exploration Agency (JAXA), was launched on December 3rd, 2014 to challenge complicated and accurate operations during the mission phase around the C-type asteroid 162137 Ryugu (1999 JU3) (Tsuda et al. in Acta Astron. 91:356-362, 2013). An impact experiment on a surface of the asteroid will be conducted using the Small Carry-on Impactor (SCI) system, which will be the world's first artificial crater creation experiment on asteroids (Saiki et al. in Proc. International Astronautical Congress, IAC-12.A3.4.8, 2012, Acta Astron. 84:227-236, 2013a; Proc. International Symposium on Space Technology and Science, 2013b). We developed a new micro Deployable CAMera (DCAM3) system for remote observations of the impact phenomenon applying our conventional DCAM technology that is one of the smallest probes in space missions and gained a great success in past Japanese mission IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). DCAM3 is a miniaturized separable unit that contains two cameras and radio communication devices for transmission image data to the mothership "Hayabusa2", and it observes the impact experiment at an unsafe region in where the "Hayabusa2" is difficult to stay because of a risk of exploding and impacting debris hitting. In this paper, we report details of the DCAM3 system and development results as well as our mission plan for the DCAM3 observation during the SCI experiment.

  4. User's manual for the ALS base heating prediction code, volume 2

    NASA Technical Reports Server (NTRS)

    Reardon, John E.; Fulton, Michael S.

    1992-01-01

    The Advanced Launch System (ALS) Base Heating Prediction Code is based on a generalization of first principles in the prediction of plume induced base convective heating and plume radiation. It should be considered to be an approximate method for evaluating trends as a function of configuration variables because the processes being modeled are too complex to allow an accurate generalization. The convective methodology is based upon generalizing trends from four nozzle configurations, so an extension to use the code with strap-on boosters, multiple nozzle sizes, and variations in the propellants and chamber pressure histories cannot be precisely treated. The plume radiation is more amenable to precise computer prediction, but simplified assumptions are required to model the various aspects of the candidate configurations. Perhaps the most difficult area to characterize is the variation of radiation with altitude. The theory in the radiation predictions is described in more detail. This report is intended to familiarize a user with the interface operation and options, to summarize the limitations and restrictions of the code, and to provide information to assist in installing the code.

  5. Rockot-an available launch system for affordable access to space

    NASA Astrophysics Data System (ADS)

    de Vries, U.; Kinnersley, M.; Freeborn, P.

    2000-01-01

    The Rockot launcher will perform its fifth launch, the first commercial launch, in Spring 2000 from the Plesetsk Cosmodrome in Northern Russia carrying two American satellites into a LEO orbit. In preparation for that a launch pad verification flight will be carried out in November this year to prove the functionality of the adapted facilities at the Plesetsk launch site and by placing a Russian satellite into a highly inclined orbit. The results of the launches will be described in detail in the paper as well as the installations at the launch site. Eurockot, the German-Russian joint-venture company marketing and managing the Rockot launch vehicle is meanwhile an integral part of the space launch community. Eurockot was formed by DaimlerChrysler Aerospace and Khrunichev State Research and Production Space Center. A brief overview of its activities, the commercial program and the performance/services offered by Eurockot is presented. Rockot can launch satellites weighing up to 1850 kg into polar or other low earth orbits (LEO). The Rockot launch vehicle is based on the former Russian SS-19 strategic missile. The first and second stages are inherited from the SS-19, the third stage Breeze which has already been developed has multiple ignition capability. The Breeze upper stage is under production at Khrunichev in Moscow. The Rockot launch system is flight proven and is operated from the Plesetsk as well as from the Baikonur launch site. .

  6. Operationally Efficient Propulsion System Study (OEPSS): OEPSS Video Script

    NASA Technical Reports Server (NTRS)

    Wong, George S.; Waldrop, Glen S.; Trent, Donnie (Editor)

    1992-01-01

    The OEPSS video film, along with the OEPSS Databooks, provides a data base of current launch experience that will be useful for design of future expendable and reusable launch systems. The focus is on the launch processing of propulsion systems. A brief 15-minute overview of the OEPSS study results is found at the beginning of the film. The remainder of the film discusses in more detail: current ground operations at the Kennedy Space Center; typical operations issues and problems; critical operations technologies; and efficiency of booster and space propulsion systems. The impact of system architecture on the launch site and its facility infrastucture is emphasized. Finally, a particularly valuable analytical tool, developed during the OEPSS study, that will provide for the "first time" a quantitative measure of operations efficiency for a propulsion system is described.

  7. Enhancing begetation productivity forecasting using remotely-sensed surface soil moisture retrievals

    USDA-ARS?s Scientific Manuscript database

    With the onset of data availability from the ESA Soil Moisture and Ocean Salinity (SMOS) mission (Kerr and Levine, 2008) and the expected 2015 launch of the NASA Soil Moisture Active and Passive (SMAP) mission (Entekhabi et al., 2010), the next five years should see a significant expansion in our ab...

  8. 10. Photographic copy of photograph (original print in possession of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photographic copy of photograph (original print in possession of CSSD-HO, Huntsville, AL). Photographer unknown. Comparison of Spartan and sprint missiles. The sprint missile is on the left; the Spartan missile is on the right - Stanley R. Mickelsen Safeguard Complex, Missile Launch Area, Within Exclusion Area, Nekoma, Cavalier County, ND

  9. 11. Photographic copy of photograph (original print in possession of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photographic copy of photograph (original print in possession of CSSD-HO, Huntsville, AL). Photographer unknown. View of rocket models, allowing a comparison of the Spartan, galosh (USSR), minute man III, and SS-9 (USSR) missiles - Stanley R. Mickelsen Safeguard Complex, Missile Launch Area, Within Exclusion Area, Nekoma, Cavalier County, ND

  10. On the development of earth observation satellite systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Subsequent to the launching of the first LANDSAT by NASA, Japan has recognized the importance of data from earth observation satellites, has conducted studies, and is preparing to develop an independent system. The first ocean observation satellite will be launched in 1983, the second in 1985. The first land observation satellite is scheduled to be launched in 1987 and by 1990 Japan intends to have both land and ocean observation systems in regular operation. The association reception and data processing systems are being developed.

  11. 14 CFR 415.127 - Flight safety system design and operation data.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Expendable Launch Vehicle From a Non-Federal Launch Site § 415.127 Flight safety system design and operation...: flight termination system; command control system; tracking; telemetry; communications; flight safety... control system. (7) Flight termination system component storage, operating, and service life. A listing of...

  12. Launch vehicle tracking enhancement through Global Positioning System Metric Tracking

    NASA Astrophysics Data System (ADS)

    Moore, T. C.; Li, Hanchu; Gray, T.; Doran, A.

    United Launch Alliance (ULA) initiated operational flights of both the Atlas V and Delta IV launch vehicle families in 2002. The Atlas V and Delta IV launch vehicles were developed jointly with the US Air Force (USAF) as part of the Evolved Expendable Launch Vehicle (EELV) program. Both Launch Vehicle (LV) families have provided 100% mission success since their respective inaugural launches and demonstrated launch capability from both Vandenberg Air Force Base (VAFB) on the Western Test Range and Cape Canaveral Air Force Station (CCAFS) on the Eastern Test Range. However, the current EELV fleet communications, tracking, & control architecture & technology, which date back to the origins of the space launch business, require support by a large and high cost ground footprint. The USAF has embarked on an initiative known as Future Flight Safety System (FFSS) that will significantly reduce Test Range Operations and Maintenance (O& M) cost by closing facilities and decommissioning ground assets. In support of the FFSS, a Global Positioning System Metric Tracking (GPS MT) System based on the Global Positioning System (GPS) satellite constellation has been developed for EELV which will allow both Ranges to divest some of their radar assets. The Air Force, ULA and Space Vector have flown the first 2 Atlas Certification vehicles demonstrating the successful operation of the GPS MT System. The first Atlas V certification flight was completed in February 2012 from CCAFS, the second Atlas V certification flight from VAFB was completed in September 2012 and the third certification flight on a Delta IV was completed October 2012 from CCAFS. The GPS MT System will provide precise LV position, velocity and timing information that can replace ground radar tracking resource functionality. The GPS MT system will provide an independent position/velocity S-Band telemetry downlink to support the current man-in-the-loop ground-based commanded destruct of an anomalous flight- The system utilizes a 50 channel digital receiver capable of navigating in high dynamic environments and high altitudes fed by antennas mounted diametrically opposed on the second stage airframe skin. To enhance cost effectiveness, the GPS MT System design implemented existing commercial parts and common environmental and interface requirements for both EELVs. The EELV GPS MT System design is complete, successfully qualified and has demonstrated that the system performs as simulated. This paper summarizes the current development status, system cost comparison, and performance capabilities of the EELV GPS MT System.

  13. Constraining physical parameters of ultra-fast outflows in PDS 456 with Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Hagino, K.; Odaka, H.; Done, C.; Gandhi, P.; Takahashi, T.

    2014-07-01

    Deep absorption lines with extremely high velocity of ˜0.3c observed in PDS 456 spectra strongly indicate the existence of ultra-fast outflows (UFOs). However, the launching and acceleration mechanisms of UFOs are still uncertain. One possible way to solve this is to constrain physical parameters as a function of distance from the source. In order to study the spatial dependence of parameters, it is essential to adopt 3-dimensional Monte Carlo simulations that treat radiation transfer in arbitrary geometry. We have developed a new simulation code of X-ray radiation reprocessed in AGN outflow. Our code implements radiative transfer in 3-dimensional biconical disk wind geometry, based on Monte Carlo simulation framework called MONACO (Watanabe et al. 2006, Odaka et al. 2011). Our simulations reproduce FeXXV and FeXXVI absorption features seen in the spectra. Also, broad Fe emission lines, which reflects the geometry and viewing angle, is successfully reproduced. By comparing the simulated spectra with Suzaku data, we obtained constraints on physical parameters. We discuss launching and acceleration mechanisms of UFOs in PDS 456 based on our analysis.

  14. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    Space Launch System Test Conductors Roberta Wyrick, left, and Tracy Parks, both with Jacobs, NASA's Test and Operations Support Contractor, monitor operations from their consoles in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  15. KSC-98pc969

    NASA Image and Video Library

    1998-08-19

    KENNEDY SPACE CENTER, FLA. -- In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprisING KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29.

  16. KSC-98pc971

    NASA Image and Video Library

    1998-08-20

    KENNEDY SPACE CENTER, FLA. -- In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprising KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29

  17. The evolution of automated launch processing

    NASA Technical Reports Server (NTRS)

    Tomayko, James E.

    1988-01-01

    The NASA Launch Processing System (LPS) to which attention is presently given has arrived at satisfactory solutions for the distributed-computing, good user interface and dissimilar-hardware interface, and automation-related problems that emerge in the specific arena of spacecraft launch preparations. An aggressive effort was made to apply the lessons learned in the 1960s, during the first attempts at automatic launch vehicle checkout, to the LPS. As the Space Shuttle System continues to evolve, the primary contributor to safety and reliability will be the LPS.

  18. KSC-2009-2252

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, catenary wires are being suspended from the lighting masts on the lightning towers. The catenary wire system under development for the Constellation Program’s next-generation vehicles will significantly increase the shielding level, providing better protection, and further separate the electrical current from vital launch hardware. The system will help avoid delays to the launch schedule by collecting more information on the strike for analysis by launch managers. Photo credit: NASA/Jack Pfaller

  19. KSC-2009-2251

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, catenary wires are being suspended from the lighting masts on the lightning towers. The catenary wire system under development for the Constellation Program’s next-generation vehicles will significantly increase the shielding level, providing better protection, and further separate the electrical current from vital launch hardware. The system will help avoid delays to the launch schedule by collecting more information on the strike for analysis by launch managers. Photo credit: NASA/Jack Pfaller

  20. KSC-2009-2255

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, catenary wires are being suspended from the lighting masts on the lightning towers. The catenary wire system under development for the Constellation Program’s next-generation vehicles will significantly increase the shielding level, providing better protection, and further separate the electrical current from vital launch hardware. The system will help avoid delays to the launch schedule by collecting more information on the strike for analysis by launch managers. Photo credit: NASA/Jack Pfaller

  1. KSC-2009-2254

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, catenary wires are being suspended from the lighting masts on the lightning towers. The catenary wire system under development for the Constellation Program’s next-generation vehicles will significantly increase the shielding level, providing better protection, and further separate the electrical current from vital launch hardware. The system will help avoid delays to the launch schedule by collecting more information on the strike for analysis by launch managers. Photo credit: NASA/Jack Pfaller

  2. KSC-2009-2253

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, catenary wires are being suspended from the lighting masts on the lightning towers. The catenary wire system under development for the Constellation Program’s next-generation vehicles will significantly increase the shielding level, providing better protection, and further separate the electrical current from vital launch hardware. The system will help avoid delays to the launch schedule by collecting more information on the strike for analysis by launch managers. Photo credit: NASA/Jack Pfaller

  3. The KSC Simulation Team practices for contingencies in Firing Room 1

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprised of KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29.

  4. Study on launch scheme of space-net capturing system.

    PubMed

    Gao, Qingyu; Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang

    2017-01-01

    With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme.

  5. On-Chip AC self-test controller

    DOEpatents

    Flanagan, John D [Rhinebeck, NY; Herring, Jay R [Poughkeepsie, NY; Lo, Tin-Chee [Fishkill, NY

    2009-09-29

    A system for performing AC self-test on an integrated circuit that includes a system clock for normal operation is provided. The system includes the system clock, self-test circuitry, a first and second test register to capture and launch test data in response to a sequence of data pulses, and a logic circuit to be tested. The self-test circuitry includes an AC self-test controller and a clock splitter. The clock splitter generates the sequence of data pulses including a long data capture pulse followed by an at speed data launch pulse and an at speed data capture pulse followed by a long data launch pulse. The at speed data launch pulse and the at speed data capture pulse are generated for a common cycle of the system clock.

  6. Study on launch scheme of space-net capturing system

    PubMed Central

    Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang

    2017-01-01

    With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme. PMID:28877187

  7. Magnetic Launch Assist Experimental Track

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this photograph, a futuristic spacecraft model sits atop a carrier on the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) System, experimental track at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies that would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  8. Research Technology

    NASA Image and Video Library

    2001-03-01

    Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  9. Life Cycle Analysis of Dedicated Nano-Launch Technologies

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; McCleskey, Carey; Martin, John; Lepsch, Roger; Hernani, Tosoc

    2014-01-01

    Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs. As a result, these launch opportunities await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options.With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.

  10. 14 CFR 417.117 - Reviews.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... information: (i) Readiness of launch vehicle and payload. (ii) Readiness of any flight safety system and... of a launch safety review must ensure satisfaction of the following criteria: (i) A launch operator... operator must resolve all safety related action items. (ii) A launch operator must assign and certify...

  11. KSC-2011-7925

    NASA Image and Video Library

    2011-11-23

    CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center in Florida, media representatives taking the 21st Century Ground Systems tour appear to be the size of ants in this view from the top of the 355-foot-tall mobile launcher on Launch Pad 39B. Other stops on the tour include the Vehicle Assembly Building, a crawler-transporter parked on the crawlerway, and the Launch Control Center's Firing Room 1. These facilities and equipment will be used to prepare and launch NASA's new Orion spacecraft on the Space Launch System heavy-lift rocket. The tour was arranged as part of prelaunch media activities for the agency's Mars Science Laboratory (MSL) launch. Liftoff of MSL aboard a United Launch Alliance Atlas V rocket from Space Launch Complex-41 on Cape Canaveral Air Force Station is planned during a launch window which extends from 10:02 a.m. to 11:45 a.m. EST on Nov. 26. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Jim Grossmann

  12. Launch Pad Escape System Design (Human Spaceflight)

    NASA Technical Reports Server (NTRS)

    Maloney, Kelli

    2011-01-01

    A launch pad escape system for human spaceflight is one of those things that everyone hopes they will never need but is critical for every manned space program. Since men were first put into space in the early 1960s, the need for such an Emergency Escape System (EES) has become apparent. The National Aeronautics and Space Administration (NASA) has made use of various types of these EESs over the past 50 years. Early programs, like Mercury and Gemini, did not have an official launch pad escape system. Rather, they relied on a Launch Escape System (LES) of a separate solid rocket motor attached to the manned capsule that could pull the astronauts to safety in the event of an emergency. This could only occur after hatch closure at the launch pad or during the first stage of flight. A version of a LES, now called a Launch Abort System (LAS) is still used today for all manned capsule type launch vehicles. However, this system is very limited in that it can only be used after hatch closure and it is for flight crew only. In addition, the forces necessary for the LES/LAS to get the capsule away from a rocket during the first stage of flight are quite high and can cause injury to the crew. These shortcomings led to the development of a ground based EES for the flight crew and ground support personnel as well. This way, a much less dangerous mode of egress is available for any flight or ground personnel up to a few seconds before launch. The early EESs were fairly simple, gravity-powered systems to use when thing's go bad. And things can go bad very quickly and catastrophically when dealing with a flight vehicle fueled with millions of pounds of hazardous propellant. With this in mind, early EES designers saw such a passive/unpowered system as a must for last minute escapes. This and other design requirements had to be derived for an EES, and this section will take a look at the safety design requirements had to be derived for an EES, and this section will take a look at the safety design aspects for a launch pad escape system.

  13. Observation of solar-system objects with the ISO satellite

    NASA Astrophysics Data System (ADS)

    Encrenaz, Therese

    1998-09-01

    The ISO (Infrared Space Observatory) mission was an ESA earth-orbiting satellite devoted to the infrared observation of astronomical sources. The 60-cm helium-cooled telescope was launched in November 1995 and ended its life in May 1998. The satellite was equipped with 4 focal-plane instruments: a camera (CAM, 2.5-17 microns), a photometer (PHT, 2-200 microns) and two spectrometers, SWS (2.3-45 microns) and LWS (45-180 microns). A description of the ISO mission can be found in Kessler et al.(A&A 315 L27, 1996). Observations with ISO have been performed on all classes of solar-system objects. Several important discoveries have been obtained from the ISO data, in particular with the SWS instrument. A few of them are listed below: (1) a new determination of D/H on the four giant planets; (2) the discovery of an external source of water in the stratospheres of the giant planets and Titan; (3) the detection of CO_2 in the stratospheres of Jupiter, Saturn and Neptune; (4) the detection of new hydrocarbons (CH_3C_2H, C_4H_2, C_6H_6, CH_3) in Saturn's stratosphere; (5) the detection of tropospheric water in Saturn; (6) the detection of CO_2 in comet Hale-Bopp at far heliocentric distances (4.6 AU); (7) the first detection of forsterite (Mg_2SiO_4) in the dust of comet Hale-Bopp; (7) the determination of the formation temperature of comets Hale-Bopp and Hartley 2 (27 K and 35 K respectively) from the measurement of the ortho-para ratio in their H_2O nu _3 emission lines. In addition, ISO spectra of Titan, Io and the other galilean satellites, and asteroids were also recorded; IR photometry was achieved on Pluto, distant comets and zodiacal light. Preliminary results can be found in Crovisier et al. (A&A 315 L385, 1996; Science 275 1904, 1996), Encrenaz et al. (A&A 315 L397, 1996; A&A 333 L43, 1998), de Graauw et al. (A&A 321 L13, 1997), Feuchtgruber et al. (Nature 389 159, 1997), Griffin et al. (A&A 315 L389, 1996), Davis et al. (A&A 315 L393, 1996), Reach et al. (A&A 315 L381, 1996), Bezard et al. (A&A 334 L41, 1998) and Coustenis et al. (A&A 336 L85, 1998).

  14. Aero-Assisted Pre-Stage for Ballistic and Aero-Assisted Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Ustinov, Eugene A.

    2012-01-01

    A concept of an aero-assisted pre-stage is proposed, which enables launch of both ballistic and aero-assisted launch vehicles from conventional runways. The pre-stage can be implemented as a delta-wing with a suitable undercarriage, which is mated with the launch vehicle, so that their flight directions are coaligned. The ample wing area of the pre-stage combined with the thrust of the launch vehicle ensure prompt roll-out and take-off of the stack at airspeeds typical for a conventional jet airliner. The launch vehicle is separated from the pre-stage as soon as safe altitude is achieved, and the desired ascent trajectory is reached. Nominally, the pre-stage is non-powered. As an option, to save the propellant of the launch vehicle, the pre-stage may have its own short-burn propulsion system, whereas the propulsion system of the launch vehicle is activated at the separation point. A general non-dimensional analysis of performance of the pre-stage from roll-out to separation is carried out and applications to existing ballistic launch vehicle and hypothetical aero-assisted vehicles (spaceplanes) are considered.

  15. Simulated JWST/NIRISS Spectroscopy of Anticipated TESS Planets and Selected Super-Earths Discovered from K2 and Ground-Based Surveys

    NASA Astrophysics Data System (ADS)

    Louie, Dana; Albert, Loic; Deming, Drake

    2017-01-01

    The 2018 launch of James Webb Space Telescope (JWST), coupled with the 2017 launch of the Transiting Exoplanet Survey Satellite (TESS), heralds a new era in Exoplanet Science, with TESS projected to detect over one thousand transiting sub-Neptune-sized planets (Ricker et al, 2014), and JWST offering unprecedented spectroscopic capabilities. Sullivan et al (2015) used Monte Carlo simulations to predict the properties of the planets that TESS is likely to detect, and published a catalog of 962 simulated TESS planets. Prior to TESS launch, the re-scoped Kepler K2 mission and ground-based surveys such as MEarth continue to seek nearby Earth-like exoplanets orbiting M-dwarf host stars. The exoplanet community will undoubtedly employ JWST for atmospheric characterization follow-up studies of promising exoplanets, but the targeted planets for these studies must be chosen wisely to maximize JWST science return. The goal of this project is to estimate the capabilities of JWST’s Near InfraRed Imager and Slitless Spectrograph (NIRISS)—operating with the GR700XD grism in Single Object Slitless Spectrography (SOSS) mode—during observations of exoplanets transiting their host stars. We compare results obtained for the simulated TESS planets, confirmed K2-discovered super-Earths, and exoplanets discovered using ground-based surveys. By determining the target planet characteristics that result in the most favorable JWST observing conditions, we can optimize the choice of target planets in future JWST follow-on atmospheric characterization studies.

  16. Electric Propulsion for Low Earth Orbit Constellations

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    1998-01-01

    Hall Effect electric propulsion was evaluated for orbit insertion, satellite repositioning, orbit maintenance and de-orbit applications for a sample low earth orbit satellite constellation. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion, the Hall thruster system can add additional spacecraft per launch using planned payload power levels. One satellite can be added to the assumed four satellite baseline chemical launch without additional mission times. Two or three satellites may be added by providing part of the orbit insertion with the Hall system. In these cases orbit insertion times were found to be 35 and 62 days. Depending on the electric propulsion scenario, the resulting launch vehicle savings is nearly two, three or four Delta 7920 launch vehicles out of the chemical baseline scenarios eight Delta 7920 launch vehicles.

  17. Electric Propulsion for Low Earth Orbit Constellations

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    1998-01-01

    Hall effect electric propulsion was evaluated for orbit insertion, satellite repositioning, orbit maintenance and de-orbit applications for a sample low earth orbit satellite constellation. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion, the Hall thruster system can add additional spacecraft per launch using planned payload power levels. One satellite can be added to the assumed four satellite baseline chemical launch without additional mission times. Two or three satellites may be added by providing part of the orbit insertion with the Hall system. In these cases orbit insertion times were found to be 35 and 62 days. Depending, on the electric propulsion scenario, the resulting launch vehicle savings is nearly two, three or four Delta 7920 launch vehicles out of the chemical baseline scenario's eight Delta 7920 launch vehicles.

  18. KSC-06pd2004

    NASA Image and Video Library

    2006-08-29

    KENNEDY SPACE CENTER, FLA. - Space Shuttle Atlantis rolls up the ramp to Launch Pad 39B atop the crawler-transporter. The crawler has a leveling system designed to keep the top of the space shuttle vertical while negotiating the 5-percent grade leading to the top of the launch pad. Also, a laser docking system provides almost pinpoint accuracy when the crawler and mobile launcher platform are positioned at the launch pad. At right are the open rotating service structure and the fixed service structure topped by the 80-foot lightning mast. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett

  19. KSC-06pd2003

    NASA Image and Video Library

    2006-08-29

    KENNEDY SPACE CENTER, FLA. - A late-day sun spotlights Space Shuttle Atlantis as it rolls up the ramp to Launch Pad 39B atop the crawler-transporter. The crawler has a leveling system designed to keep the top of the space shuttle vertical while negotiating the 5-percent grade leading to the top of the launch pad. Also, a laser docking system provides almost pinpoint accuracy when the crawler and mobile launcher platform are positioned at the launch pad. At left are the open rotating service structure and the fixed service structure topped by the 80-foot lightning mast. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett

  20. KSC-06pd2002

    NASA Image and Video Library

    2006-08-29

    KENNEDY SPACE CENTER, FLA. - A late-day sun spotlights Space Shuttle Atlantis as it rolls up the ramp to Launch Pad 39B atop the crawler-transporter. The crawler has a leveling system designed to keep the top of the space shuttle vertical while negotiating the 5-percent grade leading to the top of the launch pad. Also, a laser docking system provides almost pinpoint accuracy when the crawler and mobile launcher platform are positioned at the launch pad. At left are the open rotating service structure and the fixed service structure topped by the 80-foot lightning mast. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett

Top