Advanced Manned Launch System (AMLS) study
NASA Technical Reports Server (NTRS)
Ehrlich, Carl F., Jr.; Potts, Jack; Brown, Jerry; Schell, Ken; Manley, Mary; Chen, Irving; Earhart, Richard; Urrutia, Chuck; Randolph, Ray; Morris, Jim
1992-01-01
To assure national leadership in space operations and exploration in the future, NASA must be able to provide cost effective and operationally efficient space transportation. Several NASA studies and the joint NASA/DoD Space Transportation Architecture Studies (STAS) have shown the need for a multi-vehicle space transportation system with designs driven by enhanced operations and low costs. NASA is currently studying an advanced manned launch system (AMLS) approach to transport crew and cargo to the Space Station Freedom. Several single and multiple stage systems from air-breathing to all-rocket concepts are being examined in a series of studies potential replacements for the Space Shuttle launch system in the 2000-2010 time frame. Rockwell International Corporation, under contract to the NASA Langley Research Center, has analyzed a two-stage all-rocket concept to determine whether this class of vehicles is appropriate for the AMLS function. The results of the pre-phase A study are discussed.
Technology Requirements for Affordable Single-Stage Rocket Launch Vehicles
NASA Technical Reports Server (NTRS)
Stanley, Douglas O.; Piland, William M.
2004-01-01
A number of manned Earth-to-orbit (ETO) vehicle options for replacing or complementing the current Space Transportation System are being examined under the Advanced Manned Launch System (AMLS) study. The introduction of a reusable single-stage vehicle (SSV) into the U.S. launch vehicle fleet early in the next century could greatly reduce ETO launch costs. As a part of the AMLS study, the conceptual design of an SSV using a wide variety of enhancing technologies has recently been completed and is described in this paper. This paper also identifies the major enabling and enhancing technologies for a reusable rocket-powered SSV and provides examples of the mission payoff potential of a variety of important technologies. This paper also discusses the impact of technology advancements on vehicle margins, complexity, and risk, all of which influence the total system cost.
Propulsion requirements for reusable single-stage-to-orbit rocket vehicles
NASA Astrophysics Data System (ADS)
Stanley, Douglas O.; Engelund, Walter C.; Lepsch, Roger
1994-05-01
The conceptual design of a single-stage-to-orbit (SSTO) vehicle using a wide variety of evolutionary technologies has recently been completed as a part of NASA's Advanced Manned Launch System (AMLS) study. The employment of new propulsion system technologies is critical to the design of a reasonably sized, operationally efficient SSTO vehicle. This paper presents the propulsion system requirements identified for this near-term AMLS SSTO vehicle. Sensitivities of the vehicle to changes in specific impulse and sea-level thrust-to-weight ratio are examined. The results of a variety of vehicle/propulsion system trades performed on the near-term AMLS SSTO vehicle are also presented.
Evaluation of undeveloped rocket engine cycle applications to advanced transportation
NASA Technical Reports Server (NTRS)
1990-01-01
Undeveloped pump-fed, liquid propellant rocket engine cycles were assessed and evaluated for application to Next Manned Transportation System (NMTS) vehicles, which would include the evolving Space Transportation System (STS Evolution), the Personnel Launch System (PLS), and the Advanced Manned Launch System (AMLS). Undeveloped engine cycles selected for further analysis had potential for increased reliability, more maintainability, reduced cost, and improved (or possibly level) performance when compared to the existing SSME and proposed STME engines. The split expander (SX) cycle, the full flow staged combustion (FFSC) cycle, and a hybrid version of the FFSC, which has a LOX expander drive for the LOX pump, were selected for definition and analysis. Technology requirements and issues were identified and analyses of vehicle systems weight deltas using the SX and FFSC cycles in AMLS vehicles were performed. A strawman schedule and cost estimate for FFSC subsystem technology developments and integrated engine system demonstration was also provided.
Vehicle health management for guidance, navigation and control systems
NASA Technical Reports Server (NTRS)
Radke, Kathleen; Frazzini, Ron; Bursch, Paul; Wald, Jerry; Brown, Don
1993-01-01
The objective of the program was to architect a vehicle health management (VHM) system for space systems avionics that assures system readiness for launch vehicles and for space-based dormant vehicles. The platforms which were studied and considered for application of VHM for guidance, navigation and control (GN&C) included the Advanced Manned Launch System (AMLS), the Horizontal Landing-20/Personnel Launch System (HL-20/PLS), the Assured Crew Return Vehicle (ACRV) and the Extended Duration Orbiter (EDO). This set was selected because dormancy and/or availability requirements are driving the designs of these future systems.
NASA Technical Reports Server (NTRS)
Spears, L. T.; Kramer, R. D.
1990-01-01
The objectives were to examine launch vehicle applications and propulsion requirements for potential future manned space transportation systems and to support planning toward the evolution of Space Shuttle Main Engine (SSME) and Space Transportation Main Engine (STME) engines beyond their current or initial launch vehicle applications. As a basis for examinations of potential future manned launch vehicle applications, we used three classes of manned space transportation concepts currently under study: Space Transportation System Evolution, Personal Launch System (PLS), and Advanced Manned Launch System (AMLS). Tasks included studies of launch vehicle applications and requirements for hydrogen-oxygen rocket engines; the development of suggestions for STME engine evolution beyond the mid-1990's; the development of suggestions for STME evolution beyond the Advanced Launch System (ALS) application; the study of booster propulsion options, including LOX-Hydrocarbon options; the analysis of the prospects and requirements for utilization of a single engine configuration over the full range of vehicle applications, including manned vehicles plus ALS and Shuttle C; and a brief review of on-going and planned LOX-Hydrogen propulsion technology activities.
Application of dual-fuel propulsion to a single stage AMLS vehicle
NASA Technical Reports Server (NTRS)
Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit
1993-01-01
As part of NASA's Advanced Manned Launch System (AMLS) study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate engine concept combining Russian RD-170 kerosene-fueled engines with SSME-derivative engines; the kerosene and hydrogen-fueled Russian RD-701 engine concept; and a dual-fuel, dual-expander engine concept. Analysis to determine vehicle weight and size characteristics was performed using conceptual level design techniques. A response surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicle concepts with respect to several important propulsion system and vehicle design parameters in order to achieve minimum empty weight. Comparisons were then made with a hydrogen-fueled reference, single-stage vehicle. The tools and methods employed in the analysis process are also summarized.
Payload accommodations. Avionics payload support architecture
NASA Technical Reports Server (NTRS)
Creasy, Susan L.; Levy, C. D.
1990-01-01
Concepts for vehicle and payload avionics architectures for future NASA programs, including the Assured Shuttle Access program, Space Station Freedom (SSF), Shuttle-C, Advanced Manned Launch System (AMLS), and the Lunar/Mars programs are discussed. Emphasis is on the potential available to increase payload services which will be required in the future, while decreasing the operational cost/complexity by utilizing state of the art advanced avionics systems and a distributed processing architecture. Also addressed are the trade studies required to determine the optimal degree of vehicle (NASA) to payload (customer) separation and the ramifications of these decisions.
Pereira, Olga; Sampaio-Marques, Belém; Paiva, Artur; Correia-Neves, Margarida; Castro, Isabel; Ludovico, Paula
2015-01-01
The therapeutic strategies against acute myeloid leukemia (AML) have hardly been modified over four decades. Although resulting in a favorable outcome in young patients, older individuals, the most affected population, do not respond adequately to therapy. Intriguingly, the mechanisms responsible for AML cells chemoresistance/susceptibility are still elusive. Mounting evidence has shed light on the relevance of proteolytic systems (autophagy and ubiquitin-proteasome system, UPS), as well as the AMPK pathway, in AML biology and treatment, but their exact role is still controversial. Herein, two AML cell lines (HL-60 and KG-1) were exposed to conventional chemotherapeutic agents (cytarabine and/or doxorubicin) to assess the relevance of autophagy and UPS on AML cells’ response to antileukemia drugs. Our results clearly showed that the antileukemia agents target both proteolytic systems and the AMPK pathway. Doxorubicin enhanced UPS activity while drugs’ combination blocked autophagy specifically on HL-60 cells. In contrast, KG-1 cells responded in a more subtle manner to the drugs tested consistent with the higher UPS activity of these cells. In addition, the data demonstrates that autophagy may play a protective role depending on AML subtype. Specific modulators of autophagy and UPS are, therefore, promising targets for combining with standard therapeutic interventions in some AML subtypes. PMID:25537507
Portwood, Scott; Lal, Deepika; Hsu, Yung-Chun; Vargas, Rodrigo; Johnson, Megan K; Wetzler, Meir; Hart, Charles P; Wang, Eunice S
2013-12-01
Acute myeloid leukemia (AML) is an aggressive hematologic neoplasm. Recent evidence has shown the bone marrow microenvironment in patients with AML to be intrinsically hypoxic. Adaptive cellular responses by leukemia cells to survive under low oxygenation also confer chemoresistance. We therefore asked whether therapeutic exploitation of marrow hypoxia via the hypoxia-activated nitrogen mustard prodrug, TH-302, could effectively inhibit AML growth. We assessed the effects of hypoxia and TH-302 on human AML cells, primary samples, and systemic xenograft models. We observed that human AML cells and primary AML colonies cultured under chronic hypoxia (1% O2, 72 hours) exhibited reduced sensitivity to cytarabine-induced apoptosis as compared with normoxic controls. TH-302 treatment resulted in dose- and hypoxia-dependent apoptosis and cell death in diverse AML cells. TH-302 preferentially decreased proliferation, reduced HIF-1α expression, induced cell-cycle arrest, and enhanced double-stranded DNA breaks in hypoxic AML cells. Hypoxia-induced reactive oxygen species by AML cells were also diminished. In systemic human AML xenografts (HEL, HL60), TH-302 [50 mg/kg intraperitoneally (i.p.) 5 times per week] inhibited disease progression and prolonged overall survival. TH-302 treatment reduced the number of hypoxic cells within leukemic bone marrows and was not associated with hematologic toxicities in nonleukemic or leukemic mice. Later initiation of TH-302 treatment in advanced AML disease was as effective as earlier TH-302 treatment in xenograft models. Our results establish the preclinical activity of TH-302 in AML and provide the rationale for further clinical studies of this and other hypoxia-activated agents for leukemia therapy. ©2013 AACR.
Indicators of Informal Funds Transfer Systems: A Comparison of Traditional and Modern Systems
2008-12-01
comply with anti-money laundering ( AML ) and combating the financing of terrorism ( CFT ) laws. However, coordination at the international, federal...recognized inter-governmental agency to develop national and international standards for AML and CFT . FATF’s approach to IFTS has predominantly been to...Enforcement Network (FinCEN) and enact AML and CFT procedures.123 Furthermore, the states are inconsistent with their licensing requirements and do
Stetson, Lindsay; Ignatz-Hoover, James; Moreton, Stephen; Chakrabarti, Amit; Xia, Zhiqiang; Karan, Goutam; de Lima, Marcos; Agrawal, Mukesh K; Wald, David N
2016-01-01
Standard therapies used for the treatment of Acute Myeloid Leukemia (AML) are cytotoxic agents that target rapidly proliferating cells. Unfortunately, this therapeutic approach has limited efficacy and significant toxicity and the majority of AML patients still die of their disease. In contrast to the poor prognosis of most AML patients, most individuals with a rare subtype of AML, Acute Promyelocytic Leukemia (APL), can be cured by differentiation therapy using regimens containing all-trans retinoic acid. GSK3 has previously been identified as a therapeutic target in AML where its inhibition can lead to the differentiation and growth arrest of leukemic cells. Unfortunately, existing GSK3 inhibitors lead to suboptimal differentiation activity making them less useful as clinical AML differentiation agents. Here we describe the discovery of a novel GSK3 inhibitor, GS87. GS87 was discovered in efforts to optimize GSK3 inhibition for AML differentiation activity. Despite GS87's dramatic ability to induce AML differentiation, kinase profiling reveals its high specificity in targeting GSK3 as compared to other kinases. GS87 demonstrates high efficacy in a mouse AML model system and unlike current AML therapeutics, exhibits little effect on normal bone marrow cells. GS87 induces potent differentiation by more effectively activating GSK3-dependent signaling components including MAPK signaling as compared to other GSK3 inhibitors. GS87 is a novel GSK3 inhibitor with therapeutic potential as a differentiation agent for non-promyelocytic AML. PMID:27196775
NASA Astrophysics Data System (ADS)
Tormoen, Garth W.; Recht, Olivia; Gruber, András; Levine, Ross L.; McCarty, Owen J. T.
2013-10-01
Patients with acute myelogenous leukemia (AML) are at risk for thrombotic complications. Risk to develop thrombosis is closely tied to leukemia subtype, and studies have shown an association between leukocytosis and thrombosis in AML M3. We evaluated the relative roles of cell count and the surface expression of tissue factor (TF) and phosphatidylserine (PS) in the procoagulant phenotype of AML cell lines. The TF-positive AML M3 cell lines, NB4 and HL60, and AML M2 cell line, AML14, exhibited both extrinsic tenase and prothrombinase activity in a purified system and promoted experimental thrombus formation. In contrast, the TF-negative AML cell line, HEL, exhibited only prothrombinase activity and did not affect the rate of occlusive thrombus formation. In plasma, NB4, HL60 and AML14 shortened clotting times in a cell-count, PS- and TF-dependent manner. Exposure of cultured NB4, HL60, and AML14 cells to the chemotherapeutic agent daunorubicin increased their extrinsic tenase activity and PS expression. Clot initiation time inversely correlated with logarithm of PS index, defined as the product of multiplying leukocyte count with cell surface PS exposure. We propose that leukemia cell PS index may serve as a biomarker for procoagulant activity.
Tian, Yiming; Huang, Zoufang; Wang, Zhixiang; Yin, Changxin; Zhou, Lanlan; Zhang, Lingxiu; Huang, Kaikai; Zhou, Hongsheng; Jiang, Xuejie; Li, Jinming; Liao, Libin; Yang, Mo; Meng, Fanyi
2014-01-01
Numerous factors impact on the prognosis of acute myeloid leukemia (AML), among which molecular genetic abnormalities are developed increasingly, however, accurate prediction for newly diagnosed AML patients remains unsatisfied. For further improving the prognosis evaluation system, we investigated the transcripts levels of PDCD7, FIS1, FAM3A, CA6, APP, KLRF1, ATCAY, GGT5 and Ang2 in 97 AML patients and 30 non-malignant controls, and validated using the published microarray data from 225 cytogenetically normal AML (CN-AML) patients treated according to the German AMLCG-1999 protocol. Real-time quantitative polymerase chain reaction and western blot were carried out, and clinical data were collected and analyzed. High Ang2 and FIS1 expression discriminated the CR rate of AML patients (62.5% versus 82.9% for Ang2, P = 0.011; 61.4% versus 82.2% for FIS1, P = 0.029). In CN-AML, patients with high FIS1 expression were more likely to be resistant to two courses of induction (P = 0.035). Overall survival (OS) and relapse-free survival (RFS) were shorter in CN-AML patients with high PDCD7 expression (P<0.001; P = 0.006), and PDCD7 was revealed to be an independent risk factor for OS in CN-AML (P = 0.004). In the analysis of published data from 225 CN-AML patients, PDCD7 remained independently predicting OS in CN-AML (P = 0.039). As a conclusion, Ang2 and FIS1 seem related to decreased CR rate of AML patients, and PDCD7 is associated with shorter OS and RFS in CN-AML. Hence, PDCD7, Ang2 and FIS1 may indicate a more aggressive form and poor prognosis of AML.
Tian, Yiming; Huang, Zoufang; Wang, Zhixiang; Yin, Changxin; Zhou, Lanlan; Zhang, Lingxiu; Huang, Kaikai; Zhou, Hongsheng; Jiang, Xuejie; Li, Jinming; Liao, Libin; Yang, Mo; Meng, Fanyi
2014-01-01
Numerous factors impact on the prognosis of acute myeloid leukemia (AML), among which molecular genetic abnormalities are developed increasingly, however, accurate prediction for newly diagnosed AML patients remains unsatisfied. For further improving the prognosis evaluation system, we investigated the transcripts levels of PDCD7, FIS1, FAM3A, CA6, APP, KLRF1, ATCAY, GGT5 and Ang2 in 97 AML patients and 30 non-malignant controls, and validated using the published microarray data from 225 cytogenetically normal AML (CN-AML) patients treated according to the German AMLCG-1999 protocol. Real-time quantitative polymerase chain reaction and western blot were carried out, and clinical data were collected and analyzed. High Ang2 and FIS1 expression discriminated the CR rate of AML patients (62.5% versus 82.9% for Ang2, P = 0.011; 61.4% versus 82.2% for FIS1, P = 0.029). In CN-AML, patients with high FIS1 expression were more likely to be resistant to two courses of induction (P = 0.035). Overall survival (OS) and relapse-free survival (RFS) were shorter in CN-AML patients with high PDCD7 expression (P<0.001; P = 0.006), and PDCD7 was revealed to be an independent risk factor for OS in CN-AML (P = 0.004). In the analysis of published data from 225 CN-AML patients, PDCD7 remained independently predicting OS in CN-AML (P = 0.039). As a conclusion, Ang2 and FIS1 seem related to decreased CR rate of AML patients, and PDCD7 is associated with shorter OS and RFS in CN-AML. Hence, PDCD7, Ang2 and FIS1 may indicate a more aggressive form and poor prognosis of AML. PMID:24416201
Osteoblasts Protect AML Cells from SDF-1-Induced Apoptosis
Kremer, Kimberly N.; Dudakovic, Amel; McGee-Lawrence, Meghan E.; Philips, Rachael L.; Hess, Allan D.; Smith, B. Douglas; van Wijnen, Andre J.; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; Hedin, Karen E.
2014-01-01
The bone marrow provides a protective environment for acute myeloid leukemia (AML) cells that often allows leukemic stem cells to survive standard chemotherapeutic regimens. Targeting these leukemic stem cells within the bone marrow is critical for preventing relapse. We recently demonstrated that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis in AML cell lines and in patient samples expressing high levels of its receptor, CXCR4. Here we show that a subset of osteoblast lineage cells within the bone marrow can protect AML cells from undergoing apoptosis in response to the SDF-1 naturally present in that location. In co-culture systems, osteoblasts at various stages of differentiation protected AML cell lines and patient isolates from SDF-1-induced apoptosis. The differentiation of the osteoblast cell lines, MC3T3 and W-20-17, mediated this protection via a cell contact-independent mechanism. In contrast, bone marrow-derived mesenchymal cells, the precursors of osteoblasts, induced apoptosis in AML cells via a CXCR4-dependent mechanism and failed to protect AML cells from exogenously added SDF-1. These results indicate that osteoblasts in the process of differentiation potently inhibit the SDF-1-driven apoptotic pathway of CXCR4-expressing AML cells residing in the bone marrow. Drugs targeting this protective mechanism could potentially provide a new approach to treating AML by enhancing the SDF-1-induced apoptosis of AML cells residing within the bone marrow microenvironment. PMID:24851270
Dong-Feng, Zeng; Ting, Liu; Yong, Zhang; Cheng, Chang; Xi, Zhang; Pei-Yan, Kong
2014-04-01
Accumulating evidence indicates that the interaction of human LSCs (leukemic stem cells) with the hematopoietic microenvironment, mediated by the thrombopoietin (TPO)/c-MPL pathway, may be an underlying mechanism for resistance to cell cycle-dependent cytotoxic chemotherapy. However, the role of TPO/c-MPL signaling in AML (acute myelogenous leukemia) chemotherapy resistance hasn't been fully understood. The c-MPL and TPO levels in different AML samples were measured by flow cytometry and ELISA. We also assessed the TPO levels in the osteoblasts derived from bone mesenchymal stem cells (BMSCs). The survival rate of an AML cell line that had been co-cultured with different BMSC-derived osteoblasts was measured to determine the IC50 of an AML chemotherapy drug daunorubicin (DNR). The levels of TPO/c-MPL in the initial and relapse AML patients were significantly higher than that in the control (P < 0.05). The osteoblasts derived from AML patients' BMSCs secreted more TPO than the osteoblasts derived from normal control BMSCs (P < 0.05). A strong positive correlation between the TPO level and c-MPL expression was found in the bone marrow mononuclear cells of the relapse AML patients. More importantly, the IC50 of DNR in the HEL + AML-derived osteoblasts was the highest among all co-culture systems. High level of TPO/c-MPL signaling may protect LSCs from chemotherapy in AML. The effects of inhibition of the TPO/c-MPL pathway on enhancing the chemotherapy sensitivity of AML cells, and on their downstream effector molecules that direct the interactions between patient-derived blasts and leukemia repopulating cells need to be further studied.
NASA Technical Reports Server (NTRS)
Mcmanus, John W.; Goodrich, Kenneth H.
1989-01-01
A research program investigating the use of Artificial Intelligence (AI) programming techniques to aid in the development of a Tactical Decision Generator (TDG) for Within-Visual-Range (WVR) air combat engagements is discussed. The application of AI methods for development and implementation of the TDG is presented. The history of the Adaptive Maneuvering Logic (AML) program is traced and current versions of the (AML) program is traced and current versions of the AML program are compared and contrasted with the TDG system. The Knowledge-Based Systems (KBS) used by the TDG to aid in the decision-making process are outlined and example rules are presented. The results of tests to evaluate the performance of the TDG against a version of AML and against human pilots in the Langley Differential Maneuvering Simulator (DMS) are presented. To date, these results have shown significant performance gains in one-versus-one air combat engagements.
Feng, Yuandong; Shen, Ying; Chen, Hongli; Wang, Xiaman; Zhang, Ru; Peng, Yue; Lei, Xiaoru; Liu, Tian; Liu, Jing; Gu, Liufang; Wang, Fangxia; Yang, Yun; Bai, Ju; Wang, Jianli; Zhao, Wanhong; He, Aili
2018-02-01
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nt that are involved in tumorigenesis and play a key role in cancer progression. To determine whether lncRNAs are involved in acute myeloid leukemia (AML), we analyzed the expression profile of lncRNAs and mRNAs in AML. Five pairs of AML patients and iron deficiency anemia (IDA) controls were screened by microarray. Through coexpression analysis, differently expressed transcripts were divided into modules, and lncRNAs were functionally annotated. We further analyzed the clinical significance of crucial lncRNAs from modules in public data. Finally, the expression of three lncRNAs, RP11-222K16.2, AC092580.4, and RP11-305O.6, were validated in newly diagnosed AML, AML relapse, and IDA patient groups by quantitative RT-PCR, which may be associated with AML patients' overall survival. Further analysis showed that RP11-222K16.2 might affect the differentiation of natural killer cells, and promote the immunized evasion of AML by regulating Eomesodermin expression. Analysis of this study revealed that dysregulated lncRNAs and mRNAs in AML vs IDA controls could affect the immune system and hematopoietic cell differentiation. The biological functions of those lncRNAs need to be further validated. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Vick, Binje; Rothenberg, Maja; Sandhöfer, Nadine; Carlet, Michela; Finkenzeller, Cornelia; Krupka, Christina; Grunert, Michaela; Trumpp, Andreas; Corbacioglu, Selim; Ebinger, Martin; André, Maya C.; Hiddemann, Wolfgang; Schneider, Stephanie; Subklewe, Marion; Metzeler, Klaus H.; Spiekermann, Karsten; Jeremias, Irmela
2015-01-01
Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous disease with poor outcome. Adequate model systems are required for preclinical studies to improve understanding of AML biology and to develop novel, rational treatment approaches. Xenografts in immunodeficient mice allow performing functional studies on patient-derived AML cells. We have established an improved model system that integrates serial retransplantation of patient-derived xenograft (PDX) cells in mice, genetic manipulation by lentiviral transduction, and essential quality controls by immunophenotyping and targeted resequencing of driver genes. 17/29 samples showed primary engraftment, 10/17 samples could be retransplanted and some of them allowed virtually indefinite serial transplantation. 5/6 samples were successfully transduced using lentiviruses. Neither serial transplantation nor genetic engineering markedly altered sample characteristics analyzed. Transgene expression was stable in PDX AML cells. Example given, recombinant luciferase enabled bioluminescence in vivo imaging and highly sensitive and reliable disease monitoring; imaging visualized minimal disease at 1 PDX cell in 10000 mouse bone marrow cells and facilitated quantifying leukemia initiating cells. We conclude that serial expansion, genetic engineering and imaging represent valuable tools to improve the individualized xenograft mouse model of AML. Prospectively, these advancements enable repetitive, clinically relevant studies on AML biology and preclinical treatment trials on genetically defined and heterogeneous subgroups. PMID:25793878
Marjanovic, Irena; Kostic, Jelena; Stanic, Bojana; Pejanovic, Nadja; Lucic, Bojana; Karan-Djurasevic, Teodora; Janic, Dragana; Dokmanovic, Lidija; Jankovic, Srdja; Vukovic, Nada Suvajdzic; Tomin, Dragica; Perisic, Ognjen; Rakocevic, Goran; Popovic, Milos; Pavlovic, Sonja; Tosic, Natasa
2016-10-01
The age-specific differences in the genetic mechanisms of myeloid leukemogenesis have been observed and studied previously. However, NGS technology has provided a possibility to obtain a large amount of mutation data. We analyzed DNA samples from 20 childhood (cAML) and 20 adult AML (aAML) patients, using NGS targeted sequencing. The average coverage of high-quality sequences was 2981 × per amplicon. A total of 412 (207 cAML, 205 aAML) variants in the coding regions were detected; out of which, only 122 (62 cAML and 60 aAML) were potentially protein-changing. Our results confirmed that AML contains small number of genetic alterations (median 3 mutations/patient in both groups). The prevalence of the most frequent single gene AML associated mutations differed in cAML and aAML patient cohorts: IDH1 (0 % cAML, 5 % aAML), IDH2 (0 % cAML, 10 % aAML), NPM1 (10 % cAML, 35 % aAML). Additionally, potentially protein-changing variants were found in tyrosine kinase genes or genes encoding tyrosine kinase associated proteins (JAK3, ABL1, GNAQ, and EGFR) in cAML, while among aAML, the prevalence is directed towards variants in the methylation and histone modifying genes (IDH1, IDH2, and SMARCB1). Besides uniform genomic profile of AML, specific genetic characteristic was exclusively detected in cAML and aAML.
2013-12-01
leukemia (AML) and glioblastoma ( GBM ). Our laboratory is interested in the potential of F10 for improved treatment of prostate cancer based upon...displays strong anti-cancer activity and minimal systemic toxicity in pre-clinical models of AML and GBM and that in previous studies demonstrated...of the low toxicity and strong anti-cancer activity of F10 in animal models of AML and GBM this combination is likely to be effective and well
Wang, Hong; Hua, Mingqiang; Wang, Shukang; Yu, Jie; Chen, Chen; Zhao, Xueyun; Zhang, Chen; Zhong, Chaoqin; Wang, Ruiqing; He, Na; Hou, Ming; Ma, Daoxin
2017-03-01
Though the pathogenesis of AML is still unknown, accumulating evidence revealed that immune response plays a vital part in it. NLRP3 inflammasome as a component of immune system has been found related to several cancers. The single nucleotide polymorphisms (SNPs) of NLRP3 inflammasome genes may be related to pathogenesis and prognosis of AML. We determined polymorphisms of NLRP3 (rs35829419), CARD8 (rs2043211), IL-1β (rs16944), IL-18 (rs1946518) and NF-κB -94 ins/del ATTG in de novo AML patients to find out whether they play roles in the susceptibility and severity of AML. In our study, 383 AML cases and 300 randomly selected healthy individuals were examined for the polymorphisms and expression of NLRP3 genes. IL-1β (rs16944) polymorphism in different risk AML subgroups was found statistically different, with more GA genotype in favorable-risk cytogenetics group. We also demonstrated that the bone marrow blasts of patients carrying IL-18 (rs1946518) GG or GT genotype were higher than patients of TT genotype. IL-18 plasma level of patients with IL-18 (rs1946518) GT or TT genotype was higher than GG genotype. Moreover, the GT genotype of IL-18 (rs1946518) led to statistically poorer AML-specific survival. IL-1β (rs16944) and IL-18 (rs1946518) may be served as potential predictors for AML.
1993-07-01
LPLPW3t TIME XXXX\\ LISI ADDRESSES AND DISIRIBUTION FOR XX XXXXXXXXXXXXXXXXXX\\ LSER ID XXX P %G[ ZZ.zz9 AA MLG MAILING ADDRESS ZIP CODE PI C x XNXX XX...4100.39-M Volume Is APPENDIX C AMLS INFORMATIONAL MESSAGES Corrective Action: Press the F6 ( COM MIT) function key to add the Distribution information
Jab1/Csn5-thioredoxin signaling in relapsed acute monocytic leukemia under oxidative stress
Zhou, Fuling; Pan, Yunbao; Wei, Yongchang; Zhang, Ronghua; Bai, Gaigai; Shen, Qiuju; Meng, Shan; Le, Xiao-Feng; Andreeff, Michael; Claret, Francois X.
2018-01-01
Purpose High levels of ROS and ineffective antioxidant systems contribute to oxidative stress, which affects the function of hematopoietic cells in acute myeloid leukemia (AML); however, the mechanisms by which ROS lead to malignant transformation in relapsed AML-M5 are not completely understood. We hypothesized that alterations in intracellular ROS would trigger AML-M5 relapse by activating the intrinsic pathway. Experimental Design We studied ROS levels and conducted JAB1/COPS5 and TRX gene expression analyses with blood samples obtained from 60 matched AML-M5 patients at diagnosis and relapse and conducted mechanism studies of Jab1’s regulation of Trx in leukemia cell lines. Results Our data showed that increased production of ROS and a low capacity of antioxidant enzymes were characteristics of AML-M5, both at diagnosis and at relapse. Consistently, increased gene expression levels of thioredoxin (TRX) and c-Jun activation domain-binding protein-1 (JAB1/COPS5) were associated with low overall survival rates in patients with AML-M5. In addition, stimulating AML-M5 cells with low concentrations of hydrogen peroxide led to increased Jab1 and Trx expression. Consistently, transfection of ectopic Jab1 into leukemia cells increased Trx expression, whereas silencing of Jab1 in leukemia cells reduced Trx expression. Mechanistically, Jab1 interacted with Trx and stabilized Trx protein. Moreover, Jab1 transcriptionally regulated Trx. Furthermore, depletion of Jab1 inhibited leukemia cell growth both in vitro and in vivo. Conclusions We identified a novel Jab1-Trx axis that is a key cellular process in the pathobiologic characteristics of AML-M5. Targeting the ROS/Jab1/Trx pathway could be beneficial in the treatment of AML-M5. PMID:28270496
Impaired B cell immunity in acute myeloid leukemia patients after chemotherapy.
Goswami, Meghali; Prince, Gabrielle; Biancotto, Angelique; Moir, Susan; Kardava, Lela; Santich, Brian H; Cheung, Foo; Kotliarov, Yuri; Chen, Jinguo; Shi, Rongye; Zhou, Huizhi; Golding, Hana; Manischewitz, Jody; King, Lisa; Kunz, Lauren M; Noonan, Kimberly; Borrello, Ivan M; Smith, B Douglas; Hourigan, Christopher S
2017-07-10
Changes in adaptive immune cells after chemotherapy in adult acute myeloid leukemia (AML) may have implications for the success of immunotherapy. This study was designed to determine the functional capacity of the immune system in adult patients with AML who have completed chemotherapy and are potential candidates for immunotherapy. We used the response to seasonal influenza vaccination as a surrogate for the robustness of the immune system in 10 AML patients in a complete remission post-chemotherapy and performed genetic, phenotypic, and functional characterization of adaptive immune cell subsets. Only 2 patients generated protective titers in response to vaccination, and a majority of patients had abnormal frequencies of transitional and memory B-cells. B-cell receptor sequencing showed a B-cell repertoire with little evidence of somatic hypermutation in most patients. Conversely, frequencies of T-cell populations were similar to those seen in healthy controls, and cytotoxic T-cells demonstrated antigen-specific activity after vaccination. Effector T-cells had increased PD-1 expression in AML patients least removed from chemotherapy. Our results suggest that while some aspects of cellular immunity recover quickly, humoral immunity is incompletely reconstituted in the year following intensive cytotoxic chemotherapy for AML. The observed B-cell abnormalities may explain the poor response to vaccination often seen in AML patients after chemotherapy. Furthermore, the uncoupled recovery of B-cell and T-cell immunity and increased PD-1 expression shortly after chemotherapy might have implications for the success of several modalities of immunotherapy.
Klostergaard, Anja; Steffensen, Rudi; Møller, Jens K; Peterslund, Niels; Juhl-Christensen, Caroline; Mølle, Ingolf
2010-07-01
Infections after chemotherapy often cause significant morbidity in patients with acute myeloid leukaemia (AML). Chitotriosidase (CHIT) and mannose-binding lectin (MBL) are part of the innate immune system. Polymorphism in the CHIT-coding gene (CHIT1) may be associated with Gram-negative sepsis in children with AML, and polymorphism in the MBL-coding gene (MBL2) seems to modify the risk of infections in several patient groups. The purpose of this study was to investigate the possible associations between polymorphisms in CHIT1, MBL2 and sepsis in adult patients treated with high-dose chemotherapy for AML. We included 190 patients treated with 526 cycles of chemotherapy. The follow-up period was 6 months from the diagnosis of AML. Prophylactic antibiotics were not used. We identified 604 febrile episodes with 246 episodes of sepsis. Thirty-two patients (17%) either died from infection or infection was a major concomitant factor for death. No significant associations between CHIT1 polymorphism and sepsis (P = 0.85) or death caused by sepsis (P = 0.14) were found. Furthermore, no significant associations between MBL2 polymorphism and sepsis (P = 0.76) or death caused by sepsis (P = 0.24) were observed. The severe and long-lasting neutropenia and mucositis after chemotherapy may explain why the MBL system does not protect against sepsis in patients with AML. Replacement therapy with recombinant MBL is not likely to decrease the risk of sepsis in patients with AML.
NASA Technical Reports Server (NTRS)
McManus, John W.; Goodrich, Kenneth H.
1989-01-01
A research program investigating the use of Artificial Intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within-Visual-Range (WVR) air combat engagements is discussed. The application of AI methods for development and implementation of the TDG is presented. The history of the Adaptive Maneuvering Logic (AML) program is traced and current versions of the AML program are compared and contrasted with the TDG system. The Knowledge-Based Systems (KBS) used by the TDG to aid in the decision-making process are outlined in detail and example rules are presented. The results of tests to evaluate the performance of the TDG versus a version of AML and versus human pilots in the Langley Differential Maneuvering Simulator (DMS) are presented. To date, these results have shown significant performance gains in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify than the updated FORTRAN AML programs.
Zharlyganova, Dinara; Harada, Hironori; Harada, Yuka; Shinkarev, Sergey; Zhumadilov, Zhaxybay; Zhunusova, Aigul; Tchaizhunusova, Naylya J; Apsalikov, Kazbek N; Kemaikin, Vadim; Zhumadilov, Kassym; Kawano, Noriyuki; Kimura, Akiro; Hoshi, Masaharu
2008-09-01
It is known that bone marrow is a sensitive organ to ionizing radiation, and many patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) have been diagnosed in radiation-treated cases and atomic bomb survivors in Hiroshima and Nagasaki. The AML1/RUNX1 gene has been known to be frequently mutated in MDS/AML patients among atomic bomb survivors and radiation therapy-related MDS/AML patients. In this study, we investigated the AML1 mutations in radiation-exposed patients with MDS/AML among the residents near the Semipalatinsk Nuclear Test Site (SNTS), where the risk of solid cancers and leukemias was increased due to the radiation effects. AML1 mutations were identified in 7 (39%) of 18 radiation-exposed MDS/AML patients. In contrast, no AML1 mutation was found in 13 unexposed MDS/AML cases. The frequency of AML1 mutations in radiation-exposed patients with MDS/AML was significantly higher compared with unexposed patients (p < 0.05).We also found a significant correlation between individual estimated doses and AML1 mutations (p < 0.05). Considering these results, AML1 point mutations might be a useful biomarker that differentiates radio-induced MDS/AML from spontaneous MDS/AML.
Mohamed, Abdel-Maaboud I; Omar, Mahmoud A; Hammad, Mohamed A; Mohamed, Abobakr A
2016-11-01
A highly sensitive and simple spectrofluorimetric method was developed for the determination of Amlodipine besylate (AML) in its pharmaceutical formulations and spiked human plasma. The proposed method is based on the investigation of the fluorescence spectral behaviour of AML in Tween-80 micellar system. In aqueous solution, the fluorescence intensity of AML was greatly enhanced (160 %) in the presence of Tween-80. The fluorescence intensity was measured at 427 nm after excitation at 385 nm. The fluorescence-concentration plot was rectilinear over the concentration range 0.1-4.0 μg/ml, with lower detection limit of 0.03 μg/ml. The suggested method was successfully applied for the analysis of AML in its commercial tablets alone or in combination with either Atorvastatin or Valsartan. The application of the proposed method was extended to the assay of AML in spiked human plasma and stability studies of AML after exposure to different forced degradation conditions, such as acidic, alkaline, photo- and oxidative conditions, according to ICH guidelines. The results were statistically compared to those obtained by comparison methods and were found to be in good agreement.
Orbital period studies of the two contact binaries TZ Bootis and Y Sextantis
NASA Astrophysics Data System (ADS)
Qian, S.; Liu, Q.
2000-03-01
The physical properties of the two A-type contact binaries TZ Boo and Y Sex are nearly the same. In the present paper, many of their published times of light minima are collected and the changes in their orbital periods are analyzed. It is indicated that the orbital period of TZ Boo shows several alternating jumps while it undergoes a secular decrease of -11.8x10-8 days/year. Several random jumps superposed on a secular decrease (-5.5x10-8 days/year) are also found in the period of Y Sex. The secular decrease is usually interpreted as mass transfer from the more to the less massive components, or mass and angular momentum loss (AML) from the systems. According to the AML theory, on the contact stage, the orbital AML is mainly caused by the mass transfer from the less to the more massive component and the mass ratio decreasing and orbital period gradually increasing are the corresponding results. The extremely low mass ratio and orbital angular momentum of the two systems show that they are evolved via AML and the present secular decrease in the periods may suggest that the magnetic activity in the two systems are very strong. The relation between the changes of the orbital periods and the magnetic activity in the two systems are discussed. We think that the interplay between the variable AML and variable magnetic coupling can explain both the jumps and secular decrease in the orbital periods of the two systems. Table~2 and Table~4 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strabg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html
Woltedji, Dereje; Song, Feifei; Zhang, Lan; Gala, Alemayehu; Han, Bin; Feng, Mao; Fang, Yu; Li, Jianke
2012-09-07
The honeybees Apis mellifera ligustica (Aml) and Apis cerana cerana (Acc) are two different western and eastern bee species that evolved in distinct ecologies and developed specific antennal olfactory systems for their survival. Knowledge of how their antennal olfactory systems function in regards to the success of each respective bee species is scarce. We compared the antennal morphology and proteome between respective sexually mature drones and foraging workers of both species using a scanning electron microscope, two-dimensional electrophoresis, mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction. Despite the general similarities in antennal morphology of the drone and worker bees between the two species, a total of 106 and 100 proteins altered their expression in the drones' and the workers' antennae, respectively. This suggests that the differences in the olfactory function of each respective bee are supported by the change of their proteome. Of the 106 proteins that altered their expression in the drones, 72 (68%) and 34 (32%) were overexpressed in the drones of Aml and Acc, respectively. The antennae of the Aml drones were built up by the highly expressed proteins that were involved in carbohydrate metabolism and energy production, molecular transporters, antioxidation, and fatty acid metabolism in contrast to the Acc drones. This is believed to enhance the antennal olfactory functions of the Aml drones as compared to the Acc drones during their mating flight. Likewise, of the 100 proteins with expression changes between the worker bees of the two species, 67% were expressed in higher levels in the antennae of Aml worker contrasting to 33% in the Acc worker. The overall higher expressions of proteins related to carbohydrate metabolism and energy production, molecular transporters, and antioxidation in the Aml workers compared with the Acc workers indicate the Aml workers require more antennal proteins for their olfactory mechanisms to perform efficient foraging activities than do the Acc worker bees. These data decipher the mechanisms of the western and eastern drone and worker bees acting in response to their different olfactory system in their distinct ecosystem.
Jetani, Hardikkumar; Garcia-Cadenas, Irene; Nerreter, Thomas; Thomas, Simone; Rydzek, Julian; Meijide, Javier Briones; Bonig, Halvard; Herr, Wolfgang; Sierra, Jordi; Einsele, Hermann; Hudecek, Michael
2018-05-01
FMS-like tyrosine kinase 3 (FLT3) is a transmembrane protein expressed on normal hematopoietic stem and progenitor cells (HSC) and retained on malignant blasts in acute myeloid leukemia (AML). We engineered CD8 + and CD4 + T-cells expressing a FLT3-specific chimeric antigen receptor (CAR) and demonstrate they confer potent reactivity against AML cell lines and primary AML blasts that express either wild-type FLT3 or FLT3 with internal tandem duplication (FLT3-ITD). We also show that treatment with the FLT3-inhibitor crenolanib leads to increased surface expression of FLT3 specifically on FLT3-ITD + AML cells and consecutively, enhanced recognition by FLT3-CAR T-cells in vitro and in vivo. As anticipated, we found that FLT3-CAR T-cells recognize normal HSCs in vitro and in vivo, and disrupt normal hematopoiesis in colony-formation assays, suggesting that adoptive therapy with FLT3-CAR T-cells will require subsequent CAR T-cell depletion and allogeneic HSC transplantation to reconstitute the hematopoietic system. Collectively, our data establish FLT3 as a novel CAR target in AML with particular relevance in high-risk FLT3-ITD + AML. Further, our data provide the first proof-of-concept that CAR T-cell immunotherapy and small molecule inhibition can be used synergistically, as exemplified by our data showing superior antileukemia efficacy of FLT3-CAR T-cells in combination with crenolanib.
Radiofrequency ablation for treatment of sporadic angiomyolipoma.
Prevoo, Warner; van den Bosch, Maurice A A J; Horenblas, Simon
2008-07-01
Symptomatic angiomyolipoma (AML) and asymptomatic AML larger than 4 cm in size are usually treated with nephron-sparing surgery or arterial embolization. We used another technique, that is, radiofrequency ablation (RFA), for treatment of a sporadic AML in a patient with a solitary kidney, in whom maximal sparing of normal renal tissue was required. Contrast-enhanced computed tomography (CT) showed an enhancing well-defined mainly lipomatous tumor, with a maximum diameter of 4.5 cm in the upper pole of the left kidney. Diagnosis of AML was confirmed with fine-needle aspiration biopsy. RFA was performed with a RF 3000 system, consisting of a generator that supplied up to 200W of power, connected to a 15-gauge LeVeen multipolar array electrode that was placed under CT-guidance centrally in the AML. Initial power was set at low power and increased with increments of 10W, according to the algorithm provided by the manufacturer, resulting in a final tumor end temperature above 65 degrees C. No complications occurred and the patient was discharged home the day after. During follow-up (12 months) function of the solitary kidney of the patient was preserved and patient did not have any AML-related symptoms develop. Contrast-enhanced CT scan showed complete (100%) tumor ablation with absence of enhancement in the tumor and decreased tumor size from 4.5 cm to 2.9 cm at 12 months. CT-guided RFA is a minimally invasive ablation procedure that allowed successful treatment of a sporadic AML in a patient with a solitary kidney. No complications occurred and no AML recurrence was observed during the 12-month follow-up.
Jab1/Csn5-Thioredoxin Signaling in Relapsed Acute Monocytic Leukemia under Oxidative Stress.
Zhou, Fuling; Pan, Yunbao; Wei, Yongchang; Zhang, Ronghua; Bai, Gaigai; Shen, Qiuju; Meng, Shan; Le, Xiao-Feng; Andreeff, Michael; Claret, Francois X
2017-08-01
Purpose: High levels of ROS and ineffective antioxidant systems contribute to oxidative stress, which affects the function of hematopoietic cells in acute myeloid leukemia (AML); however, the mechanisms by which ROS lead to malignant transformation in relapsed AML-M5 are not completely understood. We hypothesized that alterations in intracellular ROS would trigger AML-M5 relapse by activating the intrinsic pathway. Experimental Design: We studied ROS levels and conducted c-Jun activation domain-binding protein-1 ( JAB1/COPS5 ) and thioredoxin ( TRX ) gene expression analyses with blood samples obtained from 60 matched AML-M5 patients at diagnosis and relapse and conducted mechanism studies of Jab1's regulation of Trx in leukemia cell lines. Results: Our data showed that increased production of ROS and a low capacity of antioxidant enzymes were characteristics of AML-M5, both at diagnosis and at relapse. Consistently, increased gene expression levels of TRX and JAB1/COPS5 were associated with low overall survival rates in patients with AML-M5. In addition, stimulating AML-M5 cells with low concentrations of hydrogen peroxide led to increased Jab1 and Trx expression. Consistently, transfection of ectopic Jab1 into leukemia cells increased Trx expression, whereas silencing of Jab1 in leukemia cells reduced Trx expression. Mechanistically, Jab1 interacted with Trx and stabilized Trx protein. Moreover, Jab1 transcriptionally regulated Trx. Furthermore, depletion of Jab1 inhibited leukemia cell growth both in vitro and in vivo Conclusions: We identified a novel Jab1-Trx axis that is a key cellular process in the pathobiologic characteristics of AML-M5. Targeting the ROS/Jab1/Trx pathway could be beneficial in the treatment of AML-M5. Clin Cancer Res; 23(15); 4450-61. ©2017 AACR . ©2017 American Association for Cancer Research.
Zhang, Liping; Zhang, Shiwen; Huang, Yajie; Cao, Meng; Huang, Yuanfang; Zhang, Hongyan
2016-01-01
Understanding abandoned mine land (AML) changes during land reclamation is crucial for reusing damaged land resources and formulating sound ecological restoration policies. This study combines the linear programming (LP) model and the CLUE-S model to simulate land-use dynamics in the Mentougou District (Beijing, China) from 2007 to 2020 under three reclamation scenarios, that is, the planning scenario based on the general land-use plan in study area (scenario 1), maximal comprehensive benefits (scenario 2), and maximal ecosystem service value (scenario 3). Nine landscape-scale graph metrics were then selected to describe the landscape characteristics. The results show that the coupled model presented can simulate the dynamics of AML effectively and the spatially explicit transformations of AML were different. New cultivated land dominates in scenario 1, while construction land and forest land account for major percentages in scenarios 2 and 3, respectively. Scenario 3 has an advantage in most of the selected indices as the patches combined most closely. To conclude, reclaiming AML by transformation into more forest can reduce the variability and maintain the stability of the landscape ecological system in study area. These findings contribute to better mapping AML dynamics and providing policy support for the management of AML. PMID:27023575
Zhang, Liping; Zhang, Shiwen; Huang, Yajie; Cao, Meng; Huang, Yuanfang; Zhang, Hongyan
2016-03-24
Understanding abandoned mine land (AML) changes during land reclamation is crucial for reusing damaged land resources and formulating sound ecological restoration policies. This study combines the linear programming (LP) model and the CLUE-S model to simulate land-use dynamics in the Mentougou District (Beijing, China) from 2007 to 2020 under three reclamation scenarios, that is, the planning scenario based on the general land-use plan in study area (scenario 1), maximal comprehensive benefits (scenario 2), and maximal ecosystem service value (scenario 3). Nine landscape-scale graph metrics were then selected to describe the landscape characteristics. The results show that the coupled model presented can simulate the dynamics of AML effectively and the spatially explicit transformations of AML were different. New cultivated land dominates in scenario 1, while construction land and forest land account for major percentages in scenarios 2 and 3, respectively. Scenario 3 has an advantage in most of the selected indices as the patches combined most closely. To conclude, reclaiming AML by transformation into more forest can reduce the variability and maintain the stability of the landscape ecological system in study area. These findings contribute to better mapping AML dynamics and providing policy support for the management of AML.
HZE Radiation Leukemogenesis in Mice
NASA Astrophysics Data System (ADS)
Peng, Yuanlin
Radiation exposure is a risk factor for acute myeloid leukemia (AML). The Leukemogenesis NSCOR was developed to compare this risk for low LET vs HZE radiations as a means to better assess the leukemia risk to astronauts posed by space radiation. Individual projects within the NSCOR explore HZE radiation leukemogenesis in murine model systems and extend the findings to AML in humans. AML sensitive CBA/CaJ mice have been irradiated with 1 GeV 56 Fe particles at NSRL and with 137 Cs gamma-rays at Colorado State University and followed to 800 days of age for the development of AML. Molecular and cytogenetic analyses of HZE- and gamma-induced AML, including assays for chromosomal aberrations, PU.1 deletion, gene expression, array CGH and microsatellite instability are ongoing. Preliminary data indicate that 56 Fe particles are no more effective in inducing AML or shortening lifespan than gamma-rays. Studies designed to address the individual molecular steps in leukemogenesis and determine the effects of radiation and genetic background on each step have been initiated using knockout mice. Deletion of the PU.1 gene on mouse chromosome 2 is a critical step in this murine model of radiation leukemogenesis. Two of the three HZE-induced AMLs that could be assayed and thirteen of fourteen γ-induced AMLs had PU.1 loss as determined by Fluorescence in Situ Hybridization (FISH). We have found that AML sensitive CBA/CaJ mice have a higher incidence of Chr. 2 deletion in bone marrow cells following 56 Fe irradiation than AML resistant C57BL/6 mice. This study is being extended to proton irradiated mice. Our preliminary results indicate that microsatellite instability may be common in HZE irradiated progenitor cells. To determine if these cytogenetic changes can be induced in human myeloid progenitor cells by gamma, proton or HZE irradiation we are generating NOD/SCID mice that have been "humanized" by being transplanted with human hematopoietic stem cells. We are currently irradiating the humanized NOD/SCID mice with gamma-rays and then harvesting human cells from their bone marrow. These cells will be assayed for specific cytogenetic and molecular changes consistent with AML. In addition to screening the cells for chromosomal aberrations and specific deletions and translocations, we will also screen them for microsatellite instability by small pool PCR.(Funded by NASA Grant NAG9 1569)
A framework for modeling and optimizing dynamic systems under uncertainty
Nicholson, Bethany; Siirola, John
2017-11-11
Algebraic modeling languages (AMLs) have drastically simplified the implementation of algebraic optimization problems. However, there are still many classes of optimization problems that are not easily represented in most AMLs. These classes of problems are typically reformulated before implementation, which requires significant effort and time from the modeler and obscures the original problem structure or context. In this work we demonstrate how the Pyomo AML can be used to represent complex optimization problems using high-level modeling constructs. We focus on the operation of dynamic systems under uncertainty and demonstrate the combination of Pyomo extensions for dynamic optimization and stochastic programming.more » We use a dynamic semibatch reactor model and a large-scale bubbling fluidized bed adsorber model as test cases.« less
A framework for modeling and optimizing dynamic systems under uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, Bethany; Siirola, John
Algebraic modeling languages (AMLs) have drastically simplified the implementation of algebraic optimization problems. However, there are still many classes of optimization problems that are not easily represented in most AMLs. These classes of problems are typically reformulated before implementation, which requires significant effort and time from the modeler and obscures the original problem structure or context. In this work we demonstrate how the Pyomo AML can be used to represent complex optimization problems using high-level modeling constructs. We focus on the operation of dynamic systems under uncertainty and demonstrate the combination of Pyomo extensions for dynamic optimization and stochastic programming.more » We use a dynamic semibatch reactor model and a large-scale bubbling fluidized bed adsorber model as test cases.« less
Itzhar, Nathalie; Dessen, Philippe; Toujani, Saloua; Auger, Nathalie; Preudhomme, Claude; Richon, Catherine; Lazar, Vladimir; Saada, Véronique; Bennaceur, Anelyse; Bourhis, Jean Henri; de Botton, Stéphane; Bernheim, Alain
2011-01-01
Therapy-related acute leukemia (t-AML), is a severe complication of cytotoxic therapy used for primary cancer treatment. The outcome of these patients is poor, compared to people who develop de novo acute leukemia (p-AML). Cytogenetic abnormalities in t-AML are similar to those found in p-AML but present more frequent unfavorable karyotypes depending on the inducting agent. Losses of chromosome 5 or 7 are observed after alkylating agents while balanced translocations are found after topoisomerase II inhibitors. This study compared t-AML to p-AML using high resolution array CGH in order to find copy number abnormalities (CNA) at a higher resolution than conventional cytogenetics. More CNAs were observed in 30 t-AML than in 36 p-AML: 104 CNAs were observed with 63 losses and 41 gains (mean number 3.46 per case) in t-AML, while in p-AML, 69 CNAs were observed with 32 losses and 37 gains (mean number of 1.9 per case). In primary leukemia with a previously “normal” karyotype, 18% exhibited a previously undetected CNA, whereas in the (few) t-AML with a normal karyotype, the rate was 50%. Several minimal critical regions (MCRs) were found in t-AML and p-AML. No common MCRs were found in the two groups. In t-AML a 40kb deleted MCR pointed to RUNX1 on 21q22, a gene coding for a transcription factor implicated in frequent rearrangements in leukemia and in familial thrombocytopenia. In de novo AML, a 1Mb MCR harboring ERG and ETS2 was observed from patients with complex aCGH profiles. High resolution cytogenomics obtained by aCGH and similar techniques already published allowed us to characterize numerous non random chromosome abnormalities. This work supports the hypothesis that they can be classified into several categories: abnormalities common to all AML; those more frequently found in t-AML and those specifically found in p-AML. PMID:21339820
Itzhar, Nathalie; Dessen, Philippe; Toujani, Saloua; Auger, Nathalie; Preudhomme, Claude; Richon, Catherine; Lazar, Vladimir; Saada, Véronique; Bennaceur, Anelyse; Bourhis, Jean Henri; de Botton, Stéphane; Bernheim, Alain
2011-02-14
Therapy-related acute leukemia (t-AML), is a severe complication of cytotoxic therapy used for primary cancer treatment. The outcome of these patients is poor, compared to people who develop de novo acute leukemia (p-AML). Cytogenetic abnormalities in t-AML are similar to those found in p-AML but present more frequent unfavorable karyotypes depending on the inducting agent. Losses of chromosome 5 or 7 are observed after alkylating agents while balanced translocations are found after topoisomerase II inhibitors. This study compared t-AML to p-AML using high resolution array CGH in order to find copy number abnormalities (CNA) at a higher resolution than conventional cytogenetics. More CNAs were observed in 30 t-AML than in 36 p-AML: 104 CNAs were observed with 63 losses and 41 gains (mean number 3.46 per case) in t-AML, while in p-AML, 69 CNAs were observed with 32 losses and 37 gains (mean number of 1.9 per case). In primary leukemia with a previously "normal" karyotype, 18% exhibited a previously undetected CNA, whereas in the (few) t-AML with a normal karyotype, the rate was 50%. Several minimal critical regions (MCRs) were found in t-AML and p-AML. No common MCRs were found in the two groups. In t-AML a 40 kb deleted MCR pointed to RUNX1 on 21q22, a gene coding for a transcription factor implicated in frequent rearrangements in leukemia and in familial thrombocytopenia. In de novo AML, a 1 Mb MCR harboring ERG and ETS2 was observed from patients with complex aCGH profiles. High resolution cytogenomics obtained by aCGH and similar techniques already published allowed us to characterize numerous non random chromosome abnormalities. This work supports the hypothesis that they can be classified into several categories: abnormalities common to all AML; those more frequently found in t-AML and those specifically found in p-AML.
Preudhomme, C; Warot-Loze, D; Roumier, C; Grardel-Duflos, N; Garand, R; Lai, J L; Dastugue, N; Macintyre, E; Denis, C; Bauters, F; Kerckaert, J P; Cosson, A; Fenaux, P
2000-10-15
The AML1 gene, situated in 21q22, is often rearranged in acute leukemias through t(8;21) translocation, t(12;21) translocation, or less often t(3;21) translocation. Recently, point mutations in the Runt domain of the AML1 gene have also been reported in leukemia patients. Observations for mutations of the Runt domain of the AML1 gene in bone marrow cells were made in 300 patients, including 131 with acute myeloid leukemia (AML), 94 with myelodysplastic syndrome (MDS), 28 with blast crisis chronic myeloid leukemia (CML), 3 with atypical CML, 41 with acute lymphoblastic leukemia (ALL), and 3 with essential thrombocythemia (ET). Forty-one of the patients had chromosome 21 abnormalities, including t(8;21) in 6 of the patients with AML, t(12;21) in 8 patients with ALL, acquired trisomy 21 in 17 patients, tetrasomy 21 in 7 patients, and constitutional trisomy 21 (Down syndrome) in 3 patients. A point mutation was found in 14 cases (4.7%), including 9 (22%) of the 41 patients with AML of the Mo type (MoAML) (none of them had detectable chromosome 21 rearrangement) and 5 (38%) of the 13 myeloid malignancies with acquired trisomy 21 (1 M1AML, 2 M2AML, 1 ET, and 1 atypical CML). In at least 8 of 9 mutated cases of MoAML, both AML alleles were mutated: 3 patients had different stop codon mutations of the 2 AML1 alleles, and 5 patients had the same missense or stop codon mutation in both AML1 alleles, which resulted in at least 3 of the patients having duplication of the mutated allele and deletion of the normal residual allele, as shown by FISH analysis and by comparing microsatellite analyses of several chromosome 21 markers on diagnosis and remission samples. In the remaining mutated cases, with acquired trisomy 21, a missense mutation of AML1, which involved 2 of the 3 copies of the AML1 gene, was found. Four of the 7 mutated cases could be reanalyzed in complete remission, and no AML1 mutation was found, showing that mutations were acquired in the leukemic clone. In conclusion, these findings confirm the possibility of mutations of the Runt domain of the AML1 gene in leukemias, mainly in MoAML and in myeloid malignancies with acquired trisomy 21. AML1 mutations, in MoAML, involved both alleles and probably lead to nonfunctional AML1 protein. As AML1 protein regulates the expression of the myeloperoxidase gene, the relationship between AML1 mutations and Mo phenotype in AML will have to be further explored. (Blood. 2000;96:2862-2869)
Osteolytic Bone Lesions - A Rare Presentation of AML M6.
Geetha, N; Sreelesh, K P; Priya, M J; Lali, V S; Rekha, N
2015-01-01
Acute myeloid leukemia (AML) M6 is a rare form of AML accounting for < 5 % of all AML. Extramedullary involvement is very rarely seen in this entity. Skeletal lesion has not been described in AML M6 before. We discuss the case of a 17 year old boy with AML M6, who presented with osteolytic lesion of right humerus. He was treated with induction and consolidation chemotherapy. The present case is the first report in literature of AML M6 presenting with skeletal lesions.
Garand, R; Duchayne, E; Blanchard, D; Robillard, N; Kuhlein, E; Fenneteau, O; Salomon-Nguyen, F; Grange, M J; Rousselot, P; Demur, C
1995-08-01
We describe eight cases of erythroleukaemia distinct from FAB-AML M6, which demonstrate minimal erythroid differentiation not associated with a myeloblastic component. Three infants (including a Down's syndrome) and two adults presented with a de novo leukaemia. One case was preceded by an untreated refractory anaemia with excess of blasts and one by polycythaemia vera. One case presented with an inaugural blast crisis of chronic myeloid leukaemia. In four patients the leukaemic cells showed a proerythroblast-like morphology. The four other were initially classified as undifferentiated AL (two cases) or AML MO (two cases) because of the immature aspect of the cells, their lack of myeloperoxidase activity and the absence of B, T lymphoid and myeloid (My) marker expressions apart from the CD33 antigen. Immunophenotyping in three cases showed an immature erythroblast profile (glycophorins A and B+, spectrin+). In the five others the erythroid nature was recognized by the expression of ABH blood group system on fresh cells (four cases) and glycophorin A on cells after 3 d in vitro culture with erythropoietin (EPO) + IL3 (two cases). Moreover, an erythroid colony growth of leukaemic origin was observed in three patients. In conclusion, the study of erythroid marker expression is of particular importance when immunophenotyping leukaemic cells with a proerythroblast-like morphology or an undifferentiated aspect and a HLA DR-, CD36++, B-, T-, My- (CD33 +/-) phenotype. We propose the term AML M6 'variant' for this rare type of AML.
Hif-1α and Hif-2α synergize to suppress AML development but are dispensable for disease maintenance.
Vukovic, Milica; Guitart, Amelie V; Sepulveda, Catarina; Villacreces, Arnaud; O'Duibhir, Eoghan; Panagopoulou, Theano I; Ivens, Alasdair; Menendez-Gonzalez, Juan; Iglesias, Juan Manuel; Allen, Lewis; Glykofrydis, Fokion; Subramani, Chithra; Armesilla-Diaz, Alejandro; Post, Annemarie E M; Schaak, Katrin; Gezer, Deniz; So, Chi Wai Eric; Holyoake, Tessa L; Wood, Andrew; O'Carroll, Dónal; Ratcliffe, Peter J; Kranc, Kamil R
2015-12-14
Leukemogenesis occurs under hypoxic conditions within the bone marrow (BM). Knockdown of key mediators of cellular responses to hypoxia with shRNA, namely hypoxia-inducible factor-1α (HIF-1α) or HIF-2α, in human acute myeloid leukemia (AML) samples results in their apoptosis and inability to engraft, implicating HIF-1α or HIF-2α as therapeutic targets. However, genetic deletion of Hif-1α has no effect on mouse AML maintenance and may accelerate disease development. Here, we report the impact of conditional genetic deletion of Hif-2α or both Hif-1α and Hif-2α at different stages of leukemogenesis in mice. Deletion of Hif-2α accelerates development of leukemic stem cells (LSCs) and shortens AML latency initiated by Mll-AF9 and its downstream effectors Meis1 and Hoxa9. Notably, the accelerated initiation of AML caused by Hif-2α deletion is further potentiated by Hif-1α codeletion. However, established LSCs lacking Hif-2α or both Hif-1α and Hif-2α propagate AML with the same latency as wild-type LSCs. Furthermore, pharmacological inhibition of the HIF pathway or HIF-2α knockout using the lentiviral CRISPR-Cas9 system in human established leukemic cells with MLL-AF9 translocation have no impact on their functions. We therefore conclude that although Hif-1α and Hif-2α synergize to suppress the development of AML, they are not required for LSC maintenance. © 2015 Vukovic et al.
Hif-1α and Hif-2α synergize to suppress AML development but are dispensable for disease maintenance
Vukovic, Milica; Guitart, Amelie V.; Sepulveda, Catarina; Villacreces, Arnaud; O'Duibhir, Eoghan; Panagopoulou, Theano I.; Ivens, Alasdair; Menendez-Gonzalez, Juan; Iglesias, Juan Manuel; Allen, Lewis; Glykofrydis, Fokion; Subramani, Chithra; Armesilla-Diaz, Alejandro; Post, Annemarie E.M.; Schaak, Katrin; Gezer, Deniz; So, Chi Wai Eric; Holyoake, Tessa L.; Wood, Andrew; O'Carroll, Dónal; Ratcliffe, Peter J.
2015-01-01
Leukemogenesis occurs under hypoxic conditions within the bone marrow (BM). Knockdown of key mediators of cellular responses to hypoxia with shRNA, namely hypoxia-inducible factor-1α (HIF-1α) or HIF-2α, in human acute myeloid leukemia (AML) samples results in their apoptosis and inability to engraft, implicating HIF-1α or HIF-2α as therapeutic targets. However, genetic deletion of Hif-1α has no effect on mouse AML maintenance and may accelerate disease development. Here, we report the impact of conditional genetic deletion of Hif-2α or both Hif-1α and Hif-2α at different stages of leukemogenesis in mice. Deletion of Hif-2α accelerates development of leukemic stem cells (LSCs) and shortens AML latency initiated by Mll-AF9 and its downstream effectors Meis1 and Hoxa9. Notably, the accelerated initiation of AML caused by Hif-2α deletion is further potentiated by Hif-1α codeletion. However, established LSCs lacking Hif-2α or both Hif-1α and Hif-2α propagate AML with the same latency as wild-type LSCs. Furthermore, pharmacological inhibition of the HIF pathway or HIF-2α knockout using the lentiviral CRISPR-Cas9 system in human established leukemic cells with MLL-AF9 translocation have no impact on their functions. We therefore conclude that although Hif-1α and Hif-2α synergize to suppress the development of AML, they are not required for LSC maintenance. PMID:26642852
Tabuchi, Ken
2007-02-01
The annual incident rate of pediatric acute myeloid leukemia (AML) is now 10 per million in Japan, against 5 to 9 per million in the USA and Europe. Overall long-term survival has now been achieved for more than 50% of pediatric patients with AML in the USA and in Europe. The prognostic factors of pediatric AML were analyzed,and patients with AML were classified according to prognostic factors. The t(15;17), inv(16) and t(8;21) have emerged as predictors of good prognosis in children with AML. Monosomy 7, monosomy 5 and del (5 q) abnormalities showed a poor prognosis. In addition to chromosomal deletions, FLT 3/ITD identifies pediatric patients with a particularly poor prognosis. Clinical trials of AML feature intensive chemotherapy with or without subsequent stem cell transplantation. Risk group stratification is becoming increasingly important in planning AML therapy. APL can be distinguished from other subtypes of AML by virtue of its excellent response and overall outcome as a result of differentiation therapy with ATRA. Children with Down syndrome and AML have been shown to have a superior prognosis to AML therapy compared to other children with AML. The results of the Japan Cooperative Study Group protocol ANLL 91 was one of the best previously reported in the literature. With the consideration of quality of life (QOL), risk-adapted therapy was introduced in the AML 99 trial conducted by the Japanese Childhood AML Cooperative Study Group. A high survival rate of 79% at 3 years was achieved for childhood de novo AML in the AML 99 trial. To evaluate the efficacy and safety of the treatment strategy according to risk stratification based on leukemia cell biology and response to the initial induction therapy in children with AML, the Japanese Pediatric Leukemia/Lymphoma Study Group (JPLSG) has organized multi-center phase II trials in children with newly diagnosed AML.
Lee, Jong-Hee; Salci, Kyle R; Reid, Jennifer C; Orlando, Luca; Tanasijevic, Borko; Shapovalova, Zoya; Bhatia, Mickie
2017-09-01
Induced pluripotent stem cell reprogramming has provided critical insights into disease processes by modeling the genetics and related clinical pathophysiology. Human cancer represents highly diverse genetics, as well as inter- and intra-patient heterogeneity, where cellular model systems capable of capturing this disease complexity would be invaluable. Acute myeloid leukemia (AML) represents one of most heterogeneous cancers and has been divided into genetic subtypes correlated with unique risk stratification over the decades. Here, we report our efforts to induce pluripotency from the heterogeneous population of human patients that represents this disease in the clinic. Using robust optimized reprogramming methods, we demonstrate that reprogramming of AML cells harboring leukemic genomic aberrations is a rare event with the exception of those with de novo mixed-lineage leukemia (MLL) mutations that can be reprogrammed and model drug responses in vitro. Our findings indicate that unlike hematopoietic cells devoid of genomic aberrations, AML cells harboring driver mutations are refractory to reprogramming. Expression of MLL fusion proteins in AML cells did not contribute to induced reprogramming success, which continued to select for patient derived cells devoid of AML patient-specific aberrations. Our study reveals that unanticipated blockades to achieving pluripotency reside within the majority of transformed AML patient cells. Stem Cells 2017;35:2095-2102. © 2017 AlphaMed Press.
Dinç, Erdal; Büker, Eda
2012-01-01
A new application of continuous wavelet transform (CWT) to overlapping peaks in a chromatogram was developed for the quantitative analysis of amiloride hydrochloride (AML) and hydrochlorothiazide (HCT) in tablets. Chromatographic analysis was done by using an ACQUITY ultra-performance LC (UPLC) BEH C18 column (50 x 2.1 mm id, 1.7 pm particle size) and a mobile phase consisting of methanol-0.1 M acetic acid (21 + 79, v/v) at a constant flow rate of 0.3 mL/min with diode array detection at 274 nm. The overlapping chromatographic peaks of the calibration set consisting of AML and HCT mixtures were recorded rapidly by using an ACQUITY UPLC H-Class system. The overlapping UPLC data vectors of AML and HCT drugs and their samples were processed by CWT signal processing methods. The calibration graphs for AML and HCT were computed from the relationship between concentration and areas of chromatographic CWT peaks. The applicability and validity of the improved UPLC-CWT approaches were confirmed by recovery studies and the standard addition technique. The proposed UPLC-CWT methods were applied to the determination of AML and HCT in tablets. The experimental results indicated that the suggested UPLC-CWT signal processing provides accurate and precise results for industrial QC and quantitative evaluation of AML-HCT tablets.
Klymenko, Sergiy; Trott, Klaus; Atkinson, Michael; Bink, Karin; Bebeshko, Vladimir; Bazyka, Dimitry; Dmytrenko, Iryna; Abramenko, Iryna; Bilous, Nadia; Misurin, Andrei; Zitzelsberger, Horst; Rosemann, Michael
2005-06-01
Several studies suggested a causal link between AML1 gene rearrangements and both radiation-induced acute myeloid leukaemia (AML) and myelodysplastic syndromes (MDS). Fifty-three AML samples were analyzed for the presence of AML1 abnormalities using fluorescent in-situ hybridization (FISH) and reverse transcription polymerase chain reaction (RT-PCR). Of these patients, 24 had experienced radiation exposure due to the Chernobyl accident, and 29 were non-irradiated spontaneous AML cases and served as controls. AML1/ETO translocations were found in 9 of 29 spontaneous AML but only in 1 of 24 radiation-associated AML cases. This difference between translocation frequencies is statistically significant in the age-unstratified cohorts (p=0.015). Following age stratification, the difference becomes less pronounced but remains on borderline significance (p=0.053). AML1 mutation status was assessed in 5 clean-up workers at Chernobyl NPP with MDS, or AML following MDS, by direct sequencing of genomic DNA from the coding region (exon 3 through 8). In one patient who developed MDS following an acute radiation syndrome, a hexanucleotide duplication of CGGCAT in exon 8 was found, inserted after base position 1502. Our results suggest that AML1 gene translocations are infrequent in radiation-induced leukemogenesis but are consistent with the idea that radiation may contribute to the development of MDS through AML1 gene mutation.
Metachronous and Synchronous Presentation of Acute Myeloid Leukemia and Lung Cancer
Varadarajan, Ramya; Ford, LaurieAnn; Sait, Sheila NJ; Block, AnneMarie W.; Barcos, Maurice; Wallace, Paul K.; Ramnath, Nithya; Wang, Eunice S.; Wetzler, Meir
2009-01-01
Smoking is associated with both acute myeloid leukemia (AML) and lung cancer. We therefore searched our database for concomitant presentation of AML and lung cancer. Among 775 AML cases and 5225 lung cancer cases presenting to Roswell Park Cancer Institute between the years January 1992 and May 2008 we found 12 (1.5% of AML cases; 0.23% of lung cancer cases) cases (seven metachronous and five synchronous) with AML and lung cancer. All but one patient were smokers. There were no unique characteristic of either AML or lung cancer in these patients. Nine patients succumbed to AML, one died from an unrelated cause while undergoing treatment for AML, one died of lung cancer and one patient is alive after allogeneic transplantation for AML. In summary, this study supports the need for effective smoking cessation programs. PMID:19181380
Development of acute myeloid leukemia in patients with untreated chronic lymphocytic leukemia.
Ito, Shoko; Fujiwara, Shin-Ichiro; Mashima, Kiyomi; Umino, Kento; Minakata, Daisuke; Nakano, Hirofumi; Yamasaki, Ryoko; Kawasaki, Yasufumi; Sugimoto, Miyuki; Ashizawa, Masahiro; Yamamoto, Chihiro; Hatano, Kaoru; Okazuka, Kiyoshi; Sato, Kazuya; Oh, Iekuni; Ohmine, Ken; Suzuki, Takahiro; Muroi, Kazuo; Kanda, Yoshinobu
2017-05-01
The development of acute myeloid leukemia (AML) in patients with untreated chronic lymphocytic leukemia (CLL) is rare. We experienced a 65-year-old man who developed AML with aberrant CD7 expression and monoallelic CEBPA mutation during watchful waiting for CLL. He failed to achieve complete response (CR) by standard induction therapy for AML. We retrospectively reviewed 27 patients who developed AML with untreated CLL published between 1973 and 2016. The median age at diagnosis of AML was 68 years, and the median duration between the diagnoses of AML and CLL was 4.2 years. Diagnosis of AML and CLL was made simultaneously in 16 patients. The CR rate of AML was 42.9%, and the median survival was only 1.5 months after the diagnosis of AML. Patients who achieved CR tended to survive longer than those who did not. Our results demonstrated that the development of AML in patients with untreated CLL was associated with a poor response to chemotherapy and an extremely poor prognosis.
NASA Astrophysics Data System (ADS)
Carton, H. D.; Carbotte, S. M.; Mutter, J. C.; Canales, J. P.; Nedimovic, M. R.
2014-12-01
The fast-spreading East Pacific Rise at the 9º50'N Ridge 2000 Integrated Study Site was the focus of the first academic 3D, multi-source, multi-streamer seismic survey, carried out aboard R/V Langseth in summer 2008. The main area of 3D coverage extends from 9º42-57'N, spanning the seafloor extent of two documented volcanic eruptions. There, the 3D geometry of the mid-crustal axial magma lens (AML), located ~1.5 km below the seafloor, was initially investigated using a best 1D stacking velocity function hung from the seafloor and two-pass post-stack time migration. Preliminary results suggested a relatively narrow (~0.5-1.8 km wide) AML showing fingering and overlap of individual magma bodies, particularly in association with several small-scale ridge-axis discontinuities identified from seafloor morphology and structure of the axial summit trough. A westward-dipping limb of the AML was imaged near 9º51'N, where the AML attains its largest width. From 9º53-56'N, the AML was seen to veer slightly westward, in accordance with a shift in orientation of the ridge. Sub-axial magma lenses (SAMLs) have been recently imaged between 9º20' and 9º56'N on along-axis reflection profiles from the same survey, with the suggestion that these deeper lenses may have contributed melts to the 2005/06 eruption. In the cross-axis dataset, SAML events are observed down to ~600-700 ms (~1.7-2 km) below the AML. They sometimes appear slightly offset with respect to the center of the AML. They are generally less bright than the AML reflection, some of them display prominent diffraction tails on un-migrated sections, and the deeper events have a distinctly lower frequency content than the shallower ones. New images for the 9º42-57'N area are currently being generated from a suite of detailed stacking velocities for the AML and SAML events and 3D post-stack time migration, which will provide insight into the width and along-axis continuity of individual magma bodies at multiple levels within the crust. The fine-scale AML structure will be constrained from the reprocessed seismic volume, beyond the main features noted above. The 3D geometry of the AML and SAMLs will be discussed in relation with other ridge properties along this ~27-km long section of the EPR.
Steffen, Björn; Knop, Markus; Bergholz, Ulla; Vakhrusheva, Olesya; Rode, Miriam; Köhler, Gabriele; Henrichs, Marcel-Philipp; Bulk, Etmar; Hehn, Sina; Stehling, Martin; Dugas, Martin; Bäumer, Nicole; Tschanter, Petra; Brandts, Christian; Koschmieder, Steffen; Berdel, Wolfgang E; Serve, Hubert; Stocking, Carol; Müller-Tidow, Carsten
2011-04-21
The most frequent translocation t(8;21) in acute myeloid leukemia (AML) generates the chimeric AML1/ETO protein, which blocks differentiation and induces self-renewal in hematopoietic progenitor cells. The underlying mechanisms mediating AML1/ETO-induced self-renewal are largely unknown. Using expression microarray analysis, we identified the Groucho-related amino-terminal enhancer of split (AES) as a consistently up-regulated AML1/ETO target. Elevated levels of AES mRNA and protein were confirmed in AML1/ETO-expressing leukemia cells, as well as in other AML specimens. High expression of AES mRNA or protein was associated with improved survival of AML patients, even in the absence of t(8;21). On a functional level, knockdown of AES by RNAi in AML1/ETO-expressing cell lines inhibited colony formation. Similarly, self-renewal induced by AML1/ETO in primary murine progenitors was inhibited when AES was decreased or absent. High levels of AES expression enhanced formation of immature colonies, serial replating capacity of primary cells, and colony formation in colony-forming unit-spleen assays. These findings establish AES as a novel AML1/ETO-induced target gene that plays an important role in the self-renewal phenotype of t(8;21)-positive AML.
Gu, Ruixin; Zhang, Minqin; Meng, Hu; Xu, Dandan; Xie, Yonghua
2018-06-05
Gallic acid is one of the many phenolic acids that can be found in dietary substances and traditional medicine herbs. The anti-cancer activities of gallic acid have been shown in various cancers but its underlying molecular mechanisms are not well understood. In this study, we show Akt/mammalian target of rapamycin (mTOR)-dependent inhibition of mitochondrial respiration as a mechanism of gallic acid's action in acute myeloid leukemia (AML). Gallic acid significantly induces apoptosis of AML cell lines, primary mononuclear cells (MNC) and CD34 stem/progenitors isolated form AML patients via caspase-dependent pathway. It also significantly enhances two standard AML chemotherapeutic agents' efficacy in vitro cell culture system and in vivo xenograft model. Gallic acid inhibits dose- and time-dependent mitochondrial respiration, leading to decreased ATP production and oxidative stress. Overexpression of constitutively active Akt restores gallic acid-mediated inhibition of mTOR signaling, mitochondrial dysfunction, energy crisis and apoptosis. Our results demonstrate that mitochondrial respiration inhibition by gallic acid is a consequence of Akt/mTOR signaling suppression. Our findings suggest that combination therapy with gallic acid may enhance antileukemic efficacy of standard chemotherapeutic agents in AML. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Successful treatment of congenital acute myeloid leukemia (AML-M6) in a premature infant.
van Dongen, Joyce C A; Dalinghaus, Michiel; Kroon, Andre A; de Vries, Andrica C H; van den Heuvel-Eibrink, Marry M
2009-11-01
Congenital acute myeloid leukemia (AML), and especially AML-M6 is a rare disease with a poor prognosis. Moreover, reports of treatment outcome of congenital AML-M6 in premature infants are not available. We report the first treated case of congenital AML-M6 in a premature girl, who received a full AML protocol. She presented with blueberry-muffin spots, anemia, high white blood cell count, and serious cardiopulmonary distress. Peripheral blood smears showed AML-M6 blasts. After treatment with a sequential low-dose cytarabine after birth and full-dose AML treatment according to the MRC-12 protocol at the age of 2 months, she now is in continuous complete remission for 4 years.
Acute myeloid leukemia and diabetes insipidus with monosomy 7.
Harb, Antoine; Tan, Wei; Wilding, Gregory E; Battiwalla, Minoo; Sait, Sheila N J; Wang, Eunice S; Wetzler, Meir
2009-04-15
The predisposition of monosomy 7 to diabetes insipidus (DI) in acute myeloid leukemia (AML) led us to ask whether AML associated with monosomy 7 and DI will differ from AML associated with other karyotype aberrations and DI and whether the outcome of patients with AML and DI will differ from those without DI. We describe 2 patients from Roswell Park Cancer Institute and discuss 29 additional cases from the literature. AML with monosomy 7 and DI (n = 25) had a trend towards a lower complete remission (p = 0.0936) and worse survival (p = 0.0480) than AML with other karyotype changes and DI (n = 6). Further, AML with monosomy 7 and DI had worse complete remission rate and overall survival than AML with monosomy 7 but without DI. In conclusion, it appears that AML with monosomy 7 and DI is a disease entity with specifically poor outcome.
Joint Symbol Timing and CFO Estimation for OFDM/OQAM Systems in Multipath Channels
NASA Astrophysics Data System (ADS)
Fusco, Tilde; Petrella, Angelo; Tanda, Mario
2009-12-01
The problem of data-aided synchronization for orthogonal frequency division multiplexing (OFDM) systems based on offset quadrature amplitude modulation (OQAM) in multipath channels is considered. In particular, the joint maximum-likelihood (ML) estimator for carrier-frequency offset (CFO), amplitudes, phases, and delays, exploiting a short known preamble, is derived. The ML estimators for phases and amplitudes are in closed form. Moreover, under the assumption that the CFO is sufficiently small, a closed form approximate ML (AML) CFO estimator is obtained. By exploiting the obtained closed form solutions a cost function whose peaks provide an estimate of the delays is derived. In particular, the symbol timing (i.e., the delay of the first multipath component) is obtained by considering the smallest estimated delay. The performance of the proposed joint AML estimator is assessed via computer simulations and compared with that achieved by the joint AML estimator designed for AWGN channel and that achieved by a previously derived joint estimator for OFDM systems.
Structural Properties of Alternate Monatomic Layered [Fe/Co]n Epitaxial Films on MgO Substrate
NASA Astrophysics Data System (ADS)
Chu, In Chang; Saki, Yoshinobu; Kawasaki, Shohei; Doi, Masaaki; Sahashi, Masashi
2008-06-01
Body-centered-cubic (bcc) Fe50Co50 material is reported to show a high bulk spin scattering coefficient on current perpendicular to plane-giant magneto-resistance (CPP-GMR) system. But the origin of that phenomenon does not make sure yet. We prepared artificially alternate monatomic layered (AML) [Fe/Co] 41 MLs epitaxial films (Ts: 75, 250 °C) by monatomic deposition method and investigated the topology of AML [Fe/Co]n epitaxial films on MgO substrate with different orientation (001), (011) by the scanning tunnel microscopy (STM) and reflection high energy electron diffraction (RHEED), which we could confirm Frank-van der Merwe (FM) growth mode for AML [Fe/Co]n on MgO(001) and Volmer-Weber (VW) growth mode for that on Mg(011). The roughness of surface, Ra (0.20 nm) of AML [Fe/Co] 41 MLs epitaxial film grown at 75 °C on MgO(001) is smaller than that (0.46 nm) of AML [Fe/Co] grown at 250 °C on MgO(001), which has the large terraces of over 50 nm (Ra: 0.17 nm), even though there are some valleys between large terraces. Moreover we confirmed the structural properties of trilayered epitaxial films with AML [Fe/Co]n (Ra: 0.18 nm) and Fe50Co50 alloy epitaxial film on Au electrode by RHEED before confirming the characteristics of CPP-GMR devices.
Telomere length is an independent prognostic marker in MDS but not in de novo AML.
Williams, Jenna; Heppel, Nicole H; Britt-Compton, Bethan; Grimstead, Julia W; Jones, Rhiannon E; Tauro, Sudhir; Bowen, David T; Knapper, Steven; Groves, Michael; Hills, Robert K; Pepper, Chris; Baird, Duncan M; Fegan, Chris
2017-07-01
Telomere dysfunction is implicated in the generation of large-scale genomic rearrangements that drive progression to malignancy. In this study we used high-resolution single telomere length analysis (STELA) to examine the potential role of telomere dysfunction in 80 myelodysplastic syndrome (MDS) and 95 de novo acute myeloid leukaemia (AML) patients. Despite the MDS cohort being older, they had significantly longer telomeres than the AML cohort (P < 0·0001) where telomere length was also significantly shorter in younger AML patients (age <60 years) (P = 0·02) and in FLT3 internal tandem duplication-mutated AML patients (P = 0·03). Using a previously determined telomere length threshold for telomere dysfunction (3·81 kb) did not provide prognostic resolution in AML [Hazard ratio (HR) = 0·68, P = 0·2]. In contrast, the same length threshold was highly prognostic for overall survival in the MDS cohort (HR = 5·0, P < 0·0001). Furthermore, this telomere length threshold was an independent parameter in multivariate analysis when adjusted for age, gender, cytogenetic risk group, number of cytopenias and International Prognostic Scoring System (IPSS) score (HR = 2·27, P < 0·0001). Therefore, telomere length should be assessed in a larger prospective study to confirm its prognostic role in MDS with a view to integrating this variable into a revised IPSS. © 2017 John Wiley & Sons Ltd.
An Assessment of Magma-Hydrothermal Heat Output at the Costa Rica Rift
NASA Astrophysics Data System (ADS)
Lowell, R. P.; Morales Maqueda, M. A.; Banyte, D.; Zhang, L.; Tong, V.; Hobbs, R. W.; Harris, R. N.
2016-12-01
A joint geophysical/physical oceanographic investigation of the Costa Rica Ridge as part of the OSCAR (Oceanographic and Seismic Characterization of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge) research program enables us to estimate hydrothermal heat output and its likely link to a sub-axial magma lens (AML). In December 2014, a number of tow-yo casts were made along and near the ridge axis where seismic reflection data collected in 1994 showed the presence of seismic reflector interpreted to be an AML at a depth of about 2800 m below the seafloor. A decline in beam transmission in a ≈ 200 m thick region located approximately 800 to 900 meters above the seafloor indicated the presence of a hydrothermal plume. CTD data collected above the ridge yielded a weighted average buoyancy frequency of approximately 19.3 x 10-8 s-2. Assuming a mean hydrothermal vent temperature of 350°C, buoyant plume theory yields a heat output between 400 and 600 MW. Application of the single-pass modeling approach to the hydrothermal system, yields an estimated mass flow between 210 and 337 kg/s, and the mean product of crustal permeability x discharge area ranges between 6 and 10 x 10-9 m4. A multichannel seismic profile collected in 2015 indicates the presence of a reflector 5 km along-axis and < 100 m wide, in approximately the same location as the 1994 survey, suggesting that magma-driven hydrothermal heat output may have exhibited stability on a decadal time scale. The relatively small size of the inferred AML, when coupled to the heat output estimate and the single-pass model, suggests that the conductive boundary layer at the top the AML is 2m thick and that the AML must be frequently replenished to maintain stable heat output. Assuming the hydrothermal system is driven by magmatic latent heat, a 100 m thick AML could have powered a 100 MW hydrothermal system for 20 years, while inputting 5 x 107 m3 of melt into the axis. These results indicate hydrothermal heat output at the Costa Rica Ridge is time-varying.
Enhanced sensitivity to glucocorticoids in cytarabine-resistant AML.
Malani, D; Murumägi, A; Yadav, B; Kontro, M; Eldfors, S; Kumar, A; Karjalainen, R; Majumder, M M; Ojamies, P; Pemovska, T; Wennerberg, K; Heckman, C; Porkka, K; Wolf, M; Aittokallio, T; Kallioniemi, O
2017-05-01
We sought to identify drugs that could counteract cytarabine resistance in acute myeloid leukemia (AML) by generating eight resistant variants from MOLM-13 and SHI-1 AML cell lines by long-term drug treatment. These cells were compared with 66 ex vivo chemorefractory samples from cytarabine-treated AML patients. The models and patient cells were subjected to genomic and transcriptomic profiling and high-throughput testing with 250 emerging and clinical oncology compounds. Genomic profiling uncovered deletion of the deoxycytidine kinase (DCK) gene in both MOLM-13- and SHI-1-derived cytarabine-resistant variants and in an AML patient sample. Cytarabine-resistant SHI-1 variants and a subset of chemorefractory AML patient samples showed increased sensitivity to glucocorticoids that are often used in treatment of lymphoid leukemia but not AML. Paired samples taken from AML patients before treatment and at relapse also showed acquisition of glucocorticoid sensitivity. Enhanced glucocorticoid sensitivity was only seen in AML patient samples that were negative for the FLT3 mutation (P=0.0006). Our study shows that development of cytarabine resistance is associated with increased sensitivity to glucocorticoids in a subset of AML, suggesting a new therapeutic strategy that should be explored in a clinical trial of chemorefractory AML patients carrying wild-type FLT3.
Enhanced sensitivity to glucocorticoids in cytarabine-resistant AML
Malani, D; Murumägi, A; Yadav, B; Kontro, M; Eldfors, S; Kumar, A; Karjalainen, R; Majumder, M M; Ojamies, P; Pemovska, T; Wennerberg, K; Heckman, C; Porkka, K; Wolf, M; Aittokallio, T; Kallioniemi, O
2017-01-01
We sought to identify drugs that could counteract cytarabine resistance in acute myeloid leukemia (AML) by generating eight resistant variants from MOLM-13 and SHI-1 AML cell lines by long-term drug treatment. These cells were compared with 66 ex vivo chemorefractory samples from cytarabine-treated AML patients. The models and patient cells were subjected to genomic and transcriptomic profiling and high-throughput testing with 250 emerging and clinical oncology compounds. Genomic profiling uncovered deletion of the deoxycytidine kinase (DCK) gene in both MOLM-13- and SHI-1-derived cytarabine-resistant variants and in an AML patient sample. Cytarabine-resistant SHI-1 variants and a subset of chemorefractory AML patient samples showed increased sensitivity to glucocorticoids that are often used in treatment of lymphoid leukemia but not AML. Paired samples taken from AML patients before treatment and at relapse also showed acquisition of glucocorticoid sensitivity. Enhanced glucocorticoid sensitivity was only seen in AML patient samples that were negative for the FLT3 mutation (P=0.0006). Our study shows that development of cytarabine resistance is associated with increased sensitivity to glucocorticoids in a subset of AML, suggesting a new therapeutic strategy that should be explored in a clinical trial of chemorefractory AML patients carrying wild-type FLT3. PMID:27833094
Chaperonin TRiC/CCT Modulates the Folding and Activity of Leukemogenic Fusion Oncoprotein AML1-ETO.
Roh, Soung-Hun; Kasembeli, Moses; Galaz-Montoya, Jesús G; Trnka, Mike; Lau, Wilson Chun-Yu; Burlingame, Alma; Chiu, Wah; Tweardy, David J
2016-02-26
AML1-ETO is the most common fusion oncoprotein causing acute myeloid leukemia (AML), a disease with a 5-year survival rate of only 24%. AML1-ETO functions as a rogue transcription factor, altering the expression of genes critical for myeloid cell development and differentiation. Currently, there are no specific therapies for AML1-ETO-positive AML. While known for decades to be the translational product of a chimeric gene created by the stable chromosome translocation t(8;21)(q22;q22), it is not known how AML1-ETO achieves its native and functional conformation or whether this process can be targeted for therapeutic benefit. Here, we show that the biosynthesis and folding of the AML1-ETO protein is facilitated by interaction with the essential eukaryotic chaperonin TRiC (or CCT). We demonstrate that a folding intermediate of AML1-ETO binds to TRiC directly, mainly through its β-strand rich, DNA-binding domain (AML-(1-175)), with the assistance of HSP70. Our results suggest that TRiC contributes to AML1-ETO proteostasis through specific interactions between the oncoprotein's DNA-binding domain, which may be targeted for therapeutic benefit. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Handschuh, Luiza; Kaźmierczak, Maciej; Milewski, Marek C; Góralski, Michał; Łuczak, Magdalena; Wojtaszewska, Marzena; Uszczyńska-Ratajczak, Barbara; Lewandowski, Krzysztof; Komarnicki, Mieczysław; Figlerowicz, Marek
2018-03-01
Acute myeloid leukemia (AML) is the most common and severe form of acute leukemia diagnosed in adults. Owing to its heterogeneity, AML is divided into classes associated with different treatment outcomes and specific gene expression profiles. Based on previous studies on AML, in this study, we designed and generated an AML-array containing 900 oligonucleotide probes complementary to human genes implicated in hematopoietic cell differentiation and maturation, proliferation, apoptosis and leukemic transformation. The AML-array was used to hybridize 118 samples from 33 patients with AML of the M1 and M2 subtypes of the French-American‑British (FAB) classification and 15 healthy volunteers (HV). Rigorous analysis of the microarray data revealed that 83 genes were differentially expressed between the patients with AML and the HV, including genes not yet discussed in the context of AML pathogenesis. The most overexpressed genes in AML were STMN1, KITLG, CDK6, MCM5, KRAS, CEBPA, MYC, ANGPT1, SRGN, RPLP0, ENO1 and SET, whereas the most underexpressed genes were IFITM1, LTB, FCN1, BIRC3, LYZ, ADD3, S100A9, FCER1G, PTRPE, CD74 and TMSB4X. The overexpression of the CPA3 gene was specific for AML with mutated NPM1 and FLT3. Although the microarray-based method was insufficient to differentiate between any other AML subgroups, quantitative PCR approaches enabled us to identify 3 genes (ANXA3, S100A9 and WT1) whose expression can be used to discriminate between the 2 studied AML FAB subtypes. The expression levels of the ANXA3 and S100A9 genes were increased, whereas those of WT1 were decreased in the AML-M2 compared to the AML-M1 group. We also examined the association between the STMN1, CAT and ABL1 genes, and the FLT3 and NPM1 mutation status. FLT3+/NPM1- AML was associated with the highest expression of STMN1, and ABL1 was upregulated in FLT3+ AML and CAT in FLT3- AML, irrespectively of the NPM1 mutation status. Moreover, our results indicated that CAT and WT1 gene expression levels correlated with the response to therapy. CAT expression was highest in patients who remained longer under complete remission, whereas WT1 expression increased with treatment resistance. On the whole, this study demonstrates that the AML-array can potentially serve as a first-line screening tool, and may be helpful for the diagnosis of AML, whereas the differentiation between AML subgroups can be more successfully performed with PCR-based analysis of a few marker genes.
Creutzig, Ursula; van den Heuvel-Eibrink, Marry M; Gibson, Brenda; Dworzak, Michael N; Adachi, Souichi; de Bont, Eveline; Harbott, Jochen; Hasle, Henrik; Johnston, Donna; Kinoshita, Akitoshi; Lehrnbecher, Thomas; Leverger, Guy; Mejstrikova, Ester; Meshinchi, Soheil; Pession, Andrea; Raimondi, Susana C; Sung, Lillian; Stary, Jan; Zwaan, Christian M; Kaspers, Gertjan J L; Reinhardt, Dirk
2012-10-18
Despite major improvements in outcome over the past decades, acute myeloid leukemia (AML) remains a life-threatening malignancy in children, with current survival rates of ∼70%. State-of-the-art recommendations in adult AML have recently been published in this journal by Döhner et al. The primary goal of an international expert panel of the International BFM Study Group AML Committee was to set standards for the management, diagnosis, response assessment, and treatment in childhood AML. This paper aims to discuss differences between childhood and adult AML, and to highlight recommendations that are specific to children. The particular relevance of new diagnostic and prognostic molecular markers in pediatric AML is presented. The general management of pediatric AML, the management of specific pediatric AML cohorts (such as infants) or subtypes of the disease occurring in children (such as Down syndrome related AML), as well as new therapeutic approaches, and the role of supportive care are discussed.
AML Guide: Information for Patients and Caregivers
The AML Guide Information for Patients and Caregivers Acute Myeloid Leukemia Emily , AML survivor Revised 2012 A ... day most people who have been diagnosed with acute myeloid leukemia (AML) will be cured or will ...
The natural history of trilinear myelodysplastic syndrome and erythroleukemia.
Michiels, J J; van der Meulen, J; Brederoo, P
1997-01-01
A case of Di Guglielmo's syndrome passed through the three stages of chronic erythromyelosis, erythroleukemia and acute myeloid leukemia (AML). According to the FAB classification the subsequent stages of this syndrome were refractory anemia (RA), RA with excess of blasts (RAEB), AML-M6, AML-M2 and undifferentiated AML-MO as the end-stage disease. Light- and electronmicroscopice findings on peripheral blood and bone marrow slides showed a pronounced trilineage myelodysplastic syndrome (MDS) during the RA, RAEB, AML-M6 and M2 phases of the disease, i.e. dysplastic erythropoiesis with PAS-positive erythroblasts, agranular and hypogranular neutrophils and dysplastic megakaryocytes. It is concluded that this case of Di Guglielmo's syndrome with chronic erythromyelosis, erythroleukemia and AML appears to be a continuum of trilineage MDS, AML-M6 and M2 with dyserythropoiesis which evolved into AML-M0.
Targeting CD157 in AML using a novel, Fc-engineered antibody construct
Krupka, Christina; Lichtenegger, Felix S.; Köhnke, Thomas; Bögeholz, Jan; Bücklein, Veit; Roiss, Michael; Altmann, Torben; Do, To Uyen; Dusek, Rachel; Wilson, Keith; Bisht, Arnima; Terrett, Jon; Aud, Dee; Pombo-Villar, Esteban; Rohlff, Christian; Hiddemann, Wolfgang; Subklewe, Marion
2017-01-01
Antibody-based immunotherapy represents a promising strategy to eliminate chemorefractory leukemic cells in acute myeloid leukemia (AML). In this study, we evaluated a novel Fc-engineered antibody against CD157 (MEN1112) for its suitability as immunotherapy in AML. CD157 was expressed in 97% of primary AML patient samples. A significant, albeit lower expression level of CD157 was observed within the compartment of leukemia-initiating cells, which are supposed to be the major source of relapse. In healthy donor bone marrow, CD157 was expressed on CD34+ cells. In ex vivo assays, MEN1112 triggered natural killer (NK) cell-mediated cytotoxicity against AML cell lines and primary AML cells. Compared to its parental analogue, the Fc-engineered antibody exhibited higher antibody dependent cellular cytotoxicity responses. Using NK cells from AML patients, we observed heterogeneous MEN1112-mediated cytotoxicity against AML cells, most likely due to well-documented defects in AML-NK cells and corresponding inter-patient variations in NK cell function. Cytotoxicity could not be correlated to the time after completion of chemotherapy. In summary, we could demonstrate that CD157 is strongly expressed in AML. MEN1112 is a promising antibody construct that showed high cytotoxicity against AML cells and warrants further clinical testing. Due to variability in NK-cell function of AML patients, the time of application during the course of the disease as well as combinatorial strategies might influence treatment results. PMID:28415689
MPL expression on AML blasts predicts peripheral blood neutropenia and thrombocytopenia.
Rauch, Philipp J; Ellegast, Jana M; Widmer, Corinne C; Fritsch, Kristin; Goede, Jeroen S; Valk, Peter J M; Löwenberg, Bob; Takizawa, Hitoshi; Manz, Markus G
2016-11-03
Although the molecular pathways that cause acute myeloid leukemia (AML) are increasingly well understood, the pathogenesis of peripheral blood cytopenia, a major cause of AML mortality, remains obscure. A prevailing assumption states that AML spatially displaces nonleukemic hematopoiesis from the bone marrow. However, examining an initial cohort of 223 AML patients, we found no correlation between bone marrow blast content and cytopenia, questioning the displacement theory. Measuring serum concentration of thrombopoietin (TPO), a key regulator of hematopoietic stem cells and megakaryocytes, revealed loss of physiologic negative correlation with platelet count in AML cases with blasts expressing MPL, the thrombopoietin (scavenging) receptor. Mechanistic studies demonstrated that MPL hi blasts could indeed clear TPO, likely therefore leading to insufficient cytokine levels for nonleukemic hematopoiesis. Microarray analysis in an independent multicenter study cohort of 437 AML cases validated MPL expression as a central predictor of thrombocytopenia and neutropenia in AML. Moreover, t(8;21) AML cases demonstrated the highest average MPL expression and lowest average platelet and absolute neutrophil counts among subgroups. Our work thus explains the pathophysiology of peripheral blood cytopenia in a relevant number of AML cases. © 2016 by The American Society of Hematology.
Inhibition of autophagy as a treatment strategy for p53 wild-type acute myeloid leukemia
Folkerts, Hendrik; Hilgendorf, Susan; Wierenga, Albertus T J; Jaques, Jennifer; Mulder, André B; Coffer, Paul J; Schuringa, Jan Jacob; Vellenga, Edo
2017-01-01
Here we have explored whether inhibition of autophagy can be used as a treatment strategy for acute myeloid leukemia (AML). Steady-state autophagy was measured in leukemic cell lines and primary human CD34+ AML cells with a large variability in basal autophagy between AMLs observed. The autophagy flux was higher in AMLs classified as poor risk, which are frequently associated with TP53 mutations (TP53mut), compared with favorable- and intermediate-risk AMLs. In addition, the higher flux was associated with a higher expression level of several autophagy genes, but was not affected by alterations in p53 expression by knocking down p53 or overexpression of wild-type p53 or p53R273H. AML CD34+ cells were more sensitive to the autophagy inhibitor hydroxychloroquine (HCQ) than normal bone marrow CD34+ cells. Similar, inhibition of autophagy by knockdown of ATG5 or ATG7 triggered apoptosis, which coincided with increased expression of p53. In contrast to wild-type p53 AML (TP53wt), HCQ treatment did not trigger a BAX and PUMA-dependent apoptotic response in AMLs harboring TP53mut. To further characterize autophagy in the leukemic stem cell-enriched cell fraction AML CD34+ cells were separated into ROSlow and ROShigh subfractions. The immature AML CD34+-enriched ROSlow cells maintained higher basal autophagy and showed reduced survival upon HCQ treatment compared with ROShigh cells. Finally, knockdown of ATG5 inhibits in vivo maintenance of AML CD34+ cells in NSG mice. These results indicate that targeting autophagy might provide new therapeutic options for treatment of AML since it affects the immature AML subfraction. PMID:28703806
Adult Acute Erythroleukemia: An Analysis of 108 patients treated at a single institution
Santos, Fabio; Faderl, Stefan; Garcia-Manero, Guillermo; Koller, Charles; Beran, Miloslav; O'Brien, Susan; Pierce, Sherry; Freireich, Emil; Huang, Xuelin; Borthakur, Gautam; Bueso-Ramos, Carlos; de Lima, Marcos; Keating, Michael; Cortes, Jorge; Kantarjian, Hagop; Ravandi, Farhad
2014-01-01
Acute erythroleukemia (AML-M6) is an uncommon subtype of acute myeloid leukemia (AML); it is considered to have a poor prognosis. From January 1st, 1980 to May 21st, 2008, 108 patients with newly diagnosed AML-M6 were seen at the University of Texas – M.D. Anderson Cancer Center (UT-MDACC). Half (50%) had a history of myelodysplatic syndrome (MDS), compared to 41% in our control group (patients with other AML subtypes) (p=0.05). Poor risk cytogenetics was more common in patients with AML-M6 (69% versus 46%, p<0.001). Complete remission rates were 63% for patients with AML-M6, comparing to 58% for the control group (p = 0.285). Median disease free survival (DFS) for patients with AML-M6 was 31 weeks, versus 49 weeks for the control group (p = 0.004). Median overall survival (OS) of patients with AML-M6 was 33 weeks, compared to 42 weeks for the control group (p = 0.13). On multivariate analysis for DFS and OS, AML-M6 was not an independent risk factor. Acute erythroleukemia is commonly associated with a previous diagnosis of MDS and poor risk karyotype. The diagnosis of AML-M6 does not impart by itself a worse prognosis, and treatment decisions on this disease should be guided by well know AML prognostic factors. PMID:19741728
Targeting BTK for the treatment of FLT3-ITD mutated acute myeloid leukemia.
Pillinger, Genevra; Abdul-Aziz, Amina; Zaitseva, Lyubov; Lawes, Matthew; MacEwan, David J; Bowles, Kristian M; Rushworth, Stuart A
2015-08-21
Approximately 20% of patients with acute myeloid leukaemia (AML) have a mutation in FMS-like-tyrosine-kinase-3 (FLT3). FLT3 is a trans-membrane receptor with a tyrosine kinase domain which, when activated, initiates a cascade of phosphorylated proteins including the SRC family of kinases. Recently our group and others have shown that pharmacologic inhibition and genetic knockdown of Bruton's tyrosine kinase (BTK) blocks AML blast proliferation, leukaemic cell adhesion to bone marrow stromal cells as well as migration of AML blasts. The anti-proliferative effects of BTK inhibition in human AML are mediated via inhibition of downstream NF-κB pro-survival signalling however the upstream drivers of BTK activation in human AML have yet to be fully characterised. Here we place the FLT3-ITD upstream of BTK in AML and show that the BTK inhibitor ibrutinib inhibits the survival and proliferation of FLT3-ITD primary AML blasts and AML cell lines. Furthermore ibrutinib inhibits the activation of downstream kinases including MAPK, AKT and STAT5. In addition we show that BTK RNAi inhibits proliferation of FLT3-ITD AML cells. Finally we report that ibrutinib reverses the cyto-protective role of BMSC on FLT3-ITD AML survival. These results argue for the evaluation of ibrutinib in patients with FLT3-ITD mutated AML.
Bone marrow T-cell percentage: A novel prognostic indicator in acute myeloid leukemia.
Ismail, Manar M; Abdulateef, Nahla A B
2017-04-01
Acute myeloid leukemia (AML) is an aggressive malignancy for which overall disease-free survival is less than 50%. Manipulation of the immune system is an interesting and promising therapy for AML patients. We aimed to characterize the immune system of AML patients, highlighting the clinical relevance of total bone marrow (BM) lymphocytes and subpopulations. Sixty-six new AML cases diagnosed according to WHO criteria from King Abdullah Medical City, KSA, from October 2012 to February 2015. Analysis of BM lymphocytes and subpopulations was done by flowcytometry. Significantly, high percentages of BM lymphocytes, T cells, and natural killer (NK) cells were detected in the group that achieved complete remission (P values = 0.004, <0.001, and <0.001, respectively). Overall survival (OS) was significantly prolonged in patients with high BM lymphocytes and T cells (P values = 0.047 and P 0.002, respectively). Multivariate analysis indicated that BM T-cell percentage and cytogenetics were independent prognostic factors predictive of OS (HR 4.7, P value = 0.011). BM T-cell percentage constitutes a novel host factor that can be used in combination with cytogenetics to better predict OS. Large-scale multicenter studies are recommended to clarify its role as a predictor of OS and leukemia-free survival.
Tian, Ying; Wang, Genjie; Hu, Qingzhu; Xiao, Xichun; Chen, Shuxia
2018-04-01
The AML1/ETO onco-fusion protein is crucial for the genesis of t(8;21) acute myeloid leukemia (AML) and is well documented as a transcriptional repressor through dominant-negative effect. However, little is known about the transactivation mechanism of AML1/ETO. Through large cohort of patient's expression level data analysis and a series of experimental validation, we report here that AML1/ETO transactivates c-KIT expression through directly binding to and mediating the long-range interaction between the promoter and intronic enhancer regions of c-KIT. Gene expression analyses verify that c-KIT expression is significantly high in t(8;21) AML. Further ChIP-seq analysis and motif scanning identify two regulatory regions located in the promoter and intronic enhancer region of c-KIT, respectively. Both regions are enriched by co-factors of AML1/ETO, such as AML1, CEBPe, c-Jun, and c-Fos. Further luciferase reporter assays show that AML1/ETO trans-activates c-KIT promoter activity through directly recognizing the AML1 motif and the co-existence of co-factors. The induction of c-KIT promoter activity is reinforced with the existence of intronic enhancer region. Furthermore, ChIP-3C-qPCR assays verify that AML1/ETO mediates the formation of DNA-looping between the c-KIT promoter and intronic enhancer region through the long-range interaction. Collectively, our data uncover a novel transcriptional activity mechanism of AML1/ETO and enrich our knowledge of the onco-fusion protein mediated transcription regulation. © 2017 Wiley Periodicals, Inc.
Acute myeloid leukemia targets for bispecific antibodies
Hoseini, S S; Cheung, N K
2017-01-01
Despite substantial gains in our understanding of the genomics of acute myelogenous leukemia (AML), patient survival remains unsatisfactory especially among the older age group. T cell-based therapy of lymphoblastic leukemia is rapidly advancing; however, its application in AML is still lagging behind. Bispecific antibodies can redirect polyclonal effector cells to engage chosen targets on leukemia blasts. When the effector cells are natural-killer cells, both antibody-dependent and antibody-independent mechanisms could be exploited. When the effectors are T cells, direct tumor cytotoxicity can be engaged followed by a potential vaccination effect. In this review, we summarize the AML-associated tumor targets and the bispecific antibodies that have been studied. The potentials and limitations of each of these systems will be discussed. PMID:28157217
NASA Astrophysics Data System (ADS)
Marjanović, Milena; Carton, Hélène; Carbotte, Suzanne M.; Nedimović, Mladen R.; Mutter, John C.; Canales, J. Pablo
2015-10-01
We examine along-axis variations in melt content of the axial magma lens (AML) beneath the fast-spreading East Pacific Rise (EPR) using an amplitude variation with angle of incidence (AVA) crossplotting method applied to multichannel seismic data acquired in 2008. The AVA crossplotting method, which has been developed for and, so far, applied for hydrocarbon prospection in sediments, is for the first time applied to a hardrock environment. We focus our analysis on 2-D data collected along the EPR axis from 9°29.8'N to 9°58.4'N, a region which encompasses the sites of two well-documented submarine volcanic eruptions (1991-1992 and 2005-2006). AVA crossplotting is performed for a ˜53 km length of the EPR spanning nine individual AML segments (ranging in length from ˜3.2 to 8.5 km) previously identified from the geometry of the AML and disruptions in continuity. Our detailed analyses conducted at 62.5 m interval show that within most of the analysed segments melt content varies at spatial scales much smaller (a few hundred of metres) than the length of the fine-scale AML segments, suggesting high heterogeneity in melt concentration. At the time of our survey, about 2 yr after the eruption, our results indicate that the three AML segments that directly underlie the 2005-2006 lava flow are on average mostly molten. However, detailed analysis at finer-scale intervals for these three segments reveals AML pockets (from >62.5 to 812.5 m long) with a low melt fraction. The longest such mushy section is centred beneath the main eruption site at ˜9°50.4'N, possibly reflecting a region of primary melt drainage during the 2005-2006 event. The complex geometry of fluid flow pathways within the crust above the AML and the different response times of fluid flow and venting to eruption and magma reservoir replenishment may contribute to the poor spatial correlation between incidence of hydrothermal vents and presence of highly molten AML. The presented results are an important step forward in our ability to resolve small-scale characteristics of the AML and recommend the AVA crossplotting as a tool for examining mid-ocean ridge magma-systems elsewhere.
Clonal evolution and devolution after chemotherapy in adult acute myelogenous leukemia
Parkin, Brian; Ouillette, Peter; Li, Yifeng; Keller, Jennifer; Lam, Cindy; Roulston, Diane; Li, Cheng; Shedden, Kerby
2013-01-01
The frequent occurrence of persistent or relapsed disease after induction chemotherapy in AML necessitates a better understanding of the clonal relationship of AML in various disease phases. In this study, we used SNP 6.0 array-based genomic profiling of acquired copy number aberrations (aCNA) and copy neutral LOH (cnLOH) together with sequence analysis of recurrently mutated genes to characterize paired AML genomes. We analyzed 28 AML sample pairs from patients who achieved complete remission with chemotherapy and subsequently relapsed and 11 sample pairs from patients with persistent disease after induction chemotherapy. Through review of aCNA/cnLOH and gene mutation profiles in informative cases, we demonstrate that relapsed AML invariably represents re-emergence or evolution of a founder clone. Furthermore, all individual aCNA or cnLOH detected at presentation persisted at relapse indicating that this lesion type is proximally involved in AML evolution. Analysis of informative paired persistent AML disease samples uncovered cases with 2 coexisting dominant clones of which at least one was chemotherapy sensitive and one resistant, respectively. These data support the conclusion that incomplete eradication of AML founder clones rather than stochastic emergence of fully unrelated novel clones underlies AML relapse and persistence with direct implications for clinical AML research. PMID:23175688
MicroRNA-155 expression and function in AML: An evolving paradigm.
Narayan, Nisha; Bracken, Cameron P; Ekert, Paul G
2018-06-01
Acute myeloid leukemia (AML) arises when immature myeloid blast cells acquire multiple, recurrent genetic and epigenetic changes that result in dysregulated proliferation. Acute leukemia is the most common form of pediatric cancer, with AML accounting for ~20% of all leukemias in children. The genomic aberrations that drive AML inhibit myeloid differentiation and activate signal transduction pathways that drive proliferation. MicroRNAs, a class of small (~22 nucleotide) noncoding RNAs that posttranscriptionally suppress the expression of specifically targeted transcripts, are also frequently dysregulated in AML, which may prove useful for the purposes of disease classification, prognosis, and future therapeutic approaches. MicroRNA expression profiles are associated with patient prognosis and responses to standard chemotherapy, including predicting therapy resistance in AML. miR-155 is the primary focus of this review because it has been repeatedly associated with poorer survival across multiple cohorts of adult and pediatric AML. We discuss some novel features of miR-155 expression in AML, in particular how the levels of expression can critically influence function. Understanding the role of microRNAs in AML and the ways in which microRNA expression influences AML biology is one means to develop novel and more targeted therapies. Copyright © 2018 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.
Swansbury, G J; Slater, R; Bain, B J; Moorman, A V; Secker-Walker, L M
1998-05-01
This paper reports clinical and cytogenetic data from 125 cases with t(9;11)(p21-22;q32) which were accepted for a European Union Concerted Action Workshop on 11q23. This chromosome abnormality is known to occur predominantly in acute myeloid leukemia (AML) FAB type M5a and less often in AML M4; in this series it was also found to occur, uncommonly, in other AML FAB types, in childhood acute lymphoblastic leukemia (ALL) (nine cases), in relatively young patients with myelodysplastic syndrome (MDS) (five cases), acute biphenotypic leukemia (two cases), and acute undifferentiated leukemia (one case). All age groups were represented but 50% of the patients were aged less than 15 years. The t(9;11) was the sole abnormality in 57 cases with AML; trisomy 8 was the most common additional abnormality (23 cases, including seven with further abnormalities), and 28 cases had other additional abnormalities. Among the t(9;11)+ve patients with AML, the white cell count (WBC) and age group were significant predictors of event-free survival; central nervous system (CNS) involvement or karyotype class (sole, with trisomy 8, or with other), also contributed to prognosis although our data could not show these to be independent factors. The best outcome was for patients aged 1-9 years, with low WBC, and with absence of CNS disease or presence of trisomy 8. For patients aged less than 15 years, the event-free survival for ALL patients was not significantly worse than that of AML patients.
Comprehensive mutational profiling of core binding factor acute myeloid leukemia
Duployez, Nicolas; Marceau-Renaut, Alice; Boissel, Nicolas; Petit, Arnaud; Bucci, Maxime; Geffroy, Sandrine; Lapillonne, Hélène; Renneville, Aline; Ragu, Christine; Figeac, Martin; Celli-Lebras, Karine; Lacombe, Catherine; Micol, Jean-Baptiste; Abdel-Wahab, Omar; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric
2016-01-01
Acute myeloid leukemia (AML) with t(8;21) or inv(16) have been recognized as unique entities within AML and are usually reported together as core binding factor AML (CBF-AML). However, there is considerable clinical and biological heterogeneity within this group of diseases, and relapse incidence reaches up to 40%. Moreover, translocations involving CBFs are not sufficient to induce AML on its own and the full spectrum of mutations coexisting with CBF translocations has not been elucidated. To address these issues, we performed extensive mutational analysis by high-throughput sequencing in 215 patients with CBF-AML enrolled in the Phase 3 Trial of Systematic Versus Response-adapted Timed-Sequential Induction in Patients With Core Binding Factor Acute Myeloid Leukemia and Treating Patients with Childhood Acute Myeloid Leukemia with Interleukin-2 trials (age, 1-60 years). Mutations in genes activating tyrosine kinase signaling (including KIT, N/KRAS, and FLT3) were frequent in both subtypes of CBF-AML. In contrast, mutations in genes that regulate chromatin conformation or encode members of the cohesin complex were observed with high frequencies in t(8;21) AML (42% and 18%, respectively), whereas they were nearly absent in inv(16) AML. High KIT mutant allele ratios defined a group of t(8;21) AML patients with poor prognosis, whereas high N/KRAS mutant allele ratios were associated with the lack of KIT or FLT3 mutations and a favorable outcome. In addition, mutations in epigenetic modifying or cohesin genes were associated with a poor prognosis in patients with tyrosine kinase pathway mutations, suggesting synergic cooperation between these events. These data suggest that diverse cooperating mutations may influence CBF-AML pathophysiology as well as clinical behavior and point to potential unique pathogenesis of t(8;21) vs inv(16) AML. PMID:26980726
2007-04-01
with the FATF for conducting comprehensive Anti-Money Laundering/Counter-Financing of Terrorism ( AML / CFT ) assessments of countries’ compliance with... AML / CFT ) (September 2002) • http://www.imf.org/external/np/mae/am/2002/eng/092523.htm (Comprehensive Methodology on AML / CFT ) International...of Rwanda AML : Anti-Money Laundering AML / CFT : Anti-Money Laundering/Counter-Financing of Terrorism ANO: Abu Nidal Organization AOR: Area of
Zhong, RuiKun; Li, Hongying; Messer, Karen; Lane, Thomas A.; Zhou, Jiehua; Ball, Edward D.
2016-01-01
This study investigated whether TNF-α, Toll-like receptors (TLRs) 7/8 agonist resiquimod (R848), the TLR4 agonist lipopolysaccharide (LPS) and their combinations can enhance autologous AML-reactive T cell generation in an in vitro culture. AML peripheral blood or bone marrow mononuclear cells were cultured in medium supplemented with GM-CSF/IL-4 to induce dendritic cell (DC) differentiation of AML blasts (AML-DC). The impact of TNF-α, LPS, R848 and their combinations on AML-DC cultures was analyzed. Significantly enhanced CD80, CD40, CD83, CD54, HLADR and CD86 expression of AML cells was observed by addition of TNF-α, LPS, R848 alone or combinations. Induced CD80 expression of AML cells was significantly higher through the combination of TNF-α, LPS and R848 (T + L + R) than that by T alone. CTL induced from T + L + R, T + R, T + L, L + R and R, but not T, L alone stimulated cultures showed significantly higher IFN-γ release than the medium control in response to autologous AML cells. IFN-γ release by T + L + R was significantly higher than T or L alone, and T + R was significantly higher than T alone. CTL generated from T + L + R, T + L, T + R, L + R and L alone exerted significantly higher AML cell killing than medium control. AML cell killing by T + L + R and T + R was significantly higher than T or R alone. These results indicate that the combination of T + L + R induces a significantly enhanced antigen presentation effect of AML-DC. We speculate that the complementary effects of reagent combinations may better address the heterogeneity of responses to any single agent in AML cells from different patients. PMID:25795133
Gonzales, Patrick R; Mikhail, Fady M
2017-12-01
Acute myeloid leukemia (AML) is a hematologic neoplasia consisting of incompletely differentiated hematopoietic cells of the myeloid lineage that proliferate in the bone marrow, blood, and/or other tissues. Clinical implementation of fluorescence in situ hybridization (FISH) in cytogenetic laboratories allows for high-resolution analysis of recurrent structural chromosomal rearrangements specific to AML, especially in AML with normal karyotypes, which comprises approximately 33-50% of AML-positive specimens. Here, we review the use of several FISH probe strategies in the diagnosis of AML. We also review the standards and guidelines currently in place for use by clinical cytogenetic laboratories in the evaluation of AML. Updated standards and guidelines from the WHO, ACMG, and NCCN have further defined clinically significant, recurring cytogenetic anomalies in AML that are detectable by FISH. FISH continues to be a powerful technique in the diagnosis of AML, with higher resolution than conventional cytogenetic analysis, rapid turnaround time, and a considerable diagnostic and prognostic utility.
Repression of GSK3 restores NK cell cytotoxicity in AML patients
Parameswaran, Reshmi; Ramakrishnan, Parameswaran; Moreton, Stephen A.; Xia, Zhiqiang; Hou, Yongchun; Lee, Dean A.; Gupta, Kalpana; deLima, Marcos; Beck, Rose C.; Wald, David N.
2016-01-01
Natural killer cells from acute myeloid leukaemia patients (AML-NK) show a dramatic impairment in cytotoxic activity. The exact reasons for this dysfunction are not fully understood. Here we show that the glycogen synthase kinase beta (GSK3β) expression is elevated in AML-NK cells. Interestingly, GSK3 overexpression in normal NK cells impairs their ability to kill AML cells, while genetic or pharmacological GSK3 inactivation enhances their cytotoxic activity. Mechanistic studies reveal that the increased cytotoxic activity correlates with an increase in AML-NK cell conjugates. GSK3 inhibition promotes the conjugate formation by upregulating LFA expression on NK cells and by inducing ICAM-1 expression on AML cells. The latter is mediated by increased NF-κB activation in response to TNF-α production by NK cells. Finally, GSK3-inhibited NK cells show significant efficacy in human AML mouse models. Overall, our work provides mechanistic insights into the AML-NK dysfunction and a potential NK cell therapy strategy. PMID:27040177
Rheb1 promotes tumor progression through mTORC1 in MLL-AF9-initiated murine acute myeloid leukemia.
Gao, Yanan; Gao, Juan; Li, Minghao; Zheng, Yawei; Wang, Yajie; Zhang, Hongyan; Wang, Weili; Chu, Yajing; Wang, Xiaomin; Xu, Mingjiang; Cheng, Tao; Ju, Zhenyu; Yuan, Weiping
2016-04-12
The constitutive hyper-activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways has frequently been associated with acute myeloid leukemia (AML). While many inhibitors targeting these pathways have been developed, the anti-leukemic effect was not as robust as expected. As part of the molecular link between PI3K/Akt and mTOR kinase, the role of Rheb1 in AML remains unexplored. Our study aims to explore the role of Rheb1 in AML and estimate whether Rheb1 could be a potential target of AML treatment. The expressions of Rheb1 and other indicated genes were analyzed using real-time PCR. AML mouse model was established by retrovirus transduction. Leukemia cell properties and related signaling pathways were dissected by in vitro and in vivo studies. The transcriptional changes were analyzed via gene chip analysis. Molecular reagents including mTOR inhibitor and mTOR activator were used to evaluate the function of related signaling pathway in the mouse model. We observed that Rheb1 is overexpressed in AML patients and the change of Rheb1 level in AML patients is associated with their median survival. Using a Rheb1-deficient MLL-AF9 murine AML model, we revealed that Rheb1 deletion prolonged the survival of AML mice by weakening LSC function. In addition, Rheb1 deletion arrested cell cycle progression and enhanced apoptosis of AML cells. Furthermore, while Rheb1 deletion reduced mTORC1 activity in AML cells, additional rapamycin treatment further decreased mTORC1 activity and increased the apoptosis of Rheb1 (Δ/Δ) AML cells. The mTOR activator 3BDO partially rescued mTORC1 signaling and inhibited apoptosis in Rheb1 (Δ/Δ) AML cells. Our data suggest that Rheb1 promotes AML progression through mTORC1 signaling pathway and combinational drug treatments targeting Rheb1 and mTOR might have a better therapeutic effect on leukemia.
Sterner, Rosalie M.; Kremer, Kimberly N.; Al-Kali, Aref; Patnaik, Mrinal M.; Gangat, Naseema; Litzow, Mark R.; Kaufmann, Scott H.; Westendorf, Jennifer J.; van Wijnen, Andre J.; Hedin, Karen E.
2017-01-01
The bone marrow microenvironment protects acute myeloid leukemia (AML) cells during chemotherapy and is a major factor in relapse. Here, we examined which type(s) of bone marrow cells are responsible for the relapse of AML following treatment with cytarabine (Ara-C), and we identified a means to inhibit this protection. To determine the protective cell type(s), AML cells were treated with Ara-C, and AML cell survival in the presence or absence of osteoblast lineage cells was assessed. Cultured AML cells and patient bone marrow isolates were each significantly protected from Ara-C-induced apoptosis by co-culture with differentiating osteoblasts. Moreover, pretreating differentiating osteoblasts with the histone deacetylase inhibitors (HDACi) vorinostat and panobinostat abrogated the ability of the differentiating osteoblasts to protect AML cells. Together, our results indicate that differentiating osteoblasts have the potential to promote residual AML in the bone marrow following standard chemotherapy and act via a mechanism requiring HDACi-sensitive gene expression. Using HDACi to target the leukemic microenvironment in combination with Ara-C could potentially improve treatment of AML. Moreover, other strategies for manipulating bone marrow osteoblasts may also help eradicate AML cells and reduce relapse. PMID:29212250
Driss, Virginie; Leprêtre, Frédéric; Briche, Isabelle; Mopin, Alexia; Villenet, Céline; Figeac, Martin; Quesnel, Bruno; Brinster, Carine
2017-12-01
In acute myeloid leukaemia (AML)-affected patients, the presence of heterogeneous sub-clones at diagnosis has been shown to be responsible for minimal residual disease and relapses. The role played by the immune system in this leukaemic sub-clonal hierarchy and maintenance remains unknown. As leukaemic sub-clone immunogenicity could not be evaluated in human AML xenograft models, we assessed the sub-clonal diversity of the murine C1498 AML cell line and the immunogenicity of its sub-clones in immune-competent syngeneic mice. The murine C1498 cell line was cultured in vitro and sub-clonal cells were generated after limiting dilution. The genomic profiles of 6 different sub-clones were analysed by comparative genomic hybridization arrays (CGH). The sub-clones were then injected into immune-deficient and - competent syngeneic mice. The immunogenicities of the sub-clones was evaluated through 1) assessment of mouse survival, 2) determination of leukaemic cell infiltration into organs by flow cytometry and the expression of a fluorescent reporter gene, 3) assessment of the CTL response ex vivo and 4) detection of residual leukaemic cells in the organs via amplification of the genomic reporter gene by real-time PCR (qPCR). Genomic analyses revealed heterogeneity among the parental cell line and its derived sub-clones. When injected individually into immune-deficient mice, all sub-clones induced cases of AML with different kinetics. However, when administered into immune-competent animals, some sub-clones triggered AML in which no mice survived, whereas others elicited reduced lethality rates. The AML-surviving mice presented efficient anti-leukaemia CTL activity ex vivo and eliminated the leukaemic cells in vivo. We showed that C1498 cell sub-clones presented genomic heterogeneity and differential immunogenicity resulting either in immune escape or elimination. Such findings could have potent implications for new immunotherapeutic strategies in patients with AML. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Mori, Yutaka; Aritomi, Shizuka; Niinuma, Kazumi; Nakamura, Tarou; Matsuura, Kenichi; Yokoyama, Junichi; Utsunomiya, Kazunori
2014-01-01
Cilnidipine (Cil), which is an L-/N-type calcium channel blocker (CCB), has been known to provide renal protection by decreasing the activity of the sympathetic nervous system (SNS) and the renin-angiotensin system. In this study, we compared the effects of the combination of Cil and amlodipine (Aml), which is an L-type CCB, with an angiotensin (Ang) II receptor blocker on diabetic cardiorenal damage in spontaneously type 2 diabetic rats. Seventeen-week-old Otsuka Long-Evans Tokushima Fatty rats were randomly assigned to receive Cil, Aml, valsartan (Val), Cil + Val, Aml + Val, or a vehicle (eight rats per group) for 22 weeks. Antihypertensive potencies were nearly equal among the CCB monotherapy groups and the combination therapy groups. The lowering of blood pressure by either treatment did not significantly affect the glycemic variables. However, exacerbations of renal and heart failure were significantly suppressed in rats administered Cil or Val, and additional suppression was observed in those administered Cil + Val. Although Val increased the renin-Ang system, Aml + Val treatment resulted in additional increases in these parameters, while Cil + Val did not show such effects. Furthermore, Cil increased the ratio of Ang-(1-7) to Ang-I, despite the fact that Val and Aml + Val decreased the Ang-(1-7) levels. These actions of Cil + Val might be due to their synergistic inhibitory effect on the activity of the SNS, and on aldosterone secretion through N-type calcium channel antagonism and Ang II receptor type 1 antagonism. Thus, Cil may inhibit the progression of cardiorenal disease in type 2 diabetes patients by acting as an N-type CCB and inhibiting the aldosterone secretion and SNS activation when these drugs were administered in combination with an Ang II receptor blocker.
Kinoshita, Akitoshi; Miyachi, Hayato; Matsushita, Hiromichi; Yabe, Miharu; Taki, Tomohiko; Watanabe, Tomoyuki; Saito, Akiko M; Tomizawa, Daisuke; Taga, Takashi; Takahashi, Hiroyuki; Matsuo, Hidemasa; Kodama, Kumi; Ohki, Kentaro; Hayashi, Yasuhide; Tawa, Akio; Horibe, Keizo; Adachi, Souichi
2014-10-01
The clinical characteristics and prognostic relevance of acute myeloid leukaemia (AML) with myelodysplastic features remains to be clarified in children. We prospectively examined 443 newly diagnosed patients in a multicentre clinical trial for paediatric de novo AML, and found 'AML with myelodysplasia-related changes' (AML-MRC) according to the 2008 World Health Organization classification in 93 (21·0%), in whom 59 were diagnosed from myelodysplasia-related cytogenetics alone, 28 from multilineage dysplasia alone and six from a combination of both. Compared with 111 patients with 'AML, not otherwise specified' (AML-NOS), patients with 'AML-MRC' presented at a younger age, with a lower white blood cell count, higher incidence of 20-30% bone marrow blasts, unfavourable cytogenetics and a lower frequency of Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD), NPM1 and CEBPA mutations. Complete remission rate and 3-year probability of event-free survival were significantly worse in 'AML-MRC' patients (67·7 vs. 85·6%, P < 0·01, 37·1% vs. 53·8%, P = 0·02, respectively), but 3-year overall survival and relapse-free survival were comparable with 'AML-NOS' patients. By multivariate analysis, FLT3-ITD was solely associated with worse overall survival. These results support the distinctive features of the category 'AML-MRC' even in children. © 2014 John Wiley & Sons Ltd.
Xu, Hongwei; Wen, Quan
2018-05-23
MicroRNA‑135a (miR‑135a) has been shown to exert important roles in various human cancer types, such as glioblastoma, thyroid carcinoma and renal carcinoma. However, the function of miR‑135a in acute myeloid leukemia (AML) remains largely unknown. In the present study, it was demonstrated that miR‑135a expression was significantly downregulated in AML cells compared with normal control cells. Furthermore, the downregulation of miR‑135a in patients with AML predicted poor prognosis. Through functional experiments, overexpression of miR‑135a was demonstrated to significantly inhibit the proliferation and cell cycle of AML cells, while it promoted cellular apoptosis. miR‑135a directly targeted HOXA10 in AML cells. miR‑135a overexpression significantly suppressed the mRNA and protein levels of HOXA10 in AML cells. Moreover, there was an inverse association between miR‑135a expression and HOXA10 level in AML samples. Additionally, by ectopic expression of HOXA10, restoration of HOXA10 significantly abolished the effects of miR‑135a overexpression on AML cell proliferation, cell cycle and apoptosis. In conclusion, the present study demonstrated that miR‑135a serves as a tumor suppressor in AML by targeting HOXA10, and miR‑135a may be a promising prognostic biomarker for AML patients.
Roboz, Gail J; Montesinos, Pau; Selleslag, Dominik; Wei, Andrew; Jang, Jun-Ho; Falantes, Jose; Voso, Maria T; Sayar, Hamid; Porkka, Kimmo; Marlton, Paula; Almeida, Antonio; Mohan, Sanjay; Ravandi, Farhad; Garcia-Manero, Guillermo; Skikne, Barry; Kantarjian, Hagop
2016-02-01
Older patients with acute myeloid leukemia (AML) have worse rates of complete remission and shorter overall survival than younger patients. The epigenetic modifier CC-486 is an oral formulation of azacitidine with promising clinical activity in patients with AML in Phase I studies. The Phase III, randomized, double-blind, placebo-controlled QUAZAR AML Maintenance trial (CC-486-AML-001) examines CC-486 maintenance therapy (300 mg/day for 14 days of 28-day treatment cycles) for patients aged ≥55 years with AML in first complete remission. The primary end point is overall survival. Secondary end points include relapse-free survival, safety, health-related quality of life and healthcare resource utilization. This trial will investigate whether CC-486 maintenance can prolong remission and improve survival for older patients with AML.
Rakugi, Hiromi; Nakata, Emi; Sasaki, Emma; Kagawa, Tomoya
2014-05-01
Guidelines for the management of hypertension recommend using drugs with different mechanisms of action in antihypertensive regimens that include simple single-pill fixed-dose combination (FDC) products. The objective of this study was to compare the efficacy and tolerability of the FDC of azilsartan (AZI) and amlodipine besylate (AML) with those of AZI monotherapy and AML monotherapy in Japanese patients with grade 1 to 2 essential hypertension. This was a multicenter, randomized, double-blind, parallel-group study. After receiving placebo during a 4-week run-in period in a single-blind manner, patients were randomized to receive 1 of the following 5 treatments for 8 weeks: FDC containing AZI 20 mg and AML 5 mg (AZI/AML 20/5 mg), FDC containing AZI 20 mg and AML 2.5 mg (AZI/AML 20/2.5 mg), AZI 20 mg, AML 5 mg, or AML 2.5 mg once daily in a fasting or fed state. The primary end point was the change from baseline (week 0) in the seated trough diastolic blood pressure at week 8 (last observation carried forward [LOCF]), and the secondary end point was the change from baseline in the seated trough systolic blood pressure at week 8 (LOCF). Tolerability was assessed based on adverse events, vital signs, and physical examination findings. Of the 800 patients who provided informed consent, 603 were randomized to receive AZI/AML 20/5 mg (150 patients), AZI/AML 20/2.5 mg (151 patients), AZI 20 mg (151 patients), AML 5 mg (75 patients), or AML 2.5 mg (76 patients). The mean baseline systolic/diastolic blood pressure was 160.7/100.3 mm Hg. The mean change from baseline in seated blood pressure at week 8 (LOCF) was -35.3/-22.3 mm Hg in the AZI/AML 20/5 mg group and -31.4/-19.2 mm Hg in the AZI/AML 20/2.5 mg group, indicating a reduction significantly greater than that in corresponding monotherapy groups (-21.5/-13.9 mm Hg in the AZI 20 mg group, -26.4/-15.5 mm Hg in the AML 5 mg group, and -19.3/-11.6 mm Hg in the AML 2.5 mg group; p < 0.0001 for all contrast tests). No remarkable difference was found in the incidences of adverse events, vital signs, and physical examination findings among the treatment groups. This study found that the FDC of AZI/AML 20/5 mg and 20/2.5 mg exhibited greater antihypertensive effects compared with each monotherapy. The FDC of AZI/AML had a similar safety profile to that of each monotherapy and was tolerable to Japanese patients with grade 1 to 2 essential hypertension. Japic CTI-111606. Copyright © 2014 Elsevier HS Journals, Inc. All rights reserved.
Pleyer, Lisa; Döhner, Hartmut; Dombret, Hervé; Seymour, John F.; Schuh, Andre C.; Beach, CL; Swern, Arlene S.; Burgstaller, Sonja; Stauder, Reinhard; Girschikofsky, Michael; Sill, Heinz; Schlick, Konstantin; Thaler, Josef; Halter, Britta; Machherndl Spandl, Sigrid; Zebisch, Armin; Pichler, Angelika; Pfeilstöcker, Michael; Autzinger, Eva M.; Lang, Alois; Geissler, Klaus; Voskova, Daniela; Sperr, Wolfgang R.; Hojas, Sabine; Rogulj, Inga M.; Andel, Johannes; Greil, Richard
2017-01-01
We recently published a clinically-meaningful improvement in median overall survival (OS) for patients with acute myeloid leukaemia (AML), >30% bone marrow (BM) blasts and white blood cell (WBC) count ≤15 G/L, treated with front-line azacitidine versus conventional care regimens within a phase 3 clinical trial (AZA-AML-001; NCT01074047; registered: February 2010). As results obtained in clinical trials are facing increased pressure to be confirmed by real-world data, we aimed to test whether data obtained in the AZA-AML-001 trial accurately represent observations made in routine clinical practice by analysing additional AML patients treated with azacitidine front-line within the Austrian Azacitidine Registry (AAR; NCT01595295; registered: May 2012) and directly comparing patient-level data of both cohorts. We assessed the efficacy of front-line azacitidine in a total of 407 patients with newly-diagnosed AML. Firstly, we compared data from AML patients with WBC ≤ 15 G/L and >30% BM blasts included within the AZA-AML-001 trial treated with azacitidine (“AML-001” cohort; n = 214) with AAR patients meeting the same inclusion criteria (“AAR (001-like)” cohort; n = 95). The current analysis thus represents a new sub-analysis of the AML-001 trial, which is directly compared with a new sub-analysis of the AAR. Baseline characteristics, azacitidine application, response rates and OS were comparable between all patient cohorts within the trial or registry setting. Median OS was 9.9 versus 10.8 months (p = 0.616) for “AML-001” versus “AAR (001-like)” cohorts, respectively. Secondly, we pooled data from both cohorts (n = 309) and assessed the outcome. Median OS of the pooled cohorts was 10.3 (95% confidence interval: 8.7, 12.6) months, and the one-year survival rate was 45.8%. Thirdly, we compared data from AAR patients meeting AZA-AML-001 trial inclusion criteria (n = 95) versus all AAR patients with World Health Organization (WHO)-defined AML (“AAR (WHO-AML)” cohort; n = 193). Within the registry population, median OS for AAR patients meeting trial inclusion criteria versus all WHO-AML patients was 10.8 versus 11.8 months (p = 0.599), respectively. We thus tested and confirmed the efficacy of azacitidine as a front-line agent in patients with AML, >30% BM blasts and WBC ≤ 15 G/L in a routine clinical practice setting. We further show that the efficacy of azacitidine does not appear to be limited to AML patients who meet stringent clinical trial inclusion criteria, but instead appears efficacious as front-line treatment in all patients with WHO-AML. PMID:28212292
Schenk, Erin L.; Koh, Brian D.; Flatten, Karen S.; Peterson, Kevin L.; Parry, David; Hess, Allan D.; Smith, B. Douglas; Karp, Judith E.; Karnitz, Larry M.; Kaufmann, Scott H.
2012-01-01
Purpose Previous studies have demonstrated that the replication checkpoint, which involves the kinases ATR and Chk1, contributes to cytarabine resistance in cell lines. In the present study, we examined whether this checkpoint is activated in clinical AML during cytarabine infusion in vivo and then assessed the impact of combining cytarabine with the recently described Chk1 inhibitor SCH 900776 in vitro. Experimental design AML marrow aspirates harvested before and during cytarabine infusion were examined by immunoblotting. Human AML lines treated with cytarabine in the absence or presence of SCH 900776 were assayed for checkpoint activation by immunoblotting, nucleotide incorporation into DNA and flow cytometry. Long-term effects in AML lines, clinical AML isolates, and normal myeloid progenitors were assayed using clonogenic assays. Results Immunoblotting demonstrated increased Chk1 phosphorylation, a marker of checkpoint activation, in over half of Chk1-containing AMLs after 48 h of cytarabine infusion. In human AML lines, SCH 900776 not only disrupted cytarabine-induced Chk1 activation and S phase arrest, but also markedly increased cytarabine-induced apoptosis. Clonogenic assays demonstrated that SCH 900776 enhanced the anti-proliferative effects of cytarabine in AML cell lines and clinical AML samples at concentrations that had negligible impact on normal myeloid progenitors. Conclusions These results not only provide evidence for cytarabine-induced S phase checkpoint activation in AML in the clinical setting, but also show that a selective Chk1 inhibitor can overcome the S phase checkpoint and enhance the cytotoxicity of cytarabine. Accordingly, further investigation of the cytarabine/SCH 900776 combination in AML appears warranted. PMID:22869869
Kim, Miryoung; Williams, Sherry
2018-03-01
To evaluate the efficacy and safety of daunorubicin and cytarabine liposome in older adults with newly diagnosed therapy-related acute myeloid leukemia (t-AML) or AML with myelodysplasia-related changes (AML-MRC). A literature search of PubMed and MEDLINE (January 2017 to January 2018) was performed using the terms CPX-351, Vyxeos, daunorubicin and cytarabine liposome, and acute myeloid leukemia. Phase I, II, and III clinical trials evaluating the efficacy and safety of daunorubicin and cytarabine liposome were reviewed with a specific focus on its use in older patients with newly diagnosed AML. All peer-reviewed articles with clinically relevant information were evaluated for inclusion. The phase II trial demonstrated that daunorubicin and cytarabine liposome improved response rates (RR), but there was no difference in event-free survival and overall survival in the overall patient population. However, clinical benefit was most pronounced in secondary AML with an increased RR and survival. The phase III trial illustrated that daunorubicin and cytarabine liposome improved survival and RR with tolerable toxicity compared with standard 7 plus 3 (daunorubicin and cytarabine) in patients 60 to 75 years of age with t-AML or AML-MRC. More patients proceeded to a stem cell transplant, and 30-day and 60-day mortality was lower with daunorubicin and cytarabine liposome. Grade 3 to 5 toxicities were similar between the 2 groups, except daunorubicin and cytarabine liposome had prolonged cytopenia and a higher risk of hemorrhage. Daunorubicin and cytarabine liposome improves RR and survival, with tolerable toxicity in older patients with t-AML or AML-MRC.
Wattjes, M P; Krauter, J; Nagel, S; Heidenreich, O; Ganser, A; Heil, G
2000-02-01
The chromosomal translocation t(8;21)(q22;q22) is one of the most frequent karyotypic aberrations in acute myeloid leukemia (AML) and results in a chimeric fusion transcript AML1/MTG8. Since AML1/MTG8 fusion transcripts remain detectable by RT-PCR in t(8;21) AML patients in long-term hematological remission, quantitative assessment of AML1/MTG8 transcripts is necessary for the monitoring of minimal residual disease (MRD) in these patients. Competitive RT-PCR and recently real-time RT-PCR are increasingly used for detection and quantification of leukemia specific fusion transcripts. For the direct comparison of both methods we cloned a 42 bp DNA fragment into the original AML1/MTG8 sequence. The resulting molecule was used as an internal competitor for our novel competitive nested RT-PCR for AML1/MTG8 and as an external standard for the generation of AML1/MTG8 standard curves in a real-time PCR assay. Using this standard molecule for both PCR techniques, we compared their sensitivity, linearity and reproducibility. Both methods were comparable with regard to all parameters tested irrespective of analyzing serial dilutions of plasmids, cell lines or samples from t(8;21) positive AML patients at different stages of the disease. Therefore, both techniques can be recommended for the monitoring of MRD in these particular AML patients. However, the automatization of the real-time PCR technique offers some technical advantages.
Liu, Yang; Yang, Fang; Yuan, Chuxiao; Li, Mingxi; Wang, Tuantuan; Chen, Bo; Jin, Juan; Zhao, Peng; Tong, Jiayi; Luo, Shouhua; Gu, Ning
2017-02-28
Nanosized drug delivery systems have offered promising approaches for cancer theranostics. However, few are effective to simultaneously maximize tumor-specific uptake, imaging, and therapy in a single nanoplatform. Here, we report a simple yet stimuli-responsive anethole dithiolethione (ADT)-loaded magnetic nanoliposome (AML) delivery system, which consists of ADT, hydrogen sulfide (H 2 S) pro-drug, doped in the lipid bilayer, and superparamagnetic nanoparticles encapsulated inside. HepG2 cells could be effectively bombed after 6 h co-incubation with AMLs. For in vivo applications, after preferentially targeting the tumor tissue when spatiotemporally navigated by an external magnetic field, the nanoscaled AMLs can intratumorally convert to microsized H 2 S bubbles. This dynamic process can be monitored by magnetic resonance and ultrasound dual modal imaging. Importantly, the intratumoral generated H 2 S bubbles imaged by real-time ultrasound imaging first can bomb to ablate the tumor tissue when exposed to higher acoustic intensity; then as gasotransmitters, intratumoral generated high-concentration H 2 S molecules can diffuse into the inner tumor regions to further have a synergetic antitumor effect. After 7-day follow-up observation, AMLs with magnetic field treatments have indicated extremely significantly higher inhibitions of tumor growth. Therefore, such elaborately designed intratumoral conversion of nanostructures to microstructures has exhibited an improved anticancer efficacy, which may be promising for multimodal image-guided accurate cancer therapy.
Tumor Trp53 status and genotype affect the bone marrow microenvironment in acute myeloid leukemia
Jacamo, Rodrigo; Davis, R. Eric; Ling, Xiaoyang; Sonnylal, Sonali; Wang, Zhiqiang; Ma, Wencai; Zhang, Min; Ruvolo, Peter; Ruvolo, Vivian; Wang, Rui-Yu; McQueen, Teresa; Lowe, Scott; Zuber, Johannes; Kornblau, Steven M.; Konopleva, Marina; Andreeff, Michael
2017-01-01
The genetic heterogeneity of acute myeloid leukemia (AML) and the variable responses of individual patients to therapy suggest that different AML genotypes may influence the bone marrow (BM) microenvironment in different ways. We performed gene expression profiling of bone marrow mesenchymal stromal cells (BM-MSC) isolated from normal C57BL/6 mice or mice inoculated with syngeneic murine leukemia cells carrying different human AML genotypes, developed in mice with Trp53 wild-type or nullgenetic backgrounds. We identified a set of genes whose expression in BM-MSC was modulated by all four AML genotypes tested. In addition, there were sets of differentially-expressed genes in AML-exposed BM-MSC that were unique to the particular AML genotype or Trp53 status. Our findings support the hypothesis that leukemia cells alter the transcriptome of surrounding BM stromal cells, in both common and genotype-specific ways. These changes are likely to be advantageous to AML cells, affecting disease progression and response to chemotherapy, and suggest opportunities for stroma-targeting therapy, including those based on AML genotype. PMID:29137349
Drug targeting of NR4A nuclear receptors for treatment of acute myeloid leukemia.
Boudreaux, Seth P; Duren, Ryan P; Call, Steven G; Nguyen, Loc; Freire, Pablo R; Narayanan, Padmini; Redell, Michele S; Conneely, Orla M
2018-06-08
NR4As are AML tumor suppressors that are frequently silenced in human acute myeloid leukemia (AML). Despite their potential as novel targets for therapeutic intervention, mechanisms of NR4A silencing and strategies for their reactivation remain poorly defined. Here we show that NR4A silencing in AML occurs through blockade of transcriptional elongation rather than epigenetic promoter silencing. By intersection of NR4A-regulated gene signatures captured upon acute, exogenous expression of NR4As in human AML cells with in silico chemical genomics screening, we identify several FDA-approved drugs including dihydroergotamine (DHE) that reactivate NR4A expression and regulate NR4A-dependent gene signatures. We show that DHE induces NR4A expression via recruitment of the super elongation complex to enable elongation of NR4A promoter paused RNA polymerase II. Finally, DHE exhibits AML selective NR4A-dependent anti-leukemic activity in cytogenetically distinct human AML cells in vitro and delays AML progression in mice revealing its potential as a novel therapeutic agent in AML.
Niu, Fan; Yan, Jin; Ma, Bohan; Li, Shichao; Shao, Yongping; He, Pengcheng; Zhang, Wanggang; He, Wangxiao; Ma, Peter X; Lu, Wuyuan
2018-06-01
Roughly one third of all human cancers are attributable to the functional inhibition of the tumor suppressor protein p53 by its two negative regulators MDM2 and MDMX, making dual-specificity peptide antagonists of MDM2 and MDMX highly attractive drug candidates for anticancer therapy. Two pharmacological barriers, however, remain a major obstacle to the development of peptide therapeutics: susceptibility to proteolytic degradation in vivo and inability to traverse the cell membrane. Here we report the design of a fluorescent lanthanide oxyfluoride nanoparticle (LONp)-based multifunctional peptide drug delivery system for potential treatment of acute myeloid leukemia (AML) that commonly harbors wild type p53, high levels of MDM2 and/or MDMX, and an overexpressed cell surface receptor, CD33. We conjugated to LONp via metal-thiolate bonds a dodecameric peptide antagonist of both MDM2 and MDMX, termed PMI, and a CD33-targeted, humanized monoclonal antibody to allow for AML-specific intracellular delivery of a stabilized PMI. The resultant nanoparticle antiCD33-LONp-PMI, while nontoxic to normal cells, induced apoptosis of AML cell lines and primary leukemic cells isolated from AML patients by antagonizing MDM2 and/or MDMX to activate the p53 pathway. Fluorescent antiCD33-LONp-PMI also enabled real-time visualization of a series of apoptotic events in AML cells, proving a useful tool for possible disease tracking and treatment response monitoring. Our studies shed light on the development of antiCD33-LONp-PMI as a novel class of antitumor agents, which, if further validated, may help targeted molecular therapy of AML. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Yan-Yu; Chen, Wen-Lian; Weng, Xiang-Qin; Sheng, Yan; Wu, Jing; Hao, Jie; Liu, Zhan-Yun; Zhu, Yong-Mei; Chen, Bing; Xiong, Shu-Min; Chen, Yu; Chen, Qiu-Sheng; Sun, Hui-Ping; Li, Jun-Min; Wang, Jin
2017-10-15
Recent reports state that C-type lectin-like molecule-1 (CLL-1) in acute myeloid leukemia (AML) is expressed primarily on myeloid cells, but there is still no investigation about its prognostic significance on leukemic blast compartment. Hence, this study aimed to evaluate the prognostic value of CLL-1 in 123 patients with de novo CD34 + Non-M3 AML. Multiparameter flow cytometry was used to assess the expression of CLL-1 on immature compartment in AML and control groups. We found that CLL-1 expression level on blast compartment was closely linked to clinical characteristics, treatment response, and survival outcome of patients. Decreased expression of CLL-1 was observed on immature compartment from AML patients as compared with controls (62.6% vs. 86.5%, P < 0.05). Logistic model exhibited that CLL-1 low independently predicted low complete remission rate with an odds ratio of 4.57 (2.53-6.61, P < 0.05). Additionally, CLL-1 expression level at diagnosis was inversely correlated to the residual blast cells (residual leukemia cell) after induction chemotherapy (r = -0.423, P < 0.05). Furthermore, multivariate Cox regression model demonstrated that CLL-1 low was still an independent adverse predictor (P < 0.05 for event-free survival, P < 0.05 for overall survival). Notably, CLL-1 low was able to discriminate poor survival patients from intermediate- and favorable-risk groups. Taken together, CLL-1 is a novel prognostic predictor that could be exploited to supplement the current AML prognostic risk stratification system, and potentially optimize the clinical management of AML.
Aasebø, Elise; Forthun, Rakel B.; Berven, Frode; Selheim, Frode; Hernandez-Valladares, Maria
2016-01-01
The identification of protein biomarkers for acute myeloid leukemia (AML) that could find applications in AML diagnosis and prognosis, treatment and the selection for bone marrow transplant requires substantial comparative analyses of the proteomes from AML patients. In the past years, several studies have suggested some biomarkers for AML diagnosis or AML classification using methods for sample preparation with low proteome coverage and low resolution mass spectrometers. However, most of the studies did not follow up, confirm or validate their candidates with more patient samples. Current proteomics methods, new high resolution and fast mass spectrometers allow the identification and quantification of several thousands of proteins obtained from few tens of μg of AML cell lysate. Enrichment methods for posttranslational modifications (PTM), such as phosphorylation, can isolate several thousands of site-specific phosphorylated peptides from AML patient samples, which subsequently can be quantified with high confidence in new mass spectrometers. While recent reports aiming to propose proteomic or phosphoproteomic biomarkers on the studied AML patient samples have taken advantage of the technological progress, the access to large cohorts of AML patients to sample from and the availability of appropriate control samples still remain challenging. PMID:26306748
Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia.
Baron, Jeffrey; Wang, Eunice S
2018-06-11
Gemtuzumab ozogamicin (GO) is an antibody-drug conjugate consisting of a monoclonal antibody targeting CD33 linked to a cytotoxic derivative of calicheamicin. Despite the known clinical efficacy in relapsed/refractory acute myeloid leukemia (AML), GO was withdrawn from the market in 2010 due to increased early deaths witnessed in newly diagnosed AML patients receiving GO + intensive chemotherapy. In 2017, new data on the clinical efficacy and safety of GO administered on a fractionated-dosing schedule led to re-approval for newly diagnosed and relapsed/refractory AML. Areas covered: Addition of fractionated GO to chemotherapy significantly improved event-free survival of newly diagnosed AML patients with favorable and intermediate cytogenetic-risk disease. GO monotherapy also prolonged survival in newly diagnosed unfit patients and relapse-free survival in relapsed/refractory AML. This new dosing schedule was associated with decreased incidence of hepatotoxicity, veno-occlusive disease, and early mortality. Expert commentary: GO represents the first drug-antibody conjugate approved (twice) in the United States for AML. Its re-emergence adds a valuable agent back into the armamentarium for AML. The approval of GO as well as three other agents for AML in 2017 highlights the need for rapid cytogenetic and molecular characterization of AML and incorporation into new treatment algorithms.
The complexity of interpreting genomic data in patients with acute myeloid leukemia
Nazha, A; Zarzour, A; Al-Issa, K; Radivoyevitch, T; Carraway, H E; Hirsch, C M; Przychodzen, B; Patel, B J; Clemente, M; Sanikommu, S R; Kalaycio, M; Maciejewski, J P; Sekeres, M A
2016-01-01
Acute myeloid leukemia (AML) is a heterogeneous neoplasm characterized by the accumulation of complex genetic alterations responsible for the initiation and progression of the disease. Translating genomic information into clinical practice remained challenging with conflicting results regarding the impact of certain mutations on disease phenotype and overall survival (OS) especially when clinical variables are controlled for when interpreting the result. We sequenced the coding region for 62 genes in 468 patients with secondary AML (sAML) and primary AML (pAML). Overall, mutations in FLT3, DNMT3A, NPM1 and IDH2 were more specific for pAML whereas UTAF1, STAG2, BCORL1, BCOR, EZH2, JAK2, CBL, PRPF8, SF3B1, ASXL1 and DHX29 were more specific for sAML. However, in multivariate analysis that included clinical variables, only FLT3 and DNMT3A remained specific for pAML and EZH2, BCOR, SF3B1 and ASXL1 for sAML. When the impact of mutations on OS was evaluated in the entire cohort, mutations in DNMT3A, PRPF8, ASXL1, CBL EZH2 and TP53 had a negative impact on OS; no mutation impacted OS favorably; however, in a cox multivariate analysis that included clinical data, mutations in DNMT3A, ASXL1, CBL, EZH2 and TP53 became significant. Thus, controlling for clinical variables is important when interpreting genomic data in AML. PMID:27983727
The complexity of interpreting genomic data in patients with acute myeloid leukemia.
Nazha, A; Zarzour, A; Al-Issa, K; Radivoyevitch, T; Carraway, H E; Hirsch, C M; Przychodzen, B; Patel, B J; Clemente, M; Sanikommu, S R; Kalaycio, M; Maciejewski, J P; Sekeres, M A
2016-12-16
Acute myeloid leukemia (AML) is a heterogeneous neoplasm characterized by the accumulation of complex genetic alterations responsible for the initiation and progression of the disease. Translating genomic information into clinical practice remained challenging with conflicting results regarding the impact of certain mutations on disease phenotype and overall survival (OS) especially when clinical variables are controlled for when interpreting the result. We sequenced the coding region for 62 genes in 468 patients with secondary AML (sAML) and primary AML (pAML). Overall, mutations in FLT3, DNMT3A, NPM1 and IDH2 were more specific for pAML whereas UTAF1, STAG2, BCORL1, BCOR, EZH2, JAK2, CBL, PRPF8, SF3B1, ASXL1 and DHX29 were more specific for sAML. However, in multivariate analysis that included clinical variables, only FLT3 and DNMT3A remained specific for pAML and EZH2, BCOR, SF3B1 and ASXL1 for sAML. When the impact of mutations on OS was evaluated in the entire cohort, mutations in DNMT3A, PRPF8, ASXL1, CBL EZH2 and TP53 had a negative impact on OS; no mutation impacted OS favorably; however, in a cox multivariate analysis that included clinical data, mutations in DNMT3A, ASXL1, CBL, EZH2 and TP53 became significant. Thus, controlling for clinical variables is important when interpreting genomic data in AML.
Yan, F; Shen, N; Pang, JX; Zhang, YW; Rao, EY; Bode, AM; Al-Kali, A; Zhang, DE; Litzow, MR; Li, B; Liu, SJ
2016-01-01
Obesity is becoming more prevalent worldwide and is a major risk factor for cancer development. Acute myeloid leukemia (AML), the most common acute leukemia in adults, remains a frequently fatal disease. Here, we investigated the molecular mechanisms by which obesity favors AML growth and uncovered the fatty acid binding protein 4 (FABP4) and DNA methyltransferase 1 (DNMT1) regulatory axis that mediates aggressive AML in obesity. We showed that leukemia burden was much higher in high-fat diet-induced obese mice, which had higher levels of FABP4 and IL-6 in sera. Upregulation of environmental and cellular FABP4 accelerated AML cell growth in both a cell-autonomous and cell-non-autonomous manner. Genetic disruption of FABP4 in AML cells or in mice blocked cell proliferation in vitro and induced leukemia regression in vivo. Mechanistic investigations showed that FABP4 upregulation increased IL-6 expression and STAT3 phosphorylation leading to DNMT1 overexpression and further silencing of the p15INK4B tumor suppressor gene in AML cells. Conversely, FABP4 ablation reduced DNMT1-dependent DNA methylation and restored p15INK4B expression, thus conferring substantial protection against AML growth. Our findings reveal the FABP4/DNMT1 axis in the control of AML cell fate in obesity, and suggest that interference with the FABP4/DNMT1 axis might be a new strategy to treat leukemia. PMID:27885273
Yan, F; Shen, N; Pang, J X; Zhang, Y W; Rao, E Y; Bode, A M; Al-Kali, A; Zhang, D E; Litzow, M R; Li, B; Liu, S J
2017-06-01
Obesity is becoming more prevalent worldwide and is a major risk factor for cancer development. Acute myeloid leukemia (AML), the most common acute leukemia in adults, remains a frequently fatal disease. Here we investigated the molecular mechanisms by which obesity favors AML growth and uncovered the fatty acid-binding protein 4 (FABP4) and DNA methyltransferase 1 (DNMT1) regulatory axis that mediates aggressive AML in obesity. We showed that leukemia burden was much higher in high-fat diet-induced obese mice, which had higher levels of FABP4 and interleukin (IL)-6 in the sera. Upregulation of environmental and cellular FABP4 accelerated AML cell growth in both a cell-autonomous and cell-non-autonomous manner. Genetic disruption of FABP4 in AML cells or in mice blocked cell proliferation in vitro and induced leukemia regression in vivo. Mechanistic investigations showed that FABP4 upregulation increased IL-6 expression and signal transducer and activator of transcription factor 3 phosphorylation leading to DNMT1 overexpression and further silencing of the p15 INK4B tumor-suppressor gene in AML cells. Conversely, FABP4 ablation reduced DNMT1-dependent DNA methylation and restored p15 INK4B expression, thus conferring substantial protection against AML growth. Our findings reveal the FABP4/DNMT1 axis in the control of AML cell fate in obesity and suggest that interference with the FABP4/DNMT1 axis might be a new strategy to treat leukemia.
Matsumura, I; Kanakura, Y; Kato, T; Ikeda, H; Horikawa, Y; Ishikawa, J; Kitayama, H; Nishiura, T; Tomiyama, Y; Miyazaki, H; Matsuzawa, Y
1996-10-15
Thrombopoietin (TPO) is implicated as a primary regulator of megakaryopoiesis and thrombopoiesis. However, the biologic effects of TPO on human acute myeloblastic leukemia (AML) cells are largely unknown. To determine if recombinant human (rh) TPO has proliferation-supporting and differentiation-inducing activities in AML cells, 15 cases of AML cells that were exclusively composed of undifferentiated leukemia cells and showed growth response to rhTPO in a short-term culture (72 hours) were subjected to long-term suspension culture with or without rhTPO. Of 15 cases, rhTPO supported proliferation of AML cells for 2 to 4 weeks in 4 cases whose French-American-British subtypes were M0, M2, M4, and M7, respectively. In addition to the proliferation-supporting activity, rhTPO was found to induce AML cells to progress to some degree of megakaryocytic differentiation at both morphologic and surface-phenotypic level in 2 AML cases with M0 and M7 subtypes. The treatment of AML cells with rhTPO resulted in rapid tyrosine phosphorylation of the TPO-receptor, c-mpl, and STAT3 in all of cases tested. By contrast, the expression of erythroid/megakaryocyte-specific transcription factors (GATA-1, GATA-2, and NF-E2) was markedly induced or enhanced in only 2 AML cases that showed megakaryocytic differentiation in response to rhTPO. These results suggested that, at least in a fraction of AML cases, TPO could not only support the proliferation of AML cells irrespective of AML subtypes, but could also induce megakaryocytic differentiation, possibly through activation of GATA-1, GATA-2, and NF-E2.
De Luca, Luciana; Trino, Stefania; Laurenzana, Ilaria; Tagliaferri, Daniela; Falco, Geppino; Grieco, Vitina; Bianchino, Gabriella; Nozza, Filomena; Campia, Valentina; D'Alessio, Francesca; La Rocca, Francesco; Caivano, Antonella; Villani, Oreste; Cilloni, Daniela; Musto, Pellegrino; Del Vecchio, Luigi
2017-01-01
Lin28A is a highly conserved RNA-binding protein that concurs to control the balance between stemness and differentiation in several tissue lineages. Here, we report the role of miR-128a/Lin28A axis in blocking cell differentiation in acute myeloid leukemia (AML), a genetically heterogeneous disease characterized by abnormally controlled proliferation of myeloid progenitor cells accompanied by partial or total inability to undergo terminal differentiation. First, we found Lin28A underexpressed in blast cells from AML patients and AML cell lines as compared with CD34+ normal precursors. In vitro transfection of Lin28A in NPM1-mutated OCI-AML3 cell line significantly triggered cell-cycle arrest and myeloid differentiation, with increased expression of macrophage associate genes (EGR2, ZFP36 and ANXA1). Furthermore, miR-128a, a negative regulator of Lin28A, was found overexpressed in AML cells compared with normal precursors, especially in acute promyelocytic leukemia (APL) and in ‘AML with maturation’ (according to 2016 WHO classification of myeloid neoplasms and acute leukemia). Its forced overexpression by lentiviral infection in OCI-AML3 downregulated Lin28A with ensuing repression of macrophage-oriented differentiation. Finally, knockdown of miR-128a in OCI-AML3 and in APL/AML leukemic cells (by transfection and lentiviral infection, respectively) induced myeloid cell differentiation and increased expression of Lin28A, EGR2, ZFP36 and ANXA1, reverting myeloid differentiation blockage. In conclusion, our findings revealed a new mechanism for AML differentiation blockage, suggesting new strategies for AML therapy based upon miR-128a inhibition. PMID:28569789
Fruchart, C; Lenormand, B; Bastard, C; Boulet, D; Lesesve, J F; Callat, M P; Stamatoullas, A; Monconduit, M; Tilly, H
1996-11-01
The hemopoietic stem cell marker CD34 has been reported to be a useful predictor of treatment outcome in acute myeloid leukemia (AML). Previous data suggested that CD34 expression may be associated with other poor prognosis factors in AML such as undifferentiated leukemia, secondary AML (SAML), and clonal abnormalities involving chromosome 5 and 7. In order to analyze the correlations between the clinicopathologic features, cytogenetic and CD34 expression in AML, we retrospectively investigated 99 patients with newly diagnosed AML: 85 with de novo disease and 14 with secondary AML (SAML). Eighty-six patients who received the same induction chemotherapy were available for clinical outcome. Defining a case as positive when > or = 20% of bone marrow cells collected at diagnosis expressed the CD34 antigen, forty-five patients were included in the CD34 positive group. Ninety patients had adequate cytogenetic analysis. Thirty-two patients (72%) with CD34 positive AML exhibited an abnormal karyotype whereas 15 patients (28%) with CD34 negative AML had abnormal metaphases (P < 0.01). Monosomy 7/7q- or monosomy 5/5q- occurred in 10 patients and 8 of them expressed the CD34 antigen (P < 0.05). All patients with t(8;21) which is considered as a favorable factor in AML had levels of CD34 >/= 20% (P < 0.05). We did not find any association between CD34 expression and attainment of complete remission, overall survival, or disease-free survival. In conclusion, the variations of CD34 expression in AML are correlated with cytogenetic abnormalities associated both with poor and favorable outcome. The evaluation of the correlations between CD34 antigen and clinical outcome in AML should take into account the results of pretreatment karyotype.
Hoang, Van T; Buss, Eike C; Wang, Wenwen; Hoffmann, Isabel; Raffel, Simon; Zepeda-Moreno, Abraham; Baran, Natalia; Wuchter, Patrick; Eckstein, Volker; Trumpp, Andreas; Jauch, Anna; Ho, Anthony D; Lutz, Christoph
2015-08-01
To understand the precise disease driving mechanisms in acute myeloid leukemia (AML), comparison of patient matched hematopoietic stem cells (HSC) and leukemia stem cells (LSC) is essential. In this analysis, we have examined the value of aldehyde dehydrogenase (ALDH) activity in combination with CD34 expression for the separation of HSC from LSC in 104 patients with de novo AML. The majority of AML patients (80 out of 104) had low percentages of cells with high ALDH activity (ALDH(+) cells; <1.9%; ALDH-rare AML), whereas 24 patients had relatively numerous ALDH(+) cells (≥1.9%; ALDH-numerous AML). In patients with ALDH-rare AML, normal HSC could be separated by their CD34(+) ALDH(+) phenotype, whereas LSC were exclusively detected among CD34(+) ALDH(-) cells. For patients with ALDH-numerous AML, the CD34(+) ALDH(+) subset consisted mainly of LSC and separation from HSC was not feasible. Functional analyses further showed that ALDH(+) cells from ALDH-numerous AML were quiescent, refractory to ARA-C treatment and capable of leukemic engraftment in a xenogenic mouse transplantation model. Clinically, resistance to chemotherapy and poor long-term outcome were also characteristic for patients with ALDH-numerous AML providing an additional risk-stratification tool. The difference in spectrum and relevance of ALDH activity in the putative LSC populations demonstrates, in addition to phenotypic and genetic, also functional heterogeneity of leukemic cells and suggests divergent roles for ALDH activity in normal HSC versus LSC. By acknowledging these differences our study provides a new and useful tool for prospective identification of AML cases in which separation of HSC from LSC is possible. © 2014 UICC.
Ranganathan, Parvathi; Kashyap, Trinayan; Yu, Xueyan; Meng, Xiaomei; Lai, Tzung-Huei; McNeil, Betina; Bhatnagar, Bhavana; Shacham, Sharon; Kauffman, Michael; Dorrance, Adrienne M.; Blum, William; Sampath, Deepa; Landesman, Yosef; Garzon, Ramiro
2016-01-01
Purpose Selinexor, a selective inhibitor of XPO1, is currently being tested as single agent in clinical trials in acute myeloid leukemia (AML). However, considering the molecular complexity of AML, it is unlikely that AML can be cured with monotherapy. Therefore we asked whether adding already established effective drugs such as Topoisomerase (Topo) II inhibitors to selinexor will enhance its anti-leukemic effects in AML. Experimental Design The efficacy of combinatorial drug treatment using Topo II inhibitors (idarubicin, daunorubicin, mitoxantrone, etoposide) and selinexor was evaluated in established cellular and animal models of AML. Results Concomitant treatment with selinexor and Topo II inhibitors resulted in therapeutic synergy in AML cell lines and patient samples. Using a xenograft MV4-11 AML mouse model, we show that treatment with selinexor and idarubicin significantly prolongs survival of leukemic mice compared to each single therapy. Conclusions Aberrant nuclear export and cytoplasmic localization of Topo IIα has been identified as one of the mechanisms leading to drug resistance in cancer. Here, we show that in a subset of AML patients that express cytoplasmic Topo IIα, selinexor treatment results in nuclear retention of Topo IIα protein, resulting in increased sensitivity to idarubicin. Selinexor treatment of AML cells resulted in a c-MYC dependent reduction of DNA damage repair genes (Rad51 and Chk1) mRNA and protein expression, and subsequent inhibition of homologous recombination repair and increased sensitivity to Topo II inhibitors. The preclinical data reported here support further clinical studies using selinexor and Topo II inhibitors in combination to treat AML. PMID:27358488
Lima, C S; Vassalo, J; Lorand-Metze, I; Bechelli, A P; Souza, C A
1997-01-01
A prospective study was undertaken to elucidate the clinical and laboratory differences between de novo acute myeloid leukemia (AML) and AML with trilineage myelodysplasia (AML-TMDS). One hundred and seven patients with AML were diagnosed at the University Hospital between January 1987 and July 1992, and were followed until July 1995. TMDS was identified in 17 of them (16%). With regard to age and sex distribution no difference was found between AML patients with and without TMDS (p = 0.43, p = 0.54, respectively). The duration of symptoms at presentation in AML-TMDS was similar to those observed in de novo AML (p = 0.29). Hemoglobin values and platelet counts were similar in both groups of patients (p = 0.45, p = 0.44, respectively). However, peripheral white blood cell and neutrophil counts, as well as blast counts in AML-TMDS patients were lower than those observed in AML without TMDS patients (p < 0.001 for all of them). Bone marrow blast counts in de novo AML were higher than the values observed in AML-TMDS patients (p < 0.001). TMDS occurred predominantly in M2 and M6 FAB types, and was absent in the M3 type. Bone marrow histology showed no particular feature that could be of diagnostic relevance. The remission rates were similar in both groups of patients (p = 0.55). The same was true for the probability of disease-free survival and overall survival during the period of study (p = 0.50, p = 0.33, respectively). These results suggest that: 1) in AML-TMDS patients, leukemia transformation occurs in a more undifferentiated pluripotent stem cell, leading to a dysplastic residual hemopoiesis besides the blast proliferation; 2) the incidence of TMDS in our group of patients did not influence the clinical outcome after treatment of the disease.
SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Li; Weng, Wei; Sun, Zhi-Xin
Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, andmore » concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice.« less
Correlation between p65 and TNF-α in patients with acute myelocytic leukemia.
Dong, Qiao-Mei; Ling, Chun; Zhu, Jun-Fang; Chen, Xuan; Tang, Yan; Zhao, L I
2015-11-01
The correlation between the expression levels of p65 and TNF-α in patients with acute myelocytic leukemia (AML) and AML cell lines were investigated. The bone marrow samples of 30 AML patients and 10 non-leukemia controls were studied. The mRNA expression levels of p65 and TNF-α were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and Pearson's Correlation test was used to demonstrate the correlation between TNF-α and p65 expression levels in AML specimens. Receiver operating characteristic (ROC) curves were plotted to determine whether TNF-α and p65 expression levels could be used to differentiate AML samples from non-leukemia samples. MG132 and anti-TNF-α antibody were used to inhibit the expression of p65 and TNF-α in the AML cell line, HL-60. The expression of p65 and TNF-α were detected by RT-qPCR and western blot analysis. The mRNA expression levels of p65 and TNF-α were significantly increased in AML patients compared with non-leukemia control bone marrow samples by RT-qPCR, and the two molecules expression pattern's exhibited sufficient predictive power to distinguish AML patients from non-leukemia control samples. Pearson's correlation analysis demonstrated that TNF-α expression was strongly correlated with p65 expression in AML bone marrow samples. In HL-60 cells, inhibition of TNF-α reduced the expression of p65; in addition, inhibition of p65 reduced the expression of TNF-α as assessed by RT-qPCR and western blot analysis. p65 and TNF-α were highly expressed in AML patients, and these 2 molecules were strongly correlated. The present study indicates that p65 and TNF-α have potential as molecular markers to distinguish AML patients from non-leukemia control samples, and that these 2 molecules may be useful prognostic factor for patients with AML.
Comprehensive mutational profiling of core binding factor acute myeloid leukemia.
Duployez, Nicolas; Marceau-Renaut, Alice; Boissel, Nicolas; Petit, Arnaud; Bucci, Maxime; Geffroy, Sandrine; Lapillonne, Hélène; Renneville, Aline; Ragu, Christine; Figeac, Martin; Celli-Lebras, Karine; Lacombe, Catherine; Micol, Jean-Baptiste; Abdel-Wahab, Omar; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric; Preudhomme, Claude
2016-05-19
Acute myeloid leukemia (AML) with t(8;21) or inv(16) have been recognized as unique entities within AML and are usually reported together as core binding factor AML (CBF-AML). However, there is considerable clinical and biological heterogeneity within this group of diseases, and relapse incidence reaches up to 40%. Moreover, translocations involving CBFs are not sufficient to induce AML on its own and the full spectrum of mutations coexisting with CBF translocations has not been elucidated. To address these issues, we performed extensive mutational analysis by high-throughput sequencing in 215 patients with CBF-AML enrolled in the Phase 3 Trial of Systematic Versus Response-adapted Timed-Sequential Induction in Patients With Core Binding Factor Acute Myeloid Leukemia and Treating Patients with Childhood Acute Myeloid Leukemia with Interleukin-2 trials (age, 1-60 years). Mutations in genes activating tyrosine kinase signaling (including KIT, N/KRAS, and FLT3) were frequent in both subtypes of CBF-AML. In contrast, mutations in genes that regulate chromatin conformation or encode members of the cohesin complex were observed with high frequencies in t(8;21) AML (42% and 18%, respectively), whereas they were nearly absent in inv(16) AML. High KIT mutant allele ratios defined a group of t(8;21) AML patients with poor prognosis, whereas high N/KRAS mutant allele ratios were associated with the lack of KIT or FLT3 mutations and a favorable outcome. In addition, mutations in epigenetic modifying or cohesin genes were associated with a poor prognosis in patients with tyrosine kinase pathway mutations, suggesting synergic cooperation between these events. These data suggest that diverse cooperating mutations may influence CBF-AML pathophysiology as well as clinical behavior and point to potential unique pathogenesis of t(8;21) vs inv(16) AML. © 2016 by The American Society of Hematology.
Identification of Novel Genomic Aberrations in AML-M5 in a Level of Array CGH
Zhang, Rui; Lee, Ji-Yun; Wang, Xianfu; Xu, Weihong; Hu, Xiaoxia; Lu, Xianglan; Niu, Yimeng; Tang, Rurong; Li, Shibo; Li, Yan
2014-01-01
To assess the possible existence of unbalanced chromosomal abnormalities and delineate the characterization of copy number alterations (CNAs) of acute myeloid leukemia-M5 (AML-M5), R-banding karyotype, oligonucelotide array CGH and FISH were performed in 24 patients with AML-M5. A total of 117 CNAs with size ranging from 0.004 to 146.263 Mb was recognized in 12 of 24 cases, involving all chromosomes other than chromosome 1, 4, X and Y. Cryptic CNAs with size less than 5 Mb accounted for 59.8% of all the CNAs. 12 recurrent chromosomal alterations were mapped. Seven out of them were described in the previous AML studies and five were new candidate AML-M5 associated CNAs, including gains of 3q26.2-qter and 13q31.3 as well as losses of 2q24.2, 8p12 and 14q32. Amplication of 3q26.2-qter was the sole large recurrent chromosomal anomaly and the pathogenic mechanism in AML-M5 was possibly different from the classical recurrent 3q21q26 abnormality in AML. As a tumor suppressor gene, FOXN3, was singled out from the small recurrent CNA of 14q32, however, it is proved that deletion of FOXN3 is a common marker of myeloid leukemia rather than a specific marker for AML-M5 subtype. Moreover, the concurrent amplication of MLL and deletion of CDKN2A were noted and it might be associated with AML-M5. The number of CNA did not show a significant association with clinico-biological parameters and CR number of the 22 patients received chemotherapy. This study provided the evidence that array CGH served as a complementary platform for routine cytogenetic analysis to identify those cryptic alterations in the patients with AML-M5. As a subtype of AML, AML-M5 carries both common recurrent CNAs and unique CNAs, which may harbor novel oncogenes or tumor suppressor genes. Clarifying the role of these genes will contribute to the understanding of leukemogenic network of AML-M5. PMID:24727659
Future prospects of therapeutic clinical trials in acute myeloid leukemia
Khan, Maliha; Mansoor, Armaghan-e-Rehman; Kadia, Tapan M
2017-01-01
Acute myeloid leukemia (AML) is a markedly heterogeneous hematological malignancy that is most commonly seen in elderly adults. The response to current therapies to AML is quite variable, and very few new drugs have been recently approved for use in AML. This review aims to discuss the issues with current trial design for AML therapies, including trial end points, patient enrollment, cost of drug discovery and patient heterogeneity. We also discuss the future directions in AML therapeutics, including intensification of conventional therapy and new drug delivery mechanisms; targeted agents, including epigenetic therapies, cell cycle regulators, hypomethylating agents and chimeric antigen receptor T-cell therapy; and detail of the possible agents that may be incorporated into the treatment of AML in the future. PMID:27771959
Pérez-Cuevas, Ricardo; Doubova, Svetlana V; Zapata-Tarres, Marta; Flores-Hernández, Sergio; Frazier, Lindsay; Rodríguez-Galindo, Carlos; Cortes-Gallo, Gabriel; Chertorivski-Woldenberg, Salomon; Muñoz-Hernández, Onofre
2013-02-01
In 2006, the Mexican government launched the Fund for Protection Against Catastrophic Expenditures (FPGC) to support financially healthcare of high cost illnesses. This study aimed at answering the question whether FPGC improved coverage for cancer care and to measure survival of FPGC affiliated children with cancer. A retrospective cohort study (2006-2009) was conducted in 47 public hospitals. Information of children and adolescents with cancer was analyzed. The coverage was estimated in accordance with expected number of incident cases and those registered at FPGC. The survival was analyzed by using Kaplan-Meier survival curves and Cox proportional hazards regression modeling. The study included 3,821 patients. From 2006 to 2009, coverage of new cancer cases increased from 3.3% to 55.3%. Principal diagnoses were acute lymphoblastic leukemia (ALL, 46.4%), central nervous system (CNS) tumors (8.2%), and acute myeloid leukemia (AML, 7.4%). The survival rates at 36 months were ALL (50%), AML (30.5%), Hodgkin lymphoma (74.5%), Non-Hodgkin lymphoma (40.1%), CNS tumors (32.8%), renal tumors (58.4%), bone tumors (33.4%), retinoblastoma (59.2%), and other solid tumors (52.6%). The 3-year overall survival rates varied among the regions; children between the east and south-southeast had the higher risks (hazard ratio 3.0; 95% CI: 2.3-3.9) and 2.4; 95% CI: 2.0-2.8) of death from disease when compared with those from the central region. FPGC has increased coverage of cancer cases. Survival rates were different throughout the country. It is necessary to evaluate the effectiveness of this policy to increase access and identify opportunities to reduce the differences in survival. Copyright © 2012 Wiley Periodicals, Inc.
Pérez-Cuevas, Ricardo; Doubova, Svetlana V; Zapata-Tarres, Marta; Flores-Hernández, Sergio; Frazier, Lindsay; Rodríguez-Galindo, Carlos; Cortes-Gallo, Gabriel; Chertorivski-Woldenberg, Salomon; Muñoz-Hernández, Onofre
2013-01-01
Background In 2006, the Mexican government launched the Fund for Protection Against Catastrophic Expenditures (FPGC) to support financially healthcare of high cost illnesses. This study aimed at answering the question whether FPGC improved coverage for cancer care and to measure survival of FPGC affiliated children with cancer. Procedure A retrospective cohort study (2006–2009) was conducted in 47 public hospitals. Information of children and adolescents with cancer was analyzed. The coverage was estimated in accordance with expected number of incident cases and those registered at FPGC. The survival was analyzed by using Kaplan–Meier survival curves and Cox proportional hazards regression modeling. Results The study included 3,821 patients. From 2006 to 2009, coverage of new cancer cases increased from 3.3% to 55.3%. Principal diagnoses were acute lymphoblastic leukemia (ALL, 46.4%), central nervous system (CNS) tumors (8.2%), and acute myeloid leukemia (AML, 7.4%). The survival rates at 36 months were ALL (50%), AML (30.5%), Hodgkin lymphoma (74.5%), Non-Hodgkin lymphoma (40.1%), CNS tumors (32.8%), renal tumors (58.4%), bone tumors (33.4%), retinoblastoma (59.2%), and other solid tumors (52.6%). The 3-year overall survival rates varied among the regions; children between the east and south-southeast had the higher risks (hazard ratio 3.0; 95% CI: 2.3–3.9) and 2.4; 95% CI: 2.0–2.8) of death from disease when compared with those from the central region. Conclusion FPGC has increased coverage of cancer cases. Survival rates were different throughout the country. It is necessary to evaluate the effectiveness of this policy to increase access and identify opportunities to reduce the differences in survival. PMID:22887842
Liyanage, Sanduni U; Hurren, Rose; Voisin, Veronique; Bridon, Gaëlle; Wang, Xiaoming; Xu, ChangJiang; MacLean, Neil; Siriwardena, Thirushi P; Gronda, Marcela; Yehudai, Dana; Sriskanthadevan, Shrivani; Avizonis, Daina; Shamas-Din, Aisha; Minden, Mark D; Bader, Gary D; Laposa, Rebecca; Schimmer, Aaron D
2017-05-11
Mitochondrial DNA (mtDNA) biosynthesis requires replication factors and adequate nucleotide pools from the mitochondria and cytoplasm. We performed gene expression profiling analysis of 542 human acute myeloid leukemia (AML) samples and identified 55% with upregulated mtDNA biosynthesis pathway expression compared with normal hematopoietic cells. Genes that support mitochondrial nucleotide pools, including mitochondrial nucleotide transporters and a subset of cytoplasmic nucleoside kinases, were also increased in AML compared with normal hematopoietic samples. Knockdown of cytoplasmic nucleoside kinases reduced mtDNA levels in AML cells, demonstrating their contribution in maintaining mtDNA. To assess cytoplasmic nucleoside kinase pathway activity, we used a nucleoside analog 2'3'-dideoxycytidine (ddC), which is phosphorylated to the activated antimetabolite, 2'3'-dideoxycytidine triphosphate by cytoplasmic nucleoside kinases. ddC is a selective inhibitor of the mitochondrial DNA polymerase γ. ddC was preferentially activated in AML cells compared with normal hematopoietic progenitor cells. ddC treatment inhibited mtDNA replication, oxidative phosphorylation, and induced cytotoxicity in a panel of AML cell lines. Furthermore, ddC preferentially inhibited mtDNA replication in a subset of primary human leukemia cells and selectively targeted leukemia cells while sparing normal progenitor cells. In animal models of human AML, treatment with ddC decreased mtDNA, electron transport chain proteins, and induced tumor regression without toxicity. ddC also targeted leukemic stem cells in secondary AML xenotransplantation assays. Thus, AML cells have increased cytidine nucleoside kinase activity that regulates mtDNA biogenesis and can be leveraged to selectively target oxidative phosphorylation in AML. © 2017 by The American Society of Hematology.
Liyanage, Sanduni U.; Hurren, Rose; Voisin, Veronique; Bridon, Gaëlle; Wang, Xiaoming; Xu, ChangJiang; MacLean, Neil; Siriwardena, Thirushi P.; Gronda, Marcela; Yehudai, Dana; Sriskanthadevan, Shrivani; Avizonis, Daina; Shamas-Din, Aisha; Minden, Mark D.; Bader, Gary D.; Laposa, Rebecca
2017-01-01
Mitochondrial DNA (mtDNA) biosynthesis requires replication factors and adequate nucleotide pools from the mitochondria and cytoplasm. We performed gene expression profiling analysis of 542 human acute myeloid leukemia (AML) samples and identified 55% with upregulated mtDNA biosynthesis pathway expression compared with normal hematopoietic cells. Genes that support mitochondrial nucleotide pools, including mitochondrial nucleotide transporters and a subset of cytoplasmic nucleoside kinases, were also increased in AML compared with normal hematopoietic samples. Knockdown of cytoplasmic nucleoside kinases reduced mtDNA levels in AML cells, demonstrating their contribution in maintaining mtDNA. To assess cytoplasmic nucleoside kinase pathway activity, we used a nucleoside analog 2′3′-dideoxycytidine (ddC), which is phosphorylated to the activated antimetabolite, 2′3′-dideoxycytidine triphosphate by cytoplasmic nucleoside kinases. ddC is a selective inhibitor of the mitochondrial DNA polymerase γ. ddC was preferentially activated in AML cells compared with normal hematopoietic progenitor cells. ddC treatment inhibited mtDNA replication, oxidative phosphorylation, and induced cytotoxicity in a panel of AML cell lines. Furthermore, ddC preferentially inhibited mtDNA replication in a subset of primary human leukemia cells and selectively targeted leukemia cells while sparing normal progenitor cells. In animal models of human AML, treatment with ddC decreased mtDNA, electron transport chain proteins, and induced tumor regression without toxicity. ddC also targeted leukemic stem cells in secondary AML xenotransplantation assays. Thus, AML cells have increased cytidine nucleoside kinase activity that regulates mtDNA biogenesis and can be leveraged to selectively target oxidative phosphorylation in AML. PMID:28283480
Wang, Wei; Schwemmers, Sven; Hexner, Elizabeth O.
2010-01-01
The transcription factor NF-E2 is overexpressed in the majority of patients with polycythemia vera (PV). Concomitantly, 95% of these patients carry the JAK2V617F mutation. Although NF-E2 levels correlate with JAK2V671F allele burden in some PV cohorts, the molecular mechanism causing aberrant NF-E2 expression has not been described. Here we show that NF-E2 expression is also increased in patients with essential thrombocythemia and primary myelofibrosis independent of the presence of the JAK2V617F mutation. Characterization of the NF-E2 promoter revealed multiple functional binding sites for AML1/RUNX-1. Chromatin immunoprecipitation demonstrated AML1 binding to the NF-E2 promoter in vivo. Moreover, AML1 binding to the NF-E2 promoter was significantly increased in granulocytes from PV patients compared with healthy controls. AML1 mRNA expression was elevated in patients with PV, essential thrombocythemia, and primary myelofibrosis both in the presence and absence of JAK2V617F. In addition, AML1 and NF-E2 expression were highly correlated. RNAi-mediated suppression of either AML1 or of its binding partner CBF-β significantly decreased NF-E2 expression. Moreover, expression of the leukemic fusion protein AML/ETO drastically decreased NF-E2 protein levels. Our data identify NF-E2 as a novel AML1 target gene and delineate a role for aberrant AML1 expression in mediating elevated NF-E2 expression in MPN patients. PMID:20339092
Fredly, Hanne; Ersvær, Elisabeth; Gjertsen, Bjørn-Tore; Bruserud, Oystein
2011-06-01
Several previous studies have demonstrated that both conventional cytotoxic drugs as well as targeted therapeutics can induce apoptosis in primary human acute myelogenous leukemia (AML) cells. However, the apoptotic phenotype of dying AML cells has been less extensively characterized. Even though specific antileukemic immune reactivity is important in AML, especially for allotransplanted patients, it has not been investigated whether dying primary human AML cells show phenotypic characteristics consistent with immunogenic apoptosis [calreticulin exposure, heat shock protein (HSP) release]. We therefore investigated whether in vitro cultured primary human acute myeloid leukemia (AML) cells show calreticulin exposure and HSP70/HSP90 release during spontaneous (stress-induced) apoptosis when cultured in medium alone and when cultured in the presence of antileukemic drugs. Both surface exposure of calreticulin and release of HSP70 and HSP90 was detected but showed a wide variation between patients. This variation was also maintained when the AML cells were cultured in the presence of cytotoxic drugs (cytarabine, daunorubicin, mitomycin), all-trans retinoic acid (ATRA) and valproic acid. Finally, AML cells collected during in vivo ATRA therapy showed increased calreticulin exposure during spontaneous in vitro apoptosis, suggesting that in vivo pharmacotherapy can modulate the apoptotic phenotype. To conclude, apoptotic AML cells can show phenotypic characteristics consistent with immunogenic apoptosis, but there is a wide variation between patients and the level of calreticulin exposure/HSP release seems to depend on individual patient characteristics rather than the apoptosis-inducing agent.
IL-8 as mediator in the microenvironment-leukaemia network in acute myeloid leukaemia.
Kuett, Alexander; Rieger, Christina; Perathoner, Deborah; Herold, Tobias; Wagner, Michaela; Sironi, Silvia; Sotlar, Karl; Horny, Hans-Peter; Deniffel, Christian; Drolle, Heidrun; Fiegl, Michael
2015-12-17
The bone marrow microenvironment is physiologically hypoxic with areas being as low as 1% O2, e.g. the stem cell niche. Acute myeloid leukaemia (AML) blasts misuse these bone marrow niches for protection by the local microenvironment, but also might create their own microenvironment. Here we identify IL-8 as a hypoxia-regulated cytokine in both AML cell lines and primary AML samples that is induced within 48 hours of severe hypoxia (1% O2). IL-8 lacked effects on AML cells but induced migration in mesenchymal stromal cells (MSC), an integral part of the bone marrow. Accordingly, MSC were significantly increased in AML bone marrow as compared to healthy bone marrow. Interestingly, mononuclear cells obtained from healthy bone marrow displayed both significantly lower endogenous and hypoxia-induced production of IL-8. IL-8 mRNA expression in AML blasts from 533 patients differed between genetic subgroups with significantly lower expression of IL-8 in acute promyelocytic leukaemia (APL), while in non APL-AML patients with FLT ITD had the highest IL-8 expression. In this subgroup, high IL-8 expression was also prognostically unfavourable. In conclusion, hypoxia as encountered in the bone marrow specifically increases IL-8 expression of AML, which in turn impacts niche formation. High IL-8 expression might be correlated with poor prognosis in certain AML subsets.
Ali, Mohamed A E; Naka, Kazuhito; Yoshida, Akiyo; Fuse, Kyoko; Kasada, Atsuo; Hoshii, Takayuki; Tadokoro, Yuko; Ueno, Masaya; Ohta, Kumiko; Kobayashi, Masahiko; Takahashi, Chiaki; Hirao, Atsushi
2014-07-18
Acute myeloid leukaemia (AML) is a heterogeneous neoplastic disorder in which a subset of cells function as leukaemia-initiating cells (LICs). In this study, we prospectively evaluated the leukaemia-initiating capacity of AML cells fractionated according to the expression of a nucleolar GTP binding protein, nucleostemin (NS). To monitor NS expression in living AML cells, we generated a mouse AML model in which green fluorescent protein (GFP) is expressed under the control of a region of the NS promoter (NS-GFP). In AML cells, NS-GFP levels were correlated with endogenous NS mRNA. AML cells with the highest expression of NS-GFP were very immature blast-like cells, efficiently formed leukaemia colonies in vitro, and exhibited the highest leukaemia-initiating capacity in vivo. Gene expression profiling analysis revealed that cell cycle regulators and nucleotide metabolism-related genes were highly enriched in a gene set associated with leukaemia-initiating capacity that we termed the 'leukaemia stem cell gene signature'. This gene signature stratified human AML patients into distinct clusters that reflected prognosis, demonstrating that the mouse leukaemia stem cell gene signature is significantly associated with the malignant properties of human AML. Further analyses of gene regulation in leukaemia stem cells could provide novel insights into diagnostic and therapeutic approaches to AML. Copyright © 2014 Elsevier Inc. All rights reserved.
O’Connor, Caitriona; Yalla, Krishna; Salomé, Mara; Moka, Hothri Ananyambica; Castañeda, Eduardo Gómez; Eyers, Patrick A.; Keeshan, Karen
2018-01-01
Trib2 pseudokinase has oncogenic and tumour suppressive functions depending on the cellular context. We investigated the ability of Trib2 to transform different haemopoietic stem and progenitor cells (HSPCs). Our study identified the granulocyte-macrophage progenitor (GMP) subpopulation as a potent leukaemia initiating cell of Trib2-driven AML in vivo. Trib2 transformed GMPs generated a fully penetrant and short latency AML. AML cells expressing elevated Trib2 led to a chemoresistant phenotype following chemotherapy treatment. We show that Trib2 overexpression results in an increase in BCL2 expression, and high Trib2 expressing cells are highly sensitive to cell killing by BCL2 inhibition (ABT199). Combined treatment with chemotherapeutic agents and BCL2 inhibition resulted in synergistic killing of Trib2+ AML cells. Trib2 transformed GMP AML cells showed more chemoresistance compared with HSPC derived Trib2 AML cells associated with higher Bcl2 expression. There is significant correlation of high TRIB2 and BCL2 expression in patient derived human AML cells. These data demonstrate that the cell of origin influences the leukaemic profile and chemotherapeutic response of Trib2+ AML. Combined TRIB2 and BCL2 expression in AML cells may have clinical utility relevant for monitoring drug resistance and disease relapse. PMID:29599919
Porter, Christopher C.; Kim, Jihye; Fosmire, Susan; Gearheart, Christy M.; van Linden, Annemie; Baturin, Dmitry; Zaberezhnyy, Vadym; Patel, Purvi R.; Gao, Dexiang; Tan, Aik Choon; DeGregori, James
2011-01-01
Acute myeloid leukemia (AML) remains a therapeutic challenge despite increasing knowledge about the molecular origins of the disease, as the mechanisms of AML cell escape from chemotherapy remain poorly defined. We hypothesized that AML cells are addicted to molecular pathways in the context of chemotherapy and used complementary approaches to identify these addictions. Using novel molecular and computational approaches, we performed genome-wide shRNA screens to identify proteins that mediate AML cell fate after cytarabine exposure, gene expression profiling of AML cells exposed to cytarabine to identify genes with induced expression in this context, and examination of existing gene expression data from primary patient samples. The integration of these independent analyses strongly implicates cell cycle checkpoint proteins, particularly WEE1, as critical mediators of AML cell survival after cytarabine exposure. Knockdown of WEE1 in a secondary screen confirmed its role in AML cell survival. Pharmacologic inhibition of WEE1 in AML cell lines and primary cells is synergistic with cytarabine. Further experiments demonstrate that inhibition of WEE1 prevents S-phase arrest induced by cytarabine, broadening the functions of WEE1 that may be exploited therapeutically. These data highlight the power of integrating functional and descriptive genomics, and identify WEE1 as potential therapeutic target in AML. PMID:22289989
Morgado-Palacin, Isabel; Day, Amanda; Murga, Matilde; Lafarga, Vanesa; Anton, Marta Elena; Tubbs, Anthony; Chen, Hua Tang; Ergan, Aysegul; Anderson, Rhonda; Bhandoola, Avinash; Pike, Kurt G; Barlaam, Bernard; Cadogan, Elaine; Wang, Xi; Pierce, Andrew J; Hubbard, Chad; Armstrong, Scott A; Nussenzweig, André; Fernandez-Capetillo, Oscar
2016-09-13
Among the various subtypes of acute myeloid leukemia (AML), those with chromosomal rearrangements of the MLL oncogene (AML-MLL) have a poor prognosis. AML-MLL tumor cells are resistant to current genotoxic therapies because of an attenuated response by p53, a protein that induces cell cycle arrest and apoptosis in response to DNA damage. In addition to chemicals that damage DNA, efforts have focused on targeting DNA repair enzymes as a general chemotherapeutic approach to cancer treatment. Here, we found that inhibition of the kinase ATR, which is the primary sensor of DNA replication stress, induced chromosomal breakage and death of mouse AML(MLL) cells (with an MLL-ENL fusion and a constitutively active N-RAS independently of p53. Moreover, ATR inhibition as a single agent exhibited antitumoral activity, both reducing tumor burden after establishment and preventing tumors from growing, in an immunocompetent allograft mouse model of AML(MLL) and in xenografts of a human AML-MLL cell line. We also found that inhibition of ATM, a kinase that senses DNA double-strand breaks, also promoted the survival of the AML(MLL) mice. Collectively, these data indicated that ATR or ATM inhibition represent potential therapeutic strategies for the treatment of AML, especially MLL-driven leukemias. Copyright © 2016, American Association for the Advancement of Science.
Trisomy 19 as the sole chromosomal anomaly in hematologic neoplasms.
Johansson, B; Billström, R; Mauritzson, N; Mitelman, F
1994-05-01
Trisomy 19 was found as the sole chromosomal aberration in three hematologic malignancies: one chronic myelomonocytic leukemia and two cases of of immunophenotypically immature acute myeloid leukemia (AML). A compilation of previously published hematologic neoplasms with +19 as the only change reveals that this anomaly is strongly associated with myeloid malignancies; 25 of 31 cases have been myelodysplastic syndromes (MDS) or AML. Eight of the 11 MDS cases have been either refractory anemia (RA) or RA with excess of blasts, and four of the 14 AML cases have had preleukemic myelodysplastic cases phase, with the +19 accruing during the time of leukemic transformation. The AML cases have, in general, been either or early maturation arrest, i.e. undifferentiated or AML-M1/M2, or of myelomonocytic-monoblastic origin, i.e., AML-M4/M5. None of the MDS or AML cases with +19 had had a previous history of radio- or chemotherapy. We conclude that trisomy 19, as the sole anomaly, is a characteristic abnormality in de novo myeloid malignancies. No clinical features seem to characterize patients with +19 AML and MDS and the prognostic impact of the aberration remains to be elucidated.
When the good go bad: Mutant NPM1 in acute myeloid leukemia.
Kunchala, Preethi; Kuravi, Sudhakiranmayi; Jensen, Roy; McGuirk, Joseph; Balusu, Ramesh
2018-05-01
Nucleophosmin 1 (NPM1) is a nucleolar phosphoprotein that performs diverse biological functions including molecular chaperoning, ribosome biogenesis, DNA repair, and genome stability. Acute myeloid leukemia (AML) is a heterogeneous disease, more than half of the AML cases exhibit normal karyotype (NK). Approximately 50-60 percent of patients with NK-AML carry NPM1 mutations which are characterized by cytoplasmic dislocation of the NPM1 protein. In AML, mutant NPM1 (NPM1c+) acts in a dominant negative fashion and also blocks the differentiation of myeloid cells through gain-of-function for the AML phenotype. Currently, there is limited knowledge on the gain-of-function mechanism of mutant NPM1. Here, we review the known mechanisms of mutant NPM1 in the pathogenesis of AML. We describe genetic abnormalities, the clinical significance of exon-12 mutations in the NPM1 gene, and chromosomal translocations including the recently discovered NPM1-TYK2, and NPM1-HAUS1. Also, we outline the possible therapeutic interventions for the treatment of AML by targeting NPM1. Overall, the review will summarize present knowledge on mutant NPM1 origin, pathogenesis, and therapy in AML. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ibrutinib inhibits SDF1/CXCR4 mediated migration in AML
Zaitseva, Lyubov; Murray, Megan Y.; Shafat, Manar S.; Lawes, Matthew J.; MacEwan, David J.; Bowles, Kristian M.; Rushworth, Stuart A.
2014-01-01
Pharmacological targeting of BTK using ibrutinib has recently shown encouraging clinical activity in a range of lymphoid malignancies. Recently we reported that ibrutinib inhibits human acute myeloid leukemia (AML) blast proliferation and leukemic cell adhesion to the surrounding bone marrow stroma cells. Here we report that in human AML ibrutinib, in addition, functions to inhibit SDF1/CXCR4-mediated AML migration at concentrations achievable in vivo. It has previously been shown that SDF1/CXCR4-induced migration is dependent on activation of downstream BTK in chronic lymphocytic leukaemia (CLL) and multiple myeloma. Here we show that SDF-1 induces BTK phosphorylation and downstream MAPK signalling in primary AML blast. Furthermore, we show that ibrutinib can inhibit SDF1-induced AKT and MAPK activation. These results reported here provide a molecular mechanistic rationale for clinically evaluating BTK inhibition in AML patients and suggests that in some AML patients the blasts count may initially rise in response to ibrutinib therapy, analgous to similar clinical observations in CLL. PMID:25294819
Acute myeloid leukaemia: a paradigm for the clonal evolution of cancer?
Grove, Carolyn S.; Vassiliou, George S.
2014-01-01
Acute myeloid leukaemia (AML) is an uncontrolled clonal proliferation of abnormal myeloid progenitor cells in the bone marrow and blood. Advances in cancer genomics have revealed the spectrum of somatic mutations that give rise to human AML and drawn our attention to its molecular evolution and clonal architecture. It is now evident that most AML genomes harbour small numbers of mutations, which are acquired in a stepwise manner. This characteristic, combined with our ability to identify mutations in individual leukaemic cells and our detailed understanding of normal human and murine haematopoiesis, makes AML an excellent model for understanding the principles of cancer evolution. Furthermore, a better understanding of how AML evolves can help us devise strategies to improve the therapy and prognosis of AML patients. Here, we draw from recent advances in genomics, clinical studies and experimental models to describe the current knowledge of the clonal evolution of AML and its implications for the biology and treatment of leukaemias and other cancers. PMID:25056697
Ayar, Sonali P; Ravula, Sreelakshmi; Polski, Jacek M
2014-01-01
Little literature exists regarding granulocyte and monocyte immunophenotype abnormalities in Acute Myeloid Leukemia (AML). We hypothesized that granulocyte and monocyte immunophenotype abnormalities are common in AML, and especially in AML with myelodysplasia-related changes (AMLMRC). Bone marrow or peripheral blood specimens from 48 cases of AML and 22 cases of control specimens were analyzed by flow cytometric immunophenotyping. Granulocyte, monocyte, and blast immunophenotype abnormalities were compared between cases of AML versus controls and AMLMRC versus AML without myelodysplasia. The results revealed that granulocyte, monocyte, and blast abnormalities were more common in AMLMRC than in AML without myelodysplasia or control cases. The difference reached statistical significance for abnormalities of granulocytes and abnormalities in all cells of interest. From the numerous individual abnormalities, only CD25 expression in blasts was significantly more prevalent in AMLMRC in this study. We conclude that detection of granulocyte, monocyte, and blast immunophenotype abnormalities can contribute to the diagnosis of AMLMRC.
Acute myeloid leukemia with leukemic pleural effusion.
Chang, Hung
2013-10-01
Acute myeloid leukemia (AML) may be associated with extramedullary tumor growth, which is commonly known as myeloid sarcoma. Although AML with leukemic pleural effusion is considered rare, the true incidence is not clear. We report three cases of AML involving pleural effusion in this study. The cases were encountered in a single institute within two years, suggesting that leukemic effusion is more common than previously reported. Leukemic cells showed evidence of monocytic differentiation in all cases. Two patients presented with advanced AML. Both had concurrent myeloid sarcoma. Both were ineligible for intensive treatment and died soon after diagnosis of myeloid sarcoma. The third patient had pleural effusion upon diagnosis of AML. Remission was achieved and the effusion disappeared after treatment. We conclude leukemic effusion may become more common in an era of improved care and prolonged survival for AML patients. The prognostic impact is unclear and patients should be given standard AML treatment whenever possible. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.
Midostaurin, enasidenib, CPX-351, gemtuzumab ozogamicin, and venetoclax bring new hope to AML.
Wei, Andrew H; Tiong, Ing S
2017-12-07
In 2017, 4 drugs received US Food and Drug Administration marketing approval for acute myeloid leukemia (AML) treatment: targeted therapies for mutant FLT3 and IDH2 , a liposomal cytarabine-daunorubicin formulation for therapy-related AML and AML with myelodysplasia-related changes, and resurgence of an antibody-drug conjugate designed to target CD33. Promising results also emerged for the BCL-2 inhibitor venetoclax combined with low-intensity therapy in older patients unfit for intensive chemotherapy. This quintet of new drugs is likely to reshape the therapeutic landscape of AML. © 2017 by The American Society of Hematology.
INPP4B promotes cell survival via SGK3 activation in NPM1-mutated leukemia.
Jin, Hongjun; Yang, Liyuan; Wang, Lu; Yang, Zailin; Zhan, Qian; Tao, Yao; Zou, Qin; Tang, Yuting; Xian, Jingrong; Zhang, Shuaishuai; Jing, Yipei; Zhang, Ling
2018-01-17
Acute myeloid leukemia (AML) with mutated nucleophosmin (NPM1) has been recognized as a distinct leukemia entity in the 2016 World Health Organization (WHO) classification. The genetic events underlying oncogenesis in NPM1-mutated AML that is characterized by a normal karyotype remain unclear. Inositol polyphosphate 4-phosphatase type II (INPP4B), a new factor in the phosphoinositide-3 kinase (PI3K) pathway-associated cancers, has been recently found a clinically relevant role in AML. However, little is known about the specific mechanistic function of INPP4B in NPM1-mutated AML. The INPP4B expression levels in NPM1-mutated AML primary blasts and AML OCI-AML3 cell lines were determined by qRT-PCR and western blotting. The effect of INPP4B knockdown on OCI-AML3 leukemia cell proliferation was evaluated, using the Cell Counting Kit-8 and colony formation assay. After INPP4B overexpression or knockdown, the activation of serum and glucocorticoid-regulated kinase 3 (SGK3) and AKT was assessed. The effects of PI3K signaling pathway inhibitors on the levels of p-SGK3 in OCI-AML3 cells were tested. The mass of PI (3,4) P 2 and PI (3) P was analyzed by ELISA upon INPP4B overexpression. Knockdown of SGK3 by RNA interference and a rescue assay were performed to confirm the critical role of SGK3 in INPP4B-mediated cell survival. In addition, the molecular mechanism underlying INPP4B expression in NPM1-mutated leukemia cells was explored. Finally, Kaplan-Meier survival analysis was conducted on the NPM1-mutated AML cohort stratified into quartiles for INPP4B expression in The Cancer Genome Atlas (TCGA) dataset. High expression of INPP4B was observed in NPM1-mutated AML. Knockdown of INPP4B repressed cell proliferation in OCI-AML3 cells, whereas recovered INPP4B rescued this inhibitory effect in vitro. Mechanically, INPP4B enhanced phosphorylated SGK3 (p-SGK3) status, but did not affect AKT activation. SGK3 was required for INPP4B-induced cell proliferation in OCI-AML3 cells. High levels of INPP4B were at least partially caused by the NPM1 mutant via ERK/Ets-1 signaling. Finally, high expression of INPP4B showed a trend towards lower overall survival and event-free survival in NPM1-mutated AML patients. Our results indicate that INPP4B promotes leukemia cell survival via SGK3 activation, and INPP4B might be a potential target in the treatment of NPM1-mutated AML.
MDS/AML del(11)(q14) Share Common Morphological Features Despite Different Chromosomal Breakpoints.
Dambruoso, Irene; Invernizzi, Rosangela; Boni, Marina; Zappatore, Rita; Giardini, Ilaria; Cavigliano, Maria Paola; Rocca, Barbara; Calvello, Celeste; Bastia, Raffaella; Caresana, Marilena; Pasi, Francesca; Nano, Rosanna; Bernasconi, Paolo
2017-02-01
In myelodysplatic syndromes and acute myeloid leukemia (MDS/AML) deletion of the 11q14 region is a rare chromosomal defect (incidence: 0.6-1.0%), included within the intermediate risk criteria by the International Prognostic Scoring System. No fluorescence in situ hybridization (FISH) study has yet been performed to identify a common breakpoint region (CBR). In our study through FISH with bacterial artificial chromosomes and commercial probes, we analyzed seven patients with MDS/AML harboring 11q14 deletion on conventional cytogenetic analysis. FISH revealed deletions in five patients and amplifications in two. Three patients with deletion carried a CBR, two had a deletion involving a more centromeric breakpoint. These five patients exhibited multilineage dysplasia, blast cells with large round nuclei, loose chromatin, small and abundant nucleoli, and vacuolated cytoplasm with very thin Auer bodies. In conclusion, the morphological features which occur independently of the extent of the deletion are of multilineage dysplasia in MDS and leukemic blasts strongly reactive to peroxidase in AML; despite the variable size of the deleted area, some patients harbor a CBR. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Liu, Jun-Qing; Mai, Wen-Yuan; Wang, Si-Ben; Lou, Yin-Jun; Yan, Sen-Xiang; Jin, Jie; Xu, Wei-Lai
2017-12-01
Concurrent case of nasopharyngeal carcinoma (NPC) and acute myeloid leukemia (AML) has not been reported. Here, we report a case of NPC, who was concurrently suffered from AML one mother after the NPC diagnosis. The patient was a 45-year-old male who presented with a mass on his right side neck. The patient was diagnosed with Epstein-Barr virus negative type-2 non-keratinizing carcinoma with clivus involvement and unilateral metastasis to the cervical lymph node. He was treated with one cycle of cisplatin and 69.76 Gy of concurrent external-beam radiation. Three months after completion of chemo-radiotherapy, the patient was diagnosed as acute myeloid leukemia, which achieved complete remission after one course induction chemotherapy. Two months later, however, the patient was diagnosed as central nervous system leukemia. He ultimately died of relapsed leukemia. The overall survival of the patient was 10 months. The co-occurrence of NPC and AML is rare and prognosis is poor. Radiotherapy in NPC can disrupt the blood-brain barrier, which may contribute to the pathogenesis of central nervous system leukemia. Early alert and prevention of central nervous system leukemia following radiotherapy in NPC patient is recommended. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Missing the Benefit of Metformin in Acute Myeloid Leukemia: A Problem of Contrast?
Ceacareanu, Alice C; Nimako, George K; Wintrob, Zachary A P
2017-01-01
To evaluate whether metformin's cancer-related benefits reported in patients with solid tumors (ST) are also present in acute myeloid leukemia (AML) patients. Baseline demographic and clinical history for all diabetes mellitus patients newly diagnosed with AML or cancer of the breast, ovary, prostate, gastrointestinal tract, lung, or kidney at Roswell Park Cancer Institute in Buffalo, NY (January 2003-December 2010, n = 924) was collected. Overall survival (OS) and disease-free survival (DFS) were assessed by Kaplan-Meier (KM) analysis and Cox proportional hazards regression (hazard ratio [HR]). Baseline metformin use provided significant OS and DFS benefit in ST but not in AML (KM: P ST-OS = 0.003; P ST-DFS = 0.002; P AML-OS = 0.961; P AML-DFS = 0.943). AML median survival was slightly better with metformin use, but users derived no relapse benefit. In ST, metformin nonusers had shorter median survival, 57.7 versus 86 months, and poorer outcomes (HR ST-OS = 1.33; P ST-OS = 0.002; HR ST-DFS = 1.32; P ST-DFS = 0.002). These findings remained significant in age-adjusted models (HR ST-OS = 1.21; P ST-OS = 0.039; HR ST-DFS = 1.23; P ST-DFS = 0.02) but not fully adjusted models (HR ST-OS = 0.96; P ST-OS = 0.688; HR ST-DFS = 1.0; P ST-DFS = 0.94). Higher mortality was noted in AML patients taking insulin versus oral diabetes pharmacotherapy at baseline (HR AML-OS = 2.03; P AML-OS = 0.04). Lack of metformin benefit in AML could be due to advanced age at cancer diagnosis. Metformin substitution with insulin before computed tomography scans with contrast - a frequent AML assessment practice - may also explain the lack of subsequent benefit despite taking metformin at baseline. A temporary metformin substitution is recommended by the package insert due to a possible drug interaction with the contrast dye. Our data suggest that metformin substitution was permanent in many patients. Nonetheless, the observed benefit in other malignancies warrants further investigation of metformin use in AML.
Abandoned Mine Lands: Revitalization and Reuse
EPA recognizes that reuse opportunities at AMLs may provide the critical impetus to expedite environmental cleanup. EPA’s AML Team is dedicated to providing tools and resources to support the reuse of AMLs.
Brown, Natalie; Finnon, Rosemary; Manning, Grainne; Bouffler, Simon; Badie, Christophe
2015-11-01
Leukaemia is the prevailing neoplastic disorder of the hematopoietic system. Epidemiological analyses of the survivors of the Japanese atomic bombings show that exposure to ionising radiation (IR) can cause leukaemia. Although a clear association between radiation exposure and leukaemia development is acknowledged, the underlying mechanisms remain incompletely understood. A hemizygous deletion on mouse chromosome 2 (del2) is a common feature in several mouse strains susceptible to radiation-induced acute myeloid leukaemia (rAML). The deletion is an early event detectable 24h after exposure in bone marrow cells. Ultimately, 15-25% of exposed animals develop AML with 80-90% of cases carrying del2. Molecular mapping of leukaemic cell genomes identified a minimal deleted region (MDR) on chromosome 2 (chr2) in which a tumour suppressor gene, Sfpi1 is located, encoding the transcription factor PU.1, essential in haematopoiesis. The remaining copy of Sfpi1 has a point mutation in the coding sequence for the DNA-binding domain of the protein in 70% of rAML, which alters a single CpG sequence in the codon for arginine residue R235. In order to identify chr2 deletions and Sfpi.1/PU.1 loss, we performed array comparative genomic hybridization (aCGH) on a unique panel of 79rAMLs. Using a custom made CGH array specifically designed for mouse chr2, we analysed at unprecedentedly high resolution (1.4M array- 148bp resolution) the size of the MDR in low LET and high-LET induced rAMLs (32 X-ray- and 47 neutron-induced). Sequencing of Sfpi1/PU.1DNA binding domain identified the presence of R235 point mutations, showing no influence of radiation quality on R235 type or frequency. We identified for the first time rAML cases with complex del2 in a subset of neutron-induced AMLs. This study allowed us to re-define the MDR to a much smaller 5.5Mb region (still including Sfpi1/PU.1), identical regardless of radiation quality. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Adamia, Sophia; Haibe-Kains, Benjamin; Pilarski, Patrick M; Bar-Natan, Michal; Pevzner, Samuel; Avet-Loiseau, Herve; Lode, Laurence; Verselis, Sigitas; Fox, Edward A; Burke, John; Galinsky, Ilene; Dagogo-Jack, Ibiayi; Wadleigh, Martha; Steensma, David P; Motyckova, Gabriela; Deangelo, Daniel J; Quackenbush, John; Stone, Richard; Griffin, James D
2014-03-01
Despite new treatments, acute myeloid leukemia (AML) remains an incurable disease. More effective drug design requires an expanded view of the molecular complexity that underlies AML. Alternative splicing of RNA is used by normal cells to generate protein diversity. Growing evidence indicates that aberrant splicing of genes plays a key role in cancer. We investigated genome-wide splicing abnormalities in AML and based on these abnormalities, we aimed to identify novel potential biomarkers and therapeutic targets. We used genome-wide alternative splicing screening to investigate alternative splicing abnormalities in two independent AML patient cohorts [Dana-Farber Cancer Institute (DFCI) (Boston, MA) and University Hospital de Nantes (UHN) (Nantes, France)] and normal donors. Selected splicing events were confirmed through cloning and sequencing analysis, and than validated in 193 patients with AML. Our results show that approximately 29% of expressed genes genome-wide were differentially and recurrently spliced in patients with AML compared with normal donors bone marrow CD34(+) cells. Results were reproducible in two independent AML cohorts. In both cohorts, annotation analyses indicated similar proportions of differentially spliced genes encoding several oncogenes, tumor suppressor proteins, splicing factors, and heterogeneous-nuclear-ribonucleoproteins, proteins involved in apoptosis, cell proliferation, and spliceosome assembly. Our findings are consistent with reports for other malignances and indicate that AML-specific aberrations in splicing mechanisms are a hallmark of AML pathogenesis. Overall, our results suggest that aberrant splicing is a common characteristic for AML. Our findings also suggest that splice variant transcripts that are the result of splicing aberrations create novel disease markers and provide potential targets for small molecules or antibody therapeutics for this disease. ©2013 AACR
Merhi, Faten; Tang, Ruoping; Piedfer, Marion; Mathieu, Julie; Bombarda, Isabelle; Zaher, Murhaf; Kolb, Jean-Pierre; Billard, Christian; Bauvois, Brigitte
2011-01-01
The natural phloroglucinol hyperforin HF displays anti-inflammatory and anti-tumoral properties of potential pharmacological interest. Acute myeloid leukemia (AML) cells abnormally proliferate and escape apoptosis. Herein, the effects and mechanisms of purified HF on AML cell dysfunction were investigated in AML cell lines defining distinct AML subfamilies and primary AML cells cultured ex vivo. HF inhibited in a time- and concentration-dependent manner the growth of AML cell lines (U937, OCI-AML3, NB4, HL-60) by inducing apoptosis as evidenced by accumulation of sub-G1 population, phosphatidylserine externalization and DNA fragmentation. HF also induced apoptosis in primary AML blasts, whereas normal blood cells were not affected. The apoptotic process in U937 cells was accompanied by downregulation of anti-apoptotic Bcl-2, upregulation of pro-apoptotic Noxa, mitochondrial membrane depolarization, activation of procaspases and cleavage of the caspase substrate PARP-1. The general caspase inhibitor Z-VAD-fmk and the caspase-9- and -3-specific inhibitors, but not caspase-8 inhibitor, significantly attenuated apoptosis. HF-mediated apoptosis was associated with dephosphorylation of active Akt1 (at Ser(473)) and Akt1 substrate Bad (at Ser(136)) which activates Bad pro-apoptotic function. HF supppressed the kinase activity of Akt1, and combined treatment with the allosteric Akt1 inhibitor Akt-I-VIII significantly enhanced apoptosis of U937 cells. Our data provide new evidence that HF's pro-apoptotic effect in AML cells involved inhibition of Akt1 signaling, mitochondria and Bcl-2 members dysfunctions, and activation of procaspases -9/-3. Combined interruption of mitochondrial and Akt1 pathways by HF may have implications for AML treatment.
Merhi, Faten; Tang, Ruoping; Piedfer, Marion; Mathieu, Julie; Bombarda, Isabelle; Zaher, Murhaf; Kolb, Jean-Pierre; Billard, Christian; Bauvois, Brigitte
2011-01-01
Background The natural phloroglucinol hyperforin HF displays anti-inflammatory and anti-tumoral properties of potential pharmacological interest. Acute myeloid leukemia (AML) cells abnormally proliferate and escape apoptosis. Herein, the effects and mechanisms of purified HF on AML cell dysfunction were investigated in AML cell lines defining distinct AML subfamilies and primary AML cells cultured ex vivo. Methodology and Results HF inhibited in a time- and concentration-dependent manner the growth of AML cell lines (U937, OCI-AML3, NB4, HL-60) by inducing apoptosis as evidenced by accumulation of sub-G1 population, phosphatidylserine externalization and DNA fragmentation. HF also induced apoptosis in primary AML blasts, whereas normal blood cells were not affected. The apoptotic process in U937 cells was accompanied by downregulation of anti-apoptotic Bcl-2, upregulation of pro-apoptotic Noxa, mitochondrial membrane depolarization, activation of procaspases and cleavage of the caspase substrate PARP-1. The general caspase inhibitor Z-VAD-fmk and the caspase-9- and -3-specific inhibitors, but not caspase-8 inhibitor, significantly attenuated apoptosis. HF-mediated apoptosis was associated with dephosphorylation of active Akt1 (at Ser473) and Akt1 substrate Bad (at Ser136) which activates Bad pro-apoptotic function. HF supppressed the kinase activity of Akt1, and combined treatment with the allosteric Akt1 inhibitor Akt-I-VIII significantly enhanced apoptosis of U937 cells. Significance Our data provide new evidence that HF's pro-apoptotic effect in AML cells involved inhibition of Akt1 signaling, mitochondria and Bcl-2 members dysfunctions, and activation of procaspases -9/-3. Combined interruption of mitochondrial and Akt1 pathways by HF may have implications for AML treatment. PMID:21998731
Clonal Architecture of Secondary Acute Myeloid Leukemia
Walter, Matthew J.; Shen, Dong; Ding, Li; Shao, Jin; Koboldt, Daniel C.; Chen, Ken; Larson, David E.; McLellan, Michael D.; Dooling, David; Abbott, Rachel; Fulton, Robert; Magrini, Vincent; Schmidt, Heather; Kalicki-Veizer, Joelle; O’Laughlin, Michelle; Fan, Xian; Grillot, Marcus; Witowski, Sarah; Heath, Sharon; Frater, John L.; Eades, William; Tomasson, Michael; Westervelt, Peter; DiPersio, John F.; Link, Daniel C.; Mardis, Elaine R.; Ley, Timothy J.; Wilson, Richard K.; Graubert, Timothy A.
2012-01-01
BACKGROUND The myelodysplastic syndromes are a group of hematologic disorders that often evolve into secondary acute myeloid leukemia (AML). The genetic changes that underlie progression from the myelodysplastic syndromes to secondary AML are not well understood. METHODS We performed whole-genome sequencing of seven paired samples of skin and bone marrow in seven subjects with secondary AML to identify somatic mutations specific to secondary AML. We then genotyped a bone marrow sample obtained during the antecedent myelodysplastic-syndrome stage from each subject to determine the presence or absence of the specific somatic mutations. We identified recurrent mutations in coding genes and defined the clonal architecture of each pair of samples from the myelodysplastic-syndrome stage and the secondary-AML stage, using the allele burden of hundreds of mutations. RESULTS Approximately 85% of bone marrow cells were clonal in the myelodysplastic-syndrome and secondary-AML samples, regardless of the myeloblast count. The secondary-AML samples contained mutations in 11 recurrently mutated genes, including 4 genes that have not been previously implicated in the myelodysplastic syndromes or AML. In every case, progression to acute leukemia was defined by the persistence of an antecedent founding clone containing 182 to 660 somatic mutations and the outgrowth or emergence of at least one subclone, harboring dozens to hundreds of new mutations. All founding clones and subclones contained at least one mutation in a coding gene. CONCLUSIONS Nearly all the bone marrow cells in patients with myelodysplastic syndromes and secondary AML are clonally derived. Genetic evolution of secondary AML is a dynamic process shaped by multiple cycles of mutation acquisition and clonal selection. Recurrent gene mutations are found in both founding clones and daughter subclones. (Funded by the National Institutes of Health and others.) PMID:22417201
Waveform modeling of the seismic response of a mid-ocean ridge axial melt sill
NASA Astrophysics Data System (ADS)
Xu, Min; Stephen, R. A.; Canales, J. Pablo
2017-12-01
Seismic reflections from axial magma lens (AML) are commonly observed along many mid-ocean ridges, and are thought to arise from the negative impedance contrast between a solid, high-speed lid and the underlying low-speed, molten or partially molten (mush) sill. The polarity of the AML reflection ( P AML P) at vertical incidence and the amplitude vs offset (AVO) behavior of the AML reflections (e.g., P AML P and S-converted P AML S waves) are often used as a diagnostic tool for the nature of the low-speed sill. Time-domain finite difference calculations for two-dimensional laterally homogeneous models show some scenarios make the interpretation of melt content from partial-offset stacks of P- and S-waves difficult. Laterally heterogeneous model calculations indicate diffractions from the edges of the finite-width AML reducing the amplitude of the AML reflections. Rough seafloor and/or a rough AML surface can also greatly reduce the amplitude of peg-leg multiples because of scattering and destructive interference. Mid-crustal seismic reflection events are observed in the three-dimensional multi-channel seismic dataset acquired over the RIDGE-2000 Integrated Study Site at East Pacific Rise (EPR, cruise MGL0812). Modeling indicates that the mid-crustal seismic reflection reflections are unlikely to arise from peg-leg multiples of the AML reflections, P-to- S converted phases, or scattering due to rough topography, but could probably arise from deeper multiple magma sills. Our results support the identification of Marjanović et al. (Nat Geosci 7(11):825-829, 2014) that a multi-level complex of melt lenses is present beneath the axis of the EPR.
Barnard, Dorothy R; Alonzo, Todd A; Gerbing, Robert B; Lange, Beverly; Woods, William G
2007-07-01
Myelodysplastic syndromes (MDS), acute erythroleukemia (FAB M6), and acute megakaryocytic leukemia (FAB M7) have overlapping features. Children without Down syndrome or acute promyelocytic leukemia who were newly diagnosed with primary myelodysplastic syndrome or acute myeloid leukemia (AML) M6 or M7 were compared to children with de novo AML M0-M5. All children were entered on the Children's Cancer Group therapeutic research study CCG 2891. The presentation and outcomes of the 132 children diagnosed with MDS (60 children), AML FAB M6 (19 children), or AML FAB M7 (53 children) were similar. Children with AML FAB M7 were diagnosed at a significantly younger age (P = 0.001). Children with MDS, M6, or M7 had significantly lower white blood cell (WBC) counts (P = 0.001), lower peripheral blast counts (P < 0.001), and an increased frequency of -7/7q- (P = 0.003) at presentation. All three groups had significantly inferior overall survival (OS) (P < 0.001) and event free survival (P < 0.001) compared with the 748 children diagnosed with AML FAB M0-M5 when assessed from entry on study. This poor survival was largely attributable to induction death and failure. However, when assessed from successful completion of induction therapy, the 5-year OS (P = 0.090)(49.1 vs. 56.9%) and disease-free survival (DFS) (P = 0.113)(38.0 vs. 46.3%) therapy were not significantly different from other children with AML. Childhood AML FAB M6 and AML M7 resemble MDS in presentation, poor induction success rates, and outcomes.
Rakugi, Hiromi; Shimizu, Kohei; Sano, Yuhei; Nishiyama, Yuya; Kinugawa, Yoshinobu; Terashio, Souhei
2018-04-01
The efficacy and safety of triple therapy with azilsartan (AZI), amlodipine besylate (AML), and hydrochlorothiazide (HCTZ) compared with dual therapy with AZI/AML or HCTZ monotherapy were evaluated in Japanese essential hypertensive patients in a double-blinded manner. A total of 353 patients with office blood pressure (BP) of at least 150/95 mmHg were randomized to a 10-week treatment with AZI/AML/HCTZ 20/5/12.5 mg, AZI/AML/HCTZ 20/5/6.25 mg, AZI/AML 20/5 mg, HCTZ 12.5 mg, or HCTZ 6.25 mg. The mean change from baseline in office diastolic/systolic BPs at week 10 was -25.9/-41.4, -24.9/-38.6, and -22.4/-34.5 mmHg in the AZI/AML/HCTZ 20/5/12.5 mg, AZI/AML/HCTZ 20/5/6.25 mg, and AZI/AML 20/5 mg groups, respectively. AZI/AML/HCTZ 20/5/12.5 mg led to a significantly greater reduction in diastolic and systolic BP than the dual therapy. In addition, the change in home diastolic BP measured with telemetry devices showed a significant difference between the two triple therapy groups. The incidences of adverse events except dizziness postural were similar among the treatment groups in the triple therapy groups. Triple therapy with AZI/AML/HCTZ 20/5/12.5 mg shows a greater antihypertensive effect than the dual therapy and has acceptable safety profiles for Japanese essential hypertensive patients. It was also observed that home BP measurement by automated telemetry could detect changes in BP that were not detected in office BP measurement, although further investigation is needed.
Nabissi, Massimo; Morelli, Maria Beatrice; Amantini, Consuelo; Liberati, Sonia; Santoni, Matteo; Ricci-Vitiani, Lucia; Pallini, Roberto; Santoni, Giorgio
2015-10-15
Glioma stem-like cells (GSCs) correspond to a tumor cell subpopulation, involved in glioblastoma multiforme (GBM) tumor initiation and acquired chemoresistance. Currently, drug-induced differentiation is considered as a promising approach to eradicate this tumor-driving cell population. Recently, the effect of cannabinoids (CBs) in promoting glial differentiation and inhibiting gliomagenesis has been evidenced. Herein, we demonstrated that cannabidiol (CBD) by activating transient receptor potential vanilloid-2 (TRPV2) triggers GSCs differentiation activating the autophagic process and inhibits GSCs proliferation and clonogenic capability. Above all, CBD and carmustine (BCNU) in combination overcome the high resistance of GSCs to BCNU treatment, by inducing apoptotic cell death. Acute myeloid leukemia (Aml-1) transcription factors play a pivotal role in GBM proliferation and differentiation and it is known that Aml-1 control the expression of several nociceptive receptors. So, we evaluated the expression levels of Aml-1 spliced variants (Aml-1a, b and c) in GSCs and during their differentiation. We found that Aml-1a is upregulated during GSCs differentiation, and its downregulation restores a stem cell phenotype in differentiated GSCs. Since it was demonstrated that CBD induces also TRPV2 expression and that TRPV2 is involved in GSCs differentiation, we evaluated if Aml-1a interacted directly with TRPV2 promoters. Herein, we found that Aml-1a binds TRPV2 promoters and that Aml-1a expression is upregulated by CBD treatment, in a TRPV2 and PI3K/AKT dependent manner. Altogether, these results support a novel mechanism by which CBD inducing TRPV2-dependent autophagic process stimulates Aml-1a-dependent GSCs differentiation, abrogating the BCNU chemoresistance in GSCs. © 2015 UICC.
Kristinsson, Sigurdur Y.; Björkholm, Magnus; Hultcrantz, Malin; Derolf, Åsa R.; Landgren, Ola; Goldin, Lynn R.
2011-01-01
Purpose Patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) often present with infections, but there are little data to assess whether a personal history of selected infections may act as pathogenic triggers. To additionally expand our knowledge on the role of immune stimulation in the causation of AML and MDS, we have conducted a large, population-based study to evaluate the risk of AML and MDS associated with a prior history of a broad range of infections or autoimmune diseases. Patients and Methods By using population-based central registries in Sweden, we included 9,219 patients with AML, 1,662 patients with MDS, and 42,878 matched controls. We used logistic regression to calculate odds ratios (ORs) and 95% CIs for the association of AML or MDS with infectious and/or autoimmune diseases. Results Overall, a history of any infectious disease was associated with a significantly increased risk of both AML (OR, 1.3; 95% CI, 1.2 to 1.4) and MDS (OR, 1.3; 95% CI, 1.1 to 1.5). These associations were significant even when we limited infections to those occurring 3 or more years before AML/MDS. A previous history of any autoimmune disease was associated with a 1.7-fold (95% CI, 1.5 to 1.9) increased risk for AML and 2.1-fold (95% CI, 1.7 to 2.6) increased risk for MDS. A large range of conditions were each significantly associated with AML and MDS. Conclusion Our novel findings indicate that chronic immune stimulation acts as a trigger for AML/MDS development. The underlying mechanisms may also be due to a common genetic predisposition or an effect of treatment for infections/autoimmune conditions. PMID:21690473
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adi, Y. A., E-mail: yudi.adi@math.uad.ac.id; Department of Mathematic Faculty of MIPA Universitas Gadjah Mada; Kusumo, F. A.
In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present amore » mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.« less
A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia
NASA Astrophysics Data System (ADS)
Adi, Y. A.; Kusumo, F. A.; Aryati, L.; Hardianti, M. S.
2016-04-01
In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.
Felix, Arthur; Leblanc, Thierry; Petit, Arnaud; Nelkem, Brigitte; Bertrand, Yves; Gandemer, Virginie; Sirvent, Anne; Paillard, Catherine; Schmitt, Claudine; Rohrlich, Pierre Simon; Fenneteau, Odile; Ragu, Christine; Michel, Gerard; Auvrignon, Anne; Baruchel, André; Leverger, Guy
2018-01-01
Central nervous system (CNS) involvement at diagnosis of pediatric acute myeloid leukemia (AML) is not considered as an independent prognostic factor. This study describes the prognostic value of pediatric AML with CNS involvement at diagnosis. Pediatric patients were treated for de novo AML in the French multicenter trial ELAM02. Lumbar puncture was carried out in the first week, and the treatment was adapted to the CNS status. No patient received CNS radiotherapy. The patients were classified into 2 groups: CNS+ and CNS-. Of the 438 patients, 16% (n=70) had CNS involvement at diagnosis, and 29% showed clinical signs. The patients with CNS disease were younger (40% were below 2 y old), had a higher white blood cell count (median of 45 vs. 13 G/L), and had M4 and M5 morphologies. The complete remission rate was similar at 92.8% for CNS+ and 88.5% for CNS-. There was no significant difference between the CNS+ and the CNS- group in overall survival (76% and 71%, respectively) and event-free survival (57% and 52%, respectively). Regarding the occurrence of first relapse, the CNS+ group had a higher combined relapse rate of 26.1% compared with 10% for the CNS- group. The results indicate that CNS involvement at diagnosis of pediatric AML is not an independent prognostic factor. Triple intrathecal chemotherapy combined with high-dose intravenous cytarabine should be the first-line treatment for CNS disease.
Wang, Lingbo; Cai, Weili; Zhang, Wei; Chen, Xueying; Dong, Wenqian; Tang, Dongqi; Zhang, Yun; Ji, Chunyan; Zhang, Mingxiang
2015-01-01
An abnormal expression of poly(ADP-ribose) polymerase 1 (PARP-1) has been described in many tumors. PARP-1 promotes tumorigenesis and cancer progression by acting on different molecular pathways. PARP-1 inhibitors can be used with radiotherapy or chemotherapy to enhance the susceptibility of tumor cells to the treatment. However, the specific mechanism of PARP-1 in acute myeloid leukemia (AML) remains unknown. Our study showed that expression of PARP-1 was upregulated in AML patients. PARP-1 inhibition slowed AML cell proliferation, arrested the cell cycle, induced apoptosis in vitro and improved AML prognosis in vivo. Mechanistically, microarray assay of AML cells with loss of PARP-1 function revealed that the myeloproliferative leukemia virus oncogene (MPL) was significantly downregulated. In human AML samples, MPL expression was increased, and gain-of-function and loss-of-function analysis demonstrated that MPL promoted cell growth. Moreover, PARP-1 and MPL expression were positively correlated in AML samples, and their overexpression was associated with an unfavorable prognosis. Furthermore, PARP-1 and MPL consistently acted on Akt and ERK1/2 pathways, and the anti-proliferative and pro-apoptotic function observed with PARP-1 inhibition were reversed in part via MPL activation upon thrombopoietin stimulation or gene overexpression. These data highlight the important function of PARP-1 in the progression of AML, which suggest PARP-1 as a potential target for AML treatment. PMID:26314963
Is Acute Myeloid Leukemia a Liquid Tumor?
Ohanian, Maro; Faderl, Stefan; Ravandi, Farhad; Pemmaraju, Naveen; Garcia-Manero, Guillermo; Cortes, Jorge; Estrov, Zeev
2014-01-01
Extramedullary manifestations of acute myeloid leukemia (AML) were described as early as the 19th century. However, the incidence, clinical significance, and pathobiology of extramedullary AML remain ill defined. We reviewed case reports, retrospective case series, pilot studies, and imaging studies of extramedullary leukemia (EML) to determine its frequency, characteristics, clinical presentation, and significance. EML precedes or accompanies development of AML and occurs during or following treatment, even during remission. Although imaging studies are rarely conducted and the true incidence of EML has yet to be verified, authors have reported several estimates based on retrospective and autopsy studies. The incidence of EML in patients with AML of all ages is estimated to be about 9% and EML in children with AML was detected in 40% of patients at diagnosis. The combination of positron emission tomography and computed tomography were the most sensitive and reliable techniques of detecting and monitoring EML. Based on our literature review, the frequency of EML is likely underreported. The well-documented nature of EML in AML patients suggests that AML can manifest as a solid tumor. The extent to which EML accompanies AML and whether EML is derived from bone marrow are unknown. Furthermore, questions remain regarding the role of the microenvironment, which may or may not facilitate the survival and proliferation of EML, and the implications of these interactions with regard to minimal residual disease, tumor cell quiescence, and relapse. Therefore, prospective studies of detection and characterization of EML in AML patients are warranted. PMID:23280377
Is acute myeloid leukemia a liquid tumor?
Ohanian, Maro; Faderl, Stefan; Ravandi, Farhad; Pemmaraju, Naveen; Garcia-Manero, Guillermo; Cortes, Jorge; Estrov, Zeev
2013-08-01
Extramedullary manifestations of acute myeloid leukemia (AML) were described as early as the 19th century. However, the incidence, clinical significance and pathobiology of extramedullary AML remain ill defined. We reviewed case reports, retrospective case series, pilot studies and imaging studies of extramedullary leukemia (EML) to determine its frequency, characteristics, clinical presentation and significance. EML precedes or accompanies development of AML and occurs during or following treatment, even during remission. Although imaging studies are rarely conducted and the true incidence of EML has yet to be verified, authors have reported several estimates based on retrospective and autopsy studies. The incidence of EML in patients with AML of all ages is estimated to be about 9% and EML in children with AML was detected in 40% of patients at diagnosis. The combination of positron emission tomography and computed tomography were the most sensitive and reliable techniques of detecting and monitoring EML. Based on our literature review, the frequency of EML is likely underreported. The well-documented nature of EML in patients with AML suggests that AML can manifest as a solid tumor. The extent to which EML accompanies AML and whether EML is derived from bone marrow are unknown. Furthermore, questions remain regarding the role of the microenvironment, which may or may not facilitate the survival and proliferation of EML, and the implications of these interactions with regard to minimal residual disease, tumor cell quiescence and relapse. Therefore, prospective studies of detection and characterization of EML in patients with AML are warranted. Copyright © 2013 UICC.
Chen, Xiaoyi; Clark, Jason; Wunderlich, Mark; Fan, Cuiqing; Davis, Ashley; Chen, Song; Guan, Jun-Lin; Mulloy, James C; Kumar, Ashish; Zheng, Yi
2017-05-04
Recently, macroautophagy/autophagy has emerged as a promising target in various types of solid tumor treatment. However, the impact of autophagy on acute myeloid leukemia (AML) maintenance and the validity of autophagy as a viable target in AML therapy remain unclear. Here we show that Kmt2a/Mll-Mllt3/Af9 AML (MA9-AML) cells have high autophagy flux compared with normal bone marrow cells, but autophagy-specific targeting, either through Rb1cc1-disruption to abolish autophagy initiation, or via Atg5-disruption to prevent phagophore (the autophagosome precursor) membrane elongation, does not affect the growth or survival of MA9-AML cells, either in vitro or in vivo. Mechanistically, neither Atg5 nor Rb1cc1 disruption impairs endolysosome formation or survival signaling pathways. The autophagy inhibitor chloroquine shows autophagy-independent anti-leukemic effects in vitro but has no efficacy in vivo likely due to limited achievable drug efficacy in blood. Further, vesicular exocytosis appears to mediate chloroquine resistance in AML cells, and exocytotic inhibition significantly enhances the anti-leukemic effect of chloroquine. Thus, chloroquine can induce leukemia cell death in vitro in an autophagy-independent manner but with inadequate efficacy in vivo, and vesicular exocytosis is a possible mechanism of chloroquine resistance in MA9-AML. This study also reveals that autophagy-specific targeting is unlikely to benefit MA9-AML therapy.
Mechanisms of cytotoxicity to Pim kinase inhibitor, SGI-1776, in acute myeloid leukemia.
Chen, Lisa S; Redkar, Sanjeev; Taverna, Pietro; Cortes, Jorge E; Gandhi, Varsha
2011-07-21
Pim kinases are Ser/Thr kinases with multiple substrates that affect survival pathways. These proteins are overexpressed in acute myeloid leukemia (AML) blasts and we hypothesized that Pim kinase inhibition would affect AML cell survival. Imidazo[1,2-b]pyridazine compound, SGI-1776 inhibits Pim-1, Pim-2 and Pim-3, and was evaluated in AML-cell line, -xenograft model, and -primary blasts. Treatment of AML cells with SGI-1776 results in a concentration-dependent induction of apoptosis and we investigated its effect on Pim kinase functions. Phosphorylation of traditional Pim kinase targets, c-Myc(Ser62) and 4E-BP1 (Thr36/Thr47), were both decreased in actively cycling AML cell lines MV-4-11, MOLM-13 and OCI-AML-3. Levels of antiapoptotic proteins Bcl-2, Bcl-x(L), XIAP, and proapoptotic Bak and Bax were unchanged; however, a significant reduction in Mcl-1 was observed. This was correlated with inhibition of global RNA and protein synthesis and MCL-1 transcript decline after SGI-1776 treatment. These data suggest that SGI-1776 mechanism in AML involves Mcl-1 protein reduction. Consistent with cell line data, xenograft model studies with mice bearing MV-4-11 tumors showed efficacy with SGI-1776. Importantly, SGI-1776 was also cytotoxic in AML primary cells, irrespective of FLT3 mutation status and resulted in Mcl-1 protein decline. Pim kinase inhibition may be a new strategy for AML treatment.
Mechanisms of cytotoxicity to Pim kinase inhibitor, SGI-1776, in acute myeloid leukemia
Chen, Lisa S.; Redkar, Sanjeev; Taverna, Pietro; Cortes, Jorge E.
2011-01-01
Pim kinases are Ser/Thr kinases with multiple substrates that affect survival pathways. These proteins are overexpressed in acute myeloid leukemia (AML) blasts and we hypothesized that Pim kinase inhibition would affect AML cell survival. Imidazo[1,2-b]pyridazine compound, SGI-1776 inhibits Pim-1, Pim-2 and Pim-3, and was evaluated in AML-cell line, -xenograft model, and -primary blasts. Treatment of AML cells with SGI-1776 results in a concentration-dependent induction of apoptosis and we investigated its effect on Pim kinase functions. Phosphorylation of traditional Pim kinase targets, c-Myc(Ser62) and 4E-BP1 (Thr36/Thr47), were both decreased in actively cycling AML cell lines MV-4-11, MOLM-13 and OCI-AML-3. Levels of antiapoptotic proteins Bcl-2, Bcl-xL, XIAP, and proapoptotic Bak and Bax were unchanged; however, a significant reduction in Mcl-1 was observed. This was correlated with inhibition of global RNA and protein synthesis and MCL-1 transcript decline after SGI-1776 treatment. These data suggest that SGI-1776 mechanism in AML involves Mcl-1 protein reduction. Consistent with cell line data, xenograft model studies with mice bearing MV-4-11 tumors showed efficacy with SGI-1776. Importantly, SGI-1776 was also cytotoxic in AML primary cells, irrespective of FLT3 mutation status and resulted in Mcl-1 protein decline. Pim kinase inhibition may be a new strategy for AML treatment. PMID:21628411
Rotin, Lianne E.; Gronda, Marcela; MacLean, Neil; Hurren, Rose; Wang, XiaoMing; Lin, Feng-Hsu; Wrana, Jeff; Datti, Alessandro; Barber, Dwayne L.; Minden, Mark D.; Slassi, Malik; Schimmer, Aaron D.
2016-01-01
Targeting Bruton's tyrosine kinase (BTK) with the small molecule BTK inhibitor ibrutinib has significantly improved patient outcomes in several B-cell malignancies, with minimal toxicity. Given the reported expression and constitutive activation of BTK in acute myeloid leukemia (AML) cells, there has been recent interest in investigating the anti-AML activity of ibrutinib. We noted that ibrutinib had limited single-agent toxicity in a panel of AML cell lines and primary AML samples, and therefore sought to identify ibrutinib-sensitizing drugs. Using a high-throughput combination chemical screen, we identified that the poly(ADP-ribose) glycohydrolase (PARG) inhibitor ethacridine lactate synergized with ibrutinib in TEX and OCI-AML2 leukemia cell lines. The combination of ibrutinib and ethacridine induced a synergistic increase in reactive oxygen species that was functionally important to explain the observed cell death. Interestingly, synergistic cytotoxicity of ibrutinib and ethacridine was independent of the inhibitory effect of ibrutinib against BTK, as knockdown of BTK did not sensitize TEX and OCI-AML2 cells to ethacridine treatment. Thus, our findings indicate that ibrutinib may have a BTK-independent role in AML and that PARG inhibitors may have utility as part of a combination therapy for this disease. PMID:26624983
Narayan, N; Morenos, L; Phipson, B; Willis, S N; Brumatti, G; Eggers, S; Lalaoui, N; Brown, L M; Kosasih, H J; Bartolo, R C; Zhou, L; Catchpoole, D; Saffery, R; Oshlack, A; Goodall, G J; Ekert, P G
2017-04-01
Enforced expression of microRNA-155 (miR-155) in myeloid cells has been shown to have both oncogenic or tumour-suppressor functions in acute myeloid leukaemia (AML). We sought to resolve these contrasting effects of miR-155 overexpression using murine models of AML and human paediatric AML data sets. We show that the highest miR-155 expression levels inhibited proliferation in murine AML models. Over time, enforced miR-155 expression in AML in vitro and in vivo, however, favours selection of intermediate miR-155 expression levels that results in increased tumour burden in mice, without accelerating the onset of disease. Strikingly, we show that intermediate and high miR-155 expression also regulate very different subsets of miR-155 targets and have contrasting downstream effects on the transcriptional environments of AML cells, including genes involved in haematopoiesis and leukaemia. Furthermore, we show that elevated miR-155 expression detected in paediatric AML correlates with intermediate and not high miR-155 expression identified in our experimental models. These findings collectively describe a novel dose-dependent role for miR-155 in the regulation of AML, which may have important therapeutic implications.
Mitton, Bryan; Chae, Hee-Don; Hsu, Katie; Dutta, Ritika; Aldana-Masangkay, Grace; Ferrari, Roberto; Davis, Kara; Tiu, Bruce C.; Kaul, Arya; Lacayo, Norman; Dahl, Gary; Xie, Fuchun; Li, Bingbing X.; Breese, Marcus R.; Landaw, Elliot M.; Nolan, Garry; Pellegrini, Matteo; Romanov, Sergei; Xiao, Xiangshu; Sakamoto, Kathleen M.
2016-01-01
The transcription factor CREB (cAMP Response Element Binding Protein) is overexpressed in the majority of acute myeloid leukemia (AML) patients, and this is associated with a worse prognosis. Previous work revealed that CREB overexpression augmented AML cell growth, while CREB knockdown disrupted key AML cell functions in vitro. In contrast, CREB knockdown had no effect on long-term hematopoietic stem cell activity in mouse transduction/transplantation assays. Together, these studies position CREB as a promising drug target for AML. To test this concept, a small molecule inhibitor of CREB, XX-650-23, was developed. This molecule blocks a critical interaction between CREB and its required co-activator CBP (CREB Binding Protein), leading to disruption of CREB-driven gene expression. Inhibition of CBP-CREB interaction induced apoptosis and cell cycle arrest in AML cells, and prolonged survival in vivo in mice injected with human AML cells. XX-650-23 had little toxicity on normal human hematopoietic cells and tissues in mice. To understand the mechanism of XX-650-23, we performed RNA-seq, ChIP-seq and Cytometry Time of Flight with human AML cells. Our results demonstrate that small molecule inhibition of CBP-CREB interaction mostly affects apoptotic, cell cycle, and survival pathways, which may represent a novel approach for AML therapy. PMID:27211267
Rotin, Lianne E; Gronda, Marcela; MacLean, Neil; Hurren, Rose; Wang, XiaoMing; Lin, Feng-Hsu; Wrana, Jeff; Datti, Alessandro; Barber, Dwayne L; Minden, Mark D; Slassi, Malik; Schimmer, Aaron D
2016-01-19
Targeting Bruton's tyrosine kinase (BTK) with the small molecule BTK inhibitor ibrutinib has significantly improved patient outcomes in several B-cell malignancies, with minimal toxicity. Given the reported expression and constitutive activation of BTK in acute myeloid leukemia (AML) cells, there has been recent interest in investigating the anti-AML activity of ibrutinib. We noted that ibrutinib had limited single-agent toxicity in a panel of AML cell lines and primary AML samples, and therefore sought to identify ibrutinib-sensitizing drugs. Using a high-throughput combination chemical screen, we identified that the poly(ADP-ribose) glycohydrolase (PARG) inhibitor ethacridine lactate synergized with ibrutinib in TEX and OCI-AML2 leukemia cell lines. The combination of ibrutinib and ethacridine induced a synergistic increase in reactive oxygen species that was functionally important to explain the observed cell death. Interestingly, synergistic cytotoxicity of ibrutinib and ethacridine was independent of the inhibitory effect of ibrutinib against BTK, as knockdown of BTK did not sensitize TEX and OCI-AML2 cells to ethacridine treatment. Thus, our findings indicate that ibrutinib may have a BTK-independent role in AML and that PARG inhibitors may have utility as part of a combination therapy for this disease.
Impaired health-related quality of life in acute myeloid leukemia survivors: a single-center study.
Leunis, Annemieke; Redekop, William K; Uyl-de Groot, Carin A; Löwenberg, Bob
2014-09-01
The purpose of this study was to assess the impact of acute myeloid leukemia (AML) and its treatment on health-related quality of life (HRQOL) by comparing the HRQOL of AML survivors with the HRQOL in the general population. Two HRQOL questionnaires (EQ-5D and QLQ-C30) were sent to patients diagnosed with AML between 1999 and 2011 at a single academic hospital and still alive in 2012. HRQOL in AML survivors was compared with general population reference values. Multivariate analysis was used to identify factors associated with HRQOL in AML survivors. Questionnaires were returned by 92 of the 103 patients (89%). AML survivors reported significantly worse functioning, more fatigue, pain, dyspnea, appetite loss, and financial difficulties and lower EQ-VAS scores than the general population (P < 0.05). Impaired HRQOL in AML survivors was mainly found in survivors without a paid job. Other factors associated with a poor HRQOL were allogeneic hematopoietic stem cell transplantation and the absence of social support. This single-center study showed that the HRQOL in AML survivors is worse than the HRQOL in the general population. HRQOL in these patients can be improved by adequately treating and preventing fatigue, pain, dyspnea, and appetite loss. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Wong, Terrence N; Miller, Christopher A; Klco, Jeffery M; Petti, Allegra; Demeter, Ryan; Helton, Nichole M; Li, Tiandao; Fulton, Robert S; Heath, Sharon E; Mardis, Elaine R; Westervelt, Peter; DiPersio, John F; Walter, Matthew J; Welch, John S; Graubert, Timothy A; Wilson, Richard K; Ley, Timothy J; Link, Daniel C
2016-02-18
There is interest in using leukemia-gene panels and next-generation sequencing to assess acute myelogenous leukemia (AML) response to induction chemotherapy. Studies have shown that patients with AML in morphologic remission may continue to have clonal hematopoiesis with populations closely related to the founding AML clone and that this confers an increased risk of relapse. However, it remains unknown how induction chemotherapy influences the clonal evolution of a patient's nonleukemic hematopoietic population. Here, we report that 5 of 15 patients with genetic clearance of their founding AML clone after induction chemotherapy had a concomitant expansion of a hematopoietic population unrelated to the initial AML. These populations frequently harbored somatic mutations in genes recurrently mutated in AML or myelodysplastic syndromes and were detectable at very low frequencies at the time of AML diagnosis. These results suggest that nonleukemic hematopoietic stem and progenitor cells, harboring specific aging-acquired mutations, may have a competitive fitness advantage after induction chemotherapy, expand, and persist long after the completion of chemotherapy. Although the clinical importance of these "rising" clones remains to be determined, it will be important to distinguish them from leukemia-related populations when assessing for molecular responses to induction chemotherapy. © 2016 by The American Society of Hematology.
Hernandez-Valladares, Maria; Vaudel, Marc; Selheim, Frode; Berven, Frode; Bruserud, Øystein
2017-08-01
Mass spectrometry (MS)-based proteomics has become an indispensable tool for the characterization of the proteome and its post-translational modifications (PTM). In addition to standard protein sequence databases, proteogenomics strategies search the spectral data against the theoretical spectra obtained from customized protein sequence databases. Up to date, there are no published proteogenomics studies on acute myeloid leukemia (AML) samples. Areas covered: Proteogenomics involves the understanding of genomic and proteomic data. The intersection of both datatypes requires advanced bioinformatics skills. A standard proteogenomics workflow that could be used for the study of AML samples is described. The generation of customized protein sequence databases as well as bioinformatics tools and pipelines commonly used in proteogenomics are discussed in detail. Expert commentary: Drawing on evidence from recent cancer proteogenomics studies and taking into account the public availability of AML genomic data, the interpretation of present and future MS-based AML proteomic data using AML-specific protein sequence databases could discover new biological mechanisms and targets in AML. However, proteogenomics workflows including bioinformatics guidelines can be challenging for the wide AML research community. It is expected that further automation and simplification of the bioinformatics procedures might attract AML investigators to adopt the proteogenomics strategy.
Acute myeloid leukemia (AML) - children
Acute myeloid leukemia is a cancer of the blood and bone marrow. Bone marrow is the soft tissue inside ... develops quickly. Both adults and children can get acute myeloid leukemia ( AML ). This article is about AML in children.
Bronzini, I; Aresu, L; Paganin, M; Marchioretto, L; Comazzi, S; Cian, F; Riondato, F; Marconato, L; Martini, V; Te Kronnie, G
2017-09-01
Tumours shows aberrant DNA methylation patterns, being hypermethylated or hypomethylated compared with normal tissues. In human acute myeloid leukaemia (hAML) mutations in DNA methyltransferase (DNMT3A) are associated to a more aggressive tumour behaviour. As AML is lethal in dogs, we defined global DNA methylation content, and screened the C-terminal domain of DNMT3 family of genes for sequence variants in 39 canine acute myeloid leukaemia (cAML) cases. A heterogeneous pattern of DNA methylation was found among cAML samples, with subsets of cases being hypermethylated or hypomethylated compared with healthy controls; four recurrent single nucleotide variations (SNVs) were found in DNMT3L gene. Although SNVs were not directly correlated to whole genome DNA methylation levels, all hypomethylated cAML cases were homozygous for the deleterious mutation at p.Arg222Trp. This study contributes to understand genetic modifications of cAML, leading up to studies that will elucidate the role of methylome alterations in the pathogenesis of AML in dogs. © 2016 John Wiley & Sons Ltd.
Novel agents in acute myeloid leukemia.
Ungewickell, Alexander; Medeiros, Bruno C
2012-08-01
Although complete remissions can be achieved in most patients younger than 60 years of age with untreated acute myeloid leukemia (AML), only 30-40 % of patients remain long-term survivors. Furthermore, long-term survivors represent only 10-15 % of all AML patients older than 60 years of age and <10 % of all patients with relapsed AML. The development of new treatments for AML is therefore needed. Novel therapies should target specific mechanisms and pathways implicated in the development and maintenance of AML, should strive to have better tolerability than conventional combination chemotherapy, be associated with improved quality of life and minimize utilization of health care resources. In this manuscript, we discuss the role of epigenetic regulators and immunomodulatory agents in the treatment of AML. Also, we review the data on inhibitors of protein homeostasis and its synergistic effect to DNA methyltransferase inhibitors, the potential role for inhibitors of heat shock proteins and the mitotic machinery and a novel formulation of conventional chemotherapeutic agents given at a fixed molar concentration. Finally, we briefly share our views on optimal clinical trial design and patient selection for future studies in AML.
Study of the S427G polymorphism and of MYBL2 variants in patients with acute myeloid leukemia.
Dolz, Sandra; García, Paloma; Llop, Marta; Fuster, Óscar; Luna, Irene; Ibáñez, Mariam; Gómez, Inés; López, María; Such, Esperanza; Cervera, José; Sanz, Miguel A; De Juan, Inmaculada; Palanca, Sarai; Murria, Rosa; Bolufer, Pascual; Barragán, Eva
2015-06-19
Dysregulation of MYBL2 has been associated to tumorigenesis and the S427G polymorphism could induce partial inactivation of MYBL2, associating it with cancer risk. It has previously been shown that MYBL2 was over-expressed in some acute myeloid leukemias (AML), portending poor prognosis. However, to date no studies have investigated the S427G or other genetic variants of MYBL2 in AML. This study analyzed the S427G in 197 AML patients and 179 controls and screened the MYBL2 sequence in patients. In contrast to other studies in solid tumors, the S427G was not associated with the incidence of AML. This study detected four unannotated genetic alterations, of which the Q67X could be involved in MYBL2 dysfunction. Eight polymorphisms were identified, among which the rs73116571, located in a splicing region, was associated with higher incidence in AML and weaker MYBL2 expression, suggesting pre-disposition to AML. Additional functional studies should be performed to verify these genetic variations as possible targets in AML.
Schnerch, Dominik; Schüler, Julia; Follo, Marie; Felthaus, Julia; Wider, Dagmar; Klingner, Kathrin; Greil, Christine; Duyster, Justus; Engelhardt, Monika; Wäsch, Ralph
2017-03-28
Elderly and frail patients, diagnosed with acute myeloid leukemia (AML) and ineligible to undergo intensive treatment, have a dismal prognosis. The small molecule inhibitor volasertib induces a mitotic block via inhibition of polo-like kinase 1 and has shown remarkable anti-leukemic activity when combined with low-dose cytarabine. We have demonstrated that AML cells are highly vulnerable to cell death in mitosis yet manage to escape a mitotic block through mitotic slippage by sustained proteasome-dependent slow degradation of cyclin B. Therefore, we tested whether interfering with mitotic slippage through proteasome inhibition arrests and kills AML cells more efficiently during mitosis. We show that therapeutic doses of bortezomib block the slow degradation of cyclin B during a volasertib-induced mitotic arrest in AML cell lines and patient-derived primary AML cells. In a xenotransplant mouse model of human AML, mice receiving volasertib in combination with bortezomib showed superior disease control compared to mice receiving volasertib alone, highlighting the potential therapeutic impact of this drug combination.
Butrym, Aleksandra; Rybka, Justyna; Baczyńska, Dagmara; Poręba, Rafał; Mazur, Grzegorz; Kuliczkowski, Kazimierz
2016-10-01
MicroRNAs (miRs) are small non-coding RNAs that play important roles in cell differentiation and survival. Abnormal expression of miRs has been demonstrated in numerous types of cancer, including acute myeloid leukaemia (AML). The aim of the present study was to evaluate miR-181 expression at diagnosis and following the completion of chemotherapy in AML patients, with regard to clinical response and outcome, particularly in patients treated with azacitidine. miR-181 expression was analysed using reverse transcription-quantitative polymerase chain reaction in 95 bone marrow specimens from newly diagnosed AML patients and in 20 healthy subjects for comparison. The results revealed upregulated miR-181 expression in the total cohort of AML patients, which was correlated with longer survival. However, in a subset of older AML patients treated with azacitidine, low miR-181 expression at diagnosis was a predictor for complete remission and prolonged survival. The findings indicated that miR-181 has an important role in AML and determines response to azacitidine treatment in older AML patients.
Butrym, Aleksandra; Rybka, Justyna; Baczyńska, Dagmara; Poręba, Rafał; Mazur, Grzegorz; Kuliczkowski, Kazimierz
2016-01-01
MicroRNAs (miRs) are small non-coding RNAs that play important roles in cell differentiation and survival. Abnormal expression of miRs has been demonstrated in numerous types of cancer, including acute myeloid leukaemia (AML). The aim of the present study was to evaluate miR-181 expression at diagnosis and following the completion of chemotherapy in AML patients, with regard to clinical response and outcome, particularly in patients treated with azacitidine. miR-181 expression was analysed using reverse transcription-quantitative polymerase chain reaction in 95 bone marrow specimens from newly diagnosed AML patients and in 20 healthy subjects for comparison. The results revealed upregulated miR-181 expression in the total cohort of AML patients, which was correlated with longer survival. However, in a subset of older AML patients treated with azacitidine, low miR-181 expression at diagnosis was a predictor for complete remission and prolonged survival. The findings indicated that miR-181 has an important role in AML and determines response to azacitidine treatment in older AML patients. PMID:27698792
Azelaic Acid Exerts Antileukemic Activity in Acute Myeloid Leukemia
Pan, Yunbao; Liu, Dong; Wei, Yongchang; Su, Dan; Lu, Chenyang; Hu, Yanchao; Zhou, Fuling
2017-01-01
Acute myeloid leukemia (AML) is an acute leukemia common in most adults; its prevalence intensifies with age. The overall survival of AML is very poor because of therapeutic resistance. Azelaic acid (AZA) is non-toxic, non-teratogenic, and non-mutagenic and its antitumor effect on various tumor cells is well established; Nonetheless, its therapeutic effects in AML cells are largely unknown. In this study, it was shown that AZA significantly inhibits the cell viability and induces apoptosis in AML cells in a dose-dependent manner. Additionally, AZA suppressed the expression of phosphorylated Akt, Jab1 and Trx, and this suppression was enhanced by treatment with Jab1 siRNA. Furthermore, AZA sensitized AML cells to Ara-c chemotherapy. The suppressive effect of AZA on tumor growth was examined in vivo by subcutaneously inoculated AML cells in a tumor model using nude mice. These findings indicate that AZA is useful as an effective ingredient in antineoplastic activity. PMID:28659796
Azelaic Acid Exerts Antileukemic Activity in Acute Myeloid Leukemia.
Pan, Yunbao; Liu, Dong; Wei, Yongchang; Su, Dan; Lu, Chenyang; Hu, Yanchao; Zhou, Fuling
2017-01-01
Acute myeloid leukemia (AML) is an acute leukemia common in most adults; its prevalence intensifies with age. The overall survival of AML is very poor because of therapeutic resistance. Azelaic acid (AZA) is non-toxic, non-teratogenic, and non-mutagenic and its antitumor effect on various tumor cells is well established; Nonetheless, its therapeutic effects in AML cells are largely unknown. In this study, it was shown that AZA significantly inhibits the cell viability and induces apoptosis in AML cells in a dose-dependent manner. Additionally, AZA suppressed the expression of phosphorylated Akt, Jab1 and Trx, and this suppression was enhanced by treatment with Jab1 siRNA. Furthermore, AZA sensitized AML cells to Ara-c chemotherapy. The suppressive effect of AZA on tumor growth was examined in vivo by subcutaneously inoculated AML cells in a tumor model using nude mice. These findings indicate that AZA is useful as an effective ingredient in antineoplastic activity.
[Detection of heterogeneity and evolution of subclones in t(8;21) AML by QM-FISH].
Wang, Ying-chan; Hu, Lin-ping; Lin, Dong; Li, Cheng-wen; Yuan, Tian; Jia, Yu-jiao; Tian, Zheng; Tang, Ke-jing; Wang, Min; Wang, Jian-xiang
2013-10-01
To explore the heterogeneous subclones in acute myeloid leukemia (AML) with t(8;21) by quantitative multicolor- fluorescence in situ hybridization (QM-FISH), and to figure out whether there is putative ancestral relationship among different subclones. Bacterial artificial chromosomes (BAC) clones that contain the targeted genes including AML1, ETO, WT1, p27 and c-kit were searched in the data base UCSC Genome Bioinformatics. Multicolor FISH probes were prepared by linking fluorescein labeled dUTP or dCTP to targeted genes by nick translation. Bone marrow mononuclear cells from t (8;21) AML patients are dropped on to the wet surface of glass slides after hypotonic treatment and fixation. After hybridization, the fluorescence signals were captured by Zeiss fluorescence microscope. The copy number of AML1, ETO, WT1, p27, c- kit and the AML1-ETO fusion gene in AML1-ETO positive cells was counted. The cells with same signals were defined as a subclone. Various subclones were recorded and their proportions were calculated, and their evolutionary relationship was deduced. The subclones in matched primary and relapsed samples were compared, the evolution of dominant clones were figured out and the genomic abnormality that is associated with relapse and drug resistance were speculated. In this study, 36 primary AML with t(8;21) cases and 1 relapsed case paired with the primary case were detected. In these 36 primary cases, 4 cases (11.1%) acquired additional AML1-ETO fusion signal, 3(8.3%) had additional AML1 signal, 4(11.1%) had additional ETO signal, 20(55.6%) had additional WT1 signal, 15(41.7%) had additional p27 signal and 14(38.9%) had additional c-kit signal. In addition, 10(27.8%) displayed AML1 signal deletion, and such an aberration represents statistic significance in male patients. It seems that male patients usually accompany AML1 signal deletion. Of 36 cases, 28(77.8 %) harbored at least 2 subclones (ranged from 2 to 10). According to the genetic signature of subclones, we can assemble a putative ancestral tree, and the genetic architecture is linear or branching. In particular, the clonal architecture of the relapsed sample exhibited significant clonal evolution compared to its paired sample at diagnosis, including proportion changes in dominant clone, subclone disappearance and appearance of new dominant clones. Genomic abnormality is very diverse in t(8;21) AML. Subclones have linear or complex branching evolutionary histories, and clonal architecture is dynamic.
Negre, T; Faure, A; Andre, M; Daniel, L; Coulange, C; Lechevallier, E
2011-11-01
Angiomyolipoma is the most frequent benign renal solid tumor. Because of the lack of fat component on the CT scan, diagnosis of this tumor is hard and can require percutaneous biopsy of unknown renal tumor. The follow-up of the poor fat CT scan component AML (PFCT AML) is uncertain. Five hundred percutaneous renal biopsy under tomodenstitometry have been realised between 1998 and 2008. There was 41 PFCT AML on the 500 biopsy. By definition, a PFCT AML is an AML where the diagnosis is done on a percutaneous biopsy but where there was no fat component on the first CT scan. We studied and compared clinical, tomodensitometric and histologic parameters of these 41 patients (mean age: 56, 9±11.04; sexe rate M/F: 6/35) where renal AML was diagnosed on percutaneous renal biopsy but without fat component on CT scan. Average size was 26.44±14.68mm. We phone-called 16 patients for the long-term follow-up. Average follow-up was 41±28.3 months. For four patients on 16, initial diagnosis was done in front of local symptoms, for one of the 16 diagnosis was done in front of general symptoms, for one of the diagnosis was done during Bourneville tuberous sclerosis evolution and 10 of the 16 was done fortuitously. After review of the initial CT scan, fat density was found on 24% of them. Ten percent was epithelioid angiomyolipoma. Four renal biopsy on 41 (10%) was epithelioid AML. No epithelioid AML had fat component after the second look of the CT scan. Among the 16 patients who were phone-called, three (19%) underwent a complication. Two had abdominal pain and was treated medically. Initial sizes were 26 and 30mm. Only one patient must be operated by radical nephrectomy for acute hemorrhage. Initial size was 45mm. No neoplasic degeneration was identified for those 16 patients. In our study, the PFCT AML rate was 8.2%. In 25% cases, CT scan read-through shown a fat component and could help for the diagnosis. PFCT AML evolution seems to be the same as a classic AML. Conservative treatment had a good covering because there was no death and no malignant evolution. However, we found 10% of epithelioid angiomyolipoma in which malignant risk is high. PFCT AML diagnosed on renal percutaneous biopsy of unknown renal tumor requires the same management than the classic AML. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Direct and indirect targeting of MYC to treat acute myeloid leukemia.
Brondfield, Sam; Umesh, Sushma; Corella, Alexandra; Zuber, Johannes; Rappaport, Amy R; Gaillard, Coline; Lowe, Scott W; Goga, Andrei; Kogan, Scott C
2015-07-01
Acute myeloid leukemia (AML) is the most common acute leukemia in adults and is often resistant to conventional therapies. The MYC oncogene is commonly overexpressed in AML but has remained an elusive target. We aimed to examine the consequences of targeting MYC both directly and indirectly in AML overexpressing MYC/Myc due to trisomy 8/15 (human/mouse), FLT3-ITD mutation, or gene amplification. We performed in vivo knockdown of Myc (shRNAs) and both in vitro and in vivo experiments using four drugs with indirect anti-MYC activity: VX-680, GDC-0941, artemisinin, and JQ1. shRNA knockdown of Myc in mice prolonged survival, regardless of the mechanism underlying MYC overexpression. VX-680, an aurora kinase inhibitor, demonstrated in vitro efficacy against human MYC-overexpressing AMLs regardless of the mechanism of MYC overexpression, but was weakest against a MYC-amplified cell line. GDC-0941, a PI3-kinase inhibitor, demonstrated efficacy against several MYC-overexpressing AMLs, although only in vitro. Artemisinin, an antimalarial, did not demonstrate consistent efficacy against any of the human AMLs tested. JQ1, a bromodomain and extra-terminal bromodomain inhibitor, demonstrated both in vitro and in vivo efficacy against several MYC-overexpressing AMLs. We also confirmed a decrease in MYC levels at growth inhibitory doses for JQ1, and importantly, sensitivity of AML cell lines to JQ1 appeared independent of the mechanism of MYC overexpression. Our data support growing evidence that JQ1 and related compounds may have clinical efficacy in AML treatment regardless of the genetic abnormalities underlying MYC deregulation.
Khan, N; Hills, R K; Virgo, P; Couzens, S; Clark, N; Gilkes, A; Richardson, P; Knapper, S; Grimwade, D; Russell, N H; Burnett, A K; Freeman, S D
2017-05-01
It remains unclear in adult acute myeloid leukaemia (AML) whether leukaemic expression of CD33, the target antigen for gemtuzumab ozogamicin (GO), adds prognostic information on GO effectiveness at different doses. CD33 expression quantified in 1583 patients recruited to UK-NCRI-AML17 (younger adults) and UK-NCRI-AML16 (older adults) trials was correlated with clinical outcomes and benefit from GO including a dose randomisation. CD33 expression associated with genetic subgroups, including lower levels in both adverse karyotype and core-binding factor (CBF)-AML, but was not independently prognostic. When comparing GO versus no GO (n=393, CBF-AMLs excluded) by stratified subgroup-adjusted analysis, patients with lowest quartile (Q1) %CD33-positivity had no benefit from GO (relapse risk, HR 2.41 (1.27-4.56), P=0.009 for trend; overall survival, HR 1.52 (0.92-2.52)). However, from the dose randomisation (NCRI-AML17, n=464, CBF-AMLs included), 6 mg/m 2 GO only had a relapse benefit without increased early mortality in CD33-low (Q1) patients (relapse risk HR 0.64 (0.36-1.12) versus 1.70 (0.99-2.92) for CD33-high, P=0.007 for trend). Thus CD33 expression is a predictive factor for GO effect in adult AML; although GO does not appear to benefit the non-CBF AML patients with lowest CD33 expression a higher GO dose may be more effective for CD33-low but not CD33-high younger adults.
Müller-Tidow, Carsten; Klein, Hans-Ulrich; Hascher, Antje; Isken, Fabienne; Tickenbrock, Lara; Thoennissen, Nils; Agrawal-Singh, Shuchi; Tschanter, Petra; Disselhoff, Christine; Wang, Yipeng; Becker, Anke; Thiede, Christian; Ehninger, Gerhard; zur Stadt, Udo; Koschmieder, Steffen; Seidl, Matthias; Müller, Frank U; Schmitz, Wilhelm; Schlenke, Peter; McClelland, Michael; Berdel, Wolfgang E; Dugas, Martin; Serve, Hubert
2010-11-04
Acute myeloid leukemia (AML) is commonly associated with alterations in transcription factors because of altered expression or gene mutations. These changes might induce leukemia-specific patterns of histone modifications. We used chromatin-immunoprecipitation on microarray to analyze histone 3 lysine 9 trimethylation (H3K9me3) patterns in primary AML (n = 108), acute lymphoid leukemia (n = 28), CD34(+) cells (n = 21) and white blood cells (n = 15) specimens. Hundreds of promoter regions in AML showed significant alterations in H3K9me3 levels. H3K9me3 deregulation in AML occurred preferentially as a decrease in H3K9me3 levels at core promoter regions. The altered genomic regions showed an overrepresentation of cis-binding sites for ETS and cyclic adenosine monophosphate response elements (CREs) for transcription factors of the CREB/CREM/ATF1 family. The decrease in H3K9me3 levels at CREs was associated with increased CRE-driven promoter activity in AML blasts in vivo. AML-specific H3K9me3 patterns were not associated with known cytogenetic abnormalities. But a signature derived from H3K9me3 patterns predicted event-free survival in AML patients. When the H3K9me3 signature was combined with established clinical prognostic markers, it outperformed prognosis prediction based on clinical parameters alone. These findings demonstrate widespread changes of H3K9me3 levels at gene promoters in AML. Signatures of histone modification patterns are associated with patient prognosis in AML.
Kong, Guangyao; Rajagopalan, Adhithi; Lu, Li; Song, Jingming; Hussaini, Mohamed; Zhang, Xinmin; Ranheim, Erik A.; Liu, Yangang; Wang, Jinyong; Gao, Xin; Chang, Yuan-I; Johnson, Kirby D.; Zhou, Yun; Yang, David; Bhatnagar, Bhavana; Lucas, David M.; Bresnick, Emery H.; Zhong, Xuehua; Padron, Eric
2017-01-01
Somatic mutations in TP53 and NRAS are associated with transformation of human chronic myeloid diseases to acute myeloid leukemia (AML). Here, we report that concurrent RAS pathway and TP53 mutations are identified in a subset of AML patients and confer an inferior overall survival. To further investigate the genetic interaction between p53 loss and endogenous NrasG12D/+ in AML, we generated conditional NrasG12D/+p53−/− mice. Consistent with the clinical data, recipient mice transplanted with NrasG12D/+p53−/− bone marrow cells rapidly develop a highly penetrant AML. We find that p53−/− cooperates with NrasG12D/+ to promote increased quiescence in megakaryocyte-erythroid progenitors (MEPs). NrasG12D/+p53−/− MEPs are transformed to self-renewing AML-initiating cells and are capable of inducing AML in serially transplanted recipients. RNA sequencing analysis revealed that transformed MEPs gain a partial hematopoietic stem cell signature and largely retain an MEP signature. Their distinct transcriptomes suggests a potential regulation by p53 loss. In addition, we show that during AML development, transformed MEPs acquire overexpression of oncogenic Nras, leading to hyperactivation of ERK1/2 signaling. Our results demonstrate that p53−/− synergizes with enhanced oncogenic Nras signaling to transform MEPs and drive AML development. This model may serve as a platform to test candidate therapeutics in this aggressive subset of AML. PMID:27815262
Altman, Jessica K.; Sassano, Antonella; Kaur, Surinder; Glaser, Heather; Kroczynska, Barbara; Redig, Amanda J.; Russo, Suzanne; Barr, Sharon; Platanias, Leonidas C.
2011-01-01
Purpose To determine whether mTORC2 and RI-mTORC1 complexes are present in AML cells and to examine the effects of dual mTORC2/mTORC1 inhibition on primitive AML leukemic progenitors. Experimental Design Combinations of different experimental approaches were used, including immunoblotting to detect phosphorylated/activated forms of elements of the mTOR pathway in leukemic cell lines and primary AML blasts; cell proliferation assays; direct assessment of mRNA translation in polysomal fractions of leukemic cells; and clonogenic assays in methylcellulose to evaluate leukemic progenitor colony formation. Results mTORC2 complexes are active in AML cells and play critical roles in leukemogenesis. Rapamycin insensitive (RI) mTORC1 complexes are also formed and regulate the activity of the translational repressor 4E-BP1 in AML cells. OSI-027, blocks mTORC1 and mTORC2 activities and suppresses mRNA translation of cyclin D1 and other genes that mediate proliferative responses in AML cells. Moreover, OSI-027 acts as a potent suppressor of primitive leukemic precursors from AML patients and is much more effective than rapamycin in eliciting antileukemic effects in vitro. Conclusions Dual targeting of mTORC2 and mTORC1 results in potent suppressive effects on primitive leukemic progenitors from AML patients. Inhibition of the mTOR catalytic site with OSI-027 results in suppression of both mTORC2 and RI-mTORC1 complexes and elicits much more potent antileukemic responses than selective mTORC1 targeting with rapamycin. PMID:21415215
lncRNA co-expression network model for the prognostic analysis of acute myeloid leukemia
Pan, Jia-Qi; Zhang, Yan-Qing; Wang, Jing-Hua; Xu, Ping; Wang, Wei
2017-01-01
Acute myeloid leukemia (AML) is a highly heterogeneous hematologic malignancy with great variability of prognostic behaviors. Previous studies have reported that long non-coding RNAs (lncRNAs) play an important role in AML and may thus be used as potential prognostic biomarkers. However, thus use of lncRNAs as prognostic biomarkers in AML and their detailed mechanisms of action in this disease have not yet been well characterized. For this purpose, in the present study, the expression levels of lncRNAs and mRNAs were calculated using the RNA-seq V2 data for AML, following which a lncRNA-lncRNA co-expression network (LLCN) was constructed. This revealed a total of 8 AML prognosis-related lncRNA modules were identified, which displayed a significant correlation with patient survival (p≤0.05). Subsequently, a prognosis-related lncRNA module pathway network was constructed to interpret the functional mechanism of the prognostic modules in AML. The results indicated that these prognostic modules were involved in the AML pathway, chemokine signaling pathway and WNT signaling pathway, all of which play important roles in AML. Furthermore, the investigation of lncRNAs in these prognostic modules suggested that an lncRNA (ZNF571-AS1) may be involved in AML via the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway by regulating KIT and STAT5. The results of the present study not only provide potential lncRNA modules as prognostic biomarkers, but also provide further insight into the molecular mechanisms of action of lncRNAs. PMID:28204819
Eichenauer, Dennis A; Thielen, Indra; Haverkamp, Heinz; Franklin, Jeremy; Behringer, Karolin; Halbsguth, Teresa; Klimm, Beate; Diehl, Volker; Sasse, Stephanie; Rothe, Achim; Fuchs, Michael; Böll, Boris; von Tresckow, Bastian; Borchmann, Peter; Engert, Andreas
2014-03-13
Therapy-related acute myeloid leukemia and myelodysplastic syndromes (t-AML/MDS) represent severe late effects in patients treated for Hodgkin lymphoma (HL). Because more recent data are scarce, we retrospectively analyzed incidence, outcome, and risk factors for the development of t-AML/MDS after HL. A total of 11,952 patients treated for newly diagnosed HL within German Hodgkin Study Group trials between 1993 and 2009 were considered. At a median follow-up of 72 months, t-AML/MDS was diagnosed in 106/11,952 patients (0.9%). Median time from HL treatment to t-AML/MDS was 31 months. The median age of patients with t-AML/MDS was higher than in the whole patient group (43 vs 34 years, P < .0001). Patients who received 4 or more cycles of BEACOPP(escalated) had an increased risk to develop t-AML/MDS when compared with patients treated with less than 4 cycles of BEACOPP(escalated) or no BEACOPP chemotherapy (1.7% vs 0.7% vs 0.3%, P < .0001). The median overall survival (OS) for all t-AML/MDS patients was 7.2 months. However, t-AML/MDS patients proceeding to allogeneic stem cell transplantation had a significantly better outcome with a median OS not reached after a median follow-up of 41 months (P < .001).
Canaani, Jonathan; Beohou, Eric; Labopin, Myriam; Socié, Gerard; Huynh, Anne; Volin, Liisa; Cornelissen, Jan; Milpied, Noel; Gedde-Dahl, Tobias; Deconinck, Eric; Fegueux, Nathalie; Blaise, Didier; Mohty, Mohamad; Nagler, Arnon
2017-04-01
The French, American, and British (FAB) classification system for acute myeloid leukemia (AML) is extensively used and is incorporated into the AML, not otherwise specified (NOS) category in the 2016 WHO edition of myeloid neoplasm classification. While recent data proposes that FAB classification does not provide additional prognostic information for patients for whom NPM1 status is available, it is unknown whether FAB still retains a current prognostic role in predicting outcome of AML patients undergoing allogeneic stem cell transplantation. Using the European Society of Blood and Bone Marrow Transplantation registry we analyzed outcome of 1690 patients transplanted in CR1 to determine if FAB classification provides additional prognostic value. Multivariate analysis revealed that M6/M7 patients had decreased leukemia free survival (hazard ratio (HR) of 1.41, 95% confidence interval (CI), 1.01-1.99; P = .046) in addition to increased nonrelapse mortality (NRM) rates (HR, 1.79; 95% CI, 1.06-3.01; P = .028) compared with other FAB types. In the NPM1 wt AML, NOS cohort, FAB M6/M7 was also associated with increased NRM (HR, 2.17; 95% CI, 1.14-4.16; P = .019). Finally, in FLT3-ITD + patients, multivariate analyses revealed that specific FAB types were tightly associated with adverse outcome. In conclusion, FAB classification may predict outcome following transplantation in AML, NOS patients. © 2017 Wiley Periodicals, Inc.
Knapper, Steven; Russell, Nigel; Gilkes, Amanda; Hills, Robert K; Gale, Rosemary E; Cavenagh, James D; Jones, Gail; Kjeldsen, Lars; Grunwald, Michael R; Thomas, Ian; Konig, Heiko; Levis, Mark J; Burnett, Alan K
2017-03-02
The clinical benefit of adding FMS-like tyrosine kinase-3 (FLT3)-directed small molecule therapy to standard first-line treatment of acute myeloid leukemia (AML) has not yet been established. As part of the UK AML15 and AML17 trials, patients with previously untreated AML and confirmed FLT3-activating mutations, mostly younger than 60 years, were randomly assigned either to receive oral lestaurtinib (CEP701) or not after each of 4 cycles of induction and consolidation chemotherapy. Lestaurtinib was commenced 2 days after completing chemotherapy and administered in cycles of up to 28 days. The trials ran consecutively. Primary endpoints were overall survival in AML15 and relapse-free survival in AML17; outcome data were meta-analyzed. Five hundred patients were randomly assigned between lestaurtinib and control: 74% had FLT3 -internal tandem duplication mutations, 23% FLT3 -tyrosine kinase domain point mutations, and 2% both types. No significant differences were seen in either 5-year overall survival (lestaurtinib 46% vs control 45%; hazard ratio, 0.90; 95% CI 0.70-1.15; P = .3) or 5-year relapse-free survival (40% vs 36%; hazard ratio, 0.88; 95% CI 0.69-1.12; P = .3). Exploratory subgroup analysis suggested survival benefit with lestaurtinib in patients receiving concomitant azole antifungal prophylaxis and gemtuzumab ozogamicin with the first course of chemotherapy. Correlative studies included analysis of in vivo FLT3 inhibition by plasma inhibitory activity assay and indicated improved overall survival and significantly reduced rates of relapse in lestaurtinib-treated patients who achieved sustained greater than 85% FLT3 inhibition. In conclusion, combining lestaurtinib with intensive chemotherapy proved feasible in younger patients with newly diagnosed FLT3 -mutated AML, but yielded no overall clinical benefit. The improved clinical outcomes seen in patients achieving sustained FLT3 inhibition encourage continued evaluation of FLT3-directed therapy alongside front-line AML treatment. The UK AML15 and AML17 trials are registered at www.isrctn.com/ISRCTN17161961 and www.isrctn.com/ISRCTN55675535 respectively. © 2017 by The American Society of Hematology.
Concurrent targeting Akt and sphingosine kinase 1 by A-674563 in acute myeloid leukemia cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lin; Shaoyang Central Hospital, Hunan Province; Zhang, Yanan
Akt signaling plays a pivotal role in acute myeloid leukemia (AML) development and progression. In the present study, we evaluated the potential anti-AML activity by a novel Akt kinase inhibitor A-674563. Our results showed that A-674563 dose-dependently inhibited survival and proliferation of U937 AML cells and six lines of human AML progenitor cells, yet sparing human peripheral blood mononuclear leukocytes (PBMCs). A-674563 activated caspase-3/9 and apoptosis in the AML cells. Reversely, the pan-caspase inhibitor z-VAD-CHO dramatically alleviated A-674563-induced AML cell apoptosis and cytotoxicity. For the molecular study, we showed that A-674563 blocked Akt activation in U937 cells and human AMLmore » progenitor cells. Further, A-674563 decreased sphingosine kinase 1 (SphK1) activity in above AML cells to deplete pro-survival sphingosine-1-phosphate (S1P) and boost pro-apoptotic ceramide production. Such an effect on SphK1 signaling by A-674563 appeared independent of Akt blockage. Significantly, K6PC-5, a novel SphK1 activator, or supplement with S1P attenuated A-674563-induced ceramide production, and subsequent U937 cell death and apoptosis. Importantly, intraperitoneal injection of A-674563 at well-tolerated doses suppressed U937 leukemic xenograft tumor growth in nude mice, whiling significantly improving the animal survival. The results of the current study demonstrate that A-674563 exerts potent anti-leukemic activity in vitro and in vivo, possibly via concurrent targeting Akt and SphK1 signalings. - Highlights: • A-674563 is cytotoxic and anti-proliferative in U937 and AML progenitor cells. • A-674563 activates caspase-3/9 and apoptosis in U937 and AML progenitor cells. • Whiling blocking Akt, A-674563 manipulates other signalings in AML cells. • A-674563 inhibits SphK1 activity in AML cells, independent of Akt blockage. • A-674563 injection inhibits U937 xenograft in vivo growth, and improves mice survival.« less
Paschka, Peter; Schlenk, Richard F; Gaidzik, Verena I; Habdank, Marianne; Krönke, Jan; Bullinger, Lars; Späth, Daniela; Kayser, Sabine; Zucknick, Manuela; Götze, Katharina; Horst, Heinz-A; Germing, Ulrich; Döhner, Hartmut; Döhner, Konstanze
2010-08-01
To analyze the frequency and prognostic impact of isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) mutations in acute myeloid leukemia (AML). We studied 805 adults (age range, 16 to 60 years) with AML enrolled on German-Austrian AML Study Group (AMLSG) treatment trials AML HD98A and APL HD95 for mutations in exon 4 of IDH1 and IDH2. Patients were also studied for NPM1, FLT3, MLL, and CEBPA mutations. The median follow-up for survival was 6.3 years. IDH mutations were found in 129 patients (16.0%) -IDH1 in 61 patients (7.6%), and IDH2 in 70 patients (8.7%). Two patients had both IDH1 and IDH2 mutations. All but one IDH1 mutation caused substitutions of residue R132; IDH2 mutations caused changes of R140 (n = 48) or R172 (n = 22). IDH mutations were associated with older age (P < .001; effect conferred by IDH2 only); lower WBC (P = .04); higher platelets (P < .001); cytogenetically normal (CN) -AML (P< .001); and NPM1 mutations, in particular with the genotype of mutated NPM1 without FLT3 internal tandem duplication (ITD; P < .001). In patients with CN-AML with the latter genotype, IDH mutations adversely impacted relapse-free survival (RFS; P = .02) and overall survival (P = .03), whereas outcome was not affected in patients with CN-AML who lacked this genotype. In CN-AML, multivariable analyses revealed a significant interaction between IDH mutation and the genotype of mutated NPM1 without FLT3-ITD (ie, the adverse impact of IDH mutation [RFS]; P = .046 was restricted to this patient subset). IDH1 and IDH2 mutations are recurring genetic changes in AML. They constitute a poor prognostic factor in CN-AML with mutated NPM1 without FLT3-ITD, which allows refined risk stratification of this AML subset.
Jo, ByungWan
2018-01-01
The implementation of wireless sensor networks (WSNs) for monitoring the complex, dynamic, and harsh environment of underground coal mines (UCMs) is sought around the world to enhance safety. However, previously developed smart systems are limited to monitoring or, in a few cases, can report events. Therefore, this study introduces a reliable, efficient, and cost-effective internet of things (IoT) system for air quality monitoring with newly added features of assessment and pollutant prediction. This system is comprised of sensor modules, communication protocols, and a base station, running Azure Machine Learning (AML) Studio over it. Arduino-based sensor modules with eight different parameters were installed at separate locations of an operational UCM. Based on the sensed data, the proposed system assesses mine air quality in terms of the mine environment index (MEI). Principal component analysis (PCA) identified CH4, CO, SO2, and H2S as the most influencing gases significantly affecting mine air quality. The results of PCA were fed into the ANN model in AML studio, which enabled the prediction of MEI. An optimum number of neurons were determined for both actual input and PCA-based input parameters. The results showed a better performance of the PCA-based ANN for MEI prediction, with R2 and RMSE values of 0.6654 and 0.2104, respectively. Therefore, the proposed Arduino and AML-based system enhances mine environmental safety by quickly assessing and predicting mine air quality. PMID:29561777
Jo, ByungWan; Khan, Rana Muhammad Asad
2018-03-21
The implementation of wireless sensor networks (WSNs) for monitoring the complex, dynamic, and harsh environment of underground coal mines (UCMs) is sought around the world to enhance safety. However, previously developed smart systems are limited to monitoring or, in a few cases, can report events. Therefore, this study introduces a reliable, efficient, and cost-effective internet of things (IoT) system for air quality monitoring with newly added features of assessment and pollutant prediction. This system is comprised of sensor modules, communication protocols, and a base station, running Azure Machine Learning (AML) Studio over it. Arduino-based sensor modules with eight different parameters were installed at separate locations of an operational UCM. Based on the sensed data, the proposed system assesses mine air quality in terms of the mine environment index (MEI). Principal component analysis (PCA) identified CH₄, CO, SO₂, and H₂S as the most influencing gases significantly affecting mine air quality. The results of PCA were fed into the ANN model in AML studio, which enabled the prediction of MEI. An optimum number of neurons were determined for both actual input and PCA-based input parameters. The results showed a better performance of the PCA-based ANN for MEI prediction, with R ² and RMSE values of 0.6654 and 0.2104, respectively. Therefore, the proposed Arduino and AML-based system enhances mine environmental safety by quickly assessing and predicting mine air quality.
Mahmud, Hasan; Scherpen, Frank J.G.; de Boer, Tiny Meeuwsen; Lourens, Harm-Jan; Schoenherr, Caroline; Eder, Matthias; Scherr, Michaela; Guryev, Victor; De Bont, Eveline S.
2017-01-01
The t(8;21) (q22;q22) chromosomal translocation is one of the most frequent genetic alterations in acute myeloid leukemia (AML) which has a need for improved therapeutic strategies. We found PLC-γ1 as one of the highest phosphorylated peptides in t(8;21) AML samples compared to NBM or CN-AML in our previous peptide microarray. PLC-γ1 is known to play a role in cancer progression, however, the impact of PLC-γ1 in AML is currently unknown. Therefore, we aimed to study the functional role of PLC-γ1 by investigating the cellular growth, survival and its underlying mechanism in t(8;21) AML. In this study, PLC-γ1 expression was significantly higher in t(8;21) AML compared to other karyotypes. The PLC-γ1 protein expression was suppressed in AML1-ETO knock down cells indicating that it might induce kasumi-1 cell death. ShRNA-mediated PLC-γ1 knockdown in kasumi-1 cells significantly blocked cell growth, induced apoptosis and cell cycle arrest which was explained by the increased activation of apoptotic related and cell cycle regulatory protein expressions. Gene expression array analysis showed the up-regulation of apoptotic and DNA damage response genes together with the downregulation of cell growth, proliferation and differentiation genes in the PLC-γ1 suppressed kasumi-1 cells, consistent with the observed phenotypic effects. Importantly, PLC-γ1 suppressed kasumi-1 cells showed higher chemosensitivity to the chemotherapeutic drug treatments and lower cell proliferation upon hypoxic stress. Taken together, these in vitro finding strongly support an important role for PLC-γ1 in the survival of t(8;21) AML mimicking kasumi-1 cells and identify PLC-γ1 as a potential therapeutic target for t(8;21) AML treatment. PMID:28978037
Wojtuszkiewicz, Anna; Schuurhuis, Gerrit J.; Kessler, Floortje L.; Piersma, Sander R.; Knol, Jaco C.; Pham, Thang V.; Jansen, Gerrit; Musters, René J. P.; van Meerloo, Johan; Assaraf, Yehuda G.; Kaspers, Gertjan J. L.; Zweegman, Sonja; Cloos, Jacqueline; Jimenez, Connie R.
2016-01-01
Expression of apoptosis-regulating proteins (B-cell CLL/lymphoma 2 - BCL-2, Myeloid Cell Leukemia 1 - MCL-1, BCL-2 like 1 - BCL-X and BCL-2-associated X protein - BAX) in acute myeloid leukemia (AML) blasts at diagnosis is associated with disease-free survival. We previously found that the initially high apoptosis-resistance of AML cells decreased after therapy, while regaining high levels at relapse. Herein, we further explored this aspect of dynamic apoptosis regulation in AML. First, we showed that the intraindividual ex vivo apoptosis-related profiles of normal lymphocytes and AML blasts within the bone marrow of AML patients were highly correlated. The expression values of apoptosis-regulating proteins were far beyond healthy control lymphocytes, which implicates the influence of microenvironmental factors. Second, we demonstrated that apoptosis-resistant primary AML blasts, as opposed to apoptosis-sensitive cells, were able to up-regulate BCL-2 expression in sensitive AML blasts in contact cultures (p = 0.0067 and p = 1.0, respectively). Using secretome proteomics, we identified novel proteins possibly engaged in apoptosis regulation. Intriguingly, this analysis revealed that major functional protein clusters engaged in global gene regulation, including mRNA splicing, protein translation, and chromatin remodeling, were more abundant (p = 4.01E-06) in secretomes of apoptosis-resistant AML. These findings were confirmed by subsequent extracellular vesicle proteomics. Finally, confocal-microscopy-based colocalization studies show that splicing factors-containing vesicles secreted by high AAI cells are taken up by low AAI cells. The current results constitute the first comprehensive analysis of proteins released by apoptosis-resistant and sensitive primary AML cells. Together, the data point to vesicle-mediated release of global gene regulatory protein clusters as a plausible novel mechanism of induction of apoptosis resistance. Deciphering the modes of communication between apoptosis-resistant blasts may in perspective lead to the discovery of prognostic tools and development of novel therapeutic interventions, aimed at limiting or overcoming therapy resistance. PMID:26801919
Nomdedéu, Josep F; Puigdecanet, Eulalia; Bussaglia, Elena; Hernández, Juan José; Carricondo, Maite; Estivill, Camino; Martí-Tutusaus, Josep Maria; Tormo, Mar; Zamora, Lurdes; Serrano, Elena; Perea, Granada; de Llano, Maria Paz Queipo; García, Antoni; Sánchez-Ortega, Isabel; Ribera, Josep Maria; Nonell, Lara; Aventin, Anna; Solé, Francesc; Brunet, Maria Salut; Sierra, Jorge
2017-12-01
Deoxyribonucleic acid microarrays allow researchers to measure mRNA levels of thousands of genes in a single experiment and could be useful for diagnostic purposes in patients with acute myeloid leukaemia (AML). We assessed the feasibility of the AML profiler (Skyline™ Array) in genetic stratification of patients with de novo AML and compared the results with those obtained using the standard cytogenetic and molecular approach. Diagnostic bone marrow from 31 consecutive de novo AML cases was used to test MLL-PTD, FLT3-ITD and TKD, NPM1 and CEBPAdm mutations. Purified RNA was used to assess RUNX1-RUNX1T1, PML-RARα and CBFβ-MYH11 rearrangements. RNA remnants underwent gene expression profiling analysis using the AML profiler, which detects chromosomal aberrations: t(8;21), t(15;17), inv(16), mutations (CEBPAdm, ABD-NPM1) and BAALC and EVI1 expression. Thirty cases were successfully analysed with both methods. Five cases had FLT3-ITD. In one case, a t(8;21) was correctly detected by both methods. Four cases had inv(16); in one, the RNA quality was unsatisfactory and it was not hybridized, and in the other three, the AML profiler detected the genetic lesion - this being a rare type I translocation in one case. Two cases with acute promyelocytic leukaemia were diagnosed by both methods. Results for NPM1 mutations were concordant in all but two cases (2/11, non-ABD mutations). Analysis of costs and turnaround times showed that the AML profiler was no more expensive than the conventional molecular approach. These results suggest that the AML profiler could be useful in multicentre trials to rapidly identify patients with AML with a good prognosis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Acute myeloid leukemia in children: Current status and future directions.
Taga, Takashi; Tomizawa, Daisuke; Takahashi, Hiroyuki; Adachi, Souichi
2016-02-01
Acute myeloid leukemia (AML) accounts for 25% of pediatric leukemia and affects approximately 180 patients annually in Japan. The treatment outcome for pediatric AML has improved through advances in chemotherapy, hematopoietic stem cell transplantation (HSCT), supportive care, and optimal risk stratification. Currently, clinical pediatric AML studies are conducted separately according to the AML subtypes: de novo AML, acute promyelocytic leukemia (APL), and myeloid leukemia with Down syndrome (ML-DS). Children with de novo AML are treated mainly with anthracyclines and cytarabine, in some cases with HSCT, and the overall survival (OS) rate now approaches 70%. Children with APL are treated with an all-trans retinoic acid (ATRA)-combined regimen with an 80-90% OS. Children with ML-DS are treated with a less intensive regimen compared with non-DS patients, and the OS is approximately 80%. HSCT in first remission is restricted to children with high-risk de novo AML only. To further improve outcomes, it will be necessary to combine more accurate risk stratification strategies using molecular genetic analysis with assessment of minimum residual disease, and the introduction of new drugs in international collaborative clinical trials. © 2015 Japan Pediatric Society.
Cao, Jiang; Feng, Hao; Ding, Ning-Ning; Wu, Qing-Yun; Chen, Chong; Niu, Ming-Shan; Chen, Wei; Qiu, Ting-Ting; Zhu, Hong-Hu; Xu, Kai-Lin
2016-11-01
Homoharringtonine combined with aclarubicin and cytarabine (HAA) is a highly effective treatment for acute myeloid leukemia (AML), especially for t(8;21) AML. However, the underlying mechanisms by which HAA kills t(8;21) AML cells remain unclear. In this study, SKNO-1 and Kasumi-1 cells with t(8;21) were used. Compared with individual or pairwise administration of homoharringtonine, aclarubicin, or cytarabine, HAA showed the strongest inhibition of growth and induction of apoptosis in SKNO-1 and Kasumi-1 cells. HAA caused cleavage of the AML1-ETO (AE) oncoprotein to form truncated AE (ΔAE). Pretreatment with the caspase-3 inhibitor caspase-3 inhibitor Q-DEVD-OPh (QDO) not only suppressed HAA-induced apoptosis but also abrogated the cleavage of AE and generation of ΔAE. These results suggest that HAA synergistically induces apoptosis in t(8;21) leukemia cells and triggers caspase-3-mediated cleavage of the AML1-ETO oncoprotein, thus providing direct evidence for the strong activity of HAA toward t(8;21) AML. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Will, Britta; Vogler, Thomas O.; Narayanagari, Swathi; Bartholdy, Boris; Todorova, Tihomira I.; da Silva Ferreira, Mariana; Chen, Jiahao; Yu, Yiting; Mayer, Jillian; Barreyro, Laura; Carvajal, Luis; Ben Neriah, Daniela; Roth, Michael; van Oers, Johanna; Schaetzlein, Sonja; McMahon, Christine; Edelmann, Winfried; Verma, Amit; Steidl, Ulrich
2016-01-01
Modest transcriptional changes caused by genetic or epigenetic mechanisms are frequent in human cancer. Although loss or near-complete loss of the hematopoietic transcription factor PU.1 induces acute myeloid leukemia (AML) in mice, a similar degree of PU.1 impairment is exceedingly rare in human AML; yet moderate PU.1 inhibition is common in AML patients. We assessed functional consequences of modest reduction of PU.1 expression on leukemia development in mice harboring DNA lesions resembling those acquired during human stem cell aging. Heterozygous deletion of an enhancer of PU.1, which resulted in 35% reduction of PU.1 expression, was sufficient to induce myeloid biased preleukemic stem cells and subsequent transformation to AML in a DNA mismatch repair-deficient background. AML progression was mediated by inhibition of expression of a PU.1 cooperating transcription factor, Irf8. Strikingly, we found significant molecular similarities with human myelodysplastic syndrome and AML. This study demonstrates that minimal reduction of a key lineage-specific transcription factor that commonly occurs in human disease is sufficient to initiate cancer development and provides mechanistic insight into the formation and progression of preleukemic stem cells in AML. PMID:26343801
BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders.
Damm, Frederik; Chesnais, Virginie; Nagata, Yasunobu; Yoshida, Kenichi; Scourzic, Laurianne; Okuno, Yusuke; Itzykson, Raphael; Sanada, Masashi; Shiraishi, Yuichi; Gelsi-Boyer, Véronique; Renneville, Aline; Miyano, Satoru; Mori, Hiraku; Shih, Lee-Yung; Park, Sophie; Dreyfus, François; Guerci-Bresler, Agnes; Solary, Eric; Rose, Christian; Cheze, Stéphane; Prébet, Thomas; Vey, Norbert; Legentil, Marion; Duffourd, Yannis; de Botton, Stéphane; Preudhomme, Claude; Birnbaum, Daniel; Bernard, Olivier A; Ogawa, Seishi; Fontenay, Michaela; Kosmider, Olivier
2013-10-31
Patients with low-risk myelodysplastic syndromes (MDS) that rapidly progress to acute myeloid leukemia (AML) remain a challenge in disease management. Using whole-exome sequencing of an MDS patient, we identified a somatic mutation in the BCOR gene also mutated in AML. Sequencing of BCOR and related BCORL1 genes in a cohort of 354 MDS patients identified 4.2% and 0.8% of mutations respectively. BCOR mutations were associated with RUNX1 (P = .002) and DNMT3A mutations (P = .015). BCOR is also mutated in chronic myelomonocytic leukemia patients (7.4%) and BCORL1 in AML patients with myelodysplasia-related changes (9.1%). Using deep sequencing, we show that BCOR mutations arise after mutations affecting genes involved in splicing machinery or epigenetic regulation. In univariate analysis, BCOR mutations were associated with poor prognosis in MDS (overall survival [OS]: P = .013; cumulative incidence of AML transformation: P = .005). Multivariate analysis including age, International Prognostic Scoring System, transfusion dependency, and mutational status confirmed a significant inferior OS to patients with a BCOR mutation (hazard ratio, 3.3; 95% confidence interval, 1.4-8.1; P = .008). These data suggest that BCOR mutations define the clinical course rather than disease initiation. Despite infrequent mutations, BCOR analyses should be considered in risk stratification.
Tramsen, Lars; Salzmann-Manrique, Emilia; Bochennek, Konrad; Klingebiel, Thomas; Reinhardt, Dirk; Creutzig, Ursula; Sung, Lillian
2016-01-01
Purpose Although nonpharmacologic anti-infective measures are widely used in children treated for acute myeloid leukemia (AML), there is little evidence of their effectiveness. Patients and Methods We analyzed infectious complications in children during intensive treatment of AML according to the AML-BFM 2004 trial and surveyed sites on institutional standards regarding recommended restrictions of social contacts (six items), pets (five items), and food (eight items). A scoring system was developed with a restriction score for each item. Multivariable Poisson regression adjusted for sex, age, weight group, risk stratification, and prophylactic antibiotics was used to estimate the impact of the restrictions on the incidence ratios of fever of unknown origin, bacteremia, pneumonia, and gastroenteritis. Results Data on recommendations of nonpharmacologic anti-infective measures and infectious complications were available in 339 patients treated in 37 institutions. Analyses did not demonstrate a significant benefit of any of the restrictions regarding food, social contacts, and pets on the risk of fever, bacteremia, pneumonia, and gastroenteritis. In contrast, age, weight group, risk stratification, and nonabsorbable antibiotics had some influence on infections complications. Conclusion The lack of effectiveness of dietary restrictions and restrictions regarding social contacts and pets should result in reconsideration of anti-infective policies. PMID:27269945
Tramsen, Lars; Salzmann-Manrique, Emilia; Bochennek, Konrad; Klingebiel, Thomas; Reinhardt, Dirk; Creutzig, Ursula; Sung, Lillian; Lehrnbecher, Thomas
2016-08-10
Although nonpharmacologic anti-infective measures are widely used in children treated for acute myeloid leukemia (AML), there is little evidence of their effectiveness. We analyzed infectious complications in children during intensive treatment of AML according to the AML-BFM 2004 trial and surveyed sites on institutional standards regarding recommended restrictions of social contacts (six items), pets (five items), and food (eight items). A scoring system was developed with a restriction score for each item. Multivariable Poisson regression adjusted for sex, age, weight group, risk stratification, and prophylactic antibiotics was used to estimate the impact of the restrictions on the incidence ratios of fever of unknown origin, bacteremia, pneumonia, and gastroenteritis. Data on recommendations of nonpharmacologic anti-infective measures and infectious complications were available in 339 patients treated in 37 institutions. Analyses did not demonstrate a significant benefit of any of the restrictions regarding food, social contacts, and pets on the risk of fever, bacteremia, pneumonia, and gastroenteritis. In contrast, age, weight group, risk stratification, and nonabsorbable antibiotics had some influence on infections complications. The lack of effectiveness of dietary restrictions and restrictions regarding social contacts and pets should result in reconsideration of anti-infective policies. © 2016 by American Society of Clinical Oncology.
Challenges of developing an electro-optical system for measuring man's operational envelope
NASA Technical Reports Server (NTRS)
Woolford, B.
1985-01-01
In designing work stations and restraint systems, and in planning tasks to be performed in space, a knowledge of the capabilities of the operator is essential. Answers to such questions as whether a specific control or work surface can be reached from a given restraint and how much force can be applied are of particular interest. A computer-aided design system has been developed for designing and evaluating work stations, etc., and the Anthropometric Measurement Laboratory (AML) has been charged with obtaining the data to be used in design and modeling. Traditional methods of measuring reach and force are very labor intensive and require bulky equipment. The AML has developed a series of electro-optical devices for collecting reach data easily, in computer readable form, with portable systems. The systems developed, their use, and data collected with them are described.
Coenen, Eva A.; Zwaan, C. Michel; Reinhardt, Dirk; Harrison, Christine J.; Haas, Oskar A.; de Haas, Valerie; Mihál, Vladimir; De Moerloose, Barbara; Jeison, Marta; Rubnitz, Jeffrey E.; Tomizawa, Daisuke; Johnston, Donna; Alonzo, Todd A.; Hasle, Henrik; Auvrignon, Anne; Dworzak, Michael; Pession, Andrea; van der Velden, Vincent H. J.; Swansbury, John; Wong, Kit-fai; Terui, Kiminori; Savasan, Sureyya; Winstanley, Mark; Vaitkeviciene, Goda; Zimmermann, Martin; Pieters, Rob; van den Heuvel-Eibrink, Marry M.
2013-01-01
In pediatric acute myeloid leukemia (AML), cytogenetic abnormalities are strong indicators of prognosis. Some recurrent cytogenetic abnormalities, such as t(8;16)(p11;p13), are so rare that collaborative studies are required to define their prognostic impact. We collected the clinical characteristics, morphology, and immunophenotypes of 62 pediatric AML patients with t(8;16)(p11;p13) from 18 countries participating in the International Berlin-Frankfurt-Münster (I-BFM) AML study group. We used the AML-BFM cohort diagnosed from 1995-2005 (n = 543) as a reference cohort. Median age of the pediatric t(8;16)(p11;p13) AML patients was significantly lower (1.2 years). The majority (97%) had M4-M5 French-American-British type, significantly different from the reference cohort. Erythrophagocytosis (70%), leukemia cutis (58%), and disseminated intravascular coagulation (39%) occurred frequently. Strikingly, spontaneous remissions occurred in 7 neonates with t(8;16)(p11;p13), of whom 3 remain in continuous remission. The 5-year overall survival of patients diagnosed after 1993 was 59%, similar to the reference cohort (P = .14). Gene expression profiles of t(8;16)(p11;p13) pediatric AML cases clustered close to, but distinct from, MLL-rearranged AML. Highly expressed genes included HOXA11, HOXA10, RET, PERP, and GGA2. In conclusion, pediatric t(8;16)(p11;p13) AML is a rare entity defined by a unique gene expression signature and distinct clinical features in whom spontaneous remissions occur in a subset of neonatal cases. PMID:23974201
Tumor SHB gene expression affects disease characteristics in human acute myeloid leukemia.
Jamalpour, Maria; Li, Xiujuan; Cavelier, Lucia; Gustafsson, Karin; Mostoslavsky, Gustavo; Höglund, Martin; Welsh, Michael
2017-10-01
The mouse Shb gene coding for the Src Homology 2-domain containing adapter protein B has recently been placed in context of BCRABL1-induced myeloid leukemia in mice and the current study was performed in order to relate SHB to human acute myeloid leukemia (AML). Publicly available AML databases were mined for SHB gene expression and patient survival. SHB gene expression was determined in the Uppsala cohort of AML patients by qPCR. Cell proliferation was determined after SHB gene knockdown in leukemic cell lines. Despite a low frequency of SHB gene mutations, many tumors overexpressed SHB mRNA compared with normal myeloid blood cells. AML patients with tumors expressing low SHB mRNA displayed longer survival times. A subgroup of AML exhibiting a favorable prognosis, acute promyelocytic leukemia (APL) with a PMLRARA translocation, expressed less SHB mRNA than AML tumors in general. When examining genes co-expressed with SHB in AML tumors, four other genes ( PAX5, HDAC7, BCORL1, TET1) related to leukemia were identified. A network consisting of these genes plus SHB was identified that relates to certain phenotypic characteristics, such as immune cell, vascular and apoptotic features. SHB knockdown in the APL PMLRARA cell line NB4 and the monocyte/macrophage cell line MM6 adversely affected proliferation, linking SHB gene expression to tumor cell expansion and consequently to patient survival. It is concluded that tumor SHB gene expression relates to AML survival and its subgroup APL. Moreover, this gene is included in a network of genes that plays a role for an AML phenotype exhibiting certain immune cell, vascular and apoptotic characteristics.
Genetic analysis of leukemic transformation of chronic myeloproliferative neoplasms
Abdel-Wahab, Omar; Manshouri, Taghi; Patel, Jay; Harris, Kelly; Yao, JinJuan; Hedvat, Cyrus; Heguy, Adriana; Bueso-Ramos, Carlos; Kantarjian, Hagop; Levine, Ross L.; Verstovsek, Srdan
2009-01-01
The genetic events which contribute to transformation of myeloproliferative neoplasms (MPN) to acute myeloid leukemia (AML) are not well characterized. We investigated the role of JAK2, TET2, ASXL1, and IDH1 mutations in leukemic transformation of MPNs through mutational analysis of 63 patients with AML secondary to a preexisting MPN (sAML). We identified frequent TET2 (26.3%), ASXL1 (19.3%), IDH1 (9.5%), and JAK2 (36.8%) mutations in sAML; all possible mutational combinations of these genes were observed. Analysis of 14 patients for which paired samples from MPN and sAML were available demonstrated TET2 mutations were frequently acquired at leukemic transformation (6/14=43%). In contrast, ASXL1 mutations were almost always detected in both the MPN and AML clones from individual patients. A case was also observed where TET2 and ASXL1 mutations were found before the patient acquired a JAK2 mutation or developed clinical evidence of MPN. We conclude that mutations in TET2, ASXL1, and IDH1 are common in sAML derived from a pre-existing MPN. Although TET2/ASXL1 mutations may precede acquisition of JAK2 mutations by the MPN clone, mutations in TET2, but not ASXL1, are commonly acquired at the time of leukemic transformation. These data suggest the mutational order of events in MPN and sAML varies in different patients, and that TET2 and ASXL1 mutations have distinct roles in MPN pathogenesis and leukemic transformation. The presence of sAML with no pre-existing JAK2/TET2/ASXL1/IDH1 mutations indicates the existence of other mutations necessary for leukemic transformation. PMID:20068184
de Laurentiis, A; Hiscott, J; Alcalay, M
2015-12-03
The t(12;21) translocation is the most common genetic rearrangement in childhood acute lymphoblastic leukemia (ALL) and gives rise to the TEL-AML1 fusion gene. Many studies on TEL-AML1 describe specific properties of the fusion protein, but a thorough understanding of its function is lacking. We exploited a pluripotent hematopoietic stem/progenitor cell line, EML1, and generated a cell line (EML-TA) stably expressing the TEL-AML1 fusion protein. EML1 cells differentiate to mature B-cells following treatment with IL7; whereas EML-TA display an impaired differentiation capacity and remain blocked at an early stage of maturation. Global gene expression profiling of EML1 cells at different stages of B-lymphoid differentiation, compared with EML-TA, identified the interferon (IFN)α/β pathway as a primary target of repression by TEL-AML1. In particular, expression and phosphorylation of interferon-regulatory factor 3 (IRF3) was decreased in EML-TA cells; strikingly, stable expression of IRF3 restored the capacity of EML-TA cells to differentiate into mature B-cells. Similarly, IRF3 silencing in EML1 cells by siRNA was sufficient to block B-lymphoid differentiation. The ability of TEL-AML1 to block B-cell differentiation and downregulate the IRF3-IFNα/β pathway was confirmed in mouse and human primary hematopoietic precursor cells (Lin- and CD34+ cells, respectively), and in a patient-derived cell line expressing TEL-AML1 (REH). Furthermore, treatment of TEL-AML1 expressing cells with IFNα/β was sufficient to overcome the maturation block. Our data provide new insight on TEL-AML1 function and may offer a new therapeutic opportunity for B-ALL.
Kremer, Kimberly N.; Dudakovic, Amel; Hess, Allan D.; Smith, B. Douglas; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; van Wijnen, Andre J.; Hedin, Karen E.
2015-01-01
Disrupting the protective signals provided by the bone marrow microenvironment will be critical for more effective combination drug therapies for acute myeloid leukemia (AML). Cells of the osteoblast lineage that reside in the endosteal niche have been implicated in promoting survival of AML cells. Here, we investigated how to prevent this protective interaction. We previously showed that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis of AML cells, unless the leukemic cells receive protective signals provided by differentiating osteoblasts (8, 10). We now identify a novel signaling pathway in differentiating osteoblasts that can be manipulated to disrupt the osteoblast-mediated protection of AML cells. Treating differentiating osteoblasts with histone deacetylase inhibitors (HDACi) abrogated their ability to protect co-cultured AML cells from SDF-1-induced apoptosis. HDACi prominently up-regulated expression of the Nherf1 scaffold protein, which played a major role in preventing osteoblast-mediated protection of AML cells. Protein phosphatase-1α (PP1α) was identified as a novel Nherf1 interacting protein that acts as the downstream mediator of this response by promoting nuclear localization of the TAZ transcriptional modulator. Moreover, independent activation of either PP1α or TAZ was sufficient to prevent osteoblast-mediated protection of AML cells even in the absence of HDACi. Together, these results indicate that HDACi target the AML microenvironment by enhancing activation of the Nherf1-PP1α-TAZ pathway in osteoblasts. Selective drug targeting of this osteoblast signaling pathway may improve treatments of AML by rendering leukemic cells in the bone marrow more susceptible to apoptosis. PMID:26491017
Gardin, Claude; Chevret, Sylvie; Pautas, Cécile; Turlure, Pascal; Raffoux, Emmanuel; Thomas, Xavier; Quesnel, Bruno; de Revel, Thierry; de Botton, Stéphane; Gachard, Nathalie; Renneville, Aline; Boissel, Nicolas; Preudhomme, Claude; Terré, Christine; Fenaux, Pierre; Bordessoule, Dominique; Celli-Lebras, Karine; Castaigne, Sylvie; Dombret, Hervé
2013-01-20
Although standard chemotherapy remains associated with a poor outcome in older patients with acute myeloid leukemia (AML), it is unclear which patients can survive long enough to be considered as cured. This study aimed to identify factors influencing the long-term outcome in these patients. The study included 727 older patients with AML (median age, 67 years) treated in two idarubicin (IDA) versus daunorubicin (DNR) Acute Leukemia French Association trials. Prognostic analysis was based on standard univariate and multivariate models and also included a cure fraction model to focus on long-term outcome. Age, WBC count, secondary AML, Eastern Cooperative Oncology Group (ECOG) performance status (PS), and adverse-risk and favorable-risk AML subsets (European LeukemiaNet classification) all influenced complete remission (CR) rate and overall survival (OS). IDA random assignment was associated with higher CR rate, but not with longer OS (P = .13). The overall cure rate was 13.3%. Older age and ECOG-PS more than 1 negatively influenced cure rate, which was higher in patients with favorable-risk AML (39.1% v 8.0% in adverse-risk AML; P < .001) and those treated with IDA (16.6% v 9.8% with DNR; P = .018). The long-term impact of IDA was still observed in patients younger than age 65 years, although all of the younger patients in the DNR control arm received high DNR doses (cure rate, 27.4% for IDA v 15.9% for DNR; P = .049). In multivariate analysis, IDA random assignment remained associated with a higher cure rate (P = .04), together with younger age and favorable-risk AML, despite not influencing OS (P = .11). In older patients with AML, younger age, favorable-risk AML, and IDA treatment predict a better long-term outcome.
Chae, Hee-Don; Cox, Nick; Dahl, Gary V.; Lacayo, Norman J.; Davis, Kara L.; Capolicchio, Samanta; Smith, Mark; Sakamoto, Kathleen M.
2018-01-01
CREB (cAMP Response Element Binding protein) is a transcription factor that is overexpressed in primary acute myeloid leukemia (AML) cells and associated with a decreased event-free survival and increased risk of relapse. We recently reported a small molecule inhibitor of CREB, XX-650-23, which inhibits CREB activity in AML cells. Structure-activity relationship analysis for chemical compounds with structures similar to XX-650-23 led to the identification of the anthelminthic drug niclosamide as a potent anti-leukemic agent that suppresses cell viability of AML cell lines and primary AML cells without a significant decrease in colony forming activity of normal bone marrow cells. Niclosamide significantly inhibited CREB function and CREB-mediated gene expression in cells, leading to apoptosis and G1/S cell cycle arrest with reduced phosphorylated CREB levels. CREB knockdown protected cells from niclosamide treatment-mediated cytotoxic effects. Furthermore, treatment with a combination of niclosamide and CREB inhibitor XX-650-23 showed an additive anti-proliferative effect, consistent with the hypothesis that niclosamide and XX-650-23 regulate the same targets or pathways to inhibit proliferation and survival of AML cells. Niclosamide significantly inhibited the progression of disease in AML patient-derived xenograft (PDX) mice, and prolonged survival of PDX mice. Niclosamide also showed synergistic effects with chemotherapy drugs to inhibit AML cell proliferation. While chemotherapy antagonized the cytotoxic potential of niclosamide, pretreatment with niclosamide sensitized cells to chemotherapeutic drugs, cytarabine, daunorubicin, and vincristine. Therefore, our results demonstrate niclosamide as a potential drug to treat AML by inducing apoptosis and cell cycle arrest through inhibition of CREB-dependent pathways in AML cells. PMID:29435104
Klein, Hans-Ulrich; Hascher, Antje; Isken, Fabienne; Tickenbrock, Lara; Thoennissen, Nils; Agrawal-Singh, Shuchi; Tschanter, Petra; Disselhoff, Christine; Wang, Yipeng; Becker, Anke; Thiede, Christian; Ehninger, Gerhard; zur Stadt, Udo; Koschmieder, Steffen; Seidl, Matthias; Müller, Frank U.; Schmitz, Wilhelm; Schlenke, Peter; McClelland, Michael; Berdel, Wolfgang E.; Dugas, Martin; Serve, Hubert
2010-01-01
Acute myeloid leukemia (AML) is commonly associated with alterations in transcription factors because of altered expression or gene mutations. These changes might induce leukemia-specific patterns of histone modifications. We used chromatin-immunoprecipitation on microarray to analyze histone 3 lysine 9 trimethylation (H3K9me3) patterns in primary AML (n = 108), acute lymphoid leukemia (n = 28), CD34+ cells (n = 21) and white blood cells (n = 15) specimens. Hundreds of promoter regions in AML showed significant alterations in H3K9me3 levels. H3K9me3 deregulation in AML occurred preferentially as a decrease in H3K9me3 levels at core promoter regions. The altered genomic regions showed an overrepresentation of cis-binding sites for ETS and cyclic adenosine monophosphate response elements (CREs) for transcription factors of the CREB/CREM/ATF1 family. The decrease in H3K9me3 levels at CREs was associated with increased CRE-driven promoter activity in AML blasts in vivo. AML-specific H3K9me3 patterns were not associated with known cytogenetic abnormalities. But a signature derived from H3K9me3 patterns predicted event-free survival in AML patients. When the H3K9me3 signature was combined with established clinical prognostic markers, it outperformed prognosis prediction based on clinical parameters alone. These findings demonstrate widespread changes of H3K9me3 levels at gene promoters in AML. Signatures of histone modification patterns are associated with patient prognosis in AML. PMID:20498303
NASA Astrophysics Data System (ADS)
Abel, R.; Boning, C. W.
2016-02-01
Current practice in ocean-only model simulations is to force the ocean with a prescribed atmospheric state using bulk formulations. This practice provides a strong thermal restoring to the surface ocean with a typical time-scale of one month. In the real ocean a positive feedback (salinity advection) and a negative feedback (temperature advection) are associated with the Atlantic Meridional Overturning Circulation (AMOC). The surface branch of the AMOC transports warm and salty (relative to the mean conditions) to the subpolar North Atlantic and mix with the near-surface waters. A strong AMOC would therefore warm the subpolar North Atlantic, decrease deep water formation and also reduce AMOC strength (negative feedback). This negative feedback is diminished due to the surface forcing formulation and makes the system excessively sensitive to details in the freshwater fluxes . Instead, additional and unrealistic Sea Surface Salinity (SSS) restoring is applied. There have been several suggestions during the last 20 years for at least partially alleviating the problem. This includes some simplified model of the atmospheric mixed layer (AML) (CheapAML; Deremble et al., 2013) with prescribed winds which allows some feedback of SST anomalies on the near-surface air temperature and humidity needed to calculate the turbulent surface fluxes. We show that if the turbulent heat fluxes are modelled by the simple AML model net-fluxes get more realistic. Commonly ocean models experience an AMOC slowdown if SSS restoring is turned off. In the new system (ORCA05 with turbulent fluxes from CheapAML) this slowdown can be eliminated.
Thokala, Radhika; Olivares, Simon; Mi, Tiejuan; Maiti, Sourindra; Deniger, Drew; Huls, Helen; Torikai, Hiroki; Singh, Harjeet; Champlin, Richard E; Laskowski, Tamara; McNamara, George; Cooper, Laurence J N
2016-01-01
Adoptive immunotherapy infusing T cells with engineered specificity for CD19 expressed on B- cell malignancies is generating enthusiasm to extend this approach to other hematological malignancies, such as acute myelogenous leukemia (AML). CD123, or interleukin 3 receptor alpha, is overexpressed on most AML and some lymphoid malignancies, such as acute lymphocytic leukemia (ALL), and has been an effective target for T cells expressing chimeric antigen receptors (CARs). The prototypical CAR encodes a VH and VL from one monoclonal antibody (mAb), coupled to a transmembrane domain and one or more cytoplasmic signaling domains. Previous studies showed that treatment of an experimental AML model with CD123-specific CAR T cells was therapeutic, but at the cost of impaired myelopoiesis, highlighting the need for systems to define the antigen threshold for CAR recognition. Here, we show that CARs can be engineered using VH and VL chains derived from different CD123-specific mAbs to generate a panel of CAR+ T cells. While all CARs exhibited specificity to CD123, one VH and VL combination had reduced lysis of normal hematopoietic stem cells. This CAR's in vivo anti-tumor activity was similar whether signaling occurred via chimeric CD28 or CD137, prolonging survival in both AML and ALL models. Co-expression of inducible caspase 9 eliminated CAR+ T cells. These data help support the use of CD123-specific CARs for treatment of CD123+ hematologic malignancies.
Receptor tyrosine kinase alterations in AML - biology and therapy.
Stirewalt, Derek L; Meshinchi, Soheil
2010-01-01
Acute myeloid leukemia (AML) is the most common form of leukemia in adults, and despite some recent progress in understanding the biology of the disease, AML remains the leading cause of leukemia-related deaths in adults and children. AML is a complex and heterogeneous disease, often involving multiple genetic defects that promote leukemic transformation and drug resistance. The cooperativity model suggests that an initial genetic event leads to maturational arrest in a myeloid progenitor cell, and subsequent genetic events induce proliferation and block apoptosis. Together, these genetic abnormalities lead to clonal expansion and frank leukemia. The purpose of this chapter is to review the biology of receptor tyrosine kinases (RTKs) in AML, exploring how RTKs are being used as novel prognostic factors and potential therapeutic targets.
Cull, Elizabeth H; Watts, Justin M; Tallman, Martin S; Kopp, Peter; Frattini, Mark; Rapaport, Franck; Rampal, Raajit; Levine, Ross; Altman, Jessica K
2014-09-01
Central diabetes insipidus (DI) is a rare finding in patients with acute myeloid leukemia (AML), usually occurring in patients with chromosome 3 or 7 abnormalities. We describe four patients with AML and concurrent DI and a fifth patient with AML and panhypopituitarism. Four of five patients had monosomy 7. Three patients had chromosome 3q21q26/EVI-1 gene rearrangements. The molecular genotype of patients with AML and DI is not known. Therefore, we performed gene sequencing of 30 genes commonly mutated in AML in three patients with available leukemia cell DNA. One patient had no identifiable mutations, and two had RUNX1 F158S mutations.
Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia.
Shlush, Liran I; Zandi, Sasan; Mitchell, Amanda; Chen, Weihsu Claire; Brandwein, Joseph M; Gupta, Vikas; Kennedy, James A; Schimmer, Aaron D; Schuh, Andre C; Yee, Karen W; McLeod, Jessica L; Doedens, Monica; Medeiros, Jessie J F; Marke, Rene; Kim, Hyeoung Joon; Lee, Kwon; McPherson, John D; Hudson, Thomas J; Brown, Andrew M K; Yousif, Fouad; Trinh, Quang M; Stein, Lincoln D; Minden, Mark D; Wang, Jean C Y; Dick, John E
2014-02-20
In acute myeloid leukaemia (AML), the cell of origin, nature and biological consequences of initiating lesions, and order of subsequent mutations remain poorly understood, as AML is typically diagnosed without observation of a pre-leukaemic phase. Here, highly purified haematopoietic stem cells (HSCs), progenitor and mature cell fractions from the blood of AML patients were found to contain recurrent DNMT3A mutations (DNMT3A(mut)) at high allele frequency, but without coincident NPM1 mutations (NPM1c) present in AML blasts. DNMT3A(mut)-bearing HSCs showed a multilineage repopulation advantage over non-mutated HSCs in xenografts, establishing their identity as pre-leukaemic HSCs. Pre-leukaemic HSCs were found in remission samples, indicating that they survive chemotherapy. Therefore DNMT3A(mut) arises early in AML evolution, probably in HSCs, leading to a clonally expanded pool of pre-leukaemic HSCs from which AML evolves. Our findings provide a paradigm for the detection and treatment of pre-leukaemic clones before the acquisition of additional genetic lesions engenders greater therapeutic resistance.
Omsland, Maria; Bruserud, Øystein; Gjertsen, Bjørn T; Andresen, Vibeke
2017-01-01
Acute myeloid leukemia (AML) is a bone marrow derived blood cancer where intercellular communication in the leukemic bone marrow participates in disease development, progression and chemoresistance. Tunneling nanotubes (TNTs) are intercellular communication structures involved in transport of cellular contents and pathogens, also demonstrated to play a role in both cell death modulation and chemoresistance. Here we investigated the presence of TNTs by live fluorescent microscopy and identified TNT formation between primary AML cells and in AML cell lines. We found that NF-κB activity was involved in TNT regulation and formation. Cytarabine downregulated TNTs and inhibited NF-κB alone and in combination with daunorubicin, providing additional support for involvement of the NF-κB pathway in TNT formation. Interestingly, daunorubicin was found to localize to lysosomes in TNTs connecting AML cells indicating a novel function of TNTs as drug transporting devices. We conclude that TNT communication could reflect important biological features of AML that may be explored in future therapy development. PMID:27974700
Leukaemia cell of origin identified by chromatin landscape of bulk tumour cells
George, Joshy; Uyar, Asli; Young, Kira; Kuffler, Lauren; Waldron-Francis, Kaiden; Marquez, Eladio; Ucar, Duygu; Trowbridge, Jennifer J.
2016-01-01
The precise identity of a tumour's cell of origin can influence disease prognosis and outcome. Methods to reliably define tumour cell of origin from primary, bulk tumour cell samples has been a challenge. Here we use a well-defined model of MLL-rearranged acute myeloid leukaemia (AML) to demonstrate that transforming haematopoietic stem cells (HSCs) and multipotent progenitors results in more aggressive AML than transforming committed progenitor cells. Transcriptome profiling reveals a gene expression signature broadly distinguishing stem cell-derived versus progenitor cell-derived AML, including genes involved in immune escape, extravasation and small GTPase signal transduction. However, whole-genome profiling of open chromatin reveals precise and robust biomarkers reflecting each cell of origin tested, from bulk AML tumour cell sampling. We find that bulk AML tumour cells exhibit distinct open chromatin loci that reflect the transformed cell of origin and suggest that open chromatin patterns may be leveraged as prognostic signatures in human AML. PMID:27397025
Zhu, Xiaoyu; Liu, Xin; Cheng, Zhongyi; Zhu, Jun; Xu, Lei; Wang, Fengsong; Qi, Wulin; Yan, Jiawei; Liu, Ning; Sun, Zimin; Liu, Huilan; Peng, Xiaojun; Hao, Yingchan; Zheng, Nan; Wu, Quan
2016-01-29
Valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) are both HDAC inhibitors (HDACi). Previous studies indicated that both inhibitors show therapeutic effects on acute myeloid leukaemia (AML), while the differential impacts of the two different HDACi on AML treatment still remains elusive. In this study, using 3-plex SILAC based quantitative proteomics technique, anti-acetyllysine antibody based affinity enrichment, high resolution LC-MS/MS and intensive bioinformatic analysis, the quantitative proteome and acetylome in SAHA and VPA treated AML HL60 cells were extensively studied. In total, 5,775 proteins and 1,124 lysine acetylation sites were successfully obtained in response to VAP and SAHA treatment. It is found that VPA and SAHA treatment differently induced proteome and acetylome profiling in AML HL60 cells. This study revealed the differential impacts of VPA and SAHA on proteome/acetylome in AML cells, deepening our understanding of HDAC inhibitor mediated AML therapeutics.
Chen, Xi; Dou, Hu; Wang, Xingjuan; Huang, Yi; Lu, Ling; Bin, Junqing; Su, Yongchun; Zou, Lin; Yu, Jie; Bao, Liming
2018-04-01
The prevalence and clinical relevance of KIT mutations in childhood core-binding factor (CBF) acute myeloid leukemia (AML) have not been well characterized. In this study, a total of 212 children with de novo AML were enrolled from a Chinese population and 50 (23.5%) of the patients were deemed CBF-AML. KIT mutations were identified in 30% of the CBF-AML cohort. The KIT mutations were clustered in exon 17 and exon 8, and KIT mutations in exons 8 and 17 were correlated with a shorter overall survival (OS) (5-year OS: 30.0 ± 14.5% vs. 73.0 ± 8.5%, p = .007) and event-free survival (EFS) (5-year EFS: 30.0 ± 14.5% vs. 73.0 ± 8.5%, p = .003). Multivariate analysis revealed KIT mutations as an independent risk factor in CBF-AML. Our results suggest that KIT mutations are a molecular marker for an inferior prognosis in pediatric CBF-AML.
Sharma, Amit; Jyotsana, Nidhi; Lai, Courteney K; Chaturvedi, Anuhar; Gabdoulline, Razif; Görlich, Kerstin; Murphy, Cecilia; Blanchard, Jan E; Ganser, Arnold; Brown, Eric; Hassell, John A; Humphries, R Keith; Morgan, Michael; Heuser, Michael
2016-01-01
Hematopoietic stem and progenitor cell differentiation are blocked in acute myeloid leukemia (AML) resulting in cytopenias and a high risk of death. Most patients with AML become resistant to treatment due to lack of effective cytotoxic and differentiation promoting compounds. High MN1 expression confers poor prognosis to AML patients and induces resistance to cytarabine and alltrans-retinoic acid (ATRA) induced differentiation. Using a high-throughput drug screening, we identified the dihydrofolate reductase (DHFR) antagonist pyrimethamine to be a potent inducer of apoptosis and differentiation in several murine and human leukemia cell lines. Oral pyrimethamine treatment was effective in two xenograft mouse models and specifically targeted leukemic cells in human AML cell lines and primary patient cells, while CD34+ cells from healthy donors were unaffected. The antileukemic effects of PMT could be partially rescued by excess folic acid, suggesting an oncogenic function of folate metabolism in AML. Thus, our study identifies pyrimethamine as a candidate drug that should be further evaluated in AML treatment.
Wei, Hui; Wang, Ying; Zhou, Chunlin; Lin, Dong; Liu, Bingcheng; Liu, Kaiqi; Qiu, Shaowei; Gong, Benfa; Li, Yan; Zhang, Guangji; Wei, Shuning; Gong, Xiaoyuan; Liu, Yuntao; Zhao, Xingli; Gu, Runxia; Mi, Yingchang; Wang, Jianxiang
2018-02-10
Racial and ethnic disparities in malignancies attract extensive attention. To investigate whether there are racial and ethnic disparities in genetic alteration between Caucasian and Eastern Asian population, data from several prospective AML trials were retrospectively analyzed in this study. We found that there were more patients with core binding factor (CBF) leukemia in Eastern Asian cohorts and there were different CBF leukemia constitutions between them. The ratios of CBF leukemia are 27.7, 22.1, 21.1, and 23.4%, respectively, in our (ChiCTR-TRC-10001202), another Chinese, Korean, and Japanese Eastern Asian cohorts, which are significantly higher than those in ECOG1900, MRC AML15, UK NCRI AML17, HOVON/SAKK AML-42, and German AML2003 (15.5, 12.5, 9.3, 10.2, and 12%, respectively). And CBFbeta-MYH11 occurred more prevalently in HOVON/SAKK AML- 42 and ECOG1900 trials (50.0 and 54.3% of CBF leukemia, respectively) than in Chinese and Japanese trials (20.1 and 20.8%, respectively). The proportion of FLT3-ITD mutation is 11.2% in our cohort, which is lower than that in MRC AML15 and UK NCRI AML17 (24.6 and 17.9%, respectively). Even after excluding the age bias, there are still different incidence rates of mutation between Caucasian and Eastern Asian population. These data suggest that there are racial and ethnic disparities in genetic alteration between Caucasian and Eastern Asian population.
Shiba, Norio; Yoshida, Kenichi; Shiraishi, Yuichi; Okuno, Yusuke; Yamato, Genki; Hara, Yusuke; Nagata, Yasunobu; Chiba, Kenichi; Tanaka, Hiroko; Terui, Kiminori; Kato, Motohiro; Park, Myoung-Ja; Ohki, Kentaro; Shimada, Akira; Takita, Junko; Tomizawa, Daisuke; Kudo, Kazuko; Arakawa, Hirokazu; Adachi, Souichi; Taga, Takashi; Tawa, Akio; Ito, Etsuro; Horibe, Keizo; Sanada, Masashi; Miyano, Satoru; Ogawa, Seishi; Hayashi, Yasuhide
2016-11-01
Acute myeloid leukaemia (AML) is a molecularly and clinically heterogeneous disease. Targeted sequencing efforts have identified several mutations with diagnostic and prognostic values in KIT, NPM1, CEBPA and FLT3 in both adult and paediatric AML. In addition, massively parallel sequencing enabled the discovery of recurrent mutations (i.e. IDH1/2 and DNMT3A) in adult AML. In this study, whole-exome sequencing (WES) of 22 paediatric AML patients revealed mutations in components of the cohesin complex (RAD21 and SMC3), BCORL1 and ASXL2 in addition to previously known gene mutations. We also revealed intratumoural heterogeneities in many patients, implicating multiple clonal evolution events in the development of AML. Furthermore, targeted deep sequencing in 182 paediatric AML patients identified three major categories of recurrently mutated genes: cohesion complex genes [STAG2, RAD21 and SMC3 in 17 patients (8·3%)], epigenetic regulators [ASXL1/ASXL2 in 17 patients (8·3%), BCOR/BCORL1 in 7 patients (3·4%)] and signalling molecules. We also performed WES in four patients with relapsed AML. Relapsed AML evolved from one of the subclones at the initial phase and was accompanied by many additional mutations, including common driver mutations that were absent or existed only with lower allele frequency in the diagnostic samples, indicating a multistep process causing leukaemia recurrence. © 2016 John Wiley & Sons Ltd.
Xie, Chengzhi; Edwards, Holly; Caldwell, J Timothy; Wang, Guan; Taub, Jeffrey W; Ge, Yubin
2015-02-01
Resistance to cytarabine and anthracycline-based chemotherapy is a major cause of treatment failure for acute myeloid leukemia (AML) patients. Overexpression of Bcl-2, Bcl-xL, and/or Mcl-1 has been associated with chemoresistance in AML cell lines and with poor clinical outcome of AML patients. Thus, inhibitors of anti-apoptotic Bcl-2 family proteins could be novel therapeutic agents. In this study, we investigated how clinically achievable concentrations of obatoclax, a pan-Bcl-2 inhibitor, potentiate the antileukemic activity of cytarabine in AML cells. MTT assays in AML cell lines and diagnostic blasts, as well as flow cytometry analyses in AML cell lines revealed synergistic antileukemic activity between cytarabine and obatoclax. Bax activation was detected in the combined, but not the individual, drug treatments. This was accompanied by significantly increased loss of mitochondrial membrane potential. Most importantly, in AML cells treated with the combination, enhanced early induction of DNA double-strand breaks (DSBs) preceded a decrease of Mcl-1 levels, nuclear translocation of Bcl-2, Bcl-xL, and Mcl-1, and apoptosis. These results indicate that obatoclax enhances cytarabine-induced apoptosis by enhancing DNA DSBs. This novel mechanism provides compelling evidence for the clinical use of BH3 mimetics in combination with DNA-damaging agents in AML and possibly a broader range of malignancies. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Karathedath, Sreeja; Rajamani, Bharathi M; Musheer Aalam, Syed Mohammed; Abraham, Ajay; Varatharajan, Savitha; Krishnamurthy, Partha; Mathews, Vikram; Velayudhan, Shaji Ramachandran; Balasubramanian, Poonkuzhali
2017-01-01
Cytarabine (Ara-C) and Daunorubicin (Dnr) forms the backbone of acute myeloid leukemia (AML) therapy. Drug resistance and toxic side effects pose a major threat to treatment success and hence alternate less toxic therapies are warranted. NF-E2 related factor-2 (Nrf2), a master regulator of antioxidant response is implicated in chemoresistance in solid tumors. However, little is known about the role of Nrf2 in AML chemoresistance and the effect of pharmacological inhibitor brusatol in modulating this resistance. Primary AML samples with high ex-vivo IC50 to Ara-C, ATO, Dnr had significantly high NRF2 RNA expression. Gene-specific knockdown of NRF2 improved sensitivity to these drugs in resistant AML cell lines by decreasing the expression of downstream antioxidant targets of Nrf2 by compromising the cell's ability to scavenge the ROS. Treatment with brusatol, a pharmacological inhibitor of Nrf2, improved sensitivity to Ara-C, ATO, and Dnr and reduced colony formation capacity. AML cell lines stably overexpressing NRF2 showed increased resistance to ATO, Dnr and Ara-C and increased expression of downstream targets. This study demonstrates that Nrf2 could be an ideal druggable target in AML, more so to the drugs that function through ROS, suggesting the possibility of using Nrf2 inhibitors in combination with chemotherapeutic agents to modulate drug resistance in AML.
[Expression of BAG3 Gene in Acute Myeloid Leukemia and Its Prognostic Value].
Zhu, Hua-Yuan; Fu, Yuan; Wu, Wei; Xu, Jia-Dai; Chen, Ting-Mei; Qiao, Chun; Li, Jian-Yong; Liu, Peng
2015-08-01
To investigate the expression of BAG3 gene in acue myeloid leukemia (AML) and its prognostic value. Real-time quantitative RT-PCR was used to detect the expression of BAG3 mRNA in 88 previously untreated AML patients. The corelation of BAG3 expression level with clinical characteristics and known prognostic markers of AML was analyzed. In 88 patients with AML, the expression of BAG3 mRNA in NPMI mutated AML patients was obviously lower than that in NPMI unmutated patients (P = 0.018). The expression level of BAG3 mRNA did not related to clinical parameters, such as age, sex, FAB subtype, WBC count, extra-modullary presentation, and to prognostic factors including cytogenetics, FLT3-ITD, c-kit and CEBPα mutation status (P > 0.05). The expression level of BAG3 had no obvious effect on complete remission (CR) of patients in first treatment. The expression level of BAG3 in non-M3 patients was higher than that in relapsed patients (P = 0.036). The expression level of BAG3 had no effect on overall survival (OS) of patients. The expression level of BAG3 does not correlated with known-prognostic markers of AML, only the expression level of BAG3 in NPM1 mutated patients is lower than that in NPM1 unmutated patients. The expression level of BAG3 has no effect on OS of AML patients, the BAG3 can not be difined as a prognostic marker in AML.
MicroRNA-106b~25 cluster is upregulated in relapsed MLL-rearranged pediatric acute myeloid leukemia
Verboon, Lonneke J.; Obulkasim, Askar; de Rooij, Jasmijn D.E.; Katsman, Jenny E.; Sonneveld, Edwin; Baruchel, André; Trka, Jan; Reinhardt, Dirk; Pieters, Rob; Cloos, Jacqueline; Kaspers, Gertjan J.L.; Klusmann, Jan-Henning; Zwaan, Christian Michel; Fornerod, Maarten; van den Heuvel-Eibrink, Marry M.
2016-01-01
The most important reason for therapy failure in pediatric acute myeloid leukemia (AML) is relapse. In order to identify miRNAs that contribute to the clonal evolution towards relapse in pediatric AML, miRNA expression profiling of 127 de novo pediatric AML cases were used. In the diagnostic phase, no miRNA signatures could be identified that were predictive for relapse occurrence, in a large pediatric cohort, nor in a nested mixed lineage leukemia (MLL)-rearranged pediatric cohort. AML with MLL- rearrangements are found in 15-20% of all pediatric AML samples, and reveal a relapse rate up to 50% for certain translocation partner subgroups. Therefore, microRNA expression profiling of six paired initial diagnosis-relapse MLL-rearranged pediatric AML samples (test cohort) and additional eight paired initial diagnosis-relapse samples with MLL-rearrangements (validation cohort) was performed. A list of 53 differentially expressed miRNAs was identified of which the miR-106b~25 cluster, located in intron 13 of MCM7, was the most prominent. These differentially expressed miRNAs however could not predict a relapse in de novo AML samples with MLL-rearrangements at diagnosis. Furthermore, higher mRNA expression of both MCM7 and its upstream regulator E2F1 was found in relapse samples with MLL-rearrangements. In conclusion, we identified the miR-106b~25 cluster to be upregulated in relapse pediatric AML with MLL-rearrangements. PMID:27351222
Carter, Bing Z.; Mak, Po Yee; Chen, Ye; Mak, Duncan H.; Mu, Hong; Jacamo, Rodrigo; Ruvolo, Vivian; Arold, Stefan T.; Ladbury, John E.; Burks, Jared K.; Kornblau, Steven; Andreeff, Michael
2016-01-01
To better understand how the apoptosis repressor with caspase recruitment domain (ARC) protein confers drug resistance in acute myeloid leukemia (AML), we investigated the role of ARC in regulating leukemia-mesenchymal stromal cell (MSC) interactions. In addition to the previously reported effect on AML apoptosis, we have demonstrated that ARC enhances migration and adhesion of leukemia cells to MSCs both in vitro and in a novel human extramedullary bone/bone marrow mouse model. Mechanistic studies revealed that ARC induces IL1β expression in AML cells and increases CCL2, CCL4, and CXCL12 expression in MSCs, both through ARC-mediated activation of NFκB. Expression of these chemokines in MSCs increased by AML cells in an ARC/IL1β-dependent manner; likewise, IL1β expression was elevated when leukemia cells were co-cultured with MSCs. Further, cells from AML patients expressed the receptors for and migrated toward CCL2, CCL4, and CXCL12. Inhibition of IL1β suppressed AML cell migration and sensitized the cells co-cultured with MSCs to chemotherapy. Our results suggest the existence of a complex ARC-regulated circuit that maintains intimate connection of AML with the tumor microenvironment through NFκB/IL1β-regulated chemokine receptor/ligand axes and reciprocal crosstalk resulting in cytoprotection. The data implicate ARC as a promising drug target to potentially sensitize AML cells to chemotherapy. PMID:26956049
Systematic review of health state utility values for acute myeloid leukemia.
Forsythe, Anna; Brandt, Patricia S; Dolph, Mike; Patel, Sachin; Rabe, Adrian Paul J; Tremblay, Gabriel
2018-01-01
Cost-utility analyses for acute myeloid leukemia (AML) require health state utility values (HSUVs) in order to calculate quality-adjusted life-years (QALYs) for each health state. This study reviewed AML-related HSUVs that could be used in economic evaluation studies. EMBASE, MEDLINE, and Cochrane databases were searched from January 2000 to November 2016 for relevant studies that reported quality of life (QoL) and HSUVs in AML. Identified relevant European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 30 values were mapped to HSUVs. HSUVs for each health state in the AML treatment pathway were then collated. Ten relevant studies were identified. Six were cost-effectiveness analyses utilizing HSUVs for calculation of QALYs, one was an effectiveness analysis (incremental QALY), and two were QoL studies reporting AML-specific utilities. An additional study reported QoL for patients undergoing stem cell transplantation (SCT). Since no study reported HSUVs for relapse, values from a study of secondary AML patients who failed prior treatment for myelodysplastic syndrome were used. Where multiple HSUVs were available, collected values were given priority over assumed values. AML treatment (induction, consolidation, or SCT) was associated with decreased HSUV, while post-treatment complete remission led to increased HSUV. There are some methodologically robust HSUVs that can be directly used in economic evaluations for AML. Careful interpretation is advised considering significant differences in methodologies and patient population (inclusion, size). We need to develop HSUVs with larger-sized studies, making greater use of condition-specific data.
Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia
Kamga, Paul Takam; Bassi, Giulio; Cassaro, Adriana; Midolo, Martina; Di Trapani, Mariano; Gatti, Alessandro; Carusone, Roberta; Resci, Federica; Perbellini, Omar; Gottardi, Michele; Bonifacio, Massimiliano; Kamdje, Armel Hervé Nwabo; Ambrosetti, Achille; Krampera, Mauro
2016-01-01
Both preclinical and clinical investigations suggest that Notch signalling is critical for the development of many cancers and for their response to chemotherapy. We previously showed that Notch inhibition abrogates stromal-induced chemoresistance in lymphoid neoplasms. However, the role of Notch in acute myeloid leukemia (AML) and its contribution to the crosstalk between leukemia cells and bone marrow stromal cells remain controversial. Thus, we evaluated the role of the Notch pathway in the proliferation, survival and chemoresistance of AML cells in co-culture with bone marrow mesenchymal stromal cells expanded from both healthy donors (hBM-MSCs) and AML patients (hBM-MSCs*). As compared to hBM-MSCs, hBM-MSCs* showed higher level of Notch1, Jagged1 as well as the main Notch target gene HES1. Notably, hBM-MSCs* induced expression and activation of Notch signalling in AML cells, supporting AML proliferation and being more efficientin inducing AML chemoresistance than hBM-MSCs*. Pharmacological inhibition of Notch using combinations of Notch receptor-blocking antibodies or gamma-secretase inhibitors (GSIs), in presence of chemotherapeutic agents, significant lowered the supportive effect of hBM-MSCs and hBM-MSCs* towards AML cells, by activating apoptotic cascade and reducing protein level of STAT3, AKT and NF-κB. These results suggest that Notch signalling inhibition, by overcoming the stromal-mediated promotion of chemoresistance,may represent a potential therapeutic targetnot only for lymphoid neoplasms, but also for AML. PMID:26967055
2018-03-05
Relapsed Acute Lymphoblastic Leukemia (ALL); Refractory Acute Lymphoblastic Leukemia (ALL); Relapsed Acute Myelogenous Leukemia (AML); Refractory Acute Myelogenous Leukemia (AML); Relapsed Mixed Lineage Leukemia; Refractory Mixed Lineage Leukemia; Relapsed Biphenotypic Leukemia; Refractory Biphenotypic Leukemia; Chronic Myelogenous Leukemia (CML) in Blast Crisis
Dawn of Aurora kinase inhibitors as anticancer drugs.
Doggrell, Sheila A
2004-09-01
With the current standard chemotherapy regimens only approximately 25% of acute myelogenous leukaemia (AML) patients survive > 5 years. Aurora kinases are overexpressed in many human cancers. VX-680 inhibited Aurora-A, -B, -C and the FMS-like tyrosine kinase-3 with apparent inhibitory constants of 0.6, 18, 4.6 and 30 nM, respectively. In primary leukaemia cells from patients with AML, which were refractory to standard therapies, VX-680 inhibited colony formation. In nude mice, VX-680 markedly reduced human AML tumours. The development of VX-680 for use in AML should continue.
Alachkar, Houda; Mutonga, Martin B G; Metzeler, Klaus H; Fulton, Noreen; Malnassy, Gregory; Herold, Tobias; Spiekermann, Karsten; Bohlander, Stefan K; Hiddemann, Wolfgang; Matsuo, Yo; Stock, Wendy; Nakamura, Yusuke
2014-12-15
Maternal embryonic leucine-zipper kinase (MELK), which was reported to be frequently up-regulated in various types of solid cancer, plays critical roles in formation and maintenance of cancer stem cells. However, little is known about the relevance of this kinase in hematologic malignancies. Here we report characterization of possible roles of MELK in acute myeloid leukemia (AML). MELK is expressed in AML cell lines and AML blasts with higher levels in less differentiated cells. MELK is frequently upregulated in AML with complex karyotypes and is associated with worse clinical outcome. MELK knockdown resulted in growth inhibition and apoptosis of leukemic cells. Hence, we investigated the potent anti-leukemia activity of OTS167, a small molecule MELK kinase inhibitor, in AML, and found that the compound induced cell differentiation and apoptosis as well as decreased migration of AML cells. MELK expression was positively correlated with the expression of FOXM1 as well as its downstream target genes. Furthermore, MELK inhibition resulted in downregulation of FOXM1 activity and the expression of its downstream targets. Taken together, and given that OTS167 is undergoing a phase I clinical trial in solid cancer, our study warrants clinical evaluation of this compound as a novel targeted therapy for AML patients.
Alachkar, Houda; Mutonga, Martin B.G.; Metzeler, Klaus H.; Fulton, Noreen; Malnassy, Gregory; Herold, Tobias; Spiekermann, Karsten; Bohlander, Stefan K.; Hiddemann, Wolfgang; Matsuo, Yo; Stock, Wendy; Nakamura, Yusuke
2014-01-01
Maternal embryonic leucine-zipper kinase (MELK), which was reported to be frequently up-regulated in various types of solid cancer, plays critical roles in formation and maintenance of cancer stem cells. However, little is known about the relevance of this kinase in hematologic malignancies. Here we report characterization of possible roles of MELK in acute myeloid leukemia (AML). MELK is expressed in AML cell lines and AML blasts with higher levels in less differentiated cells. MELK is frequently upregulated in AML with complex karyotypes and is associated with worse clinical outcome. MELK knockdown resulted in growth inhibition and apoptosis of leukemic cells. Hence, we investigated the potent anti-leukemia activity of OTS167, a small molecule MELK kinase inhibitor, in AML, and found that the compound induced cell differentiation and apoptosis as well as decreased migration of AML cells. MELK expression was positively correlated with the expression of FOXM1 as well as its downstream target genes. Furthermore, MELK inhibition resulted in downregulation of FOXM1 activity and the expression of its downstream targets. Taken together, and given that OTS167 is undergoing a phase I clinical trial in solid cancer, our study warrants clinical evaluation of this compound as a novel targeted therapy for AML patients. PMID:25365263
Shiba, Norio
2015-12-01
A new class of gene mutations, identified in the pathogenesis of adult acute myeloid leukemia (AML), includes DNMT3A, IDH1/2, TET2 and EZH2. However, these mutations are rare in pediatric AML cases, indicating that pathogeneses differ between adult and pediatric forms of AML. Meanwhile, the recent development of massively parallel sequencing technologies has provided a new opportunity to discover genetic changes across entire genomes or proteincoding sequences. In order to reveal a complete registry of gene mutations, we performed whole exome resequencing of paired tumor-normal specimens from 19 pediatric AML cases using Illumina HiSeq 2000. In total, 80 somatic mutations or 4.2 mutations per sample were identified. Many of the recurrent mutations identified in this study involved previously reported targets in AML, such as FLT3, CEBPA, KIT, CBL, NRAS, WT1 and EZH2. On the other hand, several genes were newly identified in the current study, including BCORL1 and major cohesin components such as SMC3 and RAD21. Whole exome resequencing revealed a complex array of gene mutations in pediatric AML genomes. Our results indicate that a subset of pediatric AML represents a discrete entity that could be discriminated from its adult counterpart, in terms of the spectrum of gene mutations.
Park, Tae Sung; Song, Jaewoo; Lee, Kyung-A; Min, Yoo Hong; Lee, Sang-Guk; Park, Yongjung; Kim, Juwon; Lee, Eun Yup; Choi, Jong Rak
2008-05-01
Acute myelogenous leukemia (AML) with t(8;21)(q22;q22) demonstrates unique clinico-pathologic disease entity in patients with hematologic malignancies. The t(8;21), which results in fusion of the AML1 gene on 21q22 and the ETO gene on 8q22 on a molecular level, is one of the most common nonrandom chromosomal changes, and it is found in about 5-12% of patients with AML. Among these cases, complex variants involving chromosomes 8 and 21, as well as a third or fourth chromosome, account for approximately 6-10% of patients with an AML1/ETO chimeric gene, and about 100 variant cases with AML1/ETO fusion transcript have been reported in the literature. Here, we describe a rare case report of reciprocal paracentric inversion-associated t(8;21) variant in a 28-year old male patient with de novo AML. The abnormal results of conventional cytogenetics and interphase fluorescent in situ hybridization in this patient drove us to perform further studies and a literature review. This report emphasizes the value of "conventional" cytogenetics, as well as "newly developed" molecular cytogenetic methods in the diagnosis of rare complex t(8;21) variant in patients with AML. Copyright 2008 Elsevier Inc.
The role of HOXB2 and HOXB3 in acute myeloid leukemia.
Lindblad, Oscar; Chougule, Rohit A; Moharram, Sausan A; Kabir, Nuzhat N; Sun, Jianmin; Kazi, Julhash U; Rönnstrand, Lars
2015-11-27
Acute myeloid leukemia (AML) is a heterogeneous aggressive disease and the most common form of adult leukemia. Mutations in the type III receptor tyrosine kinase FLT3 are found in more than 30% of AML patients. Drugs against FLT3 have been developed for the treatment of AML, but they lack specificity, show poor response and lead to the development of a resistant phenotype upon treatment. Therefore, a deeper understanding of FLT3 signaling will facilitate identification of additional pharmacological targets in FLT3-driven AML. In this report, we identify HOXB2 and HOXB3 as novel regulators of oncogenic FLT3-ITD-driven AML. We show that HOXB2 and HOXB3 expression is upregulated in a group of AML patients carrying FLT3-ITD. Overexpression of HOXB2 or HOXB3 in mouse pro-B cells resulted in decreased FLT3-ITD-dependent cell proliferation as well as colony formation and increased apoptosis. Expression of HOXB2 or HOXB3 resulted in a significant decrease in FLT3-ITD-induced AKT, ERK, p38 and STAT5 phosphorylation. Our data suggest that HOXB2 and HOXB3 act as tumor suppressors in FLT3-ITD driven AML. Copyright © 2015 Elsevier Inc. All rights reserved.
The role of HOXB2 and HOXB3 in acute myeloid leukemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindblad, Oscar; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund; Department of Hematology and Vascular Disorders, Skåne University Hospital, Lund
2015-11-27
Acute myeloid leukemia (AML) is a heterogeneous aggressive disease and the most common form of adult leukemia. Mutations in the type III receptor tyrosine kinase FLT3 are found in more than 30% of AML patients. Drugs against FLT3 have been developed for the treatment of AML, but they lack specificity, show poor response and lead to the development of a resistant phenotype upon treatment. Therefore, a deeper understanding of FLT3 signaling will facilitate identification of additional pharmacological targets in FLT3-driven AML. In this report, we identify HOXB2 and HOXB3 as novel regulators of oncogenic FLT3-ITD-driven AML. We show that HOXB2more » and HOXB3 expression is upregulated in a group of AML patients carrying FLT3-ITD. Overexpression of HOXB2 or HOXB3 in mouse pro-B cells resulted in decreased FLT3-ITD-dependent cell proliferation as well as colony formation and increased apoptosis. Expression of HOXB2 or HOXB3 resulted in a significant decrease in FLT3-ITD-induced AKT, ERK, p38 and STAT5 phosphorylation. Our data suggest that HOXB2 and HOXB3 act as tumor suppressors in FLT3-ITD driven AML.« less
Graubert, Timothy A; Brunner, Andrew M; Fathi, Amir T
2014-01-01
Acute myeloid leukemia (AML) is characterized by recurrent genetic alterations, including amplifications, deletions, rearrangements, and point mutations. Clinically, these lesions can be used to stratify patients into categories of risk, which directs further clinical management and prognostication. Patient risk categories were first described based on recurrent karyotypic abnormalities; most patients with AML, however, fall into intermediate cytogenetic risk, the majority harboring a normal karyotype. Subsequently, identification of recurrently mutated genes, including FLT3, NPM1, and CEBPA, allowed further stratification of patients with a normal karyotype. More extensive genomic and epigenomic analysis of AML samples has expanded the number of known molecular alterations present in this disease. The further understanding of this mutational landscape has shed light into the pathogenesis of AML. AML arises in a founding clone that often gives rise to subclones. Clonal evolution is a feature of the natural history of the disease but may also be influenced by the selective pressure of chemotherapy. The complex network of genetic and epigenetic alterations in this disease has yielded numerous new targets for intervention. In the future, further understanding of this mutational framework, along with the development of novel therapeutic targets, may lead to improved outcomes for patients with AML.
Wang, Qiushi; Juan, Yu-Hsiang; Li, Yong; Xie, Jia-Jun; Liu, Hui; Huang, Hongfei; Liu, Zaiyi; Zheng, Junhui; Saboo, Ujwala S.; Saboo, Sachin S.; Liang, Changhong
2015-01-01
Abstract This study aims to evaluate the multidetector computed tomography (CT) imaging features in differentiating exophytic renal angiomyolipoma (AML) from retroperitoneal liposarcoma. We retrospectively enrolled 42 patients with confirmed exophytic renal AML (31 patients) or retroperitoneal liposarcoma (11 patients) during 8 years period to assess: renal parenchymal defect at site of tumor contact, supply from branches of renal artery, tumoral vessel extending through the renal parenchyma, dilated intratumoral vessels, hemorrhage, non–fat-containing intratumoral nodules with postcontrast enhancement, calcification, renal sinus enlargement, anterior displacement of kidneys, and other associated AML. Renal parenchymal defect, renal arterial blood supply, tumoral vessel through the renal parenchyma, dilated intratumoral vessels, intratumoral/perirenal hemorrhage, renal sinus enlargement, and associated AML were seen only or mainly in exophytic renal AML (all P value < 0.05); however, non–fat-attenuating enhancing intratumoral nodules, intratumoral calcification, and anterior displacement of the kidney were more common in liposarcoma (all P value < 0.05). AMLs reveal renal parenchymal defect at the site of tumor contact, supply from renal artery, tumoral vessel extending through the renal parenchyma, dilated intratumoral vessels, intratumoral and/or perirenal hemorrhage, renal sinus enlargement, and associated AML. Non–fat-attenuating enhancing intratumoral nodules, intratumoral calcifications, and anterior displacement of kidney were more commonly seen in liposarcoma. PMID:26376398
Rapin, Nicolas; Bagger, Frederik Otzen; Jendholm, Johan; Mora-Jensen, Helena; Krogh, Anders; Kohlmann, Alexander; Thiede, Christian; Borregaard, Niels; Bullinger, Lars; Winther, Ole; Theilgaard-Mönch, Kim; Porse, Bo T
2014-02-06
Gene expression profiling has been used extensively to characterize cancer, identify novel subtypes, and improve patient stratification. However, it has largely failed to identify transcriptional programs that differ between cancer and corresponding normal cells and has not been efficient in identifying expression changes fundamental to disease etiology. Here we present a method that facilitates the comparison of any cancer sample to its nearest normal cellular counterpart, using acute myeloid leukemia (AML) as a model. We first generated a gene expression-based landscape of the normal hematopoietic hierarchy, using expression profiles from normal stem/progenitor cells, and next mapped the AML patient samples to this landscape. This allowed us to identify the closest normal counterpart of individual AML samples and determine gene expression changes between cancer and normal. We find the cancer vs normal method (CvN method) to be superior to conventional methods in stratifying AML patients with aberrant karyotype and in identifying common aberrant transcriptional programs with potential importance for AML etiology. Moreover, the CvN method uncovered a novel poor-outcome subtype of normal-karyotype AML, which allowed for the generation of a highly prognostic survival signature. Collectively, our CvN method holds great potential as a tool for the analysis of gene expression profiles of cancer patients.
Targeting c-KIT (CD117) by dasatinib and radotinib promotes acute myeloid leukemia cell death.
Heo, Sook-Kyoung; Noh, Eui-Kyu; Kim, Jeong Yi; Jeong, Yoo Kyung; Jo, Jae-Cheol; Choi, Yunsuk; Koh, SuJin; Baek, Jin Ho; Min, Young Joo; Kim, Hawk
2017-11-10
Dasatinib and radotinib are oral BCR-ABL tyrosine kinase inhibitors that were developed as drugs for the treatment of chronic myeloid leukemia. We report here that the c-KIT (CD117) targeting with dasatinib and radotinib promotes acute myeloid leukemia (AML) cell death, and c-KIT endocytosis is essential for triggering c-KIT-positive AML cell death by dasatinib and radotinib during the early stages. In addition, dasatinib and radotinib reduce heat shock protein 90β (HSP90β) expression and release Apaf-1 in c-KIT-positive AML cells. Finally, this activates a caspase-dependent apoptotic pathway in c-KIT-positive AML cells. Moreover, the inhibition of c-KIT endocytosis by dynamin inhibitor (DY) reversed cell viability and c-KIT expression by dasatinib and radotinib. HSP90β expression was recovered by DY in c-KIT-positive AML cells as well. Furthermore, the effect of radotinib on c-KIT and HSP90β showed the same pattern in a xenograft animal model using HEL92.1.7 cells. Therefore, dasatinib and radotinib promote AML cell death by targeting c-KIT. Taken together, these results indicate that dasatinib and radotinib treatment have a potential role in anti-leukemic therapy on c-KIT-positive AML cells.
Chrysant, Steven G; Oparil, Suzanne; Melino, Michael; Karki, Sulekha; Lee, James; Heyrman, Reinilde
2009-09-01
J Clin Hypertens (Greenwich). 2009;11:475-482. (c) 2009 Wiley Periodicals, Inc.The authors report on the 44-week open-label extension of the 8-week, double-blind Combination of Olmesartan Medoxomil and Amlodipine Besylate in Controlling High Blood Pressure (COACH) trial in 1684 patients. Initial therapy was amlodipine (AML) plus olmesartan medoxomil (OM) 5+40 mg/d, up-titrated to AML+OM 10+40 mg/d plus hydrochlorothiazide (HCTZ) 12.5 mg then 25 mg if patients did not achieve blood pressure (BP) goal (<140/90 mm Hg or <130/80 mm Hg in patients with diabetes). Baseline mean BP decreased from 164/102 mm Hg to 131/82 mm Hg at end of study, with an overall 66.7% of patients, including those with diabetes, achieving BP goal. The BP goal achievement was 80% for AML+OM 5+40 mg/d, 70.6% for AML+OM 10+40 mg/d, 66.6% for AML+OM+HCTZ 10+40+12.5 mg/d, and 46.3% for AML+OM+HCTZ 10+40+25 mg/d. Study medication was safe and well tolerated. Combination antihypertensive therapy with AML+OM+/-HTCZ, up-titrated as necessary, allowed a majority of patients to achieve BP goal.
Gross, Madeleine; Mkrtchyan, Hasmik; Glaser, Melanie; Fricke, Hans Jörg; Höffken, Klaus; Heller, Anita; Weise, Anja; Liehr, Thomas
2009-02-01
Acute myeloid leukemia (AML) is a heterogeneous disease with respect to clinical prognosis and acquired chromosomal aberrations. After routine banding cytogenetic analysis 45% of AML patients show a normal karyotype (NK-AML). For a better understanding of development and progression in AML, it is important to find markers which could be primary genetic aberrations. Therefore, in this study 31 patients with NK-AML were analyzed by new high resolution molecular cytogenetic approaches. A combination of multitude multicolor banding and metaphase microdissection-based comparative genomic hybridization revealed deletions of the subtelomeric regions in 6% of the studied cases. According to these results, locus-specific probes for the subtelomeric regions of chromosomes 5, 9, 11, 12 and 13 were applied on 22 of the studied 31 NK-AML cases. Surprisingly, 50% of them showed deletions or duplications. These aberrations occurred in the in vitro proliferating as well as in the non-proliferating cells. Meta-analysis of the aberrant regions revealed that they often include genes known to be associated with tumors, e.g. RASA3 on chromosome 13. These results implicate that aberrations in the subtelomeric regions of NK-AML occur quite often and may be considered as primary genetic changes, and should not be neglected in future diagnostic approaches.
Hall, Kathryn; Scott, Karen J.; Rose, Ailsa; Desborough, Michael; Harrington, Kevin; Pandha, Hardev; Parrish, Christopher; Vile, Richard; Coffey, Matt; Bowen, David; Errington-Mais, Fiona
2012-01-01
Abstract Reovirus is a naturally occurring oncolytic virus that has shown preclinical efficacy in the treatment of a wide range of tumor types and has now reached phase III testing in clinical trials. The anti-cancer activity of reovirus has been attributed to both its direct oncolytic activity and the enhancement of anti-tumor immune responses. In this study, we have investigated the direct effect of reovirus on acute myeloid leukemia (AML) cells and its potential to enhance innate immune responses against AML, including the testing of primary samples from patients. Reovirus was found to replicate in and kill AML cell lines, and to reduce cell viability in primary AML samples. The pro-inflammatory cytokine interferon alpha (IFNα) and the chemokine (C-C motif) ligand 5 (known as RANTES [regulated upon activation, normal T-cell expressed, and secreted]) were also secreted from AML cells in response to virus treatment. In addition, reovirus-mediated activation of natural killer (NK) cells, within the context of peripheral blood mononuclear cells, stimulated their anti-leukemia response, with increased NK degranulation and IFNγ production and enhanced killing of AML targets. These data suggest that reovirus has the potential as both a direct cytotoxic and an immunotherapeutic agent for the treatment of AML. PMID:23515241
Barber, Lisa M; McGrath, Helen E N; Meyer, Stefan; Will, Andrew M; Birch, Jillian M; Eden, Osborn B; Taylor, G Malcolm
2003-04-01
The extent to which genetic susceptibility contributes to the causation of childhood acute myeloid leukaemia (AML) is not known. The inherited bone marrow failure disorder Fanconi anaemia (FA) carries a substantially increased risk of AML, raising the possibility that constitutional variation in the FA (FANC) genes is involved in the aetiology of childhood AML. We have screened genomic DNA extracted from remission blood samples of 97 children with sporadic AML and 91 children with sporadic acute lymphoblastic leukaemia (ALL), together with 104 cord blood DNA samples from newborn children, for variations in the Fanconi anaemia group C (FANCC) gene. We found no evidence of known FANCC pathogenic mutations in children with AML, ALL or in the cord blood samples. However, we detected 12 different FANCC sequence variants, of which five were novel to this study. Among six FANCC variants leading to amino-acid substitutions, one (S26F) was present at a fourfold greater frequency in children with AML than in the cord blood samples (odds ratio: 4.09, P = 0.047; 95% confidence interval 1.08-15.54). Our results thus do not exclude the possibility that this polymorphic variant contributes to the risk of a small proportion of childhood AML.
Acute Myeloid Leukemia: analysis of epidemiological profile and survival rate.
de Lima, Mariana Cardoso; da Silva, Denise Bousfield; Freund, Ana Paula Ferreira; Dacoregio, Juliana Shmitz; Costa, Tatiana El Jaick Bonifácio; Costa, Imaruí; Faraco, Daniel; Silva, Maurício Laerte
2016-01-01
To describe the epidemiological profile and the survival rate of patients with acute myeloid leukemia (AML) in a state reference pediatric hospital. Clinical-epidemiological, observational, retrospective, descriptive study. The study included new cases of patients with AML, diagnosed between 2004 and 2012, younger than 15 years. Of the 51 patients studied, 84% were white; 45% were females and 55%, males. Regarding age, 8% were younger than 1 year, 47% were aged between 1 and 10 years, and 45% were older than 10 years. The main signs/symptoms were fever (41.1%), asthenia/lack of appetite (35.2%), and hemorrhagic manifestations (27.4%). The most affected extra-medullary site was the central nervous system (14%). In 47% of patients, the white blood cell (WBC) count was below 10,000/mm(3) at diagnosis. The minimal residual disease (MRD) was less than 0.1%, on the 15th day of treatment in 16% of the sample. Medullary relapse occurred in 14% of cases. When comparing the bone marrow MRD with the vital status, it was observed that 71.42% of the patients with type M3 AML were alive, as were 54.05% of those with non-M3 AML. The death rate was 43% and the main proximate cause was septic shock (63.6%). In this study, the majority of patients were male, white, and older than 1 year. Most patients with WBC count <10,000/mm(3) at diagnosis lived. Overall survival was higher in patients with MRD <0.1%. The prognosis was better in patients with AML-M3. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Reikvam, Håkon; Nepstad, Ina; Bruserud, Øystein; Hatfield, Kimberley Joanne
2013-06-01
Acute myeloid leukemia (AML) is a heterogeneous and aggressive malignancy with poor overall survival. Constitutive as well as cytokine-initiated activation of PI3K/Akt/mTOR signaling is a common feature of AML patients, and inhibition of this pathway is considered as a possible therapeutic strategy in AML. Human AML cells and different stromal cell populations were cultured under highly standardized in vitro conditions. We investigated the effects of mTOR inhibitors (rapamycin and temsirolimus) and PI3K inhibitors (GDC-0941 and 3-methyladenin (3-MA)) on cell proliferation and the constitutive release of angioregulatory mediators by AML and stromal cells. Primary human AML cells were heterogeneous, though most patients showed high CXCL8 levels and detectable release of CXCL10, Ang-1, HGF and MMP-9. Hierarchical clustering analysis showed that disruption of PI3K/Akt/mTOR pathways decreased AML cell release of CXCL8-11 for a large subset of patients, whereas the effects on other mediators were divergent. Various stromal cells (endothelial cells, fibroblasts, cells with osteoblastic phenotype) also showed constitutive release of angioregulatory mediators, and inhibitors of both the PI3K and mTOR pathway had anti-proliferative effects on stromal cells and resulted in decreased release of these angioregulatory mediators. PI3K and mTOR inhibitors can decrease constitutive cytokine release both by AML and stromal cells, suggesting potential direct and indirect antileukemic effects.
Reikvam, Håkon; Nepstad, Ina; Bruserud, Øystein; Hatfield, Kimberley Joanne
2013-01-01
Acute myeloid leukemia (AML) is a heterogeneous and aggressive malignancy with poor overall survival. Constitutive as well as cytokine-initiated activation of PI3K/Akt/mTOR signaling is a common feature of AML patients, and inhibition of this pathway is considered as a possible therapeutic strategy in AML. Human AML cells and different stromal cell populations were cultured under highly standardized in vitro conditions. We investigated the effects of mTOR inhibitors (rapamycin and temsirolimus) and PI3K inhibitors (GDC-0941 and 3-methyladenin (3-MA)) on cell proliferation and the constitutive release of angioregulatory mediators by AML and stromal cells. Primary human AML cells were heterogeneous, though most patients showed high CXCL8 levels and detectable release of CXCL10, Ang-1, HGF and MMP-9. Hierarchical clustering analysis showed that disruption of PI3K/Akt/mTOR pathways decreased AML cell release of CXCL8-11 for a large subset of patients, whereas the effects on other mediators were divergent. Various stromal cells (endothelial cells, fibroblasts, cells with osteoblastic phenotype) also showed constitutive release of angioregulatory mediators, and inhibitors of both the PI3K and mTOR pathway had anti-proliferative effects on stromal cells and resulted in decreased release of these angioregulatory mediators. PI3K and mTOR inhibitors can decrease constitutive cytokine release both by AML and stromal cells, suggesting potential direct and indirect antileukemic effects. PMID:23919981
SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia.
Schneider, Constanze; Oellerich, Thomas; Baldauf, Hanna-Mari; Schwarz, Sarah-Marie; Thomas, Dominique; Flick, Robert; Bohnenberger, Hanibal; Kaderali, Lars; Stegmann, Lena; Cremer, Anjali; Martin, Margarethe; Lohmeyer, Julian; Michaelis, Martin; Hornung, Veit; Schliemann, Christoph; Berdel, Wolfgang E; Hartmann, Wolfgang; Wardelmann, Eva; Comoglio, Federico; Hansmann, Martin-Leo; Yakunin, Alexander F; Geisslinger, Gerd; Ströbel, Philipp; Ferreirós, Nerea; Serve, Hubert; Keppler, Oliver T; Cinatl, Jindrich
2017-02-01
The nucleoside analog cytarabine (Ara-C) is an essential component of primary and salvage chemotherapy regimens for acute myeloid leukemia (AML). After cellular uptake, Ara-C is converted into its therapeutically active triphosphate metabolite, Ara-CTP, which exerts antileukemic effects, primarily by inhibiting DNA synthesis in proliferating cells. Currently, a substantial fraction of patients with AML fail to respond effectively to Ara-C therapy, and reliable biomarkers for predicting the therapeutic response to Ara-C are lacking. SAMHD1 is a deoxynucleoside triphosphate (dNTP) triphosphohydrolase that cleaves physiological dNTPs into deoxyribonucleosides and inorganic triphosphate. Although it has been postulated that SAMHD1 sensitizes cancer cells to nucleoside-analog derivatives through the depletion of competing dNTPs, we show here that SAMHD1 reduces Ara-C cytotoxicity in AML cells. Mechanistically, dGTP-activated SAMHD1 hydrolyzes Ara-CTP, which results in a drastic reduction of Ara-CTP in leukemic cells. Loss of SAMHD1 activity-through genetic depletion, mutational inactivation of its triphosphohydrolase activity or proteasomal degradation using specialized, virus-like particles-potentiates the cytotoxicity of Ara-C in AML cells. In mouse models of retroviral AML transplantation, as well as in retrospective analyses of adult patients with AML, the response to Ara-C-containing therapy was inversely correlated with SAMHD1 expression. These results identify SAMHD1 as a potential biomarker for the stratification of patients with AML who might best respond to Ara-C-based therapy and as a target for treating Ara-C-refractory AML.
Molgaard-Hansen, Lene; Skou, Anne-Sofie; Juul, Anders; Glosli, Heidi; Jahnukainen, Kirsi; Jarfelt, Marianne; Jónmundsson, Guðmundur K; Malmros, Johan; Nysom, Karsten; Hasle, Henrik
2013-12-01
More than 60% of children with acute myeloid leukemia (AML) become long-term survivors. Most are cured using chemotherapy without hematopoietic stem cell transplantation (HSCT). We report on pubertal development and compare self-reported parenthood among AML survivors and their siblings. We included 137 children treated for AML according to the Nordic Society of Pediatric Hematology and Oncology (NOPHO)-AML-84, -88, and -93 trials, who were alive by June 2007. Patients with relapse or treated with HSCT were excluded. AML survivors participated in a physical and biochemical examination (n = 102) and completed a questionnaire (n = 101). One of their siblings completed an identical questionnaire (n = 84). At a median follow-up of 11 years (range 5-25) after diagnosis of AML the survivors (median age 16 years, range 5-36) were either prepubertal or had entered puberty normally. Serum levels of FSH, LH, testosterone, estradiol, sex hormone binding globulin (SHBG), inhibin A and B, and testicular volumes were within normal ranges. Anti-Müllerian hormone (AMH) levels were decreased in 5 of 40 postpubertal females. Mean reported age at menarche was 13.1 (range 11-17) years. Among survivors 15 years of age or older 31% of females reported pregnancies and 9% of males reported pregnancies in their partners, rates comparable with the frequency reported by their siblings. Most AML survivors treated with chemotherapy had normal pubertal development and fertility, however, AMH levels were decreased in 13% of postpubertal females. Longer follow-up is necessary to evaluate possible risk of premature ovarian failure. © 2013 Wiley Periodicals, Inc.
Novak, Rachel L; Harper, David P; Caudell, David; Slape, Christopher; Beachy, Sarah H; Aplan, Peter D
2012-12-01
NUP98-HOXD13 (NHD13) and CALM-AF10 (CA10) are oncogenic fusion proteins produced by recurrent chromosomal translocations in patients with acute myeloid leukemia (AML). Transgenic mice that express these fusions develop AML with a long latency and incomplete penetrance, suggesting that collaborating genetic events are required for leukemic transformation. We employed genetic techniques to identify both preleukemic abnormalities in healthy transgenic mice as well as collaborating events leading to leukemic transformation. Candidate gene resequencing revealed that 6 of 27 (22%) CA10 AMLs spontaneously acquired a Ras pathway mutation and 8 of 27 (30%) acquired an Flt3 mutation. Two CA10 AMLs acquired an Flt3 internal-tandem duplication, demonstrating that these mutations can be acquired in murine as well as human AML. Gene expression profiles revealed a marked upregulation of Hox genes, particularly Hoxa5, Hoxa9, and Hoxa10 in both NHD13 and CA10 mice. Furthermore, mir196b, which is embedded within the Hoxa locus, was overexpressed in both CA10 and NHD13 samples. In contrast, the Hox cofactors Meis1 and Pbx3 were differentially expressed; Meis1 was increased in CA10 AMLs but not NHD13 AMLs, whereas Pbx3 was consistently increased in NHD13 but not CA10 AMLs. Silencing of Pbx3 in NHD13 cells led to decreased proliferation, increased apoptosis, and decreased colony formation in vitro, suggesting a previously unexpected role for Pbx3 in leukemic transformation. Published by Elsevier Inc.
Novotny-Diermayr, V; Hart, S; Goh, K C; Cheong, A; Ong, L-C; Hentze, H; Pasha, M K; Jayaraman, R; Ethirajulu, K; Wood, J M
2012-01-01
Acute myeloid leukemia (AML) is currently treated with aggressive chemotherapy that is not well tolerated in many elderly patients, hence the unmet medical need for effective therapies with less toxicity and better tolerability. Inhibitors of FMS-like tyrosine kinase 3 (FLT3), JAK2 and histone deacetylase inhibitors (HDACi) have been tested in clinical studies, but showed only moderate single-agent activity. High efficacy of the HDACi pracinostat treating AML and synergy with the JAK2/FLT3 inhibitor pacritinib is demonstrated. Both compounds inhibit JAK-signal transducer and activator of transcription (STAT) signaling in AML cells with JAK2V617F mutations, but also diminish FLT3 signaling, particularly in FLT3-ITD (internal tandem duplication) cell lines. In vitro, this combination led to decreased cell proliferation and increased apoptosis. The synergy translated in vivo in two different AML models, the SET-2 megakaryoblastic AML mouse model carrying a JAK2V617F mutation, and the MOLM-13 model of FLT3-ITD-driven AML. Pracinostat and pacritinib in combination showed synergy on tumor growth, reduction of metastases and synergistically decreased JAK2 or FLT signaling, depending on the cellular context. In addition, several plasma cytokines/growth factors/chemokines triggered by the tumor growth were normalized, providing a rationale for combination therapy with an HDACi and a JAK2/FLT3 inhibitor for the treatment of AML patients, particularly those with FLT3 or JAK2 mutations. PMID:22829971
CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia.
Wang, Jinghua; Chen, Siyu; Xiao, Wei; Li, Wende; Wang, Liang; Yang, Shuo; Wang, Weida; Xu, Liping; Liao, Shuangye; Liu, Wenjian; Wang, Yang; Liu, Nawei; Zhang, Jianeng; Xia, Xiaojun; Kang, Tiebang; Chen, Gong; Cai, Xiuyu; Yang, Han; Zhang, Xing; Lu, Yue; Zhou, Penghui
2018-01-10
Acute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission in selected patients; however, a majority of patients eventually relapse and succumb to the disease. Thus, the development of novel therapeutics for AML is urgently needed. Human C-type lectin-like molecule-1 (CLL-1) is a type II transmembrane glycoprotein, and its expression is restricted to myeloid cells and the majority of AML blasts. Moreover, CLL-1 is expressed in leukemia stem cells (LSCs), but absent in hematopoietic stem cells (HSCs), which may provide a potential therapeutic target for AML treatment. We tested the expression of CLL-1 antigen on peripheral blood cells and bone marrow cells in healthy donor and AML patients. Then, we developed a chimeric antigen receptor (CAR) containing a CLL1-specific single-chain variable fragment, in combination with CD28, 4-1BB costimulatory domains, and CD3-ζ signaling domain. We further investigate the function of CLL-1 CAR-T cells. The CLL-1 CAR-T cells specifically lysed CLL-1 + cell lines as well as primary AML patient samples in vitro. Strong anti-leukemic activity was observed in vivo by using a xenograft model of disseminated AML. Importantly, CLL-1 + myeloid progenitor cells and mature myeloid cells were specifically eliminated by CLL-1 CAR-T cells, while normal HSCs were not targeted due to the lack of CLL-1 expression. CLL-1 CAR-T represents a promising immunotherapy for the treatment of AML.
Circulating endothelial cells and their progenitors in acute myeloid leukemia
Zahran, Asmaa Mohammed; Aly, Sanaa Shaker; Altayeb, Hanan Ahmed; Ali, Arwa Mohammed
2016-01-01
Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by the accumulation of immature myeloid progenitor cells in the bone marrow. Studies are required to investigate the prognostic and predictive value of surrogate biomarkers. Given the importance of angiogenesis in oncology in terms of pathogenesis as well as being a target for treatment, circulating endothelial cells (CECs) and endothelial progenitor cells (EPCs) are promising candidates to serve as such markers. The aim of the present study was to quantify CECs and EPCs in patients with AML at initial diagnosis and following induction chemotherapy, and to correlate these findings with the response to treatment in AML patients. The present study included 40 patients with de novo AML and 20 age- and gender-matched healthy controls. CECs and EPCs were evaluated by flow cytometry at initial diagnosis and after induction chemotherapy (3+7 protocol for AML other than M3 and all-trans-retinoic acid plus anthracycline for M3 disease). CECs and EPCs were significantly higher in AML patients at diagnosis and after induction chemotherapy than in controls. After induction chemotherapy, CECs and EPCs were significantly decreased compared with the levels at initial diagnosis. Patients who achieved complete response (n=28) had lower initial CEC and EPC levels compared with patients who did not respond to treatment. These results suggest that CEC levels are higher in AML patients and may correlate with disease status and treatment response. Further investigations are required to better determine the predictive value and implication of these cells in AML management. PMID:27602121
Yang, Hua; Cao, Tingting; Gao, Li; Wang, Lili; Zhu, Chengying; Xu, Yuanyuan; Jing, Yu; Zhu, Haiyan; Lv, Na; Yu, Li
2017-07-20
Occurrence of MLL (Mixed Lineage Leukemia) gene rearrangements indicates poor prognosis in acute myeloid leukemia (AML) patients. This is the first study to report the positive rate and distribution characteristics of MLL rearrangements in AML patients in north China. We used multiplex nested real time PCR (RT-PCR) to screen for incidence of 11 MLL rearrangements in 433 AML patients. Eleven MLL rearrangements included (MLL-PTD, MLL-AF9, MLL-ELL, MLL-AF10, MLL-AF17, MLL-AF6, MLL-ENL, MLL-AF1Q, MLL-CBP, MLL-AF1P, MLL-AFX1). There were 68 AML patients with MLL rearrangements, and the positive rate was 15.7%. MLL-PTD (4.84%) was detected in 21 patients, MLL-AF9 in 15, (3.46%), MLL-ELL in 10 (2.31%), MLL-AF10 in 8 (1.85%), MLL-AF1Q in 2 (0.46%), 3 cases each of MLL-AF17, MLL-AF6, MLL-ENL (0.69% each), a and single case each of MLL-CBP, MLL-AF1P, and MLL-AFX1 (0.23% each). The highest rate of MLL rearrangements was found in 24 patients with M5 subtype AML, occurring in 24 cases (35.3%). MLL rearrangements occurred in 21 patients with M2 subtype AML (30.9%), and in 10 patients with M4 subtype AML (14.7%). Screening fusion genes by multiplex nested RT-PCR is a convenient, fast, economical, and accurate method for diagnosis and predicting prognosis of AML.
Therapy-related Myeloid Leukemia
Godley, Lucy A.; Larson, Richard A.
2008-01-01
Therapy-related myelodysplastic syndrome and acute myeloid leukemia (t-MDS/t-AML) are thought to be the direct consequence of mutational events induced by chemotherapy, radiation therapy, immunosuppressive therapy, or a combination of these modalities, given for a pre-existing condition. The outcomes for these patients have been poor historically compared to people who develop de novo AML. The spectrum of cytogenetic abnormalities in t-AML is similar to de novo AML, but the frequency of unfavorable cytogenetics, such as a complex karyotype or deletion or loss of chromosomes 5 and/or 7, is considerably higher in t-AML. Survival varies according to cytogenetic risk group in t-AML patients, with better outcomes being observed in those with favorable-risk karyotypes. Treatment recommendations should be based on performance status and karyotype. A deeper understanding of the factors that predispose patients to the development of therapy-related myeloid leukemia would help clinicians monitor patients more carefully after treatment for a primary condition. Ultimately, this knowledge could influence initial treatment strategies with the goal of decreasing the incidence of this serious complication. PMID:18692692
A novel antibody-drug conjugate targeting SAIL for the treatment of hematologic malignancies.
Kim, S Y; Theunissen, J-W; Balibalos, J; Liao-Chan, S; Babcock, M C; Wong, T; Cairns, B; Gonzalez, D; van der Horst, E H; Perez, M; Levashova, Z; Chinn, L; D'Alessio, J A; Flory, M; Bermudez, A; Jackson, D Y; Ha, E; Monteon, J; Bruhns, M F; Chen, G; Migone, T-S
2015-05-29
Although several new therapeutic approaches have improved outcomes in the treatment of hematologic malignancies, unmet need persists in acute myeloid leukemia (AML), multiple myeloma (MM) and non-Hodgkin's lymphoma. Here we describe the proteomic identification of a novel cancer target, SAIL (Surface Antigen In Leukemia), whose expression is observed in AML, MM, chronic lymphocytic leukemia (CLL), diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). While SAIL is widely expressed in CLL, AML, MM, DLBCL and FL patient samples, expression in cancer cell lines is mostly limited to cells of AML origin. We evaluated the antitumor activity of anti-SAIL monoclonal antibodies, 7-1C and 67-7A, conjugated to monomethyl auristatin F. Following internalization, anti-SAIL antibody-drug conjugates (ADCs) exhibited subnanomolar IC50 values against AML cell lines in vitro. In pharmacology studies employing AML cell line xenografts, anti-SAIL ADCs resulted in significant tumor growth inhibition. The restricted expression profile of this target in normal tissues, the high prevalence in different types of hematologic cancers and the observed preclinical activity support the clinical development of SAIL-targeted ADCs.
A novel antibody–drug conjugate targeting SAIL for the treatment of hematologic malignancies
Kim, S Y; Theunissen, J-W; Balibalos, J; Liao-Chan, S; Babcock, M C; Wong, T; Cairns, B; Gonzalez, D; van der Horst, E H; Perez, M; Levashova, Z; Chinn, L; D‘Alessio, J A; Flory, M; Bermudez, A; Jackson, D Y; Ha, E; Monteon, J; Bruhns, M F; Chen, G; Migone, T-S
2015-01-01
Although several new therapeutic approaches have improved outcomes in the treatment of hematologic malignancies, unmet need persists in acute myeloid leukemia (AML), multiple myeloma (MM) and non-Hodgkin's lymphoma. Here we describe the proteomic identification of a novel cancer target, SAIL (Surface Antigen In Leukemia), whose expression is observed in AML, MM, chronic lymphocytic leukemia (CLL), diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). While SAIL is widely expressed in CLL, AML, MM, DLBCL and FL patient samples, expression in cancer cell lines is mostly limited to cells of AML origin. We evaluated the antitumor activity of anti-SAIL monoclonal antibodies, 7-1C and 67-7A, conjugated to monomethyl auristatin F. Following internalization, anti-SAIL antibody–drug conjugates (ADCs) exhibited subnanomolar IC50 values against AML cell lines in vitro. In pharmacology studies employing AML cell line xenografts, anti-SAIL ADCs resulted in significant tumor growth inhibition. The restricted expression profile of this target in normal tissues, the high prevalence in different types of hematologic cancers and the observed preclinical activity support the clinical development of SAIL-targeted ADCs. PMID:26024286
Collaborative Efforts Driving Progress in Pediatric Acute Myeloid Leukemia.
Zwaan, C Michel; Kolb, Edward A; Reinhardt, Dirk; Abrahamsson, Jonas; Adachi, Souichi; Aplenc, Richard; De Bont, Eveline S J M; De Moerloose, Barbara; Dworzak, Michael; Gibson, Brenda E S; Hasle, Henrik; Leverger, Guy; Locatelli, Franco; Ragu, Christine; Ribeiro, Raul C; Rizzari, Carmelo; Rubnitz, Jeffrey E; Smith, Owen P; Sung, Lillian; Tomizawa, Daisuke; van den Heuvel-Eibrink, Marry M; Creutzig, Ursula; Kaspers, Gertjan J L
2015-09-20
Diagnosis, treatment, response monitoring, and outcome of pediatric acute myeloid leukemia (AML) have made enormous progress during the past decades. Because AML is a rare type of childhood cancer, with an incidence of approximately seven occurrences per 1 million children annually, national and international collaborative efforts have evolved. This overview describes these efforts and includes a summary of the history and contributions of each of the main collaborative pediatric AML groups worldwide. The focus is on translational and clinical research, which includes past, current, and future clinical trials. Separate sections concern acute promyelocytic leukemia, myeloid leukemia of Down syndrome, and relapsed AML. A plethora of novel antileukemic agents that have emerged, including new classes of drugs, are summarized as well. Finally, an important aspect of the treatment of pediatric AML--supportive care--and late effects are discussed. The future is bright, with a wide range of emerging innovative therapies and with more and more international collaboration that ultimately aim to cure all children with AML, with fewer adverse effects and without late effects. © 2015 by American Society of Clinical Oncology.
A small-molecule inhibitor of the aberrant transcription factor CBFβ-SMMHC delays leukemia in mice
Illendula, Anuradha; Pulikkan, John A.; Zong, Hongliang; Grembecka, Jolanta; Xue, Liting; Sen, Siddhartha; Zhou, Yunpeng; Boulton, Adam; Kuntimaddi, Aravinda; Gao, Yan; Rajewski, Roger A.; Guzman, Monica L.; Castilla, Lucio H.; Bushweller, John H.
2015-01-01
Acute myeloid leukemia (AML) is the most common form of adult leukemia. The transcription factor fusion CBFβ-SMMHC (core binding factor β and the smooth-muscle myosin heavy chain), expressed in AML with the chromosome inversion inv(16)(p13q22), outcompetes wild-type CBFβ for binding to the transcription factor RUNX1, deregulates RUNX1 activity in hematopoiesis, and induces AML. Current inv(16) AML treatment with nonselective cytotoxic chemotherapy results in a good initial response but limited long-term survival. Here, we report the development of a protein-protein interaction inhibitor, AI-10-49, that selectively binds to CBFβ-SMMHC and disrupts its binding to RUNX1. AI-10-49 restores RUNX1 transcriptional activity, displays favorable pharmacokinetics, and delays leukemia progression in mice. Treatment of primary inv(16) AML patient blasts with AI-10-49 triggers selective cell death. These data suggest that direct inhibition of the oncogenic CBFβ-SMMHC fusion protein may be an effective therapeutic approach for inv(16) AML, and they provide support for transcription factor targeted therapy in other cancers. PMID:25678665
Mechanism of action vasodilation Annona muricata L. leaves extract mediated vascular smooth muscles
NASA Astrophysics Data System (ADS)
Ismail, S.; Hayati, N.; Rahmawati, N.
2018-04-01
Annona muricata L. leaves (AML) is used as ethnomedicine by the Dayak Abai ethnicity in North Kalimantan for its already known use to reduce blood pressure. However, the mechanism of action in the vessel is still poorly understood. Aim study to prove the mechanism of action of AML in blood vessels. AML was extracted with a maceration technique using ethanol solvent. Mechanism of action test was performed with isolated rat aortic with endothelium (endo-intact) and without endothelium (endo-denuded). AML extract intervention on rats aorta with endo-intact and endo-denuded can induction vasodilatation activity. Increasing AML extract concentration can improve decrease vasodilatation activity on isolated rats aortic with endo-intact compared to endo-denuded, it means that endothelium can weaken vasodilatation activity of aorta mediated by vascular smooth muscle after the extract was given.
A knowledge-based design framework for airplane conceptual and preliminary design
NASA Astrophysics Data System (ADS)
Anemaat, Wilhelmus A. J.
The goal of work described herein is to develop the second generation of Advanced Aircraft Analysis (AAA) into an object-oriented structure which can be used in different environments. One such environment is the third generation of AAA with its own user interface, the other environment with the same AAA methods (i.e. the knowledge) is the AAA-AML program. AAA-AML automates the initial airplane design process using current AAA methods in combination with AMRaven methodologies for dependency tracking and knowledge management, using the TechnoSoft Adaptive Modeling Language (AML). This will lead to the following benefits: (1) Reduced design time: computer aided design methods can reduce design and development time and replace tedious hand calculations. (2) Better product through improved design: more alternative designs can be evaluated in the same time span, which can lead to improved quality. (3) Reduced design cost: due to less training and less calculation errors substantial savings in design time and related cost can be obtained. (4) Improved Efficiency: the design engineer can avoid technically correct but irrelevant calculations on incomplete or out of sync information, particularly if the process enables robust geometry earlier. Although numerous advancements in knowledge based design have been developed for detailed design, currently no such integrated knowledge based conceptual and preliminary airplane design system exists. The third generation AAA methods are tested over a ten year period on many different airplane designs. Using AAA methods will demonstrate significant time savings. The AAA-AML system will be exercised and tested using 27 existing airplanes ranging from single engine propeller, business jets, airliners, UAV's to fighters. Data for the varied sizing methods will be compared with AAA results, to validate these methods. One new design, a Light Sport Aircraft (LSA), will be developed as an exercise to use the tool for designing a new airplane. Using these tools will show an improvement in efficiency over using separate programs due to the automatic recalculation with any change of input data. The direct visual feedback of 3D geometry in the AAA-AML, will lead to quicker resolving of problems as opposed to conventional methods.
Al-Mawali, Adhra; Pinto, Avinash Daniel; Al-Zadjali, Shoaib
In CD34-positive acute myeloid leukaemia (AML), the leukaemia-initiating event likely takes place in the CD34+CD38- cell compartment. CD123 has been shown to be a unique marker of leukaemic stem cells within the CD34+CD38- compartment. The aim of this study was to identify the percentage of CD34+CD38-CD123+ cells in AML blasts, AML CD34+CD38- stem cells, and normal and regenerating bone marrow CD34+CD38- stem cells from non-myeloid malignancies. Thirty-eight adult de novo AML patients with intention to treat were enrolled after the application of inclusion criteria from February 2012 to February 2017. The percentage of the CD34+CD38-CD123+ phenotype in the blast population at diagnosis was determined using a CD45-gating strategy and CD34+ backgating by flow cytometry. We studied the CD34+CD38-CD123+ fraction in AML blasts at diagnosis, and its utility as a unique phenotype for minimal residual disease (MRD) of AML patients. CD123+ cells were present in 97% of AML blasts in patients at diagnosis (median 90%; range 21-99%). CD123+ cells were also present in 97% of the CD34+CD38- compartment (median 0.8164%, range 0.0262-39.7%). Interestingly, CD123 was not present in normal and regenerating CD34+CD38- bone marrow stem cells (range 0.002- 0.067 and 0.004-0.086, respectively). The CD34+CD38-CD123+ phenotype is present in virtually all AML blasts and it may be used as a unique single phenotype for MRD detection in AML patients. © 2017 The Author(s) Published by S. Karger AG, Basel.
Van Geel, Maarten; Busschaert, Pieter; Honnay, Olivier; Lievens, Bart
2014-11-01
In the last few years, 454 pyrosequencing-based analysis of arbuscular mycorrhizal fungal (AMF; Glomeromycota) communities has tremendously increased our knowledge of the distribution and diversity of AMF. Nonetheless, comparing results between different studies is difficult, as different target genes (or regions thereof) and primer combinations, with potentially dissimilar specificities and efficacies, are being utilized. In this study we evaluated six primer pairs that have previously been used in AMF studies (NS31-AM1, AMV4.5NF-AMDGR, AML1-AML2, NS31-AML2, FLR3-LSUmBr and Glo454-NDL22) for their use in 454 pyrosequencing based on both an in silico approach and 454 pyrosequencing of AMF communities from apple tree roots. Primers were evaluated in terms of (i) in silico coverage of Glomeromycota fungi, (ii) the number of high-quality sequences obtained, (iii) selectivity for AMF species, (iv) reproducibility and (v) ability to accurately describe AMF communities. We show that primer pairs AMV4.5NF-AMDGR, AML1-AML2 and NS31-AML2 outperformed the other tested primer pairs in terms of number of Glomeromycota reads (AMF specificity and coverage). Additionally, these primer pairs were found to have no or only few mismatches to AMF sequences and were able to consistently describe AMF communities from apple roots. However, whereas most high-quality AMF sequences were obtained for AMV4.5NF-AMDGR, our results also suggest that this primer pair favored amplification of Glomeraceae sequences at the expense of Ambisporaceae, Claroideoglomeraceae and Paraglomeraceae sequences. Furthermore, we demonstrate the complementary specificity of AMV4.5NF-AMDGR with AML1-AML2, and of AMV4.5NF-AMDGR with NS31-AML2, making these primer combinations highly suitable for tandem use in covering the diversity of AMF communities. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Feng; Wang, Lingling; Shen, Yunfeng
Mammalian target of rapamycin (mTOR) as a potential drug target for treatment of acute myeloid leukemia (AML). Here, we investigated the potential anti-leukemic activity by WYE-687, a potent mTOR kinase inhibitor. We demonstrated that WYE-687 potently inhibited survival and proliferation of established (HL-60, U937, AML-193 and THP-1 lines) and human AML progenitor cells. Yet, same WYE-687 treatment was non-cytotoxic to the primary peripheral blood mononuclear leukocytes (PBMCs) isolated from healthy donors. WYE-687 induced caspase-dependent apoptotic death in above AML cells/progenitor cells. On the other hand, the pan-caspase inhibitor (Z-VAD-FMK), the caspase-3 specific inhibitor (Z-DEVD-FMK) or the caspase-9 specific inhibitor (z-LEHD-fmk)more » attenuated WYE-687-induced cytotoxicity. At the molecular level, WYE-687 concurrently inhibited activation of mTORC1 (p70S6K1 and S6 phosphorylations) and mTORC2 (AKT Ser-473 and FoxO1/3a phosphorylations), whiling downregulating mTORC1/2-regulated genes (Bcl-xL and hypoxia-inducible factor 1/2α) in both HL-60/U937 cells and human AML progenitor cells. In vivo, oral administration of WYE-687 potently inhibited U937 leukemic xenograft tumor growth in severe combined immunodeficient (SCID) mice, without causing significant toxicities. In summary, our results demonstrate that targeting mTORC1/2 by WYE-687 leads to potent antitumor activity in preclinical models of AML. - Highlights: • WYE-687 inhibits survival and proliferation of human AML cells/progenitor cells. • WYE-687 induces apoptotic death of human AML cells/progenitor cells. • WYE-687 inhibits mTORC1/2 activation in human AML cells/progenitor cells. • WYE-687 inhibits U937 xenograft growth in SCID mice.« less
Chen, Branson; Lee, Jong Bok; Kang, Hyeonjeong; Minden, Mark D; Zhang, Li
2018-04-24
While conventional chemotherapy is effective at eliminating the bulk of leukemic cells, chemotherapy resistance in acute myeloid leukemia (AML) is a prevalent problem that hinders conventional therapies and contributes to disease relapse, and ultimately patient death. We have recently shown that allogeneic double negative T cells (DNTs) are able to target the majority of primary AML blasts in vitro and in patient-derived xenograft models. However, some primary AML blast samples are resistant to DNT cell therapy. Given the differences in the modes of action of DNTs and chemotherapy, we hypothesize that DNT therapy can be used in combination with conventional chemotherapy to further improve their anti-leukemic effects and to target chemotherapy-resistant disease. Drug titration assays and flow-based cytotoxicity assays using ex vivo expanded allogeneic DNTs were performed on multiple AML cell lines to identify therapy-resistance. Primary AML samples were also tested to validate our in vitro findings. Further, a xenograft model was employed to demonstrate the feasibility of combining conventional chemotherapy and adoptive DNT therapy to target therapy-resistant AML. Lastly, blocking assays with neutralizing antibodies were employed to determine the mechanism by which chemotherapy increases the susceptibility of AML to DNT-mediated cytotoxicity. Here, we demonstrate that KG1a, a stem-like AML cell line that is resistant to DNTs and chemotherapy, and chemotherapy-resistant primary AML samples both became more susceptible to DNT-mediated cytotoxicity in vitro following pre-treatment with daunorubicin. Moreover, chemotherapy treatment followed by adoptive DNT cell therapy significantly decreased bone marrow engraftment of KG1a in a xenograft model. Mechanistically, daunorubicin increased the expression of NKG2D and DNAM-1 ligands on KG1a; blocking of these pathways attenuated DNT-mediated cytotoxicity. Our results demonstrate the feasibility and benefit of using DNTs as an immunotherapy after the administration of conventional chemotherapy.
Side scatter versus CD45 flow cytometric plot can distinguish acute leukaemia subtypes.
Saksena, Annapurna; Gautam, Parul; Desai, Parth; Gupta, Naresh; Dubey, A P; Singh, Tejinder
2016-05-01
Flow cytometry is an important tool to diagnose acute leukaemia. Attempts are being made to find the minimal number of antibodies for correctly diagnosing acute leukaemia subtypes. The present study was designed to evaluate the analysis of side scatter (SSC) versus CD45 flow dot plot to distinguish acute myeloid leukaemia (AML) from acute lymphoblastic leukaemia (ALL), with minimal immunological markers. One hundred consecutive cases of acute leukaemia were evaluated for blast cluster on SSC versus CD45 plots. The parameters studied included visual shape, CD45 and side scatter expression, continuity with residual granulocytes/lymphocytes/monocytes and ratio of maximum width to maximum height (w/h). The final diagnosis of ALL and AML and their subtypes was made by morphology, cytochemistry and immunophenotyping. Two sample Wilcoxon rank-sum (Mann Whitney) test and Kruskal-Wallis equality-of-populations rank tests were applied to elucidate the significance of the above ratios of blast cluster for diagnosis of ALL, AML and their subtypes. Receiver operating characteristic (ROC) curves were generated and the optimal cut-offs of the w/h ratio to distinguish between ALL and AML determined. Of the 100 cases, 57 of ALL and 43 cases of AML were diagnosed. The median w/h ratio of blast population was 3.8 for ALL and 1 for AML (P<0.001). ROC had area under curve of 0.9772.The optimal cut-off of the w/h ratio for distinction of ALL from AML was found to be 1.6. Our findings suggest that if w/h ratio on SSC versus CD45 plot is less than 1.6, AML may be considered, and if it is more than 1.6, ALL may be diagnosed. Using morphometric analysis of the blast cluster on SSC versus CD45, it was possible to distinguish between ALL and AML, and their subtypes.
Cesano, Alessandra; Putta, Santosh; Rosen, David B.; Cohen, Aileen C.; Gayko, Urte; Mathi, Kavita; Woronicz, John; Hawtin, Rachael E.; Cripe, Larry; Sun, Zhuoxin; Tallman, Martin S.; Paietta, Elisabeth
2013-01-01
FMS-like tyrosine kinase 3 receptor (FLT3) internal tandem duplication (ITD) mutations result in constitutive activation of this receptor and have been shown to increase the risk of relapse in patients with acute myeloid leukemia (AML); however, substantial heterogeneity in clinical outcomes still exists within both the ITD mutated and unmutated AML subgroups, suggesting alternative mechanisms of disease relapse not accounted by FLT3 mutational status. Single cell network profiling (SCNP) is a multiparametric flow cytometry based assay that simultaneously measures, in a quantitative fashion and at the single cell level, both extracellular surface marker levels and changes in intracellular signaling proteins in response to extracellular modulators. We previously reported an initial characterization of FLT3 ITD-mediated signaling using SCNP. Herein SCNP was applied sequentially to two separate cohorts of samples collected from elderly AML patients at diagnosis. In the first (training) study, AML samples carrying unmutated, wild-type FLT3 (FLT3 WT) displayed a wide range of induced signaling, with a fraction having signaling profiles comparable to FLT3 ITD AML samples. Conversely, the FLT3 ITD AML samples displayed more homogeneous induced signaling, with the exception of patients with low (<40%) mutational load, which had profiles comparable to FLT3 WT AML samples. This observation was then confirmed in an independent (verification) cohort. Data from the second cohort were also used to assess the association between SCNP data and disease-free survival (DFS) in the context of FLT3 and nucleophosmin (NPM1) mutational status among patients who achieved complete remission (CR) to induction chemotherapy. The combination of SCNP read outs together with FLT3 and NPM1 molecular status improved the DFS prediction accuracy of the latter. Taken together, these results emphasize the value of comprehensive functional assessment of biologically relevant signaling pathways in AML as a basis for the development of highly predictive tests for guidance of post-remission therapy. PMID:23431389
NASA Astrophysics Data System (ADS)
Xu, Min; Pablo Canales, J.; Carbotte, Suzanne M.; Carton, Helene; Nedimović, Mladen R.; Mutter, John C.
2014-04-01
We use three-dimensional multistreamer seismic reflection data to investigate variations in axial magma lens (AML) physical properties along the East Pacific Rise between 9°30'N and 10°00'N. Using partial-offset stacks of P- and S-converted waves reflecting off the top of the AML, we image four 2-4 km long melt-rich sections spaced 5-10 km from each other. One-dimensional waveform inversion indicates that the AML in a melt-rich section is best modeled with a low Vp (2.95-3.23 km/s) and Vs (0.3-1.5 km/s), indicating >70% melt fraction. In contrast, the AML in a melt-poor section requires higher Vp (4.52-4.82 km/s) and Vs (2.0-3.0 km/s), which indicates <40% melt fraction. The thicknesses of the AML are constrained to be 8-32 m and 8-120 m at the melt-rich and -poor sites, respectively. Based on the AML melt-mush segmentation imaged in the area around the 2005-2006 eruption, we infer that the main source of this eruption was a 5 km long section of the AML between 9°48'N and 51'N. The eruption drained most of the melt in this section of the AML, leaving behind a large fraction of connected crystals. We estimate that during the 2005-2006 eruption, a total magma volume of 9-83 × 106 m3 was extracted from the AML, with a maximum of 71 × 106 m3 left unerupted in the crust as dikes. From this, we conclude that an eruption of similar dimensions to the 2005-2006, one would be needed with a frequency of years to decades in order to sustain the long-term average seafloor spreading rate at this location.
Wang, Mengjie; Bu, Jin; Zhou, Maohua; Sido, Jessica; Lin, Yu; Liu, Guanfang; Lin, Qiwen; Xu, Xiuzhang; Leavenworth, Jianmei W; Shen, Erxia
2018-05-01
Acute myeloid leukemia (AML) is one of the most common types of leukemia among adults with an overall poor prognosis and very limited treatment management. Immune checkpoint blockade of PD-1 alone or combined with other immune checkpoint blockade has gained impressive results in murine AML models by improving anti-leukemia CD8 + T cell function, which has greatly promoted the strategy to utilize combined immune checkpoint inhibitors to treat AML patients. However, the expression profiles of these immune checkpoint receptors, such as co-inhibitory receptors PD-1 and TIGIT and co-stimulatory receptor CD226, in T cells from AML patients have not been clearly defined. Here we have defined subsets of CD8 + and CD4 + T cells in the peripheral blood (PB) from newly diagnosed AML patients and healthy controls (HCs). We have observed increased frequencies of PD-1- and TIGIT- expressing CD8 + T cells but decreased occurrence of CD226-expressing CD8 + T cells in AML patients. Further analysis of these CD8 + T cells revealed a unique CD8 + T cell subset that expressed PD-1 and TIGIT but displayed lower levels of CD226 was associated with failure to achieve remission after induction chemotherapy and FLT3-ITD mutations which predict poor clinical prognosis in AML patients. Importantly, these PD-1 + TIGIT + CD226 - CD8 + T cells are dysfunctional with lower expression of intracellular IFN-γ and TNF-α than their counterparts in HCs. Therefore, our studies revealed that an increased frequency of a unique CD8 + T cell subset, PD-1 + TIGIT + CD226 - CD8 + T cells, is associated with CD8 + T cell dysfunction and poor clinical prognosis of AML patients, which may reveal critical diagnostic or prognostic biomarkers and direct more efficient therapeutic strategies. Copyright © 2017. Published by Elsevier Inc.
Boissel, Nicolas; Nibourel, Olivier; Renneville, Aline; Gardin, Claude; Reman, Oumedaly; Contentin, Nathalie; Bordessoule, Dominique; Pautas, Cécile; de Revel, Thierry; Quesnel, Bruno; Huchette, Pascal; Philippe, Nathalie; Geffroy, Sandrine; Terre, Christine; Thomas, Xavier; Castaigne, Sylvie; Dombret, Hervé; Preudhomme, Claude
2010-08-10
Recently, whole-genome sequencing in acute myeloid leukemia (AML) identified recurrent isocitrate dehydrogenase enzyme isoform (IDH1) mutations (IDH1m), previously reported to be involved in gliomas as well as IDH2 mutations (IDH2m). The prognosis of both IDH1m and IDH2m in AML remains unclear. The prevalence and the prognostic impact of R132 IDH1 and R172 IDH2 mutations were evaluated in a cohort of 520 adults with AML homogeneously treated in the French Acute Leukemia French Association (ALFA) -9801 and -9802 trials. The prevalence of IDH1m and IDH2m was 9.6% and 3.0%, respectively, mostly associated with normal cytogenetics (CN). In patients with CN-AML, IDH1m were associated with NPM1m (P = .008), but exclusive of CEBPAm (P = .03). In contrary, no other mutations were detected in IDH2m patients. In CN-AML patients, IDH1m were found in 19% of favorable genotype ([NPM1m or CEBPAm] without fms-related tyrosine kinase 3 [FLT3] internal tandem duplication [ITD]) and were associated with a higher risk of relapse (RR) and a shorter overall survival (OS). Favorable genotype in CN-AML could thus be defined by the association of NPM1m or CEBPAm with neither FLT3-ITD nor IDH1m. In IDH2m CN-AML patients, we observed a higher risk of induction failure, a higher RR and a shorter OS. In multivariate analysis, age, WBC count, the four-gene favorable genotype and IDH2m were independently associated with a higher RR and a shorter OS. Contrarily to what is reported in gliomas, IDH1m and IDH2m in AML are associated with a poor prognosis. Screening of IDH1m could help to identify high-risk patients within the subset of CN-AML with a favorable genotype.
The genomic and clinical information used to develop and implement therapeutic approaches for AML originated primarily from adult patients and has been generalized to patients with pediatric AML. However, age-specific molecular alterations are becoming more evident and may signify the need to age-stratify treatment regimens. The NCI/COG TARGET-AML initiative employed whole exome capture sequencing (WXS) to interrogate the genomic landscape of matched trios representing specimens collected upon diagnosis, remission, and relapse from 20 cases of de novo childhood AML.
A nationwide survey of hypoplastic myelodysplastic syndrome (a multicenter retrospective study).
Kobayashi, Takashi; Nannya, Yasuhito; Ichikawa, Motoshi; Oritani, Kenji; Kanakura, Yuzuru; Tomita, Akihiro; Kiyoi, Hitoshi; Kobune, Masayoshi; Kato, Junji; Kawabata, Hiroshi; Shindo, Motohiro; Torimoto, Yoshihiro; Yonemura, Yuji; Hanaoka, Nobuyoshi; Nakakuma, Hideki; Hasegawa, Daisuke; Manabe, Atsushi; Fujishima, Naohito; Fujii, Nobuharu; Tanimoto, Mitsune; Morita, Yasuyoshi; Matsuda, Akira; Fujieda, Atsushi; Katayama, Naoyuki; Ohashi, Haruhiko; Nagai, Hirokazu; Terada, Yoshiki; Hino, Masayuki; Sato, Ken; Obara, Naoshi; Chiba, Shigeru; Usuki, Kensuke; Ohta, Masatsugu; Imataki, Osamu; Uemura, Makiko; Takaku, Tomoiku; Komatsu, Norio; Kitanaka, Akira; Shimoda, Kazuya; Watanabe, Kenichiro; Tohyama, Kaoru; Takaori-Kondo, Akifumi; Harigae, Hideo; Arai, Shunya; Miyazaki, Yasushi; Ozawa, Keiya; Kurokawa, Mineo
2017-12-01
Hypoplastic myelodysplastic syndrome (hMDS) is a distinct entity with bone marrow (BM) hypocellularity and the risk of death from BM failure (BMF). To elucidate the characteristics of hMDS, the data of 129 patients diagnosed between April 2003 and March 2012 were collected from 20 institutions and the central review team of the National Research Group on Idiopathic Bone Marrow Failure Syndromes, and compared with 115 non-hMDS patients. More RA and fewer CMMoL and RAEB-t in French-American-British (FAB) and more RCUD and MDS-U and fewer RCMD in World Health Organization (WHO) classifications were found in hMDS than non-hMDS with significant differences. The overall survival (OS) and AML progression-free survival (AML-PFS) of hMDS were higher than those of non-hMDS, especially in patients at age ≥50 and of lower risk in Revised International Prognostic Scoring System (IPSS-R). In competing risks analysis, hMDS exhibited decreased risk of AML-progression in lower IPSS or IPSS-R risk patients, and higher risk of death from BMF in patients at age ≥50. Poor performance status (PS ≥2) and high karyotype risks in IPSS-R (high and very high) were significant risk factors of death and AML-progression in Cox proportional hazards analysis. © 2017 Wiley Periodicals, Inc.
Neuropsychological late effects of treatment for acute leukemia in children with Down syndrome.
Roncadin, Caroline; Hitzler, Johann; Downie, Andrea; Montour-Proulx, Isabelle; Alyman, Cheryl; Cairney, Elizabeth; Spiegler, Brenda J
2015-05-01
Children with Down syndrome (DS) have an elevated risk of developing acute leukemia, but little is known about treatment-related neuropsychological morbidity because they are systematically excluded from research in this area. The current study investigated neuropsychological outcomes in children with DS treated for acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML) compared to children with DS with no history of cancer. Participants were 4 to 17 years of age at testing and were administered measures of intelligence, academic achievement, language, visual-motor and fine-motor skills, and adaptive function. Patients had been off treatment for at least 2 years. The AML group (N = 12) had significantly lower verbal intelligence and receptive vocabulary compared to controls (N = 21). By contrast, the ALL group (N = 14) performed significantly worse than controls on measures of verbal intelligence, spelling, receptive and expressive vocabulary, visual-motor skills, and adaptive function. Patients with DS treated for AML may have specific post-treatment morbidity in verbal function, whereas those treated for ALL have broader morbidity affecting multiple neuropsychological domains and overall adaptive function. We hypothesize that the broader impairment profile of ALL survivors may be related to a combination of the longer duration of central nervous system-directed treatment for ALL compared to AML and the concomitant limited access to intervention opportunities during active treatment. © 2014 Wiley Periodicals, Inc.
WT1 vaccination in acute myeloid leukemia: new methods of implementing adoptive immunotherapy.
Rein, Lindsay A M; Chao, Nelson J
2014-03-01
The Wilms tumor 1 (WT1) gene was originally identified as a tumor suppressor gene that, when mutated, would lead to the development of pediatric renal tumors. More recently, it has been determined that WT1 is overexpressed in 90% of patients with acute myeloid leukemia (AML) and is mutated in approximately 10% of AML patients. WT1 plays a role in normal hematopoiesis and, in AML specifically, it has oncogenic function and plays an important role in cellular proliferation and differentiation. The ubiquity of WT1 in leukemia has lead to the development of vaccines aimed at employing the host immune system to mount a T-cell response to a known antigen. In this evaluation, the authors discuss the role of WT1 in normal hematopoiesis as well as in the development of hematologic malignancies. Furthermore, the authors discuss the data supporting the development of WT1 vaccines, and the clinical trials supporting their use in patients with acute leukemia. Several small trials have been conducted which support the safety and efficacy of this therapy, although larger trials are certainly warranted. In the authors' opinion, the WT1 vaccination has potential in terms of its application as an adjuvant therapy for patients with AML who are at high risk of relapse or who have detectable minimal residual disease after initial standard therapy.
Lam, Chung Fan; Yeung, Hoi Ting; Lam, Yuk Man; Ng, Ray Kit
2018-05-01
Reactive oxygen species (ROS) and altered cellular redox status are associated with many malignancies. Acute myeloid leukemia (AML) cells are maintained at immature state by differentiation blockade, which involves deregulation of transcription factors in myeloid differentiation. AML cells can be induced to differentiate by phorbol-12-myristate-13-acetate (PMA), which possesses pro-oxidative activity. However, the signaling events mediated by ROS in the activation of transcriptional program during AML differentiation has not been fully elucidated. Here, we investigated AML cell differentiation by treatment with PMA and ROS scavenger N-acetyl-l-cysteine (NAC). We observed elevation of intracellular ROS level in the PMA-treated AML cells, which correlated with differentiated cell morphology and increased CD11b + mature cell population. The effect of PMA can be abolished by NAC co-treatment, supporting the involvement of ROS in the process. Moreover, we demonstrated that short ROS elevation mediated cell cycle arrest, but failed to activate myeloid gene transcription; whereas prolonged ROS elevation activated JNK/c-JUN signaling pathway. Inhibition of JNK suppressed the expression of key myeloid transcriptional regulators c-JUN, SPI-1 and MAFB, and prevented AML cells from undergoing terminal differentiation. These findings provide new insights into the crucial role of JNK/c-Jun signaling pathway in the activation of transcriptional program during ROS-mediated AML differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Emerging FMS-like tyrosine kinase 3 inhibitors for the treatment of acute myelogenous leukemia
Prescott, Hillary; Kantarjian, Hagop; Cortes, Jorge; Ravandi, Farhad
2014-01-01
Introduction The FMS-like tyrosine kinase 3 (FLT3) is highly expressed in acute leukemias. Mutations involving FLT3 are among the most common molecular abnormalities in acute myelogenous leukemia (AML). Available evidence suggests that these molecular lesions confer a shorter disease-free survival and overall survival in patients with intermediate-risk cytogenetics. Therefore, substantial interest in FLT3 as a therapeutic target has led to the development of several promising inhibitors that target this tyrosine kinase. Areas covered This review covers the molecular pathways associated with FLT3 activation in patients with AML, the biological rationale for inhibiting FLT3 and recent clinical progress with FLT3 inhibitors for the treatment of AML. Six FLT3 inhibitors undergoing clinical evaluation are discussed. A review of selected published manuscripts on the subject of FLT3 inhibition in AML and a search of the English language manuscripts in PubMed using the index words FLT3 and AML were conducted and articles of interest selected. Expert opinion Mutated forms of FLT3, specifically FLT3-internal tandem duplication, have a significant impact on the prognosis of AML patients, particularly those with a normal karyotype. Inhibiting FLT3 may lead to clinical benefit for patients with AML. Newly developed FLT3 inhibitors have shown encouraging activity as monotherapy and in combination with other therapeutic agents. PMID:21417961
MicroRNA-29b mediates altered innate immune development in acute leukemia
Mundy-Bosse, Bethany L.; Scoville, Steven D.; Chen, Li; McConnell, Kathleen; Mao, Hsiaoyin C.; Ahmed, Elshafa H.; Zorko, Nicholas; Harvey, Sophia; Cole, Jordan; Zhang, Xiaoli; Costinean, Stefan; Croce, Carlo M.; Larkin, Karilyn; Byrd, John C.; Vasu, Sumithira; Blum, William; Yu, Jianhua; Freud, Aharon G.; Caligiuri, Michael A.
2016-01-01
Natural killer (NK) cells can have potent antileukemic activity following haplo-mismatched, T cell–depleted stem cell transplantations for the treatment of acute myeloid leukemia (AML), but they are not successful in eradicating de novo AML. Here, we have used a mouse model of de novo AML to elucidate the mechanisms by which AML evades NK cell surveillance. NK cells in leukemic mice displayed a marked reduction in the cytolytic granules perforin and granzyme B. Further, as AML progressed, we noted the selective loss of an immature subset of NK cells in leukemic mice and in AML patients. This absence was not due to elimination by cell death or selective reduction in proliferation, but rather to the result of a block in NK cell differentiation. Indeed, NK cells from leukemic mice and humans with AML showed lower levels of TBET and EOMES, transcription factors that are critical for terminal NK cell differentiation. Further, the microRNA miR-29b, a regulator of T-bet and EOMES, was elevated in leukemic NK cells. Finally, deletion of miR-29b in NK cells reversed the depletion of this NK cell subset in leukemic mice. These results indicate that leukemic evasion of NK cell surveillance occurs through miR-mediated dysregulation of lymphocyte development, representing an additional mechanism of immune escape in cancer. PMID:27775550
Mullighan, C G; Kennedy, A; Zhou, X; Radtke, I; Phillips, L A; Shurtleff, S A; Downing, J R
2007-09-01
Somatic mutations in nucleophosmin (NPM1) occur in approximately 35% of adult acute myeloid leukemia (AML). To assess the frequency of NPM1 mutations in pediatric AML, we sequenced NPM1 in the diagnostic blasts from 93 pediatric AML patients. Six cases harbored NPM1 mutations, with each case lacking common cytogenetic abnormalities. To explore the phenotype of the AMLs with NPM1 mutations, gene expression profiles were obtained using Affymetrix U133A microarrays. NPM1 mutations were associated with increased expression of multiple homeobox genes including HOXA9, A10, B2, B6 and MEIS1. As dysregulated homeobox gene expression is also a feature of MLL-rearranged leukemia, the gene expression signatures of NPM1-mutated and MLL-rearranged leukemias were compared. Significant differences were identified between these leukemia subtypes including the expression of different HOX genes, with NPM1-mutated AML showing higher levels of expression of HOXB2, B3, B6 and D4. These results confirm recent reports of perturbed HOX expression in NPM1-mutated adult AML, and provide the first evidence that the NPM1-mutated signature is distinct from MLL-rearranged AML. These findings suggest that mutated NPM1 leads to dysregulated HOX expression via a different mechanism than MLL rearrangement.
Raman spectroscopy for the assessment of acute myeloid leukemia: a proof of concept study
NASA Astrophysics Data System (ADS)
Vanna, R.; Tresoldi, C.; Ronchi, P.; Lenferink, A. T. M.; Morasso, C.; Mehn, D.; Bedoni, M.; Terstappen, L. W. M. M.; Ciceri, F.; Otto, C.; Gramatica, F.
2014-03-01
Acute myeloid leukemia (AML) is a proliferative neoplasm, that if not properly treated can rapidly cause a fatal outcome. The diagnosis of AML is challenging and the first diagnostic step is the count of the percentage of blasts (immature cells) in bone marrow and blood sample, and their morphological characterization. This evaluation is still performed manually with a bright field light microscope. Here we report results of a study applying Raman spectroscopy for analysis of samples from two patients affected by two AML subtypes characterized by a different maturation stage in the neutrophilic lineage. Ten representative cells per sample were selected and analyzed with high-resolution confocal Raman microscopy by scanning 64x64 (4096) points in a confocal layer through the volume of the whole cell. The average spectrum of each cell was then used to obtain a highly reproducible mean fingerprint of the two different AML subtypes. We demonstrate that Raman spectroscopy efficiently distinguishes these different AML subtypes. The molecular interpretation of the substantial differences between the subtypes is related to granulocytic enzymes (e.g. myeloperoxidase and cytochrome b558), in agreement with different stages of maturation of the two considered AML subtypes . These results are promising for the development of a new, objective, automated and label-free Raman based methods for the diagnosis and first assessment of AML.
Therapy of older persons with acute myeloid leukaemia.
Krug, Utz; Gale, Robert Peter; Berdel, Wolfgang E; Müller-Tidow, Carsten; Stelljes, Matthias; Metzeler, Klaus; Sauerland, M Cristina; Hiddemann, Wolfgang; Büchner, Thomas
2017-09-01
Most persons age≥60 y with acute myeloid leukaemia (AML) die from their disease. When interpreting clinical trials data from these persons one must be aware of substantial selection biases. Randomized trials of post-remission treatments can be performed upfront or after achieving defined landmarks. Both strategies have important limitations. Selection of the appropriate treatment is critical. Age, performance score, co-morbidities and frailty provide useful data to treatment selection. If an intensive remission induction therapy is appropriate, therapy with cytarabine and an anthracycline is the most common regimen. Non-intensive therapies consist of the hypo-methylating drugs azacitidine and decitabine, low-dose cytarabine and supportive care. Feasibility of doing an allotransplant in older persons with AML is increasing. However, only very few qualify. Results of cytogenetic testing are risk factor in young and old persons with AML. Adverse abnormalities are more frequent in older persons. Although data about the frequency of mutations in older persons with AML is increasing their prognostic impact is less clear than in younger subjects. Neither differences in the distribution of cytogenetic risk, mutations, nor differences in clinical risk factors between younger and older persons with AML completely explain the age-dependent outcome. Many drugs are in clinical development in older persons with AML. Their potential role in the treatment of older persons with AML remains to be defined. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Li; Liu, Liang; Leung, Lai-Han; Cooney, Austin J.; Chen, Changyi; Rosengart, Todd K.; Ma, Yupo; Yang, Jianchang
2015-01-01
All-trans retinoic acid (ATRA) is a differentiation agent that revolutionized the treatment of acute promyelocytic leukemia. However, it has not been useful for other types of acute myeloid leukemia (AML). Here we explored the effect of SALL4, a stem cell factor, on ATRA-induced AML differentiation in both ATRA-sensitive and ATRA-resistant AML cells. Aberrant SALL4 expression has been found in nearly all human AML cases, whereas, in normal bone marrow and peripheral blood cells, its expression is only restricted to hematopoietic stem/progenitor cells. We reason that, in AMLs, SALL4 activation may prevent cell differentiation and/or protect self-renewal that is seen in normal hematopoietic stem/progenitor cells. Indeed, our studies show that ATRA-mediated myeloid differentiation can be largely blocked by exogenous expression of SALL4, whereas ATRA plus SALL4 knockdown causes significantly increased AML differentiation and cell death. Mechanistic studies indicate that SALL4 directly associates with retinoic acid receptor α and modulates ATRA target gene expression. SALL4 is shown to recruit lysine-specific histone demethylase 1 (LSD1) to target genes and alter the histone methylation status. Furthermore, coinhibition of LSD1 and SALL4 plus ATRA treatment exhibited the strongest anti-AML effect. These findings suggest that SALL4 plays an unfavorable role in ATRA-based regimes, highlighting an important aspect of leukemia therapy. PMID:25737450
Lower frequency of NPM1 and FLT3-ITD mutations in a South African adult de novo AML cohort
Marshall, R. C.; Tlagadi, A.; Bronze, M.; Kana, V.; Naidoo, S.; Wiggill, T. M.; Carmona, S. C.
2014-01-01
Introduction Acute myeloid leukemia (AML) is a heterogeneous clonal disorder of haemopoietic progenitor cells diagnosed in individuals of any age, but with a median age of 67 years at presentation in adults. Assessment of the mutation status of Nucleophosmin protein-1 (NPM1) and FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) are essential for the diagnosis, prognosis and treatment of AML. Methods A total of 160 de novo AML cases, both cytogenetically normal and abnormal, were analyzed for the presence of NPM1 and FLT3-ITD mutations and the results assessed in conjunction with epidemiological, clinical and laboratory findings. Results NPM1 mutations were found in 7.5%, while FLT3-ITD was present in 12% of these cases. Both of these were lower than expected. The median age at diagnosis of AML was 41 years and for the FLT3-ITD only cases, median age was 33 years; these ages were younger than expected. Conclusion The lower reported frequencies and younger median age at diagnosis of AML and these specific mutations may be contributed to by a number of factors including; effects of race on age of presentation, inclusion of patients diagnosed with de novo AML only and a generally younger median age of the South African population. PMID:24666762
Cagnetta, Antonia; Adamia, Sophia; Acharya, Chirag; Patrone, Franco; Miglino, Maurizio; Nencioni, Alessio; Gobbi, Marco; Cea, Michele
2014-06-01
Acute myeloid leukemia (AML) is the most common form of acute leukemia affecting adults. Although it is a complex disease driven by numerous genetic and epigenetic abnormalities, nearly 50% of patients exhibit a normal karyotype (CN-AML) with an intermediate cytogenetic risk. However, a widespread genomic analysis has recently shown the recurrence of genomic aberrations in this category (mutations of FLT3, CEBPA, NPM1, RUNX1, TET2, IDH1/2, DNMT3A, ASXL1, MLL and WT1) thus revealing its marked genomic heterogeneity. In this perspective, a global gene expression analysis of AML patients provides an independent prognostic marker to categorize each patient into clinic-pathologic subgroups based on its molecular genetic defects. Consistently such classification, taking into account the uniqueness of each AML patient, furnishes an individualized treatment approach leading a step closer to personalized medicine. Overall the genome-wide analysis of AML patients, by providing novel insights into biology of this tumor, furnishes accurate prognostic markers as well as useful tools for selecting the most appropriate treatment option. Moreover it provides novel therapeutic targets useful to enhance efficacy of the current anti-AML therapeutics. Here we describe the prognostic relevance of such new genetic data and discuss how this approach can be used to improve survival and treatment of AML patients. Copyright © 2014 Elsevier Ltd. All rights reserved.
Environmental nanoparticles are significantly over-expressed in acute myeloid leukemia.
Visani, G; Manti, A; Valentini, L; Canonico, B; Loscocco, F; Isidori, A; Gabucci, E; Gobbi, P; Montanari, S; Rocchi, M; Papa, S; Gatti, A M
2016-11-01
The increase in the incidence of acute myeloid leukemia (AML) may suggest a possible environmental etiology. PM2.5 was declared by IARC a Class I carcinogen. No report has focused on particulate environmental pollution together with AML. The study investigated the presence and composition of particulate matter in blood with a Scanning Electron Microscope coupled with an Energy Dispersive Spectroscope, a sensor capable of identifying the composition of foreign bodies. 38 peripheral blood samples, 19 AML cases and 19 healthy controls, were analyzed. A significant overload of particulate matter-derived nanoparticles linked or aggregated to blood components was found in AML patients, while almost absent in matched healthy controls. Two-tailed Student's t-test, MANOVA and Principal Component Analysis indicated that the total numbers of aggregates and particles were statistically different between cases and controls (MANOVA, P<0.001 and P=0.009 respectively). The particles detected showed to contain highly-reactive, non-biocompatible and non-biodegradable metals; in particular, micro- and nano-sized particles grouped in organic/inorganic clusters, with statistically higher frequency of a subgroup of elements in AML samples. The demonstration, for the first time, of an overload of nanoparticles linked to blood components in AML patients could be the basis for a possible, novel pathogenetic mechanism for AML development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nassi-Schneiderman Diagram in HTML Based on AML
ERIC Educational Resources Information Center
Menyhárt, László
2013-01-01
In an earlier work I defined an extension of XML called Algorithm Markup Language (AML) for easy and understandable coding in an IDE which supports XML editing (e.g. NetBeans). The AML extension contains annotations and native language (English or Hungarian) tag names used when coding our algorithm. This paper presents a drawing tool with which…
Clinicopathological analysis of near-tetraploidy/tetraploidy acute myeloid leukaemia.
Pang, Changlee S; Pettenati, Mark J; Pardee, Timothy S
2015-03-01
Near-tetraploidy/tetraploidy (NT/T) is a rare cytogenetic alteration in acute myeloid leukaemia (AML). NT/T-AML is categorised as complex cytogenetics and therefore, presumed to have an unfavourable prognosis. Our aim is to further characterise the clinical, morphological, cytogenetic and prognostic features of NT/T-AML. We searched our cytogenetic laboratory database from 1991 to 2012 to reveal 13 cases of NT/T-AML. Each case was evaluated with regard to its demographics, morphology, immunophenotype and prognosis. Specific morphological features included blast size, irregularity of nuclear contours, cytoplasmic vacuoles, and presence and lineage of dysplasia. Eleven men and two women had a median age of 68 years. Blasts were predominately large (11/13). Eight of 13 patients had AML with myelodysplasia-related changes. Sixty-nine per cent of patients achieved complete remission (CR). Median overall survival (OS) was 8.6 months. CR rate and median OS in cases with ≥ 5 cytogenetic abnormalities were 71% and 6 months, compared with 67% and 18.1 months in cases with <5 abnormalities. NT/T-AML occurs in older males, exhibits large blast size and is associated with myelodysplasia. Unlike previously reported data, our study reveals an overall better prognosis in this older population with NT/T-AML than was expected for a complex karyotype AML. Cytogenetic complexity independent of ploidy status did not greatly affect the high CR rates, but did appear to be a better estimation of prognostic risk in terms of median OS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Ugai, Tomotaka; Matsuo, Keitaro; Oze, Isao; Ito, Hidemi; Wakai, Kenji; Wada, Keiko; Nagata, Chisato; Nakayama, Tomio; Liu, Rong; Kitamura, Yuri; Tamakoshi, Akiko; Tsuji, Ichiro; Sugawara, Yumi; Sawada, Norie; Sadakane, Atsuko; Tanaka, Keitaro; Mizoue, Tetsuya; Inoue, Manami; Tsugane, Shoichiro; Shimazu, Taichi
2018-02-01
Smoking has been identified as a significant risk factor for acute myeloid leukaemia (AML). However, epidemiological evidence for the effect of smoking on the risk of AML among Asians is scarce. Here, we investigated the impact of smoking habits on the risk of AML by conducting a pooled analysis of 9 population-based prospective cohort studies in Japan. We analysed original data on smoking habits at baseline from 9 cohort studies. Hazard ratios (HRs) in the individual studies were calculated using a Cox proportional hazard model adjusted for potential confounders and combined using a random-effects model. During 4 808 175 person-years of follow-up for a total of 344 676 participants (165 567 men and 179 109 women), 245 AML cases (139 men and 106 women) were identified. For both sexes combined, current smokers had a marginally significant increased risk of AML compared to never smokers (HR = 1.44, 95% confidence interval [CI], 0.97-2.14). Ever smokers with more than 30 pack-years had a statistically significant increased risk of AML compared to never smokers among both sexes combined (HR = 1.66, 95% CI, 1.06-2.63). By sex, this significant association was observed only among men, with an HR of 1.69 (95% CI, 1.00-2.87) for ever smokers with more than 30 pack-years relative to never smokers. In conclusion, this study confirmed that cigarette smoking increases the risk of AML in Japanese. This study provides important evidence that smoking increases the risk of AML among Asians, which has already been shown in Western populations. Copyright © 2017 John Wiley & Sons, Ltd.
,
1999-01-01
The Abandoned Mine Lands (AML) Initiative is part of a larger strategy of the U.S. Department of the Interior and the U.S. Department of Agriculture to clean up Federal lands contaminated by abandoned mines.Thousands of abandond hard-rock metal mines (such as gold, copper, lead, and zinc) have left a dual legacy across the Western United States. They reflect the historic development of the west, yet at the same time represent a possible threat to human health and local ecosystems.Abandoned Mine Lands (AML) are areas adjacent to or affected by abandoned mines. AML's often contain unmined mineral deposits, mine dumps (the ore and rock removed to get to the ore deposits), and tailings (the material left over from the ore processing) that contaminate the surrounding watershed and ecosystem. For example, streams near AML's can contain metals and (or) be so acidic that fish and aquatic insects cannot live in them.Many of these abandoned hard-rock mines are located on or adjacent to public lands administered by the Bureau of Land Management, National Park Service, and U.S. Forest Service. These federal land management agencies and the USGS are committed to mitigating the adverse effects that AML's can have on water quality and stream habitats.The USGS AML Initiative began in 1997 and will continue through 2001 in two pilot watersheds - the Boulder River basin in southwestern Montana and the upper Animas River basin in southwestern Colorado. The USGS is providing a wide range of scientific expertise to help land managers minimize and, where possible, eliminate the adverse environmental effects of AML's. USGS ecologists, geologists, water quality experts, hydrologists, geochemists, and mapping and digital data collection experts are collaborating to provide the scientific knowledge needed for an effective cleanup of AML's.
Zhang, Mao; Sukhumalchandra, Pariya; Enyenihi, Atim A; St John, Lisa S; Hunsucker, Sally A; Mittendorf, Elizabeth A; Sergeeva, Anna; Ruisaard, Kathryn; Al-Atrache, Zein; Ropp, Patricia A; Jakher, Haroon; Rodriguez-Cruz, Tania; Lizee, Gregory; Clise-Dwyer, Karen; Lu, Sijie; Molldrem, Jeffrey J; Glish, Gary L; Armistead, Paul M; Alatrash, Gheath
2013-01-01
Immunotherapy targeting aberrantly expressed leukemia-associated antigens has shown promise in the management of acute myeloid leukemia (AML). However, because of the heterogeneity and clonal evolution that is a feature of myeloid leukemia, targeting single peptide epitopes has had limited success, highlighting the need for novel antigen discovery. In this study, we characterize the role of the myeloid azurophil granule protease cathepsin G (CG) as a novel target for AML immunotherapy. We used Immune Epitope Database and in vitro binding assays to identify immunogenic epitopes derived from CG. Flow cytometry, immunoblotting, and confocal microscopy were used to characterize the expression and processing of CG in AML patient samples, leukemia stem cells, and normal neutrophils. Cytotoxicity assays determined the susceptibility of AML to CG-specific cytotoxic T lymphocytes (CTL). Dextramer staining and cytokine flow cytometry were conducted to characterize the immune response to CG in patients. CG was highly expressed and ubiquitinated in AML blasts, and was localized outside granules in compartments that facilitate antigen presentation. We identified five HLA-A*0201 binding nonameric peptides (CG1-CG5) derived from CG, and showed immunogenicity of the highest HLA-A*0201 binding peptide, CG1. We showed killing of primary AML by CG1-CTL, but not normal bone marrow. Blocking HLA-A*0201 abrogated CG1-CTL-mediated cytotoxicity, further confirming HLA-A*0201-dependent killing. Finally, we showed functional CG1-CTLs in peripheral blood from AML patients following allogeneic stem cell transplantation. CG is aberrantly expressed and processed in AML and is a novel immunotherapeutic target that warrants further development.
Molenaar, Remco J; Radivoyevitch, Tomas; Nagata, Yasunobu; Khurshed, Mohammed; Przychodzen, Bartolomiej; Makishima, Hideki; Xu, Mingjiang; Bleeker, Fonnet E; Wilmink, Johanna W; Carraway, Hetty E; Mukherjee, Sudipto; Sekeres, Mikkael A; van Noorden, Cornelis J F; Maciejewski, Jaroslaw P
2018-04-01
Purpose: Somatic mutations in IDH1/2 occur in approximately 20% of patients with myeloid neoplasms, including acute myeloid leukemia (AML). IDH1/2 MUT enzymes produce D -2-hydroxyglutarate ( D 2HG), which associates with increased DNA damage and improved responses to chemo/radiotherapy and PARP inhibitors in solid tumor cells. Whether this also holds true for IDH1/2 MUT AML is not known. Experimental Design: Well-characterized primary IDH1 MUT , IDH2 MUT , and IDH1/2 WT AML cells were analyzed for DNA damage and responses to daunorubicin, ionizing radiation, and PARP inhibitors. Results: IDH1/2 MUT caused increased DNA damage and sensitization to daunorubicin, irradiation, and the PARP inhibitors olaparib and talazoparib in AML cells. IDH1/2 MUT inhibitors protected against these treatments. Combined treatment with a PARP inhibitor and daunorubicin had an additive effect on the killing of IDH1/2 MUT AML cells. We provide evidence that the therapy sensitivity of IDH1/2 MUT cells was caused by D 2HG-mediated downregulation of expression of the DNA damage response gene ATM and not by altered redox responses due to metabolic alterations in IDH1/2 MUT cells. Conclusions: IDH1/2 MUT AML cells are sensitive to PARP inhibitors as monotherapy but especially when combined with a DNA-damaging agent, such as daunorubicin, whereas concomitant administration of IDH1/2 MUT inhibitors during cytotoxic therapy decrease the efficacy of both agents in IDH1/2 MUT AML. These results advocate in favor of clinical trials of PARP inhibitors either or not in combination with daunorubicin in IDH1/2 MUT AML. Clin Cancer Res; 24(7); 1705-15. ©2018 AACR . ©2018 American Association for Cancer Research.
[Expression of c-MPL in leukemic stem cells from acute myeloid leukemia patients].
Yu, Pei; Qiu, Shao-Wei; Rao, Qing; Lin, Dong; Xing, Hai-Yan; Tang, Ke-Jing; Tian, Zheng; Wang, Min; Wang, Jian-Xiang
2012-10-01
This study was aimed to investigate the expression of c-MPL in acute myeloid leukemia (AML) and the correlation of the c-MPL expression with CD34 and CD38, so as to define the expression of c-MPL in leukemic stem cells. The expression levels of CD34, CD38 and c-MPL were detected by flow cytometry in bone marrow cells from 29 newly diagnosed AML patients. The relationship of c-MPL positive cell ratio with clinical parameters and correlation of c-MPL with CD34 and CD38 expression in AML patients were analyzed. The results showed that expression level of c-MPL in AML patients was significantly higher than that of normal controls (P < 0.05), and the expression level of c-MPL did not correlate with age, sex, white blood cell count, AML1-ETO fusion gene and remission after chemotherapy, but the expression of c-MPL in M2 and M5 patients was higher than that of normal control (P < 0.05). Expression of c-MPL in CD34 positive AML patients was obviously higher than that in CD34 negative AML patients (P < 0.01). c-MPL was significantly higher expressed in CD34(+) cells than that in CD34(-) cells (P < 0.001), while c-MPL expression was not significantly different between CD34(+)CD38(-) and CD34(+)CD38(-) cell groups. Positive correlation between c-MPL and CD34 expression was observed (r = 0.380, P = 0.042). It is concluded that expression of c-MPL is higher in AML patients, and positively correlates with the expression level of CD34. The c-MPL expresses in leukemic stem cells.
A stable transcription factor complex nucleated by oligomeric AML1–ETO controls leukaemogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiao-Jian; Wang, Zhanxin; Wang, Lan
2013-06-30
Transcription factors are frequently altered in leukaemia through chromosomal translocation, mutation or aberrant expression. AML1–ETO, a fusion protein generated by the t(8;21) translocation in acute myeloid leukaemia, is a transcription factor implicated in both gene repression and activation. AML1–ETO oligomerization, mediated by the NHR2 domain, is critical for leukaemogenesis, making it important to identify co-regulatory factors that ‘read’ the NHR2 oligomerization and contribute to leukaemogenesis. Here we show that, in human leukaemic cells, AML1–ETO resides in and functions through a stable AML1–ETO-containing transcription factor complex (AETFC) that contains several haematopoietic transcription (co)factors. These AETFC components stabilize the complex through multivalentmore » interactions, provide multiple DNA-binding domains for diverse target genes, co-localize genome wide, cooperatively regulate gene expression, and contribute to leukaemogenesis. Within the AETFC complex, AML1–ETO oligomerization is required for a specific interaction between the oligomerized NHR2 domain and a novel NHR2-binding (N2B) motif in E proteins. Crystallographic analysis of the NHR2–N2B complex reveals a unique interaction pattern in which an N2B peptide makes direct contact with side chains of two NHR2 domains as a dimer, providing a novel model of how dimeric/oligomeric transcription factors create a new protein-binding interface through dimerization/oligomerization. Intriguingly, disruption of this interaction by point mutations abrogates AML1–ETO-induced haematopoietic stem/progenitor cell self-renewal and leukaemogenesis. These results reveal new mechanisms of action of AML1–ETO, and provide a potential therapeutic target in t(8;21)-positive acute myeloid leukaemia.« less
Kim, Kwang Ho; Yun, Bu Hyeon; Hwang, In Sang; Hwang, Eu Chang; Kang, Taek Won; Kwon, Dong Deuk; Park, Kwangsung; Kim, Jin Woong
2013-01-01
Purpose A morphologic contour method for assessing an exophytic renal mass as benign versus malignant on the basis of the shape of the interface with the renal parenchyma was recently developed. We investigated the usefulness of this morphologic contour method for predicting angiomyolipoma (AML) in patients who underwent partial nephrectomy for small renal masses (SRMs). Materials and Methods From January 2004 to March 2013, among 197 patients who underwent partial nephrectomy for suspicious renal cell carcinoma (RCC), the medical records of 153 patients with tumors (AML or RCC) ≤3 cm in diameter were retrospectively reviewed. Patient characteristics including age, gender, type of surgery, size and location of tumor, pathologic results, and specific findings of the imaging study ("ice-cream cone" shape) were compared between the AML and RCC groups. Results AML was diagnosed in 18 patients and RCC was diagnosed in 135 patients. Gender (p=0.001), tumor size (p=0.032), and presence of the ice-cream cone shape (p=0.001) showed statistically significant differences between the AML group and the RCC group. In the multivariate logistic regression analysis, female gender (odds ratio [OR], 5.20; 95% confidence interval [CI], 1.45 to 18.57; p=0.011), tumor size (OR, 0.34; 95% CI, 0.12 to 0.92; p=0.034), and presence of the ice-cream cone shape (OR, 18.12; 95% CI, 4.97 to 66.06; p=0.001) were predictors of AML. Conclusions This study confirmed a high incidence of AML in females. Also, the ice-cream cone shape and small tumor size were significant predictors of AML in SRMs. These finding could be beneficial for counseling patients with SRMs. PMID:23956824
Singh, Raminder; Fröbel, Julia; Cadeddu, Ron-Patrick; Bruns, Ingmar; Schroeder, Thomas; Brünnert, Daniela; Wilk, Christian Matthias; Zerbini, Luiz Fernando; Haas, Rainer; Czibere, Akos
2012-02-01
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy. Treatment of patients suffering from high-risk AML as defined by clinical parameters, cytogenetics, and/or molecular analyses is often unsuccessful. OSI-461 is a pro-apoptotic compound that has been proposed as a novel therapeutic option for patients suffering from solid tumors like prostate or colorectal carcinoma. But little is known about its anti-proliferative potential in AML. Hence, we treated bone marrow derived CD34(+) selected blast cells from 20 AML patients and the five AML cell lines KG-1a, THP-1, HL-60, U-937, and MV4-11 with the physiologically achievable concentration of 1 μM OSI-461 or equal amounts of DMSO as a control. Following incubation with OSI-461, we found a consistent induction of apoptosis and an accumulation of cells in the G2/M phase of the cell cycle. In addition, we demonstrate that the OSI-461 mediated anti-proliferative effects observed in AML are associated with the induction of the pro-apoptotic cytokine mda-7/IL-24 and activation of the growth arrest and DNA-damage inducible genes (GADD) 45α and 45γ. Furthermore, OSI-461 treated leukemia cells did not regain their proliferative potential for up to 8 days after cessation of treatment following the initial 48 h treatment period with 1 μM OSI-461. This indicates sufficient targeting of the leukemia-initiating cells in our in vitro experiments through OSI-461. The AML samples tested in this study included samples from patients who were resistant to conventional chemotherapy and/or had FLT3-ITD mutations demonstrating the high potential of OSI-461 in human AML.
Current Approaches in the Treatment of Relapsed and Refractory Acute Myeloid Leukemia
Ramos, Nestor R.; Mo, Clifton C.; Karp, Judith E.; Hourigan, Christopher S.
2015-01-01
The limited sensitivity of the historical treatment response criteria for acute myeloid leukemia (AML) has resulted in a different paradigm for treatment compared with most other cancers presenting with widely disseminated disease. Initial cytotoxic induction chemotherapy is often able to reduce tumor burden to a level sufficient to meet the current criteria for “complete” remission. Nevertheless, most AML patients ultimately die from their disease, most commonly as clinically evident relapsed AML. Despite a variety of available salvage therapy options, prognosis in patients with relapsed or refractory AML is generally poor. In this review, we outline the commonly utilized salvage cytotoxic therapy interventions and then highlight novel investigational efforts currently in clinical trials using both pathway-targeted agents and immunotherapy based approaches. We conclude that there is no current standard of care for adult relapsed or refractory AML other than offering referral to an appropriate clinical trial. PMID:25932335
Massive periosteal reaction a presenting feature of acute megakaryocytic leukemia.
Ueda, Takahiro; Ito, Yasuhiko; Maeda, Miho; Fukunaga, Yoshitaka
2007-12-01
Acute megakaryoblastic leukemia (AML M7) is a biologically heterogeneous form of acute myeloid leukemia accounting for 14.6% of cases. In many instances in the past, AML M7 has been classified as undifferentiated leukemia, myelodysplasia, myelofibrosis or some other disease because of its complex clinical presentation or the difficulty of obtaining and interpreting bone marrow samples. However, with currently available morphological, cytochemical, cytogenetic and immunophenotypic methods, AML M7 can now be reliably diagnosed. Although the radiographic spectrum of bony changes in leukemia have been well characterized, skeletal X-ray abnormalities in the setting of AML M7 in pediatric patients have been described in few reports that were associated with bone marrow fibrosis. Here we report on a 14-month-old girl who presented with a massive periosteal reaction of the extremities and clavicles associated with myelofibrosis, a presenting feature of AML M7. The bone changes were very unusual in this case.
Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W; Papadopoulos, Nickolas; Malek, Sami N
2011-11-24
To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell lines uncovered 4 (21%) BCORL1 mutated cell lines. The majority (87%) of the mutations in BCORL1 were predicted to inactivate the gene product as a result of nonsense mutations, splice site mutation, or out-of-frame insertions or deletions. These results indicate that BCORL1 by genetic criteria is a novel candidate tumor suppressor gene, joining the growing list of genes recurrently mutated in AML.
Immunotherapy of elderly acute myeloid leukemia: light at the end of a long tunnel?
Rafelson, William M; Reagan, John L; Fast, Loren D; Lim, Seah H
2017-11-01
Although it is possible to induce remission in the majority of the patients with acute myeloid leukemia (AML), many patients still die due to disease relapse. Immunotherapy is an attractive option. It is more specific. The memory T cells induced by immunotherapy may also provide the long-term tumor immunosurveillance to prevent disease relapse. Although immunotherapy of AML started in the early 1970s, its clinical impact has been disappointing. Recent advances in tumor immunology and immunotherapeutic agents have rekindled interest. Here, we provide a review of the history of AML immunotherapy, discuss why AML is well suited for immunotherapeutic approaches and present the biological obstacles that affect the success of immunotherapy. Finally, we put forward a new paradigm of AML immunotherapy that utilizes a combination of immunotherapeutic agents sequentially to enhance the in vivo tumor immunogenicity and effective priming and propagation of tumor-specific cytotoxic T cells.
Liu, Bingshan; Narurkar, Roshni; Hanmantgad, Madhura; Zafar, Wahib; Song, Yongping; Liu, Delong
2018-05-21
Conventional combination therapies have not resulted in considerable progress in the treatment of acute myeloid leukemia (AML). Elderly patients with AML and poor risk factors have grave prognosis. Midostaurin has been recently approved for the treatment of FLT-3-mutated AML. Venetoclax, a BCL-2 inhibitor, has been approved for the treatment of relapsed and/or refractory chronic lymphoid leukemia. Clinical trials on applying venetoclax in combination with cytarabine and other agents to treat various hematological malignancies are currently underway. Here, we present a case of a male patient with poor performance status and who developed AML following allogeneic hematopoietic stem cell transplant for high-risk myelodysplasia. The patient with high risk AML achieved complete response to the combined treatment regimen of low-dose cytarabine and venetoclax. Furthermore, we reviewed current clinical trials on the use of venetoclax for hematological malignancies.
Ly-Sunnaram, Beatrice; Henry, Catherine; Gandemer, Virginie; Mee, Franseza Le; Burtin, Florence; Blayau, Martine; Cayuela, Jean-Michel; Oster, Magalie; Clech, Philippe; Rambeau, Marc; Marie, Celine; Pampin, Cecilia; Edan, Christine; Gall, Edouard Le; Goasguen, Jean E
2005-09-01
We describe here a late extramedullary ovarian relapse in an 18-year-old female who was diagnosed with hypotetraploid cell acute lymphoblastic leukaemia (cALL) at the age of 6. At both occurrences of the disease cells were analyzed by morphology, immunophenotyping, cytogenetics and molecular methods. TEL/AML1 was detected by RT-PCR and FISH analysis in both events. We demonstrated, using detection of IGH/TCR rearrangements and TEL/AML1 breakpoints sequencing that the cells were clonally related. Moreover, interphasic FISH using TEL and AML1 probes showed the loss of a second TEL at the time of relapse. This observation confirms that TEL/AML1 alone is not sufficient to trigger ALL and that TEL deletion is a secondary event in leukemogenesis. To our knowledge, it is the first complete description of extramedullary ALL relapse combining all methodologies.
Yue, Zongwei; Xiao, Xinhua; Wu, Jinbao; Zhou, Xiaozhou; Liu, Weilong; Liu, Yaxi; Li, Houhua; Chen, Guoqiang; Wu, Yingli; Lei, Xiaoguang
2018-02-23
Acute myeloid leukemia (AML) is a hematologic malignancy that is characterized by clonal proliferation of myeloid blasts. Despite the progress that has been made in the treatment of various malignant hematopoietic diseases, the effective treatment of AML remains very challenging. Differentiation therapy has emerged as a promising approach for leukemia treatment, and new and effective chemical agents to trigger the differentiation of AML cells, especially drug-resistant cells, are urgently required. Herein, the natural product jungermannenone C, a tetracyclic diterpenoid isolated from liverworts, is reported to induce cell differentiation in AML cells. Interestingly, the unnatural enantiomer of jungermannenone C (1) was found to be more potent than jungermannenone C in inducing cell differentiation. Furthermore, compound 1 targets peroxiredoxins I and II by selectively binding to the conserved cysteine residues and leads to cellular reactive oxygen species accumulation. Accordingly, ent-jungermannenone C (1) shows potential for further investigation as an effective differentiation therapy against AML.
Chevallier, P; Labopin, M; Turlure, P; Prebet, T; Pigneux, A; Hunault, M; Filanovsky, K; Cornillet-Lefebvre, P; Luquet, I; Lode, L; Richebourg, S; Blanchet, O; Gachard, N; Vey, N; Ifrah, N; Milpied, N; Harousseau, J-L; Bene, M-C; Mohty, M; Delaunay, J
2011-06-01
A simplified prognostic score is presented based on the multivariate analysis of 138 refractory/relapsed acute myeloid leukaemia (AML) patients (median age 55 years, range: 19-70) receiving a combination of intensive chemotherapy+Gemtuzumab as salvage regimen. Overall, 2-year event-free survival (EFS) and overall survival (OS) were 29±4% and 36±4%, respectively. Disease status (relapse <12 months, including refractory patients), FLT3-ITD-positive status and high-risk cytogenetics were the three strongest independent adverse prognostic factors for OS and EFS in this series. We then defined three subgroups with striking different outcomes at 2 years: no adverse factor (favourable, N=36): OS 58%, EFS 45%; one adverse factor (intermediate, N=54): OS 37%, EFS 31%; two or three adverse factors (poor, N=43): OS 12%, EFS 12% (P<10(-4), P=0.001). This new simplified Leukemia Prognostic Scoring System was then validated on an independent cohort of 111 refractory/relapsed AML patients. This new simplified prognostic score, using three clinical and biological parameters routinely applied, allow to discriminate around two third of the patients who should benefit from a salvage intensive regimen in the setting of refractory/relapsed AML patients. The other one third of the patients should receive investigational therapy.
Esophageal Candidiasis as the Initial Manifestation of Acute Myeloid Leukemia.
Komeno, Yukiko; Uryu, Hideki; Iwata, Yuko; Hatada, Yasumasa; Sakamoto, Jumpei; Iihara, Kuniko; Ryu, Tomiko
2015-01-01
A 47-year-old woman presented with persistent dysphagia. A gastroendoscopy revealed massive esophageal candidiasis, and oral miconazole was prescribed. Three weeks later, she returned to our hospital without symptomatic improvement. She was febrile, and blood tests showed leukocytosis (137,150 /μL, blast 85%), anemia and thrombocytopenia. She was diagnosed with acute myeloid leukemia (AML). She received chemotherapy and antimicrobial agents. During the recovery from the nadir, bilateral ocular candidiasis was detected, suggesting the presence of preceding candidemia. Thus, esophageal candidiasis can be an initial manifestation of AML. Thorough examination to detect systemic candidiasis is strongly recommended when neutropenic patients exhibit local candidiasis prior to chemotherapy.
Accelerate Genomic Aging in Congenital Neutropenia
2017-10-01
syndrome (MDS) or acute myeloid leukemia (AML) in patients with congenital neutropenia. We hypothesize that replicative stress and/or changes in the...neutropenia; Shwachman Diamond syndrome ; Cyclic neutropenia; Hematopoietic stem cells; Granulocyte colony-stimulating factor; Acute myeloid leukemia... syndrome (MDS) or acute myeloid leukemia (AML). The cumulative incidence of MDS/AML in patients with SCN treated with G-CSF is 22%. Likewise, the
First Approved Kinase Inhibitor for AML.
Rasko, John E J; Hughes, Timothy P
2017-11-16
Activating mutations of FLT3 occur in about 30% of acute myeloid leukemia (AML) cases and are associated with relapse and poor prognosis. Midostaurin is the first drug approved for AML since 2000, and the first multi-kinase inhibitor approved for the FLT3-mutant subtype. To view this Bench to Bedside, open or download the PDF. Copyright © 2017. Published by Elsevier Inc.
Acute myeloid leukemia: advancing clinical trials and promising therapeutics
Daver, Naval; Cortes, Jorge; Kantarjian, Hagop; Ravandi, Farhad
2016-01-01
Recent progress in understanding the biology of acute myeloid leukemia (AML) and the identification of targetable driver mutations, leukemia specific antigens and signal transduction pathways has ushered in a new era of therapy. In many circumstances the response rates with such targeted or antibody-based therapies are superior to those achieved with standard therapy and with decreased toxicity. In this review we discuss novel therapies in AML with a focus on two major areas of unmet need: (1) single agent and combination strategies to improve frontline therapy in elderly patients with AML and (2) molecularly targeted therapies in the frontline and salvage setting in all patients with AML. PMID:26910051
Meyer, Stefan; Ravandi-Kashani, Farhad; Borthakur, Gautam; Coombes, Kevin R.; Zhang, Nianxiang; Kornblau, Steven
2016-01-01
Acute myeloid leukemia (AML) is a heterogenous disease with differential oncogene association, outcome and treatment regimens. Treatment strategies for AML have improved outcome but despite increased molecular biological information AML is still associated with poor prognosis. Proteomic analysis on the effects of a range of leukemogenic oncogenes showed that the protein transglutaminase 2 (TG2) is expressed at greater levels as a consequence of oncogenic transformation. Further analysis of this observation was performed with 511 AML samples using reverse phase proteomic arrays, demonstrating that TG2 expression was higher at relapse than diagnosis in many cases. In addition elevated TG2 expression correlated with increased expression of numerous adhesion proteins and many apoptosis regulating proteins, two processes related to leukemogenesis. TG2 has previously been linked to drug resistance in cancer and given the negative correlation between TG2 levels and peripheral blasts observed increased TG2 levels may lead to the protection of the leukemic stem cell due to increased adhesion/reduced motility. TG2 may therefore form part of a network of proteins that define poor outcome in AML patients and potentially offer a target to sensitize AML stem cells to drug treatment. PMID:23576428
Smoking Adversely Affects Survival in Acute Myeloid Leukemia Patients
Varadarajan, Ramya; Licht, Andrea S; Hyland, Andrew J; Ford, Laurie A.; Sait, Sheila N.J.; Block, Annemarie W.; Barcos, Maurice; Baer, Maria R.; Wang, Eunice S.; Wetzler, Meir
2011-01-01
Summary Smoking adversely affects hematopoietic stem cell transplantation outcome. We asked whether smoking affected outcome of newly diagnosed acute myeloid leukemia (AML) patients treated with chemotherapy. Data were collected on 280 AML patients treated with high-dose cytarabine and idarubicin-containing regimens at Roswell Park Cancer Institute who had smoking status data at diagnosis. Patients’ gender, age, AML presentation (de novo vs. secondary), white blood cell (WBC) count at diagnosis, karyotype and smoking status (never vs. ever) were analyzed. Among the 161 males and 119 females with a median follow-up of 12.9 months, 101 (36.1%) had never smoked and 179 (63.9%) were ever smokers. The proportion of patients between never and ever smokers was similar with respect to age, AML presentation, WBC count at diagnosis or karyotype based on univariate analysis of these categorical variables. Never smokers had a significantly longer overall survival (60.32 months) compared to ever smokers (30.89; p=0.005). In multivariate analysis incorporating gender, age, AML presentation, WBC count, karyotype, and smoking status as covariates, age, karyotype and smoking status retained prognostic value for overall survival. In summary, cigarette smoking has a deleterious effect on overall survival in AML. PMID:21520043
DeFilipp, Zachariah; Huynh, Donny V; Fazal, Salman; Sahovic, Entezam
2012-01-01
The development of hematologic malignancy in the presence of chronic lymphocytic leukemia (CLL) is rare. We present a case of acute myeloid leukemia (AML) with del(7q) occurring in a patient with a 4-year history of untreated CLL. Application of flow cytometry and immunohistochemistry allowed for characterization of two distinct coexisting malignant cell populations. After undergoing induction and consolidation chemotherapy, the patient achieved complete remission of AML with the persistence of CLL. Allogeneic transplantation was pursued given his unfavorable cytogenetics. Subsequent matched unrelated donor allogeneic stem cell transplantation resulted in full engraftment and complete remission, with no evidence of AML or CLL. Due to a scarcity of reported cases, insight into treatment and prognosis in cases of concurrent AML and CLL is limited. However, prognosis seems dependent on the chemosensitivity of AML. CLL did not have a detrimental effect on treatment or transplant outcome in our case. This is the first reported case of concomitant de novo AML and CLL to undergo allogeneic transplantation. The patient remained in complete hematologic and cytogenetic remission of both malignancies over a year after transplantation.
Renal Angiomyolipoma: Mid- to Long-Term Results Following Embolization with Onyx.
Thulasidasan, Narayanan; Sriskandakumar, Srividhiya; Ilyas, Shahzad; Sabharwal, Tarun
2016-12-01
Percutaneous transcatheter embolization is currently the preferred treatment for ruptured or enlarging renal angiomyolipoma (AML), although the optimum choice of embolic material has not yet been established. We present mid- to long-term outcomes following embolization of AMLs with Onyx. Ten AMLs in seven patients (including two with tuberous sclerosis) were embolized with Onyx. Patients were followed-up clinically, with tumour size and renal function measured pre- and post-procedure. Mean pre-treatment AML size was 63.4 mm (range 42-100). Mean clinical follow-up was 431.4 days (range 153-986) and imaging follow-up 284.2 days (range 30-741). There was no haemorrhage from treated lesions within the follow-up period. Of patients who had cross-sectional imaging pre- and post-procedure, mean decrease in AML size of 22 mm was seen after Onyx embolization (p = 0.0058, 95 % CI 9.13-34.87). No significant difference between serum creatinine was seen pre- and post-procedure (p = 0.54, 95 % CI 8.63-4.85). Onyx embolization of renal AMLs is effective in the medium to long term, with theoretical benefits in safety and durability of result.
Pombo-de-Oliveira, Maria S; Andrade, Francianne Gomes; Brisson, Gisele Dallapicola; dos Santos Bueno, Filipe Vicente; Cezar, Ingrid Sardou; Noronha, Elda Pereira
2017-01-01
Acute myeloid leukaemia (AML) in early childhood is characterised by a high frequency of recurrent genomic aberrations associated with distinct myeloid subtypes, clinical outcomes and pathogenesis. Genomic instability is the first step of pathogenic mechanism in early childhood AML. A sum of adverse events is necessary to the development of infant AML (i-AML), which includes latency of biochemical-molecular and cellular effects. Inherited genetic susceptibility associated with exposures to biotransformation substances can modulate the risk of DNA damage and it is a very important piece in the pathogenic puzzle. In this review, we have aimed to explore the chain of events in the time-points of the natural history of i-AML, which includes maternal exposures during pregnancy, the speculations about the formation of somatic mutations during foetal life and the secondary genomic aberrations associated with i-AML. The modulation of risk conferred by xenobiotic metabolism´s genes variants is the bottom line of the pathogenic process. Since we have conducted observational and molecular investigations in early childhood leukaemia, the data focused here is based on Brazilian findings with summarised results of our experience with epidemiological and molecular studies in early-age leukaemia. PMID:29225689
Rational Combinations of Targeted Agents in AML
Bose, Prithviraj; Grant, Steven
2015-01-01
Despite modest improvements in survival over the last several decades, the treatment of AML continues to present a formidable challenge. Most patients are elderly, and these individuals, as well as those with secondary, therapy-related, or relapsed/refractory AML, are particularly difficult to treat, owing to both aggressive disease biology and the high toxicity of current chemotherapeutic regimens. It has become increasingly apparent in recent years that coordinated interruption of cooperative survival signaling pathways in malignant cells is necessary for optimal therapeutic results. The modest efficacy of monotherapy with both cytotoxic and targeted agents in AML testifies to this. As the complex biology of AML continues to be elucidated, many “synthetic lethal” strategies involving rational combinations of targeted agents have been developed. Unfortunately, relatively few of these have been tested clinically, although there is growing interest in this area. In this article, the preclinical and, where available, clinical data on some of the most promising rational combinations of targeted agents in AML are summarized. While new molecules should continue to be combined with conventional genotoxic drugs of proven efficacy, there is perhaps a need to rethink traditional philosophies of clinical trial development and regulatory approval with a focus on mechanism-based, synergistic strategies. PMID:26113989
Iwasaki, Junko; Onozawa, Masahiro; Takahashi, Shojiro; Okada, Kohei; Takahata, Mutsumi; Shigematsu, Akio; Kahata, Kaoru; Kondo, Takeshi; Hashino, Satoshi; Imamura, Masahiro; Asaka, Masahiro
2011-03-01
A 56-year-old female was diagnosed with acute myeloid leukemia (FAB: AML-M1). G-banding karyotype of her bone marrow showed complete tetraploidy (92, XXXX [24/24]). Although she achieved complete remission (CR) after induction therapy and maintained CR during consolidation therapy, relapse occurred only 2 months after discharge. When the relapse occurred, bone marrow karyotypic analysis showed complete tetraploidy again. The patient received reduced-intensity cord blood transplantation (RI-CBT), which induced CR for the second time. The patient is currently alive 24 months after transplantation and there have not been any signs of recurrence to date. There have been a few reports of AML with near-tetraploidy, but cases of AML with complete tetraploidy are extremely rare. Tetraploid AML has been reported to have a poor prognosis and there have been very few cases maintaining CR over the long term after chemotherapy alone. This is the first case of complete tetraploid AML successfully treated by RI-CBT. The clinical course of this case suggests that hematopoietic stem cell transplantation during the first CR phase should be considered a treatment option for tetraploid AML.
Xu, Xuelian; Xie, Chengzhi; Edwards, Holly; Zhou, Hui; Buck, Steven A; Ge, Yubin
2011-02-16
Pediatric acute myeloid leukemia (AML) remains a challenging disease to treat even with intensified cytarabine-based chemotherapy. Histone deacetylases (HDACs) have been reported to be promising therapeutic targets for treating AML. However, HDAC family members that are involved in chemotherapy sensitivities remain unknown. In this study, we sought to identify members of the HDAC family that are involved in cytarabine sensitivities, and to select the optimal HDACI that is most efficacious when combined with cytarabine for treating children with AML. Expression profiles of classes I, II, and IV HDACs in 4 pediatric AML cell lines were determined by Western blotting. Inhibition of class I HDACs by different HDACIs was measured post immnunoprecipitation. Individual down-regulation of HDACs in pediatric AML cells was performed with lentiviral shRNA. The effects of cytarabine and HDACIs on apoptosis were determined by flow cytometry analysis. Treatments with structurally diverse HDACIs and HDAC shRNA knockdown experiments revealed that down-regulation of both HDACs 1 and 6 is critical in enhancing cytarabine-induced apoptosis in pediatric AML, at least partly mediated by Bim. However, down-regulation of HDAC2 may negatively impact cytarabine sensitivities in the disease. At clinically achievable concentrations, HDACIs that simultaneously inhibited both HDACs 1 and 6 showed the best anti-leukemic activities and significantly enhanced cytarabine-induced apoptosis. Our results further confirm that HDACs are bona fide therapeutic targets for treating pediatric AML and suggest that pan-HDACIs may be more beneficial than isoform-specific drugs.
Man, Na; Tan, Yurong; Sun, Xiao-Jian; Liu, Fan; Cheng, Guoyan; Greenblatt, Sarah M; Martinez, Camilo; Karl, Daniel L; Ando, Koji; Sun, Ming; Hou, Dan; Chen, Bingyi; Xu, Mingjiang; Yang, Feng-Chun; Chen, Zhu; Chen, Saijuan; Nimer, Stephen D; Wang, Lan
2017-05-18
AML1-ETO (AE), a fusion oncoprotein generated by t(8;21), can trigger acute myeloid leukemia (AML) in collaboration with mutations including c-Kit, ASXL1/2, FLT3, N-RAS, and K-RAS. Caspase-3, a key executor among its family, plays multiple roles in cellular processes, including hematopoietic development and leukemia progression. Caspase-3 was revealed to directly cleave AE in vitro, suggesting that AE may accumulate in a Caspase-3-compromised background and thereby accelerate leukemogenesis. Therefore, we developed a Caspase-3 knockout genetic mouse model of AML and found that loss of Caspase-3 actually delayed AML1-ETO9a (AE9a)-driven leukemogenesis, indicating that Caspase-3 may play distinct roles in the initiation and/or progression of AML. We report here that loss of Caspase-3 triggers a conserved, adaptive mechanism, namely autophagy (or macroautophagy), which acts to limit AE9a-driven leukemia. Furthermore, we identify ULK1 as a novel substrate of Caspase-3 and show that upregulation of ULK1 drives autophagy initiation in leukemia cells and that inhibition of ULK1 can rescue the phenotype induced by Caspase-3 deletion in vitro and in vivo. Collectively, these data highlight Caspase-3 as an important regulator of autophagy in AML and demonstrate that the balance and selectivity between its substrates can dictate the pace of disease. © 2017 by The American Society of Hematology.
Schetelig, J; Schaich, M; Schäfer-Eckart, K; Hänel, M; Aulitzky, W E; Einsele, H; Schmitz, N; Rösler, W; Stelljes, M; Baldus, C D; Ho, A D; Neubauer, A; Serve, H; Mayer, J; Berdel, W E; Mohr, B; Oelschlägel, U; Parmentier, S; Röllig, C; Kramer, M; Platzbecker, U; Illmer, T; Thiede, C; Bornhäuser, M; Ehninger, G
2015-05-01
The optimal timing of allogeneic hematopoietic stem cell transplantation (HCT) in acute myeloid leukemia (AML) is controversial. We report on 1179 patients with a median age of 48 years who were randomized upfront. In the control arm, sibling HCT was scheduled in the first complete remission for intermediate-risk or high-risk AML and matched unrelated HCT in complex karyotype AML. In the experimental arm, matched unrelated HCT in first remission was offered also to patients with an FLT3-ITD (FMS-like tyrosine kinase 3-internal tandem duplication) allelic ratio >0.8, poor day +15 marrow blast clearance and adverse karyotypes. Further, allogeneic HCT was recommended in high-risk AML to be performed in aplasia after induction chemotherapy. In the intent-to-treat (ITT) analysis, superiority of the experimental transplant strategy could not be shown with respect to overall survival (OS) or event-free survival. As-treated analyses suggest a profound effect of allogeneic HCT on OS (HR 0.73; P=0.002) and event-free survival (HR 0.67; P<0.001). In high-risk patients, OS was significantly improved after allogeneic HCT in aplasia (HR 0.64; P=0.046) and after HCT in remission (HR 0.74; P=0.03). Although superiority of one study arm could not be demonstrated in the ITT analysis, secondary analyses suggest that early allogeneic HCT is a promising strategy for patients with high-risk AML.
Zuna, J; Hrusák, O; Kalinová, M; Muzíková, K; Starý, J; Trka, J
1999-01-01
The presence of TEL/AML1 fusion gene in childhood acute lymphoblastic leukaemia (ALL) defines a subgroup of patients with better than average outcome. However, the prognostic significance of this aberration has recently been disputed by the Berlin-Frankfurt-Münster (BFM) study group due to its relatively high incidence found in relapsed patients (19.6% and 21.9%, in two cohorts). In contrast, only four out of 45 (8.9%) unselected relapsed patients (all of whom had been treated according to BFM protocols) in the Czech Republic carry this fusion. From March 1995 to June 1998, 41 out of 190 (21.6%) newly diagnosed children with ALL were TEL/AML1-positive. There is a statistically significant difference between the incidence of TEL/AML1 fusion at diagnosis and at relapse within our group (P = 0.035). Interim analysis of the minimal residual disease (MRD) detection shows heterogeneity within the group of newly diagnosed TEL/AML1-positive leukaemias--10 out of 24 patients tested at the end of induction therapy had detectable levels of MRD. However, only one of these patients reached relapse-predictive level (10(-3)) of MRD. In conclusion, we corroborate low frequency of TEL/AML1 positivity among relapsed patients with ALL among Czech children who are treated by the BFM protocols. Moreover, we demonstrate different patterns of bone marrow clean-up in TEL/AML1-positive patients.
Dietrich, Philipp A; Yang, Chen; Leung, Halina H L; Lynch, Jennifer R; Gonzales, Estrella; Liu, Bing; Haber, Michelle; Norris, Murray D; Wang, Jianlong; Wang, Jenny Yingzi
2014-11-20
β-catenin is required for establishment of leukemic stem cells (LSCs) in acute myeloid leukemia (AML). Targeted inhibition of β-catenin signaling has been hampered by the lack of pathway components amenable to pharmacologic manipulation. Here we identified a novel β-catenin regulator, GPR84, a member of the G protein-coupled receptor family that represents a highly tractable class of drug targets. High GPR84 expression levels were confirmed in human and mouse AML LSCs compared with hematopoietic stem cells (HSCs). Suppression of GPR84 significantly inhibited cell growth by inducing G1-phase cell-cycle arrest in pre-LSCs, reduced LSC frequency, and impaired reconstitution of stem cell-derived mixed-lineage leukemia (MLL) AML, which represents an aggressive and drug-resistant subtype of AML. The GPR84-deficient phenotype in established AML could be rescued by expression of constitutively active β-catenin. Furthermore, GPR84 conferred a growth advantage to Hoxa9/Meis1a-transduced stem cells. Microarray analysis demonstrated that GPR84 significantly upregulated a small set of MLL-fusion targets and β-catenin coeffectors, and downregulated a hematopoietic cell-cycle inhibitor. Altogether, our data reveal a previously unrecognized role of GPR84 in maintaining fully developed AML by sustaining aberrant β-catenin signaling in LSCs, and suggest that targeting the oncogenic GPR84/β-catenin signaling axis may represent a novel therapeutic strategy for AML. © 2014 by The American Society of Hematology.
RSK2 is a new Pim2 target with pro-survival functions in FLT3-ITD-positive acute myeloid leukemia.
Hospital, M-A; Jacquel, A; Mazed, F; Saland, E; Larrue, C; Mondesir, J; Birsen, R; Green, A S; Lambert, M; Sujobert, P; Gautier, E-F; Salnot, V; Le Gall, M; Decroocq, J; Poulain, L; Jacque, N; Fontenay, M; Kosmider, O; Récher, C; Auberger, P; Mayeux, P; Bouscary, D; Sarry, J-E; Tamburini, J
2018-03-01
Acute myeloid leukemia (AML) with the FLT3 internal tandem duplication (FLT3-ITD AML) accounts for 20-30% of AML cases. This subtype usually responds poorly to conventional therapies, and might become resistant to FLT3 tyrosine kinase inhibitors (TKIs) due to molecular bypass mechanisms. New therapeutic strategies focusing on resistance mechanisms are therefore urgently needed. Pim kinases are FLT3-ITD oncogenic targets that have been implicated in FLT3 TKI resistance. However, their precise biological function downstream of FLT3-ITD requires further investigation. We performed high-throughput transcriptomic and proteomic analyses in Pim2-depleted FLT3-ITD AML cells and found that Pim2 predominantly controlled apoptosis through Bax expression and mitochondria disruption. We identified ribosomal protein S6 kinase A3 (RSK2), a 90 kDa serine/threonine kinase involved in the mitogen-activated protein kinase cascade encoded by the RPS6KA3 gene, as a novel Pim2 target. Ectopic expression of an RPS6KA3 allele rescued the viability of Pim2-depleted cells, supporting the involvement of RSK2 in AML cell survival downstream of Pim2. Finally, we showed that RPS6KA3 knockdown reduced the propagation of human AML cells in vivo in mice. Our results point to RSK2 as a novel Pim2 target with translational therapeutic potential in FLT3-ITD AML.
Nesbitt, S D; Shojaee, A; Maa, J-F; Weir, M R
2013-07-01
A prespecified subgroup analysis of an open-label, multicenter, single-arm, dose-titration study is presented. The efficacy and safety of 20-week treatment with an amlodipine (AML)/olmesartan medoxomil (OM)±hydrochlorothiazide (HCTZ) algorithm were assessed in patients with hypertension and type 2 diabetes mellitus (T2DM) who were uncontrolled by antihypertensive monotherapy. Eligible patients received AML/OM 5/20 mg for 4 weeks, followed by stepwise uptitration to AML/OM 5/40 mg, AML/OM 10/40 mg, AML/OM 10/40 mg+HCTZ 12.5 mg and AML/OM 10/40 mg+HCTZ 25 mg at 4-week intervals if blood pressure (BP) remained uncontrolled. The primary end point was the achievement of the seated cuff systolic BP (SeSBP) goal (<140 mm Hg, or <130 mm Hg for patients with T2DM) at week 12. Seated cuff BP was significantly reduced from baseline at all titration dose periods. At week 12, the cumulative SeSBP goal was achieved by 57.9% and 80.1% of patients in the T2DM and non-T2DM subgroups, respectively. Treatment was well tolerated, with low rates of peripheral edema. In summary, switching to a treatment algorithm based on AML/OM±HCTZ after failed monotherapy was safe and improved BP control in patients with hypertension and T2DM.
Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells*
Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P.; Balys, Marlene; Ashton, John M.; Neering, Sarah J.; Lagadinou, Eleni D.; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L.; O'Dwyer, Kristen M.; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K.; Munger, Joshua; Crooks, Peter A.; Becker, Michael W.; Jordan, Craig T.
2013-01-01
The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526
Homeland Security Lessons for the United States
2004-06-01
international standard for AML / CFT practices is set by the forty Recommendations of the Financial Action Task Force, or FATF, an inter-governmental...to foster sound AML / CFT practices. Singapore has a strong tradition for rigorous supervision of financial institutions. The two aspects of this...supervisory process with regards to AML / CFT are: issuing detailed guidelines to financial institutions, setting out their obligations with respect to
Ho, Anthony D; Schetelig, Johannes; Bochtler, Tilmann; Schaich, Markus; Schäfer-Eckart, Kerstin; Hänel, Mathias; Rösler, Wolf; Einsele, Hermann; Kaufmann, Martin; Serve, Hubert; Berdel, Wolfgang E; Stelljes, Matthias; Mayer, Jiri; Reichle, Albrecht; Baldus, Claudia D; Schmitz, Norbert; Kramer, Michael; Röllig, Christoph; Bornhäuser, Martin; Thiede, Christian; Ehninger, Gerhard
2016-03-01
Allogeneic hematopoietic cell transplantation (alloHCT) as a postremission therapy in patients with FLT3-ITD-positive intermediate-risk acute myeloid leukemia (AML) remains controversial. FLT3-ITD mutations are heterogeneous with respect to allelic ratio, location, and length of the insertion, with a high mutant-to-wild-type ratio consistently associated with inferior prognosis. We retrospectively analyzed the role of alloHCT in first remission in relationship to the allelic ratio and presence or absence of nucleophosmin 1 mutations (NPM1) in the Study Alliance Leukemia AML2003 trial. FLT3-ITD mutations were detected in 209 patients and concomitant NPM1 mutations in 148 patients. Applying a predefined cutoff ratio of .8, AML was grouped into high- and low-ratio FLT3-ITD AML (HR(FLT3-ITD) and LR(FLT3-ITD)). Sixty-one patients (29%) were transplanted in first remission. Overall survival (OS) (HR, .3; 95% CI, .16 to .7; P = .004) and event-free survival (EFS) (HR, .4; 95% CI, .16 to .9; P = .02) were significantly increased in patients with HR(FLT3-ITD) AML who received alloHCT as consolidation treatment compared with patients who received consolidation chemotherapy. Patients with LR(FLT3-ITD) AML and wild-type NPM1 who received alloHCT in first remission had increased OS (HR, .3; 95% CI, .1 to .8; P = .02) and EFS (HR, .2; 95% CI, .1 to .8; P = .02), whereas alloHCT in first remission did not have a significant impact on OS and EFS in patients with LR(FLT3-ITD) AML and concomitant NPM1 mutation. In conclusion, our results provide additional evidence that alloHCT in first remission improves EFS and OS in patients with HR(FLT3-ITD) AML and in patients with LR(FLT3-ITD) AML and wild-type NPM1. Copyright © 2016 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Seismic images of multiple magma sills beneath the East Pacific Rise
NASA Astrophysics Data System (ADS)
Marjanovic, M.; Carbotte, S. M.; Carton, H. D.; Mutter, J. C.; Nedimovic, M. R.; Canales, J.
2013-12-01
Along fast and intermediate spreading centers, thin and narrow axial magma lenses (AMLs) are detected beneath much of the ridge axis, and the notion that the AML is the primary melt reservoir for dike intrusions and volcanic eruptions that build the upper crust is commonly accepted. However the role of the AML in construction of the lower crust is still actively debated. Some models based on geochemistry and structural observations from ophiolites suggest that formation of the lower crustal gabbro section takes place in situ, from multiple small magma sills, with the AML being the shallowest of these. Here, we present new observations from multichannel seismic data collected in 2008 along the East Pacific Rise (EPR) for seismic reflectors below the AML or sub-axial magma lens (SAML). The most prominent SAML events are found between latitudes 9°20' and 9°56'N, where they appear as moderately bright, discontinuous reflectors, at ~ 50 to 300 ms (~ 200-600 m) below the AML. From an analysis of the characteristics of these events, we rule out possible 'artifact' origins for the SAML including, seafloor side scattering, out-of-plane imaging of the AML or other crustal horizons, internal multiples, and the presence of a P-to-S converted phase (PAMLS). We interpret these deep melt lenses to have a low crystalline component (i.e. they are mostly molten). Disruptions in the SAML reflector, represented by relatively abrupt steps in two-way travel time are collocated with small-scale discontinuities in the AML and further support the notion of crustal accretion through small magmatic units. In addition, within the area of documented volcanic eruptions in 1991-1992 and 2005-2006, two prominent gaps centered at 9°46' and 9°50.5' N in the SAML reflectors are identified. We hypothesize that magma from these deeper lenses have also contributed to the eruption, implying hydraulic connectivity between the AML and SAMLs during eruption events. We suggest that the SAMLs play an important role in eruption triggering and processes of magma lens replenishment and magma fractionation beneath this fast spreading ridge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yan; Tang, Ping; Chen, Yanli
microRNA-125b has been reported to play an novel biological function in the progression and development of several kinds of leukemia. However, the detail role of miR-125b in acute myeloid leukemia (AML) is remains largely unknown. The present study aimed to investigate the biological role of miR-125b in AML and the potential molecular mechanism involved in this process. Our results showed that overexpression of miR-125b suppressed AML cells proliferation, invasion and promotes cells apoptosis in a dose-dependent manner, while the miR-NC did not show the same effect. In addition, miR-125b induced AML cells G2/M cell cycle arrest in vitro. Overexpression of miR-125bmore » resulted in a significant decrease of the expression of p-IκB-α and inhibition of IκB-α degradation, and the nuclear translocation of NF-κB subunit p65 was abrogated by miR-125b simutaneously. To further verify that miR-125b targeted NF-κB signaling pathway, the NF-κB-regulated downstream genes that were associated with cell cycle arrest and apoptosis was also determined. The results showed that, miR-125b also affect NF-κB-regulated genes expression involved in cell cycle arrest and apoptosis. In conclusion, the present work certificates that miR-125b can significantly inhibit human AML cells invasion, proliferation and promotes cells apoptosis by targeting the NF-κB signaling pathway, and thus it can be viewed as an promising therapeutic target for AML. - Highlights: • Overexpression of miR-125b suppressed AML cells proliferation, invasion and promotes cells apoptosis. • miR-125b induced AML cells G2/M cell cycle arrest in vitro. • miR-125b suppressed AML cells tumorigenicity and promoted cells apoptosis by targeting NF-κB pathway.« less
Díaz-Beyá, Marina; Brunet, Salut; Nomdedéu, Josep; Pratcorona, Marta; Cordeiro, Anna; Gallardo, David; Escoda, Lourdes; Tormo, Mar; Heras, Inmaculada; Ribera, Josep Maria; Duarte, Rafael; de Llano, María Paz Queipo; Bargay, Joan; Sampol, Antonia; Nomdedeu, Mertixell; Risueño, Ruth M.; Hoyos, Montserrat; Sierra, Jorge; Monzo, Mariano; Navarro, Alfons; Esteve, Jordi
2015-01-01
Long non-coding RNAs (lncRNAs) are deregulated in several tumors, although their role in acute myeloid leukemia (AML) is mostly unknown. We have examined the expression of the lncRNA HOX antisense intergenic RNA myeloid 1 (HOTAIRM1) in 241 AML patients. We have correlated HOTAIRM1 expression with a miRNA expression profile. We have also analyzed the prognostic value of HOTAIRM1 expression in 215 intermediate-risk AML (IR-AML) patients. The lowest expression level was observed in acute promyelocytic leukemia (P < 0.001) and the highest in t(6;9) AML (P = 0.005). In 215 IR-AML patients, high HOTAIRM1 expression was independently associated with shorter overall survival (OR:2.04;P = 0.001), shorter leukemia-free survival (OR:2.56; P < 0.001) and a higher cumulative incidence of relapse (OR:1.67; P = 0.046). Moreover, HOTAIRM1 maintained its independent prognostic value within the favorable molecular subgroup (OR: 3.43; P = 0.009). Interestingly, HOTAIRM1 was overexpressed in NPM1-mutated AML (P < 0.001) and within this group retained its prognostic value (OR: 2.21; P = 0.01). Moreover, HOTAIRM1 expression was associated with a specific 33- microRNA signature that included miR-196b (P < 0.001). miR-196b is located in the HOX genomic region and has previously been reported to have an independent prognostic value in AML. miR-196b and HOTAIRM1 in combination as a prognostic factor can classify patients as high-, intermediate-, or low-risk (5-year OS: 24% vs 42% vs 70%; P = 0.004). Determination of HOTAIRM1 level at diagnosis provided relevant prognostic information in IR-AML and allowed refinement of risk stratification based on common molecular markers. The prognostic information provided by HOTAIRM1 was strengthened when combined with miR-196b expression. Furthermore, HOTAIRM1 correlated with a 33-miRNA signature. PMID:26436590
DNMT3A mutations in Chinese childhood acute myeloid leukemia.
Li, Weijing; Cui, Lei; Gao, Chao; Liu, Shuguang; Zhao, Xiaoxi; Zhang, Ruidong; Zheng, Huyong; Wu, Minyuan; Li, Zhigang
2017-08-01
DNA methyltransferase 3A (DNMT3A) mutations have been found in approximately 20% of adult acute myeloid leukemia (AML) patients and in 0% to 1.4% of children with AML, and the hotspots of mutations are mainly located in the catalytic methyltransferase domain, hereinto, mutation R882 accounts for 60%. Although the negative effect of DNMT3A on treatment outcome is well known, the prognostic significance of other DNMT3A mutations in AML is still unclear. Here, we tried to determine the incidence and prognostic significance of DNMT3A mutations in a large cohort in Chinese childhood AML. We detected the mutations in DNMT3A exon 23 by polymerase chain reaction and direct sequencing in 342 children with AML (0-16 years old) from January 2005 to June 2013, treated on BCH-2003 AML protocol. The correlation of DNMT3A mutations with clinical characteristics, fusion genes, other molecular anomalies (FLT3 internal tandem duplication [FLT3-ITD], Nucleophosmin 1, C-KIT (KIT proto-oncogene receptor tyrosine kinase), and Wilms tumor 1 mutations), and treatment outcome were analyzed. DNMT3A mutations were detected in 4 out of 342 (1.2%) patients. Two patients were PML-RARA positive and 1 patient was FLT3-ITD positive. The mutations in coding sequences included S892S, V912A, R885G, and Q886R. Furthermore, there was 1 intronic mutation (c.2739+55A>C) found in 1 patient. No association of DNMT3A mutations with common clinical features was found. Two patients with DNMT3A mutations died of relapse or complications during treatment. One patient gave up treatment due to remission induction failure in day 33. Only 1 patient achieved continuous complete remission. DNMT3A mutations were rare in Chinese children with AML including PML-RARA positive APL. The mutation positions were different from the hotspots reported in adult AML. DNMT3A mutations may have adverse impact on prognosis of children with AML.
A non-canonical Flt3ITD/NF-κB signaling pathway represses DAPK1 in acute myeloid leukemia (AML)
Shanmugam, Rajasubramaniam; Sayar, Hamid; Suvannasankha, Attaya; Goswami, Chirayu; Li, Lang; Gupta, Sushil; Cardoso, Angelo A.; Baghdadi, Tareq Al; Sargent, Katie J.; Cripe, Larry D.; Kalvakolanu, Dhananjaya V.; Boswell, H. Scott
2014-01-01
Purpose DAPK1, a tumor suppressor, is a rate-limiting effector in an ER stress-dependent apoptotic pathway. Its expression is epigenetically suppressed in several tumors. A mechanistic basis for epigenetic/transcriptional repression of DAPK1 was investigated in certain forms of AML with poor prognosis, which lacked ER stress-induced apoptosis. Experimental Design Heterogeneous primary AMLs were screened to identify a subgroup with Flt3ITD in which repression of DAPK1, among NF-κB- and c- jun-responsive genes, was studied. RNAi knockdown studies were performed in Flt3ITD+ve cell line, MV-4-11, to establish genetic epistasis in the pathway Flt3ITD-TAK1-DAPK1 repression, and chromatin immunoprecipitations were performed to identify proximate effector proteins, including TAK1-activated p52NF-κB, at the DAPK1 locus. Results AMLs characterized by normal karyotype with Flt3ITD were found to have 10-100-fold lower DAPK1 transcripts normalized to the expression of c-jun, a transcriptional activator of DAPK1, as compared to a heterogeneous cytogenetic category. Meis1, a c-jun-responsive adverse AML prognostic gene signature was also measured as control. These Flt3ITD+ve AMLs over-express relB, a transcriptional repressor, which forms active heterodimers with p52NF-κB. Chromatin immunoprecipitation assays identified p52NF-κB binding to the DAPK1 promoter along with HDAC2 and HDAC6 in the Flt3ITD+ve human AML cell line MV-4-11. Knockdown of p52NF-κB or its upstream regulator, NIK, de-repressed DAPK1. DAPK1-repressed primary Flt3ITD+ve AMLs had selective nuclear activation of p52NF-κB. Conclusions Flt3ITD promotes a non-canonical pathway via TAK1 and p52NF-κB to suppress DAPK1 in association with HDACs, which explains DAPK1 repression in Flt3ITD+ve AML. PMID:22096027
Harman, Mustafa; Guneyli, Serkan; Sen, Sait; Elmas, Nevra
2014-01-01
Epithelioid angiomyolipoma (E-AML), accounting for 8% of renal angiomyolipoma, is usually associated with tuberous sclerosis (TS) and demonstrates aggressive behavior. E-AML is macroscopically seen as a large infiltrative necrotic tumor with occasional extension into renal vein and/or inferior vena cava. However, without history of TS, renal sinus and venous invasion E-AML would be a challenging diagnosis, which may lead radiologists to misinterpret it as a renal cell carcinoma (RCC). In this case presentation, we aimed to report cross-sectional imaging findings of two cases diagnosed as E-AML and pathological correlation of these aforementioned masses mimicking RCC. PMID:25506021
Acar, Turker; Harman, Mustafa; Guneyli, Serkan; Sen, Sait; Elmas, Nevra
2014-01-01
Epithelioid angiomyolipoma (E-AML), accounting for 8% of renal angiomyolipoma, is usually associated with tuberous sclerosis (TS) and demonstrates aggressive behavior. E-AML is macroscopically seen as a large infiltrative necrotic tumor with occasional extension into renal vein and/or inferior vena cava. However, without history of TS, renal sinus and venous invasion E-AML would be a challenging diagnosis, which may lead radiologists to misinterpret it as a renal cell carcinoma (RCC). In this case presentation, we aimed to report cross-sectional imaging findings of two cases diagnosed as E-AML and pathological correlation of these aforementioned masses mimicking RCC.
Long-term remission in BCR/ABL-positive AML-M6 patient treated with Imatinib Mesylate.
Pompetti, Franca; Spadano, Antonio; Sau, Antonella; Mennucci, Antonio; Russo, Rosa; Catinella, Virginia; Franchi, Paolo Guanciali; Calabrese, Giuseppe; Palka, Giandomenico; Fioritoni, Giuseppe; Iacone, Antonio
2007-04-01
BCR/ABL-positive acute myeloid leukemia (AML) is a rare disease, characterized by a poor prognosis, with resistance to induction chemotherapy and frequent relapses in responsive patients. Here we report a case of BCR/ABL-positive AML-M6 who, after relapse, was treated with Imatinib Mesylate (600 mg/die) and within 4 months achieved a cytogenetic and molecular complete response. After more than 4 years of continuous Imatinib therapy, nested RT-PCR for BCR/ABL is persistently negative. The case reported shows that the response obtained with Imatinib Mesylate in BCR/ABL-positive AML may be long lasting, offering a chance of successful treatment for this poor prognosis group of patients.
The Use of Nanocarriers in Acute Myeloid Leukaemia Therapy: Challenges and Current Status.
Sauvage, Félix; Barratt, Gillian; Herfindal, Lars; Vergnaud-Gauduchon, Juliette
2016-01-01
Chemotherapy for AML is hampered by severe side-effects and failure to eliminate all the blasts that eventually leads to relapse. The use of nanosized particulate drug carriers such as liposomes and polymeric nanoparticles has the potential to improve AML therapy by delivering more of the drug to the disease site, thereby reducing toxicity. For example, encapsulation in liposomes reduces the cardiotoxicity of anthracyclines, giving an improved therapeutic index. Moreover, when the surface properties are engineered appropriately, nanocarriers remain in the circulation and extravasate in tissues with sinusoidal capillaries, one of which is bone marrow, leading to a more favourable distribution of the associated drug. Drug carrier technology contributes to the development of newer drugs, such as nucleic acids that can be protected from degradation and delivered into cells, thus opening the way for gene-silencing strategies. Furthermore, carrier systems provide a means of dispersing poorly water-soluble molecule for in vivo administration and thus increase the "druggability" of new lead compounds, such as heat-shock protein inhibitors. Particulate carriers can transport more than one active agent, allowing synergistic action and theranostic strategies. Notably, phase I and II clinical trials are being performed with CPX-351, a liposomal formulation containing cytarabine and daunorubicin at an optimal ratio. Finally, by attaching suitable ligands to the nanocarrier surface, specific targeting to AML cells can be achieved. In this review, we give examples of successful targeting to folate and transferrin receptors against AML.
Prognostic factors for acute myeloid leukaemia in adults--biological significance and clinical use.
Liersch, Ruediger; Müller-Tidow, Carsten; Berdel, Wolfgang E; Krug, Utz
2014-04-01
Acute myeloid leukaemia (AML) is a heterogeneous disease. Prognosis of AML is influenced both by patient-specific as well as disease-specific factors. Age is the most prominent patient-specific risk factor, while chromosomal aberrations are the strongest disease-specific risk factors. For patients with cytogenetically normal AML, prognosis can be specified by mutational status of the genes NPM1, FLT3 and CEBPA. A growing number of recurrent mutations in additional genes have recently been identified, for which the prognostic effect yet has to be determined. Performance status, geriatric assessment, secondary leukaemia following myelodysplastic syndrome or cytotoxic treatment, common laboratory parameters, leukaemic stem cell frequency, bone marrow microenvironment, gene expression levels, epigenetic changes, micro-RNA's as well as kinetics and depth of response to treatment influence prognosis of AML patients. Despite the high number of established risk factors, only few predictive markers exist which can truly aid therapy decisions in patients with AML. © 2014 John Wiley & Sons Ltd.
Trino, Stefania; Caivano, Antonella; Laurenzana, Ilaria; Tagliaferri, Daniela; Falco, Geppino; Del Vecchio, Luigi; Musto, Pellegrino; De Luca, Luciana
2018-01-01
Acute myeloid leukemias (AML) are clonal disorders of hematopoietic progenitor cells which are characterized by relevant heterogeneity in terms of phenotypic, genotypic, and clinical features. Among the genetic aberrations that control disease development there are microRNAs (miRNAs). miRNAs are small non-coding RNAs that regulate, at post-transcriptional level, translation and stability of mRNAs. It is now established that deregulated miRNA expression is a prominent feature in AML. Functional studies have shown that miRNAs play an important role in AML pathogenesis and miRNA expression signatures are associated with chemotherapy response and clinical outcome. In this review we summarized miRNA signature in AML with different cytogenetic, molecular and clinical characteristics. Moreover, we reviewed the miRNA regulatory network in AML pathogenesis and we discussed the potential use of cellular and circulating miRNAs as biomarkers for diagnosis and prognosis and as therapeutic targets. PMID:29401684
Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia
Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W.
2011-01-01
To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell lines uncovered 4 (21%) BCORL1 mutated cell lines. The majority (87%) of the mutations in BCORL1 were predicted to inactivate the gene product as a result of nonsense mutations, splice site mutation, or out-of-frame insertions or deletions. These results indicate that BCORL1 by genetic criteria is a novel candidate tumor suppressor gene, joining the growing list of genes recurrently mutated in AML. PMID:21989985
Sriskanthadevan, Shrivani; Jeyaraju, Danny V.; Chung, Timothy E.; Prabha, Swayam; Xu, Wei; Skrtic, Marko; Jhas, Bozhena; Hurren, Rose; Gronda, Marcela; Wang, Xiaoming; Jitkova, Yulia; Sukhai, Mahadeo A.; Lin, Feng-Hsu; Maclean, Neil; Laister, Rob; Goard, Carolyn A.; Mullen, Peter J.; Xie, Stephanie; Penn, Linda Z.; Rogers, Ian M.; Dick, John E.; Minden, Mark D.
2015-01-01
Mitochondrial respiration is a crucial component of cellular metabolism that can become dysregulated in cancer. Compared with normal hematopoietic cells, acute myeloid leukemia (AML) cells and patient samples have higher mitochondrial mass, without a concomitant increase in respiratory chain complex activity. Hence these cells have a lower spare reserve capacity in the respiratory chain and are more susceptible to oxidative stress. We therefore tested the effects of increasing the electron flux through the respiratory chain as a strategy to induce oxidative stress and cell death preferentially in AML cells. Treatment with the fatty acid palmitate induced oxidative stress and cell death in AML cells, and it suppressed tumor burden in leukemic cell lines and primary patient sample xenografts in the absence of overt toxicity to normal cells and organs. These data highlight a unique metabolic vulnerability in AML, and identify a new therapeutic strategy that targets abnormal oxidative metabolism in this malignancy. PMID:25631767
Gupta, Sanjeev Kumar; Kumar, Rajive; Chharchhodawala, Taher; Kumar, Lalit
2014-05-19
Pure erythroid leukaemia is a rare subtype of acute myeloid leukaemia (AML) and its occurrence at acute lymphoblastic leukaemia (ALL) relapse has not been reported earlier. A 39-year-old man received chemotherapy for Philadelphia-negative B cell ALL. Subsequently, he developed pure erythroid leukaemia with >80% immature erythroid precursors in bone marrow showing block positivity on periodic acid-Schiff stain, expressing CD71, CD34 but lacking CD235a. The interval between exposure to multidrug chemotherapy including cyclophosphamide and AML diagnosis was 2 years and 9 months. No cytogenetic abnormality was detected at the time of relapse. The patient died 2 weeks after starting AML chemotherapy. The relatively narrow time interval (usually 5-10 years) between chemotherapy and AML development and normal karyotype at relapse raises a possibility of lineage switch besides therapy-related AML as the likely pathogenesis. Further exploration of such cases may unravel the pathways responsible for lineage assignment in pluripotent stem cells. 2014 BMJ Publishing Group Ltd.
Acute myeloid leukemia risk by industry and occupation.
Tsai, Rebecca J; Luckhaupt, Sara E; Schumacher, Pam; Cress, Rosemary D; Deapen, Dennis M; Calvert, Geoffrey M
2014-11-01
Acute myeloid leukemia (AML) is the most common type of leukemia found in adults. Identifying jobs that pose a risk for AML may be useful for identifying new risk factors. A matched case-control analysis was conducted using California Cancer Registry data from 1988 to 2007. This study included 8999 cases of AML and 24 822 controls. Industries with a statistically significant increased AML risk were construction (matched odds ratio [mOR] = 1.13); crop production (mOR = 1.41); support activities for agriculture and forestry (mOR = 2.05); and animal slaughtering and processing (mOR = 2.09). Among occupations with a statistically significant increased AML risk were miscellaneous agricultural workers (mOR = 1.76); fishers and related fishing workers (mOR = 2.02); nursing, psychiatric and home health aides (mOR = 1.65); and janitors and building cleaners (mOR = 1.54). Further investigation is needed to confirm study findings and to identify specific exposures responsible for the increased risks.
Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia
Ford, Anthony M.; Bennett, Caroline A.; Price, Cathy M.; Bruin, M. C. A.; Van Wering, Elisabeth R.; Greaves, Mel
1998-01-01
The TEL (ETV6)−AML1 (CBFA2) gene fusion is the most common reciprocal chromosomal rearrangement in childhood cancer occurring in ≈25% of the most predominant subtype of leukemia— common acute lymphoblastic leukemia. The TEL-AML1 genomic sequence has been characterized in a pair of monozygotic twins diagnosed at ages 3 years, 6 months and 4 years, 10 months with common acute lymphoblastic leukemia. The twin leukemic DNA shared the same unique (or clonotypic) but nonconstitutive TEL-AML1 fusion sequence. The most plausible explanation for this finding is a single cell origin of the TEL-AML fusion in one fetus in utero, probably as a leukemia-initiating mutation, followed by intraplacental metastasis of clonal progeny to the other twin. Clonal identity is further supported by the finding that the leukemic cells in the two twins shared an identical rearranged IGH allele. These data have implications for the etiology and natural history of childhood leukemia. PMID:9539781
Genetic hierarchy and temporal variegation in the clonal history of acute myeloid leukaemia.
Hirsch, Pierre; Zhang, Yanyan; Tang, Ruoping; Joulin, Virginie; Boutroux, Hélène; Pronier, Elodie; Moatti, Hannah; Flandrin, Pascale; Marzac, Christophe; Bories, Dominique; Fava, Fanny; Mokrani, Hayat; Betems, Aline; Lorre, Florence; Favier, Rémi; Féger, Frédéric; Mohty, Mohamad; Douay, Luc; Legrand, Ollivier; Bilhou-Nabera, Chrystèle; Louache, Fawzia; Delhommeau, François
2016-08-18
In acute myeloid leukaemia (AML) initiating pre-leukaemic lesions can be identified through three major hallmarks: their early occurrence in the clone, their persistence at relapse and their ability to initiate multilineage haematopoietic repopulation and leukaemia in vivo. Here we analyse the clonal composition of a series of AML through these characteristics. We find that not only DNMT3A mutations, but also TET2, ASXL1 mutations, core-binding factor and MLL translocations, as well as del(20q) mostly fulfil these criteria. When not eradicated by AML treatments, pre-leukaemic cells with these lesions can re-initiate the leukaemic process at various stages until relapse, with a time-dependent increase in clonal variegation. Based on the nature, order and association of lesions, we delineate recurrent genetic hierarchies of AML. Our data indicate that first lesions, variegation and treatment selection pressure govern the expansion and adaptive behaviour of the malignant clone, shaping AML in a time-dependent manner.
Saia, Marco; Termanini, Alberto; Rizzi, Nicoletta; Mazza, Massimiliano; Barbieri, Elisa; Valli, Debora; Ciana, Paolo; Gruszka, Alicja M.; Alcalay, Myriam
2016-01-01
The AML1/ETO fusion protein found in acute myeloid leukemias functions as a transcriptional regulator by recruiting co-repressor complexes to its DNA binding site. In order to extend the understanding of its role in preleukemia, we expressed AML1/ETO in a murine immortalized pluripotent hematopoietic stem/progenitor cell line, EML C1, and found that genes involved in functions such as cell-to-cell adhesion and cell motility were among the most significantly regulated as determined by RNA sequencing. In functional assays, AML1/ETO-expressing cells showed a decrease in adhesion to stromal cells, an increase of cell migration rate in vitro, and displayed an impairment in homing and engraftment in vivo upon transplantation into recipient mice. Our results suggest that AML1/ETO expression determines a more mobile and less adherent phenotype in preleukemic cells, therefore altering the interaction with the hematopoietic niche, potentially leading to the migration across the bone marrow barrier and to disease progression. PMID:27713544
Guillem, Vicent; Calabuig, Marisa; Brunet, Salut; Esteve, Jordi; Escoda, Lourdes; Gallardo, David; Ribera, Josep-Maria; Queipo de Llano, María Paz; Arnan, Montserrat; Pedro, Carme; Amigo, María Luz; Martí-Tutusaus, Josep M; García-Guiñón, Antoni; Bargay, Joan; Sampol, Antonia; Salamero, Olga; Font, Llorenç; Talarn, Carme; Hoyos, Montserrat; Díaz-Beyá, Marina; Garrido, Ana; Navarro, Blanca; Nomdédeu, Josep; Sierra, Jordi; Tormo, Mar
2018-01-18
Vascular endothelial growth factor C (VEGFC) stimulates leukemia cell proliferation and survival, and promotes angiogenesis. We studied VEGFC expression in bone marrow samples from 353 adult acute myeloid leukemia (AML) patients and its relationship with several clinical, cytogenetic, and molecular variables. We also studied the expression of 84 genes involved in VEGF signaling in 24 patients. We found that VEGFC expression was higher in AML patients with myelodysplasia-related changes (AML-MRC) than in patients with non-AML-MRC. We also found an association between VEGFC expression and the patient cytogenetic risk group, with those with a worse prognosis having higher VEGFC expression levels. No correlation was observed between VEGFC expression and survival or complete remission. VEGFC expression strongly correlated with expression of the VEGF receptors FLT1, KDR, and NRP1. Thus, in this series, VEGFC expression was increased in AML-MRC and in subgroups with a poorer prognosis, but has no impact on survival.
Impact of genetic features on treatment decisions in AML.
Döhner, Hartmut; Gaidzik, Verena I
2011-01-01
In recent years, research in molecular genetics has been instrumental in deciphering the molecular pathogenesis of acute myeloid leukemia (AML). With the advent of the novel genomics technologies such as next-generation sequencing, it is expected that virtually all genetic lesions in AML will soon be identified. Gene mutations or deregulated expression of genes or sets of genes now allow us to explore the enormous diversity among cytogenetically defined subsets of AML, in particular the large subset of cytogenetically normal AML. Nonetheless, there are several challenges, such as discriminating driver from passenger mutations, evaluating the prognostic and predictive value of a specific mutation in the concert of the various concurrent mutations, or translating findings from molecular disease pathogenesis into novel therapies. Progress is unlikely to be fast in developing molecular targeted therapies. Contrary to the initial assumption, the development of molecular targeted therapies is slow and the various reports of promising new compounds will need to be put into perspective because many of these drugs did not show the expected effects.
What happened to anti-CD33 therapy for acute myeloid leukemia?
Jurcic, Joseph G
2012-03-01
CD33, a 67-kDa glycoprotein expressed on the majority of myeloid leukemia cells as well as on normal myeloid and monocytic precursors, has been an attractive target for monoclonal antibody (mAb)-based therapy of acute myeloid leukemia (AML). Lintuzumab, an unconjugated, humanized anti-CD33 mAb, has modest single-agent activity against AML but failed to improve patient outcomes in two randomized trials when combined with conventional chemotherapy. Gemtuzumab ozogamicin, an anti-CD33 mAb conjugated to the antitumor antibiotic calicheamicin, improved survival in a subset of AML patients when combined with standard chemotherapy, but safety concerns led to US marketing withdrawal. The activity of these agents confirms that CD33 remains a viable therapeutic target for AML. Strategies to improve the results of mAb-based therapies for AML include antibody engineering to enhance effector function, use of alternative drugs and chemical linkers to develop safer and more effective drug conjugates, and radioimmunotherapeutic approaches.
Acute myeloid leukemia risk by industry and occupation
Tsai, Rebecca J.; Luckhaupt, Sara E.; Schumacher, Pam; Cress, Rosemary D.; Deapen, Dennis M.; Calvert, Geoffrey M.
2015-01-01
Acute myeloid leukemia (AML) is the most common type of leukemia found in adults. Identifying jobs that pose a risk for AML may be useful for identifying new risk factors. A matched case–control analysis was conducted using California Cancer Registry data from 1988 to 2007. This study included 8999 cases of AML and 24 822 controls. Industries with a statistically significant increased AML risk were construction (matched odds ratio [mOR] = 1.13); crop production (mOR = 1.41); support activities for agriculture and forestry (mOR = 2.05); and animal slaughtering and processing (mOR = 2.09). Among occupations with a statistically significant increased AML risk were miscellaneous agricultural workers (mOR = 1.76); fishers and related fishing workers (mOR = 2.02); nursing, psychiatric and home health aides (mOR = 1.65); and janitors and building cleaners (mOR = 1.54). Further investigation is needed to confirm study findings and to identify specific exposures responsible for the increased risks. PMID:24547710
Acute myeloid leukemia-targeted toxin activates both apoptotic and necroptotic death mechanisms.
Horita, Henrick; Frankel, Arthur E; Thorburn, Andrew
2008-01-01
Acute myelogenous leukemia (AML) is the second most common leukemia with approximately 13,410 new cases and 8,990 deaths annually in the United States. A novel fusion toxin treatment, diphtheria toxin GM-CSF (DT-GMCSF) has been shown to selectively eliminate leukemic repopulating cells that are critical for the formation of AML. We previously showed that DT-GMCSF treatment of U937 cells, an AML cell line, causes activation of caspases and the induction of apoptosis. In this study we further investigate the mechanisms of cell death induced by DT-GMCSF and show that, in addition to the activation of caspase-dependent apoptosis, DT-GMCSF also kills AML cells by simultaneously activating caspase-independent necroptosis. These mechanisms depend on the ability of the targeted toxin to inhibit protein synthesis, and are not affected by the receptor that is targeted or the mechanism through which protein synthesis is blocked. We conclude that fusion toxin proteins may be effective for treating AML cells whether or not they are defective in apoptosis.
Byers, Richard; Hornick, Jason L; Tholouli, Eleni; Kutok, Jeffery; Rodig, Scott J
2012-01-01
IDH1 mutations are present but are uncommon in acute myeloid leukemia (AML) and although prognostically favorable in gliomas their clinical significance in AML is unclear. Some have associated IDH1 mutations with inferior outcome, whereas others found no association with prognosis. Complicating these analyses is the need to sequence IDH1 from leukemic blasts, which is technically challenging and not yet routine. Mutation-specific antibodies enable robust, cost-effective detection of mutations in routine biopsy samples. Immunohistochemistry for the R132H mutation-specific antibody was performed in a tissue microarray containing 159 cases of AML, detecting the R132H mutation in 7 cases (4.4%). Positivity was associated with intermediate risk cytogenetics. Our results demonstrate an association between the R132H IDH1 mutation and intermediate risk cytogenetics in AML, suggesting that R132H IDH1 mutation may be associated with improved clinical outcome and demonstrate the feasibility of using mutation-specific antibodies to genotype and subclassify AML.
NASA Astrophysics Data System (ADS)
Lowell, R. P.; Lata, C.
2016-12-01
The aim of this work is to model heat output from a cooling, convective, crystallizing, and replenished basaltic magma sill, representing an axial magma lens (AML) at mid oceanic ridges. As a simplified version of basaltic melt, we have assumed the melt to be a two-component eutectic system composed of diopside and anorthite. Convective vigor is expressed through the Rayleigh number and heat flux is scaled through a classical relationship between the Rayleigh number and Nusselt number, where the temperature difference driving the convective heat flux is derived from a "viscous" temperature scale reflecting the strong temperature dependent viscosity of the system. Viscosity is modeled as a function of melt composition and temperature using the Tammann-Vogel-Fulcher equation, with parameters fit to the values of observed viscosities along the diopside-anorthite liquidus. It was observed for the un-replenished case, in which crystals fall rapidly to the floor of the AML, model results show that the higher initial concentration of diopside, the more vigorous the convection and the faster the rate of crystallization and decay of heat output. Replenishment of the AML accompanied by modest thickening of the melt layer stabilizes the heat output at values similar to those observed at ridge-axis hydrothermal systems. This study is an important step forward in quantitative understanding of thermal evolution of the axial magma lens at a mid-ocean ridge and the corresponding effect on high-temperature hydrothermal systems. Future work could involve improved replenishment mechanisms, more complex melts, and direct coupling with hydrothermal circulation models.
Cell markers in the recognition of acute myeloblastic leukaemia subtypes.
Andoljsek, Dusan; Preloznik Zupan, Irena; Zontar, Darja; Cernelc, Peter; Mlakar, Uros; Modic, Mojca; Pretnar, Joze; Zver, Samo
2002-01-01
The diagnosis of acute myeloblastic leukaemia (AML) is based on cell morphology, cytogenetic and molecular changes, cell markers and clinical data. Our aim was to establish whether morphology and cell markers are comparable in the evaluation of AML. Bone marrow smears were analysed, and flow cytometry and monoclonal antibodies were used to determine cell type and maturity. Morphology and cell markers correlated differently in different AML subtypes.
Sinner, Penny J; Cerhan, James R; Folsom, Aaron R; Ross, Julie A
2005-10-01
The etiology of acute myeloid leukemia (AML) is relatively unknown. Incidence rates are highest in the agricultural Midwest region compared with other regions of the United States. Many studies have examined the relationship between farming and leukemia, but most have mainly focused on men. We examined the potential association between farm or rural residence and AML in the Iowa Women's Health Study. In 1986, 37,693 women who were free of prior cancer completed a lifestyle and health questionnaire, which included a question on the place of residence. Women were subsequently followed until 2002 for cancer incidence; 79 women developed AML during the time period. Women who lived on a farm at baseline were more likely (relative risk, 1.91; 95% confidence interval, 1.19-3.05) to develop AML compared with women who did not live on a farm. Further, women who reported living on a farm or in a rural area were twice as likely (relative risk, 2.38; 95% confidence interval, 1.33-4.26) to develop AML compared with women who lived in a city with a population of >10,000 people. These results provide evidence that women who live on farms or rural areas are at an increased risk of AML.
Deletion and reduced expression of the Fanconi anemia FANCA gene in sporadic acute myeloid leukemia.
Tischkowitz, M D; Morgan, N V; Grimwade, D; Eddy, C; Ball, S; Vorechovsky, I; Langabeer, S; Stöger, R; Hodgson, S V; Mathew, C G
2004-03-01
Fanconi anemia (FA) is an autosomal recessive chromosomal instability disorder caused by mutations in one of seven known genes (FANCA,C,D2,E,F,G and BRCA2). Mutations in the FANCA gene are the most prevalent, accounting for two-thirds of FA cases. Affected individuals have greatly increased risks of acute myeloid leukemia (AML). This raises the question as to whether inherited or acquired mutations in FA genes might be involved in the development of sporadic AML. Quantitative fluorescent PCR was used to screen archival DNA from sporadic AML cases for FANCA deletions, which account for 40% of FANCA mutations in FA homozygotes. Four heterozygous deletions were found in 101 samples screened, which is 35-fold higher than the expected population frequency for germline FANCA deletions (P<0.0001). Sequencing FANCA in the AML samples with FANCA deletions did not detect mutations in the second allele and there was no evidence of epigenetic silencing by hypermethylation. However, real-time quantitative PCR analysis in these samples showed reduced expression of FANCA compared to nondeleted AML samples and to controls. These findings suggest that gene deletions and reduced expression of FANCA may be involved in the promotion of genetic instability in a subset of cases of sporadic AML.
Antibody therapy for acute myeloid leukaemia.
Gasiorowski, Robin E; Clark, Georgina J; Bradstock, Kenneth; Hart, Derek N J
2014-02-01
Novel therapies with increased efficacy and decreased toxicity are desperately needed for the treatment of acute myeloid leukaemia (AML). The anti CD33 immunoconjugate, gemtuzumab ozogamicin (GO), was withdrawn with concerns over induction mortality and lack of efficacy. However a number of recent trials suggest that, particularly in AML with favourable cytogenetics, GO may improve overall survival. This data and the development of alternative novel monoclonal antibodies (mAb) have renewed interest in the area. Leukaemic stem cells (LSC) are identified as the subset of AML blasts that reproduces the leukaemic phenotype upon transplantation into immunosuppressed mice. AML relapse may be caused by chemoresistant LSC and this has refocused interest on identifying and targeting antigens specific for LSC. Several mAb have been developed that target LSC effectively in xenogeneic models but only a few have begun clinical evaluation. Antibody engineering may improve the activity of potential new therapeutics for AML. The encouraging results seen with bispecific T cell-engaging mAb-based molecules against CD19 in the treatment of B-cell acute lymphobalstic leukaemia, highlight the potential efficacy of engineered antibodies in the treatment of acute leukaemia. Potent engineered mAb, possibly targeting novel LSC antigens, offer hope for improving the current poor prognosis for AML. © 2013 John Wiley & Sons Ltd.
Thuler, Luiz Claudio Santos; Pombo-de-Oliveira, Maria S
2017-03-01
The WHO classification that defines subtypes of acute myeloid leukaemias (AMLs) is relatively unexplored at the population-based level. This study aimed to examine the frequency of acute promyelocytic leukaemia (APL or AML-M3) in Brazil. Data were extracted from 239 cancer centres (2001-2012) and categorized according to the International Classification of Diseases for Oncology (CID-O 3.0) and WHO classification (n = 9116). CID-O3 code 9866 identified 614 APL patients. AML not otherwise specified (NOS) was frequent, and the APL group represented the main subtype specified. The mean age of APL was lower than that of other AMLs (31.5, standard deviation (SD) 18.6 versus 40.9, SD 24.6; p < 0.001); there was a high frequency of APL in the 13-21-year-old (11.8 %) and ≤12.9-year-old (6.4 %) age groups. Time taken to begin treatment (as ≤14 days versus >14 days) and induction death rate were lower in APL than in other AML subtypes (p < 0.001). This report provides additional evidence on the distribution of APL among cases of AML in Brazil.
mTORC1 is essential for leukemia propagation but not stem cell self-renewal
Hoshii, Takayuki; Tadokoro, Yuko; Naka, Kazuhito; Ooshio, Takako; Muraguchi, Teruyuki; Sugiyama, Naoyuki; Soga, Tomoyoshi; Araki, Kimi; Yamamura, Ken-ichi; Hirao, Atsushi
2012-01-01
Although dysregulation of mTOR complex 1 (mTORC1) promotes leukemogenesis, how mTORC1 affects established leukemia is unclear. We investigated the role of mTORC1 in mouse hematopoiesis using a mouse model of conditional deletion of Raptor, an essential component of mTORC1. Raptor deficiency impaired granulocyte and B cell development but did not alter survival or proliferation of hematopoietic progenitor cells. In a mouse model of acute myeloid leukemia (AML), Raptor deficiency significantly suppressed leukemia progression by causing apoptosis of differentiated, but not undifferentiated, leukemia cells. mTORC1 did not control cell cycle or cell growth in undifferentiated AML cells in vivo. Transplantation of Raptor-deficient undifferentiated AML cells in a limiting dilution revealed that mTORC1 is essential for leukemia initiation. Strikingly, a subset of AML cells with undifferentiated phenotypes survived long-term in the absence of mTORC1 activity. We further demonstrated that the reactivation of mTORC1 in those cells restored their leukemia-initiating capacity. Thus, AML cells lacking mTORC1 activity can self-renew as AML stem cells. Our findings provide mechanistic insight into how residual tumor cells circumvent anticancer therapies and drive tumor recurrence. PMID:22622041
Ng, Kwok Peng; Ebrahem, Quteba; Negrotto, Soledad; Mahfouz, Reda Z.; Link, Kevin A.; Hu, Zhenbo; Gu, Xiaorong; Advani, Anjali; Kalaycio, Matt; Sobecks, Ronald; Sekeres, Mikkael; Copelan, Edward; Radivoyevitch, Tomas; Maciejewski, Jaroslaw; Mulloy, James C.; Saunthararajah, Yogen
2013-01-01
Suppression of apoptosis by TP53 mutation contributes to resistance of acute myeloid leukemia (AML) to conventional cytotoxic treatment. Using differentiation to induce irreversible cell cycle exit in AML cells could be a p53-independent treatment alternative, however, this possibility requires evaluation. In vitro and in vivo regimens of the deoxycytidine analogue decitabine that deplete the chromatin modifying enzyme DNA methyl-transferase 1 (DNMT1) without phosphorylating p53 or inducing early apoptosis were determined. These decitabine regimens but not equimolar DNA-damaging cytarabine up regulated the key late differentiation factors CEBPε and p27/CDKN1B, induced cellular differentiation, and terminated AML cell-cycle, even in cytarabine-resistant p53- and p16/CDKN2A-null AML cells. Leukemia initiation by xeno-transplanted AML cells was abrogated but normal hematopoietic stem cell (HSC) engraftment was preserved. In vivo, the low toxicity allowed frequent drug administration to increase exposure, an important consideration for S-phase specific decitabine therapy. In xeno-transplant models of p53-null and relapsed/refractory AML, the non-cytotoxic regimen significantly extended survival compared to conventional cytotoxic cytarabine. Modifying in vivo dose and schedule to emphasize this pathway of decitabine action can bypass a mechanism of resistance to standard therapy. PMID:21701495
Strong association of HMB-45 expression with renal angiomyolipoma.
Yaldiz, Mehmet; Kilinc, Nihal; Ozdemir, Enver
2004-08-01
Angiomyolipoma (AML) is a benign neoplasm consisting of varying mixtures of smooth muscle, blood vessels and fat. Although, most of these tumors are easy to recognize, some may pose a diagnostic dilemma due to unusual histologic features. Recently, it was suggested that melanosome-associated protein (HMB-45) immunoreactivity may be used for diagnostic confirmation of several neoplasm. The aim of this study is to analyze the diagnostic efficacy of HMB-45 in patients with AML. This study was carried out at the Faculty of Medicine, Department of Pathology, Dicle University, Diyarbakir, Turkey, during the period January 2000 to September 2003. HMB-45 immunoreactivity was analyzed in 6 patients with AML and in 34 patients with other renal and retroperitoneal pathologies, including 10 nephrectomized patients for non-neoplastic reasons by means of immunohistochemistry. Patients with AML were positive for HMB-45. Whereas, HMB-45 immunoreactivity was negative in all of the histologic specimens from the patients with renal cell carcinoma, retroperitoneal sarcomas, Wilms' tumor, lipoma, leiomyoma, and nephrectomized kidneys of non-neoplastic reason. The association of AML with HMB-45 immunoreactivity was highly significant (p<0.001). Our findings suggest that HMB-45 may not be a melanocyte-restricted marker, and can be useful in differential diagnosis between AML and other tumors seen in kidney and retroperitoneal region.
Impact of Early Cytomegalovirus Reactivation in Cord Blood Stem Cell Recipients in the Current Era
Ramanathan, Muthalagu; Teira, Pierre; Battiwalla, Minoo; Barrett, John; Ahn, Kwang Woo; Chen, Min; Green, Jamie; Laughlin, Mary; Lazarus, Hillard M.; Marks, David; Saad, Ayman; Seftel, Matthew; Saber, Wael; Savani, Bipin; Waller, Edmund; Wingard, John; Auletta, Jeffery J.; Lindemans, Caroline A.; Boeckh, Michael; Riches, Marcie L.
2016-01-01
Several studies have reported an association between cytomegalovirus (CMV) reactivation and a decreased incidence of relapse for acute myeloid leukemia (AML) after adult donor allogeneic hematopoietic cell transplantation (HCT). Limited data, however, are available on the impact of CMV reactivation on relapse after cord blood stem cell (CB) transplantation. The unique combination of higher incidence of CMV reactivation in the seropositive recipient and lower incidence of graft versus host disease (GvHD) in CB HCT allows for a valuable design to analyze the impact of CMV reactivation. Data from 1684 patients transplanted with cord blood (CB) between 2003 and 2010 for AML and acute lymphoblastic leukemia (ALL) were analyzed. The median time to CMV reactivation was 34 days (range: 2 – 287). CMV reactivation and positive CMV serology were associated with increased non-relapse mortality (NRM) amongst both AML and ALL CB recipients [Reactivation, AML: RR 1.41 (1.07–1.85); ALL: 1.60 (1.14 – 2.23); Serology, AML: RR 1.39 (1.05 – 1.85), ALL: RR 1.61 (1.18 – 2.19)]. For patients with ALL, but not those with AML, this yielded inferior overall survival (p<0.005). Risk of relapse was not impacted by CMV reactivation or positive CMV serostatus for either disease. PMID:27042847
Hassane, Duane C.; Guzman, Monica L.; Corbett, Cheryl; Li, Xiaojie; Abboud, Ramzi; Young, Fay; Liesveld, Jane L.; Carroll, Martin
2008-01-01
Increasing evidence indicates that malignant stem cells are important for the pathogenesis of acute myelogenous leukemia (AML) and represent a reservoir of cells that drive the development of AML and relapse. Therefore, new treatment regimens are necessary to prevent relapse and improve therapeutic outcomes. Previous studies have shown that the sesquiterpene lactone, parthenolide (PTL), ablates bulk, progenitor, and stem AML cells while causing no appreciable toxicity to normal hematopoietic cells. Thus, PTL must evoke cellular responses capable of mediating AML selective cell death. Given recent advances in chemical genomics such as gene expression-based high-throughput screening (GE-HTS) and the Connectivity Map, we hypothesized that the gene expression signature resulting from treatment of primary AML with PTL could be used to search for similar signatures in publicly available gene expression profiles deposited into the Gene Expression Omnibus (GEO). We therefore devised a broad in silico screen of the GEO database using the PTL gene expression signature as a template and discovered 2 new agents, celastrol and 4-hydroxy-2-nonenal, that effectively eradicate AML at the bulk, progenitor, and stem cell level. These findings suggest the use of multicenter collections of high-throughput data to facilitate discovery of leukemia drugs and drug targets. PMID:18305216
Engle, E K; Fisher, D A C; Miller, C A; McLellan, M D; Fulton, R S; Moore, D M; Wilson, R K; Ley, T J; Oh, S T
2015-04-01
Clonal architecture in myeloproliferative neoplasms (MPNs) is poorly understood. Here we report genomic analyses of a patient with primary myelofibrosis (PMF) transformed to secondary acute myeloid leukemia (sAML). Whole genome sequencing (WGS) was performed on PMF and sAML diagnosis samples, with skin included as a germline surrogate. Deep sequencing validation was performed on the WGS samples and an additional sample obtained during sAML remission/relapsed PMF. Clustering analysis of 649 validated somatic single-nucleotide variants revealed four distinct clonal groups, each including putative driver mutations. The first group (including JAK2 and U2AF1), representing the founding clone, included mutations with high frequency at all three disease stages. The second clonal group (including MYB) was present only in PMF, suggesting the presence of a clone that was dispensable for transformation. The third group (including ASXL1) contained mutations with low frequency in PMF and high frequency in subsequent samples, indicating evolution of the dominant clone with disease progression. The fourth clonal group (including IDH1 and RUNX1) was acquired at sAML transformation and was predominantly absent at sAML remission/relapsed PMF. Taken together, these findings illustrate the complex clonal dynamics associated with disease evolution in MPNs and sAML.
Edwards, Holly; Caldwell, J. Timothy; Chen, Wei; Inaba, Hiroto; Xu, Xuelian; Buck, Steven A.; Taub, Jeffrey W.; Baker, Sharyn D.; Ge, Yubin
2013-01-01
Acute myeloid leukemia (AML) remains a challenging disease to treat and urgently requires new therapies to improve its treatment outcome. In this study, we investigated the molecular mechanisms underlying the cooperative antileukemic activities of panobinostat and cytarabine or daunorubicin (DNR) in AML cell lines and diagnostic blast samples in vitro and in vivo. Panobinostat suppressed expression of BRCA1, CHK1, and RAD51 in AML cells in a dose-dependent manner. Further, panobinostat significantly increased cytarabine- or DNR-induced DNA double-strand breaks and apoptosis, and abrogated S and/or G2/M cell cycle checkpoints. Analogous results were obtained by shRNA knockdown of BRCA1, CHK1, or RAD51. Cotreatment of NOD-SCID-IL2Rγnull mice bearing AML xenografts with panobinostat and cytarabine significantly increased survival compared to either cytarabine or panobinostat treatment alone. Additional studies revealed that panobinostat suppressed the expression of BRCA1, CHK1, and RAD51 through downregulation of E2F1 transcription factor. Our results establish a novel mechanism underlying the cooperative antileukemic activities of these drug combinations in which panobinostat suppresses expression of BRCA1, CHK1, and RAD51 to enhance cytarabine and daunorubicin sensitivities in AML cells. PMID:24244429
Degwert, Nicole; Latuske, Emily; Vohwinkel, Gabi; Stamm, Hauke; Klokow, Marianne; Bokemeyer, Carsten; Fiedler, Walter; Wellbrock, Jasmin
2016-09-01
Leukaemia initiating cells reside within specialised niches in the bone marrow where they undergo complex interactions with different stromal cell types. The bone marrow niche is characterised by a low oxygen content resulting in high expression of hypoxia-inducible factor 1 α in leukaemic cells conferring a negative prognosis to patients with acute myeloid leukaemia (AML). In the current study, we investigated the impact of hypoxic vs. normoxic conditions on the sensitivity of AML cell lines and primary AML blasts to cytarabine. AML cells cultured under 6% oxygen were significantly more resistant against cytarabine compared to cells cultured under normoxic conditions in proliferation and colony-formation assays. Interestingly upon cultivation under hypoxia, the expression of the cytarabine-activating enzyme deoxycytidine kinase was downregulated in all analysed AML cell lines and primary AML samples representing a possible mechanism for resistance to chemotherapy. Furthermore, the downregulation of deoxycytidine kinase could be associated with hypoxia-inducible factor 1 α as treatment with its inhibitor BAY87-2243 hampered the downregulation of deoxycytidine kinase expression under hypoxic conditions. In conclusion, our data reveal that hypoxia-induced downregulation of deoxycytidine kinase represents one stroma-cell-independent mechanism of drug resistance to cytarabine in acute myeloid leukaemia. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Babushok, Daria V.; Bessler, Monica; Olson, Timothy S.
2016-01-01
Myelodysplastic syndrome (MDS) is a clonal blood disorder characterized by ineffective hematopoiesis, cytopenias, dysplasia and an increased risk of acute myeloid leukemia (AML). With the growing availability of clinical genetic testing, there is an increasing appreciation that a number of genetic predisposition syndromes may underlie apparent de novo presentations of MDS/AML, particularly in children and young adults. Recent findings of clonal hematopoiesis in acquired aplastic anemia add another facet to our understanding of the mechanisms of MDS/AML predisposition. As more predisposition syndromes are recognized, it is becoming increasingly important for hematologists and oncologists to have familiarity with the common as well as emerging syndromes, and to have a systematic approach to diagnosis and screening of at risk patient populations. Here, we provide a practical algorithm for approaching a patient with a suspected MDS/AML predisposition, and provide an in-depth review of the established and emerging familial MDS/AML syndromes caused by mutations in the ANKRD26, CEBPA, DDX41, ETV6, GATA2, RUNX1, SRP72 genes. Finally, we discuss recent data on the role of somatic mutations in malignant transformation in acquired aplastic anemia, and review the practical aspects of MDS/AML management in patients and families with predisposition syndromes. PMID:26693794
MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation
Figueroa, Maria E.; Skrabanek, Lucy; Li, Yushan; Jiemjit, Anchalee; Fandy, Tamer E.; Paietta, Elisabeth; Fernandez, Hugo; Tallman, Martin S.; Greally, John M.; Carraway, Hetty; Licht, Jonathan D.; Gore, Steven D.
2009-01-01
Increasing evidence shows aberrant hypermethylation of genes occurring in and potentially contributing to pathogenesis of myeloid malignancies. Several of these diseases, such as myelodysplastic syndromes (MDSs), are responsive to DNA methyltransferase inhibitors. To determine the extent of promoter hypermethylation in such tumors, we compared the distribution of DNA methylation of 14 000 promoters in MDS and secondary acute myeloid leukemia (AML) patients enrolled in a phase 1 trial of 5-azacytidine and the histone deacetylase inhibitor entinostat against de novo AML patients and normal CD34+ bone marrow cells. The MDS and secondary AML patients displayed more extensive aberrant DNA methylation involving thousands of genes than did the normal CD34+ bone marrow cells or de novo AML blasts. Aberrant methylation in MDS and secondary AML tended to affect particular chromosomal regions, occurred more frequently in Alu-poor genes, and included prominent involvement of genes involved in the WNT and MAPK signaling pathways. DNA methylation was also measured at days 15 and 29 after the first treatment cycle. DNA methylation was reversed at day 15 in a uniform manner throughout the genome, and this effect persisted through day 29, even without continuous administration of the study drugs. This trial was registered at www.clinicaltrials.gov as J0443. PMID:19652201
Chaudry, Sabah F; Chevassut, Timothy J T
2017-01-01
Acute myeloid leukaemia (AML) is a haematological malignancy characterized by clonal stem cell proliferation and aberrant block in differentiation. Dysfunction of epigenetic modifiers contributes significantly to the pathogenesis of AML. One frequently mutated gene involved in epigenetic modification is DNMT3A (DNA methyltransferase-3-alpha), a DNA methyltransferase that alters gene expression by de novo methylation of cytosine bases at CpG dinucleotides. Approximately 22% of AML and 36% of cytogenetically normal AML cases carry DNMT3A mutations and around 60% of these mutations affect the R882 codon. These mutations have been associated with poor prognosis and adverse survival outcomes for AML patients. Advances in whole-exome sequencing techniques have recently identified a large number of DNMT3A mutations present in clonal cells in normal elderly individuals with no features of haematological malignancy. Categorically distinct from other preleukaemic conditions, this disorder has been termed clonal haematopoiesis of indeterminate potential (CHIP). Further insight into the mutational landscape of CHIP may illustrate the consequence of particular mutations found in DNMT3A and identify specific "founder" mutations responsible for clonal expansion that may contribute to leukaemogenesis. This review will focus on current research and understanding of DNMT3A mutations in both AML and CHIP.
mTOR up-regulation of PFKFB3 is essential for acute myeloid leukemia cell survival
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Yonghuai; Institute of Hematology, Peking University, Beijing; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing
Although mTOR (mammalian target of rapamycin) activation is frequently observed in acute myeloid leukemia (AML) patients, the precise function and the downstream targets of mTOR are poorly understood. Here we revealed that PFKFB3, but not PFKFB1, PFKFB2 nor PFKFB4 was a novel downstream substrate of mTOR signaling pathway as PFKFB3 level was augmented after knocking down TSC2 in THP1 and OCI-AML3 cells. Importantly, PFKFB3 silencing suppressed glycolysis and cell proliferation of TSC2 silencing OCI-AML3 cells and activated apoptosis pathway. These results suggested that mTOR up-regulation of PFKFB3 was essential for AML cells survival. Mechanistically, Rapamycin treatment or Raptor knockdown reducedmore » the expression of PFKFB3 in TSC2 knockdown cells, while Rictor silencing did not have such effect. Furthermore, we also revealed that mTORC1 up-regulated PFKFB3 was dependent on hypoxia-inducible factor 1α (HIF1α), a positive regulator of glycolysis. Moreover, PFKFB3 inhibitor PFK15 and rapamycin synergistically blunted the AML cell proliferation. Taken together, PFKFB3 was a promising drug target in AML patients harboring mTOR hyper-activation.« less
Oncogenic roles of PRL-3 in FLT3-ITD induced acute myeloid leukaemia
Park, Jung Eun; Yuen, Hiu Fung; Zhou, Jian Biao; Al-aidaroos, Abdul Qader O; Guo, Ke; Valk, Peter J; Zhang, Shu Dong; Chng, Wee Joo; Hong, Cheng William; Mills, Ken; Zeng, Qi
2013-01-01
FLT3-ITD mutations are prevalent mutations in acute myeloid leukaemia (AML). PRL-3, a metastasis-associated phosphatase, is a downstream target of FLT3-ITD. This study investigates the regulation and function of PRL-3 in leukaemia cell lines and AML patients associated with FLT3-ITD mutations. PRL-3 expression is upregulated by the FLT3-STAT5 signalling pathway in leukaemia cells, leading an activation of AP-1 transcription factors via ERK and JNK pathways. PRL-3-depleted AML cells showed a significant decrease in cell growth. Clinically, high PRL-3 mRNA expression was associated with FLT3-ITD mutations in four independent AML datasets with 1158 patients. Multivariable Cox-regression analysis on our Cohort 1 with 221 patients identified PRL-3 as a novel prognostic marker independent of other clinical parameters. Kaplan–Meier analysis showed high PRL-3 mRNA expression was significantly associated with poorer survival among 491 patients with normal karyotype. Targeting PRL-3 reversed the oncogenic effects in FLT3-ITD AML models in vitro and in vivo. Herein, we suggest that PRL-3 could serve as a prognostic marker to predict poorer survival and as a promising novel therapeutic target for AML patients. PMID:23929599
Renal Angiomyolipoma: Mid- to Long-Term Results Following Embolization with Onyx
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thulasidasan, Narayanan, E-mail: narayanant@doctors.net.uk; Sriskandakumar, Srividhiya; Ilyas, Shahzad
PurposePercutaneous transcatheter embolization is currently the preferred treatment for ruptured or enlarging renal angiomyolipoma (AML), although the optimum choice of embolic material has not yet been established. We present mid- to long-term outcomes following embolization of AMLs with Onyx.Materials and MethodsTen AMLs in seven patients (including two with tuberous sclerosis) were embolized with Onyx. Patients were followed-up clinically, with tumour size and renal function measured pre- and post-procedure.ResultsMean pre-treatment AML size was 63.4 mm (range 42–100). Mean clinical follow-up was 431.4 days (range 153–986) and imaging follow-up 284.2 days (range 30–741). There was no haemorrhage from treated lesions within the follow-up period. Ofmore » patients who had cross-sectional imaging pre- and post-procedure, mean decrease in AML size of 22 mm was seen after Onyx embolization (p = 0.0058, 95 % CI 9.13–34.87). No significant difference between serum creatinine was seen pre- and post-procedure (p = 0.54, 95 % CI 8.63–4.85).ConclusionsOnyx embolization of renal AMLs is effective in the medium to long term, with theoretical benefits in safety and durability of result.« less
Willems, Lise; Jacque, Nathalie; Jacquel, Arnaud; Neveux, Nathalie; Trovati Maciel, Thiago; Lambert, Mireille; Schmitt, Alain; Poulain, Laury; Green, Alexa S.; Uzunov, Madalina; Kosmider, Olivier; Radford-Weiss, Isabelle; Moura, Ivan Cruz; Auberger, Patrick; Ifrah, Norbert; Bardet, Valérie; Chapuis, Nicolas; Lacombe, Catherine; Mayeux, Patrick; Tamburini, Jérôme
2013-01-01
Cancer cells require nutrients and energy to adapt to increased biosynthetic activity, and protein synthesis inhibition downstream of mammalian target of rapamycin complex 1 (mTORC1) has shown promise as a possible therapy for acute myeloid leukemia (AML). Glutamine contributes to leucine import into cells, which controls the amino acid/Rag/mTORC1 signaling pathway. We show in our current study that glutamine removal inhibits mTORC1 and induces apoptosis in AML cells. The knockdown of the SLC1A5 high-affinity transporter for glutamine induces apoptosis and inhibits tumor formation in a mouse AML xenotransplantation model. l-asparaginase (l-ase) is an anticancer agent also harboring glutaminase activity. We show that l-ases from both Escherichia coli and Erwinia chrysanthemi profoundly inhibit mTORC1 and protein synthesis and that this inhibition correlates with their glutaminase activity levels and produces a strong apoptotic response in primary AML cells. We further show that l-ases upregulate glutamine synthase (GS) expression in leukemic cells and that a GS knockdown enhances l-ase–induced apoptosis in some AML cells. Finally, we observe a strong autophagic process upon l-ase treatment. These results suggest that l-ase anticancer activity and glutamine uptake inhibition are promising new therapeutic strategies for AML. PMID:24014241
Steffen, Leta S; Bacher, Jeffery W; Peng, Yuanlin; Le, Phuong N; Ding, Liang-Hao; Genik, Paula C; Ray, F Andrew; Bedford, Joel S; Fallgren, Christina M; Bailey, Susan M; Ullrich, Robert L; Weil, Michael M; Story, Michael D
2013-01-01
Exposure to sparsely ionising gamma- or X-ray irradiation is known to increase the risk of leukaemia in humans. However, heavy ion radiotherapy and extended space exploration will expose humans to densely ionising high linear energy transfer (LET) radiation for which there is currently no understanding of leukaemia risk. Murine models have implicated chromosomal deletion that includes the hematopoietic transcription factor gene, PU.1 (Sfpi1), and point mutation of the second PU.1 allele as the primary cause of low-LET radiation-induced murine acute myeloid leukaemia (rAML). Using array comparative genomic hybridisation, fluorescence in situ hybridisation and high resolution melt analysis, we have confirmed that biallelic PU.1 mutations are common in low-LET rAML, occurring in 88% of samples. Biallelic PU.1 mutations were also detected in the majority of high-LET rAML samples. Microsatellite instability was identified in 42% of all rAML samples, and 89% of samples carried increased microsatellite mutant frequencies at the single-cell level, indicative of ongoing instability. Instability was also observed cytogenetically as a 2-fold increase in chromatid-type aberrations. These data highlight the similarities in molecular characteristics of high-LET and low-LET rAML and confirm the presence of ongoing chromosomal and microsatellite instability in murine rAML.
Eya2, a Target Activated by Plzf, Is Critical for PLZF-RARA-Induced Leukemogenesis
Masuya, Masahiro; Ishii, Satomi; Katayama, Naoyuki
2017-01-01
ABSTRACT PLZF is a transcription factor that confers aberrant self-renewal in leukemogenesis, and the PLZF-RARA fusion gene causes acute promyelocytic leukemia (APL) through differentiation block. However, the molecular mechanisms of aberrant self-renewal underlying PLZF-mediated leukemogenesis are poorly understood. To investigate these mechanisms, comprehensive expression profiling of mouse hematopoietic stem/progenitor cells transduced with Plzf was performed, which revealed the involvement of a key transcriptional coactivator, Eya2, a target molecule shared by Plzf and PLZF-RARA, in the aberrant self-renewal. Indeed, PLZF-RARA as well as Plzf rendered those cells immortalized through upregulation of Eya2. Eya2 also led to immortalization without differentiation block, while depletion of Eya2 suppressed clonogenicity in cells immortalized by PLZF-RARA without influence on differentiation and apoptosis. Interestingly, cancer outlier profile analysis of human samples of acute myeloid leukemia (AML) in The Cancer Genome Atlas (TCGA) revealed a subtype of AML that strongly expressed EYA2. In addition, gene set enrichment analysis of human AML samples, including TCGA data, showed that this subtype of AML was more closely associated with the properties of leukemic stem cells in its gene expression signature than other AMLs. Therefore, EYA2 may be a target for molecular therapy in this subtype of AML, including PLZF-RARA APL. PMID:28416638
Praxedes, M K; De Oliveira, L Z; Pereira, W da V; Quintana, I Z; Tabak, D G; De Oliveira, M S
1994-01-01
The enzyme myeloperoxidase (MPO) is the most specific marker of myeloid lineage. The recognition of acute myeloid leukaemia (AML) with minimally differentiation (AML-M0) is established with methods that include myeloid markers CD13/CD33 and detection of MPO in blast cells by immunological techniques or electron microscopy cytochemistry (EM). We have analysed the presence of MPO in leukaemic blast cells by conventional cytochemistry and immunological methods using a monoclonal antibody anti-MPO (CLB-MPO1) in 121 cases of acute leukaemia. The aim of the study was to investigate the sensitivity of this McAb to identify AML-M0, as CD13/CD33 can be expressed in some cases of acute lymphoblastic leukaemia (ALL) and EM cytochemistry is not always available in many laboratories. Anti-MPO was positive in all cases of AML (M1-M5) which were positive by Sudan Black B reaction in similar or higher percentage ratio for each case, although in some of them did not label with CD13/CD33 tested by IF and IPc techniques. Based on the anti-MPO positivity, 5 out of 10 cases called undifferentiated leukaemia (AUL) were reclassified as AML-M0, though 4 cases were CD13/CD33 negative. Furthermore, after analysing the anti-MPO expression among 32 cases of ALL, we had to reclassify four of them as acute biphenotypic leukaemia. We conclude that anti-MPO is a very sensitive and reliable tool in AML diagnosis and has an important role in distinguishing minimally differentiated AML and biphenotypic acute leukaemia from AUL and ALL.
Xu, Xuelian; Xie, Chengzhi; Edwards, Holly; Zhou, Hui; Buck, Steven A.; Ge, Yubin
2011-01-01
Background Pediatric acute myeloid leukemia (AML) remains a challenging disease to treat even with intensified cytarabine-based chemotherapy. Histone deacetylases (HDACs) have been reported to be promising therapeutic targets for treating AML. However, HDAC family members that are involved in chemotherapy sensitivities remain unknown. In this study, we sought to identify members of the HDAC family that are involved in cytarabine sensitivities, and to select the optimal HDACI that is most efficacious when combined with cytarabine for treating children with AML. Methodology Expression profiles of classes I, II, and IV HDACs in 4 pediatric AML cell lines were determined by Western blotting. Inhibition of class I HDACs by different HDACIs was measured post immnunoprecipitation. Individual down-regulation of HDACs in pediatric AML cells was performed with lentiviral shRNA. The effects of cytarabine and HDACIs on apoptosis were determined by flow cytometry analysis. Results Treatments with structurally diverse HDACIs and HDAC shRNA knockdown experiments revealed that down-regulation of both HDACs 1 and 6 is critical in enhancing cytarabine-induced apoptosis in pediatric AML, at least partly mediated by Bim. However, down-regulation of HDAC2 may negatively impact cytarabine sensitivities in the disease. At clinically achievable concentrations, HDACIs that simultaneously inhibited both HDACs 1 and 6 showed the best anti-leukemic activities and significantly enhanced cytarabine-induced apoptosis. Conclusion Our results further confirm that HDACs are bona fide therapeutic targets for treating pediatric AML and suggest that pan-HDACIs may be more beneficial than isoform-specific drugs. PMID:21359182
Feng, Xiaoqin; Lan, He; Ruan, Yongsheng; Li, Chunfu
2018-03-08
This meta-analysis evaluated the impact of granulocyte colony-stimulating factor (G-CSF) added to chemotherapy on treatment outcomes including survival and disease recurrence in patients with acute myeloid leukemia (AML). Medline, Cochrane, EMBASE, and Google Scholar databases were searched until 19 September 2016 using search terms. Studies that investigated patients with AML who underwent stem-cell transplantation were included. The overall analysis revealed a significant improvement in overall survival (OS) (P = .019) and disease-free survival (DFS) (P = .002) for patients receiving G-CSF with chemotherapy. Among patients without prior AML treatment, there was a significant improvement in DFS (P = .014) and reduction in incidence of relapse (P = .015) for those who received G-CSF. However, subgroup analyses found no significant difference between G-CSF (+) and G-CSF (-) treatments in rates of OS (P = .104) and complete remission (CR) (P = .572) for patients without prior AML treatment. Among patients with relapsed/refractory AML, there was no significant difference found between G-CSF (+) and G-CSF (-) groups for OS (P = .225), DFS (P = .209), and CR (P = .208). Treatment with chemotherapy plus G-CSF appears to provide better survival and treatment responses compared with chemotherapy alone, particularly for patients with previously untreated AML. AML, acute myeloid leukemia; CI, confidence interval; CR, complete remission; DFS, disease-free survival; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte macrophage colony-stimulating factor; HR, hazard ratio; MDS, myelodysplastic syndrome; OR, odds ratio; OS, overall survival; RCTs, randomized control trials; RR, relative risk.
Grimm, Richard; Malik, Mobin; Yunis, Carla; Sutradhar, Santosh; Kursun, Attila
2010-01-01
TOGETHER investigated whether targeting multiple cardiovascular (CV) risk factors using single-pill amlodipine/atorvastatin (AML/ATO) and therapeutic lifestyle changes (TLC) results in greater blood pressure (BP)/lipid control and additional reduction in estimated cardiovascular disease (CVD) risk compared with blood pressure intervention only using amlodipine (AML) + TLC. TOGETHER was a 6-week, randomized, double-blind, double-dummy trial using hypertensive participants with additional CV risk factors without CVD/diabetes. Participants were randomized to either AML/ATO (5 to 10/20 mg) + TLC or AML (5 to 10 mg) + TLC. The primary end point was the difference in proportion of participants attaining both BP (<140/90 mm Hg) and low-density lipoprotein cholesterol (LDL-C) (<100 mg/dL) goals at week 6. At week 6, 67.8% of participants receiving AML/ATO + TLC attained the combined BP/LDL-C goal versus 9.6% with AML + TLC (RD [A–B]: 58.2; 95% CI [48.1 to 68.4] P < 0.001; OR: 19.0; 95% CI 9.1 to 39.6; P < 0.001). Significant reductions from baseline in LDL-C, total cholesterol and triglycerides and estimated 10-year Framingham risk were also observed. Treatment with AML/ATO was well tolerated. In conclusion, a multifactorial CV management approach is more effective in achieving combined BP/LDL-C targets as well as CV risk reduction compared with BP intervention only in this patient population. PMID:20479948
Stamm, Hauke; Klingler, Felix; Grossjohann, Eva-Maria; Muschhammer, Jana; Vettorazzi, Eik; Heuser, Michael; Mock, Ulrike; Thol, Felicitas; Vohwinkel, Gabi; Latuske, Emily; Bokemeyer, Carsten; Kischel, Roman; Dos Santos, Cedric; Stienen, Sabine; Friedrich, Matthias; Lutteropp, Michael; Nagorsen, Dirk; Wellbrock, Jasmin; Fiedler, Walter
2018-05-31
Immune checkpoints are promising targets in cancer therapy. Recently, poliovirus receptor (PVR) and poliovirus receptor-related 2 (PVRL2) have been identified as novel immune checkpoints. In this investigation we show that acute myeloid leukemia (AML) cell lines and AML patient samples highly express the T-cell immunoreceptor with Ig and ITIM domains (TIGIT) ligands PVR and PVRL2. Using two independent patient cohorts, we could demonstrate that high PVR and PVRL2 expression correlates with poor outcome in AML. We show for the first time that antibody blockade of PVR or PVRL2 on AML cell lines or primary AML cells or TIGIT blockade on immune cells increases the anti-leukemic effects mediated by PBMCs or purified CD3 + cells in vitro. The cytolytic activity of the BiTE® antibody construct AMG 330 against leukemic cells could be further enhanced by blockade of the TIGIT-PVR/PVRL2 axis. This increased immune reactivity is paralleled by augmented secretion of Granzyme B by immune cells. Employing CRISPR/Cas9-mediated knockout of PVR and PVRL2 in MV4-11 cells, the cytotoxic effects of antibody blockade could be recapitulated in vitro. In NSG mice reconstituted with human T cells and transplanted with either MV4-11 PVR/PVRL2 knockout or wildtype cells, prolonged survival was observed for the knockout cells. This survival benefit could be further extended by treating the mice with AMG 330. Therefore, targeting the TIGIT-PVR/PVRL2 axis with blocking antibodies might represent a promising future therapeutic option in AML.
Imaging features of hepatic angiomyolipomas on real-time contrast-enhanced ultrasound
Wang, Z; Xu, H-X; Xie, X-Y; Xie, X-H; Kuang, M; Xu, Z-F; Liu, G-J; Chen, L-D; Lin, M-X; Lu, M-D
2010-01-01
The aim of this study was to evaluate the imaging features of hepatic angiomyolipoma (AML) on contrast-enhanced ultrasound (CEUS). The imaging features of 12 pathologically proven hepatic AML lesions in 10 patients who had undergone baseline ultrasound (BUS) and CEUS examinations were evaluated retrospectively. The enhancement extent, pattern and dynamic change, along with the enhancement process, on CEUS were analysed. The diagnostic results of BUS and CEUS before pathological examination were also recorded. The results showed that 75% (9/12) of the AML lesions exhibited mixed echogenicity on BUS and most showed remarkable hyperechogenicity in combination with a hypoechoic or anechoic portion. Arterial flow signals were detected in 75% (9/12) of the lesions on colour Doppler imaging. On CEUS, 66.7% (n = 8) of the 12 lesions exhibited hyperenhancement in the arterial phase, slight hyperenhancement (n = 2) or isoenhancement (n = 6) in the portal phase, and slight hyperenhancement (n = 1) or isoenhancement (n = 7) in the late phase. Three (25%) lesions exhibited hyperenhancement in the arterial phase and hypoenhancement in both portal and late phases. One (8.3%) lesion exhibited hypoenhancement throughout the CEUS process. Before pathological examination with BUS, only 3 (25%) lesions were correctly diagnosed as hepatic AML. Conversely, on CEUS, correct diagnoses were made for 66.8% (8/12) of hepatic AMLs. Therefore, arterial hyperenhancement and subsequent sustained enhancement on CEUS were found in the majority of hepatic AMLs. The combination of BUS and CEUS leads to the correct diagnosis in the majority of hepatic AMLs, and is higher than the success rate achieved by BUS alone. PMID:19723766
Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia
2013-01-01
BACKGROUND Many mutations that contribute to the pathogenesis of acute myeloid leukemia (AML) are undefined. The relationships between patterns of mutations and epigenetic phenotypes are not yet clear. METHODS We analyzed the genomes of 200 clinically annotated adult cases of de novo AML, using either whole-genome sequencing (50 cases) or whole-exome sequencing (150 cases), along with RNA and microRNA sequencing and DNA-methylation analysis. RESULTS AML genomes have fewer mutations than most other adult cancers, with an average of only 13 mutations found in genes. Of these, an average of 5 are in genes that are recurrently mutated in AML. A total of 23 genes were significantly mutated, and another 237 were mutated in two or more samples. Nearly all samples had at least 1 nonsynonymous mutation in one of nine categories of genes that are almost certainly relevant for pathogenesis, including transcription-factor fusions (18% of cases), the gene encoding nucleophosmin (NPM1) (27%), tumor-suppressor genes (16%), DNA-methylation–related genes (44%), signaling genes (59%), chromatin-modifying genes (30%), myeloid transcription-factor genes (22%), cohesin-complex genes (13%), and spliceosome-complex genes (14%). Patterns of cooperation and mutual exclusivity suggested strong biologic relationships among several of the genes and categories. CONCLUSIONS We identified at least one potential driver mutation in nearly all AML samples and found that a complex interplay of genetic events contributes to AML pathogenesis in individual patients. The databases from this study are widely available to serve as a foundation for further investigations of AML pathogenesis, classification, and risk stratification. (Funded by the National Institutes of Health.) PMID:23634996
Yang, Xinan Holly; Li, Meiyi; Wang, Bin; Zhu, Wanqi; Desgardin, Aurelie; Onel, Kenan; de Jong, Jill; Chen, Jianjun; Chen, Luonan; Cunningham, John M
2015-03-24
Genes that regulate stem cell function are suspected to exert adverse effects on prognosis in malignancy. However, diverse cancer stem cell signatures are difficult for physicians to interpret and apply clinically. To connect the transcriptome and stem cell biology, with potential clinical applications, we propose a novel computational "gene-to-function, snapshot-to-dynamics, and biology-to-clinic" framework to uncover core functional gene-sets signatures. This framework incorporates three function-centric gene-set analysis strategies: a meta-analysis of both microarray and RNA-seq data, novel dynamic network mechanism (DNM) identification, and a personalized prognostic indicator analysis. This work uses complex disease acute myeloid leukemia (AML) as a research platform. We introduced an adjustable "soft threshold" to a functional gene-set algorithm and found that two different analysis methods identified distinct gene-set signatures from the same samples. We identified a 30-gene cluster that characterizes leukemic stem cell (LSC)-depleted cells and a 25-gene cluster that characterizes LSC-enriched cells in parallel; both mark favorable-prognosis in AML. Genes within each signature significantly share common biological processes and/or molecular functions (empirical p = 6e-5 and 0.03 respectively). The 25-gene signature reflects the abnormal development of stem cells in AML, such as AURKA over-expression. We subsequently determined that the clinical relevance of both signatures is independent of known clinical risk classifications in 214 patients with cytogenetically normal AML. We successfully validated the prognosis of both signatures in two independent cohorts of 91 and 242 patients respectively (log-rank p < 0.0015 and 0.05; empirical p < 0.015 and 0.08). The proposed algorithms and computational framework will harness systems biology research because they efficiently translate gene-sets (rather than single genes) into biological discoveries about AML and other complex diseases.
Preussler, Jaime M; Meyer, Christa L; Mau, Lih-Wen; Majhail, Navneet S; Denzen, Ellen M; Edsall, Kristen C; Farnia, Stephanie H; Saber, Wael; Burns, Linda J; Vanness, David J
2017-06-01
The primary aim of this study was to describe healthcare costs and utilization during the first year after a diagnosis of acute myeloid leukemia (AML) for privately insured non-Medicare patients in the United States aged 50 to 64 years who were treated with either chemotherapy or chemotherapy and allogeneic hematopoietic cell transplantation (alloHCT). MarketScan (Truven Health Analytics) adjudicated total payments for inpatient, outpatient, and prescription drug claims from 2007 to 2011 were used to estimate costs from the health system perspective. Stabilized inverse propensity score weights were constructed using logistic regression to account for differential selection of alloHCT over chemotherapy. Weighted generalized linear models adjusted costs and utilization (hospitalizations, inpatient days, and outpatient visit-days) for differences in age, sex, diagnosis year, region, insurance plan type, Elixhauser Comorbidity Index), and 60-day prediagnosis costs. Because mortality data were not available, models could not be adjusted for survival times. Among 29,915 patients with a primary diagnosis of AML, 985 patients met inclusion criteria (774 [79%] receiving chemotherapy alone and 211 [21%] alloHCT). Adjusted mean 1-year costs were $280,788 for chemotherapy and $544,178 for alloHCT. Patients receiving chemotherapy alone had a mean of 4 hospitalizations, 52.9 inpatient days, and 52.4 outpatient visits in the year after AML diagnosis; patients receiving alloHCT had 5 hospitalizations, 92.5 inpatient days, and 74.5 outpatient visits. Treating AML in the first year after diagnosis incurs substantial healthcare costs and utilization with chemotherapy alone and with alloHCT. Our analysis informs healthcare providers, policymakers, and payers so they can better understand treatment costs and utilization for privately insured patients aged 50 to 64 with AML. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Dunphy, C H; Polski, J M; Evans, H L; Gardner, L J
2001-08-01
Immunophenotyping of bone marrow (BM) specimens with acute myelogenous leukemia (AML) may be performed by flow cytometric (FC) or immunohistochemical (IH) techniques. Some markers (CD34, CD15, and CD117) are available for both techniques. Myeloperoxidase (MPO) analysis may be performed by enzyme cytochemical (EC) or IH techniques. To determine the reliability of these markers and MPO by these techniques, we designed a study to compare the results of analyses of these markers and MPO by FC (CD34, CD15, and CD117), EC (MPO), and IH (CD34, CD15, CD117, and MPO) techniques. Twenty-nine AMLs formed the basis of the study. These AMLs all had been immunophenotyped previously by FC analysis; 27 also had had EC analysis performed. Of the AMLs, 29 had BM core biopsies and 26 had BM clots that could be evaluated. The paraffin blocks of the 29 BM core biopsies and 26 BM clots were stained for CD34, CD117, MPO, and CD15. These results were compared with results by FC analysis (CD34, CD15, and CD117) and EC analysis (MPO). Immunodetection of CD34 expression in AML had a similar sensitivity by FC and IH techniques. Immunodetection of CD15 and CD117 had a higher sensitivity by FC analysis than by IH analysis. Detection of MPO by IH analysis was more sensitive than by EC analysis. There was no correlation of French-American-British (FAB) subtype of AML with CD34 or CD117 expression. Expression of CD15 was associated with AMLs with a monocytic component. Myeloperoxidase reactivity by IH analysis was observed in AMLs originally FAB subtyped as M0. CD34 can be equally detected by FC and IH techniques. CD15 and CD117 are better detected by FC analysis and MPO is better detected by IH analysis.
Koontz, Michael Zach; Horning, Sandra J; Balise, Raymond; Greenberg, Peter L; Rosenberg, Saul A; Hoppe, Richard T; Advani, Ranjana H
2013-02-10
To assess therapy-related acute myeloid leukemia/myelodysplastic syndrome (t-AML/MDS) risk in patients treated for Hodgkin lymphoma (HL) on successive generations of Stanford clinical trials. Patients with HL treated at Stanford with at least 5 years of follow-up after completing therapy were identified from our database. Records were reviewed for outcome and development of t-AML/MDS. Seven hundred fifty-four patients treated from 1974 to 2003 were identified. Therapy varied across studies. Radiotherapy evolved from extended fields (S and C studies) to involved fields (G studies). Primary chemotherapy was mechlorethamine, vincristine, procarbazine, and prednisone (MOPP) or procarbazine, mechlorethamine, and vinblastine (PAVe) in S studies; MOPP, PAVe, vinblastine, bleomycin, and methotrexate (VBM), or doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) in C studies; and VbM (reduced dose of bleomycin compared with VBM) or mechlorethamine, doxorubicin, vinblastine, vincristine, bleomycin, etoposide, and prednisone (Stanford V) in G studies. Cumulative exposure to alkylating agent (AA) was notably lower in the G studies compared with the S and C studies, with a 75% to 83% lower dose of nitrogen mustard in addition to omission of procarbazine and melphalan. Twenty-four (3.2%) of 754 patients developed t-AML/MDS, 15 after primary chemotherapy and nine after salvage chemotherapy for relapsed HL. The incidence of t-AML/MDS was significantly lower in the G studies (0.3%) compared with the S (5.7%) or C (5.2%) studies (P < .001). Additionally, in the G studies, no t-AML/MDS was noted after primary therapy, and the only patient who developed t-AML/MDS did so after second-line therapy. Our data demonstrate the relationship between the cumulative AA dose and t-AML/MDS. Limiting the dose of AA and decreased need for secondary treatments have significantly reduced the incidence of t-AML/MDS, which was extremely rare in the G studies (Stanford V era).
Lange, Beverly J.; Yang, Richard K.; Gan, Jacek; Hank, Jaquelyn A.; Sievers, Eric L.; Alonzo, Todd A.; Gerbing, Robert B.; Sondel, Paul M.
2011-01-01
Purpose To assess associations of soluble IL-2 receptor alpha (sIL-2rα) concentration with outcomes in pediatric acute myeloid leukemia in a phase 3 trial of IL-2 therapy. Procedures We randomized 289 children with AML in first remission after intensive chemotherapy to receive IL-2 infused on days 0-3 and 8-17 (IL-2 group) or no further therapy (AML control group). We measured sequential serum sIL-2rα concentrations in both groups before, during and after therapy in both groups and in reference controls without AML. Results Before treatment, mean sIL-2rα concentrations were similar in the IL-2 group and AML controls, but significantly higher than in reference controls. Both AML groups experienced reduction in sIL-2rα concentration after chemotherapy. Thereafter in the IL-2 group, mean sIL-2rα concentration increased from 2669 pg/ml before IL-2 to 15,534 pg/ml on day 4 (p<0.001) and 10,585 pg/ml on day 18 (p<0.001). In the control group sIL-2rα concentration did not change after 28 days of follow-up. Five-year disease-free survival (DFS) was 51% in the IL-2 group and 58% in the controls (p=0.489) and overall survival was 70% and 73% respectively (p=0.727). Conclusion SIL-2r α concentration was elevated in AML at diagnosis and tended to normalize after chemotherapy. IL-2 infusion significantly increased sIL-2rα concentration, but did not improve DFS or survival in pediatric AML. Furthermore, sIL-2rα concentration was not predictive of outcome before, during or after treatment for AML. PMID:21681921
[Initial subretinal localization of acute myeloblastic leukemia (AML5) recurrence].
Le Gall, S; François, S; Urier, N; Genevieve, F; d'Hermies, F; Rachieru, P; Ifrah, N
2001-10-13
Reduced visual acuity in patients with acute leucemia can result from many causes including an ocular localization. A patient previously treated for acute myeloblastic leucemia-5 (AML5) developed bilateral vision impairment related to a subretinal localization of the leucemia. Meningeal and bone marrow relapse followed. The subretinal localization responded only to massive systemic steroid treatment. Although asymptomatic, ocular localizations are frequent in leucemia. Their prognostic impact depends on the ocular structure involved and on the chronology of onset--early or late in the leucemia course. The underlying pathophysiological mechanism of ocular involvement remains unexplained but hyperleucocytosis at presentation may be a risk factor and would justify at least systematic specialized examinations and discussion of prophylactic treatment.
Embolization of a Bleeding Renal Angiomyolipoma in Pregnancy: Case Report and Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, Jose P.; Georganas, Marios; Khan, Mohammad S.
A case is described of a woman 10 weeks pregnant who had severe bleeding, secondary to a renal angiomyolipoma (AML), that was treated with embolization. Subsequent pregnancy was uneventful and she delivered a normal female infant 28 weeks after the procedure. One month after delivery, liquefaction of the AML occurred, which eventually required surgical drainage. We review and discuss AML during pregnancy, its management and post-embolization complication000.
The Madrid Train Bombings: A Decision-Making Model Analysis
2009-12-11
train bombing terrorist attack AML Anti Money Laundering CFT Combating the Financing of Terrorism ETA Euzkadi Ta Azkatasuna otherwise known as the...Fund board of executives have ―adopted action plans to enhance efforts for AML / CFT [anti money laundering and combating the financing of terrorism...Anti-Money Laundering ( AML ) and Combating the Financing of Terrorism ( CFT ), X-2, http://www1.worldbank.org/finance/html/amlcft /docs/Ref_Guide_EN/v2/10
Kampa-Schittenhelm, Kerstin Maria; Frey, Julia; Haeusser, Lara A; Illing, Barbara; Pavlovsky, Ashly A; Blumenstock, Gunnar; Schittenhelm, Marcus Matthias
2017-10-10
Activating D816 mutations of the class III receptor tyrosine kinase KIT are associated with the majority of patients with systemic mastocytosis (SM), but also core binding factor (CBF) AML, making KIT mutations attractive therapeutic targets for the treatment of these cancers. Crenolanib is a potent and selective inhibitor of wild-type as well as mutant isoforms of the class III receptor tyrosine kinases FLT3 and PDGFRα/β. Notably, crenolanib inhibits constitutively active mutant-FLT3 isoforms resulting from amino acid substitutions of aspartic acid at codon 835, which is homologous to codon 816 in the KIT gene - suggesting sensitivity against mutant-KIT D816 isoforms as well. Here we demonstrate that crenolanib targets KIT D816 in SM and CBF AML models: crenolanib inhibits cellular proliferation and initiates apoptosis of mastocytosis cell lines expressing these mutations. Target-specificity was confirmed using an isogenic cell model. In addition, we demonstrate that KIT D816 mutations are targetable with clinically achievable doses of crenolanib. Further, a rationale to combine cladribine (2-CDA), the therapeutic standard in SM, with crenolanib is provided. In conclusion, we demonstrate that crenolanib is an inhibitor of mutant-KIT D816 isoforms at clinically achievable concentrations, and thus may be a potential treatment for SM and CBF AML as a monotherapy or in combination approaches.
Pereira, Daniel S.; Guevara, Claudia I.; Jin, Liqing; Mbong, Nathan; Verlinsky, Alla; Hsu, Ssucheng J.; Aviña, Hector; Karki, Sher; Abad, Joseph D.; Yang, Peng; Moon, Sung-Ju; Malik, Faisal; Choi, Michael Y.; An, Zili; Morrison, Kendall; Challita-Eid, Pia M.; Doñate, Fernando; Joseph, Ingrid B.J.; Kipps, Thomas J.; Dick, John E.; Stover, David R.
2015-01-01
CD37 is a tetraspanin expressed on malignant B cells. Recently, CD37 has gained interest as a therapeutic target. We developed AGS67E, an antibody–drug conjugate that targets CD37 for the potential treatment of B/T-cell malignancies. It is a fully human monoclonal IgG2 antibody (AGS67C) conjugated, via a protease-cleavable linker, to the microtubule-disrupting agent mono-methyl auristatin E (MMAE). AGS67E induces potent cytotoxicity, apoptosis, and cell-cycle alterations in many non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia (CLL) cell lines and patient-derived samples in vitro. It also shows potent antitumor activity in NHL and CLL xenografts, including Rituxan-refractory models. During profiling studies to confirm the reported expression of CD37 in normal tissues and B-cell malignancies, we made the novel discovery that the CD37 protein was expressed in T-cell lymphomas and in AML. AGS67E bound to >80% of NHL and T-cell lymphomas, 100% of CLL and 100% of AML patient-derived samples, including CD34+CD38− leukemic stem cells. It also induced cytotoxicity, apoptosis, and cell-cycle alterations in AML cell lines and antitumor efficacy in orthotopic AML xenografts. Taken together, this study shows not only that AGS67E may serve as a potential therapeutic for B/T-cell malignancies, but it also demonstrates, for the first time, that CD37 is well expressed and a potential drug target in AML. PMID:25934707
Frequency of Undiagnosed Cystic Lung Disease in Patients With Sporadic Renal Angiomyolipomas
Hartman, Thomas E.; Torres, Vicente E.; Decker, Paul A.
2012-01-01
Objective: The aim of this study was to assess the frequency of undiagnosed cystic lung lesions suggestive of pulmonary lymphangioleiomyomatosis (LAM) in patients who received a diagnosis of sporadic renal angiomyolipomas (AMLs). Methods: We conducted a retrospective review of CT scans of the chest or abdomen for cystic lung lesions on 176 adult patients who received a diagnosis of sporadic renal AML during a 10-year period, 1997 to 2006, and comparison with chest CT scans of 176 control subjects without renal AML but matched for age, sex, and smoking history. Patients presenting with suspected or known pulmonary LAM and those with underlying tuberous sclerosis were excluded. Results: Sporadic renal AML was diagnosed in 176 patients with a median age of 58 years (range, 20-91 years), the majority of whom were women (81.8%). Renal tumor was an incidental finding on imaging studies for most patients (90.3%). Nineteen patients (10.8%) had one or more cystic lung lesions and included nine patients (5.1%) with four or more cysts, all of whom were women. In comparison, eight control subjects (4.6%) had one to three cystic lung lesions and none of them exhibited four or more cysts. None of the patients with renal AML and cystic lung lesions, including six women with 10 or more cysts, had undergone an evaluation of their cystic lung disease. Conclusions: We conclude that a significant portion of women with sporadic renal AMLs exhibit cystic lung lesions suggestive of pulmonary LAM but may remain undiagnosed. Coexistence of pulmonary LAM should be considered in women incidentally found to have sporadic renal AMLs. PMID:21737494
Maung, Su W; Burke, Cathie; Hayde, Jennifer; Walshe, Janice; McDermott, Ray; Desmond, Ronan; McHugh, Johnny; Enright, Helen
2017-07-01
To demonstrate the incidence, characteristics, treatment and outcomes of patients with therapy-related myelodysplastic syndromes and therapy-related acute myeloid leukaemia (t-MDS/AML) in a tertiary referral centre. Patients meeting the diagnostic criteria for t-MDS/AML from 2003 to 2014 were reviewed to analyse their diagnostic features, details of antecedent disorder and treatment, approach to management and survival. 39 patients who developed t-MDS/AML were identified with incidence of 8.7%. Median age and gender distribution were similar to de novo MDS but t-MDS/AML patients had greater degree of cytopenia and adverse karyotypes. Time to development of t-MDS/AML was shortest for patients with antecedent haematological malignancy compared to solid tumours and autoimmune disorders (46, 85 and 109 months). Patients with prior acute leukaemia had the shortest latency and poor overall survival. Treatment options included best supportive care (56%), Azacitidine (31%) or intensive chemotherapy/allogeneic transplant (13%). Median OS of all patients was 14 months. Survival declined markedly after two years and 5-year OS was 13.8%. Longer survival was associated with blast count <5% at diagnosis, previous haematological disorder, lower risk IPSS-R and a normal karyotype. Four out of five patients who received intensive therapy/transplant remain alive with median OS of 14 months. Median OS of Azacitidine-treated group was 11 months. t-MDS/AML patients showed unique characteristics which influenced their treatment and outcomes. IPSS-R may be useful in risk-adapted treatment approaches and can predict outcomes. Survival remains poor but improved outcomes were seen with allogeneic transplantation. Azacitidine may be effective in patients unfit for intensive therapies.
Measurable residual disease testing in acute myeloid leukaemia.
Hourigan, C S; Gale, R P; Gormley, N J; Ossenkoppele, G J; Walter, R B
2017-07-01
There is considerable interest in developing techniques to detect and/or quantify remaining leukaemia cells termed measurable or, less precisely, minimal residual disease (MRD) in persons with acute myeloid leukaemia (AML) in complete remission defined by cytomorphological criteria. An important reason for AML MRD-testing is the possibility of estimating the likelihood (and timing) of leukaemia relapse. A perfect MRD-test would precisely quantify leukaemia cells biologically able and likely to cause leukaemia relapse within a defined interval. AML is genetically diverse and there is currently no uniform approach to detecting such cells. Several technologies focused on immune phenotype or cytogenetic and/or molecular abnormalities have been developed, each with advantages and disadvantages. Many studies report a positive MRD-test at diverse time points during AML therapy identifies persons with a higher risk of leukaemia relapse compared with those with a negative MRD-test even after adjusting for other prognostic and predictive variables. No MRD-test in AML has perfect sensitivity and specificity for relapse prediction at the cohort- or subject levels and there are substantial rates of false-positive and -negative tests. Despite these limitations, correlations between MRD-test results and relapse risk have generated interest in MRD-test result-directed therapy interventions. However, convincing proof that a specific intervention will reduce relapse risk in persons with a positive MRD-test is lacking and needs testing in randomized trials. Routine clinical use of MRD-testing requires further refinements and standardization/harmonization of assay platforms and results reporting. Such data are needed to determine whether results of MRD-testing can be used as a surrogate end point in AML therapy trials. This could make drug-testing more efficient and accelerate regulatory approvals. Although MRD-testing in AML has advanced substantially, much remains to be done.
Bhatnagar, Bhavana; Eisfeld, Ann-Kathrin; Nicolet, Deedra; Mrózek, Krzysztof; Blachly, James S; Orwick, Shelley; Lucas, David M; Kohlschmidt, Jessica; Blum, William; Kolitz, Jonathan E; Stone, Richard M; Bloomfield, Clara D; Byrd, John C
2016-10-01
Somatic mutation of the DNMT3A gene at the arginine R882 site is common in acute myeloid leukaemia (AML). The prognostic significance of DNMT3A R882 mutation clearance, using traditional diagnostic next generation sequencing (NGS) methods, during complete remission (CR) in AML patients is controversial. We examined the impact of clearing DNMT3A R882 mutations at diagnosis to the detectable threshold of ˂3% during CR on outcome in 56 adult AML patients. Mutational remission, defined as clearance of pre-treatment DNMT3A R882 and all other AML-associated mutations to a variant allele frequency ˂3%, occurred in 14 patients whereas persistent DNMT3A R882 mutations were observed in 42 patients. There were no significant differences in disease-free or overall survival between patients with and without DNMT3A R882 mutation clearance. Patients with persistent DNMT3A R882 who cleared all other AML mutations and did not acquire new mutations (n = 30), trended towards longer disease-free survival (1·6 vs. 0·6 years, P = 0·06) than patients with persistence of DNMT3A R882, in addition to other mutations or acquisition of new AML-associated mutations, such as those in TET2, JAK2, ASXL1 and TP53 (n = 12). These data demonstrate that DNMT3A R882 mutations, as assessed by traditional NGS methods, persist in the majority of AML patients in CR. © 2016 John Wiley & Sons Ltd.
Myeloid Sarcoma Predicts Superior Outcome in Pediatric AML; Can Cytogenetics Solve the Puzzle?
Pramanik, Raja; Tyagi, Anudishi; Chopra, Anita; Kumar, Akash; Vishnubhatla, Sreenivas; Bakhshi, Sameer
2018-06-01
The purpose of our study was to evaluate the clinical, cytogenetic, and molecular features, and survival outcomes in patients with acute myeloid leukemia (AML) with myeloid sarcoma (MS) and compare them with patients with AML without MS. This was a retrospective analysis of de novo pediatric AML patients with or without MS diagnosed at our cancer center between June 2003 and June 2016. MS was present in 121 of 570 (21.2%), the most frequent site being the orbit. Patients with MS had a younger median age (6 years vs. 10 years) and presented with higher hemoglobin and platelet but lower white blood cell count compared with patients without MS. Further, t (8; 21) (P < .01), loss of Y chromosome (P < .01), and deletion 9q (P = .03) were significantly higher in patients with AML with MS. Event-free survival (EFS; P = .003) and overall survival (OS; P = .001) were better among patients with AML with MS (median EFS 21.0 months and median OS 37.1 months) compared with those with AML without MS (median EFS 11.2 months and median OS 16.2 months). The t (8; 21) was significantly associated with MS (odds ratio, 3.92). In a comparison of the 4 groups divided according to the presence or absence of MS and t (8; 21), the subgroup of patients having MS without concomitant t (8; 21) was the only group to have a significantly better OS (hazard ratio, 0.53; 95% confidence interval, 0.34-0.82; P = .005). Although t (8; 21) was more frequently associated with MS, it did not appear to be the reason for better outcome. Copyright © 2018 Elsevier Inc. All rights reserved.
Yan, Han; Wen, Lu; Tan, Dan; Xie, Pan; Pang, Feng-Mei; Zhou, Hong-Hao; Zhang, Wei; Liu, Zhao-Qian; Tang, Jie; Li, Xi; Chen, Xiao-Ping
2017-01-03
The prognosis of cytogenetically normal acute myeloid leukemia (CN-AML) varies greatly among patients. Achievement of complete remission (CR) after chemotherapy is indispensable for a better prognosis. To develop a gene signature predicting overall survival (OS) in CN-AML, we performed data mining procedure based on whole genome expression data of both blood cancer cell lines and AML patients from open access database. A gene expression signature including 42 probes was derived. These probes were significantly associated with both cytarabine half maximal inhibitory concentration values in blood cancer cell lines and OS in CN-AML patients. By using cox regression analysis and linear regression analysis, a chemo-sensitive score calculated algorithm based on mRNA expression levels of the 42 probes was established. The scores were associated with OS in both the training sample (p=5.13 × 10-4, HR=2.040, 95% CI: 1.364-3.051) and the validation sample (p=0.002, HR=2.528, 95% CI: 1.393-4.591) of the GSE12417 dataset from Gene Expression Omnibus. In The Cancer Genome Atlas (TCGA) CN-AML patients, higher scores were found to be associated with both worse OS (p=0.013, HR=2.442, 95% CI: 1.205-4.950) and DFS (p=0.015, HR=2.376, 95% CI: 1.181-4.779). Results of gene ontology (GO) analysis showed that all the significant GO Terms were correlated with cellular component of mitochondrion. In summary, a novel gene set that could predict prognosis of CN-AML was identified presently, which provided a new way to identify genes impacting AML chemo-sensitivity and prognosis.
Österroos, A; Kashif, M; Haglund, C; Blom, K; Höglund, M; Andersson, C; Gustafsson, M G; Eriksson, A; Larsson, R
2016-10-15
Cytogenetic lesions often alter kinase signaling in acute myeloid leukemia (AML) and the addition of kinase inhibitors to the treatment arsenal is of interest. We have screened a kinase inhibitor library and performed combination testing to find promising drug-combinations for synergistic killing of AML cells. Cytotoxicity of 160 compounds in the library InhibitorSelect™ 384-Well Protein Kinase Inhibitor I was measured using the fluorometric microculture cytotoxicity assay (FMCA) in three AML cell lines. The 15 most potent substances were evaluated for dose-response. The 6 most cytotoxic compounds underwent combination synergy analysis based on the FMCA readouts after either simultaneous or sequential drug addition in AML cell lines. The 4 combinations showing the highest level of synergy were evaluated in 5 primary AML samples. Synergistic calculations were performed using the combination interaction analysis package COMBIA, written in R, using the Bliss independence model. Based on obtained results, an iterative combination search was performed using the therapeutic algorithmic combinatorial screen (TACS) algorithm. Of 160 substances, cell survival was ⩽50% at <0.5μM for Cdk/Crk inhibitor, KP372-1, synthetic fascaplysin, herbimycin A, PDGF receptor tyrosine kinase inhibitor IV and reference-drug cytarabine. KP372-1, synthetic fascaplysin or herbimycin A obtained synergy when combined with cytarabine in AML cell lines MV4-11 and HL-60. KP372-1 added 24h before cytarabine gave similar results in patient cells. The iterative search gave further improved synergy between cytarabine and KP372-1. In conclusion, our in vitro studies suggest that combining KP372-1 and cytarabine is a potent and synergistic drug combination in AML. Copyright © 2016 Elsevier Inc. All rights reserved.
Yan, Han; Wen, Lu; Tan, Dan; Xie, Pan; Pang, Feng-mei; Zhou, Hong-hao; Zhang, Wei; Liu, Zhao-qian; Tang, Jie; Li, Xi; Chen, Xiao-ping
2017-01-01
The prognosis of cytogenetically normal acute myeloid leukemia (CN-AML) varies greatly among patients. Achievement of complete remission (CR) after chemotherapy is indispensable for a better prognosis. To develop a gene signature predicting overall survival (OS) in CN-AML, we performed data mining procedure based on whole genome expression data of both blood cancer cell lines and AML patients from open access database. A gene expression signature including 42 probes was derived. These probes were significantly associated with both cytarabine half maximal inhibitory concentration values in blood cancer cell lines and OS in CN-AML patients. By using cox regression analysis and linear regression analysis, a chemo-sensitive score calculated algorithm based on mRNA expression levels of the 42 probes was established. The scores were associated with OS in both the training sample (p=5.13 × 10−4, HR=2.040, 95% CI: 1.364-3.051) and the validation sample (p=0.002, HR=2.528, 95% CI: 1.393-4.591) of the GSE12417 dataset from Gene Expression Omnibus. In The Cancer Genome Atlas (TCGA) CN-AML patients, higher scores were found to be associated with both worse OS (p=0.013, HR=2.442, 95% CI: 1.205-4.950) and DFS (p=0.015, HR=2.376, 95% CI: 1.181-4.779). Results of gene ontology (GO) analysis showed that all the significant GO Terms were correlated with cellular component of mitochondrion. In summary, a novel gene set that could predict prognosis of CN-AML was identified presently, which provided a new way to identify genes impacting AML chemo-sensitivity and prognosis. PMID:27903973
Calip, Gregory S.; Malmgren, Judith A.; Lee, Wan-Ju; Schwartz, Stephen M.; Kaplan, Henry G.
2015-01-01
Purpose Risk of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) post-breast cancer treatment with adjuvant chemotherapy and granulocyte colony-stimulating factors (G-CSF) is not fully characterized. Our objective was to estimate MDS/AML risk associated with specific breast cancer treatments. Methods We conducted a retrospective cohort study of women ages ≥66 years with stage I-III breast cancer between 2001 and 2009 using the Surveillance, Epidemiology and End Results-Medicare database. Women were classified as receiving treatment with radiation, chemotherapy and/or G-CSF. We used multivariable Cox proportional hazards models to estimate adjusted hazard ratios (HR) and 95% confidence intervals (CI) for MDS/AML risk. Results Among 56,251 breast cancer cases, 1.2% developed MDS/AML during median follow-up of 3.2 years. 47.1% of women received radiation and 14.3% received chemotherapy. Compared to breast cancer cases treated with surgery alone, those treated with chemotherapy (HR=1.38, 95%-CI: 0.98–1.93) and chemotherapy/radiation (HR=1.77, 95%-CI: 1.25–2.51) had increased risk of MDS/AML; but not radiation alone (HR=1.08, 95% CI: 0.86–1.36). Among chemotherapy regimens and G-CSF, MDS/AML risk was differentially associated with anthracycline/cyclophosphamide-containing regimens (HR=1.86, 95%-CI: 1.33–2.61) and filgrastim (HR=1.47, 95%-CI: 1.05–2.06), but not pegfilgrastim (HR=1.10, 95%-CI: 0.73–1.66). Conclusions We observed increased MDS/AML risk among older breast cancer survivors treated with anthracycline/cyclophosphamide chemotherapy that was enhanced by G-CSF. Although small, this risk warrants consideration when determining adjuvant chemotherapy and neutropenia prophylaxis for breast cancer patients. PMID:26450505
Hofmann, Jerry; Kang, Michelle; Selzer, Rebecca; Green, Roland; Zhou, Mi; Zhong, Sheng; Zhang, Luoping; Smith, Martyn T.; Marsit, Carmen; Loh, Mignon; Buffler, Patricia; Yeh, Ru-Fang
2008-01-01
TEL-AML1 (ETV6-RUNX1) is the most common translocation in the childhood leukemias, and is a prenatal mutation in most children. This translocation has been detected at a high rate among newborns (∼1%); therefore the rate-limiting event for leukemia appears to be secondary mutations. A frequent such mutation in this subtype is partial deletion of chromosome 12p, trans from the translocation. Nine del(12p) breakpoints within six leukemia cases were sequenced to explore the etiology of this genetic event, and most involved cryptic sterile translocations. Twelve of 18 del(12p) parent sequences involved in these breakpoints were located in repeat regions (8 of these in Long Interspersed Nuclear Elements, or LINEs). This stands in contrast to TEL-AML1, in which only 21 of 110 previously assessed breakpoints (19%) occur in DNA repeats (P = 0.0001). An exploratory assessment of archived neonatal blood cards (ANB cards) revealed significantly more LINE CpG methylation in individuals at birth who were later diagnosed with TEL-AML1 leukemia, compared to individuals who did not contract leukemia (P = 0.01). Nontemplate nucleotides were also more frequent in del(12p) than in TEL-AML1 junctions (P = 0.004) suggesting formation by terminal deoxynucleotidyl transferase. Assessment of six ANB cards indicated that no del(12p) rearrangements backtracked to birth, although two of these patients were previously positive for TEL-AML1 using the same assay with comparable sensitivity. These data are compatible with the a two-stage natural history: TEL-AML1 occurs prenatally, and del(12p) occurs postnatally in more mature cells with a structure that suggests the involvement of retrotransposon instability. PMID:19047175
Regulation of PI 3-K, PTEN, p53, and mTOR in Malignant and Benign Tumors Deficient in Tuberin
Yadav, Anamika; Mahimainathan, Lenin; Valente, Anthony J.
2011-01-01
The tuberous sclerosis complex (TSC) is caused by mutation in either of 2 tumor suppressor genes, TSC-1 (encodes hamartin) and TSC-2 (encodes tuberin). In humans, deficiency in TSC1/2 is associated with benign tumors in many organs, including renal angiomyolipoma (AML) but rarely renal cell carcinoma (RCC). In contrast, deficiency of TSC function in the Eker rat is associated with RCC. Here, we have investigated the activity of PI 3-K and the expression of PTEN, p53, tuberin, p-mTOR, and p-p70S6K in both Eker rat RCC and human renal AML. Compared to normal tissue, increased PI 3-K activity was detected in RCC of Eker rats but not in human AML tissue. In contrast, PTEN was highly expressed in AML but significantly reduced in the renal tumors of Eker rats. Phosphorylation on Ser2448 of mTOR and Thr389 of p70S6K were significantly increased in both RCC and AML compared to matching control tissue. Total tuberin was significantly decreased in AML while completely lost in RCC of Eker rats. Our data also show that while p53 protein expression is lost in rat RCC, it was highly elevated in AML. These novel data provide evidence that loss of TSC-2, PTEN, and p53 as well as activation of PI 3-K and mTOR is associated with kidney cancer in the Eker rat, while sustained expression of TSC-2, PTEN, and p53 may prevent progression of kidney cancer in TSC patients. PMID:22737271
Novel mechanism of regulation of fibrosis in kidney tumor with tuberous sclerosis
2013-01-01
Background Deficiency in tuberin results in activation the mTOR pathway and leads to accumulation of cell matrix proteins. The mechanisms by which tuberin regulates fibrosis in kidney angiomyolipomas (AMLs) of tuberous sclerosis patients are not fully known. Method In the present study, we investigated the potential role of tuberin/mTOR pathway in the regulation of cell fibrosis in AML cells and kidney tumor tissue from tuberous sclerosis complex (TSC) patients. Results AML cells treated with rapamycin shows a significant decrease in mRNA and protein expression as well as in promoter transcriptional activity of alpha-smooth muscle actin (α-SMA) compared to untreated cells. In addition, cells treated with rapamycin significantly decreased the protein expression of the transcription factor YY1. Rapamycin treatment also results in the redistribution of YY1 from the nucleus to cytoplasm in AML cells. Moreover, cells treated with rapamycin resulted in a significant reduce of binding of YY1 to the αSMA promoter element in nuclear extracts of AML cells. Kidney angiomyolipoma tissues from TSC patients showed lower levels of tuberin and higher levels of phospho-p70S6K that resulted in higher levels of mRNA and protein of αSMA expression compared to control kidney tissues. In addition, most of the α-SMA staining was identified in the smooth muscle cells of AML tissues. YY1 was also significantly increased in tumor tissue of AMLs compared to control kidney tissue suggesting that YY1 plays a major role in the regulation of αSMA. Conclusions These data comprise the first report to provide one mechanism whereby rapamycin might inhibit the cell fibrosis in kidney tumor of TSC patients. PMID:23705901
Kovtun, Yelena; Noordhuis, Paul; Whiteman, Kathleen R; Watkins, Krystal; Jones, Gregory E; Harvey, Lauren; Lai, Katharine C; Portwood, Scott; Adams, Sharlene; Sloss, Callum M; Schuurhuis, Gerrit Jan; Ossenkoppele, Gert; Wang, Eunice S; Pinkas, Jan
2018-06-01
The myeloid differentiation antigen CD33 has long been exploited as a target for antibody-based therapeutic approaches in acute myeloid leukemia (AML). Validation of this strategy was provided with the approval of the CD33-targeting antibody-drug conjugate (ADC) gemtuzumab ozogamicin in 2000; the clinical utility of this agent, however, has been hampered by safety concerns. Thus, the full potential of CD33-directed therapy in AML remains to be realized, and considerable interest exists in the design and development of more effective ADCs that confer high therapeutic indices and favorable tolerability profiles. Here, we describe the preclinical characterization of a novel CD33-targeting ADC, IMGN779, which utilizes a unique DNA-alkylating payload to achieve potent antitumor effects with good tolerability. The payload, DGN462, is prototypical of a novel class of purpose-created indolinobenzodiazeprine pseudodimers, termed IGNs. With low picomolar potency, IMGN779 reduced viability in a panel of AML cell lines in vitro Mechanistically, the cytotoxic activity of IMGN779 involved DNA damage, cell-cycle arrest, and apoptosis consistent with the mode of action of DGN462. Moreover, IMGN779 was highly active against patient-derived AML cells, including those with adverse molecular abnormalities, and sensitivity correlated to CD33 expression levels. In vivo , IMGN779 displayed robust antitumor efficacy in multiple AML xenograft and disseminated disease models, as evidenced by durable tumor regressions and prolonged survival. Taken together, these findings identify IMGN779 as a promising new candidate for evaluation as a novel therapeutic in AML. Mol Cancer Ther; 17(6); 1271-9. ©2018 AACR . ©2018 American Association for Cancer Research.
Mohammadi, Mohammad; Cao, Yang; Glimelius, Ingrid; Bottai, Matteo; Eloranta, Sandra; Smedby, Karin E
2015-11-05
Comorbidity increases overall mortality in patients diagnosed with hematological malignancies. The impact of comorbidity on cancer-specific mortality, taking competing risks into account, has not been evaluated. Using the Swedish Cancer Register, we identified patients aged >18 years with a first diagnosis of acute myeloid leukemia (AML, N = 2,550), chronic myeloid leukemia (CML, N = 1,000) or myeloma (N = 4,584) 2002-2009. Comorbid disease history was assessed through in- and out-patient care as defined in the Charlson comorbidity index. Mortality rate ratios (MRR) were estimated through 2012 using Poisson regression. Probabilities of cancer-specific death were computed using flexible parametric survival models. Comorbidity was associated with increased all-cause as well as cancer-specific mortality (cancer-specific MRR: AML = 1.27, 95 % CI: 1.15-1.40; CML = 1.28, 0.96-1.70; myeloma = 1.17, 1.08-1.28) compared with patients without comorbidity. Disorders associated with higher cancer-specific mortality were renal disease (in patients with AML, CML and myeloma), cerebrovascular conditions, dementia, psychiatric disease (AML, myeloma), liver and rheumatic disease (AML), cardiovascular and pulmonary disease (myeloma). The difference in the probability of cancer-specific death, comparing patients with and without comorbidity, was largest among AML patients <70 years, whereas in myeloma the difference did not vary by age among the elderly. The probability of cancer-specific death was generally higher than other-cause death even in older age groups, irrespective of comorbidity. Comorbidities associated with organ failure or cognitive function are associated with poorer prognosis in several hematological malignancies, likely due to lower treatment tolerability. The results highlight the need for a better balance between treatment toxicity and efficacy in comorbid and elderly AML, CML and myeloma patients.
Huang, Lulu; Deng, Donghong; Peng, Zhigang; Ye, Fanghui; Xiao, Qiang; Zhang, Bing; Ye, Bingbing; Mo, Zengnan; Yang, Xiaobo; Liu, Zhenfang
2015-06-01
Methylenetetrahydrofolate reductase (MTHFR) is an essential enzyme in the metabolism of folate. Since acute myeloid leukemia (AML) is characterized by rapidly proliferating tissues that have a high requirement for DNA synthesis, it is possible that the presence of MTHFR polymorphisms could be linked to the multifactorial process of AML development. We evaluated the role of MTHFR C677T and A1298C polymorphisms in a case-control study comprising 98 AML patients and 2016 healthy controls in a Southern Chinese population. We further conducted a sub-study restricted to individuals who neither smoked nor drank alcohol (70 AML patients and 160 healthy controls). MTHFR polymorphisms in the patient and control groups were evaluated by SNaP shot genotype techniques and Illumina BeadChip, respectively. Logistic regression was used to assess the adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs). The MTHFR 1298AC genotype and the 677CC/1298AC haplotype were significantly associated with a decreased risk of AML compared with the AA genotype and 677CC/1298AA haplotype (OR=0.60, 95% CI: 0.38-0.95, P=0.03; OR=0.49, 95% CI: 0.27-0.90, P=0.02, respectively). In addition, the 677TT genotype was significantly associated with an increased risk of AML compared with the AA genotype only in non-smokers and non-drinkers (OR=4.78; 95% CI=1.38-16.61, P=0.01). The results might suggest that MTHFR polymorphisms are significantly associated with AML risk. In addition, the role of MTHFR genetic susceptibility could be greater among non-smokers and non-drinkers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jang, Ji Eun; Eom, Ju-In; Jeung, Hoi-Kyung; Cheong, June-Won; Lee, Jung Yeon; Kim, Jin Seok; Min, Yoo Hong
2017-04-03
Bromodomain and extraterminal domain (BET) inhibitors are promising epigenetic agents for the treatment of various subsets of acute myeloid leukemia (AML). However, the resistance of leukemia stem cells (LSCs) to BET inhibitors remains a major challenge. In this study, we evaluated the mechanisms underlying LSC resistance to the BET inhibitor JQ1. We evaluated the levels of apoptosis and macroautophagy/autophagy induced by JQ1 in LSC-like leukemia cell lines and primary CD34 + CD38 - leukemic blasts obtained from AML cases with normal karyotype without recurrent mutations. JQ1 effectively induced apoptosis in a concentration-dependent manner in JQ1-sensitive AML cells. However, in JQ1-resistant AML LSCs, JQ1 induced little apoptosis and led to upregulation of BECN1/Beclin 1, increased LC3 lipidation, formation of autophagosomes, and downregulation of SQSTM1/p62. Inhibition of autophagy by pharmacological inhibitors or knockdown of BECN1 using specific siRNA enhanced JQ1-induced apoptosis in resistant cells, indicating that prosurvival autophagy occurred in these cells. Independent of MTOR signaling, activation of the AMPK (p-Thr172)-ULK1 (p-Ser555) pathway was found to be associated with JQ1-induced autophagy in resistant cells. AMPK inhibition using the pharmacological inhibitor compound C or by knockdown of PRKAA/AMPKα suppressed autophagy and promoted JQ1-induced apoptosis in AML LSCs. These findings revealed that prosurvival autophagy was one of the mechanisms involved in the resistance of AML LSCs to JQ1. Targeting the AMPK-ULK1 pathway or inhibition of autophagy could be an effective therapeutic strategy for combating resistance to BET inhibitors in AML and other types of cancer.
Chevret, Sylvie; Nibourel, Olivier; Cheok, Meyling; Pautas, Cécile; Duléry, Rémy; Boyer, Thomas; Cayuela, Jean-Michel; Hayette, Sandrine; Raffoux, Emmanuel; Farhat, Hassan; Boissel, Nicolas; Terre, Christine
2014-01-01
We recently showed that the addition of fractionated doses of gemtuzumab ozogamicin (GO) to standard chemotherapy improves clinical outcome of acute myeloid leukemia (AML) patients. In the present study, we performed mutational analysis of 11 genes (FLT3, NPM1, CEBPA, MLL, WT1, IDH1/2, RUNX1, ASXL1, TET2, DNMT3A), EVI1 overexpression screening, and 6.0 single-nucleotide polymorphism array (SNP-A) analysis in diagnostic samples of the 278 AML patients enrolled in the ALFA-0701 trial. In cytogenetically normal (CN) AML (n = 146), 38% of the patients had at least 1 SNP-A lesion and 89% of the patients had at least 1 molecular alteration. In multivariate analysis, the independent predictors of higher cumulative incidence of relapse were unfavorable karyotype (P = 0.013) and randomization in the control arm (P = 0.007) in the whole cohort, and MLL partial tandem duplications (P = 0.014) and DNMT3A mutations (P = 0.010) in CN-AML. The independent predictors of shorter overall survival (OS) were unfavorable karyotype (P < 0.001) and SNP-A lesion(s) (P = 0.001) in the whole cohort, and SNP-A lesion(s) (P = 0.006), DNMT3A mutations (P = 0.042) and randomization in the control arm (P = 0.043) in CN-AML. Interestingly, CN-AML patients benefited preferentially more from GO treatment as compared to AML patients with abnormal cytogenetics (hazard ratio for death, 0.52 versus 1.14; test for interaction, P = 0.04). Although the interaction test was not statistically significant, the OS benefit associated with GO treatment appeared also more pronounced in FLT3 internal tandem duplication positive than in negative patients. PMID:24659740
Renneville, Aline; Abdelali, Raouf Ben; Chevret, Sylvie; Nibourel, Olivier; Cheok, Meyling; Pautas, Cécile; Duléry, Rémy; Boyer, Thomas; Cayuela, Jean-Michel; Hayette, Sandrine; Raffoux, Emmanuel; Farhat, Hassan; Boissel, Nicolas; Terre, Christine; Dombret, Hervé; Castaigne, Sylvie; Preudhomme, Claude
2014-02-28
We recently showed that the addition of fractionated doses of gemtuzumab ozogamicin (GO) to standard chemotherapy improves clinical outcome of acute myeloid leukemia (AML) patients. In the present study, we performed mutational analysis of 11 genes (FLT3, NPM1, CEBPA, MLL, WT1, IDH1/2, RUNX1, ASXL1, TET2, DNMT3A), EVI1 overexpression screening, and 6.0 single-nucleotide polymorphism array (SNP-A) analysis in diagnostic samples of the 278 AML patients enrolled in the ALFA-0701 trial. In cytogenetically normal (CN) AML (n=146), 38% of the patients had at least 1 SNP-A lesion and 89% of the patients had at least 1 molecular alteration. In multivariate analysis, the independent predictors of higher cumulative incidence of relapse were unfavorable karyotype (P = 0.013) and randomization in the control arm (P = 0.007) in the whole cohort, and MLL partial tandem duplications (P = 0.014) and DNMT3A mutations (P = 0.010) in CN-AML. The independent predictors of shorter overall survival (OS) were unfavorable karyotype (P <0.001) and SNP-A lesion(s) (P = 0.001) in the whole cohort, and SNP-A lesion(s) (P = 0.006), DNMT3A mutations (P = 0.042) and randomization in the control arm (P = 0.043) in CN-AML. Interestingly, CN-AML patients benefited preferentially more from GO treatment as compared to AML patients with abnormal cytogenetics (hazard ratio for death, 0.52 versus 1.14; test for interaction, P = 0.04). Although the interaction test was not statistically significant, the OS benefit associated with GO treatment appeared also more pronounced in FLT3 internal tandem duplication positive than in negative patients.
PROGRESS IN ACUTE MYELOID LEUKEMIA
Kadia, Tapan M.; Ravandi, Farhad; O’Brien, Susan; Cortes, Jorge; Kantarjian, Hagop M.
2014-01-01
Significant progress has been made in the treatment of acute myeloid leukemia (AML). Steady gains in clinical research and a renaissance of genomics in leukemia have led to improved outcomes. The recognition of tremendous heterogeneity in AML has allowed individualized treatments of specific disease entities within the context of patient age, cytogenetics, and mutational analysis. The following is a comprehensive review of the current state of AML therapy and a roadmap of our approach to these distinct disease entities. PMID:25441110
Lopes-Coelho, Filipa; Nunes, Carolina; Gouveia-Fernandes, Sofia; Rosas, Rita; Silva, Fernanda; Gameiro, Paula; Carvalho, Tânia; Gomes da Silva, Maria; Cabeçadas, José; Dias, Sérgio; Gonçalves, Luís G.; Serpa, Jacinta
2017-01-01
Dysregulation of glucose/lactate dynamics plays a role in cancer progression, and MCTs are key elements in metabolic remodeling. VEGF is a relevant growth factor in the maintenance of bone marrow microenvironment and it is also important in hematological diseases. Our aim was to investigate the role of VEGF in the metabolic adaptation of Acute myeloid leukemia (AML) cells by evaluating the metabolic profiles and cell features according to the AML lineage and testing lactate as a metabolic coin. Our in vitro results showed that AML promyelocytic (HL60) and monocytic (THP1) (but not erythroid- HEL) lineages are well adapted to VEGF and lactate rich environment. Their metabolic adaptation relies on high rates of glycolysis to generate intermediates for PPP to support cell proliferation, and on the consumption of glycolysis-generated lactate to supply biomass and energy production. VEGF orchestrates this metabolic network by regulating MCT1 expression. Bromopyruvic acid (BPA) was proven to be an effective cytotoxic in AML, possibly transported by MCT1. Our study reinforces that targeting metabolism can be a good strategy to fight cancer. MCT1 expression at the time of diagnosis can assist on the identification of AML patients that will benefit from BPA therapy. Additionally, MCT1 can be used in targeted delivery of conventional cytotoxic drugs. PMID:29137304
Jin, Linhua; Tabe, Yoko; Kojima, Kensuke; Shikami, Masato; Benito, Julina; Ruvolo, Vivian; Wang, Rui-Yu; McQueen, Teresa; Ciurea, Stefan O; Miida, Takashi; Andreeff, Michael; Konopleva, Marina
2013-12-01
Both phosphatidylinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin signaling and antiapoptotic Bcl-2 family members are critical for survival of acute myeloid leukemia (AML) cells. Here, we demonstrate the antileukemic effects of simultaneous inhibition of PI3K by the selective class I PI3K inhibitor GDC-0941 and of Bcl-2 family members by the BH3 mimetic ABT-737 in the context of the bone marrow microenvironment, where hypoxia and interactions with bone marrow stromal cells promote AML cell survival and chemoresistance. The combination of GDC-0941 and ABT-737 profoundly downregulated antiapoptotic Mcl-1 expression levels, activated BAX, and induced mitochondrial apoptosis in AML cells co-cultured with bone marrow stromal cells under hypoxic conditions. Hypoxia caused degradation of Mcl-1 and rendered Mcl-1-overexpressing OCI-AML3 cells sensitive to ABT-737. Our findings suggest that pharmacologic PI3K inhibition by GDC-0941 enhances ABT-737-induced leukemia cell death even under the protective conditions afforded by the bone marrow microenvironment. Combined blockade of PI3K and Bcl-2 pathways down-regulates anti-apoptotic Mcl-1 expression PI3K and Bcl-2 induced Mcl-1 down-regulation activates BAX PI3K and Bcl-2 blockage induces apoptosis in AML under hypoxic BM microenvironment.
Su, Yu-Chieh; Li, Szu-Chin; Wu, Yin-Chi; Wang, Li-Min; Chao, K. S. Clifford; Liao, Hui-Fen
2013-01-01
IL-6 and sonic hedgehog (Shh) signaling molecules are considered to maintain the growth of cancer stem cells (CSCs). Resveratrol, an important integrant in traditional Chinese medicine, possesses certain antitumor effects. However, the mechanisms on regulating acute myeloid leukemia (AML) are unclear. This study first used human subjects to demonstrate that the plasma levels of IL-6 and IL-1β in AML patients were higher and lower, respectively, than healthy donors. The expression of Shh preproproteins, and C- and N-terminal Shh peptides increased in bone marrow and peripheral blood mononuclear cells isolated from AML patients, and the plasma N-Shh secretion was greater. To further clarify the effect of IL-6 and resveratrol in Shh signaling, human AML HL-60 cells were tested. IL-6 upregulated Shh and Gli-1 expression and was accompanied by an increase of cell viability. Resveratrol significantly decreased CSC-related Shh expression, Gli-1 nuclear translocation, and cell viability in IL-6-treated HL-60 cells and had synergistic effect with Shh inhibitor cyclopamine on inhibiting cell growth. Conclusions. IL-6 stimulated the growth of AML cells through Shh signaling, and this effect might be blocked by resveratrol. Further investigations of Shh as a prognostic marker and resveratrol as a therapeutic drug target to CSCs in AML are surely warranted. PMID:23533494
Müller-Tidow, C; Tschanter, P; Röllig, C; Thiede, C; Koschmieder, A; Stelljes, M; Koschmieder, S; Dugas, M; Gerss, J; Butterfaß-Bahloul, T; Wagner, R; Eveslage, M; Thiem, U; Krause, S W; Kaiser, U; Kunzmann, V; Steffen, B; Noppeney, R; Herr, W; Baldus, C D; Schmitz, N; Götze, K; Reichle, A; Kaufmann, M; Neubauer, A; Schäfer-Eckart, K; Hänel, M; Peceny, R; Frickhofen, N; Kiehl, M; Giagounidis, A; Görner, M; Repp, R; Link, H; Kiani, A; Naumann, R; Brümmendorf, T H; Serve, H; Ehninger, G; Berdel, W E; Krug, U
2016-03-01
DNA methylation changes are a constant feature of acute myeloid leukemia. Hypomethylating drugs such as azacitidine are active in acute myeloid leukemia (AML) as monotherapy. Azacitidine monotherapy is not curative. The AML-AZA trial tested the hypothesis that DNA methyltransferase inhibitors such as azacitidine can improve chemotherapy outcome in AML. This randomized, controlled trial compared the efficacy of azacitidine applied before each cycle of intensive chemotherapy with chemotherapy alone in older patients with untreated AML. Event-free survival (EFS) was the primary end point. In total, 214 patients with a median age of 70 years were randomized to azacitidine/chemotherapy (arm-A) or chemotherapy (arm-B). More arm-A patients (39/105; 37%) than arm-B (25/109; 23%) showed adverse cytogenetics (P=0.057). Adverse events were more frequent in arm-A (15.44) versus 13.52 in arm-B, (P=0.26), but early death rates did not differ significantly (30-day mortality: 6% versus 5%, P=0.76). Median EFS was 6 months in both arms (P=0.96). Median overall survival was 15 months for patients in arm-A compared with 21 months in arm-B (P=0.35). Azacitidine added to standard chemotherapy increases toxicity in older patients with AML, but provides no additional benefit for unselected patients.
Negrotto, Soledad; Ng, Kwok Peng; Jankowska, Ania M.; Bodo, Juraj; Gopalan, Banu; Guinta, Kathryn; Mulloy, James C.; Hsi, Eric; Maciejewski, Jaroslaw; Saunthararajah, Yogen
2011-01-01
The DNA hypomethylating drug decitabine maintains normal hematopoietic stem cell (HSC) self-renewal but induces terminal differentiation in acute myeloid leukemia (AML) cells. The basis for these contrasting cell-fates, and for selective CpG hypomethylation by decitabine, is poorly understood. Promoter CpGs, with methylation measured by microarray, were classified by the direction of methylation change with normal myeloid maturation. In AML cells, the methylation pattern at maturation-responsive CpG suggested at least partial maturation. Consistent with partial maturation, in gene expression analyses, AML cells expressed high levels of the key lineage-specifying factor CEBPA, but relatively low levels of the key late-differentiation driver CEBPE. In methylation analysis by mass-spectrometry, CEBPE promoter CpG that are usually hypomethylated during granulocyte maturation were significantly hypermethylated in AML cells. Decitabine treatment induced cellular differentiation of AML cells, and the largest methylation decreases were at CpG that are hypomethylated with myeloid maturation, including CEBPE promoter CpG. In contrast, decitabine-treated normal HSC retained immature morphology, and methylation significantly decreased at CpG that are less methylated in immature cells. High expression of lineage-specifying factor and aberrant epigenetic repression of some key late-differentiation genes distinguishes AML cells from normal HSC and could explain the contrasting differentiation and methylation responses to decitabine. PMID:21836612
SNP-array lesions in core binding factor acute myeloid leukemia
Duployez, Nicolas; Boudry-Labis, Elise; Roumier, Christophe; Boissel, Nicolas; Petit, Arnaud; Geffroy, Sandrine; Helevaut, Nathalie; Celli-Lebras, Karine; Terré, Christine; Fenneteau, Odile; Cuccuini, Wendy; Luquet, Isabelle; Lapillonne, Hélène; Lacombe, Catherine; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric; Preudhomme, Claude
2018-01-01
Acute myeloid leukemia (AML) with t(8;21) and inv(16), together referred as core binding factor (CBF)-AML, are recognized as unique entities. Both rearrangements share a common pathophysiology, the disruption of the CBF, and a relatively good prognosis. Experiments have demonstrated that CBF rearrangements were insufficient to induce leukemia, implying the existence of cooperating events. To explore these aberrations, we performed single nucleotide polymorphism (SNP)-array in a well-annotated cohort of 198 patients with CBF-AML. Excluding breakpoint-associated lesions, the most frequent events included loss of a sex chromosome (53%), deletions at 9q21 (12%) and 7q36 (9%) in patients with t(8;21) compared with trisomy 22 (13%), trisomy 8 (10%) and 7q36 deletions (12%) in patients with inv(16). SNP-array revealed novel recurrent genetic alterations likely to be involved in CBF-AML leukemogenesis. ZBTB7A mutations (20% of t(8;21)-AML) were shown to be a target of copy-neutral losses of heterozygosity (CN-LOH) at chromosome 19p. FOXP1 focal deletions were identified in 5% of inv(16)-AML while sequence analysis revealed that 2% carried FOXP1 truncating mutations. Finally, CCDC26 disruption was found in both subtypes (4.5% of the whole cohort) and possibly highlighted a new lesion associated with aberrant tyrosine kinase signaling in this particular subtype of leukemia. PMID:29464086
Cytogenetic Profile of de novo Acute Myeloid Leukemia Patients in Malaysia.
Meng, Chin Yuet; Noor, Puteri J; Ismail, Azli; Ahid, Mohd Fadly Md; Zakaria, Zubaidah
2013-03-01
Acute myeloid leukemia (AML) is a heterogeneous disease in terms of cytogenetics and molecular genetics. AML is the most common acute leukemia in adults and its incidence increases with age. Diagnostic cytogenetics is an important prognostic indicator for predicting outcome of AML. We examined the karyotypic patterns of 480 patients with de novo AML seen at government hospitals throughout the country and evaluated the association of chromosome aberrations with the age of patient. Chromosome abnormalities were detected in 146 (30.4%) patients. The most common cytogenetic abnormality was balanced translocation t (8; 21), followed by trisomy 8 (as sole abnormality) and t (15; 17). The age of our Malaysian patients at diagnosis ranged from four months to 81 years, with a median age of 39 years. The normal karyotype was found mainly in patients aged 15-30 years. About 75% of patients with t (8; 21) were below 40 years of age, and the complex karyotype was found with the highest frequently (34.3%) in elderly patients (age above 60 years). More than half of the patients with complex karyotype were above 50 years of age. The deletion 5q was detected only in patients aged above 50 years. Different cytogenetic abnormalities in AML show different frequencies with increasing age. Probably different genetic mechanisms are involved in the pathogenesis of AML and these mechanisms might occur at different frequencies over lifetime.
Lopes-Coelho, Filipa; Nunes, Carolina; Gouveia-Fernandes, Sofia; Rosas, Rita; Silva, Fernanda; Gameiro, Paula; Carvalho, Tânia; Gomes da Silva, Maria; Cabeçadas, José; Dias, Sérgio; Gonçalves, Luís G; Serpa, Jacinta
2017-10-10
Dysregulation of glucose/lactate dynamics plays a role in cancer progression, and MCTs are key elements in metabolic remodeling. VEGF is a relevant growth factor in the maintenance of bone marrow microenvironment and it is also important in hematological diseases. Our aim was to investigate the role of VEGF in the metabolic adaptation of Acute myeloid leukemia (AML) cells by evaluating the metabolic profiles and cell features according to the AML lineage and testing lactate as a metabolic coin. Our in vitro results showed that AML promyelocytic (HL60) and monocytic (THP1) (but not erythroid- HEL) lineages are well adapted to VEGF and lactate rich environment. Their metabolic adaptation relies on high rates of glycolysis to generate intermediates for PPP to support cell proliferation, and on the consumption of glycolysis-generated lactate to supply biomass and energy production. VEGF orchestrates this metabolic network by regulating MCT1 expression. Bromopyruvic acid (BPA) was proven to be an effective cytotoxic in AML, possibly transported by MCT1. Our study reinforces that targeting metabolism can be a good strategy to fight cancer. MCT1 expression at the time of diagnosis can assist on the identification of AML patients that will benefit from BPA therapy. Additionally, MCT1 can be used in targeted delivery of conventional cytotoxic drugs.
Wolach, Ofir; Itchaki, Gilad; Bar-Natan, Michal; Yeshurun, Moshe; Ram, Ron; Herscovici, Corina; Shpilberg, Ofer; Douer, Dan; Tallman, Martin S; Raanani, Pia
2016-03-01
Cytarabine is the backbone of most chemotherapeutic regimens for acute myeloid leukemia (AML), yet the optimal dose for salvage therapy of refractory or relapsed AML (RR-AML) has not been established. Very high dose single-agent cytarabine at 36 g/m(2) (ARA-36) was previously shown to be effective and tolerable in RR-AML. In this retrospective analysis, we aim to describe the toxicity and efficacy of ARA-36 as salvage therapy for patients with AML who are primary refractory to intensive daunorubicin-containing induction or those relapsing after allogeneic stem cell transplant (alloSCT). Fifteen patients, median age 53 years, were included in the analysis. Six patients were treated for induction failure, one had resistant APL, and eight relapsed after alloSCT. Complete remission was achieved in 60% of patients. Surviving patients were followed for a median of 8.5 months. One-year overall survival was 54% (95% CI 30%-86%), and relapse rate from remission (n = 9) was 56%. Grade III/IV pulmonary, infectious, ocular and gastrointestinal toxicities occurred in 26%, 20%, 20% and 20% of patients respectively. Salvage therapy with ARA-36 regimen for RR-AML has considerable efficacy with manageable toxicity in patients with induction failure or post-transplant relapse. Overall survival in these high-risk patients still remains poor. Copyright © 2015 John Wiley & Sons, Ltd.
Enhancers of Polycomb EPC1 and EPC2 sustain the oncogenic potential of MLL leukemia stem cells
Huang, Xu; Spencer, Gary J; Lynch, James T; Ciceri, Filippo; Somerville, Tim D D; Somervaille, Tim C P
2013-01-01
Through a targeted knockdown (KD) screen of chromatin regulatory genes we identified the EP400 complex components EPC1 and EPC2 as critical oncogenic co-factors in acute myeloid leukemia (AML). EPC1 and EPC2 were required for the clonogenic potential of human AML cells of multiple molecular subtypes. Focusing on MLL-mutated AML as an exemplar, Epc1 or Epc2 KD induced apoptosis of murine MLL-AF9 AML cells and abolished leukemia stem cell potential. By contrast, normal hematopoietic stem and progenitor cells (HSPC) were spared. Similar selectivity was observed for human primary AML cells versus normal CD34+ HSPC. In keeping with these distinct functional consequences, Epc1 or Epc2 KD induced divergent transcriptional consequences in murine MLL-AF9 granulocyte-macrophage progenitor-like (GMP) cells versus normal GMP, with a signature of increased MYC activity in leukemic but not normal cells. This was caused by accumulation of MYC protein and was also observed following KD of other EP400 complex genes. Pharmacological inhibition of MYC:MAX dimerization, or concomitant MYC KD, reduced apoptosis following EPC1 KD, linking the accumulation of MYC to cell death. Therefore EPC1 and EPC2 are components of a complex which directly or indirectly serves to prevent MYC accumulation and AML cell apoptosis, thus sustaining oncogenic potential. PMID:24166297
Sawada, M; Tsurumi, H; Yamada, T; Hara, T; Oyama, M; Moriwaki, H
1999-04-01
Reverse transcriptase-polymerase chain reaction (RT-PCR) methods often detect the AML1/MTG8 fusion transcript even in acute myelogenous leukemia (AML) patients with t(8;21) who have been in long-term remission. We encountered 2 hypoplastic leukemia patients with t(8;21) who achieved cytogenetic remission with short-term conventional chemotherapy. Patient 1 was a 42-year-old woman. Chromosomal analysis detected t(8;21) (q22;q22) and PCR analysis (35 cycles PCR amplification; detection limit 1 x 10(-5) cells) detected the AML1/MTG8 fusion transcript. Complete remission was obtained with 1 course of chemotherapy consisting of low-dose cytarabine (20 mg x 14 days) and etoposide (50 mg x 14 days). After 2 courses of consolidation chemotherapy consisting of conventional-dose cytarabine and mitoxantrone, the RT-PCR findings were negative for the AML1/MTG8 fusion transcript. Patient 2 was a 67-year-old man. Cytogenetic analysis detected t(8;21) (q22;q22), and was positive for the AML1/MTG8 fusion transcript. After 2 courses of induction chemotherapy comprising low-dose cytarabine (20 mg x 14 days) and etoposide (50 mg x 14 days), and 3 courses of conventional consolidation chemotherapy, RT-PCR analysis confirmed the disappearance of the AML1/MTG8 fusion transcript.
SNP-array lesions in core binding factor acute myeloid leukemia.
Duployez, Nicolas; Boudry-Labis, Elise; Roumier, Christophe; Boissel, Nicolas; Petit, Arnaud; Geffroy, Sandrine; Helevaut, Nathalie; Celli-Lebras, Karine; Terré, Christine; Fenneteau, Odile; Cuccuini, Wendy; Luquet, Isabelle; Lapillonne, Hélène; Lacombe, Catherine; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric; Preudhomme, Claude
2018-01-19
Acute myeloid leukemia (AML) with t(8;21) and inv(16), together referred as core binding factor (CBF)-AML, are recognized as unique entities. Both rearrangements share a common pathophysiology, the disruption of the CBF, and a relatively good prognosis. Experiments have demonstrated that CBF rearrangements were insufficient to induce leukemia, implying the existence of cooperating events. To explore these aberrations, we performed single nucleotide polymorphism (SNP)-array in a well-annotated cohort of 198 patients with CBF-AML. Excluding breakpoint-associated lesions, the most frequent events included loss of a sex chromosome (53%), deletions at 9q21 (12%) and 7q36 (9%) in patients with t(8;21) compared with trisomy 22 (13%), trisomy 8 (10%) and 7q36 deletions (12%) in patients with inv(16). SNP-array revealed novel recurrent genetic alterations likely to be involved in CBF-AML leukemogenesis. ZBTB7A mutations (20% of t(8;21)-AML) were shown to be a target of copy-neutral losses of heterozygosity (CN-LOH) at chromosome 19p. FOXP1 focal deletions were identified in 5% of inv(16)-AML while sequence analysis revealed that 2% carried FOXP1 truncating mutations. Finally, CCDC26 disruption was found in both subtypes (4.5% of the whole cohort) and possibly highlighted a new lesion associated with aberrant tyrosine kinase signaling in this particular subtype of leukemia.
Gallipoli, Paolo; Giotopoulos, George; Tzelepis, Konstantinos; Costa, Ana S H; Vohra, Shabana; Medina-Perez, Paula; Basheer, Faisal; Marando, Ludovica; Di Lisio, Lorena; Dias, Joao M L; Yun, Haiyang; Sasca, Daniel; Horton, Sarah J; Vassiliou, George; Frezza, Christian; Huntly, Brian J P
2018-04-12
FLT3 internal tandem duplication (FLT3 ITD ) mutations are common in acute myeloid leukemia (AML) associated with poor patient prognosis. Although new-generation FLT3 tyrosine kinase inhibitors (TKI) have shown promising results, the outcome of FLT3 ITD AML patients remains poor and demands the identification of novel, specific, and validated therapeutic targets for this highly aggressive AML subtype. Utilizing an unbiased genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 screen, we identify GLS, the first enzyme in glutamine metabolism, as synthetically lethal with FLT3-TKI treatment. Using complementary metabolomic and gene-expression analysis, we demonstrate that glutamine metabolism, through its ability to support both mitochondrial function and cellular redox metabolism, becomes a metabolic dependency of FLT3 ITD AML, specifically unmasked by FLT3-TKI treatment. We extend these findings to AML subtypes driven by other tyrosine kinase (TK) activating mutations and validate the role of GLS as a clinically actionable therapeutic target in both primary AML and in vivo models. Our work highlights the role of metabolic adaptations as a resistance mechanism to several TKI and suggests glutaminolysis as a therapeutically targetable vulnerability when combined with specific TKI in FLT3 ITD and other TK activating mutation-driven leukemias. © 2018 by The American Society of Hematology.
Yan, F; Shen, N; Pang, JX; Zhao, N; Zhang, YW; Bode, AM; Al-Kali, A; Litzow, MR; Li, B; Liu, SJ
2017-01-01
Aberrant DNA methylation mediated by deregulation of DNA methyltransferases (DNMT) is a key hallmark of acute myeloid leukemia (AML), yet efforts to target DNMT deregulation for drug development have lagged. We previously demonstrated that upregulation of fatty acid-binding protein 4 (FABP4) promotes AML aggressiveness through enhanced DNMT1-dependent DNA methylation. Here we demonstrate that FABP4 upregulation in AML cells occurs through vascular endothelial growth factor (VEGF) signaling, thus elucidating a crucial FABP4-DNMT1 regulatory feedback loop in AML biology. We show that FABP4 dysfunction by its selective inhibitor BMS309403 leads to downregulation of DNMT1, decrease of global DNA methylation and re-expression of p15INK4B tumor suppressor gene by promoter DNA hypomethylation in vitro, ex vivo and in vivo. Functionally, BMS309403 suppresses cell colony formation, induces cell differentiation, and, importantly, impairs leukemic disease progression in mouse models of leukemia. Our findings highlight AML-promoting properties of the FABP4-DNMT1 vicious loop, and identify an attractive class of therapeutic agents with a high potential for clinical use in AML patients. The results will also assist in establishing the FABP4-DNMT1 loop as a target for therapeutic discovery to enhance the index of current epigenetic therapies. PMID:28993705
Díaz-Beyá, M; Brunet, S; Nomdedéu, J; Tejero, R; Díaz, T; Pratcorona, M; Tormo, M; Ribera, J M; Escoda, L; Duarte, R; Gallardo, D; Heras, I; Queipo de Llano, M P; Bargay, J; Monzo, M; Sierra, J; Navarro, A; Esteve, J
2014-04-01
Acute myeloid leukemia (AML) is a heterogeneous disease, and optimal treatment varies according to cytogenetic risk factors and molecular markers. Several studies have demonstrated the prognostic importance of microRNAs (miRNAs) in AML. Here we report a potential association between miRNA expression and clinical outcome in 238 intermediate-risk cytogenetic AML (IR-AML) patients from 16 institutions in the CETLAM cooperative group. We first profiled 670 miRNAs in a subset of 85 IR-AML patients from a single institution and identified 10 outcome-related miRNAs. We then validated these 10 miRNAs by individual assays in the total cohort and confirmed the prognostic impact of 4 miRNAs. High levels of miR-196b and miR-644 were independently associated with shorter overall survival, and low levels of miR-135a and miR-409-3p with a higher risk of relapse. Interestingly, miR-135a and miR-409-3p maintained their independent prognostic value within the unfavorable molecular subcategory (wild-type NPM1 and CEBPA and/or FLT3-ITD), and miR-644 retained its value within the favorable molecular subcategory. miR-409-3p, miR-135a, miR-196b and mir-644 arose as prognostic markers for IR-AML, both overall and within specific molecular subgroups.
NEDD9, an independent good prognostic factor in intermediate-risk acute myeloid leukemia patients
Pallarès, Victor; Hoyos, Montserrat; Chillón, M. Carmen; Barragán, Eva; Conde, M. Isabel Prieto; Llop, Marta; Céspedes, María Virtudes; Nomdedeu, Josep F.; Brunet, Salut; Sanz, Miguel Ángel; González-Díaz, Marcos; Sierra, Jorge; Casanova, Isolda; Mangues, Ramon
2017-01-01
Intermediate-risk acute myeloid leukemia (IR-AML) is the largest subgroup of AML patients and is highly heterogeneous. Whereas adverse and favourable risk patients have well-established treatment protocols, IR-AML patients have not. It is, therefore, crucial to find novel factors that stratify this subgroup to implement risk-adapted strategies. The CAS (Crk-associated substrate) adaptor protein family regulates cell proliferation, survival, migration and adhesion. Despite its association with metastatic dissemination and prognosis of different solid tumors, the role of these proteins in hematological malignancies has been scarcely evaluated. Nevertheless, previous work has established an important role for the CAS family members NEDD9 or BCAR1 in the migratory and dissemination capacities of myeloid cells. On this basis, we hypothesized that NEDD9 or BCAR1 expression levels could associate with survival in IR-AML patients and become new prognostic markers. To that purpose, we assessed BCAR1 and NEDD9 gene expression in a cohort of 73 adult AML patients validating the results in an independent cohort (n = 206). We have identified NEDD9, but not BCAR1, as a new a marker for longer overall and disease-free survival, and for lower cumulative incidence of relapse. In summary, NEDD9 gene expression is an independent prognostic factor for favourable prognosis in IR-AML patients. PMID:29100287
Rakugi, Hiromi; Shimizu, Kohei; Nishiyama, Yuya; Sano, Yuhei; Umeda, Yuusuke
2018-06-01
Patients with essential hypertension who are receiving treatment with an angiotensin II receptor blocker and a calcium channel blocker often develop inadequate blood pressure (BP) control and require the addition of a diuretic. This study aimed to evaluate the long-term safety and efficacy of a triple combination therapy with 20 mg azilsartan (AZL), 5 mg amlodipine (AML) and 12.5 mg hydrochlorothiazide (HCTZ). The phase III, open-label, multicenter study (NCT02277691) comprised a 4-week run-in period and 52-week treatment period. Patients with inadequate BP control despite AZL/AML therapy (n = 341) received 4 weeks' treatment with AZL/AML (combination tablet) + HCTZ (tablet) and 4 weeks' treatment with AZL/AML/HCTZ (combination tablet) in a crossover manner, followed by AZL/AML/HCTZ (combination tablet) from Week 8 of the treatment period up to Week 52. The primary and secondary endpoints were long-term safety and BP (office and home), respectively. Most adverse events (AEs) were mild or moderate in intensity, and no deaths or treatment-related serious AEs were reported. The triple therapy provided consistent BP-lowering effects in both office and home measurements. The triple combination therapy with AZL/AML/HCTZ was well tolerated and effective for 52 weeks in Japanese patients with essential hypertension.
Boutzen, Héléna; Saland, Estelle; Larrue, Clément; de Toni, Fabienne; Gales, Lara; Castelli, Florence A.; Cathebas, Mathilde; Zaghdoudi, Sonia; Stuani, Lucille; Kaoma, Tony; Riscal, Romain; Yang, Guangli; Hirsch, Pierre; David, Marion; De Mas-Mansat, Véronique; Delabesse, Eric; Vallar, Laurent; Delhommeau, François; Jouanin, Isabelle; Ouerfelli, Ouathek; Le Cam, Laurent; Linares, Laetitia K.; Junot, Christophe; Portais, Jean-Charles; Vergez, François; Récher, Christian
2016-01-01
Acute myeloid leukemia (AML) is characterized by the accumulation of malignant blasts with impaired differentiation programs caused by recurrent mutations, such as the isocitrate dehydrogenase (IDH) mutations found in 15% of AML patients. These mutations result in the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG), leading to a hypermethylation phenotype that dysregulates hematopoietic differentiation. In this study, we identified mutant R132H IDH1-specific gene signatures regulated by key transcription factors, particularly CEBPα, involved in myeloid differentiation and retinoid responsiveness. We show that treatment with all-trans retinoic acid (ATRA) at clinically achievable doses markedly enhanced terminal granulocytic differentiation in AML cell lines, primary patient samples, and a xenograft mouse model carrying mutant IDH1. Moreover, treatment with a cell-permeable form of 2-HG sensitized wild-type IDH1 AML cells to ATRA-induced myeloid differentiation, whereas inhibition of 2-HG production significantly reduced ATRA effects in mutant IDH1 cells. ATRA treatment specifically decreased cell viability and induced apoptosis of mutant IDH1 blasts in vitro. ATRA also reduced tumor burden of mutant IDH1 AML cells xenografted in NOD–Scid–IL2rγnull mice and markedly increased overall survival, revealing a potent antileukemic effect of ATRA in the presence of IDH1 mutation. This therapeutic strategy holds promise for this AML patient subgroup in future clinical studies. PMID:26951332
Østgård, Lene Sofie Granfeldt; Nørgaard, Mette; Medeiros, Bruno C; Friis, Lone Smidstrup; Schoellkopf, Claudia; Severinsen, Marianne Tang; Marcher, Claus Werenberg; Nørgaard, Jan Maxwell
2017-11-10
Purpose Previous US studies have shown that socioeconomic status (SES) affects survival in acute myeloid leukemia (AML). However, no large study has investigated the association between education or income and clinical characteristics, treatment, and outcome in AML. Methods To investigate the effects of education and income in a tax-supported health care system, we conducted a population-based study using individual-level SES and clinical data on all Danish patients with AML (2000 to 2014). We compared treatment intensity, allogeneic transplantation, and response rates by education and income level using logistic regression (odds ratios). We used Cox regression (hazard ratios [HRs]) to compare survival, adjusting for age, sex, SES, and clinical prognostic markers. Results Of 2,992 patients, 1,588 (53.1%) received intensive chemotherapy. Compared with low-education patients, highly educated patients more often received allogeneic transplantation (16.3% v 8.7%). In intensively treated patients younger than 60 years of age, increased mortality was observed in those with lower and medium education (1-year survival, 66.7%; adjusted HR, 1.47; 95% CI, 1.11 to 1.93; and 1-year survival, 67.6%; adjusted HR, 1.55; CI, 1.21 to 1.98, respectively) compared with higher education (1-year survival, 76.9%). Over the study period, 5-year survival improvements were limited to high-education patients (from 39% to 58%), increasing the survival gap between groups. In older patients, low-education patients received less intensive therapy (30% v 48%; adjusted odds ratio, 0.65; CI, 0.44 to 0.98) compared with high-education patients; however, remission rates and survival were not affected in those intensively treated. Income was not associated with therapy intensity, likelihood of complete remission, or survival (high income: adjusted HR, 1.0; medium income: adjusted HR, 0.96; 95% CI, 0.82 to 1.12; low income: adjusted HR, 1.06; CI, .88 to 1.27). Conclusion In a universal health care system, education level, but not income, affects transplantation rates and survival in younger patients with AML. Importantly, recent survival improvement has exclusively benefitted highly educated patients.
Collaborative Efforts Driving Progress in Pediatric Acute Myeloid Leukemia
Zwaan, C. Michel; Kolb, Edward A.; Reinhardt, Dirk; Abrahamsson, Jonas; Adachi, Souichi; Aplenc, Richard; De Bont, Eveline S.J.M.; De Moerloose, Barbara; Dworzak, Michael; Gibson, Brenda E.S.; Hasle, Henrik; Leverger, Guy; Locatelli, Franco; Ragu, Christine; Ribeiro, Raul C.; Rizzari, Carmelo; Rubnitz, Jeffrey E.; Smith, Owen P.; Sung, Lillian; Tomizawa, Daisuke; van den Heuvel-Eibrink, Marry M.; Creutzig, Ursula; Kaspers, Gertjan J.L.
2015-01-01
Diagnosis, treatment, response monitoring, and outcome of pediatric acute myeloid leukemia (AML) have made enormous progress during the past decades. Because AML is a rare type of childhood cancer, with an incidence of approximately seven occurrences per 1 million children annually, national and international collaborative efforts have evolved. This overview describes these efforts and includes a summary of the history and contributions of each of the main collaborative pediatric AML groups worldwide. The focus is on translational and clinical research, which includes past, current, and future clinical trials. Separate sections concern acute promyelocytic leukemia, myeloid leukemia of Down syndrome, and relapsed AML. A plethora of novel antileukemic agents that have emerged, including new classes of drugs, are summarized as well. Finally, an important aspect of the treatment of pediatric AML—supportive care—and late effects are discussed. The future is bright, with a wide range of emerging innovative therapies and with more and more international collaboration that ultimately aim to cure all children with AML, with fewer adverse effects and without late effects. PMID:26304895
Molecular therapy for acute myeloid leukaemia
Coombs, Catherine C.; Tallman, Martin S.; Levine, Ross L.
2017-01-01
Acute myeloid leukaemia (AML) is a heterogeneous disease that is, in general, associated with a very poor prognosis. Multiple cytogenetic and molecular abnormalities that characterize different forms of AML have been used to better prognosticate patients and inform treatment decisions. Indeed, risk status in patients with this disease has classically been based on cytogenetic findings; however, additional molecular characteristics have been shown to inform risk assessment, including FLT3, NPM1, KIT, and CEBPA mutation status. Advances in sequencing technology have led to the discovery of novel somatic mutations in tissue samples from patients with AML, providing deeper insight into the mutational landscape of the disease. The majority of patients with AML (>97%) are found to have a clonal somatic abnormality on mutational profiling. Nevertheless, our understanding of the utility of mutation profiling in clinical practice remains incomplete and is continually evolving, and evidence-based approaches to application of these data are needed. In this Review, we discuss the evidence-base for integrating mutational data into treatment decisions for patients with AML, and propose novel therapeutic algorithms in the era of molecular medicine. PMID:26620272
CD19-positive acute myeloblastic leukemia with trisomy 21 as a sole acquired karyotypic abnormality
Wang, Hua-feng; Cheng, Yi-zhi; Wang, Huan-ping; Chen, Zhi-mei; Lou, Ji-yu; Jin, Jie
2009-01-01
We report that a 63-year-old Chinese female had acute myeloblastic leukemia (AML) in which trisomy 21 (+21) was found as the sole acquired karyotypic abnormality. The blasts were positive for myeloperoxidase, and the immunophenotype was positive for cluster of differentiation 19 (CD19), CD33, CD34, and human leukocyte antigens (HLA)-DR. The chromosomal analysis of bone marrow showed 47,XX,+21[2]/46,XX[18]. Fluorescent in situ hybridization (FISH) showed that three copies of AML1 were situated in separate chromosomes, and that t(8;21) was negative. The patient did not have any features of Down syndrome. A diagnosis of CD19-positive AML-M5 was established with trisomy 21 as a sole acquired karyotypic abnormality. The patient did not respond well to chemotherapy and died three months after the diagnosis. This is the first reported case of CD19-positive AML with trisomy 21 as the sole cytogenetic abnormality. The possible prognostic significance of the finding in AML with +21 as the sole acquired karyotypic abnormality was discussed. PMID:19882758
The creatine kinase pathway is a metabolic vulnerability in EVI1-positive acute myeloid leukemia
Fenouille, Nina; Bassil, Christopher F.; Ben-Sahra, Issam; Benajiba, Lina; Alexe, Gabriela; Ramos, Azucena; Pikman, Yana; Conway, Amy S.; Burgess, Michael R.; Li, Qing; Luciano, Frédéric; Auberger, Patrick; Galinsky, Ilene; DeAngelo, Daniel J.; Stone, Richard M.; Zhang, Yi; Perkins, Archibald S.; Shannon, Kevin; Hemann, Michael T.; Puissant, Alexandre; Stegmaier, Kimberly
2017-01-01
Expression of the EVI1 proto-oncogene is deregulated by chromosomal translocations in some cases of acute myeloid leukemia (AML) and is associated with poor clinical outcome. Here, through transcriptomic and metabolomic profiling of hematopoietic cells, we reveal that EVI1 overexpression alters cellular metabolism. A pooled shRNA screen identified the ATP-buffering, mitochondrial creatine kinase CKMT1 as a metabolic dependency in EVI1-positive AML. EVI1 promotes CKMT1 expression by repressing the myeloid differentiation regulator RUNX1. Suppression of arginine-creatine metabolism by CKMT1-directed shRNAs or by the small molecule cyclocreatine selectively decreased the viability, promoted cell cycle arrest and apoptosis of human EVI1-positive AML cells, and prolonged survival in human orthotopic and mouse primary AML models. CKMT1 inhibition alters mitochondrial respiration and ATP production, an effect that is abrogated by phospho-creatine-mediated reactivation of the arginine-creatine pathway. Targeting CKMT1 is a promising therapeutic strategy for this EVI1-driven AML subtype that is highly resistant to current treatment regimens. PMID:28191887
TdT activity in acute myeloid leukemias defined by monoclonal antibodies.
San Miguel, J F; González, M; Cañizo, M C; Anta, J P; Portero, J A; López-Borrasca, A
1986-09-01
Blast cells from eight out of 71 patients diagnosed with acute myeloid leukemia (AML) by morphological, cytochemical, and immunological criteria showed TdT activity. Their distribution according to the FAB classification was one M1, one M2, one M4, two M5a, one M5b, one M6, and one undifferentiated case. The TdT+ AML cases did not show major clinical and hematological differences when compared with the classical TdT- AML patients. Other phenotypical aberrations in the expression of membrane antigens, apart from the presence of nuclear TdT, were not observed in these TdT+ cases after study with a large panel of monoclonal antibodies. A higher incidence of TdT+ cases was found among the monocytic variants of AML (M4 and M5)--four cases--than in the granulocytic variants (M1, M2, and M3)--2 cases. These TdT+ cases should be distinguished from mixed leukemias by double labeling techniques, assessing in the TdT+ AML the coexpression of TdT and myeloid markers in individual cells as shown in four of our cases.
A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis
Noren, David P.; Long, Byron L.; Norel, Raquel; Rrhissorrakrai, Kahn; Hess, Kenneth; Hu, Chenyue Wendy; Bisberg, Alex J.; Schultz, Andre; Engquist, Erik; Liu, Li; Lin, Xihui; Chen, Gregory M.; Xie, Honglei; Hunter, Geoffrey A. M.; Norman, Thea; Friend, Stephen H.; Stolovitzky, Gustavo; Kornblau, Steven; Qutub, Amina A.
2016-01-01
Acute Myeloid Leukemia (AML) is a fatal hematological cancer. The genetic abnormalities underlying AML are extremely heterogeneous among patients, making prognosis and treatment selection very difficult. While clinical proteomics data has the potential to improve prognosis accuracy, thus far, the quantitative means to do so have yet to be developed. Here we report the results and insights gained from the DREAM 9 Acute Myeloid Prediction Outcome Prediction Challenge (AML-OPC), a crowdsourcing effort designed to promote the development of quantitative methods for AML prognosis prediction. We identify the most accurate and robust models in predicting patient response to therapy, remission duration, and overall survival. We further investigate patient response to therapy, a clinically actionable prediction, and find that patients that are classified as resistant to therapy are harder to predict than responsive patients across the 31 models submitted to the challenge. The top two performing models, which held a high sensitivity to these patients, substantially utilized the proteomics data to make predictions. Using these models, we also identify which signaling proteins were useful in predicting patient therapeutic response. PMID:27351836
Li, Xia; Yan, Xiao; Guo, Wenjian; Huang, Xin; Huang, Jiansong; Yu, Mengxia; Ma, Zhixin; Xu, Yu; Huang, ShuJuan; Li, Chenying; Zhou, Yile; Jin, Jie
2017-06-01
Chidamide, a novel histone deacetylase inhibitor (HDACi), has been approved for treatment of T-cell lymphomas in multiple clinical trials. It has been demonstrated that chidamide can inhibit cell cycle, promote apoptosis and induce differentiation in leukemia cells, whereas its effect on acute myeloid leukemia (AML) patients with FLT3-ITD mutation has not been clarified. In this study, we found that chidamide specifically induced G0/G1 arrest and apoptosis in FLT3-ITD positive AML cells in a concentration and time-dependent manner. We also found chidamide had the cytotoxicity effect on FLT3-ITD positive and negative AML cells. Moreover, with respect to relapsed/refractory patients, chidamide showed the same effectiveness as that in de novo AML patients. Notably, chidamide synergistically enhanced apoptosis caused by cytarabine. Our results support chidamide alone or combine with cytarabine may be used as an alternative therapeutic choice for AML patients especially those with FLT3-ITD mutation or relapsed/refractory ones. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Prognostic Value of RUNX1 Mutations in AML: A Meta-Analysis
Jalili, Mahdi; Yaghmaie, Marjan; Ahmadvand, Mohammad; Alimoghaddam, Kamran; Mousavi, Seyed Asadollah; Vaezi, Mohammad; Ghavamzadeh, Ardeshir
2018-02-26
The RUNX1 (AML1) gene is a relatively infrequent mutational target in cases of acute myeloid leukemia (AML). Previous work indicated that RUNX1 mutations can have pathological and prognostic implications. To evaluate prognostic value, we conducted a meta-analysis of 4 previous published works with data for survival according to RUNX1 mutation status. Pooled hazard ratios for overall survival and disease-free survival were 1.55 (95% confidence interval (CI) = 1.11–2.15; p-value = 0.01) and 1.76 (95% CI = 1.24–2.52; p-value = 0.002), respectively, for cases positive for RUNX1 mutations. This evidence supports clinical implications of RUNX1 mutations in the development and progression of AML cases and points to the possibility of a distinct category within the newer WHO classification. Though it must be kept in mind that the present work was based on data extracted from observational studies, the findings suggest that the RUNX1 status can contribute to risk-stratification and decision-making in management of AML. Creative Commons Attribution License
Therapeutic effect of Northern Labrador tea extracts for acute myeloid leukemia.
McGill, Colin M; Tomco, Patrick L; Ondrasik, Regina M; Belknap, Kaitlyn C; Dwyer, Gaelen K; Quinlan, Daniel J; Kircher, Thomas A; Andam, Cheryl P; Brown, Timothy J; Claxton, David F; Barth, Brian M
2018-04-27
Acute myeloid leukemia (AML) is an aggressive hematological malignancy that is one of the more common pediatric malignancies in addition to occurring with high incidence in the aging population. Unfortunately, these patient groups are quite sensitive to toxicity from chemotherapy. Northern Labrador tea, or Rhododendron tomentosum Harmaja (a.k.a. Ledum palustre subsp. decumbens) or "tundra tea," is a noteworthy medicinal plant used by indigenous peoples in Alaska, Canada, and Greenland to treat a diversity of ailments. However, laboratory investigations of Northern Labrador tea, and other Labrador tea family members, as botanical sources for anticancer compounds have been limited. Utilizing an AML cell line in both in vitro and in vivo studies, as well as in vitro studies using primary human AML patient samples, this study demonstrated for the first time that Northern Labrador tea extracts can exert anti-AML activity and that this may be attributed to ursolic acid as a constituent component. Therefore, this medicinal herb holds the potential to serve as a source for further drug discovery efforts to isolate novel anti-AML compounds. Copyright © 2018 John Wiley & Sons, Ltd.
Cardona, Maria E; Simonson, Oscar E; Oprea, Iulian I; Moreno, Pedro M D; Silva-Lara, Maria F; Mohamed, Abdalla J; Christensson, Birger; Gahrton, Gösta; Dilber, M Sirac; Smith, C I Edvard; Arteaga, H Jose
2016-01-01
The poor treatment response of acute myeloid leukemia (AML) overexpressing high-risk oncogenes such as EVI1, demands specific animal models for new treatment evaluations. Evi1 is a common site of activating integrations in murine leukemia virus (MLV)-induced AML and in retroviral and lentiviral gene-modified HCS. Still, a model of overt AML induced by Evi1 has not been generated. Cell lines from MLV-induced AML are growth factor-dependent and non-transplantable. Hence, for the leukemia maintenance in the infected animals, a growth factor source such as chronic immune response has been suggested. We have investigated whether these leukemias are transplantable if provided with growth factors. We show that the Evi1(+)DA-3 cells modified to express an intracellular form of GM-CSF, acquired growth factor independence and transplantability and caused an overt leukemia in syngeneic hosts, without increasing serum GM-CSF levels. We propose this as a general approach for modeling different forms of high-risk human AML using similar cell lines.
Ma, Hongbing; Yang, Jing; Xiang, Bing; Jia, Yongqian
2015-06-01
Central diabetes insipidus (DI) is a rare complication in patients with acute myeloid leukemia (AML), typically occurring in patients with abnormalities of chromosomes 3 or 7. The association between AML with monosomy 7 and DI has been described in a number of studies; however, DI has been rarely reported in cases of ectopic virus integration site-1 ( EVI1 )-positive AML with monosomy 7. The current study reports a case of AML with monosomy 7 and EVI1 overexpression, with central DI as the initial symptom. The patient was an 18-year-old female who presented with polyuria and polydipsia. Bone marrow aspiration revealed 83.5% myeloperoxidase-positive blasts without trilineage myelodysplasia. The karyotype was 45,XX,-7, and the patient presented monosomy 7 and EVI1 overexpression (- 7/EVI1 + ) without 3q aberration. Treatment with induction therapy was unsuccessful. To the best of our knowledge, this is the second case of DI-AML with - 7/EVI1 + and without a 3q aberration. The possible mechanisms associated with EVI1 , monosomy 7 and DI were investigated.
Haploid Allogeneic Transplant Using the CliniMACS System
2015-02-26
Acute Myelogenous Leukemia (AML) - Relapsed, Primary Refractory Disease or Poor Risk Factors; Chronic Myelogenous Leukemia (CML) - Accelerated or Second Chronic Phase; Myelodysplastic Syndrome (MDS) - High and Intermediate Risk; Non-Hodgkin's Lymphoma (NHL); Chronic Lymphocytic Leukemia (CLL) - Refractory
Jin, Linhua; Tabe, Yoko; Lu, Hongbo; Borthakur, Gautam; Miida, Takashi; Kantarjian, Hagop; Andreeff, Michael; Konopleva, Marina
2013-01-01
We investigated the antileukemia effects and molecular mechanisms of apoptosis induction by simultaneous blockade of PI3K and mutant FLT3 in AML cells grown under hypoxia in co-cultures with bone marrow stromal cells. Combined treatment with selective class I PI3K inhibitor GDC-0941 and sorafenib reversed the protective effects of bone marrow stromal cells on FLT3-mutant AML cells in hypoxia, which was associated with downregulation of Pim-1 and Mcl-1 expression levels. These findings suggest that combined inhibition of PI3K and FLT3-ITD may constitute a targeted approach to eradicating chemoresistant AML cells sequestered in hypoxic bone marrow niches. PMID:23036488
Jin, Linhua; Tabe, Yoko; Lu, Hongbo; Borthakur, Gautam; Miida, Takashi; Kantarjian, Hagop; Andreeff, Michael; Konopleva, Marina
2013-02-01
We investigated the antileukemia effects and molecular mechanisms of apoptosis induction by simultaneous blockade of PI3K and mutant FLT3 in AML cells grown under hypoxia in co-cultures with bone marrow stromal cells. Combined treatment with selective class I PI3K inhibitor GDC-0941 and sorafenib reversed the protective effects of bone marrow stromal cells on FLT3-mutant AML cells in hypoxia, which was associated with downregulation of Pim-1 and Mcl-1 expression levels. These findings suggest that combined inhibition of PI3K and FLT3-ITD may constitute a targeted approach to eradicating chemoresistant AML cells sequestered in hypoxic bone marrow niches. Copyright © 2012 Elsevier Ltd. All rights reserved.
Trelborg, Karina; Nielsen, Tommy Kjærgaard; Østraat, Ernst Øyvind; Olsen, Lars Henning
2016-12-01
Renal angiomyolipomas (AMLs) can be of sporadic origin or associated with tuberous sclerosis (TS). TS-associated AMLs often present in childhood, tend to be bilateral and multiple, and often exhibit a faster growth rate with an increased risk of hemorrhage. Renal cryoablation is well described in adults, whereas experiences with adolescents and young adults are limited. We present here for the first time a series of renal AMLs within adolescents and young adults treated with laparoscopic assisted cryoablation (LCA). The aim was to evaluate whether LCA of AMLs in adolescents and young adults is a safe and feasible treatment modality. From October 2009 to September 2013 a total of five patients at our institution were diagnosed with AMLs requiring treatment. Four patients had TS and one had AML of sporadic origin, all five patients underwent LCA. Data were retrospectively collected by a systematic review of patient material and reassessment of renal imaging. The median age was 16 years (range 13-27 years). Eight AMLs with a median size of 3.9 cm (range 2.1-7.7 cm) were treated in five patients because of tumor size and rapid growth. Follow-up was a median 37 months (range 20-62 months), and all tumors showed a reduction in tumor size, and no regrowth was recognized (see summary table). The procedure was well tolerated, with only few perioperative complications and no postoperative complications. When considering the indication for treating AMLs, the origin (sporadic or TS associated) and size of the tumor are the decisive factors. To preserve renal function and prevent spontaneous hemorrhage caution should be intensified when tumors reach 4 cm, particularly if TS is present. After the diagnosis is established, patients should be monitored with renal imaging at regular intervals to identify rapid-growing tumors. As an alternative to current treatment modalities such as partial nephrectomy and super selective angioembolization, cryoablation is an emerging approach, although experience with pediatric patients is limited. For patients not requiring immediate surgery, pharmacological treatment with mTOR inhibitors is now being evaluated as an alternative treatment option or as neo-adjuvant therapy to ablative techniques. Prophylactic treatment of large or rapid growing AMLs with LCA appears to be a safe and feasible nephron-sparing approach in adolescents and young adults. The low perioperative complication rate and promising effect on outcome might allow treatment of subclinical AMLs in order to minimize the risk of potentially life-threatening complications and preserve renal function. Copyright © 2016 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
New study reveals relatively few mutations in AML genomes - TCGA
Investigators for The Cancer Genome Atlas (TCGA) Research Network have detailed and broadly classified the genomic alterations that frequently underlie the development of acute myeloid leukemia (AML).
Trisomy 10 in acute myeloid leukemia: three new cases.
Llewellyn, I E; Morris, C M; Stanworth, S; Heaton, D C; Spearing, R L
2000-04-15
Trisomy 10 is a rare nonrandom cytogenetic abnormality found in association with acute myeloid leukemia (AML). The hematological and clinical features associated with this finding have not yet been clearly defined. A literature review revealed 13 cases of trisomy 10 in AML, some reported as a minority component of a more comprehensive AML study and therefore lacking a full description of both clinical and hematological features. We present a summary of these reports and add three new cases to the literature.
We present the molecular landscape of pediatric acute myeloid leukemia (AML) and characterize nearly 1,000 participants in Children’s Oncology Group (COG) AML trials. The COG–National Cancer Institute (NCI) TARGET AML initiative assessed cases by whole-genome, targeted DNA, mRNA and microRNA sequencing and CpG methylation profiling. Validated DNA variants corresponded to diverse, infrequent mutations, with fewer than 40 genes mutated in >2% of cases.
Classification of biological cells using a sound wave based flow cytometer
NASA Astrophysics Data System (ADS)
Strohm, Eric M.; Gnyawali, Vaskar; Van De Vondervoort, Mia; Daghighi, Yasaman; Tsai, Scott S. H.; Kolios, Michael C.
2016-03-01
A flow cytometer that uses sound waves to determine the size of biological cells is presented. In this system, a microfluidic device made of polydimethylsiloxane (PDMS) was developed to hydrodynamically flow focus cells in a single file through a target area. Integrated into the microfluidic device was an ultrasound transducer with a 375 MHz center frequency, aligned opposite the transducer was a pulsed 532 nm laser focused into the device by a 10x objective. Each passing cell was insonfied with a high frequency ultrasound pulse, and irradiated with the laser. The resulting ultrasound and photoacoustic waves from each cell were analyzed using signal processing methods, where features in the power spectra were compared to theoretical models to calculate the cell size. Two cell lines with different size distributions were used to test the system: acute myeloid leukemia cells (AML) and melanoma cells. Over 200 cells were measured using this system. The average calculated diameter of the AML cells was 10.4 +/- 2.5 μm using ultrasound, and 11.4 +/- 2.3 μm using photoacoustics. The average diameter of the melanoma cells was 16.2 +/- 2.9 μm using ultrasound, and 18.9 +/- 3.5 μm using photoacoustics. The cell sizes calculated using ultrasound and photoacoustic methods agreed with measurements using a Coulter Counter, where the AML cells were 9.8 +/- 1.8 μm and the melanoma cells were 16.0 +/- 2.5 μm. These results demonstrate a high speed method of assessing cell size using sound waves, which is an alternative method to traditional flow cytometry techniques.
Dovey, Oliver M.; Cooper, Jonathan L.; Mupo, Annalisa; Grove, Carolyn S.; Lynn, Claire; Conte, Nathalie; Andrews, Robert M.; Pacharne, Suruchi; Tzelepis, Konstantinos; Vijayabaskar, M. S.; Green, Paul; Rad, Roland; Arends, Mark; Wright, Penny; Yusa, Kosuke; Bradley, Allan; Varela, Ignacio
2017-01-01
NPM1 mutations define the commonest subgroup of acute myeloid leukemia (AML) and frequently co-occur with FLT3 internal tandem duplications (ITD) or, less commonly, NRAS or KRAS mutations. Co-occurrence of mutant NPM1 with FLT3-ITD carries a significantly worse prognosis than NPM1-RAS combinations. To understand the molecular basis of these observations, we compare the effects of the 2 combinations on hematopoiesis and leukemogenesis in knock-in mice. Early effects of these mutations on hematopoiesis show that compound Npm1cA/+;NrasG12D/+ or Npm1cA;Flt3ITD share a number of features: Hox gene overexpression, enhanced self-renewal, expansion of hematopoietic progenitors, and myeloid differentiation bias. However, Npm1cA;Flt3ITD mutants displayed significantly higher peripheral leukocyte counts, early depletion of common lymphoid progenitors, and a monocytic bias in comparison with the granulocytic bias in Npm1cA/+;NrasG12D/+ mutants. Underlying this was a striking molecular synergy manifested as a dramatically altered gene expression profile in Npm1cA;Flt3ITD, but not Npm1cA/+;NrasG12D/+, progenitors compared with wild-type. Both double-mutant models developed high-penetrance AML, although latency was significantly longer with Npm1cA/+;NrasG12D/+. During AML evolution, both models acquired additional copies of the mutant Flt3 or Nras alleles, but only Npm1cA/+;NrasG12D/+ mice showed acquisition of other human AML mutations, including IDH1 R132Q. We also find, using primary Cas9-expressing AMLs, that Hoxa genes and selected interactors or downstream targets are required for survival of both types of double-mutant AML. Our results show that molecular complementarity underlies the higher frequency and significantly worse prognosis associated with NPM1c/FLT3-ITD vs NPM1/NRAS-G12D-mutant AML and functionally confirm the role of HOXA genes in NPM1c-driven AML. PMID:28835438
Missing the Benefit of Metformin in Acute Myeloid Leukemia: A Problem of Contrast?
Ceacareanu, Alice C.; Nimako, George K.; Wintrob, Zachary A. P.
2017-01-01
Objective: To evaluate whether metformin's cancer-related benefits reported in patients with solid tumors (ST) are also present in acute myeloid leukemia (AML) patients. Methods: Baseline demographic and clinical history for all diabetes mellitus patients newly diagnosed with AML or cancer of the breast, ovary, prostate, gastrointestinal tract, lung, or kidney at Roswell Park Cancer Institute in Buffalo, NY (January 2003–December 2010, n = 924) was collected. Overall survival (OS) and disease-free survival (DFS) were assessed by Kaplan–Meier (KM) analysis and Cox proportional hazards regression (hazard ratio [HR]). Findings: Baseline metformin use provided significant OS and DFS benefit in ST but not in AML (KM: PST-OS= 0.003; PST-DFS= 0.002; PAML-OS= 0.961; PAML-DFS= 0.943). AML median survival was slightly better with metformin use, but users derived no relapse benefit. In ST, metformin nonusers had shorter median survival, 57.7 versus 86 months, and poorer outcomes (HRST-OS= 1.33; PST-OS= 0.002; HRST-DFS= 1.32; PST-DFS= 0.002). These findings remained significant in age-adjusted models (HRST-OS= 1.21; PST-OS= 0.039; HRST-DFS= 1.23; PST-DFS= 0.02) but not fully adjusted models (HRST-OS= 0.96; PST-OS= 0.688; HRST-DFS= 1.0; PST-DFS= 0.94). Higher mortality was noted in AML patients taking insulin versus oral diabetes pharmacotherapy at baseline (HRAML-OS= 2.03; PAML-OS= 0.04). Conclusion: Lack of metformin benefit in AML could be due to advanced age at cancer diagnosis. Metformin substitution with insulin before computed tomography scans with contrast – a frequent AML assessment practice – may also explain the lack of subsequent benefit despite taking metformin at baseline. A temporary metformin substitution is recommended by the package insert due to a possible drug interaction with the contrast dye. Our data suggest that metformin substitution was permanent in many patients. Nonetheless, the observed benefit in other malignancies warrants further investigation of metformin use in AML. PMID:29026839
Hu, Shuiying; Niu, Hongmei; Inaba, Hiroto; Orwick, Shelley; Rose, Charles; Panetta, John C.; Yang, Shengping; Pounds, Stanley; Fan, Yiping; Calabrese, Christopher; Rehg, Jerold E.; Campana, Dario; Rubnitz, Jeffrey E.
2011-01-01
Background Acute myeloid leukemia (AML) is a genetically heterogeneous cancer that frequently exhibits aberrant kinase signaling. We investigated a treatment strategy combining sorafenib, a multikinase inhibitor with limited single-agent activity in AML, and cytarabine, a key component of AML chemotherapy. Methods Using 10 human AML cell lines, we determined the effects of sorafenib (10 μM) on antileukemic activity by measuring cell viability, proliferation, ERK1/2 signaling, and apoptosis. We also investigated the effects of sorafenib treatment on the accumulation of cytarabine and phosphorylated metabolites in vitro. A human equivalent dose of sorafenib in nontumor-bearing NOD-SCID-IL2Rγnull mice was determined by pharmacokinetic studies using high performance liquid chromatography with tandem mass spectrometric detection, and steady-state concentrations were estimated by the fit of a one-compartment pharmacokinetic model to concentration–time data. The antitumor activity of sorafenib alone (60 mg/kg) twice daily, cytarabine alone (6.25 mg/kg administered intraperitoneally), or sorafenib once or twice daily plus cytarabine was evaluated in NOD-SCID-IL2Rγnull mice bearing AML xenografts. Results Sorafenib at 10 μM inhibited cell viability, proliferation and ERK1/2 signaling, and induced apoptosis in all cell lines studied. Sorafenib also increased the cellular accumulation of cytarabine and metabolites resulting in additive to synergistic antileukemic activity. A dose of 60 mg/kg in mice produced a human equivalent sorafenib steady-state plasma exposure of 10 μM. The more dose-intensive twice-daily sorafenib plus cytarabine (n = 15) statistically significantly prolonged median survival in an AML xenograft model compared with sorafenib once daily plus cytarabine (n = 12), cytarabine alone (n = 26), or controls (n = 27) (sorafenib twice daily plus cytarabine, median survival = 46 days; sorafenib once daily plus cytarabine, median survival = 40 days; cytarabine alone, median survival = 36 days; control, median survival = 19 days; P < .001 for combination twice daily vs all other treatments listed). Conclusions Sorafenib in combination with cytarabine resulted in strong anti-AML activity in vitro and in vivo. These results warrant clinical evaluation of sorafenib with cytarabine-based regimens in molecularly heterogeneous AML. PMID:21487100
Brissot, Eolia; Labopin, Myriam; Stelljes, Matthias; Ehninger, Gerhard; Schwerdtfeger, Rainer; Finke, Jürgen; Kolb, Hans-Jochem; Ganser, Arnold; Schäfer-Eckart, Kerstin; Zander, Axel R; Bunjes, Donald; Mielke, Stephan; Bethge, Wolfgang A; Milpied, Noël; Kalhs, Peter; Blau, Igor-Woflgang; Kröger, Nicolaus; Vitek, Antonin; Gramatzki, Martin; Holler, Ernst; Schmid, Christoph; Esteve, Jordi; Mohty, Mohamad; Nagler, Arnon
2017-06-24
Primary refractory acute myeloid leukemia (PRF-AML) is associated with a dismal prognosis. Allogeneic stem cell transplantation (HSCT) in active disease is an alternative therapeutic strategy. The increased availability of unrelated donors together with the significant reduction in transplant-related mortality in recent years have opened the possibility for transplantation to a larger number of patients with PRF-AML. Moreover, transplant from unrelated donors may be associated with stronger graft-mediated anti-leukemic effect in comparison to transplantations from HLA-matched sibling donor, which may be of importance in the setting of PRF-AML. The current study aimed to address the issue of HSCT for PRF-AML and to compare the outcomes of HSCT from matched sibling donors (n = 660) versus unrelated donors (n = 381), for patients with PRF-AML between 2000 and 2013. The Kaplan-Meier estimator, the cumulative incidence function, and Cox proportional hazards regression models were used where appropriate. HSCT provide patients with PRF-AML a 2-year leukemia-free survival and overall survival of about 25 and 30%, respectively. In multivariate analysis, two predictive factors, cytogenetics and time from diagnosis to transplant, were associated with lower leukemia-free survival, whereas Karnofsky performance status at transplant ≥90% was associated with better leukemia-free survival (LFS). Concerning relapse incidence, cytogenetics and time from diagnosis to transplant were associated with increased relapse. Reduced intensity conditioning regimen was the only factor associated with lower non-relapse mortality. HSCT was able to rescue about one quarter of the patients with PRF-AML. The donor type did not have any impact on PRF patients' outcomes. In contrast, time to transplant was a major prognostic factor for LFS. For patients with PRF-AML who do not have a matched sibling donor, HSCT from an unrelated donor is a suitable option, and therefore, initiation of an early search for allocating a suitable donor is indicated.
A noncanonical Flt3ITD/NF-κB signaling pathway represses DAPK1 in acute myeloid leukemia.
Shanmugam, Rajasubramaniam; Gade, Padmaja; Wilson-Weekes, Annique; Sayar, Hamid; Suvannasankha, Attaya; Goswami, Chirayu; Li, Lang; Gupta, Sushil; Cardoso, Angelo A; Baghdadi, Tareq Al; Sargent, Katie J; Cripe, Larry D; Kalvakolanu, Dhananjaya V; Boswell, H Scott
2012-01-15
Death-associated protein kinase 1 (DAPK1), a tumor suppressor, is a rate-limiting effector in an endoplasmic reticulum (ER) stress-dependent apoptotic pathway. Its expression is epigenetically suppressed in several tumors. A mechanistic basis for epigenetic/transcriptional repression of DAPK1 was investigated in certain forms of acute myeloid leukemia (AML) with poor prognosis, which lacked ER stress-induced apoptosis. Heterogeneous primary AMLs were screened to identify a subgroup with Flt3ITD in which repression of DAPK1, among NF-κB-and c-Jun-responsive genes, was studied. RNA interference knockdown studies were carried out in an Flt3ITD(+) cell line, MV-4-11, to establish genetic epistasis in the pathway Flt3ITD-TAK1-DAPK1 repression, and chromatin immunoprecipitations were carried out to identify proximate effector proteins, including TAK1-activated p52NF-κB, at the DAPK1 locus. AMLs characterized by normal karyotype with Flt3ITD were found to have 10- to 100-fold lower DAPK1 transcripts normalized to the expression of c-Jun, a transcriptional activator of DAPK1, as compared with a heterogeneous cytogenetic category. In addition, Meis1, a c-Jun-responsive adverse AML prognostic gene signature was measured as control. These Flt3ITD(+) AMLs overexpress relB, a transcriptional repressor, which forms active heterodimers with p52NF-κB. Chromatin immunoprecipitation assays identified p52NF-κB binding to the DAPK1 promoter together with histone deacetylase 2 (HDAC2) and HDAC6 in the Flt3ITD(+) human AML cell line MV-4-11. Knockdown of p52NF-κB or its upstream regulator, NF-κB-inducing kinase (NIK), de-repressed DAPK1. DAPK1-repressed primary Flt3ITD(+) AMLs had selective nuclear activation of p52NF-κB. Flt3ITD promotes a noncanonical pathway via TAK1 and p52NF-κB to suppress DAPK1 in association with HDACs, which explains DAPK1 repression in Flt3ITD(+) AML. ©2011 AACR.
Zarabla, Alessia; Ungania, Sara; Cacciatore, Alessandra; Maialetti, Andrea; Petreri, Gianluca; Mengarelli, Andrea; Spadea, Antonio; Marchesi, Francesco; Renzi, Daniela; Gumenyuk, Svitlana; Strigari, Lidia; Maschio, Marta
2017-01-01
Summary Cytosine arabinoside (Ara-C) is one of the key drugs for treating acute myeloid leukemia (AML). High intravenous doses may produce a number of central nervous system (CNS) toxicities and contribute to modifications in brain functional connectivity. sLORETA is a software used for localizing brain electrical activity and functional connectivity. The aim of this study was to apply sLORETA in the evaluation of possible effects of Ara-C on brain connectivity in patients with AML without CNS involvement. We studied eight patients with AML; four were administered standard doses of Ara-C while the other four received high doses. sLORETA was computed from computerized EEG data before treatment and after six months of treatment. Three regions of interest, corresponding to specific combinations of Brodmann areas, were defined. In the patients receiving high-dose Ara-C, a statistically significant reduction in functional connectivity was observed in the frontoparietal network, which literature data suggest is involved in attentional processes. Our data highlight the possibility of using novel techniques to study potential CNS toxicity of cancer therapy.
1983-01-01
ELZRNT: kepozt CI&MlflcatiOm SOU* cft AGENCY: DYUC OSI: flaadatory C, x f cato itadlcto. the degree of protectloo rq~ird age Acatof t alo di Řs0 14...03 ELS9 704T £33 &AC12COMPATISLA UNIOZUGS. ONE fiulflckiO6:. ’LITL AhL 0133 iViOAJS905Z ൕ.X2 A&W (3KW&95.’) MAR iQ .4322.18.1u -IEI 39UAS AML Mk...WOhiI oilo xis 11 ALLA.n iN 30353. Sot$ !IUPOAAI DATA 11 DOW=I3on AMl £MCLObSD hI~dh 66"AS 9BACASX K34 . *NTNUvAL Tag: $If
Timothy Ley, M.D., Advocates for Personalized Medicine in AML - TCGA
Oncologist Dr. Timothy Ley talks about how repurposing of existing drugs based on better understanding of the genetic basis of acute myeloid leukemia (AML) can help patients receive personalized care.
Haploidentical Stem Cell Transplant for Treatment Refractory Hematological Malignancies
2009-02-12
Acute Lymphoblastic Leukemia (ALL); Acute Myeloid Leukemia (AML); Secondary AML; Myelodysplastic Syndrome (MDS); Secondary MDS; Chronic Myeloid Leukemia; Juvenile Myelomonocytic Leukemia (JMML); Paroxysmal Nocturnal Hemoglobinuria (PNH); Lymphoma, Non-Hodgkin; Hodgkin Disease
Kajtár, Béla; Rajnics, Péter; Egyed, Miklós; Alizadeh, Hussain
2015-01-01
The simultaneous occurrence of acute myeloid leukaemia with untreated chronic lymphocytic leukemia is extremely rare. We report a case of a 74-year-old man who was evaluated for macrocytic anaemia. Based on the morphology and immunophenotyping analysis of peripheral blood, a diagnosis of chronic lymphocytic leukemia was established. Subsequently, the bone marrow examination revealed the presence of two distinct, coexisting CLL and AML clones. Cytogenetic and molecular genetic analysis detected deletion 13q14.3 and unmutated immunoglobulin variable heavy-chain in the CLL clone, only. The AML and CLL clones did not share clonality, and the AML did not involve the peripheral blood. A diagnosis of cytogenetically normal de novo AML occurring concurrently with untreated CLL has not been reported previously in English literature. © 2015 by the Association of Clinical Scientists, Inc.
Genetic alterations of m6A regulators predict poorer survival in acute myeloid leukemia.
Kwok, Chau-To; Marshall, Amy D; Rasko, John E J; Wong, Justin J L
2017-02-02
Methylation of N 6 adenosine (m 6 A) is known to be important for diverse biological processes including gene expression control, translation of protein, and messenger RNA (mRNA) splicing. However, its role in the development of human cancers is poorly understood. By analyzing datasets from the Cancer Genome Atlas Research Network (TCGA) acute myeloid leukemia (AML) study, we discover that mutations and/or copy number variations of m 6 A regulatory genes are strongly associated with the presence of TP53 mutations in AML patients. Further, our analyses reveal that alterations in m 6 A regulatory genes confer a worse survival in AML. Our work indicates that genetic alterations of m 6 A regulatory genes may cooperate with TP53 and/or its regulator/downstream targets in the pathogenesis and/or maintenance of AML.
Hassler, Angela; Bochennek, Konrad; Gilfert, Julia; Perner, Corinna; Schöning, Stefan; Creutzig, Ursula; Reinhardt, Dirk; Lehrnbecher, Thomas
2016-06-01
Children with acute myeloid leukemia (AML) and Down syndrome have high survival rates with intensity-reduced chemotherapeutic regimens, although the optimal balance between dose intensity and treatment toxicity has not been determined. We, therefore, characterized infectious complications in children with AML and Down syndrome treated according to AML-BFM 2004 study (ClinicalTrials.gov NCT00111345; amended 2006 for Down syndrome with reduced intensity). Data on infectious complications were gathered from the medical records in the hospital where the patient was treated. Infectious complications were categorized as fever without identifiable source (FUO), or as microbiologically or clinically documented infections. A total of 157 infections occurred in 61 patients (60.5% FUO, 9.6% and 29.9% clinically and microbiologically documented infections, respectively). Almost 90% of the pathogens isolated from the bloodstream were Gram-positive bacteria, and approximately half of them were viridans group streptococci. All seven microbiologically documented episodes of pneumonia were caused by viruses. Infection-related mortality was 4.9%, and all three patients died due to viral infection. Our data demonstrate that a reduced-intensity chemotherapeutic regimen in children with AML and Down syndrome is still associated with high morbidity. Although no patient died due to bacteria or fungi, viruses were responsible for all lethal events. Future studies, therefore, have to focus on the impact of viruses on morbidity and mortality of patients with AML and Down syndrome. © 2016 Wiley Periodicals, Inc.
Xu, Wei; Zhou, Hui-Fen; Fan, Lei; Qian, Si-Xuan; Chen, Li-Juan; Qiu, Hai-Rong; Zhang, Su-Jiang; Li, Jian-Yong
2008-09-01
The inversion of chromosome 16 (inv(16) (p13q22)) and the related t(16;16)(p13;q22) are chromosomal aberrations observed in approximately 10% of de novo acute myeloid leukemia (AML), mostly classified as M4Eo subtype, and associated with a relatively favorable outcome. However, it is a cryptic rearrangement and often difficult to recognize in conventional cytogenetics (CC). Trisomy 22 is an uncommon karyotypic aberration in AML and is often associated with inv(16)(p13q22). The aim of this study was to explore the value of trisomy 22 in the diagnosis of AML with inv(16). Dual-color interphase fluorescence in situ hybridization (FISH) was performed in 19 AML cases with trisomy 22 abnormality shown by R-banding CC. The probe was a two-color break-apart probe for CBFbeta on the centromeric side and the telomeric side. R-banding CC did not reveal inv(16) in any of the 19 AML with trisomy 22, but FISH analysis showed inv(16) in 11 cases and del(16)(q22) in 1 case. Among the 11 cases with inv(16), 9 showed trisomy 22 as the sole abnormality, 1 was complicated by trisomy 8, and 1 was del(16)(q22). This study further confirmed that trisomy 22 as the sole abnormality can be regarded as an important marker for inv(16) in AML. Copyright 2008 S. Karger AG, Basel.
Chen, Ling-Shan; Zhu, Zheng-Qiu; Wang, Zhi-Tao; Li, Jing; Liang, Li-Feng; Jin, Ji-Yang; Wang, Zhong-Qiu
2018-05-01
To determine the performance of chemical shift signal intensity index (CS-SII) values for distinguishing minimal-fat renal angiomyolipoma (mfAML) from renal cell carcinoma (RCC) and to assess RCC subtype characterisation. We identified eligible studies on CS magnetic resonance imaging (CS-MRI) of focal renal lesions via PubMed, Embase, and the Cochrane Library. CS-SII values were extracted by lesion type and evaluated using linear mixed model-based meta-regression. RCC subtypes were analysed. Two-sided p value <0.05 indicated statistical significance. Methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 tool. Eleven articles involving 850 patients were included. Minimal-fat AML had significantly higher CS-SII value than RCC (p < 0.05); there were no significant differences between mfAML and clear cell RCC (cc-RCC) (p = 0.112). Clear cell RCC had a significantly higher CS-SII value than papillary RCC (p-RCC) (p < 0.001) and chromophobe RCC (ch-RCC) (p = 0.045). The methodological quality was relatively high, and Begg's test data points indicated no obvious publication bias. The CS-SII value for differentiating mfAML from cc-RCC remains unproven, but is a promising method for differentiating cc-RCC from p-RCC and ch-RCC. • RCC CS-SII values are significantly lower than those of mfAML overall. • CS-SII values cannot aid differentiation between mfAML and cc-RCC. • CS-SII values might help characterise RCC subtypes.
Gao, Panke; Jin, Zhen; Cheng, Yingying; Cao, Xiangshan
2014-10-01
Aberrant splicing events play important roles in the pathogenesis of acute myeloid leukemia (AML). To investigate the aberrant splicing events in AML during treatment, we carried out RNA sequencing in peripheral mononuclear cell samples from a patient with complete remission. In addition to the sequencing samples, selected splicing events were confirmed and validated with real-time quantitative RT-PCR in another seven pairs of samples. A total of 4.05 and 3.39 GB clean data of the AML and remission sample were generated, respectively, and 2,223 differentially expressed genes (DEGs) were identified. Integrated with gene expression profiling on T cells from AML patients compared with healthy donors, 82 DEGs were also differentially expressed in AML CD4 T cells and CD8 T cells. Twenty-three alternative splicing events were considered to be confidential, and they were involved in many biological processes, such as RNA processing, cellular macromolecule catabolic process, and DNA binding process. An exon3-skipping event in TRIP12 was detected in patients at remission and further validated in another three independent samples. TRIP12 is an ubiquitin ligase of ARF, which suppresses aberrant cell growth by activating p53 responses. The exon3-skipping isoform of TRIP12 increased significantly after treatment. Our results may provide new understanding of AML, and the confirmed alternative splicing event of TRIP12 may be used as potential target for future investigations.
Díaz-Beyá, M; Brunet, S; Nomdedéu, J; Cordeiro, A; Tormo, M; Escoda, L; Ribera, J M; Arnan, M; Heras, I; Gallardo, D; Bargay, J; Queipo de Llano, M P; Salamero, O; Martí, J M; Sampol, A; Pedro, C; Hoyos, M; Pratcorona, M; Castellano, J J; Nomdedeu, M; Risueño, R M; Sierra, J; Monzó, M; Navarro, A; Esteve, J
2015-01-01
Acute myeloid leukemia (AML) is a heterogeneous disease whose prognosis is mainly related to the biological risk conferred by cytogenetics and molecular profiling. In elderly patients (⩾60 years) with normal karyotype AML miR-3151 have been identified as a prognostic factor. However, miR-3151 prognostic value has not been examined in younger AML patients. In the present work, we have studied miR-3151 alone and in combination with BAALC, its host gene, in a cohort of 181 younger intermediate-risk AML (IR-AML) patients. Patients with higher expression of miR-3151 had shorter overall survival (P=0.0025), shorter leukemia-free survival (P=0.026) and higher cumulative incidence of relapse (P=0.082). Moreover, in the multivariate analysis miR-3151 emerged as independent prognostic marker in both the overall series and within the unfavorable molecular prognostic category. Interestingly, the combined determination of both miR-3151 and BAALC improved this prognostic stratification, with patients with low levels of both parameters showing a better outcome compared with those patients harboring increased levels of one or both markers (P=0.003). In addition, we studied the microRNA expression profile associated with miR-3151 identifying a six-microRNA signature. In conclusion, the analysis of miR-3151 and BAALC expression may well contribute to an improved prognostic stratification of younger patients with IR-AML. PMID:26430723
Tagde, Ashujit; Rajabi, Hasan; Stroopinsky, Dina; Gali, Reddy; Alam, Maroof; Bouillez, Audrey; Kharbanda, Surender; Stone, Richard; Avigan, David; Kufe, Donald
2016-06-28
Aberrant DNA methylation is a hallmark of acute myeloid leukemia (AML); however, the regulation of DNA methyltransferase 1 (DNMT1), which is responsible for maintenance of DNA methylation patterns, has largely remained elusive. MUC1-C is a transmembrane oncoprotein that is aberrantly expressed in AML stem-like cells. The present studies demonstrate that targeting MUC1-C with silencing or a pharmacologic inhibitor GO-203 suppresses DNMT1 expression. In addition, MUC1 expression positively correlates with that of DNMT1 in primary AML cells, particularly the CD34+/CD38- population. The mechanistic basis for this relationship is supported by the demonstration that MUC1-C activates the NF-κB p65 pathway, promotes occupancy of the MUC1-C/NF-κB complex on the DNMT1 promoter and drives DNMT1 transcription. We also show that targeting MUC1-C substantially reduces gene promoter-specific DNA methylation, and derepresses expression of tumor suppressor genes, including CDH1, PTEN and BRCA1. In support of these results, we demonstrate that combining GO-203 with the DNMT1 inhibitor decitabine is highly effective in reducing DNMT1 levels and decreasing AML cell survival. These findings indicate that (i) MUC1-C is an attractive target for the epigentic reprogramming of AML cells, and (ii) targeting MUC1-C in combination with decitabine is a potentially effective clinical approach for the treatment of AML.
Kelly, Andrew D.; Kroeger, Heike; Yamazaki, Jumpei; Taby, Rodolphe; Neumann, Frank; Yu, Sijia; Lee, Justin T.; Patel, Bela; Li, Yuesheng; He, Rong; Liang, Shoudan; Lu, Yue; Cesaroni, Matteo; Pierce, Sherry A.; Kornblau, Steven M.; Bueso-Ramos, Carlos E.; Ravandi, Farhad; Kantarjian, Hagop M.; Jelinek, Jaroslav; Issa, Jean-Pierre J.
2016-01-01
Genetic changes are infrequent in acute myeloid leukemia (AML) compared to other malignancies and often involve epigenetic regulators, suggesting that an altered epigenome may underlie AML biology and outcomes. In 96 AML cases including 65 pilot samples selected for cured/not-cured, we found higher CpG island (CGI) promoter methylation in cured patients. Expanded genome-wide digital restriction enzyme analysis of methylation (DREAM) data revealed a CGI methylator phenotype independent of IDH1/2 mutations we term AML-CIMP (A-CIMP+). A-CIMP was associated with longer overall survival (OS) in this dataset (median OS, years: A-CIMP+ = Not reached, A-CIMP− =1.17; P=0.08). For validation we used 194 samples from The Cancer Genome Atlas interrogated with Illumina 450k methylation arrays where we confirmed longer OS in A-CIMP (median OS, years: A-CIMP+ =2.34, A-CIMP− =1.00; P=0.01). Hypermethylation in A-CIMP favored CGIs (OR: CGI/non-CGI=5.21), and while A-CIMP was enriched in CEBPA (P=0.002) and WT1 mutations (P=0.02), 70% of cases lacked either mutation. Hypermethylated genes in A-CIMP function in pluripotency maintenance, and a gene expression signature of A-CIMP was associated with outcomes in multiple datasets. We conclude that CIMP in AML cannot be explained solely by gene mutations (e.g. IDH1/2, TET2), and that curability in A-CIMP+ AML should be validated prospectively. PMID:28074068
Kelly, A D; Kroeger, H; Yamazaki, J; Taby, R; Neumann, F; Yu, S; Lee, J T; Patel, B; Li, Y; He, R; Liang, S; Lu, Y; Cesaroni, M; Pierce, S A; Kornblau, S M; Bueso-Ramos, C E; Ravandi, F; Kantarjian, H M; Jelinek, J; Issa, J-Pj
2017-10-01
Genetic changes are infrequent in acute myeloid leukemia (AML) compared with other malignancies and often involve epigenetic regulators, suggesting that an altered epigenome may underlie AML biology and outcomes. In 96 AML cases including 65 pilot samples selected for cured/not-cured, we found higher CpG island (CGI) promoter methylation in cured patients. Expanded genome-wide digital restriction enzyme analysis of methylation data revealed a CGI methylator phenotype independent of IDH1/2 mutations we term AML-CGI methylator phenotype (CIMP) (A-CIMP + ). A-CIMP was associated with longer overall survival (OS) in this data set (median OS, years: A-CIMP + =not reached, CIMP - =1.17; P=0.08). For validation we used 194 samples from The Cancer Genome Atlas interrogated with Illumina 450k methylation arrays where we confirmed longer OS in A-CIMP (median OS, years: A-CIMP + =2.34, A-CIMP - =1.00; P=0.01). Hypermethylation in A-CIMP + favored CGIs (OR: CGI/non-CGI=5.21), and while A-CIMP + was enriched in CEBPA (P=0.002) and WT1 mutations (P=0.02), 70% of cases lacked either mutation. Hypermethylated genes in A-CIMP + function in pluripotency maintenance, and a gene expression signature of A-CIMP was associated with outcomes in multiple data sets. We conclude that CIMP in AML cannot be explained solely by gene mutations (for example, IDH1/2, TET2), and that curability in A-CIMP + AML should be validated prospectively.
Dolz, Sandra; Barragán, Eva; Fuster, Óscar; Llop, Marta; Cervera, José; Such, Esperanza; De Juan, Inmaculada; Palanca, Sarai; Murria, Rosa; Bolufer, Pascual; Luna, Irene; Gómez, Inés; López, María; Ibáñez, Mariam; Sanz, Miguel A
2013-09-01
The recent World Health Organization classification recognizes different subtypes of acute myeloid leukemia (AML) according to the presence of several recurrent genetic abnormalities. Detection of these abnormalities and other molecular changes is of increasing interest because it contributes to a refined diagnosis and prognostic assessment in AML and enables monitoring of minimal residual disease. These genetic abnormalities can be detected using single RT-PCR, although the screening is still labor intensive and costly. We have developed a novel real-time RT-PCR assay to simultaneously detect 15 AML-associated rearrangements that is a simple and easily applicable method for use in clinical diagnostic laboratories. This method showed 100% specificity and sensitivity (95% confidence interval, 91% to 100% and 92% to 100%, respectively). The procedure was validated in a series of 105 patients with AML. The method confirmed all translocations detected using standard cytogenetics and fluorescence in situ hybridization and some additional undetected rearrangements. Two patients demonstrated two molecular rearrangements simultaneously, with BCR-ABL1 implicated in both, in addition to RUNX1-MECOM in one patient and PML-RARA in another. In conclusion, this novel real-time RT-PCR assay for simultaneous detection of multiple AML-associated fusion genes is a versatile and sensitive method for reliable screening of recurrent rearrangements in AML. Copyright © 2013 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Ayatollahi, Hossein; Shajiei, Arezoo; Sadeghian, Mohammad Hadi; Sheikhi, Maryam; Yazdandoust, Ehsan; Ghazanfarpour, Masumeh; Shams, Seyyede Fatemeh; Shakeri, Sepideh
2017-03-01
Acute myeloid leukemia (AML) is defined as leukemic blast reproduction in bone marrow. Chromosomal abnormalities form different subgroups with joint clinical specifications and results. t(8;21)(q22;q22) and inv(16)(p13;q22) form core binding factor-AML (CBF-AML). c-kit mutation activation occurs in 12.8-46.1% of adults with CBF leukemia. These mutations occur in 20-25% of t(8;21) and 30% of inv(16) cases. In this systematic review, we searched different databases, including PubMed, Scopus, and Embase. Selected articles were measured based on the inclusion criteria of this study and initially compared in terms of titles or abstracts. Finally, articles relevant to the subject of this review were retrieved in full text. Twenty-two articles matched the inclusion criteria and were selected for this review. In this study, c-kit mutations were associated with poor prognosis in AML patients with t(8;21) and inv(16). In addition, these mutations had better prognostic effects on AML patients with inv(16) compared with those with t(8;21). According to the results of this study, c-kit mutations have intense, harmful effects on the relapse and white blood cell increase in CBF-AML adults. However, these mutations have no significant prognostic effects on patients. Copyright © 2016 King Faisal Specialist Hospital & Research Centre. Published by Elsevier Ltd. All rights reserved.
Jaako, P; Ugale, A; Wahlestedt, M; Velasco-Hernandez, T; Cammenga, J; Lindström, M S; Bryder, D
2017-01-01
Mutations resulting in constitutive activation of signaling pathways that regulate ribosome biogenesis are among the most common genetic events in acute myeloid leukemia (AML). However, whether ribosome biogenesis presents as a therapeutic target to treat AML remains unexplored. Perturbations in ribosome biogenesis trigger the 5S ribonucleoprotein particle (RNP)-Mdm2-p53 ribosomal stress pathway, and induction of this pathway has been shown to have therapeutic efficacy in Myc-driven lymphoma. In the current study we address the physiological and therapeutic role of the 5S RNP-Mdm2-p53 pathway in AML. By utilizing mice that have defective ribosome biogenesis due to downregulation of ribosomal protein S19 (Rps19), we demonstrate that induction of the 5S RNP-Mdm2-p53 pathway significantly delays the initiation of AML. However, even a severe Rps19 deficiency that normally results in acute bone marrow failure has no consistent efficacy on already established disease. Finally, by using mice that harbor a mutation in the Mdm2 gene disrupting its binding to 5S RNP, we show that loss of the 5S RNP-Mdm2-p53 pathway is dispensable for development of AML. Our study suggests that induction of the 5S RNP-Mdm2-p53 ribosomal stress pathway holds limited potential as a single-agent therapy in the treatment of AML.
Ricciardi, Maria Rosaria; Scerpa, Maria Cristina; Bergamo, Paola; Ciuffreda, Ludovica; Petrucci, Maria Teresa; Chiaretti, Sabina; Tavolaro, Simona; Mascolo, Maria Grazia; Abrams, Stephen L; Steelman, Linda S; Tsao, Twee; Marchetti, Antonio; Konopleva, Marina; Del Bufalo, Donatella; Cognetti, Francesco; Foà, Robin; Andreeff, Michael; McCubrey, James A; Tafuri, Agostino; Milella, Michele
2012-10-01
In hematological malignancies, constitutive activation of the RAF/MEK/ERK pathway is frequently observed, conveys a poor prognosis, and constitutes a promising target for therapeutic intervention. Here, we investigated the molecular and functional effects of pharmacological MEK inhibition in cell line models of acute myeloid leukemia (AML) and freshly isolated primary AML samples. The small-molecule, ATP-non-competitive, MEK inhibitor PD0325901 markedly inhibited ERK phosphorylation and growth of several AML cell lines and approximately 70 % of primary AML samples. Growth inhibition was due to G(1)-phase arrest and induction of apoptosis. Transformation by constitutively active upstream pathway elements (HRAS, RAF-1, and MEK) rendered FDC-P1 cells exquisitely prone to PD0325901-induced apoptosis. Gene and protein expression profiling revealed a selective effect of PD0325901 on ERK phosphorylation and compensatory upregulation of the RAF/MEK and AKT/p70( S6K ) kinase modules, potentially mediating resistance to drug-induced growth inhibition. Consequently, in appropriate cellular contexts, both "vertical" (i.e., inhibition of RAF and MEK along the MAPK pathway) and "lateral" (i.e., simultaneous inhibition of the MEK/ERK and mTOR pathways) combination strategies may result in synergistic anti-leukemic effects. Overall, MEK inhibition exerts potent growth inhibitory and proapoptotic activity in preclinical models of AML, particularly in combination with other pathway inhibitors. Deeper understanding of the molecular mechanisms of action of MEK inhibitors will likely translate into more effective targeted strategies for the treatment of AML.
SPARC promotes leukemic cell growth and predicts acute myeloid leukemia outcome
Alachkar, Houda; Santhanam, Ramasamy; Maharry, Kati; Metzeler, Klaus H.; Huang, Xiaomeng; Kohlschmidt, Jessica; Mendler, Jason H.; Benito, Juliana M.; Hickey, Christopher; Neviani, Paolo; Dorrance, Adrienne M.; Anghelina, Mirela; Khalife, Jihane; Tarighat, Somayeh S.; Volinia, Stefano; Whitman, Susan P.; Paschka, Peter; Hoellerbauer, Pia; Wu, Yue-Zhong; Han, Lina; Bolon, Brad N.; Blum, William; Mrózek, Krzysztof; Carroll, Andrew J.; Perrotti, Danilo; Andreeff, Michael; Caligiuri, Michael A.; Konopleva, Marina; Garzon, Ramiro; Bloomfield, Clara D.; Marcucci, Guido
2014-01-01
Aberrant expression of the secreted protein, acidic, cysteine-rich (osteonectin) (SPARC) gene, which encodes a matricellular protein that participates in normal tissue remodeling, is associated with a variety of diseases including cancer, but the contribution of SPARC to malignant growth remains controversial. We previously reported that SPARC was among the most upregulated genes in cytogenetically normal acute myeloid leukemia (CN-AML) patients with gene-expression profiles predictive of unfavorable outcome, such as mutations in isocitrate dehydrogenase 2 (IDH2-R172) and overexpression of the oncogenes brain and acute leukemia, cytoplasmic (BAALC) and v-ets erythroblastosis virus E26 oncogene homolog (ERG). In contrast, SPARC was downregulated in CN-AML patients harboring mutations in nucleophosmin (NPM1) that are associated with favorable prognosis. Based on these observations, we hypothesized that SPARC expression is clinically relevant in AML. Here, we found that SPARC overexpression is associated with adverse outcome in CN-AML patients and promotes aggressive leukemia growth in murine models of AML. In leukemia cells, SPARC expression was mediated by the SP1/NF-κB transactivation complex. Furthermore, secreted SPARC activated the integrin-linked kinase/AKT (ILK/AKT) pathway, likely via integrin interaction, and subsequent β-catenin signaling, which is involved in leukemia cell self-renewal. Pharmacologic inhibition of the SP1/NF-κB complex resulted in SPARC downregulation and leukemia growth inhibition. Together, our data indicate that evaluation of SPARC expression has prognosticative value and SPARC is a potential therapeutic target for AML. PMID:24590286
SPARC promotes leukemic cell growth and predicts acute myeloid leukemia outcome.
Alachkar, Houda; Santhanam, Ramasamy; Maharry, Kati; Metzeler, Klaus H; Huang, Xiaomeng; Kohlschmidt, Jessica; Mendler, Jason H; Benito, Juliana M; Hickey, Christopher; Neviani, Paolo; Dorrance, Adrienne M; Anghelina, Mirela; Khalife, Jihane; Tarighat, Somayeh S; Volinia, Stefano; Whitman, Susan P; Paschka, Peter; Hoellerbauer, Pia; Wu, Yue-Zhong; Han, Lina; Bolon, Brad N; Blum, William; Mrózek, Krzysztof; Carroll, Andrew J; Perrotti, Danilo; Andreeff, Michael; Caligiuri, Michael A; Konopleva, Marina; Garzon, Ramiro; Bloomfield, Clara D; Marcucci, Guido
2014-04-01
Aberrant expression of the secreted protein, acidic, cysteine-rich (osteonectin) (SPARC) gene, which encodes a matricellular protein that participates in normal tissue remodeling, is associated with a variety of diseases including cancer, but the contribution of SPARC to malignant growth remains controversial. We previously reported that SPARC was among the most upregulated genes in cytogenetically normal acute myeloid leukemia (CN-AML) patients with gene-expression profiles predictive of unfavorable outcome, such as mutations in isocitrate dehydrogenase 2 (IDH2-R172) and overexpression of the oncogenes brain and acute leukemia, cytoplasmic (BAALC) and v-ets erythroblastosis virus E26 oncogene homolog (ERG). In contrast, SPARC was downregulated in CN-AML patients harboring mutations in nucleophosmin (NPM1) that are associated with favorable prognosis. Based on these observations, we hypothesized that SPARC expression is clinically relevant in AML. Here, we found that SPARC overexpression is associated with adverse outcome in CN-AML patients and promotes aggressive leukemia growth in murine models of AML. In leukemia cells, SPARC expression was mediated by the SP1/NF-κB transactivation complex. Furthermore, secreted SPARC activated the integrin-linked kinase/AKT (ILK/AKT) pathway, likely via integrin interaction, and subsequent β-catenin signaling, which is involved in leukemia cell self-renewal. Pharmacologic inhibition of the SP1/NF-κB complex resulted in SPARC downregulation and leukemia growth inhibition. Together, our data indicate that evaluation of SPARC expression has prognosticative value and SPARC is a potential therapeutic target for AML.
Choi, Hyun-Woo; Kim, Hye-Ran; Baek, Hee-Jo; Kook, Hoon; Cho, Duck; Shin, Jong-Hee; Suh, Soon-Pal; Ryang, Dong-Wook; Shin, Myung-Geun
2015-01-01
Recurrent somatic SET-binding protein 1 (SETBP1) and splicing pathway gene mutations have recently been found in atypical chronic myeloid leukemia and other hematologic malignancies. These mutations have been comprehensively analyzed in adult AML, but not in childhood AML. We investigated possible alteration of the SETBP1, splicing factor 3B subunit 1 (SF3B1), U2 small nuclear RNA auxiliary factor 1 (U2AF1), and serine/arginine-rich splicing factor 2 (SRSF2) genes in childhood AML. Cytogenetic and molecular analyses were performed to reveal chromosomal and genetic alterations. Sequence alterations in the SETBP1, SF3B1, U2AF1, and SRSF2 genes were examined by using direct sequencing in a cohort of 53 childhood AML patients. Childhood AML patients did not harbor any recurrent SETBP1 gene mutations, although our study did identify a synonymous mutation in one patient. None of the previously reported aberrations in the mutational hotspot of SF3B1, U2AF1, and SRSF2 were identified in any of the 53 patients. Alterations of the SETBP1 gene or SF3B1, U2AF1, and SRSF2 genes are not common genetic events in childhood AML, implying that the mutations are unlikely to exert a driver effect in myeloid leukemogenesis during childhood.
Leukemogenesis Induced by an Activating β-catenin mutation in Osteoblasts
Kode, Aruna; Manavalan, John S.; Mosialou, Ioanna; Bhagat, Govind; Rathinam, Chozha V.; Luo, Na; Khiabanian, Hossein; Lee, Albert; Vundavalli, Murty; Friedman, Richard; Brum, Andrea; Park, David; Galili, Naomi; Mukherjee, Siddhartha; Teruya-Feldstein, Julie; Raza, Azra; Rabadan, Raul; Berman, Ellin; Kousteni, Stavroula
2014-01-01
Summary Cells of the osteoblast lineage affect homing, 1, 2 number of long term repopulating hematopoietic stem cells (HSCs) 3, 4, HSC mobilization and lineage determination and B lymphopoiesis 5-8. More recently osteoblasts were implicated in pre-leukemic conditions in mice 9, 10. Yet, it has not been shown that a single genetic event taking place in osteoblasts can induce leukemogenesis. We show here that in mice, an activating mutation of β-catenin in osteoblasts alters the differentiation potential of myeloid and lymphoid progenitors leading to development of acute myeloid leukemia (AML) with common chromosomal aberrations and cell autonomous progression. Activated β-catenin stimulates expression of the Notch ligand Jagged-1 in osteoblasts. Subsequent activation of Notch signaling in HSC progenitors induces the malignant changes. Demonstrating the pathogenetic role of the Notch pathway, genetic or pharmacological inhibition of Notch signaling ameliorates AML. Nuclear accumulation and increased β-catenin signaling in osteoblasts was also identified in 38% of patients with MDS/AML. These patients showed increased Notch signaling in hematopoietic cells. These findings demonstrate that genetic alterations in osteoblasts can induce AML, identify molecular signals leading to this transformation and suggest a potential novel pharmacotherapeutic approach to AML. PMID:24429522
Kojima, Kensuke; Shikami, Masato; Benito, Julina; Ruvolo, Vivian; Wang, Rui-Yu; McQueen, Teresa; Ciurea, Stefan O.; Miida, Takashi; Andreeff, Michael; Konopleva, Marina
2013-01-01
Both phosphatidylinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling and antiapoptotic Bcl-2 family members are critical for survival of acute myeloid leukemia (AML) cells. Here we demonstrate the antileukemic effects of simultaneous inhibition of PI3K by the selective class I PI3K inhibitor GDC-0941 and of Bcl-2 family members by the BH3 mimetic ABT-737 in the context of the bone marrow microenvironment, where hypoxia and interactions with bone marrow stromal cells promote AML cell survival and chemoresistance. The combination of GDC-0941 and ABT-737 profoundly downregulated antiapoptotic Mcl-1 expression levels, activated BAX, and induced mitochondrial apoptosis in AML cells co-cultured with bone marrow stromal cells under hypoxic conditions. Hypoxia caused degradation of Mcl-1 and rendered Mcl-1-overexpressing OCI-AML3 cells sensitive to ABT-737. Our findings suggest that pharmacologic PI3K inhibition by GDC-0941 enhances ABT-737–induced leukemia cell death even under the protective conditions afforded by the bone marrow microenvironment. PMID:23955073
Pulikkan, John Anto; Madera, Dmitri; Xue, Liting; Bradley, Paul; Landrette, Sean Francis; Kuo, Ya-Huei; Abbas, Saman; Zhu, Lihua Julie; Valk, Peter
2012-01-01
Oncogenic mutations in components of cytokine signaling pathways elicit ligand-independent activation of downstream signaling, enhancing proliferation and survival in acute myeloid leukemia (AML). The myeloproliferative leukemia virus oncogene, MPL, a homodimeric receptor activated by thrombopoietin (THPO), is mutated in myeloproliferative disorders but rarely in AML. Here we show that wild-type MPL expression is increased in a fraction of human AML samples expressing RUNX1-ETO, a fusion protein created by chromosome translocation t(8;21), and that up-regulation of Mpl expression in mice induces AML when coexpressed with RUNX1-ETO. The leukemic cells are sensitive to THPO, activating survival and proliferative responses. Mpl expression is not regulated by RUNX1-ETO in mouse hematopoietic progenitors or leukemic cells. Moreover, we find that activation of PI3K/AKT but not ERK/MEK pathway is a critical mediator of the MPL-directed antiapoptotic function in leukemic cells. Hence, this study provides evidence that up-regulation of wild-type MPL levels promotes leukemia development and maintenance through activation of the PI3K/AKT axis, and suggests that inhibitors of this axis could be effective for treatment of MPL-positive AML. PMID:22613795
Pulikkan, John Anto; Madera, Dmitri; Xue, Liting; Bradley, Paul; Landrette, Sean Francis; Kuo, Ya-Huei; Abbas, Saman; Zhu, Lihua Julie; Valk, Peter; Castilla, Lucio Hernán
2012-07-26
Oncogenic mutations in components of cytokine signaling pathways elicit ligand-independent activation of downstream signaling, enhancing proliferation and survival in acute myeloid leukemia (AML). The myeloproliferative leukemia virus oncogene, MPL, a homodimeric receptor activated by thrombopoietin (THPO), is mutated in myeloproliferative disorders but rarely in AML. Here we show that wild-type MPL expression is increased in a fraction of human AML samples expressing RUNX1-ETO, a fusion protein created by chromosome translocation t(8;21), and that up-regulation of Mpl expression in mice induces AML when coexpressed with RUNX1-ETO. The leukemic cells are sensitive to THPO, activating survival and proliferative responses. Mpl expression is not regulated by RUNX1-ETO in mouse hematopoietic progenitors or leukemic cells. Moreover, we find that activation of PI3K/AKT but not ERK/MEK pathway is a critical mediator of the MPL-directed antiapoptotic function in leukemic cells. Hence, this study provides evidence that up-regulation of wild-type MPL levels promotes leukemia development and maintenance through activation of the PI3K/AKT axis, and suggests that inhibitors of this axis could be effective for treatment of MPL-positive AML.
GSK3 is a regulator of RAR-mediated differentiation
Gupta, K; Gulen, F; Sun, L; Aguilera, R; Chakrabarti, A; Kiselar, J; Agarwal, MK; Wald, DN
2015-01-01
Acute myeloid leukemia (AML) is the most common form of leukemia in adults. Unfortunately, the standard therapeutic agents used for this disease have high toxicities and poor efficacy. The one exception to these poor outcomes is the use of the retinoid, all-trans retinoic acid (ATRA), for a rare subtype of AML (APL). The use of the differentiation agent, ATRA, in combination with low-dose chemotherapy leads to the long-term survival and presumed cure of 75–85% of patients. Unfortunately ATRA has not been clinically useful for other subtypes of AML. Though many non-APL leukemic cells respond to ATRA, they require significantly higher concentrations of ATRA for effective differentiation. Here we show that the combination of ATRA with glycogen synthase kinase 3 (GSK3) inhibition significantly enhances ATRA-mediated AML differentiation and growth inhibition. These studies have revealed that ATRA's receptor, the retinoic acid receptor (RAR), is a novel target of GSK3 phosphorylation and that GSK3 can impact the expression and transcriptional activity of the RAR. Overall, our studies suggest the clinical potential of ATRA and GSK3 inhibition for AML and provide a mechanistic framework to explain the promising activity of this combination regimen. PMID:22222598
GSK-3 Inhibition Sensitizes Acute Myeloid Leukemia Cells to 1,25D-Mediated Differentiation
Gupta, Kalpana; Stefan, Tammy; Ignatz-Hoover, James; Moreton, Stephen; Parizher, Gary; Saunthararajah, Yogen; Wald, David N.
2017-01-01
1,25-dihydroxyvitamin D3 (1,25D), the biologically active form of vitamin D, is widely considered a promising therapy for acute myeloid leukemia (AML) based on its ability to drive differentiation of leukemic cells. However, clinical trials have been disappointing in part to dose-limiting hypercalcemia. Here we show how inhibiting glycogen synthase kinase 3 (GSK3) can improve the differentiation response of AML cells to 1,25D-mediated differentiation. GSK3 inhibition in AML cells enhanced the differentiating effects of low concentrations of 1,25D. In addition, GSK3 inhibition augmented the ability of 1,25D to induce irreversible growth inhibition and slow the progression of AML in mouse models. Mechanistic studies revealed that GSK3 inhibition led to the hyperphosphorylation of the vitamin D receptor (VDR), enabling an interaction between VDR and the coactivator, SRC-3 (NCOA3), thereby increasing transcriptional activity. We also found that activation of JNK-mediated pathways in response to GSK3 inhibition contributed to the potentiation of 1,25D-induced differentiation. Taken together, our findings offer a preclinical rationale to explore the repositioning of GSK3 inhibitors to enhance differentiation-based therapy for AML treatment. PMID:26964622
Sasaki, Koji; Jabbour, Elias; Cortes, Jorge; Kadia, Tapan; Garcia-Manero, Guillermo; Borthakur, Gautam; Jain, Preetesh; Pierce, Sherry; Daver, Naval; Takahashi, Koichi; O'Brien, Susan; Kantarjian, Hagop; Ravandi, Farhad
2016-11-01
To learn whether an antecedent hematologic disorder (AHD) is associated with additional risk in patients with therapy-related acute myeloid leukemia (t-AML). We reviewed data of 301 patients with newly diagnosed t-AML who sought care from January 2000 to January 2014 (183 t-AML without AHD, 118 t-AML with AHD). Overall, median follow-up was 44 months. The primary malignancy was non-Hodgkin lymphoma in 92 (31%), breast cancer in 80 (27%), and prostate cancer in 49 (16%). Median relapse-free survival (RFS) in t-AML without or with AHD was 10 months and 29 months, respectively (P = .032); median overall survival (OS) was 8 months and 8 months, respectively (P = .53). Multivariate analysis for OS identified older age, poor performance status, thrombocytopenia, nonfavorable cytogenetics, and lack of response as adverse factors. The favorable-risk cohort had better RFS and OS compared to the outcomes of patients in the intermediate- and adverse-risk cohorts; the RFS and OS did not differ between intermediate- and adverse-risk cohorts. The presence of AHD did not affect OS. Copyright © 2016 Elsevier Inc. All rights reserved.
Acute erythremic myelosis (true erythroleukaemia): a variant of AML FAB-M6.
Hasserjian, R P; Howard, J; Wood, A; Henry, K; Bain, B
2001-03-01
Classic erythroleukaemia (acute myeloid leukaemia M6, or M6 AML) is defined as an excess of myeloblasts in an erythroid predominant background. Leukaemia variants in which the primitive blast cells are demonstrably erythroid are extremely rare and poorly characterised. Variably referred to as "true erythroleukaemia" or "acute erythremic myelosis", they are often included within the M6 AML category even though they do not meet strict criteria for this type of AML. Two cases of acute erythroid neoplasia are presented with clinical, morphological, immunophenotypic, and cytogenetic analysis. Both patients presented with profound anaemia, one in a setting of long standing myelodysplasia. Bone marrow examination revealed a predominant population of highly dysplastic erythroid cells in both cases. In one case, the liver was infiltrated by neoplastic erythroid cells. Both patients died within four months of diagnosis. This report illustrates that cases of acute leukaemia occur in which the dominant neoplastic cell is a primitive erythroid cell without an accompanying increase in myeloblasts. This does not preclude the neoplastic clone originating in a multipotent haemopoietic stem cell, as suggested by cases arising in patients with myelodysplasia. Acute erythremic myelosis should be recognised as a distinct variant of M6 AML.
Lee-Sherick, Alisa B.; Zhang, Weihe; Menachof, Kelly K.; Hill, Amanda A.; Rinella, Sean; Kirkpatrick, Gregory; Page, Lauren S.; Stashko, Michael A.; Jordan, Craig T.; Wei, Qi; Liu, Jing; Zhang, Dehui; DeRyckere, Deborah; Wang, Xiaodong; Frye, Stephen; Earp, H. Shelton; Graham, Douglas K.
2015-01-01
Mer and Flt3 receptor tyrosine kinases have been implicated as therapeutic targets in acute myeloid leukemia (AML). In this manuscript we describe UNC1666, a novel ATP-competitive small molecule tyrosine kinase inhibitor, which potently diminishes Mer and Flt3 phosphorylation in AML. Treatment with UNC1666 mediated biochemical and functional effects in AML cell lines expressing Mer or Flt3 internal tandem duplication (ITD), including decreased phosphorylation of Mer, Flt3 and downstream effectors Stat, Akt and Erk, induction of apoptosis in up to 98% of cells, and reduction of colony formation by greater than 90%, compared to treatment with vehicle. These effects were dose-dependent, with inhibition of downstream signaling and functional effects correlating with the degree of Mer or Flt3 kinase inhibition. Treatment of primary AML patient samples expressing Mer and/or Flt3-ITD with UNC1666 also inhibited Mer and Flt3 intracellular signaling, induced apoptosis, and inhibited colony formation. In summary, UNC1666 is a novel potent small molecule tyrosine kinase inhibitor that decreases oncogenic signaling and myeloblast survival, thereby validating dual Mer/Flt3 inhibition as an attractive treatment strategy for AML. PMID:25762638
Acute nonlymphocytic leukemia and residential exposure to power frequency magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Severson, R.K.
1986-01-01
A population-based case-control study of adult acute nonlymphocytic leukemia (ANLL) and residential exposure to power frequency magnetic fields was conducted in King, Pierce and Snohomish Counties in Washington state. Of 164 cases who were diagnosed from January 1, 1981 through December 31, 1984, 114 were interviewed. Controls were selected from the study area on the basis of random digit dialing and frequency matched to the cases by age and sex. Analyses were undertaken to evaluate whether exposure to high levels of power frequency magnetic fields in the residence were associated with an increased risk of ANLL. Neither the directly measuredmore » magnetic fields nor the surrogate values based on the wiring configurations were associated with ANLL. Additional analyses suggested that persons with prior allergies were at decreased risk of acute myelocytic leukemia (AML). Also, persons with prior autoimmune diseases were at increased risk of AML. The increase in AML risk in rheumatoid arthritics was of borderline statistical significance. Finally, cigarette smoking was associated with an increased risk of AML. The risk of AML increased significantly with the number of years of cigarette smoking.« less
Inhibition of FLT3 Expression by Green Tea Catechins in FLT3 Mutated-AML Cells
Ly, Bui Thi Kim; Chi, Hoang Thanh; Yamagishi, Makoto; Kano, Yasuhiko; Hara, Yukihiko; Nakano, Kazumi; Sato, Yuko; Watanabe, Toshiki
2013-01-01
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by a block in differentiation and uncontrolled proliferation. FLT3 is a commonly mutated gene found in AML patients. In clinical trials, the presence of a FLT3-ITD mutation significantly correlates with an increased risk of relapse and dismal overall survival. Therefore, activated FLT3 is a promising molecular target for AML therapies. In this study, we have shown that green tea polyphenols including (−)-epigallocatechin-3-gallate (EGCG), (−)-epigallocatechin (EGC), and (−)-epicatechin-3-gallate (ECG) suppress the proliferation of AML cells. Interestingly, EGCG, EGC and ECG showed the inhibition of FLT3 expression in cell lines harboring FLT3 mutations. In the THP-1 cells harboring FLT3 wild-type, EGCG showed the suppression of cell proliferation but did not suppress the expression of FLT3 even at the concentration that suppress 100% cell proliferation. Moreover, EGCG-, EGC-and ECG-treated cells showed the suppression of MAPK, AKT and STAT5 phosphorylation. Altogether, we suggest that green tea polyphenols could serve as reagents for treatment or prevention of leukemia harboring FLT3 mutations. PMID:23840454
Adult Acute Myeloid Leukemia Treatment (PDQ®)—Health Professional Version
Acute myeloid (myelogenous) leukemia (AML) treatment options include chemotherapy, radiation therapy, stem cell transplant, and other medications. Cytogenetic analysis helps predict treatment outcomes. Get detailed information about AML in this summary for clinicians.
... the disease grows quickly and usually has an aggressive course. Causes AML is one of the most common types of leukemia among adults. AML is more common in men than women. People with this type of cancer have many ...
The role of targeted therapy in the management of patients with AML
2017-01-01
Drug therapy for acute myeloid leukemia (AML) is finally undergoing major changes in 2017. This is due to the US Food and Drug Administration’s approval of several new, targeted agents (midostaurin, enasidenib, and gemtuzumab ozogamicin). Paired with the recent approval of a novel liposomal formulation of daunorubicin/cytarabine (CPX-351/Vyxeos), the standard of care is changing rapidly in AML for subgroups. This review will focus on currently approved agents and promising novel agents in development and will highlight controversial areas in targeted treatment. PMID:29296877
Mettler, John; Al-Katib, Sayf
2018-06-07
Renal angiomyolipoma (AML) is the most commonly encountered mesenchymal tumor of the kidney which can present spontaneously or in association with tuberous sclerosis complex. Rarely, renal AMLs may demonstrate aggressive features such as renal vein invasion. This common entity and its uncommon complications are diagnosed based on physical examination and computed tomography results. Here we report imaging findings of a renal AML with renal vein and inferior vena cava invasion resulting in pulmonary tumor embolus and pulmonary infarction. Copyright © 2018. Published by Elsevier Inc.
The role of targeted therapy in the management of patients with AML.
Perl, Alexander E
2017-11-14
Drug therapy for acute myeloid leukemia (AML) is finally undergoing major changes in 2017. This is due to the US Food and Drug Administration's approval of several new, targeted agents (midostaurin, enasidenib, and gemtuzumab ozogamicin). Paired with the recent approval of a novel liposomal formulation of daunorubicin/cytarabine (CPX-351/Vyxeos), the standard of care is changing rapidly in AML for subgroups. This review will focus on currently approved agents and promising novel agents in development and will highlight controversial areas in targeted treatment.
Friedrich, Matthias; Henn, Anja; Raum, Tobias; Bajtus, Monika; Matthes, Katja; Hendrich, Larissa; Wahl, Joachim; Hoffmann, Patrick; Kischel, Roman; Kvesic, Majk; Slootstra, Jerry W; Baeuerle, Patrick A; Kufer, Peter; Rattel, Benno
2014-06-01
There is high demand for novel therapeutic options for patients with acute myelogenous leukemia (AML). One possible approach is the bispecific T-cell-engaging (BiTE, a registered trademark of Amgen) antibody AMG 330 with dual specificity for CD3 and the sialic acid-binding lectin CD33 (SIGLEC-3), which is frequently expressed on the surface of AML blasts and leukemic stem cells. AMG 330 binds with low nanomolar affinity to CD33 and CD3ε of both human and cynomolgus monkey origin. Eleven human AML cell lines expressing between 14,400 and 56,700 CD33 molecules per cell were all potently lysed with EC(50) values ranging between 0.4 pmol/L and 3 pmol/L (18-149 pg/mL) by previously resting, AMG 330-redirected T cells. Complete lysis was achieved after 40 hours of incubation. In the presence of AML cells, AMG 330 specifically induced expression of CD69 and CD25 as well as release of IFN-γ, TNF, interleukin (IL)-2, IL-10, and IL-6. Ex vivo, AMG 330 mediated autologous depletion of CD33-positive cells from cynomolgous monkey bone marrow aspirates. Soluble CD33 at concentrations found in bone marrow of patients with AML did not significantly affect activities of AMG 330. Neoexpression of CD33 on newly activated T cells was negligible as it was limited to 6% of T cells in only three out of ten human donors tested. Daily intravenous administration with as low as 0.002 mg/kg AMG 330 significantly prolonged survival of immunodeficient mice adoptively transferred with human MOLM-13 AML cells and human T cells. AMG 330 warrants further development as a potential therapy for AML. ©2014 American Association for Cancer Research.
Quarello, Paola; Fagioli, Franca; Basso, Giuseppe; Putti, Maria C; Berger, Massimo; Luciani, Matteo; Rizzari, Carmelo; Menna, Giuseppe; Masetti, Riccardo; Locatelli, Franco
2015-11-01
Paediatric patients with acute myeloid leukaemia (AML) who fail induction due to primary resistance to chemotherapy account for a significant proportion of cases and have a particularly dismal prognosis. We report the clinical and biological data, and final outcome of 48 paediatric patients with primary-resistant AML enrolled in the Associazione Italiana di Ematologia e Oncologia Pediatrica AML 2002/01 clinical trial. These patients had a significantly higher white blood cell count at diagnosis compared to other AML patients. Cytogenetic and molecular features did not differ between patients with primary induction failure and patients allocated to the high-risk group. For the whole patient population, the probability of overall survival, event-free survival (EFS) and disease-free survival (DFS) was 21·8% ± 6·2, 20·4% ± 5·9, and 49·5% ± 11·3, respectively. Twenty-eight (58%) patients received haematopoietic stem cell transplantation (HSCT); 3 were autologous and 25 were allogeneic. Patients who underwent HSCT had improved EFS (31·2% vs. 5%, P < 0·0001). Only one of the 20 patients who did not receive HSCT is alive and disease free. The 19 patients in complete remission at time of HSCT showed significantly better DFS than the 9 with active disease (46% vs. 0%, P = 0·02). This study represents one of the largest series with long-term follow up of paediatric AML patients with primary refractory disease. Children who underwent transplantation had an encouraging long-term outcome. Disease recurrence remains the major cause of treatment failure; a better understanding of the disease biology is desirable to develop more effective treatment strategies. © 2015 John Wiley & Sons Ltd.
Risk of Hematologic Malignancies After Radioiodine Treatment of Well-Differentiated Thyroid Cancer.
Molenaar, Remco J; Sidana, Surbhi; Radivoyevitch, Tomas; Advani, Anjali S; Gerds, Aaron T; Carraway, Hetty E; Angelini, Dana; Kalaycio, Matt; Nazha, Aziz; Adelstein, David J; Nasr, Christian; Maciejewski, Jaroslaw P; Majhail, Navneet S; Sekeres, Mikkael A; Mukherjee, Sudipto
2017-12-18
Purpose To investigate the risk and outcomes of second hematologic malignancies (SHMs) in a population-based cohort of patients with well-differentiated thyroid cancer (WDTC) treated or not with radioactive iodine (RAI). Methods Patients with WDTC were identified from SEER registries. Competing risk regression analysis was performed to calculate the risks of SHMs that occurred after WDTC treatment and outcomes after SHM development were assessed. Results Of 148,215 patients with WDTC, 53% received surgery alone and 47% received RAI. In total, 783 patients developed an SHM after a median interval of 6.5 years (interquartile range, 3.3 to 11.2 years) from WDTC diagnosis. In multivariable analysis, compared with those undergoing thyroidectomy alone, RAI treatment was associated with an increased early risk of developing acute myeloid leukemia (AML; hazard ratio, 1.79; 95% CI, 1.13 to 2.82; P = .01) and chronic myeloid leukemia (CML; hazard ratio, 3.44; 95% CI, 1.87 to 6.36; P < .001). This increased risk of AML and CML after RAI treatment was seen even in low-risk and intermediate-risk WDTC tumors. Occurrence of AML but not CML in patients with WDTC was associated with shorter median overall survival compared with matched controls (8.0 years v 31.0 years; P = .001). In addition, AML developing after RAI trended toward inferior survival compared with matched controls with de novo AML (median overall survival, 1.2 years v 2.9 years; P = .06). Conclusion Patients with WDTC treated with RAI had an increased early risk of developing AML and CML but no other hematologic malignancies. AML that arises after RAI treatment has a poor prognosis. RAI use in patients with WDTC should be limited to patients with high-risk disease features, and patients with WDTC treated with adjuvant RAI should be monitored for myeloid malignancies as part of cancer surveillance.
Shinzato, Aki; Tabuchi, Ken; Atsuta, Yoshiko; Inoue, Masami; Inagaki, Jiro; Yabe, Hiromasa; Koh, Katsuyoshi; Kato, Koji; Ohta, Hideaki; Kigasawa, Hisato; Kitoh, Toshiyuki; Ogawa, Atsushi; Takahashi, Yoshiyuki; Sasahara, Yoji; Kato, Shun-Ichi; Adachi, Souichi
2013-09-01
Peripheral blood stem cells (PBSC) may be used as an alternative to bone marrow (BM) for allogeneic transplantation. Since peripheral blood stem cell bank from unrelated volunteer donor has been started in Japan, use of PBSC allografts may be increased. Therefore we surveyed the outcomes of Japanese leukemia children after PBSC and BM transplantation. This retrospective study compared the outcomes of 661 children (0-18 years) with acute lymphoblastic leukaemia (ALL) or acute myeloid leukaemia (AML) who received their first allogeneic peripheral blood stem cell transplantation (PBSCT; n = 90) or bone marrow transplantation (BMT; n = 571) from HLA-matched siblings between January 1996 and December 2007. Neutrophil recovery was faster after PBSCT than after BMT (ALL: P < 0.0001; AML: P = 0.0002), as was platelet recovery (ALL: P = 0.0008; AML: P = 0.0848). However, the cumulative incidence of chronic graft-versus-host disease (GvHD) was higher after PBSCT than after BMT (ALL: 26.0% vs. 9.9%, P = 0.0066; AML: 41.6% vs. 11.1%, P < 0.0001). The 5-year disease-free survival (DFS) was lower after PBSCT than after BMT for ALL (40.6% vs. 57.1%, P = 0.0257). The 5-year overall survival (OS) was lower after PBSCT than after BMT for ALL (42.4% vs. 63.7%, P = 0.0032) and AML (49.8% vs. 71.8%, P = 0.0163). Multivariate analysis revealed the use of PBSC was a significant risk factor for DFS and OS. PBSCT and BMT did not differ in relapse rate, acute GvHD for ALL and AML, or in DFS for AML. PBSC allografts in Japanese children engraft faster but are associated with poorer survival and increased chronic GvHD. Copyright © 2013 Wiley Periodicals, Inc.
Ishimitsu, Toshihiko; Fukuda, Hirofumi; Uchida, Masako; Ishibashi, Kazushi; Sato, Fusako; Nukui, Kazuhiko; Nagao, Munehiko
2015-01-01
Two-thirds of hypertensive patients need a combination antihypertensive therapy to achieve the target blood pressure (BP). The PARTNER (Practical combination therapy of Amlodin and angiotensin II Receptor blocker; Safety and efficacy in paTieNts with hypERtension) study is a prospective specific clinical use survey examining the efficacy and safety of 12-week treatment with amlodipine (AML) and Angiotensin II Receptor Blocker (ARB) in 5900 hypertensive patients. The current analysis was performed as to the BP control, adverse reactions, and the effects on laboratory data in patients treated with the combination of AML and irbesartan (IRB), namely the patients added AML to already taking IRB (AML add-on group, n = 1202) and the patients added IRB to AML (IRB add-on group, n = 1050). Both study groups showed distinct decreases in office BP at 4 week (p < 0.001) and the antihypertensive effects were sustained to 12 week (p < 0.001). The percentage of patients achieving BP < 140/90 mmHg was ∼70% in either group. Proteinuria and estimated glomerular filtration rate (eGFR) were significantly improved in hypertensive patients with baseline eGFR <60 ml/min/1.73 m(2). Serum uric acid was reduced either by adding AML or IRB, and the reductions were prominent in patients with serum uric acid >7 mg/dl. The incidence of adverse reactions was as few as 1.11% and there were no severe adverse reactions which hampered the continuation of combination therapy. In conclusion, combination antihypertensive therapy with AML and IRB effectively lowers BP without particular safety problems, reduces serum uric acid especially in patients with hyperuricemia and exhibits renoprotective effects in patients with chronic kidney disease.
Guan, Y; Hogge, D E
2000-12-01
One possible explanation for the competitive advantage that malignant cells in patients with acute myelogenous leukemia (AML) appear to have over normal hematopoietic elements is that leukemic progenitors proliferate more rapidly than their normal progenitor cell counterparts. To test this hypothesis, an overnight 3H-thymidine (3H-Tdr) suicide assay was used to analyze the proliferative status of malignant progenitors detected in both colony-forming cell (CFC) and long-term culture initiating cell (LTC-IC) assays from the peripheral blood of nine patients with newly diagnosed AML. Culture of AML cells in serum-free medium with 100 ng/ml Steel factor (SF), 20 ng/ml interleukin 3 (IL-3) and 20 ng/ml granulocyte colony-stimulating factor (G-CSF) for 16-24 h maintained the number of AML-CFC and LTC-IC at near input values (mean % input +/- s.d. for CFC and LTC-IC were 78 +/- 33 and 126 +/- 53, respectively). The addition of 20 muCi/ml high specific activity 3H-Tdr to these cultures reduced the numbers of both progenitor cell types from most of the patient samples substantially: mean % kill +/- s.d. for AML-CFC and LTC-IC were 64 +/- 27 and 82 +/- 16, respectively, indicating that a large proportion of both progenitor populations were actively cycling. FISH analysis of colonies from CFC and LTC-IC assays confirmed that most cytogenetically abnormal CFC and LTC-IC were actively cycling (mean % kill +/- s.d.: 68 +/- 26 and 85 +/- 13, respectively). Interestingly, in six patient samples where a significant number of cytogenetically normal LTC-ICs were detected, the % kill of these cells (74 +/- 20) was similar to that of the abnormal progenitors. These data contrast with the predominantly quiescent cell cycle status of CFC and LTC-IC previously observed in steady-state peripheral blood from normal individuals but also provide evidence that a significant proportion of primitive malignant progenitors from AML patients are quiescent and therefore may be resistant to standard chemotherapeutic regimens.
Calhoun, David A.; Lacourci00E8;re, Yves; Crikelair, Nora; Jia, Yan; Glazer, Robert D.
2014-01-01
Objective To compare the antihypertensive efficacy and safety of once-daily triple therapy with amlodipine (Aml) 10 mg, valsartan (Val) 320 mg, and hydrochlorothiazide (HCTZ) 25 mg versus dual-therapy combinations of these components in patients with moderate to severe hypertension. Research design Subgroup analysis of a multinational, randomized, double-blind, parallel-group, active-controlled trial. Methods After antihypertensive washout and a placebo run-in of up to 4 weeks, 2271 patients were randomly allocated in a 1:1:1:1 ratio to receive Aml/Val/HCTZ triple therapy or dual therapy with Val/HCTZ, Aml/Val, or Aml/HCTZ for 8 weeks. Forced titration to the full dose was done over the first 2 weeks of treatment. Efficacy and safety parameters were determined by age group (<65 vs. ≥65 years), gender, race (White vs. Black), ethnicity (Hispanic/Latino vs. non-Hispanic/Latino), and body mass index (BMI, <30 vs. ≥30 kg/m2). Main outcome measures Change from baseline to endpoint in mean sitting systolic blood pressure (MSSBP) and mean sitting diastolic blood pressure (MSDBP); blood pressure (BP) control rate <140/90 mmHg. Results Triple therapy was numerically superior and, for the majority of comparisons, statistically superior to each dual therapy in reducing MSSBP and MSDBP and in improving BP control rates in all subgroups. Across subgroups, triple therapy reduced MSSBP by 5.7–10.7 mmHg more than Val/HCTZ, 3.4–8.3 mmHg more than Aml/Val, and 4.4–9.4 mmHg more than Aml/HCTZ. Triple therapy was well tolerated across all subgroups. Limitations of our analysis included the lack of stratification of patients by subgroup at randomization and the small sample size of some subgroups (eg, Blacks, elderly). Conclusions Triple therapy with Aml/Val/HCTZ is effective and well tolerated in patients with moderate to severe hypertension regardless of age, gender, race, ethnicity, or BMI. PMID:23721363
Universal monitoring of minimal residual disease in acute myeloid leukemia.
Coustan-Smith, Elaine; Song, Guangchun; Shurtleff, Sheila; Yeoh, Allen Eng-Juh; Chng, Wee Joo; Chen, Siew Peng; Rubnitz, Jeffrey E; Pui, Ching-Hon; Downing, James R; Campana, Dario
2018-05-03
Optimal management of acute myeloid leukemia (AML) requires monitoring of treatment response, but minimal residual disease (MRD) may escape detection. We sought to identify distinctive features of AML cells for universal MRD monitoring. We compared genome-wide gene expression of AML cells from 157 patients with that of normal myeloblasts. Markers encoded by aberrantly expressed genes, including some previously associated with leukemia stem cells, were studied by flow cytometry in 240 patients with AML and in nonleukemic myeloblasts from 63 bone marrow samples. Twenty-two (CD9, CD18, CD25, CD32, CD44, CD47, CD52, CD54, CD59, CD64, CD68, CD86, CD93, CD96, CD97, CD99, CD123, CD200, CD300a/c, CD366, CD371, and CX3CR1) markers were aberrantly expressed in AML. Leukemia-associated profiles defined by these markers extended to immature CD34+CD38- AML cells; expression remained stable during treatment. The markers yielded MRD measurements matching those of standard methods in 208 samples from 52 patients undergoing chemotherapy and revealed otherwise undetectable MRD. They allowed MRD monitoring in 129 consecutive patients, yielding prognostically significant results. Using a machine-learning algorithm to reduce high-dimensional data sets to 2-dimensional data, the markers allowed a clear visualization of MRD and could detect 1 leukemic cell among more than 100,000 normal cells. The markers uncovered in this study allow universal and sensitive monitoring of MRD in AML. In combination with contemporary analytical tools, the markers improve the discrimination between leukemic and normal cells, thus facilitating data interpretation and, hence, the reliability of MRD results. National Cancer Institute (CA60419 and CA21765); American Lebanese Syrian Associated Charities; National Medical Research Council of Singapore (1299/2011); Viva Foundation for Children with Cancer, Children's Cancer Foundation, Tote Board & Turf Club, and Lee Foundation of Singapore.
Genomics in childhood acute myeloid leukemia comes of age | Office of Cancer Genomics
TARGET investigator’s study of nearly 1,000 pediatric acute myeloid leukemia (AML) cases reveals marked differences between the genomic landscapes of pediatric and adult AML and offers directions for future work.
Advances in targeted therapy for acute myeloid leukaemia.
Kayser, Sabine; Levis, Mark J
2018-02-01
In the past few years, research in the underlying pathogenic mechanisms of acute myeloid leukaemia (AML) has led to remarkable advances in our understanding of the disease. Cytogenetic and molecular aberrations are the most important factors in determining response to chemotherapy as well as long-term outcome, but beyond prognostication are potential therapeutic targets. Our increased understanding of the pathogenesis of AML, facilitated by next-generation sequencing, has spurred the development of new compounds in the treatment of AML, particularly the creation of small molecules that target the disease on a molecular level. Various new agents, such as tyrosine kinase inhibitors, immune checkpoint inhibitors, monoclonal or bispecific T-cell engager antibodies, metabolic and pro-apoptotic agents are currently investigated within clinical trials. The highest response rates are often achieved when new molecularly targeted therapies are combined with standard chemotherapy. Presented here is an overview of novel therapies currently being evaluated in AML. © 2017 John Wiley & Sons Ltd.
Clinical significance of In vivo Cytarabine Induced Gene Expression Signature in AML
Lamba, Jatinder K.; Pounds, Stanley; Cao, Xueyuan; Crews, Kristine R.; Cogle, Christopher R.; Bhise, Neha; Raimondi, Susana C.; Downing, James R.; Baker, Sharyn D.; Ribeiro, Raul C.; Rubnitz, Jeffrey E.
2016-01-01
Despite initial remission, approximately 60-70% of adult and 30% of pediatric patients experience relapse or refractory AML. Studies so far have identified base line gene expression profiles of pathogenic and prognostic significance in AML, however extent of change in gene expression post-initiation of treatment has not been investigated. Exposure of leukemic cells to chemotherapeutic agents such as cytarabine, a mainstay of AML chemotherapy can trigger adaptive response by influencing leukemic cell transcriptome and hence development of resistance or refractory disease. It is however challenging to perform such a study due to lack of availability of specimens post-drug treatment. In this study our primary objective was to identify in vivo cytarabine induced changes in leukemia cell transcriptome and to evaluate their impact on clinical outcome. Our results highlight genes relevant to cytarabine resistance and support the concept of targeting cytarabine-induced genes as a means of improving response. PMID:26366682
Clinical significance of in vivo cytarabine-induced gene expression signature in AML.
Lamba, Jatinder K; Pounds, Stanley; Cao, Xueyuan; Crews, Kristine R; Cogle, Christopher R; Bhise, Neha; Raimondi, Susana C; Downing, James R; Baker, Sharyn D; Ribeiro, Raul C; Rubnitz, Jeffrey E
2016-01-01
Despite initial remission, ∼60-70% of adult and 30% of pediatric patients experience relapse or refractory AML. Studies so far have identified base line gene expression profiles of pathogenic and prognostic significance in AML; however, the extent of change in gene expression post-initiation of treatment has not been investigated. Exposure of leukemic cells to chemotherapeutic agents such as cytarabine, a mainstay of AML chemotherapy, can trigger adaptive response by influencing leukemic cell transcriptome and, hence, development of resistance or refractory disease. It is, however, challenging to perform such a study due to lack of availability of specimens post-drug treatment. The primary objective of this study was to identify in vivo cytarabine-induced changes in leukemia cell transcriptome and to evaluate their impact on clinical outcome. The results highlight genes relevant to cytarabine resistance and support the concept of targeting cytarabine-induced genes as a means of improving response.