Sample records for launch vehicle upper

  1. Modular Approach to Launch Vehicle Design Based on a Common Core Element

    NASA Technical Reports Server (NTRS)

    Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.; Baysinger, Mike

    2010-01-01

    With a heavy lift launch vehicle as the centerpiece of our nation's next exploration architecture's infrastructure, the Advanced Concepts Office at NASA's Marshall Space Flight Center initiated a study to examine the utilization of elements derived from a heavy lift launch vehicle for other potential launch vehicle applications. The premise of this study is to take a vehicle concept, which has been optimized for Lunar Exploration, and utilize the core stage with other existing or near existing stages and boosters to determine lift capabilities for alternative missions. This approach not only yields a vehicle matrix with a wide array of capabilities, but also produces an evolutionary pathway to a vehicle family based on a minimum development and production cost approach to a launch vehicle system architecture, instead of a purely performance driven approach. The upper stages and solid rocket booster selected for this study were chosen to reflect a cross-section of: modified existing assets in the form of a modified Delta IV upper stage and Castor-type boosters; potential near term launch vehicle component designs including an Ares I upper stage and 5-segment boosters; and longer lead vehicle components such as a Shuttle External Tank diameter upper stage. The results of this approach to a modular launch system are given in this paper.

  2. Ares I Crew Launch Vehicle Upper Stage Element Overview

    NASA Technical Reports Server (NTRS)

    McArthur, J. Craig

    2008-01-01

    This viewgraph presentation gives an overview of NASA's Ares I Crew Launch Vehicle Upper Stage Element. The topics include: 1) What is NASA s Mission?; 2) NASA s Exploration Roadmap What is our time line?; 3) Building on a Foundation of Proven Technologies Launch Vehicle Comparisons; 4) Ares I Upper Stage; 5) Upper Stage Primary Products; 6) Ares I Upper Stage Development Approach; 7) What progress have we made?; 8) Upper Stage Subsystem Highlights; 9) Structural Testing; 10) Common Bulkhead Processing; 11) Stage Installation at Stennis Space Center; 12) Boeing Producibility Team; 13) Upper Stage Low Cost Strategy; 14) Ares I and V Production at Michoud Assembly Facility (MAF); 15) Merged Manufacturing Flow; and 16) Manufacturing and Assembly Weld Tools.

  3. Temporal Variability of Upper-level Winds at the Eastern Range, Western Range and Wallops Flight Facility

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.

    2014-01-01

    Space launch vehicles incorporate upper-level wind profiles to determine wind effects on the vehicle and for a commit to launch decision. These assessments incorporate wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the upper-level winds over the time period between the assessment and launch can be mitigated by a statistical analysis of wind change over time periods of interest using historical data from the launch range. Five sets of temporal wind pairs at various times (.75, 1.5, 2, 3 and 4-hrs) at the Eastern Range, Western Range and Wallops Flight Facility were developed for use in upper-level wind assessments. Database development procedures as well as statistical analysis of temporal wind variability at each launch range will be presented.

  4. Progress on the J-2X Upper Stage Engine for the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Byrd, Thomas D.; Kynard, Michael .

    2007-01-01

    NASA's Vision for Exploration requires a safe, reliable, affordable upper stage engine to power the Ares I Crew Launch Vehicle (CLV) and the Ares V Cargo Launch Vehicle. The J-2X engine is being developed for that purpose, epitomizing NASA's philosophy of employing legacy knowledge, heritage hardware, and commonality to carry the next generation of explorers into low-Earth orbit and out into the solar system This presentation gives top-level details on accomplishments to date and discusses forward work necessary to bring the J-2X engine to the launch pad.

  5. Integrated Testing Approaches for the NASA Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Taylor, James L.; Cockrell, Charles E.; Tuma, Margaret L.; Askins, Bruce R.; Bland, Jeff D.; Davis, Stephan R.; Patterson, Alan F.; Taylor, Terry L.; Robinson, Kimberly L.

    2008-01-01

    The Ares I crew launch vehicle is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew and cargo access to the International Space Station (ISS) and, together with the Ares V cargo launch vehicle, serves as a critical component of NASA's future human exploration of the Moon. During the preliminary design phase, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements - including the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine - will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the upper stage Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle ground vibration test (IVGVT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, validate the ability of the upper stage to manage cryogenic propellants to achieve upper stage engine start conditions, and a high-altitude demonstration of the launch abort system (LAS) following stage separation. The Orion 1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch.

  6. Aerodynamic characteristics of the upper stages of a launch vehicle in low-density regime

    NASA Astrophysics Data System (ADS)

    Oh, Bum Seok; Lee, Joon Ho

    2016-11-01

    Aerodynamic characteristics of the orbital block (remaining configuration after separation of nose fairing and 1st and 2nd stages of the launch vehicle) and the upper 2-3stage (configuration after separation of 1st stage) of the 3 stages launch vehicle (KSLV-II, Korea Space Launch Vehicle) at high altitude of low-density regime are analyzed by SMILE code which is based on DSMC (Direct Simulation Monte-Carlo) method. To validating of the SMILE code, coefficients of axial force and normal forces of Apollo capsule are also calculated and the results agree very well with the data predicted by others. For the additional validations and applications of the DSMC code, aerodynamic calculation results of simple shapes of plate and wedge in low-density regime are also introduced. Generally, aerodynamic characteristics in low-density regime differ from those of continuum regime. To understand those kinds of differences, aerodynamic coefficients of the upper stages (including upper 2-3 stage and the orbital block) of the launch vehicle in low-density regime are analyzed as a function of Mach numbers and altitudes. The predicted axial force coefficients of the upper stages of the launch vehicle are very high compared to those in continuum regime. In case of the orbital block which flies at very high altitude (higher than 250km), all aerodynamic coefficients are more dependent on velocity variations than altitude variations. In case of the upper 2-3 stage which flies at high altitude (80km-150km), while the axial force coefficients and the locations of center of pressure are less changed with the variations of Knudsen numbers (altitudes), the normal force coefficients and pitching moment coefficients are more affected by variations of Knudsen numbers (altitude).

  7. Analysis of Rawinsonde Spatial Separation for Space Launch Vehicle Applications at the Eastern Range

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.

    2017-01-01

    Space launch vehicles develop day-of-launch steering commands based upon the upper-level atmospheric environments in order to alleviate wind induced structural loading and optimize ascent trajectory. Historically, upper-level wind measurements to support launch operations at the National Aeronautics and Space Administration's (NASA's) Kennedy Space Center co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station use high-resolution rawinsondes. One inherent limitation with rawinsondes consists of taking approximately one hour to generate a vertically complete wind profile. Additionally, rawinsonde drift during ascent by the ambient wind environment can result in the balloon being hundreds of kilometers down range, which results in questioning whether the measured winds represent the wind environment the vehicle will experience during ascent. This paper will describe the use of balloon profile databases to statistically assess the drift distance away from the ER launch complexes during rawinsonde ascent as a function of season and discuss an alternative method to measure upper level wind environments in closer proximity to the vehicle trajectory launching from the ER.

  8. Initial Assessment of the Ares I-X Launch Vehicle Upper Stage to Vibroacoustic Flight Environments

    NASA Technical Reports Server (NTRS)

    Larko, Jeffrey M.; Hughes, William O.

    2008-01-01

    The Ares I launch vehicle will be NASA s first new launch vehicle since 1981. Currently in design, it will replace the Space Shuttle in taking astronauts to the International Space Station, and will eventually play a major role in humankind s return to the Moon and eventually to Mars. Prior to any manned flight of this vehicle, unmanned test readiness flights will be flown. The first of these readiness flights, named Ares I-X, is scheduled to be launched in April 2009. The NASA Glenn Research Center is responsible for the design, manufacture, test and analysis of the Ares I-X upper stage simulator (USS) element. As part of the design effort, the structural dynamic response of the Ares I-X launch vehicle to its vibroacoustic flight environments must be analyzed. The launch vehicle will be exposed to extremely high acoustic pressures during its lift-off and aerodynamic stages of flight. This in turn will cause high levels of random vibration on the vehicle's outer surface that will be transmitted to its interior. Critical flight equipment, such as its avionics and flight guidance components are susceptible to damage from this excitation. This study addresses the modelling, analysis and predictions from examining the structural dynamic response of the Ares I-X upper stage to its vibroacoustic excitations. A statistical energy analysis (SEA) model was used to predict the high frequency response of the vehicle at locations of interest. Key to this study was the definition of the excitation fields corresponding to lift off acoustics and the unsteady aerodynamic pressure fluctuations during flight. The predicted results will be used by the Ares I-X Project to verify the flight qualification status of the Ares I-X upper stage components.

  9. NASA Ares I Crew Launch Vehicle Upper Stage Avionics and Software Overview

    NASA Technical Reports Server (NTRS)

    Nola, Charles L.; Blue, Lisa

    2008-01-01

    Building on the heritage of the Saturn and Space Shuttle Programs for the Design, Development, Test, and Evaluation (DDT and E) of avionics and software for NASA's Ares I Crew Launch Vehicle (CLV), the Ares I Upper Stage Element is a vital part of the Constellation Program's transportation system. The Upper Stage Element's Avionics Subsystem is actively proceeding toward its objective of delivering a flight-certified Upper Stage Avionics System for the Ares I CLV.

  10. Integrated System Test Approaches for the NASA Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles

    2008-01-01

    NASA is maturing test and evaluation plans leading to flight readiness of the Ares I crew launch vehicle. Key development, qualification, and verification tests are planned . Upper stage engine sea-level and altitude testing. First stage development and qualification motors. Upper stage structural and thermal development and qualification test articles. Main Propulsion Test Article (MPTA). Upper stage green run testing. Integrated Vehicle Ground Vibration Testing (IVGVT). Aerodynamic characterization testing. Test and evaluation supports initial validation flights (Ares I-Y and Orion 1) and design certification.

  11. Integrated System Test Approaches for the NASA Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Askins, Bruce R.; Bland, Jeffrey; Davis, Stephan; Holladay, Jon B.; Taylor, James L.; Taylor, Terry L.; Robinson, Kimberly F.; Roberts, Ryan E.; Tuma, Margaret

    2007-01-01

    The Ares I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew access to the International Space Station (ISS) and, together with the Ares V Cargo Launch Vehicle (CaLV), serves as one component of a future launch capability for human exploration of the Moon. During the system requirements definition process and early design cycles, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements: the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine, will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle dynamic test (IVDT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, and a highaltitude actuation of the launch abort system (LAS) following separation. The Orion-1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch.

  12. Temporal Variability of Upper-level Winds at the Eastern Range, Western Range and Wallops Flight Facility

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.

    2014-01-01

    Space launch vehicle commit-to-launch decisions include an assessment of the upper-level (UL) atmospheric wind environment to assess the vehicle's controllability and structural integrity during ascent. These assessments occur at predetermined times during the launch countdown based on measured wind data obtained prior to the assessment. However, the pre-launch measured winds may not represent the wind environment during the vehicle ascent. Uncertainty in the UL winds over the time period between the assessment and launch can be mitigated by a statistical analysis of wind change over time periods of interest using historical data from the launch range. Without historical data, theoretical wind models must be used, which can result in inaccurate wind placards that misrepresent launch availability. Using an overconservative model could result in overly restrictive vehicle wind placards, thus potentially reducing launch availability. Conversely, using an under-conservative model could result in launching into winds that might damage or destroy the vehicle. A large sample of measured wind profiles best characterizes the wind change environment. These historical databases consist of a certain number of wind pairs, where two wind profile measurements spaced by the time period of interest define a pair.

  13. Flight and Integrated Vehicle Testing: Laying the Groundwork for the Next Generation of Space Exploration Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Taylor, J. L.; Cockrell, C. E.

    2009-01-01

    Integrated vehicle testing will be critical to ensuring proper vehicle integration of the Ares I crew launch vehicle and Ares V cargo launch vehicle. The Ares Projects, based at Marshall Space Flight Center in Alabama, created the Flight and Integrated Test Office (FITO) as a separate team to ensure that testing is an integral part of the vehicle development process. As its name indicates, FITO is responsible for managing flight testing for the Ares vehicles. FITO personnel are well on the way toward assembling and flying the first flight test vehicle of Ares I, the Ares I-X. This suborbital development flight will evaluate the performance of Ares I from liftoff to first stage separation, testing flight control algorithms, vehicle roll control, separation and recovery systems, and ground operations. Ares I-X is now scheduled to fly in summer 2009. The follow-on flight, Ares I-Y, will test a full five-segment first stage booster and will include cryogenic propellants in the upper stage, an upper stage engine simulator, and an active launch abort system. The following flight, Orion 1, will be the first flight of an active upper stage and upper stage engine, as well as the first uncrewed flight of an Orion spacecraft into orbit. The Ares Projects are using an incremental buildup of flight capabilities prior to the first operational crewed flight of Ares I and the Orion crew exploration vehicle in 2015. In addition to flight testing, the FITO team will be responsible for conducting hardware, software, and ground vibration tests of the integrated launch vehicle. These efforts will include verifying hardware, software, and ground handling interfaces. Through flight and integrated testing, the Ares Projects will identify and mitigate risks early as the United States prepares to take its next giant leaps to the Moon and beyond.

  14. Advanced Launch Vehicle Upper Stages Using Liquid Propulsion and Metallized Propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1990-01-01

    Metallized propellants are liquid propellants with a metal additive suspended in a gelled fuel or oxidizer. Typically, aluminum (Al) particles are the metal additive. These propellants provide increase in the density and/or the specific impulse of the propulsion system. Using metallized propellant for volume-and mass-constrained upper stages can deliver modest increases in performance for low earth orbit to geosynchronous earth orbit (LEO-GEO) and other earth orbital transfer missions. Metallized propellants, however, can enable very fast planetary missions with a single-stage upper stage system. Trade studies comparing metallized propellant stage performance with non-metallized upper stages and the Inertial Upper Stage (IUS) are presented. These upper stages are both one- and two-stage vehicles that provide the added energy to send payloads to altitudes and onto trajectories that are unattainable with only the launch vehicle. The stage designs are controlled by the volume and the mass constraints of the Space Transportation System (STS) and Space Transportation System-Cargo (STS-C) launch vehicles. The influences of the density and specific impulse increases enabled by metallized propellants are examined for a variety of different stage and propellant combinations.

  15. NASA Ares I Crew Launch Vehicle Upper Stage Overview

    NASA Technical Reports Server (NTRS)

    Davusm Daniel J.; McArthur, J. Craig

    2008-01-01

    By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA's Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program's transportation system.

  16. NASA Ares I Crew Launch Vehicle Upper State Overview

    NASA Technical Reports Server (NTRS)

    Davis, Daniel J.

    2008-01-01

    By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA s Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program s transportation system.

  17. Small Upper Stage Basic Program Final Report

    DTIC Science & Technology

    1991-08-27

    design of the SUS. During storage, the SUS shall3 be required to withstand environments as specified in 3.2.5.1. Environmental protection shall be...accomplish this goal, a launch vehicle survey was conducted to establish the current LV capability and environments with respect to small satellites...4 Launch Vehicle Shock Environment ...................................................................... 2-4 2-5 Launch Vehicle Sound Pressure

  18. Early Program Development

    NASA Image and Video Library

    1961-01-01

    A Dyna-Soar (Dynamic Soaring) vehicle clears the launch tower atop an Air Force Titan II launch vehicle in this 1961 artist's concept. Originally conceived by the U.S. Air Force in 1957 as a marned, rocket-propelled glider in a delta-winged configuration, the Dyna-Soar was considered by Marshall Space Flight Center planners as an upper stage for the Saturn C-2 launch vehicle.

  19. RICK BURT AND ANDY SCHORR WITH LAUNCH VEHICLE STAGE ADAPTER

    NASA Image and Video Library

    2016-09-23

    RICK BURT, RIGHT, DIRECTOR OF SAFETY AND MISSION ASSURANCE TALKS WITH ANDY SCHORR, ASSISTANT MANAGER OF THE SPACE LAUNCH SYSTEM'S SPACECRAFT PAYLOAD INTEGRATION AND EVOLUTION OFFICE. BEHIND THEM IS THE LAUNCH VEHICLE STAGE ADAPTOR, WHICH WAS DESIGNED AND MANUFACTURED AT MARSHALL AND WILL CONNECT TWO MAJOR SLS UPPER SECTIONS

  20. Transport and Use of a Centaur Second Stage in Space

    NASA Technical Reports Server (NTRS)

    Strong, James M.; Morgowicz, Bernard; Drucker, Eric; Tompkins, Paul D.; Kennedy, Brian; Barber, Robert D,; Luzod, Louie T.; Kennedy, Brian Michael; Luzod, Louie T.

    2010-01-01

    As nations continue to explore space, the desire to reduce costs will continue to grow. As a method of cost reduction, transporting and/or use of launch system components as integral components of missions may become more commonplace in the future. There have been numerous scenarios written for using launch vehicle components (primarily space shuttle used external tanks) as part of flight missions or future habitats. Future studies for possible uses of launch vehicle upper stages might include asteroid diverter using gravity orbital perturbation, orbiting station component, raw material at an outpost, and kinetic impactor. The LCROSS (Lunar CRater Observation and Sensing Satellite) mission was conceived as a low-cost means of determining whether water exists at the polar regions of the moon. Manifested as a secondary payload with the LRO (Lunar Reconnaissance Orbiter) spacecraft aboard an Atlas V launch vehicle, LCROSS guided its spent Centaur Earth Departure Upper Stage (EDUS) into the lunar crater Cabeu's, as a kinetic impactor. This paper describes some of the challenges that the LCROSS project encountered in planning, designing, launching with and carrying the Centaur upper stage to the moon.

  1. Dr. von Braun With a Model of a Launch Vehicle

    NASA Technical Reports Server (NTRS)

    1950-01-01

    Dr. von Braun stands beside a model of the upper stage (Earth-returnable stage) of the three-stage launch vehicle built for the series of the motion picture productions of space flight produced by Walt Disney in the mid-1950's.

  2. Human Factors Vehicle Displacement Analysis: Engineering In Motion

    NASA Technical Reports Server (NTRS)

    Atencio, Laura Ashley; Reynolds, David; Robertson, Clay

    2010-01-01

    While positioned on the launch pad at the Kennedy Space Center, tall stacked launch vehicles are exposed to the natural environment. Varying directional winds and vortex shedding causes the vehicle to sway in an oscillating motion. The Human Factors team recognizes that vehicle sway may hinder ground crew operation, impact the ground system designs, and ultimately affect launch availability . The objective of this study is to physically simulate predicted oscillation envelopes identified by analysis. and conduct a Human Factors Analysis to assess the ability to carry out essential Upper Stage (US) ground operator tasks based on predicted vehicle motion.

  3. Upper Atmospheric Monitoring for Ares I-X Ascent Loads and Trajectory Evaluation on the Day-of-Launch

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; McGrath, Kevin; Starr, Brett; Brandon, Jay

    2009-01-01

    During the launch countdown of the Ares I-X test vehicle, engineers from Langley Research Center will use profiles of atmospheric density and winds in evaluating vehicle ascent loads and controllability. A schedule for the release of balloons to measure atmospheric density and winds has been developed by the Natural Environments Branch at Marshall Space Flight Center to help ensure timely evaluation of the vehicle ascent loads and controllability parameters and support a successful launch of the Ares I-X vehicle.

  4. Building and Leading the Next Generation of Exploration Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.; Vanhooser, Teresa

    2010-01-01

    NASA s Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. Ares I and V will provide the core space launch capabilities needed to continue providing crew and cargo access to the International Space Station (ISS), and to build upon the U.S. history of human spaceflight to the Moon and beyond. Since 2005, Ares has made substantial progress on designing, developing, and testing the Ares I crew launch vehicle and has continued its in-depth studies of the Ares V cargo launch vehicle. In 2009, the Ares Projects plan to: conduct the first flight test of Ares I, test-fire the Ares I first stage solid rocket motor; build the first integrated Ares I upper stage; continue testing hardware for the J-2X upper stage engine, and continue refining the design of the Ares V cargo launch vehicle. These efforts come with serious challenges for the project leadership team as it continues to foster a culture of ownership and accountability, operate with limited funding, and works to maintain effective internal and external communications under intense external scrutiny.

  5. Mitigation of Collision Hazard for the International Space Station (ISS) from Globally Launched Objects

    NASA Astrophysics Data System (ADS)

    Schultz, Eric D.; Wilde, Paul D.

    2013-09-01

    For the International Space Station (ISS), it can take 6 to 24 hours to reliably catalog a newly disposed upper stage and up to 33 hours to plan and execute an avoidance maneuver. This creates a gap in the existing collision risk protection for newly launched vehicles, which covers the period when these launched objects are still under propulsive control; specifically, upper stage separation plus 100 minutes for most missions. This gap results in a vulnerability of the ISS from the end of current "Launch Collision Avoidance (COLA)" protection until approximately launch plus 56 hours.In order to help mitigate this gap, conjunction analyses are being developed that identify launch times when the disposed upper stage could violate safe separation distances from the ISS. Launch window cut-out times can be determined from the analysis and implemented to protect the ISS.The COLA Gap is considered to be a risk to ISS operations and vehicle safety. Methods can be used to mitigate the risk, but the criteria and process need to be established and developed in order to reduce operational disruptions and potential risk to ISS vehicle. New requirements and analytical methods can close the current COLA gap with minimal impact to typical launch windows for Geo-Transfer Orbit (GTO) and direct injection missions. Also, strategies can be established to produce common standards in the U.S. and the world to close the current Launch COLA gap.

  6. Ares I Crew Launch Vehicle Upper Stage/Upper Stage Engine Element Overview

    NASA Technical Reports Server (NTRS)

    McArthur, J. Craig

    2008-01-01

    The Ares I upper stage is an integral part of the Constellation Program transportation system. The upper stage provides guidance, navigation and control (GN and C) for the second stage of ascent flight for the Ares I vehicle. The Saturn-derived J-2X upper stage engine will provide thrust and propulsive impulse for the second stage of ascent flight for the Ares I launch vehicle. Additionally, the upper stage is responsible for the avionics system of the the entire Ares I. This brief presentation highlights the requirements, design, progress and production of the upper stage. Additionally, test facilities to support J-2X development are discussed and an overview of the operational and manufacturing flows are provided. Building on the heritage of the Apollo and Space Shuttle Programs, the Ares I Us and USE teams are utilizing extensive lessons learned to place NASA and the US into another era of space exploration. The NASA, Boeing and PWR teams are integrated and working together to make progress designing and building the Ares I upper stage to minimize cost, technical and schedule risks.

  7. The enhancement of the Transtage for the commercial Titan launch vehicle

    NASA Astrophysics Data System (ADS)

    Gunter, D.; Gizinski, S.

    1987-06-01

    The configuration of the Transtage upper stage and its application to the Titan III launch vehicle are examined. The Transtage consists of a control and a propulsion module, and is about 10 feet in diameter and 14.75 feet in length. The elements of the control and propulsion modules and their functions are described. The Transtage/Titan III combination allows for the insertion of a payload into geostationary transfer orbit and eliminates the requirement for a perigee kick motor system. It is observed that the addition of the Transtage upper stage to the Titan III launch vehicle provides a geosynchronous transfer orbit capability of 9500 lbs, flexible mission tailoring, and reliability exceeding 96 percent. Diagrams of the Titan III and the Transtage and its components are provided.

  8. Historical problem areas: Lessons learned for expendable and reusable vehicle propulsion systems

    NASA Technical Reports Server (NTRS)

    Fester, Dale A.

    1991-01-01

    The following subject areas are covered: expendable launch vehicle lessons learned, upper stage/transfer vehicle lessons learned, shuttle systems - reuse, and reusable system issues and lessons learned.

  9. Reflections on Centaur Upper Stage Integration by the NASA Lewis (Glenn) Research Center

    NASA Technical Reports Server (NTRS)

    Graham, Scott R.

    2015-01-01

    The NASA Glenn (then Lewis) Research Center (GRC) led several expendable launch vehicle (ELV) projects from 1963 to 1998, most notably the Centaur upper stage. These major, comprehensive projects included system management, system development, integration (both payload and stage), and launch operations. The integration role that GRC pioneered was truly unique and highly successful. Its philosophy, scope, and content were not just invaluable to the missions and vehicles it supported, but also had significant Agency-wide benefits. An overview of the NASA Lewis Research Center (now the NASA Glenn Research Center) philosophy on ELV integration is provided, focusing on Atlas/Centaur, Titan/Centaur, and Shuttle/Centaur vehicles and programs. The necessity of having a stable, highly technically competent in-house staff is discussed. Significant depth of technical penetration of contractor work is another critical component. Functioning as a cohesive team was more than a concept: GRC senior management, NASA Headquarters, contractors, payload users, and all staff worked together. The scope, content, and history of launch vehicle integration at GRC are broadly discussed. Payload integration is compared to stage development integration in terms of engineering and organization. Finally, the transition from buying launch vehicles to buying launch services is discussed, and thoughts on future possibilities of employing the successful GRC experience in integrating ELV systems like Centaur are explored.

  10. Reflections on Centaur Upper Stage Integration by the NASA Lewis (Glenn) Research Center

    NASA Technical Reports Server (NTRS)

    Graham, Scott R.

    2014-01-01

    The NASA Glenn (then Lewis) Research Center (GRC) led several expendable launch vehicle (ELV) projects from 1963 to 1998, most notably the Centaur upper stage. These major, comprehensive projects included system management, system development, integration (both payload and stage), and launch operations. The integration role that GRC pioneered was truly unique and highly successful. Its philosophy, scope, and content were not just invaluable to the missions and vehicles it supported, but also had significant Agencywide benefits. An overview of the NASA Lewis Research Center (now the NASA Glenn Research Center) philosophy on ELV integration is provided, focusing on Atlas/Centaur, Titan/Centaur, and Shuttle/Centaur vehicles and programs. The necessity of having a stable, highly technically competent in-house staff is discussed. Significant depth of technical penetration of contractor work is another critical component. Functioning as a cohesive team was more than a concept: GRC senior management, NASA Headquarters, contractors, payload users, and all staff worked together. The scope, content, and history of launch vehicle integration at GRC are broadly discussed. Payload integration is compared to stage development integration in terms of engineering and organization. Finally, the transition from buying launch vehicles to buying launch services is discussed, and thoughts on future possibilities of employing the successful GRC experience in integrating ELV systems like Centaur are explored.

  11. NASA Ares I Launch Vehicle Roll and Reaction Control Systems Design Status

    NASA Technical Reports Server (NTRS)

    Butt, Adam; Popp, Chris G.; Pitts, Hank M.; Sharp, David J.

    2009-01-01

    This paper provides an update of design status following the preliminary design review of NASA s Ares I first stage roll and upper stage reaction control systems. The Ares I launch vehicle has been chosen to return humans to the moon, mars, and beyond. It consists of a first stage five segment solid rocket booster and an upper stage liquid bi-propellant J-2X engine. Similar to many launch vehicles, the Ares I has reaction control systems used to provide the vehicle with three degrees of freedom stabilization during the mission. During launch, the first stage roll control system will provide the Ares I with the ability to counteract induced roll torque. After first stage booster separation, the upper stage reaction control system will provide the upper stage element with three degrees of freedom control as needed. Trade studies and design assessments conducted on the roll and reaction control systems include: propellant selection, thruster arrangement, pressurization system configuration, and system component trades. Since successful completion of the preliminary design review, work has progressed towards the critical design review with accomplishments made in the following areas: pressurant / propellant tank, thruster assembly, and other component configurations, as well as thruster module design, and waterhammer mitigation approach. Also, results from early development testing are discussed along with plans for upcoming system testing. This paper concludes by summarizing the process of down selecting to the current baseline configuration for the Ares I roll and reaction control systems.

  12. Temporal Wind Pairs for Space Launch Vehicle Capability Assessment and Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.

    2015-01-01

    Space launch vehicles incorporate upper-level wind assessments to determine wind effects on the vehicle and for a commit to launch decision. These assessments make use of wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the winds over the time period between the assessment and launch introduces uncertainty in assessment of vehicle controllability and structural integrity that must be accounted for to ensure launch safety. Temporal wind pairs are used in engineering development of allowances to mitigate uncertainty. Five sets of temporal wind pairs at various times (0.75, 1.5, 2, 3 and 4-hrs) at the United States Air Force Eastern Range and Western Range, as well as the National Aeronautics and Space Administration's Wallops Flight Facility are developed for use in upper-level wind assessments on vehicle performance. Historical databases are compiled from balloon-based and vertically pointing Doppler radar wind profiler systems. Various automated and manual quality control procedures are used to remove unacceptable profiles. Statistical analyses on the resultant wind pairs from each site are performed to determine if the observed extreme wind changes in the sample pairs are representative of extreme temporal wind change. Wind change samples in the Eastern Range and Western Range databases characterize extreme wind change. However, the small sample sizes in the Wallops Flight Facility databases yield low confidence that the sample population characterizes extreme wind change that could occur.

  13. Temporal Wind Pairs for Space Launch Vehicle Capability Assessment and Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.

    2014-01-01

    Space launch vehicles incorporate upper-level wind assessments to determine wind effects on the vehicle and for a commit to launch decision. These assessments make use of wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the winds over the time period between the assessment and launch introduces uncertainty in assessment of vehicle controllability and structural integrity that must be accounted for to ensure launch safety. Temporal wind pairs are used in engineering development of allowances to mitigate uncertainty. Five sets of temporal wind pairs at various times (0.75, 1.5, 2, 3 and 4-hrs) at the United States Air Force Eastern Range and Western Range, as well as the National Aeronautics and Space Administration's Wallops Flight Facility are developed for use in upper-level wind assessments on vehicle performance. Historical databases are compiled from balloon-based and vertically pointing Doppler radar wind profiler systems. Various automated and manual quality control procedures are used to remove unacceptable profiles. Statistical analyses on the resultant wind pairs from each site are performed to determine if the observed extreme wind changes in the sample pairs are representative of extreme temporal wind change. Wind change samples in the Eastern Range and Western Range databases characterize extreme wind change. However, the small sample sizes in the Wallops Flight Facility databases yield low confidence that the sample population characterizes extreme wind change that could occur.

  14. HEUS-RS applications study, volume 1. [for Titan 3 and Thor launch vehicles

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Studies are given for sizing and integrating a high energy upper stage restartable solid motor into a flight stage with various payloads for use with Titan 3 and Thor launch vehicles. Motor and stage configurations are given along with performance evaluation of the HEUS-RS with the space shuttle.

  15. Status, Plans, and Initial Results for ARES 1 Crew Launch Vehicle Aerodynamics

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Haynes, Davy A.; Taylor, Terry L.; Hall, Robert M.; Pamadi, Bandu N.; Seaford, C. Mark

    2006-01-01

    Following the completion of NASA's Exploration Systems Architecture Study in August 2004 for the NASA Exploration Systems Mission Directorate (ESMD), the Exploration Launch Office at the NASA Marshall Space Flight Center was assigned project management responsibilities for the design and development of the first vehicle in the architecture, the Ares I Crew Launch Vehicle (CLV), which will be used to launch astronauts to low earth orbit and rendezvous with either the International Space Station or the ESMD s earth departure stage for lunar or other future missions beyond low Earth orbit. The primary elements of the Ares I CLV project are the first stage, the upper stage, the upper stage engine, and vehicle integration. Within vehicle integration is an effort in integrated design and analysis which is comprised of a number of technical disciplines needed to support vehicle design and development. One of the important disciplines throughout the life of the project is aerodynamics. This paper will present the status, plans, and initial results of Ares I CLV aerodynamics as the project was preparing for the Ares I CLV Systems Requirements Review. Following a discussion of the specific interactions with other technical panels and a status of the current activities, the plans for aerodynamic support of the Ares I CLV until the initial crewed flights will be presented.

  16. A 20k Payload Launch Vehicle Fast Track Development Concept Using an RD-180 Engine and a Centaur Upper Stage

    NASA Technical Reports Server (NTRS)

    Toelle, Ronald (Compiler)

    1995-01-01

    A launch vehicle concept to deliver 20,000 lb of payload to a 100-nmi orbit has been defined. A new liquid oxygen/kerosene booster powered by an RD-180 engine was designed while using a slightly modified Centaur upper stage. The design, development, and test program met the imposed 40-mo schedule by elimination of major structural testing by increased factors of safety and concurrent engineering concepts. A growth path to attain 65,000 lb of payload is developed.

  17. The J-2X Upper Stage Engine: From Design to Hardware

    NASA Technical Reports Server (NTRS)

    Byrd, Thomas

    2010-01-01

    NASA is well on its way toward developing a new generation of launch vehicles to support of national space policy to retire the Space Shuttle fleet, complete the International Space Station, and return to the Moon as the first step in resuming this nation s exploration of deep space. The Constellation Program is developing the launch vehicles, spacecraft, surface systems, and ground systems to support those plans. Two launch vehicles will support those ambitious plans the Ares I and Ares V. (Figure 1) The J-2X Upper Stage Engine is a critical element of both of these new launchers. This paper will provide an overview of the J-2X design background, progress to date in design, testing, and manufacturing. The Ares I crew launch vehicle will lift the Orion crew exploration vehicle and up to four astronauts into low Earth orbit (LEO) to rendezvous with the space station or the first leg of mission to the Moon. The Ares V cargo launch vehicle is designed to lift a lunar lander into Earth orbit where it will be docked with the Orion spacecraft, and provide the thrust for the trans-lunar journey. While these vehicles bear some visual resemblance to the 1960s-era Saturn vehicles that carried astronauts to the Moon, the Ares vehicles are designed to carry more crew and more cargo to more places to carry out more ambitious tasks than the vehicles they succeed. The government/industry team designing the Ares rockets is mining a rich history of technology and expertise from the Shuttle, Saturn and other programs and seeking commonality where feasible between the Ares crew and cargo rockets as a way to minimize risk, shorten development times, and live within the budget constraints of its original guidance.

  18. Heavy Lift Launch Vehicles for 1995 and Beyond

    NASA Technical Reports Server (NTRS)

    Toelle, R. (Compiler)

    1985-01-01

    A Heavy Lift Launch Vehicle (HLLV) designed to deliver 300,000 lb to a 540 n mi circular polar orbit may be required to meet national needs for 1995 and beyond. The vehicle described herein can accommodate payload envelopes up to 50 ft diameter by 200 ft in length. Design requirements include reusability for the more expensive components such as avionics and propulsion systems, rapid launch turnaround time, minimum hardware inventory, stage and component flexibility and commonality, and low operational costs. All ascent propulsion systems utilize liquid propellants, and overall launch vehicle stack height is minimized while maintaining a reasonable vehicle diameter. The ascent propulsion systems are based on the development of a new liquid oxygen/hydrocarbon booster engine and liquid oxygen/liquid hydrogen upper stage engine derived from today's SSME technology. Wherever possible, propulsion and avionics systems are contained in reusable propulsion/avionics modules that are recovered after each launch.

  19. Developmental Flight Instrumentation System for the Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Crawford, Kevin; Thomas, John

    2006-01-01

    The National Aeronautics and Space Administration is developing a new launch vehicle to replace the Space Shuttle. The Crew Launch Vehicle (CLV) will be a combination of new design hardware and heritage Apollo and Space Shuttle hardware. The current CLV configuration is a 5 segment solid rocket booster first stage and a new upper stage design with a modified Apollo era J-2 engine. The current schedule has two test flights with a first stage and a structurally identical, but without engine, upper stage. Then there will be two more test flights with a full complement of flight hardware. After the completion of the test flights, the first manned flight to the International Space Station is scheduled for late 2012. To verify the CLV's design margins a developmental flight instrumentation (DFI) system is needed. The DFI system will collect environmental and health data from the various CLV subsystem's and either transmit it to the ground or store it onboard for later evaluation on the ground. The CLV consists of 4 major elements: the first stage, the upper stage, the upper stage engine and the integration of the first stage, upper stage and upper stage engine. It is anticipated that each of CLVs elements will have some version of DFI. This paper will discuss a conceptual DFI design for each element and also of an integrated CLV DFI system.

  20. Status, Plans and Initial Results for Ares I Crew Launch Vehicle Aerodynamics

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Hall, Robert M.; Haynes, Davy A.; Pamadi, Bandu N.; Taylor, Terry L.; Seaford, C. Mark

    2008-01-01

    Following the completion of NASA s Exploration Systems Architecture Study in August 2004 for the NASA Exploration Systems Mission Directorate (ESMD), the Ares Projects Office at the NASA Marshall Space Flight Center was assigned project management responsibilities for the design and development of the first vehicle in the architecture, the Ares I Crew Launch Vehicle (CLV), which will be used to launch astronauts to low earth orbit and rendezvous with either the International Space Station or the ESMD s earth departure stage for lunar or other future missions beyond low Earth orbit. The primary elements of the Ares I CLV project are the first stage, the upper stage, the upper stage engine, and vehicle integration. Within vehicle integration is an effort in integrated design and analysis which is comprised of a number of technical disciplines needed to support vehicle design and development. One of the important disciplines throughout the life of the project is aerodynamics. This paper will present the status, plans, and initial results of Ares I CLV aerodynamics as the project was preparing for the Ares I CLV Systems Requirements Review. Following a discussion of the specific interactions with other technical panels and a status of the current activities, the plans for aerodynamic support of the Ares I CLV until the initial crewed flights will be presented. Keywords: Ares I Crew Launch Vehicle, aerodynamics, wind tunnel testing, computational fluid dynamics

  1. The potential value of employing a RLV-based ``pop-up'' trajectory approach for space access

    NASA Astrophysics Data System (ADS)

    Nielsen, Edward; O'Leary, Robert

    1997-01-01

    This paper presents the potential benefits of employing useful upper stages with planned reusable launch vehicle systems to increase payload performance to various earth orbits. It highlights these benefits through performance analysis on a generic vehicle/upper-stage combination (basing all estimates on realistic technology availability). A nominal 34,019 kg [75,000 lbm] dry mass RLV capable of orbiting 454 kg into a polar orbit by itself (SSTO) would be capable of orbiting 9500-10,000 kg into a polar orbit using a nominal upper stage released from a suborbital trajectory. The paper also emphasizes the technical and operational issues associated with actually executing a ``pop-up'' trajectory launch and deployment.

  2. Project Antares: A low cost modular launch vehicle for the future

    NASA Astrophysics Data System (ADS)

    Aarnio, Steve; Anderson, Hobie; Arzaz, El Mehdi; Bailey, Michelle; Beeghly, Jeff; Cartwright, Curt; Chau, William; Dawdy, Andrew; Detert, Bruce; Ervin, Miles

    1991-06-01

    The single stage to orbit launch vehicle Antares is based upon the revolutionary concept of modularity, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth's orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg into low Earth orbit (LEO). When coupled with a Centaur upper stage it is capable of placing 3500 kg into geostationary orbit. The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Antares' projected launch costs are $1340 per kg to LEO which offers a tremendous savings over launch vehicles available today. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles, up to seven, can be attached depending on the payload and mission requirements. With a seven vehicle configuration Antares's modular concept provides a heavy lift capability of approximately 70,000 kg to LEO. This expandability allows for a wider range of payload options such as large Earth satellites, Space Station Freedom support, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.

  3. Project Antares: A low cost modular launch vehicle for the future

    NASA Technical Reports Server (NTRS)

    Aarnio, Steve; Anderson, Hobie; Arzaz, El Mehdi; Bailey, Michelle; Beeghly, Jeff; Cartwright, Curt; Chau, William; Dawdy, Andrew; Detert, Bruce; Ervin, Miles

    1991-01-01

    The single stage to orbit launch vehicle Antares is based upon the revolutionary concept of modularity, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth's orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg into low Earth orbit (LEO). When coupled with a Centaur upper stage it is capable of placing 3500 kg into geostationary orbit. The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Antares' projected launch costs are $1340 per kg to LEO which offers a tremendous savings over launch vehicles available today. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles, up to seven, can be attached depending on the payload and mission requirements. With a seven vehicle configuration Antares's modular concept provides a heavy lift capability of approximately 70,000 kg to LEO. This expandability allows for a wider range of payload options such as large Earth satellites, Space Station Freedom support, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.

  4. Rocket stage - Trans-orbit booster Fregat

    NASA Astrophysics Data System (ADS)

    Asyushkin, V. A.; Papkov, O. V.

    1993-10-01

    This paper discusses a proposal for increasing the payload-carrying capability of a launch vehicle by using the Fregat booster stage (as the fourth stage for the R-7A launcher and as the fifth stage for the Proton launch vehicle). Particular attention is given to the tasks which the Fregat booster stage is designed to fulfill, the systems which are part of the Fregat, and the launch vehicles which will use Fregat as the upper stage. The main performance parameters of the Fregat stage are presented, as well as diagrams illustrating the performance of the Fregat booster stage.

  5. NASA Ares 1 Crew Launch Vehicle Upper Stage Configuration Selection Process

    NASA Technical Reports Server (NTRS)

    Cook, Jerry R.

    2006-01-01

    The Upper Stage Element of NASA s Ares I Crew Launch Vehicle (CLV) is a "clean-sheet" approach that is being designed and developed in-house, with Element management at MSFC. The USE concept is a self-supporting cylindrical structure, approximately 115 long and 216" in diameter. While the Reusable Solid Rocket Booster (RSRB) design has changed since the CLV inception, the Upper Stage Element design has remained essentially a clean-sheet approach. Although a clean-sheet upper stage design inherently carries more risk than a modified design, it does offer many advantages: a design for increased reliability; built-in extensibility to allow for commonality/growth without major redesign; and incorporation of state-of-the-art materials, hardware, and design, fabrication, and test techniques and processes to facilitate a potentially better, more reliable system.

  6. Electric Propulsion Upper-Stage for Launch Vehicle Capability Enhancement

    NASA Technical Reports Server (NTRS)

    Kemp, Gregory E.; Dankanich, John W.; Woodcock, Gordon R.; Wingo, Dennis R.

    2007-01-01

    The NASA In-Space Propulsion Technology Project Office initiated a preliminary study to evaluate the performance benefits of a solar electric propulsion (SEP) upper-stage with existing and near-term small launch vehicles. The analysis included circular and elliptical Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) transfers, and LEO to Low Lunar Orbit (LLO) applications. SEP subsystem options included state-of-the-art and near-term solar arrays and electric thrusters. In-depth evaluations of the Aerojet BPT-4000 Hall thruster and NEXT gridded ion engine were conducted to compare performance, cost and revenue potential. Preliminary results indicate that Hall thruster technology is favored for low-cost, low power SEP stages, while gridded-ion engines are favored for higher power SEP systems unfettered by transfer time constraints. A low-cost point design is presented that details one possible stage configuration and outlines system limitations, in particular fairing volume constraints. The results demonstrate mission enhancements to large and medium class launch vehicles, and mission enabling performance when SEP system upper stages are mounted to low-cost launchers such as the Minotaur and Falcon 1. Study results indicate the potential use of SEP upper stages to double GEO payload mass capability and to possibly enable launch on demand capability for GEO assets. Transition from government to commercial applications, with associated cost/benefit analysis, has also been assessed. The sensitivity of system performance to specific impulse, array power, thruster size, and component costs are also discussed.

  7. Antares: A low cost modular launch vehicle for the future

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The single-stage-to-orbit launch vehicle Antares is a revolutionary concept based on identical modular units, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg (22,000 lb) into low Earth orbit (LEO). When coupled with a standard Centaur upper stage, it is capable of placing 4000 kg (8800 lb) into geosynchronous Earth orbit (GE0). The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles can be attached depending on the payload and mission requirements. With a seven-vehicle configuration, the Antares' modular concept provides a heavy lift capability of approximately 70,000 kg (154,000 lb) to LEO. This expandability allows for a wide range of payload options, such as large Earth satellites, Space Station Freedom material, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.

  8. Antares: A low cost modular launch vehicle for the future

    NASA Astrophysics Data System (ADS)

    The single-stage-to-orbit launch vehicle Antares is a revolutionary concept based on identical modular units, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg (22,000 lb) into low Earth orbit (LEO). When coupled with a standard Centaur upper stage, it is capable of placing 4000 kg (8800 lb) into geosynchronous Earth orbit (GE0). The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles can be attached depending on the payload and mission requirements. With a seven-vehicle configuration, the Antares' modular concept provides a heavy lift capability of approximately 70,000 kg (154,000 lb) to LEO. This expandability allows for a wide range of payload options, such as large Earth satellites, Space Station Freedom material, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.

  9. HEUS-RS applications study, volume 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The final report of a High Energy Upper Stage Restartable Solid (HEUS-RS) Applications Study is presented. The material deals with launch program cost comparisons associated with meeting NASA mission model requirements with several different launch vehicle approaches.

  10. Ares I Integrated Test Approach

    NASA Technical Reports Server (NTRS)

    Taylor, Jim

    2008-01-01

    This slide presentation reviews the testing approach that NASA is developing for the Ares I launch vehicle. NASA is planning a complete series of development, qualification and verification tests. These include: (1) Upper stage engine sea-level and altitude testing (2) First stage development and qualification motors (3) Upper stage structural and thermal development and qualification test articles (4) Main Propulsion Test Article (MPTA) (5) Upper stage green run testing (6) Integrated Vehicle Ground Vibration Testing (IVGVT) and (7) Aerodynamic characterization testing.

  11. ADDJUST-A View of the First 25 Years

    NASA Technical Reports Server (NTRS)

    Nieberding, Joe; Williams, Craig H.

    2015-01-01

    Various technologies and innovative launch operations were developed during the 50 years of the Centaur upper stage—the first launch vehicle to use high performing liquid hydrogen fuel. One innovation was “ADDJUST”, which enabled the successful negotiation of upper level winds measured only hours before launch. Initial causes for its creation, development, and operation during countdown are detailed. Problem definition, wind measuring/monitoring process, pitch and yaw steering coefficient generation, loads analysis, angle of attack, major risks/concerns, and anecdotal recollections are provided. Launch availability improved from as low as 55 to 95 percent due to ADDJUST, which is still in use.

  12. LOX/LH2 propulsion system for launch vehicle upper stage, test results

    NASA Technical Reports Server (NTRS)

    Ikeda, T.; Imachi, U.; Yuzawa, Y.; Kondo, Y.; Miyoshi, K.; Higashino, K.

    1984-01-01

    The test results of small LOX/LH2 engines for two propulsion systems, a pump fed system and a pressure fed system are reported. The pump fed system has the advantages of higher performances and higher mass fraction. The pressure fed system has the advantages of higher reliability and relative simplicity. Adoption of these cryogenic propulsion systems for upper stage of launch vehicle increases the payload capability with low cost. The 1,000 kg thrust class engine was selected for this cryogenic stage. A thrust chamber assembly for the pressure fed propulsion system was tested. It is indicated that it has good performance to meet system requirements.

  13. Determining the Probability of Violating Upper-Level Wind Constraints for the Launch of Minuteman Ill Ballistic Missiles At Vandenberg Air Force Base

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn A.; Brock, Tyler M.

    2013-01-01

    The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman Ill ballistic missile. The 30 OSSWF requested the Applied Meteorology Unit (AMU) analyze VAFB sounding data to determine the probability of violating (PoV) upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a graphical user interface (GUI) that will calculate the PoV of each constraint on the day of launch. The AMU suggested also including forecast sounding data from the Rapid Refresh (RAP) model. This would provide further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours, and help to improve the overall upper winds forecast on launch day.

  14. Crew Launch Vehicle (CLV) Upper Stage Configuration Selection Process

    NASA Technical Reports Server (NTRS)

    Davis, Daniel J.; Coook, Jerry R.

    2006-01-01

    The Crew Launch Vehicle (CLV), a key component of NASA's blueprint for the next generation of spacecraft to take humans back to the moon, is being designed and built by engineers at NASA s Marshall Space Flight Center (MSFC). The vehicle s design is based on the results of NASA's 2005 Exploration Systems Architecture Study (ESAS), which called for development of a crew-launch system to reduce the gap between Shuttle retirement and Crew Exploration Vehicle (CEV) Initial Operating Capability, identification of key technologies required to enable and significantly enhance these reference exploration systems, and a reprioritization of near- and far-term technology investments. The Upper Stage Element (USE) of the CLV is a clean-sheet approach that is being designed and developed in-house, with element management at MSFC. The USE concept is a self-supporting cylindrical structure, approximately 115' long and 216" in diameter, consisting of the following subsystems: Primary Structures (LOX Tank, LH2 Tank, Intertank, Thrust Structure, Spacecraft Payload Adaptor, Interstage, Forward and Aft Skirts), Secondary Structures (Systems Tunnel), Avionics and Software, Main Propulsion System, Reaction Control System, Thrust Vector Control, Auxiliary Power Unit, and Hydraulic Systems. The ESAS originally recommended a CEV to be launched atop a four-segment Space Shuttle Main Engine (SSME) CLV, utilizing an RS-25 engine-powered upper stage. However, Agency decisions to utilize fewer CLV development steps to lunar missions, reduce the overall risk for the lunar program, and provide a more balanced engine production rate requirement prompted engineers to switch to a five-segment design with a single Saturn-derived J-2X engine. This approach provides for single upper stage engine development for the CLV and an Earth Departure Stage, single Reusable Solid Rocket Booster (RSRB) development for the CLV and a Cargo Launch Vehicle, and single core SSME development. While the RSRB design has changed since the CLV Project's inception, the USE design has remained essentially a clean-sheet approach. Although a clean-sheet upper stage design inherently carries more risk than a modified design, it does offer many advantages: a design for increased reliability; built-in extensibility to allow for commonality/growth without major redesign; and incorporation of state-of-the-art materials, hardware, and design, fabrication, and test techniques and processes to facilitate a potentially better, more reliable system. Because consideration was given in the ESAS to both clean-sheet and modified USE designs, this paper will highlight the advantages and disadvantages of both approaches and provide a detailed discussion of trades/selections made that led to the final upper stage configuration.

  15. Ares I-X Flight Test Vehicle: Stack 5 Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Danel R.

    2010-01-01

    Ares I-X was the first flight test vehicle used in the development of NASA's Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the first modal test that was performed on the top section of the vehicle referred to as Stack 5, which consisted of the spacecraft adapter, service module, crew module and launch abort system simulators. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 5 modal test.

  16. Main Propulsion for the Ares Projects

    NASA Technical Reports Server (NTRS)

    Sumrall, Phil

    2009-01-01

    The goal of this slide presentation is to provide an update on the status of the Ares propulsion systems. The Ares I is the vehicle to launch the crew and the Ares V is a heavy lift vehicle that is being designed to launch cargo into Low Earth Orbit (LEO) and transfer cargo and crews to the moon. The Ares propulsion systems are based on the heritage hardware and experiences from the Apollo project to the Space Shuttle and also to current expendable launch vehicles (ELVs). The presentation compares the various launch vehicles from the Saturn V to the space shuttle, including the planned details of the Ares I and V. There are slides detailing the elements of the Ares I and the Ares V, including views of the J2X upper stage engine that is to serve both the Ares I and V. The extent of the progress is reviewed.

  17. Visions of tomorrow: A focus on national space transportation issues; Proceedings of the Twenty-fifth Goddard Memorial Symposium, Greenbelt, MD, Mar. 18-20, 1987

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald A. (Editor)

    1987-01-01

    The present conference on U.S. space transportation systems development discusses opportunities for aerospace students in prospective military, civil, industrial, and scientific programs, current strategic conceptualization and program planning for future U.S. space transportation, the DOD space transportation plan, NASA space transportation plans, medium launch vehicle and commercial space launch services, the capabilities and availability of foreign launch vehicles, and the role of commercial space launch systems. Also discussed are available upper stage systems, future space transportation needs for space science and applications, the trajectory analysis of a low lift/drag-aeroassisted orbit transfer vehicle, possible replacements for the Space Shuttle, LEO to GEO with combined electric/beamed-microwave power from earth, the National Aerospace Plane, laser propulsion to earth orbit, and a performance analysis for a laser-powered SSTO vehicle.

  18. ARES I Upper Stage Subsystems Design and Development

    NASA Technical Reports Server (NTRS)

    Frate, David T.; Senick, Paul F.; Tolbert, Carol M.

    2011-01-01

    From 2005 through early 2011, NASA conducted concept definition, design, and development of the Ares I launch vehicle. The Ares I was conceived to serve as a crew launch vehicle for beyond-low-Earth-orbit human space exploration missions as part of the Constellation Program Architecture. The vehicle was configured with a single shuttle-derived solid rocket booster first stage and a new liquid oxygen/liquid hydrogen upper stage, propelled by a single, newly developed J-2X engine. The Orion Crew Exploration Vehicle was to be mated to the forward end of the Ares I upper stage through an interface with fairings and a payload adapter. The vehicle design passed a Preliminary Design Review in August 2008, and was nearing the Critical Design Review when efforts were concluded as a result of the Constellation Program s cancellation. At NASA Glenn Research Center, four subsystems were developed for the Ares I upper stage. These were thrust vector control (TVC) for the J-2X, electrical power system (EPS), purge and hazardous gas (P&HG), and development flight instrumentation (DFI). The teams working each of these subsystems achieved 80 percent or greater design completion and extensive development testing. These efforts were extremely successful representing state-of-the-art technology and hardware advances necessary to achieve Ares I reliability, safety, availability, and performance requirements. This paper documents the designs, development test activity, and results.

  19. NASA Ares I Crew Launch Vehicle Upper Stage Overview

    NASA Technical Reports Server (NTRS)

    Davis, Daniel J.

    2008-01-01

    By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA's Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program's transportation system. Constellation's exploration missions will include Ares I and Ares V launch vehicles required to place crew and cargo in low-Earth orbit (LEO), crew and cargo transportation systems required for human space travel, and transportation systems and scientific equipment required for human exploration of the Moon and Mars. Early Ares I configurations will support ISS re-supply missions. A self-supporting cylindrical structure, the Ares I Upper Stage will be approximately 84' long and 18' in diameter. The Upper Stage Element is being designed for increased supportability and increased reliability to meet human-rating requirements imposed by NASA standards. The design also incorporates state-of-the-art materials, hardware, design, and integrated logistics planning, thus facilitating a supportable, reliable, and operable system. With NASA retiring the Space Shuttle fleet in 2010, the success of the Ares I Project is essential to America's continued leadership in space. The first Ares I test flight, called Ares 1-X, is scheduled for 2009. Subsequent test flights will continue thereafter, with the first crewed flight of the Crew Exploration Vehicle (CEV), "Orion," planned for no later than 2015. Crew transportation to the ISS will follow within the same decade, and the first Lunar excursion is scheduled for the 2020 timeframe.

  20. NASA Ares I Crew Launch Vehicle Upper Stage Overview

    NASA Technical Reports Server (NTRS)

    McArthur, J. Craig

    2008-01-01

    By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA's Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program's transportation system. Constellation's exploration missions will include Ares I and Ares V launch vehicles required to place crew and cargo in low-Earth orbit (LEO), crew and cargo transportation systems required for human space travel, and transportation systems and scientific equipment required for human exploration of the Moon and Mars. Early Ares I configurations will support ISS re-supply missions. A self-supporting cylindrical structure, the Ares I Upper Stage will be approximately 84' long and 18' in diameter. The Upper Stage Element is being designed for increased supportability and increased reliability to meet human-rating requirements imposed by NASA standards. The design also incorporates state-of-the-art materials, hardware, design, and integrated logistics planning, thus facilitating a supportable, reliable, and operable system. With NASA retiring the Space Shuttle fleet in 2010, the success of the Ares I Project is essential to America's continued leadership in space. The first Ares I test flight, called Ares I-X, is scheduled for 2009. Subsequent test flights will continue thereafter, with the first crewed flight of the Crew Exploration Vehicle (CEV), "Orion," planned for no later than 2015. Crew transportation to the ISS will follow within the same decade, and the first Lunar excursion is scheduled for the 2020 timeframe.

  1. Advanced Concept

    NASA Image and Video Library

    2008-03-15

    A CONCEPT IMAGE SHOWS THE ARES I CREW LAUNCH VEHICLE DURING ASCENT. ARES I IS AN IN-LINE, TWO-STAGE ROCKET CONFIGURATION TOPED BY THE ORION CREW EXPLORATION VEHICLE AND LAUNCH ABORT SYSTEM. THE ARES I FIRST STAGE IS A SINGLE, FIVE-SEGMENT REUSABLE SOLID ROCKET BOOSTER, DERIVED FROM THE SPACE SHUTTLE. ITS UPPER STAGE IS POWERED BY A J-2X ENGINE. ARES I WILL CARRY THE ORION WITH ITS CRW OF UP TO SIX ASTRONAUTS TO EARTH ORBIT.

  2. KSC-04pd1401

    NASA Image and Video Library

    2004-07-02

    KENNEDY SPACE CENTER, FLA. - NASCAR Busch Series race driver Tim Fedewa completes his tour of KSC with a view from an upper level of the Fixed Service Structure on Launch Pad 39A. The Vehicle Assembly Building is in the background. Fedewa is touring KSC for the Speed Channel TV show “NBS 24/7,” which is devoted to NASCAR. Other sites on his tour are the Launch Control Center, Vehicle Assembly Building and the Orbiter Processing Facility.

  3. Early Rockets

    NASA Image and Video Library

    1958-01-31

    Explorer 1 atop a Jupiter-C in gantry. Jupiter-C carrying the first American satellite, Explorer 1, was successfully launched on January 31, 1958. The Jupiter-C launch vehicle consisted of a modified version of the Redstone rocket's first stage and two upper stages of clustered Baby Sergeant rockets developed by the Jet Propulsion Laboratory and later designated as Juno boosters for space launches

  4. Analysis of Rawinsonde Spatial Separation for Space Launch Vehicle Applications at the Eastern Range

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.

    2017-01-01

    Space launch vehicles use day-of-launch steering commands based upon the upper-level (UL) atmospheric environments in order to alleviate wind induced structural loading and optimize ascent trajectory. Historically, UL wind measurements to support launch operations at the National Aeronautics and Space Administration's (NASA) Kennedy Space Center (KSC), co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station use high-resolution (HR) rawinsondes. One inherent limitation with rawinsondes is the approximately one-hour sampling time necessary to measure tropospheric winds. Additionally, rawinsonde drift during ascent due to the ambient wind environment can result in the balloon being hundreds of kilometers down range, which results in questioning whether the measured winds represent the wind environment the vehicle will experience during ascent. This paper will describe the use of balloon profile databases to statistically assess the drift distance away from the ER launch complexes during HR rawinsonde ascent as a function of season. Will also discuss an alternative method to measure UL wind environments in closer proximity to the vehicle trajectory when launching from the ER.

  5. Engine-Out Capabilities Assessment of Heavy Lift Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; Baggett, Keithe; Thrasher, Chad; Bellamy, K. Scott; Feldman, Stuart

    2012-01-01

    Engine-out (EO) is a condition that might occur during flight due to the failure of one or more engines. Protection against this occurrence can be called engine-out capability (EOC) whereupon significantly improved loss of mission may occur, in addition to reduction in performance and increased cost. A standardized engine-out capability has not been studied exhaustively as it pertains to space launch systems. This work presents results for a specific vehicle design with specific engines, but also uniquely provides an approach to realizing the necessity of EOC for any launch vehicle system design. A derived top-level approach to engine-out philosophy for a heavy lift launch vehicle is given herein, based on an historical assessment of launch vehicle capabilities. The methodology itself is not intended to present a best path forward, but instead provides three parameters for assessment of a particular vehicle. Of the several parameters affected by this EOC, the three parameters of interest in this research are reliability (Loss of Mission (LOM) and Loss of Crew (LOC)), vehicle performance, and cost. The intent of this effort is to provide insight into the impacts of EO capability on these parameters. The effects of EOC on reliability, performance and cost are detailed, including how these important launch vehicle metrics can be combined to assess what could be considered overall launch vehicle affordability. In support of achieving the first critical milestone (Mission Concept Review) in the development of the Space Launch System (SLS), a team assessed two-stage, large-diameter vehicles that utilized liquid oxygen (LOX)-RP propellants in the First Stage and LOX/LH2 propellant in the Upper Stage. With multiple large thrust-class engines employed on the stages, engine-out capability could be a significant driver to mission success. It was determined that LOM results improve by a factor of five when assuming EOC for both Core Stage (CS) (first stage) and Upper Stage (US) EO, assuming a reference launch vehicle with 5 RP engines on the CS and 3 LOX/LH2 engines on the US. The benefit of adding both CS and US engine-out capability is significant. When adding EOC for either first or second stages, there is less than a 20% benefit. Performance analysis has shown that if the vehicle is not protected for EO during the first part of the flight and only protected in the later part of the flight, there is a diminishing performance penalty, as indicated by failures occurring in the first stage at different times. This work did not consider any options to abort. While adding an engine for EOC drives cost upward, the impact depends on the number of needed engines manufactured per year and the launch manifest. There is a significant cost savings if multiple flights occur within one year. Flying two flights per year would cost approximately $4,000 per pound less than the same configuration with one flight per year, assuming both CS and US EOC. The cost is within 15% of the cost of one flight per year with no engine-out capability for the same vehicle. This study can be extended to other launch vehicles. While the numbers given in this paper are specific to a certain vehicle configuration, the process requires only a high level of data to allow an analyst to draw conclusions. The weighting of each of the identified parameters will determine the optimization of each launch vehicle. The results of this engine-out assessment provide a means to understand this optimization while maintaining an unbiased perspective.

  6. Final Environmental Impact Statement for the Galileo Mission (Tier 2)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This Final Environmental Impact Statement (FEIS) addresses the proposed action of completing the preparation and operation of the Galileo spacecraft, including its planned launch on the Space Transportation System (STS) Shuttle in October 1989, and the alternative of canceling further work on the mission. The Tier 1 (program level) EIS (NASA 1988a) considered the Titan IV launch vehicle as an alternative booster stage for launch in May 1991 or later. The May 1991 Venus launch opportunity is considered a planetary back-up for the Magellan (Venus Radar Mapper) mission, the Galileo mission, and the Ulysses mission. Plans were underway to enable the use of a Titan IV launch vehicle for the planetary back-up. However, in November 1988, the U.S. Air Force, which procures the Titan IV for NASA, notified NASA that it could not provide a Titan IV vehicle for the May 1991 launch opportunity due to high priority Department of Defense requirements. Consequently, NASA terminated all mission planning for the Titan IV planetary back-up. A minimum of 3 years is required to implement mission-specific modifications to the basic Titan IV launch configuration; therefore, insufficient time is available to use a Titan IV vehicle in May 1991. Thus, the Titan IV launch vehicle is no longer a feasible alternative to the STS/Inertial Upper Stage (IUS) for the May 1991 launch opportunity.

  7. Ares I-X Flight Test - The Future Begins Here

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.

    2008-01-01

    In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will eventually send humans to the Moon, Mars, and beyond. As the countdown to this first Ares mission continues, personnel from across the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for an April 2009 launch. This paper will discuss the hardware and programmatic progress of the Ares I-X mission. Like the Apollo program, the Ares launch vehicles will rely upon extensive ground, flight, and orbital testing before sending the Orion crew exploration vehicle into space with humans on board. The first flight of Ares I, designated Ares I-X, will be a suborbital development flight test. Ares I-X gives NASA its first opportunity to gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future operational flights; and demonstrate the first stage recovery system. NASA also will begin modifying the launch infrastructure and fine-tuning ground and mission operations, as the agency makes the transition from the Space Shuttle to the Ares/Orion system.

  8. Atomic hydrogen as a launch vehicle propellant

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1990-01-01

    An analysis of several atomic hydrogen launch vehicles was conducted. A discussion of the facilities and the technologies that would be needed for these vehicles is also presented. The Gross Liftoff Weights (GLOW) for two systems were estimated; their specific impulses (I sub sp) were 750 and 1500 lb (sub f)/s/lb(sub m). The atomic hydrogen launch vehicles were also compared to the currently planned Advanced Launch System design concepts. Very significant GLOW reductions of 52 to 58 percent are possible over the Advanced Launch System designs. Applying atomic hydrogen propellants to upper stages was also considered. Very high I(sub sp) (greater than 750 1b(sub f)/s/lb(sub m) is needed to enable a mass savings over advanced oxygen/hydrogen propulsion. Associated with the potential benefits of high I(sub sp) atomic hydrogen are several challenging problems. Very high magnetic fields are required to maintain the atomic hydrogen in a solid kilogauss (3 Tesla). Also the storage temperature of the propellant is 4 K. This very low temperature will require a large refrigeration facility for the launch vehicle. The design considerations for a very high recombination rate for the propellant are also discussed. A recombination rate of 210 cm/s is predicted for atomic hydrogen. This high recombination rate can produce very high acceleration for the launch vehicle. Unique insulation or segmentation to inhibit the propellant may be needed to reduce its recombination rate.

  9. Weld Residual Stress and Distortion Analysis of the ARES I-X Upper Stage Simulator (USS)

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury; Dawicke, David; Cheston, Derrick; Phillips, Dawn

    2008-01-01

    An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). The Ares system of space launch vehicles is the US National Aeronautics and Space Administration s plan for replacement of the aging space shuttle. The new Ares space launch system is somewhat of a combination of the space shuttle system and the Saturn launch vehicles used prior to the shuttle. Here, a series of weld analyses are performed to determine the residual stresses in a critical region of the USS. Weld residual stresses both increase constraint and mean stress thereby having an important effect on fatigue and fracture life. While the main focus of this paper is a discussion of the weld modeling procedures and results for the USS, a short summary of the CIFS assessment is provided.

  10. KSC-97PC1542

    NASA Image and Video Library

    1997-10-14

    At Launch Complex 40 on Cape Canaveral Air Station, the Mobile Service Tower has been retracted away from the Titan IVB/Centaur carrying the Cassini spacecraft and its attached Huygens probe. This is the second launch attempt for the Saturn-bound mission; a first try Oct. 13 was scrubbed primarily due to concerns about upper level wind conditions. Liftoff Oct. 15 is set to occur during a launch window opening at 4:43 a.m. EDT and extending until 7:03 a.m. Clearly visible in this view are the 66-foot-tall, 17-foot-wide payload fairing atop the vehicle, in which Cassini and the attached Centaur stage are encased, the two-stage liquid propellant core vehicle, and the twin 112-foot long solid rocket motor upgrades (SRMUs) straddling the core vehicle. It is the SRMUs which ignite first to begin the launch sequence

  11. Computer program for post-flight evaluation of a launch vehicle upper-stage on-off reaction control system

    NASA Technical Reports Server (NTRS)

    Knauber, R. N.

    1982-01-01

    This report describes a FORTRAN IV coded computer program for post-flight evaluation of a launch vehicle upper stage on-off reaction control system. Aerodynamic and thrust misalignment disturbances are computed as well as the total disturbing moments in pitch, yaw, and roll. Effective thrust misalignment angle time histories of the rocket booster motor are calculated. Disturbing moments are integrated and used to estimate the required control system total inpulse. Effective control system specific inpulse is computed for the boost and coast phases using measured control fuel useage. This method has been used for more than fifteen years for analyzing the NASA Scout launch vehicle second and third-stage reaction control system performance. The computer program is set up in FORTRAN IV for a CDC CYBER 175 system. With slight modification it can be used on other machines having a FORTRAN compiler. The program has optional CALCOMP plotting output. With this option the program requires 19K words of memory and has 786 cards. Running time on a CDC CYBER 175 system is less than three (3) seconds for a typical problem.

  12. Early Rockets

    NASA Image and Video Library

    1958-01-31

    This illustration shows the main characteristics of the Jupiter C launch vehicle and its payload, the Explorer I satellite. The Jupiter C, America's first successful space vehicle, launched the free world's first scientific satellite, Explorer 1, on January 31, 1958. The four-stage Jupiter C measured almost 69 feet in length. The first stage was a modified liquid fueled Redstone missile. This main stage was about 57 feet in length and 70 inches in diameter. Fifteen scaled down SERGENT solid propellant motors were used in the upper stages. A "tub" configuration mounted on top of the modified Redstone held the second and third stages. The second stage consisted of 11 rockets placed in a ring formation within the tub. Inserted into the ring of second stage rockets was a cluster of 3 rockets making up the third stage. A fourth stage single rocket and the satellite were mounted atop the third stage. This "tub", all upper stages, and the satellite were set spirning prior to launching. The complete upper assembly measured 12.5 feet in length. The Explorer I carried the radiation detection experiment designed by Dr. James Van Allen and discovered the Van Allen Radiation Belt.

  13. Ares I-X Upper Stage Simulator Residual Stress Analysis

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Brust, Frederick W.; Phillips, Dawn R.; Cheston, Derrick

    2008-01-01

    The structural analyses described in the present report were performed in support of the NASA Engineering and Safety Center (NESC) Critical Initial Flaw Size (CIFS) assessment for the Ares I-X Upper Stage Simulator (USS) common shell segment. An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). The Ares system of space launch vehicles is the US National Aeronautics and Space Administration s plan for replacement of the aging space shuttle. The new Ares space launch system is somewhat of a combination of the space shuttle system and the Saturn launch vehicles used prior to the shuttle. Here, a series of weld analyses are performed to determine the residual stresses in a critical region of the USS. Weld residual stresses both increase constraint and mean stress thereby having an important effect on fatigue and fracture life. The results of this effort served as one of the critical load inputs required to perform a CIFS assessment of the same segment.

  14. Quality Control of Wind Data from 50-MHz Doppler Radar Wind Profiler

    NASA Technical Reports Server (NTRS)

    Vacek, Austin

    2016-01-01

    Upper-level wind profiles obtained from a 50-MHz Doppler Radar Wind Profiler (DRWP) instrument at Kennedy Space Center are incorporated in space launch vehicle design and day-of-launch operations to assess wind effects on the vehicle during ascent. Automated and manual quality control (QC) techniques are implemented to remove spurious data in the upper-level wind profiles caused from atmospheric and non-atmospheric artifacts over the 2010-2012 period of record (POR). By adding the new quality controlled profiles with older profiles from 1997-2009, a robust database will be constructed of upper-level wind characteristics. Statistical analysis will determine the maximum, minimum, and 95th percentile of the wind components from the DRWP profiles over recent POR and compare against the older database. Additionally, this study identifies specific QC flags triggered during the QC process to understand how much data is retained and removed from the profiles.

  15. Quality Control of Wind Data from 50-MHz Doppler Radar Wind Profiler

    NASA Technical Reports Server (NTRS)

    Vacek, Austin

    2015-01-01

    Upper-level wind profiles obtained from a 50-MHz Doppler Radar Wind Profiler (DRWP) instrument at Kennedy Space Center are incorporated in space launch vehicle design and day-of-launch operations to assess wind effects on the vehicle during ascent. Automated and manual quality control (QC) techniques are implemented to remove spurious data in the upper-level wind profiles caused from atmospheric and non-atmospheric artifacts over the 2010-2012 period of record (POR). By adding the new quality controlled profiles with older profiles from 1997-2009, a robust database will be constructed of upper-level wind characteristics. Statistical analysis will determine the maximum, minimum, and 95th percentile of the wind components from the DRWP profiles over recent POR and compare against the older database. Additionally, this study identifies specific QC flags triggered during the QC process to understand how much data is retained and removed from the profiles.

  16. The Malemute development program. [rocket upper stage engine design

    NASA Technical Reports Server (NTRS)

    Bolster, W. J.; Hoekstra, P. W.

    1976-01-01

    The Malemute vehicle systems are two-stage systems based on utilizing a new high performance upper stage motor with two existing military boosters. The Malmute development program is described relative to program structure, preliminary design, vehicle subsystems, and the Malemute motor. Two vehicle systems, the Nike-Malemute and Terrier-Malemute, were developed which are capable of transporting comparatively large diameter (16 in.) 200-lb payloads to altitudes of 500 and 700 km, respectively. These vehicles provide relatively low-cost transportation with two-stage reliability and launch simplicity. Flight tests of both vehicle systems revealed their performance capabilities, with the Terrier-Malemute system involving a unique Malemute motor spin sensitivity problem. It is suggested that the vehicles can be successfully flown by lowering the burnout spin rate.

  17. KSC-08pd3245

    NASA Image and Video Library

    2008-10-17

    CAPE CANAVERAL, Fla. - Workers lift the Ares IX upper stage segments’ ballast assemblies off a truck in high bay 4 of the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett

  18. KSC-08pd3247

    NASA Image and Video Library

    2008-10-17

    CAPE CANAVERAL, Fla. - Workers position Ares IX upper stage segments’ ballast assemblies along the floor of high bay 4 in the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett

  19. KSC-08pd3243

    NASA Image and Video Library

    2008-10-17

    CAPE CANAVERAL, Fla. - One of five trucks transporting the Ares IX upper stage segments’ ballast assemblies arrives at the Vehicle Assembly Building at NASA’s Kennedy Space, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett

  20. KSC-08pd3244

    NASA Image and Video Library

    2008-10-17

    CAPE CANAVERAL, Fla. - The Ares IX upper stage segments’ ballast assemblies are offloaded from one of five trucks which delivered them to the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett

  1. KSC-08pd3246

    NASA Image and Video Library

    2008-10-17

    CAPE CANAVERAL, Fla. - Workers lower an Ares IX upper stage segments’ ballast assembly onto the floor of high bay 4 in the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett

  2. KSC-08pd3249

    NASA Image and Video Library

    2008-10-17

    CAPE CANAVERAL, Fla. - The Ares IX upper stage segments’ ballast assemblies have arrived at NASA’s Kennedy Space Center and are positioned along the floor of high bay 4 in the Vehicle Assembly Building, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett

  3. KSC-08pd3248

    NASA Image and Video Library

    2008-10-17

    CAPE CANAVERAL, Fla. - Ares IX upper stage segments’ ballast assemblies are positioned along the floor of high bay 4 in the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett

  4. KSC-08pd3250

    NASA Image and Video Library

    2008-10-17

    CAPE CANAVERAL, Fla. - The Ares IX upper stage segments’ ballast assemblies have arrived at NASA’s Kennedy Space Center and are positioned along the floor of high bay 4 in the Vehicle Assembly Building, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett

  5. Ares I First Stage Booster Deceleration System: An Overview

    NASA Technical Reports Server (NTRS)

    King, Ron; Hengel, John E.; Wolf, Dean

    2009-01-01

    In 2005, the Congressional NASA Authorization Act enacted a new space exploration program, the "Vision for Space Exploratien". The Constellation Program was formed to oversee the implementation of this new mission. With an intent not simply to support the International Space Station, but to build a permanent outpost on the Moon and then travel on to explore ever more distant terrains, the Constellation Program is supervising the development of a brand new fleet of launch vehicles, the Ares. The Ares lineup will include two new launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle. A crew exploration vehicle, Orion, will be launched on the Ares I. It will be capable of docking with the Space Station, the lunar lander, Altair, and the Earth Departure Stage of Ares V. The Ares V will be capable of lifting both large-scale hardware and the Altair into space. The Ares First Stage Team is tasked with developing the propulsion system necessary to liftoff from the Earth and loft the entire Ares vehicle stack toward low Earth orbit. The Ares I First Stage booster is a 12-foot diameter, five-segment, reusable solid rocket booster derived from the Space Shuttle's four segment reusable solid rocket booster (SRB). It is separated from the Upper Stage through the use of a Deceleration Subsystem (DSS). Booster Tumble Motors are used to induce the pitch tumble following separation from the Upper Stage. The spent Ares I booster must be recoverable using a parachute deceleration system similar to that of the Shuttle SRB heritage system. Since Ares I is much heavier and reenters the Earth's atmosphere from a higher altitude at a much higher velocity than the SRB, all of the parachutes must be redesigned to reliably meet the operational requisites of the new launch vehicles. This paper presents an overview of this new booster deceleration system. It includes comprehensive detail of the parachute deceleration system, its design and deployment sequences, including how and why it is being developed, the requirements it must meet, and the testing involved in its implementation.

  6. Orbital transfer vehicle concept definition and system analysis study, 1985. Volume 2: OTV concept definition and evaluation. Book 4: Operations

    NASA Technical Reports Server (NTRS)

    Mitchell, Jack C.; Keeley, J. T.

    1985-01-01

    The benefits of the reusable Space Shuttle and the advent of the new Space Station hold promise for increasingly effective utilization of space by the scientific and commercial as well as military communities. A high energy reusable oribital transfer vehicle (OTV) represents an additional capability which also exhibits potential for enhancing space access by allowing more ambitious missions and at the same time reducing launch costs when compared to existing upper stages. This section, Vol. 2: Book 4, covers launch operations and flight operations. The launch operations section covers analyses of ground based and space based vehicles, launch site facilities, logistics requirements, propellant loading, space based maintenance and aft cargo carrier access options. The flight operations sections contain summary descriptions of ground based and space based OTV missions, operations and support requirements, and a discussion of fleet implications.

  7. Development of the J-2X Engine for the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle: Building on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Snoddy, Jim

    2006-01-01

    The United States (U.S.) Vision for Space Exploration directs NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020, by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. This decision was reached after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by building on the Apollo Program and other lessons lived to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.

  8. Atomic hydrogen as a launch vehicle propellant

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1990-01-01

    An analysis of several atomic hydrogen launch vehicles was conducted. A discussion of the facilities and the technologies that would be needed for these vehicles is also presented. The Gross Liftoff Weights (GLOW) for two systems were estimated; their specific impulses (I sub sp) were 750 and 1500 lb(sub f)/s/lb(sub m). The atomic hydrogen launch vehicles were also compared to the currently planned Advanced Launch System design concepts. Very significant GLOW reductions of 52 to 58 percent are possible over the Advanced Launch System designs. Applying atomic hydrogen propellants to upper stages was also considered. Very high I(sub sp) (greater than 750 lb(sub f)/s/lb(sub m)) is needed to enable a mass savings over advanced oxygen/hydrogen propulsion. Associated with the potential benefits of high I(sub sp) atomic hydrogen are several challenging problems. Very high magnetic fields are required to maintain the atomic hydrogen in a solid hydrogen matrix. The magnetic field strength was estimated to be 30 kilogauss (3 Tesla). Also the storage temperature of the propellant is 4 K. This very low temperature will require a large refrigeration facility for the launch vehicle. The design considerations for a very high recombination rate for the propellant are also discussed. A recombination rate of 210 cm/s is predicted for atomic hydrogen. This high recombination rate can produce very high acceleration for the launch vehicle. Unique insulation or segmentation to inhibit the propellant may be needed to reduce its recombination rate.

  9. NASA's Space Launch System: A New Opportunity for CubeSats

    NASA Technical Reports Server (NTRS)

    Hitt, David; Robinson, Kimberly F.; Creech, Stephen D.

    2016-01-01

    Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. Together with the Orion crew vehicle and ground operations at NASA's Kennedy Space Center in Florida, SLS is a foundational capability for NASA's Journey to Mars. From the beginning of the SLS flight program, utilization of the vehicle will also include launching secondary payloads, including CubeSats, to deep-space destinations. Currently, SLS is making rapid progress toward readiness for its first launch in 2018, using the initial configuration of the vehicle, which is capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight, Exploration Mission-1, SLS will launch an uncrewed test flight of the Orion spacecraft into distant retrograde orbit around the moon. Accompanying Orion on SLS will be 13 CubeSats, which will deploy in cislunar space. These CubeSats will include not only NASA research, but also spacecraft from industry and international partners and potentially academia. Following its first flight and potentially as early as its second, which will launch a crewed Orion spacecraft into cislunar space, SLS will evolve into a more powerful configuration with a larger upper stage. This configuration will initially be able to deliver 105 t to LEO and will continue to be upgraded to a performance of greater than 130 t to LEO. While the addition of the more powerful upper stage will mean a change to the secondary payload accommodations from Block 1, the SLS Program is already evaluating options for future secondary payload opportunities. Early discussions are also already underway for the use of SLS to launch spacecraft on interplanetary trajectories, which could open additional opportunities for CubeSats. This presentation will include an overview of the SLS vehicle and its capabilities, including the current status of progress toward first launch. It will also explain the opportunities the vehicle offers for CubeSats and secondary payloads, including an overview of the CubeSat manifest for Exploration Mission-1 in 2018.

  10. Space Launch Systems Block 1B Preliminary Navigation System Design

    NASA Technical Reports Server (NTRS)

    Oliver, T. Emerson; Park, Thomas; Anzalone, Evan; Smith, Austin; Strickland, Dennis; Patrick, Sean

    2018-01-01

    NASA is currently building the Space Launch Systems (SLS) Block 1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. In parallel, NASA is also designing the Block 1B launch vehicle. The Block 1B vehicle is an evolution of the Block 1 vehicle and extends the capability of the NASA launch vehicle. This evolution replaces the Interim Cryogenic Propulsive Stage (ICPS) with the Exploration Upper Stage (EUS). As the vehicle evolves to provide greater lift capability, increased robustness for manned missions, and the capability to execute more demanding missions so must the SLS Integrated Navigation System evolved to support those missions. This paper describes the preliminary navigation systems design for the SLS Block 1B vehicle. The evolution of the navigation hard-ware and algorithms from an inertial-only navigation system for Block 1 ascent flight to a tightly coupled GPS-aided inertial navigation system for Block 1B is described. The Block 1 GN&C system has been designed to meet a LEO insertion target with a specified accuracy. The Block 1B vehicle navigation system is de-signed to support the Block 1 LEO target accuracy as well as trans-lunar or trans-planetary injection accuracy. Additionally, the Block 1B vehicle is designed to support human exploration and thus is designed to minimize the probability of Loss of Crew (LOC) through high-quality inertial instruments and robust algorithm design, including Fault Detection, Isolation, and Recovery (FDIR) logic.

  11. Combining near-term technologies to achieve a two-launch manned Mars mission

    NASA Technical Reports Server (NTRS)

    Baker, David A.; Zubrin, Robert M.

    1990-01-01

    This paper introduces a mission architecture called 'Mars Direct' which brings together several technologies and existing hardware into a novel mission strategy to achieve a highly capable and affordable approach to the Mars and Lunar exploratory objective of the Space Exploration Initiative (SEI). Three innovations working in concept cut the initial mass by a factor of three, greatly expand out ability to explore Mars, and eliminate the need to assemble vehicles in Earth orbit. The first innovation, a hybrid Earth/Mars propellant production process works as follows. An Earth Return Vehicle (ERV), tanks loaded with liquid hydrogen, is sent to Mars. After landing, a 100 kWe nuclear reactor is deployed which powers a propellant processor that combines onboard hydrogen with Mars' atmospheric CO2 to produce methane and water. The water is then electrolized to create oxygen and, in the process, liberates the hydrogen for further processing. Additional oxygen is gained directly by decomposition of Mars' CO2 atmosphere. This second innovation, a hybrid crew transport/habitation method, uses the same habitat for transfer to Mars as well as for the 18 month stay on the surface. The crew return via the previously launched ERV in a modest, lightweight return capsule. This reduces mission mass for two reasons. One, it eliminates the unnecessary mass of two large habitats, one in orbit and one on the surface. And two, it eliminates the need for a trans-Earth injection stage. The third innovation is a launch vehicle optimized for Earth escape. The launch vehicle is a Shuttle Derived Vehicle (SDV) consisting of two solid rocket boosters, a modified external tank, four space shuttle main engines and a large cryogenic upper stage mounted atop the external tank. This vehicle can throw 40 tonnes (40,000 kg) onto a trans-Mars trajectory, which is about the same capability as Saturn-5. Using two such launches, a four person mission can be carried out every twenty-six months with minimal impact on shared Shuttle launch facilities at Kennedy Space Center (KSC). The same launch vehicle, habitat, and upper stage of the ERV can also be used to perform Lunar missions. It is concluded that the Mars Direct architecture offers a cost effective approach to accomplishing the Lunar and Mars goals of the Space Exploration Initiative.

  12. Analytical Approach for Estimating Preliminary Mass of ARES I Crew Launch Vehicle Upper Stage Structural Components

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin

    2007-01-01

    In January 2004, President Bush gave the National Aeronautics and Space Administration (NASA) a vision for Space Exploration by setting our sight on a bold new path to go back to the Moon, then to Mars and beyond. In response to this vision, NASA started the Constellation Program, which is a new exploration launch vehicle program. The primary mission for the Constellation Program is to carry out a series of human expeditions ranging from Low Earth Orbit to the surface of Mars and beyond for the purposes of conducting human exploration of space, as specified by the Vision for Space Exploration (VSE). The intent is that the information and technology developed by this program will provide the foundation for broader exploration activities as our operational experience grows. The ARES I Crew Launch Vehicle (CLV) has been designated as the launch vehicle that will be developed as a "first step" to facilitate the aforementioned human expeditions. The CLV Project is broken into four major elements: First Stage, Upper Stage Engine, Upper Stage (US), and the Crew Exploration Vehicle (CEV). NASA's Marshall Space Flight Center (MSFC) is responsible for the design of the CLV and has the prime responsibility to design the upper stage of the vehicle. The US is the second propulsive stage of the CLV and provides CEV insertion into low Earth orbit (LEO) after separation from the First Stage of the Crew Launch Vehicle. The fully integrated Upper Stage is a mix of modified existing heritage hardware (J-2X Engine) and new development (primary structure, subsystems, and avionics). The Upper Stage assembly is a structurally stabilized cylindrical structure, which is powered by a single J-2X engine which is developed as a separate Element of the CLV. The primary structure includes the load bearing liquid hydrogen (LH2) and liquid oxygen (LOX) propellant tanks, a Forward Skirt, the Intertank structure, the Aft Skirt and the Thrust Structure. A Systems Tunnel, which carries fluid and electrical power functions to other Elements of the CLV, is included as secondary structure. The MSFC has an overall responsibility for the integrated US element as well as structural design an thermal control of the fuel tanks, intertank, interstage, avionics, main propulsion system, Reaction Control System (RCS) for both the Upper Stage and the First Stage. MSFC's Spacecraft and Vehicle Department, Structural and Analysis Design Division is developing a set of predicted mass of these elements. This paper details the methodology, criterion and tools used for the preliminary mass predictions of the upper stage structural assembly components. In general, weight of the cylindrical barrel sections are estimated using the commercial code Hypersizer, whereas, weight of the domes are developed using classical solutions. HyperSizer is software that performs automated structural analysis and sizing optimization based on aerospace methods for strength, stability, and stiffness. Analysis methods range from closed form, traditional hand calculations repeated every day in industry to more advanced panel buckling algorithms. Margin-of-safety reporting for every potential failure provides the engineer with a powerful insight into the structural problem. Optimization capabilities include finding minimum weight panel or beam concepts, material selections, cross sectional dimensions, thicknesses, and lay-ups from a library of 40 different stiffened and sandwich designs and a database of composite, metallic, honeycomb, and foam materials. Multiple different concepts (orthogrid, isogrid, and skin stiffener) were run for multiple loading combinations of ascent design load with and with out tank pressure as well as proof pressure condition. Subsequently, selected optimized concept obtained from Hypersizer runs was translated into a computer aid design (CAD) model to account for the wall thickness tolerance, weld land etc for developing the most probable weight of the components. The flow diram summarizes the analysis steps used in developing these predicted mass.

  13. Saturn Apollo Program

    NASA Image and Video Library

    1962-04-25

    The second flight of the Saturn I vehicle, the SA-2, was successfully launched from Cape Canaveral, Florida on April 15, 1962. This vehicle had a secondary mission. After the first stage shutoff, at a 65-mile altitude, the water-filled upper stage was exploded, dumping 95 tons of water in the upper atmosphere. The resulting massive ice cloud rose to a height of 90 miles. The experiment, called Project Highwater, was intended to investigate the effects on the ionosphere of the sudden release of such a great volume of water.

  14. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2016-01-01

    NASA is providing preliminary design and requirements for the Space Launch System Exploration Upper Stage (EUS). The EUS will provide upper stage capability for vehicle ascent as well as on-orbit control capability. Requirements include performance of on-orbit burn to provide Orion vehicle with escape velocity. On-orbit attitude control is accommodated by a on-off Reaction Control System (RCS). Paper provides overview of approaches for design and stability of an attitude control system using a RCS.

  15. The J-2X Upper Stage Engine: From Heritage to Hardware

    NASA Technical Reports Server (NTRS)

    Byrd, THomas

    2008-01-01

    NASA's Global Exploration Strategy requires safe, reliable, robust, efficient transportation to support sustainable operations from Earth to orbit and into the far reaches of the solar system. NASA selected the Ares I crew launch vehicle and the Ares V cargo launch vehicle to provide that transportation. Guiding principles in creating the architecture represented by the Ares vehicles were the maximum use of heritage hardware and legacy knowledge, particularly Space Shuttle assets, and commonality between the Ares vehicles where possible to streamline the hardware development approach and reduce programmatic, technical, and budget risks. The J-2X exemplifies those goals. It was selected by the Exploration Systems Architecture Study (ESAS) as the upper stage propulsion for the Ares I Upper Stage and the Ares V Earth Departure Stage (EDS). The J-2X is an evolved version ofthe historic J-2 engine that successfully powered the second stage of the Saturn I launch vehicle and the second and third stages of the Saturn V launch vehicle. The Constellation architecture, however, requires performance greater than its predecessor. The new architecture calls for larger payloads delivered to the Moon and demands greater loss of mission reliability and numerous other requirements associated with human rating that were not applied to the original J-2. As a result, the J-2X must operate at much higher temperatures, pressures, and flow rates than the heritage J-2, making it one of the highest performing gas generator cycle engines ever built, approaching the efficiency of more complex stage combustion engines. Development is focused on early risk mitigation, component and subassembly test, and engine system test. The development plans include testing engine components, including the subscale injector, main igniter, powerpack assembly (turbopumps, gas generator and associated ducting and structural mounts), full-scale gas generator, valves, and control software with hardware-in-the-loop. Testing expanded in 2007, accompanied by the refinement of the design through several key milestones. This paper discusses those 2007 tests and milestones, as well as updates key developments in 2008.

  16. GOES-R Rollout from VIF to Pad 41

    NASA Image and Video Library

    2016-11-18

    A United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. In view is the upper stage and payload fairing containing the Geostationary Operational Environmental Satellite (GOES-R). The launch vehicle will send GOES-R to a geostationary position over the U.S. GOES-R is the first satellite in a series of next-generation NOAA GOES satellites.

  17. KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is lowered toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is lowered toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  18. KENNEDY SPACE CENTER, FLA. - Working from a stand, technicians fasten the upper portion of the canister to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - Working from a stand, technicians fasten the upper portion of the canister to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  19. KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, help guide the upper canister toward the Space Infrared Telescope Facility (SIRTF) at left. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, help guide the upper canister toward the Space Infrared Telescope Facility (SIRTF) at left. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  20. KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lift the upper canister to move it to the Space Infrared Telescope Facility (SIRTF) at right. After encapsulation, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lift the upper canister to move it to the Space Infrared Telescope Facility (SIRTF) at right. After encapsulation, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  1. KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is mated to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is mated to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  2. KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lower the upper canister toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lower the upper canister toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  3. KSC-2009-1536

    NASA Image and Video Library

    2009-02-10

    CAPE CANAVERAL, Fla. – Inside the Ares I-X upper stage simulator, workers check the fit of the roll control system module. The hardware is in high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I-X is targeted for launch in summer of 2009. Photo credit: NASA/Tim Jacobs

  4. KSC-2009-1535

    NASA Image and Video Library

    2009-02-10

    CAPE CANAVERAL, Fla. – One of the Ares I-X roll control system modules is moved into place on the upper stage simulator for a fit check. The hardware is in high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I-X is targeted for launch in summer of 2009. Photo credit: NASA/Tim Jacobs

  5. KSC-2009-1534

    NASA Image and Video Library

    2009-02-10

    CAPE CANAVERAL, Fla. – One of the Ares I-X roll control system modules is moved into place on the upper stage simulator for a fit check. The hardware is in high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I-X is targeted for launch in summer of 2009. Photo credit: NASA/Tim Jacobs

  6. Preliminary In-Flight Loads Analysis of In-Line Launch Vehicles using the VLOADS 1.4 Program

    NASA Technical Reports Server (NTRS)

    Graham, J. B.; Luz, P. L.

    1998-01-01

    To calculate structural loads of in-line launch vehicles for preliminary design, a very useful computer program is VLOADS 1.4. This software may also be used to calculate structural loads for upper stages and planetary transfer vehicles. Launch vehicle inputs such as aerodynamic coefficients, mass properties, propellants, engine thrusts, and performance data are compiled and analyzed by VLOADS to produce distributed shear loads, bending moments, axial forces, and vehicle line loads as a function of X-station along the vehicle's length. Interface loads, if any, and translational accelerations are also computed. The major strength of the software is that it enables quick turnaround analysis of structural loads for launch vehicles during the preliminary design stage of its development. This represents a significant improvement over the alternative-the time-consuming, and expensive chore of developing finite element models. VLOADS was developed as a Visual BASIC macro in a Microsoft Excel 5.0 work book on a Macintosh. VLOADS has also been implemented on a PC computer using Microsoft Excel 7.0a for Windows 95. VLOADS was developed in 1996, and the current version was released to COSMIC, NASA's Software Technology Transfer Center, in 1997. The program is a copyrighted work with all copyright vested in NASA.

  7. Ares I-X Launch Vehicle Modal Test Overview

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Bartolotta, Paul A.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Parks, Russell A.; Lazor, Daniel R.

    2010-01-01

    The first test flight of NASA's Ares I crew launch vehicle, called Ares I-X, is scheduled for launch in 2009. Ares IX will use a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Flight test data will provide important information on ascent loads, vehicle control, separation, and first stage reentry dynamics. As part of hardware verification, a series of modal tests were designed to verify the dynamic finite element model (FEM) used in loads assessments and flight control evaluations. Based on flight control system studies, the critical modes were the first three free-free bending mode pairs. Since a test of the free-free vehicle is not practical within project constraints, modal tests for several configurations in the nominal integration flow were defined to calibrate the FEM. A traceability study by Aerospace Corporation was used to identify the critical modes for the tested configurations. Test configurations included two partial stacks and the full Ares I-X launch vehicle on the Mobile Launcher Platform. This paper provides an overview for companion papers in the Ares I-X Modal Test Session. The requirements flow down, pre-test analysis, constraints and overall test planning are described.

  8. Early Rockets

    NASA Image and Video Library

    1955-09-01

    Launch of a three-stage Vanguard (SLV-7) from Cape Canaveral, Florida, September 18, 1959. Designated Vanguard III, the 100-pound satellite was used to study the magnetic field and radiation belt. In September 1955, the Department of Defense recommended and authorized the new program, known as Project Vanguard, to launch Vanguard booster to carry an upper atmosphere research satellite in orbit. The Vanguard vehicles were used in conjunction with later booster vehicle such as the Thor and Atlas, and the technique of gimbaled (movable) engines for directional control was adapted to other rockets.

  9. Computer program for prediction of capture maneuver probability for an on-off reaction controlled upper stage

    NASA Technical Reports Server (NTRS)

    Knauber, R. N.

    1982-01-01

    A FORTRAN coded computer program which computes the capture transient of a launch vehicle upper stage at the ignition and/or separation event is presented. It is for a single degree-of-freedom on-off reaction jet attitude control system. The Monte Carlo method is used to determine the statistical value of key parameters at the outcome of the event. Aerodynamic and booster induced disturbances, vehicle and control system characteristics, and initial conditions are treated as random variables. By appropriate selection of input data pitch, yaw and roll axes can be analyzed. Transient response of a single deterministic case can be computed. The program is currently set up on a CDC CYBER 175 computer system but is compatible with ANSI FORTRAN computer language. This routine has been used over the past fifteen (15) years for the SCOUT Launch Vehicle and has been run on RECOMP III, IBM 7090, IBM 360/370, CDC6600 and CDC CYBER 175 computers with little modification.

  10. Ares V: Progress Toward Unprecedented Heavy Lift

    NASA Technical Reports Server (NTRS)

    Sumrall, Phil

    2010-01-01

    Ares V represents the vehicle that will again make possible human exploration beyond low Earth orbit. The Ares V is part of NASA s Constellation Program architecture developed to support the International Space Station (ISS), establish a permanent human presence on the Moon, and explore it to an extent far greater than was possible with the Apollo Program. Ares V will carry the lunar lander to orbit where it will join the Orion crew spacecraft, launched by the smaller Ares I launch vehicle. Then the Ares V upper stage will send the Orion and lander to the Moon. Ares V is also intended to launch automated cargo landers to the Moon. The Ares vehicles are designed to employ the proven technologies and experience from the Space Shuttle, Delta IV, and earlier U.S. programs, as well as sharing common components where feasible. The Ares V is in an early stage of concept development. However, commonality allows it to benefit from development work already under way on the Ares I, including the first stage booster, and upper stage, J-2X upper stage engine. This paper will discuss progress to date on the Ares V and its potential for freeing payload designers from current mass and volume constraints. Progress includes development progress on Ares I elements that will be shared by the two launch vehicles. The Ares I first stage recently completed a successful test firing of Development Motor 1 (DM-1). The J-2X engine is proceeding with manufacturing of components for the first development engines that will be used for testing. Several component-level tests have been completed or are under way that will help verify designs and confirm solutions to design challenges. The Ares V Earth departure stage will benefit from the Ares I upper stage development, including design, manufacturing, and materials testing. NASA is also working with government and industry to collect data on flights and testing of the operational RS-68 engine and potential upgrades. The Ares V team continues to evaluate technical options, vehicle configurations, and operations concepts for the Ares V. The team recently completed a Fall Face-to-Face meeting that served as a stepping-stone to the Systems Requirements Review (SRR). This four-day meeting served as an information exchange for the various teams at several NASA field centers and supporting contractors.

  11. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Robinson, Kimberly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS will propel the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  12. Active Debris Removal Using Modified Launch Vehicle Upper Stages

    NASA Astrophysics Data System (ADS)

    Nasseri, S. Ali; Emanuelli, Matteo; Raval, Siddharth; Turconi, Andrea

    2013-09-01

    During the past few years, several research programs have assessed the current state and future evolution of space debris in the Low Earth Orbit region. These studies indicate that space debris density could reach a critical level such that there will be a continuous increase in the number of debris objects, primarily driven by debris-debris collision activity known as the Kessler effect. These studies also highlight the urgency for active debris removal.An Active Debris Removal System (ADRS) is capable of approaching the debris object through a close-range rendezvous, stabilizing its attitude, establishing physical contact, and finally de-orbiting the debris object. The de-orbiting phase could be powered by propulsion systems such as chemical rockets or electrodynamic tether (EDT) systems.The aim of this project is to model and evaluate a debris removal mission in which an adapted rocket upper stage, equipped with an electrodynamic tether (EDT) system, is employed for de-orbiting a debris object. This ADRS package is installed initially as part of a launch vehicle on a normal satellite deployment mission, and a far-approach manoeuvre will be required to align the ADRS' orbit with that of the target debris. We begin by selecting a suitable target debris and launch vehicle, and then proceed with modelling the entire debris removal mission from launch to de-orbiting of the target debris object using Analytical Graphic Inc.'s Systems Tool Kit (STK).

  13. KSC-04pd2121

    NASA Image and Video Library

    2004-10-08

    KENNEDY SPACE CENTER, FLA. - In the mobile service tower at Launch Pad 17-A on Cape Canaveral Air Force Station, workers attach the upper second stage to the lower first stage of the Boeing Delta II launch vehicle. The rocket is the launch vehicle for the Swift spacecraft and its Gamma-Ray Burst Mission, now scheduled for liftoff Nov. 8. Swift is a medium-class Explorer mission managed by NASA’s Goddard Space Flight Center in Greenbelt, Md. It is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. KSC is responsible for Swift’s integration with the Boeing Delta II rocket and the countdown management on launch day.

  14. Ares I-X Flight Test Vehicle:Stack 1 Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Daniel R.

    2010-01-01

    Ares I-X was the first flight test vehicle used in the development of NASA s Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the second modal test that was performed on the middle section of the vehicle referred to as Stack 1, which consisted of the subassembly from the 5th segment simulator through the interstage. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 1 modal test.

  15. Application of GPS to Enable Launch Vehicle Upper Stage Heliocentric Disposal

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan J.; Oliver, T. Emerson

    2017-01-01

    To properly dispose of the upper stage of the Space Launch System, the vehicle must perform a burn in Earth orbit to perform a close flyby of the Lunar surface to gain adequate energy to enter into heliocentric space. This architecture was selected to meet NASA requirements to limit orbital debris in the Earth-Moon system. The choice of a flyby for heliocentric disposal was driven by mission and vehicle constraints. This paper describes the SLS mission for Exploration Mission -1, a high level overview of the Block 1 vehicle, and the various disposal options considered. The research focuses on this analysis in terms of the mission design and navigation problem, focusing on the vehicle-level requirements that enable a successful mission. An inertial-only system is shown to be insufficient for heliocentric flyby due to large inertial integration errors from launch through disposal maneuver while on a trans-lunar trajectory. The various options for aiding the navigation system are presented and details are provided on the use of GPS to bound the state errors in orbit to improve the capability for stage disposal. The state estimation algorithm used is described as well as its capability in determination of the vehicle state at the start of the planned maneuver. This data, both dispersions on state and on errors, is then used to develop orbital targets to use for meeting the required Lunar flyby for entering onto a heliocentric trajectory. The effect of guidance and navigation errors on this capability is described as well as the identified constraints for achieving the disposal requirements. Additionally, discussion is provided on continued analysis and identification of system considerations that can drive the ability to integrate onto a vehicle intended for deep space.

  16. KSC-2009-1530

    NASA Image and Video Library

    2009-02-10

    CAPE CANAVERAL, Fla. – The Ares I-X roll control system module, comprising two modules and four thrusters, is being prepared for a fit check on the Ares I-X rocket upper stage simulator. The hardware is in high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I-X is targeted for launch in summer of 2009. Photo credit: NASA/Tim Jacobs

  17. KSC-2009-1533

    NASA Image and Video Library

    2009-02-10

    CAPE CANAVERAL, Fla. – The Ares I-X roll control system module, comprising two modules and four thrusters, is being moved toward the upper stage simulator for a fit check. The hardware is in high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I-X is targeted for launch in summer of 2009. Photo credit: NASA/Tim Jacobs

  18. KSC-2009-1531

    NASA Image and Video Library

    2009-02-10

    CAPE CANAVERAL, Fla. – The Ares I-X roll control system module, comprising two modules and four thrusters, is being prepared for a fit check on the Ares I-X rocket upper stage simulator. The hardware is in high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I-X is targeted for launch in summer of 2009. Photo credit: NASA/Tim Jacobs

  19. KSC-2009-1532

    NASA Image and Video Library

    2009-02-10

    CAPE CANAVERAL, Fla. – The Ares I-X roll control system module, comprising two modules and four thrusters, is being prepared for a fit check on the Ares I-X rocket upper stage simulator. The hardware is in high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I-X is targeted for launch in summer of 2009. Photo credit: NASA/Tim Jacobs

  20. Atlas IIAS ascent trajectory design for the SOHO mission

    NASA Technical Reports Server (NTRS)

    Willen, Robert E.; Rude, Bradley J.

    1993-01-01

    In 1995, an Atlas IIAS launch vehicle will loft the Solar and Heliospheric Observatory (SOHO) as part of the International Solar and Terrestrial Physics program. The operational phase of the SOHO mission will be conducted from a `halo orbit' about the Sun-Earth interior libration point. Depending on the time of the year of launch, the optimal transfer requires a parking orbit of variable duration to satisfy widely varying inertial targets. A simulation capability has been developed that optimizes the launch vehicle ascent and spacecraft transfer phases of flight together, subject to both launch vehicle and spacecraft constraints. It will be shown that this `ground-up' simulation removes the need for an intermediate target vector at Centaur upper stage/spacecraft separation. Although providing only a modest gain in deliverable satellite mass, this capability substantially improves the mission integration process by removing the strict reliance on near-Earth target vectors. Trajectory data from several cases are presented and future applications of this capability are also discussed.

  1. Preliminary Performance of Lithium-ion Cell Designs for Ares I Upper Stage Applications

    NASA Technical Reports Server (NTRS)

    Miller, Thomas B.; Reid, Concha M.; Kussmaul, Michael T.

    2011-01-01

    NASA's Ares I Crew Launch Vehicle (CLV) baselined lithium-ion technology for the Upper Stage (US). Under this effort, the NASA Glenn Research Center investigated three different aerospace lithium-ion cell suppliers to assess the performance of the various lithium-ion cell designs under acceptance and characterization testing. This paper describes the overall testing approaches associated with lithium-ion cells, their ampere-hour capacity as a function of temperature and discharge rates, as well as their performance limitations for use on the Ares I US vehicle.

  2. Ares I-X Flight Test Vehicle Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Daniel R.

    2010-01-01

    The first test flight of NASA's Ares I crew launch vehicle, called Ares I-X, was launched on October 28, 2009. Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Flight test data will provide important information on ascent loads, vehicle control, separation, and first stage reentry dynamics. As part of hardware verification, a series of modal tests were designed to verify the dynamic finite element model (FEM) used in loads assessments and flight control evaluations. Based on flight control system studies, the critical modes were the first three free-free bending mode pairs. Since a test of the free-free vehicle was not practical within project constraints, modal tests for several configurations during vehicle stacking were defined to calibrate the FEM. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report describes the test requirements, constraints, pre-test analysis, test execution and results for the Ares I-X flight test vehicle modal test on the Mobile Launcher Platform. Initial comparisons between pre-test predictions and test data are also presented.

  3. NASA's Space Launch System: Deep-Space Delivery for SmallSats

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Norris, George

    2017-01-01

    Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight, an uncrewed test of the Orion spacecraft into distant retrograde orbit around the moon, accompanying Orion on SLS will be 13 small-satellite secondary payloads, which will deploy in cislunar space. These secondary payloads will include not only NASA research, but also spacecraft from industry and international partners and academia. The payloads also represent a variety of disciplines including, but not limited to, studies of the moon, Earth, sun, and asteroids. The Space Launch System Program is working actively with the developers of the payloads toward vehicle integration. Following its first flight and potentially as early as its second, SLS will evolve into a more powerful configuration with a larger upper stage. This configuration will initially be able to deliver 105 t to LEO, and will continue to be upgraded to a performance of greater than 130 t to LEO. While the addition of the more powerful upper stage will mean a change to the secondary payload accommodations from those on the first launch, the SLS Program is already evaluating options for future secondary payload opportunities. Early discussions are also already underway for the use of SLS to launch spacecraft on interplanetary trajectories, which could open additional opportunities for small satellites. This presentation will include an overview of the SLS vehicle and its capabilities, including the current status of progress toward first launch. It will also explain the opportunities the vehicle offers for small satellites, including an overview of the CubeSat manifest for Exploration Mission-1 in 2018 and a discussion of future capabilities.

  4. Space Launch System Spacecraft and Payload Elements: Making Progress Toward First Launch

    NASA Technical Reports Server (NTRS)

    Schorr, Andrew A.; Creech, Stephen D.

    2016-01-01

    Significant and substantial progress continues to be accomplished in the design, development, and testing of the Space Launch System (SLS), the most powerful human-rated launch vehicle the United States has ever undertaken. Designed to support human missions into deep space, SLS is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development directorate. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit, and the Ground Systems Development and Operations program is transforming Kennedy Space Center into next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. SLS will deliver a near-term heavy-lift capability for the nation with its 70 metric ton (t) Block 1 configuration, and will then evolve to an ultimate capability of 130 t. The SLS program marked a major milestone with the successful completion of the Critical Design Review in which detailed designs were reviewed and subsequently approved for proceeding with full-scale production. This marks the first time an exploration class vehicle has passed that major milestone since the Saturn V vehicle launched astronauts in the 1960s during the Apollo program. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS -- Exploration Mission-1 (EM-1), an un-crewed mission to orbit the moon and return. Encompassing hardware qualification, structural testing to validate hardware compliance and analytical modeling, progress in on track to meet the initial targeted launch date in 2018. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility in Louisiana, the world's largest spacecraft welding tool is producing tanks for the SLS core stage. This paper will particularly focus on work taking place at Marshall Space Flight Center (MSFC) and United Launch Alliance in Alabama, where upper stage and adapter elements of the vehicle are being constructed and tested. Providing the Orion crew capsule/launch vehicle interface and in-space propulsion via a cryogenic upper stage, the Spacecraft/Payload Integration and Evolution (SPIE) Element serves a key role in achieving SLS goals and objectives. The SPIE element marked a major milestone in 2014 with the first flight of original SLS hardware, the Orion Stage Adapter (OSA) which was used on Exploration Flight Test-1 with a design that will be used again on EM-1. Construction is already underway on the EM-1 Interim Cryogenic Propulsion Stage (ICPS), an in-space stage derived from the Delta Cryogenic Second Stage. Manufacture of the Orion Stage Adapter and the Launch Vehicle Stage Adapter is set to begin at the Friction Stir Facility located at MSFC while structural test articles are either completed (OSA) or nearing completion (Launch Vehicle Stage Adapter). An overview is provided of the launch vehicle capabilities, with a specific focus on SPIE Element qualification/testing progress, as well as efforts to provide access to deep space regions currently not available to the science community through a secondary payload capability utilizing CubeSat-class satellites.

  5. Space Launch System Spacecraft and Payload Elements: Making Progress Toward First Launch

    NASA Technical Reports Server (NTRS)

    Schorr, Andrew A.; Creech, Stephen D.; Ogles, Michael; Hitt, David

    2016-01-01

    Significant and substantial progress continues to be accomplished in the design, development, and testing of the Space Launch System (SLS), the most powerful human-rated launch vehicle the United States has ever undertaken. Designed to support human missions into deep space, SLS is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development directorate. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit, and the Ground Systems Development and Operations (GSDO) program is transforming Kennedy Space Center (KSC) into next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. SLS will deliver a near-term heavy-lift capability for the nation with its 70 metric ton Block 1 configuration, and will then evolve to an ultimate capability of 130 metric tons. The SLS program marked a major milestone with the successful completion of the Critical Design Review in which detailed designs were reviewed and subsequently approved for proceeding with full-scale production. This marks the first time an exploration class vehicle has passed that major milestone since the Saturn V vehicle launched astronauts in the 1960s during the Apollo program. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS - Exploration Mission-1 (EM-1), an uncrewed mission to orbit the moon and return, and progress in on track to meet the initial targeted launch date in 2018. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility (MAF) in Louisiana, the world's largest spacecraft welding tool is producing tanks for the SLS core stage. This paper will particularly focus on work taking place at Marshall Space Flight Center (MSFC) and United Launch Alliance (ULA) in Alabama, where upper stage and adapter elements of the vehicle are being constructed and tested. Providing the Orion crew capsule/launch vehicle interface and in-space propulsion via a cryogenic upper stage, the Spacecraft/Payload Integration and Evolution (SPIE) Element serves a key role in achieving SLS goals and objectives. The SPIE element marked a major milestone in 2014 with the first flight of original SLS hardware, the Orion Stage Adapter (OSA) which was used on Exploration Flight Test-1 with a design that will be used again on EM-1. Construction is already underway on the EM-1 Interim Cryogenic Propulsion Stage (ICPS), an in-space stage derived from the Delta Cryogenic Second Stage. Manufacture of the Orion Stage Adapter and the Launch Vehicle Stage Adapter is set to begin at the Friction Stir Facility located at MSFC while structural test articles are either completed (OSA) or nearing completion (Launch Vehicle Stage Adapter). An overview is provided of the launch vehicle capabilities, with a specific focus on SPIE Element qualification/testing progress, as well as efforts to provide access to deep space regions currently not available to the science community through a secondary payload capability utilizing CubeSat-class satellites.

  6. VANDENBERG AIR FORCE BASE, CALIF. - The SciSat-1 payload and Pegasus launch vehicle are lifted and mated to the L-1011 carrier aircraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-08-09

    VANDENBERG AIR FORCE BASE, CALIF. - The SciSat-1 payload and Pegasus launch vehicle are lifted and mated to the L-1011 carrier aircraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  7. KSC-07pd1315

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. -- In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, the Delta II first stage is ready to receive the upper stages and solid rocket boosters for launch. The rocket is the launch vehicle for the Dawn spacecraft, targeted for liftoff on June 30. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Amanda Diller

  8. Ares I-X: Lessons for a New Era of Spaceflight

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.

    2010-01-01

    Since 2005, the Ares Projects at Marshall Space Flight Center (MSFC) have been developing the Ares I crew launch vehicle and Ares V cargo launch vehicle. On October 28, 2009, the first development flight test of the Ares I crew launch vehicle, Ares I-X, lifted off from a launch pad at Kennedy Space Center (KSC) on successful suborbital flight. Despite the President s intention to cancel the Constellation Program of which Ares is a part, this historic flight has produced a great amount of data and numerous lessons learned for any future launch vehicles. This paper will describe the accomplishments of Ares I-X and the lessons that other programs can glean from this successful mission. Ares I was designed to carry up to four astronauts to the International Space Station (ISS). It also was designed to be used with the Ares V cargo launch vehicle for a variety of missions beyond low-Earth orbit (LEO). The Ares I-X development flight test was conceived in 2006 to acquire early engineering and environment data during liftoff, ascent, and first stage recovery. The test achieved the following primary objectives: Demonstrated control of a dynamically similar, integrated Ares I/Orion, using Ares I relevant ascent control algorithms. Performed an in-flight separation/staging event between a Ares I-similar First Stage and a representative Upper Stage. Demonstrated assembly and recovery of a new Ares I-like First Stage element at KSC. Demonstrated First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics, and parachute performance. Characterized the magnitude of integrated vehicle roll torque throughout First Stage flight.

  9. Development of the J-2X Engine for the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle: Building on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Greene, WIlliam

    2007-01-01

    The United States (U.S.) Vision for Space Exploration has directed NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020 by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage (EDS). This decision was reached during the Exploration Systems Architecture Study and confirmed after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by testing existing engine hardware and designs; building on the Apollo Program (1961 to 1975), the Space Shuttle Program (1972 to 2010); and consulting with Apollo era experts to derive other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.

  10. Development of the J-2X Engine for the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle: Building on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Greene, William D.; Snoddy, Jim

    2007-01-01

    The United States (U.S.) Vision for Space Exploration has directed NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020, by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage. This decision was reached during the Exploration Systems Architecture Study and confirmed after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by testing existing engine hardware and designs; building on the Apollo Program (1961 to 1975), the Space Shuttle Program (1972 to 2010); and consulting with Apollo-era experts to derive other lessons lived to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.

  11. Ixion: A Wet-Lab Habitat Platform for Leo and the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Wald, S. I.; Cummins, C. K.; Manber, J.

    2018-02-01

    Cislunar and LEO habitats derived from launch vehicle upper stages are technically feasible and continues development toward flight. Present station specifications, configurations, and concepts for scientific, exploration, and commercial utilization.

  12. KSC-04pd1830

    NASA Image and Video Library

    2004-09-03

    KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers maneuver the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft and mated upper stage toward the second stage at right in preparation or launch aboard the Orbital Sciences Pegasus XL launch vehicle. Pegasus will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.

  13. KSC-04pd1828

    NASA Image and Video Library

    2004-09-03

    KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers maneuver the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft and mated upper stage toward the second stage behind them in preparation or launch aboard the Orbital Sciences Pegasus XL launch vehicle. Pegasus will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.

  14. KSC-04PD-1830

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. At Vandenberg Air Force Base in California, workers maneuver the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft and mated upper stage toward the second stage at right in preparation or launch aboard the Orbital Sciences Pegasus XL launch vehicle. Pegasus will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASAs Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.

  15. Ares I-X Test Flight Reference Trajectory Development

    NASA Technical Reports Server (NTRS)

    Starr, Brett R.; Gumbert, Clyde R.; Tartabini, Paul V.

    2011-01-01

    Ares I-X was the first test flight of NASA's Constellation Program's Ares I crew launch vehicle. Ares I is a two stage to orbit launch vehicle that provides crew access to low Earth orbit for NASA's future manned exploration missions. The Ares I first stage consists of a Shuttle solid rocket motor (SRM) modified to include an additional propellant segment and a liquid propellant upper stage with an Apollo J2X engine modified to increase its thrust capability. The modified propulsion systems were not available for the first test flight, thus the test had to be conducted with an existing Shuttle 4 segment reusable solid rocket motor (RSRM) and an inert Upper Stage. The test flight's primary objective was to demonstrate controllability of an Ares I vehicle during first stage boost and the ability to perform a successful separation. In order to demonstrate controllability, the Ares I-X ascent control algorithms had to maintain stable flight throughout a flight environment equivalent to Ares I. The goal of the test flight reference trajectory development was to design a boost trajectory using the existing RSRM that results in a flight environment equivalent to Ares I. A trajectory similarity metric was defined as the integrated difference between the Ares I and Ares I-X Mach versus dynamic pressure relationships. Optimization analyses were performed that minimized the metric by adjusting the inert upper stage weight and the ascent steering profile. The sensitivity of the optimal upper stage weight and steering profile to launch month was also investigated. A response surface approach was used to verify the optimization results. The analyses successfully defined monthly ascent trajectories that matched the Ares I reference trajectory dynamic pressure versus Mach number relationship to within 10% through Mach 3.5. The upper stage weight required to achieve the match was found to be feasible and varied less than 5% throughout the year. The paper will discuss the flight test requirements, provide Ares I-X vehicle background, discuss the optimization analyses used to meet the requirements, present analysis results, and compare the reference trajectory to the reconstructed flight trajectory.

  16. NASA Ares I Launch Vehicle Roll and Reaction Control Systems Lessons Learned

    NASA Technical Reports Server (NTRS)

    Butt, Adam; Popp, Chris G.; Jernigan, Frankie R.; Paseur, Lila F.; Pitts, Hank M.

    2011-01-01

    On April 15, 2010 President Barak Obama made the official announcement that the Constellation Program, which included the Ares I launch vehicle, would be canceled. NASA s Ares I launch vehicle was being designed to launch the Orion Crew Exploration Vehicle, returning humans to the moon, Mars, and beyond. It consisted of a First Stage (FS) five segment solid rocket booster and a liquid J-2X Upper Stage (US) engine. Roll control for the FS was planned to be handled by a dedicated Roll Control System (RoCS), located on the connecting interstage. Induced yaw or pitch moments experienced during FS ascent would have been handled by vectoring of the booster nozzle. After FS booster separation, the US Reaction Control System (ReCS) would have provided the US Element with three degrees of freedom control as needed. The lessons learned documented in this paper will be focused on the technical designs and producibility of both systems along with the partnership between NASA and Boeing, who was on contract to build the Ares I US Element, which included the FS RoCS and US ReCS. In regards to partnership, focus will be placed on integration along with technical work accomplished by Boeing with special emphasis on each task order. In summary, this paper attempts to capture key lessons learned that should be helpful in the development of future launch vehicle RCS designs.

  17. Monte Carlo analysis of the Titan III/Transfer Orbit Stage guidance system for the Mars Observer mission

    NASA Astrophysics Data System (ADS)

    Bell, Stephen C.; Ginsburg, Marc A.; Rao, Prabhakara P.

    An important part of space launch vehicle mission planning for a planetary mission is the integrated analysis of guidance and performance dispersions for both booster and upper stage vehicles. For the Mars Observer mission, an integrated trajectory analysis was used to maximize the scientific payload and to minimize injection errors by optimizing the energy management of both vehicles. This was accomplished by designing the Titan III booster vehicle to inject into a hyperbolic departure plane, and the Transfer Orbit Stage (TOS) to correct any booster dispersions. An integrated Monte Carlo analysis of the performance and guidance dispersions of both vehicles provided sensitivities, an evaluation of their guidance schemes and an injection error covariance matrix. The polynomial guidance schemes used for the Titan III variable flight azimuth computations and the TOS solid rocket motor ignition time and burn direction derivations accounted for a wide variation of launch times, performance dispersions, and target conditions. The Mars Observer spacecraft was launched on 25 September 1992 on the Titan III/TOS vehicle. The post flight analysis indicated that a near perfect park orbit injection was achieved, followed by a trans-Mars injection with less than 2sigma errors.

  18. 03pd2224

    NASA Image and Video Library

    2003-07-23

    KENNEDY SPACE CENTER, FLA. – This view shows much of the Launch Complex 39 Area stretching beyond the Turn Basin in the foreground. At center is the 525-foot-tall Vehicle Assembly Building, with the starting and endpoint of the crawlerway that leads to both launch pads. The low building attached to the VAB is the Launch Control Center. At center left is the Operations and Support Building. At upper right can be seen the Runway at the Shuttle Landing Facility. Surrounding waters are part of Banana Creek.

  19. KSC-03pd2224

    NASA Image and Video Library

    2003-07-23

    CAPE CANAVERAL, Fla. -- This view shows much of the Launch Complex 39 Area stretching beyond the Turn Basin in the foreground. At center is the 525-foot-tall Vehicle Assembly Building, with the starting and endpoint of the crawlerway that leads to both launch pads. The low building attached to the VAB is the Launch Control Center. At center left is the Operations and Support Building. At upper right can be seen the runway at the Shuttle Landing Facility. Surrounding waters are part of Banana Creek. Photo credit: NASA

  20. SLS EM-1 Launch Animation

    NASA Image and Video Library

    2017-10-31

    Animation depicting NASA’s Space Launch System, the world's most powerful rocket for a new era of human exploration beyond Earth’s orbit. With its unprecedented capabilities, SLS will launch astronauts in the agency’s Orion spacecraft on missions to explore multiple, deep-space destinations, including Mars. Traveling to deep space requires a large vehicle that can carry huge payloads, and future evolutions of SLS with the exploration upper stage and advanced boosters will increase the rocket’s lift capability and flexibility for multiple types of mission needs.

  1. Wernher von Braun

    NASA Image and Video Library

    1950-01-01

    Dr. von Braun stands beside a model of the upper stage (Earth-returnable stage) of the three-stage launch vehicle built for the series of the motion picture productions of space flight produced by Walt Disney in the mid-1950's.

  2. MERCURY-ATLAS (MA)-2 - LIFTOFF - CAPE

    NASA Image and Video Library

    1961-02-21

    S61-01226 (21 Feb. 1961) --- Launch of the unmanned Mercury-Atlas 2 (MA-2) vehicle for a suborbital test flight of the Mercury capsule. The upper part of Atlas is stengthened by an eight-inch wide stainless steel band. The capsule was recovered less than one hour after launch. The altitude was 108 miles. Speed was 13,000 mph. Recovered 1,425 miles downrange. Photo credit: NASA

  3. Space and Missile Systems Center Standard: Test Requirements for Launch, Upper-Stage and Space Vehicles

    DTIC Science & Technology

    2014-09-05

    adiabatic expansion of a perfect gas ; b. Contains a gas or liquid that would endanger personnel or equipment or create a mis- hap if released; or c...Guidelines for Liquid Rocket Engines 31. TOR-2013(3213)-6 Acoustic Testing on Production Space Vehicle (The Value of the Test and Deletion...materials used in space vehicles, interstages, payload adapters, payload fairings, motor cases, nozzles , propellant tanks, and over-wrapped pressure vessels

  4. Monitoring Spacecraft Telemetry Via Optical or RF Link

    NASA Technical Reports Server (NTRS)

    Fielhauer, K. B.; Boone, B. G.

    2011-01-01

    A patent disclosure document discusses a photonic method for connecting a spacecraft with a launch vehicle upper-stage telemetry system as a means for monitoring a spacecraft fs health and status during and right after separation and deployment. This method also provides an efficient opto-coupled capability for prelaunch built-in-test (BIT) on the ground to enable more efficient and timely integration, preflight checkout, and a means to obviate any local EMI (electromagnetic interference) during integration and test. Additional utility can be envisioned for BIT on other platforms, such as the International Space Station (ISS). The photonic telemetry system implements an optical free-space link with a divergent laser transmitter beam spoiled over a significant cone angle to accommodate changes in spacecraft position without having to angle track it during deployment. Since the spacecraft may lose attitude control and tumble during deployment, the transmitted laser beam interrogates any one of several low-profile meso-scale retro-reflective spatial light modulators (SLMs) deployed over the surface of the spacecraft. The return signal beam, modulated by the SLMs, contains health, status, and attitude information received back at the launch vehicle. Very compact low-power opto-coupler technology already exists for the received signal (requiring relatively low bandwidths, e.g., .200 kbps) to enable transfer to a forward pass RF relay from the launch vehicle to TDRSS (Tracking and Data Relay Satellite System) or another recipient. The link would be active during separation and post-separation to monitor spacecraft health, status, attitude, or other data inventories until attitude recovery and ground control can be re-established. An optical link would not interfere with the existing upper stage telemetry and beacon systems, thus meeting launch vehicle EMI environmental constraints.

  5. Space Launch System Spacecraft and Payload Elements: Progress Toward Crewed Launch and Beyond

    NASA Technical Reports Server (NTRS)

    Schorr, Andrew A.; Creech, Stephen D.

    2017-01-01

    While significant and substantial progress continues to be accomplished toward readying the Space Launch System (SLS) rocket for its first test flight, work is already also underway on preparations for the second flight - using an upgraded version of the vehicle - and beyond. Designed to support human missions into deep space, Space Launch System (SLS), is the most powerful human-rated launch vehicle the United States has ever undertaken, and is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development division. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit (LEO), and the Ground Systems Development and Operations program is transforming Kennedy Space Center into a next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. For its first flight, SLS will deliver a near-term heavy-lift capability for the nation with its 70-metric-ton (t) Block 1 configuration. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS, which will propel Orion around the moon and back. Encompassing hardware qualification, structural testing to validate hardware compliance and analytical modeling, progress in on track to meet the initial targeted launch date. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility in Louisiana, the world's largest spacecraft welding tool is producing tanks for the SLS core stage. Providing the Orion crew capsule/launch vehicle interface and in-space propulsion via a cryogenic upper stage, the Spacecraft/Payload Integration and Evolution (SPIE) element serves a key role in achieving SLS goals and objectives. The SPIE element marked a major milestone in 2014 with the first flight of original SLS hardware, the Orion Stage Adapter (OSA) which was used on Exploration Flight Test-1 with a design that will be used again on the first flight of SLS. The element has overseen production of the Interim Cryogenic Propulsion Stage (ICPS), an in-space stage derived from the Delta Cryogenic Second Stage, which was manufactured at United Launch Alliance in Decatur, Alabama, prior to being shipped to Florida for flight preparations. Manufacture of the Orion Stage Adapter and the Launch Vehicle Stage Adapter (LVSA) took place at the Friction Stir Facility located at Marshall Space Flight Center in Huntsville, Alabama. Marshall is also home to the Integrated Structural Test of the ICPS, LVSA, and OSA, subjecting the stacked components to simulated stresses of launch. The SPIE Element is also overseeing integration of 13 "CubeSat" secondary payloads that will fly on the first flight of SLS, providing access to deep space regions in a way currently not available to the science community. At the same time as this preparation work is taking place toward the first launch of SLS, however, the Space Launch System Program is actively working toward its second launch. For its second flight, SLS will be upgraded to the more-capable Block 1B configuration. While the Block 1 configuration is capable of delivering more than 70 metric tons to low Earth orbit, the Block 1B vehicle will increase that capability to 105 t. For that flight, the new configuration introduces two major new elements to the vehicle - an Exploration Upper Stage (EUS) that will be used for both ascent and in-space propulsion, and a Universal Stage Adapter (USA) that serves as a "payload bay" for the rocket, allowing the launch of large exploration systems along with the Orion spacecraft. Already, flight hardware is being prepared for the Block 1B vehicle. Welding is taking place on the second rocket's core stage. Flight hardware production has begun on booster components. An RS-25 engine slated for that flight has been tested. Development work is taking place on the Exploration Upper Stage, with contracts in place for both the stage and the RL10 engines which will power it. (The EUS will use four RL10 engines, an increase from one on the ICPS.) For the crew configuration of the Block 1B vehicle, the SLS SPIE element is managing the USA and accompanying Payload Adapter, which will accommodate both large payloads co-manifested with Orion and small-satellite secondary payloads. This co-manifested payload capacity will be instrumental for missions into the Proving Ground around the moon, where NASA will test new systems and demonstrate new capabilities needed for human exploration farther into deep space.

  6. NASA'S Space Launch System: Opening Opportunities for Mission Design

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Hefner, Keith; Hitt, David

    2015-01-01

    Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. While SLS's super-heavy launch vehicle predecessor, the Saturn V, was used for only two types of missions - launching Apollo spacecraft to the moon and lofting the Skylab space station into Earth orbit - NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. With a 5-meter (m) fairing consistent with contemporary Evolved Expendable Launch Vehicles (EELVs), the Block 1 configuration can also deliver science payloads to high-characteristic-energy (C3) trajectories to the outer solar system. With the addition of an upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a new class of secondary payloads, larger than today's cubesats. The evolved configurations of SLS, including both Block 1B and the 130 t Block 2, also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk and operational costs associated with shorter transit time to destination and reduced risk and complexity associated with launching large systems either monolithically or in fewer components. As this paper will demonstrate, SLS is making strong progress toward first launch, and represents a unique new capability for spaceflight, and an opportunity to reinvent space by developing out-of-the-box missions and mission designs unlike any flown before.

  7. NASA's Space Launch System: An Evolving Capability for Exploration An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimerly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of propelling the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  8. 2011 Mars Science Laboratory Trajectory Reconstruction and Performance from Launch Through Landing

    NASA Technical Reports Server (NTRS)

    Abilleira, Fernando

    2013-01-01

    The Mars Science Laboratory (MSL) mission successfully launched on an Atlas V 541 Expendable Evolved Launch Vehicle (EELV) from the Eastern Test Range (ETR) at Cape Canaveral Air Force Station (CCAFS) in Florida at 15:02:00 UTC on November 26th, 2011. At 15:52:06 UTC, six minutes after the MSL spacecraft separated from the Centaur upper stage, the spacecraft transmitter was turned on and in less than 20 s spacecraft carrier lock was achieved at the Universal Space Network (USN) Dongara tracking station located in Western Australia. MSL, carrying the most sophisticated rover ever sent to Mars, entered the Martian atmosphere at 05:10:46 SpaceCraft Event Time (SCET) UTC, and landed inside Gale Crater at 05:17:57 SCET UTC on August 6th, 2012. Confirmation of nominal landing was received at the Deep Space Network (DSN) Canberra tracking station via the Mars Odyssey relay spacecraft at 05:31:45 Earth Received Time (ERT) UTC. This paper summarizes in detail the actual vs. predicted trajectory performance in terms of launch vehicle events, launch vehicle injection performance, actual DSN/USN spacecraft lockup, trajectory correction maneuver performance, Entry, Descent, and Landing events, and overall trajectory and geometry characteristics.

  9. Results of Evaluation of Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Byers, Dave

    2003-01-01

    The solar thermal propulsion evaluation reported here relied on prior research for all information on solar thermal propulsion technology and performance. Sources included personal contacts with experts in the field in addition to published reports and papers. Mission performance models were created based on this information in order to estimate performance and mass characteristics of solar thermal propulsion systems. Mission analysis was performed for a set of reference missions to assess the capabilities and benefits of solar thermal propulsion in comparison with alternative in-space propulsion systems such as chemical and electric propulsion. Mission analysis included estimation of delta V requirements as well as payload capabilities for a range of missions. Launch requirements and costs, and integration into launch vehicles, were also considered. The mission set included representative robotic scientific missions, and potential future NASA human missions beyond low Earth orbit. Commercial communications satellite delivery missions were also included, because if STP technology were selected for that application, frequent use is implied and this would help amortize costs for technology advancement and systems development. A C3 Topper mission was defined, calling for a relatively small STP. The application is to augment the launch energy (C3) available from launch vehicles with their built-in upper stages. Payload masses were obtained from references where available. The communications satellite masses represent the range of payload capabilities for the Delta IV Medium and/or Atlas launch vehicle family. Results indicated that STP could improve payload capability over current systems, but that this advantage cannot be realized except in a few cases because of payload fairing volume limitations on current launch vehicles. It was also found that acquiring a more capable (existing) launch vehicle, rather than adding an STP stage, is the most economical in most cases.

  10. VANDENBERG AIR FORCE BASE, CALIF. - The Pegasus transporter, with its cargo of the SciSat-1 payload and Pegasus launch vehicle, moves under the L-1011 carrier aircraft for matting. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-08-09

    VANDENBERG AIR FORCE BASE, CALIF. - The Pegasus transporter, with its cargo of the SciSat-1 payload and Pegasus launch vehicle, moves under the L-1011 carrier aircraft for matting. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  11. VANDENBERG AIR FORCE BASE, CALIF. - The L-1011 carrier aircraft is in flight with its cargo underneath of the Pegasus launch vehicle and SciSat-1 spacecraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-08-12

    VANDENBERG AIR FORCE BASE, CALIF. - The L-1011 carrier aircraft is in flight with its cargo underneath of the Pegasus launch vehicle and SciSat-1 spacecraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  12. VANDENBERG AIR FORCE BASE, CALIF. - The L-1011 carrier aircraft is in flight with its cargo of the Pegasus launch vehicle and SciSat-1 spacecraft underneath. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-08-12

    VANDENBERG AIR FORCE BASE, CALIF. - The L-1011 carrier aircraft is in flight with its cargo of the Pegasus launch vehicle and SciSat-1 spacecraft underneath. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  13. VANDENBERG AIR FORCE BASE, CALIF. - The SciSat-1 payload, with fairing installed and attached to its Pegasus launch vehicle, arrives at the pad for mating to the L-1011 carrier aircraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-08-09

    VANDENBERG AIR FORCE BASE, CALIF. - The SciSat-1 payload, with fairing installed and attached to its Pegasus launch vehicle, arrives at the pad for mating to the L-1011 carrier aircraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  14. The Ares Projects: Building America's Future in Space

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.

    2009-01-01

    NASA's Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. In 2009, the Ares Projects plan to conduct the first test flight of Ares I, Ares I-X; the first firing of a five-segment development solid rocket motor for the Ares I first stage; building the first integrated Ares I upper stage; continue component testing for the J-2X upper stage engine; and perform more-detailed design studies for the Ares V cargo launch vehicle. Ares I and V will provide the core space launch capabilities needed to continue providing crew and cargo access to the International Space Station (ISS), and to build upon the U.S. history of human spaceflight to the Moon and beyond.

  15. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; Creech, Stephen D.; Robinson,Kimberly F.

    2016-01-01

    Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. While SLS's super-heavy launch vehicle predecessor, the Saturn V, was used for only two types of missions - launching Apollo spacecraft to the moon and lofting the Skylab space station into Earth orbit - NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. With a 5-meter (m) fairing consistent with contemporary Evolved Expendable Launch Vehicles (EELVs), the Block 1 configuration can also deliver science payloads to high-characteristic-energy (C3) trajectories to the outer solar system. With the addition of an upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a new class of secondary payloads, larger than today's cubesats. The evolved configurations of SLS, including both Block 1B and the 130 t Block 2, also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk and operational costs associated with shorter transit time to destination and reduced risk and complexity associated with launching large systems either monolithically or in fewer components. As this paper will demonstrate, SLS represents a unique new capability for spaceflight, and an opportunity to reinvent space by developing out-of-the-box missions and mission designs unlike any flown before.

  16. Final safety analysis report for the Galileo Mission: Volume 2: Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) will be used as the prime source of electric power for the spacecraft on the Galileo mission. The use of radioactive material in these missions necessitates evaluations of the radiological risks that may be encountered by launch complex personnel and by the Earth's general population resulting from postulated malfunctions or failures occurring in the mission operations. The purpose of the Final Safety Analysis Report (FSAR) is to present the analyses and results of the latest evaluation of the nuclear safety potential of the GPHS-RTG as employed in the Galileo mission. Thismore » evaluation is an extension of earlier work that addressed the planned 1986 launch using the Space Shuttle Vehicle with the Centaur as the upper stage. This extended evaluation represents the launch by the Space Shuttle/IUS vehicle. The IUS stage has been selected as the vehicle to be used to boost the Galileo spacecraft into the Earth escape trajectory after the parking orbit is attained.« less

  17. Illustration of Ares V Launch Vehicle With Call Outs

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The NASA developed Ares rockets, named for the Greek god associated with Mars, will return humans to the moon and later take them to Mars and other destinations. This is an illustration of the Ares V with call outs. The Ares V is a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I and past Apollo vehicles. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Ares V is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of January 2007.

  18. Crew Launch Vehicle (CLV) Avionics and Software Integration Overview

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Flynn, Kevin C.; Maroney, Johnny

    2006-01-01

    On January 14, 2004, the President of the United States announced a new plan to explore space and extend a human presence across our solar system. The National Aeronautics and Space Administration (NASA) established the Exploration Systems Mission Directorate (ESMD) to develop and field a Constellation Architecture that will bring the Space Exploration vision to fruition. The Constellation Architecture includes a human-rated Crew Launch Vehicle (CLV) segment, managed by the Marshall Space Flight Center (MSFC), comprised of the First Stage (FS), Upper Stage (US), and Upper Stage Engine (USE) elements. The CLV s purpose is to provide safe and reliable crew and cargo transportation into Low Earth Orbit (LEO), as well as insertion into trans-lunar trajectories. The architecture's Spacecraft segment includes, among other elements, the Crew Exploration Vehicle (CEV), managed by the Johnson Space Flight Center (JSC), which is launched atop the CLV. MSFC is also responsible for CLV and CEV stack integration. This paper provides an overview of the Avionics and Software integration approach (which includes the Integrated System Health Management (ISHM) functions), both within the CLV, and across the CEV interface; it addresses the requirements to be met, logistics of meeting those requirements, and the roles of the various groups. The Avionics Integration and Vehicle Systems Test (ANST) Office was established at the MSFC with system engineering responsibilities for defining and developing the integrated CLV Avionics and Software system. The AIVST Office has defined two Groups, the Avionics and Software Integration Group (AVSIG), and the Integrated System Simulation and Test Integration Group (ISSTIG), and four Panels which will direct trade studies and analyses to ensure the CLV avionics and software meet CLV system and CEV interface requirements. The four panels are: 1) Avionics Integration Panel (AIP), 2) Software Integration Panel, 3) EEE Panel, and 4) Systems Simulation and Test Panel. Membership on the groups and panels includes the MSFC representatives from the requisite engineering disciplines, the First Stage, the Upper Stage, the Upper Stage Engine projects, and key personnel from other NASA centers. The four panels will take the results of trade studies and analyses and develop documentation in support of Design Analysis Cycle Reviews and ultimately the System Requirements Review.

  19. Powered Explicit Guidance Modifications and Enhancements for Space Launch System Block-1 and Block-1B Vehicles

    NASA Technical Reports Server (NTRS)

    Von der Porten, Paul; Ahmad, Naeem; Hawkins, Matt; Fill, Thomas

    2018-01-01

    NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. NASA is also currently designing the next evolution of SLS, the Block-1B. The Block-1 and Block-1B vehicles will use the Powered Explicit Guidance (PEG) algorithm (of Space Shuttle heritage) for closed loop guidance. To accommodate vehicle capabilities and design for future evolutions of SLS, modifications were made to PEG for Block-1 to handle multi-phase burns, provide PEG updated propulsion information, and react to a core stage engine out. In addition, due to the relatively low thrust-to-weight ratio of the Exploration Upper Stage (EUS) and EUS carrying out Lunar Vicinity and Earth Escape missions, certain enhancements to the Block-1 PEG algorithm are needed to perform Block-1B missions to account for long burn arcs and target translunar and hyperbolic orbits. This paper describes the design and implementation of modifications to the Block-1 PEG algorithm as compared to Space Shuttle. Furthermore, this paper illustrates challenges posed by the Block-1B vehicle and the required PEG enhancements. These improvements make PEG capable for use on the SLS Block-1B vehicle as part of the Guidance, Navigation, and Control (GN&C) System.

  20. Ares I-X: On the Threshold of Exploration

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Askins, Bruce

    2009-01-01

    Ares I-X, the first flight of the Ares I crew launch vehicle, is less than a year from launch. Ares I-X will test the flight characteristics of Ares I from liftoff to first stage separation and recovery. The flight also will demonstrate the computer hardware and software (avionics) needed to control the vehicle; deploy the parachutes that allow the first stage booster to land in the ocean safely; measure and control how much the rocket rolls during flight; test and measure the effects of first stage separation; and develop and try out new ground handling and rocket stacking procedures in the Vehicle Assembly Building (VAB) and first stage recovery procedures at Kennedy Space Center (KSC) in Florida. All Ares I-X major elements have completed their critical design reviews, and are nearing final fabrication. The first stage--four-segment solid rocket booster from the Space Shuttle inventory--incorporates new simulated forward structures to match the Ares I five-segment booster. The upper stage, Orion crew module, and launch abort system will comprise simulator hardware that incorporates developmental flight instrumentation for essential data collection during the mission. The upper stage simulator consists of smaller cylindrical segments, which were transported to KSC in fall 2008. The crew module and launch abort system simulator were shipped in December 2008. The first stage hardware, active roll control system (RoCS), and avionics components will be delivered to KSC in 2009. This paper will provide detailed statuses of the Ares I-X hardware elements as NASA's Constellation Program prepares for this first flight of a new exploration era in the summer of 2009.

  1. A Supersonic/Hypersonic Aerodynamic Investigation of the Saturn 1B/Apollo Upper Stage

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The static stability and axial force characteristics of an upper stage Saturn 1B/Apollo model were investigated in a series of wind tunnel tests at Mach numbers between 1. 93 and 8. 05. This report presents and analyzes the results of these small-scale studies. Test procedures and models are described, and consideration of boundary layer characteristics and violated modeling rules yields an assessment of the validity of the data. Four basic models provided evaluation of the basic launch vehicle characteristics, as well as the effects of two modes of mission abort and jettison of the launch escape system. The launch configuration experienced sudden, strong changes in stability derivatives and axial force coefficients near Mach 5. No similar changes were observed on the other configurations. Effects of Reynolds number, Mach number and boundary layer trips were obtained for each shape. The faired curves are believed to be valid for full-scale flight of the Saturn 1B/Apollo upper stage.

  2. Ares I-X Flight Test - On the Fast Track to the Future

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Robinson, Kimberly F.

    2008-01-01

    In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will send humans to the Moon and beyond. Personnel from the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for an April 2009 launch. Ares I-X will be a suborbital development flight test that will gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future flights; and demonstrate the first stage recovery system. NASA also will modify the launch infrastructure and ground and mission operations. The Ares I-X Flight Test Vehicle (FTV) will incorporate flight and mockup hardware similar in mass and weight to the operational vehicle. It will be powered by a four-segment Solid Rocket Booster (SRB), which is currently in Shuttle inventory, and will include a fifth spacer segment and new forward structures to make the booster approximately the same size and weight as the five-segment SRB. The Ares I-X flight profile will closely approximate the flight conditions that the Ares I will experience through Mach 4.5, up to approximately130,OOO feet and through maximum dynamic pressure ("Max Q") of approximately 800 pounds per square foot. Data from the Ares I-X flight will support the Ares I Critical Design Review (CDR), scheduled for 2010. Work continues on Ares I-X design and hardware fabrication. All of the individual elements are undergoing CDRs, followed by an integrated vehicle CDR in March 2008. The various hardware elements are on schedule to begin deliveries to Kennedy Space Center (KSC) in early September 2008.

  3. KSC-2009-4444

    NASA Image and Video Library

    2009-08-04

    CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building's High Bay 3 at NASA's Kennedy Space Center in Florida, a crane lowers Super Stack 2, part of the Ares I-X upper stage, for integration with Super Stack 1. The upper stage comprises five super stacks, which are integrated with the four-segment solid rocket booster first stage on the mobile launch platform. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The Ares I-X flight test is targeted for Oct. 31, pending formal NASA Headquarters approval. Photo credit: NASA/Tim Jacobs

  4. Status of NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA's Space Launch System (SLS) continued to make significant progress in 2015 and 2016, completing hardware and testing that brings NASA closer to a new era of deep space exploration. Programmatically, SLS completed Critical Design Review (CDR) in 2015. A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just five years after program start, every major element has amassed development and flight hardware and completed key tests that will lead to an accelerated pace of manufacturing and testing in 2016 and 2017. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The existing fleet of RS-25 engines is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with a fifth propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100t and, ultimately, to 130t. Among the program's major 2015-2016 accomplishments were two booster qualification hotfire tests, a series of RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the completion of welding for all qualification and flight EM-1 core stage components and testing of flight avionics, completion of core stage structural test stands, casting of the EM-1 solid rocket motors, additional testing of RS-25 engines and flight engine controllers This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  5. Status of NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Cook, Jerry; Lyles, Garry

    2016-01-01

    NASA's Space Launch System (SLS) continued to make significant progress in 2015, completing hardware and testing that brings NASA closer to a new era of deep space exploration. The most significant program milestone of the year was completion of Critical Design Review (CDR). A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just four years after program start, every major element has amassed development and flight hardware and completed key tests that will set the stage for a growing schedule of manufacturing and testing in 2016. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The space shuttle-heritage RS-25 engine is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with an additional propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100 metric tons and, ultimately, to 130 metric tons. Among the program's major accomplishments in 2015 were the first booster qualification hotfire test, a series of seven RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the second booster qualification motor hotfire, flight and additional development RS-25 engine tests, and completion of core stage test articles and test stands and several flight article sections. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  6. Status of NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Lyles, Garry

    2016-01-01

    NASA's Space Launch System (SLS) continued to make significant progress in 2015, completing hardware and testing that brings NASA closer to a new era of deep space exploration. The most significant program milestone of the year was completion of Critical Design Review (CDR). A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just four years after program start, every major element has amassed development and flight hardware and completed key tests that will set the stage for a growing schedule of manufacturing and testing in 2016. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The space shuttle-heritage RS-25 engine is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with an additional propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100t and, ultimately, to 130t. Among the program's major accomplishments in 2015 were the first booster qualification hotfire test, a series of seven RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the second booster qualification motor hotfire, flight and additional development RS-25 engine tests, and completion of core stage test articles and test stands and several flight article sections. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  7. Draft environmental impact statement for the Galileo Mission (Tier 2)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This Draft Environmental Impact Statement (DEIS) addresses the environmental impacts which may be caused by the preparation and operation of the Galileo spacecraft, including its planned launch on the Space Transportation System (STS) Shuttle and the alternative of canceling further work on the mission. The launch configuration will use the STS/Inertial Upper Stage (IUS)/Payload Assist Module-Special (PAM-S) combination. The Tier 1 EIS included a delay alternative which considered the Titan 4 launch vehicle as an alternative booster stage for launch in 1991 or later. However, the U.S. Air Force, which procures the Titan 4 for NASA, could not provide a Titan 4 vehicle for the 1991 launch opportunity because of high priority Department of Defense requirements. The only expected environmental effects of the proposed action are associated with normal Shuttle launch operations. These impacts are limited largely to the near-field at the launch pad, except for temporary stratospheric ozone effects during launch and occasional sonic boom effects near the landing site. These effects have been judged insufficient to preclude Shuttle launches. In the event of: (1) an accident during launch, or (2) reentry of the spacecraft from earth orbit, there are potential adverse health and environmental effects associated with the possible release of plutonium dioxide from the spacecraft's radioisotope thermoelectric generators (RTG).

  8. Planetary/DOD entry technology flight experiments. Volume 2: Planetary entry flight experiments

    NASA Technical Reports Server (NTRS)

    Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.

    1976-01-01

    The technical feasibility of launching a high speed, earth entry vehicle from the space shuttle to advance technology for the exploration of the outer planets' atmospheres was established. Disciplines of thermodynamics, orbital mechanics, aerodynamics propulsion, structures, design, electronics and system integration focused on the goal of producing outer planet environments on a probe shaped vehicle during an earth entry. Major aspects of analysis and vehicle design studied include: planetary environments, earth entry environment capability, mission maneuvers, capabilities of shuttle upper stages, a comparison of earth entry planetary environments, experiment design and vehicle design.

  9. Ares I-X: First Step in a New Era of Exploration

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.

    2010-01-01

    Since 2005, NASA's Constellation Program has been designing, building, and testing the next generation of launch and space vehicles to carry humans beyond low-Earth orbit (LEO). On October 28, 2009, the Ares Projects successfully launched the first suborbital development flight test of the Ares I crew launch vehicle, Ares I-X, from Kennedy Space Center (KSC). Although the final Constellation Program architecture is under review, data and lessons obtained from Ares I-X can be applied to any launch vehicle. This presentation will discuss the mission background and future impacts of the flight. Ares I is designed to carry up to four astronauts to the International Space Station (ISS). It also can be used with the Ares V cargo launch vehicle for a variety of missions beyond LEO. The Ares I-X development flight test was conceived in 2006 to acquire early engineering, operations, and environment data during liftoff, ascent, and first stage recovery. Engineers are using the test flight data to improve the Ares I design before its critical design review the final review before manufacturing of the flight vehicle begins. The Ares I-X flight test vehicle incorporated a mix of flight and mockup hardware, reflecting a similar length and mass to the operational vehicle. It was powered by a four-segment SRB from the Space Shuttle inventory, and was modified to include a fifth, spacer segment that made the booster approximately the same size as the five-segment SRB. The Ares I-X flight closely approximated flight conditions the Ares I will experience through Mach 4.5, performing a first stage separation at an altitude of 125,000 feet and reaching a maximum dynamic pressure ("Max Q") of approximately 850 pounds per square foot. The Ares I-X Mission Management Office (MMO) was organized functionally to address all the major test elements, including: first stage, avionics, and roll control (Marshall Space Flight Center); upper stage simulator (Glenn Research Center); crew module/launch abort system simulator (Langley Research Center); and ground systems and operations (KSC). Interfaces between vehicle elements and vehicle-ground elements, as well as environment analyses were performed by a systems engineering and integration team at Langley. Experience and lessons learned from these integrated product teams area are already being integrated into the Ares Projects to support the next generation of exploration launch vehicles.

  10. Weather impacts on space operations

    NASA Astrophysics Data System (ADS)

    Madura, J.; Boyd, B.; Bauman, W.; Wyse, N.; Adams, M.

    The efforts of the 45th Weather Squadron of the USAF to provide weather support to Patrick Air Force Base, Cape Canaveral Air Force Station, Eastern Range, and the Kennedy Space Center are discussed. Its weather support to space vehicles, particularly the Space Shuttle, includes resource protection, ground processing, launch, and Ferry Flight, as well as consultations to the Spaceflight Meteorology Group for landing forecasts. Attention is given to prelaunch processing weather, launch support weather, Shuttle launch commit criteria, and range safety weather restrictions. Upper level wind requirements are examined. The frequency of hourly surface observations with thunderstorms at the Shuttle landing facility, and lightning downtime at the Titan launch complexes are illustrated.

  11. TROPIX: A solar electric propulsion flight experiment

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark; Hillard, G. Barry; Oleson, Steven R.

    1993-01-01

    The Transfer Orbit Plasma Interaction Experiment (TROPIX) is a proposed scientific experiment and flight demonstration of a solar electric propulsion vehicle. Its mission goals are to significantly increase our knowledge of Earth's magnetosphere and its associated plasma environment and to demonstrate an operational solar electric upper stage (SEUS) for small launch vehicles. The scientific investigations and flight demonstration technology experiments are uniquely interrelated because of the spacecraft's interaction with the surrounding environment. The data obtained will complement previous studies of the Earth's magnetosphere and space plasma environment by supplying the knowledge necessary to attain the strategic objectives of the NASA Office of Space Science. This first operational use of a primary ion propulsion vehicle, designed to withstand the harsh environments from low Earth orbit to geosynchronous Earth orbit, may lead to the development of a new class of electric propulsion upper stages or space-based transfer vehicles and may improve future spacecraft design and safety.

  12. 6. MOBILE LAUNCHER SIDE 4, SHOWING MILK STOOL AND LUT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. MOBILE LAUNCHER SIDE 4, SHOWING MILK STOOL AND LUT. PROTRUSION ON UPPER RIGHT HAND SIDE OF LUT IS SWING ARM NINE WHICH PROVIDED ACCESS TO CAPSULE OF LAUNCH VEHICLE WHILE ON LAUNCHER. - Mobile Launcher One, Kennedy Space Center, Titusville, Brevard County, FL

  13. KSC-2009-1445

    NASA Image and Video Library

    2009-01-31

    CAPE CANAVERAL, Fla. – The Ares I-X roll control system module is revealed after removal of the plastic wrap. The module is in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. Part of the upper stage simulator, the system module is composed to two modules and four thrusters. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller

  14. KSC-2009-1442

    NASA Image and Video Library

    2009-01-31

    CAPE CANAVERAL, Fla. – The Ares I-X roll control system module has been placed on the floor of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida after its arrival. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. Part of the upper stage simulator, the system module is composed to two modules and four thrusters. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller

  15. KSC-2009-1444

    NASA Image and Video Library

    2009-01-31

    CAPE CANAVERAL, Fla. – On the floor of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers start removing the plastic wrap from the Ares I-X roll control system module. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. Part of the upper stage simulator, the system module is composed to two modules and four thrusters. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller

  16. KSC-2009-1443

    NASA Image and Video Library

    2009-01-31

    CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers look at the Ares I-X roll control system module before removing the plastic wrap. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. Part of the upper stage simulator, the system module is composed to two modules and four thrusters. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller

  17. KSC-2009-1441

    NASA Image and Video Library

    2009-01-31

    CAPE CANAVERAL, Fla. – The Ares I-X roll control system module arrives in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The system is designed to perform a 90-degree roll after the rocket clears the launch tower, preventing a roll during flight and maintaining the orientation of the rocket until separation of the upper and first stages. Part of the upper stage simulator, the system module is composed to two modules and four thrusters. The system module will return to earth and splash down; it will not be recovered. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller

  18. Rockot-an available launch system for affordable access to space

    NASA Astrophysics Data System (ADS)

    de Vries, U.; Kinnersley, M.; Freeborn, P.

    2000-01-01

    The Rockot launcher will perform its fifth launch, the first commercial launch, in Spring 2000 from the Plesetsk Cosmodrome in Northern Russia carrying two American satellites into a LEO orbit. In preparation for that a launch pad verification flight will be carried out in November this year to prove the functionality of the adapted facilities at the Plesetsk launch site and by placing a Russian satellite into a highly inclined orbit. The results of the launches will be described in detail in the paper as well as the installations at the launch site. Eurockot, the German-Russian joint-venture company marketing and managing the Rockot launch vehicle is meanwhile an integral part of the space launch community. Eurockot was formed by DaimlerChrysler Aerospace and Khrunichev State Research and Production Space Center. A brief overview of its activities, the commercial program and the performance/services offered by Eurockot is presented. Rockot can launch satellites weighing up to 1850 kg into polar or other low earth orbits (LEO). The Rockot launch vehicle is based on the former Russian SS-19 strategic missile. The first and second stages are inherited from the SS-19, the third stage Breeze which has already been developed has multiple ignition capability. The Breeze upper stage is under production at Khrunichev in Moscow. The Rockot launch system is flight proven and is operated from the Plesetsk as well as from the Baikonur launch site. .

  19. Best Practices from the Design and Development of the Ares I Launch Vehicle Roll and Reaction Control Systems

    NASA Technical Reports Server (NTRS)

    Butt, Adam; Paseur, Lila F.; Pitts, Hank M.

    2012-01-01

    On April 15, 2010 President Barak Obama made the official announcement that the Constellation Program, which included the Ares I launch vehicle, would be canceled. NASA s Ares I launch vehicle was being designed to launch the Orion Crew Exploration Vehicle, returning humans to the moon, Mars, and beyond. It consisted of a First Stage (FS) five segment solid rocket booster and a liquid J-2X Upper Stage (US) engine. Roll control for the FS was planned to be handled by a dedicated Roll Control System (RoCS), located on the connecting interstage. Induced yaw or pitch moments experienced during FS ascent would have been handled by vectoring of the booster nozzle. After FS booster separation, the US Reaction Control System (ReCS) would have provided the US Element with three degrees of freedom control as needed. The best practices documented in this paper will be focused on the technical designs and producibility of both systems along with the partnership between NASA and Boeing, who was on contract to build the Ares I US Element, which included the FS RoCS and US ReCS. In regards to partnership, focus will be placed on integration along with technical work accomplished by Boeing. This will include detailed emphasis on task orders developed between NASA and Boeing that were used to direct specific work that needed to be accomplished. In summary, this paper attempts to capture key best practices that should be helpful in the development of future launch vehicle and spacecraft RCS designs.

  20. KSC-2009-2466

    NASA Image and Video Library

    2009-04-01

    CAPE CANAVERAL, Fla. – In High Bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the Ares I-X upper stage simulator service module/service adapter segment has been installed on a stand. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Kim Shiflett

  1. Designing the Ares I Crew Launch Vehicle Upper Stage Element and Integrating the Stack at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lyles, Garry; Otte, Neil E.

    2008-01-01

    Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, NASA's Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions.' These personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. Currently, only three spacefaring nations have this distinction, including the United States, Russia, and, more recently, China. The U.S. National Space Policy of2006 directs that NASA provide the means to travel to space, and the NASA Appropriations Act of2005 provided the initial funding to begin in earnest to replace the Shuttle after the International Space Station construction is complete in 20 IO? These and other strategic goals and objectives are documented in NASA's 2006 Strategic Plan.3 In 2005, a team of NASA aerospace experts conducted the Exploration Systems Architecture Study, which recommended a two-vehicle approach to America's next space transportation system for missions to the International Space Station in the next decade and to explore the Moon and establish an outpost around the 2020 timeframe.4 Based on this extensive study, NASA selected the Ares I crew launch vehicle configuration and the heavy-lift Ares V cargo launch vehicle (fig 1). This paper will give an overview of NASA's approach to integrating the Ares I vehicle stack using capabilities and assets that are resident in Marshall's Engineering Directorate, working in partnership with other NASA Centers and the U.S. aerospace industry. It also will provide top-level details on the progress of the in-house design of the Ares I vehicle's upper stage element.

  2. Illustration of Ares I and Ares V Launch Vehicles

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the vehicle depicted on the left is the Ares I. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to its primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the second stage of the Apollo vehicle will power the Ares V second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. The vehicle illustrated on the right is the Ares V, a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Both vehicles are subject to configuration changes before they are actually launched. This illustration reflects the latest configuration as of September 2006.

  3. KSC-97PC870

    NASA Image and Video Library

    1997-05-30

    A Titan IVB core vehicle and its twin Solid Rocket Motor Upgrades (SRMUs) depart from the Solid Rocket Motor Assembly and Readiness Facility (SMARF), Cape Canaveral Air Station (CCAS), en route to Launch Complex 40. At the pad, the Centaur upper stage will be added and, eventually, the prime payload, the Cassini spacecraft. Cassini will explore the Saturnian system, including the planet’s rings and moon, Titan. Launch of the Cassini mission to Saturn is scheduled for Oct. 6 from Pad 40, CCAS

  4. VANDENBERG AIR FORCE BASE, CALIF. - The SciSat-1 payload, with fairing installed and attached to its Pegasus launch vehicle, begins rollout to the hot pad and mating to the L-1011 carrier aircraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-08-09

    VANDENBERG AIR FORCE BASE, CALIF. - The SciSat-1 payload, with fairing installed and attached to its Pegasus launch vehicle, begins rollout to the hot pad and mating to the L-1011 carrier aircraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  5. VANDENBERG AIR FORCE BASE, CALIF. - The L-1011 carrier aircraft is ready for flight after undergoing a Combined Systems Test, an integrated test involving the Pegasus launch vehicle, SciSat-1 spacecraft and L-1011 aircraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-08-09

    VANDENBERG AIR FORCE BASE, CALIF. - The L-1011 carrier aircraft is ready for flight after undergoing a Combined Systems Test, an integrated test involving the Pegasus launch vehicle, SciSat-1 spacecraft and L-1011 aircraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  6. Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing

    NASA Technical Reports Server (NTRS)

    Tuma, M. L.; Chenevert, D. J.

    2010-01-01

    Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA's next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be leading the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO is responsible for performing the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orionilander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. For the Ares IVGVT, the current plan is to test six configurations in three unique test positions inside TS 4550. Position 1 represents the entire launch stack at liftoff (using inert first stage segments). Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Because of long disuse, TS 4550 is being repaired and reactivated to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. The electrical power distribution system for TS 4550 was upgraded. Two new cranes will help move test articles at the test stand and at the Redstone Arsenal railhead where first stage segments will be received in 2011. The Hydrodynamic Support systems (HDSs) used for Saturn and Shuttle have been disassembled and evaluated for use during IVGVT. Analyses indicate that the 45-year-old HDSs can be refurbished to support the Ares I IVGVT. An alternate concept for a pneumatic suspension system is also being explored. A decision on which suspension system configuration to use for IVGVT will be made in 2010. In the next three years, the team will complete the updates to TS 4550, upgrade the test and data collection equipment, and finalize the configurations of the test articles to be used in the IVGVT. With NASA's GVT capabilities reestablished, the FITO team will be well positioned to perform similar work on Ares V, the largest exploration launch vehicle NASA has ever built. The GVT effort continues NASA's 50-year commitment to using testing and data analysis for safer, more reliable launch vehicles.

  7. ARES I-X USS Fracture Analysis Loads Spectra Development

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis; Mackey, Alden

    2008-01-01

    This report describes the development of a set of bounding load spectra for the ARES I-X launch vehicle. These load spectra are used in the determination of the critical initial flaw size (CIFS) of the welds in the ARES I-X upper stage simulator (USS).

  8. KSC-2010-5293

    NASA Image and Video Library

    2010-10-21

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller

  9. KSC-2010-5290

    NASA Image and Video Library

    2010-10-21

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller

  10. KSC-2010-5292

    NASA Image and Video Library

    2010-10-21

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller

  11. KSC-2010-5291

    NASA Image and Video Library

    2010-10-21

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller

  12. KSC-04pd1567

    NASA Image and Video Library

    2004-07-27

    KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B at Cape Canaveral Air Force Station, the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft is seen atop the Delta II upper stage booster (middle) and the Delta II launch vehicle below. The spacecraft is ready for installation of the fairing, a molded structure that fits flush with the outside surface of the upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Seen on the right is one of the solar panels on the spacecraft. On the left is the heat-resistant, ceramic-cloth sunshade that will protect the spacecraft’s instruments as MESSENGER orbits the Mercury where the surface reaches a high temperature near 840 degrees Fahrenheit and the solar intensity can be 11 times greater than on Earth. MESSENGER is scheduled to launch Aug. 2 and is expected to enter Mercury orbit in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.

  13. Closed Loop Guidance Trade Study for Space Launch System Block-1B Vehicle

    NASA Technical Reports Server (NTRS)

    Von der Porten, Paul; Ahmad, Naeem; Hawkins, Matt

    2018-01-01

    NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. The design of the next evolution of SLS, Block-1B, is well underway. The Block-1B vehicle is more capable overall than Block-1; however, the relatively low thrust-to-weight ratio of the Exploration Upper Stage (EUS) presents a challenge to the Powered Explicit Guidance (PEG) algorithm used by Block-1. To handle the long burn durations (on the order of 1000 seconds) of EUS missions, two algorithms were examined. An alternative algorithm, OPGUID, was introduced, while modifications were made to PEG. A trade study was conducted to select the guidance algorithm for future SLS vehicles. The chosen algorithm needs to support a wide variety of mission operations: ascent burns to LEO, apogee raise burns, trans-lunar injection burns, hyperbolic Earth departure burns, and contingency disposal burns using the Reaction Control System (RCS). Additionally, the algorithm must be able to respond to a single engine failure scenario. Each algorithm was scored based on pre-selected criteria, including insertion accuracy, algorithmic complexity and robustness, extensibility for potential future missions, and flight heritage. Monte Carlo analysis was used to select the final algorithm. This paper covers the design criteria, approach, and results of this trade study, showing impacts and considerations when adapting launch vehicle guidance algorithms to a broader breadth of in-space operations.

  14. Constellation's First Flight Test: Ares I-X

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Askins, Bruce R.

    2010-01-01

    On October 28, 2009, NASA launched Ares I-X, the first flight test of the Constellation Program that will send human beings to the Moon and beyond. This successful test is the culmination of a three-and-a-half-year, multi-center effort to design, build, and fly the first demonstration vehicle of the Ares I crew launch vehicle, the successor vehicle to the Space Shuttle. The suborbital mission was designed to evaluate the atmospheric flight characteristics of a vehicle dynamically similar to Ares I; perform a first stage separation and evaluate its effects; characterize and control roll torque; stack, fly, and recover a solid-motor first stage testing the Ares I parachutes; characterize ground, flight, and reentry environments; and develop and execute new ground hardware and procedures. Built from existing flight and new simulator hardware, Ares I-X integrated a Shuttle-heritage four-segment solid rocket booster for first stage propulsion, a spacer segment to simulate a five-segment booster, Peacekeeper axial engines for roll control, and Atlas V avionics, as well as simulators for the upper stage, crew module, and launch abort system. The mission leveraged existing logistical and ground support equipment while also developing new ones to accommodate the first in-line rocket for flying astronauts since the Saturn IB last flew from Kennedy Space Center (KSC) in 1975. This paper will describe the development and integration of the various vehicle and ground elements, from conception to stacking in KSC s Vehicle Assembly Building; hardware performance prior to, during, and after the launch; and preliminary lessons and data gathered from the flight. While the Constellation Program is currently under review, Ares I-X has and will continue to provide vital lessons for NASA personnel in taking a vehicle concept from design to flight.

  15. Final Environmental Impact Statement for the Ulysses Mission (Tier 2)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This Final (Tier 2) Environmental Impact Statement (FEIS) addresses the environmental impacts which may be caused by implementation of the Ulysses mission, a space flight mission to observe the polar regions of the Sun. The proposed action is completion of preparation and operation of the Ulysses spacecraft, including its planned launch at the earliest available launch opportunity on the Space Transportation System (STS) Shuttle in October 1990 or in the backup opportunity in November 1991. The alternative is canceling further work on the mission. The Tier 1 EIS included a delay alternative which considered the Titan 4 launch vehicle as an alternative booster stage for launch in 1991 or later. This alternative was further evaluated and eliminated from consideration when, in November 1988, the U.S. Air Force, which procures the Titan 4, notified that it could not provide a Titan 4 vehicle for the 1991 launch opportunity because of high priority Department of Defense requirements. The Titan 4 launch vehicle is no longer a feasible alternative to the STS/Inertial Upper Stage (IUS)/Payload Assist Module-Special (PAM-S) for the November 1991 launch opportunity. The only expected environment effects of the proposed action are associated with normal launch vehicle operation and are treated elsewhere. The environmental impacts of normal Shuttle launches were addressed in existing NEPA documentation and are briefly summarized. These impacts are limited largely to the near-field at the launch pad, except for temporary stratospheric ozone effects during launch and occasional sonic boom effects near the landing site. These effects were judged insufficient to preclude Shuttle launches. There could also be environmental impacts associated with the accidental release of radiological material during launch, deployment, or interplanetary trajectory injection of the Ulysses spacecraft. Intensive analysis indicates that the probability of release is small. There are no environmental impacts in the no-action alternative; however, the U.S. Government and the European Space Agency would suffer adverse fiscal and programmatic impacts if this alternative were adopted. The scientific benefits of the mission would be delayed and possibly lost. There could be significant impacts on the ability of the U.S. to negotiate international agreements for cooperative space activities.

  16. KSC-2009-2464

    NASA Image and Video Library

    2009-04-01

    CAPE CANAVERAL, Fla. – In High Bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a large crane lifts the Ares I-X upper stage simulator service module/service adapter segment to move it to a stand. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Kim Shiflett

  17. Mars Sample Return mission: Two alternate scenarios

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Two scenarios for accomplishing a Mars Sample Return mission are presented herein. Mission A is a low cost, low mass scenario, while Mission B is a high technology, high science alternative. Mission A begins with the launch of one Titan IV rocket with a Centaur G' upper stage. The Centaur performs the trans-Mars injection burn and is then released. The payload consists of two lander packages and the Orbital Transfer Vehicle, which is responsible for supporting the landers during launch and interplanetary cruise. After descending to the surface, the landers deploy small, local rovers to collect samples. Mission B starts with 4 Titan IV launches, used to place the parts of the Planetary Transfer Vehicle (PTV) into orbit. The fourth launch payload is able to move to assemble the entire vehicle by simple docking routines. Once complete, the PTV begins a low thrust trajectory out from low Earth orbit, through interplanetary space, and into low Martian orbit. It deploys a communication satellite into a 1/2 sol orbit and then releases the lander package at 500 km altitude. The lander package contains the lander, the Mars Ascent Vehicle (MAV), two lighter than air rovers (called Aereons), and one conventional land rover. The entire package is contained with a biconic aeroshell. After release from the PTV, the lander package descends to the surface, where all three rovers are released to collect samples and map the terrain.

  18. The Art and Science of Systems Engineering

    NASA Technical Reports Server (NTRS)

    Singer, Christopher E.

    2009-01-01

    The National Aeronautics and Space Administration (NASA) was established in 1958, and its Marshall Space Flight Center was founded in 1960, as space-related work was transferred from the Army Ballistic Missile Agency at Redstone Arsenal, where Marshall is located. With this heritage, Marshall contributes almost 50 years of systems engineering experience with human-rated launch vehicles and scientific spacecraft to fulfill NASA's mission exploration and discovery. These complex, highly specialized systems have provided vital platforms for expanding the knowledge base about Earth, the solar system, and cosmos; developing new technologies that also benefit life on Earth; and opening new frontiers for America's strategic space goals. From Mercury and Gemini, to Apollo and the Space Shuttle, Marshall's systems engineering expertise is an unsurpassed foundational competency for NASA and the nation. Current assignments comprise managing Space Shuttle Propulsion systems; developing environmental control and life support systems and coordinating science operations on the International Space Station; and a number of exploration-related responsibilities. These include managing and performing science missions, such as the Lunar Crater Observation and Sensing Satellite and the Lunar Reconnaissance Orbiter slated to launch for the Moon in April 2009, to developing the Ares I crew launch vehicle upper stage and integrating the vehicle stack in house, as well as designing the Ares V cargo launch vehicle and contributing to the development of the Altair Lunar Lander and an International Lunar Network with communications nodes and other infrastructure.

  19. The satellite power system - Assessment of the environmental impact on middle atmosphere composition and on climate

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Borucki, W. J.; Park, C.; Pfister, L.; Woodward, H. T.; Turco, R. P.; Capone, L. A.; Riegel, C. A.; Kropp, T.

    1982-01-01

    Numerical models were developed to calculate the total deposition of watervapor, hydrogen, CO2, CO, SO2, and NO in the middle atmosphere from operation of heavy lift launch vehicles (HLLV) used to build a satellite solar power system (SPS). The effects of the contaminants were examined for their effects on the upper atmosphere. One- and two-dimensional models were formulated for the photochemistry of the upper atmosphere and for rocket plumes and reentry. An SPS scenario of 400 launches per year for 10 yr was considered. The build-up of the contaminants in the atmosphere was projected to have no significant effects, even at the launch latitude. Neither would there by any dangerous ozone depletion. It was found that H, OH, and HO2 species would double in the thermosphere. No measurable changes in climate were foreseen.

  20. KSC-05pd2547

    NASA Image and Video Library

    2005-12-01

    KENNEDY SPACE CENTER, FLA. - In NASA Kennedy Space Center’s Payload Hazardous Servicing Facility, Boeing workers attach a crane to the top of the cover surrounding the third stage, or upper stage, for the New Horizons spacecraft. The third stage is a Boeing STAR 48 solid-propellant kick motor. The launch vehicle for New Horizons is the Atlas V rocket, scheduled to launch from Cape Canaveral Air Force Station, Fla., during a 35-day window that opens Jan. 11, and fly through the Pluto system as early as summer 2015.

  1. Ares I-X Flight Test--The Future Begins Here

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Robinson, Kimberly F.

    2008-01-01

    In less than one year, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will send humans to the Moon and beyond. Personnel from the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for a 2009 launch. Ares I-X will be a suborbital development flight test that will gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future flights; and demonstrate the first stage recovery system. NASA also will modify the launch infrastructure and ground and mission operations. The Ares I-X Flight Test Vehicle (FTV) will incorporate flight and mockup hardware similar in mass and weight to the operational vehicle. It will be powered by a four-segment Solid Rocket Booster (SRB), which is currently in Shuttle inventory, and will include a fifth spacer segment and new forward structures to make the booster approximately the same size and weight as the five-segment SRB. The Ares I-X flight profile will closely approximate the flight conditions that the Ares I will experience through Mach 4.5, up to approximately 130,000 feet (39,600 meters (m)) and through maximum dynamic pressure ('Max Q') of approximately 800 pounds per square foot (38.3 kilopascals (kPa)). Data from the Ares I-X flight will support the Ares I Critical Design Review (CDR), scheduled for 2010. Work continues on Ares I-X design and hardware fabrication. All of the individual elements are undergoing CDRs, followed by a two-part integrated vehicle CDR in March and July 2008. The various hardware elements are on schedule to begin deliveries to Kennedy Space Center (KSC) in early September 2008. Ares I-X is the first step in the long journey to the Moon and farther destinations. This suborbital test will be NASA's first flight of a new human-rated launch vehicle in more than a generation. This promises to be an exciting time for NASA and the nation, as we reach for new goals in space exploration. A visual presentation is included.

  2. A-3 First Tree Cutting

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Tree clearing for the site of the new A-3 Test Stand at Stennis Space center began June 13. NASA's first new large rocket engine test stand to be built since the site's inception, A-3 construction begins a historic era for America's largest rocket engine test complex. The 300-foot-tall structure is scheduled for completion in August 2010. A-3 will perform altitude tests on the Constellation's J-2X engine that will power the upper stage of the Ares I crew launch vehicle and earth departure stage of the Ares V cargo launch vehicle. The Constellation Program, NASA's plan for carrying out the nation's Vision for Space Exploration, will return humans to the moon and eventually carry them to Mars and beyond.

  3. A-3 First Tree Cutting

    NASA Image and Video Library

    2007-06-13

    Tree clearing for the site of the new A-3 Test Stand at Stennis Space center began June 13. NASA's first new large rocket engine test stand to be built since the site's inception, A-3 construction begins a historic era for America's largest rocket engine test complex. The 300-foot-tall structure is scheduled for completion in August 2010. A-3 will perform altitude tests on the Constellation's J-2X engine that will power the upper stage of the Ares I crew launch vehicle and earth departure stage of the Ares V cargo launch vehicle. The Constellation Program, NASA's plan for carrying out the nation's Vision for Space Exploration, will return humans to the moon and eventually carry them to Mars and beyond.

  4. Space transfer vehicle concepts and requirements study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    A description of the study in terms of background, objectives, and issues is provided. NASA is currently studying new initiatives of space exploration involving both piloted and unpiloted missions to destinations throughout the solar system. Many of these missions require substantial improvements in launch vehicle and upper stage capabilities. This study provides a focused examination of the Space Transfer Vehicles (STV) required to perform these missions using the emerging national launch vehicle definition, the Space Station Freedom (SSF) definition, and the latest mission scenario requirements. The study objectives are to define preferred STV concepts capable of accommodating future exploration missions in a cost-effective manner, determine the technology development (if any) required to perform these missions, and develop a decision database of various programmatic approaches for the development of the STV family of vehicles. Special emphasis was given to examining space basing (stationing reusable vehicles at a space station), examining the piloted lunar mission as a primary design mission, and restricting trade studies to the high-performance, near-term cryogenics (LO2/LH2) as vehicle propellant. The study progressed through three distinct 6-month phases. The first phase concentrated on supporting a NASA 3 month definition of exploration requirements (the '90-day study') and during this phase developed and optimized the space-based point-of-departure (POD) 2.5-stage lunar vehicle. The second phase developed a broad decision database of 95 different vehicle options and transportation architectures. The final phase chose the three most cost-effective architectures and developed point designs to carry to the end of the study. These reference vehicle designs are mutually exclusive and correspond to different national choices about launch vehicles and in-space reusability. There is, however, potential for evolution between concepts.

  5. Waterhammer Modeling for the Ares I Upper Stage Reaction Control System Cold Flow Development Test Article

    NASA Technical Reports Server (NTRS)

    Williams, Jonathan H.

    2010-01-01

    The Upper Stage Reaction Control System provides three-axis attitude control for the Ares I launch vehicle during active Upper Stage flight. The system design must accommodate rapid thruster firing to maintain the proper launch trajectory and thus allow for the possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates an increase in static pressure, known as waterhammer, which propagates throughout the propellant system at pressures exceeding nominal design values. A series of development tests conducted in the fall of 2009 at Marshall Space Flight Center were performed using a water-flow test article to better understand fluid performance characteristics of the Upper Stage Reaction Control System. A subset of the tests examined waterhammer along with the subsequent pressure and frequency response in the flight-representative system and provided data to anchor numerical models. This thesis presents a comparison of waterhammer test results with numerical model and analytical results. An overview of the flight system, test article, modeling and analysis are also provided.

  6. NASA's Space Launch System: Development and Progress

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA is embarked on a new era of space exploration that will lead to new capabilities, new destinations, and new discoveries by both human and robotic explorers. Today, the International Space Station (ISS), supported by NASA's commercial partners, and robotic probes, are yielding knowledge that will help make this exploration possible. NASA is developing both the Orion crew vehicle and the Space Launch System (SLS) that will carry out a series of increasingly challenging missions that will eventually lead to human exploration of Mars. This paper will discuss the development and progress on the SLS. The SLS architecture was designed to be safe, affordable, and sustainable. The current configuration is the result of literally thousands of trade studies involving cost, performance, mission requirements, and other metrics. The initial configuration of SLS, designated Block 1, will launch a minimum of 70 metric tons (t) into low Earth orbit - significantly greater capability than any current launch vehicle. It is designed to evolve to a capability of 130 t through the use of upgraded main engines, advanced boosters, and a new upper stage. With more payload mass and volume capability than any rocket in history, SLS offers mission planners larger payloads, faster trip times, simpler design, shorter design cycles, and greater opportunity for mission success. Since the program was officially created in fall 2011, it has made significant progress toward first launch readiness of the Block 1 vehicle in 2018. Every major element of SLS continued to make significant progress in 2015. The Boosters element fired Qualification Motor 1 (QM-1) in March 2015, to test the 5-segment motor, including new insulation, joint, and propellant grain designs. The Stages element marked the completion of more than 70 major components of test article and flight core stage tanks. The Liquid Engines element conducted seven test firings of an RS-25 engine under SLS conditions. The Spacecraft/Payload Integration and Evolution element marked completion of the upper stage test article. Major work continues in 2016 as the program continues both flight and development RS-25 engine testing, begins welding test article and flight core stage tanks, completes stage adapter manufacturing, and test fires the second booster qualification motor. This paper will discuss the program's key accomplishments to date and the challenging work ahead for what will be the world's most capable launch vehicle.

  7. Determining the Probability of Violating Upper-Level Wind Constraints for the Launch of Minuteman III Ballistic Missiles at Vandenberg Air Force Base

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn A.; Brock, Tyler M.

    2012-01-01

    The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman Ill ballistic missile. The 30 OSSWF tasked the Applied Meteorology Unit (AMU) to analyze VAFB sounding data with the goal of determining the probability of violating (PoV) their upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a tool that will calculate the PoV of each constraint on the day of launch. In order to calculate the probability of exceeding each constraint, the AMU collected and analyzed historical data from VAFB. The historical sounding data were retrieved from the National Oceanic and Atmospheric Administration Earth System Research Laboratory archive for the years 1994-2011 and then stratified into four sub-seasons: January-March, April-June, July-September, and October-December. The AMU determined the theoretical distributions that best fit the maximum wind speed and maximum wind shear datasets and applied this information when calculating the averages and standard deviations needed for the historical and real-time PoV calculations. In addition, the AMU included forecast sounding data from the Rapid Refresh model. This information provides further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours on the day of launch. The AMU developed an interactive graphical user interface (GUI) in Microsoft Excel using Visual Basic for Applications. The GUI displays the critical sounding data easily and quickly for LWOs on day of launch. This tool will replace the existing one used by the 30 OSSWF, assist the LWOs in determining the probability of exceeding specific wind threshold values, and help to improve the overall upper winds forecast for the launch customer. This presentation will describe how the AMU calculated the historical and real-time PoV values for the specific upper-level wind launch constraints and outline the development of the interactive GUI display.

  8. From Paper to Production: An Update on NASA's Upper Stage Engine for Exploration

    NASA Technical Reports Server (NTRS)

    Kynard, Mike

    2010-01-01

    In 2006, NASA selected an evolved variant of the proven Saturn/Apollo J-2 upper stage engine to power the Ares I crew launch vehicle upper stage and the Ares V cargo launch vehicle Earth departure stage (EDS) for the Constellation Program. Any design changes needed by the new engine would be based where possible on proven hardware from the Space Shuttle, commercial launchers, and other programs. In addition to the thrust and efficiency requirements needed for the Constellation reference missions, it would be an order of magnitude safer than past engines. It required the J-2X government/industry team to develop the highest performance engine of its type in history and develop it for use in two vehicles for two different missions. In the attempt to achieve these goals in the past five years, the Upper Stage Engine team has made significant progress, successfully passing System Requirements Review (SRR), System Design Review (SDR), Preliminary Design Review (PDR), and Critical Design Review (CDR). As of spring 2010, more than 100,000 experimental and development engine parts have been completed or are in various stages of manufacture. Approximately 1,300 of more than 1,600 engine drawings have been released for manufacturing. This progress has been due to a combination of factors: the heritage hardware starting point, advanced computer analysis, and early heritage and development component testing to understand performance, validate computer modeling, and inform design trades. This work will increase the odds of success as engine team prepares for powerpack and development engine hot fire testing in calendar 2011. This paper will provide an overview of the engine development program and progress to date.

  9. Design of a ram accelerator mass launch system

    NASA Technical Reports Server (NTRS)

    Aarnio, Michael; Armerding, Calvin; Berschauer, Andrew; Christofferson, Erik; Clement, Paul; Gohd, Robin; Neely, Bret; Reed, David; Rodriguez, Carlos; Swanstrom, Fredrick

    1988-01-01

    The ram accelerator mass launch system has been proposed to greatly reduce the costs of placing acceleration-insensitive payloads into low earth orbit. The ram accelerator is a chemically propelled, impulsive mass launch system capable of efficiently accelerating relatively large masses from velocities of 0.7 km/sec to 10 km/sec. The principles of propulsion are based on those of a conventional supersonic air-breathing ramjet; however the device operates in a somewhat different manner. The payload carrying vehicle resembles the center-body of the ramjet and accelerates through a stationary tube which acts as the outer cowling. The tube is filled with premixed gaseous fuel and oxidizer mixtures that burn in the vicinity of the vehicle's base, producing a thrust which accelerates the vehicle through the tube. This study examines the requirement for placing a 2000 kg vehicle into a 500 km circular orbit with a minimum amount of on-board rocket propellant for orbital maneuvers. The goal is to achieve a 50 pct payload mass fraction. The proposed design requirements have several self-imposed constraints that define the vehicle and tube configurations. Structural considerations on the vehicle and tube wall dictate an upper acceleration limit of 1000 g's and a tube inside diameter of 1.0 m. In-tube propulsive requirements and vehicle structural constraints result in a vehicle diameter of 0.76 m, a total length of 7.5 m and a nose-cone half angle of 7 degrees. An ablating nose-cone constructed from carbon-carbon composite serves as the thermal protection mechanism for atmospheric transit.

  10. n/a

    NASA Image and Video Library

    1963-03-28

    The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch Complex 34, March 28, 1963. The fourth launch of Saturn launch vehicles developed at the Marshall Space Flight Center (MSFC), under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. Like SA-3, the SA-4 flight’s upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for "Project Highwater" physics experiment. Release of this vast quantity of water in a near-space environment marked the second purely scientific large-scale experiment. The SA-4 was the last Block I rocket launch.

  11. n/a

    NASA Image and Video Library

    1963-03-28

    The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch Complex 34, March 28, 1963. The fourth launch of Saturn launch vehicles, developed at the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. Like SA-3, the SA-4 flight’s upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for "Project Highwater" physics experiment. Release of this vast quantity of water in a near-space environment marked the second purely scientific large-scale experiment. The SA-4 was the last Block I rocket launch.

  12. KSC-2009-2463

    NASA Image and Video Library

    2009-04-01

    CAPE CANAVERAL, Fla. –In High Bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a large crane is attached to the Ares I-X upper stage simulator service module/service adapter segment to lift and move it to a stand. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Kim Shiflett

  13. KSC-2009-2465

    NASA Image and Video Library

    2009-04-01

    CAPE CANAVERAL, Fla. – In High Bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a large crane moves the Ares I-X upper stage simulator service module/service adapter segment toward a stand. Other segments are placed and stacked on the floor around it. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Kim Shiflett

  14. KSC-2009-2467

    NASA Image and Video Library

    2009-04-01

    CAPE CANAVERAL, Fla. – In High Bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the Ares I-X upper stage simulator service module/service adapter (left, center) has been installed on a stand. Other segments are placed and stacked on the floor around it. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Kim Shiflett

  15. An Updated Zero Boil-Off Cryogenic Propellant Storage Analysis Applied to Upper Stages or Depots in a LEO Environment

    NASA Technical Reports Server (NTRS)

    Plachta, David; Kittel, Peter

    2003-01-01

    Previous efforts have shown the analytical benefits of zero boil-off (ZBO) cryogenic propellant storage in launch vehicle upper stages of Mars transfer vehicles for conceptual Mars Missions. However, recent NASA mission investigations have looked at a different and broad array of missions, including a variety of orbit transfer vehicle (OTV) propulsion concepts, some requiring cryogenic storage. For many of the missions, this vehicle will remain for long periods (greater than one week) in low earth orbit (LEO), a relatively warm thermal environment. Under this environment, and with an array of tank sizes and propellants, the performance of a ZBO cryogenic storage system is predicted and compared with a traditional, passive-only storage concept. The results show mass savings over traditional, passive-only cryogenic storage when mission durations are less than one week in LEO for oxygen, two weeks for methane, and roughly 2 months for LH2. Cryogenic xenon saves mass over passive storage almost immediately.

  16. VANDENBERG AIR FORCE BASE, CALIF. - At Vandenberg Air Force Base, Calif., the Pegasus launch vehicle is moved toward its hangar. The Pegasus will carry the SciSat-1 spacecraft in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-06-26

    VANDENBERG AIR FORCE BASE, CALIF. - At Vandenberg Air Force Base, Calif., the Pegasus launch vehicle is moved toward its hangar. The Pegasus will carry the SciSat-1 spacecraft in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  17. KSC-07pd1655

    NASA Image and Video Library

    2007-06-27

    KENNEDY SPACE CENTER, FLA. -- NASA's Dawn spacecraft, mated to the Delta II upper stage booster, arrives at Launch Pad 17-B at Cape Canaveral Air Force Station. It will be lifted into the mobile service tower for mating to the Delta II launch vehicle. Launch is scheduled for July 7. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA's first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.

  18. KSC-07pd1657

    NASA Image and Video Library

    2007-06-27

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 17-B, at Cape Canaveral Air Force Station, workers attach a crane to NASA's Dawn spacecraft mated to the Delta II upper stage booster, in preparation for stacking with the Delta II launch vehicle. Launch is scheduled for July 7. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA's first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.

  19. KSC-05pd2542

    NASA Image and Video Library

    2005-12-01

    KENNEDY SPACE CENTER, FLA. - Inside NASA Kennedy Space Center’s Payload Hazardous Servicing Facility, workers push the newly arrived third stage, or upper stage for the New Horizons spacecraft, into position for uncovering. The third stage is a Boeing STAR 48 solid-propellant kick motor. The Atlas V is the launch vehicle for NASA’s New Horizons spacecraft, scheduled to launch from Cape Canaveral Air Force Station, Fla., during a 35-day window that opens Jan. 11 and fly through the Pluto system as early as summer 2015. New Horizons will be powered by a single radioisotope thermoelectric generator (RTG), provided by the Department of Energy, which will be installed shortly before launch.

  20. KSC-05pd2539

    NASA Image and Video Library

    2005-12-01

    KENNEDY SPACE CENTER, FLA. - Before dawn, the third stage, or upper stage for the New Horizons spacecraft, arrives at NASA Kennedy Space Center’s Payload Hazardous Servicing Facility. The third stage is a Boeing STAR 48 solid-propellant kick motor. The Atlas V is the launch vehicle for NASA’s New Horizons spacecraft, scheduled to launch from Cape Canaveral Air Force Station, Fla., during a 35-day window that opens Jan. 11 and fly through the Pluto system as early as summer 2015. New Horizons will be powered by a single radioisotope thermoelectric generator (RTG), provided by the Department of Energy, which will be installed shortly before launch.

  1. KSC-05pd2541

    NASA Image and Video Library

    2005-12-01

    KENNEDY SPACE CENTER, FLA. - The third stage, or upper stage for the New Horizons spacecraft, is moved toward the open door of NASA Kennedy Space Center’s Payload Hazardous Servicing Facility. The third stage is a Boeing STAR 48 solid-propellant kick motor. The Atlas V is the launch vehicle for NASA’s New Horizons spacecraft, scheduled to launch from Cape Canaveral Air Force Station, Fla., during a 35-day window that opens Jan. 11 and fly through the Pluto system as early as summer 2015. New Horizons will be powered by a single radioisotope thermoelectric generator (RTG), provided by the Department of Energy, which will be installed shortly before launch.

  2. KSC-05pd2540

    NASA Image and Video Library

    2005-12-01

    KENNEDY SPACE CENTER, FLA. - The third stage, or upper stage for the New Horizons spacecraft, is moved toward the open door of NASA Kennedy Space Center’s Payload Hazardous Servicing Facility. The third stage is a Boeing STAR 48 solid-propellant kick motor. The Atlas V is the launch vehicle for NASA’s New Horizons spacecraft, scheduled to launch from Cape Canaveral Air Force Station, Fla., during a 35-day window that opens Jan. 11 and fly through the Pluto system as early as summer 2015. New Horizons will be powered by a single radioisotope thermoelectric generator (RTG), provided by the Department of Energy, which will be installed shortly before launch.

  3. KSC-05pd2543

    NASA Image and Video Library

    2005-12-01

    KENNEDY SPACE CENTER, FLA. - Inside NASA Kennedy Space Center’s Payload Hazardous Servicing Facility, workers remove the protective cover from around the newly arrived third stage, or upper stage for the New Horizons spacecraft. The third stage is a Boeing STAR 48 solid-propellant kick motor. The Atlas V is the launch vehicle for NASA’s New Horizons spacecraft, scheduled to launch from Cape Canaveral Air Force Station, Fla., during a 35-day window that opens Jan. 11 and fly through the Pluto system as early as summer 2015. New Horizons will be powered by a single radioisotope thermoelectric generator (RTG), provided by the Department of Energy, which will be installed shortly before launch.

  4. 14 CFR 420.19 - Launch site location review-general.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... site, at least one type of expendable or reusable launch vehicle can be flown from the launch point... × 10−6). (2) Types of launch vehicles include orbital expendable launch vehicles, guided sub-orbital expendable launch vehicles, unguided sub-orbital expendable launch vehicles, and reusable launch vehicles...

  5. Active Space Debris Removal using European Modified Launch Vehicle Upper Stages Equipped with Electrodynamic Tethers

    NASA Astrophysics Data System (ADS)

    Nasseri, Ali S.; Emanuelli, Matteo; Raval, Siddharth; Turconi, Andrea; Becker, Cristoph

    2013-08-01

    During the past few years, several research programs have assessed the current state and future evolution of the Low Earth Orbit region. These studies indicate that space debris density could reach a critical level such that there will be a continuous increase in the number of debris objects, primarily driven by debris-debris collision activity known as the Kessler effect. This cascade effect can be even more significant when intact objects as dismissed rocket bodies are involved in the collision. The majority of the studies until now have highlighted the urgency for active debris removal in the next years. An Active Debris Removal System (ADRS) is a system capable of approaching the debris object through a close-range rendezvous, establishing physical connection, stabilizing its attitude and finally de-orbiting the debris object using a type of propulsion system in a controlled manoeuvre. In its previous work, this group showed that a modified Fregat (Soyuz FG's 4th stage) or Breeze-M upper stage (Proton-M) launched from Plesetsk (Russian Federation) and equipped with an electro-dynamic tether (EDT) system can be used, after an opportune inclination's change, to de-orbit a Kosmos-3M second stage rocket body while also delivering an acceptable payload to orbit. In this paper, we continue our work on the aforementioned concept, presented at the 2012 Beijing Space Sustainability Conference, by comparing its performance to ADR missions using only chemical propulsion from the upper stage for the far approach and the de-orbiting phase. We will also update the EDT model used in our previous work and highlight some of the methods for creating physical contact with the object. Moreover, we will assess this concept also with European launch vehicles (Vega and Soyuz 2-1A) to remove space debris from space. In addition, the paper will cover some economic aspects, like the cost for the launches' operator in term of payload mass' loss at the launch. The entire debris removal mission from launch to de-orbiting of the target debris object will be analysed using Analytical Graphic Inc.'s Systems Tool Kit (STK).

  6. ASCENT Program

    NASA Technical Reports Server (NTRS)

    Brown, Richard; Collier, Gary; Heckenlaible, Richard; Dougherty, Edward; Dolenz, James; Ross, Iain

    2012-01-01

    The ASCENT program solves the three-dimensional motion and attendant structural loading on a flexible vehicle incorporating, optionally, an active analog thrust control system, aerodynamic effects, and staging of multiple bodies. ASCENT solves the technical problems of loads, accelerations, and displacements of a flexible vehicle; staging of the upper stage from the lower stage; effects of thrust oscillations on the vehicle; a payload's relative motion; the effect of fluid sloshing on vehicle; and the effect of winds and gusts on the vehicle (on the ground or aloft) in a continuous analysis. The ATTACH ASCENT Loads program reads output from the ASCENT flexible body loads program, and calculates the approximate load indicators for the time interval under consideration. It calculates the load indicator values from pre-launch to the end of the first stage.

  7. Constellation Training Facility Support

    NASA Technical Reports Server (NTRS)

    Flores, Jose M.

    2008-01-01

    The National Aeronautics and Space Administration is developing the next set of vehicles that will take men back to the moon under the Constellation Program. The Constellation Training Facility (CxTF) is a project in development that will be used to train astronauts, instructors, and flight controllers on the operation of Constellation Program vehicles. It will also be used for procedure verification and validation of flight software and console tools. The CxTF will have simulations for the Crew Exploration Vehicle (CEV), Crew Module (CM), CEV Service Module (SM), Launch Abort System (LAS), Spacecraft Adapter (SA), Crew Launch Vehicle (CLV), Pressurized Cargo Variant CM, Pressurized Cargo Variant SM, Cargo Launch Vehicle, Earth Departure Stage (EDS), and the Lunar Surface Access Module (LSAM). The Facility will consist of part-task and full-task trainers, each with a specific set of mission training capabilities. Part task trainers will be used for focused training on a single vehicle system or set of related systems. Full task trainers will be used for training on complete vehicles and all of its subsystems. Support was provided in both software development and project planning areas of the CxTF project. Simulation software was developed for the hydraulic system of the Thrust Vector Control (TVC) of the ARES I launch vehicle. The TVC system is in charge of the actuation of the nozzle gimbals for navigation control of the upper stage of the ARES I rocket. Also, software was developed using C standards to send and receive data to and from hand controllers to be used in CxTF cockpit simulations. The hand controllers provided movement in all six rotational and translational axes. Under Project Planning & Control, support was provided to the development and maintenance of integrated schedules for both the Constellation Training Facility and Missions Operations Facilities Division. These schedules maintain communication between projects in different levels. The CxTF support provided is one that requires continuous maintenance since the project is still on initial development phases.

  8. Rockot - a new cost effective launcher for small satellites

    NASA Astrophysics Data System (ADS)

    Mosenkis, Regina

    1996-01-01

    Daimler-Benz Aerospace of Germany and the Russian Khrunichev State Research and Production Space Center have formed a jointly owned EUROCKOT Launch Services GmbH to offer worldwide cost effective launch services for the ROCKOT launch vehicle. ROCKOT, produced by Khrunichev, builder of the famous PROTON launcher, aims at the market of small and medium size satellites ranging from 300 to 1800 kg to be launched into low earth or sunsynchronous orbits. These comprize scientific, earth observation and polar meteorological satellites as well as the new generation of small communication satellites in low earth orbits, known as the ``Constellations''. ROCKOT is a three stage liquid propellant launch vehicle, composed of a former Russian SS 19 strategic missile, which has been withdrawn from military use, and a highly sophisticated, flight-proven upper stage named Breeze, which is particularly suited for a variety of civic and commercial space applications. Usable payload envelope has a length of 4.75 meters and a maximum diameter of 2.26 meters for accomodating the payload within the payload fairing. ROCKOT can also accomodate multiple payloads which can be deployed into the same or different orbits. So far ROCKOT has been successfully launched three times from Baikonur. The commercial launch services on ROCKOT from the Plesetsk launch site, Russia, will begin in 1997 and will be available worldwide at a highly competitive price.

  9. Launch Vehicle Stage Adapter from Start to Stack

    NASA Image and Video Library

    2016-10-16

    See how a test version of the launch vehicle stage adapter (LVSA) for NASA's new rocket, the Space Launch System, is designed, built and stacked in a test stand at the agency's Marshall Space Flight Center in Huntsville, Alabama. The LVSA was moved to a 65-foot-tall test stand Oct. 12 at Marshall. The test version LVSA will be stacked with other test pieces of the upper part of the SLS rocket and pushed, pulled and twisted as part of an upcoming test series to ensure each structure can withstand the incredible stresses of launch. The LVSA joins the core stage simulator, which was loaded into the test stand Sept. 21. The other three qualification articles and the Orion simulator will complete the stack later this fall. Testing is scheduled to begin in early 2017. SLS will be the world’s most powerful rocket, and with the Orion spacecraft, take astronauts to deep-space destinations, including the Journey to Mars. More information on the upcoming test series can be found here: http://go.nasa.gov/2dS8yXB

  10. KSC-2011-6844

    NASA Image and Video Library

    2011-09-08

    CAPE CANAVERAL, Fla. – News media photograph the United Launch Alliance Delta II heavy rocket carrying NASA’s twin Gravity Recovery and Interior Laboratory spacecraft at Launch Complex 17B as the mobile service tower is rolled back around to the vehicle after the first launch attempt was scrubbed due to upper-level winds. GRAIL is scheduled for another launch attempt Sept.10 at 8:29:45 a.m. EDT. at Cape Canaveral Air Force Station in Florida. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Ken Thornsley

  11. From Concept to Design: Progress on the J-2X Upper Stage Engine for the Ares Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Byrd, Thomas

    2008-01-01

    In accordance with national policy and NASA's Global Exploration Strategy, the Ares Projects Office is embarking on development of a new launch vehicle fleet to fulfill the national goals of replacing the space shuttle fleet, returning to the moon, and exploring farther destinations like Mars. These goals are shaped by the decision to retire the shuttle fleet by 2010, budgetary constraints, and the requirement to create a new fleet that is safer, more reliable, operationally more efficient than the shuttle fleet, and capable of supporting long-range exploration goals. The present architecture for the Constellation Program is the result of extensive trades during the Exploration Systems Architecture Study and subsequent refinement by the Ares Projects Office at Marshall Space Flight Center.

  12. Design Considerations for Space Transfer Vehicles Using Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Emrich, William J.

    1995-01-01

    The economical deployment of satellites to high energy earth orbits is crucial to the ultimate success of this nations commerical space ventures and is highly desirable for deep space planetary missions requiring earth escape trajectories. Upper stage space transfer vehicles needed to accomplish this task should ideally be simple, robust, and highly efficient. In this regard, solar thermal propulsion is particularly well suited to those missions where high thrust is not a requirement. The Marshall Space Flight Center is , therefore, currently engaged in defining a transfer vehicle employing solar thermal propulsion capable of transferring a 1000 lb. payload from low Earth orbit (LEO) to a geostationary Earth orbit (GEO) using a Lockheed launch vehicle (LLV3) with three Castors and a large shroud. The current design uses liquid hydrogen as the propellant and employs two inflatable 16 x 24 feet eliptical off-axis parabolic solar collectors to focus sunlight onto a tungsten/rhenium windowless black body type absorber. The concentration factor on this design is projected to be approximately 1800:1 for the primary collector and 2.42:1 for the secondary collector for an overall concentration factor of nearly 4400:1. The engine, which is about twice as efficient as the best currently available chemical engines, produces two pounds of thrust with a specific impulse (Isp) of 860 sec. Transfer times to GEO are projected to be on the order of one month. The launch and deployed configurations of the solar thermal upper stage (STUS) are depicted.

  13. InSight Atlas V Centaur Stage Offload

    NASA Image and Video Library

    2018-01-31

    Inside Building B7525 at Vandenberg Air Force Base in California, the Centaur upper stage for a United Launch Alliance Atlas V rocket is offloaded from a transport truck. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff from Vandenberg is scheduled for May 5, 2018.

  14. Space Launch System Spacecraft and Payload Elements: Progress Toward Crewed Launch and Beyond

    NASA Technical Reports Server (NTRS)

    Schorr, Andrew A.; Smith, David Alan; Holcomb, Shawn; Hitt, David

    2017-01-01

    While significant and substantial progress continues to be accomplished toward readying the Space Launch System (SLS) rocket for its first test flight, work is already underway on preparations for the second flight - using an upgraded version of the vehicle - and beyond. Designed to support human missions into deep space, SLS is the most powerful human-rated launch vehicle the United States has ever undertaken, and is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development division. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit (LEO), and the Ground Systems Development and Operations (GSDO) program is transforming Kennedy Space Center (KSC) into a next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. For its first flight, SLS will deliver a near-term heavy-lift capability for the nation with its 70-metric-ton (t) Block 1 configuration. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS, which will propel Orion around the moon and back. Encompassing hardware qualification, structural testing to validate hardware compliance and analytical modeling, progress is on track to meet the initial targeted launch date. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility (MAF) in Louisiana, the world's largest spacecraft welding tool is producing tanks for the SLS core stage. Providing the Orion crew capsule/launch vehicle interface and in-space propulsion via a cryogenic upper stage, the Spacecraft/Payload Integration and Evolution (SPIE) element serves a key role in achieving SLS goals and objectives. The SPIE element marked a major milestone in 2014 with the first flight of original SLS hardware, the Orion Stage Adapter (OSA) which was used on Exploration Flight Test-1 with a design that will be used again on the first flight of SLS. The element has overseen production of the Interim Cryogenic Propulsion Stage (ICPS), an in-space stage derived from the Delta Cryogenic Second Stage, which was manufactured at United Launch Alliance (ULA) in Decatur, Alabama, prior to being shipped to Florida for flight preparations. Manufacture of the OSA and the Launch Vehicle Stage Adapter (LVSA) took place at the Friction Stir Facility located at Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Marshall is also home to the Integrated Structural Test of the ICPS, LVSA, and OSA, subjecting the stacked components to simulated stresses of launch. The SPIE Element is also overseeing integration of 13 "CubeSat" secondary payloads that will fly on the first flight of SLS, providing access to deep space regions in a way currently not available to the science community. At the same time as this preparation work is taking place toward the first launch of SLS, however, the Space Launch System Program is actively working toward its second launch. For its second flight, SLS will be upgraded to the more-capable Block 1B configuration. While the Block 1 configuration is capable of delivering more than 70 t to LEO, the Block 1B vehicle will increase that capability to 105 t. For that flight, the new configuration introduces two major new elements to the vehicle - an Exploration Upper Stage (EUS) that will be used for both ascent and in-space propulsion, and a Universal Stage Adapter (USA) that serves as a "payload bay" for the rocket, allowing the launch of large exploration systems along with the Orion spacecraft. Already, flight hardware is being prepared for the Block 1B vehicle. Welding is taking place on the second rocket's core stage. Flight hardware production has begun on booster components. An RS-25 engine slated for that flight has been tested. Development work is taking place on the EUS, with contracts in place for both the stage and the RL10 engines which will power it. (The EUS will use four RL10 engines, an increase from one on the ICPS.) For the crew configuration of the Block 1B vehicle, the SLS SPIE element is managing the USA and accompanying Payload Adapter, which will accommodate both large payloads co-manifested with Orion and small-satellite secondary payloads. This co-manifested payload capacity will be instrumental for missions into the proving ground around the moon, where NASA will test new systems and demonstrate new capabilities needed for human exploration farther into deep space.

  15. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Hefner, Keith; Hitt, David

    2015-01-01

    Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the "proving ground" of lunar-vicinity space to enabling high-energy transits through the outer solar system. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO). Preparations are also underway to evolve the vehicle into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO. Even the initial configuration of SLS will be able to deliver greater mass to orbit than any contemporary launch vehicle, and the evolved configuration will have greater performance than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. The basic capabilities of SLS have been driven by studies on the requirements of human deep-space exploration missions, and continue to be validated by maturing analysis of Mars mission options, including the Global Exploration Roadmap. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. As SLS draws closer to its first launch, the Program is maturing concepts for future capability upgrades, which could begin being available within a decade. These upgrades, from multiple unique payload accommodations to an upper stage providing more power for inspace propulsion, have ramifications for a variety of missions, from human exploration to robotic science.

  16. NASA's Space Launch System: Systems Engineering Approach for Affordability and Mission Success

    NASA Technical Reports Server (NTRS)

    Hutt, John J.; Whitehead, Josh; Hanson, John

    2017-01-01

    NASA is working toward the first launch of a new, unmatched capability for deep space exploration, with launch readiness planned for 2018. The initial Block 1 configuration of the Space Launch System will more than double the mass and volume to Low Earth Orbit (LEO) of any launch vehicle currently in operation - with a path to evolve to the greatest capability ever developed. The program formally began in 2011. The vehicle successfully passed Preliminary Design Review (PDR) in 2013, Key Decision Point C (KDPC) in 2014 and Critical Design Review (CDR) in October 2015 - nearly 40 years since the last CDR of a NASA human-rated rocket. Every major SLS element has completed components of test and flight hardware. Flight software has completed several development cycles. RS-25 hotfire testing at NASA Stennis Space Center (SSC) has successfully demonstrated the space shuttle-heritage engine can perform to SLS requirements and environments. The five-segment solid rocket booster design has successfully completed two full-size motor firing tests in Utah. Stage and component test facilities at Stennis and NASA Marshall Space Flight Center are nearing completion. Launch and test facilities, as well as transportation and other ground support equipment are largely complete at NASA's Kennedy, Stennis and Marshall field centers. Work is also underway on the more powerful Block 1 B variant with successful completion of the Exploration Upper Stage (EUS) PDR in January 2017. NASA's approach is to develop this heavy lift launch vehicle with limited resources by building on existing subsystem designs and existing hardware where available. The systems engineering and integration (SE&I) of existing and new designs introduces unique challenges and opportunities. The SLS approach was designed with three objectives in mind: 1) Design the vehicle around the capability of existing systems; 2) Reduce work hours for nonhardware/ software activities; 3) Increase the probability of mission success by focusing effort on more critical activities.

  17. Model of the Ares V Launch System

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This is a studio photograph of a model of the Ares V rocket. Named for the Greek god associated with Mars, Ares vehicles will return humans to the moon and later take them to Mars and other destinations. The Ares V is a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars, while the Crew will be carried by the Ares I. Ares V is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of September 2006.

  18. Graphite/epoxy composite adapters for the Space Shuttle/Centaur vehicle

    NASA Technical Reports Server (NTRS)

    Kasper, Harold J.; Ring, Darryl S.

    1990-01-01

    The decision to launch various NASA satellite and Air Force spacecraft from the Space Shuttle created the need for a high-energy upper stage capable of being deployed from the cargo bay. Two redesigned versions of the Centaur vehicle which employed a graphite/epoxy composite material for the forward and aft adapters were selected. Since this was the first time a graphite/epoxy material was used for Centaur major structural components, the development of the adapters was a major effort. An overview of the composite adapter designs, subcomponent design evaluation test results, and composite adapter test results from a full-scale vehicle structural test is presented.

  19. Aerial view of Launch Complex 39

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In this aerial view looking south can be seen Launch Complex (LC) 39 area, where assembly, checkout and launch of the Space Shuttle Orbiter and its External Tank and twin Solid Rocket Boosters take place. Central to the complex is the tallest building at the center, the Vehicle Assembly Building (VAB). To the immediate left, from top to bottom, are the Orbiter Processing Facility (OPF) High Bay 3 and new engine shop (north side), OPF Modular Office Building, Thermal Protection System Facility, and a crawler-transporter (to its left). In front of the VAB are OPF 1 and OPF 2. At right is the Processing Control Center. West of OPF 3 is the Mobile Launch Platform. In the upper left corner is Launch Pad B; at the far right is the turn basin, with the Press Site located just below it to the right.

  20. Safety Practices Followed in ISRO Launch Complex- An Overview

    NASA Astrophysics Data System (ADS)

    Krishnamurty, V.; Srivastava, V. K.; Ramesh, M.

    2005-12-01

    The spaceport of India, Satish Dhawan Space Centre (SDSC) SHAR of Indian Space Research Organisation (ISRO), is located at Sriharikota, a spindle shaped island on the east coast of southern India.SDSC SHAR has a unique combination of facilities, such as a solid propellant production plant, a rocket motor static test facility, launch complexes for different types of rockets, telemetry, telecommand, tracking, data acquisition and processing facilities and other support services.The Solid Propellant Space Booster Plant (SPROB) located at SDSC SHAR produces composite solid propellant for rocket motors of ISRO. The main ingredients of the propellant produced here are ammonium perchlorate (oxidizer), fine aluminium powder (fuel) and hydroxyl terminated polybutadiene (binder).SDSC SHAR has facilities for testing solid rocket motors, both at ambient conditions and at simulated high altitude conditions. Other test facilities for the environmental testing of rocket motors and their subsystems include Vibration, Shock, Constant Acceleration and Thermal / Humidity.SDSC SHAR has the necessary infrastructure for launching satellites into low earth orbit, polar orbit and geo-stationary transfer orbit. The launch complexes provide complete support for vehicle assembly, fuelling with both earth storable and cryogenic propellants, checkout and launch operations. Apart from these, it has facilities for launching sounding rockets for studying the Earth's upper atmosphere and for controlled reentry and recovery of ISRO's space capsule reentry missions.Safety plays a major role at SDSC SHAR right from the mission / facility design phase to post launch operations. This paper presents briefly the infrastructure available at SDSC SHAR of ISRO for launching sounding rockets, satellite launch vehicles, controlled reentry missions and the built in safety systems. The range safety methodology followed as a part of the real time mission monitoring is presented. The built in safety systems provided onboard the launch vehicle are automatic shut off the propulsion system based on real time mission performance and a passivation system incorporated in the orbit insertion stage are highlighted.

  1. Launch Vehicles

    NASA Image and Video Library

    2007-09-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. The launch vehicle's first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor that burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN). The second or upper stage will be propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This HD video image depicts a test firing of a 40k subscale J2X injector at MSFC's test stand 115. (Highest resolution available)

  2. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2006-09-09

    Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the vehicle depicted on the left is the Ares I. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to its primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to "park" payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the second stage of the Apollo vehicle will power the Ares V second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. The vehicle illustrated on the right is the Ares V, a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Both vehicles are subject to configuration changes before they are actually launched. This illustration reflects the latest configuration as of September 2006.

  3. Materials, Processes and Manufacturing in Ares 1 Upper Stage: Integration with Systems Design and Development

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.

    2008-01-01

    Ares I Crew Launch Vehicle Upper Stage is designed and developed based on sound systems engineering principles. Systems Engineering starts with Concept of Operations and Mission requirements, which in turn determine the launch system architecture and its performance requirements. The Ares I-Upper Stage is designed and developed to meet these requirements. Designers depend on the support from materials, processes and manufacturing during the design, development and verification of subsystems and components. The requirements relative to reliability, safety, operability and availability are also dependent on materials availability, characterization, process maturation and vendor support. This paper discusses the roles and responsibilities of materials and manufacturing engineering during the various phases of Ares IUS development, including design and analysis, hardware development, test and verification. Emphasis is placed how materials, processes and manufacturing support is integrated over the Upper Stage Project, both horizontally and vertically. In addition, the paper describes the approach used to ensure compliance with materials, processes, and manufacturing requirements during the project cycle, with focus on hardware systems design and development.

  4. Rho-Isp Revisited and Basic Stage Mass Estimating for Launch Vehicle Conceptual Sizing Studies

    NASA Technical Reports Server (NTRS)

    Kibbey, Timothy P.

    2015-01-01

    The ideal rocket equation is manipulated to demonstrate the essential link between propellant density and specific impulse as the two primary stage performance drivers for a launch vehicle. This is illustrated by examining volume-limited stages such as first stages and boosters. This proves to be a good approximation for first-order or Phase A vehicle design studies for solid rocket motors and for liquid stages, except when comparing to hydrogen-fueled stages. A next-order mass model is developed that is able to model the mass differences between hydrogen-fueled and other stages. Propellants considered range in density from liquid methane to inhibited red fuming nitric acid. Calculated comparisons are shown for solid rocket boosters, liquid first stages, liquid upper stages, and a balloon-deployed single-stage-to-orbit concept. The derived relationships are ripe for inclusion in a multi-stage design space exploration and optimization algorithm, as well as for single-parameter comparisons such as those shown herein.

  5. KSC-2009-2462

    NASA Image and Video Library

    2009-04-01

    CAPE CANAVERAL, Fla. – In High Bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the Ares I-X upper stage simulator service module/service adapter segment (foreground) is being prepared for its move to a stand. Other segments are placed and stacked on the floor around it. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Kim Shiflett

  6. Systems Engineering Approach to Technology Integration for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd-generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  7. Systems Engineering Approach to Technology Integration for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  8. Ares I-X Upper Stage Simulator Compartment Pressure Comparisons During Ascent

    NASA Technical Reports Server (NTRS)

    Downs. William J.; Kirchner, Robert D.; McLachlan, Blair G.; Hand, Lawrence A.; Nelson, Stuart L.

    2011-01-01

    Predictions of internal compartment pressures are necessary in the design of interstage regions, systems tunnels, and protuberance covers of launch vehicles to assess potential burst and crush loading of the structure. History has proven that unexpected differential pressure loads can lead to catastrophic failure. Pressures measured in the Upper Stage Simulator (USS) compartment of Ares I-X during flight were compared to post-flight analytical predictions using the CHCHVENT chamber-to-chamber venting analysis computer program. The measured pressures were enveloped by the analytical predictions for most of the first minute of flight but were outside of the predictions thereafter. This paper summarizes the venting system for the USS, discusses the probable reasons for the discrepancies between the measured and predicted pressures, and provides recommendations for future flight vehicles.

  9. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.

    2012-01-01

    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  10. Transition Marshall Space Flight Center Wind Profiler Splicing Algorithm to Launch Services Program Upper Winds Tool

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2014-01-01

    NASAs LSP customers and the future SLS program rely on observations of upper-level winds for steering, loads, and trajectory calculations for the launch vehicles flight. On the day of launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds and provide forecasts to the launch team via the AMU-developed LSP Upper Winds tool for launches at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station. This tool displays wind speed and direction profiles from rawinsondes released during launch operations, the 45th Space Wing 915-MHz Doppler Radar Wind Profilers (DRWPs) and KSC 50-MHz DRWP, and output from numerical weather prediction models.The goal of this task was to splice the wind speed and direction profiles from the 45th Space Wing (45 SW) 915-MHz Doppler radar Wind Profilers (DRWPs) and KSC 50-MHz DRWP at altitudes where the wind profiles overlap to create a smooth profile. In the first version of the LSP Upper Winds tool, the top of the 915-MHz DRWP wind profile and the bottom of the 50-MHz DRWP were not spliced, sometimes creating a discontinuity in the profile. The Marshall Space Flight Center (MSFC) Natural Environments Branch (NE) created algorithms to splice the wind profiles from the two sensors to generate an archive of vertically complete wind profiles for the SLS program. The AMU worked with MSFC NE personnel to implement these algorithms in the LSP Upper Winds tool to provide a continuous spliced wind profile.The AMU transitioned the MSFC NE algorithms to interpolate and fill data gaps in the data, implement a Gaussian weighting function to produce 50-m altitude intervals in each sensor, and splice the data together from both DRWPs. They did so by porting the MSFC NE code written with MATLAB software into Microsoft Excel Visual Basic for Applications (VBA). After testing the new algorithms in stand-alone VBA modules, the AMU replaced the existing VBA code in the LSP Upper Winds tool with the new algorithms. They then tested the code in the LSP Upper Winds tool with archived data. The tool will be delivered to the 45 WS after the 50-MHz DRWP upgrade is complete and the tool is tested with real-time data. The 50-MHz DRWP upgrade is expected to be finished in October 2014.

  11. Upper Management Visits Pegasus ICON

    NASA Image and Video Library

    2017-06-06

    Managers of NASA's Launch Services Program (LSP) at Kennedy Space Center visit the processing facility for the Pegasus XL rocket at Vandenberg Air Force Base in California. From left, are Chuck Dovale, deputy manager; Amanda Mitskevich, manager; Eric Denbrook, launch vehicle processing at VAFB; and Tim Dunn, NASA assistant launch manager for ICON. The Pegasus XL rocket is being prepared for the agency's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  12. NASA'S Space Launch System: Progress Toward the Proving Ground

    NASA Technical Reports Server (NTRS)

    Jackman, Angie; Johnson, Les

    2017-01-01

    With significant and substantial progress being accomplished toward readying the Space Launch System (SLS) rocket for its first test flight, work is already also underway on preparations for the second flight – using an upgraded version of the vehicle – and beyond. Designed to support human missions into deep space, Space Launch System (SLS), is the most powerful human-rated launch vehicle the United States has ever undertaken, and together with the Orion spacecraft will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. For its first flight, SLS will deliver a near-term heavy-lift capability for the nation with its 70-metric-ton Block 1 configuration. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS, which will propel Orion around the moon and back. For its second flight, SLS will be upgraded to the more-capable Block 1B configuration. While the Block 1 configuration is capable of delivering more than 70 metric tons to low Earth orbit, the Block 1B vehicle will increase that capability to 105 metric tons. For that flight, the new configuration introduces two major new elements to the vehicle – an Exploration Upper Stage (EUS) that will be used for both ascent and in-space propulsion, and a Universal Stage Adapter (USA) that serves as a “payload bay” for the rocket, allowing the launch of large exploration systems along with the Orion spacecraft. Already, flight hardware is being prepared for the Block 1B vehicle. Beyond the second flight, additional upgrades will be made to the vehicle. The Block 1B vehicle will also be able to launch 8.4-meter-diameter payload fairings, larger than any previously flown, and the Spacecraft Payload Integration and Evolution (SPIE) Element will oversee development and production of those fairings. Ultimately, SLS will be evolved to a Block 2 configuration, which will replace the solid rocket boosters on the Block 1 and 1B vehicles with more powerful boosters, and will be capable of delivering at least 130 metric tons to LEO. The Block 2 vehicle will be capable of launching even larger 10-meter diameter fairings, which will enable human mission of Mars. With these fairings, the Block 1B and 2 configurations of SLS will also be enabling for a wide variety of other payloads. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles, producing earlier data return, enhancing iterative exploration, and reducing mission cost and risk. In the field of astrophysics, SLS’ high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe, and offers the ability to conduct crewed servicing missions to observatories stationed at locations beyond low Earth orbit. This paper will provide a description of the SLS vehicle, and an overview of the vehicle’s capabilities and utilization potential.

  13. DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design and Optimization

    NASA Technical Reports Server (NTRS)

    Williams, C. H.; Spurlock, O. F.

    2014-01-01

    From the late 1960's through 1997, the leadership of NASA's Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRC's primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the code's operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960's is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the Atlas/Centaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (Atlas/Centaur, Titan/Centaur, and Shuttle/Centaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits). The computer main frames on which the code was hosted are described. The applications of the code are detailed, including independent check of contractor analysis, benchmarking, leading edge analysis, and vehicle performance improvement assessments. Several of DUKSUP's many major impacts on launches are discussed including Intelsat, Voyager, Pioneer Venus, HEAO, Galileo, and Cassini.

  14. DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design and Optimization

    NASA Technical Reports Server (NTRS)

    Spurlock, O. Frank; Williams, Craig H.

    2015-01-01

    From the late 1960s through 1997, the leadership of NASAs Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRCs primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the codes operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960s is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the AtlasCentaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (AtlasCentaur, TitanCentaur, and ShuttleCentaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits). The computer main frames on which the code was hosted are described. The applications of the code are detailed, including independent check of contractor analysis, benchmarking, leading edge analysis, and vehicle performance improvement assessments. Several of DUKSUPs many major impacts on launches are discussed including Intelsat, Voyager, Pioneer Venus, HEAO, Galileo, and Cassini.

  15. Designing the Ares I Crew Launch Vehicle Upper Stage Element and Integrating the Stack at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Otte, Neil E.; Lyles, Garry; Reuter, James L.; Davis, Daniel J.

    2008-01-01

    Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions. The technical personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo-era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. The Ares Projects Office, resident at Marshall, is managing the design and development of America's new space fleet, including the Ares I, which will loft the Orion crew capsule for its first test flight in the 2013 timeframe, as well as the heavy-lift Ares V, which will round out the capability to leave low-Earth orbit once again, when it delivers the Altair lunar lander to orbit late next decade. This paper provides information about the approach to integrating the Ares I stack and designing the upper stage in house, using unique facilities and an expert workforce to revitalize the nation's space exploration resources.

  16. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO. Program cost estimates document

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1993-01-01

    This report describes Rockwell International's cost analysis results of manned launch vehicle concepts for two way transportation system payloads to low earth orbit during the basic and option 1 period of performance for contract NAS8-39207, advanced transportation system studies. Vehicles analyzed include the space shuttle, personnel launch system (PLS) with advanced launch system (ALS) and national launch system (NLS) boosters, foreign launch vehicles, NLS-2 derived launch vehicles, liquid rocket booster (LRB) derived launch vehicle, and cargo transfer and return vehicle (CTRV).

  17. Risk Assessment Challenges in the Ares I Upper Stage

    NASA Technical Reports Server (NTRS)

    Stott, James E.; Ring, Robert W.; Elrada, Hassan A.; Hark, Frank

    2007-01-01

    NASA Marshall Space Flight Center (MSFC) is currently at work developing hardware and systems for the Ares I rocket that will send future astronauts into orbit. Built on cutting-edge launch technologies, evolved powerful Apollo and Space Shuttle propulsion elements, and decades of NASA spaceflight experience, Ares I is the essential core of a safe, reliable, cost-effective space transportation system -- one that will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I is an in-line, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to the vehicle's primary mission -carrying crews of four to six astronauts to Earth orbit --Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station, or to "park" payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. Crew transportation to the International Space Station is planned to begin no later than 2014. The first lunar excursion is scheduled for the 2020 timeframe. This paper presents the challenges in designing the Ares I upper stage for reliability and safety while minimizing weight and maximizing performance.

  18. SLS Block 1-B and Exploration Upper Stage Navigation System Design

    NASA Technical Reports Server (NTRS)

    Oliver, T. Emerson; Park, Thomas B.; Smith, Austin; Anzalone, Evan; Bernard, Bill; Strickland, Dennis; Geohagan, Kevin; Green, Melissa; Leggett, Jarred

    2018-01-01

    The SLS Block 1B vehicle is planned to extend NASA's heavy lift capability beyond the initial SLS Block 1 vehicle. The most noticeable change for this vehicle from SLS Block 1 is the swapping of the upper stage from the Interim Cryogenic Propulsion stage (ICPS), a modified Delta IV upper stage, to the more capable Exploration Upper Stage (EUS). As the vehicle evolves to provide greater lift capability and execute more demanding missions so must the SLS Integrated Navigation System to support those missions. The SLS Block 1 vehicle carries two independent navigation systems. The responsibility of the two systems is delineated between ascent and upper stage flight. The Block 1 navigation system is responsible for the phase of flight between the launch pad and insertion into Low-Earth Orbit (LEO). The upper stage system assumes the mission from LEO to payload separation. For the Block 1B vehicle, the two functions are combined into a single system intended to navigate from ground to payload insertion. Both are responsible for self-disposal once payload delivery is achieved. The evolution of the navigation hardware and algorithms from an inertial-only navigation system for Block 1 ascent flight to a tightly coupled GPS-aided inertial navigation system for Block 1-B is described. The Block 1 GN&C system has been designed to meet a LEO insertion target with a specified accuracy. The Block 1-B vehicle navigation system is designed to support the Block 1 LEO target accuracy as well as trans-lunar or trans-planetary injection accuracy. This is measured in terms of payload impact and stage disposal requirements. Additionally, the Block 1-B vehicle is designed to support human exploration and thus is designed to minimize the probability of Loss of Crew (LOC) through high-quality inertial instruments and Fault Detection, Isolation, and Recovery (FDIR) logic. The preliminary Block 1B integrated navigation system design is presented along with the challenges associated with meeting the design objectives. This paper also addresses the design considerations associated with the use of Block 1 and Commercial Off-the-Shelf (COTS) avionics for Block 1-B/EUS as part of an integrated vehicle suite for orbital operations.

  19. NASA's Space Launch System: Enabling Exploration and Discovery

    NASA Technical Reports Server (NTRS)

    Schorr, Andrew; Robinson, Kimberly F.; Hitt, David

    2017-01-01

    As NASA's new Space Launch System (SLS) launch vehicle continues to mature toward its first flight and beyond, so too do the agency's plans for utilization of the rocket. Substantial progress has been made toward the production of the vehicle for the first flight of SLS - an initial "Block 1" configuration capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). That vehicle will be used for an uncrewed integrated test flight, propelling NASA's Orion spacecraft into lunar orbit before it returns safely to Earth. Flight hardware for that launch is being manufactured at facilities around the United States, and, in the case of Orion's service module, beyond. At the same time, production has already begun on the vehicle for the second SLS flight, a more powerful Block 1B configuration capable of delivering more than 105 t to LEO. This configuration will be used for crewed launches of Orion, sending astronauts farther into space than anyone has previously ventured. The 1B configuration will introduce an Exploration Upper Stage, capable of both ascent and in-space propulsion, as well as a Universal Stage Adapter - a payload bay allowing the flight of exploration hardware with Orion - and unprecedentedly large payload fairings that will enable currently impossible spacecraft and mission profiles on uncrewed launches. The Block 1B vehicle will also expand on the initial configuration's ability to deploy CubeSat secondary payloads, creating new opportunities for low-cost access to deep space. Development work is also underway on future upgrades to SLS, which will culminate in about a decade in the Block 2 configuration, capable of delivering 130 t to LEO via the addition of advanced boosters. As the first SLS draws closer to launch, NASA continues to refine plans for the human deep-space exploration it will enable. Planning currently focuses on use of the vehicle to assemble a Deep Space Gateway, which would comprise a habitat in the lunar vicinity allowing astronauts to gain experience living and working in deep space, a testbed for new systems and capabilities needed for exploration beyond, and a departure point for NASA and partners to send missions to other destinations. Assembly of the Gateway would be followed by a Deep Space Transport, which would be a vehicle capable of carrying astronauts farther into our solar system and eventually to Mars. This paper will give an overview of SLS' current status and its capabilities, and discuss current utilization planning.

  20. The Development of the Ares I-X Flight Test

    NASA Technical Reports Server (NTRS)

    Ess, Robert H.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) Constellation Program (CxP) has identified a series of tests to provide insight into the design and development of the Ares I Crew Launch Vehicle (CLV) and the Orion Crew Exploration Vehicle (CEV). Ares I-X was created as the first suborbital development flight test to help meet CxP objectives. The Ares I-X flight vehicle is an early operational model of Ares, with specific emphasis on Ares I and ground operation characteristics necessary to meet Ares I-X flight test objectives. Ares I-X will encompass the design and construction of an entire system that includes the Flight Test Vehicle (FTV) and associated operations. The FTV will be a test model based on the Ares I design. Select design features will be incorporated in the FTV design to emulate the operation of the CLV in order to meet the flight test objectives. The operations infrastructure and processes will be customized for Ares I-X, while still providing data to inform the developers of the launch processing system for Ares/Orion. The FTV is comprised of multiple elements and components that will be developed at different locations. The components will be delivered to the launch/assembly site, Kennedy Space Center (KSC), for assembly of the elements and components into an integrated, flight-ready, launch vehicle. The FTV will fly a prescribed trajectory in order to obtain the necessary data to meet the objectives. Ares I-X will not be commanded or controlled from the ground during flight, but the FTV will be equipped with telemetry systems, a data recording capability and a flight termination system (FTS). The in-flight part of the test includes a trajectory to simulate maximum dynamic pressure during flight and perform a stage separation representative of the CLV. The in-flight test also includes separation of the Upper Stage Simulator (USS) from the First Stage and recovery of the First Stage. The data retrieved from the flight test will be analyzed and used in the design and development of the Ares I vehicle. This paper will discuss the challenges in developing a new launch vehicle in a very short timeframe. The duration from formal Authority to Proceed to launch is 32 months with launch scheduled for April, 2009. The discussion will include changes to organizational structure, system engineering approaches, and early lessons learned for a fast tracked and highly visible project.

  1. NASA's Space Launch System: Enabling Exploration and Discovery

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Schorr, Andrew

    2017-01-01

    As NASA's new Space Launch System (SLS) launch vehicle continues to mature toward its first flight and beyond, so too do the agency's plans for utilization of the rocket. Substantial progress has been made toward the production of the vehicle for the first flight of SLS - an initial "Block 1" configuration capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). That vehicle will be used for an uncrewed integrated test flight, propelling NASA's Orion spacecraft into lunar orbit before it returns safely to Earth. Flight hardware for that launch is being manufactured at facilities around the United States, and, in the case of Orion's service module, beyond. At the same time, production has already begun on the vehicle for the second SLS flight, a more powerful Block 1B configuration capable of delivering more than 105 metric tons to LEO. This configuration will be used for crewed launches of Orion, sending astronauts farther into space than anyone has previously ventured. The 1B configuration will introduce an Exploration Upper Stage, capable of both ascent and in-space propulsion, as well as a Universal Stage Adapter - a payload bay allowing the flight of exploration hardware with Orion - and unprecedentedly large payload fairings that will enable currently impossible spacecraft and mission profiles on uncrewed launches. The Block 1B vehicle will also expand on the initial configuration's ability to deploy CubeSat secondary payloads, creating new opportunities for low-cost access to deep space. Development work is also underway on future upgrades to SLS, which will culminate in about a decade in the Block 2 configuration, capable of delivering 130 metric tons to LEO via the addition of advanced boosters. As the first SLS draws closer to launch, NASA continues to refine plans for the human deep-space exploration it will enable. Planning currently focuses on use of the vehicle to assemble a Deep Space Gateway, which would comprise a habitat in the lunar vicinity allowing astronauts to gain experience living and working in deep space, a testbed for new systems and capabilities needed for exploration beyond, and a departure point for NASA and partners to send missions to other destinations. Assembly of the Gateway would be followed by a Deep Space Transport, which would be a vehicle capable of carrying astronauts farther into our solar system and eventually to Mars. This paper will give an overview of SLS' current status and its capabilities, and discuss current utilization planning.

  2. Performance Efficient Launch Vehicle Recovery and Reuse

    NASA Technical Reports Server (NTRS)

    Reed, John G.; Ragab, Mohamed M.; Cheatwood, F. McNeil; Hughes, Stephen J.; Dinonno, J.; Bodkin, R.; Lowry, Allen; Brierly, Gregory T.; Kelly, John W.

    2016-01-01

    For decades, economic reuse of launch vehicles has been an elusive goal. Recent attempts at demonstrating elements of launch vehicle recovery for reuse have invigorated a debate over the merits of different approaches. The parameter most often used to assess the cost of access to space is dollars-per-kilogram to orbit. When comparing reusable vs. expendable launch vehicles, that ratio has been shown to be most sensitive to the performance lost as a result of enabling the reusability. This paper will briefly review the historical background and results of recent attempts to recover launch vehicle assets for reuse. The business case for reuse will be reviewed, with emphasis on the performance expended to recover those assets, and the practicality of the most ambitious reuse concept, namely propulsive return to the launch site. In 2015, United Launch Alliance (ULA) announced its Sensible, Modular, Autonomous Return Technology (SMART) reuse plan for recovery of the booster module for its new Vulcan launch vehicle. That plan employs a non-propulsive approach where atmospheric entry, descent and landing (EDL) technologies are utilized. Elements of such a system have a wide variety of applications, from recovery of launch vehicle elements in suborbital trajectories all the way to human space exploration. This paper will include an update on ULA's booster module recovery approach, which relies on Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and Mid-Air Retrieval (MAR) technologies, including its concept of operations (ConOps). The HIAD design, as well as parafoil staging and MAR concepts, will be discussed. Recent HIAD development activities and near term plans including scalability, next generation materials for the inflatable structure and heat shield, and gas generator inflation systems will be provided. MAR topics will include the ConOps for recovery, helicopter selection and staging, and the state of the art of parachute recovery systems using large parafoils for space asset recovery and high altitude deployment. The next proposed HIAD flight demonstration is called HULA (for HIAD on ULA), and will feature a 6m diameter HIAD. An update for the HULA concept will be provided in this paper. As proposed, this demonstration will fly as a secondary payload on an Atlas mission. The Centaur upper stage provides the reentry pointing, deorbit burn, and entry vehicle spin up. The flight test will culminate with a recovery of the HIAD using MAR. HULA will provide data from a Low Earth Orbit (LEO) return aeroheating environment that enables predictive model correlation and refinement. The resultant reduction in performance uncertainties should lead to design efficiencies that are increasingly significant at larger scales. Relevance to human scale Mars EDL using a HIAD will also be presented, and the applicability of the data generated from both HULA and SMART Vulcan flights, and its value for NASA's human exploration efforts will be discussed. A summary and conclusion will follow.

  3. KSC-2013-3786

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle, left, and Centaur upper stage that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  4. SKYLAB II - Making a Deep Space Habitat from a Space Launch System Propellant Tank

    NASA Technical Reports Server (NTRS)

    Griffin, Brand N.; Smitherman, David; Kennedy, Kriss J.; Toups, Larry; Gill, Tracy; Howe, A. Scott

    2012-01-01

    Called a "House in Space," Skylab was an innovative program that used a converted Saturn V launch vehicle propellant tank as a space station habitat. It was launched in 1973 fully equipped with provisions for three separate missions of three astronauts each. The size and lift capability of the Saturn V enabled a large diameter habitat, solar telescope, multiple docking adaptor, and airlock to be placed on-orbit with a single launch. Today, the envisioned Space Launch System (SLS) offers similar size and lift capabilities that are ideally suited for a Skylab type mission. An envisioned Skylab II mission would employ the same propellant tank concept; however serve a different mission. In this case, the SLS upper stage hydrogen tank is used as a Deep Space Habitat (DSH) for NASA s planned missions to asteroids, Earth-Moon Lagrangian point and Mars.

  5. Launch of Agena Target Docking Vehicle atop Atlas launch vehicle

    NASA Technical Reports Server (NTRS)

    1966-01-01

    An Agena Target Docking Vehicle atop its Atlas launch vehicle was launched fromt the Kennedy Space Center's Launch Complex 14 at 6:05 a.m., September 12, 1966. The Agena served as a rendezvous and docking vehicle for the Gemini 11 spacecraft.

  6. Testing for the J-2X Upper Stage Engine

    NASA Technical Reports Server (NTRS)

    Buzzell, James C.

    2010-01-01

    NASA selected the J-2X Upper Stage Engine in 2006 to power the upper stages of the Ares I crew launch vehicle and the Ares V cargo launch vehicle. Based on the proven Saturn J-2 engine, this new engine will provide 294,000 pounds of thrust and a specific impulse of 448 seconds, making it the most efficient gas generator cycle engine in history. The engine's guiding philosophy emerged from the Exploration Systems Architecture Study (ESAS) in 2005. Goals established then called for vehicles and components based, where feasible, on proven hardware from the Space Shuttle, commercial, and other programs, to perform the mission and provide an order of magnitude greater safety. Since that time, the team has made unprecedented progress. Ahead of the other elements of the Constellation Program architecture, the team has progressed through System Requirements Review (SRR), System Design Review (SDR), Preliminary Design Review (PDR), and Critical Design Review (CDR). As of February 2010, more than 100,000 development engine parts have been ordered and more than 18,000 delivered. Approximately 1,300 of more than 1,600 engine drawings were released for manufacturing. A major factor in the J-2X development approach to this point is testing operations of heritage J-2 engine hardware and new J-2X components to understand heritage performance, validate computer modeling of development components, mitigate risk early in development, and inform design trades. This testing has been performed both by NASA and its J-2X prime contractor, Pratt & Whitney Rocketdyne (PWR). This body of work increases the likelihood of success as the team prepares for testing the J-2X powerpack and first development engine in calendar 2011. This paper will provide highlights of J-2X testing operations, engine test facilities, development hardware, and plans.

  7. Ares V: Application to Solar System Scientific Exploration

    NASA Technical Reports Server (NTRS)

    Elliott, John; Spilker, Thomas; Reh, Kim; Smith, David; Woodcock, Gordon

    2008-01-01

    The development of the Ares V launch vehicle will provide levels of performance unseen since the days of Apollo. This capability, like the Saturn V before it, is being developed primarily for crewed lunar missions. However, the tremendous jump in performance offered by the Ares V launch system has tremendous potential for the furtherance of robotic solar system exploration missions as well. Preliminary performance assessments indicate that Ares V could deliver 5 times the payload to Mars as compared to the most capable US expendable launch vehicle available today. Beyond Mars, the outer planets offer a number of high-priority investigations with compelling science. Presently, missions to these destinations are only achievable using indirect flights with gravity assist trajectories and, in many cases, suffer from long flight times. An Ares V with an upper stage could capture these missions using direct flights with shorter interplanetary transfer times that would enable extensive in situ investigations and possibly the return of samples to Earth. This paper lays out an estimate of Ares V performance for moderate and high C3 missions, and goes on to discuss a range of revolutionary mission concepts that could be enabled by this significant in-crease in launch capability.

  8. Waterhammer Testing and Modeling of the Ares I Upper Stage Reaction Control System

    NASA Technical Reports Server (NTRS)

    Williams, J. Hunter; Holt, Kimberly A.

    2010-01-01

    NASA's Ares I rocket is the agency's first step in completing the goals of the Constellation Program, which plans to deliver a new generation of space explorers into low earth orbit for future missions to the International Space Station, the moon, and other destinations within the solar system. Ares I is a two-stage rocket topped by the Orion crew capsule and its service module. The launch vehicle's First Stage is a single, five-segment reusable solid rocket booster (RSRB), derived from the Space Shuttle Program's four segment RSRB. The vehicle's Upper Stage, being designed at Marshall Space Flight Center (MSFC), is propelled by a single J-2X Main Engine fueled with liquid oxygen and liquid hydrogen. During active Upper Stage flight of the Ares I launch vehicle, the Upper Stage Reaction Control System (US ReCS) will perform attitude control operations for the vehicle. The US ReCS will provide three-axis attitude control capability (roll, pitch, and yaw) for the Upper Stage while the J-2X is not firing and roll control capability while the engine is firing. Because of the requirements imposed upon the system, the design must accommodate rapid pulsing of multiple thrusters simultaneously to maintain attitude control. In support of these design activities and in preparation for Critical Design Review, analytical models of the US ReCS propellant feed system have been developed using the Thermal Hydraulic Library of MSC.EASY5 v.2008, herein referred to as EASY5. EASY5 is a commercially available fluid system modeling package with significant history of modeling space propulsion systems. In Fall 2009, a series of development tests were conducted at MSFC on a cold-flow test article for the US ReCS, herein referred to as System Development Test Article (SDTA). A subset of those tests performed were aimed at examining the effects of waterhammer on a flight-representative system and to ensure that those effects could be quantified with analytical models and incorporated into the design of the flight system. This paper presents an overview of the test article and the test approach, along with a discussion of the analytical modeling methodology. In addition, the results of that subset of development tests, along with analytical model pre-test predictions and post-test model correlations, will also be discussed in detail.

  9. KSC-98pc1113

    NASA Image and Video Library

    1998-09-17

    A solid rocket booster (left) is raised for installation onto the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. Delta's origins go back to the Thor intermediate-range ballistic missile, which was developed in the mid-1950s for the U.S. Air Force. The Thor a single-stage, liquid-fueled rocket later was modified to become the Delta launch vehicle. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Final assembly takes place at the Boeing facility in Pueblo, Colo. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  10. KSC-98pc1115

    NASA Image and Video Library

    1998-09-17

    A solid rocket booster is maneuvered into place for installation on the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. Delta's origins go back to the Thor intermediate-range ballistic missile, which was developed in the mid-1950s for the U.S. Air Force. The Thor a single-stage, liquid-fueled rocket later was modified to become the Delta launch vehicle. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Final assembly takes place at the Boeing facility in Pueblo, Colo. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  11. KSC-98pc1114

    NASA Image and Video Library

    1998-09-17

    A Boeing Delta 7326 rocket with two solid rocket boosters attached sits on Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. Delta's origins go back to the Thor intermediate-range ballistic missile, which was developed in the mid-1950s for the U.S. Air Force. The Thor a single-stage, liquid-fueled rocket later was modified to become the Delta launch vehicle. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Final assembly takes place at the Boeing facility in Pueblo, Colo. The Delta 7236, which has three solid rocket boosters and a Star 37 upper stage, will launch Deep Space 1, the first flight in NASA's New Millennium Program. It is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  12. KSC-98pc1112

    NASA Image and Video Library

    1998-09-17

    (Left) A solid rocket booster is lifted for installation onto the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. Delta's origins go back to the Thor intermediate-range ballistic missile, which was developed in the mid-1950s for the U.S. Air Force. The Thor a single-stage, liquid-fueled rocket later was modified to become the Delta launch vehicle. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Final assembly takes place at the Boeing facility in Pueblo, Colo. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  13. Launch Order, Launch Separation, and Loiter in the Constellation 1 1/2-Launch Solution

    NASA Technical Reports Server (NTRS)

    Stromgren, Chel; Cates, Grant; Cirillo, William

    2009-01-01

    The NASA Constellation Program (CxP) is developing a two-element Earth-to-Orbit launch system to enable human exploration of the Moon. The first element, Ares I, is a human-rated system that consists of a first stage based on the Space Shuttle Program's solid rocket booster (SRB) and an upper stage that consists of a four-crew Orion capsule, a service module, and a Launch Escape System. The second element, Ares V, is a Saturn V-plus category launch system that consists of the core stage with a cluster of six RS-68B engines and augmented with two 5.5-segment SRBs, a Saturn-derived J-2X engine powering an Earth Departure Stage (EDS), and the lunar-lander vehicle payload, Altair. Initial plans called for the Ares V to be launched first, followed the next day by the Ares I. After the EDS performs the final portion of ascent and subsequent orbit circularization, the Orion spacecraft then performs a rendezvous and docks with the EDS and its Altair payload. Following checkout, the integrated stack loiters in low Earth orbit (LEO) until the appropriate Trans-Lunar Injection (TLI) window opportunity opens, at which time the EDS propels the integrated Orion Altair to the Moon. Successful completion of this 1 1/2-launch solution carries risks related to both the orbital lifetime of the assets and the probability of achieving the launch of the second vehicle within the orbital lifetime of the first. These risks, which are significant in terms of overall system design choices and probability of mission success, dictated a thorough reevaluation of the launch strategy, including the order of vehicle launch and the planned time period between launches. The goal of the effort described in this paper was to select a launch strategy that would result in the greatest possible expected system performance, while accounting for launch risks and the cost of increased orbital lifetime. Discrete Event Simulation (DES) model of the launch strategies was created to determine the probability of a second launch not occurring in a timely fashion (i.e., before the assets waiting in LEO expire). An overview of the launch strategy evaluation process is presented, along with results of specific cases that were analyzed. A high-level comparison of options is then presented, along with the conclusion derived from the analysis.

  14. SLS Test Stand Site Selection

    NASA Technical Reports Server (NTRS)

    Crowe, Kathryn; Williams, Michael

    2015-01-01

    Test site selection is a critical element of the design, development and production of a new system. With the advent of the new Space Launch System (SLS), the National Aeronautics and Space Administration (NASA) had a number of test site selection decisions that needed to be made early enough in the Program to support the planned Launch Readiness Date (LRD). This case study focuses on decisions that needed to be made in 2011 and 2012 in preparation for the April 2013 DPMC decision about where to execute the Main Propulsion Test that is commonly referred to as "Green Run." Those decisions relied upon cooperative analysis between the Program, the Test Lab and Center Operations. The SLS is a human spaceflight vehicle designed to carry a crew farther into space than humans have previously flown. The vehicle consists of four parts: the crew capsule, the upper stage, the core stage, and the first stage solid rocket boosters. The crew capsule carries the astronauts, while the upper stage, the core stage, and solid rocket boosters provide thrust for the vehicle. In other words, the stages provide the "lift" part of the lift vehicle. In conjunction with the solid rocket boosters, the core stage provides the initial "get-off-the-ground" thrust to the vehicle. The ignition of the four core stage engines and two solid rocket boosters is the first step in the launch portion of the mission. The solid rocket boosters burn out after about 2 minutes of flight, and are then jettisoned. The core stage provides thrust until the vehicle reaches a specific altitude and speed, at which point the core stage is shut off and jettisoned, and the upper stage provides vehicle thrust for subsequent mission trajectories. The integrated core stage primarily consists of a liquid oxygen tank, a liquid hydrogen tank, and the four core stage engines. For the SLS program, four RS-25 engines were selected as the four core stage engines. The RS-25 engine is the same engine that was used for Space Shuttle. The test plan for the integrated core stage was broken down into several segments: Component testing, system level testing, and element level testing. In this context, components are items such as valves, controllers, sensors, etc. Systems are items such as an entire engine, a tank, or the outer stage body. The core stage itself is considered to be an element. The rocket engines are also considered an element. At the program level, it was decided to perform a single green run test on the integrated core stage prior to shipment of it to Kennedy Space Center (KSC) for use in the EM-1 test flight of the SLS vehicle. A green run test is the first live fire of the new integrated core stage and engine elements - without boosters of course. The SLS Program had to decide where to perform SLS green run testing.

  15. The Ares I-1 Flight Test--Paving the Road for the Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Tinker, Michael L.; Tuma, Meg

    2007-01-01

    In accordance with the U.S. Vision for Space Exploration and the nation's desire to again send humans to explore beyond Earth orbit, NASA has been tasked to send human beings to the moon, Mars, and beyond. It has been 30 years since the United States last designed and built a human-rated launch vehicle. NASA is now building the Ares I crew launch vehicle, which will loft the Orion crew exploration vehicle into orbit, and the Ares V cargo launch vehicle, which will launch the Lunar Surface Access Module and Earth departure stage to rendezvous Orion for missions to the moon. NASA has marshaled unique resources from the government and private sectors to perform the technically and programmatically complex work of delivering astronauts to orbit early next decade, followed by heavy cargo late next decade. Our experiences with Saturn and the Shuttle have taught us the value of adhering to sound systems engineering, such as the "test as you fly" principle, while applying aerospace best practices and lessons learned. If we are to fly humans safely aboard a launch vehicle, we must employ a variety of methodologies to reduce the technical, schedule, and cost risks inherent in the complex business of space transportation. During the Saturn development effort, NASA conducted multiple demonstration and verification flight tests to prove technology in its operating environment before relying upon it for human spaceflight. Less testing on the integrated Shuttle system did not reduce cost or schedule. NASA plans a progressive series of demonstration (ascent), verification (orbital), and mission flight tests to supplement ground research and high-altitude subsystem testing with real-world data, factoring the results of each test into the next one. In this way, sophisticated analytical models and tools, many of which were not available during Saturn and Shuttle, will be calibrated and we will gain confidence in their predictions, as we gain hands-on experience in operating the first of two new launch vehicle systems. The Ares I-1 flight test vehicle (FTV) will incorporate a mix of flight and mockup hardware, reflecting a configuration similar in mass, weight, and shape (outer mold line or OML) to the operational vehicle. It will be powered by a four-segment reusable solid rocket booster (RSRB), which is currently in Shuttle inventory, and will be modified to include a fifth, inert segment that makes it approximately the same size and weight as the five segment RSRB, which will be available for the second flight test in 2012. The Ares I-1 vehicle configuration is shown. Each test flight has specific objectives appropriate to the design analysis cycle in progress. The Ares I-1 demonstration test, slated for April 2009, gives NASA its first opportunity to gather critical data about the flight dynamics of the integrated launch vehicle stack, understand how to control its roll during flight, and other characterize the severe stage separation environment that the upper stage will experience during future operational flights. NASA also will begin the process of modifying the launch infrastructure and fine-tuning ground and mission operational scenarios, as NASA transitions from the Shuttle to the Ares/Orion system.

  16. Systems Integration Processes for NASA Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Taylor, James L.; Reuter, James L.; Sexton, Jeffrey D.

    2006-01-01

    NASA's Exploration Initiative will require development of many new elements to constitute a robust system of systems. New launch vehicles are needed to place cargo and crew in stable Low Earth Orbit (LEO). This paper examines the systems integration processes NASA is utilizing to ensure integration and control of propulsion and nonpropulsion elements within NASA's Crew Launch Vehicle (CLV), now known as the Ares I. The objective of the Ares I is to provide the transportation capabilities to meet the Constellation Program requirements for delivering a Crew Exploration Vehicle (CEV) or other payload to LEO in support of the lunar and Mars missions. The Ares I must successfully provide this capability within cost and schedule, and with an acceptable risk approach. This paper will describe the systems engineering management processes that will be applied to assure Ares I Project success through complete and efficient technical integration. Discussion of technical review and management processes for requirements development and verification, integrated design and analysis, integrated simulation and testing, and the integration of reliability, maintainability and supportability (RMS) into the design will also be included. The Ares I Project is logically divided into elements by the major hardware groupings, and associated management, system engineering, and integration functions. The processes to be described herein are designed to integrate within these Ares I elements and among the other Constellation projects. Also discussed is launch vehicle stack integration (Ares I to CEV, and Ground and Flight Operations integration) throughout the life cycle, including integrated vehicle performance through orbital insertion, recovery of the first stage, and reentry of the upper stage. The processes for decomposing requirements to the elements and ensuring that requirements have been correctly validated, decomposed, and allocated, and that the verification requirements are properly defined to ensure that the system design meets requirements, will be discussed.

  17. NASA's Space Launch System: Deep-Space Deployment for SmallSats

    NASA Technical Reports Server (NTRS)

    Schorr, Andy

    2017-01-01

    From its upcoming first flight, NASA's new Space Launch System (SLS) will represent a game-changing opportunity for smallsats. On that launch, which will propel the Orion crew vehicle around the moon, the new exploration-class launch vehicle will deploy 13 6U CubeSats into deep-space, where they will continue to a variety of destinations to perform diverse research and demonstrations. Following that first flight, SLS will undergo the first of a series of performance upgrades, increasing its payload capability to low Earth orbit from 70 to 105 metric tons via the addition of a powerful upper stage. With that change to the vehicle's architecture, so too will its secondary payload accommodation for smallsats evolve, with current plans calling for a change from the first-flight limit of 6U to accommodating a range of sizes up to 27U and potentially ESPA-class payloads. This presentation will provide an overview and update on the first launch of SLS and the secondary payloads it will deploy. Currently, flight hardware has been produced for every element of the vehicle, testing of the vehicle's propulsion elements has been ongoing for years, and structural testing of its stages has begun. Major assembly and testing of the Orion Stage Adapter, including the secondary payload accommodations, will be completed this year, and the structure will then be shipped to Kennedy Space Center for integration of the payloads. Progress is being made on those CubeSats, which will include studies of asteroids, Earth, the sun, the moon, and the impacts of radiation on organisms in deep space. They will feature revolutionary innovations for smallsats, including demonstrations of use of a solar sail as propulsion for a rendezvous with an asteroid, and the landing of a CubeSat on the lunar surface. The presentation will also provide an update on progress of the SLS Block 1B configuration that will be used on the rocket's second flight, a discussion of planned secondary payload accommodations on that configuration of the vehicle, and a look at the current state of planning of upcoming missions and what that could mean for deep-space smallsat flight opportunities.

  18. A Geometric Analysis to Protect Manned Assets from Newly Launched Objects - COLA Gap Analysis

    NASA Technical Reports Server (NTRS)

    Hametz, Mark E.; Beaver, Brian A.

    2012-01-01

    A safety risk was identified for the International Space Station (ISS) by The Aerospace Corporation following the launch of GPS IIR-20 (March 24, 2009), when the spent upper stage of the launch vehicle unexpectedly crossed inside the ISS notification box shortly after launch. This event highlighted a 56-hour vulnerability period following the end of the launch Collision Avoidance (COLA) process where the ISS would be unable to react to a conjunction with a newly launched object. Current launch COLA processes screen each launched object across the launch window to determine if an object's nominal trajectory is predicted to pass within 200 km of the ISS (or any other manned/mannable object), resulting in a launch time closure. These launch COLA screens are performed from launch through separation plus I 00 minutes. Once the objects are in orbit, they are cataloged and evaluated as part of routine on-orbit conjunction assessment processes. However, as the GPS IIR-20 scenario illustrated, there is a vulnerability period in the time line between the end of launch COLA coverage and the beginning of standard on-orbit COLA assessment activities. The gap between existing launch and on-orbit COLA processes is driven by the time it takes to track and catalog a launched object, identify a conjunction, and plan and execute a collision avoidance maneuver. For the ISS, the total time required to accomplish an of these steps is 56 hours. To protect human lives, NASA/JSC has requested that an US launches take additional steps to protect the ISS during this "COLA gap" period. The uncertainty in the state of a spent upper stage can be quite large after all bums are complete and all remaining propellants are expelled to safe the stage. Simply extending the launch COLA process an additional 56 hours is not a viable option as the 3-sigma position uncertainty will far exceed the 200 km miss-distance criterion. Additionally, performing a probability of collision (Pc) analysis over this period is also not practical due to the limiting effects of these large orbit state uncertainties. An estimated upper bound for Pc for a typical spent upper stage if nominally aligned for a direct broadside collision with the ISS is only on the order of 10-6. For a smaller manned object such as a Soyuz capsule, the risk level decreases to an order of 10'8 . In comparison, the Air Force Range policy (AFI 91-217) for launch COLAs would only eliminate launch opportunities when conjunctions with objects exceed a Pc of 10'5 This paper demonstrates a conservative geometry-based methodology that may be used to determine if launch opportunities pose a threat to the ISS during the COLA gap period. The NASA Launch Services Program at Kennedy Space Center has developed this COLA gap analysis method and employed it fQr three NASA missions to identify potential ISS conjunctions and corresponding launch window closures during the 56-hour at-risk period. In the analysis, for each launch opportunity, the nominal trajectory of the spent upper stage and the orbit state of the ISS are propagated over the 56 hour period. Each time the upper stage crosses the orbit plane of the ISS, the relative radial and argument of latitude separations are calculated. A window cutout is identified if these separation differences fall within a mission-specific violation box, which is determined from the evaluation of a Monte Carlo dispersions analysis that quantifies the potential variation in the upper stage radial and argument of latitude differences. This paper details the results of these analyses and their impacts to each mission.

  19. KSC-08pd3464

    NASA Image and Video Library

    2008-10-30

    CAPE CANAVERAL, Fla. – On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, workers on an upper level of the launch tower watch as a strap-on solid rocket booster is lifted into place to mate to the first stage of the Delta 2 launch vehicle that will carry the Kepler spacecraft into orbit. The Kepler mission is specifically designed to survey our region of the Milky Way galaxy to discover hundreds of Earth-size and smaller planets in or near the habitable zone and determine how many of the billions of stars in our galaxy have such planets. Results from this mission will allow us to place our solar system within the continuum of planetary systems in the Galaxy. NASA's planet-hunting Kepler mission is scheduled to launch no earlier than March 5, 2009. Photo credit: NASA/Jim Grossmann

  20. KSC-08pd3463

    NASA Image and Video Library

    2008-10-30

    CAPE CANAVERAL, Fla. – On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, a view from an upper level of the launch tower show air-lit strap-on solid rocket boosters being added to the first stage of the Delta 2 launch vehicle that will carry the Kepler spacecraft into orbit. The Kepler mission is specifically designed to survey our region of the Milky Way galaxy to discover hundreds of Earth-size and smaller planets in or near the habitable zone and determine how many of the billions of stars in our galaxy have such planets. Results from this mission will allow us to place our solar system within the continuum of planetary systems in the Galaxy. NASA's planet-hunting Kepler mission is scheduled to launch no earlier than March 5, 2009. Photo credit: NASA/Jim Grossmann

  1. Future Launch Vehicle Structures - Expendable and Reusable Elements

    NASA Astrophysics Data System (ADS)

    Obersteiner, M. H.; Borriello, G.

    2002-01-01

    Further evolution of existing expendable launch vehicles will be an obvious element influencing the future of space transportation. Besides this reusability might be the change with highest potential for essential improvement. The expected cost reduction and finally contributing to this, the improvement of reliability including safe mission abort capability are driving this idea. Although there are ideas of semi-reusable launch vehicles, typically two stages vehicles - reusable first stage or booster(s) and expendable second or upper stage - it should be kept in mind that the benefit of reusability will only overwhelm if there is a big enough share influencing the cost calculation. Today there is the understanding that additional technology preparation and verification will be necessary to master reusability and get enough benefits compared with existing launch vehicles. This understanding is based on several technology and system concepts preparation and verification programmes mainly done in the US but partially also in Europe and Japan. The major areas of necessary further activities are: - System concepts including business plan considerations - Sub-system or component technologies refinement - System design and operation know-how and capabilities - Verification and demonstration oriented towards future mission mastering: One of the most important aspects for the creation of those coming programmes and activities will be the iterative process of requirements definition derived from concepts analyses including economical considerations and the results achieved and verified within technology and verification programmes. It is the intention of this paper to provide major trends for those requirements focused on future launch vehicles structures. This will include the aspects of requirements only valid for reusable launch vehicles and those common for expendable, semi-reusable and reusable launch vehicles. Structures and materials is and will be one of the important technology areas to be improved. This includes: - Primary structures - Thermal protection systems (for high and low temperatures) - Hot structures (leading edges, engine cowling, ...) - Tanks (for various propellants and fluids, cryo, ...) Requirements to be considered are including materials properties and a variety of loads definition - static and dynamic. Based on existing knowledge and experience for expendable LV (Ariane, ...) and aircraft there is the need to established a combined understanding to provide the basis for an efficient RLV design. Health monitoring will support the cost efficient operation of future reusable structures, but will also need a sound understanding of loads and failure mechanisms as basis. Risk mitigation will ask for several steps of demonstration towards a cost efficient RLV (structures) operation. Typically this has or will start with basic technology, to be evolved to components demonstration (TPS, tanks, ...) and finally to result in the demonstration of the cost efficient reuse operation. This paper will also include a programmatic logic concerning future LV structures demonstration.

  2. Vented Launch Vehicle Adaptor for a Manned Spacecraft with "Pusher" Launch Abort System

    NASA Technical Reports Server (NTRS)

    Vandervort, Robert E. (Inventor)

    2017-01-01

    A system, method, and apparatus for a vented launch vehicle adaptor (LVA) for a manned spacecraft with a "pusher" launch abort system are disclosed. The disclosed LVA provides a structural interface between a commercial crew vehicle (CCV) crew module/service module (CM/SM) spacecraft and an expendable launch vehicle. The LVA provides structural attachment of the module to the launch vehicle. It also provides a means to control the exhaust plume from a pusher-type launch abort system that is integrated into the module. In case of an on-pad or ascent abort, which requires the module to jettison away from the launch vehicle, the launch abort system exhaust plume must be safely directed away from critical and dangerous portions of the launch vehicle in order to achieve a safe and successful jettison.

  3. KSC-07pd0159

    NASA Image and Video Library

    2007-01-23

    KENNEDY SPACE CENTER, FLA. -- The right-hand orbital maneuvering system pod is driven past the Vehicle Assembly Building on its way to Orbiter Processing Facility bay 2 for installation on the orbiter Endeavour. The orbital maneuvering system/reaction control system left- and right-hand pods are attached to the upper aft fuselage left and right sides. Each pod is fabricated primarily of graphite epoxy composite and aluminum. Each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. The orbiter is being prepared for its first launch in just over four years. The vehicle has undergone an extensive modification period, including the addition of all of the return-to-flight safety upgrades added to both Discovery and Atlantis. Endeavour is targeted for launch of mission STS-118 on June 28. Photo credit: NASA/Kim Shiflett

  4. Explosion/Blast Dynamics for Constellation Launch Vehicles Assessment

    NASA Technical Reports Server (NTRS)

    Baer, Mel; Crawford, Dave; Hickox, Charles; Kipp, Marlin; Hertel, Gene; Morgan, Hal; Ratzel, Arthur; Cragg, Clinton H.

    2009-01-01

    An assessment methodology is developed to guide quantitative predictions of adverse physical environments and the subsequent effects on the Ares-1 crew launch vehicle associated with the loss of containment of cryogenic liquid propellants from the upper stage during ascent. Development of the methodology is led by a team at Sandia National Laboratories (SNL) with guidance and support from a number of National Aeronautics and Space Administration (NASA) personnel. The methodology is based on the current Ares-1 design and feasible accident scenarios. These scenarios address containment failure from debris impact or structural response to pressure or blast loading from an external source. Once containment is breached, the envisioned assessment methodology includes predictions for the sequence of physical processes stemming from cryogenic tank failure. The investigative techniques, analysis paths, and numerical simulations that comprise the proposed methodology are summarized and appropriate simulation software is identified in this report.

  5. Factors which Limit the Value of Additional Redundancy in Human Rated Launch Vehicle Systems

    NASA Technical Reports Server (NTRS)

    Anderson, Joel M.; Stott, James E.; Ring, Robert W.; Hatfield, Spencer; Kaltz, Gregory M.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has embarked on an ambitious program to return humans to the moon and beyond. As NASA moves forward in the development and design of new launch vehicles for future space exploration, it must fully consider the implications that rule-based requirements of redundancy or fault tolerance have on system reliability/risk. These considerations include common cause failure, increased system complexity, combined serial and parallel configurations, and the impact of design features implemented to control premature activation. These factors and others must be considered in trade studies to support design decisions that balance safety, reliability, performance and system complexity to achieve a relatively simple, operable system that provides the safest and most reliable system within the specified performance requirements. This paper describes conditions under which additional functional redundancy can impede improved system reliability. Examples from current NASA programs including the Ares I Upper Stage will be shown.

  6. KSC-04pd1826

    NASA Image and Video Library

    2004-09-02

    KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft (right) is ready for mating with the upper stage (foreground) in preparation for launch on the Orbital Sciences Pegasus XL. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.

  7. KSC-04pd1827

    NASA Image and Video Library

    2004-09-02

    KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers maneuver the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft, suspended by a crane, over the upper stage in preparation for launch on the Orbital Sciences Pegasus XL. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.

  8. KSC-04pd1825

    NASA Image and Video Library

    2004-09-02

    KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft (right) is ready for mating with the upper stage (behind it) in preparation for launch on the Orbital Sciences Pegasus XL. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.

  9. Aerodynamic Characteristics and Glide-Back Performance of Langley Glide-Back Booster

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Covell, Peter F.; Tartabini, Paul V.; Murphy, Kelly J.

    2004-01-01

    NASA-Langley Research Center is conducting system level studies on an-house concept of a small launch vehicle to address NASA's needs for rapid deployment of small payloads to Low Earth Orbit. The vehicle concept is a three-stage system with a reusable first stage and expendable upper stages. The reusable first stage booster, which glides back to launch site after staging around Mach 3 is named the Langley Glide-Back Booster (LGBB). This paper discusses the aerodynamic characteristics of the LGBB from subsonic to supersonic speeds, development of the aerodynamic database and application of this database to evaluate the glide back performance of the LGBB. The aerodynamic database was assembled using a combination of wind tunnel test data and engineering level analysis. The glide back performance of the LGBB was evaluated using a trajectory optimization code and subject to constraints on angle of attack, dynamic pressure and normal acceleration.

  10. Solid propulsion advanced concepts

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Shafer, J. I.

    1972-01-01

    The feasibility and application of a solid propulsion powered spacecraft concept to implement high energy missions independent of multiplanetary swingby opportunities are assessed and recommendations offered for future work. An upper stage, solid propulsion launch vehicle augmentation system was selected as the baseline configuration in view of the established program goals of low cost and high reliability. Spacecraft and propulsion system data that characterize mission performance capabilities were generated to serve as the basis for subsequent tradeoff studies. A cost effectiveness model was used for the preliminary feasibility assessment to provide a meaningful comparative effectiveness measure of the various candidate designs. The results substantiated the feasibility of the powered spacecraft concept when used in conjunction with several intermediate-sized launch vehicles as well as the existence of energy margins by which to exploit the attainment of extended mission capabilities. Additionally, in growth option applications, the employment of advanced propulsion systems and alternate spacecraft approaches appear promising.

  11. Liquid Rocket Engine Testing Overview

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.

  12. Development Status of the J-2X

    NASA Technical Reports Server (NTRS)

    Kynard, Mike; Vilja, John

    2008-01-01

    In June 2006, the NASA Marshall Space Flight Center (MSFC) and Pratt & Whitney Rocketdyne began development of an engine for use on the Ares I crew launch vehicle and the Ares V cargo launch vehicle. The development program will be completed in December 2012 at the end of a Design Certification Review and after certification testing of two flight configuration engines. A team of over 600 people within NASA and Pratt & Whitney Rocketdyne are currently working to prepare for the fall 2008 Critical Design Review (CDR), along with supporting an extensive risk mitigation test program. The J-2X will power the Ares I upper stage and the Ares V earth departure stage (EDS). The initial use will be in the Ares I, used to launch the Orion crew exploration vehicle. In this application, it will power the upper stage after being sent aloft on a Space Shuttle-derived. 5-segment solid rocket booster first stage. In this mission. the engine will ignite at altitude and provide the necessary acceleration force to allow the Orion to achieve orbital velocity. The Ares I upper stage, along with the J-2X. will then be expended. On the Ares V. first stage propulsion is provided by five RS-68B engines and two 5-segment boosters similar to the Ares I configuration. In the Ares V mission. the J-2X is first started to power the EDS and its payload. the Altair lunar lander. into earth orbit, then shut-down and get prepared for its next start. The EDS/Altair will remain in a parking orbit, awaiting rendezvous and docking with Orion. Once the two spacecraft are mated, the J-2X will be restarted to achieve earth departure velocity. After powering the Orion and Altair, the EDS will be expended. By using the J-2X Engine in both applications, a significant infrastructure cost savings is realized. Only one engine development is required, and the sustaining engineering and flight support infrastructures can be combined. There is also flexibility for changing, the production and flight manifest because a single production line can support both missions with minimal differences between each engine configuration kit.

  13. Saturn Apollo Program

    NASA Image and Video Library

    1962-11-16

    The Saturn I (SA-3) flight lifted off from Kennedy Space Center launch Complex 34, November 16, 1962. The third launch of Saturn launch vehicles, developed at the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet. and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. During the SA-3 flight, the upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for "Project Highwater" physics experiment. The water was released at an altitude of 65 miles, where within only 5 seconds, it expanded into a massive ice cloud 4.6 miles in diameter. Release of this vast quantity of water in a near-space environment marked the first purely scientific large-scale experiment.

  14. Re-entry survivability and risk

    NASA Astrophysics Data System (ADS)

    Fudge, Michael L.

    1998-11-01

    This paper is the culmination of the research effort which was reported on last year while still in-progress. As previously reported, statistical methods for expressing the impact risk posed to space systems in general [and the International Space Station (ISS) in particular] by other resident space objects have been examined. One of the findings of this investigation is that there are legitimate physical modeling reasons for the common statistical expression of the collision risk. A combination of statistical methods and physical modeling is also used to express the impact risk posed by reentering space systems to objects of interest (e.g., people and property) on Earth. One of the largest uncertainties in the expressing of this risk is the estimation of survivable material which survives reentry to impact Earth's surface. This point was demonstrated in dramatic fashion in January 1997 by the impact of an intact expendable launch vehicle (ELV) upper stage near a private residence in the continental United States. Since approximately half of the missions supporting ISS will utilize ELVs, it is appropriate to examine the methods used to estimate the amount and physical characteristics of ELV debris surviving reentry to impact Earth's surface. This report details reentry survivability estimation methodology, including the specific methodology used by ITT Systems' (formerly Kaman Sciences) 'SURVIVE' model. The major change to the model in the last twelve months has been the increase in the fidelity with which upper- atmospheric aerodynamics has been modeled. This has resulted in an adjustment in the factor relating the amount of kinetic energy loss to the amount of heating entering and reentering body, and also validated and removed the necessity for certain empirically-based adjustments made to the theoretical heating expressions. Comparisons between empirical results (observations of objects which have been recovered on Earth after surviving reentry) and SURVIVE estimates are presented for selected generic upper stage or spacecraft components, a Soyuz launch vehicle second stage, and for a Delta II launch vehicle second stage and its significant components. Significant similarity is demonstrated between the type and dispersion pattern of the recovered debris from the January 1997 Delta II 2nd stage event and the simulation of that reentry and breakup.

  15. KSC-07pd1645

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians lower the upper canister over the Dawn spacecraft. After enclosure, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  16. KSC-07pd1646

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians secure the upper canister over the Dawn spacecraft. Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  17. KSC-07pd1644

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians begin lowering the upper canister over the Dawn spacecraft. After enclosure, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  18. Creating Interactive Graphical Overlays in the Advanced Weather Interactive Processing System (AWIPS) Using Shapefiles and DGM Files

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Lafosse, Richard; Hood, Doris; Hoeth, Brian

    2007-01-01

    Graphical overlays can be created in real-time in the Advanced Weather Interactive Processing System (AWIPS) using shapefiles or DARE Graphics Metafile (DGM) files. This presentation describes how to create graphical overlays on-the-fly for AWIPS, by using two examples of AWIPS applications that were created by the Applied Meteorology Unit (AMU). The first example is the Anvil Threat Corridor Forecast Tool, which produces a shapefile that depicts a graphical threat corridor of the forecast movement of thunderstorm anvil clouds, based on the observed or forecast upper-level winds. This tool is used by the Spaceflight Meteorology Group (SMG) and 45th Weather Squadron (45 WS) to analyze the threat of natural or space vehicle-triggered lightning over a location. The second example is a launch and landing trajectory tool that produces a DGM file that plots the ground track of space vehicles during launch or landing. The trajectory tool can be used by SMG and the 45 WS forecasters to analyze weather radar imagery along a launch or landing trajectory. Advantages of both file types will be listed.

  19. Main-belt asteroid exploration - Mission options for the 1990s

    NASA Technical Reports Server (NTRS)

    Yen, Chen-Wan L.

    1989-01-01

    An extensive investigation of the ways to rendezvous with diverse groups of asteroids residing between 2.0 and 5.0 AU is made, and the extent of achievable missions using the STS upper-stage launch vehicles (IUS 2-Stage/Star-48 or NASA Centaur) is examined. With judicious use of earth, Mars, and Jupiter gravity assists, rendezvous with some asteroids in all regions of space is possible. It is also shown that the STS upper stages are capable of carrying out missions beyond a single rendezvous, namely with several flybys and/or multiple rendezvous.

  20. KSC-2009-3221

    NASA Image and Video Library

    2009-05-21

    CAPE CANAVERAL, Fla. – In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center in Florida, the Ares I-X frustum is being mated to the forward skirt and forward skirt extension to complete the forward assembly. The assembly will be moved to the Vehicle Assembly Building for stacking operations. Resembling a giant funnel, the frustum's function is to transition the primary flight loads from the rocket's upper stage to the first stage. The frustum is located between the forward skirt extension and the upper stage of the Ares I-X. The launch of Ares I-X is targeted for August 2009. Photo credit: NASA/Troy Cryder

  1. KSC-2009-3223

    NASA Image and Video Library

    2009-05-21

    CAPE CANAVERAL, Fla. – In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center in Florida, the Ares I-X frustum is being mated to the forward skirt and forward skirt extension to complete the forward assembly. The assembly will be moved to the Vehicle Assembly Building for stacking operations. Resembling a giant funnel, the frustum's function is to transition the primary flight loads from the rocket's upper stage to the first stage. The frustum is located between the forward skirt extension and the upper stage of the Ares I-X. The launch of Ares I-X is targeted for August 2009. Photo credit: NASA/Troy Cryder

  2. KSC-2009-3222

    NASA Image and Video Library

    2009-05-21

    CAPE CANAVERAL, Fla. – In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center in Florida, the Ares I-X frustum is being mated to the forward skirt and forward skirt extension to complete the forward assembly. The assembly will be moved to the Vehicle Assembly Building for stacking operations. Resembling a giant funnel, the frustum's function is to transition the primary flight loads from the rocket's upper stage to the first stage. The frustum is located between the forward skirt extension and the upper stage of the Ares I-X. The launch of Ares I-X is targeted for August 2009. Photo credit: NASA/Troy Cryder

  3. Agena Target Vehicle atop Atlas Launch vehicle launched from KSC

    NASA Technical Reports Server (NTRS)

    1966-01-01

    An Agena Target Vehicle atop its Atlas Launch vehicle is launched from the Kennedy Space Center (KSC) Launch Complex 14 at 10:15 am.m., May 17, 1966. The Agena was intended as a rendezvous and docking vehicle for the Gemini 9 spacecraft. However, since the Agena failed to achieve orbit, the Gemini 9 mission was postponed.

  4. Draft Environmental Impact Statement for the Ulysses Mission (Tier 2)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This Draft Environmental Impact Statement (DEIS) addresses the environmental impacts which may be caused by the preparation and operation of the Ulysses spacecraft, including its planned launch on the Space Transportation System (STS) Shuttle and the alternative of canceling further work on the mission. The launch configuration will use the STS/Inertial Upper Stage (IUS)/Payload Assist Module-Special(PAM-S) combination. The Tier 1 EIS included a delay alternative which considered the Titan 4 launch vehicle as an alternative booster stage for launch in 1991 or later. However, the U.S. Air Force, which procures the Titan 4 for NASA, could not provide a Titan 4 vehicle for the 1991 launch opportunity because of high priority Department of Defense requirements. The only expected environmental effects of the proposed action are associated with normal Shuttle launch operations. These impacts are limited largely to the near-field at the launch pad, except for temporary stratospheric ozone effects during launch and occasional sonic boom effects near the landing site. These effects have been judged insufficient to preclude Shuttle launches. In the event of (1) an accident during launch, or (2) reentry of the spacecraft from earth orbit, there are potential adverse health and environmental effects associated with the possible release of plutonium dioxide from the spacecraft's radioisotope thermoelectric generators (RTG). The potential effects considered in this EIS include risks of air and water quality impacts, local land area contamination, adverse health and safety impacts, the disturbance of biotic resources, impacts on wetland areas or areas containing historical sites, and socioeconomic impacts. Intensive analysis of the possible accidents associated with the proposed action are underway and preliminary results indicate small health or environmental risks. The results of a Final Safety Analysis Report will be available for inclusion into the final EIS.

  5. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts confidence testing of a manufactured aluminum panel that will fabricate the Ares I upper stage barrel. In this test, bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  6. Launch Vehicles

    NASA Image and Video Library

    2007-07-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, an Ares I x-test involves the upper stage separating from the first stage. This particular test was conducted at the NASA Langley Research Center in July 2007. (Highest resolution available)

  7. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, processes for upper stage barrel fabrication are talking place. Aluminum panels are manufacturing process demonstration articles that will undergo testing until perfected. The panels are built by AMRO Manufacturing located in El Monte, California. (Largest resolution available)

  8. Propulsion Progress for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Lyles, Garry M.; Priskos, Alex S.; Kynard, Michael H.; Lavoie, Anthony R.

    2012-01-01

    Leaders from NASA's Space Launch System (SLS) will participate in a panel discussing the progress made on the program's propulsion systems. The SLS will be the nation's next human-rated heavy-lift vehicle for new missions beyond Earth's orbit. With a first launch slated for 2017, the SLS Program is turning plans into progress, with the initial rocket being built in the U.S.A. today, engaging the aerospace workforce and infrastructure. Starting with an overview of the SLS mission and programmatic status, the discussion will then delve into progress on each of the primary SLS propulsion elements, including the boosters, core stage engines, upper stage engines, and stage hardware. Included will be a discussion of the 5-segment solid rocket motors (ATK), which are derived from Space Shuttle and Ares developments, as well as the RS-25 core stage engines from the Space Shuttle inventory and the J- 2X upper stage engine now in testing (Pratt and Whitney Rocketdyne). The panel will respond to audience questions about this important national capability for human and scientific space exploration missions.

  9. Development and Testing of Carbon-Carbon Nozzle Extensions for Upper Stage Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Gradl, Paul R.; Greene, Sandra E.

    2017-01-01

    Carbon-carbon (C-C) composite nozzle extensions are of interest for use on a variety of launch vehicle upper stage engines and in-space propulsion systems. The C-C nozzle extension technology and test capabilities being developed are intended to support National Aeronautics and Space Administration (NASA) and Department of Defense (DOD) requirements, as well as those of the broader Commercial Space industry. For NASA, C-C nozzle extension technology development primarily supports the NASA Space Launch System (SLS) and NASA's Commercial Space partners. Marshall Space Flight Center (MSFC) efforts are aimed at both (a) further developing the technology and databases needed to enable the use of composite nozzle extensions on cryogenic upper stage engines, and (b) developing and demonstrating low-cost capabilities for testing and qualifying composite nozzle extensions. Recent, on-going, and potential future work supporting NASA, DOD, and Commercial Space needs will be discussed. Information to be presented will include (a) recent and on-going mechanical, thermal, and hot-fire testing, as well as (b) potential future efforts to further develop and qualify domestic C-C nozzle extension solutions for the various upper stage engines under development.

  10. Evaluation of Separation Mechanism Design for the Orion/Ares Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Konno, Kevin E.; Catalano, Daniel A.; Krivanek, Thomas M.

    2008-01-01

    As a part of the preliminary design work being performed for the Orion vehicle, the Orion to Spacecraft Adaptor (SA) separation mechanism was analyzed and sized, with findings presented here. Sizing is based on worst case abort condition as a result of an anomaly driving the launch vehicle engine thrust vector control hard-over causing a severe vehicle pitch over. This worst case scenario occurs just before Upper Stage Main Engine Cut-Off (MECO) when the vehicle is the lightest and the damping effect due to propellant slosh has been reduced to a minimum. To address this scenario and others, two modeling approaches were invoked. The first approach was a detailed 2-D (Simulink) model to quickly assess the Service Module Engine nozzle to SA clearance for a given separation mechanism. The second approach involved the generation of an Automatic Dynamic Analysis of Mechanical Systems (ADAMS) model to assess secondary effects due to mass centers of gravity that were slightly off the vehicle centerline. It also captured any interference between the Solar Arrays and the Spacecraft Adapter. A comparison of modeling results and accuracy are discussed. Most notably, incorporating a larger SA flange diameter allowed for a natural separation of the Orion and its engine nozzle even at relatively large pitch rates minimizing the kickoff force. Advantages and disadvantages of the 2-D model vs. a full 3-D (ADAMS) model are discussed as well.

  11. Evaluation of Separation Mechanism Design for the Orion/Ares Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Konno, Kevin E.; Catalano, Daniel A.; Krivanek, Thomas M.

    2008-01-01

    As a part of the preliminary design work being performed for the Orion vehicle, the Orion to Spacecraft Adaptor (SA) separation mechanism mechanism was analyzed and sized, with findings presented here. Sizing is based on worst case abort condition as a result of an anomaly driving the launch vehicle engine thrust vector control hard-over causing a severe vehicle pitch over. This worst case scenario occurs just before Upper Stage Main Engine Cut-Off (MECO) when the vehicle is the lightest and the damping effect due to propellant slosh has been reduced to a minimum. To address this scenario and others, two modeling approaches were invoked. The first approach was a detailed Simulink model to quickly assess the Service Module Engine nozzle to SA clearance for a given separation mechanism. The second approach involved the generation of an Automatic Dynamic Analysis of Mechanical Systems (ADAMS) model to assess secondary effects due to mass centers of gravity that were slightly off the vehicle centerline. It also captured any interference between the Solar Arrays and the Spacecraft Adapter. A comparison of modeling results and accuracy are discussed. Most notably, incorporating a larger SA flange diameter allowed for a natural separation of the Orion and its engine nozzle even at relatively large pitch rates minimizing the kickoff force. Advantages and disadvantages of the Simulink model vs. a full geometric ADAMS model are discussed as well.

  12. Evaluation of Separation Mechanism Design for the Orion/Ares Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Konno, Kevin E.; Catalano, Daniel A.; Krivanek, Thomas M.

    2008-01-01

    As a part of the preliminary design work being performed for the Orion vehicle, the Orion to Spacecraft Adaptor (SA) separation mechanism was analyzed and sized, with findings presented here. Sizing is based on worst case abort condition as a result of an anomaly driving the launch vehicle engine thrust vector control hard-over causing a severe vehicle pitch over. This worst-case scenario occurs just before Upper Stage Main Engine Cut-Off when the vehicle is the lightest and the damping effect due to propellant slosh has been reduced to a minimum. To address this scenario and others, two modeling approaches were invoked. The first approach was a detailed Simulink model to quickly assess the Service Module Engine nozzle to SA clearance for a given separation mechanism. The second approach involved the generation of an Automatic Dynamic Analysis of Mechanical Systems (ADAMS) model to assess secondary effects due to mass centers of gravity that were slightly off the vehicle centerline. It also captured any interference between the Solar Arrays and the Spacecraft Adapter. A comparison of modeling results and accuracy are discussed. Most notably, incorporating a larger SA flange diameter allowed for a natural separation of the Orion and its engine nozzle even at relatively large pitch rates minimizing the kickoff force. Advantages and disadvantages of the Simulink model vs. a full geometric ADAMS model are discussed as well.

  13. Evaluation of Separation Mechanism Design for the Orion/Ares Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Konno, Kevin E.; Catalano, Daniel A.; Krivanek, Thomas M.

    2008-01-01

    As a part of the preliminary design work being performed for the Orion vehicle, the Orion to Spacecraft Adaptor (SA) separation mechanism was analyzed and sized, with findings presented here. Sizing is based on worst case abort condition as a result of an anomaly driving the launch vehicle engine thrust vector control hard-over causing a severe vehicle pitch over. This worst case scenario occurs just before Upper Stage Main Engine Cut-Off (MECO) when the vehicle is the lightest and the damping effect due to propellant slosh has been reduced to a minimum. To address this scenario and others, two modeling approaches were invoked. The first approach was a detailed Simulink model to quickly assess the Service Module Engine nozzle to SA clearance for a given separation mechanism. The second approach involved the generation of an Automatic Dynamic Analysis of Mechanical Systems (ADAMS) model to assess secondary effects due to mass centers of gravity that were slightly off the vehicle centerline. It also captured any interference between the Solar Arrays and the Spacecraft Adapter. A comparison of modeling results and accuracy are discussed. Most notably, incorporating a larger SA flange diameter allowed for a natural separation of the Orion and it's engine nozzle even at relatively large pitch rates minimizing the kickoff force. Advantages and disadvantages of the Simulink model vs. a full geometric ADAMS model are discussed as well.

  14. 14 CFR 415.105 - Pre-application consultation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... following information: (1) Launch vehicle. Description of: (i) Launch vehicle; (ii) Any flight termination system; and (iii) All hazards associated with the launch vehicle and any payload, including the type and... Launch Vehicle From a Non-Federal Launch Site § 415.105 Pre-application consultation. (a) An applicant...

  15. 14 CFR 415.105 - Pre-application consultation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... following information: (1) Launch vehicle. Description of: (i) Launch vehicle; (ii) Any flight termination system; and (iii) All hazards associated with the launch vehicle and any payload, including the type and... Launch Vehicle From a Non-Federal Launch Site § 415.105 Pre-application consultation. (a) An applicant...

  16. 14 CFR 415.105 - Pre-application consultation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... following information: (1) Launch vehicle. Description of: (i) Launch vehicle; (ii) Any flight termination system; and (iii) All hazards associated with the launch vehicle and any payload, including the type and... Launch Vehicle From a Non-Federal Launch Site § 415.105 Pre-application consultation. (a) An applicant...

  17. 14 CFR 415.105 - Pre-application consultation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... following information: (1) Launch vehicle. Description of: (i) Launch vehicle; (ii) Any flight termination system; and (iii) All hazards associated with the launch vehicle and any payload, including the type and... Launch Vehicle From a Non-Federal Launch Site § 415.105 Pre-application consultation. (a) An applicant...

  18. 14 CFR 415.105 - Pre-application consultation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... following information: (1) Launch vehicle. Description of: (i) Launch vehicle; (ii) Any flight termination system; and (iii) All hazards associated with the launch vehicle and any payload, including the type and... Launch Vehicle From a Non-Federal Launch Site § 415.105 Pre-application consultation. (a) An applicant...

  19. Project Minerva: A low-cost manned Mars mission based on indigenous propellant production

    NASA Technical Reports Server (NTRS)

    Bruckner, Adam P.; Anderson, Hobie; Caviezel, Kelly; Daggert, Todd; Folkers, Mike; Fornia, Mark; Hamling, Steven; Johnson, Bryan; Kalberer, Martin; Machula, Mike

    1992-01-01

    Project Minerva is a low-cost manned Mars mission designed to deliver a crew of four to the Martian surface, using only two sets of two launches. Key concepts which make this mission realizable are the use of near-term technologies and in-situ propellant production, following the senario originally proposed by R. Zubrin of Martin Marietta. The first set of launches delivers two unmanned payloads into low earth orbit (LEO): one consists of an Earth Return Vehicle (ERV), a propellant production plant, and a set of robotic vehicles, and the second consists of the upper stage/trans-Mars injection (TMI) booster. In LEO, the two payloads are joined and inserted into a Mars transfer orbit. The landing on Mars is performed with the aid of multiple aerobraking maneuvers. On the Martian surface, the propellant production plant uses a Sabatier/electrolysis-type process to combine six tons of hydrogen brought from earth with carbon dioxide from the Martian atmosphere to produce 100 tons of liquid oxygen and methane, which are later used as the propellants for the rover expeditions and the manned return journey of the ERV. Once the in-situ propellant production is completed, approximately two years after the first set of launches, the manned portion of the mission leaves earth. This set of two launches is similar to that of the unmanned vehicles; the two payloads are the Manned Transfer Vehicle (MTV) and the upper stage/TMI booster. The MTV contains the manned rover and the habitat which houses the astronauts enroute to Mars and on the Martian surface. During the 180-day trip to Mars, artificial gravity is created by tethering the MTV to the TMI booster and inducing rotation. Upon arrival the MTV performs aerobraking maneuvers to land near the fully-fueled ERV, which will be used by the crew a year and a half later to return to earth. The mission entails moderate travel times with relatively low-energy conjunction-class trajectories and allows ample time for scientific exploration. This set of missions can be repeated every two years in order to continue exploration at a variety of sites and gradually establish the infrastructure for a permanent base on Mars.

  20. NASA Crew Launch Vehicle Approach Builds on Lessons from Past and Present Missions

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2006-01-01

    The United States Vision for Space Exploration, announced in January 2004, outlines the National Aeronautics and Space Administration's (NASA) strategic goals and objectives, including retiring the Space Shuttle and replacing it with a new human-rated system suitable for missions to the Moon and Mars. The Crew Exploration Vehicle (CEV) that the new Crew Launch Vehicle (CLV) lofts into space early next decade will initially ferry astronauts to the International Space Station and be capable of carrying crews back to lunar orbit and of supporting missions to Mars orbit. NASA is using its extensive experience gained from past and ongoing launch vehicle programs to maximize the CLV system design approach, with the objective of reducing total lifecycle costs through operational efficiencies. To provide in-depth data for selecting this follow-on launch vehicle, the Exploration Systems Architecture Study was conducted during the summer of 2005, following the confirmation of the new NASA Administrator. A team of aerospace subject matter experts used technical, budget, and schedule objectives to analyze a number of potential launch systems, with a focus on human rating for exploration missions. The results showed that a variant of the Space Shuttle, utilizing the reusable Solid Rocket Booster as the first stage, along with a new upper stage that uses a derivative of the RS-25 Space Shuttle Main Engine to deliver 25 metric tons to low-Earth orbit, was the best choice to reduce the risks associated with fielding a new system in a timely manner. The CLV Project, managed by the Exploration Launch Office located at NASA's Marshall Space Flight Center, is leading the design, development, testing, and operation of this new human-rated system. The CLV Project works closely with the Space Shuttle Program to transition hardware, infrastructure, and workforce assets to the new launch system . leveraging a wealth of lessons learned from Shuttle operations. The CL V is being designed to reduce costs through a number of methods, ranging from validating requirements to conducting trades studies against the concept design. Innovations such as automated processing will build on lessons learned from the Shuttle, other launch systems, Department of Defense operations experience, and subscale flight tests such as the Delta Clipper-Experimental Advanced (DCXA) vehicle operations that utilized minimal touch labor, automated cryogen ic propellant loading , and an 8-hour turnaround for a cryogenic propulsion system. For the CLV, the results of hazard analyses are contributing to an integrated vehicle health monitoring system that will troubleshoot anomalies and determine which ones can be solved without human intervention. Such advances will help streamline the mission operations process for pilots and ground controllers alike. In fiscal year 2005, NASA invested approximately $4.5 billion of its $16 bill ion budget on the Space Shuttle. The ultimate goal of the CLV Project is to deliver a safe, reliable system designed to minimize lifecycle costs so that NASA's budget can be invested in missions of scientific discovery. Lessons learned from developing the CLV will be applied to the growth path for future systems, including a heavy lift launch vehicle.

  1. KSC-08pd1041

    NASA Image and Video Library

    2008-04-26

    CAPE CANAVERAL, Fla. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center, space shuttle Discovery, looking like a giant bat, hangs suspended above the transfer aisle. The crane holding it will lift Discovery to the upper levels and lower it into high bay 3. In the bay, Discovery will be mated to the external tank and solid rocket boosters for launch on the upcoming STS-124 mission to the International Space Station. On the mission, the STS-124 crew will transport the Japanese Experiment Module - Pressurized Module and the Japanese Remote Manipulator System to the space station. Launch of Discovery is targeted for May 31 Photo credit: NASA/Jim Grossmann

  2. KSC-07pd1658

    NASA Image and Video Library

    2007-06-27

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 17-B, at Cape Canaveral Air Force Station, workers prepare NASA's Dawn spacecraft mated to the Delta II upper stage booster, for hoisting up into the mobile service tower. Dawn will be mated with the Delta II launch vehicle. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA's first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.

  3. Crew Dragon Demonstration Mission 1

    NASA Image and Video Library

    2018-06-13

    SpaceX’s Crew Dragon is at NASA’s Plum Brook Station in Ohio, ready to undergo testing in the In-Space Propulsion Facility — the world’s only facility capable of testing full-scale upper-stage launch vehicles and rocket engines under simulated high-altitude conditions. The chamber will allow SpaceX and NASA to verify Crew Dragon’s ability to withstand the extreme temperatures and vacuum of space. This is the spacecraft that SpaceX will fly during its Demonstration Mission 1 flight test under NASA’s Commercial Crew Transportation Capability contract with the goal of returning human spaceflight launch capabilities to the U.S.

  4. 14 CFR 420.29 - Launch site location review for unproven launch vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE Criteria and Information Requirements for Obtaining a License § 420.29 Launch site location review for unproven launch vehicles. An applicant for a license to operate a launch site for an unproven launch vehicle shall...

  5. 14 CFR 420.29 - Launch site location review for unproven launch vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE Criteria and Information Requirements for Obtaining a License § 420.29 Launch site location review for unproven launch vehicles. An applicant for a license to operate a launch site for an unproven launch vehicle shall...

  6. Aero-Assisted Pre-Stage for Ballistic and Aero-Assisted Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Ustinov, Eugene A.

    2012-01-01

    A concept of an aero-assisted pre-stage is proposed, which enables launch of both ballistic and aero-assisted launch vehicles from conventional runways. The pre-stage can be implemented as a delta-wing with a suitable undercarriage, which is mated with the launch vehicle, so that their flight directions are coaligned. The ample wing area of the pre-stage combined with the thrust of the launch vehicle ensure prompt roll-out and take-off of the stack at airspeeds typical for a conventional jet airliner. The launch vehicle is separated from the pre-stage as soon as safe altitude is achieved, and the desired ascent trajectory is reached. Nominally, the pre-stage is non-powered. As an option, to save the propellant of the launch vehicle, the pre-stage may have its own short-burn propulsion system, whereas the propulsion system of the launch vehicle is activated at the separation point. A general non-dimensional analysis of performance of the pre-stage from roll-out to separation is carried out and applications to existing ballistic launch vehicle and hypothetical aero-assisted vehicles (spaceplanes) are considered.

  7. Reusable Suborbital Launch Vehicles: Modeling and Assessment of Global Changes Associated With High Flight Rates

    NASA Astrophysics Data System (ADS)

    Ross, M.

    2011-12-01

    Reusable Suborbital Launch Vehicles (RSLVs) are expected to play a large role in the space transport sector in coming decades, opening a new chapter in middle and upper atmospheric flight. RSLV flight rates of up to 1000 per year are forecast as early as 2025. While combustion emissions from each RSLV launch are small, less than 10 metric tons or less, the cumulative stratospheric emissions loading from RSLV flights could significantly exceed the loading from present day orbital launches. Recent GCM results suggest that black carbon (BC) emissions from hydrocarbon fueled rocket engines - including engine types planned for some RSLVs - are of particular interest because BC emitted by rockets could affect global direct radiative forcing and composition in the middle atmosphere to a much greater extent than other rocket emissions such as carbon dioxide and water. We present arguments and model results indicating that 1000 RSLV launches per year could regionally increase stratospheric BC by at least tens of percent over the background and change surface temperatures by over one degree. We also show how the new middle atmospheric measurement capabilities offered by RSLVs permit heretofore unavailable measurements of background stratospheric and mesospheric particle populations and an assessment of the buildup of RSLV exhaust particles during the time that RSLV flight rates are expected to surge (2015-2025).

  8. The Space Launch System -The Biggest, Most Capable Rocket Ever Built, for Entirely New Human Exploration Missions Beyond Earth's Orbit

    NASA Technical Reports Server (NTRS)

    Shivers, C. Herb

    2012-01-01

    NASA is developing the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new capability for human exploration beyond Earth's orbit. The Space Launch System will provide a safe, affordable and sustainable means of reaching beyond our current limits and opening up new discoveries from the unique vantage point of space. The first developmental flight, or mission, is targeted for the end of 2017. The Space Launch System, or SLS, will be designed to carry the Orion Multi-Purpose Crew Vehicle, as well as important cargo, equipment and science experiments to Earth's orbit and destinations beyond. Additionally, the SLS will serve as a backup for commercial and international partner transportation services to the International Space Station. The SLS rocket will incorporate technological investments from the Space Shuttle Program and the Constellation Program in order to take advantage of proven hardware and cutting-edge tooling and manufacturing technology that will significantly reduce development and operations costs. The rocket will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25D/E from the Space Shuttle Program for the core stage and the J-2X engine for the upper stage. SLS will also use solid rocket boosters for the initial development flights, while follow-on boosters will be competed based on performance requirements and affordability considerations.

  9. U.S. & international small launch vehicles : Quarterly Launch Report : special report

    DOT National Transportation Integrated Search

    1998-01-01

    Since the 1980s, there have been expectations that a substantial commercial market for launch services using small launch vehicles would develop. In fact, commercial launches of small launch vehicles have, in theory, been available since the mid-1980...

  10. Commercial US transfer vehicle overview

    NASA Astrophysics Data System (ADS)

    Winchell, J. W.; Huss, R. L.

    1986-10-01

    A survey is presented of the design and operational status and intended or existing missions for apogee kick motors for launch from the Orbiter bay. Attention is also given to the associated hardware for interfacing and propelling the payloads from the bay. The PAM-D, -DII, and -A upper stage motors are described, with their payload boost capabilities of 1500-4300 lb to GEO. Features of the solid-fueled Transfer Orbit Stage, based on the IUS, and the liquid bipropellant-fueled Apogee and Maneuvering Stage, which can lift from 3000-5600 lb to GEO, respectively, are also delineated. The discussion also covers the liquid-fueled Leasat apogee motor, the solid-fueled GEO injection motor of the Shuttle Compatible Orbit Transfer Subsystem (4100-5900 lb), and the IUS (5000 lb) and Centaur (10,000 lb) systems. Government-industry cooperation to encourage the continued development of the industrial base to continue and expand production and use of upper stage vehicles is noted.

  11. Space Shuttle Atlantis rolls back to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Photographed from the top of the Vehicle Assembly Building, Space Shuttle Atlantis creeps along the crawlerway for the 3.4-mile trek to Launch Pad 39A (upper left). In the background is the Atlantic Ocean; on either side is water from the Banana Creek (left) and Banana River (right). The Shuttle has been in the VAB undergoing tests on the solid rocket booster cables. A prior extensive evaluation of NASA's SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis, causing return of the Shuttle to the VAB a week ago. Launch of Atlantis on STS-98 has been rescheduled to Feb. 7 at 6:11 p.m. EST.

  12. KSC-2009-1682

    NASA Image and Video Library

    2009-02-18

    VANDENBERG AIR FORCE BASE, Calif. -- On Launch Complex 576-E at Vandenberg Air Force Base in California, two cranes are used to lift NASA's Orbiting Carbon Observatory, or OCO, spacecraft. It will be raised to vertical and attached to the waiting Stage 0 motor of the Taurus XL launch vehicle in the tower. The OCO is attached to the upper stack, consisting of Stages 1, 2 and 3 of the Taurus. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket Feb. 24 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. Photo credit: NASA/Randy Beaudoin, VAFB

  13. The Grid Density Dependence of the Unsteady Pressures of the J-2X Turbines

    NASA Technical Reports Server (NTRS)

    Schmauch, Preston B.

    2011-01-01

    The J-2X engine was originally designed for the upper stage of the cancelled Crew Launch Vehicle. Although the Crew Launch Vehicle was cancelled the J-2X engine, which is currently undergoing hot-fire testing, may be used on future programs. The J-2X engine is a direct descendent of the J-2 engine which powered the upper stage during the Apollo program. Many changes including a thrust increase from 230K to 294K lbf have been implemented in this engine. As part of the design requirements, the turbine blades must meet minimum high cycle fatigue factors of safety for various vibrational modes that have resonant frequencies in the engine's operating range. The unsteady blade loading is calculated directly from CFD simulations. A grid density study was performed to understand the sensitivity of the spatial loading and the magnitude of the on blade loading due to changes in grid density. Given that the unsteady blade loading has a first order effect on the high cycle fatigue factors of safety, it is important to understand the level of convergence when applying the unsteady loads. The convergence of the unsteady pressures of several grid densities will be presented for various frequencies in the engine's operating range.

  14. Reentry survivability modeling

    NASA Astrophysics Data System (ADS)

    Fudge, Michael L.; Maher, Robert L.

    1997-10-01

    Statistical methods for expressing the impact risk posed to space systems in general [and the International Space Station (ISS) in particular] by other resident space objects have been examined. One of the findings of this investigation is that there are legitimate physical modeling reasons for the common statistical expression of the collision risk. A combination of statistical methods and physical modeling is also used to express the impact risk posed by re-entering space systems to objects of interest (e.g., people and property) on Earth. One of the largest uncertainties in the expressing of this risk is the estimation of survivable material which survives reentry to impact Earth's surface. This point was recently demonstrated in dramatic fashion by the impact of an intact expendable launch vehicle (ELV) upper stage near a private residence in the continental United States. Since approximately half of the missions supporting ISS will utilize ELVs, it is appropriate to examine the methods used to estimate the amount and physical characteristics of ELV debris surviving reentry to impact Earth's surface. This paper examines reentry survivability estimation methodology, including the specific methodology used by Caiman Sciences' 'Survive' model. Comparison between empirical results (observations of objects which have been recovered on Earth after surviving reentry) and Survive estimates are presented for selected upper stage or spacecraft components and a Delta launch vehicle second stage.

  15. Life Cycle Systems Engineering Approach to NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Safie, Fayssal; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd- generation system by 2 orders of magnitude - equivalent to a crew risk of 1 -in- 10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. Given a candidate architecture that possesses credible physical processes and realistic technology assumptions, the next set of analyses address the system's functionality across the spread of operational scenarios characterized by the design reference missions. The safety/reliability and cost/economics associated with operating the system will also be modeled and analyzed to answer the questions "How safe is it?" and "How much will it cost to acquire and operate?" The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  16. 2016 Mars Insight Mission Design and Navigation

    NASA Technical Reports Server (NTRS)

    Abilleira, Fernando; Frauenholz, Ray; Fujii, Ken; Wallace, Mark; You, Tung-Han

    2014-01-01

    Scheduled for a launch in the 2016 Earth to Mars opportunity, the Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) Mission will arrive to Mars in late September 2016 with the primary objective of placing a science lander on the surface of the Red Planet followed by the deployment of two science instruments to investigate the fundamental processes of terrestrial planet formation and evolution. In order to achieve a successful landing, the InSight Project has selected a launch/arrival strategy that satisfies the following key and driving requirements: (1) Deliver a total launch mass of 727 kg, (2) target a nominal landing site with a cumulative Delta V99 less than 30 m/s, and (3) approach EDL with a V-infinity upper limit of 3.941 km/s and (4) an entry flight-path angle (EFPA) of -12.5 +/- 0.26 deg, 3-sigma; the InSight trajectories have been designed such that they (5) provide UHF-band communications via Direct-To-Earth and MRO from Entry through landing plus 60 s, (6) with injection aimpoints biased away from Mars such that the probability of the launch vehicle upper stage impacting Mars is less than 1.0 X 10(exp 4) for fifty years after launch, and (7) non-nominal impact probabilities due to failure during the Cruise phase less than 1.0 X 10(exp 2).

  17. Space Shuttle Day-of-Launch Trajectory Design and Verification

    NASA Technical Reports Server (NTRS)

    Harrington, Brian E.

    2010-01-01

    A top priority of any launch vehicle is to insert as much mass into the desired orbit as possible. This requirement must be traded against vehicle capability in terms of dynamic control, thermal constraints, and structural margins. The vehicle is certified to a specific structural envelope which will yield certain performance characteristics of mass to orbit. Some envelopes cannot be certified generically and must be checked with each mission design. The most sensitive envelopes require an assessment on the day-of-launch. To further minimize vehicle loads while maximizing vehicle performance, a day-of-launch trajectory can be designed. This design is optimized according to that day s wind and atmospheric conditions, which will increase the probability of launch. The day-of-launch trajectory verification is critical to the vehicle's safety. The Day-Of-Launch I-Load Uplink (DOLILU) is the process by which the Space Shuttle Program redesigns the vehicle steering commands to fit that day's environmental conditions and then rigorously verifies the integrated vehicle trajectory's loads, controls, and performance. The Shuttle methodology is very similar to other United States unmanned launch vehicles. By extension, this method would be similar to the methods employed for any future NASA launch vehicles. This presentation will provide an overview of the Shuttle's day-of-launch trajectory optimization and verification as an example of a more generic application of dayof- launch design and validation.

  18. The K-1 Active Dispenser for Orbit Transfer

    NASA Astrophysics Data System (ADS)

    Lai, G.; Cochran, D.; Curtis, R.

    2002-01-01

    Kistler Aerospace Corporation is building the K-1, the world's first fully reusable launch vehicle. The two-stage K- 1 is designed primarily to service the market for low-earth orbit (LEO) missions, due to Kistler's need to recover both stages. For customers requiring payload delivery to high-energy orbits, Kistler can outfit the payload with a K- 1 Active Dispenser (an expendable third stage). The K-1 second stage will deploy the Active Dispenser mated with its payload into a 200 km circular LEO parking orbit. From this orbit, the Active Dispenser would use its own propulsion to place its payload into the final desired drop-off orbit or earth-escape trajectory. This approach allows Kistler to combine the low-cost launch services offered by the reusable two-stage K-1 with the versatility of a restartable, expendable upper stage. Enhanced with an Active Dispenser, the K-1 will be capable of delivering 1,500 kg to a geosynchronous transfer orbit or up to approximately 1,000 kg into a Mars rendezvous trajectory. The list price of a K-1 Active Dispenser launch is 25 million (plus the price of mission unique integration services) significantly less than the price of any launch vehicle service in the world with comparable capability.

  19. Next generation solid boosters

    NASA Technical Reports Server (NTRS)

    Lund, R. K.

    1991-01-01

    Space transportation solid rocket motor systems; Shuttle derived heavy lift launch vehicles; advanced launch system (ALS) derived heavy lift launch vehicles; large launch solid booster vehicles are outlined. Performance capabilities and concept objectives are presented. Small launch vehicle concepts; enabling technologies; reusable flyback booster system; and high-performance solid motors for space are briefly described. This presentation is represented by viewgraphs.

  20. Scout Launch Lift off on Wallops Island

    NASA Image and Video Library

    1965-08-10

    Scout launch vehicle lift off on Wallops Island in 1965. The Scout launch vehicle was used for unmanned small satellite missions, high altitude probes, and reentry experiments. Scout, the smallest of the basic launch vehicles, is the only United States launch vehicle fueled exclusively with solid propellants. Published in the book " A Century at Langley" by Joseph Chambers pg. 92

  1. Space Launch System Mission Flexibility Assessment

    NASA Technical Reports Server (NTRS)

    Monk, Timothy; Holladay, Jon; Sanders, Terry; Hampton, Bryan

    2012-01-01

    The Space Launch System (SLS) is envisioned as a heavy lift vehicle that will provide the foundation for future beyond low Earth orbit (LEO) missions. While multiple assessments have been performed to determine the optimal configuration for the SLS, this effort was undertaken to evaluate the flexibility of various concepts for the range of missions that may be required of this system. These mission scenarios include single launch crew and/or cargo delivery to LEO, single launch cargo delivery missions to LEO in support of multi-launch mission campaigns, and single launch beyond LEO missions. Specifically, we assessed options for the single launch beyond LEO mission scenario using a variety of in-space stages and vehicle staging criteria. This was performed to determine the most flexible (and perhaps optimal) method of designing this particular type of mission. A specific mission opportunity to the Jovian system was further assessed to determine potential solutions that may meet currently envisioned mission objectives. This application sought to significantly reduce mission cost by allowing for a direct, faster transfer from Earth to Jupiter and to determine the order-of-magnitude mass margin that would be made available from utilization of the SLS. In general, smaller, existing stages provided comparable performance to larger, new stage developments when the mission scenario allowed for optimal LEO dropoff orbits (e.g. highly elliptical staging orbits). Initial results using this method with early SLS configurations and existing Upper Stages showed the potential of capturing Lunar flyby missions as well as providing significant mass delivery to a Jupiter transfer orbit.

  2. Design and Development of an In-Space Deployable Sun Shield for the Atlas Centaur

    NASA Technical Reports Server (NTRS)

    Dew, Michael; Allwein, Kirk; Kutter, Bernard; Ware, Joanne; Lin, John; Madlangbayan, Albert; Willey, Cliff; Pitchford, Brian; O'Neil, Gary

    2008-01-01

    The Centaur, by virtue of its use of high specific-impulse (Isp) LO2/LH2 propellants, has initial mass-to-orbit launch requirements less than half of those upper stages using storable propellants. That is, for Earth escape or GSO missions the Centaur is half the launch weight of a storable propellant upper stage. A drawback to the use of Liquid oxygen and liquid hydrogen, at 90 K and 20 K respectively, over storable propellants is the necessity of efficient cryogen storage techniques that minimize boil-off from thermal radiation in space. Thermal blankets have been used successfully to shield both the Atlas Centaur and Titan Centaur. These blankets are protected from atmospheric air loads during launch by virtue of the fact that the Centaur is enclosed within the payload fairing. The smaller Atlas V vehicle, the Atlas 400, has the Centaur exposed to the atmosphere during launch, and therefore, to date has not flown with thermal blankets shielding the Centaur. A design and development effort is underway to fly a thermal shield on the Atlas V 400 vehicle that is not put in place until after the payload fairing jettisons. This can be accomplished by the use of an inflatable and deployable thermal blanket referred to as the Centaur Sun Shield (CSS). The CSS design is also scalable for use on a Delta upper stage, and the technology potentially could be used for telescope shades, re-entry shields, solar sails and propellant depots. A Phase I effort took place during 2007 in a partnership between ULA and ILC Dover which resulted in a deployable proof-of-concept Sun Shield being demonstrated at a test facility in Denver. A Phase H effort is underway during 2008 with a partnership between ULA, ILC, NASA Glenn Research Center (GRC) and NASA Kennedy Space Center (KSC) to define requirements, determine materials and fabrication techniques, and to test components in a vacuum chamber at cold temperatures. This paper describes the Sun Shield development work to date, and the future plans leading up to a flight test in the 2011 time frame.

  3. Closed-Loop Simulation Study of the Ares I Upper Stage Thrust Vector Control Subsystem for Nominal and Failure Scenarios

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy; Fulton, Chris; Connolly, Joe; Hunker, Keith

    2010-01-01

    As a replacement to the current Shuttle, the Ares I rocket and Orion crew module are currently under development by the National Aeronautics and Space Administration (NASA). This new launch vehicle is segmented into major elements, one of which is the Upper Stage (US). The US is further broken down into subsystems, one of which is the Thrust Vector Control (TVC) subsystem which gimbals the US rocket nozzle. Nominal and off-nominal simulations for the US TVC subsystem are needed in order to support the development of software used for control systems and diagnostics. In addition, a clear and complete understanding of the effect of off-nominal conditions on the vehicle flight dynamics is desired. To achieve these goals, a simulation of the US TVC subsystem combined with the Ares I vehicle as developed. This closed-loop dynamic model was created using Matlab s Simulink and a modified version of a vehicle simulation, MAVERIC, which is currently used in the Ares I project and was developed by the Marshall Space Flight Center (MSFC). For this report, the effects on the flight trajectory of the Ares I vehicle are investigated after failures are injected into the US TVC subsystem. The comparisons of the off-nominal conditions observed in the US TVC subsystem with those of the Ares I vehicle flight dynamics are of particular interest.

  4. KSC-06pd1278

    NASA Image and Video Library

    2006-06-28

    KENNEDY SPACE CENTER, FLA. - At the Cape Canaveral weather station in Florida, workers release an upper-level weather balloon while several newscasters watch. The release of the balloon was part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. The radar-tracked balloon detects wind shears that can affect a shuttle launch. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton

  5. KSC-06pd1277

    NASA Image and Video Library

    2006-06-28

    KENNEDY SPACE CENTER, FLA. - At the Cape Canaveral weather station in Florida, workers carry an upper-level weather balloon outside for release. The release was part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. The radar-tracked balloon detects wind shears that can affect a shuttle launch. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton

  6. KSC-06pd1280

    NASA Image and Video Library

    2006-06-28

    KENNEDY SPACE CENTER, FLA. - An upper-level weather balloon sails into the sky after release from the Cape Canaveral weather station in Florida. The release was planned as part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. The radar-tracked balloon detects wind shears that can affect a shuttle launch. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton

  7. SLS Resource Reel Aug 2016 orig

    NASA Image and Video Library

    2016-07-04

    Space Launch System Resource Reel Description: This video includes launch animation of NASA’s Space Launch System (SLS), as well as work taking place across NASA centers and the country to build and test the various components that make up the rocket including: the 5-segment solid rocket boosters, the RS-25 rocket engines, the massive tanks that make up the Core Stage of the rocket that fuels the RS-25 engines, and upper portions of the rocket that connect the interim cryogenic propulsion stage to the Orion spacecraft. SLS, is an advanced launch vehicle for a new era of exploration beyond Earth’s orbit into deep space. SLS, the world’s most powerful rocket, will launch astronauts in the agency’s Orion spacecraft on missions to an asteroid and eventually to Mars, while opening new possibilities for other payloads including robotic scientific missions to places like Mars, Saturn and Jupiter. Graphic Information: PAO Name:Kim Henry Phone Number:256-544-1899 Email Address: kimberly.m.henry@nasa.gov

  8. Ares I-X: First Flight of a New Era

    NASA Technical Reports Server (NTRS)

    Davis, Stephen R.; Askins, Bruce R.

    2010-01-01

    Since 2005, NASA s Constellation Program has been designing, building, and testing the next generation of launch and space vehicles to carry humans beyond low-Earth orbit (LEO). The Ares Projects at Marshall Space Flight Center (MSFC) are developing the Ares I crew launch vehicle and Ares V cargo launch vehicle. On October 28, 2009, the first development flight test of the Ares I crew launch vehicle, Ares I-X, lifted off from a launch pad at Kennedy Space Center (KSC) on successful suborbital flight. Basing exploration launch vehicle designs on Ares I-X information puts NASA one step closer to full-up "test as you fly," a best practice in vehicle design. Although the final Constellation Program architecture is under review, the Ares I-X data and experience in vehicle design and operations can be applied to any launch vehicle. This paper presents the mission background as well as results and lessons learned from the flight.

  9. 76 FR 52694 - National Environmental Policy Act: Launch of NASA Routine Payloads on Expendable Launch Vehicles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ...: Launch of NASA Routine Payloads on Expendable Launch Vehicles AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of availability and request for comments on the draft environmental assessment (``Draft EA'') for launch of NASA routine payloads on expendable launch vehicles. SUMMARY...

  10. Saturn 5 Launch Vehicle Flight Evaluation Report, SA-513, Skylab 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Saturn V SA-513 (Skylab-1) was launched at 13:30:00 Eastern Daylight Time (EDT) on May 14, 1973, from Kennedy Space Center, Complex 39, Pad A. The vehicle lifted off on a launch azimuth of 90 degrees east of north and rolled to a flight azimuth of 40.88 degrees east of north. The launch vehicle successfully placed the Saturn Work Shop in the planned earth orbit. All launch vehicle objectives were accomplished. No launch vehicle failures or anomalies occurred that seriously affected the mission.

  11. PEG Enhancement for EM1 and EM2+ Missions

    NASA Technical Reports Server (NTRS)

    Von der Porten, Paul; Ahmad, Naeem; Hawkins, Matt

    2018-01-01

    NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. The next evolution of SLS, the Block-1B Exploration Mission 2 (EM-2), is currently being designed. The Block-1 and Block-1B vehicles will use the Powered Explicit Guidance (PEG) algorithm. Due to the relatively low thrust-to-weight ratio of the Exploration Upper Stage (EUS), certain enhancements to the Block-1 PEG algorithm are needed to perform Block-1B missions. In order to accommodate mission design for EM-2 and beyond, PEG has been significantly improved since its use on the Space Shuttle program. The current version of PEG has the ability to switch to different targets during Core Stage (CS) or EUS flight, and can automatically reconfigure for a single Engine Out (EO) scenario, loss of communication with the Launch Abort System (LAS), and Inertial Navigation System (INS) failure. The Thrust Factor (TF) algorithm uses measured state information in addition to a priori parameters, providing PEG with an improved estimate of propulsion information. This provides robustness against unknown or undetected engine failures. A loft parameter input allows LAS jettison while maximizing payload mass. The current PEG algorithm is now able to handle various classes of missions with burn arcs much longer than were seen in the shuttle program. These missions include targeting a circular LEO orbit with a low-thrust, long-burn-duration upper stage, targeting a highly eccentric Trans-Lunar Injection (TLI) orbit, targeting a disposal orbit using the low-thrust Reaction Control System (RCS), and targeting a hyperbolic orbit. This paper will describe the design and implementation of the TF algorithm, the strategy to handle EO in various flight regimes, algorithms to cover off-nominal conditions, and other enhancements to the Block-1 PEG algorithm. This paper illustrates challenges posed by the Block-1B vehicle, and results show that the improved PEG algorithm is capable for use on the SLS Block 1-B vehicle as part of the Guidance, Navigation, and Control System.

  12. System and Method for Air Launch from a Towed Aircraft

    NASA Technical Reports Server (NTRS)

    Budd, Gerald D (Inventor)

    2018-01-01

    The invention is a system and method of air launching a powered launch vehicle into space or high altitude. More specifically, the invention is a tow aircraft which tows an unpowered glider, with the powered launch vehicle attached thereto, to launch altitude. The powered launch vehicle is released from the unpowered glider and powered on for launch.

  13. Aerodynamic Analyses and Database Development for Ares I Vehicle First Stage Separation

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Pei, Jing; Pinier, Jeremy T.; Klopfer, Goetz H.; Holland, Scott D.; Covell, Peter F.

    2011-01-01

    This paper presents the aerodynamic analysis and database development for first stage separation of Ares I A106 crew launch vehicle configuration. Separate 6-DOF databases were created for the first stage and upper stage and each database consists of three components: (a) isolated or freestream coefficients, (b) power-off proximity increments, and (c) power-on proximity increments. The isolated and power-off incremental databases were developed using data from 1% scaled model tests in AEDC VKF Tunnel A. The power-on proximity increments were developed using OVERFLOW CFD solutions. The database also includes incremental coefficients for one BDM and one USM failure scenarios.

  14. Aerial photo shows RLV complex at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the foreground of this aerial photo is the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and to its left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility (center). At the upper left is the runway. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC.

  15. KSC-2009-4610

    NASA Image and Video Library

    2009-08-12

    CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building's High Bay 3, the Ares I-X rocket is being assembled on the mobile launcher platform. Super Stack 4 has just been mated to Super Stack 3 on top. Five super stacks make up the upper stage that will be integrated with the four-segment solid rocket booster first stage on the mobile launch platform. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The Ares I-X flight test is targeted for Oct. 31, pending formal NASA Headquarters approval. Photo credit: NASA/Jack Pfaller

  16. KSC-2009-4609

    NASA Image and Video Library

    2009-08-12

    CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building's High Bay 3, the Ares I-X rocket is being assembled on the mobile launcher platform. Super Stack 4 has just been mated to Super Stack 3 on top. Five super stacks make up the upper stage that will be integrated with the four-segment solid rocket booster first stage on the mobile launch platform. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The Ares I-X flight test is targeted for Oct. 31, pending formal NASA Headquarters approval. Photo credit: NASA/Jack Pfaller

  17. Around Marshall

    NASA Image and Video Library

    2006-07-14

    A model of the new Aries I crew launch vehicle, for which NASA is designing, testing and evaluating hardware and related systems, is seen here on display at the Marshall Space Fight Center (MSFC), in Huntsville, Alabama. The Ares I crew launch vehicle is the rocket that will carry a new generation of space explorers into orbit. Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA’s Constellation Program. These transportation systems will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is led by the Exploration Launch Projects Office at NASA’s MFSC. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module and a launch abort system. The launch vehicle’s first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program’s reusable solid rocket motor that burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN). The second or upper stage will be propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. In addition to its primary mission of carrying crews of four to six astronauts to Earth orbit, the launch vehicle’s 25-ton payload capacity might be used for delivering cargo to space, bringing resources and supplies to the International Space Station or dropping payloads off in orbit for retrieval and transport to exploration teams on the moon. Crew transportation to the space station is planned to begin no later than 2014. The first lunar excursion is scheduled for the 2020 timeframe.

  18. NASA's Space Launch System: A Transformative Capability for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2017-01-01

    Already making substantial progress toward its first launches, NASA’s Space Launch System (SLS) exploration-class launch vehicle presents game-changing new opportunities in spaceflight, enabling human exploration of deep space, as well as a variety of missions and mission profiles that are currently impossible. Today, the initial configuration of SLS, able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), is well into final production and testing ahead of its planned first flight, which will send NASA’s new Orion crew vehicle around the moon and will deploy 13 CubeSats, representing multiple disciplines, into deep space. At the same time, production work is already underway toward the more-capable Block 1B configuration, planned to debut on the second flight of SLS, and capable of lofting 105 tons to LEO or of co-manifesting large exploration systems with Orion on launches to the lunar vicinity. Progress being made on the vehicle for that second flight includes initial welding of its core stage and testing of one of its engines, as well as development of new elements such as the powerful Exploration Upper Stage and the Universal Stage Adapter “payload bay.” Ultimately, SLS will evolve to a configuration capable of delivering more than 130 tons to LEO to support humans missions to Mars. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles or substantially increased spacecraft mass. In the field of astrophysics, SLS’ high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe. This presentation will give an overview of SLS’ capabilities and its current status, and discuss the vehicle’s potential for human exploration of deep space and other game-changing utilization opportunities.

  19. Low Cost Space Demonstration for a Single-Person Spacecraft

    NASA Technical Reports Server (NTRS)

    Griffin, Brand N.; Dischinger, Charles

    2011-01-01

    This paper introduces a concept for a single-person spacecraft and presents plans for flying a low-cost, robotic demonstration mission. Called FlexCraft, the vehicle integrates propulsion and robotics into a small spacecraft that enables rapid, shirt-sleeve access to space. It can be flown by astronauts or tele-operated and is equipped with interchangeable manipulators used for maintaining the International Space Station (ISS), exploring asteroids, and servicing telescopes or satellites. Most FlexCraft systems are verified using ground facilities; however, a test in the weightless environment is needed to assess propulsion and manipulator performance. For this, a simplified, unmanned, version of FlexCraft is flown on a low-cost launch vehicle to a 350 km circular orbit. After separation from the upper stage, the vehicle returns to a target box mounted on the stage testing the propulsion and control capability. The box is equipped with manipulator test items that are representative of tasks performed on ISS, asteroid missions, or for satellites servicing. Nominal and off-nominal operations are conducted over 3 days then the vehicle re-enters the atmosphere without becoming a debris hazard. From concept to management to operations, the FlexCraft demonstration is designed to be low cost project that is launched within three years. This is possible using a simplified test configuration that eliminates nine systems unique to the operational version and by designing-to-availability. For example, the propulsion system is the same as the Manned Maneuvering Unit because it capable, simple, human-rated and all components or equivalent parts are available. A description of the launch vehicle options, mission operations, configuration, and demonstrator subsystems is presented.

  20. Time Domain Tool Validation Using ARES I-X Flight Data

    NASA Technical Reports Server (NTRS)

    Hough, Steven; Compton, James; Hannan, Mike; Brandon, Jay

    2011-01-01

    The ARES I-X vehicle was launched from NASA's Kennedy Space Center (KSC) on October 28, 2009 at approximately 11:30 EDT. ARES I-X was the first test flight for NASA s ARES I launch vehicle, and it was the first non-Shuttle launch vehicle designed and flown by NASA since Saturn. The ARES I-X had a 4-segment solid rocket booster (SRB) first stage and a dummy upper stage (US) to emulate the properties of the ARES I US. During ARES I-X pre-flight modeling and analysis, six (6) independent time domain simulation tools were developed and cross validated. Each tool represents an independent implementation of a common set of models and parameters in a different simulation framework and architecture. Post flight data and reconstructed models provide the means to validate a subset of the simulations against actual flight data and to assess the accuracy of pre-flight dispersion analysis. Post flight data consists of telemetered Operational Flight Instrumentation (OFI) data primarily focused on flight computer outputs and sensor measurements as well as Best Estimated Trajectory (BET) data that estimates vehicle state information from all available measurement sources. While pre-flight models were found to provide a reasonable prediction of the vehicle flight, reconstructed models were generated to better represent and simulate the ARES I-X flight. Post flight reconstructed models include: SRB propulsion model, thrust vector bias models, mass properties, base aerodynamics, and Meteorological Estimated Trajectory (wind and atmospheric data). The result of the effort is a set of independently developed, high fidelity, time-domain simulation tools that have been cross validated and validated against flight data. This paper presents the process and results of high fidelity aerospace modeling, simulation, analysis and tool validation in the time domain.

  1. Conceptual design of two-stage-to-orbit hybrid launch vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The object of this design class was to design an earth-to orbit vehicle to replace the present NASA space shuttle. The major motivations for designing a new vehicle were to reduce the cost of putting payloads into orbit and to design a vehicle that could better service the space station with a faster turn-around time. Another factor considered in the design was that near-term technology was to be used. Materials, engines and other important technologies were to be realized in the next 10 to 15 years. The first concept put forth by NASA to meet these objectives was the National Aerospace Plane (NASP). The NASP is a single-stage earth-to-orbit air-breathing vehicle. This concept ran into problems with the air-breathing engine providing enough thrust in the upper atmosphere, among other things. The solution of this design class is a two-stage-to-orbit vehicle. The first stage is air-breathing and the second stage is rocket-powered, similar to the space shuttle. The second stage is mounted on the top of the first stage in a piggy-back style. The vehicle takes off horizontally using only air-breathing engines, flies to Mach six at 100,000 feet, and launches the second stage towards its orbital path. The first stage, or booster, will weigh approximately 800,000 pounds and the second stage, or orbiter will weigh approximately 300,000 pounds. The major advantage of this design is the full recoverability of the first stage compared with the present solid rocket booster that are only partially recoverable and used only a few times. This reduces the cost as well as providing a more reliable and more readily available design for servicing the space station. The booster can fly an orbiter up, turn around, land, refuel, and be ready to launch another orbiter in a matter of hours.

  2. Space Shuttle Day-of-Launch Trajectory Design Operations

    NASA Technical Reports Server (NTRS)

    Harrington, Brian E.

    2011-01-01

    A top priority of any launch vehicle is to insert as much mass into the desired orbit as possible. This requirement must be traded against vehicle capability in terms of dynamic control, thermal constraints, and structural margins. The vehicle is certified to specific structural limits which will yield certain performance characteristics of mass to orbit. Some limits cannot be certified generically and must be checked with each mission design. The most sensitive limits require an assessment on the day-of-launch. To further minimize vehicle loads while maximizing vehicle performance, a day-of-launch trajectory can be designed. This design is optimized according to that day s wind and atmospheric conditions, which increase the probability of launch. The day-of-launch trajectory design and verification process is critical to the vehicle s safety. The Day-Of-Launch I-Load Update (DOLILU) is the process by which the National Aeronautics and Space Administration's (NASA) Space Shuttle Program tailors the vehicle steering commands to fit that day s environmental conditions and then rigorously verifies the integrated vehicle trajectory s loads, controls, and performance. This process has been successfully used for almost twenty years and shares many of the same elements with other launch vehicles that execute a day-of-launch trajectory design or day-of-launch trajectory verification. Weather balloon data is gathered at the launch site and transmitted to the Johnson Space Center s Mission Control. The vehicle s first stage trajectory is then adjusted to the measured wind and atmosphere data. The resultant trajectory must satisfy loads and controls constraints. Additionally, these assessments statistically protect for non-observed dispersions. One such dispersion is the change in the wind from the last measured balloon to launch time. This process is started in the hours before launch and is repeated several times as the launch count proceeds. Should the trajectory design not meet all constraint criteria, Shuttle would be No-Go for launch. This Shuttle methodology is very similar to other unmanned launch vehicles. By extension, this method would likely be employed for any future NASA launch vehicle. This paper will review the Shuttle s day-of-launch trajectory optimization and verification operations as an example of a more generic application of day-of-launch design and validation. With Shuttle s retirement, it is fitting to document the current state of this critical process and capture lessons learned to benefit current and future launch vehicle endeavors.

  3. Advanced small launch vehicle study

    NASA Technical Reports Server (NTRS)

    Reins, G. E.; Alvis, J. F.

    1972-01-01

    A conceptual design study was conducted to determine the most economical (lowest cost/launch) approach for the development of an advanced small launch vehicle (ASLV) for use over the next decade. The ASLV design objective was to place a 340 kg (750 lb) payload into a 556 km (300 n.mi.) circular orbit when launched due east from Wallops Island, Virginia. The investigation encompassed improvements to the current Scout launch vehicle; use of existing military and NASA launch vehicle stages; and new, optionally staged vehicles. Staging analyses included use of liquid, solid, and hybrid propellants. Improvements in guidance, controls, interstages, telemetry, and payload shroud were also considered. It was concluded that the most economical approach is to progressively improve the Scout launch vehicle in three phased steps which are discussed.

  4. Vandenberg Air Force Base Upper Level Wind Launch Weather Constraints

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn A.; Wheeler, Mark M.

    2012-01-01

    The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman III ballistic missile. The 30 OSSWF tasked the Applied Meteorology Unit (AMU) to analyze VAFB sounding data with the goal of determining the probability of violating (PoV) their upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a tool that will calculate the PoV of each constraint on the day of launch. In order to calculate the probability of exceeding each constraint, the AMU collected and analyzed historical data from VAFB. The historical sounding data were retrieved from the National Oceanic and Atmospheric Administration Earth System Research Laboratory archive for the years 1994-2011 and then stratified into four sub-seasons: January-March, April-June, July-September, and October-December. The maximum wind speed and 1000-ft shear values for each sounding in each subseason were determined. To accurately calculate the PoV, the AMU determined the theoretical distributions that best fit the maximum wind speed and maximum shear datasets. Ultimately it was discovered that the maximum wind speeds follow a Gaussian distribution while the maximum shear values follow a lognormal distribution. These results were applied when calculating the averages and standard deviations needed for the historical and real-time PoV calculations. In addition to the requirements outlined in the original task plan, the AMU also included forecast sounding data from the Rapid Refresh model. This information provides further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours on day of launch. The interactive graphical user interface (GUI) for this project was developed in Microsoft Excel using Visual Basic for Applications. The GUI displays the critical sounding data easily and quickly for the LWOs on day of launch. This tool will replace the existing one used by the 30 OSSWF, assist the LWOs in determining the probability of exceeding specific wind threshold values, and help to improve the overall upper winds forecast for the launch customer.

  5. Stir Friction Welding Used in Ares I Upper Stage Fabrication

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The panels are subjected to confidence tests in which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  6. 48 CFR 1828.371 - Clauses for cross-waivers of liability for Space Shuttle services, Expendable Launch Vehicle (ELV...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station activities. (a) In agreements covering Space Shuttle services, certain ELV launches, and Space Station...

  7. 48 CFR 1828.371 - Clauses for cross-waivers of liability for Space Shuttle services, Expendable Launch Vehicle (ELV...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station activities. (a) In agreements covering Space Shuttle services, certain ELV launches, and Space Station...

  8. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The panels are subjected to confidence tests in which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  9. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image, depicts a manufactured aluminum panel, that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  10. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel, that will fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  11. Launch Vehicles

    NASA Image and Video Library

    2006-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel, that will fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  12. Launch Vehicles

    NASA Image and Video Library

    2006-08-08

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  13. Real-Time Simulation of Ares I Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick; Matras, Alex; Wilson, Heath; Alday, Nathan; Walker, David; Betts, Kevin; Hughes, Ryan; Turbe, Michael

    2009-01-01

    The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory (SIL) at the Marshall Space Flight Center (MSFC). The primary purpose of the Ares SIL is to test the vehicle avionics hardware and software in a hardware-in-the-loop (HWIL) environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time software backbone to stimulate all required Ares components through high-fidelity simulation. ARTEMIS has been designed to take full advantage of the advances in underlying computational power now available to support HWIL testing. A modular real-time design relying on a fully distributed computing architecture has been achieved. Two fundamental requirements drove ARTEMIS to pursue the use of high-fidelity simulation models in a real-time environment. First, ARTEMIS must be used to test a man-rated integrated avionics hardware and software system, thus requiring a wide variety of nominal and off-nominal simulation capabilities to certify system robustness. The second driving requirement - derived from a nationwide review of current state-of-the-art HWIL facilities - was that preserving digital model fidelity significantly reduced overall vehicle lifecycle cost by reducing testing time for certification runs and increasing flight tempo through an expanded operational envelope. These two driving requirements necessitated the use of high-fidelity models throughout the ARTEMIS simulation. The nature of the Ares mission profile imposed a variety of additional requirements on the ARTEMIS simulation. The Ares I vehicle is composed of multiple elements, including the First Stage Solid Rocket Booster (SRB), the Upper Stage powered by the J- 2X engine, the Orion Crew Exploration Vehicle (CEV) which houses the crew, the Launch Abort System (LAS), and various secondary elements that separate from the vehicle. At launch, the integrated vehicle stack is composed of these stages, and throughout the mission, various elements separate from the integrated stack and tumble back towards the earth. ARTEMIS must be capable of simulating the integrated stack through the flight as well as propagating each individual element after separation. In addition, abort sequences can lead to other unique configurations of the integrated stack as the timing and sequence of the stage separations are altered.

  14. U.S. small launch vehicles : Quarterly Launch Report : special report

    DOT National Transportation Integrated Search

    1996-01-01

    1995 was an ambitious and difficult year for the United States small launch vehicle market. A total of five small launch vehicles were launched from the United States, two of which were successful (Atlas : E and Pegasus 1) and three of which resulted...

  15. Economic benefits of commercial space activities

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.

    1988-01-01

    This paper discusses the current and potential impact on the economy of selected private sector space activities including materials processing in space and satellite communications. Spacehab, a commercially developed and manufactured pressurized metal cylinder which fits in the Shuttle payload bay and connects to the crew compartment is examined along with potential uses of the Shuttle external tank. Private sector upper stage development, the privatization of expendable launch vehicles, and the transfer of NASA technology are discussed.

  16. Solar power satellite system definition study. Part 2, volume 8: SPS launch vehicle ascent and entry sonic overpressure and noise effects

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Recoverable launch vehicle concepts for the Solar Power Satellite program were identified. These large launch vehicles are powered by proposed engines in the F-1 thrust level class. A description of the candidate launch vehicles and their operating mode was provided. Predictions of the sonic over pressures during ascent and entry for both types of vehicles, and prediction of launch noise levels in the vicinity of the launch site were included. An overall assessment and criteria for sonic overpressure and noise levels was examined.

  17. KSC-2012-1856

    NASA Image and Video Library

    2012-02-17

    Launch Vehicles: Launch vehicles are the rocket-powered systems that provide transportation from the Earth’s surface into the environment of space. Kennedy Space Center’s heritage includes launching robotic and satellite missions into space primarily using Atlas, Delta and Titan launch vehicles. Other launch vehicles include the Pegasus and Athena. The Launch Services Program continues this mission today directing launches from the Cape Canaveral Air Force Station, Fla. Vandenberg Air Force Base, Calif. Kodiak, Alaska and Kwajalein Atoll in the Marshall Islands. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA

  18. Russian Soyuz in Launch Position

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Soyuz TM-31 launch vehicle is shown in the vertical position for its launch from Baikonur, carrying the first resident crew to the International Space Station. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960s until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  19. 14 CFR 401.5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Expendable launch vehicle means a launch vehicle whose propulsive stages are flown only once. Experimental... during a launch or reentry. Flight safety system means a system designed to limit or restrict the hazards... States. Launch includes the flight of a launch vehicle and includes pre- and post-flight ground...

  20. 14 CFR 401.5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Expendable launch vehicle means a launch vehicle whose propulsive stages are flown only once. Experimental... during a launch or reentry. Flight safety system means a system designed to limit or restrict the hazards... States. Launch includes the flight of a launch vehicle and includes pre- and post-flight ground...

  1. 14 CFR 401.5 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Expendable launch vehicle means a launch vehicle whose propulsive stages are flown only once. Experimental... during a launch or reentry. Flight safety system means a system designed to limit or restrict the hazards... States. Launch includes the flight of a launch vehicle and includes pre- and post-flight ground...

  2. KSC-07pd1638

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the first segment of the lower canister around the upper stage booster below the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  3. KSC-07pd1641

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians place another segment of the canister around the upper stage booster below the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  4. KSC-07pd1639

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the first segment of the lower canister around the upper stage booster below the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  5. Design and Testing of a One-Third Scale Soyuz TM Descent Module Spartan Conversion Project Super Loki Instrumentation

    NASA Technical Reports Server (NTRS)

    Anderson, Loren A.; Armitage, Pamela Kay

    1993-01-01

    The 1992-1993 senior Aerospace Engineering Design class continued work on the post landing configurations for the Assured Crew Return Vehicle. The Assured Crew Return Vehicle will be permanently docked to the space station fulfilling NASA's commitment of Assured Crew Return Capability in the event of an accident or illness aboard the space station. The objective of the project was to give the Assured Crew Return Vehicle Project Office data to feed into their feasibility studies. Three design teams were given the task of developing models with dynamically and geometrically scaled characteristics. Groups one and two combined efforts to design a one-third scale model of the Russian Soyuz TM Descent Module, and an on-board flotation system. This model was designed to determine the flotation characteristics and test the effects of a rigid flotation and orientation system. Group three designed a portable water wave test facility to be located on campus. Because of additional funding from Thiokol Corporation, testing of the Soyuz model and flotation systems took place at the Offshore Technology Research Center. Universities Space Research Association has been studying the use of small expendable launch vehicles for missions which cost less than 200 million dollars. The Crusader2B. which consists of the original Spartan first and second stage with an additional Spartan second stage and the Minuteman III upper stage is being considered for this task. University of Central Florida project accomplishments include an analysis of launch techniques, a modeling technique to determine flight characteristics, and input into the redesign of an existing mobile rail launch platform.

  6. First stage of Saturn launch vehicle in KSC Vehicle Assembly Building

    NASA Technical Reports Server (NTRS)

    1968-01-01

    The first (S-1C) stage of the Saturn 505 launch vehicle being prepared for erection in the high bay area of the Kennedy Space Center's (KSC) Vehicle Assembly Building (VAB). Saturn 505 is the launch vehicle for the Apollo 10 mission.

  7. Evolved Expendable Launch Vehicle: DOD Is Assessing Data on Worldwide Launch Market to Inform New Acquisition Strategy

    DTIC Science & Technology

    2016-07-22

    Launch Services (ILS) of a Proton M launch vehicle and one provided by Space Exploration Technologies ( SpaceX ) of a Falcon 9 launch vehicle — and...U.S. based providers are United Launch Alliance (ULA), Space Exploration Technologies Corporation ( SpaceX ), and Orbital ATK. Countries we reviewed

  8. Demonstration of Autonomous Rendezvous Technology (DART) Project Summary

    NASA Technical Reports Server (NTRS)

    Rumford, TImothy E.

    2003-01-01

    Since the 1960's, NASA has performed numerous rendezvous and docking missions. The common element of all US rendezvous and docking is that the spacecraft has always been piloted by astronauts. Only the Russian Space Program has developed and demonstrated an autonomous capability. The Demonstration of Autonomous Rendezvous Technology (DART) project currently funded under NASA's Space Launch Initiative (SLI) Cycle I, provides a key step in establishing an autonomous rendezvous capability for the United States. DART's objective is to demonstrate, in space, the hardware and software necessary for autonomous rendezvous. Orbital Sciences Corporation intends to integrate an Advanced Video Guidance Sensor and Autonomous Rendezvous and Proximity Operations algorithms into a Pegasus upper stage in order to demonstrate the capability to autonomously rendezvous with a target currently in orbit. The DART mission will occur in April 2004. The launch site will be Vandenburg AFB and the launch vehicle will be a Pegasus XL equipped with a Hydrazine Auxiliary Propulsion System 4th stage. All mission objectives will be completed within a 24 hour period. The paper provides a summary of mission objectives, mission overview and a discussion on the design features of the chase and target vehicles.

  9. Powering Exploration: The Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.

    2008-01-01

    The National Aeronautics and Space Administration (NASA)'s Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. The Ares Projects continue to make progress toward design, component testing, and early flight testing of the Ares I crew launch vehicle, as well as early design work for Ares V cargo launch vehicle. Ares I and Ares V will form the core space launch capabilities the United States needs to continue its pioneering tradition as a spacefaring nation. This paper will discuss programmatic, design, fabrication, and testing progress toward building these new launch vehicles.

  10. Voyager 1's Launch Vehicle

    NASA Image and Video Library

    1977-09-05

    The Titan/Centaur-6 launch vehicle was moved to Launch Complex 41 at Kennedy Space Center in Florida to complete checkout procedures in preparation for launch. The photo is dated January 1977. This launch vehicle carried Voyager 1 into space on September 5, 1977. https://photojournal.jpl.nasa.gov/catalog/PIA21739

  11. Benefits of Government Incentives for Reusable Launch Vehicle Development

    NASA Technical Reports Server (NTRS)

    Shaw, Eric J.; Hamaker, Joseph W.; Prince, Frank A.

    1998-01-01

    Many exciting new opportunities in space, both government missions and business ventures, could be realized by a reduction in launch prices. Reusable launch vehicle (RLV) designs have the potential to lower launch costs dramatically from those of today's expendable and partially-expendable vehicles. Unfortunately, governments must budget to support existing launch capability, and so lack the resources necessary to completely fund development of new reusable systems. In addition, the new commercial space markets are too immature and uncertain to motivate the launch industry to undertake a project of this magnitude and risk. Low-cost launch vehicles will not be developed without a mature market to service; however, launch prices must be reduced in order for a commercial launch market to mature. This paper estimates and discusses the various benefits that may be reaped from government incentives for a commercial reusable launch vehicle program.

  12. KSC-03PD-2938

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AIR FORCE BASE, CALIF. The SciSat-1 payload, with fairing installed and attached to its Pegasus launch vehicle, begins rollout to the hot pad and mating to the L-1011 carrier aircraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  13. Space Launch System Advanced Development Office, FY 2013 Annual Report

    NASA Technical Reports Server (NTRS)

    Crumbly, C. M.; Bickley, F. P.; Hueter, U.

    2013-01-01

    The Advanced Development Office (ADO), part of the Space Launch System (SLS) program, provides SLS with the advanced development needed to evolve the vehicle from an initial Block 1 payload capability of 70 metric tons (t) to an eventual capability Block 2 of 130 t, with intermediary evolution options possible. ADO takes existing technologies and matures them to the point that insertion into the mainline program minimizes risk. The ADO portfolio of tasks covers a broad range of technical developmental activities. The ADO portfolio supports the development of advanced boosters, upper stages, and other advanced development activities benefiting the SLS program. A total of 34 separate tasks were funded by ADO in FY 2013.

  14. Integrated Vehicle Ground Vibration Testing in Support of Launch Vehicle Loads and Controls Analysis

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Davis, Susan R.; Salyer, Blaine H.; Tuma, Margaret L.

    2008-01-01

    All structural systems possess a basic set of physical characteristics unique to that system. These unique physical characteristics include items such as mass distribution and damping. When specified, they allow engineers to understand and predict how a structural system behaves under given loading conditions and different methods of control. These physical properties of launch vehicles may be predicted by analysis or measured by certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified by testing before the vehicle becomes operational. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. NASA manned launch vehicles have undergone ground vibration testing leading to the development of successful launch vehicles. A GVT was not performed on the inaugural launch of the unmanned Delta III which was lost during launch. Subsequent analyses indicated had a GVT been performed, it would have identified instability issues avoiding loss of the vehicle. This discussion will address GVT planning, set-up, execution and analyses, for the Saturn and Shuttle programs, and will also focus on the current and on-going planning for the Ares I and V Integrated Vehicle Ground Vibration Test (IVGVT).

  15. Employees lower Cassini's upper experiment module and base onto a work stand in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Employees in the Payload Hazardous Servicing Facility (PHSF) lower the upper experiment module and base of the Cassini orbiter onto a work stand during prelaunch processing, testing and integration work in that facility. The Cassini orbiter and Huygens probe being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn's largest moon, Titan. The orbiter was designed and assembled at NASA's Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004.

  16. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2006-12-05

    The NASA developed Ares rockets, named for the Greek god associated with Mars, will return humans to the moon and later take them to Mars and other destinations. This is an illustration of the Ares V with call outs. The Ares V is a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I and past Apollo vehicles. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Ares V is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of January 2007.

  17. Nuclear Thermal Rocket (NTR) Propulsion and Power Systems for Outer Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, S. K.; Cataldo, R. L.

    2001-01-01

    The high specific impulse (I (sub sp)) and engine thrust generated using liquid hydrogen (LH2)-cooled Nuclear Thermal Rocket (NTR) propulsion makes them attractive for upper stage applications for difficult robotic science missions to the outer planets. Besides high (I (sub sp)) and thrust, NTR engines can also be designed for "bimodal" operation allowing substantial amounts of electrical power (10's of kWe ) to be generated for onboard spacecraft systems and high data rate communications with Earth during the course of the mission. Two possible options for using the NTR are examined here. A high performance injection stage utilizing a single 15 klbf thrust engine can inject large payloads to the outer planets using a 20 t-class launch vehicle when operated in an "expendable mode". A smaller bimodal NTR stage generating approx. 1 klbf of thrust and 20 to 40 kWe for electric propulsion can deliver approx. 100 kg using lower cost launch vehicles. Additional information is contained in the original extended abstract.

  18. Application of Risk within Net Present Value Calculations for Government Projects

    NASA Technical Reports Server (NTRS)

    Grandl, Paul R.; Youngblood, Alisha D.; Componation, Paul; Gholston, Sampson

    2007-01-01

    In January 2004, President Bush announced a new vision for space exploration. This included retirement of the current Space Shuttle fleet by 2010 and the development of new set of launch vehicles. The President's vision did not include significant increases in the NASA budget, so these development programs need to be cost conscious. Current trade study procedures address factors such as performance, reliability, safety, manufacturing, maintainability, operations, and costs. It would be desirable, however, to have increased insight into the cost factors behind each of the proposed system architectures. This paper reports on a set of component trade studies completed on the upper stage engine for the new launch vehicles. Increased insight into architecture costs was developed by including a Net Present Value (NPV) method and applying a set of associated risks to the base parametric cost data. The use of the NPV method along with the risks was found to add fidelity to the trade study and provide additional information to support the selection of a more robust design architecture.

  19. Upper Stage Flight Experiment 10K Engine Design and Test Results

    NASA Technical Reports Server (NTRS)

    Ross, R.; Morgan, D.; Crockett, D.; Martinez, L.; Anderson, W.; McNeal, C.

    2000-01-01

    A 10,000 lbf thrust chamber was developed for the Upper Stage Flight Experiment (USFE). This thrust chamber uses hydrogen peroxide/JP-8 oxidizer/fuel combination. The thrust chamber comprises an oxidizer dome and manifold, catalyst bed assembly, fuel injector, and chamber/nozzle assembly. Testing of the engine was done at NASA's Stennis Space Center (SSC) to verify its performance and life for future upper stage or Reusable Launch Vehicle applications. Various combinations of silver screen catalyst beds, fuel injectors, and combustion chambers were tested. Results of the tests showed high C* efficiencies (97% - 100%) and vacuum specific impulses of 275 - 298 seconds. With fuel film cooling, heating rates were low enough that the silica/quartz phenolic throat experienced minimal erosion. Mission derived requirements were met, along with a perfect safety record.

  20. Apollo/Saturn V facilities Test Vehicle and Launch Umbilical Tower

    NASA Image and Video Library

    1966-05-25

    An Apollo/Saturn V facilities Test Vehicle and Launch Umbilical Tower (LUT) atop a crawler-transporter move from the Vehicle Assembly Building (VAB) on the way to Pad A. This test vehicle, designated the Apollo/Saturn 500-F, is being used to verify launch facilities, train launch crews, and develop test and checkout procedures.

  1. 14 CFR 431.15 - Rights not conferred by a reusable launch vehicle mission license.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Rights not conferred by a reusable launch vehicle mission license. 431.15 Section 431.15 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... LAUNCH VEHICLE (RLV) General § 431.15 Rights not conferred by a reusable launch vehicle mission license...

  2. 14 CFR 431.15 - Rights not conferred by a reusable launch vehicle mission license.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Rights not conferred by a reusable launch vehicle mission license. 431.15 Section 431.15 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... LAUNCH VEHICLE (RLV) General § 431.15 Rights not conferred by a reusable launch vehicle mission license...

  3. 14 CFR 431.15 - Rights not conferred by a reusable launch vehicle mission license.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Rights not conferred by a reusable launch vehicle mission license. 431.15 Section 431.15 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... LAUNCH VEHICLE (RLV) General § 431.15 Rights not conferred by a reusable launch vehicle mission license...

  4. 14 CFR 431.15 - Rights not conferred by a reusable launch vehicle mission license.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Rights not conferred by a reusable launch vehicle mission license. 431.15 Section 431.15 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... LAUNCH VEHICLE (RLV) General § 431.15 Rights not conferred by a reusable launch vehicle mission license...

  5. 14 CFR 431.15 - Rights not conferred by a reusable launch vehicle mission license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Rights not conferred by a reusable launch vehicle mission license. 431.15 Section 431.15 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... LAUNCH VEHICLE (RLV) General § 431.15 Rights not conferred by a reusable launch vehicle mission license...

  6. Actualizing Flexible National Security Space Systems

    DTIC Science & Technology

    2011-01-01

    single launch vehicle is a decision unique to small satellites that adds an extra dimension to the launch risk calculation. While bundling...following a launch failure. The ability to bundle multiple payloads on a single launch vehicle is a decision unique to small satellites that adds an extra ... dimension to the launch risk calculation. While bundling multiple small satellites on a single launch vehicle spreads the initial launch cost across

  7. First stage of Saturn launch vehicle in KSC Vehicle Assembly Building

    NASA Image and Video Library

    1968-12-03

    S68-55034 (3 Dec. 1968) --- The first (S-1C) stage of the Saturn 505 launch vehicle being prepared for erection in the high bay area of the Kennedy Space Center's (KSC) Vehicle Assembly Building (VAB). Saturn 505 is the launch vehicle for the Apollo 10 mission.

  8. KSC Vertical Launch Site Evaluation

    NASA Technical Reports Server (NTRS)

    Phillips, Lynne V.

    2007-01-01

    RS&H was tasked to evaluate the potential available launch sites for a combined two user launch pad. The Launch sites were to be contained entirely within current Kennedy Space Center property lines. The user launch vehicles to be used for evaluation are in the one million pounds of first stage thrust range. Additionally a second evaluation criterion was added early on in the study. A single user launch site was to be evaluated for a two million pound first stage thrust vehicle. Both scenarios were to be included in the report. To provide fidelity to the study criteria, a specific launch vehicle in the one million pound thrust range was chosen as a guide post or straw-man launch vehicle. The RpK K-1 vehicle is a current Commercial Orbital Transportation System (COTS), contract awardee along with the SpaceX Falcon 9 vehicle. SpaceX, at the time of writing, is planning to launch COTS and possibly other payloads from Cx-40 on Cape Canaveral Air Force Station property. RpK has yet to declare a specific launch site as their east coast US launch location. As such it was deemed appropriate that RpK's vehicle requirements be used as conceptual criteria. For the purposes of this study those criteria were marginally generalized to make them less specifiC.

  9. Russian Soyuz Moves to Launch Pad

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Soyuz TM-31 launch vehicle, which carried the first resident crew to the International Space Station, moves toward the launch pad at the Baikonur complex in Kazakhstan. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960' until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  10. Unmanned launch vehicle impacts on existing major facilities : V23

    DOT National Transportation Integrated Search

    1984-10-18

    This study measures the impact on the existing major facilities of Space Launch Complex (SLC-6) to accommodate the launching of an Unmanned Launch Vehicle (ULV). Modifications to the existing facilities were determined for two basic vehicle concepts,...

  11. Applied Meteorology Unit (AMU) Quarterly Report Fourth Quarter FY-13

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Watson, Leela; Shafer, Jaclyn; Huddleston, Lisa

    2013-01-01

    Ms. Shafer completed the task to determine relationships between pressure gradients and peak winds at Vandenberg Air Force Base (VAFB), and began developing a climatology for the VAFB wind towers; Dr. Huddleston completed the task to develop a tool to help forecast the time of the first lightning strike of the day in the Kennedy Space Center (KSC)/Cape Canaveral Air Force Station (CCAFS) area; Dr. Bauman completed work on a severe weather forecast tool focused on the Eastern Range (ER), and also developed upper-winds analysis tools for VAFB and Wallops Fl ight Facility (WFF); Ms. Crawford processed and displayed radar data in the software she will use to create a dual-Doppler analysis over the east-central Florida and KSC/CCAFS areas; Mr. Decker completed developing a wind pairs database for the Launch Services Program to use when evaluating upper-level winds for launch vehicles; Dr. Watson continued work to assimilate observational data into the high-resolution model configurations she created for WFF and the ER.

  12. High Altitude Launch for a Practical SSTO

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Denis, Vincent; Lyons, Valerie (Technical Monitor)

    2003-01-01

    Existing engineering materials allow the construction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. High-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2% of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated into increased payload capability to orbit, ranging from 5 to 20% increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2% of gross lift-off weight, this corresponds to 31% increase in payload (for 5-km launch altitude) to 122% additional payload (for 25-km launch altitude).

  13. High Altitude Launch for a Practical SSTO

    NASA Astrophysics Data System (ADS)

    Landis, Geoffrey A.; Denis, Vincent

    2003-01-01

    Existing engineering materials allow the constuction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. High-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2% of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated into increased payload capability to orbit, ranging from 5 to 20% increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2% of gross lift-off weight, this corresponds to 31% increase in payload (for 5-km launch altitude) to 122% additional payload (for 25-km launch altitude).

  14. Taking the Next Steps: The Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.; Vanhooser, Teresa

    2008-01-01

    The National Aeronautics and Space Administration (NASA)'s Constellation Program is depending on the Ares Projects Office (APO) to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon, Mars, and beyond. The APO continues to make progress toward design, component testing, and early flight testing of the Ares I crew launch vehicle, as well as early design work for the Ares V cargo launch vehicle. Ares I and Ares V will form the core space launch capabilities that the United States needs to continue its pioneering tradition as a spacefaring nation (Figure 1). This paper will discuss design, fabrication, and testing progress toward building these new launch vehicles.

  15. Launch Vehicle Control Center Architectures

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Levesque, Marl; Williams, Randall; Mclaughlin, Tom

    2014-01-01

    Launch vehicles within the international community vary greatly in their configuration and processing. Each launch site has a unique processing flow based on the specific launch vehicle configuration. Launch and flight operations are managed through a set of control centers associated with each launch site. Each launch site has a control center for launch operations; however flight operations support varies from being co-located with the launch site to being shared with the space vehicle control center. There is also a nuance of some having an engineering support center which may be co-located with either the launch or flight control center, or in a separate geographical location altogether. A survey of control center architectures is presented for various launch vehicles including the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures shares some similarities in basic structure while differences in functional distribution also exist. The driving functions which lead to these factors are considered and a model of control center architectures is proposed which supports these commonalities and variations.

  16. Magnetic Launch Assist Vehicle-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  17. International Space Station (ISS)

    NASA Image and Video Library

    2000-10-29

    The Soyuz TM-31 launch vehicle is shown in the vertical position for its launch from Baikonur, carrying the first resident crew to the International Space Station. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960s until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  18. International Space Station (ISS)

    NASA Image and Video Library

    2000-10-29

    The Soyuz TM-31 launch vehicle, which carried the first resident crew to the International Space Station, moves toward the launch pad at the Baikonur complex in Kazakhstan. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960' until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  19. U.S. advanced launch vehicle technology programs : Quarterly Launch Report : special report

    DOT National Transportation Integrated Search

    1996-01-01

    U.S. firms and U.S. government agencies are jointly investing in advanced launch vehicle technology. This Special Report summarizes U.S. launch vehicle technology programs and highlights the changing : roles of government and industry players in pick...

  20. Application of System Operational Effectiveness Methodology to Space Launch Vehicle Development and Operations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Kelley, Gary W.

    2012-01-01

    The Department of Defense (DoD) defined System Operational Effectiveness (SOE) model provides an exceptional framework for an affordable approach to the development and operation of space launch vehicles and their supporting infrastructure. The SOE model provides a focal point from which to direct and measure technical effectiveness and process efficiencies of space launch vehicles. The application of the SOE model to a space launch vehicle's development and operation effort leads to very specific approaches and measures that require consideration during the design phase. This paper provides a mapping of the SOE model to the development of space launch vehicles for human exploration by addressing the SOE model key points of measurement including System Performance, System Availability, Technical Effectiveness, Process Efficiency, System Effectiveness, Life Cycle Cost, and Affordable Operational Effectiveness. In addition, the application of the SOE model to the launch vehicle development process is defined providing the unique aspects of space launch vehicle production and operations in lieu of the traditional broader SOE context that examines large quantities of fielded systems. The tailoring and application of the SOE model to space launch vehicles provides some key insights into the operational design drivers, capability phasing, and operational support systems.

  1. NASA Crew and Cargo Launch Vehicle Development Approach Builds on Lessons from Past and Present Missions

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2006-01-01

    The United States (US) Vision for Space Exploration, announced in January 2004, outlines the National Aeronautics and Space Administration's (NASA) strategic goals and objectives, including retiring the Space Shuttle and replacing it with new space transportation systems for missions to the Moon, Mars, and beyond. The Crew Exploration Vehicle (CEV) that the new human-rated Crew Launch Vehicle (CLV) lofts into space early next decade will initially ferry astronauts to the International Space Station (ISS) Toward the end of the next decade, a heavy-lift Cargo Launch Vehicle (CaLV) will deliver the Earth Departure Stage (EDS) carrying the Lunar Surface Access Module (LSAM) to low-Earth orbit (LEO), where it will rendezvous with the CEV launched on the CLV and return astronauts to the Moon for the first time in over 30 years. This paper outlines how NASA is building these new space transportation systems on a foundation of legacy technical and management knowledge, using extensive experience gained from past and ongoing launch vehicle programs to maximize its design and development approach, with the objective of reducing total life cycle costs through operational efficiencies such as hardware commonality. For example, the CLV in-line configuration is composed of a 5-segment Reusable Solid Rocket Booster (RSRB), which is an upgrade of the current Space Shuttle 4- segment RSRB, and a new upper stage powered by the liquid oxygen/liquid hydrogen (LOX/LH2) J-2X engine, which is an evolution of the J-2 engine that powered the Apollo Program s Saturn V second and third stages in the 1960s and 1970s. The CaLV configuration consists of a propulsion system composed of two 5-segment RSRBs and a 33- foot core stage that will provide the LOX/LED needed for five commercially available RS-68 main engines. The J-2X also will power the EDS. The Exploration Launch Projects, managed by the Exploration Launch Office located at NASA's Marshall Space Flight Center, is leading the design, development, testing, and operations planning for these new space transportation systems. Utilizing a foundation of heritage hardware and management lessons learned mitigates both technical and programmatic risk. Project engineers and managers work closely with the Space Shuttle Program to transition hardware, infrastructure, and workforce assets to the new launch systems, leveraging a wealth of knowledge from Shuffle operations. In addition, NASA and its industry partners have tapped into valuable Apollo databases and are applying corporate wisdom conveyed firsthand by Apollo-era veterans of America s original Moon missions. Learning from its successes and failures, NASA employs rigorous systems engineering and systems management processes and principles in a disciplined, integrated fashion to further improve the probability of mission success.

  2. Launch Vehicle Selection and the Implementation of the Soil Moisture Active Passive Mission

    NASA Technical Reports Server (NTRS)

    Sherman, Sarah; Waydo, Peter; Eremenko, Alexander

    2016-01-01

    Soil Moisture Active Passive (SMAP) is a NASA-developed Earth science satellite currently mapping the soil moisture content and freeze/thaw state of Earth's land mass from a 685km, near-polar, sun-synchronous orbit. It was launched on January 31, 2015 from Vandenberg AFB upon a Delta II 7320 launch vehicle. Due to external considerations, SMAP's launch vehicle selection remained an open item until Project Critical Design Review (CDR). Thus, certain key aspects of the spacecraft design had to accommodate a diverse range of candidate launch vehicle environments, performance envelopes, interfaces and operational scenarios. Engineering challenges stemmed from two distinct scenarios: decisions that had to be made prior to launch vehicle selection to accommodate all possible outcomes, and post-selection changes constrained by schedule and the existing spacecraft configuration. The effects of the timing of launch vehicle selection reached virtually every aspect of the Observatory's design and development. Physical environments, mass allocations, material selections, propulsion system performance, dynamic response, launch phase and mission planning, overall size and configuration, and of course all interfaces to the launch vehicle were heavily dependent on this outcome. This paper will discuss the resolution of these technical challenges.

  3. Foreign launch competition growing

    NASA Astrophysics Data System (ADS)

    Brodsky, R. F.; Wolfe, M. G.; Pryke, I. W.

    1986-07-01

    A survey is given of progress made by other nations in providing or preparing to provide satellite launch services. The European Space Agency has four generations of Ariane vehicles, with a fifth recently approved; a second launch facility in French Guiana that has become operational has raised the possible Ariane launch rate to 10 per year, although a May failure of an Ariane 2 put launches on hold. The French Hermes spaceplane and the British HOTOL are discussed. Under the auspices of the Italian National Space Plane, the Iris orbital transfer vehicle is developed and China's Long March vehicles and the Soviet Protons and SL-4 vehicles are discussed; the Soviets moreover are apparently developing not only a Saturn V-class heavy lift vehicle with a 150,000-kg capacity (about five times the largest U.S. capacity) but also a space shuttle and a spaceplane. Four Japanese launch vehicles and some vehicles in an Indian program are also ready to provide launch services. In this new, tough market for launch services, the customers barely outnumber the suppliers. The competition develops just as the Challenger and Titan disasters place the U.S. at a disadvantage and underline the hard work ahead to recoup its heretofore leading position in launch services.

  4. Advanced transportation system studies technical area 2(TA-2): Heavy lift launch vehicle development. volume 1; Executive summary

    NASA Technical Reports Server (NTRS)

    McCurry, J.

    1995-01-01

    The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 1, provides a summary description of the technical activities that were performed over the entire contract duration, covering three distinct launch vehicle definition activities: heavy-lift (300,000 pounds injected mass to low Earth orbit) launch vehicles for the First Lunar Outpost (FLO), medium-lift (50,000-80,000 pounds injected mass to low Earth orbit) launch vehicles, and single-stage-to-orbit (SSTO) launch vehicles (25,000 pounds injected mass to a Space Station orbit).

  5. Severe storms observing satellite (STORMSAT)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The primary payload for this satellite is the Advanced Atmospheric Sounding and Imaging Radiometer which will perform precise infrared temperature sounding and visible/infrared imaging from geostationary orbit. A secondary payload instrument which may be utilized on STORMSAT is the Microwave Atmospheric Sounding Radiometer which provides an independent set of temperature and humidity sounding in cloudy, meteorologically active regions. The study provides satellite designs and identifies mission-unique subsystems using the Multimission Modular Spacecraft using a Shuttle/Interim Upper Stage launch vehicle.

  6. The U.S. Evolved Expendable Launch Vehicle (EELV) programs : Quarterly Launch Report : special report

    DOT National Transportation Integrated Search

    1997-01-01

    The Evolved Expendable Launch Vehicle (EELV) Program is a Department of Defense technology-development program managed by the Air Force. The program is intended to produce an improved launch vehicle family for government use. The EELV will replace th...

  7. History of rocketry in India

    NASA Astrophysics Data System (ADS)

    Vasant, Gowarikar; Suresh, B. N.

    2009-12-01

    The Indian Space programme took birth on November 21, 1963, with the launch of Nike-Apache, an American sounding rocket from the shores of Thumba near Thiruvananthapuram on the west coast of India. From a family of operational sounding rockets known as the Rohini Sounding Rockets, India's launch vehicles have now grown up through SLV-3 and Augmented Satellite Launch Vehicle (ASLV) to the current gigantic satellite launchers, PSLV and Geosynchronous Satellite Launch Vehicle (GSLV). Though we had failures in the initial launches of SLV-3, ASLV and PSLV, these failures gave Indian Space Research Organisation (ISRO) a thorough and in depth understanding of the nuances of launch vehicle technology that later led to successful missions. An entirely new dimension was added to the Indian space programme when a space capsule was recovered very precisely after it had orbited the Earth for 12 days. The future for launch vehicles in ISRO looks bright with the GSLV MKIII, which is currently under development and the pursuit of cutting edge technologies such as reusable launch vehicles and air-breathing propulsion.

  8. Aerodynamic Analyses and Database Development for Ares I Vehicle First Stage Separation

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Pei, Jing; Pinier, Jeremy T.; Holland, Scott D.; Covell, Peter F.; Klopfer, Goetz, H.

    2012-01-01

    This paper presents the aerodynamic analysis and database development for the first stage separation of the Ares I A106 Crew Launch Vehicle configuration. Separate databases were created for the first stage and upper stage. Each database consists of three components: isolated or free-stream coefficients, power-off proximity increments, and power-on proximity increments. The power-on database consists of three parts, all plumes firing at nominal conditions, the one booster deceleration motor out condition, and the one ullage settling motor out condition. The isolated and power-off incremental databases were developed using wind tunnel test data. The power-on proximity increments were developed using CFD solutions.

  9. KSC-99pp1209

    NASA Image and Video Library

    1999-10-14

    Construction continues on an $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At left is a multi-purpose hangar and at right a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility (upper right). Near the top of the photo is the tow-way. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  10. Heavy Lift for Exploration: Options and Utilization

    NASA Technical Reports Server (NTRS)

    Creech, Steve; Sumrall, Phil

    2010-01-01

    Every study of exploration capabilities since the Apollo Program has recommended the renewal of a heavy lift launch capability for the United States. NASA is aggressively pursuing that capability. This paper will discuss several aspects of that effort and the potential uses for that heavy lift capability. The need for heavy lift was cited most recent in the findings of the Review of U.S. Human Space Flight Plans Committee. Combined with considerations of launch availability and on-orbit operations, the Committee finds that exploration will benefit from the availability of a heavy-lift vehicle, the report said. In addition, heavy lift would enable the launching of large scientific observatories and more capable deep-space missions. It may also provide benefit in national security applications. The most recent focus of NASA s heavy lift effort is the Ares V cargo launch vehicle, which is part of the Constellation Program architecture for human exploration beyond low Earth orbit (LEO). The most recent point-of-departure configuration of the Ares V was approved during the Lunar Capabilities concept Review (LCCR) in 2008. The Ares V first stage propulsion system consists of a core stage powered by six commercial liquid hydrogen/liquid oxygen (LH2/LOX) RS-68 engines, flanked by two 5.5-segment solid rocket boosters (SRBs) based on the 5-segment Ares I first stage. The boosters use the same Polybutadiene Acrylonitrile (PBAN) propellant as the Space Shuttle. Atop the core stage is the Earth departure stage (EDS), powered by a single J-2X upper stage engine based on the Ares I upper stage engine. The 33-foot-diameter payload shroud can enclose a lunar lander, scientific instruments, or other payloads. Since LCCR, NASA has continued to refine the design through several successive internal design cycles. In addition, NASA has worked to quantify the broad national consensus for heavy lift in ways that, to the extent possible, meet the needs of the user community.

  11. Use of Smoothed Measured Winds to Predict and Assess Launch Environments

    NASA Technical Reports Server (NTRS)

    Cordova, Henry S.; Leahy, Frank; Adelfang, Stanley; Roberts, Barry; Starr, Brett; Duffin, Paul; Pueri, Daniel

    2011-01-01

    Since many of the larger launch vehicles are operated near their design limits during the ascent phase of flight to optimize payload to orbit, it often becomes necessary to verify that the vehicle will remain within certification limits during the ascent phase as part of the go/no-go review made prior to launch. This paper describes the approach used to predict Ares I-X launch vehicle structural air loads and controllability prior to launch which represents a distinct departure from the methodology of the Space Shuttle and Evolved Expendable Launch Vehicle (EELV) programs. Protection for uncertainty of key environment and trajectory parameters is added to the nominal assessment of launch capability to ensure that critical launch trajectory variables would be within the integrated vehicle certification envelopes. This process was applied by the launch team as a key element of the launch day go/no-go recommendation. Pre-launch assessments of vehicle launch capability for NASA's Space Shuttle and the EELV heavy lift versions require the use of a high-resolution wind profile measurements, which have relatively small sample size compared with low-resolution profile databases (which include low-resolution balloons and radar wind profilers). The approach described in this paper has the potential to allow the pre-launch assessment team to use larger samples of wind measurements from low-resolution wind profile databases that will improve the accuracy of pre-launch assessments of launch availability with no degradation of mission assurance or launch safety.

  12. Review of Our National Heritage of Launch Vehicles Using Aerodynamic Surfaces and Current Use of These by Other Nations. Part II; Center Director's Discretionary Fund Project Numbe

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1996-01-01

    Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability and for flight control. Recently, due to the aft center-of-gravity (cg) locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that can be provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability and payload capability. As a starting point for the novel design of aerodynamic flight control augmentors for a Saturn class, aft cg launch vehicle, this report undertakes a review of our national heritage of launch vehicles using aerodynamic surfaces, along with a survey of current use of aerodynamic surfaces on large launch vehicles of other nations. This report presents one facet of Center Director's Discretionary Fund Project 93-05 and has a previous and subsequent companion publication.

  13. Modeling and Simulation of the ARES UPPER STAGE Transportation, Lifting, Stacking and Mating Operations Within the Vehicle Assembly Building at KSC

    NASA Technical Reports Server (NTRS)

    Kromis, Phillip A.

    2010-01-01

    This viewgraph presentation describes the modeling and simulation of the Ares Upper Stage Transportation, lifting, stacking, and mating operations within the Vehicle Assembly Building (VAB) at Kennedy Space Center (KSC). An aerial view of KSC Launch Shuttle Complex, two views of the Delmia process control layout, and an upper stage move subroutine and breakdown are shown. An overhead image of the VAB and the turning basin along with the Pegasus barge at the turning basin are also shown. This viewgraph presentation also shows the actual design and the removal of the mid-section spring tensioners, the removal of the AFT rear and forward tensioners tie downs, and removing the AFT hold down post and mount. US leaving the Pegasus Barge, the upper stage arriving at transfer aisle, upper stage receiving/inspection in transfer aisle, and an overhead view of upper stage receiving/inspection in transfer aisle are depicted. Five views of the actual connection of the cabling to the upper stage aft lifting hardware are shown. The upper stage transporter forward connector, two views of the rotation horizontal to vertical, the disconnection of the rear bolt ring cabling, the lowering of the upper stage to the inspection stand, disconnection of the rear bolt ring from the upper stage, the lifting of the upper stage and inspection of AFT fange, and the transfer of upper stage in an integrated stack are shown. Six views of the mating of the upper stage to the first stage are depicted. The preparation, inspection, and removal of the forward dome are shown. The upper stage mated on the integrated stack and crawler is also shown. This presentation concludes with A Rapid Upper Limb Assessment (RULA) utilizing male and female models for assessing risk factors to the upper extremities of human beings in an actual physical environment.

  14. Integrated Vehicle Ground Vibration Testing in Support of NASA Launch Vehicle Loads and Controls Analysis

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Davis, Susan R.; Askins, Bruce R.; Salyer, Blaine H.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) Ares Projects Office (APO) is continuing to make progress toward the final design of the Ares I crew launch vehicle and Ares V cargo launch vehicle. Ares I and V will form the space launch capabilities necessary to fulfill NASA's exploration strategy of sending human beings to the Moon, Mars, and beyond. As with all new space vehicles there will be a number of tests to ensure the design can be Human Rated. One of these is the Integrated Vehicle Ground Vibration Test (IVGVT) that will be measuring responses of the Ares I as a system. All structural systems possess a basic set of physical characteristics unique to that system. These unique characteristics include items such as mass distribution, frequency and damping. When specified, they allow engineers to understand and predict how a structural system like the Ares I launch vehicle behaves under given loading conditions. These physical properties of launch vehicles may be predicted by analysis or measured through certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified through testing before the vehicle is Human Rated. The IVGVT is intended to measure by test the fundamental dynamic characteristics of Ares I during various phases of operational/flight. This testing includes excitations of the vehicle in lateral, longitudinal, and torsional directions at vehicle configurations representing different trajectory points. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and Guidance, Navigation, and Controls (GN&C) analysis models for verifying analyses of Ares I. NASA launch vehicles from Saturn to Shuttle have undergone Ground Vibration Tests (GVTs) leading to successful launch vehicles. A GVT was not performed on the unmanned Delta III. This vehicle was lost during launch. Subsequent analyses indicated that had a GVT been conducted on the vehicle, problems with vehicle modes and control may have been discovered and corrected, avoiding loss of the vehicle/mission. This paper will address GVT planning, set-up, conduction and analyses, for the Saturn and Shuttle programs, and also focus on the current and on-going planning for the Ares I and V IVGVT.

  15. Natural Environmental Service Support to NASA Vehicle, Technology, and Sensor Development Programs

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The research performed under this contract involved definition of the natural environmental parameters affecting the design, development, and operation of space and launch vehicles. The Universities Space Research Association (USRA) provided the manpower and resources to accomplish the following tasks: defining environmental parameters critical for design, development, and operation of launch vehicles; defining environmental forecasts required to assure optimal utilization of launch vehicles; and defining orbital environments of operation and developing models on environmental parameters affecting launch vehicle operations.

  16. Stir Friction Welding Used in Ares I Upper Stage Fabrication

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts the preparation and placement of a confidence ring for friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The aluminum panels are manufactured and subjected to confidence tests during which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  17. Stir Friction Welding Used in Ares I Upper Stage Fabrication

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The aluminum panels are subjected to confidence panel tests during which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  18. Integrated operations/payloads/fleet analysis. Volume 3: System costs. Appendix A: Program direct costs

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Individualized program direct costs for each satellite program are presented. This breakdown provides the activity level dependent costs for each satellite program. The activity level dependent costs, or, more simply, program direct costs, are comprised of the total payload costs (as these costs are strictly program dependent) and the direct launch vehicle costs. Only those incremental launch vehicle costs associated directly with the satellite program are considered. For expendable launch vehicles the direct costs include the vehicle investment hardware costs and the launch operations costs. For the reusable STS vehicles the direct costs include only the launch operations, recovery operations, command and control, vehicle maintenance, and propellant support. The costs associated with amortization of reusable vehicle investment, RDT&E range support, etc., are not included.

  19. Saturn V Vehicle for the Apollo 4 Mission in the Vehicle Assembly Building

    NASA Technical Reports Server (NTRS)

    1967-01-01

    This photograph depicts the Saturn V vehicle (SA-501) for the Apollo 4 mission in the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC). After the completion of the assembly operation, the work platform was retracted and the vehicle was readied to rollout from the VAB to the launch pad. The Apollo 4 mission was the first launch of the Saturn V launch vehicle. Objectives of the unmanned Apollo 4 test flight were to obtain flight information on launch vehicle and spacecraft structural integrity and compatibility, flight loads, stage separation, and subsystems operation including testing of restart of the S-IVB stage, and to evaluate the Apollo command module heat shield. The Apollo 4 was launched on November 9, 1967 from KSC.

  20. SCORPIUS, A New Generation of Responsive, Low Cost Expendable Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Conger, R. E.; Chakroborty, S. P.; Wertz, J. R.

    2002-01-01

    The Scorpius vehicle family extends from one and two stage sub-orbital vehicles for target and science applications to small, medium and heavy lift orbital vehicles. These new liquid fueled vehicles have LEO and GTO capabilities. Microcosm and the Scorpius Space Launch Company (SSLC) are well into the development of this all-new generation of expendable launch vehicles to support commercial and government missions. This paper presents the projected performance of the family of vehicles, status of the development program and projected launch service prices. The paper will discuss the new low cost ablative engines and low cost pressure-fed LOX/Jet-A propulsion systems. Schedules, payload volumes, dispensers, attach fittings, and planned dual manifest capabilities will be presented. The unique configuration of the wide base first stage allows fairings that may extend beyond the current 4-meters. The Scorpius family is designed to facilitate encapsulated payloads and launch-on-demand. The implications of these new operational procedures will be addressed, including the techniques that will be used to drive down the cost of access to space while improving reliability. The Scorpius family of low cost vehicles addresses the full range of payloads from 700 lbs. in the Sprite Mini-Lift to over 50,000 lbs. to LEO in the Heavy-Lift, and over 18,000 lbs. to GTO. Two sub-orbital vehicles have been developed and successfully launched, with the latest vehicle (SR-XM) launched in March of 2001 from White Sands Missile Range. Development of the family of vehicles commenced in 1993 under contracts with the Air Force Research Laboratory Space Vehicle Directorate after a number of years of independent studies and system engineering. The Sprite Mini-Lift Small Expendable Launch Vehicle (SELV) that utilizes the SR-XM technologies is planned for an initial launch in mid 2005 with larger, scaled-up vehicles to follow.

  1. 14 CFR Appendix D to Part 420 - Impact Dispersion Areas and Casualty Expectancy Estimate for an Unguided Suborbital Launch Vehicle

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... launch of an unguided suborbital launch vehicle remains at acceptable levels. (2) An applicant shall base... flights of an unguided suborbital launch vehicle launched at an 84 degree elevation. (2) An applicant... 100 nm are required at no greater than 1° × 1° latitude/longitude grid coordinates. (c) Overflight...

  2. Venus Atmospheric Maneuverable Platform (VAMP)

    NASA Astrophysics Data System (ADS)

    Griffin, K.; Sokol, D.; Lee, G.; Dailey, D.; Polidan, R.

    2013-12-01

    We have explored a possible new approach to Venus upper atmosphere exploration by applying recent Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters the Venus atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. In 2012 we initiated a feasibility study for a semi-buoyant maneuverable vehicle that could operate in the upper atmosphere of Venus. In this presentation we report results from the ongoing study and plans for future analyses and prototyping to advance and refine the concept. We will discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We will present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we will specifically focus upon four key factors impacting the design and performance of VAMP: 1. Feasibility of and options for the deployment of the vehicle in space 2. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight 3. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance (aerodynamics, power required vs. power available, propulsion, speed, percent buoyancy), performance sensitivity to payload weight 4. Science payload accommodation, constraints, and opportunities We will discuss interdependencies of the above factors and the manner in which the VAMP strawman's characteristics affect the CONOPs and the science objectives. We will show how the these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support VEXAG goals 2 and 3. We will also discuss how the VAMP platform itself can facilitate some of these science measurements.

  3. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts the preparation and placement of a confidence ring for friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The aluminum panels are manufactured and subjected to confidence tests during which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  4. 76 FR 43825 - Launch Safety: Lightning Criteria for Expendable Launch Vehicles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... Vehicles AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Direct final rule; Confirmation of... launch vehicle through or near an electrified environment in or near a cloud. These changes also increase...

  5. 14 CFR 431.79 - Reusable launch vehicle mission reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Reusable launch vehicle mission reporting requirements. 431.79 Section 431.79 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.79 Reusable launch...

  6. 14 CFR 431.79 - Reusable launch vehicle mission reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Reusable launch vehicle mission reporting requirements. 431.79 Section 431.79 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.79 Reusable launch...

  7. 14 CFR 431.79 - Reusable launch vehicle mission reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Reusable launch vehicle mission reporting requirements. 431.79 Section 431.79 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.79 Reusable launch...

  8. 14 CFR 431.79 - Reusable launch vehicle mission reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Reusable launch vehicle mission reporting requirements. 431.79 Section 431.79 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION...-Licensing Requirements-Reusable Launch Vehicle Mission License Terms and Conditions § 431.79 Reusable launch...

  9. Aeroheating Predictions for X-34 Using an Inviscid-Boundary Layer Method

    NASA Technical Reports Server (NTRS)

    Riley, Christopher J.; Kleb, William L.; Alter, Steven J.

    1998-01-01

    Radiative equilibrium surface temperatures and surface heating rates from a combined inviscid-boundary layer method are presented for the X-34 Reusable Launch Vehicle for several points along the hypersonic descent portion of its trajectory. Inviscid, perfect-gas solutions are generated with the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and the Data-Parallel Lower-Upper Relaxation (DPLUR) code. Surface temperatures and heating rates are then computed using the Langley Approximate Three-Dimensional Convective Heating (LATCH) engineering code employing both laminar and turbulent flow models. The combined inviscid-boundary layer method provides accurate predictions of surface temperatures over most of the vehicle and requires much less computational effort than a Navier-Stokes code. This enables the generation of a more thorough aerothermal database which is necessary to design the thermal protection system and specify the vehicle's flight limits.

  10. High Altitude Launch for a Practical SSTO

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Denis, Vincent

    2003-01-01

    Existing engineering materials allow the construction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. High-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2 percent of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated into increased payload capability to orbit, ranging from 5 to 20 percent increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2 percent of gross lift-off weight, this corresponds to 31 percent increase in payload (for 5-kilometer launch altitude) to 122 percent additional payload (for 25-kilometer launch altitude).

  11. High Altitude Launch for a Practical SSTO

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Denis, Vincent

    2003-01-01

    Existing engineering materials allow the construction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. high-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2% of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated in to increased payload capability to orbit, ranging from 5 to 20% increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2% of gross lift-off weight, this corresponds to 31 % increase in payload (for 5-km launch altitude) to 122% additional payload (for 25-km launch altitude).

  12. KSC-06pd1279

    NASA Image and Video Library

    2006-06-28

    KENNEDY SPACE CENTER, FLA. - Under the watchful eyes of the media, an upper-level weather balloon begins its lift into the sky. The release of the balloon at the Cape Canaveral weather station in Florida was part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. The radar-tracked balloon detects wind shears that can affect a shuttle launch. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton

  13. KSC-98pc1116

    NASA Image and Video Library

    1998-09-17

    A booster is raised off a truck bed and prepared for lifting to the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  14. KSC-98pc1111

    NASA Image and Video Library

    1998-09-17

    A booster is lifted for installation onto the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  15. KSC-98pc1119

    NASA Image and Video Library

    1998-09-17

    Three boosters are lifted into place at Launch Pad 17A, Cape Canaveral Air Station, for installation onto the Boeing Delta 7326 rocket that will launch Deep Space 1. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  16. KSC-98pc1117

    NASA Image and Video Library

    1998-09-17

    A booster is lifted off a truck for installation onto the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  17. KSC-98pc1118

    NASA Image and Video Library

    1998-09-17

    Two boosters are lifted into place, while a third waits on the ground, for installation onto the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  18. KSC-2011-6846

    NASA Image and Video Library

    2011-09-08

    CAPE CANAVERAL, Fla. – At Space Launch Complex 17B on Cape Canaveral Air Force Station, the United Launch Alliance Delta II heavy rocket that will launch NASA's Gravity Recovery and Interior Laboratory spacecraft is rolled back around to the mobile service tower after the first launch attempt was scrubbed due to upper-level winds. GRAIL is scheduled for another launch attempt Sept.10 at 8:29:45 a.m. EDT. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Ken Thornsley

  19. KSC-2011-6851

    NASA Image and Video Library

    2011-09-08

    CAPE CANAVERAL, Fla. – At Space Launch Complex 17B on Cape Canaveral Air Force Station, the United Launch Alliance Delta II heavy rocket that will launch NASA's Gravity Recovery and Interior Laboratory spacecraft is rolled back around to the mobile service tower after the first launch attempt was scrubbed due to upper-level winds. GRAIL is scheduled for another launch attempt Sept.10 at 8:29:45 a.m. EDT. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Ken Thornsley

  20. KSC-2011-6850

    NASA Image and Video Library

    2011-09-08

    CAPE CANAVERAL, Fla. – At Space Launch Complex 17B on Cape Canaveral Air Force Station, the United Launch Alliance Delta II heavy rocket that will launch NASA's Gravity Recovery and Interior Laboratory spacecraft is rolled back around to the mobile service tower after the first launch attempt was scrubbed due to upper-level winds. GRAIL is scheduled for another launch attempt Sept.10 at 8:29:45 a.m. EDT. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Ken Thornsley

  1. KSC-2011-6845

    NASA Image and Video Library

    2011-09-08

    CAPE CANAVERAL, Fla. – At Space Launch Complex 17B on Cape Canaveral Air Force Station, the United Launch Alliance Delta II heavy rocket that will launch NASA's Gravity Recovery and Interior Laboratory spacecraft is rolled back around to the mobile service tower after the first launch attempt was scrubbed due to upper-level winds. GRAIL is scheduled for another launch attempt Sept.10 at 8:29:45 a.m. EDT. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Ken Thornsley

  2. A strategy for developing a launch vehicle system for orbit insertion: Methodological aspects

    NASA Astrophysics Data System (ADS)

    Klyushnikov, V. Yu.; Kuznetsov, I. I.; Osadchenko, A. S.

    2014-12-01

    The article addresses methodological aspects of a development strategy to design a launch vehicle system for orbit insertion. The development and implementation of the strategy are broadly outlined. An analysis is provided of the criterial base and input data needed to define the main requirements for the launch vehicle system. Approaches are suggested for solving individual problems in working out the launch vehicle system development strategy.

  3. International Launch Vehicle Selection for Interplanetary Travel

    NASA Technical Reports Server (NTRS)

    Ferrone, Kristine; Nguyen, Lori T.

    2010-01-01

    In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.

  4. STS-98 Atlantis rolls to the VAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis (right) inches its way at 1 mph atop the crawler-transporter back to the Vehicle Assembly Building from Launch Pad 39A (upper left). A panorama view from the top of the VAB shows the proximity of the pad to the Atlantic Ocean (background) plus the 3.4-mile crawlerway leading from the pad to the VAB. The water areas on both sides of the crawlerway are part of the Banana River. In the VAB workers will conduct inspections, make continuity checks and conduct X-ray analysis on the 36 solid rocket booster cables located inside each booster'''s external system tunnel. An extensive evaluation of NASA'''s SRB cable inventory revealed conductor damage in four (of about 200) cables on the shelf. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. The launch has been rescheduled no earlier than Feb. 6.

  5. Artist's Concept of the Atlas V-401 Rocket

    NASA Image and Video Library

    2018-01-25

    Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, is scheduled to launch from Vandenberg Air Force Base on California's Pacific coast between May 5 and June 8, 2018. The lander will launch to Mars aboard an Atlas V-401 launch vehicle, one of the biggest rockets available for interplanetary flight. It stands 188 feet (57.3 meters) tall, or about as tall as a 19-story building. Fully stacked, with the spacecraft, the Atlas V-401 weighs about 730,000 pounds (333,000 kilograms). That's about 14 big rigs, fully loaded with cargo! The three numbers in the 401 designation signify: 4: a payload fairing -- or nose cone -- that is about 13 feet (4 meters) in diameter 0: solid-rocket boosters supplementing the main booster 1: the upper stage, which has one engine https://photojournal.jpl.nasa.gov/catalog/PIA22231

  6. Wind Tunnel Testing Underway for Next, More Powerful Version of NASA SLS Rocket

    NASA Image and Video Library

    2017-01-24

    Engineers at NASA's Langley Research Center and Ames Research Center are running tests in supersonic wind tunnels to develop the next, more powerful version of the world's most advanced launch vehicle, the Space Launch System -- capable of carrying humans to deep space destinations. The new wind tunnel tests are for the second generation of SLS. It will deliver a 105-metric-ton (115-ton) lift capacity and will be 364 feet tall in the crew configuration -- taller than the Saturn V that launched astronauts on missions to the moon. The rocket's core stage will be the same, but the newer rocket will feature a powerful exploration upper stage. On SLS’s second flight with Orion, the rocket will carry up to four astronauts on a mission around the moon, in the deep-space proving ground for the technologies and capabilities needed on NASA’s Journey to Mars.

  7. Lunar Gravity-Assist Maneuver As a Way of Reducing the Orbit Amplitude in the Spectrum-Röntgen-Gamma Project

    NASA Astrophysics Data System (ADS)

    Kovalenko, I. D.; Eismont, N. A.

    2018-04-01

    Spectrum-Röntgen-Gamma (SRG) is a space observatory designed to observe astrophysical objects in the X-ray range of the electromagnetic spectrum. SRG is planned to be launched in 2019 by a Proton-M launch vehicle with a DM3 upper stage. The spacecraft will be delivered to an orbit around the Sun-Earth collinear libration point L2 located at a distance of 1.5 million km from the Earth. Although the SRG launch scheme has already been determined at present, in this paper we consider an alternative spacecraft transfer scenario using a lunar gravity-assist maneuver. The proposed scenario allows a oneimpulse transfer from a low Earth orbit to a small-amplitude orbit around the libration point to be performed while fulfilling the technical constraints and the scientific requirements of the mission.

  8. Modular experimental platform for science and applications

    NASA Technical Reports Server (NTRS)

    Hill, A. S.

    1984-01-01

    A modularized, standardized spacecraft bus, known as MESA, suitable for a variety of science and applications missions is discussed. The basic bus consists of a simple structural arrangement housing attitude control, telemetry/command, electrical power, propulsion and thermal control subsystems. The general arrangement allows extensive subsystem adaptation to mission needs. Kits provide for the addition of tape recorders, increased power levels and propulsion growth. Both 3-axis and spin stabilized flight proven attitude control subsystems are available. The MESA bus can be launched on Ariane, as a secondary payload for low cost, or on the STS with a PAM-D or other suitable upper stage. Multi-spacecraft launches are possible with either booster. Launch vehicle integration is simple and cost-effective. The low cost of the MESA bus is achieved by the extensive utilization of existing subsystem design concepts and equipment, and efficient program management and test integration techniques.

  9. KSC-2013-2885

    NASA Image and Video Library

    2013-06-24

    VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, mission managers participate in a pre-launch dress rehearsal in the Launch Vehicle Data Center for NASA’s Interface Region Imaging Spectrograph, or IRIS, solar observatory. Scheduled for launch from Vandenberg on June 26 aboard an Orbital Sciences Pegasus XL rocket, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region in to the sun’s corona using spectrometry and imaging. The IRIS mission will observe how solar material moves, gathers energy and heats up as it travels through a largely unexplored region of the solar atmosphere. The interface region, located between the sun’s visible surface and upper atmosphere, is where most of the sun’s ultraviolet emission is generated. These emissions impact the near-Earth space environment and Earth’s climate. For more information, visit http://www.nasa.gov/iris. Photo credit: NASA/Daniel Casper

  10. KSC-2013-2888

    NASA Image and Video Library

    2013-06-24

    VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, mission managers participate in a pre-launch dress rehearsal in the Launch Vehicle Data Center for NASA’s Interface Region Imaging Spectrograph, or IRIS, solar observatory. Scheduled for launch from Vandenberg on June 26 aboard an Orbital Sciences Pegasus XL rocket, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region in to the sun’s corona using spectrometry and imaging. The IRIS mission will observe how solar material moves, gathers energy and heats up as it travels through a largely unexplored region of the solar atmosphere. The interface region, located between the sun’s visible surface and upper atmosphere, is where most of the sun’s ultraviolet emission is generated. These emissions impact the near-Earth space environment and Earth’s climate. For more information, visit http://www.nasa.gov/iris. Photo credit: NASA/Daniel Casper

  11. KSC-2013-2887

    NASA Image and Video Library

    2013-06-24

    VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, mission managers participate in a pre-launch dress rehearsal in the Launch Vehicle Data Center for NASA’s Interface Region Imaging Spectrograph, or IRIS, solar observatory. Scheduled for launch from Vandenberg on June 26 aboard an Orbital Sciences Pegasus XL rocket, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region in to the sun’s corona using spectrometry and imaging. The IRIS mission will observe how solar material moves, gathers energy and heats up as it travels through a largely unexplored region of the solar atmosphere. The interface region, located between the sun’s visible surface and upper atmosphere, is where most of the sun’s ultraviolet emission is generated. These emissions impact the near-Earth space environment and Earth’s climate. For more information, visit http://www.nasa.gov/iris. Photo credit: NASA/Daniel Casper

  12. KSC-2013-2886

    NASA Image and Video Library

    2013-06-24

    VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, mission managers participate in a pre-launch dress rehearsal in the Launch Vehicle Data Center for NASA’s Interface Region Imaging Spectrograph, or IRIS, solar observatory. Scheduled for launch from Vandenberg on June 26 aboard an Orbital Sciences Pegasus XL rocket, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region in to the sun’s corona using spectrometry and imaging. The IRIS mission will observe how solar material moves, gathers energy and heats up as it travels through a largely unexplored region of the solar atmosphere. The interface region, located between the sun’s visible surface and upper atmosphere, is where most of the sun’s ultraviolet emission is generated. These emissions impact the near-Earth space environment and Earth’s climate. For more information, visit http://www.nasa.gov/iris. Photo credit: NASA/Daniel Casper

  13. KSC-99pp1121

    NASA Image and Video Library

    1999-09-16

    The east side of the Vehicle Assembly Building (VAB) at Kennedy Space Center shows missing panels around the leaves of the upper door, the effect of the high winds from Hurricane Floyd as it passed along the East Coast of Florida, Sept. 14-15. At a weather tower located between Shuttle Launch Pad 39A and Launch Complex 41, the highest winds recorded during the superstorm were 91 mph from the NNW at 4:50 a.m. on Wednesday, Sept. 15. The maximum sustained winds were recorded at 66 mph. The highest amount of rain recorded at KSC was 2.82 inches as the eye of Hurricane Floyd passed 121 miles east of Cape Canaveral at 4 a.m. Wednesday. A preliminary review of conditions at the Kennedy Space Center was positive after the worst of Hurricane Floyd passed. There appeared to be no major damage to NASA assets, including the launch pads, the four Space Shuttle Orbiters, and flight hardware

  14. ARES I AND ARES V CONCEPT IMAGE

    NASA Technical Reports Server (NTRS)

    2008-01-01

    THIS CONCEPT IMAGE SHOWS NASA'S NEXT GENERATION LAUNCH VEHICLE SYSTEMS STANDING SIDE BY SIDE. ARES I, LEFT, IS THE CREW LAUNCH VEHICLE THAT WILL CARRY THE ORION CREW EXPLORATION VEHICLE TO SPACE. ARES V IS THE CARGO LAUNCH VEHICLE THAT WILL DELIVER LARGE SCALE HARDWARE, INCLUDING THE LUNAR LANDER, TO SPACE.

  15. Advanced Concept

    NASA Image and Video Library

    1999-10-21

    This artist’s concept depicts a Magnetic Launch Assist vehicle in orbit. Formerly referred to as the Magnetic Levitation (Maglev) system, the Magnetic Launch Assist system is a launch system developed and tested by engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  16. Ares I and Ares I-X Stage Separation Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T.; Niskey, Charles J.

    2011-01-01

    The aerodynamics of the Ares I crew launch vehicle (CLV) and Ares I-X flight test vehicle (FTV) during stage separation was characterized by testing 1%-scale models at the Arnold Engineering Development Center s (AEDC) von Karman Gas Dynamics Facility (VKF) Tunnel A at Mach numbers of 4.5 and 5.5. To fill a large matrix of data points in an efficient manner, an injection system supported the upper stage and a captive trajectory system (CTS) was utilized as a support system for the first stage located downstream of the upper stage. In an overall extremely successful test, this complex experimental setup associated with advanced postprocessing of the wind tunnel data has enabled the construction of a multi-dimensional aerodynamic database for the analysis and simulation of the critical phase of stage separation at high supersonic Mach numbers. Additionally, an extensive set of data from repeated wind tunnel runs was gathered purposefully to ensure that the experimental uncertainty would be accurately quantified in this type of flow where few historical data is available for comparison on this type of vehicle and where Reynolds-averaged Navier-Stokes (RANS) computational simulations remain far from being a reliable source of static aerodynamic data.

  17. National launch strategy vehicle data management system

    NASA Technical Reports Server (NTRS)

    Cordes, David

    1990-01-01

    The national launch strategy vehicle data management system (NLS/VDMS) was developed as part of the 1990 NASA Summer Faculty Fellowship Program. The system was developed under the guidance of the Engineering Systems Branch of the Information Systems Office, and is intended for use within the Program Development Branch PD34. The NLS/VDMS is an on-line database system that permits the tracking of various launch vehicle configurations within the program development office. The system is designed to permit the definition of new launch vehicles, as well as the ability to display and edit existing launch vehicles. Vehicles can be grouped in logical architectures within the system. Reports generated from this package include vehicle data sheets, architecture data sheets, and vehicle flight rate reports. The topics covered include: (1) system overview; (2) initial system development; (3) supercard hypermedia authoring system; (4) the ORACLE database; and (5) system evaluation.

  18. On the economics of staging for reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Griffin, Michael D.; Claybaugh, William R.

    1996-03-01

    There has been much recent discussion concerning possible replacement systems for the current U.S. fleet of launch vehicles, including both the shuttle and expendable vehicles. Attention has been focused upon the feasibility and potential benefits of reusable single-stage-to-orbit (SSTO) launch systems for future access to low Earth orbit (LEO). In this paper we assume the technical feasibility of such vehicles, as well as the benefits to be derived from system reusability. We then consider the benefits of launch vehicle staging from the perspective of economic advantage rather than performance necessity. Conditions are derived under which two-stage-to-orbit (TSTO) launch systems, utilizing SSTO-class vehicle technology, offer a relative economic advantage for access to LEO.

  19. Delta launch vehicle inertial guidance system (DIGS)

    NASA Technical Reports Server (NTRS)

    Duck, K. I.

    1973-01-01

    The Delta inertial guidance system, part of the Delta launch vehicle improvement effort, has been flown on three launches and was found to perform as expected for a variety of mission profiles and vehicle configurations.

  20. VentureStar(trademark) Reaping the Benefits of the X-33 Program

    NASA Technical Reports Server (NTRS)

    Sumrall, J.; Lane, C.

    1998-01-01

    Major X-33 flight hardware has been delivered, and assembly of the vehicle is well underway in anticipation of its flight test program commencing in the summer of 1999. Attention has now turned to the operational VentureStar(trademark), the first single-stage-to-orbit (SSTO) reusable launch vehicle. Activities are grouped under two broad categories: (1) vehicle development and (2) market/business planning, each of which is discussed. The mission concept is presented for direct payload delivery to the International Space Station and to low Earth orbit, as well as payload delivery with an upper stage to Geosynchronous Transfer Orbit (GTO) and other high energy orbits. System requirements include flight segment and ground segment. Vehicle system sizing and design status is provided including the application of X-33 traceability and lessons learned. Technology applications to the VentureStar(trademark) are described including the structure, propellant tanks, thermal protection system, aerodynamics, subsystems, payload bay and propulsion. Developing a market driven low cost launch services system for the 21 st Century requires traditional and non-traditional ways of being able to forecast the evolution of the potential market. The challenge is balancing both the technical and financial assumptions of the market. This involves the need to provide a capability to meet market segments that in some cases are very speculative, while at the same time providing the financial community with a credible revenue stream.

  1. Application of statistical distribution theory to launch-on-time for space construction logistic support

    NASA Technical Reports Server (NTRS)

    Morgenthaler, George W.

    1989-01-01

    The ability to launch-on-time and to send payloads into space has progressed dramatically since the days of the earliest missile and space programs. Causes for delay during launch, i.e., unplanned 'holds', are attributable to several sources: weather, range activities, vehicle conditions, human performance, etc. Recent developments in space program, particularly the need for highly reliable logistic support of space construction and the subsequent planned operation of space stations, large unmanned space structures, lunar and Mars bases, and the necessity of providing 'guaranteed' commercial launches have placed increased emphasis on understanding and mastering every aspect of launch vehicle operations. The Center of Space Construction has acquired historical launch vehicle data and is applying these data to the analysis of space launch vehicle logistic support of space construction. This analysis will include development of a better understanding of launch-on-time capability and simulation of required support systems for vehicle assembly and launch which are necessary to support national space program construction schedules. In this paper, the author presents actual launch data on unscheduled 'hold' distributions of various launch vehicles. The data have been supplied by industrial associate companies of the Center for Space Construction. The paper seeks to determine suitable probability models which describe these historical data and that can be used for several purposes such as: inputs to broader simulations of launch vehicle logistic space construction support processes and the determination of which launch operations sources cause the majority of the unscheduled 'holds', and hence to suggest changes which might improve launch-on-time. In particular, the paper investigates the ability of a compound distribution probability model to fit actual data, versus alternative models, and recommends the most productive avenues for future statistical work.

  2. Rain erosion considerations for launch vehicle insulation systems

    NASA Technical Reports Server (NTRS)

    Daniels, D. J.; Sieker, W. D.

    1977-01-01

    In recent years the Delta launch vehicle has incorporated the capability to be launched through rain. This capability was developed to eliminate a design constraint which could result in a costly launch delay. This paper presents the methodology developed to implement rain erosion protection for the insulated exterior vehicle surfaces. The effect of the interaction between insulation material rain erosion resistance, rainstorm models, surface geometry and trajectory variations is examined. It is concluded that rain erosion can significantly impact the performance of launch vehicle insulation systems and should be considered in their design.

  3. The DARPA/USAF Falcon Program Small Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Weeks, David J.; Walker, Steven H.; Thompson, Tim L.; Sackheim, Robert; London, John R., III

    2006-01-01

    Earlier in this decade, the U.S. Air Force Space Command and the Defense Advanced Research Projects Agency (DARPA), in recognizing the need for low-cost responsive small launch vehicles, decided to partner in addressing this national shortcoming. Later, the National Aeronautics and Space Administration (NASA) joined in supporting this effort, dubbed the Falcon Program. The objectives of the Small Launch Vehicle (SLV) element of the DARPA/USAF Falcon Program include the development of a low-cost small launch vehicle(s) that demonstrates responsive launch and has the potential for achieving a per mission cost of less than $5M when based on 20 launches per year for 10 years. This vehicle class can lift 1000 to 2000 lbm payloads to a reference low earth orbit. Responsive operations include launching the rocket within 48 hours of call up. A history of the program and the current status will be discussed with an emphasis on the potential impact on small satellites.

  4. KSC-07pd1774

    NASA Image and Video Library

    2007-07-03

    KENNEDY SPACE CENTER, FLA. -- The main engines on the orbiter Endeavour (upper right) are seen as Endeavour is lowered into high bay 1 of the Vehicle Assembly Building for stacking with the external tank (seen at left) and solid rocket boosters on the mobile launcher platform. Endeavour will be launched on mission STS-118, its first flight in more than four years. The shuttle has undergone extensive modifications, including the addition of safety upgrades already added to shuttles Discovery and Atlantis. Endeavour also features new hardware, such as the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. Endeavour is targeted for launch on Aug. 7. Photo credit: NASA/Troy Cryder

  5. Future exploration of Venus (post-Pioneer Venus 1978)

    NASA Technical Reports Server (NTRS)

    Colin, L.; Evans, L. C.; Greeley, R.; Quaide, W. L.; Schaupp, R. W.; Seiff, A.; Young, R. E.

    1976-01-01

    A comprehensive study was performed to determine the major scientific unknowns about the planet Venus to be expected in the post-Pioneer Venus 1978 time frame. Based on those results the desirability of future orbiters, atmospheric entry probes, balloons, and landers as vehicles to address the remaining scientific questions were studied. The recommended mission scenario includes a high resolution surface mapping radar orbiter mission for the 1981 launch opportunity, a multiple-lander mission for 1985 and either an atmospheric entry probe or balloon mission in 1988. All the proposed missions can be performed using proposed space shuttle upper stage boosters. Significant amounts of long-lead time supporting research and technology developments are required to be initiated in the near future to permit the recommended launch dates.

  6. Space Launch System Spacecraft/Payloads Integration and Evolution Office Advanced Development FY 2014 Annual Report

    NASA Technical Reports Server (NTRS)

    Crumbly, C. M.; Bickley, F. P.; Hueter, U.

    2015-01-01

    The Advanced Development Office (ADO), part of the Space Launch System (SLS) program, provides SLS with the advanced development needed to evolve the vehicle from an initial Block 1 payload capability of 70 metric tons (t) to an eventual capability Block 2 of 130 t, with intermediary evolution options possible. ADO takes existing technologies and matures them to the point that insertion into the mainline program minimizes risk. The ADO portfolio of tasks covers a broad range of technical developmental activities. The ADO portfolio supports the development of advanced boosters, upper stages, and other advanced development activities benefiting the SLS program. A total of 36 separate tasks were funded by ADO in FY 2014.

  7. 48 CFR 252.228-7005 - Accident reporting and investigation involving aircraft, missiles, and space launch vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... investigation involving aircraft, missiles, and space launch vehicles. 252.228-7005 Section 252.228-7005 Federal... investigation involving aircraft, missiles, and space launch vehicles. As prescribed in 228.370(d), use the following clause: Accident Reporting and Investigation Involving Aircraft, Missiles, and Space Launch...

  8. 48 CFR 252.228-7005 - Accident reporting and investigation involving aircraft, missiles, and space launch vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... investigation involving aircraft, missiles, and space launch vehicles. 252.228-7005 Section 252.228-7005 Federal... investigation involving aircraft, missiles, and space launch vehicles. As prescribed in 228.370(d), use the following clause: Accident Reporting and Investigation Involving Aircraft, Missiles, and Space Launch...

  9. 48 CFR 252.228-7005 - Accident reporting and investigation involving aircraft, missiles, and space launch vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... investigation involving aircraft, missiles, and space launch vehicles. 252.228-7005 Section 252.228-7005 Federal... investigation involving aircraft, missiles, and space launch vehicles. As prescribed in 228.370(d), use the following clause: Accident Reporting and Investigation Involving Aircraft, Missiles, and Space Launch...

  10. 48 CFR 252.228-7005 - Accident reporting and investigation involving aircraft, missiles, and space launch vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... investigation involving aircraft, missiles, and space launch vehicles. 252.228-7005 Section 252.228-7005 Federal... investigation involving aircraft, missiles, and space launch vehicles. As prescribed in 228.370(d), use the following clause: Accident Reporting and Investigation Involving Aircraft, Missiles, and Space Launch...

  11. 48 CFR 252.228-7005 - Accident reporting and investigation involving aircraft, missiles, and space launch vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... investigation involving aircraft, missiles, and space launch vehicles. 252.228-7005 Section 252.228-7005 Federal... investigation involving aircraft, missiles, and space launch vehicles. As prescribed in 228.370(d), use the following clause: Accident Reporting and Investigation Involving Aircraft, Missiles, and Space Launch...

  12. Design and development of the redundant launcher stabilization system for the Atlas 2 launch vehicle

    NASA Technical Reports Server (NTRS)

    Nakamura, M.

    1991-01-01

    The Launcher Stabilization System (LSS) is a pneumatic/hydraulic ground system used to support an Atlas launch vehicle prior to launch. The redesign and development activity undertaken to achieve an LSS with increased load capacity and a redundant hydraulic system for the Atlas 2 launch vehicle are described.

  13. Artist's Concept of Magnetic Launch Assisted Air-Breathing Rocket

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle in orbit. Formerly referred to as the Magnetic Levitation (Maglev) system, the Magnetic Launch Assist system is a launch system developed and tested by engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  14. The Structural Heat Intercept-Insulation-Vibration Evaluation Rig (SHIVER)

    NASA Technical Reports Server (NTRS)

    Johnson, W. L.; Zoeckler, J. G.; Best-Ameen, L. M.

    2015-01-01

    NASA is currently investigating methods to reduce the boil-off rate on large cryogenic upper stages. Two such methods to reduce the total heat load on existing upper stages are vapor cooling of the cryogenic tank support structure and integration of thick multilayer insulation systems to the upper stage of a launch vehicle. Previous efforts have flown a 2-layer MLI blanket and shown an improved thermal performance, and other efforts have ground-tested blankets up to 70 layers thick on tanks with diameters between 2 3 meters. However, thick multilayer insulation installation and testing in both thermal and structural modes has not been completed on a large scale tank. Similarly, multiple vapor cooled shields are common place on science payload helium dewars; however, minimal effort has gone into intercepting heat on large structural surfaces associated with rocket stages. A majority of the vapor cooling effort focuses on metallic cylinders called skirts, which are the most common structural components for launch vehicles. In order to provide test data for comparison with analytical models, a representative test tank is currently being designed to include skirt structural systems with integral vapor cooling. The tank is 4 m in diameter and 6.8 m tall to contain 5000 kg of liquid hydrogen. A multilayer insulation system will be designed to insulate the tank and structure while being installed in a representative manner that can be extended to tanks up to 10 meters in diameter. In order to prove that the insulation system and vapor cooling attachment methods are structurally sound, acoustic testing will also be performed on the system. The test tank with insulation and vapor cooled shield installed will be tested thermally in the B2 test facility at NASAs Plumbrook Station both before and after being vibration tested at Plumbrooks Space Power Facility.

  15. Advanced Concept

    NASA Image and Video Library

    2008-02-15

    Shown is a concept illustration of the Ares I crew launch vehicle during launch and the Ares V cargo launch vehicle on the launch pad. Ares I will carry the Orion Crew Exploration Vehicle with an astronaut crew to Earth orbit. Ares V will deliver large-scale hardware to space. This includes the Altair Lunar Lander, materials for establishing an outpost on the moon, and the vehicles and hardware needed to extend a human presence beyond Earth orbit.

  16. Mutual Coupling of Internal Transmit/Receive Pair in Launch Vehicle Fairing Model Using WIPL-D

    NASA Technical Reports Server (NTRS)

    Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.

    2011-01-01

    Evaluating the fairing Radio Frequency (RF) Environment within the launch vehicle payload fairing cavity due to internal transmitters is an issue for the spacecraft and launch vehicle industry. This paper provides an effective approach for launch vehicle fairing evaluation of power reception and field distribution due to internal transmitters. A commercial electromagnetic computational tool, WIPL-D is applied in this study for test data comparison.

  17. First night launch of a Saturn I launch vehicle

    NASA Image and Video Library

    1965-05-25

    First night time launching of a Saturn I launch vehicle took place at 2:35 a.m., May 25, 1965, with the launch of the second Pegasus meteoroid detection satellite from Complex 37, Cape Kennedy, Florida.

  18. Risk Perception and Communication in Commercial Reusable Launch Vehicle Operations

    NASA Astrophysics Data System (ADS)

    Hardy, Terry L.

    2005-12-01

    A number of inventors and entrepreneurs are currently attempting to develop and commercially operate reusable launch vehicles to carry voluntary participants into space. The operation of these launch vehicles, however, produces safety risks to the crew, to the space flight participants, and to the uninvolved public. Risk communication therefore becomes increasingly important to assure that those involved in the flight understand the risk and that those who are not directly involved understand the personal impact of RLV operations on their lives. Those involved in the launch vehicle flight may perceive risk differently from those non-participants, and these differences in perception must be understood to effectively communicate this risk. This paper summarizes existing research in risk perception and communication and applies that research to commercial reusable launch vehicle operations. Risk communication is discussed in the context of requirements of United States law for informed consent from any space flight participants on reusable suborbital launch vehicles.

  19. Aircraft operability methods applied to space launch vehicles

    NASA Astrophysics Data System (ADS)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  20. Alternative Approach to Vehicle Element Processing

    NASA Technical Reports Server (NTRS)

    Huether, Jacob E.; Otto, Albert E.

    1995-01-01

    The National Space Transportation Policy (NSTP), describes the challenge facing today's aerospace industry. 'Assuring reliable and affordable access to space through U.S. space transportation capabilities is a fundamental goal of the U.S. space program'. Experience from the Space Shuttle Program (SSP) tells us that launch and mission operations are responsible for approximately 45 % of the cost of each shuttle mission. Reducing these costs is critical to NSTP goals in the next generation launch vehicle. Based on this, an innovative alternative approach to vehicle element processing was developed with an emphasis on reduced launch costs. State-of-the-art upgrades to the launch processing system (LPS) will enhance vehicle ground operations. To carry this one step further, these upgrade could be implemented at various vehicle element manufacturing sites to ensure system compatibility between the manufacturing facility and the launch site. Design center vehicle stand alone testing will ensure system integrity resulting in minimized checkout and testing at the launch site. This paper will addresses vehicle test requirements, timelines and ground checkout procedures which enable concept implementation.

Top