ON Cone Bipolar Cell Axonal Synapses in the OFF Inner Plexiform Layer of the Rabbit Retina
Lauritzen, J. Scott; Anderson, James R.; Jones, Bryan W.; Watt, Carl B.; Mohammed, Shoeb; Hoang, John V.; Marc, Robert E.
2012-01-01
Analysis of the rabbit retinal connectome RC1 reveals that the division between the ON and OFF inner plexiform layer (IPL) is not structurally absolute. ON cone bipolar cells make non-canonical axonal synapses onto specific targets and receive amacrine cell synapses in the nominal OFF layer, creating novel motifs, including inhibitory crossover networks. Automated transmission electron microscope (ATEM) imaging, molecular tagging, tracing, and rendering of ≈ 400 bipolar cells reveals axonal ribbons in 36% of ON cone bipolar cells, throughout the OFF IPL. The targets include GABA-positive amacrine cells (γACs), glycine-positive amacrine cells (GACs) and ganglion cells. Most ON cone bipolar cell axonal contacts target GACs driven by OFF cone bipolar cells, forming new architectures for generating ON-OFF amacrine cells. Many of these ON-OFF GACs target ON cone bipolar cell axons, ON γACs and/or ON-OFF ganglion cells, representing widespread mechanisms for OFF to ON crossover inhibition. Other targets include OFF γACs presynaptic to OFF bipolar cells, forming γAC-mediated crossover motifs. ON cone bipolar cell axonal ribbons drive bistratified ON-OFF ganglion cells in the OFF layer and provide ON drive to polarity-appropriate targets such as bistratified diving ganglion cells (bsdGCs). The targeting precision of ON cone bipolar cell axonal synapses shows that this drive incidence is necessarily a joint distribution of cone bipolar cell axonal frequency and target cell trajectories through a given volume of the OFF layer. Such joint distribution sampling is likely common when targets are sparser than sources and when sources are coupled, as are ON cone bipolar cells. PMID:23042441
Differential encoding of spatial information among retinal on cone bipolar cells
Purgert, Robert J.
2015-01-01
The retina is the first stage of visual processing. It encodes elemental features of visual scenes. Distinct cone bipolar cells provide the substrate for this to occur. They encode visual information, such as color and luminance, a principle known as parallel processing. Few studies have directly examined whether different forms of spatial information are processed in parallel among cone bipolar cells. To address this issue, we examined the spatial information encoded by mouse ON cone bipolar cells, the subpopulation excited by increments in illumination. Two types of spatial processing were identified. We found that ON cone bipolar cells with axons ramifying in the central inner plexiform layer were tuned to preferentially encode small stimuli. By contrast, ON cone bipolar cells with axons ramifying in the proximal inner plexiform layer, nearest the ganglion cell layer, were tuned to encode both small and large stimuli. This dichotomy in spatial tuning is attributable to amacrine cells providing stronger inhibition to central ON cone bipolar cells compared with proximal ON cone bipolar cells. Furthermore, background illumination altered this difference in spatial tuning. It became less pronounced in bright light, as amacrine cell-driven inhibition became pervasive among all ON cone bipolar cells. These results suggest that differential amacrine cell input determined the distinct spatial encoding properties among ON cone bipolar cells. These findings enhance the known parallel processing capacity of the retina. PMID:26203104
Park, Hyung Wook; Kim, Hong-Lim; Park, Yong Soo; Kim, In-Beom
2018-02-01
The retina is a highly specialised part of the brain responsible for visual processing. It is well-laminated; three layers containing five different types of neurons are compartmentalised by two synaptic layers. Among the retinal layers, the inner nuclear layer (INL) is composed of horizontal, bipolar, and amacrine cell types. Bipolar cells form one sublayer in the distal half of the IPL, while amacrine cells form another sublayer in the proximal half, without any border-like structure. Here, we report that a plexiform layer-like structure exists temporarily in the border between the bipolar and amacrine sublayers in the INL in the rat retina during retinal development. This transient intermediate plexiform layer (TIPL) appeared at postnatal day (PD) 7 and then disappeared around PD 12. Most apoptotic cells in the INL were found near the TIPL. These results suggest that the TIPL may contribute to the formation of sublayers and the cell number limit in the INL.
Development of an Anti-Corrosion Conductive Nano Carbon Coating Layer on Metal Bipolar Plates.
Yeo, Kiho; Kim, Juyong; Kim, Jongryoul
2018-09-01
For automotive applications of polymer electrolyte membrane fuel cells, the enhancement of the corrosion resistance of metal bipolar plates has been a critical issue with regard to the lifespan of fuel cell stacks. In this paper, we present a novel method for increasing the lifespan by means of a conductive carbon coating on bipolar plates. Conductive carbon films were plasma coated onto metal bipolar plates in a vacuum at various temperatures. As a result, 316L stainless plates with a 10-nm-thick carbon coating layer on a 20-nm-thick CrN undercoat layer showed-contact resistance of 10.71 mΩcm2@10 kgf/cm2 and a corrosion current of 0.5 μA/cm2@0.6 V. This thin coating layer with high conductivity and excellent corrosion resistance suggests a new, effective coating method for the mass production of metal bipolar plates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George A. Marchetti
1999-12-15
Proton exchange membrane (PEM) fuel cell components, which would have a low-cost structure in mass production, were fabricated and tested. A fuel cell electrode structure, comprising a thin layer of graphite (50 microns) and a front-loaded platinum catalyst layer (600 angstroms), was shown to produce significant power densities. In addition, a PEM bipolar plate, comprising flexible graphite, carbon cloth flow-fields and an integrated polymer gasket, was fabricated. Power densities of a two-cell unit using this inexpensive bipolar plate architecture were shown to be comparable to state-of-the-art bipolar plates.
Progression of neuronal and synaptic remodeling in the rd10 mouse model of retinitis pigmentosa.
Phillips, M Joseph; Otteson, Deborah C; Sherry, David M
2010-06-01
The Pde6b(rd10) (rd10) mouse has a moderate rate of photoreceptor degeneration and serves as a valuable model for human autosomal recessive retinitis pigmentosa (RP). We evaluated the progression of neuronal remodeling of second- and third-order retinal cells and their synaptic terminals in retinas from Pde6b(rd10) (rd10) mice at varying stages of degeneration ranging from postnatal day 30 (P30) to postnatal month 9.5 (PNM9.5) using immunolabeling for well-known cell- and synapse-specific markers. Following photoreceptor loss, changes occurred progressively from outer to inner retina. Horizontal cells and rod and cone bipolar cells underwent morphological remodeling that included loss of dendrites, cell body migration, and the sprouting of ectopic processes. Gliosis, characterized by translocation of Müller cell bodies to the outer retina and thickening of their processes, was evident by P30 and became more pronounced as degeneration progressed. Following rod degeneration, continued expression of VGluT1 in the outer retina was associated with survival and expression of synaptic proteins by nearby second-order neurons. Rod bipolar cell terminals showed a progressive reduction in size and ectopic bipolar cell processes extended into the inner nuclear layer and ganglion cell layer by PNM3.5. Putative ectopic conventional synapses, likely arising from amacrine cells, were present in the inner nuclear layer by PNM9.5. Despite these changes, the laminar organization of bipolar and amacrine cells and the ON-OFF organization in the inner plexiform layer was largely preserved. Surviving cone and bipolar cell terminals continued to express the appropriate cell-specific presynaptic proteins needed for synaptic function up to PNM9.5. (c) 2010 Wiley-Liss, Inc.
Progression of Neuronal and Synaptic Remodeling in the rd10 Mouse Model of Retinitis Pigmentosa
Phillips, M. Joseph; Otteson, Deborah C.; Sherry, David M.
2010-01-01
The Pde6brd10 (rd10) mouse has a moderate rate of photoreceptor degeneration and serves as a valuable model for human autosomal recessive retinitis pigmentosa (RP). We evaluated the progression of neuronal remodeling of second- and third-order retinal cells and their synaptic terminals in retinas from Pde6brd10 (rd10) mice at varying stages of degeneration ranging from postnatal day 30 (P30) to postnatal month 9.5 (PNM9.5) using immunolabeling for well known cell- and synapse-specific markers. Following photoreceptor loss, changes occurred progressively from outer to inner retina. Horizontal cells and rod and cone bipolar cells underwent morphological remodeling that included loss of dendrites, cell body migration, and the sprouting of ectopic processes. Gliosis, characterized by translocation of Müller cell bodies to the outer retina and thickening of their processes, was evident by P30 and became more pronounced as degeneration progressed. Following rod degeneration, continued expression of VGluT1 in the outer retina was associated with survival and expression of synaptic proteins by nearby second-order neurons. Rod bipolar cell terminals showed a progressive reduction in size and ectopic bipolar cell processes extended into the inner nuclear layer and ganglion cell layer by PNM3.5. Putative ectopic conventional synapses, likely arising from amacrine cells, were present in the inner nuclear layer by PNM9.5. Despite these changes, the laminar organization of bipolar and amacrine cells and the ON-OFF organization in the inner plexiform layer was largely preserved. Surviving cone and bipolar cell terminals continued to express the appropriate cell-specific presynaptic proteins needed for synaptic function up to PNM9.5. PMID:20394059
DSCAM Localization and Function at the Mouse Cone Synapse
de Andrade, Gabriel Belem; Long, Samuel S.; Fleming, Harrison; Li, Wei; Fuerst, Peter G.
2014-01-01
The Down Syndrome Cell Adhesion Molecule (DSCAM) is required for regulation of cell number, soma spacing and cell type specific dendrite avoidance in many types of retinal ganglion and amacrine cells. In this study we assay the organization of cells making up the outer plexiform layer of the retina in the absence of Dscam. Some types of OFF bipolar cells, type 3b and type 4 bipolar cells, had defects in dendrite arborization in the Dscam mutant retina, while other cell types appeared similar to wild type. The cone synapses that these cells project their dendrites to were intact, as visualized by electron microscopy, and had a distribution and density that was not significantly different than wild type. The spacing of type 3b bipolar cell dendrites was further analyzed by Voronoi domain analysis, Density Recovery Profiling (DRP) analysis and Nearest Neighbor Analysis (NNA). Spacing was found to be significantly different when comparing wild type and mutant type 3b bipolar cell dendrites. Defects in arborization of these bipolar cells could not be attributed to the disorganization of inner plexiform layer cells that occurs in the Dscam mutant retina or an increase in cell number, as they arborized when Dscam was targeted in retinal ganglion cells only or in the bax null retina. Localization of DSCAM was assayed and the protein was localized near to cone synapses in mouse, macaque and ground squirrel retinas. DSCAM protein was detected in several types of bipolar cells, including type 3b and type 4 bipolar cells. PMID:24477985
Distribution of protein kinase C isoforms in the cat retina.
Fyk-Kolodziej, Bozena; Cai, Wenhui; Pourcho, Roberta G
2002-01-01
Immunocytochemical localization was carried out for five isoforms of protein kinase C (PKC) in the cat retina. In common with other mammalian species, PKCalpha was found in rod bipolar cells. Staining was also seen in a small population of cone bipolar cells with axon terminals ramifying near the middle of the inner plexiform layer (IPL). PKCbetaI was localized to rod bipolar cells, one class of cone bipolar cell, and numerous amacrine and displaced amacrine cells. Staining for PKCbetaI was seen in three types of cone bipolar cells as well as in amacrine and ganglion cells. Immunoreactivity for both PKCepsilon and PKCzeta was found in rod bipolar cells; PKCepsilon was also seen in a population of cone bipolar cells and a few amacrine and ganglion cells whereas PKCzeta was found in all ganglion cells. Double-label immunofluorescence studies showed that dendrites of the two PKCbetaII-positive OFF-cone bipolar cells exhibit immmunoreactivity for the kainate-selective glutamate receptor GluR5. The third PKCbetaII cone bipolar is an ON-type cell and did not stain for GluR5. The retinal distribution of these isoforms of PKC is consistent with a role in modulation of various aspects of neurotransmission including synaptic vesicle release and regulation of receptor molecules.
NASA Astrophysics Data System (ADS)
Haase, S.; Moser, M.; Hirschfeld, J. A.; Jozwiak, K.
2016-01-01
An automotive fuel cell with an active area of 250 cm2 is investigated in a 4-cell short stack with a current and temperature distribution device next to the bipolar plate with 560 current and 140 temperature segments. The electrical conductivities of the bipolar plate and gas diffusion layer assembly are determined ex-situ with this current scan shunt module. The applied fuel cell consists of bipolar plates constructed of 75-μm-thick, welded stainless-steel foils and a graphitic coating. The electrical conductivities of the bipolar plate and gas diffusion layer assembly are determined ex-situ with this module with a 6% deviation in in-plane conductivity. The current density distribution is evaluated up to 2.4 A cm-2. The entire cell's investigated volumetric power density is 4.7 kW l-1, and its gravimetric power density is 4.3 kW kg-1 at an average cell voltage of 0.5 V. The current density distribution is determined without influencing the operating cell. In addition, the current density distribution in the catalyst-coated membrane and its effective resistivity distribution with a finite volume discretisation of Ohm's law are evaluated. The deviation between the current density distributions in the catalyst-coated membrane and the bipolar plate is determined.
Corrosion test cell for bipolar plates
Weisbrod, Kirk R.
2002-01-01
A corrosion test cell for evaluating corrosion resistance in fuel cell bipolar plates is described. The cell has a transparent or translucent cell body having a pair of identical cell body members that seal against opposite sides of a bipolar plate. The cell includes an anode chamber and an cathode chamber, each on opposite sides of the plate. Each chamber contains a pair of mesh platinum current collectors and a catalyst layer pressed between current collectors and the plate. Each chamber is filled with an electrolyte solution that is replenished with fluid from a much larger electrolyte reservoir. The cell includes gas inlets to each chamber for hydrogen gas and air. As the gases flow into a chamber, they pass along the platinum mesh, through the catalyst layer, and to the bipolar plate. The gas exits the chamber through passageways that provide fluid communication between the anode and cathode chambers and the reservoir, and exits the test cell through an exit port in the reservoir. The flow of gas into the cell produces a constant flow of fresh electrolyte into each chamber. Openings in each cell body is member allow electrodes to enter the cell body and contact the electrolyte in the reservoir therein. During operation, while hydrogen gas is passed into one chamber and air into the other chamber, the cell resistance is measured, which is used to evaluate the corrosion properties of the bipolar plate.
Collin, S P
1988-01-01
A light microscopy study of the retina of the shovel-nosed ray, Rhinobatos batillum (Rhinobatidae) has revealed a duplex retina with a rod to cone ratio between 4:1 and 6:1. The inner nuclear layer consists of three layers of large horizontal cells, tightly packed, stellate bipolar cells, and up to three substrata of amacrine cells. The collaterals of the many supporting Müller cells project from the inner to the outer limiting membrane and divide the retina into many subunits. The cells of the ganglion cell layer are distributed into two layers, although a large proportion of ganglion cells are also displaced into the inner plexiform and inner nuclear layers. Topographic analysis of the cells in the ganglion cell layer, inner plexiform and inner nuclear layers reveals a number of regional specializations or "areae centrales". Ganglion cells were retrogradely-labelled with cobalt-lysine from the optic nerve, and three sub-populations of neurons characterized on their soma size and position. Small (20-50 microns2), large (80-300 microns2) and giant (greater than 300 microns2) sub-populations of ganglion cells each revealed distinct retinal specializations with peak densities of 3 x 10(3), 1.25 x 10(3) and 1.57 x 10(3) cells per mm2, respectively. Topographical comparison between Nissl-stained and retrogradely-labelled ganglion cell populations have established that a maximum of 20% in the "area centralis", and 75% in unspecialized, peripheral regions of the retina are non-ganglion cells. Out of a total of 210,566 cells in the ganglion cell layer, 49% were found to be non-ganglion cells. Iso-density contour maps of amacrine and bipolar cell distributions also reveal some specializations. These cell concentrations lie in corresponding regions to areas of increased density in the large and giant ganglion cell populations, suggesting some functional association.
NASA Astrophysics Data System (ADS)
Jendras, P.; Lötsch, K.; von Unwerth, T.
2017-03-01
To reduce emissions and to substitute combustion engines automotive manufacturers, legislature and first users aspire hydrogen fuel cell vehicles. Up to now the focus of research was set on ensuring functionality and increasing durability of fuel cell components. Therefore, expensive materials were used. Contemporary research and development try to substitute these substances by more cost-effective material combinations. The bipolar plate is a key component with the greatest influence on volume and mass of a fuel cell stack and they have to meet complex requirements. They support bending sensitive components of stack, spread reactants over active cell area and form the electrical contact to another cell. Furthermore, bipolar plates dissipate heat of reaction and separate one cell gastight from the other. Consequently, they need a low interfacial contact resistance (ICR) to the gas diffusion layer, high flexural strength, good thermal conductivity and a high durability. To reduce costs stainless steel is a favoured material for bipolar plates in automotive applications. Steel is characterized by good electrical and thermal conductivity but the acid environment requires a high chemical durability against corrosion as well. On the one hand formation of a passivating oxide layer increasing ICR should be inhibited. On the other hand pitting corrosion leading to increased permeation rate may not occur. Therefore, a suitable substrate lamination combination is wanted. In this study material testing methods for bipolar plates are considered.
The composition of the inner nuclear layer of the cat retina.
Macneil, Margaret A; Purrier, Sheryl; Rushmore, R Jarrett
2009-01-01
The cellular composition of the inner nuclear layer (INL) is largely conserved among mammals. Studies of rabbit, monkey, and mouse retinas have shown that bipolar, amacrine, Müller, and horizontal cells make up constant fractions of the INL (42, 35, 20, and 3%, respectively); these proportions remain relatively constant at all retinal eccentricities. The purpose of our study was to test whether the organization of cat retina is similar to that of other mammalian retinas. Fixed retinas were embedded in plastic, serially sectioned at a thickness of 1 microm, stained, and imaged at high power in the light microscope. Bipolar, amacrine, Müller, and horizontal cells were classified and counted according to established morphological criteria. Additional sets of sections were processed for protein kinase C and calretinin immunoreactivity to determine the relative fraction of rod bipolar and AII amacrine cells. Our results show that the organization of INL in the cat retina contains species-specific alterations in the composition of the INL tied to the large fraction of rod photoreceptors. Compared with other mammalian retinas, cat retinas show an expansion of the rod pathway with rod bipolar cells accounting for about 70% of all bipolar cells and AII cells accounting for nearly a quarter of all amacrine cells. Our results suggest that evolutionary pressures in cats over time have refined their retinal organization to suit its ecological niche.
Garcia-Calero, Elena; Botella-Lopez, Arancha; Bahamonde, Olga; Perez-Balaguer, Ariadna; Martinez, Salvador
2016-07-01
In the mammalian telencephalon, part of the progenitor cells transition from multipolar to bipolar morphology as they invade the mantle zone. This associates with changing patterns of radial migration. However, the molecules implicated in these morphology transitions are not well known. In the present work, we analyzed the function of FoxP2 protein in this process during telencephalic development in vertebrates. We analyzed the expression of FoxP2 protein and its relation with cell morphology and migratory patterns in mouse and chicken developing striatum. We observed FoxP2 protein expressed in a gradient from the subventricular zone to the mantle layer in mice embryos. In the FoxP2 low domain cells showed multipolar migration. In the striatal mantle layer where FoxP2 protein expression is higher, cells showed locomoting migration and bipolar morphology. In contrast, FoxP2 showed a high and homogenous expression pattern in chicken striatum, thus bipolar morphology predominated. Elevation of FoxP2 in the striatal subventricular zone by in utero electroporation promoted bipolar morphology and impaired multipolar radial migration. In mouse cerebral cortex we obtained similar results. FoxP2 promotes transition from multipolar to bipolar morphology by means of gradiental expression in mouse striatum and cortex. Together these results indicate a role of FoxP2 differential expression in cell morphology control of the vertebrate telencephalon.
Expression of the LIM-Homeodomain Protein Isl1 in the Developing and Mature Mouse Retina
Elshatory, Yasser; Deng, Min; Xie, Xiaoling; Gan, Lin
2010-01-01
The mammalian retina is comprised of six major neuronal cell types and is subdivided into more morphological and physiological subtypes. The transcriptional machinery underlying these subtype fate choices is largely unknown. The LIM-homeodomain protein, Isl1, plays an essential role in central nervous system (CNS) differentiation but its relationship to retinal neurogenesis remains unknown. We report here its dynamic spatiotemporal expression in the mouse retina. Among bipolar interneurons, Isl1 expression commences at postnatal day (P)5 and is later restricted to ON-bipolar cells. The intensity of Isl1 expression is found to segregate the pool of ON-bipolar cells into rod and ON-cone bipolar cells with higher expression in rod bipolar cells. As bipolar cell development proceeds from P5–10 the colocalization of Isl1 and the pan-bipolar cell marker Chx10 reveals the organization of ON-center bipolar cell nuclei to the upper portion of the inner nuclear layer. Further, whereas Isl1 is predominantly a ganglion cell marker prior to embryonic day (E)15.5, at E15.5 and later its expression in nonganglion cells expands. We demonstrate that these Isl1-positive, nonganglion cells acquire the expression of amacrine cell markers embryonically, likely representing nascent cholinergic amacrine cells. Taken together, Isl1 is expressed during the maturation of and is later maintained in retinal ganglion cells and subtypes of amacrine and bipolar cells where it may function in the maintenance of these cells into adulthood. J. Comp. Neurol. 503: 182–197, 2007. PMID:17480014
Borghuis, Bart G; Looger, Loren L; Tomita, Susumu; Demb, Jonathan B
2014-04-30
A fundamental question in sensory neuroscience is how parallel processing is implemented at the level of molecular and circuit mechanisms. In the retina, it has been proposed that distinct OFF cone bipolar cell types generate fast/transient and slow/sustained pathways by the differential expression of AMPA- and kainate-type glutamate receptors, respectively. However, the functional significance of these receptors in the intact circuit during light stimulation remains unclear. Here, we measured glutamate release from mouse bipolar cells by two-photon imaging of a glutamate sensor (iGluSnFR) expressed on postsynaptic amacrine and ganglion cell dendrites. In both transient and sustained OFF layers, cone-driven glutamate release from bipolar cells was blocked by antagonists to kainate receptors but not AMPA receptors. Electrophysiological recordings from bipolar and ganglion cells confirmed the essential role of kainate receptors for signaling in both transient and sustained OFF pathways. Kainate receptors mediated responses to contrast modulation up to 20 Hz. Light-evoked responses in all mouse OFF bipolar pathways depend on kainate, not AMPA, receptors.
Corrosion resistant metallic bipolar plate
Brady, Michael P [Oak Ridge, TN; Schneibel, Joachim H [Knoxville, TN; Pint, Bruce A [Knoxville, TN; Maziasz, Philip J [Oak Ridge, TN
2007-05-01
A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.
Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH; Guo, Jiusheng [Centerville, OH
2011-02-15
This invention provides a moldable, multiple-layer composite composition, which is a precursor to an electrically conductive composite flow field plate or bipolar plate. In one preferred embodiment, the composition comprises a plurality of conductive sheets and a plurality of mixture layers of a curable resin and conductive fillers, wherein (A) each conductive sheet is attached to at least one resin-filler mixture layer; (B) at least one of the conductive sheets comprises flexible graphite; and (C) at least one resin-filler mixture layer comprises a thermosetting resin and conductive fillers with the fillers being present in a sufficient quantity to render the resulting flow field plate or bipolar plate electrically conductive with a conductivity no less than 100 S/cm and thickness-direction areal conductivity no less than 200 S/cm.sup.2.
Exploring the retinal connectome
Anderson, James R.; Jones, Bryan W.; Watt, Carl B.; Shaw, Margaret V.; Yang, Jia-Hui; DeMill, David; Lauritzen, James S.; Lin, Yanhua; Rapp, Kevin D.; Mastronarde, David; Koshevoy, Pavel; Grimm, Bradley; Tasdizen, Tolga; Whitaker, Ross
2011-01-01
Purpose A connectome is a comprehensive description of synaptic connectivity for a neural domain. Our goal was to produce a connectome data set for the inner plexiform layer of the mammalian retina. This paper describes our first retinal connectome, validates the method, and provides key initial findings. Methods We acquired and assembled a 16.5 terabyte connectome data set RC1 for the rabbit retina at ≈2 nm resolution using automated transmission electron microscope imaging, automated mosaicking, and automated volume registration. RC1 represents a column of tissue 0.25 mm in diameter, spanning the inner nuclear, inner plexiform, and ganglion cell layers. To enhance ultrastructural tracing, we included molecular markers for 4-aminobutyrate (GABA), glutamate, glycine, taurine, glutamine, and the in vivo activity marker, 1-amino-4-guanidobutane. This enabled us to distinguish GABAergic and glycinergic amacrine cells; to identify ON bipolar cells coupled to glycinergic cells; and to discriminate different kinds of bipolar, amacrine, and ganglion cells based on their molecular signatures and activity. The data set was explored and annotated with Viking, our multiuser navigation tool. Annotations were exported to additional applications to render cells, visualize network graphs, and query the database. Results Exploration of RC1 showed that the 2 nm resolution readily recapitulated well known connections and revealed several new features of retinal organization: (1) The well known AII amacrine cell pathway displayed more complexity than previously reported, with no less than 17 distinct signaling modes, including ribbon synapse inputs from OFF bipolar cells, wide-field ON cone bipolar cells and rod bipolar cells, and extensive input from cone-pathway amacrine cells. (2) The axons of most cone bipolar cells formed a distinct signal integration compartment, with ON cone bipolar cell axonal synapses targeting diverse cell types. Both ON and OFF bipolar cells receive axonal veto synapses. (3) Chains of conventional synapses were very common, with intercalated glycinergic-GABAergic chains and very long chains associated with starburst amacrine cells. Glycinergic amacrine cells clearly play a major role in ON-OFF crossover inhibition. (4) Molecular and excitation mapping clearly segregates ultrastructurally defined bipolar cell groups into different response clusters. (5) Finally, low-resolution electron or optical imaging cannot reliably map synaptic connections by process geometry, as adjacency without synaptic contact is abundant in the retina. Only direct visualization of synapses and gap junctions suffices. Conclusions Connectome assembly and analysis using conventional transmission electron microscopy is now practical for network discovery. Our surveys of volume RC1 demonstrate that previously studied systems such as the AII amacrine cell network involve more network motifs than previously known. The AII network, primarily considered a scotopic pathway, clearly derives ribbon synapse input from photopic ON and OFF cone bipolar cell networks and extensive photopic GABAergic amacrine cell inputs. Further, bipolar cells show extensive inputs and outputs along their axons, similar to multistratified nonmammalian bipolar cells. Physiologic evidence of significant ON-OFF channel crossover is strongly supported by our anatomic data, showing alternating glycine-to-GABA paths. Long chains of amacrine cell networks likely arise from homocellular GABAergic synapses between starburst amacrine cells. Deeper analysis of RC1 offers the opportunity for more complete descriptions of specific networks. PMID:21311605
Exploring the retinal connectome.
Anderson, James R; Jones, Bryan W; Watt, Carl B; Shaw, Margaret V; Yang, Jia-Hui; Demill, David; Lauritzen, James S; Lin, Yanhua; Rapp, Kevin D; Mastronarde, David; Koshevoy, Pavel; Grimm, Bradley; Tasdizen, Tolga; Whitaker, Ross; Marc, Robert E
2011-02-03
A connectome is a comprehensive description of synaptic connectivity for a neural domain. Our goal was to produce a connectome data set for the inner plexiform layer of the mammalian retina. This paper describes our first retinal connectome, validates the method, and provides key initial findings. We acquired and assembled a 16.5 terabyte connectome data set RC1 for the rabbit retina at ≈ 2 nm resolution using automated transmission electron microscope imaging, automated mosaicking, and automated volume registration. RC1 represents a column of tissue 0.25 mm in diameter, spanning the inner nuclear, inner plexiform, and ganglion cell layers. To enhance ultrastructural tracing, we included molecular markers for 4-aminobutyrate (GABA), glutamate, glycine, taurine, glutamine, and the in vivo activity marker, 1-amino-4-guanidobutane. This enabled us to distinguish GABAergic and glycinergic amacrine cells; to identify ON bipolar cells coupled to glycinergic cells; and to discriminate different kinds of bipolar, amacrine, and ganglion cells based on their molecular signatures and activity. The data set was explored and annotated with Viking, our multiuser navigation tool. Annotations were exported to additional applications to render cells, visualize network graphs, and query the database. Exploration of RC1 showed that the 2 nm resolution readily recapitulated well known connections and revealed several new features of retinal organization: (1) The well known AII amacrine cell pathway displayed more complexity than previously reported, with no less than 17 distinct signaling modes, including ribbon synapse inputs from OFF bipolar cells, wide-field ON cone bipolar cells and rod bipolar cells, and extensive input from cone-pathway amacrine cells. (2) The axons of most cone bipolar cells formed a distinct signal integration compartment, with ON cone bipolar cell axonal synapses targeting diverse cell types. Both ON and OFF bipolar cells receive axonal veto synapses. (3) Chains of conventional synapses were very common, with intercalated glycinergic-GABAergic chains and very long chains associated with starburst amacrine cells. Glycinergic amacrine cells clearly play a major role in ON-OFF crossover inhibition. (4) Molecular and excitation mapping clearly segregates ultrastructurally defined bipolar cell groups into different response clusters. (5) Finally, low-resolution electron or optical imaging cannot reliably map synaptic connections by process geometry, as adjacency without synaptic contact is abundant in the retina. Only direct visualization of synapses and gap junctions suffices. Connectome assembly and analysis using conventional transmission electron microscopy is now practical for network discovery. Our surveys of volume RC1 demonstrate that previously studied systems such as the AII amacrine cell network involve more network motifs than previously known. The AII network, primarily considered a scotopic pathway, clearly derives ribbon synapse input from photopic ON and OFF cone bipolar cell networks and extensive photopic GABAergic amacrine cell inputs. Further, bipolar cells show extensive inputs and outputs along their axons, similar to multistratified nonmammalian bipolar cells. Physiologic evidence of significant ON-OFF channel crossover is strongly supported by our anatomic data, showing alternating glycine-to-GABA paths. Long chains of amacrine cell networks likely arise from homocellular GABAergic synapses between starburst amacrine cells. Deeper analysis of RC1 offers the opportunity for more complete descriptions of specific networks.
The double layers in the plasma sheet boundary layer during magnetic reconnection
NASA Astrophysics Data System (ADS)
Guo, J.; Yu, B.
2014-11-01
We studied the evolutions of double layers which appear after the magnetic reconnection through two-dimensional electromagnetic particle-in-cell simulation. The simulation results show that the double layers are formed in the plasma sheet boundary layer after magnetic reconnection. At first, the double layers which have unipolar structures are formed. And then the double layers turn into bipolar structures, which will couple with another new weak bipolar structure. Thus a new double layer or tripolar structure comes into being. The double layers found in our work are about several ten Debye lengths, which accords with the observation results. It is suggested that the electron beam formed during the magnetic reconnection is responsible for the production of the double layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Zhifei; Zhu, Liang; Li, Yuguang C.
Bipolar membranes maintain a steady pH in electrolytic cells through water autodissociation at the interface between their cation- and anion-exchange layers. We analyze the balance of electric field and catalysis in accelerating this reaction.
Yan, Zhifei; Zhu, Liang; Li, Yuguang C.; ...
2018-01-01
Bipolar membranes maintain a steady pH in electrolytic cells through water autodissociation at the interface between their cation- and anion-exchange layers. We analyze the balance of electric field and catalysis in accelerating this reaction.
Surface modified stainless steels for PEM fuel cell bipolar plates
Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO
2007-07-24
A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.
Short-wavelength cone-opponent retinal ganglion cells in mammals.
Marshak, David W; Mills, Stephen L
2014-03-01
In all of the mammalian species studied to date, the short-wavelength-sensitive (S) cones and the S-cone bipolar cells that receive their input are very similar, but the retinal ganglion cells that receive synapses from the S-cone bipolar cells appear to be quite different. Here, we review the literature on mammalian retinal ganglion cells that respond selectively to stimulation of S-cones and respond with opposite polarity to longer wavelength stimuli. There are at least three basic mechanisms to generate these color-opponent responses, including: (1) opponency is generated in the outer plexiform layer by horizontal cells and is conveyed to the ganglion cells via S-cone bipolar cells, (2) inputs from bipolar cells with different cone inputs and opposite response polarity converge directly on the ganglion cells, and (3) inputs from S-cone bipolar cells are inverted by S-cone amacrine cells. These are not mutually exclusive; some mammalian ganglion cells that respond selectively to S-cone stimulation seem to utilize at least two of them. Based on these findings, we suggest that the small bistratified ganglion cells described in primates are not the ancestral type, as proposed previously. Instead, the known types of ganglion cells in this pathway evolved from monostratified ancestral types and became bistratified in some mammalian lineages.
Multi-layer coatings for bipolar rechargeable batteries with enhanced terminal voltage
Farmer, Joseph C.; Kaschmitter, James; Pierce, Steve
2017-06-06
A method for producing a multi-layer bipolar coated cell according to one embodiment includes applying a first active cathode material above a substrate to form a first cathode; applying a first solid-phase ionically-conductive electrolyte material above the first cathode to form a first electrode separation layer; applying a first active anode material above the first electrode separation layer to form a first anode; applying an electrically conductive barrier layer above the first anode; applying a second active cathode material above the anode material to form a second cathode; applying a second solid-phase ionically-conductive electrolyte material above the second cathode to form a second electrode separation layer; applying a second active anode material above the second electrode separation layer to form a second anode; and applying a metal material above the second anode to form a metal coating section. In another embodiment, the anode is formed prior to the cathode. Cells are also disclosed.
Integral gas seal for fuel cell gas distribution assemblies and method of fabrication
Dettling, Charles J.; Terry, Peter L.
1985-03-19
A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.
Method of fabricating an integral gas seal for fuel cell gas distribution assemblies
Dettling, Charles J.; Terry, Peter L.
1988-03-22
A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.
NASA Astrophysics Data System (ADS)
Aziz, Gaelle; Asadian, Mahtab; Declercq, Heidi; Morent, Rino; De Geyter, Nathalie
2018-06-01
In this work, a dielectric barrier discharge (DBD) has been used for the deposition of bipolar films containing alternating nano-layers of plasma polymerized allylamine (PPAam) and acrylic acid (PPAac). Various films were obtained by varying the single-layer thickness of each plasma polymer while maintaining a constant total film thickness and two kinds of films were fabricated via different depositing sequences (PPAam/Aac and PPAac/Aam). Films properties, ageing in air and stability in water over a 7 days period were investigated. Results showed that, COO- and NH3+ polar entities, generated from the interaction of PPAam and PPAac, are present in the bipolar films. Concerning the films stability, the different reaction mechanisms involved in the formation of each kind of films resulted in a higher amount of polar groups in the PPAam/Aac films; this conferred these films a higher stability than PPAac/Aam. Concerning the films ageing behavior, all prepared samples underwent some kind of ageing which was found to be dependent on the deposition sequence. Results also showed that bipolar coatings exhibited better cell-material interactions compared to PPAam and PPAac films; with a better cell viability observed on PPAam/Aac coatings after 1 and 7 days culture.
Labelling and targeted ablation of specific bipolar cell types in the zebrafish retina
2009-01-01
Background Development of a functional retina depends on regulated differentiation of several types of neurons and generation of a highly complex network between the different types of neurons. In addition, each type of retinal neuron includes several distinct morphological types. Very little is known about the mechanisms responsible for generating this diversity of retinal neurons, which may also display specific patterns of regional distribution. Results In a screen in zebrafish, using a trapping vector carrying an engineered yeast Gal4 transcription activator and a UAS:eGFP reporter cassette, we have identified two transgenic lines of zebrafish co-expressing eGFP and Gal4 in specific subsets of retinal bipolar cells. The eGFP-labelling facilitated analysis of axon terminals within the inner plexiform layer of the adult retina and showed that the fluorescent bipolar cells correspond to previously defined morphological types. Strong regional restriction of eGFP-positive bipolar cells to the central part of the retina surrounding the optic nerve was observed in adult zebrafish. Furthermore, we achieved specific ablation of the labelled bipolar cells in 5 days old larvae, using a bacterial nitroreductase gene under Gal4-UAS control in combination with the prodrug metronidazole. Following prodrug treatment, nitroreductase expressing bipolar cells were efficiently ablated without affecting surrounding retina architecture, and recovery occurred within a few days due to increased generation of new bipolar cells. Conclusion This report shows that enhancer trapping can be applied to label distinct morphological types of bipolar cells in the zebrafish retina. The genetic labelling of these cells yielded co-expression of a modified Gal4 transcription activator and the fluorescent marker eGFP. Our work also demonstrates the potential utility of the Gal4-UAS system for induction of other transgenes, including a bacterial nitroreductase fusion gene, which can facilitate analysis of bipolar cell differentiation and how the retina recovers from specific ablation of these cells. PMID:19712466
Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates
Brady, Michael P [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN
2010-11-09
A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.
Neuillé, Marion; Morgans, Catherine W.; Cao, Yan; Orhan, Elise; Michiels, Christelle; Sahel, José-Alain; Audo, Isabelle; Duvoisin, Robert M.; Martemyanov, Kirill A.; Zeitz, Christina
2016-01-01
Mutations in LRIT3 lead to complete congenital stationary night blindness (cCSNB). The exact role of LRIT3 in ON-bipolar cell signaling cascade remains to be elucidated. Recently, we have characterized a novel mouse model lacking Lrit3 (no b-wave 6, (Lrit3nob6/nob6)), which displays similar abnormalities as patients with cCSNB with LRIT3 mutations. Here we compare the localization of components of the ON-bipolar cell signaling cascade in wild-type and Lrit3nob6/nob6 retinal sections by immunofluorescence confocal microscopy. An anti-LRIT3 antibody was generated. Immunofluorescent staining of LRIT3 in wild-type mice revealed a specific punctate labeling in the outer plexiform layer (OPL), which was absent in Lrit3nob6/nob6 mice. LRIT3 did not colocalize with ribeye or calbindin but colocalized with mGluR6. TRPM1 staining was severely decreased at the dendritic tips of all depolarizing bipolar cells in Lrit3nob6/nob6 mice. mGluR6, GPR179, RGS7, RGS11 and Gβ5 immunofluorescence was absent at the dendritic tips of cone ON-bipolar cells in Lrit3nob6/nob6 mice, while it was present at the dendritic tips of rod bipolar cells. Furthermore, PNA labeling was severely reduced in the OPL in Lrit3nob6/nob6 mice. This study confirmed the localization of LRIT3 at the dendritic tips of depolarizing bipolar cells in mouse retina and demonstrated the dependence of TRPM1 localization on the presence of LRIT3. Since tested components of the ON-bipolar cell signaling cascade and PNA revealed disrupted localization, an additional function of LRIT3 in cone synapse formation is suggested. These results point to a possibly different regulation of the mGluR6 signaling cascade between rod and cone ON-bipolar cells. PMID:25997951
Bio-inspired color image enhancement model
NASA Astrophysics Data System (ADS)
Zheng, Yufeng
2009-05-01
Human being can perceive natural scenes very well under various illumination conditions. Partial reasons are due to the contrast enhancement of center/surround networks and opponent analysis on the human retina. In this paper, we propose an image enhancement model to simulate the color processes in the human retina. Specifically, there are two center/surround layers, bipolar/horizontal and ganglion/amacrine; and four color opponents, red (R), green (G), blue (B), and yellow (Y). The central cell (bipolar or ganglion) takes the surrounding information from one or several horizontal or amacrine cells; and bipolar and ganglion both have ON and OFF sub-types. For example, a +R/-G bipolar (red-center- ON/green-surround-OFF) will be excited if only the center is illuminated, or inhibited if only the surroundings (bipolars) are illuminated, or stay neutral if both center and surroundings are illuminated. Likewise, other two color opponents with ON-center/OFF-surround, +G/-R and +B/-Y, follow the same rules. The yellow (Y) channel can be obtained by averaging red and green channels. On the other hand, OFF-center/ON-surround bipolars (i.e., -R/+G and -G/+R, but no - B/+Y) are inhibited when the center is illuminated. An ON-bipolar (or OFF-bipolar) only transfers signals to an ONganglion (or OFF-ganglion), where amacrines provide surrounding information. Ganglion cells have strong spatiotemporal responses to moving objects. In our proposed enhancement model, the surrounding information is obtained using weighted average of neighborhood; excited or inhibited can be implemented with pixel intensity increase or decrease according to a linear or nonlinear response; and center/surround excitations are decided by comparing their intensities. A difference of Gaussian (DOG) model is used to simulate the ganglion differential response. Experimental results using natural scenery pictures proved that, the proposed image enhancement model by simulating the two-layer center/surrounding retinal networks can effectively enhance color images in terms of color contrast and image details.
Benes, Francine M
2012-01-01
Studies of the hippocampus in postmortem brains from patients with schizophrenia and bipolar disorder have provided evidence for a defect of GABAergic interneurons. Significant decreases in the expression of GAD67, a marker for GABA cell function, have been found repeatedly in several different brain regions that include the hippocampus. In this region, nicotinic receptors are thought to play an important role in modulating the activity of GABAergic interneurons by influences of excitatory cholinergic afferents on their activity. In bipolar disorder, this influence appears to be particularly prominent in the stratum oriens of sectors CA3/2 and CA1, two sites where these cells constitute the exclusive neuronal cell type. In sector CA3/2, this layer receives a robust excitatory projection from the basolateral amygdala (BLA) and this is thought to play a central role in regulating GABA cells at this locus. Using laser microdissection, recent studies have focused selectively on these two layers and their associated GABA cells using microarray technology. The results have provided support for the idea that nicotinic cholinergic receptors play a particularly important role in regulating the activity of GABA neurons at these loci by regulating the progression of cell cycle and the repair of damaged DNA. In bipolar disorder, there is a prominent reduction in the expression of mRNAs for several different nicotinic subunit isoforms. These decreases could reflect a diminished influence of this receptor system on these GABA cells, particularly in sector CA3/2 where a preponderance of abnormalities have been observed in postmortem studies. In patients with bipolar disorder, excitatory nicotinic cholinergic fibers from the medial septum may converge with glutamatergic fibers from the BLA on GABAergic interneurons in the stratum oriens of CA3/2 and result in disturbances of their genomic and functional integrity, ones that may induce disruptions of the integration of microcircuitry within this region.
Expression of sigma receptor 1 mRNA and protein in rat retina.
Liu, L L; Wang, L; Zhong, Y M; Yang, X L
2010-06-02
Sigma receptor (sigmaR), known as a unique nonopiate, nonphencyclidine brain receptor, can bind diverse classes of psychotropic drugs, neurosteroids and other synthetic compounds, such as (+)pentazocine, etc. Two types of sigmaRs have been identified: sigmaR1 and sigmaR2. In this work, we examined the expression of sigmaR1 in rat retina by reverse transcription-polymerase chain reactive (RT-PCR) analysis and immunofluorescence double labeling. RT-PCR analysis showed that sigmaR1 mRNA was present in rat retina. Furthermore, labeling for sigmaR1 was diffusely distributed in the outer and inner plexiform layers. The sigmaR1-immunoreactivity (IR) was also observed in many cells in the inner nuclear layer and the ganglion cell layer. In the outer retina sigmaR1 was expressed in all horizontal cells labeled by calbindin. In contrast, no sigmaR1-IR was detected in several subtypes of bipolar cells, including rod-dominant ON-type bipolar cells, types 2, 3, 5 and 8 bipolar cells, labeled by protein kinase C (PKC), recoverin and hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4) respectively. In the inner retina, most of GABAergic amacrine cells, including dopaminergic and cholinergic ones, stained by tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT) respectively, expressed sigmaR1. Some glycinergic amacrine cells were also labeled by sigmaR1, but glycinergic AII amacrine cells were not labeled. In addition, sigmaR1-IR was seen in almost all somata of the ganglion cells retrogradely labeled by fluorogold. These results suggest that sigmaR1 may have neuromodulatory and neuroprotective roles in the retina. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Corrosion resistant PEM fuel cell
Li, Y.; Meng, W.J.; Swathirajan, S.; Harris, S.J.; Doll, G.L.
1997-04-29
The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell`s operating environment. Stainless steels rich in Cr, Ni, and Mo are particularly effective protective interlayers. 6 figs.
NASA Astrophysics Data System (ADS)
Mueller, M.; Hoehlich, D.; Scharf, I.; Lampke, T.; Hollaender, U.; Maier, H. J.
2016-03-01
Beside lithium batteries, PEM fuel cells are the most promising strategy as a power source to achieve the targets for introducing and increasing the usage of electric vehicles. Due to limited space and weight problems, water cooled, metallic bipolar plates in a fuel cell metal stack are preferred in motor vehicles. These plates are stamped metal sheets with a complex structure, interconnected media-tight. To meet the multiple tasks and requirements in use, complex and expensive combinations of materials are currently in use (carbon fiber composites, graphite, gold-plated nickel, stainless and acid resistant steel). The production of such plates is expensive as it is connected with considerable effort or the usage of precious metals. As an alternative, metalloid nitrides (CrN, VN, W2N, etc.) show a high chemical resistance, hardness and a good conductivity. So this material category meets the basic requirements of a top layer. However, the standard methods for their production (PVD, CVD) are expensive and have a slow deposition rate and a lower layer thicknesses. Because of these limitations, a full functionality over the life cycle of a bipolar plate is not guaranteed. The contribution shows the development and quantification of an alternative production process for bipolar plates. The expectation is to get significant advantages from the combination of chromium electrodeposition and thermochemical treatment to form chromium nitrides. Both processes are well researched and suitable for series production. The thermochemical treatment of the chromium layer also enables a process-integrated brazing.
Corrosion resistant PEM fuel cell
Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn
2001-07-17
The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.
Corrosion resistant PEM fuel cell
Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn
2002-01-01
The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.
Corrosion resistant PEM fuel cell
Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen J.; Doll, Gary L.
1997-01-01
The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.
NASA Astrophysics Data System (ADS)
Sadeghifar, Hamidreza; Djilali, Ned; Bahrami, Majid
2015-01-01
This paper reports on measurements of thermal conductivity of a graphite bipolar plate (BPP) as a function of temperature and its thermal contact resistance (TCR) with treated and untreated gas diffusion layers (GDLs). The thermal conductivity of the BPP decreases with temperature and its thermal contact resistance with GDLs, which has been overlooked in the literature, is found to be dominant over a relatively wide range of compression. The effects of PTFE loading, micro porous layer (MPL), compression, and BPP out-of-flatness are also investigated experimentally. It is found that high PTFE loadings, MPL and even small BPP out-of-flatness increase the BPP-GDL thermal contact resistance dramatically. The paper also presents the effect of cyclic load on the total resistance of a GDL-BPP assembly, which sheds light on the behavior of these materials under operating conditions in polymer electrolyte membrane fuel cells.
Gambe, Yoshiyuki; Sun, Yan; Honma, Itaru
2015-01-01
The development of high energy–density lithium-ion secondary batteries as storage batteries in vehicles is attracting increasing attention. In this study, high-voltage bipolar stacked batteries with a quasi-solid-state electrolyte containing a Li-Glyme complex were prepared, and the performance of the device was evaluated. Via the successful production of double-layered and triple-layered high-voltage devices, it was confirmed that these stacked batteries operated properly without any internal short-circuits of a single cell within the package: Their plateau potentials (6.7 and 10.0 V, respectively) were two and three times that (3.4 V) of the single-layered device, respectively. Further, the double-layered device showed a capacity retention of 99% on the 200th cycle at 0.5 C, which is an indication of good cycling properties. These results suggest that bipolar stacked batteries with a quasi-solid-state electrolyte containing a Li-Glyme complex could readily produce a high voltage of 10 V. PMID:25746860
Woven-grid sealed quasi-bipolar lead-acid battery construction and fabricating method
NASA Technical Reports Server (NTRS)
Rippel, Wally E. (Inventor)
1989-01-01
A quasi-bipolar lead-acid battery construction includes a plurality of bipolar cells disposed in side-by-side relation to form a stack, and a pair of monoplanar plates at opposite ends of the stack, the cell stack and monopolar plates being contained within a housing of the battery. Each bipolar cell is loaded with an electrolyte and composed of a bipolar electrode plate and a pair of separator plates disposed on opposite sides of the electrode plate and peripherally sealed thereto. Each bipolar electrode plate is composed of a partition sheet and two bipolar electrode elements folded into a hairpin configuration and applied over opposite edges of the partition sheet so as to cover the opposite surfaces of the opposite halves thereof. Each bipolar electrode element is comprised of a woven grid with a hot-melt strip applied to a central longitudinal region of the grid along which the grid is folded into the hairpin configuration, and layers of negative and positive active material pastes applied to opposite halves of the grid on opposite sides of the central hot-melt strip. The grid is made up of strands of conductive and non-conductive yarns composing the respective transverse and longitudinal weaves of the grid. The conductive yarn has a multi-stranded glass core surrounded and covered by a lead sheath, whereas the non-conductive yarn has a multi-stranded glass core surrounded and covered by a thermally activated sizing.
Front contact solar cell with formed electrically conducting layers on the front side and backside
Cousins, Peter John
2012-06-26
A bipolar solar cell includes a backside junction formed by a silicon substrate and a first doped layer of a first dopant type on the backside of the solar cell. A second doped layer of a second dopant type makes an electrical connection to the substrate from the front side of the solar cell. A first metal contact of a first electrical polarity electrically connects to the first doped layer on the backside of the solar cell, and a second metal contact of a second electrical polarity electrically connects to the second doped layer on the front side of the solar cell. An external electrical circuit may be electrically connected to the first and second metal contacts to be powered by the solar cell.
Morphological and physiological analysis of type-5 and other bipolar cells in the Mouse Retina.
Hellmer, C B; Zhou, Y; Fyk-Kolodziej, B; Hu, Z; Ichinose, T
2016-02-19
Retinal bipolar cells are second-order neurons in the visual system, which initiate multiple image feature-based neural streams. Among more than ten types of bipolar cells, type-5 cells are thought to play a role in motion detection pathways. Multiple subsets of type-5 cells have been reported; however, detailed characteristics of each subset have not yet been elucidated. Here, we found that they exhibit distinct morphological features as well as unique voltage-gated channel expression. We have conducted electrophysiological and immunohistochemical analysis of retinal bipolar cells. We defined type-5 cells by their axon terminal ramification in the inner plexiform layer between the border of ON/OFF sublaminae and the ON choline acetyltransferase (ChAT) band. We found three subsets of type-5 cells: XBCs had the widest axon terminals that stratified at a close approximation of the ON ChAT band as well as exhibiting large voltage-gated Na(+) channel activity, type-5-1 cells had compact terminals and no Na(+) channel activity, and type-5-2 cells contained umbrella-shaped terminals as well as large voltage-gated Na(+) channel activity. Hyperpolarization-activated cyclic nucleotide-gated (HCN) currents were also evoked in all type-5 bipolar cells. We found that XBCs and type-5-2 cells exhibited larger HCN currents than type-5-1 cells. Furthermore, the former two types showed stronger HCN1 expression than the latter. Our previous observations (Ichinose et al., 2014) match the current study: low temporal tuning cells that we named 5S corresponded to 5-1 in this study, while high temporal tuning 5f cells from the previous study corresponded to 5-2 cells. Taken together, we found three subsets of type-5 bipolar cells based on their morphologies and physiological features. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Optically switched graphene/4H-SiC junction bipolar transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandrashekhar, MVS; Sudarshan, Tangali S.; Omar, Sabih U.
A bi-polar device is provided, along with methods of making the same. The bi-polar device can include a semiconductor substrate doped with a first dopant, a semiconductor layer on the first surface of the semiconductor substrate, and a Schottky barrier layer on the semiconductor layer. The method of forming a bi-polar device can include: forming a semiconductor layer on a first surface of a semiconductor substrate, where the semiconductor substrate comprises a first dopant and where the semiconductor layer comprises a second dopant that has an opposite polarity than the first dopant; and forming a Schottky barrier layer on amore » first portion of the semiconductor layer while leaving a second portion of the semiconductor layer exposed.« less
Kaufman, Arthur; Werth, John
1986-01-01
A bipolar gas reactant distribution assembly for use in a fuel cell is disclosed, the assembly having a solid edge seal to prevent leakage of gaseous reactants wherein a pair of porous plates are provided with peripheral slits generally parallel to, and spaced apart from two edges of the plate, the slit being filled with a solid, fusible, gas impervious edge sealing compound. The plates are assembled with opposite faces adjacent one another with a layer of a fusible sealant material therebetween the slits in the individual plates being approximately perpendicular to one another. The plates are bonded to each other by the simultaneous application of heat and pressure to cause a redistribution of the sealant into the pores of the adjacent plate surfaces and to cause the edge sealing compound to flow and impregnate the region of the plates adjacent the slits and comingle with the sealant layer material to form a continuous layer of sealant along the edges of the assembled plates.
Elevated GRIA1 mRNA expression in Layer II/III and V pyramidal cells of the DLPFC in schizophrenia
O’Connor, J.A.; Hemby, S.E.
2012-01-01
The functional integrity of the dorsolateral prefrontal cortex (DLPFC) is altered in schizophrenia leading to profound deficits in working memory and cognition. Growing evidence indicates that dysregulation of glutamate signaling may be a significant contributor to the pathophysiology mediating these effects; however, the contribution of NMDA and AMPA receptors in the mediation of this deficit remains unclear. The equivocality of data regarding ionotropic glutamate receptor alterations of subunit expression in the DLPFC of schizophrenics is likely reflective of subtle alterations in the cellular and molecular composition of specific neuronal populations within the region. Given previous evidence of Layer II/III and V pyramidal cell alterations in schizophrenia and the significant influence of subunit composition on NMDA and AMPA receptor function, laser capture microdissection combined with quantitative PCR was used to examine the expression of AMPA (GRIA1-4) and NMDA (GRIN1, 2A and 2B) subunit mRNA levels in Layer II/III and Layer V pyramidal cells in the DLPFC. Comparisons were made between individuals diagnosed with schizophrenia, bipolar disorder, major depressive disorder and controls (n=15/group). All subunits were expressed at detectable levels in both cell populations for all diseases as well as for the control group. Interestingly, GRIA1 mRNA was significantly increased in both cell types in the schizophrenia group compare to controls, while similar trends were observed in major depressive disorder (Layers II/III and V) and bipolar disorder (Layer V). These data suggest that increased GRIA1 subunit expression may contribute to schizophrenia pathology. PMID:17942280
Esquiva, Gema; Avivi, Aaron; Hannibal, Jens
2016-01-01
The blind mole rat, Spalax ehrenbergi, can, despite severely degenerated eyes covered by fur, entrain to the daily light/dark cycle and adapt to seasonal changes due to an intact circadian timing system. The present study demonstrates that the Spalax retina contains a photoreceptor layer, an outer nuclear layer (ONL), an outer plexiform layer (OPL), an inner nuclear layer (INL), an inner plexiform layer (IPL), and a ganglion cell layer (GCL). By immunohistochemistry, the number of melanopsin (mRGCs) and non-melanopsin bearing retinal ganglion cells was analyzed in detail. Using the ganglion cell marker RNA-binding protein with multiple splicing (RBPMS) it was shown that the Spalax eye contains 890 ± 62 RGCs. Of these, 87% (752 ± 40) contain melanopsin (cell density 788 melanopsin RGCs/mm2). The remaining RGCs were shown to co-store Brn3a and calretinin. The melanopsin cells were located mainly in the GCL with projections forming two dendritic plexuses located in the inner part of the IPL and in the OPL. Few melanopsin dendrites were also found in the ONL. The Spalax retina is rich in rhodopsin and long/middle wave (L/M) cone opsin bearing photoreceptor cells. By using Ctbp2 as a marker for ribbon synapses, both rods and L/M cone ribbons containing pedicles in the OPL were found in close apposition with melanopsin dendrites in the outer plexus suggesting direct synaptic contact. A subset of cone bipolar cells and all photoreceptor cells contain recoverin while a subset of bipolar and amacrine cells contain calretinin. The calretinin expressing amacrine cells seemed to form synaptic contacts with rhodopsin containing photoreceptor cells in the OPL and contacts with melanopsin cell bodies and dendrites in the IPL. The study demonstrates the complex retinal circuitry used by the Spalax to detect light, and provides evidence for both melanopsin and non-melanopsin projecting pathways to the brain. PMID:27375437
Esquiva, Gema; Avivi, Aaron; Hannibal, Jens
2016-01-01
The blind mole rat, Spalax ehrenbergi, can, despite severely degenerated eyes covered by fur, entrain to the daily light/dark cycle and adapt to seasonal changes due to an intact circadian timing system. The present study demonstrates that the Spalax retina contains a photoreceptor layer, an outer nuclear layer (ONL), an outer plexiform layer (OPL), an inner nuclear layer (INL), an inner plexiform layer (IPL), and a ganglion cell layer (GCL). By immunohistochemistry, the number of melanopsin (mRGCs) and non-melanopsin bearing retinal ganglion cells was analyzed in detail. Using the ganglion cell marker RNA-binding protein with multiple splicing (RBPMS) it was shown that the Spalax eye contains 890 ± 62 RGCs. Of these, 87% (752 ± 40) contain melanopsin (cell density 788 melanopsin RGCs/mm(2)). The remaining RGCs were shown to co-store Brn3a and calretinin. The melanopsin cells were located mainly in the GCL with projections forming two dendritic plexuses located in the inner part of the IPL and in the OPL. Few melanopsin dendrites were also found in the ONL. The Spalax retina is rich in rhodopsin and long/middle wave (L/M) cone opsin bearing photoreceptor cells. By using Ctbp2 as a marker for ribbon synapses, both rods and L/M cone ribbons containing pedicles in the OPL were found in close apposition with melanopsin dendrites in the outer plexus suggesting direct synaptic contact. A subset of cone bipolar cells and all photoreceptor cells contain recoverin while a subset of bipolar and amacrine cells contain calretinin. The calretinin expressing amacrine cells seemed to form synaptic contacts with rhodopsin containing photoreceptor cells in the OPL and contacts with melanopsin cell bodies and dendrites in the IPL. The study demonstrates the complex retinal circuitry used by the Spalax to detect light, and provides evidence for both melanopsin and non-melanopsin projecting pathways to the brain.
Electric field with bipolar structure during magnetic reconnection without a guide field
NASA Astrophysics Data System (ADS)
Guo, Jun
2014-05-01
We present a study on the polarized electric field during the collisionless magnetic reconnection of antiparallel fields using two dimensional particle-in-cell simulations. The simulations demonstrate clearly that electron holes and electric field with bipolar structure are produced during magnetic reconnection without a guide field. The electric field with bipolar structure can be found near the X-line and on the separatrix and the plasma sheet boundary layer, which is consistent with the observations. These structures will elongate electron's time staying in the diffusion region. In addition, the electric fields with tripolar structures are also found in our simulation.
Front contact solar cell with formed emitter
Cousins, Peter John
2014-11-04
A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.
Front contact solar cell with formed emitter
Cousins, Peter John [Menlo Park, CA
2012-07-17
A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.
Transforming growth factor-beta in the chicken fundal layers: an immunohistochemical study.
Mathis, Ute; Schaeffel, Frank
2010-06-01
In the chicken model of myopia, it has first been shown that imposing defocus to the retina results in active remodelling of the sclera which, in turn, results in axial length changes of the eye. Transforming growth factor-beta (TGF-beta) is one of the scleral growth modulators but its cellular localization in the fundal layers, colocalization and function are not well known. The aim of the current study was to investigate the cellular distribution of the three isoforms TGF-beta1, 2 and 3 by immunohistochemical labelling. Furthermore, the effects of visual experience that induces refractive errors on TGF-beta2 labelling were examined. Transversal cryostat sections of the fundal layers were analyzed by indirect immunofluorescent labelling and cell counts. Visual experience was changed by having the chicks wear either diffusers, or positive or negative lenses of 7D power in front of the right eyes for various periods of time. Left eyes served as uncovered controls. All TGF-beta isoforms were localized in both scleral layers. In choroid, diffuse labelling of all isoforms was found. In retina, TGF-beta1 and 3 were detected in bipolar, amacrine and ganglion cells and TGF-beta2 in amacrine and ganglion cells. To further characterize these cells, double-labelling with known amacrine and bipolar cell markers was performed (calbindin, cellular retinoic acid binding protein (CRABP), Islet1, Lim3 and protein kinase C (PKC)). TGF-beta1, 2 and 3 could be colocalized with calbindin and CRABP in single amacrine cells. TGF-beta1-positive bipolar cells were immunoreactive to Lim3. TGF-beta1 and 3 were never colocalized with PKC in bipolar cells. Also, colocalization with peptides known to be involved in myopia development in chicks, such as glucagon, or vasointestinal polypeptide and the key enzyme for dopamine synthesis, tyrosine hydroxylase, was not observed. Lenses or diffusers, worn by the chicks for various periods of time, had no effect on TGF-beta2 immunoreactivity in choroid or sclera, or on the number of TGF-beta2 (active and latent form) expressing amacrine cells. This result did not change when the two identified populations of TGF-beta2 expressing amacrine cells (one calbindin-positive and the other CRABP-positive) were separately considered. Also no modulation was seen in choroid, although an earlier study had found changes in TGF-beta2 mRNA after lens treatment. The lack of any visually-induced changes in retina or choroid suggests that TGF-beta may not represent a key molecule in the retino-choroidal signalling cascade although it has previously been shown to have a primary role in scleral remodelling. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Barron, Andrew R. (Inventor); Hepp, Aloysius F. (Inventor); Jenkins, Phillip P. (Inventor); MacInnes, Andrew N. (Inventor)
1999-01-01
A minority carrier device includes at least one junction of at least two dissimilar materials, at least one of which is a semiconductor, and a passivating layer on at least one surface of the device. The passivating layer includes a Group 13 element and a chalcogenide component. Embodiments of the minority carrier device include, for example, laser diodes, light emitting diodes, heterojunction bipolar transistors, and solar cells.
NASA Astrophysics Data System (ADS)
Huang, Ruomeng; Yan, Xingzhao; Morgan, Katrina A.; Charlton, Martin D. B.; (Kees de Groot, C. H.
2017-05-01
We report here a ZrO2-x /ZrO2-based bilayer resistive switching memory with unique properties that enables the selection of the switching mode by applying different electroforming current compliances. Two opposite polarity modes, positive bipolar and negative bipolar, correspond to the switching in the ZrO2 and ZrO2-x layer, respectively. The ZrO2 layer is proved to be responsible for the negative bipolar mode which is also observed in a ZrO2 single layer device. The oxygen deficient ZrO2-x layer plays the dominant role in the positive bipolar mode, which is exclusive to the bilayer memory. A systematic investigation of the ZrO2-x composition in the bilayer memory suggests that ZrO1.8 layer demonstrates optimum switching performance with low switching voltage, narrow switching voltage distribution and good cycling endurance. An excess of oxygen vacancies, beyond this composition, leads to a deterioration of switching properties. The formation and dissolution of the oxygen vacancy filament model has been proposed to explain both polarity switching behaviours and the improved properties in the bilayer positive bipolar mode are attributed to the confined oxygen vacancy filament size within the ZrO2-x layer.
Liu, Weiley S.; Davis, Elizabeth P.; Lee, Stephen J.; Tseng, Luke; Chuang, Alice Z.; Whitaker, Christopher M.; Massey, Stephen C.; Sherman, Michael B.; Marshak, David W.
2016-01-01
The goals of this study were to localize the neuropeptide Cocaine- and Amphetamine-Regulated Transcript (CART) in primate retinas and to describe the morphology, neurotransmitter content and synaptic connections of the neurons that contain it. Using in situ hybridization, light and electron microscopic immunolabeling, CART was localized to GABAergic amacrine cells in baboon retinas. The CART-positive cells had thin, varicose dendrites that gradually descended through the inner plexiform layer and ramified extensively in the innermost stratum. They resembled two types of wide-field diffuse amacrine cells that had been described previously in macaque retinas using the Golgi method and also A17, serotonin-accumulating and waterfall cells of other mammals. The CART-positive cells received synapses from rod bipolar cell axons and made synapses onto the axons in a reciprocal configuration. The CART-positive cells also received synapses from other amacrine cells. Some of these were located on their primary dendrites, and the presynaptic cells there included dopaminergic amacrine cells. Although some CART-positive somas were localized in the ganglion cell layer, they did not contain the ganglion cell marker RNA binding protein with multiple splicing (RBPMS). Based on these results and electrophysiological studies in other mammals, the CART-positive amacrine cells would be expected to play a major role in the primary rod pathway of primates, providing feedback inhibition to rod bipolar cells. PMID:27568514
Krause, Martin; Theiss, Carsten; Brüne, Martin
2017-11-01
Von Economo neurons (VENs) are large bipolar projection neurons mainly located in layer Vb of anterior cingulate cortex (ACC) and anterior insula. Both regions are involved in cognitive and emotional procedures and are functionally and anatomically altered in schizophrenia. Although the detailed function of VEN remains unclear, it has been suggested that these neurons are involved in the pathomechanism of schizophrenia. Here, we were interested in the question whether or not the VEN of schizophrenia patients would show abnormalities at the ultrastructural level. Accordingly, we examined the amount of lysosomal aggregations of the VEN in post-mortem tissue of patients with schizophrenia, bipolar disorder and psychologically unaffected individuals, and compared the findings with aggregations in adjacent pyramidal cells in layer Vb of the ACC. VEN of patients with schizophrenia, and to a lesser degree individuals with bipolar disorder contained significantly more lysosomal aggregations compared with tissue from unaffected controls. Specifically, the larger amount of lysosomal aggregations in schizophrenia seemed to be selective for VEN, with no differences occurring in pyramidal cells. These findings may indicate that the VEN of schizophrenia patients are selectively vulnerable to neuronal damage. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:2017-2024, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Huang, Jianhua; Baird, Donald G.; McGrath, James E.
A method with the potential to produce economical bipolar plates with high electrical conductivity and mechanical properties is described. Thermoplastic composite materials consisting of graphite particles, thermoplastic fibers and glass or carbon fibers are generated by means of a wet-lay (paper-making) process to yield highly formable sheets. The sheets are then stacked and compression molded to form bipolar plates with gas flow channels. Poly(phenylene sulfide) (PPS) based wet-lay composite plates have in-plane conductivity of 200-300 S cm -1, tensile strength of 57 MPa, flexural strength of 96 MPa and impact strength (unnotched) of 81 J m -1 (1.5 ft-lb in. -1). These values well exceed industrial as well as Department of Energy requirements or targets and have never been reached before for composite bipolar plates. The use of wet-lay sheets also makes it possible to choose different components including polymer, graphite particle and reinforcement for the core and outer layers of the plate, respectively, to optimize the properties and/or reduce the cost of the plate. The through-plane conductivity (around 20 S cm -1) and half-cell resistance of the bipolar plate indicate that the through-plane conductivity of the material needs some improvement.
NASA Technical Reports Server (NTRS)
Zoutendyk, John A. (Inventor)
1991-01-01
Bipolar transistors fabricated in separate buried layers of an integrated circuit chip are electrically isolated with a built-in potential barrier established by doping the buried layer with a polarity opposite doping in the chip substrate. To increase the resistance of the bipolar transistors to single-event upsets due to ionized particle radiation, the substrate is biased relative to the buried layer with an external bias voltage selected to offset the built-in potential just enough (typically between about +0.1 to +0.2 volt) to prevent an accumulation of charge in the buried-layer-substrate junction.
Kim, Jungsoo; Kim, Yang Do; Nam, Dae Geun
2013-05-01
Graphene was coated on low carbon steel (SS400) by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite was made of the graphite by chemical treatment (Chemically Converted Graphene, CCG). CCG is distributed using dispersing agent, and low carbon steel was coated with diffuse graphene solution by electro spray coating method. The structure of the CCG was analyzed using XRD and the coating layer of surface was analyzed using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed in to fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3-5 microm thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the polymer electrolyte membrane fuel cell (PEMFC) stack inside. And interfacial contact resistance (ICR) test was measured to simulate the internal operating conditions of PEMFC stack. As a result of measuring corrosion resistance and contact resistance, it could be confirmed that low carbon steel coated with CCG was revealed to be more effective in terms of its applicability as PEMFC bipolar plate.
NASA Astrophysics Data System (ADS)
Hung, Yue
Bipolar plate and membrane electrode assembly (MEA) are the two most repeated components of a proton exchange membrane (PEM) fuel cell stack. Bipolar plates comprise more than 60% of the weight and account for 30% of the total cost of a fuel cell stack. The bipolar plates perform as current conductors between cells, provide conduits for reactant gases, facilitate water and thermal management through the cell, and constitute the backbone of a power stack. In addition, bipolar plates must have excellent corrosion resistance to withstand the highly corrosive environment inside the fuel cell, and they must maintain low interfacial contact resistance throughout the operation to achieve optimum power density output. Currently, commercial bipolar plates are made of graphite composites because of their relatively low interfacial contact resistance (ICR) and high corrosion resistance. However, graphite composite's manufacturability, permeability, and durability for shock and vibration are unfavorable in comparison to metals. Therefore, metals have been considered as a replacement material for graphite composite bipolar plates. Since bipolar plates must possess the combined advantages of both metals and graphite composites in the fuel cell technology, various methods and techniques are being developed to combat metallic corrosion and eliminate the passive layer formed on the metal surface that causes unacceptable power reduction and possible fouling of the catalyst and the electrolyte. The main objective of this study was to explore the possibility of producing efficient, cost-effective and durable metallic bipolar plates that were capable of functioning in the highly corrosive fuel cell environment. Bulk materials such as Poco graphite, graphite composite, SS310, SS316, incoloy 800, titanium carbide and zirconium carbide were investigated as potential bipolar plate materials. In this work, different alloys and compositions of chromium carbide coatings on aluminum and SS316 substrates were also tested for suitability in performing as PEM fuel cell bipolar plates. Interfacial contact resistance and accelerated corrosion resistance tests were carried out for various bulk materials and chromium carbide coatings. Results of the study showed that chromium carbide protective coatings had relatively low interfacial contact resistance and moderate corrosion resistance in comparison to other metals. Single fuel cells with 6.45cm2 and 50cm2 active areas were fabricated and tested for performance and lifetime durability using chromium carbide coated aluminum bipolar plates and graphite composite bipolar plates as a control reference. Polarization curves and power curves were recorded from these single cells under various load conditions. The results showed that coated aluminum bipolar plates had an advantage of anchoring the terminals directly into the plates resulting in higher power density of the fuel cell. This was due to the elimination of additional ICR to the power stack caused by the need for extra terminal plates. However, this study also revealed that direct terminal anchoring was efficient and useable only with metallic bipolar plates but was inapplicable to graphite composite plates due to the poor mechanical strength and brittleness of the graphite composite material. In addition, the 1000 hour lifetime testing of coated aluminum single cells conducted at 70°C cell temperature under cyclic loading condition showed minimal power degradation (<5%) due to metal corrosion. Surface characterization was also conducted on the bipolar plates and MEAs to identify possible chemical change to their surfaces during the fuel cell operation and the electrochemical reaction. The single cell performance evaluation was complemented by an extended study on the fuel cell stack level. For the latter, a ten-cell graphite composite stack with a 40 cm2 active area was fabricated and evaluated for the effect of humidity and operating temperature on the stack performance. Graphite plates were selected for this study to eliminate any possible metal corrosion. A finite element analysis (FEA) model of a bipolar plate was developed to evaluate the effect of air cooling system design parameters and different bipolar plate materials on maintaining the PEM power stack at a safe operating temperature of 80°C or less. In the final stage of this work, a three-cell metallic stack with a 50 cm2 active area and coated aluminum bipolar plates was fabricated based on the positive results that were obtained from earlier studies. The three-cell stack was successfully operated and tested for 750 hours at different temperatures and power densities. This laboratory testing coupled with characterization studies showed that small amounts of aluminum oxide were observed on the coating surface due to localized imperfections in the coating and a lack of protection in the uncoated areas, such as internal manifolds and mounting plates. However, the scanning electron microscopy (SEM) and the energy dispersive x-ray spectroscopy (EDX) showed that coating thickness, chemistry, and surface morphology remained consistent after 750 hours of operation.
A Cre Mouse Line for Probing Irradiance- and Direction-Encoding Retinal Networks
Sabbah, Shai
2017-01-01
Abstract Cell type-specific Cre driver lines have revolutionized the analysis of retinal cell types and circuits. We show that the transgenic mouse Rbp4-Cre selectively labels several retinal neuronal types relevant to the encoding of absolute light intensity (irradiance) and visual motion. In the ganglion cell layer (GCL), most marked cells are wide-field spiking polyaxonal amacrine cells (ACs) with sustained irradiance-encoding ON responses that persist during chemical synaptic blockade. Their arbors spread about 1 mm across the retina and are restricted to the inner half of the ON sublamina of the inner plexiform layer (IPL). There, they costratify with dendrites of M2 intrinsically photosensitive retinal ganglion cells (ipRGCs), to which they are tracer coupled. We propose that synaptically driven and intrinsic photocurrents of M2 cells pass through gap junctions to drive AC light responses. Also marked in this mouse are two types of RGCs. R-cells have a bistratified dendritic arbor, weak directional tuning, and irradiance-encoding ON responses. However, they also receive excitatory OFF input, revealed during ON-channel blockade. Serial blockface electron microscopic (SBEM) reconstruction confirms OFF bipolar input, and reveals that some OFF input derives from a novel type of OFF bipolar cell (BC). R-cells innervate specific layers of the dorsal lateral geniculate nucleus (dLGN) and superior colliculus (SC). The other marked RGC type (RDS) is bistratified, transient, and ON-OFF direction selective (DS). It apparently innervates the nucleus of the optic tract (NOT). The Rbp4-Cre mouse will be valuable for targeting these cell types for further study and for selectively manipulating them for circuit analysis. PMID:28466070
Li, Xiaoxi; Cheng, Ruoyu; Sun, Zhiyong; Su, Wei; Pan, Guoqing; Zhao, Song; Zhao, Jinzhong; Cui, Wenguo
2017-10-01
Enthesis is a specialized tissue interface between the tendon and bone. Enthesis structure is very complex because of gradient changes in its composition and structure. There is currently no strategy to create a suitable environment and to regenerate the gradual-changing enthesis because of the modular complexities between two tissue types. Herein, a dual-layer organic/inorganic flexible bipolar fibrous membrane (BFM) was successfully fabricated by electrospinning to generate biomimetic non-mineralized fibrocartilage and mineralized fibrocartilage in tendon-to-bone integration of enthesis. The growth of the in situ apatite nanoparticle layer was induced on the nano hydroxyapatite-poly-l-lactic acid (nHA-PLLA) fibrous layer in simulated body solution, and the poly-l-lactic acid (PLLA) fibrous layer retained its original properties to induce tendon regeneration. The in vivo results showed that BFM significantly increased the area of glycosaminoglycan staining at the tendon-bone interface and improved collagen organization when compared to the simplex fibrous membrane (SFM) of PLLA. Implanting the bipolar membrane also induced bone formation and fibrillogenesis as assessed by micro-CT and histological analysis. Biomechanical testing showed that the BFM group had a greater ultimate load-to-failure and stiffness than the SFM group at 12weeks after surgery. Therefore, this flexible bipolar nanofibrous membrane improves the healing and regeneration process of the enthesis in rotator cuff repair. In this study, we generated a biomimetic dual-layer organic/inorganic flexible bipolar fibrous membrane by sequential electrospinning and in situ biomineralization, producing integrated bipolar fibrous membranes of PLLA fibrous membrane as the upper layer and nHA-PLLA fibrous membrane as the lower layer to mimic non-mineralized fibrocartilage and mineralized fibrocartilage in tendon-to-bone integration of enthesis. Flexible bipolar nanofibrous membranes could be easily fabricated with gradient microstructure for enthesis regeneration in rotator cuff tears. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Dementia of frontal lobe type and motor neuron disease. A Golgi study of the frontal cortex.
Ferrer, I; Roig, C; Espino, A; Peiro, G; Matias Guiu, X
1991-01-01
Neuropathological findings in a 38 year old patient with dementia of frontal lobe type and motor neuron disease included pyramidal tracts, myelin pallor and neuron loss, gliosis and chromatolysis in the hypoglossal nucleus, together with frontal atrophy, neuron loss, gliosis and spongiosis in the upper cortical layers of the frontal (and temporal) lobes. Most remaining pyramidal and non-pyramidal neurons (multipolar, bitufted and bipolar cells) in the upper layers (layers II and III) of the frontal cortex (area B) had reduced dendritic arbors, proximal dendritic varicosities and amputation of dendrites as revealed in optimally stained rapid Golgi sections. Pyramidal cells in these layers also showed depletion of dendritic spines. Neurons in the inner layers were preserved. Loss of receptive surfaces in neurons of the upper cortical layers in the frontal cortex are indicative of neuronal disconnection, and are "hidden" contributory morphological substrates for the development of dementia. Images PMID:1744652
Yi, Peiyun; Zhang, Weixin; Bi, Feifei; Peng, Linfa; Lai, Xinmin
2018-06-06
Proton-exchange membrane fuel cells are one kind of renewable and clean energy conversion device, whose metallic bipolar plates are one of the key components. However, high interfacial contact resistance and poor corrosion resistance are still great challenges for the commercialization of metallic bipolar plates. In this study, we demonstrated a novel strategy for depositing TiC x /amorphous carbon (a-C) nanolayered coatings by synergy of 60 and 300 V bias voltage to enhance corrosion resistance and interfacial conductivity. The synergistic effects of bias voltage on the composition, microstructure, surface roughness, electrochemical corrosion behaviors, and interfacial conductivity of TiC x /a-C coatings were explored. The results revealed that the columnar structures in the inner layer were suppressed and the surface became rougher with the 300 V a-C layer outside. The composition analysis indicated that the sp 2 content increased with an increase of 300 V sputtering time. Due to the synergy strategy of bias voltage, lower corrosion current densities were achieved both in potentiostatic polarization (1.6 V vs standard hydrogen electrode) and potentiodynamic polarization. With the increase of 300 V sputtering time, the interfacial conductivity was improved. The enhanced corrosion resistance and interfacial conductivity of the TiC x /a-C coatings would provide new opportunities for commercial bipolar plates.
Sjöstrand, F S
2002-01-01
Each rod is connected to one depolarizing and one hyperpolarizing bipolar cell. The synaptic connections of cone processes to each bipolar cell and presynaptically to the two rod-bipolar cell synapses establishes conditions for lateral interaction at this level. Thus, the cones raise the threshold for bipolar cell depolarization which is the basis for spatial brightness contrast enhancement and consequently for high visual acuity (Sjöstrand, 2001a). The cones facilitate ganglion cell depolarization by the bipolar cells and cone input prevents horizontal cell blocking of depolarization of the depolarizing bipolar cell, extending rod vision to low illumination. The combination of reduced cone input and transient hyperpolarization of the hyperpolarizing bipolar cell at onset of a light stimulus facilitates ganglion cell depolarization extensively at onset of the stimulus while no corresponding enhancement applies to the ganglion cell response at cessation of the stimulus, possibly establishing conditions for discrimination between on- vs. off-signals in the visual centre. Reduced cone input and hyperpolarization of the hyperpolarizing bipolar cell at onset of a light stimulus accounts for Granit's (1941) 'preexcitatory inhibition'. Presynaptic inhibition maintains transmitter concentration low in the synaptic gap at rod-bipolar cell and bipolar cell-ganglion cell synapses, securing proportional and amplified postsynaptic responses at these synapses. Perfect timing of variations in facilitatory and inhibitory input to the ganglion cell confines the duration of ganglion cell depolarization at onset and at cessation of a light stimulus to that of a single synaptic transmission.
Tsukamoto, Yoshihiko; Omi, Naoko
2017-01-01
We confirmed the classification of 15 morphological types of mouse bipolar cells by serial section transmission electron microscopy and characterized each type by identifying chemical synapses and gap junctions at axon terminals. Although whether the previous type 5 cells consist of two or three types was uncertain, they are here clustered into three types based on the vertical distribution of axonal ribbons. Next, while two groups of rod bipolar (RB) cells, RB1, and RB2, were previously proposed, we clarify that a half of RB1 cells have the intermediate characteristics, suggesting that these two groups comprise a single RB type. After validation of bipolar cell types, we examined their relationship with amacrine cells then particularly with AII amacrine cells. We found a strong correlation between the number of amacrine cell synaptic contacts and the number of bipolar cell axonal ribbons. Formation of bipolar cell output at each ribbon synapse may be effectively regulated by a few nearby inhibitory inputs of amacrine cells which are chosen from among many amacrine cell types. We also found that almost all types of ON cone bipolar cells frequently have a minor group of midway ribbons along the axon passing through the OFF sublamina as well as a major group of terminal ribbons in the ON sublamina. AII amacrine cells are connected to five of six OFF bipolar cell types via conventional chemical synapses and seven of eight ON (cone) bipolar cell types via electrical synapses (gap junctions). However, the number of synapses is dependent on bipolar cell types. Type 2 cells have 69% of the total number of OFF bipolar chemical synaptic contacts with AII amacrine cells and type 6 cells have 46% of the total area of ON bipolar gap junctions with AII amacrine cells. Both type 2 and 6 cells gain the greatest access to AII amacrine cell signals also share those signals with other types of bipolar cells via networked gap junctions. These findings imply that the most sensitive scotopic signal may be conveyed to the center by ganglion cells that have the most numerous synapses with type 2 and 6 cells. PMID:29114208
NASA Astrophysics Data System (ADS)
Jin, Chul Kyu; Kang, Chung Gil
2011-10-01
There are various methods for the fabrication of bipolar plates, but these are still limited to machining and stamping processes. High-pressure die casting (HPDC) is an ideal process for the manufacture of bipolar plates This study aims to investigate the formability of bipolar plates for polymer electrolyte membrane fuel cells (PEMFCs) fabricated by vacuum HPDC of an Al-Mg alloy (ALDC6). The cavity of the mold consisted of a thin-walled plate (200 mm × 200 mm × 0.8 mm) with a layer of serpentine channel (50 mm × 50 mm). The location and direction of the channel in the final mold design was determined by computational simulation (MAGMA soft). In addition, simulation results for different conditions of plunger stroke control were compared to those from actual die-casting experiments. Under a vacuum pressure of 35 kPa and for injection speeds of 0.3 and 2.5 m s-1 in the low and high speed regions, respectively, the samples had few casting defects. In addition, the hardness was higher and porosity in microstructure was less than those of the samples made under other injection speed conditions. In case of thin-walled plates, vacuum die casting is beneficial in terms of formability compared to conventional die casting.
Duval, Jérôme F L; Sorrenti, Estelle; Waldvogel, Yves; Görner, Tatiana; De Donato, Philippe
2007-04-14
The electrokinetic features of electron-conducting substrates, as measured in a conventional thin-layer electrokinetic cell, strongly depend on the extent of bipolar faradaic depolarisation of the interface formed with the adjacent electrolytic solution. Streaming potential versus applied pressure data obtained for metallic substrates must generally be interpreted on the basis of a modified Helmholtz-Smoluchowski equation corrected by an electronic conduction term-non linear with respect to the lateral potential and applied pressure gradient-that stems from the bipolar electrodic behavior of the metallic surface. In the current study, streaming potential measurements have been performed in KNO(3) solutions on porous plugs made of electron-conducting grains of pyrite (FeS(2)) covered by humic acids. For zero coverage, the extensive bipolar electronic conduction taking place in the plug-depolarized by concomitant and spatially distributed oxidation and reduction reactions of Fe(2+) and Fe(3+) species-leads to the complete extinction of the streaming potential over the entire range of applied pressure examined. For low to intermediate coverage, the local electron-transfer kinetics on the covered regions of the plug becomes more sluggish. The overall bipolar electronic conduction is then diminished which leads to an increase in the streaming potential with a non-linear dependence on the pressure. For significant coverage, a linear response is observed which basically reflects the interfacial double layer properties of the humics surface layer. A tractable, semi-analytical model is presented that reproduces the electrokinetic peculiarities of the complex and composite system FeS(2)/humics investigated. The study demonstrates that the streaming potential technique is a fast and valuable tool for establishing how well the electron transfer kinetics at a partially or completely depolarised bare electron-conducting substrate/electrolyte solution interface is either promoted (catalysis) or blocked (passivation) by the presence of a discontinuous surface layer.
Park, Silvia J H; Kim, In-Jung; Looger, Loren L; Demb, Jonathan B; Borghuis, Bart G
2014-03-12
Direction selectivity represents a fundamental visual computation. In mammalian retina, On-Off direction-selective ganglion cells (DSGCs) respond strongly to motion in a preferred direction and weakly to motion in the opposite, null direction. Electrical recordings suggested three direction-selective (DS) synaptic mechanisms: DS GABA release during null-direction motion from starburst amacrine cells (SACs) and DS acetylcholine and glutamate release during preferred direction motion from SACs and bipolar cells. However, evidence for DS acetylcholine and glutamate release has been inconsistent and at least one bipolar cell type that contacts another DSGC (On-type) lacks DS release. Here, whole-cell recordings in mouse retina showed that cholinergic input to On-Off DSGCs lacked DS, whereas the remaining (glutamatergic) input showed apparent DS. Fluorescence measurements with the glutamate biosensor intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) conditionally expressed in On-Off DSGCs showed that glutamate release in both On- and Off-layer dendrites lacked DS, whereas simultaneously recorded excitatory currents showed apparent DS. With GABA-A receptors blocked, both iGluSnFR signals and excitatory currents lacked DS. Our measurements rule out DS release from bipolar cells onto On-Off DSGCs and support a theoretical model suggesting that apparent DS excitation in voltage-clamp recordings results from inadequate voltage control of DSGC dendrites during null-direction inhibition. SAC GABA release is the apparent sole source of DS input onto On-Off DSGCs.
Stereotyped Synaptic Connectivity Is Restored during Circuit Repair in the Adult Mammalian Retina.
Beier, Corinne; Palanker, Daniel; Sher, Alexander
2018-06-04
Proper function of the central nervous system (CNS) depends on the specificity of synaptic connections between cells of various types. Cellular and molecular mechanisms responsible for the establishment and refinement of these connections during development are the subject of an active area of research [1-6]. However, it is unknown if the adult mammalian CNS can form new type-selective synapses following neural injury or disease. Here, we assess whether selective synaptic connections can be reestablished after circuit disruption in the adult mammalian retina. The stereotyped circuitry at the first synapse in the retina, as well as the relatively short distances new neurites must travel compared to other areas of the CNS, make the retina well suited to probing for synaptic specificity during circuit reassembly. Selective connections between short-wavelength sensitive cone photoreceptors (S-cones) and S-cone bipolar cells provides the foundation of the primordial blue-yellow vision, common to all mammals [7-18]. We take advantage of the ground squirrel retina, which has a one-to-one S-cone-to-S-cone-bipolar-cell connection, to test if this connectivity can be reestablished following local photoreceptor loss [8, 19]. We find that after in vivo selective photoreceptor ablation, deafferented S-cone bipolar cells expand their dendritic trees. The new dendrites randomly explore the proper synaptic layer, bypass medium-wavelength sensitive cone photoreceptors (M-cones), and selectively synapse with S-cones. However, non-connected dendrites are not pruned back to resemble unperturbed S-cone bipolar cells. We show, for the first time, that circuit repair in the adult mammalian retina can recreate stereotypic selective wiring. Copyright © 2018 Elsevier Ltd. All rights reserved.
Roles of ON Cone Bipolar Cell Subtypes in Temporal Coding in the Mouse Retina
Fyk-Kolodziej, Bozena; Cohn, Jesse
2014-01-01
In the visual system, diverse image processing starts with bipolar cells, which are the second-order neurons of the retina. Thirteen subtypes of bipolar cells have been identified, which are thought to encode different features of image signaling and to initiate distinct signal-processing streams. Although morphologically identified, the functional roles of each bipolar cell subtype in visual signal encoding are not fully understood. Here, we investigated how ON cone bipolar cells of the mouse retina encode diverse temporal image signaling. We recorded bipolar cell voltage changes in response to two different input functions: sinusoidal light and step light stimuli. Temporal tuning in ON cone bipolar cells was diverse and occurred in a subtype-dependent manner. Subtypes 5s and 8 exhibited low-pass filtering property in response to a sinusoidal light stimulus, and responded with sustained fashion to step-light stimulation. Conversely, subtypes 5f, 6, 7, and XBC exhibited bandpass filtering property in response to sinusoidal light stimuli, and responded transiently to step-light stimuli. In particular, subtypes 7 and XBC were high-temporal tuning cells. We recorded responses in different ways to further examine the underlying mechanisms of temporal tuning. Current injection evoked low-pass filtering, whereas light responses in voltage-clamp mode produced bandpass filtering in all ON bipolar cells. These findings suggest that cone photoreceptor inputs shape bandpass filtering in bipolar cells, whereas intrinsic properties of bipolar cells shape low-pass filtering. Together, our results demonstrate that ON bipolar cells encode diverse temporal image signaling in a subtype-dependent manner to initiate temporal visual information-processing pathways. PMID:24966376
The Retina of Asian and African Elephants: Comparison of Newborn and Adult.
Kuhrt, Heidrun; Bringmann, Andreas; Härtig, Wolfgang; Wibbelt, Gudrun; Peichl, Leo; Reichenbach, Andreas
2017-01-01
Elephants are precocial mammals that are relatively mature as newborns and mobile shortly after birth. To determine whether the retina of newborn elephants is capable of supporting the mobility of elephant calves, we compared the retinal structures of 2 newborn elephants (1 African and 1 Asian) and 2 adult animals of both species by immunohistochemical and morphometric methods. For the first time, we present here a comprehensive qualitative and quantitative characterization of the cellular composition of the newborn and the adult retinas of 2 elephant species. We found that the retina of elephants is relatively mature at birth. All retinal layers were well discernible, and various retinal cell types were detected in the newborns, including Müller glial cells (expressing glutamine synthetase and cellular retinal binding protein; CRALBP), cone photoreceptors (expressing S-opsin or M/L-opsin), protein kinase Cα-expressing bipolar cells, tyrosine hydroxylase-, choline acetyltransferase (ChAT)-, calbindin-, and calretinin-expressing amacrine cells, and calbindin-expressing horizontal cells. The retina of newborn elephants contains discrete horizontal cells which coexpress ChAT, calbindin, and calretinin. While the overall structure of the retina is very similar between newborn and adult elephants, various parameters change after birth. The postnatal thickening of the retinal ganglion cell axons and the increase in ganglion cell soma size are explained by the increase in body size after birth, and the decreases in the densities of neuronal and glial cells are explained by the postnatal expansion of the retinal surface area. The expression of glutamine synthetase and CRALBP in the Müller cells of newborn elephants suggests that the cells are already capable of supporting the activities of photoreceptors and neurons. As a peculiarity, the elephant retina contains both normally located and displaced giant ganglion cells, with single cells reaching a diameter of more than 50 µm in adults and therefore being almost in the range of giant retinal ganglion cells found in aquatic mammals. Some of these ganglion cells are displaced into the inner nuclear layer, a unique feature of terrestrial mammals. For the first time, we describe here the occurrence of many bistratified rod bipolar cells in the elephant retina. These bistratified bipolar cells may improve nocturnal contrast perception in elephants given their arrhythmic lifestyle. © 2017 S. Karger AG, Basel.
Cell separator for use in bipolar-stack energy storage devices
Mayer, Steven T.; Feikert, John H.; Kachmitter, James L.; Pekala, Richard W.
1995-01-01
An improved multi-cell electrochemical energy storage device, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack.
NASA Astrophysics Data System (ADS)
Bai, Ching-Yuan; Wen, Tse-Min; Hou, Kung-Hsu; Ger, Ming-Der
The low-temperature pack chromization, a reforming pack cementation process, is employed to modify AISI 1045 steel for the application of bipolar plates in PEMFC. The process is conducted to yield a coating, containing major Cr-carbides and minor Cr-nitrides, on the substrate in view of enhancing the steel's corrosion resistance and lowering interfacial contact resistance between the bipolar plate and gas diffusion layer. Electrical discharge machining and rolling approach are used as the pretreatment to produce an activated surface on the steel before pack chromization process to reduce operating temperatures and increase deposition rates. The rolled-chromized steel shows the lowest corrosion current density, 3 × 10 -8 A cm -2, and the smallest interfacial contact resistance, 5.9 mΩ cm 2, at 140 N cm -2 among all tested steels. This study clearly states the performance of 1045 carbon steel modified by activated and low-temperature pack chromization processes, which possess the potential to be bipolar plates in the application of PEMFC.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Xu, Haiyang; Wang, Zhongqiang; Yu, Hao; Ma, Jiangang; Liu, Yichun
2016-01-01
The coexistence of uniform bipolar and unipolar resistive-switching (RS) characteristics was demonstrated in a double-layer Ag/ZnS-Ag/CuAlO2/Pt memory device. By changing the compliance current (CC) from 1 mA to 10 mA, the RS behavior can be converted from the bipolar mode (BRS) to the unipolar mode (URS). The temperature dependence of low resistance states further indicates that the CFs are composed of the Ag atoms and Cu vacancies for the BRS mode and URS mode, respectively. For this double-layer structure device, the thicker conducting filaments (CFs) will be formed in the ZnS-Ag layer, and it can act as tip electrodes. Thus, the formation and rupture of these two different CFs are located in the CuAlO2 layer, realizing the uniform and stable BRS and URS.
Fyk-Kolodziej, Bozena; Qin, Pu; Pourcho, Roberta G
2003-09-08
It has been generally accepted that rod photoreceptor cells in the mammalian retina make synaptic contact with only a single population of rod bipolar cells, whereas cone photoreceptors contact a variety of cone bipolar cells. This assumption has been challenged in rodents by reports of a type of cone bipolar cell which receives input from both rods and cones. Questions remained as to whether similar pathways are present in other mammals. We have used an antiserum against the glutamate transporter GLT1-B to visualize a population of cone bipolar cells in the cat retina which make flat contacts with axon terminals of both rod and cone photoreceptor cells. These cells are identified as OFF-cone bipolar cells and correspond morphologically to type cb1 (CBa2) cone bipolar cells which are a major source of input to OFF-beta ganglion cells in the cat retina. The GLT1-B transporter was also localized to processes making flat contacts with photoreceptor terminals in rat and rabbit retinas. Examination of tissue processed for the GluR1 glutamate receptor subunit showed that cb1 cone bipolar cells, like their rodent counterparts, express this alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-selective receptor at their contacts with rod spherules. Thus, a direct excitatory pathway from rod photoreceptors to OFF-cone bipolar cells appears to be a common feature of mammalian retinas. Copyright 2003 Wiley-Liss, Inc.
Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells
NASA Astrophysics Data System (ADS)
Yoon, Wonseok; Huang, Xinyu; Fazzino, Paul; Reifsnider, Kenneth L.; Akkaoui, Michael A.
Metallic bipolar plates for polymer electrolyte membrane (PEM) fuel cells typically require coatings for corrosion protection. Other requirements for the corrosion protective coatings include low electrical contact resistance, good mechanical robustness, low material and fabrication cost. The authors have evaluated a number of protective coatings deposited on stainless steel substrates by electroplating and physical vapor deposition (PVD) methods. The coatings are screened with an electrochemical polarization test for corrosion resistance; then the contact resistance test was performed on selected coatings. The coating investigated include Gold with various thicknesses (2 nm, 10 nm, and 1 μm), Titanium, Zirconium, Zirconium Nitride (ZrN), Zirconium Niobium (ZrNb), and Zirconium Nitride with a Gold top layer (ZrNAu). The substrates include three types of stainless steel: 304, 310, and 316. The results show that Zr-coated samples satisfy the DOE target for corrosion resistance at both anode and cathode sides in typical PEM fuel cell environments in the short-term, but they do not meet the DOE contact resistance goal. Very thin gold coating (2 nm) can significantly decrease the electrical contact resistance, however a relatively thick gold coating (>10 nm) with our deposition method is necessary for adequate corrosion resistance, particularly for the cathode side of the bipolar plate.
Islet-1 Controls the Differentiation of Retinal Bipolar and Cholinergic Amacrine Cells
Elshatory, Yasser; Everhart, Drew; Deng, Min; Xie, Xiaoling; Barlow, Robert B.; Gan, Lin
2010-01-01
Whereas the mammalian retina possesses a repertoire of factors known to establish general retinal cell types, these factors alone cannot explain the vast diversity of neuronal subtypes. In other CNS regions, the differentiation of diverse neuronal pools is governed by coordinately acting LIM-homeodomain proteins including the Islet-class factor Islet-1 (Isl1). We report that deletion of Isl1 profoundly disrupts retinal function as assessed by electroretinograms and vision as assessed by optomotor behavior. These deficits are coupled with marked reductions in mature ON- and OFF-bipolar (>76%), cholinergic amacrine (93%), and ganglion (71%) cells. Mosaic deletion of Isl1 permitted a chimeric analysis of “wild-type” cells in a predominantly Isl1-null environment, demonstrating a cell-autonomous role for Isl1 in rod bipolar and cholinergic amacrine development. Furthermore, the effects on bipolar cell development appear to be dissociable from the preceding retinal ganglion cell loss, because Pou4f2-null mice are devoid of similar defects in bipolar cell marker expression. Expression of the ON- and OFF-bipolar cell differentiation factors Bhlhb4 and Vsx1, respectively, requires the presence of Isl1, whereas the early bipolar cell marker Prox1 initially did not. Thus, Isl1 is required for engaging bipolar differentiation pathways but not for general bipolar cell specification. Spatiotemporal expression analysis of additional LIM-homeobox genes identifies a LIM-homeobox gene network during bipolar cell development that includes Lhx3 and Lhx4. We conclude that Isl1 has an indispensable role in retinal neuron differentiation within restricted cell populations and this function may reflect a broader role for other LIM-homeobox genes in retinal development, and perhaps in establishing neuronal subtypes. PMID:18003851
Bipolar Cell-Photoreceptor Connectivity in the Zebrafish (Danio rerio) Retina
Li, Yong N.; Tsujimura, Taro; Kawamura, Shoji; Dowling, John E.
2013-01-01
Bipolar cells convey luminance, spatial and color information from photoreceptors to amacrine and ganglion cells. We studied the photoreceptor connectivity of 321 bipolar cells in the adult zebrafish retina. 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) was inserted into whole-mounted transgenic zebrafish retinas to label bipolar cells. The photoreceptors that connect to these DiI-labeled cells were identified by transgenic fluorescence or their positions relative to the fluorescent cones, as cones are arranged in a highly-ordered mosaic: rows of alternating blue- (B) and ultraviolet-sensitive (UV) single cones alternate with rows of red- (R) and green-sensitive (G) double cones. Rod terminals intersperse among cone terminals. As many as 18 connectivity subtypes were observed, 9 of which – G, GBUV, RG, RGB, RGBUV, RGRod, RGBRod, RGBUVRod and RRod bipolar cells – accounted for 96% of the population. Based on their axon terminal stratification, these bipolar cells could be further sub-divided into ON, OFF, and ON-OFF cells. The dendritic spread size, soma depth and size, and photoreceptor connections of the 308 bipolar cells within the 9 common connectivity subtypes were determined, and their dendritic tree morphologies and axonal stratification patterns compared. We found that bipolar cells with the same axonal stratification patterns could have heterogeneous photoreceptor connectivity whereas bipolar cells with the same dendritic tree morphology usually had the same photoreceptor connectivity, although their axons might stratify on different levels. PMID:22907678
NASA Astrophysics Data System (ADS)
Vikram, Ajit; Chowdhury, Prabudhya Roy; Phillips, Ryan K.; Hoorfar, Mina
2016-07-01
This paper describes a measurement technique developed for the determination of the effective electrical bulk resistance of the gas diffusion layer (GDL) and the contact resistance distribution at the interface of the GDL and the bipolar plate (BPP). The novelty of this study is the measurement and separation of the bulk and contact resistance under inhomogeneous compression, occurring in an actual fuel cell assembly due to the presence of the channels and ribs on the bipolar plates. The measurement of the electrical contact resistance, contributing to nearly two-third of the ohmic losses in the fuel cell assembly, shows a non-linear distribution along the GDL/BPP interface. The effective bulk resistance of the GDL under inhomogeneous compression showed a decrease of nearly 40% compared to that estimated for homogeneous compression at different compression pressures. Such a decrease in the effective bulk resistance under inhomogeneous compression could be due to the non-uniform distribution of pressure under the ribs and the channels. This measurement technique can be used to identify optimum GDL, BPP and channel-rib structures based on minimum bulk and contact resistances measured under inhomogeneous compression.
Anodic Behaviour of High Nitrogen-Bearing Steel in PEMFC Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H.; Turner, J. A.
2008-02-01
High nitrogen-bearing stainless steels, AISI Type 201 and AL219, were investigated in simulated polymer electrolyte membrane fuel cell (PEMFC) environments to assess the use of these materials in fuel cell bipolar plate applications. Both steels exhibit better corrosion behavior than 316L steel in the same environments. Type 201 steel shows similar but lower interfacial contact resistance (ICR) than 316L, while AL219 steel shows higher ICR than 316L. X-ray photoelectron spectroscopy (XPS) analysis shows that the air-formed films on Type 201 and AL219 are composed of iron oxides, chromium oxide, and manganese oxide. Iron oxides dominate the composition of the air-formedmore » film, specially the outer layer. Chromium oxide dominates passive films. Surface film thicknesses were estimated. The results suggest that high nitrogen-bearing stainless steels are promising materials for PEMFC bipolar plates.« less
Alert Response to Motion Onset in the Retina
Chen, Eric Y.; Marre, Olivier; Fisher, Clark; Schwartz, Greg; Levy, Joshua; da Silveira, Rava Azeredo
2013-01-01
Previous studies have shown that motion onset is very effective at capturing attention and is more salient than smooth motion. Here, we find that this salience ranking is present already in the firing rate of retinal ganglion cells. By stimulating the retina with a bar that appears, stays still, and then starts moving, we demonstrate that a subset of salamander retinal ganglion cells, fast OFF cells, responds significantly more strongly to motion onset than to smooth motion. We refer to this phenomenon as an alert response to motion onset. We develop a computational model that predicts the time-varying firing rate of ganglion cells responding to the appearance, onset, and smooth motion of a bar. This model, termed the adaptive cascade model, consists of a ganglion cell that receives input from a layer of bipolar cells, represented by individual rectified subunits. Additionally, both the bipolar and ganglion cells have separate contrast gain control mechanisms. This model captured the responses to our different motion stimuli over a wide range of contrasts, speeds, and locations. The alert response to motion onset, together with its computational model, introduces a new mechanism of sophisticated motion processing that occurs early in the visual system. PMID:23283327
Method for forming a cell separator for use in bipolar-stack energy storage devices
Mayer, Steven T.; Feikert, John H.; Kaschmitter, James L.; Pekala, Richard W.
1994-01-01
An improved multi-cell electrochemical energy storage device, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack.
Cell separator for use in bipolar-stack energy storage devices
Mayer, S.T.; Feikert, J.H.; Kachmitter, J.L.; Pekala, R.W.
1995-02-28
An improved multi-cell electrochemical energy storage device is described, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack. 2 figs.
Method for forming a cell separator for use in bipolar-stack energy storage devices
Mayer, S.T.; Feikert, J.H.; Kaschmitter, J.L.; Pekala, R.W.
1994-08-09
An improved multi-cell electrochemical energy storage device, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack. 2 figs.
Deafferented Adult Rod Bipolar Cells Create New Synapses with Photoreceptors to Restore Vision
Hovhannisyan, Anahit; Kung, Jennifer; Lee, Seungjun; Lee, Dae Yeong; Huie, Philip; Dalal, Roopa; Palanker, Daniel
2017-01-01
Upon degeneration of photoreceptors in the adult retina, interneurons, including bipolar cells, exhibit a plastic response leading to their aberrant rewiring. Photoreceptor reintroduction has been suggested as a potential approach to sight restoration, but the ability of deafferented bipolar cells to establish functional synapses with photoreceptors is poorly understood. Here we use photocoagulation to selectively destroy photoreceptors in adult rabbits while preserving the inner retina. We find that rods and cones shift into the ablation zone over several weeks, reducing the blind spot at scotopic and photopic luminances. During recovery, rod and cone bipolar cells exhibit markedly different responses to deafferentation. Rod bipolar cells extend their dendrites to form new synapses with healthy photoreceptors outside the lesion, thereby restoring visual function in the deafferented retina. Secretagogin-positive cone bipolar cells did not exhibit such obvious dendritic restructuring. These findings are encouraging to the idea of photoreceptor reintroduction for vision restoration in patients blinded by retinal degeneration. At the same time, they draw attention to the postsynaptic side of photoreceptor reintroduction; various bipolar cell types, representing different visual pathways, vary in their response to the photoreceptor loss and in their consequent dendritic restructuring. SIGNIFICANCE STATEMENT Loss of photoreceptors during retinal degeneration results in permanent visual impairment. Strategies for vision restoration based on the reintroduction of photoreceptors inherently rely on the ability of the remaining retinal neurons to correctly synapse with new photoreceptors. We show that deafferented bipolar cells in the adult mammalian retina can reconnect to rods and cones and restore retinal sensitivity at scotopic and photopic luminances. Rod bipolar cells extend their dendrites to form new synapses with healthy rod photoreceptors. These findings support the idea that bipolar cells might be able to synapse with reintroduced photoreceptors, thereby restoring vision in patients blinded by retinal degeneration. PMID:28373392
Gsg1, Trnp1, and Tmem215 Mark Subpopulations of Bipolar Interneurons in the Mouse Retina
Park, Ko Uoon; Randazzo, Grace; Jones, Kenneth L.; Brzezinski, Joseph A.
2017-01-01
Purpose How retinal bipolar cell interneurons are specified and assigned to specialized subtypes is only partially understood. In part, this is due to a lack of early pan- and subtype-specific bipolar cell markers. To discover these factors, we identified genes that were upregulated in Blimp1 (Prdm1) mutant retinas, which exhibit precocious bipolar cell development. Methods Postnatal day (P)2 retinas from Blimp1 conditional knock-out (CKO) mice and controls were processed for RNA sequencing. Genes that increased at least 45% and were statistically different between conditions were considered candidate bipolar-specific factors. Candidates were further evaluated by RT-PCR, in situ hybridization, and immunohistochemistry. Knock-in Tmem215-LacZ mice were used to better trace retinal expression. Results A comparison between Blimp1 CKO and control RNA-seq datasets revealed approximately 40 significantly upregulated genes. We characterized the expression of three genes that have no known function in the retina, Gsg1 (germ cell associated gene), Trnp1 (TMF-regulated nuclear protein), and Tmem215 (a predicted transmembrane protein). Germ cell associated gene appeared restricted to a small subset of cone bipolars while Trnp1 was seen in all ON type bipolar cells. Using Tmem215-LacZ heterozygous knock-in mice, we observed that β-galactosidase expression started early in bipolar cell development. In adults, Tmem215 was expressed by a subset of ON and OFF cone bipolar cells. Conclusions We have identified Gsg1, Tmem215, and Trnp1 as novel bipolar subtype-specific genes. The spatial and temporal pattern of their expression is consistent with a role in controlling bipolar subtype fate choice, differentiation, or physiology. PMID:28199486
Weber, A J; Stanford, L R
1994-05-15
It has long been known that a number of functionally different types of ganglion cells exist in the cat retina, and that each responds differently to visual stimulation. To determine whether the characteristic response properties of different retinal ganglion cell types might reflect differences in the number and distribution of their bipolar and amacrine cell inputs, we compared the percentages and distributions of the synaptic inputs from bipolar and amacrine cells to the entire dendritic arbors of physiologically characterized retinal X- and Y-cells. Sixty-two percent of the synaptic input to the Y-cell was from amacrine cell terminals, while the X-cells received approximately equal amounts of input from amacrine and bipolar cells. We found no significant difference in the distributions of bipolar or amacrine cell inputs to X- and Y-cells, or ON-center and OFF-center cells, either as a function of dendritic branch order or distance from the origin of the dendritic arbor. While, on the basis of these data, we cannot exclude the possibility that the difference in the proportion of bipolar and amacrine cell input contributes to the functional differences between X- and Y-cells, the magnitude of this difference, and the similarity in the distributions of the input from the two afferent cell types, suggest that mechanisms other than a simple predominance of input from amacrine or bipolar cells underlie the differences in their response properties. More likely, perhaps, is that the specific response features of X- and Y-cells originate in differences in the visual responses of the bipolar and amacrine cells that provide their input, or in the complex synaptic arrangements found among amacrine and bipolar cell terminals and the dendrites of specific types of retinal ganglion cells.
Tsukamoto, Yoshihiko; Omi, Naoko
2016-01-01
To date, 12 macaque bipolar cell types have been described. This list includes all morphology types first outlined by Polyak (1941) using the Golgi method in the primate retina and subsequently identified by other researchers using electron microscopy (EM) combined with the Golgi method, serial section transmission EM (SSTEM), and immunohistochemical imaging. We used SSTEM for the rod-dense perifoveal area of macaque retina, reconfirmed ON (cone) bipolar cells to be classified as invaginating midget bipolar (IMB), diffuse bipolar (DB)4, DB5, DB6, giant bipolar (GB), and blue bipolar (BB) types, and clarified their type-specific connectivity. DB4 cells made reciprocal synapses with a kind of ON-OFF lateral amacrine cell, similar to OFF DB2 cells. GB cells contacted rods and cones, similar to OFF DB3b cells. Retinal circuits formed by GB and DB3b cells are thought to substantiate the psychophysical finding of fast rod signals in mesopic vision. DB6 cell output synapses were directed to ON midget ganglion (MG) cells at 70% of ribbon contacts, similar to OFF DB1 cells that directed 60% of ribbon contacts to OFF MG cells. IMB cells contacted medium- or long-wavelength sensitive (M/L-) cones but not short-wavelength sensitive (S-) cones, while BB cells contacted S-cones but not M/L-cones. However, IMB and BB dendrites had similar morphological architectures, and a BB cell contacting a single S-cone resembled an IMB cell. Thus, both IMB and BB may be the ON bipolar counterparts of the OFF flat midget bipolar (FMB) type, likewise DB4 of DB2, DB5 of DB3a, DB6 of DB1, and GB of DB3b OFF bipolar type. The ON DB plus GB, and OFF DB cells predominantly contacted M/L-cones and their outputs were directed mainly to parasol ganglion (PG) cells but also moderately to MG cells. BB cells directed S-cone-driven outputs almost exclusively to small bistratified ganglion (SBG) cells. Some FMB cells predominantly contacted S-cones and their outputs were directed to OFF MG cells. Thus, two-step synaptic connections largely narrowed down the S-cone component to SBG and some OFF MG cells. The other OFF MG cells, ON MG cells, and ON and OFF PG cells constructed M/L-cone dominant pathways. PMID:27833534
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Shaohua; Yu, Haijun; Liu, Pan
2015-01-01
Based on low-cost and rich resources, sodium-ion batteries have been regarded as a promising candidate for next-generation energy storage batteries in the large-scale energy applications of renewable energy and smart grids. However, there are some critical drawbacks limiting its application, such as safety and stability problems. In this work, a stable symmetric sodium-ion battery based on the bipolar, active O3-type material, Na0.8Ni0.4Ti0.6O2, is developed. This bipolar material shows a typical O3-type layered structure, containing two electrochemically active transition metals with redox couples of Ni4+/Ni2+ and Ti4+/Ti3+, respectively. This Na0.8Ni0.4Ti0.6O2-based symmetric cell exhibits a high average voltage of 2.8 V, amore » reversible discharge capacity of 85 mA h g(-1), 75% capacity retention after 150 cycles and good rate capability. This full symmetric cell will greatly contribute to the development of room-temperature sodium-ion batteries with a view towards safety, low cost and long life, and it will stimulate further research on symmetric cells using the same active materials as both cathode and anode.« less
Light adaptation alters the source of inhibition to the mouse retinal OFF pathway
Mazade, Reece E.
2013-01-01
Sensory systems must avoid saturation to encode a wide range of stimulus intensities. One way the retina accomplishes this is by using both dim-light-sensing rod and bright-light-sensing cone photoreceptor circuits. OFF cone bipolar cells are a key point in this process, as they receive both excitatory input from cones and inhibitory input from AII amacrine cells via the rod pathway. However, in addition to AII amacrine cell input, other inhibitory inputs from cone pathways also modulate OFF cone bipolar cell light signals. It is unknown how these inhibitory inputs to OFF cone bipolar cells change when switching between rod and cone pathways or whether all OFF cone bipolar cells receive rod pathway input. We found that one group of OFF cone bipolar cells (types 1, 2, and 4) receive rod-mediated inhibitory inputs that likely come from the rod-AII amacrine cell pathway, while another group of OFF cone bipolar cells (type 3) do not. In both cases, dark-adapted rod-dominant light responses showed a significant contribution of glycinergic inhibition, which decreased with light adaptation and was, surprisingly, compensated by an increase in GABAergic inhibition. As GABAergic input has distinct timing and spatial spread from glycinergic input, a shift from glycinergic to GABAergic inhibition could significantly alter OFF cone bipolar cell signaling to downstream OFF ganglion cells. Larger GABAergic input could reflect an adjustment of OFF bipolar cell spatial inhibition, which may be one mechanism that contributes to retinal spatial sensitivity in the light. PMID:23926034
NASA Astrophysics Data System (ADS)
Bednarek, Tomasz; Tsotridis, Georgios
2017-03-01
The objective of the current study is to highlight possible limitations and difficulties associated with Computational Fluid Dynamics in PEM single fuel cell modelling. It is shown that an appropriate convergence methodology should be applied for steady-state solutions, due to inherent numerical instabilities. A single channel fuel cell model has been taken as numerical example. Results are evaluated for quantitative as well qualitative points of view. The contribution to the polarization curve of the different fuel cell components such as bi-polar plates, gas diffusion layers, catalyst layers and membrane was investigated via their effects on the overpotentials. Furthermore, the potential losses corresponding to reaction kinetics, due to ohmic and mas transport limitations and the effect of the exchange current density and open circuit voltage, were also investigated. It is highlighted that the lack of reliable and robust input data is one of the issues for obtaining accurate results.
Lightweight Stacks of Direct Methanol Fuel Cells
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram; Valdez, Thomas
2004-01-01
An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.
Deafferented Adult Rod Bipolar Cells Create New Synapses with Photoreceptors to Restore Vision.
Beier, Corinne; Hovhannisyan, Anahit; Weiser, Sydney; Kung, Jennifer; Lee, Seungjun; Lee, Dae Yeong; Huie, Philip; Dalal, Roopa; Palanker, Daniel; Sher, Alexander
2017-04-26
Upon degeneration of photoreceptors in the adult retina, interneurons, including bipolar cells, exhibit a plastic response leading to their aberrant rewiring. Photoreceptor reintroduction has been suggested as a potential approach to sight restoration, but the ability of deafferented bipolar cells to establish functional synapses with photoreceptors is poorly understood. Here we use photocoagulation to selectively destroy photoreceptors in adult rabbits while preserving the inner retina. We find that rods and cones shift into the ablation zone over several weeks, reducing the blind spot at scotopic and photopic luminances. During recovery, rod and cone bipolar cells exhibit markedly different responses to deafferentation. Rod bipolar cells extend their dendrites to form new synapses with healthy photoreceptors outside the lesion, thereby restoring visual function in the deafferented retina. Secretagogin-positive cone bipolar cells did not exhibit such obvious dendritic restructuring. These findings are encouraging to the idea of photoreceptor reintroduction for vision restoration in patients blinded by retinal degeneration. At the same time, they draw attention to the postsynaptic side of photoreceptor reintroduction; various bipolar cell types, representing different visual pathways, vary in their response to the photoreceptor loss and in their consequent dendritic restructuring. SIGNIFICANCE STATEMENT Loss of photoreceptors during retinal degeneration results in permanent visual impairment. Strategies for vision restoration based on the reintroduction of photoreceptors inherently rely on the ability of the remaining retinal neurons to correctly synapse with new photoreceptors. We show that deafferented bipolar cells in the adult mammalian retina can reconnect to rods and cones and restore retinal sensitivity at scotopic and photopic luminances. Rod bipolar cells extend their dendrites to form new synapses with healthy rod photoreceptors. These findings support the idea that bipolar cells might be able to synapse with reintroduced photoreceptors, thereby restoring vision in patients blinded by retinal degeneration. Copyright © 2017 the authors 0270-6474/17/374635-10$15.00/0.
Expression of LIM-homeodomain transcription factors in the developing and mature mouse retina
Balasubramanian, Revathi; Bui, Andrew; Ding, Qian; Gan, Lin
2014-01-01
LIM-homeodomain (LIM-HD) transcription factors have been extensively studied for their role in the development of the central nervous system. Their function is key to several developmental events like cell proliferation, differentiation and subtype specification. However, their roles in retinal neurogenesis remain largely unknown. Here we report a detailed expression study of LIM-HD transcription factors LHX9 and LHX2, LHX3 and LHX4, and LHX6 in the developing and mature mouse retina using immunohistochemistry and in situ hybridization techniques. We show that LHX9 is expressed during the early stages of development in the retinal ganglion cell layer and the inner nuclear layer. We also show that LHX9 is expressed in a subset of amacrine cells in the adult retina. LHX2 is known to be expressed in retinal progenitor cells during development and in Müller glial cells and a subset of amacrine cells in the adult retina. We found that the LHX2 subset of amacrine cells is not cholinergic and that a very few of LHX2 amacrine cells express calretinin. LHX3 and LHX4 are expressed in a subset of bipolar cells in the adult retina. LHX6 is expressed in cells in the ganglion cell layer and the neuroblast layer starting at embryonic stage 13.5 (E13.5) and continues to be expressed in cells in the ganglion cell layer and inner nuclear layer, postnatally, suggesting its likely expression in amacrine cells or a subset thereof. Taken together, our comprehensive assay of expression patterns of LIM-HD transcription factors during mouse retinal development will help further studies elucidating their biological functions in the differentiation of retinal cell subtypes. PMID:24333658
Cholinergic neurons and fibres in the rat visual cortex.
Parnavelas, J G; Kelly, W; Franke, E; Eckenstein, F
1986-06-01
Choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme, was localized immunocytochemically in neurons and fibres in the rat visual cortex using a monoclonal antibody. ChAT-labelled cells were non-pyramidal neurons, primarily of the bipolar form, distributed in layers II through VI but concentrated in layers II & III. Their perikarya contained a large nucleus and a small amount of perinuclear cytoplasm. The somata and dendrites of all labelled cells received Gray's type I and type II synapses. ChAT-stained axons formed a dense and diffuse network throughout the visual cortex and particularly in layer V. Electron microscopy revealed that the great majority formed type II synaptic contacts with dendrites of various sizes, unlabelled non-pyramidal somata and, on a few occasions, with ChAT-labelled cells. However, a very small number of terminals appeared to form type I synaptic contacts. This study describes the morphological organization of the cholinergic system in the visual cortex, the function of which has been under extensive investigation.
Lightweight bipolar storage battery
NASA Technical Reports Server (NTRS)
Rowlette, John J. (Inventor)
1992-01-01
An apparatus [10] is disclosed for a lightweight bipolar battery of the end-plate cell stack design. Current flow through a bipolar cell stack [12] is collected by a pair of copper end-plates [16a,16b] and transferred edgewise out of the battery by a pair of lightweight, low resistance copper terminals [28a,28b]. The copper terminals parallel the surface of a corresponding copper end-plate [16a,16b] to maximize battery throughput. The bipolar cell stack [12], copper end-plates [16a,16b] and copper terminals [28a,28b] are rigidly sandwiched between a pair of nonconductive rigid end-plates [20] having a lightweight fiber honeycomb core which eliminates distortion of individual plates within the bipolar cell stack due to internal pressures. Insulating foam [30] is injected into the fiber honeycomb core to reduce heat transfer into and out of the bipolar cell stack and to maintain uniform cell performance. A sealed battery enclosure [ 22] exposes a pair of terminal ends [26a,26b] for connection with an external circuit.
Light adaptation alters inner retinal inhibition to shape OFF retinal pathway signaling
Mazade, Reece E.
2016-01-01
The retina adjusts its signaling gain over a wide range of light levels. A functional result of this is increased visual acuity at brighter luminance levels (light adaptation) due to shifts in the excitatory center-inhibitory surround receptive field parameters of ganglion cells that increases their sensitivity to smaller light stimuli. Recent work supports the idea that changes in ganglion cell spatial sensitivity with background luminance are due in part to inner retinal mechanisms, possibly including modulation of inhibition onto bipolar cells. To determine how the receptive fields of OFF cone bipolar cells may contribute to changes in ganglion cell resolution, the spatial extent and magnitude of inhibitory and excitatory inputs were measured from OFF bipolar cells under dark- and light-adapted conditions. There was no change in the OFF bipolar cell excitatory input with light adaptation; however, the spatial distributions of inhibitory inputs, including both glycinergic and GABAergic sources, became significantly narrower, smaller, and more transient. The magnitude and size of the OFF bipolar cell center-surround receptive fields as well as light-adapted changes in resting membrane potential were incorporated into a spatial model of OFF bipolar cell output to the downstream ganglion cells, which predicted an increase in signal output strength with light adaptation. We show a prominent role for inner retinal spatial signals in modulating the modeled strength of bipolar cell output to potentially play a role in ganglion cell visual sensitivity and acuity. PMID:26912599
NASA Astrophysics Data System (ADS)
Tanaka, Shiro; Bradfield, Warwick W.; Legrand, Cloe; Malan, Arnaud G.
2016-10-01
The performance of a perforated metal-sheet gas-diffusion layer incorporated with a microporous layer in a fuel cell is evaluated with fine-pitch channel/land designs for the gas flow field on a bipolar plate. The combination of metal-sheet gas-diffusion layer and microporous layer exhibits significant performance without a large flooding effect. When comparing the performance with wider and narrower land cases, the land width affects the performance. To investigate the roles of the microporous layer, land width, etc. in the fuel cell with the metal-sheet gas-diffusion layer, a single-phase, isothermal, and multi-physics simulation is developed and coupled with electrical, mechanical, electrochemical and fluid dynamics factors. The simulated current-voltage performance is then compared to the experimentally measure performance. These are shown to be in good agreement apart for very high current-density cases i.e. greater than 1.5 A cm-2. This is due the flooding effect predominantly appearing. It is further demonstrated that the microporous layer serves as the key component in facilitating gas diffusion and for preventing flooding. Furthermore, the pressure is found to have a strong impact on the performance, affecting the gas diffusion and electric resistance around the microporous layer.
Bipolar H II regions produced by cloud-cloud collisions
NASA Astrophysics Data System (ADS)
Whitworth, Anthony; Lomax, Oliver; Balfour, Scott; Mège, Pierre; Zavagno, Annie; Deharveng, Lise
2018-05-01
We suggest that bipolar H II regions may be the aftermath of collisions between clouds. Such a collision will produce a shock-compressed layer, and a star cluster can then condense out of the dense gas near the center of the layer. If the clouds are sufficiently massive, the star cluster is likely to contain at least one massive star, which emits ionizing radiation, and excites an H II region, which then expands, sweeping up the surrounding neutral gas. Once most of the matter in the clouds has accreted onto the layer, expansion of the H II region meets little resistance in directions perpendicular to the midplane of the layer, and so it expands rapidly to produce two lobes of ionized gas, one on each side of the layer. Conversely, in directions parallel to the midplane of the layer, expansion of the H II region stalls due to the ram pressure of the gas that continues to fall towards the star cluster from the outer parts of the layer; a ring of dense neutral gas builds up around the waist of the bipolar H II region, and may spawn a second generation of star formation. We present a dimensionless model for the flow of ionized gas in a bipolar H II region created according to the above scenario, and predict the characteristics of the resulting free-free continuum and recombination-line emission. This dimensionless model can be scaled to the physical parameters of any particular system. Our intention is that these predictions will be useful in testing the scenario outlined above, and thereby providing indirect support for the role of cloud-cloud collisions in triggering star formation.
Somatic and neuritic spines on tyrosine hydroxylase–immunopositive cells of rat retina
Fasoli, Anna; Dang, James; Johnson, Jeffrey S.; Gouw, Aaron H.; Iseppe, Alex Fogli; Ishida, Andrew T.
2018-01-01
Dopamine- and tyrosine hydroxylase–immunopositive cells (TH cells) modulate visually driven signals as they flow through retinal photoreceptor, bipolar, and ganglion cells. Previous studies suggested that TH cells release dopamine from varicose axons arborizing in the inner and outer plexiform layers after glutamatergic synapses depolarize TH cell dendrites in the inner plexiform layer and these depolarizations propagate to the varicosities. Although it has been proposed that these excitatory synapses are formed onto appendages resembling dendritic spines, spines have not been found on TH cells of most species examined to date or on TH cell somata that release dopamine when exposed to glutamate receptor agonists. By use of protocols that preserve proximal retinal neuron morphology, we have examined the shape, distribution, and synapse-related immunoreactivity of adult rat TH cells. We report here that TH cell somata, tapering and varicose inner plexiform layer neurites, and varicose outer plexiform layer neurites all bear spines, that some of these spines are immunopositive for glutamate receptor and postsynaptic density proteins (viz., GluR1, GluR4, NR1, PSD-95, and PSD-93), that TH cell somata and tapering neurites are also immunopositive for a γ-aminobutyric acid (GABA) receptor subunit (GABAARα1), and that a synaptic ribbon-specific protein (RIBEYE) is found adjacent to some colocalizations of GluR1 and TH in the inner plexiform layer. These results identify previously undescribed sites at which glutamatergic and GABAergic inputs may stimulate and inhibit dopamine release, especially at somata and along varicose neurites that emerge from these somata and arborize in various levels of the retina. PMID:28035673
Neuillé, Marion; El Shamieh, Said; Orhan, Elise; Michiels, Christelle; Antonio, Aline; Lancelot, Marie-Elise; Condroyer, Christel; Bujakowska, Kinga; Poch, Olivier; Sahel, José-Alain; Audo, Isabelle; Zeitz, Christina
2014-01-01
Mutations in LRIT3, coding for a Leucine-Rich Repeat, immunoglobulin-like and transmembrane domains 3 protein lead to autosomal recessive complete congenital stationary night blindness (cCSNB). The role of the corresponding protein in the ON-bipolar cell signaling cascade remains to be elucidated. Here we genetically and functionally characterize a commercially available Lrit3 knock-out mouse, a model to study the function and the pathogenic mechanism of LRIT3. We confirm that the insertion of a Bgeo/Puro cassette in the knock-out allele introduces a premature stop codon, which presumably codes for a non-functional protein. The mouse line does not harbor other mutations present in common laboratory mouse strains or in other known cCSNB genes. Lrit3 mutant mice exhibit a so-called no b-wave (nob) phenotype with lacking or severely reduced b-wave amplitudes in the scotopic and photopic electroretinogram (ERG), respectively. Optomotor tests reveal strongly decreased optomotor responses in scotopic conditions. No obvious fundus auto-fluorescence or histological retinal structure abnormalities are observed. However, spectral domain optical coherence tomography (SD-OCT) reveals thinned inner nuclear layer and part of the retina containing inner plexiform layer, ganglion cell layer and nerve fiber layer in these mice. To our knowledge, this is the first time that SD-OCT technology is used to characterize an animal model for CSNB. This phenotype is noted at 6 weeks and at 6 months. The stationary nob phenotype of mice lacking Lrit3, which we named nob6, confirms the findings previously reported in patients carrying LRIT3 mutations and is similar to other cCSNB mouse models. This novel mouse model will be useful for investigating the pathogenic mechanism(s) associated with LRIT3 mutations and clarifying the role of LRIT3 in the ON-bipolar cell signaling cascade.
Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs)
NASA Astrophysics Data System (ADS)
Lee, Dongyoung; Lee, Dai Gil
2016-09-01
A carbon/epoxy composite bipolar plate is an ideal substitute for the brittle graphite bipolar plate for lightweight proton exchange membrane fuel cells (PEMFCs) because of its high specific strength and stiffness. However, conventional carbon/epoxy composite bipolar plates are not applicable for high-temperature PEMFCs (HT-PEMFCs) because these systems are operated at higher temperatures than the glass transition temperatures of conventional epoxies. Therefore, in this study, a cyanate ester-modified epoxy is adopted for the development of a carbon composite bipolar plate for HT-PEMFCs. The composite bipolar plate with exposed surface carbon fibers is produced without any surface treatments or coatings to increase the productivity and is integrated with a silicone gasket to reduce the assembly cost. The developed carbon composite bipolar plate exhibits not only superior electrical properties but also high thermo-mechanical properties. In addition, a unit cell test is performed, and the results are compared with those of the conventional graphite bipolar plate.
Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell
Isenberg, A.O.
1987-03-10
Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection. 1 fig.
Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell
Isenberg, Arnold O.
1987-01-01
Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection.
Suzuki-Kerr, Haruna; Iwagawa, Toshiro; Sagara, Hiroshi; Mizota, Atsushi; Suzuki, Yutaka; Watanabe, Sumiko
2018-06-01
During development of the retina, common retinal progenitor cells give rise to six classes of neurons that subsequently further diversify into more than 55 subtypes of neuronal subtypes. Here, we have investigated the expression and function of Fezf2, Fez zinc finger family of protein, in the developing mouse retina. Expression of Fezf2 transcripts was strongly observed in the embryonic retinal progenitors at E14.5 and declined quickly in subsequent development of retina. Then, in postnatal stage at around day 8, Fezf2 was transiently expressed then declined again. Loss-of-function analysis using retinas from mice in which Fezf2 coding region was substituted with β-galactosidase showed that Fezf2 is expressed in a subset of cone OFF bipolar cells and required for their differentiation. Using electroretinogram, we found that Fezf2 knockout retina exhibited significantly reduced photopic b-wave, suggesting functional abnormality of cone ON bipolar cells. Furthermore, reduced expression of synaptic protein Trpm1 and structural alteration of ON bipolar cell invagination, both of which affected cone photoreceptor terminal synaptic activity, was identified by transmission electron microscopy and immunohistochemistry, respectively. Taken together, our results show that Fezf2 is indispensable in differentiation of bipolar precursors into cone OFF bipolar cells and in functional maturation of cone ON bipolar cells during development of mouse retina. These results contribute to our understanding of how diversity of neuronal subtypes and hence specificity of neuronal connections are established in the retina by intrinsic cues. Copyright © 2018 Elsevier Ltd. All rights reserved.
McElroy, James F.
1989-01-01
The present invention discloses an improved fuel cell utilizing an ion transporting membrane having a catalytic anode and a catalytic cathode bonded to opposite sides of the membrane, a wet-proofed carbon sheet in contact with the cathode surface opposite that bonded to the membrane and a bipolar separator positioned in electrical contact with the carbon sheet and the anode of the adjacent fuel cell. Said bipolar separator and carbon sheet forming an oxidant flowpath, wherein the improvement comprises an electrically conductive screen between and in contact with the wet-proofed carbon sheet and the bipolar separator improving the product water removal system of the fuel cell.
Hosoi, Nobutake; Arai, Itaru; Tachibana, Masao
2005-04-20
Light responses of photoreceptors (rods and cones) are transmitted to the second-order neurons (bipolar cells and horizontal cells) via glutamatergic synapses located in the outer plexiform layer of the retina. Although it has been well established that postsynaptic group III metabotropic glutamate receptors (mGluRs) of ON bipolar cells contribute to generating the ON signal, presynaptic roles of group III mGluRs remain to be elucidated at this synaptic connection. We addressed this issue by applying the slice patch-clamp technique to the newt retina. OFF bipolar cells and horizontal cells generate a steady inward current in the dark and a transient inward current at light offset, both of which are mediated via postsynaptic non-NMDA receptors. A group III mGluR-specific agonist, L-2-amino-4-phosphonobutyric acid (L-AP-4), inhibited both the steady and off-transient inward currents but did not affect the glutamate-induced current in these postsynaptic neurons. L-AP-4 inhibited the presynaptic L-type calcium current (ICa) in cones by shifting the voltage dependence of activation to more positive membrane potentials. The inhibition of ICa was most prominent around the physiological range of cone membrane potentials. In contrast, L-AP-4 did not affect L-type ICa in rods. Paired recordings from photoreceptors and the synaptically connected second-order neurons confirmed that L-AP-4 inhibited both ICa and glutamate release in cones but not in rods. Furthermore, we found that exocytosed protons also inhibited ICa in cones but not in rods. Selective modulation of ICa in cones may help broaden the dynamic range of synaptic transfer by controlling the amount of transmitter release from cones.
NASA Astrophysics Data System (ADS)
Singh, Bharti; Mehta, B. R.; Govind, Feng, X.; Müllen, Klaus
2011-11-01
This study reports a bipolar resistive switching device based on copper oxide (CuO)-multilayer graphene (MLG) hybrid interface in complete contrast to the ohmic and rectifying characteristics of junctions based on individual MLG and CuO layers. The observed shift and the occurrence of additional O1s, Cu2p, and C1s core level peaks indicate electronic interaction at the hybrid interfacial layer. Large changes in the resistive switching parameters on changing the ambient conditions from air to vacuum establish the important role of MLG as oxygen ion storage and blocking layer towards the observed resistive switching effect.
Pourcho, Roberta G; Qin, Pu; Goebel, Dennis J; Fyk-Kolodziej, Bozena
2002-12-16
Fast-acting excitatory neurotransmission in the retina is mediated primarily by glutamate, acting at alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) -selective and kainate-selective receptors. To localize these sites of action, cat retinas were stimulated with either AMPA or kainate and processed for histochemical visualization of cobalt uptake through calcium-permeable channels. Treatment with both agonists resulted in staining of A- and B-type horizontal cells and several types of OFF cone bipolar cells; there was no evidence for staining of ON cone bipolar cells or rod bipolar cells. The subpopulations of OFF cone bipolar cells differed in their responses with two distinct types that stained heavily with cobalt after exposure to AMPA and three different types that were preferentially labeled after exposure to kainate. Although many amacrine and ganglion cells appeared to respond to both agonists, AII amacrine cells were stained after stimulation by AMPA but not by kainate. The OFF cone bipolar cells that exhibit AMPA-stimulated cobalt uptake were found to have a high level of correspondence with cells that show immunocytochemical staining for the AMPA-selective glutamate receptor subunits GluR1 and GluR2/3. Similarly, the cone bipolar cells exhibiting kainate-stimulated cobalt uptake resemble those that are immunoreactive for the kainate subunit GluR5. The results indicate that, whereas many retinal neurons express both AMPA and kainate receptors, AII amacrine cells and subpopulations of OFF cone bipolar cells are limited to the expression of either AMPA or kainate receptors. This differential expression may contribute to the unique character of transmission by these cell types. Copyright 2002 Wiley-Liss, Inc.
Low hydrostatic head electrolyte addition to fuel cell stacks
Kothmann, Richard E.
1983-01-01
A fuel cell and system for supply electrolyte, as well as fuel and an oxidant to a fuel cell stack having at least two fuel cells, each of the cells having a pair of spaced electrodes and a matrix sandwiched therebetween, fuel and oxidant paths associated with a bipolar plate separating each pair of adjacent fuel cells and an electrolyte fill path for adding electrolyte to the cells and wetting said matrices. Electrolyte is flowed through the fuel cell stack in a back and forth fashion in a path in each cell substantially parallel to one face of opposite faces of the bipolar plate exposed to one of the electrodes and the matrices to produce an overall head uniformly between cells due to frictional pressure drop in the path for each cell free of a large hydrostatic head to thereby avoid flooding of the electrodes. The bipolar plate is provided with channels forming paths for the flow of the fuel and oxidant on opposite faces thereof, and the fuel and the oxidant are flowed along a first side of the bipolar plate and a second side of the bipolar plate through channels formed into the opposite faces of the bipolar plate, the fuel flowing through channels formed into one of the opposite faces and the oxidant flowing through channels formed into the other of the opposite faces.
Kozuka, Takashi; Chaya, Taro; Tamalu, Fuminobu; Shimada, Mariko; Fujimaki-Aoba, Kayo; Kuwahara, Ryusuke; Watanabe, Shu-Ichi; Furukawa, Takahisa
2017-10-11
Neurotransmission plays an essential role in neural circuit formation in the central nervous system (CNS). Although neurotransmission has been recently clarified as a key modulator of retinal circuit development, the roles of individual synaptic transmissions are not yet fully understood. In the current study, we investigated the role of neurotransmission from photoreceptor cells to ON bipolar cells in development using mutant mouse lines of both sexes in which this transmission is abrogated. We found that deletion of the ON bipolar cation channel TRPM1 results in the abnormal contraction of rod bipolar terminals and a decreased number of their synaptic connections with amacrine cells. In contrast, these histological alterations were not caused by a disruption of total glutamate transmission due to loss of the ON bipolar glutamate receptor mGluR6 or the photoreceptor glutamate transporter VGluT1. In addition, TRPM1 deficiency led to the reduction of total dendritic length, branch numbers, and cell body size in AII amacrine cells. Activated Goα, known to close the TRPM1 channel, interacted with TRPM1 and induced the contraction of rod bipolar terminals. Furthermore, overexpression of Channelrhodopsin-2 partially rescued rod bipolar cell development in the TRPM1 -/- retina, whereas the rescue effect by a constitutively closed form of TRPM1 was lower than that by the native form. Our results suggest that TRPM1 channel opening is essential for rod bipolar pathway establishment in development. SIGNIFICANCE STATEMENT Neurotransmission has been recognized recently as a key modulator of retinal circuit development in the CNS. However, the roles of individual synaptic transmissions are not yet fully understood. In the current study, we focused on neurotransmission between rod photoreceptor cells and rod bipolar cells in the retina. We used genetically modified mouse models which abrogate each step of neurotransmission: presynaptic glutamate release, postsynaptic glutamate reception, or transduction channel function. We found that the TRPM1 transduction channel is required for the development of rod bipolar cells and their synaptic formation with subsequent neurons, independently of glutamate transmission. This study advances our understanding of neurotransmission-mediated retinal circuit refinement. Copyright © 2017 the authors 0270-6474/17/379889-12$15.00/0.
Histology assessment of bipolar coagulation and argon plasma coagulation on digestive tract
Garrido, Teresa; Baba, Elisa R; Wodak, Stephanie; Sakai, Paulo; Cecconello, Ivan; Maluf-Filho, Fauze
2014-01-01
AIM: To analyze the effect of bipolar electrocoagulation and argon plasma coagulation on fresh specimens of gastrointestinal tract. METHODS: An experimental evaluation was performed at Hospital das Clinicas of the University of São Paulo, on 31 fresh surgical specimens using argon plasma coagulation and bipolar electrocoagulation at different time intervals. The depth of tissue damage was histopathologically analyzed by single senior pathologist unaware of the coagulation method and power setting applied. To analyze the results, the mucosa was divided in superficial mucosa (epithelial layer of the esophagus and superficial portion of the glandular layer of the stomach and colon) intermediate mucosa (until the lamina propria of the esophagus and until the bottom of the glandular layer of the stomach and colon) and muscularis mucosa. Necrosis involvement of the layers was compared in several combinations of power and time interval. RESULTS: Involvement of the intermediate mucosa of the stomach and of the muscularis mucosa of the three organs was more frequent when higher amounts of energy were used with argon plasma. In the esophagus and in the colon, injury of the intermediate mucosa was frequent, even when small amounts of energy were used. The use of bipolar electrocoagulation resulted in more frequent involvement of the intermediate mucosa and of the muscularis mucosa of the esophagus and of the colon when higher amounts of energy were used. In the stomach, these involvements were rare. The risk of injury of the muscularis propria was significant only in the colon when argon plasma coagulation was employed. CONCLUSION: Tissue damage after argon plasma coagulation is deeper than bipolar electrocoagulation. Both of them depend on the amount of energy used. PMID:25031789
Highly conductive thermoplastic composites for rapid production of fuel cell bipolar plates
Huang, Jianhua [Blacksburg, VA; Baird, Donald G [Blacksburg, VA; McGrath, James E [Blacksburg, VA
2008-04-29
A low cost method of fabricating bipolar plates for use in fuel cells utilizes a wet lay process for combining graphite particles, thermoplastic fibers, and reinforcing fibers to produce a plurality of formable sheets. The formable sheets are then molded into a bipolar plates with features impressed therein via the molding process. The bipolar plates formed by the process have conductivity in excess of 150 S/cm and have sufficient mechanical strength to be used in fuel cells. The bipolar plates can be formed as a skin/core laminate where a second polymer material is used on the skin surface which provides for enhanced conductivity, chemical resistance, and resistance to gas permeation.
RdgB2 is required for dim-light input into intrinsically photosensitive retinal ganglion cells
Walker, Marquis T.; Rupp, Alan; Elsaesser, Rebecca; Güler, Ali D.; Sheng, Wenlong; Weng, Shijun; Berson, David M.; Hattar, Samer; Montell, Craig
2015-01-01
A subset of retinal ganglion cells is intrinsically photosensitive (ipRGCs) and contributes directly to the pupillary light reflex and circadian photoentrainment under bright-light conditions. ipRGCs are also indirectly activated by light through cellular circuits initiated in rods and cones. A mammalian homologue (RdgB2) of a phosphoinositide transfer/exchange protein that functions in Drosophila phototransduction is expressed in the retinal ganglion cell layer. This raised the possibility that RdgB2 might function in the intrinsic light response in ipRGCs, which depends on a cascade reminiscent of Drosophila phototransduction. Here we found that under high light intensities, RdgB2−/− mutant mice showed normal pupillary light responses and circadian photoentrainment. Consistent with this behavioral phenotype, the intrinsic light responses of ipRGCs in RdgB2−/− were indistinguishable from wild-type. In contrast, under low-light conditions, RdgB2−/− mutants displayed defects in both circadian photoentrainment and the pupillary light response. The RdgB2 protein was not expressed in ipRGCs but was in GABAergic amacrine cells, which provided inhibitory feedback onto bipolar cells. We propose that RdgB2 is required in a cellular circuit that transduces light input from rods to bipolar cells that are coupled to GABAergic amacrine cells and ultimately to ipRGCs, thereby enabling ipRGCs to respond to dim light. PMID:26269578
Bipolar plates for PEM fuel cells
NASA Astrophysics Data System (ADS)
Middelman, E.; Kout, W.; Vogelaar, B.; Lenssen, J.; de Waal, E.
The bipolar plates are in weight and volume the major part of the PEM fuel cell stack, and are also a significant contributor to the stack costs. The bipolar plate is therefore a key component if power density has to increase and costs must come down. Three cell plate technologies are expected to reach targeted cost price levels, all having specific advantages and drawbacks. NedStack has developed a conductive composite materials and a production process for fuel cell plates (bipolar and mono-polar). The material has a high electric and thermal conductivity, and can be processed into bipolar plates by a proprietary molding process. Process cycle time has been reduced to less than 10 s, making the material and process suitable for economical mass production. Other development work to increase material efficiency resulted in thin bipolar plates with integrated cooling channels, and integrated seals, and in two-component bipolar plates. Total thickness of the bipolar plates is now less than 3 mm, and will be reduced to 2 mm in the near future. With these thin integrated plates it is possible to increase power density up to 2 kW/l and 2 kW/kg, while at the same time reducing cost by integrating other functions and less material use.
Novel Structured Metal Bipolar Plates for Low Cost Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Conghua
2013-08-15
Bipolar plates are an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume, and 20% of the stack cost. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is to protect metal plate from corrosion at low cost for the broad commercial applications. While most of today’s PEM fuel cell metallic bipolar plate technologies use some precious metal, the focus of this SBIR project is to develop a low cost, novel nano-structured metal bipolar plate technology without using any preciousmore » metal. The technology will meet the performance and cost requirements for automobile applications. Through the Phase I project, TreadStone has identified the corrosion resistant and electrically conductive titanium oxide for the metal bipolar plate surface protection for automotive PEM fuel cell applications. TreadStone has overcome the manufacturing issues to apply the coating on metal substrate surface, and has demonstrated the feasibility of the coated stainless steel plates by ex-situ evaluation tests and the in-situ fuel cell long term durability test. The test results show the feasibility of the proposed nano-structured coating as the low cost metal bipolar plates of PEM fuel cells. The plan for further technology optimization is also outlined for the Phase II project.« less
Köhler, Ole; Sylvia, Louisa G; Bowden, Charles L; Calabrese, Joseph R; Thase, Michael; Shelton, Richard C; McInnis, Melvin; Tohen, Mauricio; Kocsis, James H; Ketter, Terence A; Friedman, Edward S; Deckersbach, Thilo; Ostacher, Michael J; Iosifescu, Dan V; McElroy, Susan; Nierenberg, Andrew A
2017-04-01
Immune alterations may play a role in bipolar disorder etiology; however, the relationship between overall immune system functioning and mood symptom severity is unknown. The two comparative effectiveness trials, the Clinical and Health Outcomes Initiatives in Comparative Effectiveness for Bipolar Disorder Study (Bipolar CHOICE) and the Lithium Treatment Moderate-Dose Use Study (LiTMUS), were similar trials among patients with bipolar disorder. At study entry, white blood cell count and bipolar mood symptom severity (via Montgomery-Aasberg Depression Rating Scale and Bipolar Inventory of Symptoms Scale) were assessed. We performed analysis of variance and linear regression analyses to investigate relationships between deviations from median white blood cell and multinomial regression analysis between higher and lower white blood cell levels. All analyses were adjusted for age, gender, body mass index, smoking, diabetes, hypertension and hyperlipidemia. Among 482 Bipolar CHOICE participants, for each 1.0 × 10 9 /L white blood cell deviation, the overall Bipolar Inventory of Symptoms Scale severity increased significantly among men (coefficient = 2.13; 95% confidence interval = [0.46, -3.79]; p = 0.013), but not among women (coefficient = 0.87; 95% confidence interval = [-0.87, -2.61]; p = 0.33). Interaction analyses showed a trend toward greater Bipolar Inventory of Symptoms Scale symptom severity among men (coefficient = 1.51; 95% confidence interval = [-0.81, -3.82]; p = 0.2). Among 283 LiTMUS participants, higher deviation from the median white blood cell showed a trend toward higher Montgomery-Aasberg Depression Rating Scale scores among men (coefficient = 1.33; 95% confidence interval = [-0.22, -2.89]; p = 0.09), but not among women (coefficient = 0.34; 95% confidence interval = [-0.64, -1.32]; p = 0.50). When combining LiTMUS and Bipolar CHOICE, Montgomery-Aasberg Depression Rating Scale scores increased significantly among men (coefficient = 1.09; 95% confidence interval = [0.31, -1.87]; p = 0.006) for each 1.0 × 10 9 /L white blood cell deviation, whereas we found a weak association among women (coefficient = 0.55; 95% confidence interval = [-0.20, -1.29]; p = 0.14). Lower and higher white blood cell levels correlated with greater symptom severity and specific symptoms, varying according to gender. Deviations in an overall immune system marker, even within the normal white blood cell range, correlated with mood symptom severity in bipolar disorder, mostly among males. Studies are warranted investigating whether white blood cell count may predict response to mood-stabilizing treatment.
Ichihashi, K; Imura, S; Oomori, H; Gesso, H
1994-11-01
We compared the biomechanical characteristics of bipolar and unipolar hemiarthroplasty on the proximal migration of the outer head by determining the von Mises stress distribution and acetabular (outer head) displacement with clinical assessment of hemiarthroplasty in 75 patients. This analysis used the two-dimensional finite element method, which incorporated boundary friction layers on both the inner and outer bearings of the prosthesis. Acetabular reaming increased stress within the pelvic bone and migration of the outer head. A combination of the acetabular reaming and bone transplantation increased the stress within the pelvic bone and grafted bone, and caused outer head migration. These findings were supported by clinical results. Although the bipolar endoprosthesis was biomechanically superior to the unipolar endoprosthesis, migration of the outer head still occurred. The bipolar endoprosthesis appeared to be indicated in cases of a femoral neck fracture or of avascular necrosis in the femoral head, but its use in cases of osteoarthritis in the hip required caution.
Dhingra, Anuradha; Fina, Marie E; Neinstein, Adam; Ramsey, David J; Xu, Ying; Fishman, Gerald A; Alexander, Kenneth R; Qian, Haohua; Peachey, Neal S; Gregg, Ronald G; Vardi, Noga
2011-03-16
Melanoma-associated retinopathy (MAR) is characterized by night blindness, photopsias, and a selective reduction of the electroretinogram b-wave. In certain cases, the serum contains autoantibodies that react with ON bipolar cells, but the target of these autoantibodies has not been identified. Here we show that the primary target of autoantibodies produced in MAR patients with reduced b-wave is the TRPM1 cation channel, the newly identified transduction channel in ON bipolar cells. Sera from two well characterized MAR patients, but not from a control subject, stained human embryonic kidney cells transfected with the TRPM1 gene, and Western blots probed with these MAR sera showed the expected band size (∼180 kDa). Staining of mouse and primate retina with MAR sera revealed immunoreactivity in all types of ON bipolar cells. Similar to staining for TRPM1, staining with the MAR sera was strong in dendritic tips and somas and was weak or absent in axon terminals. This staining colocalized with GFP in Grm6-GFP transgenic mice, where GFP is expressed in all and only ON bipolar cells, and also colocalized with Gα(o), a marker for all types of ON bipolar cells. The staining in ON bipolar cells was confirmed to be specific to TRPM1 because MAR serum did not stain these cells in a Trpm1(-/-) mouse. Evidence suggests that the recognized epitope is likely intracellular, and the sera can be internalized by retinal cells. We conclude that the vision of at least some patients with MAR is compromised due to autoantibody-mediated inactivation of the TRPM1 channel.
Novel Structured Metal Bipolar Plates for Low Cost Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Conghua
Bipolar plates are an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume, and 20% of the stack cost. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is to protect metal plate from corrosion at low cost for the broad commercial applications. While most of today’s PEM fuel cell metallic bipolar plate technologies use some precious metal, the focus of this SBIR project is to develop a low cost, novel nano-structured metal bipolar plate coating technology without using anymore » precious metal. The technology must meet the performance and cost requirements for automobile applications.« less
Yagi, T; Ohshima, S; Funahashi, Y
1997-09-01
A linear analogue network model is proposed to describe the neuronal circuit of the outer retina consisting of cones, horizontal cells, and bipolar cells. The model reflects previous physiological findings on the spatial response properties of these neurons to dim illumination and is expressed by physiological mechanisms, i.e., membrane conductances, gap-junctional conductances, and strengths of chemical synaptic interactions. Using the model, we characterized the spatial filtering properties of the bipolar cell receptive field with the standard regularization theory, in which the early vision problems are attributed to minimization of a cost function. The cost function accompanying the present characterization is derived from the linear analogue network model, and one can gain intuitive insights on how physiological mechanisms contribute to the spatial filtering properties of the bipolar cell receptive field. We also elucidated a quantitative relation between the Laplacian of Gaussian operator and the bipolar cell receptive field. From the computational point of view, the dopaminergic modulation of the gap-junctional conductance between horizontal cells is inferred to be a suitable neural adaptation mechanism for transition between photopic and mesopic vision.
Flood, Michael Daniel; Moore-Dotson, Johnnie M; Eggers, Erika D
2018-05-30
Dopamine modulation of retinal signaling has been shown to be an important part of retinal adaptation to increased background light levels but the role of dopamine modulation of retinal inhibition is not clear. We previously showed that light adaptation causes a large reduction in inhibition to rod bipolar cells, potentially to match the decrease in excitation after rod saturation. In this study we determined how dopamine D1 receptors in the inner retina contribute to this modulation. We found that D1 receptor activation significantly decreased the magnitude of inhibitory light responses from rod bipolar cells, while D1 receptor blockade during light adaptation partially prevented this decline. To determine what mechanisms were involved in the modulation of inhibitory light responses, we measured the effect of D1 receptor activation on spontaneous currents and currents evoked from electrically stimulating amacrine cell inputs to rod bipolar cells. D1 receptor activation decreased the frequency of spontaneous inhibition with no change in event amplitudes, suggesting a presynaptic change in amacrine cell activity in agreement with previous reports that rod bipolar cells lack D1 receptors. Additionally, we found that D1 receptor activation reduced the amplitude of electrically-evoked responses, showing that D1 receptors can modulate amacrine cells directly. Our results suggest that D1 receptor activation can replicate a large portion, but not all of the effects of light adaptation, likely by modulating release from amacrine cells onto rod bipolar cells.
Rossi, Angela; Wistlich, Laura; Heffels, Karl-Heinz; Walles, Heike; Groll, Jürgen
2016-08-01
In addition to dividing tissues into compartments, basement membranes are crucial as cell substrates and to regulate cellular behavior. The development of artificial basement membranes is indispensable for the ultimate formation of functional engineered tissues; however, pose a challenge due to their complex structure. Herein, biodegradable electrospun polyester meshes are presented, exhibiting isotropic or bipolar bioactivation as a biomimetic and biofunctional model of the natural basement membrane. In a one-step preparation process, reactive star-shaped prepolymer additives, which generate a hydrophilic fiber surface, are electrospun with cell-adhesion-mediating peptides, derived from major components of the basement membrane. Human skin cells adhere to the functionalized meshes, and long-term co-culture experiments confirm that the artificial basement membranes recapitulate and preserve tissue specific functions. Several layers of immortalized human keratinocytes grow on the membranes, differentiating toward the surface and expressing typical epithelial markers. Fibroblasts migrate into the reticular lamina mimicking part of the mesh. Both cells types begin to produce extracellular matrix proteins and to remodel the initial membrane. It is shown at the example of skin that the artificial basement membrane design provokes biomimetic responses of different cell types and can thus be used as basis for the future development of basement membrane containing tissues. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Immunocytochemical localization of three vesicular glutamate transporters in the cat retina.
Fyk-Kolodziej, Bozena; Dzhagaryan, Arturik; Qin, Pu; Pourcho, Roberta G
2004-08-02
Vesicular transporters play an essential role in the packaging of glutamate for synaptic release and so are of particular importance in the retina, where glutamate serves as the neurotransmitter for photoreceptors, bipolar cells, and ganglion cells. In the present study, we have examined the distribution of the three known isoforms of vesicular glutamate transporter (VGLUT) in the cat retina. VGLUT1 was localized to all photoreceptor and bipolar cells, whereas VGLUT2 was found in ganglion cells. This basic pattern of complementary distribution for the two transporters among known populations of glutamatergic cells is similar to previous findings in the brain and spinal cord. However, the axon terminals of S-cone photoreceptors were found to express both VGLUT1 and VGLUT2 and some ganglion cells labeled for both VGLUT2 and VGLUT3. Such colocalizations suggest the existence of dual modes of regulation of vesicular glutamate transport in these neurons. Staining for VGLUT2 was also present in a small number of varicose processes, which were seen to ramify throughout the inner plexiform layer. These fibers may represent axon collaterals of ganglion cells. The most prominent site of VGLUT3 immunoreactivity was in a population of amacrine cells; the axon terminals of B-type horizontal cells were also labeled at their contacts with rod spherules. The presence of the VGLUT3 transporter at sites not otherwise implicated in glutamate release may indicate novel modes of glutamate signaling or additional roles for the transporter molecule. Copyright 2004 Wiley-Liss, Inc.
Hernández, Maria; Pearce-Kelling, Susan E.; Rodriguez, F. David; Aguirre, Gustavo D.; Vecino, Elena
2010-01-01
Purpose. Leber congenital amaurosis (LCA) is a group of childhood-onset retinal diseases characterized by severe visual impairment or blindness. One form is caused by mutations in the RPE65 gene, which encodes the retinal pigment epithelium (RPE) isomerase. In this study, the retinal structure and expression of molecular markers for different retinal cell types were characterized, and differences between control and RPE65 mutant dogs during the temporal evolution of the disease were analyzed. Methods. Retinas from normal and mutant dogs of different ages were examined by immunofluorescence with a panel of 16 different antibodies. Results. Cones and rods were preserved in the mutant retinas, and the number of cones was normal. However, there was altered expression of cone arrestin and delocalization of rod opsin. The ON bipolar cells showed sprouting of the dendritic arbors toward the outer nuclear layer (ONL) and retraction of their axons in the inner nuclear layer (INL). A decreased expression of GABA, and an increased expression of intermediate filament glial markers was also found in the mutant retinas. These changes were more evident in the adult than the young mutant retinas. Conclusions. The structure of the retina is well preserved in the mutant retina, but several molecular changes take place in photoreceptors and in bipolar and amacrine cells. Some of these changes are structural, whereas others reflect a change in localization of the examined proteins. This study provides new information that can be applied to the interpretation of outcomes of retinal gene therapy in animal models and humans. PMID:20671290
Homer1a protein expression in schizophrenia, bipolar disorder, and major depression.
Leber, Stefan L; Llenos, Ida C; Miller, Christine L; Dulay, Jeannette R; Haybaeck, Johannes; Weis, Serge
2017-10-01
In recent years, there was growing interest in postsynaptic density proteins in the central nervous system. Of the most important candidates of this specialized region are proteins belonging to the Homer protein family. This family of scaffolding proteins is suspected to participate in the pathogenesis of a variety of diseases. The present study aims to compare Homer1a expression in the hippocampus and cingulate gyrus of patients with major psychiatric disorders including schizophrenia, bipolar disorder and major depression. Immunohistochemistry was used to analyze changes of Homer1a protein expression in the hippocampal formation and the cingulate gyrus from the respective disease groups. Glial cells of the cingulate gyrus gray matter showed decreased Homer1a levels in bipolar disorder when compared to controls. The same results were seen when comparing cingulate gyrus gray matter glial cells in bipolar disorder with major depression. Stratum oriens glial cells of the hippocampus showed decreased Homer1a levels in bipolar disorder when compared to controls and major depression. Stratum lacunosum glial cells showed decreased Homer1a levels in bipolar disorder when compared to major depression. In stratum oriens interneurons Homer1a levels were increased in all disease groups when compared to controls. Stratum lucidum axons showed decreased Homer1a levels in bipolar disorder when compared to controls. Our data demonstrate altered Homer1a levels in specific brain regions and cell types of patients suffering from schizophrenia, bipolar disorder and major depression. These findings support the role of Homer proteins as interesting candidates in neuropsychiatric pathophysiology and treatment.
High rate lithium/thionyl chloride bipolar battery development
NASA Technical Reports Server (NTRS)
Russell, Philip G.; Goebel, F.
1994-01-01
Presented in viewgraph format are results and accomplishments on the development of lithium/thionyl chloride bipolar batteries. Results include the development of manufacturing capability for producing large quantities of uniform cathodes and bipolar plates; the development of assembly, sealing, and activation procedures for fabrication of battery modules containing up to 150 cells in bipolar configuration; and the successful demonstration of a 10.7 kW 150-cell module with constant power pulse discharge, 20 second pulse, and 10 percent duty cycle.
Bayraktar, T; Welker, E; Freund, T F; Zilles, K; Staiger, J F
2000-05-08
Vasoactive intestinal polypeptide (VIP) in neocortex affects neuronal excitability as well as cortical blood flow and metabolism. Interneurons immunoreactive for VIP (VIP-IR neurons) are characterized by their predominantly bipolar appearance and the radial orientation of their main dendrites. In order to determine whether the morphology of VIP-IR neurons is related to the functional organization of the cortex into vertical columns, we combined both immunostaining of neurons containing VIP and cytochrome oxidase histochemistry for visualizing barrels, morphological layer IV correlates of functional columns, in the primary somatosensory (barrel) cortex of rats. VIP-IR neurons were localized in supragranular (48%), granular (16%), and infragranular layers (36%) as well as in the white matter. In the granular layer, a clear trend that more neurons were located in interbarrel septa rather than in barrels could be observed, resulting in a neuronal density which was about one-third higher in the septal area. VIP-IR neurons from the different cortical layers were three-dimensionally reconstructed from serial sections by using a computer microscope system. The neurons were mostly bipolar. Striking morphological differences in both axonal and dendritic trees were found between neurons whose cell bodies were located in supragranular, granular, and the upper part of infragranular layers, and those whose cell bodies were located in the area below. The former had dendrites which often reached layer I, where they bifurcated several times, and axonal trees which were particularly oriented vertically, with a tangential extent smaller than the width of barrels. Therefore, these neurons were mostly confined to either a barrel- or septum-related column. By contrast, the dendrites of neurons of the latter group did not reach the granular layer. Furthermore, these neurons had axons with sometimes very long horizontal collaterals, which often spanned two, in one case three, barrel columns. It is proposed that the differential morphology of neurons with different locations as stated above parallels to some extent the divergence of input streaming into the corresponding layer-defined areas. As a possible consequence of this, VIP-IR neurons may be capable of adapting the excitability and metabolism of cortical compartments either in a spatially limited or more extensive way. Copyright 2000 Wiley-Liss, Inc.
Bhlhb5 is Required for the Subtype Development of Retinal Amacrine and Bipolar Cells in Mice
Huang, Liang; Hu, Fang; Feng, Liang; Luo, Xiong-Jian; Liang, Guoqing; Zeng, Xiang-Yun; Yi, Jing-Lin; Gan, Lin
2014-01-01
Background BHLHB5, an OLIG-related basic helix-loop-helix transcription factor, is required for the development of a subset of gamma-amino butyric acid–releasing (GABAergic) amacrine cells and OFF-cone bipolar (CB) cells in mouse retinas. In order to determine BHLHB5’s functional mechanism in retinogenesis, we used the Cre-loxP recombination system to genetically trace the lineage of BHLHB5+ cells in normal and Bhlhb5-null retinas. The Bhlhb5-Cre knock-in allele was used to activate the constitutive expression of a GFP reporter in the Bhlhb5-expressing cells, and the cell fates of Bhlhb5-lineage cells were identified by using specific cell markers and were compared between normal and Bhlhb5-null retinas. Results In addition to GABAergic amacrine and OFF-CB cells, Bhlhb5 lineage cells give rise to ganglion, glycinergic amacrine, rod bipolar, ON-bipolar, and rod photoreceptor cells during normal retinal development. Targeted deletion of Bhlhb5 resulted in the loss of GABAergic amacrine, glycinergic amacrine, dopaminergic amacrine, and Type 2 OFF-CB cells. Furthermore, in the absence of BHLHB5, a portion of Bhlhb5 lineage cells switch their fate and differentiate into cholinergic amacrine cells. Conclusions Our data reveal a broad expression pattern of Bhlhb5 throughout retinogenesis and demonstrate the cell-autonomous as well as non-cell-autonomous role of Bhlhb5 in the specification of amacrine and bipolar subtypes. PMID:24123365
Bhlhb5 is required for the subtype development of retinal amacrine and bipolar cells in mice.
Huang, Liang; Hu, Fang; Feng, Liang; Luo, Xiong-Jian; Liang, Guoqing; Zeng, Xiang-Yun; Yi, Jing-Lin; Gan, Lin
2014-02-01
BHLHB5, an OLIG-related basic helix-loop-helix transcription factor, is required for the development of a subset of gamma-amino butyric acid-releasing (GABAergic) amacrine cells and OFF-cone bipolar (CB) cells in mouse retinas. In order to determine BHLHB5's functional mechanism in retinogenesis, we used the Cre-loxP recombination system to genetically trace the lineage of BHLHB5+ cells in normal and Bhlhb5-null retinas. The Bhlhb5-Cre knock-in allele was used to activate the constitutive expression of a GFP reporter in the Bhlhb5-expressing cells, and the cell fates of Bhlhb5-lineage cells were identified by using specific cell markers and were compared between normal and Bhlhb5-null retinas. In addition to GABAergic amacrine and OFF-CB cells, Bhlhb5 lineage cells give rise to ganglion, glycinergic amacrine, rod bipolar, ON-bipolar, and rod photoreceptor cells during normal retinal development. Targeted deletion of Bhlhb5 resulted in the loss of GABAergic amacrine, glycinergic amacrine, dopaminergic amacrine, and Type 2 OFF-CB cells. Furthermore, in the absence of BHLHB5, a portion of Bhlhb5 lineage cells switch their fate and differentiate into cholinergic amacrine cells. Our data reveal a broad expression pattern of Bhlhb5 throughout retinogenesis and demonstrate the cell-autonomous as well as non-cell-autonomous role of Bhlhb5 in the specification of amacrine and bipolar subtypes. Copyright © 2013 Wiley Periodicals, Inc.
Oxidation-Resistant Coating For Bipolar Lead/Acid Battery
NASA Technical Reports Server (NTRS)
Bolstad, James J.
1993-01-01
Cathode side of bipolar substrate coated with nonoxidizable conductive layer. Coating prepared as water slurry of aqueous dispersion of polyethylene copolymer plus such conductive fillers as tin oxide, titanium, tantalum, or tungsten oxide. Applied easily to substrate of polyethylene carbon plastic. As slurry dries, conductive, oxidation-resistant coating forms on positive side of substrate.
Pure cultures and characterization of yak Sertoli cells.
Zhang, Hua; Liu, Ben; Qiu, Yuan; Fan, Jiang feng; Yu, Si jiu
2013-12-01
The culture of primary Sertoli cells has become an important resource in the study of their function. However, their use is limited because of contamination of isolated cells with other testicular cells, mainly germ cells. The aim was to establish technique to obtain pure yak Sertoli cells as well as to study the growth kinetics and biological characteristics of Sertoli cells in vitro. Two-step enzyme digestion was used to separate and culture yak Sertoli cells. Cultured using starvation method and the hypotonic treatment were also invented to get pure yak Sertoli cells. Furthermore, the purification of Yak Sertoli cells were identified according to their characteristics, such as bipolar corpuscular around the nucleus and expression of Fasl, in addition to their morphology. The average viability of the Sertoli cells was 97% before freezing and 94.5% after thawing, indicating that cryopreservation in liquid nitrogen had little influence on the viability of Sertoli cells. The growth tendency of yak Sertoli cells was similar to an S-shaped growth curve. Purified yak Sertoli cells frequently exhibited bipolar corpuscula in nucleus after Feulgen staining, and did have a positive reaction of Fasl by the immunocytochemical identification. After recovery chromosomal analysis of Sertoli cells had a normal chromosomal number of 60, comprising 29 pairs of autosomes and one pair of sex chromosomes. Assays for bacteria, fungi and mycoplasmas were negative. In conclusion, yak Sertoli cells have been successfully purified and cultured in vitro, and maintain stable biological characteristics after thawing. Therefore, it will not only preserve the genetic resources of yaks at the cellular level, but also provide valuable materials for transgenic research and feeder layer and nuclear donor cells in yak somatic cell cloning technology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Martí, A; Luque, A
2015-04-22
Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base-emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions.
Martí, A.; Luque, A.
2015-01-01
Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base–emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions. PMID:25902374
NASA Astrophysics Data System (ADS)
Guan, Yingjie; Fang, Jun; Fu, Tao; Zhou, Huili; Wang, Xin; Deng, Zixiang; Zhao, Jinbao
2016-09-01
A new method for the preparation of the mono-sheet bipolar membrane applied to fuel cells was developed based on the pre-irradiation grafting technology. A series of bipolar membranes were successfully prepared by simultaneously grafting of styrene onto one side of the poly(ethylene-co-tetrafluoroethylene) base film and 1-vinylimidazole onto the opposite side, followed by the sulfonation and alkylation, respectively. The chemical structures and microstructures of the prepared membranes were investigated by ATR-FTIR and SEM-EDS. The TGA measurements demonstrated the prepared bipolar membranes have reasonable thermal stability. The ion exchange capacity, water uptake and ionic conductivity of the membranes were also characterized. The H2/O2 single fuel cells using these membranes were evaluated and revealed a maximum power density of 107 mW cm-2 at 35 °C with unhumidified hydrogen and oxygen. The preliminary performances suggested the great prospect of these membranes in application of bipolar membrane fuel cells.
Bulk and contact resistances of gas diffusion layers in proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Ye, Donghao; Gauthier, Eric; Benziger, Jay B.; Pan, Mu
2014-06-01
A multi-electrode probe is employed to distinguish the bulk and contact resistances of the catalyst layer (CL) and the gas diffusion layer (GDL) with the bipolar plate (BPP). Resistances are compared for Vulcan carbon catalyst layers (CL), carbon paper and carbon cloth GDL materials, and GDLs with microporous layers (MPL). The Vulcan carbon catalyst layer bulk resistance is 100 times greater than the bulk resistance of carbon paper GDL (Toray TG-H-120). Carbon cloth (CCWP) has bulk and contact resistances twice those of carbon paper. Compression of the GDL decreases the GDL contact resistance, but has little effect on the bulk resistance. Treatment of the GDL with polytetrafluoroethylene (PTFE) increases the contact resistance, but has little effect on the bulk resistance. A microporous layer (MPL) added to the GDL decreases the contact resistance, but has little effect on the bulk resistance. An equivalent circuit model shows that for channels less than 1 mm wide the contact resistance is the major source of electronic resistance and is about 10% of the total ohmic resistance associated with the membrane electrode assembly.
Ahmed, Zubair; Briden, Anita; Hall, Susan; Brown, Robert A
2004-02-01
We have previously described the production of large cables of fibronectin, a large extracellular matrix cell adhesion glycoprotein, which has a potential application in tissue engineering. Here we have stabilised these cables for longer survival and looked at their ultrastructural cell-substrate behaviour in vitro. Dissolution experiments showed that low concentrations of copper not only caused significant material stabilisation but left pores which could promote cell ingrowth, as we have previously reported with Fn-mats. Indeed, the greatest amount of cell ingrowth was observed for copper treated cables. Immunostaining showed S-100(+) multi-layers of cells around the edge of cables while ultrastructural analysis confirmed the presence of a mixture of fibroblasts and bipolar cells associated with fragments of basal lamina, which is a Schwann cell phenotype. Interestingly, the outermost layers of cells consisted of S-100(-) cells, presumed fibroblasts, apparently 'capping' the Schwann cells. Toxicity tests revealed that Schwann cells were only able to grow at the lowest concentration of copper used (1microM) while fibroblasts grew at all concentrations tested. These results could be used to design biomaterials with optimum properties for promoting cellular ingrowth and survival in tissue engineered grafts which may be used to improve peripheral nerve repair.
Synaptic noise is an information bottleneck in the inner retina during dynamic visual stimulation
Freed, Michael A; Liang, Zhiyin
2014-01-01
In daylight, noise generated by cones determines the fidelity with which visual signals are initially encoded. Subsequent stages of visual processing require synapses from bipolar cells to ganglion cells, but whether these synapses generate a significant amount of noise was unknown. To characterize noise generated by these synapses, we recorded excitatory postsynaptic currents from mammalian retinal ganglion cells and subjected them to a computational noise analysis. The release of transmitter quanta at bipolar cell synapses contributed substantially to the noise variance found in the ganglion cell, causing a significant loss of fidelity from bipolar cell array to postsynaptic ganglion cell. Virtually all the remaining noise variance originated in the presynaptic circuit. Circuit noise had a frequency content similar to noise shared by ganglion cells but a very different frequency content from noise from bipolar cell synapses, indicating that these synapses constitute a source of independent noise not shared by ganglion cells. These findings contribute a picture of daylight retinal circuits where noise from cones and noise generated by synaptic transmission of cone signals significantly limit visual fidelity. PMID:24297850
Jo, Yongcheol; Jung, Kyooho; Kim, Jongmin; Woo, Hyeonseok; Han, Jaeseok; Kim, Hyungsang; Hong, Jinpyo; Lee, Jeon-Kook; Im, Hyunsik
2014-01-01
This work reports on a mechanism for irreversible resistive switching (RS) transformation from bipolar to unipolar RS behavior in SrRuO3 (SRO)/Cr-doped SrZrO3 (SZO:Cr)/Pt capacitor structures prepared on a Ti/SiO2/Si substrate. Counter-clockwise bipolar RS memory current-voltage (I–V) characteristics are observed within the RS voltage window of −2.5 to +1.9 V, with good endurance and retention properties. As the bias voltage increases further beyond 4 V under a forward bias, a forming process occurs resulting in irreversible RS mode transformation from bipolar to unipolar mode. This switching mode transformation is a direct consequence of thermally activated Ti out-diffusion from a Ti adhesion layer. Transition metal Ti effectively out-diffuses through the loose Pt electrode layer at high substrate temperatures, leading to the unintended formation of a thin titanium oxide (TiOx where x < 2) layer between the Pt electrode and the SZO:Cr layer as well as additional Ti atoms in the SZO:Cr layer. Cross-sectional scanning electron microscopy, transmission electron microscopy and Auger electron spectroscopy depth-profile measurements provided apparent evidence of the Ti out-diffusion phenomenon. We propose that the out-diffusion-induced additional Ti atoms in the SZO:Cr layer contributes to the creation of the metallic filamentary channels. PMID:25483325
Pakhomov, Andrei G; Grigoryev, Sergey; Semenov, Iurii; Casciola, Maura; Jiang, Chunqi; Xiao, Shu
2018-03-29
Bipolar cancellation refers to a phenomenon when applying a second electric pulse reduces ("cancels") cell membrane damage by a preceding electric pulse of the opposite polarity. Bipolar cancellation is a reason why bipolar nanosecond electric pulses (nsEP) cause weaker electroporation than just a single unipolar phase of the same pulse. This study was undertaken to explore the dependence of bipolar cancellation on nsEP parameters, with emphasis on the amplitude ratio of two opposite polarity phases of a bipolar pulse. Individual cells (CHO, U937, or adult mouse ventricular cardiomyocytes (VCM)) were exposed to either uni- or bipolar trapezoidal nsEP, or to nanosecond electric field oscillations (NEFO). The membrane injury was evaluated by time-lapse confocal imaging of the uptake of propidium (Pr) or YO-PRO-1 (YP) dyes and by phosphatidylserine (PS) externalization. Within studied limits, bipolar cancellation showed little or no dependence on the electric field intensity, pulse repetition rate, chosen endpoint, or cell type. However, cancellation could increase for larger pulse numbers and/or for longer pulses. The sole most critical parameter which determines bipolar cancellation was the phase ratio: maximum cancellation was observed with the 2nd phase of about 50% of the first one, whereas a larger 2nd phase could add a damaging effect of its own. "Swapping" the two phases, i.e., delivering the smaller phase before the larger one, reduced or eliminated cancellation. These findings are discussed in the context of hypothetical mechanisms of bipolar cancellation and electroporation by nsEP. Copyright © 2018 Elsevier B.V. All rights reserved.
Unraveling the biology of bipolar disorder using induced pluripotent stem-derived neurons.
Miller, Nathaniel D; Kelsoe, John R
2017-11-01
Bipolar disorder has been studied from numerous angles, from pathological studies to large-scale genomic studies, overall making moderate gains toward an understanding of the disorder. With the advancement of induced pluripotent stem (iPS) cell technology, in vitro models based on patient samples are now available that inherently incorporate the complex genetic variants that largely are the basis for this disorder. A number of groups are starting to apply iPS technology to the study of bipolar disorder. We selectively reviewed the literature related to understanding bipolar disorder based on using neurons derived from iPS cells. So far, most work has used the prototypical iPS cells. However, others have been able to transdifferentiate fibroblasts directly to neurons. Others still have utilized olfactory epithelium tissue as a source of neural-like cells that do not need reprogramming. In general, iPS and related cells can be used for studies of disease pathology, drug discovery, or stem cell therapy. Published studies have primarily focused on understanding bipolar disorder pathology, but initial work is also being done to use iPS technology for drug discovery. In terms of disease pathology, some evidence is pointing toward a differentiation defect with more ventral cell types being prominent. Additionally, there is evidence for a calcium signaling defect, a finding that builds on the genome-wide association study results. Continued work with iPS cells will certainly help us understand bipolar disorder and provide a way forward for improved treatments. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bipolar rechargeable lithium battery for high power applications
NASA Technical Reports Server (NTRS)
Hossain, Sohrab; Kozlowski, G.; Goebel, F.
1993-01-01
Viewgraphs of a discussion on bipolar rechargeable lithium battery for high power applications are presented. Topics covered include cell chemistry, electrolytes, reaction mechanisms, cycling behavior, cycle life, and cell assembly.
operation in a DC-DC power converter switching at a frequency of up to 15 kHz. Calculations also estimated the effect of solder layers on temperature in the device....Thermal simulations were used to calculate temperatures in a silicon carbide (SiC) Insulated -Gate Bipolar Transistor (IGBT),simulating device
Constitutive and Stress-induced Expression of CCL5 Machinery in Rodent Retina
Duncan, D'Anne S.; McLaughlin, William M.; Vasilakes, Noah; Echevarria, Franklin D.; Formichella, Cathryn R.; Sappington, Rebecca M.
2017-01-01
Signaling by inflammatory cytokines and chemokines is associated with neurodegeneration in disease and injury. Here we examined expression of the β-chemokine CCL5 and its receptors in the mouse retina and evaluated its relevance in glaucoma, a common optic neuropathy associated with sensitivity to intraocular pressure (IOP). Using quantitative PCR, fluorescent in situ hybridization, immunohistochemistry and quantitative image analysis, we found CCL5 mRNA and protein was constitutively expressed in the inner retina and synaptic layers. CCL5 appeared to associate with Müller cells and RGCs as well as synaptic connections between horizontal cells and bipolar cells in the OPL and amacrine cells, bipolar cells and RGCs in the IPL. Although all three high-affinity receptors (CCR5, CCR3, CCR1) for CCL5 were expressed constitutively, CCR5 expression was significantly higher than CCR3, which was also markedly greater than CCR1. Localization patterns for constitutive CCR5, CCR3 and CCR1 expression differed, particularly with respect to expression in inner retinal neurons. Stress-related expression of CCL5 was primarily altered in aged DBA/2 mice with elevated IOP. In contrast, changes in expression and localization of both CCR3 and CCR5 were evident not only in aged DBA/2 mice, but also in age-matched control mice and young DBA/2 mice. These groups do not exhibit elevated IOP, but possess either the aging stress (control mice) or the genetic predisposition to glaucoma (DBA/2 mice). Together, these data indicate that CCL5 and its high-affinity receptors are constitutively expressed in murine retina and differentially induced by stressors associated with glaucomatous optic neuropathy. Localization patterns further indicate that CCL5 signaling may be relevant for modulation of synapses in both health and disease, particularly in the inner plexiform layer. PMID:28936366
Lin, Chia-Chun; Wu, Yung-Hsien; Chang, You-Tai; Sun, Cherng-En
2014-01-01
A simplified one-diode one-resistor (1D1R) resistive switching memory cell that uses only four layers of TaN/ZrTiO x /Ni/n(+)-Si was proposed to suppress sneak current where TaN/ZrTiO x /Ni can be regarded as a resistive-switching random access memory (RRAM) device while Ni/n(+)-Si acts as an Schottky diode. This is the first RRAM cell structure that employs metal/semiconductor Schottky diode for current rectifying. The 1D1R cell exhibits bipolar switching behavior with SET/RESET voltage close to 1 V without requiring a forming process. More importantly, the cell shows tight resistance distribution for different states, significantly rectifying characteristics with forward/reverse current ratio higher than 10(3) and a resistance ratio larger than 10(3) between two states. Furthermore, the cell also displays desirable reliability performance in terms of long data retention time of up to 10(4) s and robust endurance of 10(5) cycles. Based on the promising characteristics, the four-layer 1D1R structure holds the great potential for next-generation nonvolatile memory technology.
Modeling intrinsic electrophysiology of AII amacrine cells: preliminary results.
Apollo, Nick; Grayden, David B; Burkitt, Anthony N; Meffin, Hamish; Kameneva, Tatiana
2013-01-01
In patients who have lost their photoreceptors due to retinal degenerative diseases, it is possible to restore rudimentary vision by electrically stimulating surviving neurons. AII amacrine cells, which reside in the inner plexiform layer, split the signal from rod bipolar cells into ON and OFF cone pathways. As a result, it is of interest to develop a computational model to aid in the understanding of how these cells respond to the electrical stimulation delivered by a prosthetic implant. The aim of this work is to develop and constrain parameters in a single-compartment model of an AII amacrine cell using data from whole-cell patch clamp recordings. This model will be used to explore responses of AII amacrine cells to electrical stimulation. Single-compartment Hodgkin-Huxley-type neural models are simulated in the NEURON environment. Simulations showed successful reproduction of the potassium currentvoltage relationship and some of the spiking properties observed in vitro.
PEM fuel cell bipolar plate material requirements for transportation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E.
1996-04-01
Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.
Cooper, John F.; Cherepy, Nerine; Krueger, Roger L.
2005-04-12
Bipolar, tilted embodiments of high temperature, molten electrolyte electrochemical cells capable of directly converting carbon fuel to electrical energy are disclosed herein. The bipolar, tilted configurations minimize the electrical resistance between one cell and others connected in electrical series. The tilted configuration also allows continuous refueling of carbon fuel.
Discovery of a novel inhibitor of kinesin-like protein KIFC1.
Zhang, Wei; Zhai, Ling; Wang, Yimin; Boohaker, Rebecca J; Lu, Wenyan; Gupta, Vandana V; Padmalayam, Indira; Bostwick, Robert J; White, E Lucile; Ross, Larry J; Maddry, Joseph; Ananthan, Subramaniam; Augelli-Szafran, Corinne E; Suto, Mark J; Xu, Bo; Li, Rongbao; Li, Yonghe
2016-04-15
Historically, drugs used in the treatment of cancers also tend to cause damage to healthy cells while affecting cancer cells. Therefore, the identification of novel agents that act specifically against cancer cells remains a high priority in the search for new therapies. In contrast with normal cells, most cancer cells contain multiple centrosomes which are associated with genome instability and tumorigenesis. Cancer cells can avoid multipolar mitosis, which can cause cell death, by clustering the extra centrosomes into two spindle poles, thereby enabling bipolar division. Kinesin-like protein KIFC1 plays a critical role in centrosome clustering in cancer cells, but is not essential for normal cells. Therefore, targeting KIFC1 may provide novel insight into selective killing of cancer cells. In the present study, we identified a small-molecule KIFC1 inhibitor, SR31527, which inhibited microtubule (MT)-stimulated KIFC1 ATPase activity with an IC50 value of 6.6 μM. By using bio layer interferometry technology, we further demonstrated that SR31527 bound directly to KIFC1 with high affinity (Kd=25.4 nM). Our results from computational modelling and saturation-transfer difference (STD)-NMR experiments suggest that SR31527 bound to a novel allosteric site of KIFC1 that appears suitable for developing selective inhibitors of KIFC1. Importantly, SR31527 prevented bipolar clustering of extra centrosomes in triple negative breast cancer (TNBC) cells and significantly reduced TNBC cell colony formation and viability, but was less toxic to normal fibroblasts. Therefore, SR31527 provides a valuable tool for studying the biological function of KIFC1 and serves as a potential lead for the development of novel therapeutic agents for breast cancer treatment. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Silkworth, William T.; Nardi, Isaac K.; Scholl, Lindsey M.; Cimini, Daniela
2009-01-01
Many cancer cells display a CIN (Chromosome Instability) phenotype, by which they exhibit high rates of chromosome loss or gain at each cell cycle. Over the years, a number of different mechanisms, including mitotic spindle multipolarity, cytokinesis failure, and merotelic kinetochore orientation, have been proposed as causes of CIN. However, a comprehensive theory of how CIN is perpetuated is still lacking. We used CIN colorectal cancer cells as a model system to investigate the possible cellular mechanism(s) underlying CIN. We found that CIN cells frequently assembled multipolar spindles in early mitosis. However, multipolar anaphase cells were very rare, and live-cell experiments showed that almost all CIN cells divided in a bipolar fashion. Moreover, fixed-cell analysis showed high frequencies of merotelically attached lagging chromosomes in bipolar anaphase CIN cells, and higher frequencies of merotelic attachments in multipolar vs. bipolar prometaphases. Finally, we found that multipolar CIN prometaphases typically possessed γ-tubulin at all spindle poles, and that a significant fraction of bipolar metaphase/early anaphase CIN cells possessed more than one centrosome at a single spindle pole. Taken together, our data suggest a model by which merotelic kinetochore attachments can easily be established in multipolar prometaphases. Most of these multipolar prometaphase cells would then bi-polarize before anaphase onset, and the residual merotelic attachments would produce chromosome mis-segregation due to anaphase lagging chromosomes. We propose this spindle pole coalescence mechanism as a major contributor to chromosome instability in cancer cells. PMID:19668340
Brazed bipolar plates for PEM fuel cells
Neutzler, Jay Kevin
1998-01-01
A liquid-cooled, bipolar plate separating adjacent cells of a PEM fuel cell comprising corrosion-resistant metal sheets brazed together so as to provide a passage between the sheets through which a dielectric coolant flows. The brazement comprises a metal which is substantially insoluble in the coolant.
Effects of number and configuration of flagella on motility of Helicobacter species.
NASA Astrophysics Data System (ADS)
Constantino, Maira A.; Sharba, Sinan; Shen, Zeli; Fox, James G.; Haesebrouck, Freddy; Linden, Sara; Bansil, Rama
Helicobacters are ulcer-causing bacteria that colonize the viscoelastic gastric mucus layer of mammals. Previous studies have shown that motility and colonization are affected by helical body shape, number and configuration of flagella. In a recent study, using fast time-resolution and high-magnification 2-D phase-contrast microscopy to image individual helical and rod-shaped H. pylori we measured the rotation rate of the cell body and flagella and found that helical shape produces less than 15% changes in swimming speeds as compared to the rod-shaped cell. Motility of H. pylori was strongly influenced by its multiple unipolar flagella. Here we compare rotational and translational speeds of H. cetorum and H. suis which have bipolar flagella, with H. cetorum having single bipolar flagella and H. suis having multiple flagella. Preliminary results show that H. suis bacteria swim slower but rotate at the same rate as H. pylori and present two swimming modes. It can swim as a pusher, with one active rotating bundle and one inactive bundle, wrapped around the body or with both bundles active. Similar work on H. cetorum is ongoing and will also be presented. NSF PHY 1410798.
Brazed bipolar plates for PEM fuel cells
Neutzler, J.K.
1998-07-07
A liquid-cooled, bipolar plate separating adjacent cells of a PEM fuel cell comprises corrosion-resistant metal sheets brazed together so as to provide a passage between the sheets through which a dielectric coolant flows. The brazement comprises a metal which is substantially insoluble in the coolant. 6 figs.
NASA Astrophysics Data System (ADS)
Driad, R.; Sah, R. E.; Schmidt, R.; Kirste, L.
2012-01-01
We present structural, stress, and electrical properties of plasma assisted e-beam evaporated hafnium dioxide (HfO2) layers on n-type InP substrates. These layers have subsequently been used for surface passivation of InGaAs/InP heterostructure bipolar transistors either alone or in combination with plasma enhanced chemical vapor deposited SiO2 layers. The use of stacked HfO2/SiO2 results in better interface quality with InGaAs/InP heterostructures, as illustrated by smaller leakage current and improved breakdown voltage. These improvements can be attributed to the reduced defect density and charge trapping at the dielectric-semiconductor interface. The deposition at room temperature makes these films suitable for sensitive devices.
NASA Astrophysics Data System (ADS)
Wu, Xinghui; Zhang, Qiuhui; Cui, Nana; Xu, Weiwei; Wang, Kefu; Jiang, Wei; Xu, Qixing
2018-06-01
In this paper, we report our investigation of room-temperature-fabricated tungsten/indium tin oxide/gold (W/ITO/Au) resistive random access memory (RRAM), which exhibits asymmetric bipolar resistive switching (BRS) behavior. The device displays good write/erase endurance and data retention properties. The device shows complementary resistive switching (CRS) characteristics after controlling the compliance current. A WO x layer electrically formed at the W/ITO in the forming process. Mobile oxygen ions within ITO migrate toward the electrode/ITO interface and produce a semiconductor-like layer that acts as a free-carrier barrier. The CRS characteristic here can be elucidated in light of the evolution of an asymmetric free-carrier blocking layer at the electrode/ITO interface.
NASA Astrophysics Data System (ADS)
Cheng, Shiou-Ying
2004-07-01
An InGaP/GaAs heterojunction bipolar transistor (HBT) with a continuous conduction-band structure is demonstrated and theoretically investigated. This device exhibited good performance including lower turn-on voltage, lower offset voltage and smaller collector current saturation voltage. The novel aspect of device structure design is the adoption of the compositionally linear-graded AlGaAs layer between the InGaP-emitter and GaAs-base layers. Therefore, the device studied shows better dc and ac performances than a conventional device. Consequently, this causes the substantial benefit for practical analog and digital applications especially for lower operation voltage, lower power consumption commercial and military products.
A gallium phosphide high-temperature bipolar junction transistor
NASA Technical Reports Server (NTRS)
Zipperian, T. E.; Dawson, L. R.; Chaffin, R. J.
1981-01-01
Preliminary results are reported on the development of a high temperature (350 C) gallium phosphide bipolar junction transistor (BJT) for geothermal and other energy applications. This four-layer p(+)n(-)pp(+) structure was formed by liquid phase epitaxy using a supercooling technique to insure uniform nucleation of the thin layers. Magnesium was used as the p-type dopant to avoid excessive out-diffusion into the lightly doped base. By appropriate choice of electrodes, the device may also be driven as an n-channel junction field-effect transistor. The initial design suffers from a series resistance problem which limits the transistor's usefulness at high temperatures.
Quantum-well-base heterojunction bipolar light-emitting transistor
NASA Astrophysics Data System (ADS)
Feng, M.; Holonyak, N.; Chan, R.
2004-03-01
This letter reports the enhanced radiative recombination realized by incorporating InGaAs quantum wells in the base layer of light-emitting InGaP/GaAs heterojunction bipolar transistors (LETs) operating in the common-emitter configuration. Two 50 Å In1-xGaxAs (x=85%) quantum wells (QWs) acting, in effect, as electron capture centers ("traps") are imbedded in the 300 Å GaAs base layer, thus improving (as a "collector" and recombination center) the light emission intensity compared to a similar LET structure without QWs in the base. Gigahertz operation of the QW LET with simultaneously amplified electrical output and an optical output with signal modulation is demonstrated.
Andreev, Alexander L; Andreeva, Tatiana B; Kompanets, Igor N; Zalyapin, Nikolay V
2018-02-20
Spatially inhomogeneous modulation of a phase delay with the depth of the order π or more makes it possible to destroy phase relations in a laser beam passing through an electro-optical cell with the ferroelectric liquid crystal (FLC) and, as a consequence, to suppress speckle noise in images formed by this beam. Such a modulation is a consequence of chaotic changes in the position of the scattering indicatrix of helix-free FLC, when an electro-optical cell is simultaneously supplied with a low-frequency and high-frequency bipolar control voltage. In this work, the phase modulation and effective suppressing of the speckles are realized using a new type of helix-free FLC material with periodic deformations of smectic layers.
Development of a Woven-Grid Quasi-Bipolar Battery
NASA Technical Reports Server (NTRS)
Tokumaru, P.; Rippel, W.; Zambrano, T.
1998-01-01
This report describes an analytical and experimental investigation of AeroVironment's Quasi-Bipolar battery concept. The modelling/battery design part of the study demonstrates that there is a trade-off between thermal and specified electrical performance. Even so, quasi-bipolar batteries can be designed, with ten times better thermal uniformity, that meet or exceed current state-of-the-art hybrid-electric vehicle battery pack performance, even using the same active materials. The thermal uniformity, power, and energy for these quasi-bipolar battery packs is projected to be very good. The experimental part of the investigation demonstrates the concept of the quasi-bipolar plate applied to a lead foil current collector wrapping around two sides of an inexpensive plastic film core. Approximately 50 quasi-biplate samples were fabricated using a hot laminating press. Hot lamination with "texture" between the plastic and lead shows some promise as a low cost method for fabricating the plates. Five of these plates were assembled into two cells plus one two-cell battery. Data from these test cells were compared with existing data for similar true bipolar batteries. The positive side of the plates exhibited corrosion where not protected by the active material.
Real Time Monitoring of Temperature of a Micro Proton Exchange Membrane Fuel Cell
Lee, Chi-Yuan; Lee, Shuo-Jen; Hu, Yuh-Chung; Shih, Wen-Pin; Fan, Wei-Yuan; Chuang, Chih-Wei
2009-01-01
Silicon micro-hole arrays (Si-MHA) were fabricated as a gas diffusion layer (GDL) in a micro fuel cell using the micro-electro-mechanical-systems (MEMS) fabrication technique. The resistance temperature detector (RTD) sensor was integrated with the GDL on a bipolar plate to measure the temperature inside the fuel cell. Experimental results demonstrate that temperature was generally linearly related to resistance and that accuracy and sensitivity were within 0.5 °C and 1.68×10−3/°C, respectively. The best experimental performance was 9.37 mW/cm2 at an H2/O2 dry gas flow rate of 30/30 SCCM. Fuel cell temperature during operation was 27 °C, as measured using thermocouples in contact with the backside of the electrode. Fuel cell operating temperature measured in situ was 30.5 °C. PMID:22573963
Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems
NASA Technical Reports Server (NTRS)
Mittelsteadt, Cortney K.; Braff, William
2009-01-01
In a substantial improvement over present alkaline systems, an advanced hybrid bipolar plate for a unitized fuel cell/electrolyzer has been developed. This design, which operates on pure feed streams (H2/O2 and water, respectively) consists of a porous metallic foil filled with a polymer that has very high water transport properties. Combined with a second metallic plate, the pore-filled metallic plates form a bipolar plate with an empty cavity in the center.
NASA Astrophysics Data System (ADS)
Mason, Thomas J.; Millichamp, Jason; Neville, Tobias P.; El-kharouf, Ahmad; Pollet, Bruno G.; Brett, Daniel J. L.
2012-12-01
This paper describes the use of an in situ analytical technique based on simultaneous displacement and resistance measurement of gas diffusion layers (GDLs) used in polymer electrolyte fuel cells (PEFCs), when exposed to varying compaction pressure. In terms of the losses within fuel cells, the ohmic loss makes up a significant portion. Of this loss, the contact resistance between the GDL and the bipolar plate (BPP) is an important constituent. By analysing the change in thickness and ohmic resistance of GDLs under compression, important mechanical and electrical properties are obtained. Derived parameters such as the 'displacement factor' are used to characterise a representative range of commercial GDLs. Increasing compaction pressure leads to a non-linear decrease in resistance for all GDLs. For Toray paper, compaction becomes more irreversible with pressure with no elastic region observed. Different GDLs have different intrinsic resistance; however, all GDLs of the same class share a common compaction profile (change in resistance with pressure). Cyclic compression of Toray GDL leads to progressive improvement in resistance and reduction in thickness that stabilises after ∼10 cycles.
Matsuo, Takahiro; Gambe, Yoshiyuki; Sun, Yan; Honma, Itaru
2014-01-01
Designing a lithium ion battery (LIB) with a three-dimensional device structure is crucial for increasing the practical energy storage density by avoiding unnecessary supporting parts of the cell modules. Here, we describe the superior secondary battery performance of the bulk all-solid-state LIB cell and a multilayered stacked bipolar cell with doubled cell potential of 6.5 V, for the first time. The bipolar-type solid LIB cell runs its charge/discharge cycle over 200 times in a range of 0.1–1.0 C with negligible capacity decrease despite their doubled output cell potentials. This extremely high performance of the bipolar cell is a result of the superior battery performance of the single cell; the bulk all-solid-state cell has a charge/discharge cycle capability of over 1500 although metallic lithium and LiFePO4 are employed as anodes and cathodes, respectively. The use of a quasi-solid electrolyte consisting of ionic liquid and Al2O3 nanoparticles is considered to be responsible for the high ionic conductivity and electrochemical stability at the interface between the electrodes and the electrolyte. This paper presents the effective applications of SiO2, Al2O3, and CeO2 nanoparticles and various Li+ conducting ionic liquids for the quasi-solid electrolytes and reports the best ever known cycle performances. Moreover, the results of this study show that the bipolar stacked three-dimensional device structure would be a smart choice for future LIBs with higher cell energy density and output potential. In addition, our report presents the advantages of adopting a three-dimensional cell design based on the solid-state electrolytes, which is of particular interest in energy-device engineering for mobile applications. PMID:25124398
Nonparametric Bayesian clustering to detect bipolar methylated genomic loci.
Wu, Xiaowei; Sun, Ming-An; Zhu, Hongxiao; Xie, Hehuang
2015-01-16
With recent development in sequencing technology, a large number of genome-wide DNA methylation studies have generated massive amounts of bisulfite sequencing data. The analysis of DNA methylation patterns helps researchers understand epigenetic regulatory mechanisms. Highly variable methylation patterns reflect stochastic fluctuations in DNA methylation, whereas well-structured methylation patterns imply deterministic methylation events. Among these methylation patterns, bipolar patterns are important as they may originate from allele-specific methylation (ASM) or cell-specific methylation (CSM). Utilizing nonparametric Bayesian clustering followed by hypothesis testing, we have developed a novel statistical approach to identify bipolar methylated genomic regions in bisulfite sequencing data. Simulation studies demonstrate that the proposed method achieves good performance in terms of specificity and sensitivity. We used the method to analyze data from mouse brain and human blood methylomes. The bipolar methylated segments detected are found highly consistent with the differentially methylated regions identified by using purified cell subsets. Bipolar DNA methylation often indicates epigenetic heterogeneity caused by ASM or CSM. With allele-specific events filtered out or appropriately taken into account, our proposed approach sheds light on the identification of cell-specific genes/pathways under strong epigenetic control in a heterogeneous cell population.
Zhi, Jinghui; Zhang, Li-Zhi
2017-08-30
This study reported a simple fabrication method for a durable superhydrophobic surface. The superhydrophobic top layer of the durable superhydrophobic surface was connected intensely to the substrate through a middle connecting layer. Glycidoxypropyltrimethoxysilane (KH-560) after hydrolysis was used to obtain a hydrophilic middle connecting layer. It could be adhered to the hydrophilic substrate by covalent bonds. Ring-open reaction with octadecylamine let the KH-560 middle layer form a net-like structure. The net-like sturcture would then encompass and station the silica particles that were used to form the coarse micro structures, intensely to increase the durability. The top hydrophobic layer with nano-structures was formed on the KH-560 middle layer. It was obtained by a bipolar nano-silica solution modified by hexamethyldisilazane (HMDS). This layer was connected to the middle layer intensely by the polar Si hydroxy groups, while the non-polar methyl groups on the surface, accompanied by the micro and nano structures, made the surface rather hydrophobic. The covalently interfacial interactions between the substrate and the middle layer, and between the middle layer and the top layer, strengthened the durability of the superhydrophobic surface. The abrasion test results showed that the superhydrophobic surface could bear 180 abrasion cycles on 1200 CW sandpaper under 2 kPa applied pressure.
Henry, M; Porcher, C; Julé, Y
1998-06-10
The aim of the present study was to describe the deep muscular plexus of the pig duodenum and to characterize its cellular components. Numerous nerve varicosities have been detected in the deep muscular plexus using anti-synaptophysin antibodies. Nerve fibres were also detected here in the outer circular muscle layer, whereas no nerve fibres were observed in the inner circular muscle layer. In the deep muscular plexus, nerve fibres projected to interstitial cells which were characterized at the ultrastructural level. The interstitial cells were of two kinds: the interstitial fibroblastic-like cells (FLC) and the interstitial dense cells (IDC), both of which were interposed between nerve fibres and smooth muscle cells. The FLC were characterized by their elongated bipolar shape, the lack of basal lamina, a well-developed endoplasmic reticulum, a Golgi apparatus, and intermediate filaments. They were closely apposed to axon terminals containing small clear synaptic vesicles and/or dense-cored vesicles. They were frequently connected to each other and to smooth muscle cells of the inner and outer circular layer by desmosomes and more rarely by gap junctions. The IDC are myoid-like cells. They had a stellate appearance and were characterized by a dense cell body, numerous caveolae, and a discontinuous basal lamina. The IDC were always closely apposed to nerve fibres and were connected to smooth muscle cells by desmosomes and small gap junctions. The present results show the unique pattern of cellular organization of the deep muscular plexus of the pig small intestine. They suggest that the interstitial cells in the deep muscular plexus are involved in the integration and transmission of nervous inputs from myenteric neurons to the inner and outer circular muscle layers. The clear-cut distinction observed here between the two types of interstitial cells (fibroblastic and myoid-like) suggests that the interstitial cells of each type may also be involved in some other specific activity, which still remains to be determined.
Safari, Roghaiyeh; Tunca, Zeliha; Özerdem, Ayşegül; Ceylan, Deniz; Yalçın, Yaprak; Sakizli, Meral
2017-01-01
Glial cell-derived neurotrophic factor and other neurotrophins have important role in the development of mental disorders. Here, we aimed to assess the effects of Single nucleotide polymorphisms at potentially regulated regions of GDNF on severity and functionality of bipolar disorder and GDNF serum levels in bipolar disorder patients and healthy volunteers. Severity and functionality of bipolar disorder were evaluated using the Clinical Global Impression and Global Assessment of Functioning scales in sixty-six bipolar disorder patients. The GDNF serum levels obtained from bipolar disorder patients and healthy volunteers who had been already reported SNPs information by our group. GAF scales were lower and GDNF serum levels were higher in Bipolar disorder patients with T/A genotype at 5:37812784 and 5:37812782 compared to patients with T/T genotype. There were significant difference in severity and functionality scores, but not in GDNF serum levels, between patients with G/G and G/A genotype of rs62360370 G > A SNP.rs2075680 C > A and rs79669773 T > C SNPs had no effect on bipolar disorder severity and functionality scores and GDNF serum levels. The results suggest that some SNPs of GDNF have potential association with severity and functionality of bipolar disorder. In addition, except two SNPs, none of GDNF SNPs had association with GDNF serum levels.
RdgB2 is required for dim-light input into intrinsically photosensitive retinal ganglion cells.
Walker, Marquis T; Rupp, Alan; Elsaesser, Rebecca; Güler, Ali D; Sheng, Wenlong; Weng, Shijun; Berson, David M; Hattar, Samer; Montell, Craig
2015-10-15
A subset of retinal ganglion cells is intrinsically photosensitive (ipRGCs) and contributes directly to the pupillary light reflex and circadian photoentrainment under bright-light conditions. ipRGCs are also indirectly activated by light through cellular circuits initiated in rods and cones. A mammalian homologue (RdgB2) of a phosphoinositide transfer/exchange protein that functions in Drosophila phototransduction is expressed in the retinal ganglion cell layer. This raised the possibility that RdgB2 might function in the intrinsic light response in ipRGCs, which depends on a cascade reminiscent of Drosophila phototransduction. Here we found that under high light intensities, RdgB2(-/-) mutant mice showed normal pupillary light responses and circadian photoentrainment. Consistent with this behavioral phenotype, the intrinsic light responses of ipRGCs in RdgB2(-/-) were indistinguishable from wild-type. In contrast, under low-light conditions, RdgB2(-/-) mutants displayed defects in both circadian photoentrainment and the pupillary light response. The RdgB2 protein was not expressed in ipRGCs but was in GABAergic amacrine cells, which provided inhibitory feedback onto bipolar cells. We propose that RdgB2 is required in a cellular circuit that transduces light input from rods to bipolar cells that are coupled to GABAergic amacrine cells and ultimately to ipRGCs, thereby enabling ipRGCs to respond to dim light. © 2015 Walker et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Design of metallic bipolar plates for PEM fuel cells.
DOT National Transportation Integrated Search
2012-01-01
This project focused on the design and production of metallic bipolar plates for use in PEM fuel cells. Different metals were explored : and stainless steel was found out to be best suited to our purpose. Following the selection of metal, it was calc...
NASA Astrophysics Data System (ADS)
Miguel-Pérez, Verónica; Martínez-Amesti, Ana; Nó, María Luisa; Larrañaga, Aitor; Arriortua, María Isabel
2013-12-01
Spinel oxides with the general formula of (Mn,B)3O4 (B = Co, Fe) were used as barrier materials between the cathode and the metallic interconnect to reduce the rate of cathode degradation by Cr poisoning. The effect of doping at the B position was investigated terms of microstructure and electrical conductivity to determine its behaviour and effectiveness as a protective layer in contact with three metallic materials (Crofer 22 APU, SS430 and Conicro 4023 W 188). The analysis showed that the use of these materials considerably decreased the reactivity and diffusion of Cr between the cathode and the metallic interconnects. The protective layer doped with Fe at the B position exhibited the least amount of reactivity with the interconnector and cathode materials. The worst results were observed for SS430 cells coated with a protective layer perhaps due to their low Cr content. The Crofer 22 APU and Conicro 4023 W 188 samples exhibited very similar conductivity results in the presence of the MnCo1.9Fe0.1O4 protective coating. As a result, these two material combinations are a promising option for use as bipolar plates in SOFC.
Ueno, Akiko; Omori, Yoshihiro; Sugita, Yuko; Watanabe, Satoshi; Chaya, Taro; Kozuka, Takashi; Kon, Tetsuo; Yoshida, Satoyo; Matsushita, Kenji; Kuwahara, Ryusuke; Kajimura, Naoko; Okada, Yasushi; Furukawa, Takahisa
2018-03-27
In the vertebrate retina, cone photoreceptors play crucial roles in photopic vision by transmitting light-evoked signals to ON- and/or OFF-bipolar cells. However, the mechanisms underlying selective synapse formation in the cone photoreceptor pathway remain poorly understood. Here, we found that Lrit1, a leucine-rich transmembrane protein, localizes to the photoreceptor synaptic terminal and regulates the synaptic connection between cone photoreceptors and cone ON-bipolar cells. Lrit1-deficient retinas exhibit an aberrant morphology of cone photoreceptor pedicles, as well as an impairment of signal transmission from cone photoreceptors to cone ON-bipolar cells. Furthermore, we demonstrated that Lrit1 interacts with Frmpd2, a photoreceptor scaffold protein, and with mGluR6, an ON-bipolar cell-specific glutamate receptor. Additionally, Lrit1-null mice showed visual acuity impairments in their optokinetic responses. These results suggest that the Frmpd2-Lrit1-mGluR6 axis regulates selective synapse formation in cone photoreceptors and is essential for normal visual function. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Bipolar resistive switching in room temperature grown disordered vanadium oxide thin-film devices
NASA Astrophysics Data System (ADS)
Wong, Franklin J.; Sriram, Tirunelveli S.; Smith, Brian R.; Ramanathan, Shriram
2013-09-01
We demonstrate bipolar switching with high OFF/ON resistance ratios (>104) in Pt/vanadium oxide/Cu structures deposited entirely at room temperature. The SET (RESET) process occurs when negative (positive) bias is applied to the top Cu electrode. The vanadium oxide (VOx) films are amorphous and close to the vanadium pentoxide stoichiometry. We also investigated Cu/VOx/W structures, reversing the position of the Cu electrode, and found the same polarity dependence with respect to the top and bottom electrodes, which suggests that the bipolar nature is linked to the VOx layer itself. Bipolar switching can be observed at 100 °C, indicating that it not due to a temperature-induced metal-insulator transition of a vanadium dioxide second phase. We discuss how ionic drift can lead to the bipolar electrical behavior of our junctions, similar to those observed in devices based on several other defective oxides. Such low-temperature processed oxide switches could be of relevance to back-end or package integration processing schemes.
Silicon direct bonding approach to high voltage power device (insulated gate bipolar transistors)
NASA Astrophysics Data System (ADS)
Cha, Giho; Kim, Youngchul; Jang, Hyungwoo; Kang, Hyunsoon; Song, Changsub
2001-10-01
Silicon direct bonding technique was successfully applied for the fabrication of high voltage IGBT (Insulated Gate Bipolar Transistor). In this work, 5 inch, p-type CZ wafer for handle wafer and n-type FZ wafer for device wafer were used and bonding the two wafers was performed at reduced pressure (1mmTorr) using a modified vacuum bonding machine. Since the breakdown voltage in high voltage device has been determined by the remained thickness of device layer, grinding and CMP steps should be carefully designed in order to acquire better uniformity of device layer. In order to obtain the higher removal rate and the final better uniformity of device layer, the harmony of the two processes must be considered. We found that the concave type of grinding profile and the optimal thickness of ground wafer was able to reduce the process time of CMP step and also to enhance the final thickness uniformity of device layer up to +/- 1%. Finally, when compared epitaxy layer with SDB wafer, the SDB wafer was found to be more favorable in terms of cost and electrical characteristics.
ERIC Educational Resources Information Center
Lopez Gaxiola, Daniel
2011-01-01
In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi-walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack,…
Ganesan, Anand N; Kuklik, Pawel; Gharaviri, Ali; Brooks, Anthony; Chapman, Darius; Lau, Dennis H; Roberts-Thomson, Kurt C; Sanders, Prashanthan
2014-01-01
Rotors are postulated to maintain cardiac fibrillation. Despite the importance of bipolar electrograms in clinical electrophysiology, few data exist on the properties of bipolar electrograms at rotor sites. The pivot of a spiral wave is characterized by relative uncertainty of wavefront propagation direction compared to the periphery. The bipolar electrograms used in electrophysiology recording encode information on both direction and timing of approaching wavefronts. To test the hypothesis that bipolar electrograms from the pivot of rotors have higher Shannon entropy (ShEn) than electrograms recorded at the periphery due to the spatial dynamics of spiral waves. We studied spiral wave propagation in 2-dimensional sheets constructed using a simple cell automaton (FitzHugh-Nagumo), atrial (Courtemanche-Ramirez-Nattel) and ventricular (Luo-Rudy) myocyte cell models and in a geometric model spiral wave. In each system, bipolar electrogram recordings were simulated, and Shannon entropy maps constructed as a measure of electrogram information content. ShEn was consistently highest in the pivoting region associated with the phase singularity of the spiral wave. This property was consistently preserved across; (i) variation of model system (ii) alterations in bipolar electrode spacing, (iii) alternative bipolar electrode orientation (iv) bipolar electrogram filtering and (v) in the presence of rotor meander. Directional activation plots demonstrated that the origin of high ShEn at the pivot was the directional diversity of wavefront propagation observed in this location. The pivot of the rotor is consistently associated with high Shannon entropy of bipolar electrograms despite differences in action potential model, bipolar electrode spacing, signal filtering and rotor meander. Maximum ShEn is co-located with the pivot for rotors observed in the bipolar electrogram recording mode, and may be an intrinsic property of spiral wave dynamic behaviour.
Mef2d is essential for the maturation and integrity of retinal photoreceptor and bipolar cells.
Omori, Yoshihiro; Kitamura, Tamiki; Yoshida, Satoyo; Kuwahara, Ryusuke; Chaya, Taro; Irie, Shoichi; Furukawa, Takahisa
2015-05-01
Mef2 transcription factors play a crucial role in cardiac and skeletal muscle differentiation. We found that Mef2d is highly expressed in the mouse retina and its loss causes photoreceptor degeneration similar to that observed in human retinitis pigmentosa patients. Electroretinograms (ERGs) were severely impaired in Mef2d-/- mice. Immunohistochemistry showed that photoreceptor and bipolar cell synapse protein levels severely decreased in the Mef2d-/- retina. Expression profiling by microarray analysis showed that Mef2d is required for the expression of various genes in photoreceptor and bipolar cells, including cone arrestin, Guca1b, Pde6h and Cacna1s, which encode outer segment and synapse proteins. We also observed that Mef2d synergistically activates the cone arrestin (Arr3) promoter with Crx, suggesting that functional cooperation between Mef2d and Crx is important for photoreceptor cell gene regulation. Taken together, our results show that Mef2d is essential for photoreceptor and bipolar cell gene expression, either independently or cooperatively with Crx. © 2015 Institution for Protein Research. Genes to Cells published by Wiley Publishing Asia Pty Ltd and the Molecular Biology Society of Japan.
Hannibal, Jens; Christiansen, Anders Tolstrup; Heegaard, Steffen; Fahrenkrug, Jan; Kiilgaard, Jens Folke
2017-06-01
Intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin belong to a heterogenic population of RGCs which regulate the circadian clock, masking behavior, melatonin suppression, the pupillary light reflex, and sleep/wake cycles. The different functions seem to be associated to different subtypes of melanopsin cells. In rodents, subtype classification has associated subtypes to function. In primate and human retina such classification has so far, not been applied. In the present study using antibodies against N- and C-terminal parts of human melanopsin, confocal microscopy and 3D reconstruction of melanopsin immunoreactive (-ir) RGCs, we applied the criteria used in mouse on human melanopsin-ir RGCs. We identified M1, displaced M1, M2, and M4 cells. We found two other subtypes of melanopsin-ir RGCs, which were named "gigantic M1 (GM1)" and "gigantic displaced M1 (GDM1)." Few M3 cells and no M5 subtypes were labeled. Total cell counts from one male and one female retina revealed that the human retina contains 7283 ± 237 melanopsin-ir (0.63-0.75% of the total number of RGCs). The melanopsin subtypes were unevenly distributed. Most significant was the highest density of M4 cells in the nasal retina. We identified input to the melanopsin-ir RGCs from AII amacrine cells and directly from rod bipolar cells via ribbon synapses in the innermost ON layer of the inner plexiform layer (IPL) and from dopaminergic amacrine cells and GABAergic processes in the outermost OFF layer of the IPL. The study characterizes a heterogenic population of human melanopsin-ir RGCs, which most likely are involved in different functions. © 2017 Wiley Periodicals, Inc.
The expression analysis of Sfrs10 and Celf4 during mouse retinal development
Karunakaran, Devi Krishna Priya; Congdon, Sean; Guerrette, Thomas; Banday, Abdul Rouf; Lemoine, Christopher; Chhaya, Nisarg; Kanadia, Rahul
2013-01-01
Processing of mRNAs including, alternative splicing (AS), mRNA transport and translation regulation are crucial to eukaryotic gene expression. For example, >90% of the gene in the human genome are known to undergo alternative splicing thereby expanding the proteome production capacity of a limited number of genes. Similarly, mRNA export and translation regulation plays a vital role in regulating protein production. Thus, it is important to understand how these RNA binding proteins including alternative splicing factors (ASFs) and mRNA transport and translation factors regulate these processes. Here we report the expression of an ASF, Serine-arginine rich splicing factor 10 (Sfrs10) and a mRNA translation regulation factor, CUGBP, elav like family member 4 (Celf4) in the developing mouse retina. Sfrs10 was expressed throughout postnatal (P) retinal development and was observed progressively in newly differentiating neurons. Immunofluorescence (IF) showed Sfrs10 in retinal ganglion cells (RGCs) at P0, followed by amacrine and bipolar cells, and at P8 it was enriched in red/green cone photoreceptor cells. By P22, Sfrs10 was observed in rod photoreceptors in a peri-nuclear pattern. Like Sfrs10, Celf4 was also observed in the developing retina, but with two distinct retinal isoforms. In situ hybridization (ISH) showed progressive expression of Celf4 in differentiating neurons, which was confirmed by IF that showed a dynamic shift in Celf4 localization. Early in development Celf4 expression was restricted to the nuclei of newly differentiating RGCs and later (E16 onwards) it was observed in the initial segments of RGC axons. Later, during postnatal development, Celf4 was observed in amacrine and bipolar cells, but here it was predominantly cytoplasmic and enriched in the two synaptic layers. Specifically, at P14, Celf4 was observed in the synaptic boutons of rod bipolar cells marked by Pkc-α. Thus, Celf4 might be regulating AS early in development besides its known role of regulating mRNA localization/translation. In all, our data suggests an important role for AS and mRNA localization/translation in retinal neuron differentiation. PMID:23932931
Physiological and morphological characterization of ganglion cells in the salamander retina
Wang, Jing; Jacoby, Roy; Wu, Samuel M.
2016-01-01
Retinal ganglion cells (RGCs) integrate visual information from the retina and transmit collective signals to the brain. A systematic investigation of functional and morphological characteristics of various types of RGCs is important to comprehensively understand how the visual system encodes and transmits information via various RGC pathways. This study evaluated both physiological and morphological properties of 67 RGCs in dark-adapted flat-mounted salamander retina by examining light-evoked cation and chloride current responses via voltage-clamp recordings and visualizing morphology by Lucifer yellow fluorescence with a confocal microscope. Six groups of RGCs were described: asymmetrical ON–OFF RGCs, symmetrical ON RGCs, OFF RGCs, and narrow-, medium- and wide-field ON–OFF RGCs. Dendritic field diameters of RGCs ranged 102–490 µm: narrow field (<200 µm, 31% of RGCs), medium field (200–300 µm, 45%) and wide field (>300 µm, 24%). Dendritic ramification patterns of RGCs agree with the sub-lamina A/B rule. 34% of RGCs were monostratified, 24% bistratified and 42% diffusely stratified. 70% of ON RGCs and OFF RGCs were monostratified. Wide-field RGCs were diffusely stratified. 82% of RGCs generated light-evoked ON–OFF responses, while 11% generated ON responses and 7% OFF responses. Response sensitivity analysis suggested that some RGCs obtained separated rod/cone bipolar cell inputs whereas others obtained mixed bipolar cell inputs. 25% of neurons in the RGC layer were displaced amacrine cells. Although more types may be defined by more refined classification criteria, this report is to incorporate more physiological properties into RGC classification. PMID:26731645
Lateral interactions in the outer retina
Thoreson, Wallace B.; Mangel, Stuart C.
2012-01-01
Lateral interactions in the outer retina, particularly negative feedback from horizontal cells to cones and direct feed-forward input from horizontal cells to bipolar cells, play a number of important roles in early visual processing, such as generating center-surround receptive fields that enhance spatial discrimination. These circuits may also contribute to post-receptoral light adaptation and the generation of color opponency. In this review, we examine the contributions of horizontal cell feedback and feed-forward pathways to early visual processing. We begin by reviewing the properties of bipolar cell receptive fields, especially with respect to modulation of the bipolar receptive field surround by the ambient light level and to the contribution of horizontal cells to the surround. We then review evidence for and against three proposed mechanisms for negative feedback from horizontal cells to cones: 1) GABA release by horizontal cells, 2) ephaptic modulation of the cone pedicle membrane potential generated by currents flowing through hemigap junctions in horizontal cell dendrites, and 3) modulation of cone calcium currents (ICa) by changes in synaptic cleft proton levels. We also consider evidence for the presence of direct horizontal cell feed-forward input to bipolar cells and discuss a possible role for GABA at this synapse. We summarize proposed functions of horizontal cell feedback and feed-forward pathways. Finally, we examine the mechanisms and functions of two other forms of lateral interaction in the outer retina: negative feedback from horizontal cells to rods and positive feedback from horizontal cells to cones. PMID:22580106
Ueno, Shinji; Nakanishi, Ayami; Nishi, Kayo; Suzuki, Shiro; Terasaki, Hiroko
2015-02-01
To report a patient with cancer-associated retinopathy and retinal ON-bipolar cell dysfunction who had a resolution of the electroretinograms (ERGs) after a resection of an ovarian cancer and chemotherapy. A 71-year-old Japanese female patient visited us complaining of night blindness and photopsia in both eyes for 6 months. Her visual acuity was 20/20 in both eyes, and fundus examination, fluorescence angiography, and optical coherence tomography showed no abnormalities in both eyes. The rod responses of the ERGs were absent and bright-flash ERGs were electronegative. The ON responses of the focal macular ERGs and full-field long-flash ERGs were absent. These ERG findings indicate an ON-bipolar cell dysfunction. A general physical examination revealed the presence of ovarian cancer. After resection of the ovarian cancer and adjuvant chemotherapy, the ERGs of the left eye completely recovered within 2 years and those of right eye recovered subsequently. The autoantibody against transient receptor potential melastatin 1 (TRPM1) was not detected in the serum. Our case demonstrates that retinal ON-bipolar dysfunction can be caused by ovarian cancer. Our case indicates that some autoantibodies against other than TRPM1 might cause transient dysfunction of retinal ON-bipolar cells.
Electromechanical displacement of piezoelectric-electrostrictive monolithic bilayer composites
NASA Astrophysics Data System (ADS)
Ngernchuklin, P.; Akdoǧan, E. K.; Safari, A.; Jadidian, B.
2009-02-01
We examine the electromechanical displacement of piezoelectric-electrostrictive monolithic bilayer composites with various piezoelectric volume percentage obtained by cosintering piezoelectric 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 and electrostrictive 0.9Pb(Mg1/3Nb2/.3)O3-0.1PbTiO3 under unipolar and bipolar electric field excitation up to 10 kV/cm experimentally. It is shown that the effective d33 of the composites is limited by the electrostrictive layer, which acts as a capacitor in series to the piezoelectric layer, causing incomplete poling. We show that by controlling the volume content of the piezoelectric layer and constraining it with an electrostrictor, substantial strain amplification (15 μm for bipolar excitation) can be achieved while inducing asymmetry to the displacement with respect to the polarity of the applied field, which we discuss in the context of symmetry superposition.
IPLaminator: an ImageJ plugin for automated binning and quantification of retinal lamination.
Li, Shuai; Woodfin, Michael; Long, Seth S; Fuerst, Peter G
2016-01-16
Information in the brain is often segregated into spatially organized layers that reflect the function of the embedded circuits. This is perhaps best exemplified in the layering, or lamination, of the retinal inner plexiform layer (IPL). The neurites of the retinal ganglion, amacrine and bipolar cell subtypes that form synapses in the IPL are precisely organized in highly refined strata within the IPL. Studies focused on developmental organization and cell morphology often use this layered stratification to characterize cells and identify the function of genes in development of the retina. A current limitation to such analysis is the lack of standardized tools to quantitatively analyze this complex structure. Most previous work on neuron stratification in the IPL is qualitative and descriptive. In this study we report the development of an intuitive platform to rapidly and reproducibly assay IPL lamination. The novel ImageJ based software plugin we developed: IPLaminator, rapidly analyzes neurite stratification patterns in the retina and other neural tissues. A range of user options allows researchers to bin IPL stratification based on fixed points, such as the neurites of cholinergic amacrine cells, or to define a number of bins into which the IPL will be divided. Options to analyze tissues such as cortex were also added. Statistical analysis of the output then allows a quantitative value to be assigned to differences in laminar patterning observed in different models, genotypes or across developmental time. IPLaminator is an easy to use software application that will greatly speed and standardize quantification of neuron organization.
2017 Bipolar Plate Workshop Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopasz, John P.; Benjamin, Thomas G.; Schenck, Deanna
The Bipolar Plate (BP) Workshop was held at USCAR1 in Southfield, Michigan on February 14, 2017 and included 63 participants from industry, government agencies, universities, and national laboratories with expertise in the relevant fields. The objective of the workshop was to identify research and development (R&D) needs, in particular early-stage R&D, for bipolar plates for polymer electrolyte membrane (PEM) fuel cells for transportation applications. The focus of the workshop was on materials, manufacturing, and design aspects of bipolar plates with the goal of meeting DOE’s 2020 bipolar plate targets. Of special interest was the cost target of ≤$3/kW for themore » bipolar plate.« less
Reduced Neurite Density in Neuronal Cell Cultures Exposed to Serum of Patients with Bipolar Disorder
Wollenhaupt-Aguiar, Bianca; Pfaffenseller, Bianca; Chagas, Vinicius de Saraiva; Castro, Mauro A A; Passos, Ives Cavalcante; Kauer-Sant’Anna, Márcia; Kapczinski, Flavio
2016-01-01
Background: Increased inflammatory markers and oxidative stress have been reported in serum among patients with bipolar disorder (BD). The aim of this study is to assess whether biochemical changes in the serum of patients induces neurotoxicity in neuronal cell cultures. Methods: We challenged the retinoic acid-differentiated human neuroblastoma SH-SY5Y cells with the serum of BD patients at early and late stages of illness and assessed neurite density and cell viability as neurotoxic endpoints. Results: Decreased neurite density was found in neurons treated with the serum of patients, mostly patients at late stages of illness. Also, neurons challenged with the serum of late-stage patients showed a significant decrease in cell viability. Conclusions: Our findings showed that the serum of patients with bipolar disorder induced a decrease in neurite density and cell viability in neuronal cultures. PMID:27207915
SHIELDS, VONNIE D.C.; HILDEBRAND, JOHN G.
2008-01-01
The antennal flagellum of female Manduca sexta bears eight sensillum types: two trichoid, two basiconic, one auriculate, two coeloconic, and one styliform complex sensilla. The first type of trichoid sensillum averages 34 μm in length and is innervated by two sensory cells. The second type averages 26 μm in length and is innervated by either one or three sensory cells. The first type of basiconic sensillum averages 22 μm in length, while the second type averages 15 μm in length. Both types are innervated by three bipolar sensory cells. The auriculate sensillum averages 4 μm in length and is innervated by two bipolar sensory cells. The coeloconic type-A and type-B both average 2 μm in length. The former type is innervated by five bipolar sensory cells, while the latter type, by three bipolar sensory cells. The styliform complex sensillum occurs singly on each annulus and averages 38-40 μm in length. It is formed by several contiguous sensilla. Each unit is innervated by three bipolar sensory cells. A total of 2,216 sensilla were found on a single annulus (annulus 21) of the flagellum. Electrophysiological responses from type-A trichoid sensilla to a large panel of volatile odorants revealed three different subsets of olfactory receptor cells (ORCs). Two subsets responded strongly to only a narrow range of odorants, while the third responded strongly to a broad range of odorants. Anterograde labeling of ORCs from type-A trichoid sensilla revealed that their axons projected mainly to two large female glomeruli of the antennal lobe. PMID:11754510
Watmuff, Bradley; Liu, Bangyan; Karmacharya, Rakesh
2017-04-01
The recent advent of induced pluripotent stem cells has enabled the study of patient-specific and disease-related neurons in vitro and has facilitated new directions of inquiry into disease mechanisms. With these approaches, we now have the possibility of correlating ex vivo cellular phenotypes with individual patient response to treatment and/or side effects, which makes targeted treatments for schizophrenia and bipolar disorder a distinct prospect in the coming years. Here, we briefly review the current state of stem cell-based models and explore studies that are providing new insights into the disease biology of schizophrenia and bipolar disorder, which are laying the foundations for the development of novel targeted therapies.
Wahle, P; Meyer, G
1989-04-08
The early postnatal development of neurons containing vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine (PHI) has been analyzed in visual areas 17 and 18 of cats aged from postnatal day (P) 0 to adulthood. Neuronal types are established mainly by axonal criteria. Both peptides occur in the same neuronal types and display the same postnatal chronology of appearance. Several cell types are transient, which means that they are present in the cortex only for a limited period of development. According to their chronology of appearance the VIP/PHI-immunoreactive (ir) cell types are grouped into three neuronal populations. The first population comprises six cell types which appear early in postnatal life. The pseudohorsetail cells of layer I possess a vertically descending axon which initially gives rise to recurrent collaterals, then forms a bundle passing layers III to V, and finally, horizontal terminal fibers in layer VI. The neurons differentiate at P 4 and disappear by degeneration around P 30. The neurons with columnar dendritic fields of layers IV/V are characterized by a vertical arrangement of long dendrites ascending or descending parallel to each other, thus forming an up to 600 microns long dendritic column. Their axons always descend and terminate in broad fields in layer VI. The neurons appear at P 7 and are present until P 20. The multipolar neurons of layer VI occur in isolated positions and have broad axonal territories. The neurons differentiate at P 7 and persist into adulthood. Bitufted to multipolar neurons of layers II/III have axons descending as a single fiber to layer VI, where they terminate. The neurons appear at P 12 and persist into adulthood. The four cell types described above issue a vertically oriented fiber architecture in layers II-V and a horizontal terminal plexus in layer VI which is dense during the second, third and fourth week. Concurrent with the disappearance of the two transient types the number of descending axonal bundles and the density of the layer VI plexus is reduced, but the latter is maintained during adulthood by the two persisting cell types. Two further cell types belong to the first population: The transient bipolar cells of layers IV, V, and VI have long dendrites which extend through the entire cortical width. Their axons always descend, leave the gray matter, and apparently terminate in the upper white matter. The neurons differentiate concurrently with the pseudohorsetail cells at P 4, are very frequent during the following weeks, and eventually disappear at P 30.(ABSTRACT TRUNCATED AT 400 WORDS)
Homeostatic plasticity shapes cell-type-specific wiring in the retina
Tien, Nai-Wen; Soto, Florentina; Kerschensteiner, Daniel
2017-01-01
SUMMARY Convergent input from different presynaptic partners shapes the responses of postsynaptic neurons. Whether developing postsynaptic neurons establish connections with each presynaptic partner independently, or balance inputs to attain specific responses is unclear. Retinal ganglion cells (RGCs) receive convergent input from bipolar cell types with different contrast responses and temporal tuning. Here, using optogenetic activation and pharmacogenetic silencing, we found that type 6 bipolar cells (B6) dominate excitatory input to ONα-RGCs. We generated mice in which B6 cells were selectively removed from developing circuits (B6-DTA). In B6-DTA mice, ONα-RGCs adjusted connectivity with other bipolar cells in a cell-type-specific manner. They recruited new partners, increased synapses with some existing partners, and maintained constant input from others. Patch clamp recordings revealed that anatomical rewiring precisely preserved contrast- and temporal frequency response functions of ONα-RGCs, indicating that homeostatic plasticity shapes cell-type-specific wiring in the developing retina to stabilize visual information sent to the brain. PMID:28457596
Ankyrin-G isoform imbalance and interneuronopathy link epilepsy and bipolar disorder.
Lopez, A Y; Wang, X; Xu, M; Maheshwari, A; Curry, D; Lam, S; Adesina, A M; Noebels, J L; Sun, Q-Q; Cooper, E C
2017-10-01
ANK3, encoding the adaptor protein Ankyrin-G (AnkG), has been implicated in bipolar disorder by genome-wide association studies. ANK3 has multiple alternative first exons, and a bipolar disorder-associated ANK3 variant has been shown to reduce the expression of exon 1b. Here we identify mechanisms through which reduced ANK3 exon 1b isoform expression disrupts neuronal excitation-inhibition balance. We find that parvalbumin (PV) interneurons and principal cells differentially express ANK3 first exon subtypes. PV interneurons express only isoforms containing exon 1b, whereas excitatory principal cells express exon 1e alone or both 1e and 1b. In transgenic mice deficient for exon 1b, PV interneurons lack voltage-gated sodium channels at their axonal initial segments and have increased firing thresholds and diminished action potential dynamic range. These mice exhibit an Ank3 gene dosage-dependent phenotype including behavior changes modeling bipolar disorder, epilepsy and sudden death. Thus ANK3's important association with human bipolar susceptibility may arise from imbalance between AnkG function in interneurons and principal cells and resultant excessive circuit sensitivity and output. AnkG isoform imbalance is a novel molecular endophenotype and potential therapeutic target.
Preliminary design of 1 kW bipolar Ni-MH battery for LEO-satellite application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, J.H.; Reisner, D.E.; Klein, M.G.
1996-12-31
Electro Energy, Inc. (EEI) is developing a bipolar nickel-metal hydride rechargeable battery based upon the use of stackable wafer cells. The key to viable bipolar operation has been this unique modular (unitized) approach. The patented unit wafer-cell construct exploits the chemical and thermal properties of a proprietary electrically conductive plastic film. Characteristic of bipolar batteries, current flows across the cell interfaces-perpendicular to the electrode plane. EEI has recently contracted with NASA Lewis Research Center (LeRC) to develop an optimized design 1 kW flightweight battery, for low-earth-orbit (LEO) satellite applications, over a 4-year period with a deliverable flightweight design package. Themore » contract includes an option for EEI to deliver up to three flight quality batteries in an 18-month follow-on program. NASA LeRC has promulgated that the program steps include the design, fabrication, and evaluation of four evolutionary stages of the final battery design which have been designated Preliminary, Improved, Optimized, and Flightweight Design. Initial results from the Preliminary Stage are presented including a 1 kW battery design, thermal design, parameter study, and component development in subscale bipolar batteries.« less
Ankyrin-G isoform imbalance and interneuronopathy link epilepsy and bipolar disorder
Lopez, Angel Y.; Wang, Xinjun; Xu, Mingxuan; Maheshwari, Atul; Curry, Daniel; Lam, Sandi; Adesina, Adekunle M.; Noebels, Jeffrey L.; Sun, Qian-Quan; Cooper, Edward C.
2016-01-01
ANK3, encoding the adaptor protein Ankyrin-G, has been implicated in bipolar disorder by genome wide association studies. ANK3 has multiple alternative first exons, and a bipolar disorder-associated ANK3 variant has been shown to reduce expression of exon 1b. Here we identify mechanisms through which reduced ANK3 exon 1b isoform expression disrupts neuronal excitation-inhibition balance. We find that parvalbumin interneurons and principal cells differentially express ANK3 first exon subtypes. Parvalbumin interneurons express only isoforms containing exon 1b, whereas excitatory principal cells express exon 1e alone, or both 1e and 1b. In transgenic mice deficient for exon 1b, parvalbumin interneurons lack voltage-gated sodium channels at their axonal initial segments and have increased firing thresholds and diminished action potential dynamic range. These mice exhibit an Ank3 gene dosage-dependent phenotype including behavior changes modeling bipolar disorder, epilepsy, and sudden death. Thus, ANK3’s important association with human bipolar susceptibility may arise from imbalance between ankyrin-G function in interneurons and principal cells and resultant excessive circuit sensitivity and output. Ankyrin-G isoform imbalance is a novel molecular endophenotype and potential therapeutic target. PMID:27956739
Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder.
Mertens, Jerome; Wang, Qiu-Wen; Kim, Yongsung; Yu, Diana X; Pham, Son; Yang, Bo; Zheng, Yi; Diffenderfer, Kenneth E; Zhang, Jian; Soltani, Sheila; Eames, Tameji; Schafer, Simon T; Boyer, Leah; Marchetto, Maria C; Nurnberger, John I; Calabrese, Joseph R; Ødegaard, Ketil J; McCarthy, Michael J; Zandi, Peter P; Alda, Martin; Alba, Martin; Nievergelt, Caroline M; Mi, Shuangli; Brennand, Kristen J; Kelsoe, John R; Gage, Fred H; Yao, Jun
2015-11-05
Bipolar disorder is a complex neuropsychiatric disorder that is characterized by intermittent episodes of mania and depression; without treatment, 15% of patients commit suicide. Hence, it has been ranked by the World Health Organization as a top disorder of morbidity and lost productivity. Previous neuropathological studies have revealed a series of alterations in the brains of patients with bipolar disorder or animal models, such as reduced glial cell number in the prefrontal cortex of patients, upregulated activities of the protein kinase A and C pathways and changes in neurotransmission. However, the roles and causation of these changes in bipolar disorder have been too complex to exactly determine the pathology of the disease. Furthermore, although some patients show remarkable improvement with lithium treatment for yet unknown reasons, others are refractory to lithium treatment. Therefore, developing an accurate and powerful biological model for bipolar disorder has been a challenge. The introduction of induced pluripotent stem-cell (iPSC) technology has provided a new approach. Here we have developed an iPSC model for human bipolar disorder and investigated the cellular phenotypes of hippocampal dentate gyrus-like neurons derived from iPSCs of patients with bipolar disorder. Guided by RNA sequencing expression profiling, we have detected mitochondrial abnormalities in young neurons from patients with bipolar disorder by using mitochondrial assays; in addition, using both patch-clamp recording and somatic Ca(2+) imaging, we have observed hyperactive action-potential firing. This hyperexcitability phenotype of young neurons in bipolar disorder was selectively reversed by lithium treatment only in neurons derived from patients who also responded to lithium treatment. Therefore, hyperexcitability is one early endophenotype of bipolar disorder, and our model of iPSCs in this disease might be useful in developing new therapies and drugs aimed at its clinical treatment.
NASA Astrophysics Data System (ADS)
Qiao, Xianfeng; Tao, Youtian; Wang, Qiang; Ma, Dongge; Yang, Chuluo; Wang, Lixiang; Qin, Jingui; Wang, Fosong
2010-08-01
Highly efficient single-layer organic light-emitting diodes with reduced efficiency roll-off are demonstrated by using a bipolar host material of 2,5-bis(2-(9H-carbazol-9-yl)phenyl)-1,3,4-oxadiazole (o-CzOXD) doped with iridium complexes as the emissive layer. For example, the green single-layer device, employing fac-tris(2-phenylpyridine)iridium Ir(ppy)3 as dopant, shows a peak current efficiency of 45.57 cd A-1, corresponding to external quantum efficiency (EQE) of 12.42%, and still exhibits efficiencies of 45.26 cd A-1 and 40.42 cd A-1 at luminance of 1000 and 10 000 cd m-2, respectively. In addition, the yellow and red single-layer devices, with bis(2-(9,9- diethyl-9H-fluoren-2-yl)-1-phenyl-1H-benzoimidazol-N ,C3)iridium(acetylacetonate) (fbi)2Ir(acac) and bis(1-phenylisoquinolinolato-C2,N)iridium(acetylacetonate) (piq)2Ir(acac) as emitter, also show high EQE of 7.04% and 7.28%, respectively. The transport properties of o-CzOXD film are well investigated by current-voltage measurement, from which both hole and electron mobility are determined. It is found that the o-CzOXD shows appealing bipolar transport character, which is favor for the balanced charge distribution in the whole doped zone. More importantly, the multifunctional role of hole trapping and electron transporting of the iridium complex in o-CzOXD further balances the charge carriers and broadens the recombination zone. As a result, the recombination of electrons and holes is significantly improved and the triplet-triplet annihilation and triplet-polaron quenching processes are effectively suppressed, eventually leading to the high efficiency as well as the reduced efficiency roll-off.
Design concepts of high power bipolar rechargeable lithium battery
NASA Technical Reports Server (NTRS)
Shen, David H.; Halpert, Gerald
1993-01-01
The present study shows that current bipolar Li/TiS2 batteries using a 0.38 mm thick TiS2 bipolar plate can yield moderate specific power and also high specific energy battery. The computer design studies project that a 100 V, 10 A h bipolar Li/TiS2 battery can achieve 150 W h/kg, 210 W h/l, and 150 W/kg. The unoptimized experimental bipolar Li/TiS2 batteries (3 cells, 90 mA h) exhibited 47 W h/kg, 90 W h/l, and 140 W/kg. Preliminary results on the cycleability of the bipolar batteries are demonstrated. The results also show that enhanced rate capability can be achieved by using pulse discharge and longer rest period between pulses.
Experimental chloroquine retinopathy.
Matsumura, M; Ohkuma, M; Tsukahara, I
1986-01-01
Chloroquine retinopathy was produced experimentally in the eye of the albino corydoras (one of the tropical fish) by daily administration of chloroquine (0.1 mg per os). The enucleated eyes were examined from the 14th day to 3 months after the beginning of drug administration under light and electron microscopy. The first change of retina was the appearance of membraneous cytoplasmic body (MCB) in the cytoplasm of ganglion, amacrine, bipolar and horizontal cells. MCB might be degenerated lysosome. They showed lamellar figures or crystalline lattice-like structures. Secondarily, these MCB appeared in the inner segments of photoreceptor cells. The outer segments of rod cells disappeared, and then those of cone cells. Although photoreceptor cells were diminished in number in advanced degeneration, the cells of inner nuclear layer and ganglion cells were maintained in number. The presence of MCB dose not mean death of cells. The retinal pigment epithelial cells contained MCB in its cytoplasm only in severe degenerative cases, and did not show other remarkable changes. MCB also appeared in the cytoplasm of pericytes of retinal vessels. Chloroquine is considered to damage directly photoreceptor cells most severely.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, Michael P; Abdelhamid, Mahmoud; Dadheech, G
A manufacturing and single-cell fuel cell performance study of stamped, laser welded, and gas nitrided ferritic stainless steel foils in an advanced automotive bipolar plate assembly design was performed. Two developmental foil compositions were studied: Fee20Cre4V and Fee23Cre4V wt.%. Foils 0.1 mm thick were stamped and then laser welded together to create single bipolar plate assemblies with cooling channels. The plates were then surface treated by pre-oxidation and nitridation in N2e4H2 based gas mixtures using either a conventional furnace or a short-cycle quartz lamp infrared heating system. Single-cell fuel cell testing was performed at 80 C for 500 h atmore » 0.3 A/cm2 using 100% humidification and a 100%/40% humidification cycle that stresses the membrane and enhances release of the fluoride ion and promotes a more corrosive environment for the bipolar plates. Periodic high frequency resistance potential-current scans during the 500 h fuel cell test and posttest analysis of the membrane indicated no resistance increase of the plates and only trace levels of metal ion contamination.« less
Types of neural cells in the spinal ganglia of human embryos and early fetuses.
Olszewska, B; Woźniak, W; Gardner, E; O'Rahilly, R
1979-01-01
Spinal ganglial of human embryos and fetuses ranging in C.-R. length from 15 to 74 mm and in age from 6 1/2 to 11 postovulatory weeks were studied by light and electron microscopy. A sequence of events in differentiation and maturation enabled five types of cells to be distinguished: 1. apolar, undifferentiated neuroblasts are the main cells at 6 1/2 to 7 1/2 weeks; 2. early bipolar neuroblasts (strictly speaking, types 2 to 5 are immature neurons) predominate at the end of the embryonic period proper (8 postovulatory weeks); 3. intermediate bipolar neuroblasts are characteristic of the early fetal period; 4. late bipolar neuroblasts, in which two proceses arise separately from one pole of the cell, appear at about 10 postovulatory weeks; 5. unipolar neuroblasts are found within another week and, by that time, cells of types 1 and 2 are no longer present.
Burkhardt, Dwight A.; Bartoletti, Theodore M.; Thoreson, Wallace B.
2012-01-01
Receptive field organization of cone-driven bipolar cells was investigated by intracellular recording in the intact light-adapted retina of the tiger salamander (Ambystoma tigrinum). Centered spots and concentric annuli of optimum dimensions were used to selectively stimulate the receptive field center and surround with sinusoidal modulations of contrast at 3 Hz. At low contrasts, responses of both the center and surround of both ON and OFF bipolar cells were linear, showing high gain and thus contrast enhancement relative to cones. The contrast/response curves for the fundamental response, measured by a Fast Fourier Transform, reached half maximum amplitude quickly at 13% contrast followed by saturation at high contrasts. The variation of the normalized amplitude of the center and surround responses was remarkably similar, showing linear regression over the entire response range with very high correlations, r2 = 0.97 for both ON and OFF cells. The contrast/response curves of both center and surround for both ON and OFF cells were well fit (r2 = 0.98) by an equation for single-site binding. In about half the cells studied, the nonlinear waveforms of center and surround could be brought into coincidence by scaling and shifting the surround response in time. This implies that a nonlinearity, common to both center and surround, occurs after polarity inversion at the cone feedback synapse. Evidence from paired whole-cell recordings between single cones and OFF bipolar cells suggests that substantial nonlinearity is not due to transmission at the cone synapse but instead arises from intrinsic bipolar cell and network mechanisms. When sinusoidal contrast modulations were applied to the center and surround simultaneously, clear additivity was observed for small responses in both ON and OFF cells, whereas the interaction was strikingly nonadditive for large responses. The contribution of the surround was then greatly reduced, suggesting attenuation at the cone feedback synapse. PMID:21439110
NASA Astrophysics Data System (ADS)
Kolosnitsyn, V. S.; Kuzmina, E. V.; Mochalov, S. E.
2014-04-01
The pulsed method of measuring impedance is described. The cell is galvanostatically stimulated by a bipolar current signal of square shape. The cell response is registered by sampling U+[i], U-[i] with selected period Δt. The impedance spectra are calculated by direct Fourier transform. The internal resistance of the lithium sulphur cell is characteristically minimum in the calculated impedance diagrams in the frequency range of 0.035-5 Hz. It is shown that the lithium sulphur cells have maximum internal resistance at the transient between high and low voltage plateaus of charge and discharge curves. The internal resistance increases significantly during the initial stages of cycling because of the formation of passivation layers at the electrodes. It was found that the internal resistance of the lithium sulphur cell in the same charge state is governed by the way in which it is achieved. This is explained by differences in molar volumes of products generated in the sulphur electrode by electrochemical reaction during charging and discharging.
Myerhoff, Alfred
1984-01-01
The present invention is directed to a novel bipolar cooling plate, fuel cell design and method of assembly of fuel cells. The bipolar cooling plate used in the fuel cell design and method of assembly has discrete opposite edge and means carried by the plate defining a plurality of channels extending along the surface of the plate toward the opposite edges. At least one edge of the channels terminates short of the edge of the plate defining a recess for receiving a fastener.
Gharaviri, Ali; Brooks, Anthony; Chapman, Darius; Lau, Dennis H.; Roberts-Thomson, Kurt C.; Sanders, Prashanthan
2014-01-01
Background Rotors are postulated to maintain cardiac fibrillation. Despite the importance of bipolar electrograms in clinical electrophysiology, few data exist on the properties of bipolar electrograms at rotor sites. The pivot of a spiral wave is characterized by relative uncertainty of wavefront propagation direction compared to the periphery. The bipolar electrograms used in electrophysiology recording encode information on both direction and timing of approaching wavefronts. Objective To test the hypothesis that bipolar electrograms from the pivot of rotors have higher Shannon entropy (ShEn) than electrograms recorded at the periphery due to the spatial dynamics of spiral waves. Methods and Results We studied spiral wave propagation in 2-dimensional sheets constructed using a simple cell automaton (FitzHugh-Nagumo), atrial (Courtemanche-Ramirez-Nattel) and ventricular (Luo-Rudy) myocyte cell models and in a geometric model spiral wave. In each system, bipolar electrogram recordings were simulated, and Shannon entropy maps constructed as a measure of electrogram information content. ShEn was consistently highest in the pivoting region associated with the phase singularity of the spiral wave. This property was consistently preserved across; (i) variation of model system (ii) alterations in bipolar electrode spacing, (iii) alternative bipolar electrode orientation (iv) bipolar electrogram filtering and (v) in the presence of rotor meander. Directional activation plots demonstrated that the origin of high ShEn at the pivot was the directional diversity of wavefront propagation observed in this location. Conclusions The pivot of the rotor is consistently associated with high Shannon entropy of bipolar electrograms despite differences in action potential model, bipolar electrode spacing, signal filtering and rotor meander. Maximum ShEn is co-located with the pivot for rotors observed in the bipolar electrogram recording mode, and may be an intrinsic property of spiral wave dynamic behaviour. PMID:25401331
NASA Astrophysics Data System (ADS)
Roy Chowdhury, Prabudhya; Vikram, Ajit; Phillips, Ryan K.; Hoorfar, Mina
2016-07-01
The gas diffusion layer (GDL) is a thin porous layer sandwiched between a bipolar plate (BPP) and a catalyst coated membrane in a fuel cell. Besides providing passage for water and gas transport from and to the catalyst layer, it is responsible for electron and heat transfer from and to the BPP. In this paper, a method has been developed to measure the GDL bulk thermal conductivity and the contact resistance at the GDL/BPP interface under inhomogeneous compression occurring in an actual fuel cell assembly. Toray carbon paper GDL TGP-H-060 was tested under a range of compression pressure of 0.34 to 1.71 MPa. The results showed that the thermal contact resistance decreases non-linearly (from 3.8 × 10-4 to 1.17 × 10-4 Km2 W-1) with increasing pressure due to increase in microscopic contact area between the GDL and BPP; while the effective bulk thermal conductivity increases (from 0.56 to 1.42 Wm-1 K-1) with increasing the compression pressure. The thermal contact resistance was found to be greater (by a factor of 1.6-2.8) than the effective bulk thermal resistance for all compression pressure ranges applied here. This measurement technique can be used to identify optimum GDL based on minimum bulk and contact resistances measured under inhomogeneous compression.
Kaneko, A; Saito, T
1983-04-01
Transretinal current pulses flowing from the receptor side to the vitreous side of the retina cause transient release of transmitter from the photoreceptor terminals, and in off-center bipolar cells they evoke transient depolarizations with a brief (less than 1 ms) synaptic delay. Since it is known that the presence of Na+ in the external medium is not essential for this type of transmitter release, we used this procedure to examine the role of [Na+]o in the generation of light-evoked responses (hyperpolarizing to spot illumination in the receptive field center and depolarizing to an annulus in the surround) of this type of bipolar cell. When the cell membrane was steadily depolarized by current injection through the recording microelectrode, the depolarizing response evoked by the transretinal current pulses decreased in amplitude and reversed its polarity at above +45 mV. Conversely, the response amplitude increased when the cell was steadily hyperpolarized. The reversal potential seems to be lowered in low [Na+]o (28 mM). Removal of Na+ from the superfusate hyperpolarized the cell and both the light-evoked and current-evoked responses disappeared. From these observations, it is hypothesized that the hyperpolarizing center response of the off-center bipolar cells is a result of removal of sustained depolarization produced by sodium permeability increase.
Park, Eun-Bee; Jeon, Joo-Yeong; Jeon, Chang-Jin
2018-05-09
A growing number of studies have revealed the functional neuroarchitecture of the microbat retina and suggested that microbats can see using their eyes. To better understand the organization of the microbat retina, quantitative analysis of protein kinase C alpha (PKCα)- and tyrosine hydroxylase (TH)-immunoreactive (IR) cells was conducted on the greater horseshoe bat (Rhinolophus ferrumequinum) retina. As a result, PKCα immunoreactivity was observed in rod bipolar cells, consistent with previous studies on other mammalian retinas. PKCα-IR cell distribution in the inner nuclear layer showed regional differences in density, with the highest density found in the nasal retina. The average density of PKCα-IR cells was 10,487±441 cells/mm2 (mean ± S.D.; n=4), with a total of 43,077±1,843 cells/retina. TH-IR cells in the Rhinolophus ferrumequinum retina could be classified into four types based on soma location and ramification in the inner plexiform layer: conventional amacrine, displaced amacrine, interplexiform, and intercalated cells. The majority of TH-IR cells were conventional amacrine cells. TH-IR cells were nonrandomly distributed at low density over the retina. The average density was 29.7±3.1 cells/mm2 (mean ± S.D.; n=3), with a total of 124.0±11.3 cells/retina. TH-IR processes showed varicosities and formed ring-like structures encircling AII amacrine cells. Our study provides the foundation for understanding the neurochemical architecture of the microbat retina and supports the notion that the eyes do play a role in the visual system of microbats.
Non-volatile magnetic random access memory
NASA Technical Reports Server (NTRS)
Katti, Romney R. (Inventor); Stadler, Henry L. (Inventor); Wu, Jiin-Chuan (Inventor)
1994-01-01
Improvements are made in a non-volatile magnetic random access memory. Such a memory is comprised of an array of unit cells, each having a Hall-effect sensor and a thin-film magnetic element made of material having an in-plane, uniaxial anisotropy and in-plane, bipolar remanent magnetization states. The Hall-effect sensor is made more sensitive by using a 1 m thick molecular beam epitaxy grown InAs layer on a silicon substrate by employing a GaAs/AlGaAs/InAlAs superlattice buffering layer. One improvement avoids current shunting problems of matrix architecture. Another improvement reduces the required magnetizing current for the micromagnets. Another improvement relates to the use of GaAs technology wherein high electron-mobility GaAs MESFETs provide faster switching times. Still another improvement relates to a method for configuring the invention as a three-dimensional random access memory.
Monolithic integration of a GaAlAs buried-heterostructure laser and a bipolar phototransistor
NASA Technical Reports Server (NTRS)
Bar-Chaim, N.; Harder, CH.; Margalit, S.; Yariv, A.; Katz, J.; Ury, I.
1982-01-01
A GaAlAs buried-heterostructure laser has been monolithically integrated with a bipolar phototransistor. The heterojunction transistor was formed by the regrowth of the burying layers of the laser. Typical threshold current values for the lasers were 30 mA. Common-emitter current gains for the phototransistor of 100-400 and light responsitivity of 75 A/W (for wavelengths of 0.82 micron) at collector current levels of 15 mA were obtained.
Oltedal, Leif; Hartveit, Espen
2010-05-01
Presynaptic transmitter release has mostly been studied through measurements of postsynaptic responses, but a few synapses offer direct access to the presynaptic terminal, thereby allowing capacitance measurements of exocytosis. For mammalian rod bipolar cells, synaptic transmission has been investigated in great detail by recording postsynaptic currents in AII amacrine cells. Presynaptic measurements of the dynamics of vesicular cycling have so far been limited to isolated rod bipolar cells in dissociated preparations. Here, we first used computer simulations of compartmental models of morphologically reconstructed rod bipolar cells to adapt the 'Sine + DC' technique for capacitance measurements of exocytosis at axon terminals of intact rod bipolar cells in retinal slices. In subsequent physiological recordings, voltage pulses that triggered presynaptic Ca(2+) influx evoked capacitance increases that were proportional to the pulse duration. With pulse durations 100 ms, the increase saturated at 10 fF, corresponding to the size of a readily releasable pool of vesicles. Pulse durations 400 ms evoked additional capacitance increases, probably reflecting recruitment from additional pools of vesicles. By using Ca(2+) tail current stimuli, we separated Ca(2+) influx from Ca(2+) channel activation kinetics, allowing us to estimate the intrinsic release kinetics of the readily releasable pool, yielding a time constant of 1.1 ms and a maximum release rate of 2-3 vesicles (release site)(1) ms(1). Following exocytosis, we observed endocytosis with time constants ranging from 0.7 to 17 s. Under physiological conditions, it is likely that release will be transient, with the kinetics limited by the activation kinetics of the voltage-gated Ca(2+) channels.
Local bipolar-transistor gain measurement for VLSI devices
NASA Astrophysics Data System (ADS)
Bonnaud, O.; Chante, J. P.
1981-08-01
A method is proposed for measuring the gain of a bipolar transistor region as small as possible. The measurement then allows the evaluation particularly of the effect of the emitter-base junction edge and the technology-process influence of VLSI-technology devices. The technique consists in the generation of charge carriers in the transistor base layer by a focused laser beam in order to bias the device in as small a region as possible. To reduce the size of the conducting area, a transversal reverse base current is forced through the base layer resistance in order to pinch in the emitter current in the illuminated region. Transistor gain is deduced from small signal measurements. A model associated with this technique is developed, and this is in agreement with the first experimental results.
NASA Astrophysics Data System (ADS)
Kim, Minkook; Lee, Dai Gil
2016-05-01
Polymer electrolyte membrane fuel cells (PEMFC) exhibit a wide power range, low operating temperature, high energy density and long life time. These advantages favor PEMFC for applications such as vehicle power sources, portable power, and backup power applications. With the push towards the commercialization of PEMFC, especially for portable power applications, the overall balance of plants (BOPs) of the systems should be minimized. To reduce the mass and complexity of the systems, air-breathing PEMFC stack design with open cathode channel configuration is being developed. However, the open cathode channel configuration incurs hydrogen leakage problem. In this study, the bonding strength of a silicon adhesive between the Nafion membrane and the carbon fiber/epoxy composite bipolar plate was measured. Then, an anode bipolar plate/membrane assembly unit which was bonded with the silicone adhesive was developed to solve the hydrogen leakage problem. The reliability of the anode bipolar plate/membrane assembly unit was estimated under the internal pressure of hydrogen by the FE analysis. Additionally, the gas sealability of the developed air breathing PEMFC unit cell was experimentally measured. Finally, unit cell performance of the developed anode bipolar plate/membrane assembly unit was tested and verified under operating conditions without humidity and temperature control.
Kaun, Thomas D.
1992-01-01
A bipolar battery having a plurality of cells. The bipolar battery includes: a negative electrode; a positive electrode and a separator element disposed between the negative electrode and the positive electrode, the separator element electrically insulating the electrodes from one another; an electrolyte disposed within at least one of the negative electrode, the positive electrode and the separator element; and an electrode containment structure including a cup-like electrode holder.
Parametric and cycle tests of a 40-A-hr bipolar nickel-hydrogen battery
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1986-01-01
A series of tests was performed to characterize battery performance relating to certain operating parameters which included charge current, discharge current, temperature and pressure. The parameters were varied to confirm battery design concepts and to determine optimal operating conditions. Spacecraft power requirements are constantly increasing. Special spacecraft such as the Space Station and platforms will require energy storage systems of 130 and 25 kWh, respectively. The complexity of these high power systems will demand high reliability, and reduced mass and volume. A system that uses batteries for storage will require a cell count in excess of 400 units. These cell units must then be assembled into several batteries with over 100 cells in a series connected string. In an attempt to simplify the construction of conventional cells and batteries, the NASA Lewis Research Center battery systems group initiated work on a nickel-hydrogen battery in a bipolar configuration in early 1981. Features of the battery with this bipolar construction show promise in improving both volumetric and gravimetric energy densities as well as thermal management. Bipolar construction allows cooling in closer proximity to the cell components, thus heat removal can be accomplished at a higher rejection temperature than conventional cell designs. Also, higher current densities are achievable because of low cell impedance. Lower cell impedance is achieved via current flow perpendicular to the electrode face, thus reducing voltage drops in the electrode grid and electrode terminals tabs.
Performance of gas diffusion layer from coconut waste for proton exchange membrane fuel cell
NASA Astrophysics Data System (ADS)
Widodo, H.; Destyorini, F.; Insiyanda, D. R.; Subhan, A.
2017-04-01
The performance of Gas Diffusion Layer (GDL) synthesized from coconut waste. Gas Diffusion Layer (GDL), produced from coconut waste, as a part of Proton Exchange Membrane Fuel Cell (PEMFC) component, has been characterized. In order to know the performance, the commercial products were used as the remaining parts of PEMFC. The proposed GDL possesses 69% porosity for diffusion of Hydrogen fuel and Oxygen, as well as for transporting electron. With the electrical conductivity of 500 mS.cm-1, it also has hydrophobic properties, which is important to avoid the reaction with water, with the contact angle of 139°. The 5 × 5 cm2 GDL paper was co-assembled with the catalyst, Nafion membrane, bipolar plate, current collector, end plate to obtain single Stack PEMFC. The performance was examined by flowing fuel and gas with the flow rate of 500 and 1000 ml.min-1, respectively, and analyse the I-V polarization curve. The measurements were carried out at 30, 35, and 40°C for 5 cycles to ensure the repeatability. The results shows that the current density and the maximum power density reaches 203 mA.cm-2 and 143 mW.cm-2, respectively, with a given voltage 0.6 V, at 40°C.
Carbon materials for enhancing charge transport in the advancements of perovskite solar cells
NASA Astrophysics Data System (ADS)
Hu, Ruiyuan; Chu, Liang; Zhang, Jian; Li, Xing'ao; Huang, Wei
2017-09-01
Organic-inorganic halide perovskite solar cells (PSCs) have become a new favorite in the photovoltaic field, due to the boosted efficiency up to 22.1%. Despite a flow of achievements, there are certain challenges to simultaneously meet high efficiency, large scale, low cost and high stability. Due to the low cost, extensive sources, high electrical conductivity and chemical stability, carbon materials have made undeniable contributions to play positive roles in developing PSCs. Carbon materials not only have the favorable conductivity but also bipolar advantage, which can transfer both electrons and holes. In this review, we will discuss how the carbon materials transfer charge or accelerate charge transport by incorporation in PSCs. Carbon materials can replace transparent conductive oxide layers, and enhance electron transport in electron transport layers. Moreover, carbon materials with continuous structure, especially carbon nanotubes and graphene, can provide direct charge transport channel that make them suitable additives or even substitutes in hole transport layers. Especially, the successful application of carbon materials as counter electrodes makes the devices full-printable, low temperature and high stability. Finally, a brief outlook is provided on the future development of carbon materials for PSCs, which are expected to devote more contributions in the future photovoltaic market.
Retinal profile and structural differences between myopes and emmetropes
NASA Astrophysics Data System (ADS)
Clark, Christopher Anderson
Refractive development has been shown to be influenced by optical defocus in the eye and the interpretation of this signal appears to be localized in the retina. Optical defocus is not uniform across the retina and has been suggested as a potential cause of myopia development. Specifically hyperopic focus, i.e. focusing light behind the retina, may signal the eye to elongate, causing myopia. This non-uniform hyperopic signal appears to be due to the retinal shape. Ultimately, these signals are detected by the retina in an as yet undetermined manner. The purpose of this thesis is to examine the retinal profile using a novel method developed at Indiana University and then to examine retinal structural changes across the retina associated with myopia. Myopes exhibited more prolate retinas than hyperopes/emmetropes using the SD OCT. Using the SD OCT, this profile difference was detectable starting at 5 degrees from the fovea, which was closer than previously reported in the literature. These results agreed significantly with results found from peripheral refraction and peripheral axial length at 10 degrees. Overall, the total retina was thinner for myopes than hyperopes/emmetropes. It was also statistically significantly thinner for the Outer Nuclear Layer (ONL), Inner Nuclear Layer (INL) and Outer Plexiform Layer (OPL) but not for other retinal layers such as the Ganglion Layer. Thinning generally occurred outside of 5 degrees. The SD OCT method provided a nearly 10 fold increase in sensitivity which allowed for detection of profile changes closer to the fovea. The location of the retinal changes may be interesting as the layers that showed significant differences in thickness are also layers that contain cells believed to be associated with refractive development (amacrine, bipolar, and photoreceptor cells.) The reason for the retinal changes cannot be determined with this study, but possible theories include stretch due to axial elongation, neural remodeling due to blur, and/or direct influence on refractive development due to neural cell densities.
Beltran, William A; Cideciyan, Artur V; Lewin, Alfred S; Iwabe, Simone; Khanna, Hemant; Sumaroka, Alexander; Chiodo, Vince A; Fajardo, Diego S; Román, Alejandro J; Deng, Wen-Tao; Swider, Malgorzata; Alemán, Tomas S; Boye, Sanford L; Genini, Sem; Swaroop, Anand; Hauswirth, William W; Jacobson, Samuel G; Aguirre, Gustavo D
2012-02-07
Hereditary retinal blindness is caused by mutations in genes expressed in photoreceptors or retinal pigment epithelium. Gene therapy in mouse and dog models of a primary retinal pigment epithelium disease has already been translated to human clinical trials with encouraging results. Treatment for common primary photoreceptor blindness, however, has not yet moved from proof of concept to the clinic. We evaluated gene augmentation therapy in two blinding canine photoreceptor diseases that model the common X-linked form of retinitis pigmentosa caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene, which encodes a photoreceptor ciliary protein, and provide evidence that the therapy is effective. After subretinal injections of adeno-associated virus-2/5-vectored human RPGR with human IRBP or GRK1 promoters, in vivo imaging showed preserved photoreceptor nuclei and inner/outer segments that were limited to treated areas. Both rod and cone photoreceptor function were greater in treated (three of four) than in control eyes. Histopathology indicated normal photoreceptor structure and reversal of opsin mislocalization in treated areas expressing human RPGR protein in rods and cones. Postreceptoral remodeling was also corrected: there was reversal of bipolar cell dendrite retraction evident with bipolar cell markers and preservation of outer plexiform layer thickness. Efficacy of gene therapy in these large animal models of X-linked retinitis pigmentosa provides a path for translation to human treatment.
Highly conductive composites for fuel cell flow field plates and bipolar plates
Jang, Bor Z; Zhamu, Aruna; Song, Lulu
2014-10-21
This invention provides a fuel cell flow field plate or bipolar plate having flow channels on faces of the plate, comprising an electrically conductive polymer composite. The composite is composed of (A) at least 50% by weight of a conductive filler, comprising at least 5% by weight reinforcement fibers, expanded graphite platelets, graphitic nano-fibers, and/or carbon nano-tubes; (B) polymer matrix material at 1 to 49.9% by weight; and (C) a polymer binder at 0.1 to 10% by weight; wherein the sum of the conductive filler weight %, polymer matrix weight % and polymer binder weight % equals 100% and the bulk electrical conductivity of the flow field or bipolar plate is at least 100 S/cm. The invention also provides a continuous process for cost-effective mass production of the conductive composite-based flow field or bipolar plate.
Weber, Isabell P; Ramos, Ana P; Strzyz, Paulina J; Leung, Louis C; Young, Stephen; Norden, Caren
2014-04-24
The development of complex neuronal tissues like the vertebrate retina requires the tight orchestration of cell proliferation and differentiation. Although the complexity of transcription factors and signaling pathways involved in retinogenesis has been studied extensively, the influence of tissue maturation itself has not yet been systematically explored. Here, we present a quantitative analysis of mitotic events during zebrafish retinogenesis that reveals three types of committed neuronal precursors in addition to the previously known apical progenitors. The identified precursor types present at distinct developmental stages and exhibit different mitotic location (apical versus nonapical), cleavage plane orientation, and morphology. Interestingly, the emergence of nonapically dividing committed bipolar cell precursors can be linked to an increase in apical crowding caused by the developing photoreceptor cell layer. Furthermore, genetic interference with neuronal subset specification induces ectopic divisions of committed precursors, underlining the finding that progressing morphogenesis can effect precursor division position. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Test Results of a Ten Cell Bipolar Nickel-hydrogen Battery
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1984-01-01
A study was initiated to design and evaluate a new design concept for nickel-hydrogen cells. This concept involved constructing a battery in a bipolar stack with cells consisting of a one plate for each nickel and hydrogen electrode. Preliminary designs at the system level of this concept promised improvements in both volumetric and gravimetric energy densities, thermal management, life extension, costs, and peak power capability over more conventional designs. Test results were most encouraging. This preprototype battery, built with less than ideal components and hardware, exceeded expectations. A total of 2000 LEO cycles at 80 percent depth of discharge were accrued. A cycle life goal of 30,000 cycles appears achievable with minor design changes. These improvements include advanced technology nickel electrodes, insulated bipolar plates and specifically designed frames to minimize shunt currents. The discharge rate capability of this design exceeds 25C. At the 10C discharge rate, 80% of the battery capacity can be withdrawn in six minutes. This data shows that the bipolar design is well suited for those applications requiring high peak power pulses.
Requirement for Bhlhb5 in the specification of amacrine and cone bipolar subtypes in mouse retina
Feng, Liang; Xie, Xiaoling; Joshi, Pushkar S.; Yang, Zhiyong; Shibasaki, Koji; Chow, Robert L.; Gan, Lin
2010-01-01
The mammalian retina comprises six major neuronal cell types and one glial type that are further classified into multiple subtypes based on their anatomical and functional differences. Nevertheless, how these subtypes arise remains largely unknown at the molecular level. Here, we demonstrate that the expression of Bhlhb5, a bHLH transcription factor of the Olig family, is tightly associated with the generation of selective GABAergic amacrine and Type 2 OFF-cone bipolar subtypes throughout retinogenesis. Targeted deletion of Bhlhb5 results in a significant reduction in the generation of these selective bipolar and amacrine subtypes. Furthermore, although a Bhlhb5-null mutation has no effect on the expression of bHLH-class retinogenic genes, Bhlhb5 expression overlaps with that of the pan-amacrine factor NeuroD and the expression of Bhlhb5 and NeuroD is negatively regulated by ganglion cell-competence factor Math5. Our results reveal that a bHLH transcription factor cascade is involved in regulating retinal cell differentiation and imply that Bhlhb5 functions downstream of retinogenic factors to specify bipolar and amacrine subtypes. PMID:17092954
Zhang, Tianwei; Lv, Lei; Huang, Yun; Ren, Xiaohui; Shi, Qinghua
2017-01-01
Asbestos is a well-known occupational carcinogen that can cause aneuploidy during the early stages of neoplastic development. To explore the origins of asbestos-induced aneuploidy, we performed long-term live-cell imaging followed by fluorescence in situ hybridization of chromosomes 8 and 12 in human bronchial epithelial (HBEC) and mesothelial (MeT5A) cells. We demonstrate that asbestos induces aneuploidy via binucleated intermediates resulting from cytokinesis failure. On the one hand, asbestos increases chromosome nondisjunction during bipolar divisions of binucleated intermediates and produces near-tetraploidy. On the other hand, asbestos increases multipolar divisions of binucleated intermediates to produce aneuploidy. Surprisingly, chromosomes in asbestos-induced micronucleated cells are not truly lost by the cells, and do not contribute to aneuploid cell formation in either cell type. These results clarify the cellular source of asbestos-induced aneuploidy. In particular, they show the asbestos-induced disruption of bipolar chromosomal segregation in tetraploid cells, thereby demonstrating the causality between binucleated intermediates and aneuploidy evolution, rather than chromosome loss in micronuclei. PMID:28038458
Zhang, Tianwei; Lv, Lei; Huang, Yun; Ren, Xiaohui; Shi, Qinghua
2017-02-14
Asbestos is a well-known occupational carcinogen that can cause aneuploidy during the early stages of neoplastic development. To explore the origins of asbestos-induced aneuploidy, we performed long-term live-cell imaging followed by fluorescence in situ hybridization of chromosomes 8 and 12 in human bronchial epithelial (HBEC) and mesothelial (MeT5A) cells. We demonstrate that asbestos induces aneuploidy via binucleated intermediates resulting from cytokinesis failure. On the one hand, asbestos increases chromosome nondisjunction during bipolar divisions of binucleated intermediates and produces near-tetraploidy. On the other hand, asbestos increases multipolar divisions of binucleated intermediates to produce aneuploidy. Surprisingly, chromosomes in asbestos-induced micronucleated cells are not truly lost by the cells, and do not contribute to aneuploid cell formation in either cell type. These results clarify the cellular source of asbestos-induced aneuploidy. In particular, they show the asbestos-induced disruption of bipolar chromosomal segregation in tetraploid cells, thereby demonstrating the causality between binucleated intermediates and aneuploidy evolution, rather than chromosome loss in micronuclei.
Logotheti, Marianthi; Papadodima, Olga; Venizelos, Nikolaos; Chatziioannou, Aristotelis; Kolisis, Fragiskos
2013-01-01
Schizophrenia affecting almost 1% and bipolar disorder affecting almost 3%–5% of the global population constitute two severe mental disorders. The catecholaminergic and the serotonergic pathways have been proved to play an important role in the development of schizophrenia, bipolar disorder, and other related psychiatric disorders. The aim of the study was to perform and interpret the results of a comparative genomic profiling study in schizophrenic patients as well as in healthy controls and in patients with bipolar disorder and try to relate and integrate our results with an aberrant amino acid transport through cell membranes. In particular we have focused on genes and mechanisms involved in amino acid transport through cell membranes from whole genome expression profiling data. We performed bioinformatic analysis on raw data derived from four different published studies. In two studies postmortem samples from prefrontal cortices, derived from patients with bipolar disorder, schizophrenia, and control subjects, have been used. In another study we used samples from postmortem orbitofrontal cortex of bipolar subjects while the final study was performed based on raw data from a gene expression profiling dataset in the postmortem superior temporal cortex of schizophrenics. The data were downloaded from NCBI's GEO datasets. PMID:23554570
NASA Astrophysics Data System (ADS)
Herden, Susanne; Hirschfeld, Julian A.; Lohri, Cyrill; Perchthaler, Markus; Haase, Stefan
2017-10-01
To improve the performance of proton exchange membrane fuel cells, membrane electrode assemblies (MEAs) with segmented cathode electrodes have been manufactured. Electrodes with a higher and lower ionomer equivalent weight (EW) were used and analyzed using current density and temperature distribution, polarization curve, temperature sweep and electrochemical impedance spectroscopy measurements. These were performed using automotive metallic bipolar plates and operating conditions. Measurement data were used to manufacture an optimized segmented cathode electrode. We were able to show that our results are transferable from a small scale hardware to automotive application and that an ionomer EW segmentation of the cathode leads to performance improvement in a broad spectrum of operating conditions. Furthermore, we confirmed our results by using in-situ electrochemical impedance spectroscopy.
Multiphase transport in polymer electrolyte membrane fuel cells
NASA Astrophysics Data System (ADS)
Gauthier, Eric D.
Polymer electrolyte membrane fuel cells (PEMFCs) enable efficient conversion of fuels to electricity. They have enormous potential due to the high energy density of the fuels they utilize (hydrogen or alcohols). Power density is a major limitation to wide-scale introduction of PEMFCs. Power density in hydrogen fuel cells is limited by accumulation of water in what is termed fuel cell `flooding.' Flooding may occur in either the gas diffusion layer (GDL) or within the flow channels of the bipolar plate. These components comprise the electrodes of the fuel cell and balance transport of reactants/products with electrical conductivity. This thesis explores the role of electrode materials in the fuel cell and examines the fundamental connection between material properties and multiphase transport processes. Water is generated at the cathode catalyst layer. As liquid water accumulates it will utilize the largest pores in the GDL to go from the catalyst layer to the flow channels. Water collects to large pores via lateral transport at the interface between the GDL and catalyst layer. We have shown that water may be collected in these large pores from several centimeters away, suggesting that we could engineer the GDL to control flooding with careful placement and distribution of large flow-directing pores. Once liquid water is in the flow channels it forms slugs that block gas flow. The slugs are pushed along the channel by a pressure gradient that is dependent on the material wettability. The permeable nature of the GDL also plays a major role in slug growth and allowing bypass of gas between adjacent channels. Direct methanol fuel cells (DMFCs) have analogous multiphase flow issues where carbon dioxide bubbles accumulate, `blinding' regions of the fuel cell. This problem is fundamentally similar to water management in hydrogen fuel cells but with a gas/liquid phase inversion. Gas bubbles move laterally through the porous GDL and emerge to form large bubbles within the flow channel. We have compared the role of GDL materials in liquid drop and gas bubble formation and movement within fuel cells.
NASA Astrophysics Data System (ADS)
Masand, Aakash; Borah, Munu; Pathak, Abhishek K.; Dhakate, Sanjay R.
2017-09-01
Minimization of the weight and volume of a hydrogen-based PEM fuel cell stack is an essential area of research for the development and commercialization of PEMFCs for various applications. Graphite-based composite bipolar plates have significant advantages over conventional metallic bipolar plates due to their corrosion resistivity and low cost. On the other hand, expanded graphite is seen to be a potential candidate for facilitating the required electrical, thermal and mechanical properties of bipolar plates with a low density. Therefore, in the present study, the focus is on minimization of the high loading of graphite and optimizes its composition to meet the target properties of bipolar plates as per the USDOE target. Three types of expanded graphite (EG)-phenolic-resin-based composite bipolar plates were developed by partially replacing the expanded graphite content with natural graphite (NG) and carbon black as an additional filler. The three types of composite plate with the reinforcing constituent ratio EG:NG:R (25:25:50) give a bending strength of 49 MPa, a modulus of ~6 GPa, electrical conductivity >100 S cm-1, a shore hardness of 55 and a bulk density of 1.55 g/cc. The 50 wt% loading of resin is sufficient to wet the 50 wt% filler content in the composite plate. This study gives an insight into using hybrid reinforcements in order to achieve the desired properties of bipolar plates.
Yang, Gaoqiang; Mo, Jingke; Kang, Zhenye; ...
2018-02-20
Using additive manufacturing (AM) technology, a fundamental material and structure innovation was proposed to significantly increase the energy efficiency, and to reduce the weight, volume and component quantity of proton exchange membrane electrolyzer cells (PEMECs). Four conventional parts (liquid/gas diffusion layer, bipolar plate, gasket, and current distributor) in a PEMEC were integrated into one multifunctional AM plate without committing to tools or molds for the first time. In addition, since the interfacial contact resistances between those parts were eliminated, the comprehensive in-situ characterizations of AM cells showed that an excellent energy efficiency of up to 86.48% was achieved at 2more » A/cm2 and 80 degrees C, and the hydrogen generation rate was increased by 61.81% compared to the conventional cell. More importantly, the highly complex inner structures of the AM integrated multifunctional plates also exhibit the potential to break limitations of conventional manufacture methods for hydrogen generation and to open a door for the development of other energy conversion devices, including fuel cells, solar cells and batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Gaoqiang; Mo, Jingke; Kang, Zhenye
Using additive manufacturing (AM) technology, a fundamental material and structure innovation was proposed to significantly increase the energy efficiency, and to reduce the weight, volume and component quantity of proton exchange membrane electrolyzer cells (PEMECs). Four conventional parts (liquid/gas diffusion layer, bipolar plate, gasket, and current distributor) in a PEMEC were integrated into one multifunctional AM plate without committing to tools or molds for the first time. In addition, since the interfacial contact resistances between those parts were eliminated, the comprehensive in-situ characterizations of AM cells showed that an excellent energy efficiency of up to 86.48% was achieved at 2more » A/cm2 and 80 degrees C, and the hydrogen generation rate was increased by 61.81% compared to the conventional cell. More importantly, the highly complex inner structures of the AM integrated multifunctional plates also exhibit the potential to break limitations of conventional manufacture methods for hydrogen generation and to open a door for the development of other energy conversion devices, including fuel cells, solar cells and batteries.« less
NASA Astrophysics Data System (ADS)
Xue, Peng; Fu, Guicui
2017-03-01
The dynamic avalanche has a huge impact on the switching robustness of carrier stored trench bipolar transistor (CSTBT). The purpose of this work is to investigate the CSTBT's dynamic avalanche mechanism during clamped inductive turn-off transient. At first, with a Mitsubishi 600 V/150 A CSTBT and a Infineon 600 V/200 A field stop insulated gate bipolar transistor (FS-IGBT) utilized, the clamped inductive turn-off characteristics are obtained by double pulse test. The unclamped inductive switching (UIS) test is also utilized to identify the CSTBT's clamping voltage under dynamic avalanche condition. After the test data analysis, it is found that the CSTBT's dynamic avalanche is abnormal and can be triggered under much looser condition than the conventional buffer layer IGBT. The comparison between the FS-IGBT and CSTBT's experimental results implies that the CSTBT's abnormal dynamic avalanche phenomenon may be induced by the carrier storage (CS) layer. Based on the semiconductor physics, the electric field distribution and dynamic avalanche generation in the depletion region are analyzed. The analysis confirms that the CS layer is the root cause of the CSTBT's abnormal dynamic avalanche mechanism. Moreover, the CSTBT's negative gate capacitance effect is also investigated to clarify the underlying mechanism of the gate voltage bump observed in the test. In the end, the mixed-mode numerical simulation is utilized to reproduce the CSTBT's dynamic avalanche behavior. The simulation results validate the proposed dynamic avalanche mechanisms.
NASA Astrophysics Data System (ADS)
Prakash, Ravi; Kaur, Davinder
2018-05-01
The effect of an additional AlN layer in the Cu/TiN/AlN/Pt stack configuration deposited using sputtering has been investigated. The Cu/TiN/AlN/Pt device shows a tristate resistive switching. Multilevel switching is facilitated by ionic and metallic filament formation, and the nature of the filaments formed is confirmed by performing a resistance vs. temperature measurement. Ohmic behaviour and trap controlled space charge limited current (SCLC) conduction mechanisms are confirmed as dominant conduction mechanism at low resistance state (LRS) and high resistance state (HRS). High resistance ratio (102) corresponding to HRS and LRS, good write/erase endurance (105) and non-volatile long retention (105s) are also observed. Higher thermal conductivity of the AlN layer is the main reasons for the enhancement of resistive switching performance in Cu/TiN/AlN/Pt cell. The above result suggests the feasibility of Cu/TiN/AlN/Pt devices for multilevel nonvolatile ReRAM application.
Immunocytochemical localization of the NMDA-R2A receptor subunit in the cat retina.
Goebel, D J; Aurelia, J L; Tai, Q; Jojich, L; Poosch, M S
1998-10-19
Immunocytochemical studies were performed to determine the distribution and cellular localization of the NMDA-R2A receptor subunit (R2A) in the cat retina. R2A-immunoreactivity (R2A-IR) was noted in all layers of the retina, with specific localizations in the outer segments of red/green and blue cone photoreceptors, B-type horizontal cells, several types of amacrine cells, Müller cells and the majority of cells in the ganglion cell layer. In the inner nuclear layer, 48% of all cells residing in the amacrine cell layer were R2A-IR including a cell resembling the GABAergic A17 amacrine cell. Interestingly, the AII rod amacrine cell was devoid of R2A-IR. Although the localization of the R2A subunit was anticipated in ganglion cells, amacrines and Müller cells, the presence of this receptor subunit to the cells in the outer retina was not expected. Here, both the R2A and the R2B subunits were found to be present in the outer segments of cone photoreceptors and to the tips of rod outer segments. Although the function of these receptor subunits in rod and cone photoreceptors remains to be determined, the fact that both R2A and R2B receptor subunits are localized to cone outer segments suggests a possible alternative pathway for calcium entry into a region where this cation plays such a crucial role in the process of phototransduction. To further classify the cells that display NR2A-IR, we performed dual labeling experiments showing the relationship between R2A-labeled cells with GABA. Results showed that all GABAergic-amacrines and displaced amacrines express the R2A-subunit protein. In addition, approximately 11% of the NR2A-labeled amacrines, did not stain for GABA. These findings support pharmacological data showing that NMDA directly facilitates GABA release in retina and retinal cultures [I.L. Ferreira, C.B. Duarte, P.F. Santos, C.M. Carvalho, A.P. Carvalho, Release of [3H]GABA evoked by glutamate receptor agonist in cultured chick retinal cells: effect of Ca2+, Brain Res. 664 (1994) 252-256; G.D. Zeevalk, W.J. Nicklas, Action of the anti-ischemic agent ifenprodil on N-methyl-d-aspartate and kainate-mediated excitotoxicity, Brain Res. 522 (1990) 135-139; R. Huba, H.D. Hofmann, Transmitter-gated currents of GABAergic amacrine-like cells in chick retinal cultures, Vis. Neurosci. 6 (1991) 303-314; M. Yamashita, R. Huba, H.D. Hofmann, Early in vitro development of voltage- and transmitter-gated currents in GABAergic amacrine cells, Dev. Brain Res. 82 (1994) 95-102; R. Ientile, S. Pedale, V. Picciurro, V. Macaione, C. Fabiano, S. Macaione, Nitric oxide mediates NMDA-evoked [3H]GABA release from chick retina cells, FEBS Lett. 417 (1997) 345-348; R.C. Kubrusly, M.C. deMello, F.G. deMello, Aspartate as a selective NMDA agonist in cultured cells from the avian retina, Neurochem. Intl. 32 (1998) 47-52] or reduction of GABA in vivo [N.N. Osborn, A.J. Herrera, The effect of experimental ischaemia and excitatory amino acid agonist on the GABA and serotonin immunoreactivities in the rabbit retina, Neurosci. 59 (1994) 1071-1081]. Since the majority of GABAergic synapses in the inner retina are onto both rod and cone bipolar axon terminals [R.G. Pourcho, M.T. Owzcarzak, Distribution of GABA immunoreactivity in the cat retina: A light and electron-microscopic study, Vis. Neurosci. 2 (1989) 425-435], we hypothesize that the NMDA-receptor plays a crucial role in providing feedback inhibition onto rod and cone bipolar cells. Copyright 1998 Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Gassara, S.; Abdelkafi, A.; Quémener, D.; Amar, R. Ben; Deratani, A.
2015-07-01
Poly(ether imide) (PEI) ultrafiltration membranes were chemically modified with branched poly(ethyleneimine) to obtain nanofiltration (NF) membrane Cat PEI with a positive charge in the pH range below 9. An oppositely charged polyelectrolyte layer was deposited on the resulting membrane surface by using sodium polystyrene sulfonate (PSSNa) and sodium polyvinyl sulfonate (PVSNa) to prepare a bipolar layered membrane NF Cat PEI_PSS and Cat PEI_PVS having a negatively charged surface and positively charged pores. Cat PEI exhibited good performance to remove multivalent cations (more than 90% of Ca2+) from single salt solutions except in presence of sulfate ions. Adding an anionic polyelectrolyte layer onto the positively charged surface resulted in a significant enhancement of rejection performance even in presence of sulfate anions. Application of the prepared membranes in water softening of natural complex mixtures was successful for the different studied membranes and a large decrease of hardness was obtained. Moreover, Cat PEI_PSS showed a good selectivity for nitrate removal. Fouling experiments were carried out with bovine serum albumin, as model protein foulant. Cat PEI_PSS showed much better fouling resistance than Cat PEI with a quantitative flux recovery ratio.
Active counter electrode in a-SiC electrochemical metallization memory
NASA Astrophysics Data System (ADS)
Morgan, K. A.; Fan, J.; Huang, R.; Zhong, L.; Gowers, R.; Ou, J. Y.; Jiang, L.; De Groot, C. H.
2017-08-01
Cu/amorphous-SiC (a-SiC) electrochemical metallization memory cells have been fabricated with two different counter electrode (CE) materials, W and Au, in order to investigate the role of CEs in a non-oxide semiconductor switching matrix. In a positive bipolar regime with Cu filaments forming and rupturing, the CE influences the OFF state resistance and minimum current compliance. Nevertheless, a similarity in SET kinetics is seen for both CEs, which differs from previously published SiO2 memories, confirming that CE effects are dependent on the switching layer material or type. Both a-SiC memories are able to switch in the negative bipolar regime, indicating Au and W filaments. This confirms that CEs can play an active role in a non-oxide semiconducting switching matrix, such as a-SiC. By comparing both Au and W CEs, this work shows that W is superior in terms of a higher R OFF/R ON ratio, along with the ability to switch at lower current compliances making it a favourable material for future low energy applications. With its CMOS compatibility, a-SiC/W is an excellent choice for future resistive memory applications.
Preparing Fresh Retinal Slices from Adult Zebrafish for Ex Vivo Imaging Experiments.
Giarmarco, Michelle M; Cleghorn, Whitney M; Hurley, James B; Brockerhoff, Susan E
2018-05-09
The retina is a complex tissue that initiates and integrates the first steps of vision. Dysfunction of retinal cells is a hallmark of many blinding diseases, and future therapies hinge on fundamental understandings about how different retinal cells function normally. Gaining such information with biochemical methods has proven difficult because contributions of particular cell types are diminished in the retinal cell milieu. Live retinal imaging can provide a view of numerous biological processes on a subcellular level, thanks to a growing number of genetically encoded fluorescent biosensors. However, this technique has thus far been limited to tadpoles and zebrafish larvae, the outermost retinal layers of isolated retinas, or lower resolution imaging of retinas in live animals. Here we present a method for generating live ex vivo retinal slices from adult zebrafish for live imaging via confocal microscopy. This preparation yields transverse slices with all retinal layers and most cell types visible for performing confocal imaging experiments using perfusion. Transgenic zebrafish expressing fluorescent proteins or biosensors in specific retinal cell types or organelles are used to extract single-cell information from an intact retina. Additionally, retinal slices can be loaded with fluorescent indicator dyes, adding to the method's versatility. This protocol was developed for imaging Ca 2+ within zebrafish cone photoreceptors, but with proper markers it could be adapted to measure Ca 2+ or metabolites in Müller cells, bipolar and horizontal cells, microglia, amacrine cells, or retinal ganglion cells. The retinal pigment epithelium is removed from slices so this method is not suitable for studying that cell type. With practice, it is possible to generate serial slices from one animal for multiple experiments. This adaptable technique provides a powerful tool for answering many questions about retinal cell biology, Ca 2+ , and energy homeostasis.
Requirement of Phosphoinositides Containing Stearic Acid To Control Cell Polarity.
Doignon, François; Laquel, Patricia; Testet, Eric; Tuphile, Karine; Fouillen, Laetitia; Bessoule, Jean-Jacques
2015-12-28
Phosphoinositides (PIPs) are present in very small amounts but are essential for cell signaling, morphogenesis, and polarity. By mass spectrometry, we demonstrated that some PIPs with stearic acyl chains were strongly disturbed in a psi1Δ Saccharomyces cerevisiae yeast strain deficient in the specific incorporation of a stearoyl chain at the sn-1 position of phosphatidylinositol. The absence of PIPs containing stearic acid induced disturbances in intracellular trafficking, although the total amount of PIPs was not diminished. Changes in PIPs also induced alterations in the budding pattern and defects in actin cytoskeleton organization (cables and patches). Moreover, when the PSI1 gene was impaired, a high proportion of cells with bipolar cortical actin patches that occurred concomitantly with the bipolar localization of Cdc42p was specifically found among diploid cells. This bipolar cortical actin phenotype, never previously described, was also detected in a bud9Δ/bud9Δ strain. Very interestingly, overexpression of PSI1 reversed this phenotype. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Harnisch, Falk; Schröder, Uwe; Scholz, Fritz
2008-03-01
A proton exchange (Nafion-117), a cation exchange (Ultrex CMI7000), an anion exchange (Fumasep FAD), and a bipolar (FumasepFBM) membrane have been studied to evaluate the principle suitability of ion exchange membranes as separators between the anode and the cathode compartment of biological fuel cells. The applicability of these membranes is severely affected by the neutral pH, and the usually low ionic strength of the electrolyte solutions. Thus, the ohmic resistance of the monopolar membranes was found to greatly increase at neutral pH and at decreasing electrolyte concentrations. None of the studied membranes can prevent the acidification of the anode and the alkalization of the cathode compartment, which occurs in the course of the fuel cell operation. Bipolar membranes are shown to be least suitable for biofuel cell application since they show the highest polarization without being able to prevent pH splitting between the anode and cathode compartments.
Bipolar plate/diffuser for a proton exchange membrane fuel cell
Besmann, Theodore M.; Burchell, Timothy D.
2001-01-01
A combination bipolar plate/diffuser fuel cell component includes an electrically conducting solid material having: a porous region having a porous surface; and a hermetic region, the hermetic region defining at least a portion of at least one coolant channel, the porous region defining at least a portion of at least one reactant channel, the porous region defining a flow field medium for diffusing the reactant to the porous surface.
Bipolar plate/diffuser for a proton exchange membrane fuel cell
Besmann, Theodore M.; Burchell, Timothy D.
2000-01-01
A combination bipolar plate/diffuser fuel cell component includes an electrically conducting solid material having: a porous region having a porous surface; and a hermetic region, the hermetic region defining at least a portion of at least one coolant channel, the porous region defining at least a portion of at least one reactant channel, the porous region defining a flow field medium for diffusing the reactant to the porous surface.
Electrical coupling of single cardiac rat myocytes to field-effect and bipolar transistors.
Kind, Thomas; Issing, Matthias; Arnold, Rüdiger; Müller, Bernt
2002-12-01
A novel bipolar transistor for extracellular recording the electrical activity of biological cells is presented, and the electrical behavior compared with the field-effect transistor (FET). Electrical coupling is examined between single cells separated from the heart of adults rats (cardiac myocytes) and both types of transistors. To initiate a local extracellular voltage, the cells are periodically stimulated by a patch pipette in voltage clamp and current clamp mode. The local extracellular voltage is measured by the planar integrated electronic sensors: the bipolar and the FET. The small signal transistor currents correspond to the local extracellular voltage. The two types of sensor transistors used here were developed and manufactured in the laboratory of our institute. The manufacturing process and the interfaces between myocytes and transistors are described. The recordings are interpreted by way of simulation based on the point-contact model and the single cardiac myocyte model.
Yang, Gaoqiang; Mo, Jingke; Kang, Zhenye; ...
2017-05-06
Additive manufacturing (AM) technology is capable of fast and low-cost prototyping from complex 3D digital models. To take advantage of this technology, a stainless steel (SS) plate with parallel flow field served as a combination of a cathode bipolar plate and a current distributor; it was fabricated using selective laser melting (SLM) techniques and investigated in a proton exchange membrane electrolyzer cell (PEMEC) in-situ for the first time. The experimental results show that the PEMEC with an AM SS cathode bipolar plate can achieve an excellent performance for hydrogen production for a voltage of 1.779 V and a current densitymore » of 2.0 A/cm 2. The AM SS cathode bipolar plate was also characterized by SEM and EDS, and the results show a uniform elemental distribution across the plate with very limited oxidization. As a result, this research demonstrates that AM method could be a route to aid cost-effective and rapid development of PEMECs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Gaoqiang; Mo, Jingke; Kang, Zhenye
Additive manufacturing (AM) technology is capable of fast and low-cost prototyping from complex 3D digital models. To take advantage of this technology, a stainless steel (SS) plate with parallel flow field served as a combination of a cathode bipolar plate and a current distributor; it was fabricated using selective laser melting (SLM) techniques and investigated in a proton exchange membrane electrolyzer cell (PEMEC) in-situ for the first time. The experimental results show that the PEMEC with an AM SS cathode bipolar plate can achieve an excellent performance for hydrogen production for a voltage of 1.779 V and a current densitymore » of 2.0 A/cm 2. The AM SS cathode bipolar plate was also characterized by SEM and EDS, and the results show a uniform elemental distribution across the plate with very limited oxidization. As a result, this research demonstrates that AM method could be a route to aid cost-effective and rapid development of PEMECs.« less
Development of a large scale bipolar NiH2 battery
NASA Technical Reports Server (NTRS)
Adler, E.; Perez, F.
1983-01-01
The bipolar battery concept, developed in cooperation with NASA, is described in the context of the advantages afforded by near-term IPV and CVP cell technology. The projected performance, development requirements, and a possible approach to bipolar battery design are outlined. Consideration is given to packaging electrodes within a common hydrophobic plastic frame, electrode technology that involves a photochemically etched 0.1 mm thick nickel substrate coated with a 10 mg/sq cm mixture of platinum powder and TFE30, and an electrode design that eliminates the screen and doubles the electrode thickness (from the currently used 0.8 mm) while retaining the active material loading of 1.6-1.8 gm/cu cm. Also covered are thermal management, and electrolyte and oxygen management. It is concluded that a high voltage, high capacity, bipolar NiH2 cell can be configured with proper development for use in large power systems, and that it can provide considerable weight savings.
NASA Astrophysics Data System (ADS)
Jinlong, Lv; Zhuqing, Wang; Tongxiang, Liang; Ken, Suzuki; Hideo, Miura
Surface molybdenum enrichment on 2205 duplex stainless steel was obtained by the ball milling technique. The electrochemical results showed molybdenum enrichment on the surface of 2205 duplex stainless steel improved its corrosion resistance in a typical proton exchange membrane fuel cell environment. This was mainly attributed to higher molybdenum content in the passive film formed on 2205 duplex stainless steel after ball milling. The decreased donor and acceptor concentrations improved significantly the corrosion resistance of surface molybdenum-enriched 2205 duplex stainless steel bipolar plates in the simulated cathodic proton exchange membrane fuel cells environment. In addition, the interfacial contact resistance of the 2205 duplex stainless steel bipolar plates slightly decreased due to surface molybdenum enrichment.
Pleated metal bipolar assembly
Wilson, Mahlon S.; Zawodzinski, Christine
2001-01-01
A thin low-cost bipolar plate for an electrochemical cell is formed from a polymer support plate with first flow channels on a first side of the support plate and second flow channels on a second side of the support plate, where the first flow channels and second flow channels have intersecting locations and have a depth effective to form openings through the support plate at the intersecting locations. A first foil of electrically conductive material is pressed into the first flow channels. A second foil of electrically conductive material pressed into the second flow channels so that electrical contact is made between the first and second foils at the openings through the support plate. A particular application of the bipolar plate is in polymer electrolyte fuel cells.
Regulation of glycogen synthase kinase-3 during bipolar mania treatment.
Li, Xiaohong; Liu, Min; Cai, Zhuoji; Wang, Gang; Li, Xiaohua
2010-11-01
Bipolar disorder is a debilitating psychiatric illness presenting with recurrent mania and depression. The pathophysiology of bipolar disorder is poorly understood, and molecular targets in the treatment of bipolar disorder remain to be identified. Preclinical studies have suggested that glycogen synthase kinase-3 (GSK3) is a potential therapeutic target in bipolar disorder, but evidence of abnormal GSK3 in human bipolar disorder and its response to treatment is still lacking. This study was conducted in acutely ill type I bipolar disorder subjects who were hospitalized for a manic episode. The protein level and the inhibitory serine phosphorylation of GSK3 in peripheral blood mononuclear cells of bipolar manic and healthy control subjects were compared, and the response of GSK3 to antimanic treatment was evaluated. The levels of GSK3α and GSK3β in this group of bipolar manic subjects were higher than healthy controls. Symptom improvement during an eight-week antimanic treatment with lithium, valproate, and atypical antipsychotics was accompanied by a significant increase in the inhibitory serine phosphorylation of GSK3, but not the total level of GSK3, whereas concomitant electroconvulsive therapy treatment during a manic episode appeared to dampen the response of GSK3 to pharmacological treatment. Results of this study suggest that GSK3 can be modified during the treatment of bipolar mania. This finding in human bipolar disorder is in agreement with preclinical data suggesting that inhibition of GSK3 by increasing serine phosphorylation is a response of GSK3 to psychotropics used in bipolar disorder, supporting the notion that GSK3 is a promising molecular target in the pharmacological treatment of bipolar disorder. © 2010 John Wiley and Sons A/S.
The Effect of PKCα on the Light Response of Rod Bipolar Cells in the Mouse Retina
Xiong, Wei-Hong; Pang, Ji-Jie; Pennesi, Mark E.; Duvoisin, Robert M.; Wu, Samuel M.; Morgans, Catherine W.
2015-01-01
Purpose Protein kinase C α (PKCα) is abundantly expressed in rod bipolar cells (RBCs) in the retina, yet the physiological function of PKCα in these cells is not well understood. To elucidate the role of PKCα in visual processing in the eye, we examined the effect of genetic deletion of PKCα on the ERG and on RBC light responses in the mouse. Methods Immunofluorescent labeling was performed on wild-type (WT), TRPM1 knockout, and PKCα knockout (PKC-KO) retina. Scotopic and photopic ERGs were recorded from WT and PKC-KO mice. Light responses of RBCs were measured using whole-cell recordings in retinal slices from WT and PKC-KO mice. Results Protein kinase C alpha expression in RBCs is correlated with the activity state of the cell. Rod bipolar cells dendrites are a major site of PKCα phosphorylation. Electroretinogram recordings indicated that loss of PKCα affects the scotopic b-wave, including a larger peak amplitude, longer implicit time, and broader width of the b-wave. There were no differences in the ERG a- or c-wave between PKCα KO and WT mice, indicating no measurable effect of PKCα in photoreceptors or the RPE. The photopic ERG was unaffected consistent with the lack of detectable PKCα in cone bipolar cells. Whole-cell recordings from RBCs in PKC-KO retinal slices revealed that, compared with WT, RBC light responses in the PKC-KO retina are delayed and of longer duration. Conclusions Protein kinase C alpha plays an important modulatory role in RBCs, regulating both the peak amplitude and temporal properties of the RBC light response in the rod visual pathway. PMID:26230760
Liu, Yao-Nan; Lu, Si-Yao; Yao, Jun
2017-09-01
The etiology of neuropsychiatric disorders, such as schizophrenia and bipolar disorder, usually involves complex combinations of genetic defects/variations and environmental impacts, which hindered, for a long time, research efforts based on animal models and patients' non-neuronal cells or post-mortem tissues. However, the development of human induced pluripotent stem cell (iPSC) technology by the Yamanaka group was immediately applied to establish cell research models for neuronal disorders. Since then, techniques to achieve highly efficient differentiation of different types of neural cells following iPSC modeling have made much progress. The fast-growing iPSC and neural differentiation techniques have brought valuable insights into the pathology and neurobiology of neuropsychiatric disorders. In this article, we first review the application of iPSC technology in modeling neuronal disorders and discuss the progress in the accompanying neural differentiation. Then, we summarize the progress in iPSC-based research that has been accomplished so far regarding schizophrenia and bipolar disorder. © 2017 The Authors. Psychiatry and Clinical Neurosciences © 2017 Japanese Society of Psychiatry and Neurology.
Titanium oxide nonvolatile memory device and its application
NASA Astrophysics Data System (ADS)
Wang, Wei
In recent years, the semiconductor memory industry has seen an ever-increasing demand for nonvolatile memory (NVM), which is fueled by portable consumer electronic applications like the mobile phone and MP3 player. FLASH memory has been the most widely used nonvolatile memories in these systems, and has successfully kept up with CMOS scaling for many generations. However, as FLASH memory faces major scaling challenges beyond 22nm, non-charge-based nonvolatile memories are widely researched as candidates to replace FLASH. Titanium oxide (TiOx) nonvolatile memory device is considered to be a promising choice due to its controllable nonvolatile memory switching, good scalability, compatibility with CMOS processing and potential for 3D stacking. However, several major issues need to be overcome before TiOx NVM device can be adopted in manufacturing. First, there exists a highly undesirable high-voltage stress initiation process (FORMING) before the device can switch between high and low resistance states repeatedly. By analyzing the conductive behaviors of the memory device before and after FORMING, we propose that FORMING involves breaking down an interfacial layer between its Pt electrode and the TiOx thin film, and that FORMING is not needed if the Pt-TiOx interface can be kept clean during fabrication. An in-situ fabrication process is developed for cross-point TiOx NVM device, which enables in-situ deposition of the critical layers of the memory device and thus achieves clean interfaces between Pt electrodes and TiOx film. Testing results show that FORMING is indeed eliminated for memory devices made with the in-situ fabrication process. It verifies the significance of in-situ deposition without vacuum break in the fabrication of TiOx NVM devices. Switching parameters statistics of TiOx NVM devices are studied and compared for unipolar and bipolar switching modes. RESET mechanisms are found to be different for the two switching modes: unipolar switching can be explained by thermal dissolution model, and bipolar switching by local redox reaction model. Since it is generally agreed that the memory switching of TiOx NVM devices is based on conductive filaments, reusability of these conductive filaments becomes an intriguing issue to determine the memory device's endurance. A 1X3 cross-point test structure is built to investigate whether conductive filaments can be reused after RESET. It is found that the conductive filament is destroyed during unipolar switching, while can be reused during bipolar switching. The result is a good indication that bipolar switching should have better endurance than unipolar switching. Finally a novel application of the two-terminal resistive switching NVM devices is demonstrated. To reduce SRAM leakage power, we propose a nonvolatile SRAM cell with two back-up NVM devices. This novel cell offers nonvolatile storage, thus allowing selected blocks of SRAM to be powered down during operation. There is no area penalty in this approach. Only a slight performance penalty is expected.
Advanced nickel-hydrogen cell configuration study
NASA Technical Reports Server (NTRS)
Adler, E.; Perez, F.
1984-01-01
Three nickel hydrogen battery designs, individual pressure vessel (IPV), common pressure vessel (CPV), and a bipolar battery module were studied. Weight, system complexity and cost were compared for a satellite operating in a 6 hour, 5600 nautical mile orbit. The required energy storage is 52 kWh. A 25% improvement in specific energy is observed by employing a bipolar battery versus a battery comprised of hundreds of IPV's. Further weight benefits are realized by the development of light weight technologies in the bipolar design.
Fabrication and Characterization of N-Type Zinc Oxide/P-Type Boron Doped Diamond Heterojunction
NASA Astrophysics Data System (ADS)
Marton, Marián; Mikolášek, Miroslav; Bruncko, Jaroslav; Novotný, Ivan; Ižák, Tibor; Vojs, Marian; Kozak, Halyna; Varga, Marián; Artemenko, Anna; Kromka, Alexander
2015-09-01
Diamond and ZnO are very promising wide-bandgap materials for electronic, photovoltaic and sensor applications because of their excellent electrical, optical, physical and electrochemical properties and biocompatibility. In this contribution we show that the combination of these two materials opens up the potential for fabrication of bipolar heterojunctions. Semiconducting boron doped diamond (BDD) thin films were grown on Si and UV grade silica glass substrates by HFCVD method with various boron concentration in the gas mixture. Doped zinc oxide (ZnO:Al, ZnO:Ge) thin layers were deposited by diode sputtering and pulsed lased deposition as the second semiconducting layer on the diamond films. The amount of dopants within the films was varied to obtain optimal semiconducting properties to form a bipolar p-n junction. Finally, different ZnO/BDD heterostructures were prepared and analyzed. Raman spectroscopy, SEM, Hall constant and I-V measurements were used to investigate the quality, structural and electrical properties of deposited heterostructures, respectively. I-V measurements of ZnO/BDD diodes show a rectifying ratio of 55 at ±4 V. We found that only very low dopant concentrations for both semiconducting materials enabled us to fabricate a functional p-n junction. Obtained results are promising for fabrication of optically transparent ZnO/BDD bipolar heterojunction.
Expression of ionotropic glutamate receptors, AMPA, kainite and NMDA, in the pigeon retina.
Atoji, Yasuro
2015-07-01
Glutamate is an excitatory neurotransmitter in the vertebrate retina. A previous study found vesicular glutamate transporter 2 (vGluT2) mRNA in the pigeon retina, suggesting that bipolar and ganglion cells are glutamatergic. The present study examined the localization of ionotropic glutamate receptors to identify receptor cells in the pigeon retina using in situ hybridization histochemistry. Nine subunits of AMPA receptor (GluA1, GluA2, GluA3, and GluA4), kainate receptor (GluK1, GluK2, and GluK4), and NMDA receptor (GluN1 and GluN2A) were found to be expressed in the inner nuclear layer (INL) and ganglion cell layers. GluA1, GluA2, GluA3, and GluA4 were primarily expressed in the inner half of INL, and the signal intensity was strong for GluA2, GluA3, and GluA4. GluK1 was intensely expressed in the outer half of INL, whereas GluK2 and GluK4 were mainly localized in the inner half of INL. GluN1 and GluN2A were moderately expressed in the inner half of INL. Horizontal cells expressed GluA3 and GluA4, and ganglion cells expressed all subunits examined. These results suggest that the glutamatergic neurotransmission in the pigeon retina is similar to that in mammals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fine needle aspiration cytology of breast cancer in women aged 70 years and older.
Tse, Gary M K; Somali, Anjali; Chan, Anthony W H; Chaiwun, Benjaporn; Lui, Philip C W; Moriya, Takuya; Hwang, Jacqueline S G; Chan, Norman H L; Tan, Puay Hoon
2008-10-01
Elderly breast cancers are associated with a more favourable biological marker profile and higher proportion of specific subtypes, some of which are of low histological grade. We reviewed the fine needle aspiration cytology (FNAC) to assess the cytological characteristics and any clues to assist in the diagnosis. The aspirates of 140 cancers of various histological types and grades and 39 benign lesions were evaluated for 13 cytological parameters including cellularity of the direct and cytospin smears, epithelial cell clusters, cellular atypism, cytoplasmic features, vacuoles, mitotic figures, presence of myoepithelial cells, single background epithelial cells, the presence of naked nuclei, stromal fragments and necrosis. We found that the presence of background single epithelial cells, atypism of such cells, absence of benign appearing epithelial fragments, nuclear atypism of the epithelial cells within the fragments, presence of moderate amount of cytoplasm of these cells, absence of myoepithelial cells within the cluster, and absence of bipolar nuclei in the background have a strong association with malignancy. Scoring only the presence of single cells in the background, single cell atypism and the absence of bipolar nuclei in a scoring system can differentiate between benign and malignant aspirates with high (>90%) sensitivity and specificity. Assessing the presence of single cells in the background, single cell atypism and the absence of bipolar nuclei facilitates identification of malignancy in the aspiration of breast lesions from elderly patients.
Combinatorial regulation of a Blimp1 (Prdm1) enhancer in the mouse retina
Mills, Taylor S.; Eliseeva, Tatiana; Bersie, Stephanie M.; Randazzo, Grace; Nahreini, Jhenya; Park, Ko Uoon
2017-01-01
The mouse retina comprises seven major cell types that exist in differing proportions. They are generated from multipotent progenitors in a stochastic manner, such that the relative frequency of any given type generated changes over time. The mechanisms determining the proportions of each cell type are only partially understood. Photoreceptors and bipolar interneurons are derived from cells that express Otx2. Within this population, Blimp1 (Prdm1) helps set the balance between photoreceptors and bipolar cells by suppressing bipolar identity in most of the cells. How only a subset of these Otx2+ cells decides to upregulate Blimp1 and adopt photoreceptor fate is unknown. To understand this, we investigated how Blimp1 transcription is regulated. We identified several potential Blimp1 retinal enhancer elements using DNase hypersensitivity sequencing. Only one of the elements recapitulated Blimp1 spatial and temporal expression in cultured explant assays and within the retinas of transgenic mice. Mutagenesis of this retinal Blimp1 enhancer element revealed four discrete sequences that were each required for its activity. These included highly conserved Otx2 and ROR (retinoic acid receptor related orphan receptor) binding sites. The other required sequences do not appear to be controlled by Otx2 or ROR factors, increasing the complexity of the Blimp1 gene regulatory network. Our results show that the intersection of three or more transcription factors is required to correctly regulate the spatial and temporal features of Blimp1 enhancer expression. This explains how Blimp1 expression can diverge from Otx2 and set the balance between photoreceptor and bipolar fates. PMID:28829770
Method of making organic light emitting devices
Shiang, Joseph John [Niskayuna, NY; Janora, Kevin Henry [Schenectady, NY; Parthasarathy, Gautam [Saratoga Springs, NY; Cella, James Anthony [Clifton Park, NY; Chichak, Kelly Scott [Clifton Park, NY
2011-03-22
The present invention provides a method for the preparation of organic light-emitting devices comprising a bilayer structure made by forming a first film layer comprising an electroactive material and an INP precursor material, and exposing the first film layer to a radiation source under an inert atmosphere to generate an interpenetrating network polymer composition comprising the electroactive material. At least one additional layer is disposed on the reacted first film layer to complete the bilayer structure. The bilayer structure is comprised within an organic light-emitting device comprising standard features such as electrodes and optionally one or more additional layers serving as a bipolar emission layer, a hole injection layer, an electron injection layer, an electron transport layer, a hole transport layer, exciton-hole transporting layer, exciton-electron transporting layer, a hole transporting emission layer, or an electron transporting emission layer.
Nickel hydrogen bipolar battery electrode design
NASA Technical Reports Server (NTRS)
Puglisi, V. J.; Russell, P.; Verrier, D.; Hall, A.
1985-01-01
The preferred approach of the NASA development effort in nickel hydrogen battery design utilizes a bipolar plate stacking arrangement to obtain the required voltage-capacity configuration. In a bipolar stack, component designs must take into account not only the typical design considerations such as voltage, capacity and gas management, but also conductivity to the bipolar (i.e., intercell) plate. The nickel and hydrogen electrode development specifically relevant to bipolar cell operation is discussed. Nickel oxide electrodes, having variable type grids and in thicknesses up to .085 inch are being fabricated and characterized to provide a data base. A selection will be made based upon a system level tradeoff. Negative (hydrpogen) electrodes are being screened to select a high performance electrode which can function as a bipolar electrode. Present nickel hydrogen negative electrodes are not capable of conducting current through their cross-section. An electrode was tested which exhibits low charge and discharge polarization voltages and at the same time is conductive. Test data is presented.
Wysokiński, Adam; Szczepocka, Ewa
2016-03-30
There are no studies comparing platelet parameters platelet parameters (platelet count (PLT), mean platelet volume (MPV) and platelet large cell ratio (P-LCR)) between patients with schizophrenia, bipolar disorder and unipolar depression. Therefore, the aim of this study was to determine and compare differences in PLT, MPV and P-LCR in patients with schizophrenia, unipolar depression and bipolar disorder. This was a retrospective, cross-sectional, naturalistic study of 2377 patients (schizophrenia n=1243; unipolar depression n=791; bipolar disorder n=343, including bipolar depression n=259 and mania n=84). There were significant differences for PLT, MPV and P-LCR values between study groups. A significant percentage of patients with bipolar disorder had abnormal (too low or too high) number of platelets. Negative correlation between PLT and age was found in all study groups and positive correlation between age and MPV and P-LCR was found in patients with schizophrenia. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cost and performance prospects for composite bipolar plates in fuel cells and redox flow batteries
NASA Astrophysics Data System (ADS)
Minke, Christine; Hickmann, Thorsten; dos Santos, Antonio R.; Kunz, Ulrich; Turek, Thomas
2016-02-01
Carbon-polymer-composite bipolar plates (BPP) are suitable for fuel cell and flow battery applications. The advantages of both components are combined in a product with high electrical conductivity and good processability in convenient polymer forming processes. In a comprehensive techno-economic analysis of materials and production processes cost factors are quantified. For the first time a technical cost model for BPP is set up with tight integration of material characterization measurements.
Test results of a ten cell bipolar nickel-hydrogen battery
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1983-01-01
A ten cell bipolar nickel hydrogen 6.5 ampere-hour battery demonstrated over 2000 low Earth orbit cycles at an 80 percent depth-of-discharge. Charge/discharge cyclic ampere-hour and watt-hour efficiencies of 88 and 76 percent, respectively, observed. Peak power capability was determined at 1.1 kW. A 10C discharge rate yields 83 percent of the nominal stark capacity to the 1.0 volt cut off in just under 6 minutes.
Composite bipolar plate for electrochemical cells
Wilson, Mahlon S.; Busick, Deanna N.
2001-01-01
A bipolar separator plate for fuel cells consists of a molded mixture of a vinyl ester resin and graphite powder. The plate serves as a current collector and may contain fluid flow fields for the distribution of reactant gases. The material is inexpensive, electrically conductive, lightweight, strong, corrosion resistant, easily mass produced, and relatively impermeable to hydrogen gas. The addition of certain fiber reinforcements and other additives can improve the properties of the composite material without significantly increasing its overall cost.
Cytokinesis-Based Constraints on Polarized Cell Growth in Fission Yeast
Bohnert, K. Adam; Gould, Kathleen L.
2012-01-01
The rod-shaped fission yeast Schizosaccharomyces pombe, which undergoes cycles of monopolar-to-bipolar tip growth, is an attractive organism for studying cell-cycle regulation of polarity establishment. While previous research has described factors mediating this process from interphase cell tips, we found that division site signaling also impacts the re-establishment of bipolar cell growth in the ensuing cell cycle. Complete loss or targeted disruption of the non-essential cytokinesis protein Fic1 at the division site, but not at interphase cell tips, resulted in many cells failing to grow at new ends created by cell division. This appeared due to faulty disassembly and abnormal persistence of the cell division machinery at new ends of fic1Δ cells. Moreover, additional mutants defective in the final stages of cytokinesis exhibited analogous growth polarity defects, supporting that robust completion of cell division contributes to new end-growth competency. To test this model, we genetically manipulated S. pombe cells to undergo new end take-off immediately after cell division. Intriguingly, such cells elongated constitutively at new ends unless cytokinesis was perturbed. Thus, cell division imposes constraints that partially override positive controls on growth. We posit that such constraints facilitate invasive fungal growth, as cytokinesis mutants displaying bipolar growth defects formed numerous pseudohyphae. Collectively, these data highlight a role for previous cell cycles in defining a cell's capacity to polarize at specific sites, and they additionally provide insight into how a unicellular yeast can transition into a quasi-multicellular state. PMID:23093943
Corrado, Alisa C; Walsh, John P
2016-02-10
Close to 3% of the world's population suffers from bipolar disease (I and II). Of this 3%, bipolar disease affects largely women (∼ 3 : 2 compared with men). The median age of diagnosis is 25 in women and even lower in men. A diagnosis of bipolar disease is an expensive psychiatric diagnosis, costing patients more than twice as much money as a diagnosis of unipolar depression. Bipolar I is characterized by one or more manic or mixed episodes, with both mania and depression occurring each day for at least 1 week, whereas bipolar II is characterized by one or more major depressive episode and at least one episode of hypomania. Bipolar I is the more severe diagnosis. A wide range of medications are available to help patients maintain a healthy lifestyle, including lithium, antidepressants, and anticonvulsants. Improved methods for identifying bipolar disease, including a more structured approach and a more complete use of medical records, have increased the rate of diagnosis, especially in children, which underscores the need for innovation in development and in practice of new treatment options for treating bipolar disease. Although lithium has been the 'gold standard' for treating bipolar disorder for decades, new research into other forms of treatment has shown anticonvulsants to be a particularly useful therapy for treating bipolar disease. Anticonvulsants have remarkable mood-stabilization abilities and they do not lead to serious side effects, which increases the tolerability, and consequently, patient adherence to this form of treatment. Recent studies have shown that anticonvulsants improve behavior in bipolar disease by modulating the balance of excitatory and inhibitory synapses through a number of complementary molecular cascades that affect gene expression and cell survival.
Morphological Diversity of the Rod Spherule: A Study of Serially Reconstructed Electron Micrographs
Li, Shuai; Mitchell, Joe; Briggs, Deidrie J.; Young, Jaime K.; Long, Samuel S.; Fuerst, Peter G.
2016-01-01
Purpose Rod spherules are the site of the first synaptic contact in the retina’s rod pathway, linking rods to horizontal and bipolar cells. Rod spherules have been described and characterized through electron micrograph (EM) and other studies, but their morphological diversity related to retinal circuitry and their intracellular structures have not been quantified. Most rod spherules are connected to their soma by an axon, but spherules of rods on the surface of the Mus musculus outer plexiform layer often lack an axon and have a spherule structure that is morphologically distinct from rod spherules connected to their soma by an axon. Retraction of the rod axon and spherule is often observed in disease processes and aging, and the retracted rod spherule superficially resembles rod spherules lacking an axon. We hypothesized that retracted spherules take on an axonless spherule morphology, which may be easier to maintain in a diseased state. To test our hypothesis, we quantified the spatial organization and subcellular structures of rod spherules with and without axons. We then compared them to the retracted spherules in a disease model, mice that overexpress Dscam (Down syndrome cell adhesion molecule), to gain a better understanding of the rod synapse in health and disease. Methods We reconstructed serial EM images of wild type and DscamGoF (gain of function) rod spherules at a resolution of 7 nm in the X-Y axis and 60 nm in the Z axis. Rod spherules with and without axons, and retracted spherules in the DscamGoF retina, were reconstructed. The rod spherule intracellular organelles, the invaginating dendrites of rod bipolar cells and horizontal cell axon tips were also reconstructed for statistical analysis. Results Stereotypical rod (R1) spherules occupy the outer two-thirds of the outer plexiform layer (OPL), where they present as spherical terminals with large mitochondria. This spherule group is highly uniform and composed more than 90% of the rod spherule population. Rod spherules lacking an axon (R2) were also described and characterized. This rod spherule group consists of a specific spatial organization that is strictly located at the apical OPL-facing layer of the Outer Nuclear Layer (ONL). The R2 spherule displays a large bowl-shaped synaptic terminal that hugs the rod soma. Retracted spherules in the DscamGoF retina were also reconstructed to test if they are structurally similar to R2 spherules. The misplaced rod spherules in DscamGoF have a gross morphology that is similar to R2 spherules but have significant disruption in internal synapse organization. Conclusion We described a morphological diversity within Mus musculus rod spherules. This diversity is correlated with rod location in the ONL and contributes to the intracellular differences within spherules. Analysis of the DscamGoF retina indicated that their R2 spherules are not significantly different than wild type R2 spherules, but that their retracted rod spherules have abnormal synaptic organization. PMID:26930660
Morphological Diversity of the Rod Spherule: A Study of Serially Reconstructed Electron Micrographs.
Li, Shuai; Mitchell, Joe; Briggs, Deidrie J; Young, Jaime K; Long, Samuel S; Fuerst, Peter G
2016-01-01
Rod spherules are the site of the first synaptic contact in the retina's rod pathway, linking rods to horizontal and bipolar cells. Rod spherules have been described and characterized through electron micrograph (EM) and other studies, but their morphological diversity related to retinal circuitry and their intracellular structures have not been quantified. Most rod spherules are connected to their soma by an axon, but spherules of rods on the surface of the Mus musculus outer plexiform layer often lack an axon and have a spherule structure that is morphologically distinct from rod spherules connected to their soma by an axon. Retraction of the rod axon and spherule is often observed in disease processes and aging, and the retracted rod spherule superficially resembles rod spherules lacking an axon. We hypothesized that retracted spherules take on an axonless spherule morphology, which may be easier to maintain in a diseased state. To test our hypothesis, we quantified the spatial organization and subcellular structures of rod spherules with and without axons. We then compared them to the retracted spherules in a disease model, mice that overexpress Dscam (Down syndrome cell adhesion molecule), to gain a better understanding of the rod synapse in health and disease. We reconstructed serial EM images of wild type and DscamGoF (gain of function) rod spherules at a resolution of 7 nm in the X-Y axis and 60 nm in the Z axis. Rod spherules with and without axons, and retracted spherules in the DscamGoF retina, were reconstructed. The rod spherule intracellular organelles, the invaginating dendrites of rod bipolar cells and horizontal cell axon tips were also reconstructed for statistical analysis. Stereotypical rod (R1) spherules occupy the outer two-thirds of the outer plexiform layer (OPL), where they present as spherical terminals with large mitochondria. This spherule group is highly uniform and composed more than 90% of the rod spherule population. Rod spherules lacking an axon (R2) were also described and characterized. This rod spherule group consists of a specific spatial organization that is strictly located at the apical OPL-facing layer of the Outer Nuclear Layer (ONL). The R2 spherule displays a large bowl-shaped synaptic terminal that hugs the rod soma. Retracted spherules in the DscamGoF retina were also reconstructed to test if they are structurally similar to R2 spherules. The misplaced rod spherules in DscamGoF have a gross morphology that is similar to R2 spherules but have significant disruption in internal synapse organization. We described a morphological diversity within Mus musculus rod spherules. This diversity is correlated with rod location in the ONL and contributes to the intracellular differences within spherules. Analysis of the DscamGoF retina indicated that their R2 spherules are not significantly different than wild type R2 spherules, but that their retracted rod spherules have abnormal synaptic organization.
NASA Astrophysics Data System (ADS)
Wang, Hsiang-Cheng; Sheu, Hung-Hua; Lu, Chen-En; Hou, Kung-Hsu; Ger, Ming-Der
2015-10-01
In this study, Cr-C-coated bipolar plates are produced by electroplating on the SS304 plates with a machined flow channel. The resulting plates were tested using potentiodynamic and potentiostatic measurements in simulated PEMFC environments, which show that the bipolar plate coated with Cr-C exhibited good anticorrosion performance. The corrosive current density of the Cr-C coating formed for a plating time of 10 min for 10 h exhibits a low stable value of 1.51 × 10-10 A/cm2 during the potentiostatic test in a 0.5 M H2SO4 + 2 ppm HF solution at 70 °C with an air purge, indicating that the Cr-C coating plated for 10 min is stable in a cathode environment. The interfacial contact resistance (ICR) of the bipolar plate with the Cr-C coating clearly improved, presenting an ICR of 19.52 mΩ cm2 at a pressure of 138 N/cm2. The results from scanning electron microscopy (SEM) and ICR before and after the corrosion tests indicate that the bipolar plate with the Cr-C coating is electrochemically stable. In this study, the maximum power density (212.41 mW/cm2) is obtained at a cell temperature of 80 °C and a gas flow rate of 300 standard cubic centimeters per minute (sccm) when Cr-C coated SS304 bipolar plates were used.
Energy Storage in a fuel cell with bipolar membranes burning acid and hydroxide
NASA Astrophysics Data System (ADS)
Emren, A. T.; Holmstrom, V. J. M.
1983-04-01
A battery is described, in which bipolar membranes are used to split water into acid and hydroxide. The liquids may be stored for an indefinite time, and energy may be recovered at room temperature. It is shown that the liquids are able to store about 400 kJ/litre, which roughly corresponds to pumping water up to an altitude of 40 km. Bipolar membranes of low area resistance have been made and tested. The area resistance appears to have been 2-3 ohm sq cm. A battery containing 7 unit cells has been constructed and tested. The maximum output voltage has been 1.8 V. The cost for enrgy storage is estimated to range from $0.1 to 2.5 per kWh depending on the mode of operation.
NASA Astrophysics Data System (ADS)
Kim, Min-Uk; Kim, Do-Hyang; Han, Seung-hee; Fleury, Eric; Seok, Hyun-Kwang; Cha, Pil-Ryung; Kim, Yu-Chan
2011-04-01
Ni-based amorphous alloys with surface modification by carbon ion implantation are proposed as an alternative bipolar plate material for polymer electrolyte membrane fuel cells (PEMFCs). Both Ni60Nb20Ti10Zr10 alloys with and without carbon ion implantation have corrosion resistance as good as graphite as well as much lower contact resistance than 316L stainless steel in the PEMFC environment. The formation of conductive surface carbide due to carbon ion implantation results in a decrease in the contact resistance to a level comparable to that of graphite. This combination of excellent properties indicates that carbon ion implanted Ni-based amorphous alloys can be potential candidate materials for bipolar plates in PEMFCs.
NASA Astrophysics Data System (ADS)
Sabetian, Parisa; Popovic, Milos R.; Yoo, Paul B.
2017-06-01
Objective. Differential measurement of efferent and afferent peripheral nerve activity offers a promising means of improving the clinical utility of implantable neuroprostheses. The tripolar nerve cuff electrode has historically served as the gold standard for achieving high signal-to-noise ratios (SNRs) of the recordings. However, the symmetrical geometry of this electrode array (i.e. electrically-shorted side contacts) precludes it from measuring electrical signals that can be used to obtain directional information. In this study, we investigated the feasibility of using a bipolar nerve cuff electrode to achieve high-SNR of peripheral nerve activity. Approach. A finite element model was implemented to investigate the effects of electrode design parameters—electrode length, electrode edge length (EEL), and a conductive shielding layer (CSL)—on simulated single fiber action potentials (SFAP) and also artifact noise signals (ANS). Main results. Our model revealed that the EEL was particularly effective in increasing the peak-to-peak amplitude of the SFAP (319%) and reducing the common mode ANS (67%) of the bipolar cuff electrode. By adding a CSL to the bipolar cuff electrode, the SNR was found to be 65.2% greater than that of a conventional tripolar cuff electrode. In vivo experiments in anesthetized rats confirmed that a bipolar cuff electrode can achieve a SNR that is 38% greater than that achieved by a conventional tripolar cuff electrode (p < 0.05). Significance. The current study showed that bipolar nerve cuff electrodes can be designed to achieve SNR levels that are comparable to that of tripolar configuration. Further work is needed to confirm that these bipolar design parameters can be used to record bi-directional neural activity in a physiological setting.
Sabetian, Parisa; Popovic, Milos R; Yoo, Paul B
2017-06-01
Differential measurement of efferent and afferent peripheral nerve activity offers a promising means of improving the clinical utility of implantable neuroprostheses. The tripolar nerve cuff electrode has historically served as the gold standard for achieving high signal-to-noise ratios (SNRs) of the recordings. However, the symmetrical geometry of this electrode array (i.e. electrically-shorted side contacts) precludes it from measuring electrical signals that can be used to obtain directional information. In this study, we investigated the feasibility of using a bipolar nerve cuff electrode to achieve high-SNR of peripheral nerve activity. A finite element model was implemented to investigate the effects of electrode design parameters-electrode length, electrode edge length (EEL), and a conductive shielding layer (CSL)-on simulated single fiber action potentials (SFAP) and also artifact noise signals (ANS). Our model revealed that the EEL was particularly effective in increasing the peak-to-peak amplitude of the SFAP (319%) and reducing the common mode ANS (67%) of the bipolar cuff electrode. By adding a CSL to the bipolar cuff electrode, the SNR was found to be 65.2% greater than that of a conventional tripolar cuff electrode. In vivo experiments in anesthetized rats confirmed that a bipolar cuff electrode can achieve a SNR that is 38% greater than that achieved by a conventional tripolar cuff electrode (p < 0.05). The current study showed that bipolar nerve cuff electrodes can be designed to achieve SNR levels that are comparable to that of tripolar configuration. Further work is needed to confirm that these bipolar design parameters can be used to record bi-directional neural activity in a physiological setting.
Unsplit bipolar pulse forming line
Rhodes, Mark A [Pleasanton, CA
2011-05-24
A bipolar pulse forming transmission line module and system for linear induction accelerators having first, second, third, and fourth planar conductors which form a sequentially arranged interleaved stack having opposing first and second ends, with dielectric layers between the conductors. The first and second planar conductors are connected to each other at the first end, and the first and fourth planar conductors are connected to each other at the second end via a shorting plate. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short at the first end a high voltage from the third planar conductor to the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.
Frelinger, Andrew L; Gerrits, Anja J; Garner, Allen L; Torres, Andrew S; Caiafa, Antonio; Morton, Christine A; Berny-Lang, Michelle A; Carmichael, Sabrina L; Neculaes, V Bogdan; Michelson, Alan D
2016-01-01
Activated autologous platelet-rich plasma (PRP) used in therapeutic wound healing applications is poorly characterized and standardized. Using pulsed electric fields (PEF) to activate platelets may reduce variability and eliminate complications associated with the use of bovine thrombin. We previously reported that exposing PRP to sub-microsecond duration, high electric field (SMHEF) pulses generates a greater number of platelet-derived microparticles, increased expression of prothrombotic platelet surfaces, and differential release of growth factors compared to thrombin. Moreover, the platelet releasate produced by SMHEF pulses induced greater cell proliferation than plasma. To determine whether sub-microsecond duration, low electric field (SMLEF) bipolar pulses results in differential activation of PRP compared to SMHEF, with respect to profiles of activation markers, growth factor release, and cell proliferation capacity. PRP activation by SMLEF bipolar pulses was compared to SMHEF pulses and bovine thrombin. PRP was prepared using the Harvest SmartPreP2 System from acid citrate dextrose anticoagulated healthy donor blood. PEF activation by either SMHEF or SMLEF pulses was performed using a standard electroporation cuvette preloaded with CaCl2 and a prototype instrument designed to take into account the electrical properties of PRP. Flow cytometry was used to assess platelet surface P-selectin expression, and annexin V binding. Platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), endothelial growth factor (EGF) and platelet factor 4 (PF4), and were measured by ELISA. The ability of supernatants to stimulate proliferation of human epithelial cells in culture was also evaluated. Controls included vehicle-treated, unactivated PRP and PRP with 10 mM CaCl2 activated with 1 U/mL bovine thrombin. PRP activated with SMLEF bipolar pulses or thrombin had similar light scatter profiles, consistent with the presence of platelet-derived microparticles, platelets, and platelet aggregates whereas SMHEF pulses primarily resulted in platelet-derived microparticles. Microparticles and platelets in PRP activated with SMLEF bipolar pulses had significantly lower annexin V-positivity than those following SMHEF activation. In contrast, the % P-selectin positivity and surface P-selectin expression (MFI) for platelets and microparticles in SMLEF bipolar pulse activated PRP was significantly higher than that in SMHEF-activated PRP, but not significantly different from that produced by thrombin activation. Higher levels of EGF were observed following either SMLEF bipolar pulses or SMHEF pulses of PRP than after bovine thrombin activation while VEGF, PDGF, and PF4 levels were similar with all three activating conditions. Cell proliferation was significantly increased by releasates of both SMLEF bipolar pulse and SMHEF pulse activated PRP compared to plasma alone. PEF activation of PRP at bipolar low vs. monopolar high field strength results in differential platelet-derived microparticle production and activation of platelet surface procoagulant markers while inducing similar release of growth factors and similar capacity to induce cell proliferation. Stimulation of PRP with SMLEF bipolar pulses is gentler than SMHEF pulses, resulting in less platelet microparticle generation but with overall activation levels similar to that obtained with thrombin. These results suggest that PEF provides the means to alter, in a controlled fashion, PRP properties thereby enabling evaluation of their effects on wound healing and clinical outcomes.
Energy storage considerations for a robotic Mars surface sampler
NASA Technical Reports Server (NTRS)
O'Donnell, P. M.; Cataldo, R. L.; Gonzalez-Sanabria, O. D.
1988-01-01
The characteristics of various energy storage systems (including Ni-Cd, Ni-H2, Ag-Zn, Li-XS, Na-S, PbSO4, and regenerative fuel cell systems) considered for a robotic Mars surface sampler are reviewed. It is concluded that the bipolar nickel-hydrogen battery and the sodium-sulfur battery are both viable candidates as storage systems for the rover's Radioisotope Thermoelectric Generator. For a photovoltaic storage system, the regenerative fuel cell and the bipolar nickel-hydrogen battery are the primary candidates.
Test results of a ten cell bipolar nickel-hydrogen battery
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1983-01-01
A ten cell bipolar nickel hydrogen 6.5 ampere-hour battery demonstrated over 2000 low earth orbit cycles at an 80 percent depth-of-discharge. Charge/discharge cyclic ampere-hour and watt-hour efficiencies of 88 and 76 percent, respectively, observed. Peak power capability was determined at 1.1 kW. A 10C discharge rate yields 83 percent of the nominal stark capacity to the 1.0 volt cut off in just under 6 minutes. Previously announced in STAR as N83-26253
Bipolar radiofrequency ablation of the kidney: comparison with monopolar radiofrequency ablation.
Nakada, Stephen Y; Jerde, Travis J; Warner, Thomas F; Wright, Andrew S; Haemmerich, Dieter; Mahvi, David M; Lee, Fred T
2003-12-01
We report initial ex vivo and in vivo studies using bipolar radiofrequency (RF) ablation of porcine kidneys. An internal ground electrode is positioned in the kidney opposite the RF electrode, resulting in ablation of all the intervening renal tissue. Ex vivo preparations of 10 porcine kidneys were perfused continuously with Ringer's solution and treated with either standard external grounded RF (N = 3) or bipolar RF ablation with 1 (N = 2), 2 (N = 3), or 3 (N = 2) cm of separation between the ground probe and the RF probe using a Model 30 RITA generator (RITA, Mountain View, CA). Target temperatures were 90 degrees C for 8 minutes. Gross and histologic assessments were made acutely. Four domestic pigs were treated with monopolar RF ablation of the lower pole of one kidney and bipolar RF with a 12-mm separation between the probes of the contralateral lower pole. Animals were harvested 48 hours later to maximize tissue damage for gross measurements and histologic evaluation. Ex vivo studies revealed grossly monopolar lesions 1.5 cm in maximum diameter and 1.75 cm(3) in volume. In comparison, bipolar lesions were 2.8 cm in maximum diameter and 10.3 cm(3) in volume using 3 cm of electrode separation. There was histologic evidence of cell death in all specimens. In vivo studies showed two distinct gross lesions with RF: one blanched and one hemorrhagic. Using bipolar RF, larger blanched lesions were achievable than with monopolar RF (2.80 cm(3) v 1.63 cm(3)). Overall, the combinations of blanched and hemorrhagic lesions were similar with monopolar and bipolar RF (5.01 v 5.31 cm(3)). Histologic evaluation verified cell death in the blanched lesions and rare areas of normal tissue in the hemorrhagic lesions. As shown by ex vivo data, bipolar RF can create larger lesions than does monopolar RF. In vivo, at 48 hours, both blanched and hemorrhagic gross lesions were seen using RF. In this model, blanched lesions predominated when performing bipolar RF.
Electrochemical Device Comprising Composite Bipolar Plate and Method of Using the Same
NASA Technical Reports Server (NTRS)
Mittelsteadt, Cortney K. (Inventor); Braff, William A. (Inventor)
2013-01-01
An electrochemical device and methods of using the same. In one embodiment, the electrochemical device may be used as a fuel cell and/or as an electrolyzer and includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, chemically-inert, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, as well as a fluid chamber and a non-porous an electrically-conductive plate.
Electrochemical Device Comprising Composite Bipolar Plate and Method of Using the Same
NASA Technical Reports Server (NTRS)
Mittelsteadt, Cortney K. (Inventor); Braff, William A. (Inventor)
2017-01-01
An electrochemical device and methods of using the same. In one embodiment, the electrochemical device may be used as a fuel cell and/or as an electrolyzer and includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, chemically-inert, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, as well as a fluid chamber and a non-porous an electrically-conductive plate.
High power bipolar battery/cells with enhanced overcharge tolerance
Kaun, T.D.
1998-04-07
A cell or battery of cells having improved overcharge tolerance and increased power capability, and methods for the construction of such cells or batteries, via electrolyte modification, are described. 5 figs.
Kruglikov, Ilja L
2016-01-01
Electrically layered tissue structure significantly modifies distribution of radiofrequency (RF) current in the dermis and in the subcutaneous adipose tissue comparing to that in a homogeneous medium. On the basis of the simple model of RF current distribution in a two-layer skin containing dermis and subcutis, we assess the influence of the dermal thickness on the current density in different skin layers. Under other equal conditions, current density in the dermis is higher for the skin having thinner dermis. This contradicts the main paradigm of the RF theory stating that treatment results are mainly dependent on the maximal temperature reached in a target tissue, since the best short- and long-term clinical results of RF application to the skin were reported in the areas having thicker dermis. To resolve this contradiction, it is proposed that the long-term effect of RF can be realized through a structural modification of the subcutaneous fat depot adjacent to the treated skin area. Stimulation of these cells located near the interface dermis/subcutis will demand the concentration of applied RF energy in this area and will require the optimal arrangement of RF electrodes on the skin surface.
2016-01-01
Electrically layered tissue structure significantly modifies distribution of radiofrequency (RF) current in the dermis and in the subcutaneous adipose tissue comparing to that in a homogeneous medium. On the basis of the simple model of RF current distribution in a two-layer skin containing dermis and subcutis, we assess the influence of the dermal thickness on the current density in different skin layers. Under other equal conditions, current density in the dermis is higher for the skin having thinner dermis. This contradicts the main paradigm of the RF theory stating that treatment results are mainly dependent on the maximal temperature reached in a target tissue, since the best short- and long-term clinical results of RF application to the skin were reported in the areas having thicker dermis. To resolve this contradiction, it is proposed that the long-term effect of RF can be realized through a structural modification of the subcutaneous fat depot adjacent to the treated skin area. Stimulation of these cells located near the interface dermis/subcutis will demand the concentration of applied RF energy in this area and will require the optimal arrangement of RF electrodes on the skin surface. PMID:27493952
Scale-up of Carbon/Carbon Bipolar Plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
David P. Haack
2009-04-08
This project was focused upon developing a unique material technology for use in PEM fuel cell bipolar plates. The carbon/carbon composite material developed in this program is uniquely suited for use in fuel cell systems, as it is lightweight, highly conductive and corrosion resistant. The project further focused upon developing the manufacturing methodology to cost-effectively produce this material for use in commercial fuel cell systems. United Technology Fuel Cells Corp., a leading fuel cell developer was a subcontractor to the project was interested in the performance and low-cost potential of the material. The accomplishments of the program included the developmentmore » and testing of a low-cost, fully molded, net-shape carbon-carbon bipolar plate. The process to cost-effectively manufacture these carbon-carbon bipolar plates was focused on extensively in this program. Key areas for cost-reduction that received attention in this program was net-shape molding of the detailed flow structures according to end-user design. Correlations between feature detail and process parameters were formed so that mold tooling could be accurately designed to meet a variety of flow field dimensions. A cost model was developed that predicted the cost of manufacture for the product in near-term volumes and long-term volumes (10+ million units per year). Because the roduct uses lowcost raw materials in quantities that are less than competitive tech, it was found that the cost of the product in high volume can be less than with other plate echnologies, and can meet the DOE goal of $4/kW for transportation applications. The excellent performance of the all-carbon plate in net shape was verified in fuel cell testing. Performance equivalent to much higher cost, fully machined graphite plates was found.« less
Hanaya, Junko; Nakamura, Yasuko; Nejima, Ryouhei; Miyata, Kazunori; Mera, Kentarou; Ohguro, Hiroshi; Yamamoto, Shuichi
2011-06-01
We report a case of melanoma-associated retinopathy (MAR) associated with positive auto-antibodies against retinal bipolar cells, which has been rarely reported in Japan. A 33 year-old woman noticed shimmering vision, photopsias, blurred vision, and night blindness OS in April 2009, and visited Kagoshima Miyata Eye Clinic in May 2009. She had been continuously treated for malignant melanoma on her left finger since 2007. At her initial visit, the corrected visual acuity was 1.5 OD and 1.2 OS, and slit-lamp examination revealed clear ocular media OU. Funduscopic examination showed normal appearance of the retina OU, except for a mild narrowing of the retinal arteries OS. Humphrey field analyzer revealed a reduction of retinal sensitivity within the central 30 degrees OS. The maximum left eye response of electroretinogram (ERG) showed a negative waveform. The immuno-cytochemical test revealed antibodies against retinal bipolar cells, which confirmed the diagnosis of MAR. Characteristic subjective symptoms, Humphrey field analyzer and ERG are useful for the diagnosis of MAR.
Gábriel, Robert; de Souza, Sunita; Ziff, Edward B; Witkovsky, Paul
2002-07-22
We used specific antibodies against two postsynaptic density proteins, GRIP (glutamate receptor interacting protein) and ABP (AMPA receptor-binding protein), to study their distribution in the rat retina. In the central nervous system, it has been shown that both proteins bind strongly to the AMPA glutamate receptor (GluR) 2/3 subunits, but not other GluRs, through a set of three PDZ domains. Western blots detected a single GRIP protein that was virtually identical in retina and brain, whereas retinal ABP corresponded to only one of three ABP peptides found in brain. The retinal distributions of GluR2/3, GRIP, and ABP immunoreactivity (IR) were similar but not identical. GluR2/3 immunoreactivity (IR) was abundant in both plexiform layers and in large perikarya. ABP IR was concentrated in large perikarya but was sparse in the plexiform layers, whereas GRIP IR was relatively more abundant in the plexiform layers than in perikarya. Immunolabel for these three antibodies consisted of puncta < or = 0.2 microm in diameter. The cellular localization of GRIP and ABP IR was examined by double labeling subclasses of retinal neuron with characteristic marker proteins, e.g., calbindin. GRIP, ABP, and GluR2/3 IR were detected in horizontal cells, dopaminergic and glycinergic AII amacrine cells and large ganglion cells. Immunolabel was absent in rod bipolar and weak or absent in cholinergic amacrine cells. By using the tyramide method of signal amplification, a colocalization of GluR2/3 was found with either GRIP or ABP in horizontal cell terminals, and perikarya of amacrine and ganglion cells. Our results show that ABP and GRIP colocalize with GluR2/3 in particular subsets of retinal neuron, as was previously established for certain neurons in the brain. Copyright 2002 Wiley-Liss, Inc.
Bipolar nickel-hydrogen battery design
NASA Technical Reports Server (NTRS)
Koehler, C. W.; Applewhite, A. Z.; Kuo, Y.
1985-01-01
The initial design for the NASA-Lewis advanced nickel-hydrogen battery is discussed. Fabrication of two 10-cell boilerplate battery stacks will soon begin. The test batteries will undergo characterization testing and low Earth orbit life cycling. The design effectively deals with waste heat generated in the cell stack. Stack temperatures and temperature gradients are maintained to acceptable limits by utilizing the bipolar conduction plate as a heat path to the active cooling fluid panel external to the edge of the cell stack. The thermal design and mechanical design of the battery stack together maintain a materials balance within the cell. An electrolyte seal on each cell frame prohibits electrolyte bridging. An oxygen recombination site and electrolyte reservoir/separator design does not allow oxygen to leave the cell in which it was generated.
Meta-analysis of erythrocyte polyunsaturated fatty acid biostatus in bipolar disorder.
McNamara, Robert K; Welge, Jeffrey A
2016-05-01
Dietary deficiency in polyunsaturated fatty acids (PUFAs), including the omega-3 fatty acids eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), and excesses in omega-6 fatty acids, including linoleic acid (LA; 18:2n-6) and arachidonic acid (AA; 20:4n-6), may be associated with the pathophysiology of bipolar disorder. In an effort to provide clarification regarding the relationship between PUFA biostatus and bipolar disorder, this meta-analysis investigated studies comparing erythrocyte (red blood cell) membrane PUFA composition in patients with bipolar disorder and healthy controls. A meta-analysis was performed on case-control studies comparing erythrocyte PUFA (EPA, DHA, LA and AA) levels in patients with bipolar I disorder and healthy controls. Standardized effect sizes were calculated and combined using a random effects model. Six eligible case-control studies comprising n = 118 bipolar I patients and n = 147 healthy controls were included in the analysis. Compared with healthy controls, patients with bipolar I disorder exhibited robust erythrocyte DHA deficits (p = 0.0008) and there was a trend for lower EPA (p = 0.086). There were no significant differences in LA (p = 0.42) or AA (p = 0.64). Bipolar I disorder is associated with robust erythrocyte DHA deficits. These findings add to a growing body of evidence implicating omega-3 PUFA deficiency in the pathophysiology of bipolar disorder. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The Neural Circuit Mechanisms Underlying the Retinal Response to Motion Reversal
Chen, Eric Y.; Chou, Janice; Park, Jeongsook; Schwartz, Greg
2014-01-01
To make up for delays in visual processing, retinal circuitry effectively predicts that a moving object will continue moving in a straight line, allowing retinal ganglion cells to anticipate the object's position. However, a sudden reversal of motion triggers a synchronous burst of firing from a large group of ganglion cells, possibly signaling a violation of the retina's motion prediction. To investigate the neural circuitry underlying this response, we used a combination of multielectrode array and whole-cell patch recordings to measure the responses of individual retinal ganglion cells in the tiger salamander to reversing stimuli. We found that different populations of ganglion cells were responsible for responding to the reversal of different kinds of objects, such as bright versus dark objects. Using pharmacology and designed stimuli, we concluded that ON and OFF bipolar cells both contributed to the reversal response, but that amacrine cells had, at best, a minor role. This allowed us to formulate an adaptive cascade model (ACM), similar to the one previously used to describe ganglion cell responses to motion onset. By incorporating the ON pathway into the ACM, we were able to reproduce the time-varying firing rate of fast OFF ganglion cells for all experimentally tested stimuli. Analysis of the ACM demonstrates that bipolar cell gain control is primarily responsible for generating the synchronized retinal response, as individual bipolar cells require a constant time delay before recovering from gain control. PMID:25411485
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng
An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the firstmore » exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.« less
NASA Astrophysics Data System (ADS)
Gago, A. S.; Ansar, S. A.; Saruhan, B.; Schulz, U.; Lettenmeier, P.; Cañas, N. A.; Gazdzicki, P.; Morawietz, T.; Hiesgen, R.; Arnold, J.; Friedrich, K. A.
2016-03-01
Proton exchange membrane (PEM) electrolysis is a promising technology for large H2 production from surplus electricity from renewable sources. However, the electrolyser stack is costly due to the manufacture of bipolar plates (BPP). Stainless steel can be used as an alternative, but it must be coated. Herein, dense titanium coatings are produced on stainless steel substrates by vacuum plasma spraying (VPS). Further surface modification of the Ti coating with Pt (8 wt% Pt/Ti) deposited by physical vapour deposition (PVD) magnetron sputtering reduces the interfacial contact resistance (ICR). The Ti and Pt/Ti coatings are characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron microscopy (XPS). Subsequently, the coatings are evaluated in simulated and real PEM electrolyser environments, and they managed to fully protect the stainless steel substrate. In contrast, the absence of the thermally sprayed Ti layer between Pt and stainless steel leads to pitting corrosion. The Pt/Ti coating is tested in a PEM electrolyser cell for almost 200 h, exhibiting an average degradation rate of 26.5 μV h-1. The results reported here demonstrate the possibility of using stainless steel as a base material for the stack of a PEM electrolyser.
The role of halide ions on the electrochemical behaviour of iron in alkali solutions
NASA Astrophysics Data System (ADS)
Begum, S. Nathira; Muralidharan, V. S.; Basha, C. Ahmed
2008-02-01
Active dissolution and passivation of transition metals in alkali solutions is of technological importance in batteries. The performance of alkaline batteries is decided by the presence of halides as they influence passivation. Cyclic voltammetric studies were carried out on iron in different sodium hydroxide solutions in presence of halides. In alkali solutions iron formed hydroxo complexes and their polymers in the interfacial diffusion layer. With progress of time they formed a cation selective layer. The diffusion layer turned into bipolar ion selective layer consisted of halides, a selective inner sublayer to the metal side and cation selective outer layer to the solution side. At very high anodic potentials, dehydration and deprotonation led to the conversion of salt layer into an oxide.
PNP PIN bipolar phototransistors for high-speed applications built in a 180 nm CMOS process.
Kostov, P; Gaberl, W; Hofbauer, M; Zimmermann, H
2012-08-01
This work reports on three speed optimized pnp bipolar phototransistors build in a standard 180 nm CMOS process using a special starting wafer. The starting wafer consists of a low doped p epitaxial layer on top of the p substrate. This low doped p epitaxial layer leads to a thick space-charge region between base and collector and thus to a high -3 dB bandwidth at low collector-emitter voltages. For a further increase of the bandwidth the presented phototransistors were designed with small emitter areas resulting in a small base-emitter capacitance. The three presented phototransistors were implemented in sizes of 40 × 40 μm 2 and 100 × 100 μm 2 . Optical DC and AC measurements at 410 nm, 675 nm and 850 nm were done for phototransistor characterization. Due to the speed optimized design and the layer structure of the phototransistors, bandwidths up to 76.9 MHz and dynamic responsivities up to 2.89 A/W were achieved. Furthermore simulations of the electric field strength and space-charge regions were done.
Npn double heterostructure bipolar transistor with ingaasn base region
Chang, Ping-Chih; Baca, Albert G.; Li, Nein-Yi; Hou, Hong Q.; Ashby, Carol I. H.
2004-07-20
An NPN double heterostructure bipolar transistor (DHBT) is disclosed with a base region comprising a layer of p-type-doped indium gallium arsenide nitride (InGaAsN) sandwiched between n-type-doped collector and emitter regions. The use of InGaAsN for the base region lowers the transistor turn-on voltage, V.sub.on, thereby reducing power dissipation within the device. The NPN transistor, which has applications for forming low-power electronic circuitry, is formed on a gallium arsenide (GaAs) substrate and can be fabricated at commercial GaAs foundries. Methods for fabricating the NPN transistor are also disclosed.
Type-II GaAsSb/InP heterojunction bipolar light-emitting transistor
NASA Astrophysics Data System (ADS)
Feng, M.; Holonyak, N.; Chu-Kung, B.; Walter, G.; Chan, R.
2004-06-01
We report radiative recombination in the base layer of Type-II InP/GaAsSb/InP double heterojunction bipolar light-emitting transistors (HBLET) operating in the common-emitter configuration. The typical current gain, β, for a 120×120 μm2 emitter area of the HBLET is 38. The optical emission wavelength from a 30 nm GaAs0.51Sb0.49 base is centered at λpeak=1600 nm. Three-port operation of the Type-II HBLET with simultaneously an amplified electrical output and an optical output with signal modulation is demonstrated at 10 kHz.
Arrangement for damping the resonance in a laser diode
NASA Technical Reports Server (NTRS)
Katz, J.; Yariv, A.; Margalit, S. (Inventor)
1985-01-01
An arrangement for damping the resonance in a laser diode is described. This arrangement includes an additional layer which together with the conventional laser diode form a structure (35) of a bipolar transistor. Therein, the additional layer serves as the collector, the cladding layer next to it as the base, and the active region and the other cladding layer as the emitter. A capacitor is connected across the base and the collector. It is chosen so that at any frequency above a certain selected frequency which is far below the resonance frequency the capacitor impedance is very low, effectively shorting the base to the collector.
Mechanisms creating transient and sustained photoresponses in mammalian retinal ganglion cells
Zhao, Xiwu; Jaeckel, Elizabeth R.; Chervenak, Andrew P.
2017-01-01
Retinal neurons use sustained and transient light responses to encode visual stimuli of different frequency ranges, but the underlying mechanisms remain poorly understood. In particular, although earlier studies in retinal ganglion cells (RGCs) proposed seven potential mechanisms, all seven have since been disputed, and it remains unknown whether different RGC types use different mechanisms or how many mechanisms are used by each type. Here, we conduct a comprehensive survey in mice and rats of 12 candidate mechanisms that could conceivably produce tonic rod/cone-driven ON responses in intrinsically photosensitive RGCs (ipRGCs) and transient ON responses in three types of direction-selective RGCs (TRHR+, Hoxd10+ ON, and Hoxd10+ ON-OFF cells). We find that the tonic kinetics of ipRGCs arises from their substantially above-threshold resting potentials, input from sustained ON bipolar cells, absence of amacrine cell inhibition of presynaptic ON bipolar cells, and mGluR7-mediated maintenance of light-evoked glutamatergic input. All three types of direction-selective RGCs receive input from transient ON bipolar cells, and each type uses additional strategies to promote photoresponse transience: presynaptic inhibition and dopaminergic modulation for TRHR+ cells, center/surround antagonism and relatively negative resting potentials for Hoxd10+ ON cells, and presynaptic inhibition for Hoxd10+ ON-OFF cells. We find that the sustained nature of ipRGCs’ rod/cone-driven responses depends neither on melanopsin nor on N-methyl-d-aspartate (NMDA) receptors, whereas the transience of the direction-selective cells’ responses is influenced neither by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor desensitization nor by glutamate uptake. For all cells, we further rule out spike frequency adaptation and intracellular Ca2+ as determinants of photoresponse kinetics. In conclusion, different RGC types use diverse mechanisms to produce sustained or transient light responses. Parenthetically, we find evidence in both mice and rats that the kinetics of light-induced mGluR6 deactivation determines whether an ON bipolar cell responds tonically or transiently to light. PMID:28153865
Expression of nitric oxide synthase during the development of RCS rat retinas.
Sharma, R K; Warfvinge, K; Ehinger, B
2001-01-01
Nitric oxide (NO) has been reported to be both neurodestructive and neuroprotective in the central nervous system and could possibly play an important role in neurodegenerative disorders. On the assumption that NO synthesis may influence degenerative processes in the retina, we have examined the development and distribution of nitric-oxide-synthase(NOS)-immunoreactive cells in developing Royal College of Surgeons (RCS) rat retinas, which is an animal model for retinal degeneration. An antibody against constitutive neuronal NOS was used for immunocytochemistry on RCS rat retinas from postnatal (PN) days 3, 7, 10, 14, 35, 70 and 281 and compared with that in the normal rats of PN days 3, 7, 10, 14, 54 and adults. Immunoreactive cells were not seen in PN 3 retinas but were distinctly seen in the PN 7 retina along with a plexus in the inner plexiform layer. In both groups (normal and RCS rats) a distinct sublayering of the plexus in the inner plexiform layer could be seen at PN 10, which became more distinct at PN 14. The immunoreactive cells were detected also in the oldest retina examined, which was PN 281 in the case of RCS rats. In both groups, certain amacrine cells, certain bipolar cells and certain horizontal cells were found to be immunoreactive. In conclusion, the developmental timetable of the NOS immunoreactivity was identical in the normal and the RCS rat retinas. The NOS-immunoreactive cells persisted in the RCS retinas even when the retina had degenerated extensively. Abnormalities with the inducible isoforms of NOS cannot be ruled out from this study. We conclude that the chronological and qualitative development of the constitutive neuronal NOS immunoreactivity is normal in RCS rat retinas. Copyright 2001 S. Karger AG, Basel
Design of a 1-kWh bipolar nickel hydrogen battery
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1984-01-01
The design of a nickel hydrogen battery utilizing bipolar construction in a common pressure vessel is discussed. Design features are as follows: 40 ampere-hour capcity, 1 kWh stored energy as a 24 cell battery, 1.8 kW delivered in a LEO Cycle and maximum pulse power of 18.0 kW.
Cuenca, Nicolás; Fernández-Sánchez, Laura; McGill, Trevor J; Lu, Bin; Wang, Shaomei; Lund, Raymond; Huhn, Stephen; Capela, Alexandra
2013-10-15
Transplantation of human central nervous system stem cells (HuCNS-SC) into the subretinal space of Royal College of Surgeons (RCS) rats preserves photoreceptors and visual function. To explore possible mechanism(s) of action underlying this neuroprotective effect, we performed a detailed morphologic and ultrastructure analysis of HuCNS-SC transplanted retinas. The HuCNS-SC were transplanted into the subretinal space of RCS rats. Histologic examination of the transplanted retinas was performed by light and electron microscopy. Areas of the retina adjacent to HuCNS-SC graft (treated regions) were analyzed and compared to control sections obtained from the same retina, but distant from the transplant site (untreated regions). The HuCNS-SC were detected as a layer of STEM 121 immunopositive cells in the subretinal space. In treated regions, preserved photoreceptor nuclei, as well as inner and outer segments were identified readily. In contrast, classic signs of degeneration were observed in the untreated regions. Interestingly, detailed ultrastructure analysis revealed a striking preservation of the photoreceptor-bipolar-horizontal cell synaptic contacts in the outer plexiform layer (OPL) of treated areas, in stark contrast with untreated areas. Finally, the presence of phagosomes and vesicles exhibiting the lamellar structure of outer segments also was detected within the cytosol of HuCNS-SC, indicating that these cells have phagocytic capacity in vivo. This study reveals the novel finding that preservation of specialized synaptic contacts between photoreceptors and second order neurons, as well as phagocytosis of photoreceptor outer segments, are potential mechanism(s) of HuCNS-SC transplantation, mediating functional rescue in retinal degeneration.
Kao, Chung-Feng; Chen, Hui-Wen; Chen, Hsi-Chung; Yang, Jenn-Hwai; Huang, Ming-Chyi; Chiu, Yi-Hang; Lin, Shih-Ku; Lee, Ya-Chin; Liu, Chih-Min; Chuang, Li-Chung; Chen, Chien-Hsiun; Wu, Jer-Yuarn; Lu, Ru-Band; Kuo, Po-Hsiu
2016-12-01
This study aimed to identify susceptible loci and enriched pathways for bipolar disorder subtype II. We conducted a genome-wide association scan in discovery samples with 189 bipolar disorder subtype II patients and 1773 controls, and replication samples with 283 bipolar disorder subtype II patients and 500 controls in a Taiwanese Han population using Affymetrix Axiom Genome-Wide CHB1 Array. We performed single-marker and gene-based association analyses, as well as calculated polygeneic risk scores for bipolar disorder subtype II. Pathway enrichment analyses were employed to reveal significant biological pathways. Seven markers were found to be associated with bipolar disorder subtype II in meta-analysis combining both discovery and replication samples (P<5.0×10 -6 ), including markers in or close to MYO16, HSP90AB3P, noncoding gene LOC100507632, and markers in chromosomes 4 and 10. A novel locus, ETF1, was associated with bipolar disorder subtype II (P<6.0×10 -3 ) in gene-based association tests. Results of risk evaluation demonstrated that higher genetic risk scores were able to distinguish bipolar disorder subtype II patients from healthy controls in both discovery (P=3.9×10 -4 ~1.0×10 -3 ) and replication samples (2.8×10 -4 ~1.7×10 -3 ). Genetic variance explained by chip markers for bipolar disorder subtype II was substantial in the discovery (55.1%) and replication (60.5%) samples. Moreover, pathways related to neurodevelopmental function, signal transduction, neuronal system, and cell adhesion molecules were significantly associated with bipolar disorder subtype II. We reported novel susceptible loci for pure bipolar subtype II disorder that is less addressed in the literature. Future studies are needed to confirm the roles of these loci for bipolar disorder subtype II. © The Author 2016. Published by Oxford University Press on behalf of CINP.
Multiple Independent Oscillatory Networks in the Degenerating Retina
Euler, Thomas; Schubert, Timm
2015-01-01
During neuronal degenerative diseases, microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. This can be particularly well observed in the retina, where photoreceptor degeneration triggers rewiring of connections in the retina’s first synaptic layer (e.g., Strettoi et al., 2003; Haq et al., 2014), while the synaptic organization of inner retinal circuits appears to be little affected (O’Brien et al., 2014; Figures 1A,B). Remodeling of (outer) retinal circuits and diminishing light-driven activity due to the loss of functional photoreceptors lead to spontaneous activity that can be observed at different retinal levels (Figure 1C), including the retinal ganglion cells, which display rhythmic spiking activity in the degenerative retina (Margolis et al., 2008; Stasheff, 2008; Menzler and Zeck, 2011; Stasheff et al., 2011). Two networks have been suggested to drive the oscillatory activity in the degenerating retina: a network of remnant cone photoreceptors, rod bipolar cells (RBCs) and horizontal cells in the outer retina (Haq et al., 2014), and the AII amacrine cell-cone bipolar cell network in the inner retina (Borowska et al., 2011). Notably, spontaneous rhythmic activity in the inner retinal network can be triggered in the absence of synaptic remodeling in the outer retina, for example, in the healthy retina after photo-bleaching (Menzler et al., 2014). In addition, the two networks show remarkable differences in their dominant oscillation frequency range as well as in the types and numbers of involved cells (Menzler and Zeck, 2011; Haq et al., 2014). Taken together this suggests that the two networks are self-sustained and can be active independently from each other. However, it is not known if and how they modulate each other. In this mini review, we will discuss: (i) commonalities and differences between these two oscillatory networks as well as possible interaction pathways; (ii) how multiple self-sustained networks may hamper visual restoration strategies employing, for example, microelectronic implants, optogenetics or stem cells, and briefly; and (iii) how the finding of diverse (independent) networks in the degenerative retina may relate to other parts of the neurodegenerative central nervous system. PMID:26617491
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Jung-Hui, E-mail: jhtsai@nknucc.nknu.edu.tw
2015-02-09
The confinement effect and electrical characteristics of heterostructure-emitter bipolar transistors with an AlGaInP bulk-confinement layer and an AlGaInP/GaAs superlattice-confinement layer are first demonstrated and compared by experimentally results. In the two devices, the relatively large valence band discontinuity at AlGaInP/GaAs heterojunction provides excellent confinement effect for holes to enhance current gain. As to the AlGaInP/GaAs superlattice-confinement device, part of thermionic-emission electrons will be trapped in the GaAs quantum wells of the superlattice. This will result in lower collector current and current gain as compared with the bulk-confinement device. Nevertheless, the superlattice-confinement device exhibits a larger current-gain cutoff frequency, which canmore » be attributed that the tunneling behavior is included in the carrier transportation and transporting time across the emitter region could be substantially reduced.« less
NASA Technical Reports Server (NTRS)
Manzo, M. A.; Hoberecht, M. A.
1984-01-01
Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for Space Station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.
NASA Technical Reports Server (NTRS)
Manzo, M. A.; Hoberecht, M. A.
1984-01-01
Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for space station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.
Heavy doping effects in high efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Lindholm, F. A.; Neugroschel, A.
1986-01-01
The temperature dependence of the emitter saturation current for bipolar devices was studied by varying the surface recombination velocity at the emitter surface. From this dependence, the value was derived for bandgap narrowing that is in better agreement with other determinations that were obtained from the temperature dependence measure on devices with ohmic contacts. Results of the first direct measurement of the minority-carrier transit time in a transparent heavily doped emitter layer were reported. The value was obtained by a high-frequency conductance method recently developed and used for doped Si. Experimental evidence is presented for significantly greater charge storage in highly excited silicon near room temperature than conventional theory would predict. These data are compared with various data for delta E sub G in heavily doped silicon.
NASA Astrophysics Data System (ADS)
Sutradhar, S.; Basu, S.; Paul, R.
2015-10-01
Cell division through proper spindle formation is one of the key puzzles in cell biology. In most mammalian cells, chromosomes spontaneously arrange to achieve a stable bipolar spindle during metaphase which eventually ensures proper segregation of the DNA into the daughter cells. In this paper, we present a robust three-dimensional mechanistic model to investigate the formation and maintenance of a bipolar mitotic spindle in mammalian cells under different physiological constraints. Using realistic parameters, we test spindle viability by measuring the spindle length and studying the chromosomal configuration. The model strikingly predicts a feature of the spindle instability arising from the insufficient intercentrosomal angular separation and impaired sliding of the interpolar microtubules. In addition, our model successfully reproduces chromosomal patterns observed in mammalian cells, when activity of different motor proteins is perturbed.
NASA Astrophysics Data System (ADS)
Muqeet Rehman, Muhammad; Uddin Siddiqui, Ghayas; Doh, Yang Hoi; Choi, Kyung Hyun
2017-09-01
Tungsten disulfide (WS2) is a transition metal dichalcogenide that differs from other 2D materials such as graphene owing to its distinctive semiconducting nature and tunable band gap. In this study, we have reported the structural, electrical, physical, and mechanical properties of exfoliated WS2 flakes and used them as the functional layer of a rewritable bipolar memory device. We demonstrate this concept by sandwiching few-layered WS2 flakes between two silver (Ag) electrodes on a flexible and transparent PET substrate. The entire device fabrication was carried out through all-printing technology such as reverse offset printing for patterning bottom electrodes, electrohydrodynamic (EHD) atomization for depositing functional thin film and EHD patterning for depositing the top electrode respectively. The memory device was further encapsulated with an atomically thin layer of aluminum oxide (Al2O3), deposited through a spatial atmospheric atomic layer deposition system to protect it against a humid environment. Remarkable resistive switching results were obtained, such as nonvolatile bipolar behavior, a high switching ratio (∼103), a long retention time (∼105 s), high endurance (1500 voltage sweeps), a low operating voltage (∼2 V), low current compliance (50 μA), mechanical robustness (1500 cycles) and unique repeatability at ambient conditions. Ag/WS2/Ag-based memory devices offer a new possibility for integration in flexible electronic devices.
Mendlowicz, Mauro V; Akiskal, Hagop S; Kelsoe, John R; Rapaport, Mark H; Jean-Louis, Girardin; Gillin, J Christian
2005-02-01
To examine differences in temperament profiles between patients with recurrent unipolar and bipolar depression. Depressed individuals with recurrent major depressive disorder (MDD) (n = 94) and those with bipolar (n = 59) disorders (about equally divided between types I and II) were recruited by newspaper advertisement, radio and television announcements, flyers and newsletters, and word of mouth. All patients were interviewed using the Structured Clinical Interview for DSM III-R (SCID) and had the severity of their depressive episode assessed by means of the 17-item Hamilton Rating Scale for Depression. All patients filled out the TEMPS-A, a validated instrument. Temperament differences between bipolar and MDD patients were examined using MANCOVA. Overall significant effect of the fixed factor (bipolar vs. unipolar) was noted for the temperament scores [Hotelling's F((5,142)) = 2.47, p < 0.05]. Overall effects were found for age [F((5,142)) = 2.40, p < 0.05], but not for gender and severity of depression [F((5,142)) = 1.65, p = 0.15 and F((5,142)) = 0.66, p = 0.66, respectively]. Dependent variables included the five subscales of the TEMPS-A, but only the cyclothymic temperament scores showed significant between-group differences. Small bipolar subsample cell sizes did not permit to test the specificity of the findings for bipolar II vs. bipolar I patients. The finding that the clyclothymic subscale is significantly elevated in the bipolar vs. the unipolar depressive group supports the theoretical assumptions upon which the scale is based, and suggests that it might become a useful tool for clinical and research purposes.
Boyes, William K.; Bercegeay, Mark; Degn, Laura; Beasley, Tracey E.; Evansky, Paul A.; Mwanza, Jean Claude; Geller, Andrew M.; Pinckney, Charles; Nork, T. Michael; Bushnell, Philip J.
2016-01-01
Studies of humans chronically exposed to volatile organic solvents have reported impaired visual functions, including low contrast sensitivity and reduced color discrimination. These reports, however, lacked confirmation from controlled laboratory experiments. To address this question experimentally, we examined visual function by recording visual evoked potentials (VEP) and/or electroretinograms (ERG) from four sets of rats exposed repeatedly to toluene. In addition, eyes of the rats were examined with an ophthalmoscope and some of the retinal tissues were evaluated for rod and M-cone photoreceptor immunohistochemistry. The first study examined rats following exposure to 0, 10, 100 or 1000 ppm toluene by inhalation (6 hr/d, 5 d/wk) for 13 weeks. One week after the termination of exposure, the rats were implanted with chronically indwelling electrodes and the following week pattern-elicited VEPs were recorded. VEP amplitudes were not significantly changed by toluene exposure. Four to five weeks after completion of exposure, rats were dark-adapted overnight, anesthetized, and several sets of electroretinograms (ERG) were recorded. In dark-adapted ERGs recorded over a 5-log (cd-s/m2) range of flash luminance, b-wave amplitudes were significantly reduced at high stimulus luminance values in rats previously exposed to 1000 ppm toluene. A second set of rats, exposed concurrently with the first set, was tested approximately one year after the termination of 13 weeks of exposure to toluene. Again, dark-adapted ERG b-wave amplitudes were reduced at high stimulus luminance values in rats previously exposed to 1000 ppm toluene. A third set of rats was exposed to the same concentrations of toluene for only 4 weeks, and a fourth set of rats exposed to 0 or 1000 ppm toluene for 4 weeks were tested approximately 1 year after the completion of exposure. No statistically significant reductions of ERG b-wave amplitude were observed in either set of rats exposed for 4 weeks. No significant changes were observed in ERG a-wave amplitude or latency, b-wave latency, UV- or green-flicker ERGs, or in photopic flash ERGs. There were no changes in the density of rod or M-cone photoreceptors. The ERG b-wave reflects the firing patterns of on-bipolar cells. The reductions of b-wave amplitude after 13 weeks of exposure and persisting for 1 year suggest that alterations may have occurred in the inner nuclear layer of the retina, where the bipolar cells reside, or the outer or inner plexiform layers where the bipolar cells make synaptic connections. These data provide experimental evidence that repeated exposure to toluene may lead to subtle persistent changes in visual function. The fact that toluene affected ERGs, but not VEPs, suggests that elements in the rat retina may be more sensitive to organic solvent exposure than the rat visual cortex. PMID:26899397
Watmuff, Bradley; Berkovitch, Shaunna S; Huang, Joanne H; Iaconelli, Jonathan; Toffel, Steven; Karmacharya, Rakesh
2016-06-01
Schizophrenia and bipolar disorder are complex psychiatric disorders that present unique challenges in the study of disease biology. There are no objective biological phenotypes for these disorders, which are characterized by complex genetics and prominent roles for gene-environment interactions. The study of the neurobiology underlying these severe psychiatric disorders has been hindered by the lack of access to the tissue of interest - neurons from patients. The advent of reprogramming methods that enable generation of induced pluripotent stem cells (iPSCs) from patient fibroblasts and peripheral blood mononuclear cells has opened possibilities for new approaches to study relevant disease biology using iPSC-derived neurons. While early studies with patient iPSCs have led to promising and intriguing leads, significant hurdles remain in our attempts to capture the complexity of these disorders in vitro. We present here an overview of studies to date of schizophrenia and bipolar disorder using iPSC-derived neuronal cells and discuss potential future directions that can result in the identification of robust and valid cellular phenotypes that in turn can lay the groundwork for meaningful clinical advances. Copyright © 2016 Elsevier Inc. All rights reserved.
Nanosecond bipolar pulse generators for bioelectrics.
Xiao, Shu; Zhou, Chunrong; Yang, Enbo; Rajulapati, Sambasiva R
2018-04-26
Biological effects caused by a nanosecond pulse, such as cell membrane permeabilization, peripheral nerve excitation and cell blebbing, can be reduced or cancelled by applying another pulse of reversed polarity. Depending on the degree of cancellation, the pulse interval of these two pulses can be as long as dozens of microseconds. The cancellation effect diminishes as the pulse duration increases. To study the cancellation effect and potentially utilize it in electrotherapy, nanosecond bipolar pulse generators must be made available. An overview of the generators is given in this paper. A pulse forming line (PFL) that is matched at one end and shorted at the other end allows a bipolar pulse to be produced, but no delay can be inserted between the phases. Another generator employs a combination of a resistor, an inductor and a capacitor to form an RLC resonant circuit so that a bipolar pulse with a decaying magnitude can be generated. A third generator is a converter, which converts an existing unipolar pulse to a bipolar pulse. This is done by inserting an inductor in a transmission line. The first phase of the bipolar pulse is provided by the unipolar pulse's rising phase. The second phase is formed during the fall time of the unipolar pulse, when the inductor, which was previously charged during the flat part of the unipolar pulse, discharges its current to the load. The fourth type of generator uses multiple MOSFET switches stacked to turn on a pre-charged, bipolar RC network. This approach is the most flexible in that it can generate multiphasic pulses that have different amplitudes, delays, and durations. However, it may not be suitable for producing short nanosecond pulses (<100 ns), whereas the PFL approach and the RLC approach with gas switches are used for this range. Thus, each generator has its own advantages and applicable range. Copyright © 2018 Elsevier B.V. All rights reserved.
Yukawa, Masashi; Kawakami, Tomoki; Okazaki, Masaki; Kume, Kazunori; Tang, Ngang Heok; Toda, Takashi
2017-12-01
Accurate chromosome segregation relies on the bipolar mitotic spindle. In many eukaryotes, spindle formation is driven by the plus-end-directed motor kinesin-5 that generates outward force to establish spindle bipolarity. Its inhibition leads to the emergence of monopolar spindles with mitotic arrest. Intriguingly, simultaneous inactivation of the minus-end-directed motor kinesin-14 restores spindle bipolarity in many systems. Here we show that in fission yeast, three independent pathways contribute to spindle bipolarity in the absence of kinesin-5/Cut7 and kinesin-14/Pkl1. One is kinesin-6/Klp9 that engages with spindle elongation once short bipolar spindles assemble. Klp9 also ensures the medial positioning of anaphase spindles to prevent unequal chromosome segregation. Another is the Alp7/TACC-Alp14/TOG microtubule polymerase complex. Temperature-sensitive alp7cut7pkl1 mutants are arrested with either monopolar or very short spindles. Forced targeting of Alp14 to the spindle pole body is sufficient to render alp7cut7pkl1 triply deleted cells viable and promote spindle assembly, indicating that Alp14-mediated microtubule polymerization from the nuclear face of the spindle pole body could generate outward force in place of Cut7 during early mitosis. The third pathway involves the Ase1/PRC1 microtubule cross-linker that stabilizes antiparallel microtubules. Our study, therefore, unveils multifaceted interplay among kinesin-dependent and -independent pathways leading to mitotic bipolar spindle assembly. © 2017 Yukawa et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Li, Xiaohu; Jin, Xiangdan; Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng
2017-08-01
Aniline-containing wastewater can cause significant environmental problems and threaten the humans's life. However, rapid degradation of aniline with cost-efficient methods remains a challenge. In this work, a novel microbial electrolysis cell with bipolar membrane was integrated with Fenton reaction (MEC-Fenton) for efficient treatment of real wastewater containing a high concentration (4460 ± 52 mg L -1 ) of aniline. In this system, H 2 O 2 was in situ electro-synthesized from O 2 reduction on the graphite cathode and was simultaneously used as source of OH for the oxidation of aniline wastewater under an acidic condition maintained by the bipolar membrane. The aniline was effectively degraded following first-order kinetics at a rate constant of 0.0166 h -1 under an applied voltage of 0.5 V. Meanwhile, a total organic carbon (TOC) removal efficiency of 93.1 ± 1.2% was obtained, revealing efficient mineralization of aniline. The applicability of bipolar membrane MEC-Fenton system was successfully demonstrated with actual aniline wastewater. Moreover, energy balance showed that the system could be a promising technology for removal of biorefractory organic pollutants from wastewaters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Faurholt-Jepsen, Maria; Vinberg, Maj; Christensen, Ellen Margrethe; Frost, Mads; Bardram, Jakob; Kessing, Lars Vedel
2013-01-01
Electronic self-monitoring of affective symptoms using cell phones is suggested as a practical and inexpensive way to monitor illness activity and identify early signs of affective symptoms. It has never been tested in a randomised clinical trial whether electronic self-monitoring improves outcomes in bipolar disorder. We are conducting a trial testing the effect of using a Smartphone for self-monitoring in bipolar disorder. We developed the MONARCA application for Android-based Smartphones, allowing patients suffering from bipolar disorder to do daily self-monitoring-including an interactive feedback loop between patients and clinicians through a web-based interface. The effect of the application was tested in a parallel-group, single-blind randomised controlled trial so far including 78 patients suffering from bipolar disorder in the age group 18-60 years who were given the use of a Smartphone with the MONARCA application (intervention group) or to the use of a cell phone without the application (placebo group) during a 6-month study period. The study was carried out from September 2011. The outcomes were changes in affective symptoms (primary), social functioning, perceived stress, self-rated depressive and manic symptoms, quality of life, adherence to medication, stress and cognitive functioning (secondary and tertiary). Recruitment is ongoing. Ethical permission has been obtained. Positive, neutral and negative findings of the study will be published. The trial is approved by the Regional Ethics Committee in The Capital Region of Denmark (H-2-2011-056) and The Danish Data Protection Agency (2013-41-1710). The trial is registered at ClinicalTrials.gov as NCT01446406.
Gianulis, Elena C; Casciola, Maura; Xiao, Shu; Pakhomova, Olga N; Pakhomov, Andrei G
2018-02-01
Cellular effects caused by nanosecond electric pulses (nsEP) can be reduced by an electric field reversal, a phenomenon known as bipolar cancellation. The reason for this cancellation effect remains unknown. We hypothesized that assisted membrane discharge is the mechanism for bipolar cancellation. CHO-K1 cells bathed in high (16.1mS/cm; HCS) or low (1.8mS/cm; LCS) conductivity solutions were exposed to either one unipolar (300-ns) or two opposite polarity (300+300-ns; bipolar) nsEP (4-40kV/cm) with increasing interpulse intervals (0.1-50μs). Time-lapse YO-PRO-1 (YP) uptake revealed enhanced membrane permeabilization in LCS compared to HCS at all tested voltages. The time-dependence of bipolar cancellation was similar in both solutions, using either identical (22kV/cm) or isoeffective nsEP treatments (12 and 32kV/cm for LCS and HCS, respectively). However, cancellation was significantly stronger in LCS when the bipolar nsEP had no, or very short (<1μs), interpulse intervals. Finally, bipolar cancellation was still present with interpulse intervals as long as 50μs, beyond the time expected for membrane discharge. Our findings do not support assisted membrane discharge as the mechanism for bipolar cancellation. Instead they exemplify the sustained action of nsEP that can be reversed long after the initial stimulus. Copyright © 2017 Elsevier B.V. All rights reserved.
Bipolar batteries based on Ebonex ® technology
NASA Astrophysics Data System (ADS)
Loyns, A. C.; Hill, A.; Ellis, K. G.; Partington, T. J.; Hill, J. M.
Continuing work by Atraverda on the production of a composite-laminate form of the Ebonex ® material, that can be cheaply formulated and manufactured to form substrate plates for bipolar lead-acid batteries, is described. Ebonex ® is the registered trade name of a range of titanium suboxide ceramic materials, typically Ti 4O 7 and Ti 5O 9, which combine electrical conductivity with high corrosion and oxidation resistance. Details of the structure of the composite, battery construction techniques and methods for filling and forming of batteries are discussed. In addition, lifetime and performance data obtained by Atraverda from laboratory bipolar lead-acid batteries and cells are presented. Battery production techniques for both conventional monopolar and bipolar batteries are reviewed. The findings indicate that substantial time and cost savings may be realised in the manufacture of bipolar batteries in comparison to conventional designs. This is due to the fewer processing steps required and more efficient formation. The results indicate that the use of Ebonex ® composite material as a bipolar substrate will provide lightweight and durable high-voltage lead-acid batteries suitable for a wide range of applications including advanced automotive, stationary power and portable equipment.
Synaptic remodeling generates synchronous oscillations in the degenerated outer mouse retina
Haq, Wadood; Arango-Gonzalez, Blanca; Zrenner, Eberhart; Euler, Thomas; Schubert, Timm
2014-01-01
During neuronal degenerative diseases, neuronal microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. The functional consequences of such remodeling are mostly unknown. For instance, in mutant rd1 mouse retina, a common model for Retinitis Pigmentosa, rod bipolar cells (RBCs) establish contacts with remnant cone photoreceptors (cones) as a consequence of rod photoreceptor cell death and the resulting lack of presynaptic input. To assess the functional connectivity in the remodeled, light-insensitive outer rd1 retina, we recorded spontaneous population activity in retinal wholemounts using Ca2+ imaging and identified the participating cell types. Focusing on cones, RBCs and horizontal cells (HCs), we found that these cell types display spontaneous oscillatory activity and form synchronously active clusters. Overall activity was modulated by GABAergic inhibition from interneurons such as HCs and/or possibly interplexiform cells. Many of the activity clusters comprised both cones and RBCs. Opposite to what is expected from the intact (wild-type) cone-ON bipolar cell pathway, cone and RBC activity was positively correlated and, at least partially, mediated by glutamate transporters expressed on RBCs. Deletion of gap junctional coupling between cones reduced the number of clusters, indicating that electrical cone coupling plays a crucial role for generating the observed synchronized oscillations. In conclusion, degeneration-induced synaptic remodeling of the rd1 retina results in a complex self-sustained outer retinal oscillatory network, that complements (and potentially modulates) the recently described inner retinal oscillatory network consisting of amacrine, bipolar and ganglion cells. PMID:25249942
Evidence of low injection efficiency for implanted p-emitters in bipolar 4H-SiC high-voltage diodes
NASA Astrophysics Data System (ADS)
Matthus, Christian D.; Huerner, Andreas; Erlbacher, Tobias; Bauer, Anton J.; Frey, Lothar
2018-06-01
In this study, the influence of the emitter efficiency on the forward current-voltage characteristics, especially the conductivity modulation of bipolar SiC-diodes was analyzed. It was determined that the emitter efficiency of p-emitters formed by ion implantation is significantly lower compared to p-emitters formed by epitaxy. In contrast to comparable studies, experimental approach was arranged that the influence of the quality of the drift-layer or the thickness of the emitter on the conductivity modulation could be excluded for the fabricated bipolar SiC-diodes of this work. Thus, it can be established that the lower emitter injection efficiency is mainly caused by the reduced electron lifetime in p-emitters formed by ion implantation. Therefore, a significant enhancement of the electron lifetime in implanted p-emitters is mandatory for e.g. SiC-MPS-diodes where the functionality of the devices depends significantly on the injection efficiency.
Low-Cost and Durable Bipolar Plates for Proton Exchange Membrane Electrolyzers
NASA Astrophysics Data System (ADS)
Lettenmeier, P.; Wang, R.; Abouatallah, R.; Saruhan, B.; Freitag, O.; Gazdzicki, P.; Morawietz, T.; Hiesgen, R.; Gago, A. S.; Friedrich, K. A.
2017-03-01
Cost reduction and high efficiency are the mayor challenges for sustainable H2 production via proton exchange membrane (PEM) electrolysis. Titanium-based components such as bipolar plates (BPP) have the largest contribution to the capital cost. This work proposes the use of stainless steel BPPs coated with Nb and Ti by magnetron sputtering physical vapor deposition (PVD) and vacuum plasma spraying (VPS), respectively. The physical properties of the coatings are thoroughly characterized by scanning electron, atomic force microscopies (SEM, AFM); and X-ray diffraction, photoelectron spectroscopies (XRD, XPS). The Ti coating (50 μm) protects the stainless steel substrate against corrosion, while a 50-fold thinner layer of Nb decreases the contact resistance by almost one order of magnitude. The Nb/Ti-coated stainless steel bipolar BPPs endure the harsh environment of the anode for more than 1000 h of operation under nominal conditions, showing a potential use in PEM electrolyzers for large-scale H2 production from renewables.
Low-Cost and Durable Bipolar Plates for Proton Exchange Membrane Electrolyzers
Lettenmeier, P.; Wang, R.; Abouatallah, R.; Saruhan, B.; Freitag, O.; Gazdzicki, P.; Morawietz, T.; Hiesgen, R.; Gago, A. S.; Friedrich, K. A.
2017-01-01
Cost reduction and high efficiency are the mayor challenges for sustainable H2 production via proton exchange membrane (PEM) electrolysis. Titanium-based components such as bipolar plates (BPP) have the largest contribution to the capital cost. This work proposes the use of stainless steel BPPs coated with Nb and Ti by magnetron sputtering physical vapor deposition (PVD) and vacuum plasma spraying (VPS), respectively. The physical properties of the coatings are thoroughly characterized by scanning electron, atomic force microscopies (SEM, AFM); and X-ray diffraction, photoelectron spectroscopies (XRD, XPS). The Ti coating (50 μm) protects the stainless steel substrate against corrosion, while a 50-fold thinner layer of Nb decreases the contact resistance by almost one order of magnitude. The Nb/Ti-coated stainless steel bipolar BPPs endure the harsh environment of the anode for more than 1000 h of operation under nominal conditions, showing a potential use in PEM electrolyzers for large-scale H2 production from renewables. PMID:28294119
Rhodes, Mark A.
2008-10-21
A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.
NASA Astrophysics Data System (ADS)
Ren, Y. J.; Anisur, M. R.; Qiu, W.; He, J. J.; Al-Saadi, S.; Singh Raman, R. K.
2017-09-01
Metallic materials are most suitable for bipolar plates of proton exchange membrane fuel cell (PEMFC) because they possess the required mechanical strength, durability, gas impermeability, acceptable cost and are suitable for mass production. However, metallic bipolar plates are prone to corrosion or they can passivate under PEMFC environment and interrupt the fuel cell operation. Therefore, it is highly attractive to develop corrosion resistance coating that is also highly conductive. Graphene fits these criteria. Graphene coating is developed on copper by chemical vapor deposition (CVD) with an aim to improving corrosion resistance of copper under PEMFC condition. The Raman Spectroscopy shows the graphene coating to be multilayered. The electrochemical degradation of graphene coated copper is investigated by electrochemical impedance spectroscopy (EIS) in 0.5 M H2SO4 solution at room temperature. After exposure to the electrolyte for up to 720 h, the charge transfer resistance (Rt) of the graphene coated copper is ∼3 times greater than that of the bare copper, indicating graphene coatings could improve the corrosion resistance of copper bipolar plates.
NASA Astrophysics Data System (ADS)
Wang, Chao; Song, Bing; Li, Qingjiang; Zeng, Zhongming
2018-03-01
We herein present a novel unidirectional threshold selector for cross-point bipolar RRAM array. The proposed Ag/amorphous Si based threshold selector showed excellent threshold characteristics in positive field, such as high selectivity ( 105), steep slope (< 5 mV/decade) and low off-state current (< 300 pA). Meanwhile, the selector exhibited rectifying characteristics in the high resistance state as well and the rectification ratio was as high as 103 at ± 1.5 V. Nevertheless, due to the high reverse current about 9 mA at - 3 V, this unidirectional threshold selector can be used as a selection element for bipolar-type RRAM. By integrating a bipolar RRAM device with the selector, experiments showed that the undesired sneak was significantly suppressed, indicating its potentiality for high-density integrated nonvolatile memory applications.
Strained-layer epitaxy of germanium-silicon alloys
NASA Astrophysics Data System (ADS)
Bean, J. C.
1985-10-01
Strained-layer epitaxy is presented as a developing technique for combining Si with other materials in order to obtain semiconductors with enhanced electronic properties. The method involves applying layers sufficiently thin so that the atoms deposited match the bonding configurations of the substrate crystal. When deposited on Si, a four-fold bonding pattern is retained, with a lowered interfacial energy and augmented stored strain energy in the epitaxial layer. The main problem which remains is building an epitaxial layer thick enough to yield desired epitaxial properties while avoiding a reversion to an unstrained structure. The application of a Ge layer to Si using MBE is described, along with the formation of heterojunction multi-layer superlattices, which can reduce the dislocation effects in some homojunctions. The technique shows promise for developing materials of use as bipolar transistors, optical detectors and fiber optic transmission devices.
Front and backside processed thin film electronic devices
Evans, Paul G [Madison, WI; Lagally, Max G [Madison, WI; Ma, Zhenqiang [Middleton, WI; Yuan, Hao-Chih [Lakewood, CO; Wang, Guogong [Madison, WI; Eriksson, Mark A [Madison, WI
2012-01-03
This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.
Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells.
Vargas-Barbosa, Nella M; Geise, Geoffrey M; Hickner, Michael A; Mallouk, Thomas E
2014-11-01
Membranes are important in water-splitting solar cells because they prevent crossover of hydrogen and oxygen. Here, bipolar membranes (BPMs) were tested as separators in water electrolysis cells. Steady-state membrane and solution resistances, electrode overpotentials, and pH gradients were measured at current densities relevant to solar photoelectrolysis. Under forward bias conditions, electrodialysis of phosphate buffer ions creates a pH gradient across a BPM. Under reverse bias, the BPM can maintain a constant buffer pH on both sides of the cell, but a large membrane potential develops. Thus, the BPM does not present a viable solution for electrolysis in buffered electrolytes. However, the membrane potential is minimized when the anode and cathode compartments of the cell contain strongly basic and acidic electrolytes, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Guangli; Zhou, Ying; Luo, Haiping; Cheng, Xing; Zhang, Renduo; Teng, Wenkai
2015-12-01
The aim of this study was to investigate different microbial electrolysis desalination cells for malic acid production. The systems included microbial electrolysis desalination and chemical-production cell (MEDCC), microbial electrolysis desalination cell (MEDC) with bipolar membrane and anion exchange membrane (BP-A MEDC), MEDC with bipolar membrane and cation exchange membrane (BP-C MEDC), and modified microbial desalination cell (M-MDC). The microbial electrolysis desalination cells performed differently in terms of malic acid production and energy consumption. The MEDCC performed best with the highest malic acid production rate (18.4 ± 0.6 mmol/Lh) and the lowest energy consumption (0.35 ± 0.14 kWh/kg). The best performance of MEDCC was attributable to the neutral pH condition in the anode chamber, the lowest internal resistance, and the highest Geobacter percentage of the anode biofilm population among all the reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Exploring Membrane Dynamics during Electric Pulse Exposure with Second Harmonic Generation
NASA Astrophysics Data System (ADS)
Moen, Erick; Ibey, Bennett; Beier, Hope; Armani, Andrea
Optical second harmonic generation (SHG) is a powerful tool for investigating the nanostructure of symmetry-breaking materials and interfacial layers. Recently, we developed an imaging technique based on SHG for quantifying and localizing nanoporation in the plasma membrane of living cells. Nanosecond pulsed electric fields (nsPEF) were used to controllably disrupt the membrane, and the observed changes were validated against an extensible cell circuit model. In this talk, I will discuss the development of this method and its application to various cell types and stimuli, with a specific focus on bipolar (BP) nsPEF. BP nsPEF hold special interest as a cellular insult because they allow for a unique exposition of transmembrane potential and membrane charging/relaxation. Using this approach, we examine the structural response of the membrane as the temporal spacing between pulse phases was varied over several orders of magnitude and compare these results to the response when the cell is exposed to a monopolar (MP) nsPEF. Disagreement of the experimental results with the model demonstrates that biological processes may play a larger role than previously thought. These findings could lead to a greater understanding of the fundamental processes essential to all electroporation.
Bipolar Nickel-Metal Hydride Battery Development Project
NASA Technical Reports Server (NTRS)
Cole, John H.
1999-01-01
This paper reviews the development of the Electro Energy, Inc.'s bipolar nickel metal hydride battery. The advantages of the design are that each cell is individually sealed, and that there are no external cell terminals, no electrode current collectors, it is compatible with plastic bonded electrodes, adaptable to heat transfer fins, scalable to large area, capacity and high voltage. The design will allow for automated flexible manufacturing, improved energy and power density and lower cost. The development and testing of the battery's component are described. Graphic presentation of the results of many of the tests are included.
Csillik, B; Nemcsók, J; Boncz, I; Knyihár-Csillik, E
1998-01-01
Nitric oxide synthase (NOS) and the nicotinic acetylcholine receptor (nAChR) immunoreactivity of the cerebral cortex was studied in adult Macaca fascicularis monkeys at light- and electron microscopic levels. NOS was located by means of the polyclonal antibodies developed by Transduction Laboratories (Lexington, KY, USA), as primary serum, in a dilution of 1:1000, and nAChR was located by means of biotinylated alpha-bungarotoxin (BTX) obtained from Molecular probes (Eugene, Oregon, USA) in a dilution of 1:2000. While endothelial eNOS outlined blood vessels in the brain, brain-derived (neural) bNOS labelled three well-defined cell types in area 46 of the prefrontal cortex, viz. (a) bipolar cells, scattered through layers III to V, equipped with long dendrites which pass over the thickness of the cortex in a right angle to the pial surface, establishing dendritic bundles closely reminiscent of a columnar organization; (b) large multipolar cells, located mainly in layers V and VI, with axons which interconnect dendritic bundles of the bipolar cells and establish synapses with dendritic shafts and spines of the former; and (c) stellate cells, located in lamina II and III, which establish an axonal network in lamina zonalis (lamina I). This arrangement is most characteristic in area 46 of the prefrontal cortex; areas 10 and 12 display similar features. In contrast, the primary visual cortex (area 17), is lacking any sign of columnar organization. Localization of bNOS immunoreactivity is at marked variance to that of NADPH-diaphorase which labels large pyramidal cells in the primate cortex. Binding of alpha-bungarotoxin (BTX) which labels the alpha 7 subunit of nAChR is located in somata, dendrites and axons of interneurons scattered over the entire width of the prefrontal cortex; on the other hand, the monoclonal antibody mAb 35 which labels subunits alpha 1, alpha 3 and alpha 5 in the main immunogenic region of the receptor, visualizes apical dendritic shafts similar to those like bNOS. Strategic localization of bNOS in the primate prefrontal cortex fulfills criteria of producing a freely diffusing retrograde messenger molecule operative in signal transduction routes subserving topography and columnar organization of the cortex, as well as long-term potentiation and long-term depression phenomena underlying mnemonic and gnostic functions. Common occurrence of bNOS and nAChR in identical or similar structures in the prefrontal cortex suggests that interactions between nitrogen oxide and presynaptically released acetylcholine might be involved in the metasynaptic organization of the cerebral cortex, operating in a non-synaptic manner in maintaining optimal performance on cognitive tasks.
CİNGİ YİRÜN, Merve; ÜNAL, Kübranur; ALTUNSOY ŞEN, Neslihan; YİRÜN, Onur; AYDEMİR, Çiğdem; GÖKA, Erol
2016-01-01
Introduction Bipolar disorder is one of the most debilitating psychiatric disorders characterized by disruptive episodes of mania/hypomania and depression. Considering the complex role of biological and environmental factors in the etiology of affective disorders, recent studies have focused on oxidative stress, which may damage nerve cell components and take part in pathophysiology. The aim of the present study was to contribute to the data about oxidative stress in bipolar disorder by detecting the total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels of manic episode (ME) and euthymic (EU) patients and by comparing these results with those of healthy controls (HCs). Methods The study population consisted of 28 EU outpatients meeting the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria for bipolar disorder I and 23 inpatients who were currently hospitalized in a psychiatry ward with the diagnosis of the bipolar disorder ME according to the DSM-5 criteria. Forty-three healthy subjects were included in the study as the control group (HC). Serum TAS, TOS, and OSI levels of all the participants were determined. Results Statistical analysis of serum TAS, TOS, and OSI levels did not show any significant differences between the ME patients, EU patients, and HCs. Comparison between the bipolar disorder patients (ME+EU) and HC also did not reveal any statistically significant difference between these two groups in terms of serum TAS, TOS, and OSI levels. Conclusion To date, studies on oxidative stress in bipolar disorder have led to controversial results. In the present study, no statistically significant difference was detected between the oxidative parameters of bipolar disorder patients and HCs. In order to comprehensively evaluate oxidative stress in bipolar disorder, further studies are needed. PMID:28373794
Cingi Yirün, Merve; Ünal, Kübranur; Altunsoy Şen, Neslihan; Yirün, Onur; Aydemir, Çiğdem; Göka, Erol
2016-09-01
Bipolar disorder is one of the most debilitating psychiatric disorders characterized by disruptive episodes of mania/hypomania and depression. Considering the complex role of biological and environmental factors in the etiology of affective disorders, recent studies have focused on oxidative stress, which may damage nerve cell components and take part in pathophysiology. The aim of the present study was to contribute to the data about oxidative stress in bipolar disorder by detecting the total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels of manic episode (ME) and euthymic (EU) patients and by comparing these results with those of healthy controls (HCs). The study population consisted of 28 EU outpatients meeting the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria for bipolar disorder I and 23 inpatients who were currently hospitalized in a psychiatry ward with the diagnosis of the bipolar disorder ME according to the DSM-5 criteria. Forty-three healthy subjects were included in the study as the control group (HC). Serum TAS, TOS, and OSI levels of all the participants were determined. Statistical analysis of serum TAS, TOS, and OSI levels did not show any significant differences between the ME patients, EU patients, and HCs. Comparison between the bipolar disorder patients (ME+EU) and HC also did not reveal any statistically significant difference between these two groups in terms of serum TAS, TOS, and OSI levels. To date, studies on oxidative stress in bipolar disorder have led to controversial results. In the present study, no statistically significant difference was detected between the oxidative parameters of bipolar disorder patients and HCs. In order to comprehensively evaluate oxidative stress in bipolar disorder, further studies are needed.
Copper-Based OHMIC Contracts for the Si/SiGe Heterojunction Bipolar Transistor Structure
NASA Technical Reports Server (NTRS)
Das, Kalyan; Hall, Harvey
1999-01-01
Silicon based heterojunction bipolar transistors (HBT) with SiGe base are potentially important devices for high-speed and high-frequency microelectronics. These devices are particularly attractive as they can be fabricated using standard Si processing technology. However, in order to realize the full potential of devices fabricated in this material system, it is essential to be able to form low resistance ohmic contacts using low thermal budget process steps and have full compatibility with VLSI/ULSI processing. Therefore, a study was conducted in order to better understand the contact formation and to develop optimized low resistance contacts to layers with doping densities corresponding to the p-type SiGe base and n-type Si emitter regions of the HBTS. These as-grown doped layers were implanted with BF(sub 2) up to 1 X 10(exp 16)/CM(exp 2) and As up to 5 x 10(exp 15)/CM2, both at 30 keV for the p-type SiGe base and n-type Si emitter layers, respectively, in order to produce a low sheet resistance surface layer. Standard transfer length method (TLM) contact pads on both p and n type layers were deposited using an e-beam evaporated trilayer structure of Ti/CufTi/Al (25)A/1500A/250A/1000A). The TLM pads were delineated by a photoresist lift-off procedure. These contacts in the as-deposited state were ohmic, with specific contact resistances for the highest implant doses of the order of 10(exp -7) ohm-CM2 and lower.
NASA Astrophysics Data System (ADS)
Kim, Woo Kyum; Wu, Chaoxing; Kim, Tae Whan
2018-06-01
The electrical characteristics of flexible memristive devices utilizing a graphene oxide (GO):polyvinylpyrrolidone (PVP) nanocomposite charge-trapping layer with a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)-modified layer fabricated on an indium-tin-oxide (ITO)-coated polyethylene glycol naphthalate (PEN) substrate were investigated. Current-voltage (I-V) curves for the Al/GO:PVP/PEDOT:PSS/ITO/PEN devices showed remarkable hysteresis behaviors before and after bending. The maximum memory margins of the devices before and after 100 bending cycles were approximately 7.69 × 103 and 5.16 × 102, respectively. The devices showed nonvolatile memory effect with a retention time of more than 1 × 104 s. The "Reset" voltages were distributed between 2.3 and 3.5 V, and the "Set" voltages were dispersed between -0.7 and -0.2 V, indicative of excellent, uniform electrical performance. The endurance number of ON/OFF-switching and bending cycles for the devices was 1 × 102, respectively. The bipolar resistive switching behavior was explained on the basis of I-V results. In particular, the bipolar resistive switching behaviors of the LRS and the HRS for the devices are dominated by the Ohmic and space charge current mechanisms, respectively.
Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells
Taverna, Elena; Mora-Bermúdez, Felipe; Strzyz, Paulina J.; Florio, Marta; Icha, Jaroslav; Haffner, Christiane; Norden, Caren; Wilsch-Bräuninger, Michaela; Huttner, Wieland B.
2016-01-01
Apical radial glia (aRG), the stem cells in developing neocortex, are unique bipolar epithelial cells, extending an apical process to the ventricle and a basal process to the basal lamina. Here, we report novel features of the Golgi apparatus, a central organelle for cell polarity, in mouse aRGs. The Golgi was confined to the apical process but not associated with apical centrosome(s). In contrast, in aRG-derived, delaminating basal progenitors that lose apical polarity, the Golgi became pericentrosomal. The aRG Golgi underwent evolutionarily conserved, accordion-like compression and extension concomitant with cell cycle-dependent nuclear migration. Importantly, in line with endoplasmic reticulum but not Golgi being present in the aRG basal process, its plasma membrane contained glycans lacking Golgi processing, consistent with direct ER-to-cell surface membrane traffic. Our study reveals hitherto unknown complexity of neural stem cell polarity, differential Golgi contribution to their specific architecture, and fundamental Golgi re-organization upon cell fate change. PMID:26879757
NASA Astrophysics Data System (ADS)
Liu, Xiaojuan; Wu, Tao; Dai, Zengxin; Tao, Keran; Shi, Yong; Peng, Chuang; Zhou, Xiaohang; Chen, George Z.
2016-03-01
Stacked electrolysers with titanium bipolar plates are constructed for electrodeposition of polypyrrole electrodes for supercapacitors. The cathode side of the bipolar Ti plates are pre-coated with activated carbon. In this new design, half electrolysis occurs which significantly lowers the deposition voltage. The deposited electrodes are tested in a symmetrical unit cell supercapacitor and an asymmetrical supercapacitor stack. Both devices show excellent energy storage performances and the capacitance values are very close to the design value, suggesting a very high current efficiency during the electrodeposition. The electrolyser stack offers multi-fold benefits for preparation of conducting polymer electrodes, i.e. low energy consumption, facile control of the electrode capacitance and simultaneous preparation of a number of identical electrodes. Therefore, the stacked bipolar electrolyser is a technology advance that offers an engineering solution for mass production of electrodeposited conducting polymer electrodes for supercapacitors.
Electrochemical Device Comprising an Electrically-Conductive, Selectively-Permeable Membrane
NASA Technical Reports Server (NTRS)
Laicer, Castro S. T. (Inventor); Mittelsteadt, Cortney K. (Inventor); Harrison, Katherine E. (Inventor); McPheeters, Bryn M. (Inventor)
2017-01-01
An electrochemical device, such as a fuel cell or an electrolyzer. In one embodiment, the electrochemical device includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, the membrane including a solid polymer electrolyte and a non-particulate, electrically-conductive material, such as carbon nanotubes, carbon nanofibers, and/or metal nanowires. In addition, each bipolar plate also includes an electrically-conductive fluid chamber in contact with the electrically-conductive, selectively-permeable membrane and further includes a non-porous and electrically-conductive plate in contact with the fluid chamber.
Zhang, Jun; Diamond, Jeffrey S.
2014-01-01
Retinal ganglion cells (RGCs) receive excitatory glutamatergic input from ON and OFF bipolar cells in distinct sublaminae of the inner plexiform layer (IPL). AMPA and NMDA receptors (AMPARs and NMDARs) mediate excitatory inputs in both synaptic layers, but specific roles for NMDARs at RGC synapses remain unclear. NMDARs comprise NR1 and NR2 subunits and are anchored by membrane associated guanylate kinases (MAGUKs), but it is unknown whether particular NR2 subunits associate preferentially with particular NR1 splice variants and MAGUKs. Here, we used postembedding immunogold electron microscopy (EM) techniques to examine the subsynaptic localization of NMDAR subunits and MAGUKs at ON and OFF synapses onto rat RGCs. We found that the NR2A subunit, the NR1C2‘ splice variant and MAGUKs PSD-95 and PSD-93 are localized to the postsynaptic density (PSD), preferentially at OFF synapses, whereas the NR2B subunit, the NR1C2 splice variant and the MAGUK SAP102 are localized perisynaptically, with NR2B exhibiting a preference for ON synapses. Consistent with these anatomical data, spontaneous EPSCs (sEPSCs) recorded from OFF cells exhibited an NMDAR component that was insensitive to the NR2B antagonist Ro 25-6981. In ON cells, sEPSCs expressed an NMDAR component, partially sensitive to Ro 25-6981, only when glutamate transport was inhibited, indicating perisynaptic expression of NR2B NMDARs. These results provide the first evidence for preferential association of particular NR1 splice variants, NR2 subunits and MAGUKs at central synapses and suggest that different NMDAR subtypes may play specific roles at functionally distinct synapses in the retinal circuitry. PMID:19339621
Chen, Fred K; Chew, Avenell L; Zhang, Dan; Chen, Shang-Chih; Chelva, Enid; Chandrasekera, Erandi; Koay, Eleanor M H; Forrester, John; McLenachan, Samuel
2017-06-01
Paraneoplastic retinopathy can be the first manifestation of systemic malignancy. A subset of paraneoplastic retinopathy is characterized by negative-type electroretinography (ERG) without fundus abnormality. Here we describe the multimodal imaging and clinico-pathological correlation of a unique case of acute progressive paravascular placoid neuroretinopathy with suspected retinal depolarizing bipolar cell dysfunction preceding the diagnosis of metastatic small cell carcinoma of the prostate. ERG was performed according to the International Society for Clinical Electrophysiology of Vision standards. Imaging modalities included near-infrared reflectance, blue-light autofluorescence, fluorescein and indocyanine green angiographies, spectral domain optical coherence tomography, ultra-widefield colour and green-light autofluorescence imaging, microperimetry and adaptive optics imaging. Patient serum was screened for anti-retinal antibodies using western blotting. Immunostaining and histological analyses were performed on sections from human retinal tissues and a patient prostate biopsy. Serial multimodal retinal imaging, microperimetry and adaptive optics photography demonstrated a paravascular distribution of placoid lesions characterized by hyper-reflectivity within the outer nuclear layer resembling type 2 acute macular neuroretinopathy. There was no visible lesion within the inner nuclear layer despite electronegative-type ERG. Six months later, the patient presented with metastatic small cell carcinoma of the prostate. Tumour cells were immunopositive for glyceraldehyde-3-phosphate dehydrogenase, enolase and recoverin as well as neuroendocrine markers. The patient's serum reacted to cytoplasmic and nuclear antigens in the prostate biopsy and in human retina. Anti-retinal antibodies against several antigens were detected by both commercial and in-house western blots. A spectrum of autoreactive anti-retinal antibodies is associated with a unique phenotype of acute progressive paravascular placoid neuroretinopathy resulting in degeneration of photoreceptor cells, inner retinal dysfunction and classic electronegative ERG in paraneoplastic retinopathy. Detailed clinical, functional and immunological phenotyping of paraneoplastic retinopathy illustrated the complex mechanism of paraneoplastic syndrome.
Charles, Ellen F; Lambert, Christophe G; Kerner, Berit
2016-12-01
Bipolar disorder refers to a group of chronic psychiatric disorders of mood and energy levels. While dramatic psychiatric symptoms dominate the acute phase of the diseases, the chronic course is often determined by an increasing burden of co-occurring medical conditions. High rates of diabetes mellitus in patients with bipolar disorder are particularly striking, yet unexplained. Treatment and lifestyle factors could play a significant role, and some studies also suggest shared pathophysiology and risk factors. In this systematic literature review, we explored data around the relationship between bipolar disorder and diabetes mellitus in recently published population-based cohort studies with special focus on the elderly. A systematic search in the PubMed database for the combined terms "bipolar disorder" AND "elderly" AND "diabetes" in papers published between January 2009 and December 2015 revealed 117 publications; 7 studies were large cohort studies, and therefore, were included in our review. We found that age- and gender- adjusted risk for diabetes mellitus was increased in patients with bipolar disorder and vice versa (odds ratio range between 1.7 and 3.2). Our results in large population-based cohort studies are consistent with the results of smaller studies and chart reviews. Even though it is likely that heterogeneous risk factors may play a role in diabetes mellitus and in bipolar disorder, growing evidence from cell culture experiments and animal studies suggests shared disease mechanisms. Furthermore, disease-modifying effects of bipolar disorder and diabetes mellitus on each other appear to be substantial, impacting both treatment response and outcomes. The risk of diabetes mellitus in patients with bipolar disorder is increased. Our findings add to the growing literature on this topic. Increasing evidence for shared disease mechanisms suggests new disease models that could explain the results of our study. A better understanding of the complex relationship between bipolar disorder and diabetes mellitus could lead to novel therapeutic approaches and improved outcomes.
Two R7 RGS proteins shape retinal bipolar cell signaling
Mojumder, Deb Kumar; Qian, Yan; Wensel, Theodore G.
2009-01-01
RGS7, RGS11, and their binding partner Gβ5 are localized to the dendritic tips of retinal ON bipolar cells (ON-BPC), where mGluR6 responds to glutamate released from photoreceptor terminals by activation of the RGS7/RGS11 substrate, Gαo. To determine their functions in retinal signaling, we investigated cell-specific expression patterns of RGS7 and RGS11 by immunostaining, and measured light responses by electroretinography (ERG) in mice with targeted disruptions of the genes encoding them. RGS7 staining is present in dendritic tips of all rod ON-BPC, but missing in those for subsets of cone ON-BPC, whereas the converse was true for RGS11 staining. Genetic disruption of either RGS7 or RGS11 produced delays in the ON-BPC-derived electroretinogram b-wave, but no changes in the photoreceptor-derived a-wave. Homozygous RGS7 mutant mice had delays in rod-driven b-waves, whereas, RGS11 mutant mice had delays in rod-driven, and especially in cone-driven b-waves. The b-wave delays were further enhanced in mice homozygous for both RGS7 and RGS11 gene disruptions. Thus, RGS7 and RGS11 act in parallel to regulate the kinetics of ON bipolar cell responses, with differential impacts on the rod and cone pathways. PMID:19535587
Life cycle test results of a bipolar nickel hydrogen battery
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1985-01-01
A history is given of low Earth orbit (LEO) laboratory test data on a 6.5 ampere-hour bipolar nickel hydrogen battery designed and built at the NASA Lewis Research Center. The bipolar concept is a means of achieving the goal of producing an acceptable battery, of higher energy density, able to withstand the demands of low-Earth-orbit regimes. Over 4100 LEO cycles were established on a ten cell battery. It seems that any perturbation on normal cycling effects the cells performance. Explanations and theories of the battery's behavior are varied and widespread among those closely associated with it. Deep discharging does provide a reconditioning effect and further experimentation is planned in this area. The battery watt-hour efficiency is about 75 percent and the time averaged, discharge voltage is about 1.26 volts for all cells at both the C/4 and LEO rate. Since a significant portion of the electrode capacity has degraded, the LEO cycle discharges are approaching depths of 90 to 100 percent of the high rate capacity. Therefore, the low end-of-discharge voltages occur precipitously after the knee of the discharge curve and is more an indication of electrode capacity and is a lesser indicator of overall cell performance.
Simulation of bipolar charge transport in nanocomposite polymer films
NASA Astrophysics Data System (ADS)
Lean, Meng H.; Chu, Wei-Ping L.
2015-03-01
This paper describes 3D particle-in-cell simulation of bipolar charge injection and transport through nanocomposite film comprised of ferroelectric ceramic nanofillers in an amorphous polymer matrix. The classical electrical double layer (EDL) model for a monopolar core is extended (eEDL) to represent the nanofiller by replacing it with a dipolar core. Charge injection at the electrodes assumes metal-polymer Schottky emission at low to moderate fields and Fowler-Nordheim tunneling at high fields. Injected particles migrate via field-dependent Poole-Frenkel mobility and recombine with Monte Carlo selection. The simulation algorithm uses a boundary integral equation method for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit assuring robust and rapid convergence. The model is capable of simulating a wide dynamic range spanning leakage current to pre-breakdown. Simulation results for BaTiO3 nanofiller in amorphous polymer matrix indicate that charge transport behavior depend on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and therefore lowest level of charge trapping in the interaction zone. Charge recombination is also highest, at the cost of reduced leakage conduction charge. The eEDL model predicts the meandering pathways of charge particle trajectories.
Are hematopoietic stem cells involved in hepatocarcinogenesis?
Facciorusso, Antonio; Antonino, Matteo; Del Prete, Valentina; Neve, Viviana; Scavo, Maria Principia; Barone, Michele
2014-08-01
THE LIVER HAS THREE CELL LINEAGES ABLE TO PROLIFERATE AFTER A HEPATIC INJURY: the mature hepatocyte, the ductular "bipolar" progenitor cell termed "oval cell" and the putative periductular stem cell. Hepatocytes can only produce other hepatocytes whereas ductular progenitor cells are considerate bipolar since they can give rise to biliary cells or hepatocytes. Periductular stem cells are rare in the liver, have a very long proliferation potential and may be multipotent, being this aspect still under investigation. They originate in the bone marrow since their progeny express genetic markers of donor hematopoietic cells after bone marrow transplantation. Since the liver is the hematopoietic organ of the fetus, it is possible that hematopoietic stem cells may reside in the liver of the adult. This assumption is proved by the finding that oval cells express hematopoietic markers like CD34, CD45, CD 109, Thy-1, c-kit, and others, which are also expressed by bone marrow-derived hematopoietic stem cells (BMSCs). Few and discordant studies have evaluated the role of BMSC in hepatocarcinogenesis so far and further studies in vitro and in vivo are warranted in order to definitively clarify such an issue.
Lv, Lei; Zhang, Tianwei; Yi, Qiyi; Huang, Yun; Wang, Zheng; Hou, Heli; Zhang, Huan; Zheng, Wei; Hao, Qiaomei; Guo, Zongyou; Cooke, Howard J; Shi, Qinghua
2012-08-01
Most ovarian cancers originate from the ovarian surface epithelium and are characterized by aneuploid karyotypes. Aneuploidy, a consequence of chromosome instability, is an early event during the development of ovarian cancers. However, how aneuploid cells are evolved from normal diploid cells in ovarian cancers remains unknown. In the present study, cytogenetic analyses of a mouse syngeneic ovarian cancer model revealed that diploid mouse ovarian surface epithelial cells (MOSECs) experienced an intermediate tetraploid cell stage, before evolving to aneuploid (mainly near-tetraploid) cells. Using long-term live-cell imaging followed by fluorescence in situ hybridization (FISH), we demonstrated that tetraploid cells originally arose from cytokinesis failure of bipolar mitosis in diploid cells, and gave rise to aneuploid cells through chromosome mis-segregation during both bipolar and multipolar mitoses. Injection of the late passage aneuploid MOSECs resulted in tumor formation in C57BL/6 mice. Therefore, we reveal a pathway for the evolution of diploid to aneuploid MOSECs and elucidate a mechanism for the development of near-tetraploid ovarian cancer cells.
Boubakar, Leila; Falk, Julien; Ducuing, Hugo; Thoinet, Karine; Reynaud, Florie; Derrington, Edmund; Castellani, Valérie
2017-08-16
Transmission of polarity established early during cell lineage history is emerging as a key process guiding cell differentiation. Highly polarized neurons provide a fascinating model to study inheritance of polarity over cell generations and across morphological transitions. Neural crest cells (NCCs) migrate to the dorsal root ganglia to generate neurons directly or after cell divisions in situ. Using live imaging of vertebrate embryo slices, we found that bipolar NCC progenitors lose their polarity, retracting their processes to round for division, but generate neurons with bipolar morphology by emitting processes from the same locations as the progenitor. Monitoring the dynamics of Septins, which play key roles in yeast polarity, indicates that Septin 7 tags process sites for re-initiation of process growth following mitosis. Interfering with Septins blocks this mechanism. Thus, Septins store polarity features during mitotic rounding so that daughters can reconstitute the initial progenitor polarity. Copyright © 2017 Elsevier Inc. All rights reserved.
Telomere length in bipolar disorder and lithium response.
Squassina, Alessio; Pisanu, Claudia; Corbett, Nathan; Alda, Martin
2017-06-01
Telomeres consist of exanucleotide tandem repeats and proteins complexes at the end of chromosome ends. Telomeres shorten at each cell division, and as such telomere length is a marker of cellular age. Accelerated telomere shortening and cell senescence have been associated with a number of chronic medical conditions, including psychiatric disorders, where increased prevalence of age-related disorders and shorter telomere length have been reported. Shorter telomeres in psychiatric patients are thought to be the consequence of allostatic load, consisting in the overactivation of allostatic systems due to chronic exposure to severe medical conditions and failure to adapt to chronic stressful stimuli. Most of the studies on telomere length in psychiatry have focused on major depressive disorder, but recent findings have shown shorter leukocyte telomere length in bipolar disorder patients and suggested that lithium may counteract telomeres shortening. These findings provided new insights into the pathophysiology of bipolar disorder and the mechanism of action of lithium. In this review we will present findings from the literature on telomere length in bipolar disorder, with a specific focus on lithium. We will also discuss advances and limitations of published work as well as methodological issues and potential confounding factors that should be taken into account when designing research protocols to study telomere length. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
Forming-free bipolar resistive switching in nonstoichiometric ceria films
NASA Astrophysics Data System (ADS)
Ismail, Muhammad; Huang, Chun-Yang; Panda, Debashis; Hung, Chung-Jung; Tsai, Tsung-Ling; Jieng, Jheng-Hong; Lin, Chun-An; Chand, Umesh; Rana, Anwar Manzoor; Ahmed, Ejaz; Talib, Ijaz; Nadeem, Muhammad Younus; Tseng, Tseung-Yuen
2014-01-01
The mechanism of forming-free bipolar resistive switching in a Zr/CeO x /Pt device was investigated. High-resolution transmission electron microscopy and energy-dispersive spectroscopy analysis indicated the formation of a ZrO y layer at the Zr/CeO x interface. X-ray diffraction studies of CeO x films revealed that they consist of nano-polycrystals embedded in a disordered lattice. The observed resistive switching was suggested to be linked with the formation and rupture of conductive filaments constituted by oxygen vacancies in the CeO x film and in the nonstoichiometric ZrO y interfacial layer. X-ray photoelectron spectroscopy study confirmed the presence of oxygen vacancies in both of the said regions. In the low-resistance ON state, the electrical conduction was found to be of ohmic nature, while the high-resistance OFF state was governed by trap-controlled space charge-limited mechanism. The stable resistive switching behavior and long retention times with an acceptable resistance ratio enable the device for its application in future nonvolatile resistive random access memory (RRAM).
NASA Astrophysics Data System (ADS)
Yamaura, S.; Yokoyama, M.; Kimura, H. M.; Inoue, A.
2009-01-01
Alloy optimization in the Ni80-xCrxP16B4 (x = 9-30 at%) alloy system was conducted in order to achieve low Tg, Tx and a large ΔTx. From this study, the Ni65Cr15P16B4 glassy alloy was found to be the optimal alloy. The static and potentiodynamic corrosion behaviours of this alloy were measured. As a result of polarization measurements, it was found that the current density of the non-polished glassy alloy sample was smaller than that of a SUS316L sample. By contrast, the current density of the surface-polished glassy sample was slightly larger than that of the SUS316L sample in the voltage range of 0.3-0.8 V. A bipolar plate was successfully produced by hot-pressing the glassy alloy sheet in a supercooled liquid state. The I-V characteristics of a single cell with the glassy bipolar plates were measured.
Contact behavior modelling and its size effect on proton exchange membrane fuel cell
NASA Astrophysics Data System (ADS)
Qiu, Diankai; Peng, Linfa; Yi, Peiyun; Lai, Xinmin; Janßen, Holger; Lehnert, Werner
2017-10-01
Contact behavior between the gas diffusion layer (GDL) and bipolar plate (BPP) is of significant importance for proton exchange membrane fuel cells. Most current studies on contact behavior utilize experiments and finite element modelling and focus on fuel cells with graphite BPPs, which lead to high costs and huge computational requirements. The objective of this work is to build a more effective analytical method for contact behavior in fuel cells and investigate the size effect resulting from configuration alteration of channel and rib (channel/rib). Firstly, a mathematical description of channel/rib geometry is outlined in accordance with the fabrication of metallic BPP. Based on the interface deformation characteristic and Winkler surface model, contact pressure between BPP and GDL is then calculated to predict contact resistance and GDL porosity as evaluative parameters of contact behavior. Then, experiments on BPP fabrication and contact resistance measurement are conducted to validate the model. The measured results demonstrate an obvious dependence on channel/rib size. Feasibility of the model used in graphite fuel cells is also discussed. Finally, size factor is proposed for evaluating the rule of size effect. Significant increase occurs in contact resistance and porosity for higher size factor, in which channel/rib width decrease.
[Tyrosine hydroxylase in telencephalon and diencephalon of Rhodeus sericeus (Cyprinidae)].
Pushchina, E V
2009-01-01
Immunohistochemical labeling of tyrosine hydroxylase was used to demonstrate catecholaminergic neuronal populations in the telencephalon and diencephalonof adult cypryniform fish Rhodeus sericeus. Various immunoreactive cell populations have been found in the telencephalon (ventral, central and lateral nuclei of ventral telencephalic area). Immunoreactive cells and fibers were discovered in dorsal nucleus of ventral telencephalic area and supracomissural nucleus in the caudal part of the telencephalon. In the diencephalon, periventricular nuclei (preoptic, periventricular nucleus of posterior tuberculum and periventricular organ) contained considerable TH-ergic cells. High activity of tyrosine hydroxylase was revealed in the pretectal, ventro-medial, ventro-lateral and suprachiasmatic nuclei. Periventricular hypothalamic nuclei also displayed high activity of tyrosine hydroxylase. Pseudounipolar neurons prevailed in all TH-immunereactive structures of the telencephalon and diencephalon: numerous bipolar liquor-contacting cells were discovered in the periventricular nuclei. Large pear-shaped cells and bipolar TH-ergic cells were found in posterior tuberculum. These cells may be functionally related to the dopamine-acquiring system.
Component variations and their effects on bipolar nickel-hydrogen cell performance
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Gahn, Randall F.; Gonzalez-Sanabria, Olga D.; Cataldo, Robert L.; Gemeiner, Russel P.
1987-01-01
A 50 cell bipolar nickel-hydrogen battery was assembled to demonstrate the feasibility of constructing a high voltage stack of cells. Various component combinations were tested in this battery. The battery had approximately 1 ampere-hour of capacity and was constructed from components with an active area of 2 x 2 inches. The components were parametrically varied to give a comparison of nickel electrodes, hydrogen electrodes, separators, fill procedures and electrolyte reservoir plate thicknesses. Groups of five cells were constructed using the same components; ten combinations were tested in all. The battery was thoroughly characterized at various change and discharge rates as well as with various pulse patterns and rates. Over a period of 1400 40-percent DOD LEO cycles some of the groups began to exhibit performance differences. In general, only separator variations had a significant effect on cell performance. It also appears that shunt currents may have been operating within the stack, resulting in electrolyte transfer from one cell to another, thus contributing to cell performance variations.
Component variations and their effects on bipolar nickel-hydrogen cell performance
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Gahn, Randall F.; Gonzalez-Sanabria, Olga D.; Cataldo, Robert L.; Gemeiner, Russel P.
1987-01-01
A 50 cell bipolar nickel-hydrogen battery was assembled to demonstrate the feasibility of constructing a high voltage stack of cells. Various component combinations were tested in this battery. The battery had approximately 1 ampere-hour of capacity and was constructed from components with an active area of 2" X 2". The components were parametrically varied to give a comparison of nickel electrodes, hydrogen electrodes, separators, fill procedures and electrolyte reservoir plate thicknesses. Groups of five cells were constructed using the same components; ten combinations were tested in all. The battery was thoroughly characterized at various change and discharge rates as well as with various pulse patterns and rates. Over a period of 1400 40% DOD LEO cycles some of the groups began to exhibit performance differences. In general, only separator variations had a significant effect on cell performance. It also appears that shunt currents may have been operating within the stack, resulting in electrolyte transfer from one cell to another, thus contributing to cell performance variations.
Fabrication of 4H-SiC n-channel IGBTs with ultra high blocking voltage
NASA Astrophysics Data System (ADS)
Yang, Xiaolei; Tao, Yonghong; Yang, Tongtong; Huang, Runhua; Song, Bai
2018-03-01
Owing to the conductivity modulation of silicon carbide (SiC) bipolar devices, n-channel insulated gate bipolar transistors (n-IGBTs) have a significant advantage over metal oxide semiconductor field effect transistors (MOSFETs) in ultra high voltage (UHV) applications. In this paper, backside grinding and laser annealing process were carried out to fabricate 4H-SiC n-IGBTs. The thickness of a drift layer was 120 μm, which was designed for a blocking voltage of 13 kV. The n-IGBTs carried a collector current density of 24 A/cm2 at a power dissipation of 300 W/cm2 when the gate voltage was 20 V, with a differential specific on-resistance of 140 mΩ·cm2.
10 K gate I(2)L and 1 K component analog compatible bipolar VLSI technology - HIT-2
NASA Astrophysics Data System (ADS)
Washio, K.; Watanabe, T.; Okabe, T.; Horie, N.
1985-02-01
An advanced analog/digital bipolar VLSI technology that combines on the same chip 2-ns 10 K I(2)L gates with 1 K analog devices is proposed. The new technology, called high-density integration technology-2, is based on a new structure concept that consists of three major techniques: shallow grooved-isolation, I(2)L active layer etching, and I(2)L current gain increase. I(2)L circuits with 80-MHz maximum toggle frequency have developed compatibly with n-p-n transistors having a BV(CE0) of more than 10 V and an f(T) of 5 GHz, and lateral p-n-p transistors having an f(T) of 150 MHz.
NASA Astrophysics Data System (ADS)
Hao, Aize; Ismail, Muhammad; He, Shuai; Huang, Wenhua; Qin, Ni; Bao, Dinghua
2018-02-01
The coexistence of unipolar and bipolar resistive switching (RS) behaviors of Ag-nanoparticles (Ag-NPs) doped NiFe2O4 (NFO) based memory devices was investigated. The switching voltages of required operations in the unipolar mode were smaller than those in the bipolar mode, while ON/OFF resistance levels of both modes were identical. Ag-NPs doped NFO based devices could switch between the unipolar and bipolar modes just by preferring the polarity of RESET voltage. Besides, the necessity of identical compliance current during the SET process of unipolar and bipolar modes provided an additional advantage of simplicity in device operation. Performance characteristics and cycle-to-cycle uniformity (>103 cycles) in unipolar operation were considerably better than those in bipolar mode (>102 cycles) at 25 °C. Moreover, good endurance (>600 cycles) at 200 °C was observed in unipolar mode and excellent nondestructive retention characteristics were obtained on memory cells at 125 °C and 200 °C. On the basis of temperature dependence of resistance at low resistance state, it was believed that physical origin of the RS mechanism involved the formation/rupture of the conducting paths consisting of oxygen vacancies and Ag atoms, considering Joule heating and electrochemical redox reaction effects for the unipolar and bipolar resistive switching behaviors. Our results demonstrate that 0.5% Ag-NPs doped nickel ferrites are promising resistive switching materials for resistive access memory applications.
NASA Astrophysics Data System (ADS)
Li, Qiushi; Gong, Jian; Peng, Sikan; Lu, Shanfu; Sui, Pang-Chieh; Djilali, Ned; Xiang, Yan
2016-03-01
The bipolar membrane fuel cells (BPMFCs), which have a unique acid-alkaline jointed membrane electrode assembly (MEA) structure, have demonstrated their great potential for self-humidification during operation. Although the self-humidification ability of such bipolar membranes (BPMs) has recently been validated by a one-dimensional BPM model, the transport mechanism and the formation of self-humidification in the MEAs are not well understood. In the present study, a two-dimensional cross-channel MEA model is developed to elucidate the mechanisms and enhancement of water transport on self-humidification with comprehensive consideration of the three electrochemical reaction zones. The water-formation interface model has been successfully investigated by theoretical and experimental interface reaction kinetics, streamlines of water flux present the formation process and mechanism of self-humidification. A critical current (voltage) value, beyond which self-humidification is initiated, is identified. It is also found that such critical current (voltage) can be adjusted by changing the membrane thickness and the water uptake property of the ionomer. It is concluded that fabricating BPMs with proper membrane thickness and water uptake property are effective strategies to enhance the water management and cell performance in BPMFCs.
The effect of lithium on hematopoietic, mesenchymal and neural stem cells.
Ferensztajn-Rochowiak, Ewa; Rybakowski, Janusz K
2016-04-01
Lithium has been used in modern psychiatry for more than 65 years, constituting a cornerstone for the long-term treatment of bipolar disorder. A number of biological properties of lithium have been discovered, including its hematological, antiviral and neuroprotective effects. In this article, a systematic review of the effect of lithium on hematopoietic, mesenchymal and neural stem cells is presented. The beneficial effects of lithium on the level of hematopoietic stem cells (HSC) and growth factors have been reported since 1970s. Lithium improves homing of stem cells, the ability to form colonies and HSC self-renewal. Lithium also exerts a favorable influence on the proliferation and maintenance of mesenchymal stem cells (MSC). Studies on the effect of lithium on neurogenesis have indicated an increased proliferation of progenitor cells in the dentate gyrus of the hippocampus and enhanced mitotic activity of Schwann cells. This may be connected with the neuroprotective and neurotrophic effects of lithium, reflected in an improvement in synaptic plasticity promoting cell survival and inhibiting apoptosis. In clinical studies, lithium treatment increases cerebral gray matter, mainly in the frontal lobes, hippocampus and amygdala. Recent findings also suggest that lithium may reduce the risk of dementia and exert a beneficial effect in neurodegenerative diseases. The most important mediators and signaling pathways of lithium action are the glycogen synthase kinase-3 and Wnt/β-catenin pathways. Recently, to study of bipolar disorder pathogenesis and the mechanism of lithium action, the induced pluripotent stem cells (iPSC) obtained from bipolar patients have been used. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
ON-retinal bipolar cell survival in RCS rats.
Zhang, Chen Xing; Yin, Zheng Qin; Chen, Li-Feng; Weng, Chuang-Huang; Zeng, Yu-Xiao
2010-11-01
In retinitis pigmentosa (RP), the slow and progressive death of inner retinal neurons is thought to be inevitable after the death of photoreceptors. However, even in the advanced stage of RP, all inner retinal neurons are not completely lost. The morphological and electrophysiological modifications in ON-retinal bipolar cells (ON-RBCs) of Royal College of Surgeons (RCS) rats (RCS-ON-RBCs) were investigated to elucidate the mechanisms of survival of RCS-ON-RBCs in RP. Control (CTR) and RCS rats were divided into age groups according to postnatal stage: postnatal day 21 (Pn21d), postnatal day 30 (Pn30d), postnatal day 60 (Pn60d), and postnatal day 90 (Pn90d). Lucifer yellow staining of single ON-RBCs and double-immunofluorescence of the retinal frozen sections were used to detect the morphological modifications and loss of RCS-ON-RBCs in different retinal regions. The whole-cell patch clamping technique was used to record the electrophysiological properties of ON-RBCs. There was a significant loss of RCS-ON-RBCs compared with CTR (p < 0.01) at Pn60d. Loss of the RCS-ON-RBCs differed by region. From Pn60d onwards, the loss was more severe in the peripheral retinal regions (p < 0.01). From Pn21d, the ectopic neurites from the RCS-ON-RBCs reached the outer and inner nuclear layers. At Pn60d, terminal branches of RCS-ON-RBCs axons vanished and ectopic neurites from the RCS-ON-RBCs became entwined. The resting membrane potential, input resistance and outward membrane current amplitude of RCS-ON-RBCs were significantly higher than those of the ON-RBCs of CTR rats at Pn60d (p < 0.05). Our results indicate that more RCS-ON-RBCs survived in the central retinal area near cone clusters, potentially as a result of ectopic neuritis. Meanwhile the surviving RCS-ON-RBCs remained immature and had no normal electrophysiological characteristics.
Yu, Xue; Liang, Jiying; Yang, Tiangang; Gong, Mengjie; Xi, Dongman; Liu, Hongyun
2018-01-15
Herein, a resettable and reprogrammable biomolecular keypad lock on the basis of a closed bipolar electrode (BPE) system was established. In this system, one ITO electrode with immobilized chitosan (CS) and glucose oxidase (GOD), designated as CS-GOD, acted as one pole of BPE in the sensing cell; another ITO with electrodeposited Prussian blue (PB) films as the other pole in the reporting cell. The addition of ascorbic acid (AA) in the sensing cell with driving voltage (V tot ) at +2.5V would make the PB films become Prussian white (PW) in the reporting cell, accompanied by the color change from blue to nearly transparent. On the other hand, with the help of oxygen, the addition of glucose in the sensing cell with V tot at -1.5V would induce PW back to PB. The change of color and the corresponding UV-vis absorbance at 700nm for the PB/PW films in the reporting cell could be reversibly switched by changing the solute in the sensing cell between AA and glucose and then switching V tot between +2.5 and -1.5V. Based on these, a keypad lock was developed with AA, glucose and V tot as 3 inputs, and the color change of the PB/PW films as the output. This keypad lock system combined enzymatic catalysis with bipolar electrochemistry, demonstrating some unique advantages such as good reprogrammability, easy resettability and visual readout by naked eye. Copyright © 2017 Elsevier B.V. All rights reserved.
HIRANO, ARLENE A.; BRANDSTÄTTER, JOHANN H.; BRECHA, NICHOLAS C.
2010-01-01
The mechanism underlying transmitter release from retinal horizontal cells is poorly understood. We investigated the possibility of vesicular transmitter release from mammalian horizontal cells by examining the expression of synaptic proteins that participate in vesicular transmitter release at chemical synapses. Using immunocytochemistry, we evaluated the cellular and subcellular distribution of complexin I/II, syntaxin-1, and synapsin I in rabbit retina. Strong labeling for complexin I/II, proteins that regulate a late step in vesicular transmitter release, was found in both synaptic layers of the retina, and in somata of A- and B-type horizontal cells, of γ-aminobutyric acid (GABA)- and glycinergic amacrine cells, and of ganglion cells. Immunoelectron microscopy demonstrated the presence of complexin I/II in horizontal cell processes postsynaptic to rod and cone ribbon synapses. Syntaxin-1, a core protein of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) complex known to bind to complexin, and synapsin I, a synaptic vesicle-associated protein involved in the Ca2+-dependent recruitment of synaptic vesicles for transmitter release, were also present in the horizontal cells and their processes at photoreceptor synapses. Photoreceptors and bipolar cells did not express any of these proteins at their axon terminals. The presence of complexin I/II, syntaxin-1, and synapsin I in rabbit horizontal cell processes and tips suggests that a vesicular mechanism may underlie transmitter release from mammalian horizontal cells. PMID:15912504
Dry etching method for compound semiconductors
Shul, Randy J.; Constantine, Christopher
1997-01-01
A dry etching method. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators.
Dry etching method for compound semiconductors
Shul, R.J.; Constantine, C.
1997-04-29
A dry etching method is disclosed. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators. 1 fig.
Sommer, C M; Lemm, G; Hohenstein, E; Bellemann, N; Stampfl, U; Goezen, A S; Rassweiler, J; Kauczor, H U; Radeleff, B A; Pereira, P L
2013-06-01
This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. We included 22 consecutive patients (3 women; age 74.2 ± 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 ± 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 ± 13.6 min and 43.7 ± 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 ± 8.8 months, local recurrence-free survival was 14.4 ± 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 ± 16.6 ml/min/1.73 m(2) before RF ablation vs. 47.2 ± 11.9 ml/min/1.73 m(2) after RF ablation; not significant). CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.
TMBP200, a XMAP215 homologue of tobacco BY-2 cells, has an essential role in plant mitosis.
Yasuhara, Hiroki; Oe, Yuki
2011-07-01
TMBP200 from tobacco BY-2 cells is a member of the highly conserved family of microtubule-associated proteins that includes Xenopus XMAP215, human TOGp, and Arabidopsis MOR1/GEM1. XMAP215 homologues have an essential role in spindle assembly and function in animals and yeast, but their role in plant mitosis is not fully clarified. Here, we show by immunoblot analysis that TMBP200 levels in synchronously cultured BY-2 cells increased when the cells entered mitosis, thus indicating that TMBP200 plays an important role in mitosis in tobacco. To investigate the role of TMBP200 in mitosis, we employed inducible RNA interference to silence TMBP200 expression in BY-2 cells. The resulting depletion of TMBP200 caused severe defects in bipolar spindle formation and resulted in the appearance of multinucleated cells with variable-sized nuclei. This finding indicates that TMBP200 has an essential role in bipolar spindle formation and function.
Hamazaki, Kei; Maekawa, Motoko; Toyota, Tomoko; Dean, Brian; Hamazaki, Tomohito; Yoshikawa, Takeo
2015-06-30
Postmortem brain studies have shown abnormal levels of n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid, in the frontal cortex (particularly the orbitofrontal cortex) of patients with depression, schizophrenia, or bipolar disorder. However, the results from regions in the frontal cortex other than the orbitofrontal cortex are inconsistent. In this study we investigated whether patients with schizophrenia, bipolar disorder, or major depressive disorder have abnormalities in PUFA levels in the prefrontal cortex [Brodmann area (BA) 8]. In postmortem studies, fatty acids in the phospholipids of the prefrontal cortex (BA8) were evaluated by thin layer chromatography and gas chromatography. Specimens were evaluated for patients with schizophrenia (n=15), bipolar disorder (n=15), or major depressive disorder (n=15) and compared with unaffected controls (n=15). In contrast to previous studies, we found no significant differences in the levels of PUFAs or other fatty acids in the prefrontal cortex (BA8) between patients and controls. Subanalysis by sex also showed no significant differences. No significant differences were found in any individual fatty acids between suicide and non-suicide cases. These psychiatric disorders might be characterized by very specific fatty acid compositions in certain areas of the brain, and BA8 might not be involved in abnormalities of PUFA metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ma, Chaoxiong; Zaino III, Lawrence P.; Bohn, Paul W.
2015-03-25
Self-induced redox cycling at nanopore ring-disk electrodes is coupled, through a bipolar electrode, to a remote fluorigenic reporter reaction. We present a new configuration for coupling fluorescence microscopy and voltammetry using self-induced redox cycling for ultrasensitive electrochemical measurements. An array of nanopores, each supporting a recessed disk electrode separated by 100 nm in depth from a planar multiscale bipolar top electrode, was fabricated using multilayer deposition, nanosphere lithography, and reactive-ion etching. Self-induced redox cycling was induced on the disk electrode producing ~30× current amplification, which was independently confirmed by measuring induced electrogenerated chemiluminescence from Ru(bpy) 3 2/3+/tri-n-propylamine on the floatingmore » bipolar electrode. In this design, redox cycling occurs between the recessed disk and the top planar portion of a macroscopic thin film bipolar electrode in each nanopore. Electron transfer also occurs on a remote (mm-distance) portion of the planar bipolar electrode to maintain electroneutrality. This couples the electrochemical reactions of the target redox pair in the nanopore array with a reporter, such as a potential-switchable fluorescent indicator, in the cell at the distal end of the bipolar electrode. Oxidation or reduction of reversible analytes on the disk electrodes were accompanied by reduction or oxidation, respectively, on the nanopore portion of the bipolar electrode and then monitored by the accompanying oxidation of dihydroresorufin or reduction of resorufin at the remote end of the bipolar electrode, respectively. In both cases, changes in fluorescence intensity were triggered by the reaction of the target couple on the disk electrode, while recovery was largely governed by diffusion of the fluorescent indicator. Reduction of 1 nM of Ru(NH 3) 6 3+ on the nanoelectrode array was detected by monitoring the fluorescence intensity of resorufin, demonstrating high sensitivity fluorescence-mediated electrochemical sensing coupled to self-induced redox cycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Chaoxiong; Zaino III, Lawrence P.; Bohn, Paul W.
Self-induced redox cycling at nanopore ring-disk electrodes is coupled, through a bipolar electrode, to a remote fluorigenic reporter reaction. We present a new configuration for coupling fluorescence microscopy and voltammetry using self-induced redox cycling for ultrasensitive electrochemical measurements. An array of nanopores, each supporting a recessed disk electrode separated by 100 nm in depth from a planar multiscale bipolar top electrode, was fabricated using multilayer deposition, nanosphere lithography, and reactive-ion etching. Self-induced redox cycling was induced on the disk electrode producing ~30× current amplification, which was independently confirmed by measuring induced electrogenerated chemiluminescence from Ru(bpy) 3 2/3+/tri-n-propylamine on the floatingmore » bipolar electrode. In this design, redox cycling occurs between the recessed disk and the top planar portion of a macroscopic thin film bipolar electrode in each nanopore. Electron transfer also occurs on a remote (mm-distance) portion of the planar bipolar electrode to maintain electroneutrality. This couples the electrochemical reactions of the target redox pair in the nanopore array with a reporter, such as a potential-switchable fluorescent indicator, in the cell at the distal end of the bipolar electrode. Oxidation or reduction of reversible analytes on the disk electrodes were accompanied by reduction or oxidation, respectively, on the nanopore portion of the bipolar electrode and then monitored by the accompanying oxidation of dihydroresorufin or reduction of resorufin at the remote end of the bipolar electrode, respectively. In both cases, changes in fluorescence intensity were triggered by the reaction of the target couple on the disk electrode, while recovery was largely governed by diffusion of the fluorescent indicator. Reduction of 1 nM of Ru(NH 3) 6 3+ on the nanoelectrode array was detected by monitoring the fluorescence intensity of resorufin, demonstrating high sensitivity fluorescence-mediated electrochemical sensing coupled to self-induced redox cycling.« less
Nickel-metal hydride battery development. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
Rechargeable batteries are used as the power source for a broad range of portable equipment. Key battery selection criteria typically are weight, volume, first cost, life cycle cost, and environmental impact. Rechargeable batteries are favored from a life cycle cost and environmental impact standpoint over primary batteries. The nickel-metal hydride (Ni-MH) battery system has emerged as the battery of choice for many applications based on its superior characteristics when judged on the above criteria against other battery types. In most cases commercial Ni-MH batteries are constructed with coiled electrodes in cylindrical metal containers. Electro Energy, Inc. (EEI) has been developingmore » a novel flat bipolar configuration of the Ni-MH system that offers weight, volume, and cost advantages when compared to cylindrical cells. The unique bipolar approach consists of fabricating individual flat wafer cells in conductive, carbon-filled, plastic face plates. The individual cells contain a nonconductive plastic border which is heat sealed around the perimeter to make a totally sealed unit cell. Multi-cell batteries are fabricated by stacking the individual wafer cells in such a way that the positive face of one cell contacts the negative face of the adjacent cell. The stack is then contained in an outer housing with end contacts. The purpose of this program was to develop, evaluate, and demonstrate the capabilities of the EEI Ni-MH battery system for consumer applications. The work was directed at the development and evaluation of the compact bipolar construction for its potential advantages of high power and energy density. Experimental investigations were performed on various nickel electrode types, hydride electrode formulations, and alternate separator materials. Studies were also directed at evaluating various oxygen recombination techniques for low pressure operation during charge and overcharge.« less
NASA Astrophysics Data System (ADS)
Chang, Yao-Tang; Sharma, Sunil; Hung, Miao-Ken; Lee, Yu-Hsuan; Chen, Show-An
2016-12-01
σ-π conjugated polymer strategy is proposed for designing electroluminescent host polymers with silylene-diphenylene as the backbone repeat unit giving a high triplet energy (ET = 2.67 eV). By incorporation of high ET (3.0 eV) electron (oxadiazole, OXD) and hole (triphenyl amine, TPA) transport moieties, or TPA alone (in this case, the main chain acts as electron transport channel) as side arms on the silylene, the high ET bipolar and unipolar polymers are formed, allowing a use of iridium green phosphor (Ir(ppy)2(acac), Ir-G) (ET = 2.40 eV) as the dopant. The matching of energy levels of the dopant with the hosts, leading to charge trapping into it; and singlets and triplets of the exciplex and excimer can be harvested via energy transfer to the dopant. Using these host-guest systems as the emitting layer, chlorinated indium-tin-oxide (Cl-ITO) as the anode, and benzimidazole derivative (TPBI) as the electron transport layer, this two-layer device gives the high luminance efficiency 80.1 cd/A and external quantum efficiency 21.2%, which is the best among the report values for polymer light emitting diode (PLED) in the literatures. This example manifests that σ-π conjugated polymer strategy is a promising route for designing polymer host for efficient electrophosphorescence.
Chang, Yao-Tang; Sharma, Sunil; Hung, Miao-Ken; Lee, Yu-Hsuan; Chen, Show-An
2016-01-01
σ-π conjugated polymer strategy is proposed for designing electroluminescent host polymers with silylene-diphenylene as the backbone repeat unit giving a high triplet energy (ET = 2.67 eV). By incorporation of high ET (3.0 eV) electron (oxadiazole, OXD) and hole (triphenyl amine, TPA) transport moieties, or TPA alone (in this case, the main chain acts as electron transport channel) as side arms on the silylene, the high ET bipolar and unipolar polymers are formed, allowing a use of iridium green phosphor (Ir(ppy)2(acac), Ir-G) (ET = 2.40 eV) as the dopant. The matching of energy levels of the dopant with the hosts, leading to charge trapping into it; and singlets and triplets of the exciplex and excimer can be harvested via energy transfer to the dopant. Using these host-guest systems as the emitting layer, chlorinated indium-tin-oxide (Cl-ITO) as the anode, and benzimidazole derivative (TPBI) as the electron transport layer, this two-layer device gives the high luminance efficiency 80.1 cd/A and external quantum efficiency 21.2%, which is the best among the report values for polymer light emitting diode (PLED) in the literatures. This example manifests that σ-π conjugated polymer strategy is a promising route for designing polymer host for efficient electrophosphorescence. PMID:27910921
NASA Technical Reports Server (NTRS)
Kimble, Michael C.; Anderson, Everett B.; Jayne, Karen D.; Woodman, Alan S.
2004-01-01
Micro-tubular fuel cells that would operate at power levels on the order of hundreds of watts or less are under development as alternatives to batteries in numerous products - portable power tools, cellular telephones, laptop computers, portable television receivers, and small robotic vehicles, to name a few examples. Micro-tubular fuel cells exploit advances in the art of proton-exchange-membrane fuel cells. The main advantage of the micro-tubular fuel cells over the plate-and-frame fuel cells would be higher power densities: Whereas the mass and volume power densities of low-pressure hydrogen-and-oxygen-fuel plate-and-frame fuel cells designed to operate in the targeted power range are typically less than 0.1 W/g and 0.1 kW/L, micro-tubular fuel cells are expected to reach power densities much greater than 1 W/g and 1 kW/L. Because of their higher power densities, micro-tubular fuel cells would be better for powering portable equipment, and would be better suited to applications in which there are requirements for modularity to simplify maintenance or to facilitate scaling to higher power levels. The development of PEMFCs has conventionally focused on producing large stacks of cells that operate at typical power levels >5 kW. The usual approach taken to developing lower-power PEMFCs for applications like those listed above has been to simply shrink the basic plate-and-frame configuration to smaller dimensions. A conventional plate-and-frame fuel cell contains a membrane/electrode assembly in the form of a flat membrane with electrodes of the same active area bonded to both faces. In order to provide reactants to both electrodes, bipolar plates that contain flow passages are placed on both electrodes. The mass and volume overhead of the bipolar plates amounts to about 75 percent of the total mass and volume of a fuel-cell stack. Removing these bipolar plates in the micro-tubular fuel cell significantly increases the power density.
Wang, Jinglu; Qu, Susu; Wang, Weixiao; Guo, Liyuan; Zhang, Kunlin; Chang, Suhua; Wang, Jing
2016-11-01
Numbers of gene expression profiling studies of bipolar disorder have been published. Besides different array chips and tissues, variety of the data processes in different cohorts aggravated the inconsistency of results of these genome-wide gene expression profiling studies. By searching the gene expression databases, we obtained six data sets for prefrontal cortex (PFC) of bipolar disorder with raw data and combinable platforms. We used standardized pre-processing and quality control procedures to analyze each data set separately and then combined them into a large gene expression matrix with 101 bipolar disorder subjects and 106 controls. A standard linear mixed-effects model was used to calculate the differentially expressed genes (DEGs). Multiple levels of sensitivity analyses and cross validation with genetic data were conducted. Functional and network analyses were carried out on basis of the DEGs. In the result, we identified 198 unique differentially expressed genes in the PFC of bipolar disorder and control. Among them, 115 DEGs were robust to at least three leave-one-out tests or different pre-processing methods; 51 DEGs were validated with genetic association signals. Pathway enrichment analysis showed these DEGs were related with regulation of neurological system, cell death and apoptosis, and several basic binding processes. Protein-protein interaction network further identified one key hub gene. We have contributed the most comprehensive integrated analysis of bipolar disorder expression profiling studies in PFC to date. The DEGs, especially those with multiple validations, may denote a common signature of bipolar disorder and contribute to the pathogenesis of disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Özdin, Selçuk; Sarisoy, Gökhan; Böke, Ömer
2017-10-01
Neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR) and monocyte-lymphocyte ratio (MLR) have recently been used as indicators of inflammation. Higher MLR and PLR values have been determined in the euthymic and manic periods in patients with bipolar disorder compared to a control group. High NLR values were determined in the only study investigating this ratio in schizophrenia patients. The purpose of this study was to compare NLR, PLR and MLR values and complete blood count elements in patients receiving treatment and hospitalized due to schizophrenic psychotic episode and bipolar disorder manic episode. All patients meeting the inclusion criteria among subjects receiving treatment and hospitalized due to schizophrenia-psychotic episode and bipolar affective disorder-manic episode at the Ondokuz Mayıs University Medical Faculty Psychiatry Department, Turkey, in 2012-2016 were included in our study. A total of 157 healthy donors were included as a control group. White blood cell (WBC), neutrophil, lymphocyte, platelet and monocyte numbers were noted retrospectively from complete blood counts at time of admission, and NLR, PLR and MLR were calculated from these. NLR, PLR and MLR values and platelet numbers in this study were higher and lymphocyte numbers were lower in bipolar disorder patients compared to the controls. Elevation in NLR, MLR and PLR values and neutrophil numbers and lower lymphocyte numbers were determined in schizophrenia patients compared to the controls. Higher NLR and MLR values were found in schizophrenia patients compared to bipolar disorder. Findings of our study supported the inflammation hypothesis for schizophrenia and bipolar disorder.
Yukawa, Masashi; Kawakami, Tomoki; Okazaki, Masaki; Kume, Kazunori; Tang, Ngang Heok; Toda, Takashi
2017-01-01
Accurate chromosome segregation relies on the bipolar mitotic spindle. In many eukaryotes, spindle formation is driven by the plus-end–directed motor kinesin-5 that generates outward force to establish spindle bipolarity. Its inhibition leads to the emergence of monopolar spindles with mitotic arrest. Intriguingly, simultaneous inactivation of the minus-end–directed motor kinesin-14 restores spindle bipolarity in many systems. Here we show that in fission yeast, three independent pathways contribute to spindle bipolarity in the absence of kinesin-5/Cut7 and kinesin-14/Pkl1. One is kinesin-6/Klp9 that engages with spindle elongation once short bipolar spindles assemble. Klp9 also ensures the medial positioning of anaphase spindles to prevent unequal chromosome segregation. Another is the Alp7/TACC-Alp14/TOG microtubule polymerase complex. Temperature-sensitive alp7cut7pkl1 mutants are arrested with either monopolar or very short spindles. Forced targeting of Alp14 to the spindle pole body is sufficient to render alp7cut7pkl1 triply deleted cells viable and promote spindle assembly, indicating that Alp14-mediated microtubule polymerization from the nuclear face of the spindle pole body could generate outward force in place of Cut7 during early mitosis. The third pathway involves the Ase1/PRC1 microtubule cross-linker that stabilizes antiparallel microtubules. Our study, therefore, unveils multifaceted interplay among kinesin-dependent and -independent pathways leading to mitotic bipolar spindle assembly. PMID:29021344
Aqueous based asymmetrical-bipolar electrochemical capacitor with a 2.4 V operating voltage
NASA Astrophysics Data System (ADS)
Wu, Haoran; Lian, Keryn
2018-02-01
A novel asymmetrical-bipolar electrochemical capacitor system leveraging the contributions of a Zn-CNT asymmetrical electrode and a KOH-H2SO4 dual-pH electrolyte was developed. The positive and negative electrodes operated in electrolytes with different pH, exploiting the maximum potential of both electrodes, which led to a cell voltage of 2.4 V. The potential tracking of both electrodes revealed that the Zn negative electrode could maintain a potential at -1.2 V, while the CNT positive electrode can be charged to +1.2 V without significant irreversible reactions. A bipolar ion exchange membrane has effectively separated the acid and alkaline from neutralization, which resulted in stable performance of the device with capacitance retention of 94% and coulombic efficiency of 99% over 10,000 cycles. This asymmetrical-bipolar design overcomes the thermodynamic limit of water decomposition, opening a new avenue towards high energy and high power density aqueous-based ECs.
Development of multi-layer crystal detector and related front end electronics
NASA Astrophysics Data System (ADS)
Cardarelli, R.; Di Ciaccio, A.; Paolozzi, L.
2014-05-01
A crystal (diamond) particle detector has been developed and tested, whose constitute elements are a multi-layer polycrystalline diamond and a pick-up system capable of collecting in parallel the charge produced in the layers. The charge is read with a charge-to-voltage amplifier (5-6 mV/fC) realized with bipolar junction transistors in order to minimize the effect of the detector capacitance. The tests performed with cosmic rays and at the beam test facility of Frascati with 500 MeV electrons in single electron mode operation have shown that a detector with 4-5 layers of 250 μm thickness each and 9 mm2 active area exhibits an upper limit of 150 ps time resolution for minimum ionizing particles at an operating voltage of about 350 V.
Emergence of magnetic flux generated in a solar convective dynamo
NASA Astrophysics Data System (ADS)
Chen, Feng; Rempel, Feng, Matthias; Fan, Yuhong
2016-10-01
We present a realistic numerical model of sunspot and active region formation through the emergence of flux tubes generated in a solar convective dynamo. The magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation are used as a time-dependent bottom boundary to drive the radiation magnetohydrodynamic simulations of the emergence of the flux tubes through the upper most layer of the convection zone to the photosphere. The emerging flux tubes interact with the convection and break into small scale magnetic elements that further rise to the photosphere. At the photosphere, several bipolar pairs of sunspots are formed through the coalescence of the small scale magnetic elements. The sunspot pairs in the simulation successfully reproduce the fundamental observed properties of solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of the bipolar pairs. These asymmetries originate from the intrinsic asymmetries in the emerging fields imposed at the bottom boundary, where the horizontal fields are already tilted. The leading sides of the emerging flux tubes are up against the downdraft lanes of the giant cells and strongly sheared downward. This leads to the stronger field strength of the leading polarity fields. We find a prograde flow in the emerging flux tube, which is naturally inherited from the solar convective dynamo simulation. The prograde flow gradually becomes a diverging flow as the flux tube rises. The emerging speed is similar to upflow speed of convective motions. The azimuthal average of the flows around a (leading) sunspot reveals a predominant down flow inside the sunspots and a large-scale horizontal inflow at the depth of about 10 Mm. The inflow pattern becomes an outflow in upper most convection zone in the vicinity of the sunspot, which could be considered as moat flows.
Hilgen, Gerrit; Huebner, Antje K.; Tanimoto, Naoyuki; Sothilingam, Vithiyanjali; Seide, Christina; Garrido, Marina Garcia; Schmidt, Karl-Friedrich; Seeliger, Mathias W.; Löwel, Siegrid; Weiler, Reto
2012-01-01
Regulation of ion and pH homeostasis is essential for normal neuronal function. The sodium-driven chloride bicarbonate exchanger NCBE (Slc4a10), a member of the SLC4 family of bicarbonate transporters, uses the transmembrane gradient of sodium to drive cellular net uptake of bicarbonate and to extrude chloride, thereby modulating both intracellular pH (pHi) and chloride concentration ([Cl−]i) in neurons. Here we show that NCBE is strongly expressed in the retina. As GABAA receptors conduct both chloride and bicarbonate, we hypothesized that NCBE may be relevant for GABAergic transmission in the retina. Importantly, we found a differential expression of NCBE in bipolar cells: whereas NCBE was expressed on ON and OFF bipolar cell axon terminals, it only localized to dendrites of OFF bipolar cells. On these compartments, NCBE colocalized with the main neuronal chloride extruder KCC2, which renders GABA hyperpolarizing. NCBE was also expressed in starburst amacrine cells, but was absent from neurons known to depolarize in response to GABA, like horizontal cells. Mice lacking NCBE showed decreased visual acuity and contrast sensitivity in behavioral experiments and smaller b-wave amplitudes and longer latencies in electroretinograms. Ganglion cells from NCBE-deficient mice also showed altered temporal response properties. In summary, our data suggest that NCBE may serve to maintain intracellular chloride and bicarbonate concentration in retinal neurons. Consequently, lack of NCBE in the retina may result in changes in pHi regulation and chloride-dependent inhibition, leading to altered signal transmission and impaired visual function. PMID:23056253
NASA Astrophysics Data System (ADS)
Wendel, D. E.; Liu, Y. H.; Giles, B. L.; Torbert, R. B.
2017-12-01
For the first time, space flight technology exists to detect, in situ, violation of magnetic field line conservation. The violation of magnetic line conservation on scales smaller than the system size is a necessary and sufficient condition for magnetic reconnection. We demonstrate that violation of line conservation produces a detectable, structured signature in both particle-in-cell simulations of reconnection and in data from the Magnetospheric Multi-Scale mission. In particle-in-cell simulations of asymmetric reconnection, the quantity-which we call M-that identifies this violation achieves a significant value in electron skin depth-scale layers that extend from the electron diffusion region along the separatrices, with higher values emerging on the low density, high magnetic field side of the current sheet. In two MMS burst data intervals associated with detection of the electron diffusion region—one interval with antiparallel reconnecting fields and the other with a guide field-we determine the location and scale of M and of the diffusion region relative to electron outflows and the magnetic separatrices. We find that M exceeds measurement uncertainties both at the diffusion region and near the separatrices, where it attains its highest values in layered structures. The observed magnitude scales as the simulated magnitude after adjusting for the artificial parameters of the simulation. Bipolar forms of the quantity also appear further from the diffusion region, possibly associated with electron holes. The measure serves not only as a powerful diagnostic for magnetic reconnection, but reveals that electrons transport this signature of reconnection away from the x-line.
Preparation of Horizontal Slices of Adult Mouse Retina for Electrophysiological Studies.
Feigenspan, Andreas; Babai, Norbert Zsolt
2017-01-27
Vertical slice preparations are well established to study circuitry and signal transmission in the adult mammalian retina. The plane of sectioning in these preparations is perpendicular to the retinal surface, making it ideal for the study of radially oriented neurons like photoreceptors and bipolar cells. However, the large dendritic arbors of horizontal cells, wide-field amacrine cells, and ganglion cells are mostly truncated, leaving markedly reduced synaptic activity in these cells. Whereas ganglion cells and displaced amacrine cells can be studied in a whole-mounted preparation of the retina, horizontal cells and amacrine cells located in the inner nuclear layer are only poorly accessible for electrodes in whole retina tissue. To achieve maximum accessibility and synaptic integrity, we developed a horizontal slice preparation of the mouse retina, and studied signal transmission at the synapse between photoreceptors and horizontal cells. Horizontal sectioning allows (1) easy and unambiguous visual identification of horizontal cell bodies for electrode targeting, and (2) preservation of the extended horizontal cell dendritic fields, as a prerequisite for intact and functional cone synaptic input to horizontal cell dendrites. Horizontal cells from horizontal slices exhibited tonic synaptic activity in the dark, and they responded to brief flashes of light with a reduction of inward current and diminished synaptic activity. Immunocytochemical evidence indicates that almost all cones within the dendritic field of a horizontal cell establish synapses with its peripheral dendrites. The horizontal slice preparation is therefore well suited to study the physiological properties of horizontally extended retinal neurons as well as sensory signal transmission and integration across selected synapses.
NASA Astrophysics Data System (ADS)
Wang, I.-Ting; Chang, Chih-Cheng; Chiu, Li-Wen; Chou, Teyuh; Hou, Tuo-Hung
2016-09-01
The implementation of highly anticipated hardware neural networks (HNNs) hinges largely on the successful development of a low-power, high-density, and reliable analog electronic synaptic array. In this study, we demonstrate a two-layer Ta/TaO x /TiO2/Ti cross-point synaptic array that emulates the high-density three-dimensional network architecture of human brains. Excellent uniformity and reproducibility among intralayer and interlayer cells were realized. Moreover, at least 50 analog synaptic weight states could be precisely controlled with minimal drifting during a cycling endurance test of 5000 training pulses at an operating voltage of 3 V. We also propose a new state-independent bipolar-pulse-training scheme to improve the linearity of weight updates. The improved linearity considerably enhances the fault tolerance of HNNs, thus improving the training accuracy.
Unraveling the Complexity of the Evolution of the Sun's Photospheric Magnetic Field
NASA Astrophysics Data System (ADS)
Hathaway, David H.
2016-10-01
Given the emergence of tilted, bipolar active regions, surface flux transport has been shown to reproduce much of the complex evolution of the Sun's photospheric magnetic field. Surface flux is transported by flows in the surface shear layer - the axisymmetric differential rotation and meridional flow and the non-axisymmetric convective motions (granules, supergranules, and giant cells). We have measured these flows by correlation tracking of the magnetic elements themselves, correlation tracking of the Doppler features (supergranules), and by direct Doppler measurements using SDO/HMI data. These measurements fully constrain (with no free parameters) the flows used in our surface flux transport code - the Advective Flux Transport or AFT code. Here we show the up-to-date evolution of these flows, their impact on the detailed evolution of the Sun's photospheric magnetic field, and predictions for what the polar fields will be at the next minimum in 2020.
NASA Astrophysics Data System (ADS)
Zhu, Lisha; Hu, Wei; Gao, Chao; Guo, Yongcai
2017-12-01
This paper reports the reversible transition processes between the bipolar and complementary resistive switching (CRS) characteristics on the binary metal-oxide resistive memory devices of Pt/HfO x /TiN and Pt/TaO x /TiN by applying the appropriate bias voltages. More interestingly, by controlling the amplitude of the negative bias, the parasitic resistive switching effect exhibiting repeatable switching behavior is uncovered from the CRS behavior. The electrical observation of the parasitic resistive switching effect can be explained by the controlled size of the conductive filament. This work confirms the transformation and interrelationship among the bipolar, parasitic, and CRS effects, and thus provides new insight into the understanding of the physical mechanism of the binary metal-oxide resistive switching memory devices.
Quartz Knapping Strategies in the Howiesons Poort at Sibudu (KwaZulu-Natal, South Africa)
de la Peña, Paloma; Wadley, Lyn
2014-01-01
The variability associated with Sibudu's Howiesons Poort Industry highlights the unpredictable trajectory of technology in the Middle Stone Age. We reach this conclusion through a study of the technology on quartz from one of the Howiesons Poort layers (Grey Sand) from Sibudu rock shelter. Quartz bifacial technology has previously been described at the site, but this new in-depth study of the quartz technology reveals other strategies. First is the recurring employment of bipolar knapping, formerly considered as a defining feature of the Later Stone Age. Secondly, we highlight a laminar technology with emphasis on small quartz bladelets. Bipolar cores are most common, followed by prismatic cores. The knapping strategies in Grey Sand seem to involve systematic recycling and the deliberate production of microliths. PMID:25014352
Pósfai, B; Cserép, C; Hegedüs, P; Szabadits, E; Otte, D M; Zimmer, A; Watanabe, M; Freund, T F; Nyiri, G
2016-01-01
Genetic studies have linked the primate-specific gene locus G72 to the development of schizophrenia and bipolar disorder. Transgenic mice carrying the entire gene locus express G72 mRNA in dentate gyrus (DG) and entorhinal cortex, causing altered electrophysiological properties of their connections. These transgenic mice exhibit behavioral alterations related to psychiatric diseases, including cognitive deficits that can be reversed by treatment with N-acetylcysteine, which was also found to be effective in human patients. Here, we show that G72 transgenic mice have larger excitatory synapses with an increased amount of N-methyl-d-aspartate (NMDA) receptors in the molecular layer of DG, compared with wild-type littermates. Furthermore, transgenic animals have lower number of dentate granule cells with a parallel, but an even stronger decrease in the number of excitatory synapses in the molecular layer. Importantly, we also show that treatment with N-acetylcysteine can effectively normalize all these changes in transgenic animals, resulting in a state similar to wild-type mice. Our results show that G72 transcripts induce robust alterations in the glutamatergic system at the synaptic level that can be rescued with N-acetylcysteine treatment. PMID:27163208
Design principles for nickel hydrogen cells and batteries
NASA Technical Reports Server (NTRS)
Thaller, L. H.
1985-01-01
Nickel hydrogen cells, and more recently, bipolar batteries have been built by a variety of organizations. The design principles that have been used by the technology group at the Lewis Research Center draw upon their extensive background in separator technology, alkaline fuel cell technology, and several alkaline cell technology areas. These design principles have been incorporated into both the more contemporary individual pressure vessel (IPV) designs that were pioneered by other groups, as well as the more recent bipolar battery designs using active cooling that are being developed at LeRC and their contractors. These principles are rather straightforward applications of capillary force formalisms, coupled with the slowly developing data base resulting from careful post test analyses. The objective of this overall effort is directed towards the low Earth orbit (LEO) application where the cycle life requirements are much more severe than the geosynchronous orbit (GEO) application. Nickel hydrogen cells have already been successfully flown in an increasing number of GEO missions.
High surface area bio-waste based carbon as a superior electrode for vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Maharjan, Makhan; Bhattarai, Arjun; Ulaganathan, Mani; Wai, Nyunt; Oo, Moe Ohnmar; Wang, Jing-Yuan; Lim, Tuti Mariana
2017-09-01
Activated carbon (AC) with high surface area (1901 m2 g-1) is synthesized from low cost bio-waste orange (Citrus sinensis) peel for vanadium redox flow battery (VRB). The composition, structure and electrochemical properties of orange peel derived AC (OP-AC) are characterized by elemental analyzer, field emission-scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy. CV results show that OP-AC coated bipolar plate demonstrates improved electro-catalytic activity in both positive and negative side redox couples than the pristine bipolar plate electrode and this is ascribed to the high surface area of OP-AC which provides effective electrode area and better contact between the porous electrode and bipolar plate. Consequently, the performance of VRB in a static cell shows higher energy efficiency for OP-AC electrode than the pristine electrode at all current densities tested. The results suggest the OP-AC to be a promising electrode for VRB applications and can be incorporated into making conducting plastics electrode to lower the VRB cell stack weight and cost.
Sustained and Transient Contributions to the Rat Dark-Adapted Electroretinogram b-Wave
Dang, Trung M.; Vingrys, Algis J.; Bui, Bang V.
2013-01-01
The most dominant feature of the electroretinogram, the b-wave, is thought to reflect ON-bipolar cell responses. However, a number of studies suggest that the b-wave is made up of several components. We consider the composition of the rat b-wave by subtracting corneal negative components obtained using intravitreal application of pharmacological agents to remove postreceptoral responses. By analyzing the intensity-response characteristic of the PII across a range of fixed times during and after a light step, we find that the rat isolated PII has 2 components. The first has fast rise and decay characteristics with a low sensitivity to light. GABAc-mediated inhibitory pathways enhance this transient-ON component to manifest increased and deceased sensitivity to light at shorter (<160 ms) and longer times, respectively. The second component has slower temporal characteristics but is more sensitive to light. GABAc-mediated inhibition enhances this sustained-ON component but has little effect on its sensitivity to light. After stimulus offset, both transient and sustained components return to baseline, and a long latency sustained positive component becomes apparent. The light sensitivities of transient-ON and sustained-OFF components are consistent with activity arising from cone ON- and OFF-bipolar cells, whereas the sustained-ON component is likely to arise from rod bipolar cells. PMID:23533706
Gene therapy restores vision in rd1 mice after removal of a confounding mutation in Gpr179.
Nishiguchi, Koji M; Carvalho, Livia S; Rizzi, Matteo; Powell, Kate; Holthaus, Sophia-Martha kleine; Azam, Selina A; Duran, Yanai; Ribeiro, Joana; Luhmann, Ulrich F O; Bainbridge, James W B; Smith, Alexander J; Ali, Robin R
2015-01-23
The rd1 mouse with a mutation in the Pde6b gene was the first strain of mice identified with a retinal degeneration. However, AAV-mediated gene supplementation of rd1 mice only results in structural preservation of photoreceptors, and restoration of the photoreceptor-mediated a-wave, but not in restoration of the bipolar cell-mediated b-wave. Here we show that a mutation in Gpr179 prevents the full restoration of vision in rd1 mice. Backcrossing rd1 with C57BL6 mice reveals the complete lack of b-wave in a subset of mice, consistent with an autosomal recessive Mendelian inheritance pattern. We identify a mutation in the Gpr179 gene, which encodes for a G-protein coupled receptor localized to the dendrites of ON-bipolar cells. Gene replacement in rd1 mice that are devoid of the mutation in Gpr179 successfully restores the function of both photoreceptors and bipolar cells, which is maintained for up to 13 months. Our discovery may explain the failure of previous gene therapy attempts in rd1 mice, and we propose that Grp179 mutation status should be taken into account in future studies involving rd1 mice.
Ionotropic GABA Receptors and Distal Retinal ON and OFF Responses
Popova, E.
2014-01-01
In the vertebrate retina, visual signals are segregated into parallel ON and OFF pathways, which provide information for light increments and decrements. The segregation is first evident at the level of the ON and OFF bipolar cells in distal retina. The activity of large populations of ON and OFF bipolar cells is reflected in the b- and d-waves of the diffuse electroretinogram (ERG). The role of gamma-aminobutyric acid (GABA), acting through ionotropic GABA receptors in shaping the ON and OFF responses in distal retina, is a matter of debate. This review summarized current knowledge about the types of the GABAergic neurons and ionotropic GABA receptors in the retina as well as the effects of GABA and specific GABAA and GABAC receptor antagonists on the activity of the ON and OFF bipolar cells in both nonmammalian and mammalian retina. Special emphasis is put on the effects on b- and d-waves of the ERG as a useful tool for assessment of the overall function of distal retinal ON and OFF channels. The role of GABAergic system in establishing the ON-OFF asymmetry concerning the time course and absolute and relative sensitivity of the ERG responses under different conditions of light adaptation in amphibian retina is also discussed. PMID:25143858
NASA Astrophysics Data System (ADS)
Massengale, Alan Ross
1998-12-01
The discovery in 1990 that the wet thermal oxidation of AlAs can create a stable native oxide has added a new constituent, AlAs-oxide, to the AlGaAs/GaAs materials system. Native oxides of high Al mole-fraction AlGaAs are being used to confine electrical and/or optical fields in many types of electronic and optoelectronic structures with very promising results. Among these devices are collector-up heterojunction bipolar transistors (HBTs). Collector-up HBTs offer a means to reduce base-collector capacitance relative to their emitter-up counterparts, and thus to improve device performance. A novel method for fabricating collector-up AlGaAs/GaAs HBTs where an AlAs layer is inserted into the emitter layer and is oxidized in water vapor at 450sp°C has been developed. The resulting AlAs-oxide serves as a current confining layer that constricts collector current flow to the intrinsic portion of the device. Compared to previous methods of fabricating these devices, the process of converting AlAs into an insulator requires only one growth, and does not suffer from implant damage in the base. Because the lateral oxidation of AlAs is a process that proceeds at rates of microns per minute, one of the major challenges facing its implementation is the ability to accurately control the oxidation rate over the wafer, and from one wafer to the next. In the course of work on the oxidation of AlAs, a method to lithographically form lateral oxidation stop layers has been achieved. This technique utilizes impurity induced layer disordering (IILD) in heavily Si-doped buried planes, combined with selective surface patterning and thermal annealing, to create a lateral variation in the Al mole-fraction of the layer to be oxidized.
Effect of formation temperature on properties of graphite/stannum composite for bipolar plate
NASA Astrophysics Data System (ADS)
Selamat, Mohd Zulkefli; Yusuf, Muhammad Yusri Md; Wer, Tio Kok; Sahadan, Siti Norbaya; Malingam, Sivakumar Dhar; Mohamad, Noraiham
2016-03-01
Bipolar plates are key components in Proton Exchange Membrane (PEM) fuel cells. They carry current away from the cell and withstand the clamping force of the stack assembly. Therefore, PEM fuel cell bipolar plates must have high electrical conductivity and adequate mechanical strength, in addition to being light weight and low cost in terms of both applicable materials and production methods. In this research, the raw materials used to fabricate the high performance bipolar plate are Graphite (Gr), Stannum (Sn) and Polypropylene (PP). All materials used was in powder form and Gr and Sn act as fillers and the PP acts as binder. The ratio of fillers (Gr/Sn) and binder (PP) was fixed at 80:20. For the multi-conductive filler, small amount of Sn, which is 10 up to 20wt% (from the total weight of fillers 80%) have been added into Gr/Sn/PP composite. The fillers were mixed by using the ball mill machine. The second stage of mixing process between the mixer of fillers and binder is also carried out by using ball mill machine before the compaction process by the hot press machine. The effect of formation temperatures (160°C-170°C) on the properties of Gr/Sn/PP composite had been studied in detail, especially the electrical conductivity, bulk density, hardness and microstructure analysis of Gr/Sn/PP composite. The result shows that there are significant improvement in the electrical conductivity and bulk density, which are exceeding the US-DoE target with the maximum value of 265.35 S/cm and 1.682g/cm3 respectively.
Freed, Michael A
2017-11-15
Bipolar and amacrine cells presynaptic to the ON sustained α cell of mouse retina provide currents with a higher signal-to-noise power ratio (SNR) than those presynaptic to the OFF sustained α cell. Yet the ON cell loses proportionately more SNR from synaptic inputs to spike output than the OFF cell does. The higher SNR of ON bipolar cells at the beginning of the ON pathway compensates for losses incurred by the ON ganglion cell, and improves the processing of positive contrasts. ON and OFF pathways in the retina include functional pairs of neurons that, at first glance, appear to have symmetrically similar responses to brightening and darkening, respectively. Upon careful examination, however, functional pairs exhibit asymmetries in receptive field size and response kinetics. Until now, descriptions of how light-adapted retinal circuitry maintains a preponderance of signal over the noise have not distinguished between ON and OFF pathways. Here I present evidence of marked asymmetries between members of a functional pair of sustained α ganglion cells in the mouse retina. The ON cell exhibited a proportionately greater loss of signal-to-noise power ratio (SNR) from its presynaptic arrays to its postsynaptic currents. Thus the ON cell combines signal and noise from its presynaptic arrays of bipolar and amacrine cells less efficiently than the OFF cell does. Yet the inefficiency of the ON cell is compensated by its presynaptic arrays providing a higher SNR than the arrays presynaptic to the OFF cell, apparently to improve visual processing of positive contrasts. Dynamic clamp experiments were performed that introduced synaptic conductances into ON and OFF cells. When the amacrine-modulated conductance was removed, the ON cell's spike train exhibited an increase in SNR. The OFF cell, however, showed the opposite effect of removing amacrine input, which was a decrease in SNR. Thus ON and OFF cells have different modes of synaptic integration with direct effects on the SNR of the spike output. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Chemical-mechanical polishing of recessed microelectromechanical devices
Barron, Carole C.; Hetherington, Dale L.; Montague, Stephen
1999-01-01
A method is disclosed for micromachining recessed layers (e.g. sacrificial layers) of a microelectromechanical system (MEMS) device formed in a cavity etched into a semiconductor substrate. The method uses chemical-mechanical polishing (CMP) with a resilient polishing pad to locally planarize one or more of the recessed layers within the substrate cavity. Such local planarization using the method of the present invention is advantageous for improving the patterning of subsequently deposited layers, for eliminating mechanical interferences between functional elements (e.g. linkages) of the MEMS device, and for eliminating the formation of stringers. After the local planarization of one or more of the recessed layers, another CMP step can be provided for globally planarizing the semiconductor substrate to form a recessed MEMS device which can be integrated with electronic circuitry (e.g. CMOS, BiCMOS or bipolar circuitry) formed on the surface of the substrate.
Chemical-mechanical polishing of recessed microelectromechanical devices
Barron, C.C.; Hetherington, D.L.; Montague, S.
1999-07-06
A method is disclosed for micromachining recessed layers (e.g. sacrificial layers) of a microelectromechanical system (MEMS) device formed in a cavity etched into a semiconductor substrate. The method uses chemical-mechanical polishing (CMP) with a resilient polishing pad to locally planarize one or more of the recessed layers within the substrate cavity. Such local planarization using the method of the present invention is advantageous for improving the patterning of subsequently deposited layers, for eliminating mechanical interferences between functional elements (e.g. linkages) of the MEMS device, and for eliminating the formation of stringers. After the local planarization of one or more of the recessed layers, another CMP step can be provided for globally planarizing the semiconductor substrate to form a recessed MEMS device which can be integrated with electronic circuitry (e.g., CMOS, BiCMOS or bipolar circuitry) formed on the surface of the substrate. 23 figs.
Demonstration and properties of a planar heterojunction bipolar transistor with lateral current flow
NASA Astrophysics Data System (ADS)
Thornton, Robert L.; Mosby, William J.; Chung, Harlan F.
1989-10-01
The authors present fabrication techniques and device performance for a novel transistor structure, the lateral heterojunction bipolar transistor. The lateral heterojunctions are formed by impurity-induced disordering of a GaAs base layer sandwiched between two AlGaAs layers. These transistor structures exhibit current gains of 14 for base widths of 0.74 micron. Transistor action in this device occurs parallel to the surface of the device structure. The active base region of the structure is completely submerged, resulting in a reduction of surface recombination as a mechanism for gain reduction in the device. Impurity-induced disordering is used to widen the bandgap of the alloy in the emitter and collector, resulting in an improvement of the emitter injection efficiency. Since the device is based entirely on a surface diffusion process, the device is completely planar and has no steps involving etching of the III-V alloy material. These advantages lead this device to be considered as a candidate for optoelectronic integration applications. The transistor device functions as a buried heterostructure laser, with a threshold current as low as 6 mA for a 1.4-micron stripe.
NASA Astrophysics Data System (ADS)
Sagdeo, P. R.; Shinde, D. D.; Misal, J. S.; Kamble, N. M.; Tokas, R. B.; Biswas, A.; Poswal, A. K.; Thakur, S.; Bhattacharyya, D.; Sahoo, N. K.; Sabharwal, S. C.
2010-02-01
Titania-silica (TiO2/SiO2) optical multilayer structures have been conventionally deposited by reactive sputtering of metallic targets. In order to overcome the problems of arcing, target poisoning and low deposition rates encountered there, the application of oxide targets was investigated in this work with asymmetric bipolar pulsed dc magnetron sputtering. In order to evaluate the usefulness of this deposition methodology, an electric field optimized Fabry Perot mirror for He-Cd laser (λ = 441.6 nm) spectroscopy was deposited and characterized. For comparison, this mirror was also deposited by the reactive electron beam (EB) evaporation technique. The mirrors developed by the two complementary techniques were investigated for their microstructural and optical reflection properties invoking atomic force microscopy, ellipsometry, grazing incidence reflectometry and spectrophotometry. From these measurements the layer geometry, optical constants, mass density, topography, surface and interface roughness and disorder parameters were evaluated. The microstructural properties and spectral functional characteristics of the pulsed dc sputtered multilayer mirror were found to be distinctively superior to the EB deposited mirror. The knowledge gathered during this study has been utilized to develop a 21-layer high-pass edge filter for radio photoluminescence dosimetry.
Sun, Xiaodong; Fang, Dawei; Zhang, Dong; Ma, Qingyu
2013-05-01
Different from the theory of acoustic monopole spherical radiation, the acoustic dipole radiation based theory introduces the radiation pattern of Lorentz force induced dipole sources to describe the principle of magnetoacoustic tomography with magnetic induction (MAT-MI). Although two-dimensional (2D) simulations have been studied for cylindrical phantom models, layer effects of the dipole sources within the entire object along the z direction still need to be investigated to evaluate the performance of MAT-MI for different geometric specifications. The purpose of this work is further verifying the validity and generality of acoustic dipole radiation based theory for MAT-MI with two new models in different shapes, dimensions, and conductivities. Based on the theory of acoustic dipole radiation, the principles of MAT-MI were analyzed with derived analytic formulae. 2D and 3D numerical studies for two new models of aluminum foil and cooked egg were conducted to simulate acoustic pressures and corresponding waveforms, and 2D images of the scanned layers were reconstructed with the simplified back projection algorithm for the waveforms collected around the models. The spatial resolution for conductivity boundary differentiation was also analyzed with different foil thickness. For comparison, two experimental measurements were conducted for a cylindrical aluminum foil phantom and a shell-peeled cooked egg. The collected waveforms and the reconstructed images of the scanned layers were achieved to verify the validation of the acoustic dipole radiation based theory for MAT-MI. Despite the difference between the 2D and 3D simulated pressures, good consistence of the collected waveforms proves that wave clusters are generated by the abrupt pressure changes with bipolar vibration phases, representing the opposite polarities of the conductivity changes along the measurement direction. The configuration of the scanned layer can be reconstructed in terms of shape and size, and the conductivity boundaries are displayed in stripes with different contrast and bipolar intensities. Layer effects are demonstrated to have little influence on the collected waveforms and the reconstructed images of the scanned layers for the two new models. The experimental results have good agreements with numerical simulations, and the reconstructed 2D images provide conductivity configurations in the scanned layers of the aluminum foil and the egg models. It can be concluded that the acoustic pressure of MAT-MI is produced by the divergence of the induced Lorentz force, and the collected waveforms comprise wave clusters with bipolar vibration phases and different amplitudes, providing the information of conductivity boundaries in the scanned layer. With the simplified back projection algorithm for diffraction sources, collected waveforms can be used to reconstruct 2D conductivity contrast image and the conductivity configuration in the scanned layer can be obtained in terms of shape and size in stripes with the spatial resolution of the acoustic wavelength. The favorable results further verify the validity and generality of the acoustic dipole radiation based theory and suggest the feasibility of MAT-MI as an effective electrical impedance contrast imaging approach for medical imaging.
Wolf, Rainer; Krause, Gerhard
1971-09-01
In the eggs ofPimpla turionellae, which are characterized by a long germ anlage ("long-germ egg" type), the cleavage nuclei primarily populate the anterior part and only later appear in the posterior of the egg lumen during the intravitelline cleavage. Gastrulation and segmentation also start within this anterior region. Time-lapse motion pictures served to observe and to check quantitatively even slow movements during cleavage and blastogenesis. In motion diagrams made by means of microkymographic technics the flow within the ooplasm along the longer axis of the egg has been timed.Shortly before the first cleavage in thestrictly unfertilized male eggs a short-time"unipolar flow" sets in from a primary initial region at 90% of their length. Thus a pillar of "central plasm" between both of the poles becomes shifted towards the posterior, while its outer coating layer of "marginal-plasm" is displaced forwards by the same distance. In eggs from fertilized females two successive flows of the same "unipolar" type have been observed.At the end of the third cleavage the energids, heretofore loosely grouped together, become distributed within the central plasm to form a "nuclear column". At the same time a fluently pulsatory "bipolar flow" sets in, within asecondary initial region at 80% of the egg length. Comparable to two mirror-image fountains, parts of the central plasm are carried towards the front pole and to the rear pole of the egg, respectively, while the marginal plasm, together with the oolemma, flows in opposite directions at times. With each pulsation the moving areas of the bipolar flow are shifted more and more towards the egg poles. The occurrence of bipolar flow pulsations, amounting to five, is correlated with the nuclear divisions in a still unknown way. In the rhythm of the bipolar flow, the energids become dispersed within the central plasm with a certain spatial lagging.After the bipolar flow has come to a halt, four further cleavages are indicated by faint local pulsations of the ooplasm. The cleavage nuclei move to the egg surface and pole cells become separatedtied off During blastoderm formation another four faint pulsations are observed, especially within the central ooplasm, all of them clearly synchronized with superficial cleavages. Occurring in mitotic waves, these cleavages indicate a third initial region, with the individual position varying between 10 and 28% of the egg length.Furthermore the technics of time-lapse motion pictures permit a local and temporal determination of extravitelline pole space formation, of a ring-shaped contracted region of slightly thickening periplasm within the secondary initial region, and the dislocation of the oosome towards the egg surface, which results from the activity of the posterior fountain during the phase of bipolar flow. Invagination and segmentation of the embryo become distinct within the secondary initial region, thus identifying this region as a differentiation centre.The correlation of plasm flow and nuclear divisions is discussed as well as the correlation of the initial regions to the different patterns of egg architecture in the longgerm egg type. The correlation between bipolar pulsations and the development of the metameric pattern including the function of the oosomal region is also discussed. The ooplasmic movements as known from egg types other thanPimpla are compared to the above observations.
NASA Astrophysics Data System (ADS)
Giltner, L. John
1994-02-01
The silver-zinc (AgZn) battery system has been unique in its ability to safely satisfy high power demand applications with low mass and volume. However, a new generation of defense, aerospace, and commercial applications will impose even higher power demands. These new power demands can be satisfied by the development of a bipolar battery design. In this configuration the power consuming, interelectrode current conductors are eliminated while the current is then conducted via the large cross-section electrode substrate. Negative and positive active materials are applied to opposite sides of a solid silver foil substrate. In addition to reducing the weight and volume required for a specified power level, the output voltage performance is also improved as follows. Reduced weight through: elimination of the plastic cell container; elimination of plate leads and intercell connector; and elimination of internal plate current collector. Increased voltage through: elimination of resistance of current collector; elimination of resistance of plate lead; and elimination of resistance of intercell connector. EPI worked previously on development of a secondary bipolar silver zinc battery. This development demonstrated the electrical capability of the system and manufacturing techniques. One difficulty with this development was mechanical problems with the seals. However, recent improvements in plastics and adhesives should eliminate the major problem of maintaining a seal around the periphery of the bipolar module. The seal problem is not as significant for a primary battery application or for a requirement for only a few discharge cycles. A second difficulty encountered was with activation (introducing electrolyte into the cell) and with venting gas from the cell without loss of electrolyte. During previous work, the following projections for energy density were made from test data for a high power system which demonstrated in excess of 50 discharge/charge cycles. Projected system power = 100 kilowatts; discharge time = 30 seconds; discharge current density = 1.75 amps/sq in.; system weight = 86 lbs (9.7 WH/lb); and system volume = 1071 cu. in. (.78 WH/cu. in.). EPI is currently working on a development program to produce a bipolar silver-zinc battery design for NASA. The potential application would be to power electromechanical actuators for space launch vehicles.
NASA Technical Reports Server (NTRS)
Giltner, L. John
1994-01-01
The silver-zinc (AgZn) battery system has been unique in its ability to safely satisfy high power demand applications with low mass and volume. However, a new generation of defense, aerospace, and commercial applications will impose even higher power demands. These new power demands can be satisfied by the development of a bipolar battery design. In this configuration the power consuming, interelectrode current conductors are eliminated while the current is then conducted via the large cross-section electrode substrate. Negative and positive active materials are applied to opposite sides of a solid silver foil substrate. In addition to reducing the weight and volume required for a specified power level, the output voltage performance is also improved as follows. Reduced weight through: elimination of the plastic cell container; elimination of plate leads and intercell connector; and elimination of internal plate current collector. Increased voltage through: elimination of resistance of current collector; elimination of resistance of plate lead; and elimination of resistance of intercell connector. EPI worked previously on development of a secondary bipolar silver zinc battery. This development demonstrated the electrical capability of the system and manufacturing techniques. One difficulty with this development was mechanical problems with the seals. However, recent improvements in plastics and adhesives should eliminate the major problem of maintaining a seal around the periphery of the bipolar module. The seal problem is not as significant for a primary battery application or for a requirement for only a few discharge cycles. A second difficulty encountered was with activation (introducing electrolyte into the cell) and with venting gas from the cell without loss of electrolyte. During previous work, the following projections for energy density were made from test data for a high power system which demonstrated in excess of 50 discharge/charge cycles. Projected system power = 100 kilowatts; discharge time = 30 seconds; discharge current density = 1.75 amps/sq in.; system weight = 86 lbs (9.7 WH/lb); and system volume = 1071 cu. in. (.78 WH/cu. in.). EPI is currently working on a development program to produce a bipolar silver-zinc battery design for NASA. The potential application would be to power electromechanical actuators for space launch vehicles.
Lavebratt, C; Olsson, S; Backlund, L; Frisén, L; Sellgren, C; Priebe, L; Nikamo, P; Träskman-Bendz, L; Cichon, S; Vawter, M P; Osby, U; Engberg, G; Landén, M; Erhardt, S; Schalling, M
2014-03-01
The kynurenine pathway metabolite kynurenic acid (KYNA), modulating glutamatergic and cholinergic neurotransmission, is increased in cerebrospinal fluid (CSF) of patients with schizophrenia or bipolar disorder type 1 with psychotic features. KYNA production is critically dependent on kynurenine 3-monooxygenase (KMO). KMO mRNA levels and activity in prefrontal cortex (PFC) are reduced in schizophrenia. We hypothesized that KMO expression in PFC would be reduced in bipolar disorder with psychotic features and that a functional genetic variant of KMO would associate with this disease, CSF KYNA level and KMO expression. KMO mRNA levels were reduced in PFC of bipolar disorder patients with lifetime psychotic features (P=0.005, n=19) or schizophrenia (P=0.02, n=36) compared with nonpsychotic patients and controls. KMO genetic association to psychotic features in bipolar disorder type 1 was studied in 493 patients and 1044 controls from Sweden. The KMO Arg(452) allele was associated with psychotic features during manic episodes (P=0.003). KMO Arg(452) was studied for association to CSF KYNA levels in an independent sample of 55 Swedish patients, and to KMO expression in 717 lymphoblastoid cell lines and 138 hippocampal biopsies. KMO Arg(452) associated with increased levels of CSF KYNA (P=0.03) and reduced lymphoblastoid and hippocampal KMO expression (P≤0.05). Thus, findings from five independent cohorts suggest that genetic variation in KMO influences the risk for psychotic features in mania of bipolar disorder patients. This provides a possible mechanism for the previous findings of elevated CSF KYNA levels in those bipolar patients with lifetime psychotic features and positive association between KYNA levels and number of manic episodes.
Advanced high-temperature batteries
NASA Technical Reports Server (NTRS)
Nelson, P. A.
1989-01-01
Recent results for Li-Al/FeS2 cells and bipolar battery design have shown the possibility of achieving high specific energy (210 Wh/kg) and high specific power (239 W/kg) at the cell level for an electric vehicle application. Outstanding performance is also projected for sodium/metal chloride cells having large electrolyte areas and thin positive electrodes.
Simulation and Experimental Study of Bipolar Plate on the Performance PEM Fuel cell
NASA Astrophysics Data System (ADS)
Chinnasa, Pornchai; Khamsuk, Pattama; Seechalee, Sarunya; Swatsitang, Ekaphan
2017-09-01
This research is a simulated and experimental study on effects of bipolar electrodes of a PEM fuel cell on its power conversion efficiency. The PEM fuel cell structure consists of bipolar electrodes, proton exchange membrane with catalysts, flow channels of gases. This research used fuel cell of 49 cm2 in active area as a research sample and the Comsol 4.4 was employed to simulate flow channels which are serpentine pattern for anode and parallel pattern for cathode. The parameters used were calculated effects of such parameters using Comsol 4.4. After the calculation has been completed, the prototype of the PEM fuel cell were fabricated using graphite plate as electrodes which had the channel height of 0.20 cm, proton exchange membrane using carbon-platinum catalyst. Finally, further it was found that the effect of temperature on the power conversion efficiency is not severely. And for anode, the concentration of hydrogen gas was reduced 64 wt% due to the reaction whereas in parallel channel of cathode the oxygen concentration was reduced by only 6 wt% from 23 wt% at the entrance to 17 wt% at the end. The maximum power output of the prototype operated under such condition was 0.28 W/cm2 calculated from maximum power output voltage (Vmp) of 0.70 V and maximum power output current density of 0.42 A/cm2 which was in good agreement with that simulated using Comsol 4.4 which revealed the power output of 0.29 W/cm2.
Primary cell culture of LHRH neurones from embryonic olfactory placode in the sheep (Ovis aries).
Duittoz, A H; Batailler, M; Caldani, M
1997-09-01
The aim of this study was to establish an in vitro model of ovine luteinizing hormone-releasing hormone (LHRH) neurones. Olfactory placodes from 26 day-old sheep embryos (E26) were used for explant culture. Cultures were maintained successfully up to 35 days, but were usually used at 17 days for immunocytochemistry. LHRH and neuronal markers such as neurofilament (NF) were detected by immunocytochemistry within and/or outside the explant. Three main types of LHRH positive cells are described: (1) neuroblastic LHRH and NF immunoreactive cells with round cell body and very short neurites found mainly within the explant, (2) migrating LHRH bipolar neurones with an fusiform cell body, found outside the explant, (3) network LHRH neuron, bipolar or multipolar with long neurites connecting other LHRH neurons. Cell morphology was very similar to that which has been described in the adult sheep brain. These results strongly suggest that LHRH neurones in the sheep originate from the olfactory placode. This mode may represent a useful tool to study LHRH neurones directly in the sheep.
Electrical coupling between A17 cells enhances reciprocal inhibitory feedback to rod bipolar cells.
Elgueta, Claudio; Leroy, Felix; Vielma, Alex H; Schmachtenberg, Oliver; Palacios, Adrian G
2018-02-15
A17 amacrine cells are an important part of the scotopic pathway. Their synaptic varicosities receive glutamatergic inputs from rod bipolar cells (RBC) and release GABA onto the same RBC terminal, forming a reciprocal feedback that shapes RBC depolarization. Here, using patch-clamp recordings, we characterized electrical coupling between A17 cells of the rat retina and report the presence of strongly interconnected and non-coupled A17 cells. In coupled A17 cells, evoked currents preferentially flow out of the cell through GJs and cross-synchronization of presynaptic signals in a pair of A17 cells is correlated to their coupling degree. Moreover, we demonstrate that stimulation of one A17 cell can induce electrical and calcium transients in neighboring A17 cells, thus confirming a functional flow of information through electrical synapses in the A17 coupled network. Finally, blocking GJs caused a strong decrease in the amplitude of the inhibitory feedback onto RBCs. We therefore propose that electrical coupling between A17 cells enhances feedback onto RBCs by synchronizing and facilitating GABA release from inhibitory varicosities surrounding each RBC axon terminal. GJs between A17 cells are therefore critical in shaping the visual flow through the scotopic pathway.
2011-01-01
Background Cells of most human cancers have supernumerary centrosomes. To enable an accurate chromosome segregation and cell division, these cells developed a yet unresolved molecular mechanism, clustering their extra centrosomes at two poles, thereby mimicking mitosis in normal cells. Failure of this bipolar centrosome clustering causes multipolar spindle structures and aberrant chromosomes segregation that prevent normal cell division and lead to 'mitotic catastrophe cell death'. Methods We used cell biology and biochemical methods, including flow cytometry, immunocytochemistry and live confocal imaging. Results We identified a phenanthrene derived PARP inhibitor, known for its activity in neuroprotection under stress conditions, which exclusively eradicated multi-centrosomal human cancer cells (mammary, colon, lung, pancreas, ovarian) while acting as extra-centrosomes de-clustering agent in mitosis. Normal human proliferating cells (endothelial, epithelial and mesenchymal cells) were not impaired. Despite acting as PARP inhibitor, the cytotoxic activity of this molecule in cancer cells was not attributed to PARP inhibition alone. Conclusion We identified a water soluble phenanthridine that exclusively targets the unique dependence of most human cancer cells on their supernumerary centrosomes bi-polar clustering for their survival. This paves the way for a new selective cancer-targeting therapy, efficient in a wide range of human cancers. PMID:21943092
Oh, Seung-Won; Park, Jun-Hee; Lee, Ji-Hoon; Yoon, Tae-Hoon
2015-09-07
Recently, low-frequency driving of liquid crystal display (LCD) panels to minimize power consumption has drawn much attention. In the case in which an LCD panel is driven by a fringe-field at a low frequency, the image flickering phenomenon occurs when the sign of the applied electric field is reversed. We investigated image flickering induced by the flexoelectric effect in a fringe-field switching (FFS) liquid crystal cell in terms of the transmittance difference between frames and the ripple phenomenon. Experimental results show that image flicker due to transmittance difference can be eliminated completely and that the ripple phenomena can be reduced significantly by applying a bipolar voltage wave to the FFS cell.
Park, Sung Pyo; Tak, Young Jun; Kim, Hee Jun; Lee, Jin Hyeok; Yoo, Hyukjoon; Kim, Hyun Jae
2018-06-01
Resistive random access memory (RRAM) devices are fabricated through a simple solution process using glucose, which is a natural biomaterial for the switching layer of RRAM. The fabricated glucose-based RRAM device shows nonvolatile bipolar resistive switching behavior, with a switching window of 10 3 . In addition, the endurance and data retention capability of glucose-based RRAM exhibit stable characteristics up to 100 consecutive cycles and 10 4 s under constant voltage stress at 0.3 V. The interface between the top electrode and the glucose film is carefully investigated to demonstrate the bipolar switching mechanism of the glucose-based RRAM device. The glucose based-RRAM is also evaluated on a polyimide film to verify the possibility of a flexible platform. Additionally, a cross-bar array structure with a magnesium electrode is prepared on various substrates to assess the degradability and biocompatibility for the implantable bioelectronic devices, which are harmless and nontoxic to the human body. It is expected that this research can provide meaningful insights for developing the future bioelectronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
G-protein-mediated inhibition of the Trp channel TRPM1 requires the Gβγ dimer.
Shen, Yin; Rampino, Melissa Ann F; Carroll, Reed C; Nawy, Scott
2012-05-29
ON bipolar cells are critical for the function of the ON pathway in the visual system. They express a metabotropic glutamate receptor (mGluR6) that, when activated, couples to the G(o) class of G protein. The channel that is primarily responsible for the synaptic response has been recently identified as the transient receptor potential cation channel subfamily M member 1 (TRPM1); TRPM1 is negatively coupled to the mGluR6/Go cascade such that activation of the cascade results in closure of the channel. Light indirectly opens TRPM1 by reducing transmitter release from presynaptic photoreceptors, resulting in a decrease in mGluR6 activation. Conversely, in the dark, binding of synaptic glutamate to mGluR6 inhibits TRPM1 current. Closure of TRPM1 by G-protein activation in the dark is a critical step in the process of ON bipolar cell signal transduction, but the precise pathway linking these two events is not understood. To address this question, we measured TRPM1 activity in retinal bipolar cells, in human ependymal melanocytes (HEMs) that endogenously express TRPM1, and in HEK293 cells transfected with TRPM1. Dialysis of the Gβγ subunit dimer, but not Gα(o), closed TRPM1 channels in every cell type that we tested. In addition, activation of an endogenous G-protein-coupled receptor pathway in HEK293 cells that releases Gβγ without activating Go protein also closed TRPM1 channels. These results suggest a model in which the Gβγ dimer that is released as a result of the dissociation from Gα(o) upon activation of mGluR6 closes the TRPM1 channel, perhaps via a direct interaction.
Principles of a multistack electrochemical wastewater treatment design
NASA Astrophysics Data System (ADS)
Elsahwi, Essam S.; Dawson, Francis P.; Ruda, Harry E.
2018-02-01
Electrolyzer stacks in a bipolar architecture (cells connected in series) are desirable since power provided to a stack can be transferred at high voltages and low currents and thus the losses in the power bus can be reduced. The anode electrodes (active electrodes) considered as part of this study are single sided but there are manufacturing cost advantages to implementing double side anodes in the future. One of the main concerns with a bipolar stack implementation is the existence of leakage currents (bypass currents). The leakage current is associated with current paths that are not between adjacent anode and cathode pairs. This leads to non uniform current density distributions which compromise the electrochemical conversion efficiency of the stack and can also lead to unwanted side reactions. The objective of this paper is to develop modelling tools for a bipolar architecture consisting of two single sided cells that use single sided anodes. It is assumed that chemical reactions are single electron transfer rate limited and that diffusion and convection effects can be ignored. The design process consists of the flowing two steps: development of a large signal model for the stack, and then the extraction of a small signal model from the large signal model. The small signal model facilitates the design of a controller that satisfies current or voltage regulation requirements. A model has been developed for a single cell and two cells in series but can be generalized to more than two cells in series and to incorporate double sided anode configurations in the future. The developed model is able to determine the leakage current and thus provide a quantitative assessment on the performance of the cell.
Wu, Mei-Sheng; Yuan, Da-Jing; Xu, Jing-Juan; Chen, Hong-Yuan
2013-12-17
Here we developed a novel hybrid bipolar electrode (BPE)-electrochemiluminescence (ECL) biosensor based on hybrid bipolar electrode (BPE) for the measurement of cancer cell surface protein using ferrocence (Fc) labeled aptamer as signal recognition and amplification probe. According to the electric neutrality of BPE, the cathode of U-shaped ITO BPE was electrochemically deposited by Au nanoparticles (NPs) to enhance its conductivity and surface area, decrease the overpotential of O2 reduction, which would correspondingly increase the oxidation current of Ru(bpy)3(2+)/tripropylamine (TPA) on the anode of BPE and resulting a ∼4-fold enhancement of ECL intensity. Then a signal amplification strategy was designed by introducing Fc modified aptamer on the anode surface of BPE through hybridization for detecting the amount of mucin-1 on MCF-7 cells. The presence of Fc could not only inhibit the oxidation of Ru(bpy)3(2+) because of its lower oxidation potential, its oxidation product Fc(+) could also quench the ECL of Ru(bpy)3(2+)/TPA by efficient energy-transfer from the excited-state Ru(bpy)3(2+)* to Fc(+), making the ECL intensity greatly quenched. On the basis of the cathodic Au NPs induced ECL enhancing coupled with anodic Fc induced signal quenching amplification, the approach allowed detection of mucin-1 aptamer at a concentration down to 0.5 fM and was capable of detecting a minimum of 20 MCF-7 cells. Besides, the amount of mucin-1 on MCF-7 cells was calculated to be 9041 ± 388 molecules/cell. This approach therefore shows great promise in bioanalysis.
De Silva, Samantha R; Charbel Issa, Peter; Singh, Mandeep S; Lipinski, Daniel M; Barnea-Cramer, Alona O; Walker, Nathan J; Barnard, Alun R; Hankins, Mark W; MacLaren, Robert E
2016-11-01
Gene therapy using adeno-associated viral (AAV) vectors for the treatment of retinal degenerations has shown safety and efficacy in clinical trials. However, very high levels of vector expression may be necessary for the treatment of conditions such as Stargardt disease where a dual vector approach is potentially needed, or in optogenetic strategies for end-stage degeneration in order to achieve maximal light sensitivity. In this study, we assessed two vectors with single capsid mutations, rAAV2/2(Y444F) and rAAV2/8(Y733F) in their ability to transduce retina in the Abca4 -/- and rd1 mouse models of retinal degeneration. We noted significantly increased photoreceptor transduction using rAAV2/8(Y733F) in the Abca4 -/- mouse, in contrast to previous work where vectors tested in this model have shown low levels of photoreceptor transduction. Bipolar cell transduction was achieved following subretinal delivery of both vectors in the rd1 mouse, and via intravitreal delivery of rAAV2/2(Y444F). The successful use of rAAV2/8(Y733F) to target bipolar cells was further validated on human tissue using an ex vivo culture system of retinal explants. Capsid mutant AAV vectors transduce human retinal cells and may be particularly suited to treat retinal degenerations in which high levels of transgene expression are required.
Bipolar electrochemistry: from materials science to motion and beyond.
Loget, Gabriel; Zigah, Dodzi; Bouffier, Laurent; Sojic, Neso; Kuhn, Alexander
2013-11-19
Bipolar electrochemistry, a phenomenon which generates an asymmetric reactivity on the surface of conductive objects in a wireless manner, is an important concept for many purposes, from analysis to materials science as well as for the generation of motion. Chemists have known the basic concept for a long time, but it has recently attracted additional attention, especially in the context of micro- and nanoscience. In this Account, we introduce the fundamentals of bipolar electrochemistry and illustrate its recent applications, with a particular focus on the fields of materials science and dynamic systems. Janus particles, named after the Roman god depicted with two faces, are currently in the heart of many original investigations. These objects exhibit different physicochemical properties on two opposite sides. This makes them a unique class of materials, showing interesting features. They have received increasing attention from the materials science community, since they can be used for a large variety of applications, ranging from sensing to photosplitting of water. So far the great majority of methods developed for the generation of Janus particles breaks the symmetry by using interfaces or surfaces. The consequence is often a low time-space yield, which limits their large scale production. In this context, chemists have successfully used bipolar electrodeposition to break the symmetry. This provides a single-step technique for the bulk production of Janus particles with a high control over the deposit structure and morphology, as well as a significantly improved yield. In this context, researchers have used the bipolar electrodeposition of molecular layers, metals, semiconductors, and insulators at one or both reactive poles of bipolar electrodes to generate a wide range of Janus particles with different size, composition and shape. In using bipolar electrochemistry as a driving force for generating motion, its intrinsic asymmetric reactivity is again the crucial aspect, as there is no directed motion without symmetry breaking. Controlling the motion of objects at the micro- and nanoscale is of primary importance for many potential applications, ranging from medical diagnosis to nanosurgery, and has generated huge interest in the scientific community in recent years. Several original approaches to design micro- and nanomotors have been explored, with propulsion strategies based on chemical fuelling or on external fields. The first strategy is using the asymmetric particles generated by bipolar electrodeposition and employing them directly as micromotors. We have demonstrated this by using the catalytic and magnetic properties of Janus objects. The second strategy is utilizing bipolar electrochemistry as a direct trigger of motion of isotropic particles. We developed mechanisms based on a simultaneous dissolution and deposition, or on a localized asymmetric production of bubbles. We then used these for the translation, the rotation and the levitation of conducting objects. These examples give insight into two interesting fields of applications of the concept of bipolar electrochemistry, and open perspectives for future developments in materials science and for generating motion at different scales.
Beauregard, Arthur; Chalamcharla, Venkata R; Piazza, Carol Lyn; Belfort, Marlene; Coros, Colin J
2006-11-01
Group II introns are mobile genetic elements that invade their cognate intron-minus alleles via an RNA intermediate, in a process known as retrohoming. They can also retrotranspose to ectopic sites at low frequency. In Escherichia coli, retrotransposition of the lactococcal group II intron, Ll.LtrB, occurs preferentially within the Ori and Ter macrodomains of the E. coli chromosome. These macrodomains migrate towards the poles of the cell, where the intron-encoded protein, LtrA, localizes. Here we investigate whether alteration of nucleoid condensation, chromosome partitioning and replication affect retrotransposition frequencies, as well as bipolar localization of the Ll.LtrB intron integration and LtrA distribution in E. coli. We thus examined these properties in the absence of the nucleoid-associated proteins H-NS, StpA and MukB, in variants of partitioning functions including the centromere-like sequence migS and the actin homologue MreB, as well as in the replication mutants DeltaoriC, seqA, tus and topoIV (ts). Although there were some dramatic fluctuations in retrotransposition levels in these hosts, bipolar localization of integration events was maintained. LtrA was consistently found in nucleoid-free regions, with its localization to the cellular poles being largely preserved in these hosts. Together, these results suggest that bipolar localization of group II intron retrotransposition results from the residence of the intron-encoded protein at the poles of the cell.
NASA Astrophysics Data System (ADS)
Wang, Hong; Matsunaga, Tadashi; Lin, Hua-Tay; Mottern, Alexander M.
2012-02-01
Poled lead zirconate titanate (PZT) material as a single-layer plate was tested using a piezodilatometer under electric cyclic loading in both unipolar and bipolar modes. Its responses were evaluated using unipolar and bipolar measurements on the same setup. The mechanical strain and charge density loops exhibited various variations when the material was cycled for more than 108 cycles. The various quantities including loop amplitude, hysteresis, switchable polarization, and coercive field were characterized accordingly under the corresponding measurement conditions. At the same time, the offset polarization and bias electric field of the material were observed to be changed and the trend was found to be related to the measurement conditions also. Finally, the piezoelectric and dielectric coefficients were analyzed and their implications for the application of interest have been discussed.
Schmidt, Manfred; Derby, Charles D.
2013-01-01
New interneurons are continuously generated in small proliferation zones within neuronal somata clusters in the olfactory deutocerebrum of adult decapod crustaceans. Each proliferation zone is connected to a clump of cells containing one neural stem cell (i.e., adult neuroblast), thus forming a “neurogenic complex.” Here we provide a detailed analysis of the cytoarchitecture of neurogenic complexes in adult spiny lobsters, Panulirus argus, based on transmission electron microscopy and labeling with cell-type-selective markers. The clump of cells is composed of unique bipolar clump-forming cells that collectively completely envelop the adult neuroblast and are themselves ensheathed by a layer of processes of multipolar cell body glia. An arteriole is attached to the clump of cells, but dye perfusion experiments show that hemolymph has no access to the interior of the clump of cells. Thus, the clump of cells fulfills morphological criteria of a protective stem cell niche, with clump-forming cells constituting the adult neuroblast’s microenvironment together with the cell body glia processes separating it from other tissue components. Bromodeoxyuridine pulse-chase experiments with short survival times suggest that adult neuroblasts are not quiescent but rather cycle actively during daytime. We propose a cell lineage model in which an asymmetrically dividing adult neuroblast repopulates the pool of neuronal progenitor cells in the associated proliferation zone. In conclusion, as in mammalian brains, adult neurogenesis in crustacean brains is fueled by neural stem cells that are maintained by stem cell niches that preserve elements of the embryonic microenvironment and contain glial and vascular elements. PMID:21523781
Schmidt, Manfred; Derby, Charles D
2011-08-15
New interneurons are continuously generated in small proliferation zones within neuronal somata clusters in the olfactory deutocerebrum of adult decapod crustaceans. Each proliferation zone is connected to a clump of cells containing one neural stem cell (i.e., adult neuroblast), thus forming a "neurogenic complex." Here we provide a detailed analysis of the cytoarchitecture of neurogenic complexes in adult spiny lobsters, Panulirus argus, based on transmission electron microscopy and labeling with cell-type-selective markers. The clump of cells is composed of unique bipolar clump-forming cells that collectively completely envelop the adult neuroblast and are themselves ensheathed by a layer of processes of multipolar cell body glia. An arteriole is attached to the clump of cells, but dye perfusion experiments show that hemolymph has no access to the interior of the clump of cells. Thus, the clump of cells fulfills morphological criteria of a protective stem cell niche, with clump-forming cells constituting the adult neuroblast's microenvironment together with the cell body glia processes separating it from other tissue components. Bromodeoxyuridine pulse-chase experiments with short survival times suggest that adult neuroblasts are not quiescent but rather cycle actively during daytime. We propose a cell lineage model in which an asymmetrically dividing adult neuroblast repopulates the pool of neuronal progenitor cells in the associated proliferation zone. In conclusion, as in mammalian brains, adult neurogenesis in crustacean brains is fueled by neural stem cells that are maintained by stem cell niches that preserve elements of the embryonic microenvironment and contain glial and vascular elements. Copyright © 2011 Wiley-Liss, Inc.
Force-balance model of suppression of multipolar division in cancer cells with extra centrosomes
NASA Astrophysics Data System (ADS)
Zhu, Jie
2013-03-01
Cancer cells often possess extra centrosomes which have the potential to cause cell death due to catastrophic multipolar division. Many cancer cells, however, are able to escape multipolar mitosis by clustering the extra centrosomes to form bipolar spindles. The mechanism of centrosome clustering is therefore of great interest to the development of anti-cancer drugs because the de-clustering of extra centrosomes provides an appealing way to eliminate cancer cells while keeping healthy cells intact. We present a physical model assuming 1) dynamic centrosomal microtubules interact with chromosomes by both pushing on chromosome arms and pulling along kinetochores; 2) these microtubules interact with force generators associated with actin/adhesion structures at the cell boundary; and 3) motors act on anti-parallel microtubules from different centrosomes. We find via computer simulations that chromosomes tend to aggregate near the cell center while centrosomes can be either clustered to form bipolar spindles or scattered to form multipolar spindles, depending on the strengths of relative forces, cell shape and adhesion geometry. The model predictions agree with data from cells plated on adhesive micropatterns and from biochemically or genetically perturbed cells. Furthermore, our model is able to explain various microtubule distributions in interphase cells on patterned substrates. This work was supported by NSF
Catalytic bipolar interconnection plate for use in a fuel cell
Lessing, Paul A.
1996-01-01
A bipolar interconnection plate for use between adjacent fuel cell units in a stacked fuel cell assembly. Each plate is manufactured from an intermetallic composition, examples of which include NiAl or Ni.sub.3 Al which can catalyze steam reforming of hydrocarbons. Distributed within the intermetallic structure of the plate is a ceramic filler composition. The plate includes a first side with gas flow channels therein and a second side with fuel flow channels therein. A protective coating is applied to the first side, with exemplary coatings including strontium-doped or calcium-doped lanthanum chromite. To produce the plate, Ni and Al powders are combined with the filler composition, compressed at a pressure of about 10,000-30,000 psi, and heated to about 600.degree.-1000.degree. C. The coating is then applied to the first side of the completed plate using liquid injection plasma deposition or other deposition techniques.
Catalytic bipolar interconnection plate for use in a fuel cell
Lessing, P.A.
1996-03-05
A bipolar interconnection plate is described for use between adjacent fuel cell units in a stacked fuel cell assembly. Each plate is manufactured from an intermetallic composition, examples of which include NiAl or Ni{sub 3}Al which can catalyze steam reforming of hydrocarbons. Distributed within the intermetallic structure of the plate is a ceramic filler composition. The plate includes a first side with gas flow channels therein and a second side with fuel flow channels therein. A protective coating is applied to the first side, with exemplary coatings including strontium-doped or calcium-doped lanthanum chromite. To produce the plate, Ni and Al powders are combined with the filler composition, compressed at a pressure of about 10,000--30,000 psi, and heated to about 600--1000 C. The coating is then applied to the first side of the completed plate using liquid injection plasma deposition or other deposition techniques. 6 figs.
Potential for neural regeneration after neurotoxic injury in the adult mammalian retina
NASA Astrophysics Data System (ADS)
Ooto, Sotaro; Akagi, Tadamichi; Kageyama, Ryoichiro; Akita, Joe; Mandai, Michiko; Honda, Yoshihito; Takahashi, Masayo
2004-09-01
It has long been believed that the retina of mature mammals is incapable of regeneration. In this study, using the N-methyl-D-aspartate neurotoxicity model of adult rat retina, we observed that some Müller glial cells were stimulated to proliferate in response to a toxic injury and produce bipolar cells and rod photoreceptors. Although these newly produced neurons were limited in number, retinoic acid treatment promoted the number of regenerated bipolar cells. Moreover, misexpression of basic helix-loop-helix and homeobox genes promoted the induction of amacrine, horizontal, and rod photoreceptor specific phenotypes. These findings demonstrated that retinal neurons regenerated even in adult mammalian retina after toxic injury. Furthermore, we could partially control the fate of the regenerated neurons with extrinsic factors or intrinsic genes. The Müller glial cells constitute a potential source for the regeneration of adult mammalian retina and can be a target for drug delivery and gene therapy in retinal degenerative diseases.
Simmons, Aaron B.; Bloomsburg, Samuel J.; Sukeena, Joshua M.; Miller, Calvin J.; Ortega-Burgos, Yohaniz; Borghuis, Bart G.
2017-01-01
Mature mammalian neurons have a limited ability to extend neurites and make new synaptic connections, but the mechanisms that inhibit such plasticity remain poorly understood. Here, we report that OFF-type retinal bipolar cells in mice are an exception to this rule, as they form new anatomical connections within their tiled dendritic fields well after retinal maturity. The Down syndrome cell-adhesion molecule (Dscam) confines these anatomical rearrangements within the normal tiled fields, as conditional deletion of the gene permits extension of dendrite and axon arbors beyond these borders. Dscam deletion in the mature retina results in expanded dendritic fields and increased cone photoreceptor contacts, demonstrating that DSCAM actively inhibits circuit-level plasticity. Electrophysiological recordings from Dscam−/− OFF bipolar cells showed enlarged visual receptive fields, demonstrating that expanded dendritic territories comprise functional synapses. Our results identify cell-adhesion molecule-mediated inhibition as a regulator of circuit-level neuronal plasticity in the adult retina. PMID:29114051
NASA Astrophysics Data System (ADS)
Martin, J.; Nominé, A.; Brochard, F.; Briançon, J.-L.; Noël, C.; Belmonte, T.; Czerwiec, T.; Henrion, G.
2017-07-01
PEO was conducted on Al by applying a pulsed bipolar current. The role of the cathodic polarization on the appearance of micro-discharges (MDs) and on the subsequent formation of the PEO oxide layers is investigated. Various ratios of the charge quantity RCQ = Qp/Qn (defined as the anodic Qp to cathodic Qn charge quantity ratio over one current pulse period) in the range [0.5; 6.0] were selected by changing the waveform parameters of the cathodic current while keeping the waveform of the anodic current unchanged. Results show that the appearance of MDs is delayed with respect to the rising edge of the anodic current; this delay strongly depends on both the processing time and the applied cathodic charge quantity. It is also evidenced that shorter delays promoted by high RCQ values (RCQ > 1) are associated with stronger MDs (large size and long life) that have detrimental effects on the formed PEO oxide layers. Thicker and the more compact oxide layer morphology is achieved with the intermediate RCQ value (RCQ = 0.9) for which the delay of the MDs appearance is high and the MDs softer. Low RCQ (RCQ < 0.9) results in an earlier extinction of the MDs as the process goes on, which leads to poorly oxidized metal. A mechanism of charge accumulation taking place at the oxide/electrolyte interface and arising before the occurrence of dielectric breakdown is proposed to explain the ignition of MDs during pulsed bipolar PEO of aluminium. A close examination of the voltage-time response which can be adequately simulated with an equivalent RC circuit evidences the capacitive behaviour of the oxide layer and therefore confirms this proposed mechanism of charge accumulation.
Simulation study on single event burnout in linear doping buffer layer engineered power VDMOSFET
NASA Astrophysics Data System (ADS)
Yunpeng, Jia; Hongyuan, Su; Rui, Jin; Dongqing, Hu; Yu, Wu
2016-02-01
The addition of a buffer layer can improve the device's secondary breakdown voltage, thus, improving the single event burnout (SEB) threshold voltage. In this paper, an N type linear doping buffer layer is proposed. According to quasi-stationary avalanche simulation and heavy ion beam simulation, the results show that an optimized linear doping buffer layer is critical. As SEB is induced by heavy ions impacting, the electric field of an optimized linear doping buffer device is much lower than that with an optimized constant doping buffer layer at a given buffer layer thickness and the same biasing voltages. Secondary breakdown voltage and the parasitic bipolar turn-on current are much higher than those with the optimized constant doping buffer layer. So the linear buffer layer is more advantageous to improving the device's SEB performance. Project supported by the National Natural Science Foundation of China (No. 61176071), the Doctoral Fund of Ministry of Education of China (No. 20111103120016), and the Science and Technology Program of State Grid Corporation of China (No. SGRI-WD-71-13-006).
White-light-controlled resistive switching in ZnO/BaTiO3/C multilayer layer at room temperature
NASA Astrophysics Data System (ADS)
Wang, Junshuai; Liang, Dandan; Wu, Liangchen; Li, Xiaoping; Chen, Peng
2018-07-01
The bipolar resistance switching effect is observed in ZnO/BaTiO3/C structure. The resistance switching behavior can be modulated by white light. The resistance switch states and threshold voltage can be changed when subjected to white light. This research can help explore multi-functional materials and applications in nonvolatile memory device.
Mendlowicz, Mauro V; Jean-Louis, Girardin; Kelsoe, John R; Akiskal, Hagop S
2005-03-01
To investigate the presence of temperament dysregulation in healthy relatives of bipolar probands (RBP), a population at high risk for developing mood disorders, by comparing them with clinically recovered bipolar patients (BP) and normal controls (NC). 52 RBP and 23 BP were originally recruited for a multicenter genetic study in bipolar disorders. NC (n=102) were also recruited by newspaper advertisement, radio and television announcements, flyers, newsletters, or word of mouth. All volunteers were asked to complete the TEMPS-A Scale, a self-report questionnaire designed to measure temperamental variations in psychiatric patients and healthy volunteers. In scoring temperaments, we relied upon the short validated version of the TEMPS-A [J. Affect. Disord. (2004)], from which traits with loadings <0.035 had been deleted. To examine differences in temperament dimensions among the three groups, a MANCOVA model was constructed using diagnostic group as the fixed factor (BP vs. RBP vs. NC); effects of age and gender were adjusted as covariates. MANCOVA showed overall group effect on the dependent variables (Hotelling's F5,175=6.64, p<0.001). Four dependent variables (dysthymic, cyclothymic, irritable, and anxious temperaments) showed significant between-group differences. RBP showed lower cyclothymic temperament scores than BP, but higher scores than NC. BP and RBP showed higher anxious temperament scores than NC. Hyperthymic scores were significantly highest in the NC. In view of the small cell sizes, bipolar I vs. bipolar II subanalyses could not be conducted. Methodologic strengths of the present analyses is that the BP group had clinically recovered, and we used the validated short version of the TEMPS-A for the present analyses. Our findings suggest that some clinically healthy relatives of bipolar probands exhibit a subclinical cyclothymic instability in mood, interest, self-confidence, sleep, and/or energy as well as anxiety proneness that is not observed among normal controls. These traits may represent vulnerability markers and could presumably be used to identify individuals at high risk for developing bipolar spectrum disorders, or specific clinical subtypes (e.g., bipolar I, bipolar II) within this spectrum. This is a conceptual perspective with many unanswered questions. Resolution of these questions will require innovative definitions of phenotypes to be included in the analyses of the temperament subscales in different populations. The temperament subscales themselves need to be calibrated properly, to find out which traits or specific combinations of trains are most promising. More extensive and complex quantitative trait analyses of these temperaments in a much expanded sample are reported elsewhere in this issue [J. Affect. Disord. (2004)].
Marchetti, George A.
2003-01-03
The present invention comprises a thin graphite plate with associated gaskets and pieces of carbon cloth that comprise a flow-field. The plate, gaskets and flow-field comprise a "plate and gasket assembly" for use in an ionomer membrane fuel cell, fuel cell stack or battery.
Freeman, Daniel K.; Jeng, Jed S.; Kelly, Shawn K.; Hartveit, Espen; Fried, Shelley I.
2011-01-01
Extracellular electric stimulation with sinusoidal waveforms has been shown to allow preferential activation of individual types of retinal neurons by varying stimulus frequency. It is important to understand the mechanisms underlying this frequency dependence as a step towards improving methods of preferential activation. In order to elucidate these mechanisms, we implemented a morphologically realistic model of a retinal bipolar cell and measured the response to extracellular stimulation with sinusoidal waveforms. We compared the frequency response of a passive membrane model to the kinetics of voltage-gated calcium channels that mediate synaptic release. The passive electrical properties of the membrane exhibited lowpass filtering with a relatively high cutoff frequency (nominal value = 717 Hz). This cutoff frequency was dependent on intra-axonal resistance, with shorter and wider axons yielding higher cutoff frequencies. However, we found that the cutoff frequency of bipolar cell synaptic release was primarily limited by the relatively slow opening kinetics of Land T-type calcium channels. The cutoff frequency of calcium currents depended nonlinearly on stimulus amplitude, but remained lower than the cutoff frequency of the passive membrane model for a large range of membrane potential fluctuations. These results suggest that while it may be possible to modulate the membrane potential of bipolar cells over a wide range of stimulus frequencies, synaptic release will only be initiated at the lower end of this range. PMID:21628768
Electronic monitoring in bipolar disorder.
Faurholt-Jepsen, Maria
2018-03-01
Major reasons for the insufficient effects of current treatment options in bipolar disorder include delayed intervention for prodromal depressive and manic symptoms and decreased adherence to psychopharmacological treatment. The reliance on subjective information and clinical evaluations when diagnosing and assessing the severity of depressive and manic symptoms calls for less biased and more objective markers. By using electronic devices, fine-grained data on complex psychopathological aspects of bipolar disorder can be evaluated unobtrusively over the long term. Moreover, electronic data could possibly represent candidate markers of diagnosis and illness activity in bipolar disorder and allow for early and individualized intervention for prodromal symptoms outside clinical settings. The present dissertation concerns the use of electronic monitoring as a marker and treatment intervention in bipolar disorder and investigated the scientific literature and body of evidence within the area, which includes ten original study reports and two systematic reviews, one of which included a meta-analysis, conducted by the author of the dissertation. Taken together, the literature presented in this dissertation illustrates that 1) smartphone-based electronic self-monitoring of mood seems to reflect clinically assessed depressive and manic symptoms and enables the long-term characterization of mood instability in bipolar disorder; 2) preliminary results suggest that smartphone-based automatically generated data (e.g. the number of text messages sent/day; the number of incoming and outgoing calls/day; the number of changes in cell tower IDs/day; and voice features) seem to reflect clinically assessed depressive and manic symptoms in bipolar disorder; 3) smartphone-based electronic self-monitoring had no effects on the severity of depressive and manic symptoms in bipolar disorder, according to a randomized controlled trial; and 4) electronic monitoring of psychomotor activity and heart rate variability seems to reflect illness activity in bipolar disorder and differentiate between patients with bipolar disorder and healthy control individuals. These findings point toward the usefulness of electronic monitoring as a marker of illness in bipolar disorder. Using electronic monitoring as a treatment intervention could provide innovative and novel interventions on-demand with a potential global reach, filling the gap between availability and the need for treatment. However, future studies using rigorous methodology and more randomized controlled trials that carefully investigate the positive effects and possible harmful effects of electronic monitoring in bipolar disorder are needed. In addition, patient safety, privacy issues, data security and legal aspects are major concerns that must be considered and addressed when using electronic monitoring. Articles published in the Danish Medical Journal are “open access”. This means that the articles are distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits any non-commercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
Direct linking of Greenland and Antarctic ice cores at the Toba eruption (74 ka BP)
NASA Astrophysics Data System (ADS)
Svensson, A.; Bigler, M.; Blunier, T.; Clausen, H. B.; Dahl-Jensen, D.; Fischer, H.; Fujita, S.; Goto-Azuma, K.; Johnsen, S. J.; Kawamura, K.; Kipfstuhl, S.; Kohno, M.; Parrenin, F.; Popp, T.; Rasmussen, S. O.; Schwander, J.; Seierstad, I.; Severi, M.; Steffensen, J. P.; Udisti, R.; Uemura, R.; Vallelonga, P.; Vinther, B. M.; Wegner, A.; Wilhelms, F.; Winstrup, M.
2013-03-01
The Toba eruption that occurred some 74 ka ago in Sumatra, Indonesia, is among the largest volcanic events on Earth over the last 2 million years. Tephra from this eruption has been spread over vast areas in Asia, where it constitutes a major time marker close to the Marine Isotope Stage 4/5 boundary. As yet, no tephra associated with Toba has been identified in Greenland or Antarctic ice cores. Based on new accurate dating of Toba tephra and on accurately dated European stalagmites, the Toba event is known to occur between the onsets of Greenland interstadials (GI) 19 and 20. Furthermore, the existing linking of Greenland and Antarctic ice cores by gas records and by the bipolar seesaw hypothesis suggests that the Antarctic counterpart is situated between Antarctic Isotope Maxima (AIM) 19 and 20. In this work we suggest a direct synchronization of Greenland (NGRIP) and Antarctic (EDML) ice cores at the Toba eruption based on matching of a pattern of bipolar volcanic spikes. Annual layer counting between volcanic spikes in both cores allows for a unique match. We first demonstrate this bipolar matching technique at the already synchronized Laschamp geomagnetic excursion (41 ka BP) before we apply it to the suggested Toba interval. The Toba synchronization pattern covers some 2000 yr in GI-20 and AIM-19/20 and includes nine acidity peaks that are recognized in both ice cores. The suggested bipolar Toba synchronization has decadal precision. It thus allows a determination of the exact phasing of inter-hemispheric climate in a time interval of poorly constrained ice core records, and it allows for a discussion of the climatic impact of the Toba eruption in a global perspective. The bipolar linking gives no support for a long-term global cooling caused by the Toba eruption as Antarctica experiences a major warming shortly after the event. Furthermore, our bipolar match provides a way to place palaeo-environmental records other than ice cores into a precise climatic context.
Y-cell receptive field and collicular projection of parasol ganglion cells in macaque monkey retina
Crook, Joanna D.; Peterson, Beth B.; Packer, Orin S.; Robinson, Farrel R.; Troy, John B.; Dacey, Dennis M.
2009-01-01
The distinctive parasol ganglion cell of the primate retina transmits a transient, spectrally non-opponent signal to the magnocellular layers of the lateral geniculate nucleus (LGN). Parasol cells show well-recognized parallels with the alpha-Y cell of other mammals, yet two key alpha-Y cell properties, a collateral projection to the superior colliculus and nonlinear spatial summation, have not been clearly established for parasol cells. Here we show by retrograde photodynamic staining that parasol cells project to the superior colliculus. Photostained dendritic trees formed characteristic spatial mosaics and afforded unequivocal identification of the parasol cells among diverse collicular-projecting cell types. Loose-patch recordings were used to demonstrate for all parasol cells a distinct Y-cell receptive field ‘signature’ marked by a non-linear mechanism that responded to contrast-reversing gratings at twice the stimulus temporal frequency (second Fourier harmonic, F2) independent of stimulus spatial phase. The F2 component showed high contrast gain and temporal sensitivity and appeared to originate from a region coextensive with that of the linear receptive field center. The F2 spatial frequency response peaked well beyond the resolution limit of the linear receptive field center, showing a Gaussian center radius of ~15 μm. Blocking inner retinal inhibition elevated the F2 response, suggesting that amacrine circuitry does not generate this non-linearity. Our data are consistent with a pooled-subunit model of the parasol-Y cell receptive field in which summation from an array of transient, partially rectifying cone bipolar cells accounts for both linear and non-linear components of the receptive field. PMID:18971470
Mapping Kainate Activation of Inner Neurons in the Rat Retina
Nivison-Smith, Lisa; Sun, Daniel; Fletcher, Erica L.; Marc, Robert E.; Kalloniatis, Michael
2014-01-01
Kainate receptors mediate fast, excitatory synaptic transmission for a range of inner neurons in the mammalian retina. However, allocation of functional kainate receptors to known cell types and their sensitivity remains unresolved. Using the cation channel probe 1-amino-4-guanidobutane agmatine (AGB), we investigated kainate sensitivity of neurochemically identified cell populations within the structurally intact rat retina. Most inner retinal neuron populations responded to kainate in a concentration-dependent manner. OFF cone bipolar cells demonstrated the highest sensitivity of all inner neurons to kainate. Immunocytochemical localization of AGB and macromolecular markers confirmed that type 2 bipolar cells were part of this kainate-sensitive population. The majority of amacrine (ACs) and ganglion cells (GCs) showed kainate responses with different sensitivities between major neurochemical classes (γ-aminobutyric acid [GABA]/glycine ACs > glycine ACs > GABA ACs; glutamate [Glu]/weakly GABA GCs > Glu GCs). Conventional and displaced cholinergic ACs were highly responsive to kainate, whereas dopaminergic ACs do not appear to express functional kainate receptors. These findings further contribute to our understanding of neuronal networks in complex multicellular tissues. PMID:23348566
Differential cellular and subcellular distribution of glutamate transporters in the cat retina.
Fyk-Kolodziej, Bozena; Qin, Pu; Dzhagaryan, Arturik; Pourcho, Roberta G
2004-01-01
Retrieval of glutamate from extracellular sites in the retina involves at least five excitatory amino acid transporters. Immunocytochemical analysis of the cat retina indicates that each of these transporters exhibits a selective distribution which may reflect its specific function. The uptake of glutamate into Muller cells or astrocytes appears to depend upon GLAST and EAAT4, respectively. Staining for EAAT4 was also seen in the pigment epithelium. The remaining transporters are neuronal with GLT-1alpha localized to a number of cone bipolar, amacrine, and ganglion cells and GLT-1v in cone photoreceptors and several populations of bipolar cells. The EAAC1 transporter was found in horizontal, amacrine, and ganglion cells. Staining for EAAT5 was seen in the axon terminals of both rod and cone photoreceptors as well as in numerous amacrine and ganglion cells. Although some of the glutamate transporter molecules are positioned for presynaptic or postsynaptic uptake at glutamatergic synapses, others with localizations more distant from such contacts may serve in modulatory roles or provide protection against excitoxic or oxidative damage.
Park, Jihun; Hudaya, Chairul; Lee, Joong Kee
2011-09-01
In order to replace the brittle graphite bipolar plates currently used for the PEMFC stack, coated SUS 316 was employed. As a metallic bipolar plate, coated SUS 316 can provide higher mechanical strength, better durability to shocks and vibration, less permeability, improved thermal and bulk electrical conductivity, as well as being thinner and lighter. To enhance the interfacial contact resistance and corrosion resistance of SUS 316, the deposition of GTO:F and ZTO:F composite films was carried out by ECR-MOCVD. The surface morphology of the films consisted of tiny elliptically shaped grains with a thickness of 1 microm. The corrosion current for GTO:F was 0.13 Acm(-2) which was much lower than that of bare SUS 316 (50.16 Acm(-2)). The GTO:F coated film had the smallest corrosion current due to the formation of a tight surface morphology with very few pin-holes. The GTO:F coated film exhibited the highest cell voltage and power density due to its lower ICR values.
Photovoltaic Enhancement with Ferroelectric HfO2Embedded in the Structure of Solar Cells
NASA Astrophysics Data System (ADS)
Eskandari, Rahmatollah; Malkinski, Leszek
Enhancing total efficiency of the solar cells is focused on the improving one or all of the three main stages of the photovoltaic effect: absorption of the light, generation of the carriers and finally separation of the carriers. Ferroelectric photovoltaic designs target the last stage with large electric forces from polarized ferroelectric films that can be larger than band gap of the material and the built-in electric fields in semiconductor bipolar junctions. In this project we have fabricated very thin ferroelectric HfO2 films ( 10nm) doped with silicon using RF sputtering method. Doped HfO2 films were capped between two TiN layers ( 20nm) and annealed at temperatures of 800ºC and 1000ºC and Si content was varied between 6-10 mol. % using different size of mounted Si chip on hafnium target. Piezoforce microscopy (PFM) method proved clear ferroelectric properties in samples with 6 mol. % of Si that were annealed at 800ºC. Ferroelectric samples were poled in opposite directions and embedded in the structure of a cell and an enhancement in photovoltaic properties were observed on the poled samples vs unpoled ones with KPFM and I-V measurements. The current work is funded by the NSF EPSCoR LA-SiGMA project under award #EPS-1003897.
The Andalusian Bipolar Family (ABiF) Study: Protocol and sample description.
Guzman-Parra, Jose; Rivas, Fabio; Strohmaier, Jana; Forstner, Andreas; Streit, Fabian; Auburger, Georg; Propping, Peter; Orozco-Diaz, Guillermo; González, Maria José; Gil-Flores, Susana; Cabaleiro-Fabeiro, Francisco Javier; Del Río-Noriega, Francisco; Perez-Perez, Fermin; Haro-González, Jesus; de Diego-Otero, Yolanda; Romero-Sanchiz, Pablo; Moreno-Küstner, Berta; Cichon, Sven; Nöthen, Markus M; Rietschel, Marcella; Mayoral, Fermin
2017-06-12
Here, we present the first description of the Andalusian Bipolar Family (ABiF) Study. This longitudinal investigation of families from Andalusia, Spain commenced in 1997 with the aim of elucidating the molecular genetic causes of bipolar affective disorder. The cohort has since contributed to a number of key genetic findings, as reported in international journals. However, insight into the genetic underpinnings of the disorder in these families remains limited. In the initial 1997-2003 study phase, 100 multiplex bipolar disorder and other mood disorder families were recruited. The ongoing second phase of the project commenced in 2013, and involves follow-up of a subgroup of the originally recruited families. The aim of the follow-up investigation is to generate: i) longitudinal clinical data; ii) results from detailed neuropsychological assessments; and iii) a more extensive collection of biomaterials for future molecular biological studies. The ABiF Study will thus generate a valuable resource for future investigations into the aetiology of bipolar affective disorder; in particular the causes of high disease loading within multiply affected families. We discuss the value of this approach in terms of new technologies for the identification of high-penetrance genetic factors. These new technologies include exome and whole genome sequencing, and the use of induced pluripotent stem cells or model organisms to determine functional consequences. Copyright © 2017 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.
Ahmadi, S; Mirzaei, K; Hossein-Nezhad, A; Shariati, G
2012-10-01
This study is designed to test association of FOKI polymorphism in Vitamin D receptor (VDR) gene and its potential effect on expression of dopamine D1 receptor in schizophrenia and bipolar mood disorder as well as in healthy individuals. In this case-control study 196 patient with schizophrenia, 119 patients with bipolar mood disorder and 192 healthy individuals as the control group were recruited. All psychiatric disorders were diagnosed according to DSM IV criteria. Healthy control group denied any family history of such disorders. FOKI was genotyped by means of PCR-RFLP method. The mRNA was extracted from the peripheral blood mononuclear cells (PBMC) and the cDNA was synthesized. Frequency of ff genotype was more common in patients with bipolar disorders compared to the healthy control group (Odds ratio=1.84, 95% CI; 0.81 to 4.17) with increased relative risk (Relative risk=1.31, CI 95%; 0.86 to 1.99). There were significant differences between relative expressions of dopamine D1 receptor gene in various genotypes. Our results indicated that the ff genotype was associated with lower expression of dopamine D1 receptor gene. VDR as a nuclear receptor may contribute to bipolar disorders via modification of the expression of the neurotransmitters receptor such as dopamine.
NASA Astrophysics Data System (ADS)
Kim, Seung-Tae; Cho, Won-Ju
2018-01-01
We fabricated a resistive random access memory (ReRAM) device on a Ti/AlO x /Pt structure with solution-processed AlO x switching layer using microwave irradiation (MWI), and demonstrated multi-level cell (MLC) operation. To investigate the effect of MWI power on the MLC characteristics, post-deposition annealing was performed at 600-3000 W after AlO x switching layer deposition, and the MLC operation was compared with as-deposited (as-dep) and conventional thermally annealing (CTA) treated devices. All solution-processed AlO x -based ReRAM devices exhibited bipolar resistive switching (BRS) behavior. We found that these devices have four-resistance states (2 bits) of MLC operation according to the modulation of the high-resistance state (HRSs) through reset voltage control. Particularly, compared to the as-dep and CTA ReRAM devices, the MWI-treated ReRAM devices showed a significant increase in the memory window and stable endurance for multi-level operation. Moreover, as the MWI power increased, excellent MLC characteristics were exhibited because the resistance ratio between each resistance state was increased. In addition, it exhibited reliable retention characteristics without deterioration at 25 °C and 85 °C for 10 000 s. Finally, the relationship between the chemical characteristics of the solution-processed AlO x switching layer and BRS-based multi-level operation according to the annealing method and MWI power was investigated using x-ray photoelectron spectroscopy.
Kang, Zhenye; Mo, Jingke; Yang, Gaoqiang; ...
2016-10-11
Liquid/gas diffusion layers (LGDLs), which are located between the catalyst layer (CL) and bipolar plate (BP), play an important role in enhancing the performance of water splitting in proton exchange membrane electrolyzer cells (PEMECs). They are expected to transport electrons, heat, and reactants/products simultaneously with minimum voltage, current, thermal, interfacial, and fluidic losses. Here in this study, the thin titanium-based LGDLs with straight-through pores and well-defined pore morphologies are comprehensively investigated for the first time. The novel LGDL with a 400 μm pore size and 0.7 porosity achieved a best-ever performance of 1.66 V at 2 A cm -2 andmore » 80 °C, as compared to the published literature. The thin/well-tunable titanium based LGDLs remarkably reduce ohmic and activation losses, and it was found that porosity has a more significant impact on performance than pore size. In addition, an appropriate equivalent electrical circuit model has been established to quantify the effects of pore morphologies. The rapid electrochemical reaction phenomena at the center of the PEMEC are observed by coupling with high-speed and micro-scale visualization systems. Lastly, the observed reactions contribute reasonable and pioneering data that elucidate the effects of porosity and pore size on the PEMEC performance. This study can be a new guide for future research and development towards high-efficiency and low-cost hydrogen energy.« less
Atypia in fine needle aspirates of breast lesions.
Tran, Phuong Viet The; Lui, Philip C W; Yu, Alex M C; Vinh, Pham The; Chau, Helen H L; Ma, Tony K F; Tan, Puay-Hoon; Tse, Gary M
2010-07-01
The atypical category is controversial in fine needle aspiration cytology (FNAC) of the breast; most are benign, but a significant number are malignant. To date, no morphological criterion has been found to be consistent in predicting malignancy. To evaluate specific cytological parameters and assess their usefulness in predicting histological outcome in a cohort of atypical breast FNAC, in order to establish a set of objective criteria in defining 'high risk' atypical breast FNAC. A retrospective review of 98 cases of atypical breast FNAC with histological correlation was undertaken. The cytological preparations were evaluated for cellularity, percentage of epithelial cell cluster and single epithelial cells, nuclear atypia, nucleus:cytoplasm ratio, percentage of bipolar nuclei, and the presence of stromal fragments, histiocytes and necrosis. 66 of 98 cases (67.35%) showed benign histology and 32 cases (32.65%) showed malignant histology. Compared with the malignant group, the benign group had significantly lower patient age (p=0.05), higher bipolar nuclei (p<0.0001), less degree of nuclear pleomorphism (p<0.0001), lower nucleus:cytoplasm ratio (p<0.0001), lower cellularity (p=0.05) and less necrosis (p<0.001). There was no difference in the percentage of epithelial clusters and single cells, or the presence of stromal fragments and histiocytes. The presence of nuclear pleomorphism, high nucleus:cytoplasm ratio, epithelial cell atypia, low number of bipolar nuclei and necrosis are useful parameters to predict malignancy in atypical FNAC of the breast. Assessment of these factors in atypical FNAC may be helpful in predicting cancer risk and subsequent management decision making.
Electron-acoustic solitons and double layers in the inner magnetosphere: ELECTRON-ACOUSTIC SOLITONS
Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; ...
2017-05-28
The Van Allen Probes observe generally two types of electrostatic solitary waves (ESW) contributing to the broadband electrostatic wave activity in the nightside inner magnetosphere. ESW with symmetric bipolar parallel electric field are electron phase space holes. The nature of ESW with asymmetric bipolar (and almost unipolar) parallel electric field has remained puzzling. To address their nature, we consider a particular event observed by Van Allen Probes to argue that during the broadband wave activity electrons with energy above 200 eV provide the dominant contribution to the total electron density, while the density of cold electrons (below a few eV)more » is less than a few tenths of the total electron density. We show that velocities of the asymmetric ESW are close to velocity of electron-acoustic waves (existing due to the presence of cold and hot electrons) and follow the Korteweg-de Vries (KdV) dispersion relation derived for the observed plasma conditions (electron energy spectrum is a power law between about 100 eV and 10 keV and Maxwellian above 10 keV). The ESW spatial scales are in general agreement with the KdV theory. We interpret the asymmetric ESW in terms of electron-acoustic solitons and double layers (shocks waves).« less
Electron-acoustic solitons and double layers in the inner magnetosphere: ELECTRON-ACOUSTIC SOLITONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.
The Van Allen Probes observe generally two types of electrostatic solitary waves (ESW) contributing to the broadband electrostatic wave activity in the nightside inner magnetosphere. ESW with symmetric bipolar parallel electric field are electron phase space holes. The nature of ESW with asymmetric bipolar (and almost unipolar) parallel electric field has remained puzzling. To address their nature, we consider a particular event observed by Van Allen Probes to argue that during the broadband wave activity electrons with energy above 200 eV provide the dominant contribution to the total electron density, while the density of cold electrons (below a few eV)more » is less than a few tenths of the total electron density. We show that velocities of the asymmetric ESW are close to velocity of electron-acoustic waves (existing due to the presence of cold and hot electrons) and follow the Korteweg-de Vries (KdV) dispersion relation derived for the observed plasma conditions (electron energy spectrum is a power law between about 100 eV and 10 keV and Maxwellian above 10 keV). The ESW spatial scales are in general agreement with the KdV theory. We interpret the asymmetric ESW in terms of electron-acoustic solitons and double layers (shocks waves).« less
NASA Astrophysics Data System (ADS)
Dong, B. W.; Miao, Jun; Han, J. Z.; Shao, F.; Yuan, J.; Meng, K. K.; Wu, Y.; Xu, X. G.; Jiang, Y.
2018-03-01
An novel heterostructure composed of multiferroic Bi(Fe0.95Cr0.05)O3 (BFCO) and high-K ZrO2 (ZO) layers is investigated. Ferroelectric and electrical properties of the BFZO/ZO heterostructure have been investigated. A pronounced bipolar ferroelectric resistive switching characteristic was achieved in the heterostructure at room temperature. Interestingly, the BFCO/ZO structures exhibit a reproducible resistive switching with a high On/Off resistance ratio ∼2×103 and long retention time. The relationship between polarization and band structure at the interface of BFCO/ZO bilayer under the positive and negative sweepings has been discussed. As a result, the BFCO/ZO multiferroic/high-K heterostructure with high On/Off resistance ratio and long retention characterizes, exhibits a potential in future nonvolatile memory application.
Orlandi, Cesare; Cao, Yan; Martemyanov, Kirill A
2013-10-29
In the mammalian retina, synaptic transmission between light-excited rod photoreceptors and downstream ON-bipolar neurons is indispensable for dim vision, and disruption of this process leads to congenital stationary night blindness in human patients. The ON-bipolar neurons use the metabotropic signaling cascade, initiated by the mGluR6 receptor, to generate depolarizing responses to light-induced changes in neurotransmitter glutamate release from the photoreceptor axonal terminals. Evidence for the identity of the components involved in transducing these signals is growing rapidly. Recently, the orphan receptor, GPR179, a member of the G protein-coupled receptor (GPCR) superfamily, has been shown to be indispensable for the synaptic responses of ON-bipolar cells. In our study, we investigated the interaction of GPR179 with principle components of the signal transduction cascade. We used immunoprecipitation and proximity ligation assays in transfected cells and native retinas to characterize the protein-protein interactions involving GPR179. The influence of cascade components on GPR179 localization was examined through immunohistochemical staining of the retinas from genetic mouse models. We demonstrated that, in mouse retinas, GPR179 forms physical complexes with the main components of the metabotropic cascade, recruiting mGluR6, TRPM1, and the RGS proteins. Elimination of mGluR6 or RGS proteins, but not TRPM1, detrimentally affects postsynaptic targeting or GPR179 expression. These observations suggest that the mGluR6 signaling cascade is scaffolded as a macromolecular complex in which the interactions between the components ensure the optimal spatiotemporal characteristics of signal transduction.
Phosphoric Acid Fuel Cell Technology Status
NASA Technical Reports Server (NTRS)
Simons, S. N.; King, R. B.; Prokopius, P. R.
1981-01-01
A review of the current phosphoric acid fuel cell system technology development efforts is presented both for multimegawatt systems for electric utility applications and for multikilowatt systems for on-site integrated energy system applications. Improving fuel cell performance, reducing cost, and increasing durability are the technology drivers at this time. Electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, and fuel selection are discussed.
Dry compliant seal for phosphoric acid fuel cell
Granata, Jr., Samuel J.; Woodle, Boyd M.
1990-01-01
A dry compliant overlapping seal for a phosphoric acid fuel cell preformed f non-compliant Teflon to make an anode seal frame that encircles an anode assembly, a cathode seal frame that encircles a cathode assembly and a compliant seal frame made of expanded Teflon, generally encircling a matrix assembly. Each frame has a thickness selected to accommodate various tolerances of the fuel cell elements and are either bonded to one of the other frames or to a bipolar or end plate. One of the non-compliant frames is wider than the other frames forming an overlap of the matrix over the wider seal frame, which cooperates with electrolyte permeating the matrix to form a wet seal within the fuel cell that prevents process gases from intermixing at the periphery of the fuel cell and a dry seal surrounding the cell to keep electrolyte from the periphery thereof. The frames may be made in one piece, in L-shaped portions or in strips and have an outer perimeter which registers with the outer perimeter of bipolar or end plates to form surfaces upon which flanges of pan shaped, gas manifolds can be sealed.
Multiple cone pathways are involved in photic regulation of retinal dopamine.
Qiao, Sheng-Nan; Zhang, Zhijing; Ribelayga, Christophe P; Zhong, Yong-Mei; Zhang, Dao-Qi
2016-06-30
Dopamine is a key neurotransmitter in the retina and plays a central role in the light adaptive processes of the visual system. The sole source of retinal dopamine is dopaminergic amacrine cells (DACs). We and others have previously demonstrated that DACs are activated by rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs) upon illumination. However, it is still not clear how each class of photosensitive cells generates light responses in DACs. We genetically isolated cone function in mice to specifically examine the cone-mediated responses of DACs and their neural pathways. In addition to the reported excitatory input to DACs from light-increment (ON) bipolar cells, we found that cones alternatively signal to DACs via a retrograde signalling pathway from ipRGCs. Cones also produce ON and light-decrement (OFF) inhibitory responses in DACs, which are mediated by other amacrine cells, likely driven by type 1 and type 2/3a OFF bipolar cells, respectively. Dye injections indicated that DACs had similar morphological profiles with or without ON/OFF inhibition. Our data demonstrate that cones utilize specific parallel excitatory and inhibitory circuits to modulate DAC activity and efficiently regulate dopamine release and the light-adaptive state of the retina.
Hwang, Bohee; Lee, Jang-Sik
2017-08-01
The demand for high memory density has increased due to increasing needs of information storage, such as big data processing and the Internet of Things. Organic-inorganic perovskite materials that show nonvolatile resistive switching memory properties have potential applications as the resistive switching layer for next-generation memory devices, but, for practical applications, these materials should be utilized in high-density data-storage devices. Here, nanoscale memory devices are fabricated by sequential vapor deposition of organolead halide perovskite (OHP) CH 3 NH 3 PbI 3 layers on wafers perforated with 250 nm via-holes. These devices have bipolar resistive switching properties, and show low-voltage operation, fast switching speed (200 ns), good endurance, and data-retention time >10 5 s. Moreover, the use of sequential vapor deposition is extended to deposit CH 3 NH 3 PbI 3 as the memory element in a cross-point array structure. This method to fabricate high-density memory devices could be used for memory cells that occupy large areas, and to overcome the scaling limit of existing methods; it also presents a way to use OHPs to increase memory storage capacity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Meyer, Arndt; Hilgen, Gerrit; Dorgau, Birthe; Sammler, Esther M.; Weiler, Reto; Monyer, Hannah; Dedek, Karin; Hormuzdi, Sheriar G.
2014-01-01
ABSTRACT Electrical synapses (gap junctions) rapidly transmit signals between neurons and are composed of connexins. In neurons, connexin36 (Cx36) is the most abundant isoform; however, the mechanisms underlying formation of Cx36-containing electrical synapses are unknown. We focus on homocellular and heterocellular gap junctions formed by an AII amacrine cell, a key interneuron found in all mammalian retinas. In mice lacking native Cx36 but expressing a variant tagged with enhanced green fluorescent protein at the C-terminus (KO-Cx36-EGFP), heterocellular gap junctions formed between AII cells and ON cone bipolar cells are fully functional, whereas homocellular gap junctions between two AII cells are not formed. A tracer injected into an AII amacrine cell spreads into ON cone bipolar cells but is excluded from other AII cells. Reconstruction of Cx36–EGFP clusters on an AII cell in the KO-Cx36-EGFP genotype confirmed that the number, but not average size, of the clusters is reduced – as expected for AII cells lacking a subset of electrical synapses. Our studies indicate that some neurons exhibit at least two discriminatory mechanisms for assembling Cx36. We suggest that employing different gap-junction-forming mechanisms could provide the means for a cell to regulate its gap junctions in a target-cell-specific manner, even if these junctions contain the same connexin. PMID:24463820
Deformation in Micro Roll Forming of Bipolar Plate
NASA Astrophysics Data System (ADS)
Zhang, P.; Pereira, M.; Rolfe, B.; Daniel, W.; Weiss, M.
2017-09-01
Micro roll forming is a new processing technology to produce bipolar plates for Proton Exchange Membrane Fuel Cells (PEMFC) from thin stainless steel foil. To gain a better understanding of the deformation of the material in this process, numerical studies are necessary before experimental implementation. In general, solid elements with several layers through the material thickness are required to analyse material thinning in processes where the deformation mode is that of bending combined with tension, but this results in high computational costs. This pure solid element approach is especially time-consuming when analysing roll forming processes which generally involves feeding a long strip through a number of successive roll stands. In an attempt to develop a more efficient modelling approach without sacrificing accuracy, two solutions are numerically analysed with ABAQUS/Explicit in this paper. In the first, a small patch of solid elements over the strip width and in the centre of the “pre-cut” sheet is coupled with shell elements while in the second approach pure shell elements are used to discretize the full sheet. In the first approach, the shell element enables accounting for the effect of material being held in the roll stands on material flow while solid elements can be applied to analyse material thinning in a small discrete area of the sheet. Experimental micro roll forming trials are performed to prove that the coupling of solid and shell elements can give acceptable model accuracy while using shell elements alone is shown to result in major deviations between numerical and experimental results.
E2f1 mediates high glucose-induced neuronal death in cultured mouse retinal explants.
Wang, Yujiao; Zhou, Yi; Xiao, Lirong; Zheng, Shijie; Yan, Naihong; Chen, Danian
2017-10-02
Diabetic retinopathy (DR) is the most common complication of diabetes and remains one of the major causes of blindness in the world; infants born to diabetic mothers have higher risk of developing retinopathy of prematurity (ROP). While hyperglycemia is a major risk factor, the molecular and cellular mechanisms underlying DR and diabetic ROP are poorly understood. To explore the consequences of retinal cells under high glucose, we cultured wild type or E2f1 -/- mouse retinal explants from postnatal day 8 with normal glucose, high osmotic or high glucose media. Explants were also incubated with cobalt chloride (CoCl 2 ) to mimic the hypoxic condition. We showed that, at 7 days post exposure to high glucose, retinal explants displayed elevated cell death, ectopic cell division and intact retinal vascular plexus. Cell death mainly occurred in excitatory neurons, such as ganglion and bipolar cells, which were also ectopically dividing. Many Müller glial cells reentered the cell cycle; some had irregular morphology or migrated to other layers. High glucose inhibited the hyperoxia-induced blood vessel regression of retinal explants. Moreover, inactivation of E2f1 rescued high glucose-induced ectopic division and cell death of retinal neurons, but not ectopic cell division of Müller glial cells and vascular phenotypes. This suggests that high glucose has direct but distinct effects on retinal neurons, glial cells and blood vessels, and that E2f1 mediates its effects on retinal neurons. These findings shed new light onto mechanisms of DR and the fetal retinal abnormalities associated with maternal diabetes, and suggest possible new therapeutic strategies.
Beriat, Guclu Kaan; Akmansu, Sefik Halit; Ezerarslan, Hande; Dogan, Cem; Han, Unsal; Saglam, Mehmet; Senel, Oytun Okan; Kocaturk, Sinan
2012-01-01
The aim of this study compares to the increase in tissue temperature and the thermal histological effects of ultrasonic scalpel, bipolar and unipolar electrosurgery incisions in the tongue tissue of rabbits. This study evaluates the histopathological changes related to thermal change and the maximum temperature values in the peripheral tissue brought about by the incisions carried out by the three methods in a comparative way. To assess thermal tissue damage induced by the three instruments, maximum tissue temperatures were measured during the surgical procedure and tongue tissue samples were examined histopathologically following the surgery. The mean maximum temperature values of the groups were 93.93±2.76 C° for the unipolar electrocautery group, whereas 85.07±5.95 C° for the bipolar electrocautery group, and 108.23±7.64 C° for the ultrasonic scalpel group. There was a statistically significant relationship between the increase in maximum temperature values and the separation among tissue layers, edema, congestion, necrosis, hemorrhage, destruction in blood vessel walls and fibrin accumulation, and between the existence of fibrin thrombus and tissue damage depth (p<0.05). It was concluded that the bipolar electrocautery use gives way to less temperature increase in the tissues and less thermal tissue damage in comparison to the other methods. PMID:22938541
Innovative approaches to bipolar disorder and its treatment
Cipriani, Andrea; Harmer, Catherine J.; Nobre, Anna C.; Saunders, Kate; Goodwin, Guy M.; Geddes, John R.
2016-01-01
All psychiatric disorders have suffered from a dearth of truly novel pharmacological interventions. In bipolar disorder, lithium remains a mainstay of treatment, six decades since its effects were serendipitously discovered. The lack of progress reflects several factors, including ignorance of the disorder's pathophysiology and the complexities of the clinical phenotype. After reviewing the current status, we discuss some ways forward. First, we highlight the need for a richer characterization of the clinical profile, facilitated by novel devices and new forms of data capture and analysis; such data are already promoting a reevaluation of the phenotype, with an emphasis on mood instability rather than on discrete clinical episodes. Second, experimental medicine can provide early indications of target engagement and therapeutic response, reducing the time, cost, and risk involved in evaluating potential mood stabilizers. Third, genomic data can inform target identification and validation, such as the increasing evidence for involvement of calcium channel genes in bipolar disorder. Finally, new methods and models relevant to bipolar disorder, including stem cells and genetically modified mice, are being used to study key pathways and drug effects. A combination of these approaches has real potential to break the impasse and deliver genuinely new treatments. PMID:27111134
Bipolar Disorder: Role of Inflammation and the Development of Disease Biomarkers
2016-01-01
Bipolar disorder is a severe and enduring psychiatric condition which in many cases starts during early adulthood and follows a relapsing and remitting course throughout life. In many patients the disease follows a progressive path with brief periods of inter-episode recovery, sub-threshold symptoms, treatment resistance and increasing functional impairment in the biopsychosocial domains. Knowledge about the neurobiology of bipolar disorder is increasing steadily and evidence from several lines of research implicates immuno-inflammatory mechanisms in the brain and periphery in the etiopathogenesis of this illness and its comorbidities. The main findings are an increase in the levels of proinflammatory cytokines during acute episodes with a decrease in neurotrophic support. Related to these factors are glial cell dysfunction, neuro-endocrine abnormalities and neurotransmitter aberrations which together cause plastic changes in the mood regulating areas of the brain and neuroprogression of the bipolar diathesis. Research in the above mentioned areas is providing an opportunity to discover novel biomarkers for the disease and the field is reaching a point where major breakthroughs can be expected in the not too distant future. It is hoped that with new discoveries fresh avenues will be found to better treat an otherwise recalcitrant disease. PMID:26766943
Xiao, Zhengguo; Yuan, Yongbo; Wang, Qi; ...
2016-02-19
Organolead trihalide perovskites (OTPs) are arising as a new generation of low-cost active materials for solar cells with efficiency rocketing from 3.5% to over 20% within only five years. From “dye” in dye sensitized solar cells to “hole conductors” and “electron conductors” in mesoscopic heterojunction solar cells, there has been a dramatic conceptual evolution on the function of OTPs in photovoltaic devices. OTPs were originally used as dyes in Gratzel cells, achieving a high efficiency above 15% which, however, did not manifest the excellent charge transport properties of OTPs. An analogy of OTPs to traditional semiconductors was drawn after themore » demonstration of highly efficient planar heterojunction structure OTP devices and the observation of their excellent bipolar transport properties with a large diffusion length exceeding 100 nm in CH 3NH 3PbI 3 (MAPbI 3) polycrystalline thin films. Here, this review aims to provide the most recent advances in the understanding of the origin of the high OTP device efficiency. Specifically we will focus on reviewing the progress in understanding 1) the characterization of fantastic optoelectronic property of OTPs, 2) the unusual defect physics that originate the optoelectronic property; 3) morphology control of the perovskite film from fabrication process and film post-treatment, and 4) device interface and charge transport layers that dramatically impact device efficiency in the OTP thin film devices; 5) photocurrent hysteresis; 6) tandem solar cells; 7) stability of the perovskite materials and solar cell devices.« less
Simulative research on the anode plasma dynamics in the high-power electron beam diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Dan; Liu, Lie; Ju, Jin-Chuan
2015-07-15
Anode plasma generated by electron beams could limit the electrical pulse-length, modify the impedance and stability of diode, and affect the generator to diode power coupling. In this paper, a particle-in-cell code is used to study the dynamics of anode plasma in the high-power electron beam diode. The effect of gas type, dynamic characteristic of ions on the diode operation with bipolar flow model are presented. With anode plasma appearing, the amplitude of diode current is increased due to charge neutralizations of electron flow. The lever of neutralization can be expressed using saturation factor. At same pressure of the anodemore » gas layer, the saturation factor of CO{sub 2} is bigger than the H{sub 2}O vapor, namely, the generation rate of C{sup +} ions is larger than the H{sup +} ions at the same pressure. The transition time of ions in the anode-cathode gap could be used to estimate the time of diode current maximum.« less
The LiAl/FeS2 battery power source for the future
NASA Technical Reports Server (NTRS)
Briscoe, J. Douglass; Embrey, J.; Oweis, S.; Press, K.
1992-01-01
Advanced high power density rechargeable batteries are currently under development. These batteries have the potential of greatly increasing the power and energy densities available for space applications. Depending on whether the system is optimized for high power or high energy, values up to 150 Wh/kg and 2100 W/kg (including hardware) are projected. This is due to the fact that the system uses a high conductivity molten salt electrolyte. The electrolyte also serves as a separator layer with unlimited freeze thaw capabilities. Life of 1000 cycles and ten calendar years is projected. The electrochemistry consists of a lithium aluminum alloy negative electrode, iron disulfide positive electrode, and magnesium oxide powder immobilized molten salt electrolyte. Processed powders are cold compacted into circular discs which are assembled into bipolar cell hardware with peripheral ceramic salts. The culmination of the work will be a high energy battery of 40 kWh and a high power battery of 28 kWh.
From the Psychiatrist’s Couch to Induced Pluripotent Stem Cells: Bipolar Disease in a Dish
Hoffmann, Anke; Sportelli, Vincenza; Ziller, Michael; Spengler, Dietmar
2018-01-01
Bipolar disease (BD) is one of the major public health burdens worldwide and more people are affected every year. Comprehensive genetic studies have associated thousands of single nucleotide polymorphisms (SNPs) with BD risk; yet, very little is known about their functional roles. Induced pluripotent stem cells (iPSCs) are powerful tools for investigating the relationship between genotype and phenotype in disease-relevant tissues and cell types. Neural cells generated from BD-specific iPSCs are thought to capture associated genetic risk factors, known and unknown, and to allow the analysis of their effects on cellular and molecular phenotypes. Interestingly, an increasing number of studies on BD-derived iPSCs report distinct alterations in neural patterning, postmitotic calcium signaling, and neuronal excitability. Importantly, these alterations are partly normalized by lithium, a first line treatment in BD. In light of these exciting findings, we discuss current challenges to the field of iPSC-based disease modelling and future steps to be taken in order to fully exploit the potential of this approach for the investigation of BD and the development of new therapies. PMID:29517996
NASA Astrophysics Data System (ADS)
Nandjou, F.; Poirot-Crouvezier, J.-P.; Chandesris, M.; Blachot, J.-F.; Bonnaud, C.; Bultel, Y.
2016-09-01
In Proton Exchange Membrane Fuel Cells, local temperature is a driving force for many degradation mechanisms such as hygrothermal deformation and creep of the membrane, platinum dissolution and bipolar plates corrosion. In order to investigate and quantify those effects in automotive application, durability testing is conducted in this work. During the ageing tests, the local performance and temperature are investigated using in situ measurements of a printed circuit board. At the end of life, post-mortem analyses of the aged components are conducted. The experimental results are compared with the simulated temperature and humidity in the cell obtained from a pseudo-3D multiphysics model in order to correlate the observed degradations to the local conditions inside the stack. The primary cause of failure in automotive cycling is pinhole/crack formation in the membrane, induced by high variations of its water content over time. It is also observed that water condensation largely increases the probability of the bipolar plates corrosion while evaporation phenomena induce local deposits in the cell.
Design and simulation of novel flow field plate geometry for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Ruan, Hanxia; Wu, Chaoqun; Liu, Shuliang; Chen, Tao
2016-10-01
Bipolar plate is one of the many important components of proton exchange membrane fuel cell (PEMFC) stacks as it supplies fuel and oxidant to the membrane-electrode assembly (MEA), removes water, collects produced current and provides mechanical support for the single cells in the stack. The flow field design of a bipolar plate greatly affects the performance of a PEMFC. It must uniformly distribute the reactant gases over the MEA and prevent product water flooding. This paper aims at improving the fuel cell performance by optimizing flow field designs and flow channel configurations. To achieve this, a novel biomimetic flow channel for flow field designs is proposed based on Murray's Law. Computational fluid dynamics based simulations were performed to compare three different designs (parallel, serpentine and biomimetic channel, respectively) in terms of current density distribution, power density distribution, pressure distribution, temperature distribution, and hydrogen mass fraction distribution. It was found that flow field designs with biomimetic flow channel perform better than that with convectional flow channel under the same operating conditions.
Analysis of multiple cell upset sensitivity in bulk CMOS SRAM after neutron irradiation
NASA Astrophysics Data System (ADS)
Pan, Xiaoyu; Guo, Hongxia; Luo, Yinhong; Zhang, Fengqi; Ding, Lili
2018-03-01
In our previous studies, we have proved that neutron irradiation can decrease the single event latch-up (SEL) sensitivity of CMOS SRAM. And one of the key contributions to the multiple cell upset (MCU) is the parasitic bipolar amplification, it bring us to study the impact of neutron irradiation on the SRAM’s MCU sensitivity. After the neutron experiment, we test the devices’ function and electrical parameters. Then, we use the heavy ion fluence to examine the changes on the devices’ MCU sensitivity pre- and post-neutron-irradiation. Unfortunately, neutron irradiation makes the MCU phenomenon worse. Finally, we use the electric static discharge (ESD) testing technology to deduce the experimental results and find that the changes on the WPM region take the lead rather than the changes on the parasitic bipolar amplification for the 90 nm process.
Encoding of luminance and contrast by linear and nonlinear synapses in the retina.
Odermatt, Benjamin; Nikolaev, Anton; Lagnado, Leon
2012-02-23
Understanding how neural circuits transmit information is technically challenging because the neural code is contained in the activity of large numbers of neurons and synapses. Here, we use genetically encoded reporters to image synaptic transmission across a population of sensory neurons-bipolar cells in the retina of live zebrafish. We demonstrate that the luminance sensitivities of these synapses varies over 10(4) with a log-normal distribution. About half the synapses made by ON and OFF cells alter their polarity of transmission as a function of luminance to generate a triphasic tuning curve with distinct maxima and minima. These nonlinear synapses signal temporal contrast with greater sensitivity than linear ones. Triphasic tuning curves increase the dynamic range over which bipolar cells signal light and improve the efficiency with which luminance information is transmitted. The most efficient synapses signaled luminance using just 1 synaptic vesicle per second per distinguishable gray level. Copyright © 2012 Elsevier Inc. All rights reserved.
Stereotyped initiation of retinal waves by bipolar cells via presynaptic NMDA autoreceptors
Zhang, Rong-wei; Li, Xiao-quan; Kawakami, Koichi; Du, Jiu-lin
2016-01-01
Glutamatergic retinal waves, the spontaneous patterned neural activities propagating among developing retinal ganglion cells (RGCs), instruct the activity-dependent refinement of visuotopic maps. However, its initiation and underlying mechanism remain largely elusive. Here using larval zebrafish and multiple in vivo approaches, we discover that bipolar cells (BCs) are responsible for the generation of glutamatergic retinal waves. The wave originates from BC axon terminals (ATs) and propagates laterally to nearby BCs and vertically to downstream RGCs and the optic tectum. Its initiation is triggered by the activation of and consequent glutamate release from BC ATs, and is mediated by the N-methyl-D-aspartate subtype of glutamate receptors (NMDARs) expressed at these ATs. Intercellular asymmetry of NMDAR expression at BC ATs enables the preferential initiation of waves at the temporal retina, where BC ATs express more NMDARs. Thus, our findings indicate that glutamatergic retinal waves are initiated by BCs through a presynaptic NMDA autoreceptor-dependent process. PMID:27586999
Evolution of phototransduction, vertebrate photoreceptors and retina.
Lamb, Trevor D
2013-09-01
Evidence is reviewed from a wide range of studies relevant to the evolution of vertebrate photoreceptors and phototransduction, in order to permit the synthesis of a scenario for the major steps that occurred during the evolution of cones, rods and the vertebrate retina. The ancestral opsin originated more than 700 Mya (million years ago) and duplicated to form three branches before cnidarians diverged from our own lineage. During chordate evolution, ciliary opsins (C-opsins) underwent multiple stages of improvement, giving rise to the 'bleaching' opsins that characterise cones and rods. Prior to the '2R' rounds of whole genome duplication near the base of the vertebrate lineage, 'cone' photoreceptors already existed; they possessed a transduction cascade essentially the same as in modern cones, along with two classes of opsin: SWS and LWS (short- and long-wave-sensitive). These cones appear to have made synaptic contact directly onto ganglion cells, in a two-layered retina that resembled the pineal organ of extant non-mammalian vertebrates. Interestingly, those ganglion cells appear to be descendants of microvillar photoreceptor cells. No lens was associated with this two-layered retina, and it is likely to have mediated circadian timing rather than spatial vision. Subsequently, retinal bipolar cells evolved, as variants of ciliary photoreceptors, and greatly increased the computational power of the retina. With the advent of a lens and extraocular muscles, spatial imaging information became available for central processing, and gave rise to vision in vertebrates more than 500 Mya. The '2R' genome duplications permitted the refinement of cascade components suitable for both rods and cones, and also led to the emergence of five visual opsins. The exact timing of the emergence of 'true rods' is not yet clear, but it may not have occurred until after the divergence of jawed and jawless vertebrates. Copyright © 2013 The Author. Published by Elsevier Ltd.. All rights reserved.
Cell morphology and flagellation of nitrogen-fixing spirilla.
Hegazi, N A; Vlassak, K
1979-01-01
Twenty isolates of N2-fixing spirilla were isolated from the rhizosphere of maize and sugar cane grown in Egyptian and Belgian soils. Electron microscopy distinguished two morphological groups. The first includes short and thick curved rods with an unipolar flagellum while cells of the second group are much longer with the typical appearance of spiral cells and most probably possess a bipolar tuft of flagella.
Sun, Ning; Wang, Qi; Zhao, Yongbiao; Chen, Yonghua; Yang, Dezhi; Zhao, Fangchao; Chen, Jiangshan; Ma, Dongge
2014-03-12
By using mixed hosts with bipolar transport properties for blue emissive layers, a novel phosphorescence/fluorescence hybrid white OLED without using an interlayer between the fluorescent and phosphorescent regions is demonstrated. The peak EQE of the device is 19.0% and remains as high as 17.0% at the practical brightness of 1000 cd m(-2) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Disease and Stem Cell-Based Analysis of the 2014 ASNTR Meeting
Eve, David J.
2015-01-01
A wide variety of subjects are presented at the annual American Society of Neural Therapy and Repair meeting every year, as typified by this summary of the 2014 meeting. Parkinson’s disease-related presentations were again the most popular topic, with traumatic brain injury, spinal cord injury, and stroke being close behind. Other disorders included Huntington’s disease, brain cancer, and bipolar disorders. Several studies were related to multiple diseases, and many studies attempted to reveal more about the disease process. The use of scaffolds, drugs, and gene therapy as disease models and/or potential therapies were also featured. An increasing proportion of presentations related to stem cells, with the study of multiple stem cell types being the most common. Induced pluripotent stem cells were increasingly popular, including two presentations each on a muscle-derived dedifferentiated cell type and cells derived from bipolar patients. Other stem cells, including neural stem cells, mesenchymal stem cells, umbilical cord blood cells, and embryonic stem cells, were featured. More than 55% of the stem cell studies involved transplantation, with human-derived cells being the most frequently transplanted, while rats were the most common recipient. Two human autologous studies for spinal cord injury and hypoxia-derived encephalopathy, while a further three allogenic studies for stroke and spinal cord injury, were also featured. This year’s meeting highlights the increasing promise of stem cells and other therapies for the treatment of neurodegenerative disorders. PMID:26858901
Anodic oxidation of textile wastewaters on boron-doped diamond electrodes.
Abdessamad, NourElHouda; Akrout, Hanene; Bousselmi, Latifa
2015-01-01
The objective of this study is to investigate the potential application of the anodic oxidation (AO) on two electrolytic cells (monopolar (Cell 1) and bipolar (Cell 2)) containing boron-doped diamond electrodes on the treatment of real textile effluents to study the reuse possibility of treated wastewater in the textile industry process. AO is applied in the flocculation coagulation pretreatment of both upstream (BH) and downstream (BS) effluents. The chemical oxygen demand (COD) results show that the final COD removal obtained for the BH effluent in the case of Cell 1 and Cell 2 is 800 and 150 mg O₂L⁻¹ after 5 and 6 h of electrolysis, respectively. The treatments of the BS effluent allow for obtaining a final COD of 76 mg L⁻¹ for Cell 1 and a total mineralization for Cell 2. The obtained results demonstrate that the apparent mineralization kinetics of both effluents when using Cell 2 are about four times faster than the one obtained by Cell 1 and highlight the important contribution of the bipolar cell. Besides, the energy consumption values show that the treatment of the BH effluent by Cell 1 consumes 865 kWh kg COD⁻¹ against 411 kWh kg COD(-1) by Cell 2. Therefore, the use of Cell 2 decreases the energy cost by 2.1-6.65 times when compared to Cell 1 in the case of the BH and BS effluent treatment, respectively.
Low-voltage all-inorganic perovskite quantum dot transistor memory
NASA Astrophysics Data System (ADS)
Chen, Zhiliang; Zhang, Yating; Zhang, Heng; Yu, Yu; Song, Xiaoxian; Zhang, Haiting; Cao, Mingxuan; Che, Yongli; Jin, Lufan; Li, Yifan; Li, Qingyan; Dai, Haitao; Yang, Junbo; Yao, Jianquan
2018-05-01
An all-inorganic cesium lead halide quantum dot (QD) based Au nanoparticle (NP) floating-gate memory with a solution processed layer-by-layer method is demonstrated. Easy synthesis at room temperature and excellent stability make all-inorganic CsPbBr3 perovskite QDs suitable as a semiconductor layer in low voltage nonvolatile transistor memory. The bipolarity of QDs has both electrons and holes stored in the Au NP floating gate, resulting in bidirectional shifts of initial threshold voltage according to the applied programing and erasing pulses. Under low operation voltage (±5 V), the memory achieved a great memory window (˜2.4 V), long retention time (>105 s), and stable endurance properties after 200 cycles. So the proposed memory device based on CsPbBr3 perovskite QDs has a great potential in the flash memory market.
Assembly of bipolar microtubule structures by passive cross-linkers and molecular motors
NASA Astrophysics Data System (ADS)
Johann, D.; Goswami, D.; Kruse, K.
2016-06-01
During cell division, sister chromatids are segregated by the mitotic spindle, a bipolar assembly of interdigitating antiparallel polar filaments called microtubules. The spindle contains the midzone, a stable region of overlapping antiparallel microtubules, that is essential for maintaining bipolarity. Although a lot is known about the molecular players involved, the mechanism underlying midzone formation and maintenance is still poorly understood. We study the interaction of polar filaments that are cross-linked by molecular motors moving directionally and by passive cross-linkers diffusing along microtubules. Using a particle-based stochastic model, we find that the interplay of motors and passive cross-linkers can generate a stable finite overlap between a pair of antiparallel polar filaments. We develop a mean-field theory to study this mechanism in detail and investigate the influence of steric interactions between motors and passive cross-linkers on the overlap dynamics. In the presence of interspecies steric interactions, passive cross-linkers mimic the behavior of molecular motors and stable finite overlaps are generated even for non-cross-linking motors. Finally, we develop a mean-field theory for a bundle of aligned polar filaments and show that they can self-organize into a spindlelike pattern. Our work suggests possible ways as to how cells can generate spindle midzones and control their extensions.
Scale dependence of the mechanics of active gels with increasing motor concentration.
Sonn-Segev, Adar; Bernheim-Groswasser, Anne; Roichman, Yael
2017-10-18
Actin is a protein that plays an essential role in maintaining the mechanical integrity of cells. In response to strong external stresses, it can assemble into large bundles, but it grows into a fine branched network to induce cell motion. In some cases, the self-organization of actin fibers and networks involves the action of bipolar filaments of the molecular motor myosin. Such self-organization processes mediated by large myosin bipolar filaments have been studied extensively in vitro. Here we create active gels, composed of single actin filaments and small myosin bipolar filaments. The active steady state in these gels persists long enough to enable the characterization of their mechanical properties using one and two point microrheology. We study the effect of myosin concentration on the mechanical properties of this model system for active matter, for two different motor assembly sizes. In contrast to previous studies of networks with large motor assemblies, we find that the fluctuations of tracer particles embedded in the network decrease in amplitude as motor concentration increases. Nonetheless, we show that myosin motors stiffen the actin networks, in accordance with bulk rheology measurements of networks containing larger motor assemblies. This implies that such stiffening is of universal nature and may be relevant to a wider range of cytoskeleton-based structures.
NASA Astrophysics Data System (ADS)
Khaerudini, Deni S.; Berliana, Rina; Prakoso, Gatra B.; Insiyanda, Dita R.; Alva, Sagir
2018-03-01
This work concerns the utilization of mill scale, a by-product of iron and steel formed during the hot rolling of steel, as a potential material for use as bipolar plates in proton exchange membrane fuel cells (PEMFCs). On the other hand, mill scale is considered a very rich in iron source having characteristic required such as for current collector in bipolar plate and would significantly contribute to lower the overall cost of PEMFC based fuel cell systems. In this study, the iron reach source of mill scale powder, after sieving of 150 mesh, was mechanically alloyed with the aluminium source containing 30 wt.% using a shaker mill for 3 h. The mixed powders were then pressed at 300 MPa and sintered at various temperatures of 400, 450 and 500 °C for 1 h under inert gas atmosphere. The structural changes of powder particles during mechanical alloying and after sintering were studied by x-ray diffractometry, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX), microhardness measurement, and density - porosity analysis. The details of the performance variation of three different sintering conditions can be preliminary explained by the metallographic and crystallographic structure and phase analysis as well as sufficient mechanical strength of the sintered materials was presented in this report.
Bosveld, Floris; Ainslie, Anna; Bellaïche, Yohanns
2017-10-15
Centrosomes nucleate microtubules and are tightly coupled to the bipolar spindle to ensure genome integrity, cell division orientation and centrosome segregation. While the mechanisms of centrosome-dependent microtubule nucleation and bipolar spindle assembly have been the focus of numerous works, less is known about the mechanisms ensuring the centrosome-spindle coupling. The conserved NuMA protein (Mud in Drosophila ) is best known for its role in spindle orientation. Here, we analyzed the role of Mud and two of its interactors, Asp and Dynein, in the regulation of centrosome numbers in Drosophila epithelial cells. We found that Dynein and Mud mainly initiate centrosome-spindle coupling prior to nuclear envelope breakdown (NEB) by promoting correct centrosome positioning or separation, while Asp acts largely independently of Dynein and Mud to maintain centrosome-spindle coupling. Failure in the centrosome-spindle coupling leads to mis-segregation of the two centrosomes into one daughter cell, resulting in cells with supernumerary centrosomes during subsequent divisions. Altogether, we propose that Dynein, Mud and Asp operate sequentially during the cell cycle to ensure efficient centrosome-spindle coupling in mitosis, thereby preventing centrosome mis-segregation to maintain centrosome number. © 2017. Published by The Company of Biologists Ltd.
Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport
NASA Astrophysics Data System (ADS)
Anthopoulos, Thomas D.; Markham, Jonathan P. J.; Namdas, Ebinazar B.; Samuel, Ifor D. W.; Lo, Shih-Chun; Burn, Paul L.
2003-06-01
High-efficiency single-layer-solution-processed green light-emitting diodes based on a phosphorescent dendrimer are demonstrated. A peak external quantum efficiency of 10.4% (35 cd/A) was measured for a first generation fac-tris(2-phenylpyridine) iridium cored dendrimer when blended with 4,4'-bis(N-carbazolyl)biphenyl and electron transporting 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene at 8.1 V. A maximum power efficiency of 12.8 lm/W was measured also at 8.1 V and 550 cd/m2. These results indicate that, by simple blending of bipolar and electron-transporting molecules, highly efficient light-emitting diodes can be made employing a very simple device structure.
Caminos, Elena; Vaquero, Cecilia F; García-Olmo, Dolores C
2014-12-01
Characterization of retinal cells, cell transplants and gene therapies may be helped by pre-labeled retinal cells, such as those transfected with vectors for green fluorescent protein expression. The aim of this study was to analyze retinal cells and optic nerve components from transgenic green mice (GM) with the 'enhanced' green fluorescent protein (EGFP) gene under the control of the CAG promoter (a chicken β-actin promoter and a cytomegalovirus enhancer). The structural analysis and electroretinography recordings showed a normal, healthy retina. Surprisingly, EGFP expression was not ubiquitously located in the retina and optic nerve. Epithelial cells, photoreceptors and bipolar cells presented high green fluorescence levels. In contrast, horizontal cells, specific amacrine cells and ganglion cells exhibited a null EGFP expression level. The synaptic terminals of rod bipolar cells displayed a high green fluorescence level when animals were kept in the dark. Immature retinas exhibited different EGFP expression patterns to those noted in adults. Axons and glial cells in the optic nerve revealed a specific regional EGFP expression pattern, which correlated with the presence of myelin. These results suggest that EGFP expression might be related to the activity of both the CAG promoter and β-actin in mature retinal neurons and oligodendrocytes. Moreover, EGFP expression might be regulated by light in both immature and adult animals. Since GM are used in numerous retina bioassays, it is essential to know the differential EGFP expression in order to select cells of interest for each study.
Metal hydrides as negative electrode materials for Ni- MH batteries
NASA Astrophysics Data System (ADS)
Yartys, V.; Noreus, D.; Latroche, M.
2016-01-01
Structural, thermodynamical and electrochemical properties of metallic hydrides belonging to the pseudo-binary family A-Mg-Ni ( A: rare earths) are reviewed and compared. Technology aspects of bipolar cells are also discussed.
Lipin, Mikhail Y; Vigh, Jozsef
2018-05-01
Inhibition mediated by horizontal and amacrine cells in the outer and inner retina, respectively, are fundamental components of visual processing. Here, our purpose was to determine how these different inhibitory processes affect glutamate release from ON bipolar cells when the retina is stimulated with full-field light of various intensities. Light-evoked membrane potential changes (ΔV m ) were recorded directly from axon terminals of intact bipolar cells receiving mixed rod and cone inputs (Mbs) in slices of dark-adapted goldfish retina. Inner and outer retinal inhibition to Mbs was blocked with bath applied picrotoxin (PTX) and NBQX, respectively. Then, control and pharmacologically modified light responses were injected into axotomized Mb terminals as command potentials to induce voltage-gated Ca 2+ influx (Q Ca ) and consequent glutamate release. Stimulus-evoked glutamate release was quantified by the increase in membrane capacitance (ΔC m ). Increasing depolarization of Mb terminals upon removal of inner and outer retinal inhibition enhanced the ΔV m /Q Ca ratio equally at a given light intensity and inhibition did not alter the overall relation between Q Ca and ΔC m . However, relative to control, light responses recorded in the presence of PTX and PTX + NBQX increased ΔC m unevenly across different stimulus intensities: at dim stimulus intensities predominantly the inner retinal GABAergic inhibition controlled release from Mbs, whereas the inner and outer retinal inhibition affected release equally in response to bright stimuli. Furthermore, our results suggest that non-linear relationship between Q Ca and glutamate release can influence the efficacy of inner and outer retinal inhibitory pathways to mediate Mb output at different light intensities. © 2018 Wiley Periodicals, Inc.
Tunca, Zeliha; Ozerdem, Aysegul; Ceylan, Deniz; Yalçın, Yaprak; Can, Güneş; Resmi, Halil; Akan, Pınar; Ergör, Gül; Aydemir, Omer; Cengisiz, Cengiz; Kerim, Doyuran
2014-09-01
Brain-derived neurotrophic factor (BDNF) has been consistently reported to be decreased in mania or depression in bipolar disorders. Evidence suggests that Glial cell line-derived neurotrophic factor (GDNF) has a role in the pathogenesis of mood disorders. Whether GDNF and BDNF act in the same way across different episodes in bipolar disorders is unclear. BDNF and GDNF serum levels were measured simultaneously by enzyme-linked immunosorbent assay (ELISA) method in 96 patients diagnosed with bipolar disorder according to DSM-IV (37 euthymic, 33 manic, 26 depressed) in comparison to 61 healthy volunteers. SCID- I and SCID-non patient version were used for clinical evaluation of the patients and healthy volunteers respectively. Correlations between the two trophic factor levels, and medication dose, duration and serum levels of lithium or valproate were studied across different episodes of illness. Patients had significantly lower BDNF levels during mania and depression compared to euthymic patients and healthy controls. GDNF levels were not distinctive. However GDNF/BDNF ratio was higher in manic state compared to euthymia and healthy controls. Significant negative correlation was observed between BDNF and GDNF levels in euthymic patients. While BDNF levels correlated positively, GDNF levels correlated negatively with lithium levels. Regression analysis confirmed that lithium levels predicted only GDNF levels positively in mania, and negatively in euthymia. Small sample size in different episodes and drug-free patients was the limitation of thestudy. Current data suggests that lithium exerts its therapeutic action by an inverse effect on BDNF and GDNF levels, possibly by up-regulating BDNF and down-regulating GDNF to achieve euthymia. Copyright © 2014 Elsevier B.V. All rights reserved.
Chua, Penelope R; Roof, David M; Lee, Yan; Sakowicz, Roman; Clarke, David; Pierce, Dan; Stephens, Thoryn; Hamilton, Matthew; Morgan, Brad; Morgans, David; Nakai, Takashi; Tomasi, Adam; Maxon, Mary E
2007-01-01
Kinesins from the bipolar (Kinesin-5) family are conserved in eukaryotic organisms and play critical roles during the earliest stages of mitosis to mediate spindle pole body separation and formation of a bipolar mitotic spindle. To date, genes encoding bipolar kinesins have been reported to be essential in all organisms studied. We report the characterization of CaKip1p, the sole member of this family in the human pathogenic yeast Candida albicans. C. albicans Kip1p appears to localize to the mitotic spindle and loss of CaKip1p function interferes with normal progression through mitosis. Inducible excision of CaKIP1 revealed phenotypes unique to C. albicans, including viable homozygous Cakip1 mutants and an aberrant spindle morphology in which multiple spindle poles accumulate in close proximity to each other. Expression of the C. albicans Kip1 motor domain in Escherichia coli produced a protein with microtubule-stimulated ATPase activity that was inhibited by an aminobenzothiazole (ABT) compound in an ATP-competitive fashion. This inhibition results in ‘rigor-like’, tight association with microtubules in vitro. Upon treatment of C. albicans cells with the ABT compound, cells were killed, and terminal phenotype analysis revealed an aberrant spindle morphology similar to that induced by loss of the CaKIP1 gene. The ABT compound discovered is the first example of a fungal spindle inhibitor targeted to a mitotic kinesin. Our results also show that the non-essential nature and implementation of the bipolar motor in C. albicans differs from that seen in other organisms, and suggest that inhibitors of a non-essential mitotic kinesin may offer promise as cidal agents for antifungal drug discovery. PMID:17573815
AMPA Receptors Mediate Acetylcholine Release from Starburst Amacrine Cells in the Rabbit Retina
FIRTH, SALLY I.; LI, WEI; MASSEY, STEPHEN C.; MARSHAK, DAVID W.
2012-01-01
The light response of starburst amacrine cells is initiated by glutamate released from bipolar cells. To identify the receptors that mediate this response, we used a combination of anatomical and physiological techniques. An in vivo, rabbit eyecup was preloaded with [3H]-choline, and the [3H]-acetylcholine (ACh) released into the superfusate was monitored. A photopic, 3 Hz flashing light increased ACh release, and the selective AMPA receptor antagonist, GYKI 53655, blocked this light-evoked response. Nonselective AMPA/kainate agonists increased the release of ACh, but the specific kainate receptor agonist, SYM 2081, did not increase ACh release. Selective AMPA receptor antagonists, GYKI 53655 or GYKI 52466, also blocked the responses to agonists. We conclude that the predominant excitatory input to starburst amacrine cells is mediated by AMPA receptors. We also labeled lightly fixed rabbit retinas with antisera to choline acetyltransferase (ChAT), AMPA receptor subunits GluR1, GluR2/3, or GluR4, and kainate receptor subunits GluR6/7 and KA2. Labeled puncta were observed in the inner plexiform layer with each of these antisera to glutamate receptors, but only GluR2/3-IR puncta and GluR4-IR puncta were found on the ChAT-IR processes. The same was true of starburst cells injected intracellularly with Neurobiotin, and these AMPA receptor subunits were localized to two populations of puncta. The AMPA receptors are expected to desensitize rapidly, enhancing the sensitivity of starburst amacrine cells to moving or other rapidly changing stimuli. PMID:14515241
Alloy, Lauren B.; Urošević, Snežana; Abramson, Lyn Y.; Jager-Hyman, Shari; Nusslock, Robin; Whitehouse, Wayne G.; Hogan, Michael
2011-01-01
Little longitudinal research has examined progression to more severe bipolar disorders in individuals with “soft” bipolar spectrum conditions. We examine rates and predictors of progression to bipolar I and II diagnoses in a non-patient sample of college-age participants (n = 201) with high General Behavior Inventory scores and childhood or adolescent onset of “soft” bipolar spectrum disorders followed longitudinally for 4.5 years from the Longitudinal Investigation of Bipolar Spectrum (LIBS) project. Of 57 individuals with initial cyclothymia or bipolar disorder not otherwise specified (BiNOS) diagnoses, 42.1% progressed to a bipolar II diagnosis and 10.5% progressed to a bipolar I diagnosis. Of 144 individuals with initial bipolar II diagnoses, 17.4% progressed to a bipolar I diagnosis. Consistent with hypotheses derived from the clinical literature and the Behavioral Approach System (BAS) model of bipolar disorder, and controlling for relevant variables (length of follow-up, initial depressive and hypomanic symptoms, treatment-seeking, and family history), high BAS sensitivity (especially BAS Fun Seeking) predicted a greater likelihood of progression to bipolar II disorder, whereas early age of onset and high impulsivity predicted a greater likelihood of progression to bipolar I (high BAS sensitivity and Fun-Seeking also predicted progression to bipolar I when family history was not controlled). The interaction of high BAS and high Behavioral Inhibition System (BIS) sensitivities also predicted greater likelihood of progression to bipolar I. We discuss implications of the findings for the bipolar spectrum concept, the BAS model of bipolar disorder, and early intervention efforts. PMID:21668080
Cornish, Elisa E; Natoli, Riccardo C; Hendrickson, Anita; Provis, Jan M
2004-01-08
Relatively little is known of the expression and distribution of FGF receptors (FGFR) in the primate retina. We investigated expression of FGFRs in developing and adult Macaca monkey retina, paying particular attention to the cone rich, macular region. One fetal human retina was used for diagnostic PCR using primers designed for FGFR1, FGFR2, FGFR3, FGFR4, and FGFR like-protein 1 (FGFrl1) and for probe design to FGFR3, FGFR4, and FGFrl1. Rat cDNA was used to synthesize probes for FGFR1 and FGFR2 with 90% and 93% homology to human, respectively. Paraffin sections of retina from macaque fetuses sacrificed at fetal days (Fd) 64, 73, 85, 105, 115, 120, and 165, and postnatal ages 2.5 and 11 years were used to detect FGF receptors by immunohistochemistry and in situ hybridization. PCR showed each of the FGF receptors are expressed in fetal human retina. In situ hybridization indicated that mRNA for each receptor is expressed in all retinal cell layers during development, but most intensely in the ganglion cell layer (GCL). FGFR2 mRNA is reduced in the adult inner (INL) and outer (ONL) nuclear layers, while FGFrl1 mRNA is virtually absent from the adult ONL. FGFR4 mRNA is particularly intense in fetal and adult cone photoreceptors. Immunoreactivity to FGFR1-FGFR4 was detected in the interphotoreceptor matrix in what appeared to be RPE microvilli associated with developing photoreceptor outer segments, and generally is high in the GCL and low in the INL. Different patterns of FGFR3 and FGFR4 immunoreactivities in the outer plexiform layer (OPL) suggest localization of FGFR3 to horizontal cell processes, with FGFR4 being expressed by both horizontal and bipolar cell processes. FGFR1, FGFR3, and FGFR4 immunoreactivities are present in the inner segments and somata of adult cones. The pedicles of developing and adult cones are FGFR1 and FGFR3 immunoreactive, and the basal, synaptic region is FGFR4 immunoreactive. FGFR4 labels cones almost in their entirety from early in development and is not detected in rods. The fibers of Henle are intensely FGFR4 immunoreactive in adult cones. The results show high levels of FGF receptor expression in developing and adult retina. Differential distribution of FGF receptors across developing and adult photoreceptors suggests specific roles for FGF signalling in development and maintenance of photoreceptors, particularly the specialized cones of the fovea.
Parker, Gordon B; Romano, Mia; Graham, Rebecca K; Ricciardi, Tahlia
2018-05-01
We sought to quantify the prevalence and differential prevalence of a bipolar disorder among family members of patients with a bipolar I or II disorder. The sample comprised 1165 bipolar and 1041 unipolar patients, with the former then sub-typed as having either a bipolar I or II condition. Family history data was obtained via an online self-report tool. Prevalence of a family member having a bipolar disorder (of either sub-type) was distinctive (36.8%). Patients with a bipolar I disorder reported a slightly higher family history (41.2%) compared to patients with a bipolar II disorder (36.3%), and with both significantly higher than the rate of bipolar disorder in family members of unipolar depressed patients (18.5%). Findings support the view that bipolar disorder is heritable. The comparable rates in the two bipolar sub-types support the positioning of bipolar II disorder as a valid condition with strong genetic underpinnings.
Murphy-Baum, Benjamin L; Taylor, W Rowland
2015-09-30
Much of the computational power of the retina derives from the activity of amacrine cells, a large and diverse group of GABAergic and glycinergic inhibitory interneurons. Here, we identify an ON-type orientation-selective, wide-field, polyaxonal amacrine cell (PAC) in the rabbit retina and demonstrate how its orientation selectivity arises from the structure of the dendritic arbor and the pattern of excitatory and inhibitory inputs. Excitation from ON bipolar cells and inhibition arising from the OFF pathway converge to generate a quasi-linear integration of visual signals in the receptive field center. This serves to suppress responses to high spatial frequencies, thereby improving sensitivity to larger objects and enhancing orientation selectivity. Inhibition also regulates the magnitude and time course of excitatory inputs to this PAC through serial inhibitory connections onto the presynaptic terminals of ON bipolar cells. This presynaptic inhibition is driven by graded potentials within local microcircuits, similar in extent to the size of single bipolar cell receptive fields. Additional presynaptic inhibition is generated by spiking amacrine cells on a larger spatial scale covering several hundred microns. The orientation selectivity of this PAC may be a substrate for the inhibition that mediates orientation selectivity in some types of ganglion cells. Significance statement: The retina comprises numerous excitatory and inhibitory circuits that encode specific features in the visual scene, such as orientation, contrast, or motion. Here, we identify a wide-field inhibitory neuron that responds to visual stimuli of a particular orientation, a feature selectivity that is primarily due to the elongated shape of the dendritic arbor. Integration of convergent excitatory and inhibitory inputs from the ON and OFF visual pathways suppress responses to small objects and fine textures, thus enhancing selectivity for larger objects. Feedback inhibition regulates the strength and speed of excitation on both local and wide-field spatial scales. This study demonstrates how different synaptic inputs are regulated to tune a neuron to respond to specific features in the visual scene. Copyright © 2015 the authors 0270-6474/15/3513336-15$15.00/0.
Silicon Germanium Strained Layers and Heterostructures
NASA Astrophysics Data System (ADS)
Willander, M.; Nur, O.; Jain, S. C.
2004-01-01
The integration of strained-Si1 xGex into Si technology has enhanced the performance and extended the functionality of Si based circuits. The improvement of device performance is observed in both AC as well as DC characteristics of these devices. The category of such devices includes field effect as well as bipolar families. Speed performance in some based circuits has reached limits previously dominated by III-V heterostructures based devices. In addition, for some optoelectronics applications including photodetectors it is now possible to easily integrate strained-Si1 xGex based optical devices into standard Silicon technology. The impact of integrating strained and relaxed Si1 xGex alloys into Si technology is important. It has lead to stimulate Si research as well as offers easy options for performances that requires very complicated and costly process if pure Si has to be used. In this paper we start by discussing the strain and stability of Si1 xGex alloys. The origin and the process responsible for transient enhanced diffusion (TED) in highly doped Si containing layers will be mentioned. Due to the importance of TED for thin highly doped Boron strained-Si1 xGex layers and its degrading consequences, possible suppression design methods will be presented. Quantum well pchannel MOSFETs (QW-PMOSFETs) based on thin buried QW are solution to the low speed and weak current derivability. Different aspects of designing these devices for a better performance are briefly reviewed. Other FETs based on tensile strained Si on relaxed Si1 xGex for n-channel and modulation doped field effect transistors (MODFETs) showed excellent performance. Record AC performance well above 200GHz for fmax is already observed and this record is expected to increase in the coming years. Heterojunction bipolar transistors (HPTs) with thin strained-Si1 xGex highly doped base have lead to optimize the performance of the bipolar technology for many applications easily. The strategies of design and the most important designs of HBTs for optimum AC as well as DC are discussed in details. This technology is now mature enough and that is manifested in the appearance in the market nowadays. Si1 xGex based FETs circuits compatible with standard Si CMOS processes are soon expected to appear in the market. Finally, we briefly discuss the recent advances in Si1 xGex based infrared photodetectors.
Lewis Research Center battery overview
NASA Technical Reports Server (NTRS)
Odonnell, Patricia
1993-01-01
The topics covered are presented in viewgraph form and include the following: the Advanced Communications Technology Satellite; the Space Station Freedom (SSF) photovoltaic power module division; Ni/H2 battery and cell design; individual pressure vessel (IPV) nickel-hydrogen cell testing SSF support; the LeRC Electrochemical Technology Branch; improved design IPV nickel-hydrogen cells; advanced technology for IPV nickel-hydrogen flight cells; a lightweight nickel-hydrogen cell; bipolar nickel-hydrogen battery development and technology; aerospace nickel-metal hydride cells; the NASA Sodium-Sulfur Cell Technology Flight Experiment; and the lithium-carbon dioxide battery thermodynamic model.
Fuel cell with metal screen flow-field
Wilson, M.S.; Zawodzinski, C.
1998-08-25
A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.
Fuel cell with metal screen flow-field
Wilson, Mahlon S.; Zawodzinski, Christine
2001-01-01
A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.
Fuel cell with metal screen flow-field
Wilson, Mahlon S.; Zawodzinski, Christine
1998-01-01
A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.
NASA Astrophysics Data System (ADS)
Jarikov, Viktor V.; Kondakov, Denis Y.
2009-02-01
Previously, radical cation of tris(8-quinolinolate)aluminum (Alq•+) has been associated with the instability of Alq films subjected to holes-only electrical current. Yet, the questions remain (i) whether Alq•+ is the primary source of the intrinsic degradation of bipolar organic light-emitting diodes (OLEDs) based on Alq, (ii) whether Alq•+ reactions result in deep charge traps in holes-only devices as found in bipolar counterparts, and (iii) whether radical cations can be a common source of degradation of OLEDs irrespective of materials. With regards to generality of hole-current-related degradation, it is interesting to examine the behavior of 9,10-diarylanthracenes (DAAs)—the practically important class of blue-fluorescing light-emitting-layer hosts. These questions prompted our comparative study of the effects of unipolar currents in Alq and 2-t-butyl-9,10-di(2-naphthyl)anthracene (TBADN), which was chosen as a representative material of the DAA class. First, we identified device structures allowing for rigorous and stable unipolar conduction. Interestingly, even in pristine holes-only devices, our voltammetric measurements indicated that Alq contains a substantial density of deep hole traps (far deeper than what can be explained by energetic disorder), which can be charged by passing holes-only current and seemingly discharged by exposure to white light. As for aged holes-only Alq devices, they exhibited symptoms qualitatively matching those of aged bipolar Alq devices, viz., photoluminescence (PL) loss, transition voltage (V0) rise, and drive voltage (Vd) rise. Notably, PL and V0 are linearly correlated in both holes-only and bipolar devices, which reinforces the supposed link between Alq•+ and the degradation in both types of devices. Yet, there are indications the Alq•+ instability may not be the only degradation pathway in bipolar devices. Even though our observations for holes-only Alq devices agree qualitatively with previously reported ones, we observe far slower degradation rates [Alq PL fades up to ˜500 times slower in holes-only devices, while Alq electroluminescence (EL) fades ˜50 times slower in bipolar control devices]. It is possible that impurities play a significant, perhaps crucial role in the degradation mechanism of both bipolar and holes-only devices, especially the relatively shorter-lived ones. In sharp contrast to Alq, all three observables (PL, V0, and Vd) indicate that holes-only current in TBADN (neat or doped with a perylene-based blue dopant) does not result in degradation in the time that is sufficient for the corresponding bipolar control devices to lose 60%-80% of EL and 20%-30% of PL. We find that the electrons-only current in Alq or TBADN does not result in degradation either. Thus, the degradation of Alq and DAA bipolar devices may be caused by fundamentally dissimilar mechanisms: while hole current may damage the former, it does not appear to affect the latter, suggesting that the initiation step is different.
Feng, Wenyi; Bachant, Jeff; Collingwood, David; Raghuraman, M K; Brewer, Bonita J
2009-12-01
Yeast replication checkpoint mutants lose viability following transient exposure to hydroxyurea, a replication-impeding drug. In an effort to understand the basis for this lethality, we discovered that different events are responsible for inviability in checkpoint-deficient cells harboring mutations in the mec1 and rad53 genes. By monitoring genomewide replication dynamics of cells exposed to hydroxyurea, we show that cells with a checkpoint deficient allele of RAD53, rad53K227A, fail to duplicate centromeres. Following removal of the drug, however, rad53K227A cells recover substantial DNA replication, including replication through centromeres. Despite this recovery, the rad53K227A mutant fails to achieve biorientation of sister centromeres during recovery from hydroxyurea, leading to secondary activation of the spindle assembly checkpoint (SAC), aneuploidy, and lethal chromosome segregation errors. We demonstrate that cell lethality from this segregation defect could be partially remedied by reinforcing bipolar attachment. In contrast, cells with the mec1-1 sml1-1 mutations suffer from severely impaired replication resumption upon removal of hydroxyurea. mec1-1 sml1-1 cells can, however, duplicate at least some of their centromeres and achieve bipolar attachment, leading to abortive segregation and fragmentation of incompletely replicated chromosomes. Our results highlight the importance of replicating yeast centromeres early and reveal different mechanisms of cell death due to differences in replication fork progression.
Ribbon synapses compute temporal contrast and encode luminance in retinal rod bipolar cells
Oesch, Nicholas W.; Diamond, Jeffrey S.
2011-01-01
Contrast is computed throughout the nervous system to encode changing inputs efficiently. The retina encodes luminance and contrast over a wide range of visual conditions and so must adapt its responses to maintain sensitivity and avoid saturation. Here we show how one type of adaptation allows individual synapses to compute contrast and encode luminance in biphasic responses to step changes in light levels. Light-evoked depletion of the readily releasable vesicle pool (RRP) at rod bipolar cell (RBC) ribbon synapses in rat retina limits the dynamic range available to encode transient but not sustained responses, thereby allowing the transient and sustained components of release to compute temporal contrast and encode mean light levels, respectively. A release/replenishment model shows that a single, homogeneous pool of synaptic vesicles is sufficient to generate this behavior and reveals that the dominant mechanism shaping the biphasic contrast/luminance response is the partial depletion of the RRP. PMID:22019730
Zerlauth, Jean-Baptiste; Meuli, Reto; Dunet, Vincent
2017-02-02
The case of a 70-year-old woman with progressive renal cell carcinoma (RCC) metastatic invasion of a L3 vertebral hemangioma treated by dual percutaneous radiofrequency ablation (RFA) and vertebroplasty is reported. The patient was surgically treated for RCC in 2001. Chemotherapy and immunotherapy were introduced in 2013 for ovarian, bladder and cerebral metastatic disease. An asymptomatic L3 benign hemangioma was noticed at this time. One-year CT and MRI follow-up studies demonstrated a nodular isolated soft tissue lesion involving the anterior edge of the hemangioma. Percutaneous treatment consisted of a L3 vertebral body unipedicular approach to perform a biopsy, RFA with a navigational bipolar RFA device and vertebroplasty using high viscosity cement. Histopathological examination confirmed metastasis of RCC. The 5-month spinal MRI and CT examinations demonstrated complete disappearance of the tumor. 2017 BMJ Publishing Group Ltd.
Dhumale, Pratibha; Menon, Sindhu; Chiang, Joanna; Püschel, Andreas W
2018-01-01
The neurons that form the mammalian neocortex originate from progenitor cells in the ventricular (VZ) and subventricular zone (SVZ). Newborn neurons are multipolar but become bipolar during their migration from the germinal layers to the cortical plate (CP) by forming a leading process and an axon that extends in the intermediate zone (IZ). Once they settle in the CP, neurons assume a highly polarized morphology with a single axon and multiple dendrites. The AMPK-related kinases SadA and SadB are intrinsic factors that are essential for axon formation during neuronal development downstream of Lkb1. The knockout of both genes encoding Sad kinases (Sada and Sadb) results not only in a loss of axons but also a decrease in the size of the cortical plate. The defect in axon formation has been linked to a function of Sad kinases in the regulation of microtubule binding proteins. However, the causes for the reduced size of the cortical plate in the Sada-/-;Sadb-/- knockout remain to be analyzed in detail. Here we show that neuronal cell death is increased and the number of neural progenitors is decreased in the Sada-/-;Sadb-/- CP. The reduced number of progenitors is a non-cell autonomous defect since they do not express Sad kinases. These defects are restricted to the neocortex while the hippocampus remains unaffected.
Near-infrared emission from mesoporous crystalline germanium
NASA Astrophysics Data System (ADS)
Boucherif, Abderraouf; Korinek, Andreas; Aimez, Vincent; Arès, Richard
2014-10-01
Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.
NASA Astrophysics Data System (ADS)
Schmitz, R. G.; Alves, M. V.; Barbosa, M. V. G.
2017-12-01
One of the most important processes that occurs in Earth's magnetosphere is known as magnetic reconnection (MR). This process can be symmetric or asymmetric, depending basically on the plasma density and magnetic field in both sides of the current sheet. A good example of symmetric reconnection in terrestrial magnetosphere occurs in the magnetotail, where these quantities are similar on the north and south lobes. In the dayside magnetopause MR is asymmetric, since the plasma regimes and magnetic fields of magnetosheath and magnetosphere are quite different. Symmetric reconnection has some unique signatures. For example, the formation of a quadrupolar structure of Hall magnetic field and a bipolar Hall electric field that points to the center of the current sheet. The different particle motions in the presence of asymmetries change these signatures, causing the quadrupolar pattern to be distorted and forming a bipolar structure. Also, the bipolar Hall electric field is modified and gives rise to a single peak pointing toward the magnetosheat, considering an example of magnetopause reconnection. The presence of a guide-field can also distort the quadrupolar pattern, by giving a shear angle across the current sheet and altering the symmetric patterns, according to previous simulations and observations. Recently, a quadrupolar structure was observed in an asymmetric guide-field MR event using MMS (Magnetospheric Multiscale) mission data [Peng et al., JGR, 2017]. This event shows clearly that the density asymmetry and the guide-field were not sufficient to form signatures of asymmetric reconnection. Using the particle-in-cell code iPIC3D [Markidis et al, Mathematics and Computers in Simulation, 2010] with the MMS data from this event used to define input parameters, we found a quadrupolar structure of Hall magnetic field and a bipolar pattern of Hall electric field in ion scales, showing that our results are in an excellent agreement with the MMS observations. To our knowledge, this is the first time PIC simulations show this kind of results, since previous simulations have predicted bipolar pattern in the asymmetric guide-field reconnection.
McDonald, Michael B; Freund, Michael S; Hammond, Paula T
2017-11-23
In the presence of an electric field, bipolar membranes (BPMs) are capable of initiating water disassociation (WD) within the interfacial region, which can make water splitting for renewable energy in the presence of a pH gradient possible. In addition to WD catalytic efficiency, there is also the need for electronic conductivity in this region for membrane-integrated artificial photosynthesis (AP) systems. Graphene oxide (GO) was shown to catalyze WD and to be controllably reduced, which resulted in electronic conductivity. Layer-by-layer (LbL) film deposition was employed to improve GO film uniformity in the interfacial region to enhance WD catalysis and, through the addition of a conducting polymer in the process, add electronic conductivity in a hybrid film. Three different deposition methods were tested to optimize conducting polymer synthesis with the oxidant in a metastable solution and to yield the best film properties. It was found that an approach that included substrate dipping in a solution containing the expected final monomer/oxidant ratio provided the most predictable film growth and smoothest films (by UV/Vis spectroscopy and atomic force microscopy/scanning electron microscopy, respectively), whereas dipping in excess oxidant or co-spraying the oxidant and monomer produced heterogeneous films. Optimized films were found to be electronically conductive and produced a membrane ohmic drop that was acceptable for AP applications. Films were integrated into the interfacial region of BPMs and revealed superior WD efficiency (≥1.4 V at 10 mA cm -2 ) for thinner films (<10 bilayers≈100 nm) than for either the pure GO catalyst or conducting polymer individually, which indicated that there was a synergistic effect between these materials in the structure configured by the LbL method. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.