1. VARIABLEANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND ...
1. VARIABLE-ANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING NORTH TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
13. 22'X34' original vellum, VariableAngle Launcher, 'SIDEVIEW CAMERA CAR TRACK ...
13. 22'X34' original vellum, Variable-Angle Launcher, 'SIDEVIEW CAMERA CAR TRACK DETAILS' drawn at 1/4'=1'-0' (BUORD Sketch # 208078, PAPW 908). - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
10. 22'X34' original blueprint, VariableAngle Launcher, 'SIDE VIEW CAMERA CARSTEEL ...
10. 22'X34' original blueprint, Variable-Angle Launcher, 'SIDE VIEW CAMERA CAR-STEEL FRAME AND AXLES' drawn at 1/2'=1'-0'. (BOURD Sketch # 209124). - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
4. VAL PARTIAL ELEVATION SHOWING LAUNCHER BRIDGE ON SUPPORTS, LAUNCHER ...
4. VAL PARTIAL ELEVATION SHOWING LAUNCHER BRIDGE ON SUPPORTS, LAUNCHER SLAB, SUPPORT CARRIAGE, CONCRETE 'A' FRAME STRUCTURE AND CAMERA TOWER LOOKING SOUTHEAST. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
DETAIL VIEW OF A VIDEO CAMERA POSITIONED ALONG THE PERIMETER ...
DETAIL VIEW OF A VIDEO CAMERA POSITIONED ALONG THE PERIMETER OF THE MLP - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA ...
7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA INSIDE CAMERA CAR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
6. VAL CAMERA CAR, DETAIL OF COMMUNICATION EQUIPMENT INSIDE CAMERA ...
6. VAL CAMERA CAR, DETAIL OF COMMUNICATION EQUIPMENT INSIDE CAMERA CAR WITH CAMERA MOUNT IN FOREGROUND. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
7. VAL CAMERA STATION, INTERIOR VIEW OF CAMERA MOUNT, COMMUNICATION ...
7. VAL CAMERA STATION, INTERIOR VIEW OF CAMERA MOUNT, COMMUNICATION EQUIPMENT AND STORAGE CABINET. - Variable Angle Launcher Complex, Camera Stations, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...
2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING WEST TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...
3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH THE VAL TO THE RIGHT, LOOKING NORTHEAST. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
8. VAL CAMERA CAR, CLOSEUP VIEW OF 'FLARE' OR TRAJECTORY ...
8. VAL CAMERA CAR, CLOSE-UP VIEW OF 'FLARE' OR TRAJECTORY CAMERA ON SLIDING MOUNT. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
5. VAL CAMERA CAR, DETAIL OF HOIST AT SIDE OF ...
5. VAL CAMERA CAR, DETAIL OF HOIST AT SIDE OF BRIDGE AND ENGINE CAR ON TRACKS, LOOKING NORTHEAST. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
22. VAL, VIEW OF PROJECTILE LOADING DECK LOOKING NORTHEAST TOWARD ...
22. VAL, VIEW OF PROJECTILE LOADING DECK LOOKING NORTHEAST TOWARD TOP OF CONCRETE 'A' FRAME STRUCTURE SHOWING DRIVE CABLES, DRIVE GEAR, BOTTOM OF CAMERA TOWER AND 'CROWS NEST' CONTROL ROOM. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
9. COMPLETED ROLLING CAMERA CAR ON RAILROAD TRACK AND BRIDGE ...
9. COMPLETED ROLLING CAMERA CAR ON RAILROAD TRACK AND BRIDGE LOOKING WEST, APRIL 26, 1948. (ORIGINAL PHOTOGRAPH IN POSSESSION OF DAVE WILLIS, SAN DIEGO, CALIFORNIA.) - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
75. FIRST TEST SHOT OF THE VAL AT THE DEDICATION ...
75. FIRST TEST SHOT OF THE VAL AT THE DEDICATION CEREMONIES AS SEEN FROM A FIXED CAMERA STATION, May 7, 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
78. PHOTO OF A PROJECTILE FIRING USING A SABOT TAKEN ...
78. PHOTO OF A PROJECTILE FIRING USING A SABOT TAKEN WITH A 70 MM MITCHEL MOTION PICTURE CAMERA, Date unknown, circa 1950. (Original photograph in possession of Dave Willis, San Diego, California.) Photograph represents central frame of negative. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
High Speed Photographic Analysis Of Railgun Plasmas
NASA Astrophysics Data System (ADS)
Macintyre, I. B.
1985-02-01
Various experiments are underway at the Materials Research Laboratories, Australian Department of Defence, to develop a theory for the behaviour and propulsion action of plasmas in rail guns. Optical recording and imaging devices, with their low vulnerability to the effects of magnetic and electric fields present in the vicinity of electromagnetic launchers, have proven useful as diagnostic tools. This paper describes photoinstrumentation systems developed to provide visual qualitative assessment of the behaviour of plasma travelling along the bore of railgun launchers. In addition, a quantitative system is incorporated providing continuous data (on a microsecond time scale) of (a) Length of plasma during flight along the launcher bore. (b) Velocity of plasma. (c) Distribution of plasma with respect to time after creation. (d) Plasma intensity profile as it travels along the launcher bore. The evolution of the techniques used is discussed. Two systems were employed. The first utilized a modified high speed streak camera to record the light emitted from the plasma, through specially prepared fibre optic cables. The fibre faces external to the bore were then imaged onto moving film. The technique involved the insertion of fibres through the launcher body to enable the plasma to be viewed at discrete positions as it travelled along the launcher bore. Camera configuration, fibre optic preparation and experimental results are outlined. The second system utilized high speed streak and framing photography in conjunction with accurate sensitometric control procedures on the recording film. The two cameras recorded the plasma travelling along the bore of a specially designed transparent launcher. The streak camera, fitted with a precise slit size, recorded a streak image of the upper brightness range of the plasma as it travelled along the launcher's bore. The framing camera recorded an overall view of the launcher and the plasma path, to the maximum possible, governed by the film's ability to reproduce the plasma's brightness range. The instrumentation configuration, calibration, and film measurement using microdensitometer scanning techniques to evaluate inbore plasma behaviour, are also presented.
14. VIEW OF MST, FACING SOUTHEAST, AND LAUNCH PAD TAKEN ...
14. VIEW OF MST, FACING SOUTHEAST, AND LAUNCH PAD TAKEN FROM NORTHEAST PHOTO TOWER WITH WINDOW OPEN. FEATURES LEFT TO RIGHT: SOUTH TELEVISION CAMERA TOWER, SOUTHWEST PHOTO TOWER, LAUNCHER, UMBILICAL MAST, MST, AND OXIDIZER APRON. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
71. VIEW OF FUEL APRON FROM THE NORTHWEST. LEFT TO ...
71. VIEW OF FUEL APRON FROM THE NORTHWEST. LEFT TO RIGHT: HELIUM TANKS, GASEOUS NITROGEN TANKS, DIESEL FUEL TANK AND BACKUP GENERATOR, AND ROCKET FUEL TANKS. NORTHWEST CORNER OF THE LSB (BLDG. 751) AND LAUNCHER IN BACKGROUND ON LEFT; SOUTH CAMERA TOWER IN BACKGROUND ON RIGHT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
2003-11-06
KENNEDY SPACE CENTER, FLA. - A camera is installed on the aft skirt of a solid rocket booster in preparation for a vibration test of the Mobile Launcher Platform with SRBs and external tank mounted. The MLP will roll from one bay to another in the Vehicle Assembly Building.
5. VAL LAUNCHER BRIDGE OVER LAUNCHER SLAB TAKEN FROM RESERVOIR ...
5. VAL LAUNCHER BRIDGE OVER LAUNCHER SLAB TAKEN FROM RESERVOIR LOOKING NORTH. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
2003-11-06
KENNEDY SPACE CENTER, FLA. - The camera installed on the aft skirt of a solid rocket booster is seen here, framed by the railing. The installation is in preparation for a vibration test of the Mobile Launcher Platform with SRBs and external tank mounted. The MLP will roll from one bay to another in the Vehicle Assembly Building.
27. VAL, DETAIL OF LAUNCHER SLAB AND LAUNCHER RAIL WITH ...
27. VAL, DETAIL OF LAUNCHER SLAB AND LAUNCHER RAIL WITH 7 INCH DIAMETER HOLE FOR SUPPORT CARRIAGE LOCKING PIN. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
89. 22'X34' original vellum, VariableAngle Launcher 'ELEVATION OF LAUNCHER BRIDGE ...
89. 22'X34' original vellum, Variable-Angle Launcher 'ELEVATION OF LAUNCHER BRIDGE ON TEMPORARY SUPPORT' drawn at 1'=20'. (BUORD Sketch # 209786, PAPW 1932). - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
90. 22'X34' original blueprint, VariableAngle Launcher, 'FRONT ELEVATION OF LAUNCHER ...
90. 22'X34' original blueprint, Variable-Angle Launcher, 'FRONT ELEVATION OF LAUNCHER BRIDGE, CONNECTING BRIDGE AND BARGES' drawn at 1/4'=1'0'. (BUROD Sketch # 208247). - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
21. VAL, DETAIL OF MUZZLE END OF LAUNCHER BRIDGE SHOWING ...
21. VAL, DETAIL OF MUZZLE END OF LAUNCHER BRIDGE SHOWING BOTH LAUNCHER TUBES TAKEN FROM RESERVOIR LOOKING NORTH. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
32. VAL, DETAIL SHOWING LOADING PLATFORM, PROJECTILE LOADING CAR, LAUNCHER ...
32. VAL, DETAIL SHOWING LOADING PLATFORM, PROJECTILE LOADING CAR, LAUNCHER SLAB AND UNDERSIDE OF LAUNCHER BRIDGE LOOKING SOUTHWEST. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
View of Launcher #3 surface doors. Launcher #1 in background ...
View of Launcher #3 surface doors. Launcher #1 in background left, Launcher #2 in background right. Image looking west - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO
30. VAL LOOKING DOWN THE LAUNCHER SLAB STAIRS AT THE ...
30. VAL LOOKING DOWN THE LAUNCHER SLAB STAIRS AT THE PROJECTILE LOADING CAR AND LOADING PLATFORM ADJACENT TO THE PROJECTILE LOADING DECK AND LAUNCHER BRIDGE. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
18. VAL, DETAIL OF LAUNCHER BRIDGE ALONG THE SIDE OF ...
18. VAL, DETAIL OF LAUNCHER BRIDGE ALONG THE SIDE OF THE 32' DIAMETER LAUNCHING TUBE LOOKING SOUTHWEST. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
View of Launcher #3 surface doors. Launcher #1 in background. ...
View of Launcher #3 surface doors. Launcher #1 in background. Image looking southwest - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO
79. VIEW OF VAL FIRING RANGE LOOKING SOUTHWEST SHOWING LAUNCHER ...
79. VIEW OF VAL FIRING RANGE LOOKING SOUTHWEST SHOWING LAUNCHER BRIDGE, BARGES, SONAR BUOY RANGE AND MORRIS DAM IN BACKGROUND, June 10, 1948. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
83. DETAIL OF THE MUZZLE END OF THE LAUNCHER BRIDGE ...
83. DETAIL OF THE MUZZLE END OF THE LAUNCHER BRIDGE ON TEMPORARY SUPPORTS LOOKING NORTHEAST SHOWING TWO LAUNCHING TUBES, Date unknown, circa 1950'S. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
82. DETAIL OF THE MUZZLE END OF THE LAUNCHER BRIDGE ...
82. DETAIL OF THE MUZZLE END OF THE LAUNCHER BRIDGE LOOKING NORTH SHOWING THE CONNECTING BRIDGE AND TWO LAUNCHING TUBES, Date unknown, circa 1952. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
NASA Astrophysics Data System (ADS)
Li, Y. C.; Ding, B. J.; Li, M. H.; Wang, M.; Liu, L.; Wang, X. J.; Xu, H. D.; Shan, J. F.; Liu, F. K.
2018-02-01
On the experimental advanced superconducting tokamak (EAST), a series of striations, including a few strong emissivity striations and several low emissivity striations, were observed in front of the 4.6-GHz lower hybrid (LH) launcher with the visible video camera for the LH power discharge. These striations indicate that LH may create significant poloidal scrape-off layer (SOL) density profile asymmetries in front of the LH launcher. These poloidal asymmetric density behaviors are further confirmed with the edge density measured by two Langmuir probes installed at the top and bottom of the LH launcher. The measured density depends on LH power injection and magnetic field direction. A 2D diffusive convective model was used to study the mechanisms of the observed striations and poloidal asymmetric density. The simulation results qualitatively match with the measured density, indicating these poloidal asymmetric effects are ascribed to the LHW-induced E LH × B t drift.
11. 28'X40' original vellum, VariableAngle Launcher, 'INDEX TO Drawings' drawn ...
11. 28'X40' original vellum, Variable-Angle Launcher, 'INDEX TO Drawings' drawn at no scale (P.W.DWG.No. 1781). - Variable Angle Launcher Complex, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO ...
Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO MOBILE LAUNCHER PLATFORM NO. 1. NASA, John F. Kennedy Space Center, Florida. Drawing 79K04401, Reynolds, Smith and Hills, March, 1975. ISOMETRIC: EXISTING ML NO. 3 LAUNCHER. Sheet A1 - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
NASA Astrophysics Data System (ADS)
Lau, C.; Lin, Y.; Wallace, G.; Wukitch, S. J.; Hanson, G. R.; Labombard, B.; Ochoukov, R.; Shiraiwa, S.; Terry, J.
2013-09-01
A dedicated experiment during simultaneous lower hybrid (LH) and ion cyclotron range-of-frequencies (ICRF) operations is carried out to evaluate and understand the effects of ICRF power on the scrape-off-layer (SOL) density profiles and on the resultant LH coupling for a wide range of plasma parameters on Alcator C-Mod. Operation of the LH launcher with the adjacent ICRF antenna significantly degrades LH coupling while operation with the ICRF antenna that is not magnetically connected to the LH launcher minimally affects LH coupling. An X-mode reflectometer system at three poloidal locations adjacent to the LH launcher and a visible video camera imaging the LH launcher are used to measure local SOL density profile and emissivity modifications with the application of LH and LH + ICRF power. These measurements confirm that the density in front of the LH launcher depends strongly on the magnetic field line mapping of the active ICRF antenna. Reflectometer measurements also observe both ICRF-driven and LH-driven poloidal density profile asymmetries, especially a strong density depletion at certain poloidal locations in front of the LH launcher during operation with a magnetically connected ICRF antenna. The results indicate that understanding both LH-driven flows and ICRF sheath driven flows may be necessary to understand the observed density profile modifications and LH coupling results during simultaneous LH + ICRF operation.
1. GENERAL VIEW OF SLC3W SHOWING SOUTH FACE AND EAST ...
1. GENERAL VIEW OF SLC-3W SHOWING SOUTH FACE AND EAST SIDE OF A-FRAME MOBILE SERVICE TOWER (MST). MST IN SERVICE POSITION OVER LAUNCHER AND FLAME BUCKET. CABLE TRAYS BETWEEN LAUNCH OPERATIONS BUILDING (BLDG. 763) AND SLC-3W IN FOREGROUND. LIQUID OXYGEN APRON VISIBLE IMMEDIATELY EAST (RIGHT) OF MST; FUEL APRON VISIBLE IMMEDIATELY WEST (LEFT) OF MST. A PORTION OF THE FLAME BUCKET VISIBLE BELOW THE SOUTH FACE OF THE MST. CAMERA TOWERS VISIBLE EAST OF MST BETWEEN ROAD AND CABLE TRAY, AND SOUTH OF MST NEAR LEFT MARGIN OF PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
7. VARIABLEANGLE LAUNCHER DEDICATION PLAQUE SHOWING JAMES H. JENNISON (LEFT), ...
7. VARIABLE-ANGLE LAUNCHER DEDICATION PLAQUE SHOWING JAMES H. JENNISON (LEFT), AND W.H. SAYLOR (RIGHT), AT THE DEDICATION CEREMONY, May 7, 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
23. VIEW DOWN INTO LAUNCHER AND FLAME BUCKET FROM STATION ...
23. VIEW DOWN INTO LAUNCHER AND FLAME BUCKET FROM STATION 48 IN SLC-3W MST. NOTE REMOVABLE METAL PLANKS BELOW LAUNCHER AND ROPE NET OVER FLAME BUCKET. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
81. VIEW OF VAL LOOKING NORTH AS SEEN FROM THE ...
81. VIEW OF VAL LOOKING NORTH AS SEEN FROM THE RESERVOIR SHOWING TWO LAUNCHING TUBES ON THE LAUNCHER BRIDGE, Date unknown, circa 1952. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
63. VIEW LOOKING DOWN VAL LAUNCHING SLAB SHOWING DRIVE GEARS, ...
63. VIEW LOOKING DOWN VAL LAUNCHING SLAB SHOWING DRIVE GEARS, CABLES, LAUNCHER RAILS, PROJECTILE CAR AND SUPPORT CARRIAGE, April 8, 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
The Road To The Objective Force. Armaments for the Army Transformation
2001-06-18
Vehicle Fire Support Vehicle •TOW 2B Anti-Tank Capability Under Armor •Detection of NBC Hazards Mortar Carrier •Dismounted M121 120mm MRT Initially...engaged from under armor M6 Launchers (x4) Staring Array Thermal Sight Height reduction for air transport Day Camera Target Acq Sight Armament Remote...PM BCT ANTI-TANK GUIDED MISSILE VEHICLE • TOWII • ITAS (Raytheon) - 2 Missiles • IBAS Day Camera • Missile is Remotely Fired Under Armor • M6 Smoke
DETAIL VIEW OF COMPUTER PANELS, ROOM 8A Cape Canaveral ...
DETAIL VIEW OF COMPUTER PANELS, ROOM 8A - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO ...
Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO MOBILE LAUNCHER PLATFORM NO. 1. NASA, John F. Kennedy Space Center, Florida. Drawing 79K04401, Reynolds, Smith and Hills, March, 1975. GENERAL ARRANGEMENT, MLP NO. 1, SECTIONS I. Sheet A17 - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO ...
Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO MOBILE LAUNCHER PLATFORM NO. 1. NASA, John F. Kennedy Space Center, Florida. Drawing 79K04401, Reynolds, Smith and Hills, March, 1975. GENERAL ARRANGEMENT, MLP NO. 1, SECTIONS II. Sheet A18 - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO ...
Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO MOBILE LAUNCHER PLATFORM NO. 1. NASA, John F. Kennedy Space Center, Florida. Drawing 79K04401, Reynolds, Smith and Hills, March, 1975. GENERAL ARRANGEMENT, MLP NO. 1, SECTIONS IV. Sheet A20 - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO ...
Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO MOBILE LAUNCHER PLATFORM NO. 1. NASA, John F. Kennedy Space Center, Florida. Drawing 79K04401, Reynolds, Smith and Hills, March, 1975. ISOMETRIC VIEW: MLP NO. 1. Sheet A10 - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO ...
Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO MOBILE LAUNCHER PLATFORM NO. 1. NASA, John F. Kennedy Space Center, Florida. Drawing 79K04401, Reynolds, Smith and Hills, March, 1975. GENERAL ARRANGEMENT, MLP NO. 1, ELEVATION SIDE 1 & 2. Sheet A15 - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO ...
Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO MOBILE LAUNCHER PLATFORM NO. 1. NASA, John F. Kennedy Space Center, Florida. Drawing 79K04401, Reynolds, Smith and Hills, March, 1975. GENERAL ARRANGEMENT, MLP NO. 1, PLAN DECK A. Sheet A13 - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO ...
Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO MOBILE LAUNCHER PLATFORM NO. 1. NASA, John F. Kennedy Space Center, Florida. Drawing 79K04401, Reynolds, Smith and Hills, March, 1975. GENERAL ARRANGEMENT, MLP NO. 1, ELEVATION SIDE 3 & 4. Sheet A16 - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO ...
Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO MOBILE LAUNCHER PLATFORM NO. 1. NASA, John F. Kennedy Space Center, Florida. Drawing 79K04401, Reynolds, Smith and Hills, March, 1975. GENERAL ARRANGEMENT, MLP NO. 1, PLAN DECK B. Sheet A14 - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO ...
Photocopy of drawing. MODIFICATIONS TO CONVERT ML NO. 3 TO MOBILE LAUNCHER PLATFORM NO. 1. NASA, John F. Kennedy Space Center, Florida. Drawing 79K04401, Reynolds, Smith and Hills, March, 1975. GENERAL ARRANGEMENT, MLP NO. 1, PLAN DECK 0. Sheet A12 - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
56. VIEW OF LAUNCHER FROM SOUTHWEST. NITROGEN CONTROL UNIT ON ...
56. VIEW OF LAUNCHER FROM SOUTHWEST. NITROGEN CONTROL UNIT ON RIGHT; UMBILICAL MAST ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
5. GENERAL VIEW OF LAUNCHER BUILDING 28402 SHOWING LAUNCH DECK ...
5. GENERAL VIEW OF LAUNCHER BUILDING 28402 SHOWING LAUNCH DECK AT RIGHT; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
64. DETAIL OF CONNECTIONS FOR SIXTEEN CABLES AT THE CARRIAGE ...
64. DETAIL OF CONNECTIONS FOR SIXTEEN CABLES AT THE CARRIAGE SUPPORT STRUCTURE, STRUCTURE. April 20, 1948. 1048. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
6. VIEW OF LAUNCHER BUILDING 28402 SHOWING STEEL STAIRS LEADING ...
6. VIEW OF LAUNCHER BUILDING 28402 SHOWING STEEL STAIRS LEADING UP TO LAUNCH DECK; VIEW TO NORTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
DETAIL VIEW OF THE POWER CONNECTIONS (FRONT) AND COMPUTER PANELS ...
DETAIL VIEW OF THE POWER CONNECTIONS (FRONT) AND COMPUTER PANELS (REAR), ROOM 8A - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
34. VAL, DETAIL OF STAIRS ON COUNTERWEIGHT SLAB WITH COUNTERWEIGHT ...
34. VAL, DETAIL OF STAIRS ON COUNTERWEIGHT SLAB WITH COUNTERWEIGHT CAR RAILS ON RIGHT AND PERSONNEL CAR RAILS ON LEFT. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
33. VAL, DETAIL OF PERSONNEL CAR AT THE TOP OF ...
33. VAL, DETAIL OF PERSONNEL CAR AT THE TOP OF THE COUNTERWEIGHT SLAB WITH THE COUNTERWEIGHT CAR IN DISTANCE LOOKING NORTH. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
76. FIRST TEST SHOT OF THE VAL AT THE DEDICATION ...
76. FIRST TEST SHOT OF THE VAL AT THE DEDICATION CEREMONIES AS SEEN FROM THE OBSERVATION DECK ABOVE THE CONTROL STATION, May 7, 1948. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
Overview of LH experiments in JET with an ITER-like wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirov, K. K.; Baranov, Yu.; Brix, M.
2014-02-12
An overview of the recent results of Lower Hybrid (LH) experiments at JET with the ITER-like wall (ILW) is presented. Topics relevant to LH wave coupling are addressed as well as issues related to ILW and LH system protections. LH wave coupling was studied in conditions determined by ILW recycling and operational constraints. It was concluded that LH wave coupling was not significantly affected and the pre-ILW performance could be recovered after optimising the launcher position and local gas puffing. SOL density measurements were performed using a Li-beam diagnostic. Dependencies on the D2 injection rate from the dedicated gas valve,more » the LH power and the LH launcher position were analysed. SOL density modifications due to LH were modelled by the EDGE2D code assuming SOL heating by collisional dissipation of the LH wave and/or possible ExB drifts in the SOL. The simulations matched reasonably well the measured SOL profiles. Observations of arcs and hotspots with visible and IR cameras viewing the LH launcher are presented.« less
VIEW OF HB1 (VAB HIGH BAY) WITH MOBILE LAUNCHER PLATFORM ...
VIEW OF HB-1 (VAB HIGH BAY) WITH MOBILE LAUNCHER PLATFORM (VEHICLE ACCESS PLATFORMS ARE VISIBLE IN THE CENTER), FACING WEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
63. VIEW OF FLAME BUCKET AND LAUNCHER FROM SOUTHEAST. TRICHLOROETHENE ...
63. VIEW OF FLAME BUCKET AND LAUNCHER FROM SOUTHEAST. TRICHLOROETHENE RECOVERY TANK LEFT OF FLAME BUCKET; LIQUID OXYGEN CATCH TANK RIGHT OF FLAME BUCKET. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
41. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM LAUNCHER; ...
41. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM LAUNCHER; SOUTH FACE OF MST IN BACKGROUND. RAIL SYSTEM FROM BASE OF MST PARALLEL TO MAST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
74. DETAIL VIEW OF INSIDE THE LAUNCHING BRIDGE LOOKING SOUTHWEST ...
74. DETAIL VIEW OF INSIDE THE LAUNCHING BRIDGE LOOKING SOUTHWEST SHOWING ADJUSTABLE STAIRS ON THE LEFT AND LAUNCHING TUBE ON THE RIGHT, Date unknown, circa 1948. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
54. VAL COUNTERWEIGHT CAR DURING CONSTRUCTION SHOWING CAR FRAME, WHEEL ...
54. VAL COUNTERWEIGHT CAR DURING CONSTRUCTION SHOWING CAR FRAME, WHEEL ASSEMBLIES AND METAL REINFORCING, December 19, 1947. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
58. VIEW OF SOUTHWEST SIDE OF LAUNCHER FROM ABOVE. AFRAME ...
58. VIEW OF SOUTHWEST SIDE OF LAUNCHER FROM ABOVE. A-FRAME PIVOT POINT IN CENTER OF PHOTOGRAPH; NITROGEN CONTROL UNIT IN UPPER LEFT CORNER OF PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
62. VIEW OF FLAME BUCKET BELOW LAUNCHER ON SOUTH END ...
62. VIEW OF FLAME BUCKET BELOW LAUNCHER ON SOUTH END OF LAUNCH PAD. FIRE SUPPRESSION EQUIPMENT RIGHT OF FLAME BUCKET. SOUTH FACE OF MST IS IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
57. INTERIOR VIEW OF VAL BRIDGE STRUCTURE SHOWING LAUNCHING TUBE, ...
57. INTERIOR VIEW OF VAL BRIDGE STRUCTURE SHOWING LAUNCHING TUBE, STAIRS AND PORTION OF LAUNCHING DECK. NOTE SUPPORT CARRIAGE ASSEMBLY IN DISTANCE. Date unknown, circa March 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
STS-30 Atlantis, OV-104, at KSC LC Pad 39B atop mobile launcher platform
NASA Technical Reports Server (NTRS)
1989-01-01
STS-30 Atlantis, Orbiter Vehicle (OV) 104, arrives at Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B atop mobile launcher platform. The fixed service structure (FSS) towers above OV-104, its external tank (ET), and its solid rocket boosters (SRBs). The rotating service structure (RSS) is retracted. The launch tower catwalks are also retracted.
STS-30 Atlantis, OV-104, on the mobile launcher platform heads to KSC LC pad
NASA Technical Reports Server (NTRS)
1989-01-01
STS-30 Atlantis, Orbiter Vehicle (OV) 104, riding atop the mobile launcher platform and the crawler transporter approaches Kennedy Space Center (KSC) Launch Complex (LC) pad 39B. This backlit view highlights OV-104's profile, the external tank (ET), and one of the two solid rocket boosters (SRBs) as it moves up LC pad 39B incline.
1. MAGAZINE COMPLEX, O, P, AND Q. MAGAZINE P IN ...
1. MAGAZINE COMPLEX, O, P, AND Q. MAGAZINE P IN BACKGROUND, LOOKING NORTHEAST. - NIKE Missile Base C-84, Underground Storage Magazines & Launcher-Loader Assemblies, Easternmost portion of launch area, Barrington, Cook County, IL
Detecting targets hidden in random forests
NASA Astrophysics Data System (ADS)
Kouritzin, Michael A.; Luo, Dandan; Newton, Fraser; Wu, Biao
2009-05-01
Military tanks, cargo or troop carriers, missile carriers or rocket launchers often hide themselves from detection in the forests. This plagues the detection problem of locating these hidden targets. An electro-optic camera mounted on a surveillance aircraft or unmanned aerial vehicle is used to capture the images of the forests with possible hidden targets, e.g., rocket launchers. We consider random forests of longitudinal and latitudinal correlations. Specifically, foliage coverage is encoded with a binary representation (i.e., foliage or no foliage), and is correlated in adjacent regions. We address the detection problem of camouflaged targets hidden in random forests by building memory into the observations. In particular, we propose an efficient algorithm to generate random forests, ground, and camouflage of hidden targets with two dimensional correlations. The observations are a sequence of snapshots consisting of foliage-obscured ground or target. Theoretically, detection is possible because there are subtle differences in the correlations of the ground and camouflage of the rocket launcher. However, these differences are well beyond human perception. To detect the presence of hidden targets automatically, we develop a Markov representation for these sequences and modify the classical filtering equations to allow the Markov chain observation. Particle filters are used to estimate the position of the targets in combination with a novel random weighting technique. Furthermore, we give positive proof-of-concept simulations.
Challenge '95 - The Ariane 5 Development Programme
NASA Astrophysics Data System (ADS)
Vedrenne, M.; van Gaver, M.
1987-10-01
The Ariane-5 launcher has been assigned to the following types of missions: (1) launching geostationary and sun-synchronous commercial satellites, and scientific and trial applications satellites; (2) launching the Hermes spaceplane, and (3) launching elements of the Columbus system such as the man-tended free-flyer module, and the polar platform. A new launch complex, the ELA-3, is being built for the Ariane-5 launcher close to ESA's ELA-1 and ELA-2 launch complexes at Kourou. After two qualification flights in the automatic version in 1995 (501 and 502), it is expected that Ariane-5 will be declared operational with its first commercial flight planned for early 1996 to put an automatic payload into orbit.
2006-01-16
KENNEDY SPACE CENTER, FLA. - On Complex 41 at Cape Canaveral Air Force Station, the Atlas V expendable launch vehicle with the New Horizons spacecraft settles into position with the launcher umbilical tower on the pad. The liftoff is scheduled for 1:24 p.m. EST Jan. 17. After its launch aboard the Atlas V, the compact, 1,050-pound piano-sized probe will get a boost from a kick-stage solid propellant motor for its journey to Pluto. New Horizons will be the fastest spacecraft ever launched, reaching lunar orbit distance in just nine hours and passing Jupiter 13 months later. The New Horizons science payload, developed under direction of Southwest Research Institute, includes imaging infrared and ultraviolet spectrometers, a multi-color camera, a long-range telescopic camera, two particle spectrometers, a space-dust detector and a radio science experiment. The dust counter was designed and built by students at the University of Colorado, Boulder. A launch before Feb. 3 allows New Horizons to fly past Jupiter in early 2007 and use the planet’s gravity as a slingshot toward Pluto. The Jupiter flyby trims the trip to Pluto by as many as five years and provides opportunities to test the spacecraft’s instruments and flyby capabilities on the Jupiter system. New Horizons could reach the Pluto system as early as mid-2015, conducting a five-month-long study possible only from the close-up vantage of a spacecraft.
2006-01-16
KENNEDY SPACE CENTER, FLA. - On Complex 41 at Cape Canaveral Air Force Station, the Atlas V expendable launch vehicle with the New Horizons spacecraft moves with the launcher umbilical tower to the pad. The liftoff is scheduled for 1:24 p.m. EST Jan. 17. After its launch aboard the Atlas V, the compact, 1,050-pound piano-sized probe will get a boost from a kick-stage solid propellant motor for its journey to Pluto. New Horizons will be the fastest spacecraft ever launched, reaching lunar orbit distance in just nine hours and passing Jupiter 13 months later. The New Horizons science payload, developed under direction of Southwest Research Institute, includes imaging infrared and ultraviolet spectrometers, a multi-color camera, a long-range telescopic camera, two particle spectrometers, a space-dust detector and a radio science experiment. The dust counter was designed and built by students at the University of Colorado, Boulder. A launch before Feb. 3 allows New Horizons to fly past Jupiter in early 2007 and use the planet’s gravity as a slingshot toward Pluto. The Jupiter flyby trims the trip to Pluto by as many as five years and provides opportunities to test the spacecraft’s instruments and flyby capabilities on the Jupiter system. New Horizons could reach the Pluto system as early as mid-2015, conducting a five-month-long study possible only from the close-up vantage of a spacecraft.
2006-01-16
KENNEDY SPACE CENTER, FLA. - On Complex 41 at Cape Canaveral Air Force Station, the Atlas V expendable launch vehicle with the New Horizons spacecraft moves with the launcher umbilical tower to the pad. The liftoff is scheduled for 1:24 p.m. EST Jan. 17. After its launch aboard the Atlas V, the compact, 1,050-pound piano-sized probe will get a boost from a kick-stage solid propellant motor for its journey to Pluto. New Horizons will be the fastest spacecraft ever launched, reaching lunar orbit distance in just nine hours and passing Jupiter 13 months later. The New Horizons science payload, developed under direction of Southwest Research Institute, includes imaging infrared and ultraviolet spectrometers, a multi-color camera, a long-range telescopic camera, two particle spectrometers, a space-dust detector and a radio science experiment. The dust counter was designed and built by students at the University of Colorado, Boulder. A launch before Feb. 3 allows New Horizons to fly past Jupiter in early 2007 and use the planet’s gravity as a slingshot toward Pluto. The Jupiter flyby trims the trip to Pluto by as many as five years and provides opportunities to test the spacecraft’s instruments and flyby capabilities on the Jupiter system. New Horizons could reach the Pluto system as early as mid-2015, conducting a five-month-long study possible only from the close-up vantage of a spacecraft.
Nondestructive inspection of a composite missile launcher
NASA Astrophysics Data System (ADS)
Ley, O.; Chung, S.; Butera, M.; Valatka, T.; Triplett, M. H.; Godinez, V.
2012-05-01
Lighter weight alternatives are being sought to replace metallic components currently used in high performance aviation and missile systems. Benefits of lightweight, high strength carbon fiber reinforced composites in missile launchers and rocket motor cases include improved fuel economy, increased flight times, enhanced lethality and/or increased velocity. In this work, various nondestructive inspection techniques are investigated for the damage assessment of a composite missile launcher system for use in U.S. Army attack helicopters. The launcher system, which includes rails and a hardback, can be subject to impact damage from accidental tool drops, routine operation, and/or ballistic threats. The composite hardback and the launch rails both have complex geometries that can challenge the inspection process. Scanning techniques such as line scanning thermography, ultrasonic, and acousto-ultrasonics will be used and compared to determine damage detection accuracy, reliability, and efficiency. Results will also be compared with visual observations to determine if there is a correlation. The goal is to establish an inspection method that quickly and accurately assesses damage extent in order to minimize service time and return the missile system back into the field [1].
Glide back booster wind tunnel model testing
NASA Astrophysics Data System (ADS)
Pricop, M. V.; Cojocaru, M. G.; Stoica, C. I.; Niculescu, M. L.; Neculaescu, A. M.; Persinaru, A. G.; Boscoianu, M.
2017-07-01
Affordable space access requires partial or ideally full launch vehicle reuse, which is in line with clean environment requirement. Although the idea is old, the practical use is difficult, requiring very large technology investment for qualification. Rocket gliders like Space Shuttle have been successfullyoperated but the price and correspondingly the energy footprint were found not sustainable. For medium launchers, finally there is a very promising platform as Falcon 9. For very small launchers the situation is more complex, because the performance index (payload to start mass) is already small, versus medium and heavy launchers. For partial reusable micro launchers this index is even smaller. However the challenge has to be taken because it is likely that in a multiyear effort, technology is going to enable the performance recovery to make such a system economically and environmentally feasible. The current paper is devoted to a small unitary glide back booster which is foreseen to be assembled in a number of possible configurations. Although the level of analysis is not deep, the solution is analyzed from the aerodynamic point of view. A wind tunnel model is designed, with an active canard, to enablea more efficient wind tunnel campaign, as a national level premiere.
Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John ...
Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John F. Kennedy Space Center, Florida. Drawing 75M05760, KSC-Launch Support Equipment Engineering Division, January 1967. GENERAL ARRANGEMENT. Sheet 1 of 4 - Cape Canaveral Air Force Station, Launch Complex 39, Crawler Transporters, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
2006-01-16
KENNEDY SPACE CENTER, FLA. - On Complex 41 at Cape Canaveral Air Force Station, the Atlas V expendable launch vehicle with the New Horizons spacecraft moves with the launcher umbilical tower between lightning masts on its way to the launch pad. The liftoff is scheduled for 1:24 p.m. EST Jan. 17. After its launch aboard the Atlas V, the compact, 1,050-pound piano-sized probe will get a boost from a kick-stage solid propellant motor for its journey to Pluto. New Horizons will be the fastest spacecraft ever launched, reaching lunar orbit distance in just nine hours and passing Jupiter 13 months later. The New Horizons science payload, developed under direction of Southwest Research Institute, includes imaging infrared and ultraviolet spectrometers, a multi-color camera, a long-range telescopic camera, two particle spectrometers, a space-dust detector and a radio science experiment. The dust counter was designed and built by students at the University of Colorado, Boulder. A launch before Feb. 3 allows New Horizons to fly past Jupiter in early 2007 and use the planet’s gravity as a slingshot toward Pluto. The Jupiter flyby trims the trip to Pluto by as many as five years and provides opportunities to test the spacecraft’s instruments and flyby capabilities on the Jupiter system. New Horizons could reach the Pluto system as early as mid-2015, conducting a five-month-long study possible only from the close-up vantage of a spacecraft.
STS-29 Discovery, Orbiter Vehicle (OV) 103, roll out to KSC LC Pad 39B
NASA Technical Reports Server (NTRS)
1989-01-01
In the early morning hours, STS-29 Discovery, Orbiter Vehicle (OV) 103, mated to the external tank (ET) and solid rocket boosters (SRBs) is rolled out to Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B atop the mobile launcher platform. Trees, shrubs, and a light mist surround the mobile launcher platform as it makes its way to LC Pad 39B. OV-103 will fly on Mission STS-29 scheduled for launch in mid-March. View provided by KSC with alternate KSC number KSC-89PC-50.
Historic and Current Launcher Success Rates
NASA Technical Reports Server (NTRS)
Rust, Randy
2002-01-01
This presentation reviews historic and current space launcher success rates from all nations with a mature launcher industry. Data from the 1950's through present day is reviewed for possible trends such as when in the launch timeline a failure occurred, which stages had the highest failure rate, overall launcher reliability, a decade by decade look at launcher reliability, when in a launchers history did failures occur, and the reliability of United States human-rated launchers. This information is useful in determining where launcher reliability can be improved and where additional measures for crew survival (i.e., Crew Escape systems) will have the greatest emphasis
3. VAL CONTROL STATION, VIEW OF CONTROL PANELS SHOWING MAIN ...
3. VAL CONTROL STATION, VIEW OF CONTROL PANELS SHOWING MAIN PRESSURE GAUGES, LOOKING NORTH. - Variable Angle Launcher Complex, Control Station, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
Advanced Hypervelocity Aerophysics Facility Workshop
NASA Technical Reports Server (NTRS)
Witcofski, Robert D. (Compiler); Scallion, William I. (Compiler)
1989-01-01
The primary objective of the workshop was to obtain a critical assessment of a concept for a large, advanced hypervelocity ballistic range test facility powered by an electromagnetic launcher, which was proposed by the Langley Research Center. It was concluded that the subject large-scale facility was feasible and would provide the required ground-based capability for performing tests at entry flight conditions (velocity and density) on large, complex, instrumented models. It was also concluded that advances in remote measurement techniques and particularly onboard model instrumentation, light-weight model construction techniques, and model electromagnetic launcher (EML) systems must be made before any commitment for the construction of such a facility can be made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, L.; Ding, B. J., E-mail: bjding@ipp.ac.cn; Li, M. H.
2014-02-15
The striations in front of the lower hybrid (LH) launcher have been observed during LH injection by a visible video camera in the Experimental Advanced Superconducting Tokamak. Edge density at the top of the LH launcher tends to be much larger in reversed magnetic field (B{sub t}) than that in the normal B{sub t}. To study the mechanisms of the observations, the diffusive-convective model is employed. Simulations show that the LH power makes the density in scrape-off layer asymmetric in poloidal direction with five density peaks. The locations of the striations are approximately in agreement with the locations of themore » density peaks in different directions of B{sub t}. Higher LH power strengths the asymmetry of the density and leads to a bad coupling which is in conflict with the experimental results showing a good coupling with a higher power. Furthermore, an ionization term is introduced into this model and the increase of edge density with LH power can be qualitatively explained. The simulations also show that the density peaks in front of the waveguides become clearer when taking into account gas puffing.« less
2. VAL CONTROL STATION, VIEW OF INTERIOR SHOWING EXTERIOR DOOR, ...
2. VAL CONTROL STATION, VIEW OF INTERIOR SHOWING EXTERIOR DOOR, WINDOWS AND CONTROL PANELS, LOOKING SOUTHEAST. - Variable Angle Launcher Complex, Control Station, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Launchers. 175.113 Section 175... SAFETY EQUIPMENT REQUIREMENTS Visual Distress Signals § 175.113 Launchers. (a) When a visual distress signal carried to meet the requirements of § 175.110 requires a launcher to activate, then a launcher...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Launchers. 175.113 Section 175... SAFETY EQUIPMENT REQUIREMENTS Visual Distress Signals § 175.113 Launchers. (a) When a visual distress signal carried to meet the requirements of § 175.110 requires a launcher to activate, then a launcher...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Launchers. 175.113 Section 175... SAFETY EQUIPMENT REQUIREMENTS Visual Distress Signals § 175.113 Launchers. (a) When a visual distress signal carried to meet the requirements of § 175.110 requires a launcher to activate, then a launcher...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Launchers. 175.113 Section 175... SAFETY EQUIPMENT REQUIREMENTS Visual Distress Signals § 175.113 Launchers. (a) When a visual distress signal carried to meet the requirements of § 175.110 requires a launcher to activate, then a launcher...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Launchers. 175.113 Section 175... SAFETY EQUIPMENT REQUIREMENTS Visual Distress Signals § 175.113 Launchers. (a) When a visual distress signal carried to meet the requirements of § 175.110 requires a launcher to activate, then a launcher...
Predicting Trainability of M1 Crewmen
1982-10-01
Load Main Gun Clear Main Gun LOAD/UNLOAD M250 GRENADE LAUNCHER ON M1 TANK* Load Grenade Launcher Unload Grenade Launcher PREPARE GUNNER’S STATION...Clear Main Gun LOAD/UNLOAD M250 GRENADE LAUNCHER ON Ml TANK* Load Grenade Launcher Unload Grenade Lauacher PREPARE GUNNER’S STATION FOR OPERATION ON Ml
Perceived causality, force, and resistance in the absence of launching.
Hubbard, Timothy L; Ruppel, Susan E
2017-04-01
In the launching effect, a moving object (the launcher) contacts a stationary object (the target), and upon contact, the launcher stops and the target begins moving in the same direction and at the same or slower velocity as previous launcher motion (Michotte, 1946/1963). In the study reported here, participants viewed a modified launching effect display in which the launcher stopped before or at the moment of contact and the target remained stationary. Participants rated perceived causality, perceived force, and perceived resistance of the launcher on the target or the target on the launcher. For launchers and for targets, increases in the size of the spatial gap between the final location of the launcher and the location of the target decreased ratings of perceived causality and ratings of perceived force and increased ratings of perceived resistance. Perceived causality, perceived force, and perceived resistance exhibited gradients or fields extending from the launcher and from the target and were not dependent upon contact of the launcher and target. Causal asymmetries and force asymmetries reported in previous studies did not occur, and this suggests that such asymmetries might be limited to typical launching effect stimuli. Deviations from Newton's laws of motion are noted, and the existence of separate radii of action extending from the launcher and from the target is suggested.
NASA Astrophysics Data System (ADS)
Vaughn, M.; Kwong, J.; Pomerantz, W.
Virgin Orbit is developing a space transportation service to provide an affordable, reliable, and responsive dedicated ride to orbit for smaller payloads. No longer will small satellite users be forced to make a choice between accepting the limitations of flight as a secondary payload, paying dramatically more for a dedicated launch vehicle, or dealing with the added complexity associated with export control requirements and international travel to distant launch sites. Virgin Orbit has made significant progress towards first flight of a new vehicle that will give satellite developers and operators a better option for carrying their small satellites into orbit. This new service is called LauncherOne (See the figure below). LauncherOne is a two stage, air-launched liquid propulsion (LOX/RP) rocket. Air launched from a specially modified 747-400 carrier aircraft (named “Cosmic Girl”), this system is designed to conduct operations from a variety of locations, allowing customers to select various launch azimuths and increasing available orbital launch windows. This provides small satellite customers an affordable, flexible and dedicated option for access to space. In addition to developing the LauncherOne vehicle, Virgin Orbit has worked with US government customers and across the new, emerging commercial sector to refine concepts for resiliency, constellation replenishment and responsive launch elements that can be key enables for the Space Enterprise Vision (SEV). This element of customer interaction is being led by their new subsidiary company, VOX Space. This paper summarizes technical progress made on LauncherOne in the past year and extends the thinking of how commercial space, small satellites and this new emerging market can be brought to bear to enable true space system resiliency.
2009-01-01
Agreement (L,nderJ) ;ng PA) stipu atmg thaI Cold War propertIes significant for their distir.c:ivc physical characteristics and ~hclr historic function...launch complex th t dir Iy upported ooerational missions 0 the exceptionally imp rtant Cold War program. n You l1ave aiso submi tea a map that outlines
53. THRUST SECTION HEATER AND GASEOUS NITROGEN PURGE CONTROLS ON ...
53. THRUST SECTION HEATER AND GASEOUS NITROGEN PURGE CONTROLS ON EAST SIDE OF LAUNCH DECK. LAUNCHER IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valade, Laurent, E-mail: laurent.valade@cea.fr; Ekedahl, Annika; Colas, Laurent
2015-12-10
The effect of the detailed waveguide spectrum on the electron acceleration has been studied for the 3.7 GHz LHCD launchers in Tore Supra, i.e. the ITER-like passive-active multijunction (PAM) launcher and the fully-active-multijunction (FAM) launcher, using test electron modelling technique. The detailed launched antenna wave spectrum is used as input to the code that computes the dynamics of the electrons in the electric field. Comparison with the LHCD launchers in EAST, operating at 2.45 GHz and 4.6 GHz, has also been made. The simulations show that the PAM-design generates lower flux of fast electrons than FAM-launchers, this could be themore » consequence of the wider waveguide of PAM-launcher (14.65 mm for Tore-Supra) than FAM-launcher (8 mm for Tore-Supra)« less
1982-04-01
the gas particulate filter system MODULE L: OPERATE THE M250 BRENADE LAUNCHER 1L. Load the grenade launcher 2L. Unload the grenade launcher MODULE M...k Initia~ng Stimulus: Thei (11rdLr from the T.C. to load the M250 .p grenade launcher. J ACTION Loader will: 1L. Load the grenade launcher. 2L. Unload
The Physics Performance Of The Front Steering Launcher For The ITER ECRH Upper Port
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, M.; Chavan, R.; Nikkola, P.
2005-09-26
The capability of any given e.m.-wave plasma heating system to be utilized for physics applications depends strongly on the technical properties of the launching antenna (or launcher). An effective ECH launcher must project a small mm-wave beam spot size far into the plasma and 'steer' the beam across a large fraction of the plasma cross section (along the resonance surface). Thus the choice in the launcher concept and design may either severely limit or enhance the capability of a heating system to be effectively applied for physics applications, such as sawtooth stabilization, control of the Neoclassical Tearing Mode (NTM), Edgemore » Localized Mode (ELM) control, etc. Presently, two antenna concepts are under consideration for the ITER upper port ECH launcher: front steering (FS) and remote steering (RS) launchers. The RS launcher has the technical advantage of easier maintenance access to the steering mirror, which is isolated from the torus vacuum. The FS launcher places the steering mirror near the plasma increasing the technical challenges, but significantly enhancing the focusing and steering capabilities of the launcher, offering a threefold increase in NTM stabilization efficiency over the RS launcher as well as the potential for application to other critical physics issues such as ELM or sawtooth control.« less
6. MOBILE LAUNCHER SIDE 4, SHOWING MILK STOOL AND LUT. ...
6. MOBILE LAUNCHER SIDE 4, SHOWING MILK STOOL AND LUT. PROTRUSION ON UPPER RIGHT HAND SIDE OF LUT IS SWING ARM NINE WHICH PROVIDED ACCESS TO CAPSULE OF LAUNCH VEHICLE WHILE ON LAUNCHER. - Mobile Launcher One, Kennedy Space Center, Titusville, Brevard County, FL
NASA Technical Reports Server (NTRS)
Vladimirov, B. P.
1978-01-01
The 'Baykonur' cosmodrome, its functions, operations, and services are described in considerable detail. The launch complex, launching pads, launch structures, launchers with cable masts and propellant loading towers, are included. The sequence of all phases of rocket assembly and preparations for launch are depicted. Prelaunch procedures and the launch itself are described.
Small launchers (current and future projects in the world)
NASA Astrophysics Data System (ADS)
Naumann, W. G.
1993-01-01
Small satellites need launching services using small launchers capable of injecting 100 to 1000 kg into a polar orbit at an altitude of 1000 km. Operational small launchers are reviewed as well as developing and planned ones. Launcher characteristics, constraints, performance, and status are detailed. Few technical problems are encountered, as most launcher projects call for existing components and well known technologies. Most of the difficulties have come from launch site availability and from financial considerations.
System of launchable mesoscale robots for distributed sensing
NASA Astrophysics Data System (ADS)
Yesin, Kemal B.; Nelson, Bradley J.; Papanikolopoulos, Nikolaos P.; Voyles, Richard M.; Krantz, Donald G.
1999-08-01
A system of launchable miniature mobile robots with various sensors as payload is used for distributed sensing. The robots are projected to areas of interest either by a robot launcher or by a human operator using standard equipment. A wireless communication network is used to exchange information with the robots. Payloads such as a MEMS sensor for vibration detection, a microphone and an active video module are used mainly to detect humans. The video camera provides live images through a wireless video transmitter and a pan-tilt mechanism expands the effective field of view. There are strict restrictions on total volume and power consumption of the payloads due to the small size of the robot. Emerging technologies are used to address these restrictions. In this paper, we describe the use of microrobotic technologies to develop active vision modules for the mesoscale robot. A single chip CMOS video sensor is used along with a miniature lens that is approximately the size of a sugar cube. The device consumes 100 mW; about 5 times less than the power consumption of a comparable CCD camera. Miniature gearmotors 3 mm in diameter are used to drive the pan-tilt mechanism. A miniature video transmitter is used to transmit analog video signals from the camera.
An electomagnetic lunar launcher utilizing superconductivity technology
NASA Technical Reports Server (NTRS)
Bilby, Curt; Nozette, Stewart; Kolm, Henry
1989-01-01
The application of superconductivity technology to the lunar launcher problem was considered, and a quenchgun concept was formulated to reduce the mass of the launcher system by incorporating the energy storage in the launcher itself and using the efficiency of the quenchgun to reduce the power requirements. A conceptual design for the quenchgun launcher is presented, and the integration of the system into a lunar base logistics model for evaluation is addressed. The results of these evaluations under the NASA Office of Exploration lunar base scenarios are reported.
View of entrance tunnel outside Portal elevator. Tunnel ahead to ...
View of entrance tunnel outside Portal elevator. Tunnel ahead to Control Center, right to Launchers, left to Antenna Silos - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO
1. GENERAL VIEW OF LAUNCH PAD A WITH MOBILE SERVICE ...
1. GENERAL VIEW OF LAUNCH PAD A WITH MOBILE SERVICE STRUCTURE IN LOCKED POSITION OVER LAUNCHER BUILDING AND RETENTION POND AT RIGHT; VIEW TO NORTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
NASA Technical Reports Server (NTRS)
Shaw, Eric J.
2001-01-01
This paper will report on the activities of the IAA Launcher Systems Economics Working Group in preparations for its Launcher Systems Development Cost Behavior Study. The Study goals include: improve launcher system and other space system parametric cost analysis accuracy; improve launcher system and other space system cost analysis credibility; and provide launcher system and technology development program managers and other decisionmakers with useful information on development cost impacts of their decisions. The Working Group plans to explore at least the following five areas in the Study: define and explain development cost behavior terms and concepts for use in the Study; identify and quantify sources of development cost and cost estimating uncertainty; identify and quantify significant influences on development cost behavior; identify common barriers to development cost understanding and reduction; and recommend practical, realistic strategies to accomplish reductions in launcher system development cost.
Dimensions and Measurements of Debuncher Band 3 and 4 Waveguide-Coax Launchers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Ding; /Fermilab
2000-09-13
This note is a document about dimensions and measurement results of waveguide-coax launchers (Band 3 and 4) installed on the arrays in debuncher cooling upgrade. Shown in Figure 1 and 5 are schematic drawings of launchers (pick-up) in the cross section along the longitudinal direction (beam direction) of the arrays. The unit in these drawings is inch. Note: although there are upper band and lower band for pickup arrays, the launchers are the same to avoid possible confusion during installation. Launchers for band 3 and 4 kickers were made by Penn-engineering Inc., therefor no schematic drawings are presented in thismore » note. RF Measurements were made on all launchers (port) and printed in hard copies for future reference. Since the measurement results are similar to each other, only a few plots for each type of launcher/band are presented in this document. There are two types of measured S11 parameters. One is the measurement made at the end of design/tuning stage using a launcher and a straight section of band 3 or 4 waveguide terminated with a cone of absorber. I use 'Original' to denote this kind of measurement. As shown in Figure 2, 6, 9 and 12, the original S11 of all launchers are below or around -20 db over the full band 3 or 4. The other type of measurement is the one made after these launchers were installed onto the array including several type N feedthrough or connectors, elbows, waveguide bends (kicker) and magic Ts (kicker) etc. The kicker arrays were terminated with wedges of absorber. During all measurements (pickup array or kicker array) when one launcher was being measured, all other launchers were terminated with 50 ohm terminator. As shown in Figure 3, 4, 7, 8, 10, 11, 13 and 14 these 'final' S11s are around -15 db.« less
Deterministic Ethernet for Space Applications
NASA Astrophysics Data System (ADS)
Fidi, C.; Wolff, B.
2015-09-01
Typical spacecraft systems are distributed to be able to achieve the required reliability and availability targets of the mission. However the requirements on these systems are different for launchers, satellites, human space flight and exploration missions. Launchers require typically high reliability with very short mission times whereas satellites or space exploration missions require very high availability at very long mission times. Comparing a distributed system of launchers with satellites it shows very fast reaction times in launchers versus much slower once in satellite applications. Human space flight missions are maybe most challenging concerning reliability and availability since human lives are involved and the mission times can be very long e.g. ISS. Also the reaction times of these vehicles can get challenging during mission scenarios like landing or re-entry leading to very fast control loops. In these different applications more and more autonomous functions are required to fulfil the needs of current and future missions. This autonomously leads to new requirements with respect to increase performance, determinism, reliability and availability. On the other hand side the pressure on reducing costs of electronic components in space applications is increasing, leading to the use of more and more COTS components especially for launchers and LEO satellites. This requires a technology which is able to provide a cost competitive solution for both the high reliable and available deep-space as well as the low cost “new space” markets. Future spacecraft communication standards therefore have to be much more flexible, scalable and modular to be able to deal with these upcoming challenges. The only way to fulfill these requirements is, if they are based on open standards which are used cross industry leading to a reduction of the lifecycle costs and an increase in performance. The use of a communication network that fulfills these requirements will be essential for such spacecraft’s to allow the use in launcher, satellite, human space flight and exploration missions. Using one technology and the related infrastructure for these different applications will lead to a significant reduction of complexity and would moreover lead to significant savings in size weight and power while increasing the performance of the overall system. The paper focuses on the use of the TTEthernet technology for launchers, satellites and human spaceflight and will demonstrate the scalability of the technology for the different applications. The data used is derived from the ESA TRP 7594 on “Reliable High-Speed Data Bus/Network for Safety-Oriented Missions”.
NASA Technical Reports Server (NTRS)
Yoshida, Kinjiro; Hayashi, Kengo; Takami, Hiroshi
1996-01-01
Further feasibility study on a superconducting linear synchronous motor (LSM) rocket launcher system is presented on the basis of dynamic simulations of electric power, efficiency and power factor as well as the ascending motions of the launcher and rocket. The advantages of attractive-mode operation are found from comparison with repulsive-mode operation. It is made clear that the LSM rocket launcher system, of which the long-stator is divided optimally into 60 sections according to launcher speeds, can obtain high efficiency and power factor.
42. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM MST ...
42. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM MST BASE. LAUNCHER IS BEHIND UMBILICAL MAST AND RAIL SYSTEM IS PARALLEL TO MAST ON RIGHT AND LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
NASA Astrophysics Data System (ADS)
Alberti, Stefano; Genoud, Jérémy; Goodman, Timothy; Hogge, Jean-Philippe; Porte, Laurie; Silva, Miguel; Tran, Trach-Minh; Tran, Minh-Quang; Avramidis, Konstantinos; Pagonakis, Ioannis; Jin, Jianbo; Illy, Stefan; Gantenbein, Gerd; Jelonnek, John; Thumm, Manfred; Bin, William; Bruschi, Alex; Garavaglia, Saul; Moro, Alessandro; Kasparek, Walter; Legrand, François; Perial, Etienne; Rozier, Yoan; Cismondi, Fabio; Doelman, Niek
2017-10-01
The upgrade of the EC-system of the TCV tokamak has entered in its realization phase and is part of a broader upgrade of TCV. The MW-class dual-frequency gyrotrons (84 or 126GHz/2s/1MW) are presently being manufactured by Thales Electron Devices with the first gyrotron foreseen to be delivered at SPC by the end of 2017. In parallel to the gyrotron development, for extending the level of operational flexibility of the TCV EC-system the integration of the dual-frequency gyrotrons adds a significant complexity in the evacuated 63.5mm-diameter HE11 transmission line system connected to the various TCV low-field side and top launchers. As discussed in [1], an important part of the present TCV-upgrade consists in inserting a modular closed divertor chamber. This will have an impact on the X3 top-launcher which will have to be reduced in size. For using the new compact launcher we are considering employing a Fast Directional Switch (FADIS), combining the two 1MW/126GHz/2s rf-beams into a single 2MW rf-beam.
Analysis of LH Launcher Arrays (Like the ITER One) Using the TOPLHA Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maggiora, R.; Milanesio, D.; Vecchi, G.
2009-11-26
TOPLHA (Torino Polytechnic Lower Hybrid Antenna) code is an innovative tool for the 3D/1D simulation of Lower Hybrid (LH) antennas, i.e. accounting for realistic 3D waveguides geometry and for accurate 1D plasma models, and without restrictions on waveguide shape, including curvature. This tool provides a detailed performances prediction of any LH launcher, by computing the antenna scattering parameters, the current distribution, electric field maps and power spectra for any user-specified waveguide excitation. In addition, a fully parallelized and multi-cavity version of TOPLHA permits the analysis of large and complex waveguide arrays in a reasonable simulation time. A detailed analysis ofmore » the performances of the proposed ITER LH antenna geometry has been carried out, underlining the strong dependence of the antenna input parameters with respect to plasma conditions. A preliminary optimization of the antenna dimensions has also been accomplished. Electric current distribution on conductors, electric field distribution at the interface with plasma, and power spectra have been calculated as well. The analysis shows the strong capabilities of the TOPLHA code as a predictive tool and its usefulness to LH launcher arrays detailed design.« less
Design Performance of Front Steering-Type Electron Cyclotron Launcher for ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, K.; Imai, T.; Kobayashi, N.
2005-01-15
The performance of a front steering (FS)-type electron cyclotron launcher designed for the International Thermonuclear Experimental Reactor (ITER) is evaluated with a thermal, electromagnetic, and nuclear analysis of the components; a mechanical test of a spiral tube for the steering mirror; and a rotational test of bearings. The launcher consists of a front shield and a launcher plug where three movable optic mirrors to steer incident multimegawatt radio-frequency beam power, waveguide components, nuclear shields, and vacuum windows are installed. The windows are located behind a closure plate to isolate the transmission lines from the radioactivated circumstance (vacuum vessel). The waveguidemore » lines of the launcher are doglegged to reduce the direct neutron streaming toward the vacuum windows and other components. The maximum stresses on the critical components such as the steering mirror, its cooling tube, and the front shield are less than their allowable stresses. It was also identified that the stress on the launcher, which yielded from electromagnetic force caused by plasma disruption, was a little larger than the criteria, and a modification of the launcher plug structure was necessary. The nuclear analysis result shows that the neutron shield capability of the launcher satisfies the shield criteria of the ITER. It concludes that the design of the FS launcher is generally suitable for application to the ITER.« less
Air-Powered Projectile Launcher
NASA Technical Reports Server (NTRS)
Andrews, T.; Bjorklund, R. A.; Elliott, D. G.; Jones, L. K.
1987-01-01
Air-powered launcher fires plastic projectiles without using explosive propellants. Does not generate high temperatures. Launcher developed for combat training for U.S. Army. With reservoir pressurized, air launcher ready to fire. When pilot valve opened, sleeve (main valve) moves to rear. Projectile rapidly propelled through barrel, pushed by air from reservoir. Potential applications in seismic measurements, avalanche control, and testing impact resistance of windshields on vehicles.
NPS CubeSat Launcher Program Management
2009-09-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited NPS CUBESAT LAUNCHER ...CubeSat Launcher Program Management 6. AUTHOR(S) Christina M. Hicks 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...article in support of the NPS CubeSat Launcher (NPSCuL) project. This thesis will describe the process, experience, and results of managing the NPSCuL
Rocket/launcher structural dynamics
NASA Technical Reports Server (NTRS)
Ferragut, N. J.
1976-01-01
The equations of motion describing the interactions between a rocket and a launcher were derived using Lagrange's Equation. A rocket launching was simulated. The motions of both the rocket and the launcher can be considered in detail. The model contains flexible elements and rigid elements. The rigid elements (masses) were judiciously utilized to simplify the derivation of the equations. The advantages of simultaneous shoe release were illustrated. Also, the loading history of the interstage structure of a boosted configuration was determined. The equations shown in this analysis could be used as a design tool during the modification of old launchers and the design of new launchers.
1959-11-10
L59-7932 First University of Michigan Strongarm sounding rocket on launcher at Wallops for test, November 10, 1959. Photograph published in A New Dimension Wallops Island Flight Test Range: The First Fifteen Years by Joseph Shortal. A NASA publication. Page 701.E5-188 Shop and Launcher Pictures
2011-06-06
Cape Canaveral, Fla. -- Workers using a large crane dismantle the final sections of the rotating service structure on Launch Pad 39B at NASA's Kennedy Space Center in Florida. A dragonfly passing across the camera lens (center) pays no attention to the pad's deconstruction in progress. In 2009, the pad was no longer needed for the shuttle program, so it is being restructured for future use. Its new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, which was in place for the October 2009 launch of Ares I-X, will remain. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jim Grossmann
Sandri, Paolo; Mazzinghi, Piero; Da Deppo, Vania
2018-04-20
A wide-field, large-aperture, and lightweight Schmidt configuration has been studied for a space mission proposal named Extreme Universe Space Observatory free flyer (EUSO-FF). EUSO-FF will be devoted to the study of ultrahigh energy cosmic rays, i.e., with energy >5×10 19 eV, through the detection of UV fluorescence light emitted by air showers in the Earth's atmosphere. The proposed telescope has a field of view of about 50° and an entrance pupil diameter of 4.2 m. The mirror is deployable and segmented to fit the diameter of the launcher fairing; the corrector is a lightweight annular corona.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zucca, C.; Sauter, O.; Fable, E.
2008-11-01
The effect of the predicted local electron cyclotron current driven by the optimized electron cyclotron system on ITER is discussed. A design variant was recently proposed to enlarge the physics program covered by the upper and equatorial launchers. By extending the functionality range of the upper launcher, significant control capabilities of the sawtooth period can be obtained. The upper launcher improvement still allows enough margin to exceed the requirements for neoclassical tearing mode stabilization, for which it was originally designed. The analysis of the sawtooth control is carried on with the ASTRA transport code, coupled with the threshold model bymore » Por-celli, to study the control capabilities of the improved upper launcher on the sawtooth instability. The simulations take into account the significant stabilizing effect of the fusion alpha particles. The sawtooth period can be increased by a factor of 1.5 with co-ECCD outside the q = 1 surface, and decreased by at least 30% with co-ECCD inside q = 1. The present ITER base-line design has the electron cyclotron launchers providing only co-ECCD. The variant for the equatorial launcher proposes the possibility to drive counter-ECCD with 1 of the 3 rows of mirrors: the counter-ECCD can then be balanced with co-ECCD and provide pure ECH with no net driven current. The difference between full co-ECCD off-axis using all 20MW from the equatorial launcher and 20MW co-ECCD driven by 2/3 from the equatorial launcher and 1/3 from the upper launcher is shown to be negligible. Cnt-ECCD also offers greater control of the plasma current density, therefore this analysis addresses the performance of the equatorial launcher to control the central q profile. The equatorial launcher is shown to control very efficiently the value of q{sub 0.2}-q{sub min} in advanced scenarios, if one row provides counter-ECCD.« less
Dimensions and Measurements of Debuncher Band 1 and 2 Waveguide-Coax Launchers (Final Version)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Ding; /Fermilab
2000-02-15
This note is a document about dimensions and measurement results of waveguide-coax launchers (Band 1 and 2) installed on the arrays in debuncher cooling upgrade. Shown in Figure 1, 5, 8 and 12 are schematic drawings of launchers in the cross section along the longitudinal direction (beam direction) of the arrays. The unit in these drawings is inch. Note: although there are upper band and lower band for pickup arrays, the launchers are the same to avoid possible confusion during installation. RF Measurements were made on all launchers (port) and printed in hard copies for future reference. Since the measurementmore » results are similar to each other, only a few plots for each type of launcher/band are presented in this document. There are two types of measured S11 parameters. One is the measurement made at the end of design/tuning stage using a straight section of band 1 or 2 waveguide terminated with a cone of absorber. I use 'Original' to denote this kind of measurement. As shown in Figure 2, 6, 9 and 13, the original S11 of all launchers are below or around - 20 db over the full band 1 or 2. The other type of measurement is the one made after these launchers were installed onto the array including elbows and several type N feedthrough or connectors. The kicker arrays were terminated with wedges of absorber. During all measurements (pickup array or kicker array) when one launcher was being measured, all other launchers were terminated with 50 ohm terminator. As shown in Figure 3, 4, 7, 10, 11 and 14 these 'final' S11s are around -15 db.« less
Non-US electrodynamic launchers research and development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, J.V.; Batteh, J.H.; Greig, J.R.
Electrodynamic launcher research and development work of scientists outside the United States is analyzed and assessed by six internationally recognized US experts in the field of electromagnetic and electrothermal launchers. The assessment covers five broad technology areas: (1) Experimental railguns; (2) Railgun theory and design; (3) Induction launchers; (4) Electrothermal guns; (5) Energy storage and power supplies. The overall conclusion is that non-US work on electrodynamic launchers is maturing rapidly after a relatively late start in many countries. No foreign program challenges the US efforts in scope, but it is evident that the United States may be surpassed in somemore » technologies within the next few years. Until recently, published Russian work focused on hypervelocity for research purposes. Within the last two years, large facilities have been described where military-oriented development has been underway since the mid-1980s. Financial support for these large facilities appears to have collapsed, leaving no effective effort to develop practical launchers for military or civilian applications. Electrodynamic launcher research in Europe is making rapid progress by focusing on a single application, tactical launchers for the military. Four major laboratories, in Britain, France, Germany, and the Netherlands, are working on this problem. Though narrower in scope than the US effort, the European work enjoys a continuity of support that has accelerated its progress. The next decade will see the deployment of electrodynamic launcher technology, probably in the form of an electrothermal-chemical upgrade for an existing gun system. The time scale for deployment of electromagnetic launchers is entirely dependent on the level of research-and-development effort. If resources remain limited, the advantage will lie with cooperative efforts that have reasonably stable funding such as the present French-German program.« less
1. AERIAL VIEW, SHOWING MOBILE LAUNCHER. BASE IS CALLED LAUNCH ...
1. AERIAL VIEW, SHOWING MOBILE LAUNCHER. BASE IS CALLED LAUNCH PLATFORM AND TOWER ON RIGHT IS CALLED LAUNCH UMBILICAL TOWER, (LUT). - Mobile Launcher One, Kennedy Space Center, Titusville, Brevard County, FL
Development of Composite Technologies for the European Next Generation Launcher
NASA Astrophysics Data System (ADS)
Fatemi, Javad; van der Bas, Finn
2014-06-01
In the frame of the European Space Agency's Future Launchers Preparatory Programme (FLPP), in conjunction with national Research and Technology programs, Dutch Space has undertaken the development of composite technologies for application in the Europe's next generation launcher, Ariane 6. The efforts have focused on development of a Carbon Fibre Reinforced Plastic (CFRP) Engine Thrust Frame (ETF) for the upper-stage of Ariane6 launcher. These new technologies are expected to improve performance and to lower cost of development and exploitation of the launcher. Although the first targeted application is the thrust frame, the developed technologies are set to be generic in the sense that they can be applied to other structures of the launcher, e.g. inter-stage structures.This paper addresses the design, analysis, manufacturing and testing activities related to the composite technology developments.
RL-10 Based Combined Cycle For A Small Reusable Single-Stage-To-Orbit Launcher
NASA Technical Reports Server (NTRS)
Balepin, Vladimir; Price, John; Filipenco, Victor
1999-01-01
This paper discusses a new application of the combined propulsion known as the KLIN(TM) cycle, consisting of a thermally integrated deeply cooled turbojet (DCTJ) and liquid rocket engine (LRE). If based on the RL10 rocket engine family, the KLIN (TM) cycle makes a small single-stage-to-orbit (SSTO) reusable launcher feasible and economically very attractive. Considered in this paper are the concept and parameters of a small SSTO reusable launch vehicle (RLV) powered by the KLIN (TM) cycle (sSSTO(TM)) launcher. Also discussed are the benefits of the small launcher, the reusability, and the combined cycle application. This paper shows the significant reduction of the gross take off weight (GTOW) and dry weight of the KLIN(TM) cycle-powered launcher compared to an all-rocket launcher.
Pavone, Santi C; Mazzinghi, Agnese; Freni, Angelo; Albani, Matteo
2017-08-07
In this paper, a comparison is presented between Bessel beam launchers at millimeter waves based on either a cylindrical standing wave (CSW) or a cylindrical inward traveling wave (CITW) aperture distribution. It is theoretically shown that CITW launchers are better suited for the generation of electromagnetic short pulses because they maintain their performances over a larger bandwidth than those realizing a CSW aperture distribution. Moreover, the wavenumber dispersion of both the launchers is evaluated both theoretically and numerically. To this end, two planar Bessel beam launchers, one enforcing a CSW and the other enforcing a CITW aperture distribution, are designed at millimeter waves with a center operating frequency of f¯=60GHz and analyzed in the bandwidth 50 - 70 GHz by using an in-house developed numerical code to solve Maxwell's equations based on the method of moments. It is shown that a monochromatic Bessel beam can be efficiently generated by both the launchers over a wide fractional bandwidth. Finally, we investigate the generation of limited-diffractive electromagnetic pulses at millimeter waves, up to a certain non-diffractive range. Namely, it is shown that by feeding the launcher with a Gaussian short pulse, a spatially confined electromagnetic pulse can be efficiently generated in front of the launcher.
Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator
NASA Astrophysics Data System (ADS)
Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A.
2015-09-01
The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.
Space transportation propulsion USSR launcher technology, 1990
NASA Technical Reports Server (NTRS)
1991-01-01
Space transportation propulsion U.S.S.R. launcher technology is discussed. The following subject areas are covered: Energia background (launch vehicle summary, Soviet launcher family) and Energia propulsion characteristics (booster propulsion, core propulsion, and growth capability).
Apparatus for moving a pipe inspection probe through piping
Zollinger, W.T.; Appel, D.K.; Lewis, G.W.
1995-07-18
A method and apparatus are disclosed for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher. 8 figs.
Apparatus for moving a pipe inspection probe through piping
Zollinger, W. Thor; Appel, D. Keith; Lewis, Gregory W.
1995-01-01
A method and apparatus for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher.
The DSI small satellite launcher
NASA Technical Reports Server (NTRS)
Nichols, S.; Gibbons, D.; Wise, J.; Nguyen, D.
1992-01-01
A new launcher has been developed by DSI, that is compatible with the GAS canisters. It has the proven capability to deploy a satellite from an orbiting Shuttle that is 18 inches in diameter, 31 inches long, and weighing 190 pounds. These DSI Launchers were used aboard the Discovery (STS-39) in May 1991 as part of the Infrared Background Signature Survey (IBSS) to deploy three small satellites known as Chemical Release Observation (CRO) satellites A, B, and C. Because the satellites contained hazardous liquids (MMH, UDMH, and MON-10) and were launched from GAS Cylinders without motorized doors, the launchers were required to pass NASA Shuttle Payload safety and verification requirements. Some of the more interesting components of the design were the V-band retention and separation mechanism, the separation springs, and the launcher electronics which provided a properly inhibited release sequence operated through the Small Payload Accommodations Switch Panel (SPASP) on board the Orbiter. The original plan for this launcher was to use a motorized door. The launcher electronics, therefore has the capability to be modified to accommodate the door, if desired.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirov, K.K.; Mailloux, J.; Ekedahl, A.
2005-09-26
In this study, the most likely causes of the enhanced radiation in front of the LHCD launcher are investigated: fast ions from the warm plasma, fast electrons parasitically accelerated in front of the grill and arcs. Evidence for the presence of each of these mechanisms is discussed. The experimental conditions favouring the appearance of these phenomena and their impact on the launcher have also been highlighted.
Explosively driven hypervelocity launcher: Second-stage augmentation techniques
NASA Technical Reports Server (NTRS)
Baum, D. W.
1973-01-01
The results are described of a continuing study aimed at developing a two-stage explosively driven hypervelocity launcher capable of achieving projectile velocities between 15 and 20 km/sec. The testing and evaluation of a new cylindrical impact technique for collapsing the barrel of two-stage launcher are reported. Previous two-stage launchers have been limited in ultimate performance by incomplete barrel collapse behind the projectile. The cylindrical impact technique explosively collapses a steel tube concentric with and surrounding the barrel of the launcher. The impact of the tube on the barrel produces extremely high stresses which cause the barrel to collapse. The collapse rate can be adjusted by appropriate variation of the explosive charge and tubing parameters. Launcher experiments demonstrated that the technique did achieve complete barrel collapse and form a second-stage piston. However, jetting occurred in the barrel collapse process and was responsible for severe projectile damage.
The ESA activities on future launchers
NASA Technical Reports Server (NTRS)
Pfeffer, H.
1984-01-01
A future launcher development scenario depends on many assumptions, such as the impetus provided by the probability of future missions, and the political willingness of member states to undertake future developments. Because of the long timescale implied by a coherent launcher development, a step-wise approach within an overall future launcher development plan appears essential. The definition of development steps allows the launcher developments to be adapted to the driving external forces, so that no possible opportunity to Europe in the space launch business is missed out because of improper planning on the absence of a long term goal. The launcher senario, to be presented in 1985, forms part of Europe's overall STS plan for the future. This overall STS plan is one product of the complete STS LTPP, a first draft of which should exist by 1985, and which will be updated regularly to take into account the changing political and economic perspectives.
Dynamic Simulation of VEGA SRM Bench Firing By Using Propellant Complex Characterization
NASA Astrophysics Data System (ADS)
Di Trapani, C. D.; Mastrella, E.; Bartoccini, D.; Squeo, E. A.; Mastroddi, F.; Coppotelli, G.; Linari, M.
2012-07-01
During the VEGA launcher development, from the 2004 up to now, 8 firing tests have been performed at Salto di Quirra (Sardinia, Italy) and Kourou (Guyana, Fr) with the objective to characterize and qualify of the Zefiros and P80 Solid Rocket Motors (SRM). In fact the VEGA launcher configuration foreseen 3 solid stages based on P80, Z23 and Z9 Solid Rocket Motors respectively. One of the primary objectives of the firing test is to correctly characterize the dynamic response of the SRM in order to apply such a characterization to the predictions and simulations of the VEGA launch dynamic environment. Considering that the solid propellant is around 90% of the SRM mass, it is very important to dynamically characterize it, and to increase the confidence in the simulation of the dynamic levels transmitted to the LV upper part from the SRMs. The activity is articulated in three parts: • consolidation of an experimental method for the dynamic characterization of the complex dynamic elasticity modulus of elasticity of visco-elastic materials applicable to the SRM propellant operative conditions • introduction of the complex dynamic elasticity modulus in a numerical FEM benchmark based on MSC NASTRAN solver • analysis of the effect of the introduction of the complex dynamic elasticity modulus in the Zefiros FEM focusing on experimental firing test data reproduction with numerical approach.
A hypervelocity launcher for simulated large fragment space debris impacts at 10 km/s
NASA Technical Reports Server (NTRS)
Tullos, R. J.; Gray, W. M.; Mullin, S. A.; Cour-Palais, B. G.
1989-01-01
The background, design, and testing of two explosive launchers for simulating large fragment space debris impacts are presented. The objective was to develop a launcher capable of launching one gram aluminum fragments at velocities of 10 km/s. The two launchers developed are based on modified versions of an explosive shaped charge, common in many military weapons. One launcher design has yielded a stable fragment launch of approximately one gram of aluminum at 8.93 km/s velocity. The other design yielded velocities in excess of 10 km/s, but failed to produce a cohesive fragment launch. This work is ongoing, and future plans are given.
Improving the NPSCuL Structure: Optimizing the Mass
2010-09-01
Satellite Launcher . The current structure weights 170.63 lbs and can hold up to 24 Cube Satellites. The weight of the whole system, which includes the... launcher and all contained satellites, cannot exceed 177 lbs or be lighter than 169 lbs. By reducing the mass of the launcher , the freed weight can then...free weight. During the course of the analysis, it is found that removal of unused portions of the four side walls of the launcher structure will
Chartering Launchers for Small Satellites
NASA Astrophysics Data System (ADS)
Hernandez, Daniel
The question of how to launch small satellites has been solved over the years by the larger launchers offering small satellites the possibility of piggy-backing. Specific fixtures have been developed and commercialized: Arianespace developed the ASAP interface, the USAF studied ESPA, NASA has promoted Shuttle launch possibilities, Russian authorities and companies have been able to find solutions with many different launchers... It is fair to say that most launcher suppliers have worked hard and finally often been able to find solutions to launch most small satellites into orbit. It is also true, however, that most of these small satellites were technology demonstration missions capable of accepting a wide range of orbit and launch characteristics: orbit altitude and inclination, launch date, etc. In some cases the small satellite missions required a well-defined type of orbit and have therefore been obliged to hire a small launcher on which they were the prime passenger. In our paper we would like to propose an additional solution to all these possibilities: launchers could plan well in advance (for example about 3 years), trips to precisely defined orbits to allow potential passengers to organize themselves and be ready on the D-Day. On the scheduled date the chartered launcher goes to the stated orbit while on another date, another chartered launcher goes to another orbit. The idea is to organize departures for space like trains or airplanes leaving on known schedules for known destinations.
Technical and Economical Feasibility of SSTO and TSTO Launch Vehicles
NASA Astrophysics Data System (ADS)
Lerch, Jens
This paper discusses whether it is more cost effective to launch to low earth orbit in one or two stages, assuming current or near future technologies. First the paper provides an overview of the current state of the launch market and the hurdles to introducing new launch vehicles capable of significantly lowering the cost of access to space and discusses possible routes to solve those problems. It is assumed that reducing the complexity of launchers by reducing the number of stages and engines, and introducing reusability will result in lower launch costs. A number of operational and historic launch vehicle stages capable of near single stage to orbit (SSTO) performance are presented and the necessary steps to modify them into an expendable SSTO launcher and an optimized two stage to orbit (TSTO) launcher are shown, through parametric analysis. Then a ballistic reentry and recovery system is added to show that reusable SSTO and TSTO vehicles are also within the current state of the art. The development and recurring costs of the SSTO and the TSTO systems are estimated and compared. This analysis shows whether it is more economical to develop and operate expendable or reusable SSTO or TSTO systems under different assumption for launch rate and initial investment.
Photographic copy of photograph, view of rail launcher used for ...
Photographic copy of photograph, view of rail launcher used for 'Baby Corporal E' missiles on 6 and 7 May 1946 at JPL-Muroc Army Air Base (later Edwards Air Force Base) (This launcher was also used for 'Baby WAC' missiles at Goldstone, Fort Irwin, California in 1945). Photocopy of 35mm photograph made in December 1994, looking west with Test Stand 'A' immediately behind the rail launcher. - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
New developments in the field of launchers
NASA Astrophysics Data System (ADS)
Koelle, H. H.; Arend, H.
The current status of launch-system technology is discussed in a global survey. Topics addressed include the factors influencing launcher cost effectiveness; the capabilities of state-of-the-art Soviet, U.S., European, Chinese, and Japanese systems; possible improvements to the current launchers; alternative technologies (the ESA Hermes shuttle, SSTO vehicles, etc.); and future trends in the commercial launch market. Particular attention is given to the Neptun two-stage reusable ballistic launcher proposed by Apel et al. (1985). It is suggested that it may be possible to lower specific transport costs to about $500/kg, or even to $100/kg if the lifetime cargo capacity of reusable launchers can be extended to the order of 2 Tg. Extensive diagrams, drawings, and tables of numerical data are provided.
Roussy, Georges; Kongmark, Nils
2003-01-01
It is shown that a bi-directional waveguide launcher can be used advantageously for reducing the reflection coefficient mismatch of an input impedance of an applicator. In a simple bi-directional waveguide launcher, the magnetron is placed in the waveguide and generates a nominal field distribution with significant output impedance in both directions of the waveguide. If a standing wave is tolerated in the torus, which connects the launcher and the applicator, the power transfer from the magnetron to the applicator can be optimal, without using special matching devices. It is also possible to match the bi-directional launcher with two inductance stubs near the antenna of the magnetron and use them for supplying a two-input applicator without reflection.
STS-27 Atlantis, Orbiter Vehicle (OV) 104, at KSC Launch Complex (LC) pad 39B
NASA Technical Reports Server (NTRS)
1988-01-01
STS-27 Atlantis, Orbiter Vehicle (OV) 104, sits atop the mobile launcher platform at Kennedy Space Center (KSC) Launch Complex (LC) pad 39B. Profile of OV-104 mounted on external tank and flanked by solid rocket boosters (SRBs) is obscured by a flock of seagulls in the foreground. The fixed service structure (FSS) with rotating service structure (RSS) retracted appears in the background. Water resevoir is visible at the base of the launch pad concrete structure.
Arcas Rocket with Special Tubular Launcher
1959-07-31
Arcas Rocket with Special Tubular Launcher: Lt. Commander W. Houston checks elevation adjustment of special tubular launcher for Arcas rocket, July 31, 1959. Photograph published in A New Dimension Wallops Island Flight Test Range: The First Fifteen Years by Joseph Shortal. A NASA publication. Page 697.
Design and testing of a coil-unit barrel for helical coil electromagnetic launcher
NASA Astrophysics Data System (ADS)
Yang, Dong; Liu, Zhenxiang; Shu, Ting; Yang, Lijia; Ouyang, Jianming
2018-01-01
A coil-unit barrel for a helical coil electromagnetic launcher is described. It provides better features of high structural strength and flexible adjustability. It is convenient to replace the damaged coil units and easy to adjust the number of turns in the stator coils due to the modular design. In our experiments, the highest velocity measured for a 4.5-kg projectile is 47.3 m/s and the mechanical reinforcement of the launcher could bear 35 kA peak current. The relationship between the energy conversion efficiency and the inductance gradient of the launcher is also studied. In the region of low inductance gradient, the efficiency is positively correlated with the inductance gradient. However, in the region of high inductance gradient, the inter-turn arc erosion becomes a major problem of limiting the efficiency and velocity of the launcher. This modular barrel allows further studies in the inter-turn arc and the variable inductance gradient helical coil launcher.
Design and testing of a coil-unit barrel for helical coil electromagnetic launcher.
Yang, Dong; Liu, Zhenxiang; Shu, Ting; Yang, Lijia; Ouyang, Jianming
2018-01-01
A coil-unit barrel for a helical coil electromagnetic launcher is described. It provides better features of high structural strength and flexible adjustability. It is convenient to replace the damaged coil units and easy to adjust the number of turns in the stator coils due to the modular design. In our experiments, the highest velocity measured for a 4.5-kg projectile is 47.3 m/s and the mechanical reinforcement of the launcher could bear 35 kA peak current. The relationship between the energy conversion efficiency and the inductance gradient of the launcher is also studied. In the region of low inductance gradient, the efficiency is positively correlated with the inductance gradient. However, in the region of high inductance gradient, the inter-turn arc erosion becomes a major problem of limiting the efficiency and velocity of the launcher. This modular barrel allows further studies in the inter-turn arc and the variable inductance gradient helical coil launcher.
Resent Status of ITER Equatorial Launcher Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, K.; Kajiwara, K.; Kasugai, A.
2009-11-26
The ITER equatorial launcher is divided into a front shield and a port plug. The front shield is composed of fourteen blanket shield modules so as to form three openings for the injection of mm-wave beams into plasma. Twenty-four waveguide transmission lines, internal shields, cooling pipes and so on are installed in the port plug. The transmission lines consist of the corrugated waveguides, miter bends and the free space propagation region utilizing two mirrors in front of the waveguide outlet. The analysis of mm-wave beam propagation in the region shows that the transmission efficiency more than 99.5% is attained. Themore » high power experiments of the launcher mock-up have been carried out and the measured field patterns at each mirror and the outlet of the launcher are agreed with the calculations. It is concluded that the transmission line components in the launcher mock-up are fabricated as designed and the present mm-wave design in the launcher is feasible.« less
Approaches to Improve the Performances of the Sea Launch System Performances
NASA Astrophysics Data System (ADS)
Tatarevs'kyy, K.
2002-01-01
The paper dwells on the outlines of the techniques of on-line pre-launch analysis on possibility of safe and reliable LV launch off floating launch system, when actual launch conditions (weather, launcher motion parameters) are beyond design limitations. The technique guarantees to follow the take-off LV trajectory limitations (the shock-free launch) and allows the improvement of the operat- ing characteristics of the floating launch systems at the expense of possibility to authorize the launch even if a number of weather and launcher motion parameters restrictions are exceeded. This paper ideas are applied for LV of Zenit-type launches off tilting launch platform, operative within Sea Launch. The importance, novelty and urgency of the approach under consideration is explained by the fact that the application during floating launch systems operation allows the bringing down of the num- ber of weather-conditioned launch abort cases. And this, in its part, increases the trustworthiness of the mission fulfillment on specific spacecraft injection, since, in the long run, the launch abort may cause the crossing of allowable wait threshold and accordingly the mission abort. All previous launch kinds for these LV did not require the development of the special technique of pre-launch analysis on launch possibility, since weather limitations for stationary launcher condi- tions are basically reduced to the wind velocity limitations. This parameter is reliably monitored and is sure to influence the launch dynamics. So the measured wind velocity allows the thorough picture on the possibility of the launch off the ground-based launcher. Since the floating launch systems commit complex and continuous movements under the exposure of the wind and the waves, the number of parameters is increased and, combined differently, they do not always make the issue on shockless launch critical. The proposed technique of the pre-launch analysis of the forthcoming launch dynamics with the consideration of the launch conditions (weather, launcher motion parameters, actual LV and carried SC performance) allow the evaluation of the actual combination of launch environment influence on the possibility of shockless launch. On the basis of the analysis the launch permissibility deci- sion is taken, even if some separate parameters are beyond the design range.
Development of a low-cost, unmanned surface vehicle for military applications
NASA Astrophysics Data System (ADS)
Cadena, A.
2012-06-01
This paper describes the development of an USV (Unmanned Surface Vehicle) prototype that serves as an educational platform and can be use for coastal patrol and operations in the jungle. The USV length is less than 2 m and range of 5000 m. It's composed by the following modules: propulsion, power, motor driver, CPU, sensor suite, camera system, communication and weapon system. The weapon system is formed by an experimental assault rifle and a rocket launcher with a fire control system. The assault rifle haven't got mechanical moving parts, the bullets (7.62x51mm round) are electronically ignited. The CPU is an FPGA development kit. The USV can be operate in remote mode or fully autonomous. Results of some systems from laboratory and sea trials are show.
Actuated Recoil Absorbing Mounting System for use with an Underwater Gun
1998-03-31
fire supercavitating bullets, requires that 20 the new projectile launchers be tested. The firing of projectile 21 launchers involving a high...of projectile launcher 12 includes an underwater gun 15 that fires supercavitating bullets underwater and has a high 16 discharge energy. However
New coplanar waveguide to rectangular waveguide end launcher
NASA Technical Reports Server (NTRS)
Simons, R. N.; Taub, S. R.
1992-01-01
A new coplanar waveguide to rectangular waveguide end launcher is experimentally demonstrated. The end launcher operates over the Ka-band frequencies that are designated for the NASA Advanced Communication Technology Satellite uplink. The measured insertion loss and return loss are better than 0.5 and -10 dB, respectively.
Assembly and Commissioning of Naval Postgraduate School Gas Gun for Impact Studies
2009-12-01
MAIN GAS GUN ASSEMBLY............................................................ 12 1. Launcher Mount Assembly...12 Figure 8. Launcher Mount Assembly [After 5].................................................... 13 Figure 9. Breech...5] The main gas gun assembly comprises of eight sub-assemblies. The assemblies are mounted onto the launcher mount assembly, where it acts as a
Interactive electromagnetic launcher simulation
NASA Astrophysics Data System (ADS)
Young, F. J.; Howland, H. R.; Hughes, W. F.; Fikse, D. A.
1982-01-01
The mathematical model, usage, and documentation of an interactive computer simulation for an electromagnetic launcher is presented. The launcher is modeled as an electrical circuit. Three slight variations of the program permit studies of a launcher with (1) rail skin effects, (2) rail skin effects and approximated storage coil skin effects, or (3) neither of these effects. Usage of the program as currently implemented on the Westinghouse R&D Univac 1106 is described, with a sample session shown. The implementation of the program permits rapid scoping of the effects of parameter changes.
Multi-walled boron nitride nanotubes as self-excited launchers.
Li, Yifan; Zhou, Yi; Wu, Yan; Huang, Chengchi; Wang, Long; Zhou, Xuyan; Zhao, Zhenyang; Li, Hui
2017-07-27
A self-excited launcher consisting of multi-walled boron nitride nanotubes (BNNTs) has been investigated using molecular dynamics simulation. The results show that, after a period of high frequency oscillation, the innermost BNNT can be spontaneously ejected along its central axis at a relatively fast speed. The launching is caused by the energy transfer between the nanotubes and without absorbing energy from the external environment. Most self-excited launchers could launch their innermost nanotube, although an inappropriate structure of the nanotubes contributes to a blocked or failed launch. In addition, a launch angle corrector and a nanotube receiver associated with a self-excited launcher are also manufactured to precisely control the launch angle and distance of the BNNTs. This study provides the possibility to fabricate and design self-excited launchers using multi-walled nanotubes.
2010-12-22
CAPE CANAVERAL, Fla. -- On a brisk morning at Kennedy Space Center in Florida, birds flock to warmer water in the Launch Complex 39 area. In the background is the Vehicle Assembly Building and NASA's new mobile launcher. Kennedy coexists with the Merritt Island National Wildlife Refuge, habitat to more than 310 species of birds, 25 mammals, 117 fish and 65 amphibians and reptiles. Photo credit: NASA/Tony Gray
2010-12-22
CAPE CANAVERAL, Fla. -- On a brisk morning at Kennedy Space Center in Florida, birds flock to warmer water in the Launch Complex 39 area. In the background is the Vehicle Assembly Building and NASA's new mobile launcher. Kennedy coexists with the Merritt Island National Wildlife Refuge, habitat to more than 310 species of birds, 25 mammals, 117 fish and 65 amphibians and reptiles. Photo credit: NASA/Tony Gray
Core Stage Forward Skirt Umbilical Installation onto Mobile Launcher
2017-06-29
Just north of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the core stage forward skirt umbilical is installed on the mobile launcher. The mobile launcher is designed to support the assembly, testing and check-out of the agency's Space Launch System (SLS) rocket and the Orion spacecraft.
Hypervelocity Launcher for Aerothermodynamic Experiments. Phase 2
NASA Technical Reports Server (NTRS)
Scholz, Timothy J.; Bauer, David P.
1995-01-01
The capability of an Ultra Distributed Energy Store System (UDESS) powered electromagnetic launcher (EM) is experimentally assessed. The UDESS system was developed specifically to address the velocity speed limit seen in plasma armature EM launchers. Metal armature launch packages were also developed and tested to assess the usefulness of the UDESS concept for low velocity applications.
A general theory of DC electromagnetic launchers
NASA Astrophysics Data System (ADS)
Engel, Thomas G.; Timpson, Erik J.
2015-08-01
The non-linear, transient operation of DC electromagnetic launchers (EMLs) complicates their theoretical understanding and prevents scaling studies and performance comparisons without the aid of detailed numerical models. This paper presents a general theory for DC electromagnetic launchers that has simplified these tasks by identifying critical EML parameters and relationships affecting the EML's voltage, current, and power scaling, as well as its performance and energy conversion efficiency. EML parameters and relationships discussed in this paper include the specific force, the operating mode, the launcher constant, the launcher characteristic velocity, the contact characteristic velocity, the energy conversion efficiency, and the kinetic power and voltage-current scaling relationship. The concepts of the ideal EML, same-scale comparisons, and EML impedance are discussed. This paper defines conditions needed for the EML to operate in the steady-state. A comparison of the general theory with experimental results of several different types of DC (i.e., non-induction) electromagnetic launchers ranging from medium velocity (100's m/s) to high velocity (1000's m/s) is performed. There is good agreement between the general theory and the experimental results.
Chen, Jianjun; Sun, Chengwei; Li, Hongyun; Gong, Qihuang
2014-11-21
Surface-plasmon-polariton (SPP) launchers, which can couple the free space light to the SPPs on the metal surface, are among the key elements for the plasmonic devices and nano-photonic systems. Downscaling the SPP launchers below the diffraction limit and directly delivering the SPPs to the desired subwavelength plasmonic waveguides are of importance for high-integration plasmonic circuits. By designing a submicron double-slit structure with different slit widths, an ultra-broadband (>330 nm) unidirectional SPP launcher is realized theoretically and experimentally based on the different phase delays of SPPs propagating along the metal surface and the near-field interfering effect. More importantly, the broadband and unidirectional properties of the SPP launcher are still maintained when the slit length is reduced to a subwavelength scale. This can make the launcher occupy only a very small area of <λ(2)/10 on the metal surface. Such a robust unidirectional SPP launcher beyond the diffraction limit can be directly coupled to a subwavelength plasmonic waveguide efficiently, leading to an ultra-tight SPP source, especially as a subwavelength localized guided SPP source.
2010-01-08
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, a crane hoists the eighth tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, off the ground toward the launcher's growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller
2009-12-21
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, a crane hoists the seventh tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, off the ground toward the launcher's growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller
2010-08-12
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Constellation Program Manager Dale Thomas talks to employees at a completion ceremony for NASA's new mobile launcher, or ML, support structure. The ceremony was held underneath the structure's launch mount opening. It took about two years to construct the launcher in the Mobile Launcher Park site, north of the Vehicle Assembly Building, or VAB. The 355-foot-tall structure will support NASA's future human spaceflight program. The base of the launcher is lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and a taller rocket. The next step will be to add ground support equipment, such as umbilicals and access arms, for future rocket launches. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jim Grossmann
2010-08-12
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Constellation Senior Project Manager Larry Schultz talks to employees at a completion ceremony for NASA's new mobile launcher, or ML, support structure. The ceremony was held underneath the structure's launch mount opening. It took about two years to construct the launcher in the Mobile Launcher Park site, north of the Vehicle Assembly Building, or VAB. The 355-foot-tall structure will support NASA's future human spaceflight program. The base of the launcher is lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and a taller rocket. The next step will be to add ground support equipment, such as umbilicals and access arms, for future rocket launches. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jim Grossmann
BEAUTY-X: enhanced BLAST searches for DNA queries.
Worley, K C; Culpepper, P; Wiese, B A; Smith, R F
1998-01-01
BEAUTY (BLAST Enhanced Alignment Utility) is an enhanced version of the BLAST database search tool that facilitates identification of the functions of matched sequences. Three recent improvements to the BEAUTY program described here make the enhanced output (1) available for DNA queries, (2) available for searches of any protein database, and (3) more up-to-date, with periodic updates of the domain information. BEAUTY searches of the NCBI and EMBL non-redundant protein sequence databases are available from the BCM Search Launcher Web pages (http://gc.bcm.tmc. edu:8088/search-launcher/launcher.html). BEAUTY Post-Processing of submitted search results is available using the BCM Search Launcher Batch Client (version 2.6) (ftp://gc.bcm.tmc. edu/pub/software/search-launcher/). Example figures are available at http://dot.bcm.tmc. edu:9331/papers/beautypp.html (kworley,culpep)@bcm.tmc.edu
Computational model for simulation small testing launcher, technical solution
NASA Astrophysics Data System (ADS)
Chelaru, Teodor-Viorel; Cristian, Barbu; Chelaru, Adrian
2014-12-01
The purpose of this paper is to present some aspects regarding the computational model and technical solutions for multistage suborbital launcher for testing (SLT) used to test spatial equipment and scientific measurements. The computational model consists in numerical simulation of SLT evolution for different start conditions. The launcher model presented will be with six degrees of freedom (6DOF) and variable mass. The results analysed will be the flight parameters and ballistic performances. The discussions area will focus around the technical possibility to realize a small multi-stage launcher, by recycling military rocket motors. From technical point of view, the paper is focused on national project "Suborbital Launcher for Testing" (SLT), which is based on hybrid propulsion and control systems, obtained through an original design. Therefore, while classical suborbital sounding rockets are unguided and they use as propulsion solid fuel motor having an uncontrolled ballistic flight, SLT project is introducing a different approach, by proposing the creation of a guided suborbital launcher, which is basically a satellite launcher at a smaller scale, containing its main subsystems. This is why the project itself can be considered an intermediary step in the development of a wider range of launching systems based on hybrid propulsion technology, which may have a major impact in the future European launchers programs. SLT project, as it is shown in the title, has two major objectives: first, a short term objective, which consists in obtaining a suborbital launching system which will be able to go into service in a predictable period of time, and a long term objective that consists in the development and testing of some unconventional sub-systems which will be integrated later in the satellite launcher as a part of the European space program. This is why the technical content of the project must be carried out beyond the range of the existing suborbital vehicle programs towards the current technological necessities in the space field, especially the European one.
Computational model for simulation small testing launcher, technical solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chelaru, Teodor-Viorel, E-mail: teodor.chelaru@upb.ro; Cristian, Barbu, E-mail: barbucr@mta.ro; Chelaru, Adrian, E-mail: achelaru@incas.ro
The purpose of this paper is to present some aspects regarding the computational model and technical solutions for multistage suborbital launcher for testing (SLT) used to test spatial equipment and scientific measurements. The computational model consists in numerical simulation of SLT evolution for different start conditions. The launcher model presented will be with six degrees of freedom (6DOF) and variable mass. The results analysed will be the flight parameters and ballistic performances. The discussions area will focus around the technical possibility to realize a small multi-stage launcher, by recycling military rocket motors. From technical point of view, the paper ismore » focused on national project 'Suborbital Launcher for Testing' (SLT), which is based on hybrid propulsion and control systems, obtained through an original design. Therefore, while classical suborbital sounding rockets are unguided and they use as propulsion solid fuel motor having an uncontrolled ballistic flight, SLT project is introducing a different approach, by proposing the creation of a guided suborbital launcher, which is basically a satellite launcher at a smaller scale, containing its main subsystems. This is why the project itself can be considered an intermediary step in the development of a wider range of launching systems based on hybrid propulsion technology, which may have a major impact in the future European launchers programs. SLT project, as it is shown in the title, has two major objectives: first, a short term objective, which consists in obtaining a suborbital launching system which will be able to go into service in a predictable period of time, and a long term objective that consists in the development and testing of some unconventional sub-systems which will be integrated later in the satellite launcher as a part of the European space program. This is why the technical content of the project must be carried out beyond the range of the existing suborbital vehicle programs towards the current technological necessities in the space field, especially the European one.« less
The Force of Appearance: Gamma Movement, Naive Impetus, and Representational Momentum
ERIC Educational Resources Information Center
Hubbard, Timothy L.; Ruppel, Susan E.; Courtney, Jon R.
2005-01-01
If a moving stimulus (i.e., launcher) contacts a stationary target that subsequently begins to move, observers attribute motion of the target to the launcher (Michotte, 1946/1963). In experiments reported here, a stationary launcher adjacent to the target appeared or vanished and displacement in memory for the position of the target was measured.…
3. AERIAL VIEW OF MOBILE LAUNCHER. ON TOP OF LUT ...
3. AERIAL VIEW OF MOBILE LAUNCHER. ON TOP OF LUT SITS A 25 TON HAMMERHEAD CRANE. STRUCTURE ON LEFT SIDE OF LAUNCH PLATFORM IS KNOWN AS A 'MILK STOOL' AND ALLOWS A SATURN 1B ROCKET TO BE USED IN PLACE OF THE SATURN V ROCKET. - Mobile Launcher One, Kennedy Space Center, Titusville, Brevard County, FL
NASA Astrophysics Data System (ADS)
Berry, W.; Grallert, H.
1996-02-01
The paper presents a synthesis of the performance and technical feasibility assessment of 7 reusable launcher types, comprising 13 different vehicles, studied by European Industry for ESA in the ESA Winged Launcher Study in the period January 1988 to May 1994. The vehicles comprised single-stage-to-orbit (SSTO) and two-stage-to-orbit (TSTO) vehicles, propelled by either air-breathing/rocket propulsion or entirely by rocket propulsion. The results showed that an SSTO vehicle of the HOTOL-type, propelled by subsonic combustion air-breathing/rocket engines could barely deliver the specified payload mass and was aerodynamically unstable; that a TSTO vehicle of the Saenger type, employing subsonic combustion airbreathing propulsion in its first stage and rocket propulsion in its second stage, could readily deliver the specified payload mass and was found to be technically feasible and versatile; that an SSTO vehicle of the NASP type, propelled by supersonic combustion airbreathing/rocket propulsion was able to deliver a reduced payload mass, was very complex and required very advanced technologies; that an air-launched rocket propelled vehicle of the Interim HOTOL type, although technically feasible, could deliver only a reduced payload mass, being constrained by the lifting capability of the carrier airplane; that three different, entirely rocket-propelled vehicles could deliver the specified payload mass, were technically feasible but required relatively advanced technologies.
NASA Astrophysics Data System (ADS)
Di Mascio, A.; Zaghi, S.; Muscari, R.; Broglia, R.; Cavallini, E.; Favini, B.; Scaccia, A.
2011-05-01
The results of accurate compressible Navier-Stokes simulations of aerodynamic heating of the Vega launcher are presented. Three selected steady conditions of the Vega mission profile are considered: the first corresponding to the altitude of 18 km, the second to 25 km and the last to 33 km. The numerical code is based on the Favre- Average Navier-Stokes equations; the turbulent model chosen for closure is the one-equation model by Spalart- Allmaras. The equations are discretized by a finite volume approach, that can handle block-structured meshes with partial overlap (“Chimera” grid-overlapping technique). The isothermal boundary condition has been applied to the lancher wall. Particular care was devoted to the construction of the discrete model; indeed, the launcher is equipped with many protrusions and geometrical peculiarities (as antennas, raceways, inter-stage connection flanges and retrorockets) that are expected to affect considerably the local thermal flow-field and the level of heat fluxes, because the flow have to undergo strong variation in space; con- sequently, special attention was devoted to the definition of a tailored mesh, capable of catching local details of the aerothermal flow field (shocks, expansion fans, boundary layer, etc..). The computed results are reported together with uncertainty and actual convergence order, that were estimated by the standard procedures suggested by AIAA [Ame98].
2009-12-21
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the seventh tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, seems to hover above the ground as it is lifted by crane toward the launcher's growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller
Basic and applied studies of the ram accelerator as a hypervelocity projectile launcher
NASA Astrophysics Data System (ADS)
Bruckner, Adam P.; Knowlen, Carl
1993-12-01
The potential of using ram accelerator technology for an impulsive launcher of autonomously guided interceptors, such as the LEAP, has been studied during this contract period. In addition, fundamental investigations on some of the engineering issues which must be addressed for enabling ram accelerator propulsive modes to operate at 4 km/sec have been undertaken. An experimental investigation of the gas dynamic limits of ram accelerator operation has demonstrated the existence of two distinct limiting mechanisms that must be accounted for when designing projectiles for these launchers. Other experiments were conducted to make detailed pressure measurements of the flow fields at the tube walls to study the effects of projectile canting. Results from this LEAP launcher study and the experimental investigations indicate that the ram accelerator technology is well suited for applications as a transportable launcher capable of meeting the needs of theater ballistic missile defense missions.
LH Power Losses In Front of the JET Launcher
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacquet, P.; Arnoux, G.; Kirov, K.
2009-11-26
In recent JET experiments, Lower Hybrid (LH) power losses in the Scrape-Off Layer (SOL) were characterized using infra-red (IR) thermography. Hot spots were observed on objects intercepting the field lines passing in front of the LH launcher, i.e. on poloidal limiters and on dumplates located at the top of the tokamak; their locations being in good agreement with magnetic field line tracing using the EFIT equilibrium code. The dumplate temperature was monitored while scanning the launcher position so that the radial distance between field lines intercepting the hot spots and the launcher was increased up to 3.5 cm. The dissipationmore » layer in front of the launcher was estimated to be at least 3.5 cm wide, in agreement with recent measurements on Tore-Supra, but not with simple models that predict a dissipation layer in the mm range.« less
2009-02-13
CAPE CANAVERAL, Fla. – At the turn basin at NASA's Kennedy Space Center in Florida, a tug boat keeps the barge in place for the offloading of the girder for the new mobile launcher. The new mobile launcher will be the base for the Ares rockets to launch the Orion crew exploration vehicle and the cargo vehicle. The base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the added load of the 345-foot tower and taller rocket. When the structural portion of the new mobile launcher is complete, umbilicals, access arms, communications equipment and command/control equipment will be installed. Photo credit: NASA/Jack Pfaller
NASA Astrophysics Data System (ADS)
Stankevich, S. V.; Shvetsov, G. A.; Butov, V. G.; Sinyaev, S. V.
2017-09-01
The operation of rapid burst firing multirail electromagnetic launchers of solids is numerically simulated using unsteady two-dimensional and three-dimensional models. In the calculations, the launchers are powered by a Sakhalin pulsed magnetohydrodynamic generator. Launchers with three and five pairs of parallel rails connected in a series electrical circuit are considered. Firing sequences of different numbers of solid projectiles of different masses is modeled. It is established that the heating of the rails is one of the main factors limiting the performance of launchers under such conditions. It is shown that the rate of heating of the rails is determined by the nonuniformity of the current density distribution over the rail cross-section due to the unsteady diffusion of the magnetic field into the rails. Calculations taking into account the unsteady current density distribution in the rails of a multirail launcher show that with an appropriate of the mass of the projectiles (up to 800 g), their number in the sequence, and the material of the rails, it is possible to attain launching velocities of 1.8-2.5 km/s with moderate heating of the rails.
CRAWLER HIDDEN UNDER MOBILE LAUNCHER MOVES APOLLO 17 FROM VEHICLE ASSEMBLY BUILDING AS TRIP TO LAUNC
NASA Technical Reports Server (NTRS)
1972-01-01
The Apollo 17 space vehicle was moved today from the Vehicle Assembly Building to Complex 39's pad A in preparation for its launch with Astronauts Eugene A. Cernan, Commander; Ronald A. Evans, Command Module Pilot; and Dr. Harrison H. ''Jack'' Schmitt, Lunar Module Pilot, on the sixth U.S. manned lunar landing mission on December 6, 1972.
44. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM SOUTHWEST. ...
44. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM SOUTHWEST. DOORS FOR THE UMBILICAL MAST TRENCH RAISED FOR MAINTENANCE POSITION OF 10 DEGREES. LAUNCHER IS RIGHT OF MAST; RAILS PARALLEL TO MAST. CONTROL PANELS LEFT TO RIGHT: ELECTRICAL PANEL, COMMUNICATIONS PANEL, AND MAST CONTROL PANEL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
EFT-1 Crew Module on Display at KSC Visitor Complex
2017-04-12
The Orion crew module from Exploration Flight Test 1 (EFT-1) is on display at nearby NASA Kennedy Space Center Visitor Complex in Florida. The crew module is part of the NASA Now exhibit in the IMAX Theater. Also in view is a scale model of NASA's Space Launch System rocket and Orion spacecraft on the mobile launcher. The Orion EFT-1 spacecraft launched atop a United Launch Alliance Delta IV rocket Dec. 5, 2014, from Space Launch Complex 37 at Cape Canaveral Air Force Station. The spacecraft built for humans traveled 3,604 miles above Earth and splashed down about 4.5 hours later in the Pacific Ocean.
Microgravity Impact Experiments: The Prime Campaign on the NASA KC-135
NASA Astrophysics Data System (ADS)
Colwell, Joshua E.; Sture, Stein; Lemos, Andreas R.
2002-11-01
Low velocity collisions (v less than 100 m/s) occur in a number of astrophysical contexts, including planetary rings, protoplanetary disks, the Kuiper belt of comets, and in secondary cratering events on asteroids and planetary satellites. In most of these situations the surface gravity of the target is less than a few per cent of 1 g. Asteroids and planetary satellites are observed to have a regolith consisting of loose, unconsolidated material. Planetary ring particles likely are also coated with dust based on observations of dust within ring systems. The formation of planetesimals in protoplanetary disks begins with the accretion of dust particles. The response of the surface dust layer to collisions in the near absence of gravity is necessary for understanding the evolution of these systems. The Collisions Into Dust Experiment (COLLIDE) performs six impact experiments into simulated regolith in microgravity conditions on the space shuttle. The parameter space to be explored is quite large, including effects such as impactor mass and velocity, impact angle, target porosity, size distribution, and particle shape. We have developed an experiment, the Physics of Regolith Impacts in Microgravity Experiment (PRIME), that is analogous to COLLIDE that is optimized for flight on the NASA KC-135 reduced gravity aircraft. The KC-135 environment provides the advantage of more rapid turnover between experiments, allowing a broader range of parameters to be studied quickly, and more room for the experiment so that more impact experiments can be performed each flight. The acceleration environment of the KC-135 is not as stable and minimal as on the space shuttle, and this requires impact velocities to be higher than the minimum achievable with COLLIDE. The experiment consists of an evacuated PRIME Impact Chamber (PIC) with an aluminum base plate and acrylic sides and top. A target tray, launcher, and mirror mount to the base plate. The launcher may be positioned to allow for impacts at angles of 30, 45, 60, and 90 degrees with respect to the target surface. The target material is contained in a 10 cm by 10 cm by 2 cm tray with a rotating door that is opened via a mechanical feed-through on the base plate. A spring-loaded inner door provides uniform compression on the target material prior to operation of the experiment to keep the material from settling or locking up during vibrations prior to the experiment. Data is recorded with the NASA high speed video camera. Frame rates are selected according to the impact parameters. The direct camera view is orthogonal to the projectile line of motion, and the mirrors within the PIC provide a view normal to the target surface. The spring-loaded launchers allow for projectile speeds between 10 cm/s and 500 cm/s with a variety of impactor sizes and densities. On each flight 8 PICs will be used, each one with a different set of impact parameters. Additional information is included in the original extended abstract.
Li, Xiaowei; Huang, Lingling; Tan, Qiaofeng; Bai, Benfeng; Jin, Guofan
2011-03-28
A semi-circular plasmonic launcher integrated with dielectric-loaded surface plasmon-polaritons waveguide (DLSPPW) is proposed and analyzed theoretically, which can focus and efficiently couple the excited surface plasmon polaritons (SPPs) into the DLSPPW via the highly matched spatial field distribution with the waveguide mode in the focal plane. By tuning the incident angle or polarization of the illuminating beam, it is shown that the launcher may be conveniently used as a switch or a multiplexer that have potential applications in plasmonic circuitry. Furthermore, from an applicational point of view, it is analyzed how the coupling performance of the launcher can be further improved by employing multiple semi-circular slits.
Preliminary feasibility assessment for Earth-to-space electromagnetic (Railgun) launchers
NASA Technical Reports Server (NTRS)
Rice, E. E.; Miller, L. A.; Earhart, R. W.
1982-01-01
An Earth to space electromagnetic (railgun) launcher (ESRL) for launching material into space was studied. Potential ESRL applications were identified and initially assessed to formulate preliminary system requirements. The potential applications included nuclear waste disposal in space, Earth orbital applications, deep space probe launchers, atmospheric research, and boost of chemical rockets. The ESRL system concept consisted of two separate railgun launcher tubes (one at 20 deg from the horizontal for Earth orbital missions, the other vertical for solar system escape disposal missions) powered by a common power plant. Each 2040 m launcher tube is surrounded by 10,200 homopolar generator/inductor units to transmit the power to the walls. Projectile masses are 6500 kg for Earth orbital missions and 2055 kg for nuclear waste disposal missions. For the Earth orbital missions, the projectile requires a propulsion system, leaving an estimated payload mass of 650 kg. For the nuclear waste disposal in space mission, the high level waste mass was estimated at 250 kg. This preliminary assessment included technical, environmental, and economic analyses.
Feasibility study of superconducting LSM rocket launcher system
NASA Technical Reports Server (NTRS)
Yoshida, Kinjiro; Ohashi, Takaaki; Shiraishi, Katsuto; Takami, Hiroshi
1994-01-01
A feasibility study is presented concerning an application of a superconducting linear synchronous motor (LSM) to a large-scale rocket launcher, whose acceleration guide tube of LSM armature windings is constructed 1,500 meters under the ground. The rocket is released from the linear launcher just after it gets to a peak speed of about 900 kilometers per hour, and it flies out of the guide tube to obtain the speed of 700 kilometers per hour at the height of 100 meters above ground. The linear launcher is brought to a stop at the ground surface for a very short time of 5 seconds by a quick control of deceleration. Very large current variations in the single-layer windings of the LSM armature, which are produced at the higher speed region of 600 to 900 kilometers per hour, are controlled successfully by adopting the double-layer windings. The proposed control method makes the rocket launcher ascend stably in the superconducting LSM system, controlling the Coriolis force.
Superconducting Magnetic Projectile Launcher
NASA Technical Reports Server (NTRS)
Jan, Darrell L.; Lawson, Daniel D.
1991-01-01
Proposed projectile launcher exploits Meissner effect to transfer much of kinetic energy of relatively massive superconducting plunger to smaller projectile, accelerating projectile to high speed. Because it operates with magnetic fields, launcher not limited by gas-expansion thermodynamics. Plunger energized mechanically and/or chemically, avoiding need for large electrical power supplies and energy-storage systems. Potential applications include launching of projectiles for military purposes and for scientific and industrial tests of hypervelocity impacts.
Optimizing LHCD launcher using poloidal steering on Alcator C-Mod and ADX
NASA Astrophysics Data System (ADS)
Bonoli, P.; Labombard, B.; Parker, R.; Shiraiwa, S.; Wallace, G.; Wukitch, S.; Leccacorvi, R.; Vieira, R.; Alcator C-Mod Team
2014-10-01
The poloidal location of the lower hybrid current drive (LHCD) launcher has a strong influence on the trajectory and absorption of the LH wave (poloidal steering). The physics design of an additional off-midplane launcher (LH3) for Alcator C-Mod exploits this characteristic. By shifting the launcher from the mid-plane by 25cm, it is predicted to realize strong (>80%) single pass absorption localized at about r/a = 0.7 in conjunction with the mid-plane (LH2) antenna. While LH3 is a proposal to overcome the LH density limit and to provide a unique opportunity to validate LHCD simulation codes under reactor-like conditions, poloidal steering can be used more extensively by launching waves from the high field side (HFS). On ADX, the LHCD launcher is proposed to be located on the HFS. Better accessibility due to higher magnetic field allows for using lower N//, which results in higher current drive efficiency. Also a more quiescent edge plasma may reduce the effect of N// shifts due to scattering from density fluctuations. LHCD simulations for target plasmas expected on ADX, optimization of poloidal steering, and RF simulation of high field side launcher will be presented. This work supported by USDoE awards DE-FC02-99ER54512 and DE-AC02-09CH11466.
NASA Astrophysics Data System (ADS)
Chang, Xijiang; Kunii, Kazuki; Liang, Rongqing; Nagatsu, Masaaki
2013-04-01
A large-area planar surface-wave plasma (SWP) source driven by a 915 MHz ultrahigh frequency (UHF) wave was developed. To avoid using large, thick dielectric plates as vacuum windows, we propose a cavity launcher consisting of a cylindrical cavity with several small quartz discs at the bottom. Three types of launchers with quartz discs located at different positions were tested to compare their plasma production efficiencies and spatial distributions of electron density. With the optimum launcher, large-area plasma discharges with a radial uniformity within ±10% were obtained in a radius of about 25-30 cm in Ar gas at 8 Pa for incident power in the range 0.5-2.5 kW. The maximum electron density and temperature were approximately (0.95-1.1) × 1011 cm-3 and 1.9-2.0 eV, respectively, as measured by a Langmuir probe located 24 cm below the bottom of the cavity launcher. Using an Ar/NH3 SWP with the optimum launcher, we demonstrated large-area amino-group surface modification of polyurethane sheets. Experimental results indicated that a uniform amino-group modification was achieved over a radius of approximately 40 cm, which is slightly larger than the radial uniformity of the electron density distribution.
Experimental validation of solid rocket motor damping models
NASA Astrophysics Data System (ADS)
Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio
2017-12-01
In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe damping properties of slender launch vehicles in payload/launcher coupled load analysis.
Experimental validation of solid rocket motor damping models
NASA Astrophysics Data System (ADS)
Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio
2018-06-01
In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe damping properties of slender launch vehicles in payload/launcher coupled load analysis.
2014-06-11
CAPE CANAVERAL, Fla. -- Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. In a view looking down from the top of the ML is the base of the ML and various facilities in the Launch Complex 39 area. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper
2014-06-11
CAPE CANAVERAL, Fla. -- Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. In view from the top of the ML is the Vehicle Assembly Building, the Launch Control Center at left and various other facilities in the Launch Complex 39 area. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper
2014-06-11
CAPE CANAVERAL, Fla. -- Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. In view from the top of the ML is the Vehicle Assembly Building, the Launch Control Center at left and various other facilities in the Launch Complex 39 area. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper
Preparing America for Deep Space Exploration Episode 16: Exploration On The Move
2018-02-22
Preparing America for Deep Space Exploration Episode 16: Exploration On The Move NASA is pressing full steam ahead toward sending humans farther than ever before. Take a look at the work being done by teams across the nation for NASA’s Deep Space Exploration System, including the Space Launch System, Orion, and Exploration Ground Systems programs, as they continue to propel human spaceflight into the next generation. Highlights from the fourth quarter of 2017 included Orion parachute drop tests at the Yuma Proving Ground in Arizona; the EM-1 Crew Module move from Cleanroom to Workstation at Kennedy Space Center; Crew Training, Launch Pad Evacuation Scenario, and Crew Module Vibration and Legibility Testing at NASA’s Johnson Space Center; RS-25 Rocket Engine Testing at Stennis Space Center; Core Stage Engine Section arrival, Core Stage Pathfinder; LH2 Qualification Tank; Core Stage Intertank Umbilical lift at Mobile Launcher; Crew Access Arm move to Mobile Launcher; Water Flow Test at Launch Complex 39-B.
Acoustic and Vibration Environment for Crew Launch Vehicle Mobile Launcher
NASA Technical Reports Server (NTRS)
Vu, Bruce T.
2007-01-01
A launch-induced acoustic environment represents a dynamic load on the exposed facilities and ground support equipment (GSE) in the form of random pressures fluctuating around the ambient atmospheric pressure. In response to these fluctuating pressures, structural vibrations are generated and transmitted throughout the structure and to the equipment items supported by the structure. Certain equipment items are also excited by the direct acoustic input as well as by the vibration transmitted through the supporting structure. This paper presents the predicted acoustic and vibration environments induced by the launch of the Crew Launch Vehicle (CLV) from Launch Complex (LC) 39. The predicted acoustic environment depicted in this paper was calculated by scaling the statistically processed measured data available from Saturn V launches to the anticipated environment of the CLV launch. The scaling was accomplished by using the 5-segment Solid Rocket Booster (SRB) engine parameters. Derivation of vibration environment for various Mobile Launcher (ML) structures throughout the base and tower was accomplished by scaling the Saturn V vibration environment.
First results from protective ECRH diagnostics for Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Marsen, S.; Corre, Y.; Laqua, H. P.; Moncada, V.; Moseev, D.; Niemann, H.; Preynas, M.; Stange, T.; The W7-X Team
2017-08-01
Wendelstein 7-X (W7-X) is a steady state capable optimised stellarator. The main heating system is electron cyclotron resonance heating (ECRH) operating at 140 GHz providing up to 9 MW microwave power. The power is launched into the machine by front steerable quasi-optical launchers in X- or O-mode. While in X-mode the first pass absorption is 99%, it is only 40... 70% in O-mode. O2-mode heating is forseen for high density operation above the X2 cutoff density of 1.2\\centerdot {{10}20} m-3. A set of diagnostics has been developed to protect the machine from non absorbed ECRH power which can easily damage in vessel components. The non absorbed power hitting the inner wall is measured by waveguides embedded in the first wall (ECA diagnostic). In order to prevent the inner wall from overheating or arcing, a near-infra red sensitive video diagnostic with a dynamic range of 450...1200 °C was integrated in the ECRH launchers. Thermal calculations for the carbon tiles predict a temperature increase above the detection threshold for scenarios of plasma start-up failure or poor absorption on a time scale of 50 ms. However, the temperature increase measured by an IR camera in experiments with failed break down, i.e. no ECRH absorption for up to 50 ms, was only Δ T≈ 70{{~}\\circ} C. In discharges with ≈ 5% transmission the measured temperature increase was comparable. The stray radiation level inside the machine is measured by so called sniffer probes resembling microwave diode detectors which were designed to collect all radiation approaching the probing surface independent of incident angle and polarization. Five sniffer probes are installed at different toroidal positions. They were integrated in the ECRH interlock system. During the first operational phase of W7-X this was the only available plasma interlock system. The signal quality proofed to be high enough for a reliable termination in case of poor absorption. After a breakdown phase of 10 ms, the sniffer probe signals dropped by more than an order of magnitude. Especially in the very first days of operation, most discharges died by a radiative collapse due to impurity influx. In this case the heating power was reliably switched off due to the increased level of stray radiation. Moreover, ECRH bolometers with a slower response time in the launcher ports and an empty diagnostic port were used to estimate the stray radiation level in the ports. In the launcher ports it could be shown that the stray radiation could lead to an overheating of the bellows in long discharges. Possible counter measures are discussed.
Power spectrum weighted edge analysis for straight edge detection in images
NASA Astrophysics Data System (ADS)
Karvir, Hrishikesh V.; Skipper, Julie A.
2007-04-01
Most man-made objects provide characteristic straight line edges and, therefore, edge extraction is a commonly used target detection tool. However, noisy images often yield broken edges that lead to missed detections, and extraneous edges that may contribute to false target detections. We present a sliding-block approach for target detection using weighted power spectral analysis. In general, straight line edges appearing at a given frequency are represented as a peak in the Fourier domain at a radius corresponding to that frequency, and a direction corresponding to the orientation of the edges in the spatial domain. Knowing the edge width and spacing between the edges, a band-pass filter is designed to extract the Fourier peaks corresponding to the target edges and suppress image noise. These peaks are then detected by amplitude thresholding. The frequency band width and the subsequent spatial filter mask size are variable parameters to facilitate detection of target objects of different sizes under known imaging geometries. Many military objects, such as trucks, tanks and missile launchers, produce definite signatures with parallel lines and the algorithm proves to be ideal for detecting such objects. Moreover, shadow-casting objects generally provide sharp edges and are readily detected. The block operation procedure offers advantages of significant reduction in noise influence, improved edge detection, faster processing speed and versatility to detect diverse objects of different sizes in the image. With Scud missile launcher replicas as target objects, the method has been successfully tested on terrain board test images under different backgrounds, illumination and imaging geometries with cameras of differing spatial resolution and bit-depth.
NASA Astrophysics Data System (ADS)
Deniskina, N.; Brescia, M.; Cavuoti, S.; d'Angelo, G.; Laurino, O.; Longo, G.
GRID-launcher-1.0 was built within the VO-Tech framework, as a software interface between the UK-ASTROGRID and a generic GRID infrastructures in order to allow any ASTROGRID user to launch on the GRID computing intensive tasks from the ASTROGRID Workbench or Desktop. Even though of general application, so far the Grid-Launcher has been tested on a few selected softwares (VONeural-MLP, VONeural-SVM, Sextractor and SWARP) and on the SCOPE-GRID.
2009-03-25
CAPE CANAVERAL, Fla. – NASA's Kennedy Space Center management host a ceremony near Launch Pad 39B to mark the handover of Mobile Launcher Platform-1 (behind them) from NASA's Space Shuttle Program to the Constellation Program for the Ares I-X flight test targeted for this summer. Seated are (left) Shuttle Launch Director Mike Leinbach and (right) Pepper E. Phillips, director of the Constellation Project Office, and Brett Raulerson, manager of MLP Operations with United Space Alliance. At the podium is Rita Willcoxon, director of Launch Vehicle Processing at Kennedy. Constructed in 1964, the mobile launchers used in Apollo/Saturn operations were modified for use in shuttle operations. With cranes, umbilical towers and swing arms removed, the mobile launchers were renamed Mobile Launcher Platforms, or MLPs. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Bourgeois, E.; Bokanowski, O.; Zidani, H.; Désilles, A.
2018-06-01
The resolution of the launcher ascent trajectory problem by the so-called Hamilton-Jacobi-Bellman (HJB) approach, relying on the Dynamic Programming Principle, has been investigated. The method gives a global optimum and does not need any initialization procedure. Despite these advantages, this approach is seldom used because of the dicculties of computing the solution of the HJB equation for high dimension problems. The present study shows that an eccient resolution is found. An illustration of the method is proposed on a heavy class launcher, for a typical GEO (Geostationary Earth Orbit) mission. This study has been performed in the frame of the Centre National d'Etudes Spatiales (CNES) Launchers Research & Technology Program.
View of VAB from Mobile Launcher
2017-03-13
A view of the north side of the Vehicle Assembly Building (VAB) from the top of the mobile launcher tower at NASA's Kennedy Space Center in Florida. Inside the VAB, 10 levels of platforms, 20 platform halves altogether, have been installed in High Bay 3. The platforms will surround NASA's Space Launch System (SLS) rocket and the Orion spacecraft and allow access during processing for missions, including the first uncrewed flight test of Orion atop the SLS rocket in 2018. Crawler-transporter 2 will carry the rocket and spacecraft atop the mobile launcher to Launch Pad 39B for Exploration Mission 1. The Ground Systems Development and Operations Program, with support from the center's Engineering Directorate, is overseeing upgrades and modifications to the VAB and the mobile launcher.
Results from Sandia National Laboratories/Lockheed Martin Electromagnetic Missile Launcher (EMML).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockner, Thomas Ramsbeck; Skurdal, Ben; Gaigler, Randy
2005-05-01
Sandia national laboratories (SNL) and lockheed martin MS2 are designing an electromagnetic missile launcher (EMML) for naval applications. The EMML uses an induction coilgun topology with the requirement of launching a 3600 lb. missile up to a velocity of 40 m/s. To demonstrate the feasibility of the electromagnetic propulsion design, a demonstrator launcher was built that consists of approximately 10% of the propulsion coils needed for a tactical design. The demonstrator verified the design by launching a 1430 lb weighted sled to a height of 24 ft in mid-December 2004 (Figure 1). This paper provides the general launcher design, specificmore » pulsed power system component details, system operation, and demonstration results.« less
STS-45 Atlantis, OV-104, lifts off from KSC Launch Complex (LC) Pad
1992-03-24
STS-45 Atlantis, Orbiter Vehicle (OV) 104, lifts off from a Kennedy Space Center (KSC) Launch Complex (LC) Pad at 8:13:40:048 am (Eastern Standard Time (EST)). Exhaust billows out the solid rocket boosters (SRBs) as OV-104 atop its external tank (ET) soars above the mobile launcher platform and is nearly clear of the fixed service structure (FSS) tower. The diamond shock effect produced by the space shuttle main engines (SSMEs) is visible. The glow of the SRB/SSME firings is reflected in a nearby waterway. An exhaust cloud covers the launch pad area.
Development of concepts for the protection of space launchers against lightning
NASA Astrophysics Data System (ADS)
Taillet, Joseph
1988-12-01
Following a review of the characteristics of lightning and the effects of lightning on space launchers, various strategies for protection against lightning are discussed. Special attention is given to the damage inflicted on the Apollo 12 and Atlas/Centaur vehicles by lightning. It is demonstrated that the protection of space launchers is best performed by the real-time observation of atmospheric discharges at high altitude by such systems as the interferometric lightning alert system, SAFIR.
Unit Reference Sheet (URS) Cost Methodology.
1980-08-01
LAUNCHER MONORAIL GUIDED MISSILE: W/E (NIKE-HERCULES) L45740 LAUNCHER TUBULAR GUIDED MISSILE: (TOW) L45757 LAUNCHER ZERO LENGTH GUIDED MISSILE: (IMP-HAWK...L76762 LOADER TRANSPORTER GUIDED MISSILE: W/E (HAWK) M57503 MOBILE TARGET TRACKING SYSTEM: USED TO SUPPORT MQM 34 ( FIRE BEE) M57549 MOBILITY KIT GUIDED...HIGH RATE THREE BARREL W/E J96479 GUN AUTOMATIC 20 MILLIMETER: GAS OPERATED MANUAL OR ELECT FIRED J96481 GUN AUTOMATIC 20 MILLIMETER: ELECTRIC J96694 GUN
Generic Software Architecture for Launchers
NASA Astrophysics Data System (ADS)
Carre, Emilien; Gast, Philippe; Hiron, Emmanuel; Leblanc, Alain; Lesens, David; Mescam, Emmanuelle; Moro, Pierre
2015-09-01
The definition and reuse of generic software architecture for launchers is not so usual for several reasons: the number of European launcher families is very small (Ariane 5 and Vega for these last decades); the real time constraints (reactivity and determinism needs) are very hard; low levels of versatility are required (implying often an ad hoc development of the launcher mission). In comparison, satellites are often built on a generic platform made up of reusable hardware building blocks (processors, star-trackers, gyroscopes, etc.) and reusable software building blocks (middleware, TM/TC, On Board Control Procedure, etc.). If some of these reasons are still valid (e.g. the limited number of development), the increase of the available CPU power makes today an approach based on a generic time triggered middleware (ensuring the full determinism of the system) and a centralised mission and vehicle management (offering more flexibility in the design and facilitating the long term maintenance) achievable. This paper presents an example of generic software architecture which could be envisaged for future launchers, based on the previously described principles and supported by model driven engineering and automatic code generation.
2009-11-12
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the tower on a new mobile launcher, or ML, for the Constellation Program grows as the fourth section is lowered into position. The tower will be approximately 345 feet tall when completed and have multiple platforms for personnel access. The ML is being built at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. The base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller
Long Exposure Photos of Mobile Launcher
2017-03-14
A long-exposure view of the mobile launcher at NASA's Kennedy Space Center in Florida. Cranes and rigging are being used to lift the bracket for the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower. The tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins
2017-03-13
A view from below the mobile launcher shows a crane positioning the bracket for the Orion Service Module Umbilical (OSMU) high up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins
2017-03-13
In this view looking down from high up on the mobile launcher, a crane positions the bracket for the Orion Service Module Umbilical (OSMU) for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Advances in multi-megawatt lower hybrid technology in support of steady-state tokamak operation
NASA Astrophysics Data System (ADS)
Delpech, L.; Achard, J.; Armitano, A.; Artaud, J. F.; Bae, Y. S.; Belo, J. H.; Berger-By, G.; Bouquey, F.; Cho, M. H.; Corbel, E.; Decker, J.; Do, H.; Dumont, R.; Ekedahl, A.; Garibaldi, P.; Goniche, M.; Guilhem, D.; Hillairet, J.; Hoang, G. T.; Kim, H. S.; Kim, J. H.; Kim, H.; Kwak, J. G.; Magne, R.; Mollard, P.; Na, Y. S.; Namkung, W.; Oh, Y. K.; Park, S.; Park, H.; Peysson, Y.; Poli, S.; Prou, M.; Samaille, F.; Yang, H. L.; The Tore Supra Team
2014-10-01
It has been demonstrated that lower hybrid current drive (LHCD) systems play a crucial role for steady-state tokamak operation, owing to their high current drive (CD) efficiency and hence their capability to reduce flux consumption. This paper describes the extensive technology programmes developed for the Tore Supra (France) and the KSTAR (Korea) tokamaks in order to bring continuous wave (CW) LHCD systems into operation. The Tore Supra LHCD generator at 3.7 GHz is fully CW compatible, with RF power PRF = 9.2 MW available at the generator to feed two actively water-cooled launchers. On Tore Supra, the most recent and novel passive active multijunction (PAM) launcher has sustained 2.7 MW (corresponding to its design value of 25 MW m-2 at the launcher mouth) for a 78 s flat-top discharge, with low reflected power even at large plasma-launcher gaps. The fully active multijunction (FAM) launcher has reached 3.8 MW of coupled power (24 MW m-2 at the launcher mouth) with the new TH2103C klystrons. By combining both the PAM and FAM launchers, 950 MJ of energy, using 5.2 MW of LHCD and 1 MW of ICRH (ion cyclotron resonance heating), was injected for 160 s in 2011. The 3.7 GHz CW LHCD system will be a key element within the W (for tungsten) environment in steady-state Tokamak (WEST) project, where the aim is to test ITER technologies for high heat flux components in relevant heat flux density and particle fluence conditions. On KSTAR, a 2 MW LHCD system operating at 5 GHz is under development. Recently the 5 GHz prototype klystron has reached 500 kW/600 s on a matched load, and studies are ongoing to design a PAM launcher. In addition to the studies of technology, a combination of ray-tracing and Fokker-Planck calculations have been performed to evaluate the driven current and the power deposition due to LH waves, and to optimize the N∥ spectrum for the future launcher design. Furthermore, an LHCD system at 5 GHz is being considered for a future upgrade of the ITER Heating and Current Drive systems, with a power capability of 20 MW coupled to the plasma using a PAM launcher. An R&D programme is being conducted at CEA/IRFM to develop a BeO vacuum window which is a safety critical component of the transmission line. In addition, a mock-up of a TE10-TE30 mode converter at 5 GHz, designed for a rectangular transmission line, has been manufactured and successfully tested on Tore Supra at low RF power.
Metrology Camera System Using Two-Color Interferometry
NASA Technical Reports Server (NTRS)
Dubovitsky, Serge; Liebe, Carl Christian; Peters, Robert; Lay, Oliver
2007-01-01
A metrology system that contains no moving parts simultaneously measures the bearings and ranges of multiple reflective targets in its vicinity, enabling determination of the three-dimensional (3D) positions of the targets with submillimeter accuracy. The system combines a direction-measuring metrology camera and an interferometric range-finding subsystem. Because the system is based partly on a prior instrument denoted the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor and because of its 3D capability, the system is denoted the MSTAR3D. Developed for use in measuring the shape (for the purpose of compensating for distortion) of large structures like radar antennas, it can also be used to measure positions of multiple targets in the course of conventional terrestrial surveying. A diagram of the system is shown in the figure. One of the targets is a reference target having a known, constant distance with respect to the system. The system comprises a laser for generating local and target beams at a carrier frequency; a frequency shifting unit to introduce a frequency shift offset between the target and local beams; a pair of high-speed modulators that apply modulation to the carrier frequency in the local and target beams to produce a series of modulation sidebands, the highspeed modulators having modulation frequencies of FL and FM; a target beam launcher that illuminates the targets with the target beam; optics and a multipixel photodetector; a local beam launcher that launches the local beam towards the multi-pixel photodetector; a mirror for projecting to the optics a portion of the target beam reflected from the targets, the optics being configured to focus the portion of the target beam at the multi-pixel photodetector; and a signal-processing unit connected to the photodetector. The portion of the target beam reflected from the targets produces spots on the multi-pixel photodetector corresponding to the targets, respectively, and the signal-processing unit centroids the spots to determine bearings of the targets, respectively. As the spots oscillate in intensity because they are mixed with the local laser beam that is flood illuminating the focal plane, the phase of oscillation of each spot is measured, the phase of sidebands in the oscillation of each spot being proportional to a distance to the corresponding target relative to the reference target A.
Next-generation digital camera integration and software development issues
NASA Astrophysics Data System (ADS)
Venkataraman, Shyam; Peters, Ken; Hecht, Richard
1998-04-01
This paper investigates the complexities associated with the development of next generation digital cameras due to requirements in connectivity and interoperability. Each successive generation of digital camera improves drastically in cost, performance, resolution, image quality and interoperability features. This is being accomplished by advancements in a number of areas: research, silicon, standards, etc. As the capabilities of these cameras increase, so do the requirements for both hardware and software. Today, there are two single chip camera solutions in the market including the Motorola MPC 823 and LSI DCAM- 101. Real time constraints for a digital camera may be defined by the maximum time allowable between capture of images. Constraints in the design of an embedded digital camera include processor architecture, memory, processing speed and the real-time operating systems. This paper will present the LSI DCAM-101, a single-chip digital camera solution. It will present an overview of the architecture and the challenges in hardware and software for supporting streaming video in such a complex device. Issues presented include the development of the data flow software architecture, testing and integration on this complex silicon device. The strategy for optimizing performance on the architecture will also be presented.
Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera
NASA Astrophysics Data System (ADS)
Endo, Yutaka; Wakunami, Koki; Shimobaba, Tomoyoshi; Kakue, Takashi; Arai, Daisuke; Ichihashi, Yasuyuki; Yamamoto, Kenji; Ito, Tomoyoshi
2015-12-01
This paper shows the process used to calculate a computer-generated hologram (CGH) for real scenes under natural light using a commercial portable plenoptic camera. In the CGH calculation, a light field captured with the commercial plenoptic camera is converted into a complex amplitude distribution. Then the converted complex amplitude is propagated to a CGH plane. We tested both numerical and optical reconstructions of the CGH and showed that the CGH calculation from captured data with the commercial plenoptic camera was successful.
Multiscale modelling and experimentation of hydrogen embrittlement in aerospace materials
NASA Astrophysics Data System (ADS)
Jothi, Sathiskumar
Pulse plated nickel and nickel based superalloys have been used extensively in the Ariane 5 space launcher engines. Large structural Ariane 5 space launcher engine components such as combustion chambers with complex microstructures have usually been manufactured using electrodeposited nickel with advanced pulse plating techniques with smaller parts made of nickel based superalloys joined or welded to the structure to fabricate Ariane 5 space launcher engines. One of the major challenges in manufacturing these space launcher components using newly developed materials is a fundamental understanding of how different materials and microstructures react with hydrogen during welding which can lead to hydrogen induced cracking. The main objective of this research has been to examine and interpret the effects of microstructure on hydrogen diffusion and hydrogen embrittlement in (i) nickel based superalloy 718, (ii) established and (iii) newly developed grades of pulse plated nickel used in the Ariane 5 space launcher engine combustion chamber. Also, the effect of microstructures on hydrogen induced hot and cold cracking and weldability of three different grades of pulse plated nickel were investigated. Multiscale modelling and experimental methods have been used throughout. The effect of microstructure on hydrogen embrittlement was explored using an original multiscale numerical model (exploiting synthetic and real microstructures) and a wide range of material characterization techniques including scanning electron microscopy, 2D and 3D electron back scattering diffraction, in-situ and ex-situ hydrogen charged slow strain rate tests, thermal spectroscopy analysis and the Varestraint weldability test. This research shows that combined multiscale modelling and experimentation is required for a fundamental understanding of microstructural effects in hydrogen embrittlement in these materials. Methods to control the susceptibility to hydrogen induced hot and cold cracking and to improve the resistance to hydrogen embrittlement in aerospace materials are also suggested. This knowledge can play an important role in the development of new hydrogen embrittlement resistant materials. A novel micro/macro-scale coupled finite element method incorporating multi-scale experimental data is presented with which it is possible to perform full scale component analyses in order to investigate hydrogen embrittlement at the design stage. Finally, some preliminary and very encouraging results of grain boundary engineering based techniques to develop alloys that are resistant to hydrogen induced failure are presented. Keywords: Hydrogen embrittlement; Aerospace materials; Ariane 5 combustion chamber; Pulse plated nickel; Nickel based super alloy 718; SSRT test; Weldability test; TDA; SEM/EBSD; Hydrogen induced hot and cold cracking; Multiscale modelling and experimental methods.
Apparatus for and method of operating a cylindrical pulsed induction mass launcher
Cowan, M. Jr.; Duggin, B.W.; Widner, M.M.
1992-06-30
An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher. 2 figs.
Apparatus for and method of operating a cylindrical pulsed induction mass launcher
Cowan, Jr., Maynard; Duggin, Billy W.; Widner, Melvin M.
1992-01-01
An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher.
2009-11-30
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the tower on a new mobile launcher, or ML, for the Constellation Program grows as the fifth tower segment is balanced in position. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller
2009-12-13
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the tower on a new mobile launcher, or ML, for the Constellation Program continues to grow as the sixth tower segment is balanced in position. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jim Grossmann
2010-01-08
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the eighth tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, begins its ascent to the top of the growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller
2009-12-21
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the seventh tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, begins its ascent to the top of the growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller
2010-01-08
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, construction of the tower on a new mobile launcher, or ML, for the Constellation Program progresses with placement of the eighth tower segment on the growing structure. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller
Representational momentum and Michotte's (1946/1963) "launching effect" paradigm.
Hubbard, T L; Blessum, J A; Ruppel, S E
2001-01-01
In A. Michotte's (1946/1963) launching effect, a moving launcher contacts a stationary target, and then the launcher becomes stationary and the target begins to move. In this experiment, observers viewed modifications of a launching effect display, and displacement in memory for the location of targets was measured. Forward displacement of targets in launching effect displays was decreased relative to that of targets (a) that were presented in isolation and either moved at a constant fast or slow velocity or decelerated or (b) that moved in a direction orthogonal to previous motion of the launcher. Possible explanations involving a deceleration of motion or landmark attraction effects were ruled out. Displacement patterns were consistent with naive impetus theory and the hypothesis that observers believed impetus from the launcher was imparted to the target and then dissipated.
Use of Thermoset Composite Materials in Cryogenic Tanks
NASA Astrophysics Data System (ADS)
Diaz, V.; Cardone, T.; Ramusat, G.
2014-06-01
To improve the performances of Future Expendable Launchers, one of the key aspects to be considered is the mass optimization of the cryogenic upper stage of the launcher, where a mass saving of one Kg, is directly transferred to one more Kg of payload.This optimization is inherently linked to the use of composite materials in all the structures that conforms the upper stage of the launcher.Currently, most of the upper stage structures of the operational launchers, like Ariane 5, are made in composite materials, with the exception of the cryogenic (LH2 and LOX) tanks which remain metallic.So, from a structural point of view, the next qualitative step in the development of new expendable launcher, would be the manufacturing of the upper stage cryogenic tanks in composite materials.To reach this objective important concerns mainly related to the potential for leaks and the compatibility with the LOX need to be resolved.In the frame of the FLPP (Future Launcher Preparatory Program) funded by ESA, an activity related to the use of thermoset composite material in the cryogenic tanks has been included.This paper presents a summary of the performed work which includes:* The selection and characterization of the most suitable candidate materials for the considered application* The design and analysis of a subscale demonstrator representative of the LH2 compartment* The design, manufacturing and testing of some test articles representatives of the selected design solutions* The manufacturing and testing of the selected subscale demonstrator.
VEGA, the European small launcher: Development status, future perspectives, and applications
NASA Astrophysics Data System (ADS)
Bianchi, Stefano; VEGA Integrated Project Team (IPT)
2008-07-01
This paper presents a technical and programmatic overview of the VEGA launch system program currently in development for the European Space Agency, which includes the development and qualification activities of the small launcher VEGA, of the ground infrastructure, and of all the launcher elements. Several programmatic milestones have been successfully achieved so far: most subsystems have gone through the critical design review or qualification review. The launcher system critical design review has been performed during spring 2007 as well. Concerning propulsion, all the three development models of the solid rocket motors have been successfully tested between December 2005 and December 2006. The first qualification model engine of the liquid propulsion upper module has successfully completed its firing campaign and the test campaign for the second model has just started. The liquid upper stage AVUM engine has been tested as well. The VEGA ground segment program has entered its final lapse by completing the detailed design of the various subsystems. The installation phase in the launch range site (Kourou, French Guyane) is in full swing. The integration of the Mobile Gantry, necessary to integrate the launcher, is almost completed as for the main structure.
NASA Astrophysics Data System (ADS)
Chang, Xijiang; Kunii, Kazuki; Liang, Rongqing; Nagatsu, Masaaki
2013-11-01
A large-area planar plasma source with a resonant cavity type launcher driven by a 915 MHz ultra-high frequency wave was developed. Theoretical analysis with the three-dimensional finite difference time-domain simulation was carried out to determine the optimized launcher structure by analyzing the resonant transverse magnetic mode in the resonant cavity. Numerical result expects that the resonant electric field distribution inside the cavity dominantly consists of the TM410 mode. The resonant cavity type launcher having 8 holes in an octagonal geometry was designed to fit the resonant transverse magnetic mode. Adjusting 8 hole positions of the launcher to the field pattern of the resonant TM410 mode, we found that the plasma density increased about 40%˜50% from 1.0˜1.1 × 1011 cm-3 to ˜1.5 × 1011 cm-3 at the same incident power of 2.5 kW, compared with the previous results with the launcher having 6 holes in the hexagonal geometry. It is also noted that the electron density changes almost linearly with the incident wave power without any mode jumps.
Helicopters in Irregular Warfare: Algeria, Vietnam, and Afghanistan
2013-06-13
drop smoke to show wind conditions, first assault helicopter lands 100-300 yards behind last rocket pass with successive aircraft as permitted by the...agents on VC tunnel complexes. Later, the 1st Cavalry Division employed a few of their Chinooks as “Go-Go birds ,” armed with twenty millimeter Gatling...cannons, forty-millimeter grenade launchers, fifty caliber machine guns, and rockets.182 Of the three “Go-Go birds ” that flew, the enemy downed two
1990-06-01
on simple railgun accelerators andI homopolar generators. Complex rotating flux compressors would drastically improve the performance of EM launchers...velocities. If this is the direction of improvement, then energies stored in the electric trains built with linear electric motors in Japan and Western I...laboratories which had power supplies 3 already built for other programs ( homopolar generators in conjunction with an inductor and an opening switch
Level II Documentation of Launch Complex 31/32, Cape Canaveral Air Force Station, Florida
2008-12-01
a mobile launcher tied down on the concrete pad, with a concrete flame bucket descending off one side of the surface area (Figure...pedestal (Figure 9). The complex’s Launch Pad 10 was a hex- agonal reinforced concrete surface with tie down points and a concrete flame bucket at its...fuel propel- lant.126 This allowed for rapid deployment, and for a more effective and less expensive weapon system . Technological advancements
The Advanced Composition Explorer is placed atop its Delta II launcher at Pad 17A, CCAS
NASA Technical Reports Server (NTRS)
1997-01-01
The Advanced Composition Explorer (ACE) spacecraft is placed atop its launch vehicle at Launch Complex 17A. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 24, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA.
2009-02-12
CAPE CANAVERAL, Fla. – An aerial view of a mobile launcher platform that is parked in the Launch Complex 39 Area at NASA's Kennedy Space Center in Florida. The platform, which is a moveable base for the launch of space shuttle, is a two-story steel structure 25 feet high, 160 feet long and 135 feet wide. It is constructed of welded steel up to 6 inches thick. The platform rests on six 22-foot-tall pedestals. Photo credit: NASA/Kim Shiflett
2009-02-12
CAPE CANAVERAL, Fla. – An aerial view of a mobile launcher platform that is parked in the Launch Complex 39 Area at NASA's Kennedy Space Center in Florida. The platform, which is a moveable base for the launch of space shuttle, is a two-story steel structure 25 feet high, 160 feet long and 135 feet wide. It is constructed of welded steel up to 6 inches thick. The platform rests on six 22-foot-tall pedestals. Photo credit: NASA/Kim Shiflett
2009-02-12
CAPE CANAVERAL, Fla. – An aerial view of a mobile launcher platform that is parked in the Launch Complex 39 Area at NASA's Kennedy Space Center in Florida. The platform, which is a moveable base for the launch of space shuttle, is a two-story steel structure 25 feet high, 160 feet long and 135 feet wide. It is constructed of welded steel up to 6 inches thick. The platform rests on six 22-foot-tall pedestals. Photo credit: NASA/Kim Shiflett
2014-04-03
CAPE CANAVERAL, Fla. – Manatees and alligators gather in a creek at Kennedy Space Center's Launch Complex 39 area. In the background from left to right are the Rotation, Processing and Surge Facility, mobile launcher and Vehicle Assembly Building. The center shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 140,000 acres that provide a habitat for more than 330 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. Photo credit: NASA/Daniel Casper
Water Flow Test at Launch Complex 39B
2017-12-20
Water flowed during a test at Launch Complex 39B at NASA’s Kennedy Space Center in Florida. About 450,000 gallons of water flowed at high speed from a holding tank through new and modified piping and valves, the flame trench, flame deflector nozzles and mobile launcher interface risers during a wet flow test at Launch Complex 39B. At peak flow, the water reached about 100 feet in the air above the pad surface. The test was a milestone to confirm and baseline the performance of the Ignition Overpressure/Sound Suppression system. During launch of NASA's Space Launch System rocket and Orion spacecraft, the high-speed water flow will help protect the vehicle from the extreme acoustic and temperature environment during ignition and liftoff.
ISAS' new satellite launcher M-V
NASA Astrophysics Data System (ADS)
Akiba, R.; Matsuo, H.; Kohno, M.
The concept of the M-V, a new version of Japanese satellite launchers that is being developed by the Institute of Space and Astronautical Science, is described. The M-V is a three-stage solid propellant rocket that could lift about 2 tons of payload into LEO. Its first flight is scheduled to be at the beginning of 1995, when M-V will carry an engineering test satelline to prove the technology for Space VLBE. The basic parameters of the M-V launcher, the vehicle configuration diagram, and motor-design diagrams are presented.
Crew Access Arm arrival at Mobile Launcher
2017-11-09
A heavy-load transport truck carrying the Orion crew access arm arrives at the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The crew access arm will be installed at about the 274-foot level on the mobile launcher tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower to prepare for Exploration Mission-1.
The Development of a Single Tank Tactical Exercise for Training M1 Tank Commanders
1987-06-01
Evaluate the Conduct of Training NL NL NS Fire an M250 Grenade Launcher S S NS Identify Adjoining Map Sheets S S NS Identify Terrain Features on a Map S S...the Commander’s Weapon Station Establish, Enter, and Leave a Radio Net Estimate Range Evaluate the Conduct of Training Fire an M250 Grenade Launcher...from the Commander’s Weapon S Station (CWS) Fire an M250 Smoke Grenade Launcher Set Headspace and Timing on a Caliber .50 M2 HB Machinegun Zero a
1990-08-30
velocities (a first approach). In a first step, we <<construct>> the launcher. A launcher is composed of structures (propellant reservoirs for example... structures and the unburnt propellant included in the cone C, are all part of the fragments’ <<environment>> (Fig. 3). Its D mass W,is concentrated on the...dynamic fluid- structure interactions*. Computer Methods in Applied Mechanics And Engineering 33 (1982) 689-723. 1151 M. ECK, M.MUKUNDA : <<Predicting
NASA Astrophysics Data System (ADS)
Nilsson, E.; Decker, J.; Peysson, Y.; Artaud, J.-F.; Ekedahl, A.; Hillairet, J.; Aniel, T.; Basiuk, V.; Goniche, M.; Imbeaux, F.; Mazon, D.; Sharma, P.
2013-08-01
Fully non-inductive operation with lower hybrid current drive (LHCD) in the Tore Supra tokamak is achieved using either a fully active multijunction (FAM) launcher or a more recent ITER-relevant passive active multijunction (PAM) launcher, or both launchers simultaneously. While both antennas show comparable experimental efficiencies, the analysis of stability properties in long discharges suggest different current profiles. We present comparative modelling of LHCD with the two different launchers to characterize the effect of the respective antenna spectra on the driven current profile. The interpretative modelling of LHCD is carried out using a chain of codes calculating, respectively, the global discharge evolution (tokamak simulator METIS), the spectrum at the antenna mouth (LH coupling code ALOHA), the LH wave propagation (ray-tracing code C3PO), and the distribution function (3D Fokker-Planck code LUKE). Essential aspects of the fast electron dynamics in time, space and energy are obtained from hard x-ray measurements of fast electron bremsstrahlung emission using a dedicated tomographic system. LHCD simulations are validated by systematic comparisons between these experimental measurements and the reconstructed signal calculated by the code R5X2 from the LUKE electron distribution. An excellent agreement is obtained in the presence of strong Landau damping (found under low density and high-power conditions in Tore Supra) for which the ray-tracing model is valid for modelling the LH wave propagation. Two aspects of the antenna spectra are found to have a significant effect on LHCD. First, the driven current is found to be proportional to the directivity, which depends upon the respective weight of the main positive and main negative lobes and is particularly sensitive to the density in front of the antenna. Second, the position of the main negative lobe in the spectrum is different for the two launchers. As this lobe drives a counter-current, the resulting driven current profile is also different for the FAM and PAM launchers.
9. PHOTOCOPY, ARCHITECTURAL SECTIONS AND DETAIL DRAWING OF UNDERGROUND STORAGE ...
9. PHOTOCOPY, ARCHITECTURAL SECTIONS AND DETAIL DRAWING OF UNDERGROUND STORAGE MAGAZINES AND LAUNCHER-LOADER ASSEMBLIES. - NIKE Missile Base SL-40, Underground Storage Magazines & Launcher-Loader Assemblies, Southwesternmost end of launch area, Hecker, Monroe County, IL
2009-10-27
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, a crane lowers the third section of the tower for a new mobile launcher, or ML, for the Constellation Program into place atop the growing structure. Installation of the first section was on Sept. 24, and the second, on Oct. 15. The tower will have multiple platforms for personnel access and be approximately 345 feet tall. The launcher is being built at the mobile launcher park site area located north of Kennedy's Vehicle Assembly Building to support the Ares I rocket. The ML will provide a base to launch the Ares I, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. The base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller
2009-12-21
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the seventh tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, is lifted above the heads of the workers monitoring its ascent to the top of the growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. The construction is under way at the mobile launcher park site area north of Kennedy's Vehicle Assembly Building. The launcher will provide a base to launch the Ares I rocket, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller
2009-10-27
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, a crane lowers the third section of the tower for a new mobile launcher, or ML, for the Constellation Program toward the growing structure. Installation of the first section was on Sept. 24, and the second, on Oct. 15. The tower will have multiple platforms for personnel access and be approximately 345 feet tall. The launcher is being built at the mobile launcher park site area located north of Kennedy's Vehicle Assembly Building to support the Ares I rocket. The ML will provide a base to launch the Ares I, designed to transport the Orion crew exploration vehicle, its crew and cargo to low Earth orbit. The base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and taller rocket. For information on the Ares I, visit http://www.nasa.gov/ares. Photo credit: NASA/Jack Pfaller
International Space Station-Based Electromagnetic Launcher for Space Science Payloads
NASA Technical Reports Server (NTRS)
Jones, Ross M.
2013-01-01
A method was developed of lowering the cost of planetary exploration missions by using an electromagnetic propulsion/launcher, rather than a chemical-fueled rocket for propulsion. An electromagnetic launcher (EML) based at the International Space Station (ISS) would be used to launch small science payloads to the Moon and near Earth asteroids (NEAs) for the science and exploration missions. An ISS-based electromagnetic launcher could also inject science payloads into orbits around the Earth and perhaps to Mars. The EML would replace rocket technology for certain missions. The EML is a high-energy system that uses electricity rather than propellant to accelerate payloads to high velocities. The most common type of EML is the rail gun. Other types are possible, e.g., a coil gun, also known as a Gauss gun or mass driver. The EML could also "drop" science payloads into the Earth's upper
NASA Astrophysics Data System (ADS)
Plattner, M. P.; Hirth, F.; Müller, M. S.; Hoffmann, L.; Buck, T. C.; Koch, A. W.
2017-11-01
Availability of reliable flight sensor data and knowledge of the structural behaviour are essential for safe operation of the Ariane launcher. The Ariane launcher is currently monitored by hundreds of electric sensors during test and qualification. Fibre optic sensors are regarded as a potential technique to overcome limitations of recent monitoring systems for the Ariane launcher [1]. These limitations include cumbersome application of sensors and harness as well as a very limited degree of distributed sensing capability. But, in order to exploit the various advantages of fibre optic sensors (high degree of multiplexing, distributed sensing capability, lower mass impact, etc.) dedicated measurement systems have to be developed and investigated. State-of-the-art fibre optic measurement systems often use free beam setups making them bulky and sensitive to vibration impact. Therefore a new measurement system is developed as part of the ESAstudy [2].
SIDON: A simulator of radio-frequency networks. Application to WEST ICRF launchers
NASA Astrophysics Data System (ADS)
Helou, Walid; Dumortier, Pierre; Durodié, Frédéric; Goniche, Marc; Hillairet, Julien; Mollard, Patrick; Berger-By, Gilles; Bernard, Jean-Michel; Colas, Laurent; Lombard, Gilles; Maggiora, Riccardo; Magne, Roland; Milanesio, Daniele; Moreau, Didier
2015-12-01
SIDON (SImulator of raDiO-frequency Networks) is an in-house developed Radio-Frequency (RF) network solver that has been implemented to cross-validate the design of WEST ICRF launchers and simulate their impedance matching algorithm while considering all mutual couplings and asymmetries. In this paper, the authors illustrate the theory of SIDON as well as results of its calculations. The authors have built time-varying plasma scenarios (a sequence of launchers front-faces L-mode and H-mode Z-matrices), where at each time step (1 millisecond here), SIDON solves the RF network. At the same time, when activated, the impedance matching algorithm controls the matching elements (vacuum capacitors) and thus their corresponding S-matrices. Typically a 1-second pulse requires around 10 seconds of computational time on a desktop computer. These tasks can be hardly handled by commercial RF software. This innovative work allows identifying strategies for the launchers future operation while insuring the limitations on the currents, voltages and electric fields, matching and Load-Resilience, as well as the required straps voltage amplitude/phase balance. In this paper, a particular attention is paid to the simulation of the launchers behavior when arcs appear at several locations of their circuits using SIDON calculator. This latter work shall confirm or identify strategies for the arc detection using various RF electrical signals. One shall note that the use of such solvers in not limited to ICRF launchers simulations but can be employed, in principle, to any linear or linearized RF problem.
7. PHOTOCOPY, PLUMBING AND MECHANICAL PLAN AND DETAILS FOR UNDERGROUND ...
7. PHOTOCOPY, PLUMBING AND MECHANICAL PLAN AND DETAILS FOR UNDERGROUND STORAGE MAGAZINES AND LAUNCHER-LOADER ASSEMBLIES. - NIKE Missile Base SL-40, Underground Storage Magazines & Launcher-Loader Assemblies, Southwesternmost end of launch area, Hecker, Monroe County, IL
8. PHOTOCOPY, ARCHITECTURAL FLOOR PLAN AND DETAIL DRAWING OF UNDERGROUND ...
8. PHOTOCOPY, ARCHITECTURAL FLOOR PLAN AND DETAIL DRAWING OF UNDERGROUND STORAGE MAGAZINES AND LAUNCHER-LOADER ASSEMBLIES. - NIKE Missile Base SL-40, Underground Storage Magazines & Launcher-Loader Assemblies, Southwesternmost end of launch area, Hecker, Monroe County, IL
2014-08-14
CAPE CANAVERAL, Fla. – A storm moves in over Launch Complex 39 at NASA’s Kennedy Space Center in Florida. At center is the mobile launcher that will support NASA's Space Launch System heavy-lift rocket, under development. At left is the Launch Control Center and the Vehicle Assembly Building. Kennedy's Ground Support Development and Operations Program is hard at work transforming the center's facilities into a multi-user spaceport, when the weather permits. For more on Kennedy Space Center, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Ben Smegelsky
90. VIEW OF OXIDIZER APRON AND SOUTH SIDE OF SKID ...
90. VIEW OF OXIDIZER APRON AND SOUTH SIDE OF SKID 9, SKID 7, AND SKID 9A. COOLING TOWER ON NORTH SIDE OF OXIDIZER APRON. LEFT TO RIGHT IN BACKGROUND: METEOROLOGICAL TOWER, SLC-3W MST, SURPLUS ATLAS E/F LAUNCHER, PYROTECHNIC SHED (BLDG. 757), STORAGE SHED (BLDG. 776), CABLE TRAYS, AND TOP OF LAUNCH OPERATIONS BUILDING (BLDG. 763). - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Small ICBM area narrowing report. Volume 1. Hard mobile launcher in random movement basing mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The purpose of this report is to identify those areas that could potentially support deployment of the Small Intercontinental Ballistic Missile (ICBM) utilizing basing modes presently considered viable: the Hard Mobile Launcher in Random Movement, the Hard Mobile Launcher at Minuteman Facilities, and the Hard Silo in Patterned Array. Specifically, this report describes the process and the rationale supporting the application of Exclusionary and Evaluative Criteria and lists those locations that were eliminated through the application of these criteria. The remaining locations will be the subject of further investigations.
Small ICBM area narrowing report. Volume 2. Hard mobile launcher at minuteman facilities basing mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The purpose of this report is to identify those areas that could potentially support deployment of the Small Intercontinental Ballistic Missile (ICBM) utilizing basing modes presently considered viable: the Hard Mobile Launcher in Random Movement, the Hard Mobile Launcher at Minuteman Facilities, and the Hard Silo in Patterned Array. Specifically, this report describes the process and the rationale supporting the application of Exclusionary and Evaluative Criteria and lists those locations that were eliminated through the application of these criteria. The remaining locations will be the subject of further investigations.
Mesh-matrix analysis method for electromagnetic launchers
NASA Technical Reports Server (NTRS)
Elliott, David G.
1989-01-01
The mesh-matrix method is a procedure for calculating the current distribution in the conductors of electromagnetic launchers with coil or flat-plate geometry. Once the current distribution is known the launcher performance can be calculated. The method divides the conductors into parallel current paths, or meshes, and finds the current in each mesh by matrix inversion. The author presents procedures for writing equations for the current and voltage relations for a few meshes to serve as a pattern for writing the computer code. An available subroutine package provides routines for field and flux coefficients and equation solution.
Metal vapor vacuum arc switching - Applications and results. [for launchers
NASA Technical Reports Server (NTRS)
Cope, D.; Mongeau, P.
1984-01-01
The design of metal-vapor vacuum-arc switches (MVSs) for electromagnetic launchers is discussed, and preliminary results are presented for an experimental MVS. The general principles of triggered-vacuum-gap and vacuum-interrupter MVSs are reviewed, and the requirements of electromagnetic launchers are analyzed. High-current design problems such as electrode erosion, current sharing, magnetic effects, and thermal effects are examined. The experimental MVS employs stainless-steel flanges, a glass vacuum vessel, an adjustable electrode gap, autonomous internal magnetic-field coils, and a tungsten-pin trigger assembly. Some results from tests without magnetic augmentation are presented graphically.
Accurate Sloshing Modes Modeling: A New Analytical Solution and its Consequences on Control
NASA Astrophysics Data System (ADS)
Gonidou, Luc-Olivier; Desmariaux, Jean
2014-06-01
This study addresses the issue of sloshing modes modeling for GNC analyses purposes. On European launchers, equivalent mechanical systems are commonly used for modeling sloshing effects on launcher dynamics. The representativeness of such a methodology is discussed here. First an exact analytical formulation of the launcher dynamics fitted with sloshing modes is proposed and discrepancies with equivalent mechanical system approach are emphasized. Then preliminary comparative GNC analyses are performed using the different models of dynamics in order to evaluate the impact of the aforementioned discrepancies from GNC standpoint. Special attention is paid to system stability.
Near-Earth Phase Risk Comparison of Human Mars Campaign Architectures
NASA Technical Reports Server (NTRS)
Manning, Ted A.; Nejad, Hamed S.; Mattenberger, Chris
2013-01-01
A risk analysis of the launch, orbital assembly, and Earth-departure phases of human Mars exploration campaign architectures was completed as an extension of a probabilistic risk assessment (PRA) originally carried out under the NASA Constellation Program Ares V Project. The objective of the updated analysis was to study the sensitivity of loss-of-campaign risk to such architectural factors as composition of the propellant delivery portion of the launch vehicle fleet (Ares V heavy-lift launch vehicle vs. smaller/cheaper commercial launchers) and the degree of launcher or Mars-bound spacecraft element sparing. Both a static PRA analysis and a dynamic, event-based Monte Carlo simulation were developed and used to evaluate the probability of loss of campaign under different sparing options. Results showed that with no sparing, loss-of-campaign risk is strongly driven by launcher count and on-orbit loiter duration, favoring an all-Ares V launch approach. Further, the reliability of the all-Ares V architecture showed significant improvement with the addition of a single spare launcher/payload. Among architectures utilizing a mix of Ares V and commercial launchers, those that minimized the on-orbit loiter duration of Mars-bound elements were found to exceed the reliability of no spare all-Ares V campaign if unlimited commercial vehicle sparing was assumed
Mercury: testing of the Little Joe booster
1959-08-02
Testing of the Little Joe booster on its launcher. The launcher is positioned at its normal launch angle of 80 degrees. Joseph Shortal wrote (vol. 3, p. 33): The Little Joe booster was assembled at Wallops on its special launcher in a vertical attitude. It is shown in the on the left with the work platform in place. The launcher was located on a special concrete slab in Launching Area 1. The capsule was lowered onto the booster by crane.... After the assembly was completed, the scaffolding was disassembled and the launcher pitched over to its normal launch angle of 80 degrees.... Little Joe had a diameter of 80 inches and an overall length, including the capsule and escape tower of 48 feet. The total weight at launch was about 43,000 pounds. The overall span of the stabilizing fins was 21.3 feet. Although in comparison with the overall Mercury Project, Little Joe was a simple undertaking, the fact that an attempt was made to condense a normal two-year project into a 6-month one with in house labor turned it into a major undertaking for Langley. -- Published in Joseph A. Shortal, History of Wallops Station: Origins and Activities Through 1949, (Wallops Island, VA: National Aeronautics and Space Administration, Wallops Station, nd), Comment Edition.
Advanced Optics for a Full Quasi-Optical Front Steering ECRH Upper Launcher for ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moro, A.; Alessi, E.; Bruschi, A.
2009-11-26
A full quasi-optical setup for the internal optics of the Front Steering Electron Cyclotron Resonance Heating (ECRH) Upper Launcher for ITER was designed, proving to be feasible and favorable in terms of additional flexibility and cost reduction with respect to the former design. This full quasi-optical solution foresees the replacement of the mitre-bends in the final section of the launcher with dedicated free-space mirrors to realize the last changes of directions in the launcher. A description of the launcher is given and its advantages presented. The parameters of the expected output beams as well as preliminary evaluations of truncation effectsmore » with the physical optics GRASP code are shown. Moreover, a study of mitre-bends replacement with single mirrors for multiple beams is described. In principle it could allow the beams to be larger at the mirror locations (with a further decrease of the peak power density due to partial overlapping) and has the additional advantage to get a larger opening with compressed beams to avoid conflicts with side-walls port. Constraints on the setup, arising both from the resulting beam characteristics in the space of free parameters and from mechanical requirements are taken into account in the analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farina, D.; Figini, L.; Henderson, M.
2014-06-15
The design of the ITER Electron Cyclotron Heating and Current Drive (EC H and CD) system has evolved in the last years both in goals and functionalities by considering an expanded range of applications. A large effort has been devoted to a better integration of the equatorial and the upper launchers, both from the point of view of the performance and of the design impact on the engineering constraints. However, from the analysis of the ECCD performance in two references H-mode scenarios at burn (the inductive H-mode and the advanced non-inductive scenario), it was clear that the EC power depositionmore » was not optimal for steady-state applications in the plasma region around mid radius. An optimization study of the equatorial launcher is presented here aiming at removing this limitation of the EC system capabilities. Changing the steering of the equatorial launcher from toroidal to poloidal ensures EC power deposition out to the normalized toroidal radius ρ ≈ 0.6, and nearly doubles the EC driven current around mid radius, without significant performance degradation in the core plasma region. In addition to the improved performance, the proposed design change is able to relax some engineering design constraints on both launchers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Xijiang; Graduate School of Science and Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561; Kunii, Kazuki
2013-11-14
A large-area planar plasma source with a resonant cavity type launcher driven by a 915 MHz ultra-high frequency wave was developed. Theoretical analysis with the three-dimensional finite difference time-domain simulation was carried out to determine the optimized launcher structure by analyzing the resonant transverse magnetic mode in the resonant cavity. Numerical result expects that the resonant electric field distribution inside the cavity dominantly consists of the TM{sub 410} mode. The resonant cavity type launcher having 8 holes in an octagonal geometry was designed to fit the resonant transverse magnetic mode. Adjusting 8 hole positions of the launcher to the fieldmore » pattern of the resonant TM{sub 410} mode, we found that the plasma density increased about 40%∼50% from 1.0∼1.1 × 10{sup 11} cm{sup −3} to ∼1.5 × 10{sup 11} cm{sup −3} at the same incident power of 2.5 kW, compared with the previous results with the launcher having 6 holes in the hexagonal geometry. It is also noted that the electron density changes almost linearly with the incident wave power without any mode jumps.« less
Rocket launcher mechanism of collaborative actin assembly defined by single-molecule imaging.
Breitsprecher, Dennis; Jaiswal, Richa; Bombardier, Jeffrey P; Gould, Christopher J; Gelles, Jeff; Goode, Bruce L
2012-06-01
Interacting sets of actin assembly factors work together in cells, but the underlying mechanisms have remained obscure. We used triple-color single-molecule fluorescence microscopy to image the tumor suppressor adenomatous polyposis coli (APC) and the formin mDia1 during filament assembly. Complexes consisting of APC, mDia1, and actin monomers initiated actin filament formation, overcoming inhibition by capping protein and profilin. Upon filament polymerization, the complexes separated, with mDia1 moving processively on growing barbed ends while APC remained at the site of nucleation. Thus, the two assembly factors directly interact to initiate filament assembly and then separate but retain independent associations with either end of the growing filament.
Rocket launcher mechanism of collaborative actin assembly defined by single-molecule imaging
Breitsprecher, Dennis; Jaiswal, Richa; Bombardier, Jeffrey P.; Gould, Christopher J.; Gelles, Jeff; Goode, Bruce L.
2013-01-01
Interacting sets of actin assembly factors work together in cells, but the underlying mechanisms have remained obscure. We used triple-color single molecule fluorescence microscopy to image the tumor-suppressor Adenomateous polyposis coli (APC) and the formin mDia1 during filament assembly. Complexes consisting of APC, mDia1, and actin monomers intiated actin filament formation, overcoming inhibition by capping protein and profilin. Upon filament polymerization, the complexes separated, with mDia1 moving processively on growing barbed ends while APC remained at the site of nucleation. Thus, the two assembly factors directly interact to initiate filament assembly, and then separate but retain independent associations with either end of the growing filament. PMID:22654058
High-Efficiency Helical Coil Electromagnetic Launcher
2006-08-31
significant launcher performance benefits by super-cooling the conductor in the armature (i.e., liquid nitrogen temperatures). 20061102530 14. ABSTRACT...i.e., liquid nitrogen temperatures). 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON...31 Liquid Nitrogen Cooled Armature
A New Technique for Achieving Impact Velocities Greater Than 10 km/sec
NASA Astrophysics Data System (ADS)
Piekutowski, A. J.
2001-05-01
This Contractor Report describes and presents the results of work that was done in an attempt to develop an augmented acceleration technique that would launch small projectiles of known shape, mass, and state to velocities of 10 km/sec and higher. The higher velocities were to be achieved by adding a third stage to a conventional two-stage, light-gas gun and using a modified firing cycle for the third stage. The technique did not achieve the desired results and was modified for use during the development program. Since the design of the components used for the augmented-acceleration, three-stage launcher could be readily adapted for use as a three-stage launcher that used a single-stage acceleration cycle; the remainder of the contract period was spent performing test firings using the modified three-stage launcher. Work with the modified three-stage launcher, although not complete, did produce test firings in which an 0.11-g cylindrical nylon projectile was launched to a velocity of 8.65 km/sec.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klepper, C Christopher; Martin, Elijah H; Isler, Ralph C
2014-01-01
An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (> 1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma,more » in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.« less
Perceptual impressions of causality are affected by common fate.
White, Peter A
2017-03-24
Many studies of perceptual impressions of causality have used a stimulus in which a moving object (the launcher) contacts a stationary object (the target) and the latter then moves off. Such stimuli give rise to an impression that the launcher makes the target move. In the present experiments, instead of a single target object, an array of four vertically aligned objects was used. The launcher contacted none of them, but stopped at a point between the two central objects. The four objects then moved with similar motion properties, exhibiting the Gestalt property of common fate. Strong impressions of causality were reported for this stimulus. It is argued that the array of four objects was perceived, by the likelihood principle, as a single object with some parts unseen, that the launcher was perceived as contacting one of the unseen parts of this object, and that the causal impression resulted from that. Supporting that argument, stimuli in which kinematic features were manipulated so as to weaken or eliminate common fate yielded weaker impressions of causality.
Scrape-off layer reflectometer for Alcator C-Mod.
Hanson, G R; Wilgen, J B; Lau, C; Lin, Y; Wallace, G M; Wukitch, S J
2008-10-01
A two-frequency x-mode reflectometer operating from 100 to 146 GHz is deployed on Alcator C-Mod to measure the density profile and fluctuations in the scrape-off layer (SOL) immediately in front of the new J-port ICRF antenna and the new C-port lower hybrid launcher. The reflectometer covers densities from 10(16) to 10(20) m(-3) at 5-5.4 T. To provide the greatest flexibility and capability to deal with density fluctuations approaching 100% peak-to-peak in the SOL, both full-phase and differential-phase measurement capabilities with sweep speeds of approximately 10 micros to >1 ms are implemented. The differential-phase measurement uses a difference frequency of 500 MHz, corresponding to cutoff layer separations ranging from about 0.1 to 1 mm. The reflectometer has six sets of launchers: three on the ICRF antenna and three on the lower hybrid launcher. Both the ICRF antenna and the lower hybrid launcher incorporate reflectometer antennas at their top, bottom, and midplane locations.
A New Technique for Achieving Impact Velocities Greater Than 10 km/sec
NASA Technical Reports Server (NTRS)
Piekutowski, A. J.; Nolen, Angie (Technical Monitor)
2001-01-01
This Contractor Report describes and presents the results of work that was done in an attempt to develop an augmented acceleration technique that would launch small projectiles of known shape, mass, and state to velocities of 10 km/sec and higher. The higher velocities were to be achieved by adding a third stage to a conventional two-stage, light-gas gun and using a modified firing cycle for the third stage. The technique did not achieve the desired results and was modified for use during the development program. Since the design of the components used for the augmented-acceleration, three-stage launcher could be readily adapted for use as a three-stage launcher that used a single-stage acceleration cycle; the remainder of the contract period was spent performing test firings using the modified three-stage launcher. Work with the modified three-stage launcher, although not complete, did produce test firings in which an 0.11-g cylindrical nylon projectile was launched to a velocity of 8.65 km/sec.
Final Report Advanced Quasioptical Launcher System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey Neilson
2010-04-30
This program developed an analytical design tool for designing antenna and mirror systems to convert whispering gallery RF modes to Gaussian or HE11 modes. Whispering gallery modes are generated by gyrotrons used for electron cyclotron heating of fusion plasmas in tokamaks. These modes cannot be easily transmitted and must be converted to free space or waveguide modes compatible with transmission line systems.This program improved the capability of SURF3D/LOT, which was initially developed in a previous SBIR program. This suite of codes revolutionized quasi-optical launcher design, and this code, or equivalent codes, are now used worldwide. This program added functionality tomore » SURF3D/LOT to allow creating of more compact launcher and mirror systems and provide direct coupling to corrugated waveguide within the vacuum envelope of the gyrotron. Analysis was also extended to include full-wave analysis of mirror transmission line systems. The code includes a graphical user interface and is available for advanced design of launcher systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klepper, C. C., E-mail: kleppercc@ornl.gov; Isler, R. C.; Biewer, T. M.
2014-11-15
An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>∼1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, inmore » front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.« less
Klepper, C C; Martin, E H; Isler, R C; Colas, L; Goniche, M; Hillairet, J; Panayotis, S; Pegourié, B; Jacquot, J; Lotte, Ph; Colledani, G; Biewer, T M; Caughman, J B; Ekedahl, A; Green, D L; Harris, J H; Hillis, D L; Shannon, S C; Litaudon, X
2014-11-01
An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>∼1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.
MTR AND ETR COMPLEXES. CAMERA FACING EASTERLY TOWARD CHEMICAL PROCESSING ...
MTR AND ETR COMPLEXES. CAMERA FACING EASTERLY TOWARD CHEMICAL PROCESSING PLANT. MTR AND ITS ATTACHMENTS IN FOREGROUND. ETR BEYOND TO RIGHT. INL NEGATIVE NO. 56-4100. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Future launcher demonstrator. Challenge and pathfinder
NASA Astrophysics Data System (ADS)
Kleinau, W.; Guerra, L.; Parkinson, R. C.; Lieberherr, J. F.
1996-02-01
For future and advanced launch vehicles emphasis is focused on single-stage-to-orbit (SSTO) concepts and on completely reusable versions with the goal to reduce the recurrent launch cost, to improve the mission success probability and also safety for the space transportation of economically attractive payloads into Low Earth Orbit. Both issues, the SSTO launcher and the low cost reusability are extremely challenging and cannot be proven by studies and on-ground tests alone. In-flight demonstration tests are required to verify the assumptions and the new technologies, and to justify the new launcher-and operations-concepts. Because a number of SSTO launch vehicles are currently under discussion in terms of configurations and concepts such as winged vehicles for vertical or horizontal launch and landing (from ground or a flying platform), or wingless vehicles for vertical take-off and landing, and also in terms of propulsion (pure rockets or a combination of air breathing and rocket engines), an experimental demonstrator vehicle appears necessary in order to serve as a pathfinder in this area of multiple challenges. A suborbital Reusable Rocket Launcher Demonstrator (RRLD) has been studied recently by a European industrial team for ESA. This is a multipurpose, evolutionary demonstrator, conceived around a modular approach of incremental improvements of subsystems and materials, to achieve a better propellant mass fraction i.e. a better performance, and specifically for the accomplishment of an incremental flight test programme. While the RRLD basic test programme will acquire knowledge about hypersonic flight, re-entry and landing of a cryogenic rocket propelled launcher — and the low cost reusability (short turnaround on ground) in the utilization programme beyond basic testing, the RRLD will serve as a test bed for generic testing of technologies required for the realization of an SSTO launcher. This paper will present the results of the European RRLD study which proposes a winged suborbital rocket launcher operations & technology demonstrator for vertical take-off and horizontal landing — using primarily conventional technology and materials as a first step towards the challenging goal of a reusable SSTO ETO launch vehicle.
Future launchers strategy : the ariane 2010 initiative
NASA Astrophysics Data System (ADS)
Bonnal, Ch.; Eymard, M.; Soccodato, C.
2001-03-01
With the new cryogenic upper stage ESC, the European heavy launcher Ariane 5+ is perfectly suited to the space market envisioned for the coming decade: flexible to cope with any payload and commercially attractive despite a fierce competition. Current Arianespace projections for the following years 2010-2020 indicate two major trends: satellites may still become larger and may require very different final orbits; today's market largely dominated by GEO may well evolve, influenced by LEO operations such as those linked to ISS or by constellations, to remain competitive, the launch cost has to be reduced. The future generation of the European heavy launcher has therefore to focus on an ever increased flexibility with a drastic cost reduction. Two strategies are possible to achieve this double goal: reusable launchers, either partially or totally, may ease the access to space, limiting costly expendable stages; the assessment of their technical feasibility and financial viability is undergoing in Europe under the Future Launchers Technology Program (FLTP), expendable launchers, derived from the future Ariane 5+. This second way started by CNES at the end of year 1999 is called the "Ariane 2010 initiative". The main objectives are simultaneously an increase of 25% in performance and a reduction of 30% in launch cost wrt Ariane 5+. To achieve these very ambitious goals, numerous major modifications are studied: technical improvements : modifications of the Solid Rocket Boosters may consist in filament winding casing, increased loading, simplified casting, improved grain, simplified Thrust Vector Control, … evolution of the Vulcain engine leading to higher efficiency despite a simplified design, flow separation controlled nozzle extension, propellant management of the two cryogenic stages, simplified electrical system, increased standardization, for instance on flanged interfaces and manufacturing processes, operational improvements such as launch cycle simplification and standardization of the coupled analyses, organizational improvements such as a redistribution of responsibilities for the developments. All these modifications will of course not be implemented together; the aim is to have a coherent catalogue of improvements in order to enable future choices depending on effective requirements. These basic elements will also be considered for the development of other launchers, in the small or medium size range.
Recent UAS Developments: VTOL HQ-series Shipboard Recovery and Autonomous Monitoring with MicroQuads
NASA Astrophysics Data System (ADS)
Wardell, L. J.; Farber, A. M.; Douglas, J.
2017-12-01
Ocean research would benefit from reliable shipboard launch and recovery of small class UAS. The vertical take-off and landing (VTOL) system reduces equipment footprint without the need for launchers or recovery systems. The HQ-60 (Latitude Engineering) has demonstrated reliable ship take-off and recovery on a 10x10' area on the R/V Falkor (Schmidt Ocean Institute) and other research vessels. The HQ-60 recently set a record for longest time aloft for a VTOL aircraft, flying nearly 22.5 hours non-stop. To support close-range research, autonomous MicroQuads that "perch" in a protective box that also recharges the aircraft and transmits the data is in development. Recent MicroQuad work with developing high-resolution (<1cm) DEMs using on-board cameras has yielded promising results for the use of surface change detection. Recent USDA development targeted erosion monitoring with this system. The latest updates and testing results for both systems will be presented.
2010-08-20
CAPE CANAVERAL, Fla. -- The interior of NASA's new mobile launcher, or ML, support structure is outfitted with solid steel flooring, lights, air conditioning, electrical boxes and sprinkler piping at NASA's Kennedy Space Center in Florida. The 355-foot-tall structure will support NASA's future human spaceflight program. The base of the launcher is lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and a taller rocket. The next step will be to add ground support equipment, such as umbilicals and access arms, for future rocket launches. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Kim Shiflett
2010-08-20
CAPE CANAVERAL, Fla. -- The interior of NASA's new mobile launcher, or ML, support structure is outfitted with solid steel flooring, lights, air conditioning, electrical boxes and sprinkler piping at NASA's Kennedy Space Center in Florida. The 355-foot-tall structure will support NASA's future human spaceflight program. The base of the launcher is lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and a taller rocket. The next step will be to add ground support equipment, such as umbilicals and access arms, for future rocket launches. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Kim Shiflett
Workers in the VAB move sling into place to lift Columbia to mobile launcher
NASA Technical Reports Server (NTRS)
1982-01-01
Workers in the Vehicle Assembly Building (VAB) move a specially-built sling into place to lift Orbiter Columbia from the transfer aisle to the mobile launcher platform (27015); Columbia is lifted from the floor of the VAB transfer aisle (27016).
Advanced concepts. [specific impulse, mass drivers, electromagnetic launchers, and the rail gun
NASA Technical Reports Server (NTRS)
Banks, B. A.
1980-01-01
The relative strengths of those interactions which enable propulsive forces are listed as well as the specific impulse of various propellants. Graphics show the linear synchronous motor of the mass driver, the principle of the direct current electromagnetic launcher, and the characteristics of the rail gun.
Energy stores and switches for rail-launcher systems
NASA Technical Reports Server (NTRS)
Weldon, W. F.; Zowarka, R. C.; Marshall, R. A.
1983-01-01
An overview of existing switch and power supply technology applicable to space launch, a new candidate pulsed power supply for Earth-to-space rail launcher duty, the inverse railgun flux compressor, and a set of switching experiments to study further the feasibility of Earth-to-space launch are discussed.
The Ardennes Campaign Simulation Data Base (ACSDB). Volume 1. Volume 2
1990-02-07
Railway Artillery Battalion RRArtBt Railway Artillery Battery SS Schutzstaffeln (indicates combat elements of SS -- Waffen SS) SSArtBN SS Artillery...34 Rocket Launcher) Battalion VWBty Volkswerfer ("People’s" Rocket Launcher) Battery VTB Volga Tartar Battalion Note: SS = Waffen SS (Schutz Staffeln
University of Maryland-Republic Terrapin Sounding Rocket H121-2681-I(Terrapin) Model on the Launcher
1956-10-21
LAL 95,647 University of Maryland-Republic Terrapin sounding rocket mounted on special launcher, September 21, 1956. Photograph published in A New Dimension Wallops Island Flight Test Range: The First Fifteen Years by Joseph Shortal. A NASA publication. Page 506.
An Engineering Design STEM Project: T-Shirt Launcher
ERIC Educational Resources Information Center
Fantz, Todd D.; Grant, Melva R.
2013-01-01
The article offers information on making technology education students interested in science and mathematics through the use of a T-shirt launcher design project. This project was designed for junior and senior level high school students who have completed or are currently taking physics and precalculus. The project involves designing an…
78 FR 76822 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-19
... missiles, containers, spare and repair parts, support equipment, tools and test equipment, publications and... missiles, 7 Fly-to-Buy TOW2A missiles, containers, spare and repair parts, support equipment, tools and... thermal) for the launcher to track and guide the missile in flight. Guidance commands from the launcher...
Energy stores and switches for rail-launcher systems
NASA Astrophysics Data System (ADS)
Weldon, W. F.; Zowarka, R. C.; Marshall, R. A.
An overview of existing switch and power supply technology applicable to space launch, a new candidate pulsed power supply for Earth-to-space rail launcher duty, the inverse railgun flux compressor, and a set of switching experiments to study further the feasibility of Earth-to-space launch are discussed.
32. DETAIL VIEW OF CAMERA PIT SOUTH OF LAUNCH PAD ...
32. DETAIL VIEW OF CAMERA PIT SOUTH OF LAUNCH PAD WITH CAMERA AIMED AT LAUNCH DECK; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
Dniper duplicate of launch of the first artificial satellite of the Earth
NASA Astrophysics Data System (ADS)
Prisniakov, V. F.; Kavelin, S. S.; Platonov, V. P.
2009-11-01
The report opens little-known page of a history of the space technology, connected with launching of the first Soviet satellite. In the USSR practically ready and spare variant of launch by rocket R12 Kosmos of DB Pivdenne was. This development, became a push for a space direction in Dnipropetrovsk. The idea of creation of the satellite launcher on basis of combat missile was extremely fruitful. Terms and the cost of development were essentially reduced and operation of a space rocket complex became simpler. Paper is describing about the unknown events connected to development of rocket R-12 which on March, 16, 1962 has defined the beginning of the Ukrainian space age after launching of satellite "Kosmos" and about M.K. Tihonravov who has proved a reality of launching of the satellite in the USSR. Since October, 14, 1969 satellite launcher 63C1 started to place in orbit the international satellites of series Interkosmos. For 15 years of its operation, 165 launches have been made of them 143 was successful. Spacecraft under the name Kosmos1 placed in orbit became the founder of huge family of the diverse space vehicles of SDB 586 which number has come nearer to figure 400.
NASA Astrophysics Data System (ADS)
Snicker, A.; Poli, E.; Maj, O.; Guidi, L.; Köhn, A.; Weber, H.; Conway, G. D.; Henderson, M.; Saibene, G.
2018-01-01
We present a numerical investigation of electron cyclotron beams interacting with electron density fluctuations in the ITER 15 MA H-mode scenario. In particular, here we study how the beam from the equatorial launcher, which shall be utilized to influence the sawtooth instability, is affected by the fluctuations. Moreover, we present the theory and first estimates of the power that is scattered from the injected O-mode to a secondary X-mode in the presence of the fluctuations. It is shown that for ITER parameters the scattered power stays within acceptable limits and broadening of the equatorial beams is less than those from the upper launcher.
Three-phase hypervelocity projectile launcher
Fugelso, L. Erik; Langner, Gerald C.; Burns, Kerry L.; Albright, James N.
1994-01-01
A hypervelocity projectile launcher for use in perforating borehole casings provides improved penetration into the surrounding rock structure. The launcher includes a first cylinder of explosive material that defines an axial air-filled cavity, a second cylinder of explosive material defining an axial frustum-shaped cavity abutting and axially aligned with the first cylinder. A pliant washer is located between and axially aligned with the first and second cylinders. The frustum shaped cavity is lined with a metal liner effective to form a projectile when the first and second cylinders are detonated. The washer forms a unique intermediate projectile in advance of the liner projectile and enables the liner projectile to further penetrate into and fracture the adjacent rock structure.
Orion Service Module Umbilical (OSMU) Installation
2017-03-16
A crane lifts the Orion Service Module Umbilical (OSMU) high up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
DART Support for Hurricane Matthew
2016-10-18
A construction trailer damaged by Hurricane Matthew is seen in front of the Mobile Launcher within the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
STS-56 Discovery, OV-103, lifts off from KSC LC Pad 39B into darkness
NASA Technical Reports Server (NTRS)
1993-01-01
STS-56 Discovery, Orbiter Vehicle (OV) 103, lifts off from Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B into the early morning darkness at 1:29 am (Eastern Daylight Time (EDT)). OV-103, atop its external tank (ET) and flanked by solid rocket boosters (SRBs), rises above the mobile launcher platform. Exhaust plumes trail from the SRBs. The glow of the SRB / space shuttle main engine (SSME) firings illuminate the fixed service structure (FSS) tower. Trees are silhouetted against the launch fireworks in the foreground.
GOES-S Atlas V First Stage Booster Lift to Vertical On Stand (LV
2018-01-31
A crane lifts a United Launch Alliance Atlas V first stage into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rocket will be positioned on its launcher to boost the Geostationary Operational Environmental Satellite, or GOES-S. It will be the second in a series of four advanced geostationary weather satellites and will significantly improve the detection and observation of environmental phenomena that directly affect public safety. GOES-S is slated to launch March 1, 2018.
GOES-S Atlas V First Stage Booster Lift to Vertical On Stand (LV
2018-01-31
A crane lifts a United Launch Alliance Atlas V first stage at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rocket will be positioned on its launcher to boost the Geostationary Operational Environmental Satellite, or GOES-S. It will be the second in a series of four advanced geostationary weather satellites and will significantly improve the detection and observation of environmental phenomena that directly affect public safety. GOES-S is slated to launch March 1, 2018.
Air-Cored Linear Induction Motor for Earth-to-Orbit Systems
NASA Technical Reports Server (NTRS)
Zabar, Zivan; Levi, Enrico; Birenbaum, Leo
1996-01-01
The need for lowering the cost of Earth-to-Orbit (ETO) launches has prompted consideration of electromagnetic launchers. A preliminary design based on the experience gained in an advanced type of coilgun and on innovative ideas shows that such a launcher is technically feasible with almost off-the-shelf components.
Analysis of Defense Products Contract Trends, 1990-2014
2015-04-30
contract obligations) are not properly classified under their parent programs. Electronics & Communications Contract obligations for Electronics...Electronics & Communications , Engines & Power Plants, Fuels, Ground Vehicles, Launchers & Munitions, Missiles & Space, Ships, and “Other.”3 This...mostly comprised of platforms and programs related to MDAPs (Clothing & Subsistence, Electronics & Communications , Fuels, Launchers & Munitions, and
2003-09-12
KENNEDY SPACE CENTER, FLA. - A worker sandblasts the surface behind the Mobile Launcher Platform on Launch Pad 39A . Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.
13. Photocopy of drawing of missile launcher from 'Procedures and ...
13. Photocopy of drawing of missile launcher from 'Procedures and Drills for the NIKE Ajax System,' Department of the Army Field Manual, FM-44-80 from Institute for Military History, Carlisle Barracks, Carlisle, PA, 1956 - NIKE Missile Battery PR-79, East Windsor Road south of State Route 101, Foster, Providence County, RI
First AFSWC Javelin Sounding Rocket On Launcher at Wallops Island.
1959-07-07
Air Force Javelin Rocket on Launcher (USAF JV-1) Wallops Model D4-78 L59-5144 First AFSWC Javelin sounding rocket ready for flight test, July 7, 1959. Photograph published in A New Dimension Wallops Island Flight Test Range: The First Fifteen Years by Joseph Shortal. A NASA publication. Page 704.
Note Launchers: Promoting Active Reading of Mathematics Textbooks
ERIC Educational Resources Information Center
Helms, Josh W.; Helms, Kimberly Turner
2010-01-01
Note launchers, an instructor-designed reading guide, model how to select, decide, and focus upon what textbook material is important to learn. Reading guides are specially-designed study aids that can steer students through difficult parts of assigned readings (Bean, 1996) while encouraging advance preparation. As an example of a reading guide,…
Full Moon with Vehicle Assembly Building and Mobile Launcher
2018-02-01
A full Moon sets behind the Vehicle Assembly Building and Mobile Launcher at NASA’s Kennedy Space Center in Florida. At the nation’s premier multi-user spaceport, NASA and its commercial and international partners are looking to return humans to the Moon and beyond utilizing a variety of rockets and capabilities.
Core Stage Forward Skirt Umbilical Installation onto Mobile Laun
2017-06-30
Just north of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the core stage forward skirt umbilical is installed on the mobile launcher. The mobile launcher is designed to support the assembly, testing and check-out of the agency's Space Launch System (SLS) rocket and the Orion spacecraft.
Core Stage Forward Skirt Umbilical Installation onto Mobile Laun
2017-06-30
Just north of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a crane lifts the core stage forward skirt umbilical for installation onto the mobile launcher. The mobile launcher is designed to support the assembly, testing and check-out of the agency's Space Launch System (SLS) rocket and the Orion spacecraft.
Core Stage Forward Skirt Umbilical Installation onto Mobile Laun
2017-06-30
Just north of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, technicians install the core stage forward skirt umbilical on the mobile launcher. The mobile launcher is designed to support the assembly, testing and check-out of the agency's Space Launch System (SLS) rocket and the Orion spacecraft.
Design and development of the redundant launcher stabilization system for the Atlas 2 launch vehicle
NASA Technical Reports Server (NTRS)
Nakamura, M.
1991-01-01
The Launcher Stabilization System (LSS) is a pneumatic/hydraulic ground system used to support an Atlas launch vehicle prior to launch. The redesign and development activity undertaken to achieve an LSS with increased load capacity and a redundant hydraulic system for the Atlas 2 launch vehicle are described.
78 FR 76825 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-19
... RF missiles, 91 TOW-2A Fly-to-Buy missiles, 49 TOW-2B Fly-to-Buy missiles, containers, spare and... missiles, containers, spare and repair parts, support equipment, tools and test equipment, publications and... launcher to track and guide the missile in flight. Guidance commands from the launcher are provided to the...
The European Space Agency's FESTIP initiative
NASA Astrophysics Data System (ADS)
Burleson, Daphne
1998-01-01
In an effort to reduce the cost of access and open up new markets, the European Space Agency has begun a program called Future European Space Transportation Investigations Programme or FESTIP, in which reusable launcher concepts are being studied and developed. The ideal reusable launcher would be comparable to a normal aircraft in that it would be capable of taking off from many possible locations on Earth, enter the desired orbital plane, then accelerate to orbital velocity, release its payload, de-orbit, disperse its kinetic energy and land at the take-off base to be prepared for its next flight following a quick turnaround time. This ideal vehicle would be called the `single-stage-to-orbit reusable rocket launcher' or SSTO-RRL. All space launchers currently in use are staged to orbit and expendable, except the US Space Shuttle, and there is no SSTO-RRL in operation as yet. This paper will discuss the design options being studied by the European Space Agency (ESA) as well as their practical use in serving the space-launch market (FESTIP Workshop 1).
Changing requirements and solutions for unattended ground sensors
NASA Astrophysics Data System (ADS)
Prado, Gervasio; Johnson, Robert
2007-10-01
Unattended Ground Sensors (UGS) were first used to monitor Viet Cong activity along the Ho Chi Minh Trail in the 1960's. In the 1980's, significant improvement in the capabilities of UGS became possible with the development of digital signal processors; this led to their use as fire control devices for smart munitions (for example: the Wide Area Mine) and later to monitor the movements of mobile missile launchers. In these applications, the targets of interest were large military vehicles with strong acoustic, seismic and magnetic signatures. Currently, the requirements imposed by new terrorist threats and illegal border crossings have changed the emphasis to the monitoring of light vehicles and foot traffic. These new requirements have changed the way UGS are used. To improve performance against targets with lower emissions, sensors are used in multi-modal arrangements. Non-imaging sensors (acoustic, seismic, magnetic and passive infrared) are now being used principally as activity sensors to cue imagers and remote cameras. The availability of better imaging technology has made imagers the preferred source of "actionable intelligence". Infrared cameras are now based on un-cooled detector-arrays that have made their application in UGS possible in terms of their cost and power consumption. Visible light imagers are also more sensitive extending their utility well beyond twilight. The imagers are equipped with sophisticated image processing capabilities (image enhancement, moving target detection and tracking, image compression). Various commercial satellite services now provide relatively inexpensive long-range communications and the Internet provides fast worldwide access to the data.
Dan, Michael; Phillips, Alfred; Simonian, Marcus; Flannagan, Scott
2015-06-01
We provide a review of literature on reduction techniques for posterior hip dislocations and present our experience with a novel technique for the reduction of acute posterior hip dislocations in the ED, 'the rocket launcher' technique. We present our results with six patients with prosthetic posterior hip dislocation treated in our rural ED. We recorded patient demographics. The technique involves placing the patient's knee over the shoulder, and holding the lower leg like a 'Rocket Launcher' allow the physician's shoulder to work as a fulcrum, in an ergonomically friendly manner for the reducer. We used Fisher's t-test for cohort analysis between reduction techniques. Of our patients, the mean age was 74 years (range 66 to 85 years). We had a 83% success rate. The one patient who the 'rocket launcher' failed in, was a hemi-arthroplasty patient who also failed all other closed techniques and needed open reduction. When compared with Allis (62% success rate), Whistler (60% success rate) and Captain Morgan (92% success rate) techniques, there was no statistically significant difference in the successfulness of the reduction techniques. There were no neurovascular or periprosthetic complications. We have described a reduction technique for posterior hip dislocations. Placing the patient's knee over the shoulder, and holding the lower leg like a 'Rocket Launcher' allow the physician's shoulder to work as a fulcrum, thus mechanically and ergonomically superior to standard techniques. © 2015 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
Flow structure and unsteadiness in the supersonic wake of a generic space launcher
NASA Astrophysics Data System (ADS)
Schreyer, Anne-Marie; Stephan, Sören; Radespiel, Rolf
2015-11-01
At the junction between the rocket engine and the main body of a classical space launcher, a separation-dominated and highly unstable flow field develops and induces strong wall-pressure oscillations. These can excite structural vibrations detrimental to the launcher. It is desirable to minimize these effects, for which a better understanding of the flow field is required. We study the wake flow of a generic axisymmetric space-launcher model with and without propulsive jet (cold air). Experimental investigations are performed at Mach 2.9 and a Reynolds number ReD = 1 . 3 .106 based on model diameter D. The jet exits the nozzle at Mach 2.5. Velocity measurements by means of Particle Image Velocimetry and mean and unsteady wall-pressure measurements on the main-body base are performed simultaneously. Additionally, we performed hot-wire measurements at selected points in the wake. We can thus observe the evolution of the wake flow along with its spectral content. We describe the mean and turbulent flow topology and evolution of the structures in the wake flow and discuss the origin of characteristic frequencies observed in the pressure signal at the launcher base. The influence of a propulsive jet on the evolution and topology of the wake flow is discussed in detail. The German Research Foundation DFG is gratefully acknowledged for funding this research within the SFB-TR40 ``Technological foundations for the design of thermally and mechanically highly loaded components of future space transportation systems.''
Design of Launcher Towards Spacecraft Comfort: Ariane 6 Objectives
NASA Astrophysics Data System (ADS)
Mourey, Patrick; Lambare, Hadrien; Valbuena, Matias F.
2014-06-01
Preliminary advanced studies were performed recently to select the possible concepts for a launcher that could succeed to Ariane 5. During the end of 2012 Space Ministry Conference, a configuration defining the propellant of the stages and the coarse staging ("PPH") was frozen in order to engage the preliminary selection concept studies. The first phase consisted to select the main features of the architecture in order to go deeper in the different matters or the advanced studies. The concept was selected mid of 2013.During all these phases of the preliminary project, different criteria (such as the recurring cost which is a major one) were used to quote the different concepts, among which the "payload comfort", ie the minimization of the environment generated by the launcher toward the satellites.The minimization of the environment was first expressed in term of objectives in the Mission Requirement Document (MRD) for the different mechanical environment such as quasi-static loads, dynamic loads, acoustics, shocks... Criteria such as usable volume, satellites frequency requirement and interface requirement are also expressed in the MRD.The definition of these different criteria was of course fixed taking benefit from the launcher operator experience based on a long story of dealing with spacecraft-launcher interface issues on Ariane, Soyouz and Vega. The general idea is to target improved or similar levels than those currently applicable for Ariane 5. For some environment for which a special need is anticipated from the potential end users, a special effort is aimed.The preliminary advanced study phase is currently running and has to address specific topics such as the definition of the upper part layout including geometry ofthe fairing, the definition of the launch pad with preliminary ideas to minimize acoustics and blast wave or first calculations on dimensioning dynamic load- cases such as thrust oscillations of the solid rocket motors (SRM).The present paper will give a very preliminary overview of the different topics in relation with these general launcher-spacecraft issues.
NASA Astrophysics Data System (ADS)
Darbos, C.; Henderson, M.; Albajar, F.; Bigelow, T.; Bomcelli, T.; Chavan, R.; Denisov, G.; Farina, D.; Gandini, F.; Heidinger, R.; Goodman, T.; Hogge, J. P.; Kajiwara, K.; Kasugai, A.; Kern, S.; Kobayashi, N.; Oda, Y.; Ramponi, G.; Rao, S. L.; Rasmussen, D.; Rzesnicki, T.; Saibene, G.; Sakamoto, K.; Sauter, O.; Scherer, T.; Strauss, D.; Takahashi, K.; Zohm, H.
2009-11-01
A 26 MW Electron Cyclotron Heating and Current Drive (EC H&CD) system is to be installed for ITER. The main objectives are to provide, start-up assist, central H&CD and control of MHD activity. These are achieved by a combination of two types of launchers, one located in an equatorial port and the second type in four upper ports. The physics applications are partitioned between the two launchers, based on the deposition location and driven current profiles. The equatorial launcher (EL) will access from the plasma axis to mid radius with a relatively broad profile useful for central heating and current drive applications, while the upper launchers (ULs) will access roughly the outer half of the plasma radius with a very narrow peaked profile for the control of the Neoclassical Tearing Modes (NTM) and sawtooth oscillations. The EC power can be switched between launchers on a time scale as needed by the immediate physics requirements. A revision of all injection angles of all launchers is under consideration for increased EC physics capabilities while relaxing the engineering constraints of both the EL and ULs. A series of design reviews are being planned with the five parties (EU, IN, JA, RF, US) procuring the EC system, the EC community and ITER Organization (IO). The review meetings qualify the design and provide an environment for enhancing performances while reducing costs, simplifying interfaces, predicting technology upgrades and commercial availability. In parallel, the test programs for critical components are being supported by IO and performed by the Domestic Agencies (DAs) for minimizing risks. The wide participation of the DAs provides a broad representation from the EC community, with the aim of collecting all expertise in guiding the EC system optimization. Still a strong relationship between IO and the DA is essential for optimizing the design of the EC system and for the installation and commissioning of all ex-vessel components when several teams from several DAs will be involved together in the tests on the ITER site.
Welding at the Kennedy Space Center.
NASA Technical Reports Server (NTRS)
Clautice, W. E.
1973-01-01
Brief description of the nature of the mechanical equipment at a space launch complex from a welding viewpoint. including an identification of the major welding applications used in the construction of this complex. The role played by welding in the ground support equipment is noted, including the welded structures and systems required in the vehicle assembly building, the mobile launchers, transporters, mobile service structure, launch pad and launch site, the propellants system, the pneumatics system, and the environmental control system. The welding processes used at the Kennedy Space Center are reviewed, and a particularly detailed account is given of the design and fabrication of the liquid hydrogen and liquid oxygen storage spheres and piping. Finally, the various methods of testing and inspecting the storage spheres are cited.
The microspace launcher: first step to the fully air-breathing space launcher
NASA Astrophysics Data System (ADS)
Falempin, F.; Bouchez, M.; Calabro, M.
2009-09-01
A possible application for the high-speed air-breathing propulsion is the fully or partially reusable space launcher. Indeed, by combining the high-speed air-breathing propulsion with a conventional rocket engine (combined cycle or combined propulsion system), it should be possible to improve the average installed specific impulse along the ascent trajectory and then make possible more performing launchers and, hopefully, a fully reusable one. During the last 15 years, a lot of system studies have been performed in France on that subject within the framework of different and consecutive programs. Nevertheless, these studies never clearly demonstrated that a space launcher could take advantage of using a combined propulsion system. During last years, the interest to air-breathing propulsion for space application has been revisited. During this review and taking into account technologies development activities already in progress in Europe, clear priorities have been identified regarding a minimum complementary research and technology program addressing specific needs of space launcher application. It was also clearly identified that there is the need to restart system studies taking advantage of recent progress made regarding knowledge, tools, and technology and focusing on more innovative airframe/propulsion system concepts enabling better trade-off between structural efficiency and propulsion system performance. In that field, a fully axisymmetric configuration has been considered for a microspace launcher (10 kg payload). The vehicle is based on a main stage powered by air-breathing propulsion, combined or not with liquid rocket mode. A "kick stage," powered by a solid rocket engine provides the final acceleration. A preliminary design has been performed for different variants: one using a separated booster and a purely air-breathing main stage, a second one using a booster and a main stage combining air-breathing and rocket mode, a third one without separated booster, the main stage ensuring the initial acceleration in liquid rocket mode and a complementary acceleration phase in rocket mode beyond the air-breathing propulsion system operation. Finally, the liquid rocket engine of this third variant can be replaced by a continuous detonation wave rocket engine. The paper describes the main guidelines for the design of these variants and provides their main characteristics. On this basis, the achievable performance, estimated by trajectory simulation, are detailed.
NASA Astrophysics Data System (ADS)
Mi, Yuhe; Huang, Yifan; Li, Lin
2015-08-01
Based on the location technique of beacon photogrammetry, Dual Camera Photogrammetry (DCP) algorithm was used to assist helicopters landing on the ship. In this paper, ZEMAX was used to simulate the two Charge Coupled Device (CCD) cameras imaging four beacons on both sides of the helicopter and output the image to MATLAB. Target coordinate systems, image pixel coordinate systems, world coordinate systems and camera coordinate systems were established respectively. According to the ideal pin-hole imaging model, the rotation matrix and translation vector of the target coordinate systems and the camera coordinate systems could be obtained by using MATLAB to process the image information and calculate the linear equations. On the basis mentioned above, ambient temperature and the positions of the beacons and cameras were changed in ZEMAX to test the accuracy of the DCP algorithm in complex sea status. The numerical simulation shows that in complex sea status, the position measurement accuracy can meet the requirements of the project.
NASA Technical Reports Server (NTRS)
2000-01-01
Langley Research Center's interest in hypersonic flight led to a SBIR contract with IAP Research, Inc. to develop an electromagnetic launcher. The launcher technology was the basis for IAP's Magnepress process which manufactures high-density parts at rapid rates. The powder compaction technology can be used in the automotive industry and has also been sold to ice cream dispenser manufacturers.
2003-09-12
KENNEDY SPACE CENTER, FLA. - Sandblasting begins on the Mobile Launcher Platform on Launch Pad 39A to remove corrosion before repainting. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.
NPS Cubesat Launcher-Lite Sequencer
2009-06-01
AND SUBTITLE NPS Cubesat Launcher-Lite Sequencer 6. AUTHOR(S) Harris, Anthony D. 5. FUNDING NUMBERS RSPXL 7. PERFORMING ORGANIZATION NAME(S) AND...ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY...international nanosatellite manufacturers. On April 28, 2009, Indian Space Research Organization launched 8 nanosatellites on the Polar Satellite Launch
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-12
... pipeline 50 feet offset from the abandoned segment. In addition, Northwest proposes to remove a pig\\1\\ launcher, install two new pig launchers and one pig receiver, and upgrade miscellaneous aboveground... south Seattle market area. \\1\\ A ``pig'' is a tool that the pipeline company inserts into and pushes...
Orion Service Module Umbilical (OSMU) Installation on Mobile Launcher (ML)
2017-03-13
Cranes and rigging are being used to lift the bracket for the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower. The tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins
2017-03-13
Preparations are underway to lift the bracket for the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Installation
2017-03-16
A crane and rigging are used to lift the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Installation
2017-03-16
Preparations are underway to lift the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Installation
2017-03-16
Seeming to hang in midair, the Orion Service Module Umbilical (OSMU) is lifted high up by crane for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Installation
2017-03-16
A crane and rigging are used to position the Orion Service Module Umbilical (OSMU) for installation high up on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins
2017-03-13
A crane positions the bracket for the Orion Service Module Umbilical (OSMU) for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Installation
2017-03-16
A crane and rigging are used to lift the Orion Service Module Umbilical (OSMU) high up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins
2017-03-13
A crane lifts the bracket for the Orion Service Module Umbilical (OSMU) high up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
ICPSU Install onto Mobile Launcher
2018-03-16
A heavy-lift crane slowly lifts the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) high up for installation on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
ICPSU Install onto Mobile Launcher
2018-03-16
A crane and rigging lines are used to install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) high up on the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
ICPSU Install onto Mobile Launcher - Preps for Lift
2018-03-15
Construction workers with JP Donovan assist with preparations to lift and install the Interim Cryogenic Propulsion Stage Umbilical on the tower of the mobile launcher at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
ICPSU Install onto Mobile Launcher
2018-03-16
Construction workers with JP Donovan install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) at about the 240-foot-level of the mobile launcher (ML) tower at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
ICPSU Install onto Mobile Launcher
2018-03-16
A heavy-lift crane slowly lifts the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) up for installation on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
Experimental launcher facility - ELF-I: Design and operation
NASA Astrophysics Data System (ADS)
Deis, D. W.; Ross, D. P.
1982-01-01
In order to investigate the general area of ultra-high-current density, high-velocity sliding contacts as applied to electromagnetic launcher armatures, a small experimental launcher, ELF-I, has been developed, and preliminary experiments have been performed. The system uses a 36 kJ, 5 kV capacitor bank as a primary pulse power source. When used in conjunction with a 5-microhenry pulse conditioning coil, a 100-kA peak current and 10-ms-wide pulse is obtained. A three-station 150 kV flash X-ray system is operational for obtaining in-bore photographs of the projectiles. Experimental results obtained for both metal and plasma armatures at sliding velocities of up to 1 km/s are discussed with emphasis on armature-rail interactions.
Low-complexity camera digital signal imaging for video document projection system
NASA Astrophysics Data System (ADS)
Hsia, Shih-Chang; Tsai, Po-Shien
2011-04-01
We present high-performance and low-complexity algorithms for real-time camera imaging applications. The main functions of the proposed camera digital signal processing (DSP) involve color interpolation, white balance, adaptive binary processing, auto gain control, and edge and color enhancement for video projection systems. A series of simulations demonstrate that the proposed method can achieve good image quality while keeping computation cost and memory requirements low. On the basis of the proposed algorithms, the cost-effective hardware core is developed using Verilog HDL. The prototype chip has been verified with one low-cost programmable device. The real-time camera system can achieve 1270 × 792 resolution with the combination of extra components and can demonstrate each DSP function.
Laser Transformation Hardening of Firing Zone Cutout Cams.
1981-06-01
bath nitriding to case harden firing zone cutout cams for the Mk 10 Guided Missile Launcher System (GMLS). These cams, machined of 4340 steel ...salt bath nitriding to case harden firing zone cutout cams for the Mk 10 Guided Missile Launcher System (GMLS). These cams, machined of 4340 steel ...Patterns ........ ................ 8 9 Laser Beam Step Pattern ...... .................. .. 10 10 Hardness Profile, 4340 Steel
Training Effectiveness and Cost Iterative Technique (TECIT). Volume 2. Cost Effectiveness Analysis
1988-07-01
Moving Tank in a Field Exercise A The task cluster identified as tank commander’s station/tank gunnery and the sub-task of firing an M250 grenade launcher...Firing Procedures, Task Number 171-126-1028. I OBJECTIVE: Given an Ml tank with crew, loaded M250 I grenade launcher, the commander’s station powered up
2004-09-01
Required> </Equipment> <Equipment code="L44680"> <Description>LAUNCHER GRENADE SMOKE: SCREENING RP M250 </Description> <Required...EquipmentPiecesOnHand> </UnitEquipment> <UnitEquipment> <EquipmentDescription>LAUNCHER GRENADE SMOKE: SCREENING RP M250 </EquipmentDescription
ICPSU Install at Mobile Launcher
2018-03-14
A colorful sunrise serves as the backdrop for the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. Several launch umbilicals have been installed on the ML tower. Exploration Ground Systems is overseeing installation of umbilicals and launch accessories on the ML to prepare for the first integrated test flight of the Orion spacecraft on the agency's Space Launch System rocket on Exploration Mission-1.
Dr. Wernher Von Braun near the mobile launcher.
NASA Technical Reports Server (NTRS)
1999-01-01
Dr. George Mueller, NASA associate administrator for manned space flight, and Dr. Wernher Von Braun (right), director of the Marshall Space Flight Center, are seen near the mobile launcher carrying a 363 foot tall Saturn V space launch vehicle as the rocket is rolled from the vehicle assembly building at KSC for its three mile trip to the launch pad.
Electromagnetic Meissner-Effect Launcher
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
1990-01-01
Proposed electromagnetic Meissner-effect launching apparatus differs from previous electromagnetic launchers; no need for electromagnet coil on projectile. Result, no need for brush contacts and high-voltage commutation equipment to supply current directly to projectile coil, or for pulse circuitry to induce current in projectile coil if brush contacts not used. Compresses magnetic field surrounding rear surface of projectile, creating gradient of magnetic pressure pushing projectile forward.
Running ANSYS Fluent on the WinHPC System | High-Performance Computing |
. If you don't have one, see WinHPC system user basics. Check License Use Status Start > All Jason Lustbader. Run Using Fluent Launcher Start Fluent launcher by opening: Start > All Programs > . Available node groups can be found from HPC Job Manager. Start > All Programs > Microsoft HPC Pack
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-14
... consist of the following facilities: Approximately 8.9 miles of 16-inch-diameter pipeline; One pig\\1\\ launcher assembly; and \\1\\ A pipeline ``pig'' is a device designed to internally clean or inspect the pipeline. A pig launcher/receiver is an aboveground facility where pigs are inserted or retrieved from the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-16
... protection regulation at two existing M&R stations; Installation of three pig launchers and two pig receivers, relocation of four pig receivers, and removal of two pig launchers; Installation of four mainline and three... to accommodate a temporary pig receiver. The draft EIS has been placed in the public files of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-19
... are currently exposed, which would be removed. Questar would also construct a pig launcher/receiver \\1\\ facility at its new Mainline 103/68 junction. \\1\\ A pipeline ``pig'' is a device used to clean or inspect the pipeline. A pig launcher/receiver is an aboveground facility where pigs are inserted or retrieved...
Modeling the capillary discharge of an electrothermal (ET) launcher
NASA Astrophysics Data System (ADS)
Least, Travis
Over the past few decades, different branches of the US Department of Defense (DoD) have invested at improving the field ability of electromagnetic launchers. One such focus has been on achieving hypervelocity launch velocities in excess of 7 km/s for direct launch to space applications [1]. It has been shown that pre-injection is required for this to be achieved. One method of pre-injection which has promise involves using an electro-thermal (ET) due to its ability to achieve the desired velocities with a minimal amount of hot plasma injected into the launcher behind the projectile. Despite the demonstration of pre-injection using this method, polymer ablation is not very well known and this makes it challenging to predict how the system will behave for a given input of electrical power. In this work, the rate of ablation has been studied and predicted using different models to generate the best possible characteristic curve. [1] - Wetz, David A., Francis Stefani, Jerald V. Parker, and Ian R. McNab. "Advancements in the Development of a Plasma-Driven Electromagnetic Launcher." IEEE TRANSACTIONS ON MAGNETICS 45.1 (2009): 495--500. IEEE Xplore. Web. 18 Aug. 2012.
Traveling-wave induction launchers
NASA Technical Reports Server (NTRS)
Elliott, David G.
1989-01-01
An analysis of traveling-wave induction launchers shows that induction is a feasible method of producing armature current and that efficient accelerators can be built without sliding contacts or arcs. In a traveling-wave induction launcher the armature current is induced by a slip speed between the armature and a traveling magnetic field. At 9 m/s slip speed a 9 kg projectile with an aluminum armature weighing 25 percent of the total mass can be accelerated to 3000 m/s in a 5 m-long barrel with a total ohmic loss in the barrel coils and armature of 4 percent of the launch kinetic energy and with an average armature temperature rise of 220 deg C, but a peak excitation frequency of 8600 Hz is required. With a 2 kg launch mass the ohmic loss is 7 percent. A launcher system optimized for rotating generators would have a peak frequency of 4850 Hz; with an aluminum armature weighing 33 percent of the launch mass and a slip speed of 30 m/s the total ohmic loss in the generators, cables, and accelerator would be 43 percent of the launch kinetic energy, and the average armature temperature rise would be 510 deg C.
Optimized use of superconducting magnetic energy storage for electromagnetic rail launcher powering
NASA Astrophysics Data System (ADS)
Badel, Arnaud; Tixador, Pascal; Arniet, Michel
2012-01-01
Electromagnetic rail launchers (EMRLs) require very high currents, from hundreds of kA to several MA. They are usually powered by capacitors. The use of superconducting magnetic energy storage (SMES) in the supply chain of an EMRL is investigated, as an energy buffer and as direct powering source. Simulations of direct powering are conducted to quantify the benefits of this method in terms of required primary energy. In order to enhance further the benefits of SMES powering, a novel integration concept is proposed, the superconducting self-supplied electromagnetic launcher (S3EL). In the S3EL, the SMES is used as a power supply for the EMRL but its coil serves also as an additional source of magnetic flux density, in order to increase the thrust (or reduce the required current for a given thrust). Optimization principles for this new concept are presented. Simulations based on the characteristics of an existing launcher demonstrate that the required current could be reduced by a factor of seven. Realizing such devices with HTS cables should be possible in the near future, especially if the S3EL concept is used in combination with the XRAM principle, allowing current multiplication.
Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins
2017-03-13
Crane specialists monitor the progress as the bracket for the Orion Service Module Umbilical (OSMU) is lifted up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Installation
2017-03-16
Construction workers assist as a crane and rigging are used to position the Orion Service Module Umbilical (OSMU) for installation high up on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Vehicle Support Posts Installation onto Mobile Launcher
2017-05-11
Several heavy lift cranes surround the mobile launcher at NASA's Kennedy Space Center in Florida. Preparations are underway to lift a vehicle support post up and onto the mobile launcher for installation on the deck. A total of eight support posts will be installed to support the load of the Space Launch System's (SLS) solid rocket boosters, with four posts for each of the boosters. The support posts are about five feet tall and each weigh about 10,000 pounds. The posts will structurally support the SLS rocket through T-0 and liftoff, and will drop down before vehicle liftoff to avoid contact with the flight hardware. The Ground Systems Development and Operations Program is overseeing installation of the support posts to prepare for the launch of the Orion spacecraft atop the SLS rocket.
Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins
2017-03-13
Crane specialists monitor the progress as the bracket for the Orion Service Module Umbilical (OSMU) is lifted high up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guilhem, D.; Achard, J.; Bertrand, B.
2009-11-26
The design and the fabrication of a new Lower Hybrid (LH) actively cooled antenna based on the passive active concept is a part of the CIMES project (Components for the Injection of Mater and Energy in Steady-state). The major objectives of Tore-Supra program is to achieve 1000 s pulses with this LH launcher, by coupling routinely >3 MW of LH wave at 3.7 GHz to the plasma with a parallel index n{sub ||} = 1.7 {sup {+-}}{sup 0.2}. The launcher is on its way to achieve its validation tests--low power Radio Frequency (RF) measurements, vacuum and hydraulic leak tests--and willmore » be installed and commissioned on plasma during the fall of 2009.« less
ICPSU Install onto Mobile Launcher
2018-03-16
The mobile launcher (ML) is reflected in the sunglasses of a construction worker with JP Donovan at NASA's Kennedy Space Center in Florida. A crane is lifting the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) up for installation on the tower of the ML. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
ICPSU Install onto Mobile Launcher - Preps for Lift
2018-03-15
A construction worker with JP Donovan helps prepare the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) for installation high up on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical will be located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.
CAMERA: An integrated strategy for compound spectra extraction and annotation of LC/MS data sets
Kuhl, Carsten; Tautenhahn, Ralf; Böttcher, Christoph; Larson, Tony R.; Neumann, Steffen
2013-01-01
Liquid chromatography coupled to mass spectrometry is routinely used for metabolomics experiments. In contrast to the fairly routine and automated data acquisition steps, subsequent compound annotation and identification require extensive manual analysis and thus form a major bottle neck in data interpretation. Here we present CAMERA, a Bioconductor package integrating algorithms to extract compound spectra, annotate isotope and adduct peaks, and propose the accurate compound mass even in highly complex data. To evaluate the algorithms, we compared the annotation of CAMERA against a manually defined annotation for a mixture of known compounds spiked into a complex matrix at different concentrations. CAMERA successfully extracted accurate masses for 89.7% and 90.3% of the annotatable compounds in positive and negative ion mode, respectively. Furthermore, we present a novel annotation approach that combines spectral information of data acquired in opposite ion modes to further improve the annotation rate. We demonstrate the utility of CAMERA in two different, easily adoptable plant metabolomics experiments, where the application of CAMERA drastically reduced the amount of manual analysis. PMID:22111785
NASA Technical Reports Server (NTRS)
Sinha, Neeraj; Brinckman, Kevin; Jansen, Bernard; Seiner, John
2011-01-01
A method was developed of obtaining propulsive base flow data in both hot and cold jet environments, at Mach numbers and altitude of relevance to NASA launcher designs. The base flow data was used to perform computational fluid dynamics (CFD) turbulence model assessments of base flow predictive capabilities in order to provide increased confidence in base thermal and pressure load predictions obtained from computational modeling efforts. Predictive CFD analyses were used in the design of the experiments, available propulsive models were used to reduce program costs and increase success, and a wind tunnel facility was used. The data obtained allowed assessment of CFD/turbulence models in a complex flow environment, working within a building-block procedure to validation, where cold, non-reacting test data was first used for validation, followed by more complex reacting base flow validation.
A feasibility study of a hypersonic real-gas facility
NASA Technical Reports Server (NTRS)
Gully, J. H.; Driga, M. D.; Weldon, W. F.
1987-01-01
A four month feasibility study of a hypersonic real-gas free flight test facility for NASA Langley Research Center (LARC) was performed. The feasibility of using a high-energy electromagnetic launcher (EML) to accelerate complex models (lifting and nonlifting) in the hypersonic, real-gas facility was examined. Issues addressed include: design and performance of the accelerator; design and performance of the power supply; design and operation of the sabot and payload during acceleration and separation; effects of high current, magnetic fields, temperature, and stress on the sabot and payload; and survivability of payload instrumentation during acceleration, flight, and soft catch.
1980-02-06
Space Shuttle Orbiter Enterprise mated to an external fuel tank and two solid rocket boosters on top of a Mobil Launcher Platform, undergoes fit and function checks at the launch site for the first Space Shuttle at Launch Complex 39's Pad A. The dummy Space Shuttle was assembled in the Vehicle Assembly Building and rolled out to the launch site on May 1 as part of an exercise to make certain shuttle elements are compatible with the Spaceport's assembly and launch facilities and ground support equipment, and help clear the way for the launch of the Space Shuttle Orbiter Columbia.
1980-02-06
SPACE SHUTTLE ORBITER ENTERPRISE MATED TO AN EXTERNAL FUEL TANK AND TWO SOLID ROCKET BOOSTERS ON TOP OF A MOBIL LAUNCHER PLATFORM, UNDERGOES FIT AND FUNCTION CHECKS AT THE LAUNCH SITE FOR THE FIRST SPACE SHUTTLE AT LAUNCH COMPLEX 39'S PAD A. THE DUMMY SPACE SHUTTLE WAS ASSEMBLED IN THE VEHICLE ASSEMBLY BUILDING AND ROLLED OUT TO THE LAUNCH SITE ON MAY 1 AS PART OF AN EXERCISE TO MAKE CERTAIN SHUTTLE ELEMENTS ARE COMPATIBLE WITH THE SPACEPORT'S ASSEMBLY AND LAUNCH FACILITIES AND GROUND SUPPORT EQUIPMENT, AND HELP CLEAR THE WAY FOR THE LAUNCH OF THE SPACE SHUTTLE ORBITER COLUMBIA.
1980-02-06
SPACE SHUTTLE ORBITER ENTERPRISE MATED TO AN EXTERNAL FUEL TANK AND TWO SOLID ROCKET BOOSTERS ON TOP OF A MOBIL LAUNCHER PLATFORM, UNDERGOES FIT AND FUNCTION CHECKS AT THE LAUNCH SITE FOR THE FIRST SPACE SHUTTLE AT LAUNCH COMPLEX 39'S PAD A. THE DUMMY SPACE SHUTTLE WAS ASSEMBLED IN THE VEHICLE ASSEMBLY BUILDING AND ROLLED OUT TO THE LAUNCH SITE ON MAY 1 AS PART OF AN EXERCISE TO MAKE CERTAIN SHUTTLE ELEMENTS ARE COMPATIBLE WITH THE SPACEPORT'S ASSEMBLY AND LAUNCH FACILITIES AND GROUND SUPPORT EQUIPMENT, AND HELP CLEAR THE WAY FOR THE LAUNCH OF THE SPACE SHUTTLE ORBITER COLUMBIA.
DART Support for Hurricane Matthew
2016-10-18
A damaged construction trailer and several pieces of associated debris, aftermath of Hurricane Matthew, are seen in front of the Mobile Launcher in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
GOES-S Atlas V First Stage Booster Lift to Vertical On Stand (LV
2018-01-31
A technician adjusts a crane that will lift a United Launch Alliance Atlas V first stage at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rocket will be positioned on its launcher to boost the Geostationary Operational Environmental Satellite, or GOES-S. It will be the second in a series of four advanced geostationary weather satellites and will significantly improve the detection and observation of environmental phenomena that directly affect public safety. GOES-S is slated to launch March 1, 2018.
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians begin the work to secure a new engine and generator inside crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, new engines and generators have arrived for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians begin the work to secure a new engine and generator inside crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians prepare an Apollo era diesel engine inside crawler-transporter 2 CT-2) for removal. New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a new engine and generator have arrived for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians prepare a new engine and generator for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
DART Support for Hurricane Matthew
2016-10-18
A damaged construction trailer and several pieces of associated debris, aftermath of Hurricane Matthew, are seen near the Mobile Launcher in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
DART Support for Hurricane Matthew
2016-10-18
Damaged construction trailers and several pieces of associated debris, aftermath of Hurricane Matthew, are seen in front of the Mobile Launcher in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
ESC-B: The Cryogenic Upper Stage for Europe's Heavy Lift Launcher Ariane 5ECB
NASA Astrophysics Data System (ADS)
Juhls, A.
2002-01-01
-A. Juhls, Astrium GmbH -M. Lepelletier, Snecma Moteurs -JM. Bahu, CNES -C. Poincheval, CNES. In the year 1998 the European ministerial council decided to initiate the Ariane 5 Plus programme in order to upgrade the European heavy lift launcher Ariane 5. The market was changing more rapidly than predicted showing steadily growing satellite mass and the demand for flexible missions while strong competitors were intensifying their preparations to enter the commercial business. The answer was to improve the Ariane 5 launcher by modifying the cryogenic first (or lower ?) stage and the solid boosters and by introducing two cryogenic upper stages in two steps: In order to cope with the short term need of a significant growth of GTO lift capacity up to 10 t the first denoted ESC-A shall enter commercial service in 2002. Four years later a more powerful second version shall take over enabling a GTO performance of 12 t and providing versatile mission capability. The paper will focus on this new cryogenic upper stage denoted ESC-B giving first a general description of main characteristics and constituents. The article will highlight different challenging aspects of the ESC-B development: Ambitious economical conditions regarding both limited development budgets and the strong need to reduce production cost require improved working methods and an adjustment of the conventional development logic, in particular regarding new verification methods. Furthermore Europe is now facing the complex combination of versatile mission capability together with a powerful cryogenic upper stage. The paper will present the approach to define reasonable mission scenarios in order to cover customer demands while avoiding too stringent system requirements. Along with VINCI, Europe's first expander cycle type engine featuring an extendable nozzle dedicated subsystems will be described which allow 4 re-ignitions and 6 hours of ballistic flight. The paper concludes with the summary of the development planning aiming at a first launch of ESC-B in 2006.
New life for expendable launchers
NASA Astrophysics Data System (ADS)
Lopez, Ramon L.; Waskul, Greg
The U.S. commercial expendable launch vehicle (ELV) industry is examined. The use of Titan, Delta, Atlas-Centaur, and Liberty boosters to launch domestic and foreign commercial payloads is analyzed. The ELV commercialization agreement which explains the division of liability between the parties is described. Consideration is given to the competition to the U.S. industry from Europe's Ariane, China's Long March, and the Soviet Proton launchers.
Nano-Launcher Technologies, Approaches, and Life Cycle Assessment. Phase II
NASA Technical Reports Server (NTRS)
Zapata, Edgar
2014-01-01
Assist in understanding NASA technology and investment approaches, and other driving factors, necessary for enabling dedicated nano-launchers by industry at a cost and flight rate that (1) could support and be supported by an emerging nano-satellite market and (2) would benefit NASAs needs. Develop life-cycle cost, performance and other NASA analysis tools or models required to understand issues, drivers and challenges.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... Mainline 103; and Construct a pig launcher/receiver \\1\\ at the new Mainline 103/68 junction. \\1\\ A pipeline ``pig'' is a device used to clean or inspect the pipeline. A pig launcher/receiver is an aboveground facility where pigs are inserted or retrieved from the pipeline. The FERC staff mailed copies of the EA to...
NASA Technical Reports Server (NTRS)
Kuznetsov, Stephen; Marriott, Darin
2008-01-01
Advances in ultra high speed linear induction electromagnetic launchers over the past decade have focused on magnetic compensation of the exit and entry-edge transient flux wave to produce efficient and compact linear electric machinery. The paper discusses two approaches to edge compensation in long-stator induction catapults with typical end speeds of 150 to 1,500 m/s. In classical linear induction machines, the exit-edge effect is manifest as two auxiliary traveling waves that produce a magnetic drag on the projectile and a loss of magnetic flux over the main surface of the machine. In the new design for the Stator Compensated Induction Machine (SCIM) high velocity launcher, the exit-edge effect is nulled by a dual wavelength machine or alternately the airgap flux is peaked at a location prior to the exit edge. A four (4) stage LIM catapult is presently being constructed for 180 m/s end speed operation using double-sided longitudinal flux machines. Advanced exit and entry edge compensation is being used to maximize system efficiency, and minimize stray heating of the reaction armature. Each stage will output approximately 60 kN of force and produce over 500 G s of acceleration on the armature. The advantage of this design is there is no ablation to the projectile and no sliding contacts, allowing repeated firing of the launcher without maintenance of any sort. The paper shows results of a parametric study for 500 m/s and 1,500 m/s linear induction launchers incorporating two of the latest compensation techniques for an air-core stator primary and an iron-core primary winding. Typical thrust densities for these machines are in the range of 150 kN/sq.m. to 225 kN/sq.m. and these compete favorably with permanent magnet linear synchronous machines. The operational advantages of the high speed SCIM launcher are shown by eliminating the need for pole-angle position sensors as would be required by synchronous systems. The stator power factor is also improved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preynas, M.; Laqua, H. P.; Marsen, S.
The Wendelstein 7-X stellarator is a large nuclear fusion device based at Max-Planck-Institut für Plasmaphysik in Greifswald in Germany. The main plasma heating system for steady state operation in W7-X is electron cyclotron resonance heating (ECRH). During operation, part of plama facing components will be directly heated by the non-absorbed power of 1 MW rf beams of ECRH. In order to avoid damages of such components made of graphite tiles during the first operational phase, a near infra-red video system has been developed as a protective diagnostic for safe and secure ECRH operation. Both the mechanical design housing the cameramore » and the optical system are very flexible and respect the requirements of steady state operation. The full system including data acquisition and control system has been successfully tested in the vacuum vessel, including on-line visualization and data storage of the four cameras equipping the ECRH equatorial launchers of W7-X.« less
Building, north side (original front), detail of original entrance. Camera ...
Building, north side (original front), detail of original entrance. Camera facing south - Naval Supply Center, Broadway Complex, Administration Storehouse, 911 West Broadway, San Diego, San Diego County, CA
Traffic Sign Recognition with Invariance to Lighting in Dual-Focal Active Camera System
NASA Astrophysics Data System (ADS)
Gu, Yanlei; Panahpour Tehrani, Mehrdad; Yendo, Tomohiro; Fujii, Toshiaki; Tanimoto, Masayuki
In this paper, we present an automatic vision-based traffic sign recognition system, which can detect and classify traffic signs at long distance under different lighting conditions. To realize this purpose, the traffic sign recognition is developed in an originally proposed dual-focal active camera system. In this system, a telephoto camera is equipped as an assistant of a wide angle camera. The telephoto camera can capture a high accuracy image for an object of interest in the view field of the wide angle camera. The image from the telephoto camera provides enough information for recognition when the accuracy of traffic sign is low from the wide angle camera. In the proposed system, the traffic sign detection and classification are processed separately for different images from the wide angle camera and telephoto camera. Besides, in order to detect traffic sign from complex background in different lighting conditions, we propose a type of color transformation which is invariant to light changing. This color transformation is conducted to highlight the pattern of traffic signs by reducing the complexity of background. Based on the color transformation, a multi-resolution detector with cascade mode is trained and used to locate traffic signs at low resolution in the image from the wide angle camera. After detection, the system actively captures a high accuracy image of each detected traffic sign by controlling the direction and exposure time of the telephoto camera based on the information from the wide angle camera. Moreover, in classification, a hierarchical classifier is constructed and used to recognize the detected traffic signs in the high accuracy image from the telephoto camera. Finally, based on the proposed system, a set of experiments in the domain of traffic sign recognition is presented. The experimental results demonstrate that the proposed system can effectively recognize traffic signs at low resolution in different lighting conditions.
Dynamic Load Predictions for Launchers Using Extra-Large Eddy Simulations X-Les
NASA Astrophysics Data System (ADS)
Maseland, J. E. J.; Soemarwoto, B. I.; Kok, J. C.
2005-02-01
Flow-induced unsteady loads can have a strong impact on performance and flight characteristics of aerospace vehicles and therefore play a crucial role in their design and operation. Complementary to costly flight tests and delicate wind-tunnel experiments, unsteady loads can be calculated using time-accurate Computational Fluid Dynamics. A capability to accurately predict the dynamic loads on aerospace structures at flight Reynolds numbers can be of great value for the design and analysis of aerospace vehicles. Advanced space launchers are subject to dynamic loads in the base region during the ascent to space. In particular the engine and nozzle experience aerodynamic pressure fluctuations resulting from massive flow separations. Understanding these phenomena is essential for performance enhancements for future launchers which operate a larger nozzle. A new hybrid RANS-LES turbulence modelling approach termed eXtra-Large Eddy Simulations (X-LES) holds the promise to capture the flow structures associated with massive separations and enables the prediction of the broad-band spectrum of dynamic loads. This type of method has become a focal point, reducing the cost of full LES, driven by the demand for their applicability in an industrial environment. The industrial feasibility of X-LES simulations is demonstrated by computing the unsteady aerodynamic loads on the main-engine nozzle of a generic space launcher configuration. The potential to calculate the dynamic loads is qualitatively assessed for transonic flow conditions in a comparison to wind-tunnel experiments. In terms of turn-around-times, X-LES computations are already feasible within the time-frames of the development process to support the structural design. Key words: massive separated flows; buffet loads; nozzle vibrations; space launchers; time-accurate CFD; composite RANS-LES formulation.
Smith, R F; Wiese, B A; Wojzynski, M K; Davison, D B; Worley, K C
1996-05-01
The BCM Search Launcher is an integrated set of World Wide Web (WWW) pages that organize molecular biology-related search and analysis services available on the WWW by function, and provide a single point of entry for related searches. The Protein Sequence Search Page, for example, provides a single sequence entry form for submitting sequences to WWW servers that offer remote access to a variety of different protein sequence search tools, including BLAST, FASTA, Smith-Waterman, BEAUTY, PROSITE, and BLOCKS searches. Other Launch pages provide access to (1) nucleic acid sequence searches, (2) multiple and pair-wise sequence alignments, (3) gene feature searches, (4) protein secondary structure prediction, and (5) miscellaneous sequence utilities (e.g., six-frame translation). The BCM Search Launcher also provides a mechanism to extend the utility of other WWW services by adding supplementary hypertext links to results returned by remote servers. For example, links to the NCBI's Entrez data base and to the Sequence Retrieval System (SRS) are added to search results returned by the NCBI's WWW BLAST server. These links provide easy access to auxiliary information, such as Medline abstracts, that can be extremely helpful when analyzing BLAST data base hits. For new or infrequent users of sequence data base search tools, we have preset the default search parameters to provide the most informative first-pass sequence analysis possible. We have also developed a batch client interface for Unix and Macintosh computers that allows multiple input sequences to be searched automatically as a background task, with the results returned as individual HTML documents directly to the user's system. The BCM Search Launcher and batch client are available on the WWW at URL http:@gc.bcm.tmc.edu:8088/search-launcher.html.
a Prompt Methodology to Georeference Complex Hypogea Environments
NASA Astrophysics Data System (ADS)
Troisi, S.; Baiocchi, V.; Del Pizzo, S.; Giannone, F.
2017-02-01
Actually complex underground structures and facilities occupy a wide space in our cities, most of them are often unsurveyed; cable duct, drainage system are not exception. Furthermore, several inspection operations are performed in critical air condition, that do not allow or make more difficult a conventional survey. In this scenario a prompt methodology to survey and georeferencing such facilities is often indispensable. A visual based approach was proposed in this paper; such methodology provides a 3D model of the environment and the path followed by the camera using the conventional photogrammetric/Structure from motion software tools. The key-role is played by the lens camera; indeed, a fisheye system was employed to obtain a very wide field of view (FOV) and therefore high overlapping among the frames. The camera geometry is in according to a forward motion along the axis camera. Consequently, to avoid instability of bundle adjustment algorithm a preliminary calibration of camera was carried out. A specific case study was reported and the accuracy achieved.
LOFT complex in 1975 awaits renewed mission. Aerial view. Camera ...
LOFT complex in 1975 awaits renewed mission. Aerial view. Camera facing southwesterly. Left to right: stack, entry building (TAN-624), door shroud, duct shroud and filter hatches, dome (painted white), pre-amp building, equipment and piping building, shielded control room (TAN-630), airplane hangar (TAN-629). Date: 1975. INEEL negative no. 75-3690 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Improving the color fidelity of cameras for advanced television systems
NASA Astrophysics Data System (ADS)
Kollarits, Richard V.; Gibbon, David C.
1992-08-01
In this paper we compare the accuracy of the color information obtained from television cameras using three and five wavelength bands. This comparison is based on real digital camera data. The cameras are treated as colorimeters whose characteristics are not linked to that of the display. The color matrices for both cameras were obtained by identical optimization procedures that minimized the color error The color error for the five band camera is 2. 5 times smaller than that obtained from the three band camera. Visual comparison of color matches on a characterized color monitor indicate that the five band camera is capable of color measurements that produce no significant visual error on the display. Because the outputs from the five band camera are reduced to the normal three channels conventionally used for display there need be no increase in signal handling complexity outside the camera. Likewise it is possible to construct a five band camera using only three sensors as in conventional cameras. The principal drawback of the five band camera is the reduction in effective camera sensitivity by about 3/4 of an I stop. 1.
Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins
2017-03-13
Construction workers and crane specialists high up on the mobile launcher tower monitor the progress as a crane positions the bracket for the Orion Service Module Umbilical (OSMU) for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Contextual view of building 926 west elevation; camera facing east. ...
Contextual view of building 926 west elevation; camera facing east. - Mare Island Naval Shipyard, Wilderman Hall, Johnson Lane, north side adjacent to (south of) Hospital Complex, Vallejo, Solano County, CA
Detail of main hall porch on east elevation; camera facing ...
Detail of main hall porch on east elevation; camera facing west. - Mare Island Naval Shipyard, Wilderman Hall, Johnson Lane, north side adjacent to (south of) Hospital Complex, Vallejo, Solano County, CA
Development status of Japan's new launch vehicle: H-2 rocket
NASA Astrophysics Data System (ADS)
Miyazawa, M.; Shibato, Y.; Fukushima, Y.
1989-08-01
The status of design and development of the H-2 launch vehicle is described. Diagrams and specifications of the launcher are provided. The timetable for the developmental program is presented. The first and second stages are described and shown in diagram form. Different payload fairing diagrams are shown. Launch facilities and launch operations are described. The first test flight of the H-2 launcher is due for 1992.
Electromagnetic Launchers and Guns. Phase 1
1980-06-01
a high-speed maglev transportation system based on a linear synchronous motor (1,2,3). In 1975 Gerard K. O’Neill of Princeton University...fact that the very important railgun- homopolar launcher technology is already being pursued at Westinghouse and university of Texas, Austin. The...shown in Fig. 14 on the following page. There are three comparable options for energy storage: an engine-driven homopolar generator followed by an
2008-05-02
CAPE CANAVERAL, Fla. -- Artist's rendering of the empty Constellation Program's mobile launcher platform planned for the Ares I rocket. The tower of the mobile launcher will have multiple platforms for personnel access and will be approximately 390 feet tall. The tower will be used in the assembly, testing and servicing of the Ares rockets at Kennedy and will also transport the Ares rockets to the launch pad and provide ground support for launches.
2008-05-02
CAPE CANAVERAL, Fla. -- Artist's rendering of the Constellation Program's mobile launcher platform with an Ares I rocket attached. The tower of the mobile launcher will have multiple platforms for personnel access and will be approximately 390 feet tall. The tower will be used in the assembly, testing and servicing of the Ares rockets at Kennedy and will also transport the Ares rockets to the launch pad and provide ground support for launches.
Effect Of Resistance Modification On EML Capacitor Bank Performance
2009-06-01
EFFECT OF RESISTANCE MODIFICATION ON EML CAPACITOR BANK PERFORMANCE* B. M. Huhman, J. M. Neri, T. L. Lockner1 Plasma Physics Division, Naval...development of an electromagnetic launcher ( EML ) for surface-fire support and other missions [1]. The Naval Research Laboratory has initiated a...develop and test materials for the study of barrel lifetime in electromagnetic launchers ( EML ) for surface-fire support and other missions [3]. The
NASA Technical Reports Server (NTRS)
Reed, W. B.
1972-01-01
The sphere launcher was designed to eject a 200 lb, 15 in. diameter sphere from a space vehicle or missile, at a velocity of 58 ft/sec without imparting excessive lateral loads to the vehicle. This launching is accomplished with the vehicle operating in vacuum conditions and under a 9 g acceleration. Two principal elements are used: a high thrust, short burn time rocket motor and two snubbers for reducing the lateral loads to acceptable limits.
Update on Phelix Pulsed-Power Hydrodynamics Experiments and Modeling
2013-06-01
underway to assess the feasibility of using the PHELIX driver as an electromagnetic launcher for planer shock-physics experiments. I. INTRODUCTION...inductance loads. Cylindrical liners or planer flyer plates can achieve km/s velocities and kbar pressures. A schematic of PHELIX is shown in Figure 1. Each...using the PHELIX driver as an electromagnetic launcher for planer shock-physics experiments. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17
High-Efficiency Helical Coil Electromagnetic Launcher and High Power Hall-Effect Switch
2008-02-29
also given that demonstrate significant launcher performance benefits by super-cooling the armature (i.e., using liquid nitrogen ). 14. ABSTRACT... liquid nitrogen temperatures). A computer model for a magnetically-controlled Hall-effect switch is developed. The model is constructed in the PSpice...of super-cooling is demonstrated with liquid nitrogen cooling and indicates super-cooled EML operation is desirable if cryo-cooling is practical for
Development of a smart IUD launcher for prevention of uterine perforation.
Al-Ashwal, Rania Hussein; Aziz, Noor Afatin Che; Nooh, Syed Mohd
2016-10-01
Intrauterine contraception is a widely used, highly effective and reversible means of birth control. One potential disadvantage with the use of intrauterine devices (IUDs) is the risk of uterine perforation. During the process of IUD insertion, there is a possibility to perforate the wall of the uterus during which health workers might injure the fundus of the uterus, due to inadequate knowledge or insufficient training. This paper discusses the development of a smart IUD launcher insertion system that would be used to prevent perforation of the uterine wall by detecting a specific distance to the wall for the safe release of the IUD using a sensor. Several launcher prototypes were developed prior to the final version of the IUD launcher. The results from testing experiments, that have been conducted to evaluate the performance of the proposed device, show that the sensor is able to detect a distance up to 5 mm and is also capable of detecting the distance to the target even in high viscosity liquid. The developed prototype promises a solution for more accurate IUD insertion that could be used as a training module for health care providers, helping remove fear from using this long-lasting contraceptive method and promote an affordable modern contraceptive method to society.
2009-04-06
CAPE CANAVERAL, Fla. – The sound suppression system is tested on the mobile launcher platform on Launch Pad 39B at NASA's Kennedy Space Center in Florida. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X flight test that is targeted for summer 2009. The mobile launcher platform was handed over to the Constellation Program and modified for the Ares I-X flight test. It is being tested before being moved to the Vehicle Assembly Building for assembly of the Ares I-X rocket. A sound suppression water system is in¬stalled on the pads to protect against damage by acoustical energy and rocket exhaust reflected from the flame trench and mobile launcher plat¬form during a launch. The sound suppression system includes an elevated 290-foot-high water tank with a capacity of 300,000 gallons. The water releases just prior to the ignition of the rocket and flows through 7-foot-diameter pipes for about 20 seconds. A torrent of water will flow onto the mobile launcher platform from six large quench nozzles, or “rainbirds,” mounted on its surface. The rainbirds are 12 feet high. The two in the center are 42 inches in diameter; the other four have a 30-inch diameter. Photo credit: NASA/Jim Grossmann
2009-04-06
CAPE CANAVERAL, Fla. – The sound suppression system is tested on the mobile launcher platform on Launch Pad 39B at NASA's Kennedy Space Center in Florida. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X flight test that is targeted for summer 2009. The mobile launcher platform was handed over to the Constellation Program and modified for the Ares I-X flight test. It is being tested before being moved to the Vehicle Assembly Building for assembly of the Ares I-X rocket. A sound suppression water system is in¬stalled on the pads to protect against damage by acoustical energy and rocket exhaust reflected from the flame trench and mobile launcher plat¬form during a launch. The sound suppression system includes an elevated 290-foot-high water tank with a capacity of 300,000 gallons. The water releases just prior to the ignition of the rocket and flows through 7-foot-diameter pipes for about 20 seconds. A torrent of water will flow onto the mobile launcher platform from six large quench nozzles, or “rainbirds,” mounted on its surface. The rainbirds are 12 feet high. The two in the center are 42 inches in diameter; the other four have a 30-inch diameter. Photo credit: NASA/Jim Grossmann
Efficient full wave code for the coupling of large multirow multijunction LH grills
NASA Astrophysics Data System (ADS)
Preinhaelter, Josef; Hillairet, Julien; Milanesio, Daniele; Maggiora, Riccardo; Urban, Jakub; Vahala, Linda; Vahala, George
2017-11-01
The full wave code OLGA, for determining the coupling of a single row lower hybrid launcher (waveguide grills) to the plasma, is extended to handle multirow multijunction active passive structures (like the C3 and C4 launchers on TORE SUPRA) by implementing the scattering matrix formalism. The extended code is still computationally fast because of the use of (i) 2D splines of the plasma surface admittance in the accessibility region of the k-space, (ii) high order Gaussian quadrature rules for the integration of the coupling elements and (iii) utilizing the symmetries of the coupling elements in the multiperiodic structures. The extended OLGA code is benchmarked against the ALOHA-1D, ALOHA-2D and TOPLHA codes for the coupling of the C3 and C4 TORE SUPRA launchers for several plasma configurations derived from reflectometry and interferometery. Unlike nearly all codes (except the ALOHA-1D code), OLGA does not require large computational resources and can be used for everyday usage in planning experimental runs. In particular, it is shown that the OLGA code correctly handles the coupling of the C3 and C4 launchers over a very wide range of plasma densities in front of the grill.
Design of a high power TM01 mode launcher optimized for manufacturing by milling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dal Forno, Massimo
2016-12-15
Recent research on high-gradient rf acceleration found that hard metals, such as hard copper and hard copper-silver, have lower breakdown rate than soft metals. Traditional high-gradient accelerating structures are manufactured with parts joined by high-temperature brazing. The high temperature used in brazing makes the metal soft; therefore, this process cannot be used to manufacture structures out of hard metal alloys. In order to build the structure with hard metals, the components must be designed for joining without high-temperature brazing. One method is to build the accelerating structures out of two halves, and join them by using a low-temperature technique, atmore » the symmetry plane along the beam axis. The structure has input and output rf power couplers. We use a TM01 mode launcher as a rf power coupler, which was introduced during the Next Linear Collider (NLC) work. The part of the mode launcher will be built in each half of the structure. This paper presents a novel geometry of a mode launcher, optimized for manufacturing by milling. The coupler was designed for the CERN CLIC working frequency f = 11.9942 GHz; the same geometry can be scaled to any other frequency.« less
A Portable Shoulder-Mounted Camera System for Surgical Education in Spine Surgery.
Pham, Martin H; Ohiorhenuan, Ifije E; Patel, Neil N; Jakoi, Andre M; Hsieh, Patrick C; Acosta, Frank L; Wang, Jeffrey C; Liu, John C
2017-02-07
The past several years have demonstrated an increased recognition of operative videos as an important adjunct for resident education. Currently lacking, however, are effective methods to record video for the purposes of illustrating the techniques of minimally invasive (MIS) and complex spine surgery. We describe here our experiences developing and using a shoulder-mounted camera system for recording surgical video. Our requirements for an effective camera system included wireless portability to allow for movement around the operating room, camera mount location for comfort and loupes/headlight usage, battery life for long operative days, and sterile control of on/off recording. With this in mind, we created a shoulder-mounted camera system utilizing a GoPro HERO3+, its Smart Remote (GoPro, Inc., San Mateo, California), a high-capacity external battery pack, and a commercially available shoulder-mount harness. This shoulder-mounted system was more comfortable to wear for long periods of time in comparison to existing head-mounted and loupe-mounted systems. Without requiring any wired connections, the surgeon was free to move around the room as needed. Over the past several years, we have recorded numerous MIS and complex spine surgeries for the purposes of surgical video creation for resident education. Surgical videos serve as a platform to distribute important operative nuances in rich multimedia. Effective and practical camera system setups are needed to encourage the continued creation of videos to illustrate the surgical maneuvers in minimally invasive and complex spinal surgery. We describe here a novel portable shoulder-mounted camera system setup specifically designed to be worn and used for long periods of time in the operating room.
2003-11-21
KENNEDY SPACE CENTER, FLA. - Seen across the water of the Launch Complex 39 turn basin, a crawler-transporter, carrying Mobile Launcher Platform (MLP) number 3 with a set of twin solid rocket boosters bolted atop, crawls out of the 525-foot-tall Vehicle Assembly Building during the second engineering analysis vibration test on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.
2003-11-17
KENNEDY SPACE CENTER, FLA. - Viewed across the turn basin in the Launch Complex 39 Area, the crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, away from the Vehicle Assembly Building (VAB). The journey is in support of engineering analysis vibration tests on the crawler and MLP. The water on the right of the crawlerway is the Banana River. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.
Detail of second story balcony porch at southeast corner; camera ...
Detail of second story balcony porch at southeast corner; camera facing northwest. - Mare Island Naval Shipyard, Wilderman Hall, Johnson Lane, north side adjacent to (south of) Hospital Complex, Vallejo, Solano County, CA
EGSE (Electrical Ground Support Equipment) for ESA VEGA Launcher
NASA Astrophysics Data System (ADS)
Ferrante, M.; Ortenzi, A.; del Re, V.; Bordin, M.; Saccucci, Fr.
2004-08-01
Activities belonging to Assembly, Integration and Validation (AIV) phase of a launch vehicle are fundamental in development of a so much delicate system. The equipment used to support this long and crucial phase can be described as a set of Mechanical and Electrical Ground Support Equipment (EGSE). This paper describes the approach followed to develop such a system, and the benefits that this brings in terms of lower risk, more coordinated interfaces and improved functionality. The paper briefly outlines VEGA Electrical Ground Support Equipment major characteristics. In particular, this paper describes the EGSE design for a small launch vehicle such as VEGA. The objective of EGSE is to provide hardware and software for efficient electrical testing of either single stages and integrated launcher. The needs to develop a small launcher is a response to a Resolution in the Space Transportation Strategy adopted by the ESA Council in June 2000, aiming at: "completing, in the medium term, the range of launch services offered by the addition of European manufactured small and medium launcher, complementary to Ariane, consistent with diversified users' needs and relying on common elements, such as stages, subsystems, technologies, production facilities and operational infrastructure, thereby increasing the European launcher industry's competitiveness". Three different parts principally compose the Vega EGSE: TCS (Test Configuration System), TES (Test Execution System), PPS (Post Processing System). The TES is the part of the EGSE devoted to the tests execution; it has capabilities of immediate test data analysis, parameters monitoring and it is able to undertake pre-defined actions, in case of anomalous events happen, in order to put in safe conditions the Unity Under Test (UUT). The TES is composed of two main components: HLCS and LLCS. The HLCS is based on SCOS 2000 ESA product; it is mainly devoted to the interaction with operators. It allows loading Test Sequences and sending commands to the LLCS, thereafter retrieving and displaying the results. The LLCS is the EGSE part closest to the UUT and directly connected to it. It is in charge of monitoring and commanding the UUT, reacting in real-time to both nominal and anomalous events and to ensure safety conditions during the execution of test sessions, even in absence of connection with the HLCS. To perform the tests of VEGA launcher three test areas are foreseen: one for each VEGA launcher stage, except for the third and the second stages that are tested in the same test area. One of these areas is also used to perform the test of complete VEGA launcher. In order to perform all tests, the LLCS is composed of modular subsystems able to work either independently in different test areas or in jointure in the main test area The TCS is the part devoted to the configuration of the EGSE, during the configuration phase it is possible to configure all components of EGSE depending on the test session to be performed. The PPS is the part devoted to the test results post processing. The PPS allows retrieving, analysis and displaying of the data generated in the test execution phases.
2003-09-12
KENNEDY SPACE CENTER, FLA. - Workers, covered in protective clothing and breathing apparatus, continue sandblasting on the Mobile Launcher Platform on Launch Pad 39A to remove corrosion before repainting. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.
2003-09-12
KENNEDY SPACE CENTER, FLA. - On Launch Pad 39A, clouds of dust float away from the Mobile Launcher Platform, which is undergoing sandblasting to remove corrosion before repainting. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.
Integrated fiber-coupled launcher for slow plasmon-polariton waves.
Della Valle, Giuseppe; Longhi, Stefano
2012-01-30
We propose and numerically demonstrate an integrated fiber-coupled launcher for slow surface plasmon-polaritons. The device is based on a novel plasmonic mode-converter providing efficient power transfer from the fast to the slow modes of a metallic nanostripe. Total coupling efficiency with standard single-mode fiber approaching 30% (including ohmic losses) has been numerically predicted for a 25-µm long gold-based device operating at 1.55 µm telecom wavelength.
ICPSU Install at Mobile Launcher
2018-03-14
A sliver of the Moon is visible just before sunrise at NASA's Kennedy Space Center in Florida. In view is one of the steel structures of the mobile launcher (ML). Several launch umbilicals have been installed on the ML tower. Exploration Ground Systems is overseeing installation of umbilicals and launch accessories on the ML to prepare for the first integrated test flight of the Orion spacecraft on the agency's Space Launch System rocket on Exploration Mission-1.
Optimization studies of the ITER low field side reflectometer.
Diem, S J; Wilgen, J B; Bigelow, T S; Hanson, G R; Harvey, R W; Smirnov, A P
2010-10-01
Microwave reflectometry will be used on ITER to measure the electron density profile, density fluctuations due to MHD/turbulence, edge localized mode (ELM) density transients, and as an L-H transition monitor. The ITER low field side reflectometer system will measure both core and edge quantities using multiple antenna arrays spanning frequency ranges of 15-155 GHz for the O-mode system and 55-220 GHz for the X-mode system. Optimization studies using the GENRAY ray-tracing code have been done for edge and core measurements. The reflectometer launchers will utilize the HE11 mode launched from circular corrugated waveguide. The launched beams are assumed to be Gaussian with a beam waist diameter of 0.643 times the waveguide diameter. Optimum launcher size and placement are investigated by computing the antenna coupling between launchers, assuming the launched and received beams have a Gaussian beam pattern.
A Monte Carlo Analysis for Collision Risk Assessment on Vega Launcher Payloads and LARES Satellite
NASA Astrophysics Data System (ADS)
Sindoni, G.; Ciufolini, I.; Battie, F.
2016-03-01
This work has been developed in the framework of the LARES mission of the Italian Space Agency (ASI). The LARES satellite has been built to test, with high accuracy, the frame-dragging effect predicted by the theory of General Relativity, specifically the Lense-Thirring drag of its node. LARES was the main payload in the qualification flight of the European Space Agency launcher VEGA. A concern arose about the possibility of an impact between the eight secondary payloads among themselves, with LARES and with the last stage of the launcher (AVUM). An impact would have caused failure on the payloads and the production of debris in violation of the space debris mitigation measures established internationally. As an additional contribution, this study allowed the effect of the payload release on the final manoeuvers of the AVUM to be understood.
Development of explosively driven launcher for meteoroid studies
NASA Technical Reports Server (NTRS)
Baum, D. W.
1973-01-01
The results of a continuing program to develop an explosively driven 2-stage hypervelocity launcher capable of achieving velocities between 15 and 20 km/sec are described. Previous efforts had identified incomplete barrel collapse as a limiting factor in launcher performance. Correlation of experimental and computational results obtained in the present study indicate that boundary-layer gases within the barrel act to prevent complete closure. Simplified calculations suggest that in-contact explosives may have insufficient energy densities to collapse the barrel against a developed boundary layer. Higher energy densities, sufficient to produce complete closure, were obtained with the use of steel flyer plates accelerated by a phased explosive lens. However, when flat flyer plates were impacted on the barrel, the sides of the barrel were observed to rupture and leak gas prior to barrel closure. A promising solution to this problem (untested) is to produce a symmetrical collapse with a cylindrical tube around the barrel.
Electromagnetic launchers for space applications
NASA Technical Reports Server (NTRS)
Schroeder, J. M.; Gully, J. H.; Driga, M. D.
1989-01-01
An electromagnetic launcher (EML) was designed for NASA-Langley to boost large models to hypervelocity for flight evaluation. Two different concepts were developed using railgun and coilgun principles. A coilgun was designed to accelerate a 14-kg mass to 6 km/s and, by adding additional equipment, to accelerate a 10-kg mass to 11 km/s. The railgun system was designed to accelerate only 14 kg to 6 km/s. Of significance in this development is the opportunity to use the launcher for aeroballistic research of the upper atmosphere, eventually placing packages in low earth orbit using a small rocket. The authors describe the railgun and coilgun launch designs and suggest a reconfiguration for placement of 150-kg parcels into low earth orbit for aeroballistic studies and possible space lab support. Each design is detailed along with the performance adjustments which would be required for circular orbit payload placement.
VEGA Launch Vehicle: VV02 Flight Campaign Thermal Analysis
NASA Astrophysics Data System (ADS)
Moroni, D.; Perugini, P.; Mancini, R.; Bonnet, M.
2014-06-01
A reliable tool for the prediction of temperature trends vs. time during the operative timeline of a launcher represents one of the key elements for the qualification of a launch vehicle itself.The correct evaluation of the thermal behaviour during the mission, both for the launcher elements (structures, electronic items, tanks, motors...) and for the Payloads carried by the same Launcher, is one of the preliminary activities to be performed before a flight campaign.For such scope AVIO constructed a Thermal Mathematical Model (TMM) by means of the ESA software "ESATAN Thermal Modelling Suite (TMS)" [1] used for the prediction of the temperature trends both on VV01 (VEGA LV Qualification Flight) and VV02 (First VEGA LV commercial flight) with successfully results in terms of post-flight comparison with the sensor data outputs.Aim of this paper is to show the correlation obtained by AVIO VEGA LV SYS TMM in the frame of VV02 Flight.
Orion Service Module Umbilical (OSMU) Testing Complete
2016-10-19
Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.
Phootprint - A Phobos sample return mission study
NASA Astrophysics Data System (ADS)
Koschny, Detlef; Svedhem, Håkan; Rebuffat, Denis
Introduction ESA is currently studying a mission to return a sample from Phobos, called Phootprint. This study is performed as part of ESA’s Mars Robotic Exploration Programme. Part of the mission goal is to prepare technology needed for a sample return mission from Mars itself; the mission should also have a strong scientific justification, which is described here. 1. Science goal The main science goal of this mission will be to Understand the formation of the Martian moons Phobos and put constraints on the evolution of the solar system. Currently, there are several possibilities for explaining the formation of the Martian moons: (a) co-formation with Mars (b) capture of objects coming close to Mars (c) Impact of a large body onto Mars and formation from the impact ejecta The main science goal of this mission is to find out which of the three scenarios is the most probable one. To do this, samples from Phobos would be returned to Earth and analyzed with extremely high precision in ground-based laboratories. An on-board payload is foreseen to provide information to put the sample into the necessary geological context. 2. Mission Spacecraft and payload will be based on experience gained from previous studies to Martian moons and asteroids. In particular the Marco Polo and MarcoPolo-R asteroid sample return mission studies performed at ESA were used as a starting point. Currently, industrial studies are ongoing. The initial starting assumption was to use a Soyuz launcher. Uunlike the initial Marco Polo and MarcoPolo-R studies to an asteroid, a transfer stage will be needed. Another main difference to an asteroid mission is the fact that the spacecraft actually orbits Mars, not Phobos or Deimos. It is possible to select a spacecraft orbit, which in a Phobos- or Deimos-centred reference system would give an ellipse around the moon. The following model payload is currently foreseen: - Wide Angle Camera, - Narrow Angle Camera, - Close-Up Camera, - Context camera for sampling context, - visible-IR spectrometer - thermal IR spectrometer - and a Radio Science investigation. It is expected that with these instruments the necessary context for the sample can be provided. The paper will focus on the current status of the mission study.
Crew Launch Vehicle Mobile Launcher Solid Rocket Motor Plume Induced Environment
NASA Technical Reports Server (NTRS)
Vu, Bruce T.; Sulyma, Peter
2008-01-01
The plume-induced environment created by the Ares 1 first stage, five-segment reusable solid rocket motor (RSRMV) will impose high heating rates and impact pressures on Launch Complex 39. The extremes of these environments pose a potential threat to weaken or even cause structural components to fail if insufficiently designed. Therefore the ability to accurately predict these environments is critical to assist in specifying structural design requirements to insure overall structural integrity and flight safety. This paper presents the predicted thermal and pressure environments induced by the launch of the Crew Launch Vehicle (CLV) from Launch Complex (LC) 39. Once the environments are predicted, a follow-on thermal analysis is required to determine the surface temperature response and the degradation rate of the materials. An example of structures responding to the plume-induced environment will be provided.
LOFT complex, camera facing west. Mobile entry (TAN624) is position ...
LOFT complex, camera facing west. Mobile entry (TAN-624) is position next to containment building (TAN-650). Shielded roadway entrance in view just below and to right of stack. Borated water tank has been covered with weather shelter and is no longer visible. ANP hangar (TAN-629) in view beyond LOFT. Date: 1974. INEEL negative no. 74-4191 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Keane, Tommy P.; Saber, Eli; Rhody, Harvey; Savakis, Andreas; Raj, Jeffrey
2012-04-01
Contemporary research in automated panorama creation utilizes camera calibration or extensive knowledge of camera locations and relations to each other to achieve successful results. Research in image registration attempts to restrict these same camera parameters or apply complex point-matching schemes to overcome the complications found in real-world scenarios. This paper presents a novel automated panorama creation algorithm by developing an affine transformation search based on maximized mutual information (MMI) for region-based registration. Standard MMI techniques have been limited to applications with airborne/satellite imagery or medical images. We show that a novel MMI algorithm can approximate an accurate registration between views of realistic scenes of varying depth distortion. The proposed algorithm has been developed using stationary, color, surveillance video data for a scenario with no a priori camera-to-camera parameters. This algorithm is robust for strict- and nearly-affine-related scenes, while providing a useful approximation for the overlap regions in scenes related by a projective homography or a more complex transformation, allowing for a set of efficient and accurate initial conditions for pixel-based registration.
2001-03-22
KENNEDY SPACE CENTER, Fla. -- Viewed from across the turn basin at Launch Complex 39 area, Space Shuttle Endeavour leaves the Vehicle Assembly Building high bay 3 (open door) atop a Mobile Launcher Platform and begins rolling to Launch Pad 39A via a crawler-transporter. The combined height of the Shuttle, MLP and transporter is 235.2 ft. (71.6 m). Once at the pad, routine launch pad validations will commence, verifying all vehicle and facility interfaces. Endeavour is expected to lift off on mission STS-100 on April 19, carrying the Multi-Purpose Logistics Module Raffaello and the Canadian robotic arm, SSRMS, to the International Space Station
2001-03-22
KENNEDY SPACE CENTER, Fla. -- Viewed from across the turn basin at Launch Complex 39 area, Space Shuttle Endeavour leaves the Vehicle Assembly Building high bay 3 (open door) atop a Mobile Launcher Platform and begins rolling to Launch Pad 39A via a crawler-transporter. The combined height of the Shuttle, MLP and transporter is 235.2 ft. (71.6 m). Once at the pad, routine launch pad validations will commence, verifying all vehicle and facility interfaces. Endeavour is expected to lift off on mission STS-100 on April 19, carrying the Multi-Purpose Logistics Module Raffaello and the Canadian robotic arm, SSRMS, to the International Space Station
[The PAI-1 swing: microenvironment and cancer cell migration].
Malo, Michel; Charrière-Bertrand, Cécile; Chettaoui, Chafika; Fabre-Guillevin, Elizabeth; Maquerlot, François; Lackmy, Alexandra; Vallée, Benoît; Delaplace, Franck; Barlovatz-Meimon, Georgia
2006-12-01
Cancer is a complex and dynamic process caused by a cellular dysfunction leading to a whole organ or even organism vital perturbation. To better understand this process, we need to study each one of the levels involved, which allows the scale change, and to integrate this knowledge. A matricellular protein, PAI-1, is able to induce in vitro cell behaviour modifications, morphological changes, and to promote cell migration. PAI-1 influences the mesenchymo-amaeboid transition. This matricellular protein should be considered as a potential 'launcher' of the metastatic process acting at the molecular, cellular, tissular levels and, as a consequence, at the organism's level.
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a large crane lifts a new engine and generator high overhead for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is used to lift an Apollo era diesel engine away from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a large crane lifts a new engine and generator for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is used to lift an Apollo era diesel engine away from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a large crane is used to lift a new engine and generator high overhead for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a large crane lowers a new engine and generator for installation inside crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane begins to lift part of an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Just outside of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is used to lift an Apollo era diesel engine away from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is lowered toward crawler-transporter 2 CT-2) so that the Apollo era diesel engine can be removed. New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a crane begins to lift an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane operator lifts part of an Apollo era diesel engine away from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a large crane begins to lift a new engine and generator for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane begins to lift part of an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Just outside of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is used to lift an Apollo era diesel engine away from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. ––Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a technician monitors the progress as a crane begins to lift an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a large crane lifts a new engine and generator high overhead for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-02-15
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is lowered toward crawler-transporter 2 CT-2) so that the Apollo era diesel engine can be removed. New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a technician monitors the progress as a crane lifts an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians prepare an Apollo era diesel engine to be lifted by crane from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane lifts part of an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a crane lifts an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
US Army Armor Reference Data in Three Volumes. Volume III. Division 86 Organizations.
1981-01-01
12 LACE GRAIE SMOKE: SCREENING RP M250 ........................ 58 MOTRYCLE: 2 WHEEL............................................... 8 LAUNCHER...2 TRUCK VAN: SHOP 2-1/2 TON rX6 WE ................................ 2 LAUNCHER GRENAD SMOKE: SCREENING RP M250 ........................ 2 TRUCK...2 ALASM CHEIICAL ACEVT AUTCMATI 0 : ETIL W/PWP .ZP F/iK rIL 1i47TN. !AhJ X’HFR GRFADF SHOKE: SCREENING RP M250 ........................ 14 RATI8C SET
JPRS Report, Near East & South Asia
1989-01-04
to increase the use of the new powerful launcher, " Energia ". He said Soviet launchers, predecessors to " Energia ", were available for service, but... renovated in 1971 and resumed activities with a capacity of 15,000 barrels a day. "Once the Iraqi-imposed war was launched, the flow of crude oil...manufacturing. He said that the refinery was once renovated in 1980, following the disruption of crude oil from the Naft Shahr region. He further
Resonant-cavity antenna for plasma heating
Perkins, Jr., Francis W.; Chiu, Shiu-Chu; Parks, Paul; Rawls, John M.
1987-01-01
Disclosed is a resonant coil cavity wave launcher for energizing a plasma immersed in a magnetic field. Energization includes launching fast Alfven waves to excite ion cyclotron frequency resonances in the plasma. The cavity includes inductive and capacitive reactive members spaced no further than one-quarter wavelength from a first wall confinement chamber of the plasma. The cavity wave launcher is energized by connection to a waveguide or transmission line carrying forward power from a remote radio frequency energy source.
2017-05-30
A view of the mobile launcher (ML) taken from the "eyebrow" of the nearby Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The ML tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The Orion Service Module Umbilical and Core State Forward Skirt Umbilical were recently installed on the ML. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Propulsive jet simulation with air and helium in launcher wake flows
NASA Astrophysics Data System (ADS)
Stephan, Sören; Radespiel, Rolf
2017-06-01
The influence on the turbulent wake of a generic space launcher model due to the presence of an under-expanded jet is investigated experimentally. Wake flow phenomena represent a significant source of uncertainties in the design of a space launcher. Especially critical are dynamic loads on the structure. The wake flow is investigated at supersonic (M=2.9) and hypersonic (M=5.9) flow regimes. The jet flow is simulated using air and helium as working gas. Due to the lower molar mass of helium, higher jet velocities are realized, and therefore, velocity ratios similar to space launchers can be simulated. The degree of under-expansion of the jet is moderate for the supersonic case (p_e/p_∞ ≈ 5) and high for the hypersonic case (p_e/p_∞ ≈ 90). The flow topology is described by Schlieren visualization and mean-pressure measurements. Unsteady pressure measurements are performed to describe the dynamic wake flow. The influences of the under-expanded jet and different jet velocities are reported. On the base fluctuations at a Strouhal number, around St_D ≈ 0.25 dominate for supersonic free-stream flows. With air jet, a fluctuation-level increase on the base is observed for Strouhal numbers above St_D ≈ 0.75 in hypersonic flow regime. With helium jet, distinct peaks at higher frequencies are found. This is attributed to the interactions of wake flow and jet.
Additive Layer Manufacturing for Launcher's Applications
NASA Astrophysics Data System (ADS)
Vilanova, J.; Romera, P.; Lasagni, F.; Zorrilla, A.; Perinan, A.
2014-06-01
In the next years the European space industry has the challenge of maintaining its competitiveness in launch vehicles (LV) production, due to the growth of competition worldwide. It has to assure its position developing new applied technologies. In this field the effort is focussed on the production of short series of customized products, like payloads, flight components or launcher parts. ALM (Additive Layer Manufacturing) could be a powerful tool that offers new competitiveness factors for this industry, comprising a set of emerging technologies that are becoming a competitor to forming, casting and machining as well as being utilised directly as a complementary alternative.Originally used for prototypes and models, now ALM becomes a very useful technology capable to fabricate functional parts for the space industrial sector. Its demands on rapid technologies are different to "earth" industries, and they aren't so easily satisfied because space is a field with different requirements depending on its application: launchers, reusable vehicles, satellites, probes, low gravity researches, manned spacecraft, or even moon and planetary exploration.This paper reports on the ALM potential applications, under ESA requirements, exploring the challenges and possibilities for its use in the launchers market, trying to answer two basic questions: the first one, whether ALM is a mature technology to be ready for its use as flight hardware; and the second one, if it can be used to reduce the product cycle, and consequently, the development, production and operational costs.
2009-04-06
CAPE CANAVERAL, Fla. – Water cascades over the side of the mobile launcher platform on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The sound suppression system is being tested on the platform. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X flight test that is targeted for summer 2009. The mobile launcher platform was handed over to the Constellation Program and modified for the Ares I-X flight test. It is being tested before being moved to the Vehicle Assembly Building for assembly of the Ares I-X rocket. A sound suppression water system is in¬stalled on the pads to protect against damage by acoustical energy and rocket exhaust reflected from the flame trench and mobile launcher plat¬form during a launch. The sound suppression system includes an elevated 290-foot-high water tank with a capacity of 300,000 gallons. The water releases just prior to the ignition of the rocket and flows through 7-foot-diameter pipes for about 20 seconds. A torrent of water will flow onto the mobile launcher platform from six large quench nozzles, or “rainbirds,” mounted on its surface. The rainbirds are 12 feet high. The two in the center are 42 inches in diameter; the other four have a 30-inch diameter. Photo credit: NASA/Dimitri Gerondidakis
Tether deployment monitoring system, phase 2
NASA Technical Reports Server (NTRS)
1989-01-01
An operational Tether Deployment Monitoring System (TEDEMS) was constructed that would show system functionality in a terrestrial environment. The principle function of the TEDEMS system is the launching and attachment of reflective targets onto the tether during its deployment. These targets would be tracked with a radar antenna that was pointed towards the targets by a positioning system. A spring powered launcher for the targets was designed and fabricated. An instrumentation platform and launcher were also developed. These modules are relatively heavy and will influence tether deployment scenarios, unless they are released with a velocity and trajectory closely matching that of the tether. Owing to the tracking range limitations encountered during field trails of the Radar system, final TEDEMS system integration was not completed. The major module not finished was the system control computer. The lack of this device prevented any subsystem testing or field trials to be conducted. Other items only partially complete were the instrumentation platform launcher and modules and the radar target launcher. The work completed and the tests performed suggest that the proposed system continues to be a feasible approach to tether monitoring, although additional effort is still necessary to increase the range at which modules can be detected. The equipment completed and tested, to the extent stated, is available to NASA for use on any future program that requires tether tracking capability.
DETAIL VIEW OF VIDEO CAMERA, MAIN FLOOR LEVEL, PLATFORM ESOUTH, ...
DETAIL VIEW OF VIDEO CAMERA, MAIN FLOOR LEVEL, PLATFORM E-SOUTH, HB-3, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Characterization of the Electrostatic Environment of Launchers
NASA Astrophysics Data System (ADS)
Soyah, Jamila; Mantion, Pascal; Herlem, Yannick
2016-05-01
The purpose of this study was to update knowledge in characterization of the electrostatic environment of launchers in order to be able to propose reductions of design constraints.The first part of this study showed that flashover discharges are the most energetic discharges likely to occur on a launcher. They are mostly due to accumulations of charges by triboelectricity on the external surface of the launcher while flying through clouds containing a lot of small solid particles.Actually flashover discharges are mitigated by limiting the surface's resistance of dielectric materials such as thermal protection set on the external skin of the launcher, thanks to antistatic paints that avoid significant accumulations of charges.But this specified limitation leads to a lot of non- conformances during production phases and, as a result, this leads to additional costs and delays in launches campaigns. That is why on-ground tests have been defined in order to assess the accessibility of a relaxation of those specifications, which would reduce non-conformances.On-ground tests have been carried out, in the second part, on samples of thermal protections covered with antistatic paints with different degraded values of surface resistance. These tests aimed at checking in which conditions a surface discharge can occur in order to deduce a relationship between characteristics of the samples (surface resistance, half-discharge time) and the occurrence of a surface discharge, at ambient pressure and at low pressure.In the third part, in-flight experiments have been defined in order to confirm some hypotheses considered in the study and to assess some parameters in a more accurate way like the incoming charges density per surface unit or the voltage between stages when they get separated, in order to assess more accurately whether the unwinding equalization wire dedicated to maintain the electrostatic balance between stages is necessary or not.
Optimization of the propulsion for multistage solid rocket motor launchers
NASA Astrophysics Data System (ADS)
Calabro, M.; Dufour, A.; Macaire, A.
2002-02-01
Some tools focused on a rapid multidisciplinary optimization capability for multistage launch vehicle design were developed at EADS-LV. These tools may be broken down into two categories, those related to propulsion design optimization and a computer code devoted to trajectories and under constraints optimization. Both are linked in order to obtain optimal vehicle design after an iterative process. After a description of the two categories tools, an example of application is given on a small space launcher.
2010-08-31
The physics and operating principles for TEA C02 lasers can be found in several useful references (Patel, 1968; Siegman , 1986; Svelto, 1998 and...AND SUBTITLE 5a. CONTRACT NUMBER F A9550-05-1-0392 "Basic Research Investigations into Multimode Laser and 5b. GRANT NUMBER EM Launchers for...pulsed airbreathing/rocket laser propulsion. investigates the physics of laser energy deposition into stationary and hypersonic working fluids
60 years of space era: some details
NASA Astrophysics Data System (ADS)
Maksimov, A. I.
2017-09-01
The paper describes preparation and launching of the first artificial satellites of the Earth in the USSR and USA. Statistical data of successful and unsuccessful launches in 1957-2016 are provided. Brief information about the families of launchers created on the basis of the R-7 (USSR) and also Atlas and Titan (USA) ballistic missiles is given. The longtime evolution of rocket launchers is traced by an example of the 50 years of the Delta family (USA) based on the Thor intermediate range ballistic missile.
2017-11-10
A heavy-load transport truck carrying the Orion crew access arm nears the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The crew access arm will be installed at about the 274-foot level on the mobile launcher tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower to prepare for Exploration Mission-1.
2008-05-02
CAPE CANAVERAL, Fla. -- Artist's rendering of the Constellation Program's Ares V rocket on the mobile launcher platform (left) and the Ares I rocket on the platform (right) with the space shuttle in between for comparison. The tower of the mobile launcher will have multiple platforms for personnel access and will be approximately 390 feet tall. The tower will be used in the assembly, testing and servicing of the Ares rockets at Kennedy and will also transport the Ares rockets to the launch pad and provide ground support for launches.
COHORT Cadre Training Evaluation
1987-05-11
on an M240 Machinegun 1 2 3 4 5 6 7 13. Load/Unload the 105mm Main Gun on an M1 Tank 1 2 3 4 5 6 7 14. Load/Unload the M250 Grenade Launcher on an MI...Machinegun 1 2 3 4 5 6 7 13. Load/Unload the 105mm Main Gun on an M1 Tank 1 2 3 4 5 6 7 14. Load/Unload the M250 Grenade Launcher on an M1 Tank 1 2 3 4 5 6
Structure Formation in Complex Plasma
2011-08-24
Dewer bottle (upper figures) or in the vapor of liquid helium (lower figures). Liq. He Ring electrode Particles Green Laser RF Plasma ... Ring electrode CCD camera Prism mirror Liq. He Glass Tube Liq. N2 Glass Dewar Acrylic particles Gas Helium Green Laser CCD camera Pressure
67. DETAIL OF VIDEO CAMERA CONTROL PANEL LOCATED IMMEDIATELY WEST ...
67. DETAIL OF VIDEO CAMERA CONTROL PANEL LOCATED IMMEDIATELY WEST OF ASSISTANT LAUNCH CONDUCTOR PANEL SHOWN IN CA-133-1-A-66 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
UCXp camera imaging principle and key technologies of data post-processing
NASA Astrophysics Data System (ADS)
Yuan, Fangyan; Li, Guoqing; Zuo, Zhengli; Liu, Jianmin; Wu, Liang; Yu, Xiaoping; Zhao, Haitao
2014-03-01
The large format digital aerial camera product UCXp was introduced into the Chinese market in 2008, the image consists of 17310 columns and 11310 rows with a pixel size of 6 mm. The UCXp camera has many advantages compared with the same generation camera, with multiple lenses exposed almost at the same time and no oblique lens. The camera has a complex imaging process whose principle will be detailed in this paper. On the other hand, the UCXp image post-processing method, including data pre-processing and orthophoto production, will be emphasized in this article. Based on the data of new Beichuan County, this paper will describe the data processing and effects.
The high resolution optical instruments for the Pleiades HR Earth observation satellites
NASA Astrophysics Data System (ADS)
Gaudin-Delrieu, Catherine; Lamard, Jean-Luc; Cheroutre, Philippe; Bailly, Bruno; Dhuicq, Pierre; Puig, Olivier
2017-11-01
Coming after the SPOT satellites series, PLEIADESHR is a CNES optical high resolution satellite dedicated to Earth observation, part of a larger optical and radar multi-sensors system, ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. The development of the two PLEIADES-HR cameras was entrusted by CNES to Thales Alenia Space. This new generation of instrument represents a breakthrough in comparison with the previous SPOT instruments owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. The PLEIADES-HR instrument program benefits from Thales Alenia Space long and successful heritage in Earth observation from space. The proposed solution benefits from an extensive use of existing products, Cannes Space Optics Centre facilities, unique in Europe, dedicated to High Resolution instruments. The optical camera provides wide field panchromatic images supplemented by 4 multispectral channels with narrow spectral bands. The optical concept is based on a four mirrors Korsch telescope. Crucial improvements in detector technology, optical fabrication and electronics make it possible for the PLEIADES-HR instrument to achieve the image quality requirements while respecting the drastic limitations of mass and volume imposed by the satellite agility needs and small launchers compatibility. The two flight telescopes were integrated, aligned and tested. After the integration phase, the alignment, mainly based on interferometric measurements in vacuum chamber, was successfully achieved within high accuracy requirements. The wave front measurements show outstanding performances, confirmed, after the integration of the PFM Detection Unit, by MTF measurements on the Proto-Flight Model Instrument. Delivery of the proto flight model occurred mi-2008. The FM2 Instrument delivery is planned Q2-2009. The first optical satellite launch of the PLEIADES-HR constellation is foreseen beginning-2010, the second will follow beginning-2011.
Evangelista, Dennis J.; Ray, Dylan D.; Hedrick, Tyson L.
2016-01-01
ABSTRACT Ecological, behavioral and biomechanical studies often need to quantify animal movement and behavior in three dimensions. In laboratory studies, a common tool to accomplish these measurements is the use of multiple, calibrated high-speed cameras. Until very recently, the complexity, weight and cost of such cameras have made their deployment in field situations risky; furthermore, such cameras are not affordable to many researchers. Here, we show how inexpensive, consumer-grade cameras can adequately accomplish these measurements both within the laboratory and in the field. Combined with our methods and open source software, the availability of inexpensive, portable and rugged cameras will open up new areas of biological study by providing precise 3D tracking and quantification of animal and human movement to researchers in a wide variety of field and laboratory contexts. PMID:27444791
The sequence measurement system of the IR camera
NASA Astrophysics Data System (ADS)
Geng, Ai-hui; Han, Hong-xia; Zhang, Hai-bo
2011-08-01
Currently, the IR cameras are broadly used in the optic-electronic tracking, optic-electronic measuring, fire control and optic-electronic countermeasure field, but the output sequence of the most presently applied IR cameras in the project is complex and the giving sequence documents from the leave factory are not detailed. Aiming at the requirement that the continuous image transmission and image procession system need the detailed sequence of the IR cameras, the sequence measurement system of the IR camera is designed, and the detailed sequence measurement way of the applied IR camera is carried out. The FPGA programming combined with the SignalTap online observation way has been applied in the sequence measurement system, and the precise sequence of the IR camera's output signal has been achieved, the detailed document of the IR camera has been supplied to the continuous image transmission system, image processing system and etc. The sequence measurement system of the IR camera includes CameraLink input interface part, LVDS input interface part, FPGA part, CameraLink output interface part and etc, thereinto the FPGA part is the key composed part in the sequence measurement system. Both the video signal of the CmaeraLink style and the video signal of LVDS style can be accepted by the sequence measurement system, and because the image processing card and image memory card always use the CameraLink interface as its input interface style, the output signal style of the sequence measurement system has been designed into CameraLink interface. The sequence measurement system does the IR camera's sequence measurement work and meanwhile does the interface transmission work to some cameras. Inside the FPGA of the sequence measurement system, the sequence measurement program, the pixel clock modification, the SignalTap file configuration and the SignalTap online observation has been integrated to realize the precise measurement to the IR camera. Te sequence measurement program written by the verilog language combining the SignalTap tool on line observation can count the line numbers in one frame, pixel numbers in one line and meanwhile account the line offset and row offset of the image. Aiming at the complex sequence of the IR camera's output signal, the sequence measurement system of the IR camera accurately measures the sequence of the project applied camera, supplies the detailed sequence document to the continuous system such as image processing system and image transmission system and gives out the concrete parameters of the fval, lval, pixclk, line offset and row offset. The experiment shows that the sequence measurement system of the IR camera can get the precise sequence measurement result and works stably, laying foundation for the continuous system.
ETR COMPLEX. CAMERA FACING SOUTH. FROM BOTTOM OF VIEW TO ...
ETR COMPLEX. CAMERA FACING SOUTH. FROM BOTTOM OF VIEW TO TOP: MTR, MTR SERVICE BUILDING, ETR CRITICAL FACILITY, ETR CONTROL BUILDING (ATTACHED TO ETR), ETR BUILDING (HIGH-BAY), COMPRESSOR BUILDING (ATTACHED AT LEFT OF ETR), HEAT EXCHANGER BUILDING (JUST BEYOND COMPRESSOR BUILDING), COOLING TOWER PUMP HOUSE, COOLING TOWER. OTHER BUILDINGS ARE CONTRACTORS' CONSTRUCTION BUILDINGS. INL NEGATIVE NO. 56-4105. Unknown Photographer, ca. 1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
OCO-2: Hoisting the Fairing Halves up the MST
2014-03-24
VANDENBERG AIR FORCE BASE, Calif. – Workers transfer half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, into the environmental enclosure, or clean room, at the top of the Delta II launcher at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
OCO-2: Hoisting the Fairing Halves up the MST
2014-03-24
VANDENBERG AIR FORCE BASE, Calif. – Half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is transferred through the portal into the environmental enclosure, or clean room, at the top of the Delta II launcher at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
OCO-2: Hoisting the Fairing Halves up the MST
2014-03-24
VANDENBERG AIR FORCE BASE, Calif. – Half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, arrives at the portal of the environmental enclosure, or clean room, at the top of the Delta II launcher at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
OCO-2 Fairing Bi-Sector Halves Transport
2014-03-24
VANDENBERG AIR FORCE BASE, Calif. – Both halves of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, arrive at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations have begun to hoist the sections of the fairing into the Delta II launcher's environmental enclosure, or clean room, at the top of the pad's tower. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
OCO-2 Tower Roll Prior to Fairing Hoist
2014-03-24
VANDENBERG AIR FORCE BASE, Calif. – Workers roll the mobile service tower away from the Delta II launcher behind them at Space Launch Complex 2 on Vandenberg Air Force Base in California in preparation for hoisting the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, into the gantry's environmental enclosure, or clean room. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
OCO-2 Tower Roll Prior to Fairing Hoist
2014-03-24
VANDENBERG AIR FORCE BASE, Calif. – The mobile service tower is rolled away from the Delta II launcher at Space Launch Complex 2 on Vandenberg Air Force Base in California in preparation for hoisting the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, into the gantry's environmental enclosure, or clean room. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
OCO-2: Hoisting the Fairing Halves up the MST
2014-03-24
VANDENBERG AIR FORCE BASE, Calif. – Half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is positioned into the environmental enclosure, or clean room, at the top of the Delta II launcher at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
OCO-2: Hoisting the Fairing Halves up the MST
2014-03-24
VANDENBERG AIR FORCE BASE, Calif. – Both halves of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, are moved into position in the environmental enclosure, or clean room, at the top of the Delta II launcher at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
OCO-2: Hoisting the Fairing Halves up the MST
2014-03-24
VANDENBERG AIR FORCE BASE, Calif. – Half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, arrives at the portal to the environmental enclosure, or clean room, at the top of the Delta II launcher at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
OCO-2: Hoisting the Fairing Halves up the MST
2014-03-24
VANDENBERG AIR FORCE BASE, Calif. – Half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is lifted toward the environmental enclosure, or clean room, at the top of the Delta II launcher at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
OCO-2 Fairings being hoisted into MST
2014-03-24
VANDENBERG AIR FORCE BASE, Calif. – Half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is lifted up the side of the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California toward the Delta II launcher's environmental enclosure, or clean room, at the top of the tower. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/30th Space Wing, VAFB
OCO-2: Hoisting the Fairing Halves up the MST
2014-03-24
VANDENBERG AIR FORCE BASE, Calif. – Both halves of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, have arrived in the environmental enclosure, or clean room, at the top of the Delta II launcher at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
OCO-2: Hoisting the Fairing Halves up the MST
2014-03-24
VANDENBERG AIR FORCE BASE, Calif. – Half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, arrives at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to hoist this section of the fairing into the Delta II launcher's environmental enclosure, or clean room, at the top of the tower. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
OCO-2 Fairing Bi-Sector Halves Transport
2014-03-24
VANDENBERG AIR FORCE BASE, Calif. – Both halves of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, are delivered to Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations have begun to hoist the sections of the fairing into the Delta II launcher's environmental enclosure, or clean room, at the top of the pad's tower. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
OCO-2 Fairings being hoisted into MST
2014-03-24
VANDENBERG AIR FORCE BASE, Calif. – Half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is attached to a crane for its lift into the Delta II launcher's environmental enclosure, or clean room, at the top of the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/30th Space Wing, VAFB
2014-05-20
CAPE CANAVERAL, Fla. -- A crawler-transporter rolls toward Launch Pad 39A at NASA's Kennedy Space Center in Florida. Operations are underway to move Mobile Launcher Platform-2, or MLP-2, from the pad to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett
2014-05-20
CAPE CANAVERAL, Fla. -- A crawler-transporter carries Mobile Launcher Platform-2, or MLP-2, away from Launch Pad 39A at NASA's Kennedy Space Center in Florida. The MLP is being moved to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett
Concept definition study for an extremely large aerophysics range facility
NASA Technical Reports Server (NTRS)
Swift, Hallock F.
1993-01-01
A conceptual design of a very large aeroballistic range is presented, as are its operational characteristics and procedures. The proposed model launcher is a two-stage light-gas gun, having a launch tube diameter of 254 mm, and the capability of accelerating a 14 kg launch mass to 6.1 km/sec. The gun's 91.4 cm diameter piston is driven by pressurized helium. High pressures in the central breech are contained by a multiple disk arrangement. The blast tank and sabot separation tank are described, as are methods for arresting sabot segments. The conceptual design of the range itself includes a 3.3 m diameter test or flight chamber some 330 m in length. Provisions are made for testing of free flight models and tests in which the model is confined by a track system. Methods for model deceleration and recovery are described. Provisions required for future addition of advanced model launchers such as an electromagnetic launcher or ram accelerator are addressed. Siting and safety issues are also addressed.
Methodologies for launcher-payload coupled dynamic analysis
NASA Astrophysics Data System (ADS)
Fransen, S. H. J. A.
2012-06-01
An important step in the design and verification process of spacecraft structures is the coupled dynamic analysis with the launch vehicle in the low-frequency domain, also referred to as coupled loads analysis (CLA). The objective of such analyses is the computation of the dynamic environment of the spacecraft (payload) in terms of interface accelerations, interface forces, center of gravity (CoG) accelerations as well as the internal state of stress. In order to perform an efficient, fast and accurate launcher-payload coupled dynamic analysis, various methodologies have been applied and developed. The methods are related to substructuring techniques, data recovery techniques, the effects of prestress and fluids and time integration problems. The aim of this paper was to give an overview of these methodologies and to show why, how and where these techniques can be used in the process of launcher-payload coupled dynamic analysis. In addition, it will be shown how these methodologies fit together in a library of procedures which can be used with the MSC.Nastran™ solution sequences.
Transportation node space station conceptual design
NASA Technical Reports Server (NTRS)
1988-01-01
A number of recent studies have addressed the problem of a transportation node space station. How things would change or what addition facilities would be needed to support a major lunar or Mars initiative is a much often asked question. The support of a lunar base, requiring stacks on the order of 200 metric tons each to land 25 m tons on the lunar surface with reusable vehicles is addressed. The problem of maintaining and reusing large single stage Orbit Transfer Vehicles (OTVs) and single stage lander/launchers in space are examined. The required people and equipment needed, to maintain these vehicles are only vaguely known at present. The people and equipment needed depend on how well the OTV and lander/launcher can be designed for easy reuse. Since the OTV and lander/launcher are only conceptually defined at present, the real maintenance and refurbishment requirements are unobtainable. An estimate of what is needed, based on previous studies and obvious requirements was therefore made. An attempt was made to err on the conservative side.
Orion Service Module Umbilical (OSMU) Testing Complete
2016-10-19
Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. The test team gathered for an event to mark the end of testing. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.
Orion Service Module Umbilical (OSMU) Testing Complete
2016-10-19
Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. Patrick Simpkins, director of Engineering, speaks to the test team during an event to mark the end of testing. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.
Orion Service Module Umbilical (OSMU) Testing Complete
2016-10-19
Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. The test team gathered with a special banner during an event to mark the end of testing. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.
Orion Service Module Umbilical (OSMU) Testing Complete
2016-10-19
Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. One of the test team members signs a banner during an event to mark the end of testing. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.
Orion Service Module Umbilical (OSMU) Testing Complete
2016-10-19
Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. The test team signed a special banner during an event to mark the end of testing. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.
A coaxial radial opening switch for a distributed-energy-store rail launcher
NASA Astrophysics Data System (ADS)
Upshaw, J. L.; Zowarka, R. C.
1984-03-01
The design, fabrication, and initial testing results for a coaxial radial opening switch for a distributed-energy-store rail launcher are presented. In this nonarcing switch, the voltage needed to transfer current to the rail launcher is generated in a fixed resistor sized to absorb the energy required to accomplish the switching. The coaxial geometry consisting of concentric rings allowed flexibility in defining the conductive and resistive portions of the switch, and also provided tight coupling by minimizing the inductance of the current path between the charging path and the load path to minimize the energy absorption requirements. The resistive portion of the switch is composed of a series of stacked circular steel ring laminations. Switching is completed in three intervals through radial actuation. The switch parts were machined from ETP 110 electrical tough pitch copper plate, 2000 series aluminum plate, and close-tolerance standed GFR epoxy. Current may be transferred at levels less than 20 kA.
Appraisal of UTIAS implosion-driven hypervelocity launchers and shock tubes.
NASA Technical Reports Server (NTRS)
Glass, I. I.
1972-01-01
A critical appraisal is made of the design, research, development, and operation of the novel UTIAS implosion-driven hypervelocity launchers and shock tubes. Explosively driven (PbN6-lead azide, PETN-pentaerythritetetranitrate) implosions in detonating stoichiometric hydrogen-oxygen mixtures have been successfully developed as drivers for hypervelocity launchers and shock tubes in a safe and reusable facility. Intense loadings at very high calculated pressures, densities, and temperatures, at the implosion center, cause severe problems with projectile integrity. Misalignment of the focal point can occur and add to the difficulty in using small caliber projectiles. In addition, the extreme driving conditions cause barrel expansion, erosion, and possible gas leakage from the base to the head of the projectile which cut the predicted muzzle velocities to half or a third of the lossless calculated values. However, in the case of a shock-tube operation these difficulties are minimized or eliminated and the possibilities of approaching Jovian reentry velocities are encouraging.
Study of Cryogenic Complex Plasma
2007-04-26
enabled us to detect the formation of the Coulomb crystals as shown in Fig. 2. Liq. He Ring electrode Particles Green Laser RF Plasma ... Ring electrode CCD camera Prism mirror Liq. He Glass Tube Liq. N2 Glass Dewar Acrylic particles Gas Helium Green Laser CCD camera Pressure
Real-time vehicle matching for multi-camera tunnel surveillance
NASA Astrophysics Data System (ADS)
Jelača, Vedran; Niño Castañeda, Jorge Oswaldo; Frías-Velázquez, Andrés; Pižurica, Aleksandra; Philips, Wilfried
2011-03-01
Tracking multiple vehicles with multiple cameras is a challenging problem of great importance in tunnel surveillance. One of the main challenges is accurate vehicle matching across the cameras with non-overlapping fields of view. Since systems dedicated to this task can contain hundreds of cameras which observe dozens of vehicles each, for a real-time performance computational efficiency is essential. In this paper, we propose a low complexity, yet highly accurate method for vehicle matching using vehicle signatures composed of Radon transform like projection profiles of the vehicle image. The proposed signatures can be calculated by a simple scan-line algorithm, by the camera software itself and transmitted to the central server or to the other cameras in a smart camera environment. The amount of data is drastically reduced compared to the whole image, which relaxes the data link capacity requirements. Experiments on real vehicle images, extracted from video sequences recorded in a tunnel by two distant security cameras, validate our approach.
The Human Transcript Database: A Catalogue of Full Length cDNA Inserts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouckk John; Michael McLeod; Kim Worley
1999-09-10
The BCM Search Launcher provided improved access to web-based sequence analysis services during the granting period and beyond. The Search Launcher web site grouped analysis procedures by function and provided default parameters that provided reasonable search results for most applications. For instance, most queries were automatically masked for repeat sequences prior to sequence database searches to avoid spurious matches. In addition to the web-based access and arrangements that were made using the functions easier, the BCM Search Launcher provided unique value-added applications like the BEAUTY sequence database search tool that combined information about protein domains and sequence database search resultsmore » to give an enhanced, more complete picture of the reliability and relative value of the information reported. This enhanced search tool made evaluating search results more straight-forward and consistent. Some of the favorite features of the web site are the sequence utilities and the batch client functionality that allows processing of multiple samples from the command line interface. One measure of the success of the BCM Search Launcher is the number of sites that have adopted the models first developed on the site. The graphic display on the BLAST search from the NCBI web site is one such outgrowth, as is the display of protein domain search results within BLAST search results, and the design of the Biology Workbench application. The logs of usage and comments from users confirm the great utility of this resource.« less
Superconducting magnetic energy storage and superconducting self-supplied electromagnetic launcher
NASA Astrophysics Data System (ADS)
Ciceron, Jérémie; Badel, Arnaud; Tixador, Pascal
2017-10-01
Superconductors can be used to build energy storage systems called Superconducting Magnetic Energy Storage (SMES), which are promising as inductive pulse power source and suitable for powering electromagnetic launchers. The second generation of high critical temperature superconductors is called coated conductors or REBCO (Rare Earth Barium Copper Oxide) tapes. Their current carrying capability in high magnetic field and their thermal stability are expanding the SMES application field. The BOSSE (Bobine Supraconductrice pour le Stockage d'Energie) project aims to develop and to master the use of these superconducting tapes through two prototypes. The first one is a SMES with high energy density. Thanks to the performances of REBCO tapes, the volume energy and specific energy of existing SMES systems can be surpassed. A study has been undertaken to make the best use of the REBCO tapes and to determine the most adapted topology in order to reach our objective, which is to beat the world record of mass energy density for a superconducting coil. This objective is conflicting with the classical strategies of superconducting coil protection. A different protection approach is proposed. The second prototype of the BOSSE project is a small-scale demonstrator of a Superconducting Self-Supplied Electromagnetic Launcher (S3EL), in which a SMES is integrated around the launcher which benefits from the generated magnetic field to increase the thrust applied to the projectile. The S3EL principle and its design are presented. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek