Ballistic Limit Equation for Single Wall Titanium
NASA Technical Reports Server (NTRS)
Ratliff, J. M.; Christiansen, Eric L.; Bryant, C.
2009-01-01
Hypervelocity impact tests and hydrocode simulations were used to determine the ballistic limit equation (BLE) for perforation of a titanium wall, as a function of wall thickness. Two titanium alloys were considered, and separate BLEs were derived for each. Tested wall thicknesses ranged from 0.5mm to 2.0mm. The single-wall damage equation of Cour-Palais [ref. 1] was used to analyze the Ti wall's shielding effectiveness. It was concluded that the Cour-Palais single-wall equation produced a non-conservative prediction of the ballistic limit for the Ti shield. The inaccurate prediction was not a particularly surprising result; the Cour-Palais single-wall BLE contains shield material properties as parameters, but it was formulated only from tests of different aluminum alloys. Single-wall Ti shield tests were run (thicknesses of 2.0 mm, 1.5 mm, 1.0 mm, and 0.5 mm) on Ti 15-3-3-3 material custom cut from rod stock. Hypervelocity impact (HVI) tests were used to establish the failure threshold empirically, using the additional constraint that the damage scales with impact energy, as was indicated by hydrocode simulations. The criterion for shield failure was defined as no detached spall from the shield back surface during HVI. Based on the test results, which confirmed an approximately energy-dependent shield effectiveness, the Cour-Palais equation was modified.
Bluetooth Low Energy Mesh Networks: A Survey.
Darroudi, Seyed Mahdi; Gomez, Carles
2017-06-22
Bluetooth Low Energy (BLE) has gained significant momentum. However, the original design of BLE focused on star topology networking, which limits network coverage range and precludes end-to-end path diversity. In contrast, other competing technologies overcome such constraints by supporting the mesh network topology. For these reasons, academia, industry, and standards development organizations have been designing solutions to enable BLE mesh networks. Nevertheless, the literature lacks a consolidated view on this emerging area. This paper comprehensively surveys state of the art BLE mesh networking. We first provide a taxonomy of BLE mesh network solutions. We then review the solutions, describing the variety of approaches that leverage existing BLE functionality to enable BLE mesh networks. We identify crucial aspects of BLE mesh network solutions and discuss their advantages and drawbacks. Finally, we highlight currently open issues.
Bluetooth Low Energy Mesh Networks: A Survey
Darroudi, Seyed Mahdi; Gomez, Carles
2017-01-01
Bluetooth Low Energy (BLE) has gained significant momentum. However, the original design of BLE focused on star topology networking, which limits network coverage range and precludes end-to-end path diversity. In contrast, other competing technologies overcome such constraints by supporting the mesh network topology. For these reasons, academia, industry, and standards development organizations have been designing solutions to enable BLE mesh networks. Nevertheless, the literature lacks a consolidated view on this emerging area. This paper comprehensively surveys state of the art BLE mesh networking. We first provide a taxonomy of BLE mesh network solutions. We then review the solutions, describing the variety of approaches that leverage existing BLE functionality to enable BLE mesh networks. We identify crucial aspects of BLE mesh network solutions and discuss their advantages and drawbacks. Finally, we highlight currently open issues. PMID:28640183
2012-01-01
2007) in pecan orchards, among others. In this sparse shrub desert environment, Nappo et al. (2010) showed that, during sta- ble conditions, the...measuring water use in flood-irrigated pecans (Carya illinoinensis). Agric. Water Mgmt. 88(1-3): 181-191. Solanelles, F., E. Gregorio, R. Sanz, J. R
Analysis of latency performance of bluetooth low energy (BLE) networks.
Cho, Keuchul; Park, Woojin; Hong, Moonki; Park, Gisu; Cho, Wooseong; Seo, Jihoon; Han, Kijun
2014-12-23
Bluetooth Low Energy (BLE) is a short-range wireless communication technology aiming at low-cost and low-power communication. The performance evaluation of classical Bluetooth device discovery have been intensively studied using analytical modeling and simulative methods, but these techniques are not applicable to BLE, since BLE has a fundamental change in the design of the discovery mechanism, including the usage of three advertising channels. Recently, there several works have analyzed the topic of BLE device discovery, but these studies are still far from thorough. It is thus necessary to develop a new, accurate model for the BLE discovery process. In particular, the wide range settings of the parameters introduce lots of potential for BLE devices to customize their discovery performance. This motivates our study of modeling the BLE discovery process and performing intensive simulation. This paper is focused on building an analytical model to investigate the discovery probability, as well as the expected discovery latency, which are then validated via extensive experiments. Our analysis considers both continuous and discontinuous scanning modes. We analyze the sensitivity of these performance metrics to parameter settings to quantitatively examine to what extent parameters influence the performance metric of the discovery processes.
Analysis of Latency Performance of Bluetooth Low Energy (BLE) Networks
Cho, Keuchul; Park, Woojin; Hong, Moonki; Park, Gisu; Cho, Wooseong; Seo, Jihoon; Han, Kijun
2015-01-01
Bluetooth Low Energy (BLE) is a short-range wireless communication technology aiming at low-cost and low-power communication. The performance evaluation of classical Bluetooth device discovery have been intensively studied using analytical modeling and simulative methods, but these techniques are not applicable to BLE, since BLE has a fundamental change in the design of the discovery mechanism, including the usage of three advertising channels. Recently, there several works have analyzed the topic of BLE device discovery, but these studies are still far from thorough. It is thus necessary to develop a new, accurate model for the BLE discovery process. In particular, the wide range settings of the parameters introduce lots of potential for BLE devices to customize their discovery performance. This motivates our study of modeling the BLE discovery process and performing intensive simulation. This paper is focused on building an analytical model to investigate the discovery probability, as well as the expected discovery latency, which are then validated via extensive experiments. Our analysis considers both continuous and discontinuous scanning modes. We analyze the sensitivity of these performance metrics to parameter settings to quantitatively examine to what extent parameters influence the performance metric of the discovery processes. PMID:25545266
Inhibitory effect of burdock leaves on elastase and tyrosinase activity.
Horng, Chi-Ting; Wu, Hsing-Chen; Chiang, Ni-Na; Lee, Chiu-Fang; Huang, Yu-Syuan; Wang, Hui-Yun; Yang, Jai-Sing; Chen, Fu-An
2017-10-01
Burdock ( Arctium lappa L.) leaves generate a considerable amount of waste following burdock root harvest in Taiwan. To increase the use of burdock leaves, the present study investigated the optimal methods for producing burdock leaf extract (BLE) with high antioxidant polyphenolic content, including drying methods and solvent extraction concentration. In addition, the elastase and tyrosinase inhibitory activity of BLE was examined. Burdock leaves were dried by four methods: Shadow drying, oven drying, sun drying and freeze-drying. The extract solution was then subjected to total polyphenol content analysis and the method that produced BLE with the highest amount of total antioxidant components was taken forward for further analysis. The 1,1-diphenyl-2-pycrylhydrazyl scavenging, antielastase and antityrosinase activity of the BLE were measured to enable the evaluation of the antioxidant and skin aging-associated enzyme inhibitory activities of BLE. The results indicated that the total polyphenolic content following extraction with ethanol (EtOH) was highest using the freeze-drying method, followed by the oven drying, shadow drying and sun drying methods. BLE yielded a higher polyphenol content and stronger antioxidant activity as the ratio of the aqueous content of the extraction solvent used increased. BLE possesses marked tyrosinase and elastase inhibitory activities, with its antielastase activity notably stronger compared with its antityrosinase activity. These results indicate that the concentration of the extraction solvent was associated with the antioxidant and skin aging-associated enzyme inhibitory activity of BLE. The reactive oxygen species scavenging theory of skin aging may explain the tyrosinase and elastase inhibitory activity of BLE. In conclusion, the optimal method for obtaining BLE with a high antioxidant polyphenolic content was freeze-drying followed by 30-50% EtOH extraction. In addition, the antielastase and antityrosinase activities of the BLE produced may be aid in the development of skincare products with antiwrinkle and skin-evening properties.
Inhibitory effect of burdock leaves on elastase and tyrosinase activity
Horng, Chi-Ting; Wu, Hsing-Chen; Chiang, Ni-Na; Lee, Chiu-Fang; Huang, Yu-Syuan; Wang, Hui-Yun; Yang, Jai-Sing; Chen, Fu-An
2017-01-01
Burdock (Arctium lappa L.) leaves generate a considerable amount of waste following burdock root harvest in Taiwan. To increase the use of burdock leaves, the present study investigated the optimal methods for producing burdock leaf extract (BLE) with high antioxidant polyphenolic content, including drying methods and solvent extraction concentration. In addition, the elastase and tyrosinase inhibitory activity of BLE was examined. Burdock leaves were dried by four methods: Shadow drying, oven drying, sun drying and freeze-drying. The extract solution was then subjected to total polyphenol content analysis and the method that produced BLE with the highest amount of total antioxidant components was taken forward for further analysis. The 1,1-diphenyl-2-pycrylhydrazyl scavenging, antielastase and antityrosinase activity of the BLE were measured to enable the evaluation of the antioxidant and skin aging-associated enzyme inhibitory activities of BLE. The results indicated that the total polyphenolic content following extraction with ethanol (EtOH) was highest using the freeze-drying method, followed by the oven drying, shadow drying and sun drying methods. BLE yielded a higher polyphenol content and stronger antioxidant activity as the ratio of the aqueous content of the extraction solvent used increased. BLE possesses marked tyrosinase and elastase inhibitory activities, with its antielastase activity notably stronger compared with its antityrosinase activity. These results indicate that the concentration of the extraction solvent was associated with the antioxidant and skin aging-associated enzyme inhibitory activity of BLE. The reactive oxygen species scavenging theory of skin aging may explain the tyrosinase and elastase inhibitory activity of BLE. In conclusion, the optimal method for obtaining BLE with a high antioxidant polyphenolic content was freeze-drying followed by 30–50% EtOH extraction. In addition, the antielastase and antityrosinase activities of the BLE produced may be aid in the development of skincare products with antiwrinkle and skin-evening properties. PMID:28912875
Paranjpe, Rutugandha; Gundala, Sushma R; Lakshminarayana, N; Sagwal, Arpana; Asif, Ghazia; Pandey, Anjali; Aneja, Ritu
2013-07-01
Plant extracts, a concoction of bioactive non-nutrient phytochemicals, have long served as the most significant source of new leads for anticancer drug development. Explored for their unique medicinal properties, the leaves of Piper betel, an evergreen perennial vine, are a reservoir of phenolics with antimutagenic, antitumor and antioxidant activities. Here, we show that oral feeding of betel leaf extract (BLE) significantly inhibited the growth of human prostate xenografts implanted in nude mice compared with vehicle-fed controls. To gain insights into the 'active principles', we performed a bioactivity-guided fractionation of methanolic BLE employing solvents of different polarity strengths using classical column chromatography. This approach yielded 15 fractions, which were then pooled to 10 using similar retention factors on thin-layer chromatographs. Bioactivity assays demonstrated that one fraction in particular, F2, displayed a 3-fold better in vitro efficacy to inhibit proliferation of prostate cancer cells than the parent BLE. The presence of phenols, hydroxychavicol (HC) and chavibetol (CHV), was confirmed in F2 by nuclear magnetic resonance, high-performance liquid chromatography and mass spectroscopy. Further, the HC containing F2 subfraction was found to be ~8-fold more potent than the F2 subfraction that contained CHV, in human prostate cancer PC-3 cells as evaluated by the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide assay. Removing CHV from F2 remarkably decreased the IC50 of this fraction, indicating that HC is perhaps the major bioactive constituent, which is present to an extent of 26.59% in BLE. These data provide evidence that HC is a potential candidate for prostate cancer management and warrants further preclinical evaluation.
Anticarcinogenic effect of betel leaf extract against tobacco carcinogens.
Padma, P R; Lalitha, V S; Amonkar, A J; Bhide, S V
1989-06-01
Epidemiological studies have implicated that betel quid offers some protection to tobacco induced carcinogenesis. Earlier studies in our laboratory have shown betel leaf extract (BLE) to be antimutagenic against standard mutagens and tobacco-specific N'-nitrosamines (TSNA), N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In the present study, we have tested the anticarcinogenic effect of BLE using Swiss male mice. Two protocols of study were used to test this effect. In the first protocol, the effect of BLE was tested against the standard carcinogen benzo[a]pyrene (BP) using Wattenberg's stomach tumor model, Cancer Res., 41 (1981) 2820-2823. In this protocol, BLE inhibited the tumorigenicity of BP to a significant extent. In the second protocol, the effect of BLE against the two tobacco-specific nitrosamines, NNN and NNK was studied using long-term studies on Swiss male mice. The nitrosamines were administered on the tongues of the mice, while the BLE was supplied in drinking water. Two doses of NNN (22 mg and 72 mg) and one dose of NNK (22 mg) were used. In this study, it was observed that the number of tumor bearing animals decreased, but the difference was significant only in the group treated with the low dose of NNN in combination with BLE. However, in all the BLE treated animals, irrespective of the dose of nitrosamine, the hepatic vitamin A and C levels were elevated significantly as compared to the corresponding nitrosamine-treated controls. These results indicate that BLE has a promising anticarcinogenic role to play in tobacco induced cancer.(ABSTRACT TRUNCATED AT 250 WORDS)
Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures
NASA Technical Reports Server (NTRS)
Ryan, Shannon; Christiansen, Eric; Lear, Dana
2009-01-01
Metallic foams are a relatively new class of materials with low density and novel physical, mechanical, thermal, electrical and acoustic properties. Although incompletely characterized, they offer comparable mechanical performance to traditional spacecraft structural materials (i.e. honeycomb sandwich panels) without detrimental through-thickness channeling cells. There are two competing types of metallic foams: open cell and closed cell. Open cell foams are considered the more promising technology due to their lower weight and higher degree of homogeneity. Leading micrometeoroid and orbital debris shields (MMOD) incorporate thin plates separated by a void space (i.e. Whipple shield). Inclusion of intermediate fabric layers, or multiple bumper plates have led to significant performance enhancements, yet these shields require additional non-ballistic mass for installation (fasteners, supports, etc.) that can consume up to 35% of the total shield weight [1]. Structural panels, such as open cell foam core sandwich panels, that are also capable of providing sufficient MMOD protection, represent a significant potential for increased efficiency in hypervelocity impact shielding from a systems perspective through a reduction in required non-ballistic mass. In this paper, the results of an extensive impact test program on aluminum foam core sandwich panels are reported. The effect of pore density, and core thickness on shielding performance have been evaluated over impact velocities ranging from 2.2 - 9.3 km/s at various angles. A number of additional tests on alternate sandwich panel configurations of comparable-weight have also been performed, including aluminum honeycomb sandwich panels (see Figure 1), Nomex honeycomb core sandwich panels, and 3D aluminum honeycomb sandwich panels. A total of 70 hypervelocity impact tests are reported, from which an empirical ballistic limit equation (BLE) has been derived. The BLE is in the standard form suitable for implementation in risk analysis software, and includes the effect of panel thickness, core density, and facesheet material properties. A comparison between the shielding performance of foam core sandwich panel structures and common MMOD shielding configurations is made for both conservative (additional 35% non-ballistic mass) and optimistic (additional mass equal to 30% of bumper mass) considerations. Suggestions to improve the shielding performance of foam core sandwich panels are made, including the use of outer mesh layers, intermediate fabric/composite layers, and varying pore density.
40 CFR 265.314 - Special requirements for bulk and containerized liquids.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (iii) Mixtures of these non-bio-degrad-a-ble materials. (2) Tests for non-bio-degrad-a-ble sorbents. (i) The sorbent material is determined to be non-bio-degrad-a-ble under ASTM Method G21-70 (1984a...
40 CFR 265.314 - Special requirements for bulk and containerized liquids.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (iii) Mixtures of these non-bio-degrad-a-ble materials. (2) Tests for non-bio-degrad-a-ble sorbents. (i) The sorbent material is determined to be non-bio-degrad-a-ble under ASTM Method G21-70 (1984a...
40 CFR 265.314 - Special requirements for bulk and containerized liquids.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (iii) Mixtures of these non-bio-degrad-a-ble materials. (2) Tests for non-bio-degrad-a-ble sorbents. (i) The sorbent material is determined to be non-bio-degrad-a-ble under ASTM Method G21-70 (1984a...
40 CFR 265.314 - Special requirements for bulk and containerized liquids.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (iii) Mixtures of these non-bio-degrad-a-ble materials. (2) Tests for non-bio-degrad-a-ble sorbents. (i) The sorbent material is determined to be non-bio-degrad-a-ble under ASTM Method G21-70 (1984a...
Modeling of human movement monitoring using Bluetooth Low Energy technology.
Mokhtari, G; Zhang, Q; Karunanithi, M
2015-01-01
Bluetooth Low Energy (BLE) is a wireless communication technology which can be used to monitor human movements. In this monitoring system, a BLE signal scanner scans signal strength of BLE tags carried by people, to thus infer human movement patterns within its monitoring zone. However to the extent of our knowledge one main aspect of this monitoring system which has not yet been thoroughly investigated in literature is how to build a sound theoretical model, based on tunable BLE communication parameters such as scanning time interval and advertising time interval, to enable the study and design of effective and efficient movement monitoring systems. In this paper, we proposed and developed a statistical model based on Monte-Carlo simulation, which can be utilized to assess impacts of BLE technology parameters in terms of latency and efficiency, on a movement monitoring system, and can thus benefit a more efficient system design.
Azuine, M A; Bhide, S V
1992-05-28
The inhibitory effect of oral administration of betel-leaf extract (BLE) and 2 of its constituents, beta-carotene and alpha-tocopherol, as single agents or in combination with dietary turmeric on methyl(acetoxymethyl)nitrosamine (DMN-OAC)-induced oral carcinogenesis in Syrian hamsters was studied. DMN-OAC was administered twice monthly for 6 months. The chemopreventive effect of BLE or its constituents with turmeric was determined by comparing tumor incidence observed in treated groups with that seen in control animals. The apparent site-specific chemopreventive effect of BLE or its constituents was demonstrated by inhibition of tumor incidence, reduction of tumor burden, extension of the tumor latency period and regression of established, frank tumors. The inhibitory effect of BLE or its constituents combined with turmeric was higher than that of the individual constituents. The study suggests that BLE could be developed as a potential chemopreventive agent for human oral cancer.
Time Spent, Workload, and Student and Faculty Perceptions in a Blended Learning Environment
Schumacher, Christie; Arif, Sally
2016-01-01
Objective. To evaluate student perception and time spent on asynchronous online lectures in a blended learning environment (BLE) and to assess faculty workload and perception. Methods. Students (n=427) time spent viewing online lectures was measured in three courses. Students and faculty members completed a survey to assess perceptions of a BLE. Faculty members recorded time spent creating BLEs. Results. Total time spent in the BLE was less than the allocated time for two of the three courses by 3-15%. Students preferred online lectures for their flexibility, students’ ability to apply information learned, and congruence with their learning styles. Faculty members reported the BLE facilitated higher levels of learning during class sessions but noted an increase in workload. Conclusion. A BLE increased faculty workload but was well received by students. Time spent viewing online lectures was less than what was allocated in two of the three courses. PMID:27667839
Improving Critical Thinking Using a Web-Based Tutorial Environment.
Wiesner, Stephen M; Walker, J D; Creeger, Craig R
2017-01-01
With a broad range of subject matter, students often struggle recognizing relationships between content in different subject areas. A scenario-based learning environment (SaBLE) has been developed to enhancing clinical reasoning and critical thinking among undergraduate students in a medical laboratory science program and help them integrate their new knowledge. SaBLE incorporates aspects of both cognitive theory and instructional design, including reduction of extraneous cognitive load, goal-based learning, feedback timing, and game theory. SaBLE is a website application that runs in most browsers and devices, and is used to develop randomly selected scenarios that challenge user thinking in almost any scenario-based instruction. User progress is recorded to allow comprehensive data analysis of changes in user performance. Participation is incentivized using a point system and digital badges or awards. SaBLE was deployed in one course with a total exposure for the treatment group of approximately 9 weeks. When assessing performance of SaBLE participants, and controlling for grade point average as a possible confounding variable, there was a statistically significant correlation between the number of SaBLE levels completed and performance on selected critical-thinking exam questions addressing unrelated content.
Characteristics of Whipple Shield Performance in the Shatter Regime
NASA Technical Reports Server (NTRS)
Ryan, S.; Bjorkman, M.; Christiansen, E. L.
2010-01-01
Ballistic limit equations define the failure of metallic Whipple shields in three parts: low velocity, shatter, and hypervelocity. Failure limits in the shatter regime are based on a linear interpolation between the onset of projectile fragmentation, and impulsive rupture of the shield rear wall. A series of hypervelocity impact tests have been performed on aluminum alloy Whipple shields to investigate failure mechanisms and performance limits in the shatter regime. Test results demonstrated a more rapid increase in performance than predicted by the latest iteration of the JSC Whipple shield BLE following the onset of projectile fragmentation. This increase in performance was found to level out between 4.0-5.0 km/s, with a subsequent decrease in performance for velocities up to 6.0 km/s. For a detached spall failure criterion, the failure limit was found to continually decrease up to a velocity of 7.0 km/s, substantially varying from the BLE, while for perforation-based failure an increase in performance was observed. An existing phenomenological ballistic limit curve was found to provide a more accurate reproduction of shield behavior that the BLE, however a number of underlying assumptions such as the occurrence of complete projectile fragmentation and the effect on performance of incipient projectile melt were found to be inaccurate. A cratering relationship based on the largest residual fragment size has been derived for application at velocities between 3.0-4.0 km/s, and was shown to accurately reproduce the trends of the experimental data. Further investigation is required to allow a full analytical description of shatter regime performance for metallic Whipple shields.
A Comparison Between the PLM and the MC68020 as Prolog Processors
1988-01-01
Continnt &OII P0111ter CP Memory X6_ofset(MP) A11ument Register 6 A6 Memory X7_ofset(MP) A11ument Register 7 A7 Memory X6_ofaet(MP) Tempor&ry Register 6...get_vuia.ble_Y iaput. Permeunt nria.ble Yi &Dd &rgumeat ~Jl8ler XJ output: fuDctioD move the content of Xj iato Yi get_va.na.ble_Y: move.! Xi.·4
Overview and Evaluation of Bluetooth Low Energy: An Emerging Low-Power Wireless Technology
Gomez, Carles; Oller, Joaquim; Paradells, Josep
2012-01-01
Bluetooth Low Energy (BLE) is an emerging low-power wireless technology developed for short-range control and monitoring applications that is expected to be incorporated into billions of devices in the next few years. This paper describes the main features of BLE, explores its potential applications, and investigates the impact of various critical parameters on its performance. BLE represents a trade-off between energy consumption, latency, piconet size, and throughput that mainly depends on parameters such as connInterval and connSlaveLatency. According to theoretical results, the lifetime of a BLE device powered by a coin cell battery ranges between 2.0 days and 14.1 years. The number of simultaneous slaves per master ranges between 2 and 5,917. The minimum latency for a master to obtain a sensor reading is 676 μs, although simulation results show that, under high bit error rate, average latency increases by up to three orders of magnitude. The paper provides experimental results that complement the theoretical and simulation findings, and indicates implementation constraints that may reduce BLE performance.
Measuring Soil Moisture using the Signal Strength of Buried Bluetooth Devices.
NASA Astrophysics Data System (ADS)
Hut, R.; Campbell, C. S.
2015-12-01
A low power bluetooth Low Energy (BLE) device is burried 20cm into the soil and a smartphone is placed on top of the soil to test if bluetooth signal strength can be related to soil moisture. The smartphone continuesly records and stores bluetooth signal strength of the device. The soil is artifcially wetted and drained. Results show a relation between BLE signal strength and soil moisture that could be used to measure soil moisture using these off-the-shelf consumer electronics. This opens the possibily to develop sensors that can be buried into the soil, possibly below the plow-line. These sensors can measure local parameters such as electric conductivity, ph, pressure, etc. Readings would be uploaded to a device on the surface using BLE. The signal strength of this BLE would be an (additional) measurement of soil moisture.
Cha, Shi-Cho; Chen, Jyun-Fu
2017-01-01
Bluetooth Low Energy (BLE) has emerged as one of the most promising technologies to enable the Internet-of-Things (IoT) paradigm. In BLE-based IoT applications, e.g., wearables-oriented service applications, the Bluetooth MAC addresses of devices will be swapped for device pairings. The random address technique is adopted to prevent malicious users from tracking the victim’s devices with stationary Bluetooth MAC addresses and accordingly the device privacy can be preserved. However, there exists a tradeoff between privacy and security in the random address technique. That is, when device pairing is launched and one device cannot actually identify another one with addresses, it provides an opportunity for malicious users to break the system security via impersonation attacks. Hence, using random addresses may lead to higher security risks. In this study, we point out the potential risk of using random address technique and then present critical security requirements for BLE-based IoT applications. To fulfill the claimed requirements, we present a privacy-aware mechanism, which is based on elliptic curve cryptography, for secure communication and access-control among BLE-based IoT objects. Moreover, to ensure the security of smartphone application associated with BLE-based IoT objects, we construct a Smart Contract-based Investigation Report Management framework (SCIRM) which enables smartphone application users to obtain security inspection reports of BLE-based applications of interest with smart contracts. PMID:29036900
Cha, Shi-Cho; Yeh, Kuo-Hui; Chen, Jyun-Fu
2017-10-14
Bluetooth Low Energy (BLE) has emerged as one of the most promising technologies to enable the Internet-of-Things (IoT) paradigm. In BLE-based IoT applications, e.g., wearables-oriented service applications, the Bluetooth MAC addresses of devices will be swapped for device pairings. The random address technique is adopted to prevent malicious users from tracking the victim's devices with stationary Bluetooth MAC addresses and accordingly the device privacy can be preserved. However, there exists a tradeoff between privacy and security in the random address technique. That is, when device pairing is launched and one device cannot actually identify another one with addresses, it provides an opportunity for malicious users to break the system security via impersonation attacks. Hence, using random addresses may lead to higher security risks. In this study, we point out the potential risk of using random address technique and then present critical security requirements for BLE-based IoT applications. To fulfill the claimed requirements, we present a privacy-aware mechanism, which is based on elliptic curve cryptography, for secure communication and access-control among BLE-based IoT objects. Moreover, to ensure the security of smartphone application associated with BLE-based IoT objects, we construct a Smart Contract-based Investigation Report Management framework (SCIRM) which enables smartphone application users to obtain security inspection reports of BLE-based applications of interest with smart contracts.
Trial of real-time locating and messaging system with Bluetooth low energy.
Arisaka, Naoya; Mamorita, Noritaka; Isonaka, Risa; Kawakami, Tadashi; Takeuchi, Akihiro
2016-09-14
Hospital real-time location systems (RTLS) are increasing efficiency and reducing operational costs, but room access tags are necessary. We developed three iPhone 5 applications for an RTLS and communications using Bluetooth low energy (BLE). The applications were: Peripheral device tags, Central beacons, and a Monitor. A Peripheral communicated with a Central using BLE. The Central communicated with a Monitor using sockets on TCP/IP (Transmission Control Protocol/Internet Protocol) via a WLAN (wireless local area network). To determine a BLE threshold level for the received signal strength indicator (RSSI), relationships between signal strength and distance were measured in our laboratory and on the terrace. The BLE RSSI threshold was set at -70 dB, about 10 m. While an individual with a Peripheral moved around in a concrete building, the Peripheral was captured in a few 10-sec units at about 10 m from a Central. The Central and Monitor showed and saved the approach events, location, and Peripheral's nickname sequentially in real time. Remote Centrals also interactively communicate with Peripherals by intermediating through Monitors that found the nickname in the event database. Trial applications using BLE on iPhones worked well for patient tracking, and messaging in indoor environments.
Opportunistic Sensor Data Collection with Bluetooth Low Energy
Aguilar, Sergio; Vidal, Rafael; Gomez, Carles
2017-01-01
Bluetooth Low Energy (BLE) has gained very high momentum, as witnessed by its widespread presence in smartphones, wearables and other consumer electronics devices. This fact can be leveraged to carry out opportunistic sensor data collection (OSDC) in scenarios where a sensor node cannot communicate with infrastructure nodes. In such cases, a mobile entity (e.g., a pedestrian or a vehicle) equipped with a BLE-enabled device can collect the data obtained by the sensor node when both are within direct communication range. In this paper, we characterize, both analytically and experimentally, the performance and trade-offs of BLE as a technology for OSDC, for the two main identified approaches, and considering the impact of its most crucial configuration parameters. Results show that a BLE sensor node running on a coin cell battery can achieve a lifetime beyond one year while transferring around 10 Mbit/day, in realistic OSDC scenarios. PMID:28124987
Opportunistic Sensor Data Collection with Bluetooth Low Energy.
Aguilar, Sergio; Vidal, Rafael; Gomez, Carles
2017-01-23
Bluetooth Low Energy (BLE) has gained very high momentum, as witnessed by its widespread presence in smartphones, wearables and other consumer electronics devices. This fact can be leveraged to carry out opportunistic sensor data collection (OSDC) in scenarios where a sensor node cannot communicate with infrastructure nodes. In such cases, a mobile entity (e.g., a pedestrian or a vehicle) equipped with a BLE-enabled device can collect the data obtained by the sensor node when both are within direct communication range. In this paper, we characterize, both analytically and experimentally, the performance and trade-offs of BLE as a technology for OSDC, for the two main identified approaches, and considering the impact of its most crucial configuration parameters. Results show that a BLE sensor node running on a coin cell battery can achieve a lifetime beyond one year while transferring around 10 Mbit/day, in realistic OSDC scenarios.
Dumas-Campagna, Josée; Tardif, Robert; Charest-Tardif, Ginette; Haddad, Sami
2014-02-01
Uncertainty exists regarding the validity of a previously developed physiologically-based pharmacokinetic model (PBPK) for inhaled ethanol in humans to predict the blood levels of ethanol (BLE) at low level exposures (<1000 ppm). Thus, the objective of this study is to document the BLE resulting from low levels exposures in order to refine/validate this PBPK model. Human volunteers were exposed to ethanol vapors during 4 h at 5 different concentrations (125-1000 ppm), at rest, in an inhalation chamber. Blood and exhaled air were sampled. Also, the impact of light exercise (50 W) on the BLE was investigated. There is a linear relationship between the ethanol concentrations in inhaled air and (i) BLE (women: r²= 0.98/men: r²= 0.99), as well as (ii) ethanol concentrations in the exhaled air at end of exposure period (men: r²= 0.99/women: r²= 0.99). Furthermore, the exercise resulted in a net and significant increase of BLE (2-3 fold). Overall, the original model predictions overestimated the BLE for all low exposures performed in this study. To properly simulate the toxicokinetic data, the model was refined by adding a description of an extra-hepatic biotransformation of high affinity and low capacity in the richly perfused tissues compartment. This is based on the observation that total clearance observed at low exposure levels was much greater than liver blood flow. The results of this study will facilitate the refinement of the risk assessment associated with chronic inhalation of low levels of ethanol in the general population and especially among workers.
Exploring Term Dependences in Probabilistic Information Retrieval Model.
ERIC Educational Resources Information Center
Cho, Bong-Hyun; Lee, Changki; Lee, Gary Geunbae
2003-01-01
Describes a theoretic process to apply Bahadur-Lazarsfeld expansion (BLE) to general probabilistic models and the state-of-the-art 2-Poisson model. Through experiments on two standard document collections, one in Korean and one in English, it is demonstrated that incorporation of term dependences using BLE significantly contributes to performance…
Pre-Service English Teachers in Blended Learning Environment in Respect to Their Learning Approaches
ERIC Educational Resources Information Center
Yilmaz, M. Betul; Orhan, Feza
2010-01-01
Blended learning environment (BLE) is increasingly used in the world, especially in university degrees and it is based on integrating web-based learning and face-to-face (FTF) learning environments. Besides integrating different learning environments, BLE also addresses to students with different learning approaches. The "learning…
Yousefi, Fatemeh; Mahjoub, Soleiman; Pouramir, Mahdi; Khadir, Fatemeh
2013-01-01
Background: The mechanism of hypoglycemic and hypolipidemic activities of Pyrus biossieriana Buhse leaf extract (PbBLE) and its phytochemical component arbutin, have not been well determined. The present study was performed to understand the hypoglycemic activity mechanisms of pbBLE and arbutin more clearly. Methods: In vitro enzymatic carbohydrate digestion with PbBLE and arbutin was assessed using α-amylase and α-glucosidase powders. The enzyme solutions were premixed with PbBLE and arbutin at different concentrations (0.1, 1, 10 and 100 mg/ml). Substrate solutions and colorimetric reagents were added to the reaction. The release of glucose was determined by spectrophotometric method. Acarbose was used as the positive control. Results: The extract (10, 100 mg/ ml) completely inhibit α- amylase and α- glucosidase activities. The extract produced higher reduction of α-amylase and α-glucosidase activity than arbutin. Inhibition at various concentrations (0.1, 1, 10, 100 mg/ml) were significantly different (p<0.05). Conclusion: Our results exhibited that both the extract and arbutin were able to suppress the enzymes strongly. PMID:24294470
Luan, Shiwei; Gude, Dana; Prakash, Punit; Warren, Steve
2014-01-01
Behavior tracking with severely disabled children can be a challenge, since dealing directly with a child's behavior is more immediately pressing than the need to record an event for tracking purposes. By the time a paraeducator (`para') is able to break away and record events, behavior counts can be forgotten. This paper presents a paraeducator glove design that can help to track behaviors with minimal distraction by allowing a paraeducator to touch their thumb to one of their other four fingers, where each finger represents a different behavior. Count data are packaged by a microcontroller board on the glove and then sent wirelessly to a smart phone via a Bluetooth Low Energy (BLE) link. A customized BLE profile was designed for this application to promote real-time recording. These data can be forwarded to a database for further analysis. This para glove design addresses basic needs of a wearable device that employs BLE, including local data collection, BLE data transmission, and remote data recording. More functional sensors can be added to this platform to support other wearable scenarios.
Kim, Hoon; Kwak, Bong-Shin; Hong, Hee-Do; Suh, Hyung-Joo; Shin, Kwang-Soon
2016-06-01
Four polysaccharide fractions were isolated from young barley leaves treated with or without pectinase followed by ethanol fractionation. Among the polysaccharide fractions, BLE-P isolated from pectinase digested with a high molecular weight had the most enhanced macrophage stimulatory activity, indicating that pectinase digestion of barley leaf is a useful method for enhancement of its activity. BLE-P was further purified by column chromatography to identify the chemical and structural properties. BLE-P-I eluted in void volume fraction showed potent macrophage stimulatory activity. Monosaccharide composition and linkage analysis indicated that at least three kinds of polysaccharide, that is, glucuronoarabinoxylan (GAX; 40-45%), rhamnogalacturonan-I (RG-I) with branching mainly involving a type II arabinogalactan (AG-II) side chain (30-35%), and linear glucan such as starch and cellulose (less than 10%) coexisted in BLE-P-I. Given the association with macrophage stimulatory activity, it is likely that the GAX and to the RG-I polysaccharide branched with an AG-II side chain may be important for expression of the activity in barley leaf. Copyright © 2016 Elsevier B.V. All rights reserved.
An Indoor Positioning-Based Mobile Payment System Using Bluetooth Low Energy Technology
Winata, Doni
2018-01-01
The development of information technology has paved the way for faster and more convenient payment process flows and new methodology for the design and implementation of next generation payment systems. The growth of smartphone usage nowadays has fostered a new and popular mobile payment environment. Most of the current generation smartphones support Bluetooth Low Energy (BLE) technology to communicate with nearby BLE-enabled devices. It is plausible to construct an Over-the-Air BLE-based mobile payment system as one of the payment methods for people living in modern societies. In this paper, a secure indoor positioning-based mobile payment authentication protocol with BLE technology and the corresponding mobile payment system design are proposed. The proposed protocol consists of three phases: initialization phase, session key construction phase, and authentication phase. When a customer moves toward the POS counter area, the proposed mobile payment system will automatically detect the position of the customer to confirm whether the customer is ready for the checkout process. Once the system has identified the customer is standing within the payment-enabled area, the payment system will invoke authentication process between POS and the customer’s smartphone through BLE communication channel to generate a secure session key and establish an authenticated communication session to perform the payment transaction accordingly. A prototype is implemented to assess the performance of the proposed design for mobile payment system. In addition, security analysis is conducted to evaluate the security strength of the proposed protocol. PMID:29587399
An Indoor Positioning-Based Mobile Payment System Using Bluetooth Low Energy Technology.
Yohan, Alexander; Lo, Nai-Wei; Winata, Doni
2018-03-25
The development of information technology has paved the way for faster and more convenient payment process flows and new methodology for the design and implementation of next generation payment systems. The growth of smartphone usage nowadays has fostered a new and popular mobile payment environment. Most of the current generation smartphones support Bluetooth Low Energy (BLE) technology to communicate with nearby BLE-enabled devices. It is plausible to construct an Over-the-Air BLE-based mobile payment system as one of the payment methods for people living in modern societies. In this paper, a secure indoor positioning-based mobile payment authentication protocol with BLE technology and the corresponding mobile payment system design are proposed. The proposed protocol consists of three phases: initialization phase, session key construction phase, and authentication phase. When a customer moves toward the POS counter area, the proposed mobile payment system will automatically detect the position of the customer to confirm whether the customer is ready for the checkout process. Once the system has identified the customer is standing within the payment-enabled area, the payment system will invoke authentication process between POS and the customer's smartphone through BLE communication channel to generate a secure session key and establish an authenticated communication session to perform the payment transaction accordingly. A prototype is implemented to assess the performance of the proposed design for mobile payment system. In addition, security analysis is conducted to evaluate the security strength of the proposed protocol.
Multi-Residential Activity Labelling in Smart Homes with Wearable Tags Using BLE Technology
Mokhtari, Ghassem; Zhang, Qing; Karunanithi, Mohanraj
2018-01-01
Smart home platforms show promising outcomes to provide a better quality of life for residents in their homes. One of the main challenges that exists with these platforms in multi-residential houses is activity labeling. As most of the activity sensors do not provide any information regarding the identity of the person who triggers them, it is difficult to label the sensor events in multi-residential smart homes. To deal with this challenge, individual localization in different areas can be a promising solution. The localization information can be used to automatically label the activity sensor data to individuals. Bluetooth low energy (BLE) is a promising technology for this application due to how easy it is to implement and its low energy footprint. In this approach, individuals wear a tag that broadcasts its unique identity (ID) in certain time intervals, while fixed scanners listen to the broadcasting packet to localize the tag and the individual. However, the localization accuracy of this method depends greatly on different settings of broadcasting signal strength, and the time interval of BLE tags. To achieve the best localization accuracy, this paper studies the impacts of different advertising time intervals and power levels, and proposes an efficient and applicable algorithm to select optimal value settings of BLE sensors. Moreover, it proposes an automatic activity labeling method, through integrating BLE localization information and ambient sensor data. The applicability and effectiveness of the proposed structure is also demonstrated in a real multi-resident smart home scenario. PMID:29562666
Multi-Residential Activity Labelling in Smart Homes with Wearable Tags Using BLE Technology.
Mokhtari, Ghassem; Anvari-Moghaddam, Amjad; Zhang, Qing; Karunanithi, Mohanraj
2018-03-19
Smart home platforms show promising outcomes to provide a better quality of life for residents in their homes. One of the main challenges that exists with these platforms in multi-residential houses is activity labeling. As most of the activity sensors do not provide any information regarding the identity of the person who triggers them, it is difficult to label the sensor events in multi-residential smart homes. To deal with this challenge, individual localization in different areas can be a promising solution. The localization information can be used to automatically label the activity sensor data to individuals. Bluetooth low energy (BLE) is a promising technology for this application due to how easy it is to implement and its low energy footprint. In this approach, individuals wear a tag that broadcasts its unique identity (ID) in certain time intervals, while fixed scanners listen to the broadcasting packet to localize the tag and the individual. However, the localization accuracy of this method depends greatly on different settings of broadcasting signal strength, and the time interval of BLE tags. To achieve the best localization accuracy, this paper studies the impacts of different advertising time intervals and power levels, and proposes an efficient and applicable algorithm to select optimal value settings of BLE sensors. Moreover, it proposes an automatic activity labeling method, through integrating BLE localization information and ambient sensor data. The applicability and effectiveness of the proposed structure is also demonstrated in a real multi-resident smart home scenario.
Performance Evaluation of Bluetooth Low Energy: A Systematic Review.
Tosi, Jacopo; Taffoni, Fabrizio; Santacatterina, Marco; Sannino, Roberto; Formica, Domenico
2017-12-13
Small, compact and embedded sensors are a pervasive technology in everyday life for a wide number of applications (e.g., wearable devices, domotics, e-health systems, etc.). In this context, wireless transmission plays a key role, and among available solutions, Bluetooth Low Energy (BLE) is gaining more and more popularity. BLE merges together good performance, low-energy consumption and widespread diffusion. The aim of this work is to review the main methodologies adopted to investigate BLE performance. The first part of this review is an in-depth description of the protocol, highlighting the main characteristics and implementation details. The second part reviews the state of the art on BLE characteristics and performance. In particular, we analyze throughput, maximum number of connectable sensors, power consumption, latency and maximum reachable range, with the aim to identify what are the current limits of BLE technology. The main results can be resumed as follows: throughput may theoretically reach the limit of ~230 kbps, but actual applications analyzed in this review show throughputs limited to ~100 kbps; the maximum reachable range is strictly dependent on the radio power, and it goes up to a few tens of meters; the maximum number of nodes in the network depends on connection parameters, on the network architecture and specific device characteristics, but it is usually lower than 10; power consumption and latency are largely modeled and analyzed and are strictly dependent on a huge number of parameters. Most of these characteristics are based on analytical models, but there is a need for rigorous experimental evaluations to understand the actual limits.
Performance Evaluation of Bluetooth Low Energy: A Systematic Review
Taffoni, Fabrizio; Santacatterina, Marco; Sannino, Roberto
2017-01-01
Small, compact and embedded sensors are a pervasive technology in everyday life for a wide number of applications (e.g., wearable devices, domotics, e-health systems, etc.). In this context, wireless transmission plays a key role, and among available solutions, Bluetooth Low Energy (BLE) is gaining more and more popularity. BLE merges together good performance, low-energy consumption and widespread diffusion. The aim of this work is to review the main methodologies adopted to investigate BLE performance. The first part of this review is an in-depth description of the protocol, highlighting the main characteristics and implementation details. The second part reviews the state of the art on BLE characteristics and performance. In particular, we analyze throughput, maximum number of connectable sensors, power consumption, latency and maximum reachable range, with the aim to identify what are the current limits of BLE technology. The main results can be resumed as follows: throughput may theoretically reach the limit of ~230 kbps, but actual applications analyzed in this review show throughputs limited to ~100 kbps; the maximum reachable range is strictly dependent on the radio power, and it goes up to a few tens of meters; the maximum number of nodes in the network depends on connection parameters, on the network architecture and specific device characteristics, but it is usually lower than 10; power consumption and latency are largely modeled and analyzed and are strictly dependent on a huge number of parameters. Most of these characteristics are based on analytical models, but there is a need for rigorous experimental evaluations to understand the actual limits. PMID:29236085
Proposal and Evaluation of BLE Discovery Process Based on New Features of Bluetooth 5.0.
Hernández-Solana, Ángela; Perez-Diaz-de-Cerio, David; Valdovinos, Antonio; Valenzuela, Jose Luis
2017-08-30
The device discovery process is one of the most crucial aspects in real deployments of sensor networks. Recently, several works have analyzed the topic of Bluetooth Low Energy (BLE) device discovery through analytical or simulation models limited to version 4.x. Non-connectable and non-scannable undirected advertising has been shown to be a reliable alternative for discovering a high number of devices in a relatively short time period. However, new features of Bluetooth 5.0 allow us to define a variant on the device discovery process, based on BLE scannable undirected advertising events, which results in higher discovering capacities and also lower power consumption. In order to characterize this new device discovery process, we experimentally model the real device behavior of BLE scannable undirected advertising events. Non-detection packet probability, discovery probability, and discovery latency for a varying number of devices and parameters are compared by simulations and experimental measurements. We demonstrate that our proposal outperforms previous works, diminishing the discovery time and increasing the potential user device density. A mathematical model is also developed in order to easily obtain a measure of the potential capacity in high density scenarios.
Proposal and Evaluation of BLE Discovery Process Based on New Features of Bluetooth 5.0
2017-01-01
The device discovery process is one of the most crucial aspects in real deployments of sensor networks. Recently, several works have analyzed the topic of Bluetooth Low Energy (BLE) device discovery through analytical or simulation models limited to version 4.x. Non-connectable and non-scannable undirected advertising has been shown to be a reliable alternative for discovering a high number of devices in a relatively short time period. However, new features of Bluetooth 5.0 allow us to define a variant on the device discovery process, based on BLE scannable undirected advertising events, which results in higher discovering capacities and also lower power consumption. In order to characterize this new device discovery process, we experimentally model the real device behavior of BLE scannable undirected advertising events. Non-detection packet probability, discovery probability, and discovery latency for a varying number of devices and parameters are compared by simulations and experimental measurements. We demonstrate that our proposal outperforms previous works, diminishing the discovery time and increasing the potential user device density. A mathematical model is also developed in order to easily obtain a measure of the potential capacity in high density scenarios. PMID:28867786
Smartphone-Based Indoor Localization with Bluetooth Low Energy Beacons
Zhuang, Yuan; Yang, Jun; Li, You; Qi, Longning; El-Sheimy, Naser
2016-01-01
Indoor wireless localization using Bluetooth Low Energy (BLE) beacons has attracted considerable attention after the release of the BLE protocol. In this paper, we propose an algorithm that uses the combination of channel-separate polynomial regression model (PRM), channel-separate fingerprinting (FP), outlier detection and extended Kalman filtering (EKF) for smartphone-based indoor localization with BLE beacons. The proposed algorithm uses FP and PRM to estimate the target’s location and the distances between the target and BLE beacons respectively. We compare the performance of distance estimation that uses separate PRM for three advertisement channels (i.e., the separate strategy) with that use an aggregate PRM generated through the combination of information from all channels (i.e., the aggregate strategy). The performance of FP-based location estimation results of the separate strategy and the aggregate strategy are also compared. It was found that the separate strategy can provide higher accuracy; thus, it is preferred to adopt PRM and FP for each BLE advertisement channel separately. Furthermore, to enhance the robustness of the algorithm, a two-level outlier detection mechanism is designed. Distance and location estimates obtained from PRM and FP are passed to the first outlier detection to generate improved distance estimates for the EKF. After the EKF process, the second outlier detection algorithm based on statistical testing is further performed to remove the outliers. The proposed algorithm was evaluated by various field experiments. Results show that the proposed algorithm achieved the accuracy of <2.56 m at 90% of the time with dense deployment of BLE beacons (1 beacon per 9 m), which performs 35.82% better than <3.99 m from the Propagation Model (PM) + EKF algorithm and 15.77% more accurate than <3.04 m from the FP + EKF algorithm. With sparse deployment (1 beacon per 18 m), the proposed algorithm achieves the accuracies of <3.88 m at 90% of the time, which performs 49.58% more accurate than <8.00 m from the PM + EKF algorithm and 21.41% better than <4.94 m from the FP + EKF algorithm. Therefore, the proposed algorithm is especially useful to improve the localization accuracy in environments with sparse beacon deployment. PMID:27128917
Smartphone-Based Indoor Localization with Bluetooth Low Energy Beacons.
Zhuang, Yuan; Yang, Jun; Li, You; Qi, Longning; El-Sheimy, Naser
2016-04-26
Indoor wireless localization using Bluetooth Low Energy (BLE) beacons has attracted considerable attention after the release of the BLE protocol. In this paper, we propose an algorithm that uses the combination of channel-separate polynomial regression model (PRM), channel-separate fingerprinting (FP), outlier detection and extended Kalman filtering (EKF) for smartphone-based indoor localization with BLE beacons. The proposed algorithm uses FP and PRM to estimate the target's location and the distances between the target and BLE beacons respectively. We compare the performance of distance estimation that uses separate PRM for three advertisement channels (i.e., the separate strategy) with that use an aggregate PRM generated through the combination of information from all channels (i.e., the aggregate strategy). The performance of FP-based location estimation results of the separate strategy and the aggregate strategy are also compared. It was found that the separate strategy can provide higher accuracy; thus, it is preferred to adopt PRM and FP for each BLE advertisement channel separately. Furthermore, to enhance the robustness of the algorithm, a two-level outlier detection mechanism is designed. Distance and location estimates obtained from PRM and FP are passed to the first outlier detection to generate improved distance estimates for the EKF. After the EKF process, the second outlier detection algorithm based on statistical testing is further performed to remove the outliers. The proposed algorithm was evaluated by various field experiments. Results show that the proposed algorithm achieved the accuracy of <2.56 m at 90% of the time with dense deployment of BLE beacons (1 beacon per 9 m), which performs 35.82% better than <3.99 m from the Propagation Model (PM) + EKF algorithm and 15.77% more accurate than <3.04 m from the FP + EKF algorithm. With sparse deployment (1 beacon per 18 m), the proposed algorithm achieves the accuracies of <3.88 m at 90% of the time, which performs 49.58% more accurate than <8.00 m from the PM + EKF algorithm and 21.41% better than <4.94 m from the FP + EKF algorithm. Therefore, the proposed algorithm is especially useful to improve the localization accuracy in environments with sparse beacon deployment.
Castillo-Cara, Manuel; Lovón-Melgarejo, Jesús; Bravo-Rocca, Gusseppe; Orozco-Barbosa, Luis; García-Varea, Ismael
2017-01-01
Nowadays, there is a great interest in developing accurate wireless indoor localization mechanisms enabling the implementation of many consumer-oriented services. Among the many proposals, wireless indoor localization mechanisms based on the Received Signal Strength Indication (RSSI) are being widely explored. Most studies have focused on the evaluation of the capabilities of different mobile device brands and wireless network technologies. Furthermore, different parameters and algorithms have been proposed as a means of improving the accuracy of wireless-based localization mechanisms. In this paper, we focus on the tuning of the RSSI fingerprint to be used in the implementation of a Bluetooth Low Energy 4.0 (BLE4.0) Bluetooth localization mechanism. Following a holistic approach, we start by assessing the capabilities of two Bluetooth sensor/receiver devices. We then evaluate the relevance of the RSSI fingerprint reported by each BLE4.0 beacon operating at various transmission power levels using feature selection techniques. Based on our findings, we use two classification algorithms in order to improve the setting of the transmission power levels of each of the BLE4.0 beacons. Our main findings show that our proposal can greatly improve the localization accuracy by setting a custom transmission power level for each BLE4.0 beacon. PMID:28590413
Castillo-Cara, Manuel; Lovón-Melgarejo, Jesús; Bravo-Rocca, Gusseppe; Orozco-Barbosa, Luis; García-Varea, Ismael
2017-06-07
Nowadays, there is a great interest in developing accurate wireless indoor localization mechanisms enabling the implementation of many consumer-oriented services. Among the many proposals, wireless indoor localization mechanisms based on the Received Signal Strength Indication (RSSI) are being widely explored. Most studies have focused on the evaluation of the capabilities of different mobile device brands and wireless network technologies. Furthermore, different parameters and algorithms have been proposed as a means of improving the accuracy of wireless-based localization mechanisms. In this paper, we focus on the tuning of the RSSI fingerprint to be used in the implementation of a Bluetooth Low Energy 4.0 (BLE4.0) Bluetooth localization mechanism. Following a holistic approach, we start by assessing the capabilities of two Bluetooth sensor/receiver devices. We then evaluate the relevance of the RSSI fingerprint reported by each BLE4.0 beacon operating at various transmission power levels using feature selection techniques. Based on our findings, we use two classification algorithms in order to improve the setting of the transmission power levels of each of the BLE4.0 beacons. Our main findings show that our proposal can greatly improve the localization accuracy by setting a custom transmission power level for each BLE4.0 beacon.
Valdez, Marcos B; Kinoshita, Keiji; Mizutani, Makoto; Fujiwara, Akira; Yazawa, Hajime; Yamagata, Takahiro; Shimada, Kiyoshi; Namikawa, Takao
2009-04-01
Histocompatibility was assessed in the RIR-Y8/NU, BL-E, YL, and WL-G chicken closed colonies by hemagglutination test using anti-red blood cell (RBC) antibodies (HT), skin transplantation test (STT), and formation of isohemagglutinins (FIHs) during STT. The YL individuals all showed the survival of skingrafts for more than 17 days with no FIHs in STT and no RBC antigenic variations in HT, indicating a histocompatible nature together with high homogeneity at serological loci. The BL-E as well as WL-G closed colonies were also found to be histocompatible in the STT with no FIHs, although the HT showed heterogeneities at serological locus/loci other than the B and C blood group loci which have significant effects on histocompatibility or FIHs in chicken. In the RIR-Y8/NU closed colonies, one individual in 6 reciprocal combinations of the STT showed early skingraft rejection with positive FIHs caused by different B locus alleles, and the HT suggested relatively high heterogeneities at the other serological loci too. The closed colonies of YL, BL-E, and WL-G will be useful avian materials for transplantation or related experiments, but RIR-Y8/NU needs further pedigree selection for serological homogeneity.
Azuine, M A; Amonkar, A J; Bhide, S V
1991-04-01
Effects of topically applied betel leaf extract (BLE) and its constituents. beta-carotene, alpha-tocopherol, eugenol and hydroxychavicol on 7,12-dimethylbenz(a)anthracene (DMBA) induced skin tumors were evaluated in two strains of mice. BLE, beta-carotene and alpha-tocopherol, significantly inhibited the tumor formation by 83, 86, 86% in Swiss mice and 92, 94 and 89% in male Swiss bare mice respectively. Hydroxychavicol showed 90% inhibition in Swiss bare mice at 24 weeks of treatment. Eugenol showed minimal protection in both strains of mice. The mean latency period and survivors in BLE, beta-carotene, alpha-tocopherol and hydroxychavicol treated groups were remarkably high as compared to DMBA alone treated group. Intraperitoneal injection of betal leaf constituents showed a significant effect on both glutathione and glutathione S-transferase levels in the Swiss mouse skin.
Risk and Vulnerability Analysis of Satellites Due to MM/SD with PIRAT
NASA Astrophysics Data System (ADS)
Kempf, Scott; Schafer, Frank Rudolph, Martin; Welty, Nathan; Donath, Therese; Destefanis, Roberto; Grassi, Lilith; Janovsky, Rolf; Evans, Leanne; Winterboer, Arne
2013-08-01
Until recently, the state-of-the-art assessment of the threat posed to spacecraft by micrometeoroids and space debris was limited to the application of ballistic limit equations to the outer hull of a spacecraft. The probability of no penetration (PNP) is acceptable for assessing the risk and vulnerability of manned space mission, however, for unmanned missions, whereby penetrations of the spacecraft exterior do not necessarily constitute satellite or mission failure, these values are overly conservative. The newly developed software tool PIRAT (Particle Impact Risk and Vulnerability Analysis Tool) has been developed based on the Schäfer-Ryan-Lambert (SRL) triple-wall ballistic limit equation (BLE), applicable for various satellite components. As a result, it has become possible to assess the individual failure rates of satellite components. This paper demonstrates the modeling of an example satellite, the performance of a PIRAT analysis and the potential for subsequent design optimizations with respect of micrometeoroid and space debris (MM/SD) impact risk.
Medical abortions performed by specialists in private practice.
Pay, Aase Serine Devold; Aabø, Runa Sigrid; Økland, Inger; Janbu, Torunn; Iversen, Ole-Erik; Løkeland, Mette
2018-05-29
I Norge utføres abort kun i offentlige sykehus. I 2010 besluttet Helse- og omsorgsdepartementet å iverksette et toårig prøveprosjekt som ga avtalespesialister i fødselshjelp og kvinnesykdommer adgang til å tilby medikamentell abort før utgangen av 9. svangerskapsuke. Prøveprosjektet ble igangsatt 1.3.2015 og varte til 31.3.2017. I denne artikkelen presenterer vi de første erfaringene, herunder hvordan behandlingstilbudet ble mottatt av kvinnene. Gravide med en svangerskapsvarighet < 63 dager ultrasonografisk vurdert, som oppsøkte avtalespesialist for medikamentell abort, ble fortløpende inkludert i prosjektet (n = 476). Kvinnene inntok 200 mg mifepriston peroralt på legekontoret, 36-48 timer senere satte de selv 800 µg misoprostol vaginalt hjemme. Informasjon ble innhentet ved spørreskjema på den første konsultasjonen, under aborten og ved etterkontrollen 2-4 uker etter aborten. Under aborten rapporterte 66 % (296/450) moderat eller sterk smerte og 79 % (358/451) moderat eller sterk blødning. De fleste opplevde det som trygt å være hjemme. 96 % (390/406) ville valgt medikamentell abort hos avtalespesialist ved en eventuell senere abort, og 97 % (392/405) ville anbefalt behandlingstilbudet til andre i samme situasjon. Kvinnene i studien opplevde abortbehandling hos avtalespesialist som trygt. Tilbudet gir større valgfrihet til gravide som ønsker abort, og pasientene er tilfredse.
A Two-Layer Method for Sedentary Behaviors Classification Using Smartphone and Bluetooth Beacons.
Cerón, Jesús D; López, Diego M; Hofmann, Christian
2017-01-01
Among the factors that outline the health of populations, person's lifestyle is the more important one. This work focuses on the caracterization and prevention of sedentary lifestyles. A sedentary behavior is defined as "any waking behavior characterized by an energy expenditure of 1.5 METs (Metabolic Equivalent) or less while in a sitting or reclining posture". To propose a method for sedentary behaviors classification using a smartphone and Bluetooth beacons considering different types of classification models: personal, hybrid or impersonal. Following the CRISP-DM methodology, a method based on a two-layer approach for the classification of sedentary behaviors is proposed. Using data collected from a smartphones' accelerometer, gyroscope and barometer; the first layer classifies between performing a sedentary behavior and not. The second layer of the method classifies the specific sedentary activity performed using only the smartphone's accelerometer and barometer data, but adding indoor location data, using Bluetooth Low Energy (BLE) beacons. To improve the precision of the classification, both layers implemented the Random Forest algorithm and the personal model. This study presents the first available method for the automatic classification of specific sedentary behaviors. The layered classification approach has the potential to improve processing, memory and energy consumption of mobile devices and wearables used.
Del Campo, Antonio; Cintioni, Lorenzo; Spinsante, Susanna; Gambi, Ennio
2017-01-01
With the introduction of low-power wireless technologies, like Bluetooth Low Energy (BLE), new applications are approaching the home automation, healthcare, fitness, automotive and consumer electronics markets. BLE devices are designed to maximize the battery life, i.e., to run for long time on a single coin-cell battery. In typical application scenarios of home automation and Ambient Assisted Living (AAL), the sensors that monitor relatively unpredictable and rare events should coexist with other sensors that continuously communicate health or environmental parameter measurements. The former usually work in connectionless mode, acting as advertisers, while the latter need a persistent connection, acting as slave nodes. The coexistence of connectionless and connection-oriented networks, that share the same central node, can be required to reduce the number of handling devices, thus keeping the network complexity low and limiting the packet’s traffic congestion. In this paper, the medium access management, operated by the central node, has been modeled, focusing on the scheduling procedure in both connectionless and connection-oriented communication. The models have been merged to provide a tool supporting the configuration design of BLE devices, during the network design phase that precedes the real implementation. The results highlight the suitability of the proposed tool: the ability to set the device parameters to allow us to keep a practical discovery latency for event-driven sensors and avoid undesired overlaps between scheduled scanning and connection phases due to bad management performed by the central node. PMID:28387724
Del Campo, Antonio; Cintioni, Lorenzo; Spinsante, Susanna; Gambi, Ennio
2017-04-07
With the introduction of low-power wireless technologies, like Bluetooth Low Energy (BLE), new applications are approaching the home automation, healthcare, fitness, automotive and consumer electronics markets. BLE devices are designed to maximize the battery life, i.e., to run for long time on a single coin-cell battery. In typical application scenarios of home automation and Ambient Assisted Living (AAL), the sensors that monitor relatively unpredictable and rare events should coexist with other sensors that continuously communicate health or environmental parameter measurements. The former usually work in connectionless mode, acting as advertisers, while the latter need a persistent connection, acting as slave nodes. The coexistence of connectionless and connection-oriented networks, that share the same central node, can be required to reduce the number of handling devices, thus keeping the network complexity low and limiting the packet's traffic congestion. In this paper, the medium access management, operated by the central node, has been modeled, focusing on the scheduling procedure in both connectionless and connection-oriented communication. The models have been merged to provide a tool supporting the configuration design of BLE devices, during the network design phase that precedes the real implementation. The results highlight the suitability of the proposed tool: the ability to set the device parameters to allow us to keep a practical discovery latency for event-driven sensors and avoid undesired overlaps between scheduled scanning and connection phases due to bad management performed by the central node.
Gitajn, Ida Leah; Connelly, Daniel; Mascarenhas, Daniel; Breazeale, Stephen; Berger, Peter; Schoonover, Carrie; Martin, Brook; O'Toole, Robert V; Pensy, Raymond; Sciadini, Marcus
2018-02-01
Evaluate whether mortality after discharge is elevated in geriatric fracture patients whose lower extremity weight-bearing is restricted. Retrospective cohort study SETTING: Urban Level 1 trauma center PATIENTS/PARTICIPANTS: 1746 patients >65 years of age INTERVENTION: Post-operative lower extremity weight-bearing status MAIN OUTCOME MEASURE: Mortality, as determined by the Social Security Death Index RESULTS: Univariate analysis demonstrated that patients who were weight-bearing as tolerated on bilateral lower extremities (BLE) had significantly higher 5-year mortality compared to patients with restricted weight-bearing on one lower extremity and restricted weight-bearing on BLE (30%, 21% and 22% respectively, p < 0.001). Cox regression analysis controlling for variables including age, Charlson Comorbidity Index, Injury Severity Scale, combined UE/LE injury, injury mechanism (high vs low), sex, BMI and GCS demonstrated that, in comparison to patients who were weight bearing as tolerated on BLE, restricted weight-bearing on one lower extremity had a hazard ratio (HR) of 0.97 (95% confidence interval 0.78 to 1.20, p = 0.76) and restricted weight-bearing in BLE had a HR of 0.91 (95% confidence interval 0.60 to 1.36, p = 0.73). In geriatric patients, prescribed weight-bearing status did not have a statistically significant association with mortality after discharge, when controlling for age, sex, body mass index, medical comorbidities, Injury Severity Scale (ISS), mechanism of injury, nonoperative treatment and admission GCS. This remained true in when the analysis was restricted to operative injuries only. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ali, Rubbiya A.; Landsberg, Michael J.; Knauth, Emily; Morgan, Garry P.; Marsh, Brad J.; Hankamer, Ben
2012-01-01
3D image reconstruction of large cellular volumes by electron tomography (ET) at high (≤5 nm) resolution can now routinely resolve organellar and compartmental membrane structures, protein coats, cytoskeletal filaments, and macromolecules. However, current image analysis methods for identifying in situ macromolecular structures within the crowded 3D ultrastructural landscape of a cell remain labor-intensive, time-consuming, and prone to user-bias and/or error. This paper demonstrates the development and application of a parameter-free, 3D implementation of the bilateral edge-detection (BLE) algorithm for the rapid and accurate segmentation of cellular tomograms. The performance of the 3D BLE filter has been tested on a range of synthetic and real biological data sets and validated against current leading filters—the pseudo 3D recursive and Canny filters. The performance of the 3D BLE filter was found to be comparable to or better than that of both the 3D recursive and Canny filters while offering the significant advantage that it requires no parameter input or optimisation. Edge widths as little as 2 pixels are reproducibly detected with signal intensity and grey scale values as low as 0.72% above the mean of the background noise. The 3D BLE thus provides an efficient method for the automated segmentation of complex cellular structures across multiple scales for further downstream processing, such as cellular annotation and sub-tomogram averaging, and provides a valuable tool for the accurate and high-throughput identification and annotation of 3D structural complexity at the subcellular level, as well as for mapping the spatial and temporal rearrangement of macromolecular assemblies in situ within cellular tomograms. PMID:22479430
NASA Astrophysics Data System (ADS)
Welty, N.; Rudolph, M.; Schäfer, F.; Apeldoorn, J.; Janovsky, R.
2013-07-01
This paper presents a computational methodology to predict the satellite system-level effects resulting from impacts of untrackable space debris particles. This approach seeks to improve on traditional risk assessment practices by looking beyond the structural penetration of the satellite and predicting the physical damage to internal components and the associated functional impairment caused by untrackable debris impacts. The proposed method combines a debris flux model with the Schäfer-Ryan-Lambert ballistic limit equation (BLE), which accounts for the inherent shielding of components positioned behind the spacecraft structure wall. Individual debris particle impact trajectories and component shadowing effects are considered and the failure probabilities of individual satellite components as a function of mission time are calculated. These results are correlated to expected functional impairment using a Boolean logic model of the system functional architecture considering the functional dependencies and redundancies within the system.
Yoon, Paul K; Zihajehzadeh, Shaghayegh; Bong-Soo Kang; Park, Edward J
2015-08-01
This paper proposes a novel indoor localization method using the Bluetooth Low Energy (BLE) and an inertial measurement unit (IMU). The multipath and non-line-of-sight errors from low-power wireless localization systems commonly result in outliers, affecting the positioning accuracy. We address this problem by adaptively weighting the estimates from the IMU and BLE in our proposed cascaded Kalman filter (KF). The positioning accuracy is further improved with the Rauch-Tung-Striebel smoother. The performance of the proposed algorithm is compared against that of the standard KF experimentally. The results show that the proposed algorithm can maintain high accuracy for position tracking the sensor in the presence of the outliers.
Klingberg, Jenny; Broberg, Malin; Strandberg, Bo; Thorsson, Pontus; Pleijel, Håkan
2017-12-01
Air pollution levels (NO 2 , PAHs, O 3 ) were investigated, before (BLE) and after (ALE) leaf emergence, in the urban landscape of Gothenburg, Sweden. The aims were to study the 1) spatial and temporal variation in pollution levels between urban green areas, 2) effect of urban vegetation on air pollution levels at the same distance from a major emission source (traffic route), 3) improvement of urban air quality in urban parks compared to adjacent sites near traffic, 4) correlation between air pollution and noise in a park. O 3 varied little over the urban landscape. NO 2 varied strongly and was higher in situations strongly influenced by traffic. Four PAH variables were included: total PAH, total particle-bound PAH, the quantitatively important gaseous phenanthrene and the highly toxic particle-bound benzo(a)pyrene. The variation of PAHs was similar to NO 2 , but for certain PAHs the difference between highly and less polluted sites was larger than for NO 2 . At a vegetated site, NO 2 and particulate PAH levels were lower than at a non-vegetated site at a certain distance from a busy traffic route. This effect was significantly larger ALE compared to BLE for NO 2 , indicating green leaf area to be highly significant factor for air quality improvement. For particulate PAHs, the effect was similar BLE and ALE, indicating that tree bark and branches also could be an important factor in reducing air pollution. Parks represented considerably cleaner local environments (park effect), which is likely to be a consequence of both a dilution (distance effect) and deposition. Noise and air pollution (NO 2 and PAH) levels were strongly correlated. Comparison of noise levels BLE and ALE also showed that the presence of leaves significantly reduced noise levels. Our results are evidence that urban green spaces are beneficial for urban environmental quality, which is important to consider in urban planning. Copyright © 2017 Elsevier B.V. All rights reserved.
Two-Layer Viscous Shallow-Water Equations and Conservation Laws
NASA Astrophysics Data System (ADS)
Kanayama, Hiroshi; Dan, Hiroshi
In our previous papers, the two-layer viscous shallow-water equations were derived from the three-dimensional Navier-Stokes equations under the hydrostatic assumption. Also, it was noted that the combination of upper and lower equations in the two-layer model produces the classical one-layer equations if the density of each layer is the same. Then, the two-layer equations were approximated by a finite element method which followed our numerical scheme established for the one-layer model in 1978. Also, it was numerically demonstrated that the interfacial instability generated when the densities are the same can be eliminated by providing a sufficient density difference. In this paper, we newly show that conservation laws are still valid in the two-layer model. Also, we show results of a new physical experiment for the interfacial instability.
NASA Astrophysics Data System (ADS)
Volchkov, Yu. M.
2017-09-01
This paper describes the modified bending equations of layered orthotropic plates in the first approximation. The approximation of the solution of the equation of the three-dimensional theory of elasticity by the Legendre polynomial segments is used to obtain differential equations of the elastic layer. For the approximation of equilibrium equations and boundary conditions of three-dimensional theory of elasticity, several approximations of each desired function (stresses and displacements) are used. The stresses at the internal points of the plate are determined from the defining equations for the orthotropic material, averaged with respect to the plate thickness. The construction of the bending equations of layered plates for each layer is carried out with the help of the elastic layer equations and the conjugation conditions on the boundaries between layers, which are conditions for the continuity of normal stresses and displacements. The numerical solution of the problem of bending of the rectangular layered plate obtained with the help of modified equations is compared with an analytical solution. It is determined that the maximum error in determining the stresses does not exceed 3 %.
Perez-Diaz de Cerio, David; Hernández, Ángela; Valenzuela, Jose Luis; Valdovinos, Antonio
2017-01-01
The purpose of this paper is to evaluate from a real perspective the performance of Bluetooth Low Energy (BLE) as a technology that enables fast and reliable discovery of a large number of users/devices in a short period of time. The BLE standard specifies a wide range of configurable parameter values that determine the discovery process and need to be set according to the particular application requirements. Many previous works have been addressed to investigate the discovery process through analytical and simulation models, according to the ideal specification of the standard. However, measurements show that additional scanning gaps appear in the scanning process, which reduce the discovery capabilities. These gaps have been identified in all of the analyzed devices and respond to both regular patterns and variable events associated with the decoding process. We have demonstrated that these non-idealities, which are not taken into account in other studies, have a severe impact on the discovery process performance. Extensive performance evaluation for a varying number of devices and feasible parameter combinations has been done by comparing simulations and experimental measurements. This work also includes a simple mathematical model that closely matches both the standard implementation and the different chipset peculiarities for any possible parameter value specified in the standard and for any number of simultaneous advertising devices under scanner coverage. PMID:28273801
Perez-Diaz de Cerio, David; Hernández, Ángela; Valenzuela, Jose Luis; Valdovinos, Antonio
2017-03-03
The purpose of this paper is to evaluate from a real perspective the performance of Bluetooth Low Energy (BLE) as a technology that enables fast and reliable discovery of a large number of users/devices in a short period of time. The BLE standard specifies a wide range of configurable parameter values that determine the discovery process and need to be set according to the particular application requirements. Many previous works have been addressed to investigate the discovery process through analytical and simulation models, according to the ideal specification of the standard. However, measurements show that additional scanning gaps appear in the scanning process, which reduce the discovery capabilities. These gaps have been identified in all of the analyzed devices and respond to both regular patterns and variable events associated with the decoding process. We have demonstrated that these non-idealities, which are not taken into account in other studies, have a severe impact on the discovery process performance. Extensive performance evaluation for a varying number of devices and feasible parameter combinations has been done by comparing simulations and experimental measurements. This work also includes a simple mathematical model that closely matches both the standard implementation and the different chipset peculiarities for any possible parameter value specified in the standard and for any number of simultaneous advertising devices under scanner coverage.
Model-Based Localization and Tracking Using Bluetooth Low-Energy Beacons
Cemgil, Ali Taylan
2017-01-01
We introduce a high precision localization and tracking method that makes use of cheap Bluetooth low-energy (BLE) beacons only. We track the position of a moving sensor by integrating highly unreliable and noisy BLE observations streaming from multiple locations. A novel aspect of our approach is the development of an observation model, specifically tailored for received signal strength indicator (RSSI) fingerprints: a combination based on the optimal transport model of Wasserstein distance. The tracking results of the entire system are compared with alternative baseline estimation methods, such as nearest neighboring fingerprints and an artificial neural network. Our results show that highly accurate estimation from noisy Bluetooth data is practically feasible with an observation model based on Wasserstein distance interpolation combined with the sequential Monte Carlo (SMC) method for tracking. PMID:29109375
Model-Based Localization and Tracking Using Bluetooth Low-Energy Beacons.
Daniş, F Serhan; Cemgil, Ali Taylan
2017-10-29
We introduce a high precision localization and tracking method that makes use of cheap Bluetooth low-energy (BLE) beacons only. We track the position of a moving sensor by integrating highly unreliable and noisy BLE observations streaming from multiple locations. A novel aspect of our approach is the development of an observation model, specifically tailored for received signal strength indicator (RSSI) fingerprints: a combination based on the optimal transport model of Wasserstein distance. The tracking results of the entire system are compared with alternative baseline estimation methods, such as nearest neighboring fingerprints and an artificial neural network. Our results show that highly accurate estimation from noisy Bluetooth data is practically feasible with an observation model based on Wasserstein distance interpolation combined with the sequential Monte Carlo (SMC) method for tracking.
An indoor positioning technology in the BLE mobile payment system
NASA Astrophysics Data System (ADS)
Han, Tiantian; Ding, Lei
2017-05-01
Mobile payment system for large supermarkets, the core function is through the BLE low-power Bluetooth technology to achieve the amount of payment in the mobile payment system, can through an indoor positioning technology to achieve value-added services. The technology by collecting Bluetooth RSSI, the fingerprint database of sampling points corresponding is established. To get Bluetooth module RSSI by the AP. Then, to use k-Nearest Neighbor match the value of the fingerprint database. Thereby, to help businesses find customers through the mall location, combined settlement amount of the customer's purchase of goods, to analyze customer's behavior. When the system collect signal strength, the distribution of the sampling points of RSSI is analyzed and the value is filtered. The system, used in the laboratory is designed to demonstrate the feasibility.
NASA Technical Reports Server (NTRS)
Mager, Arthur
1952-01-01
The Navier-Stokes equations of motion and the equation of continuity are transformed so as to apply to an orthogonal curvilinear coordinate system rotating with a uniform angular velocity about an arbitrary axis in space. A usual simplification of these equations as consistent with the accepted boundary-layer theory and an integration of these equations through the boundary layer result in boundary-layer momentum-integral equations for three-dimensional flows that are applicable to either rotating or nonrotating fluid boundaries. These equations are simplified and an approximate solution in closed integral form is obtained for a generalized boundary-layer momentum-loss thickness and flow deflection at the wall in the turbulent case. A numerical evaluation of this solution carried out for data obtained in a curving nonrotating duct shows a fair quantitative agreement with the measures values. The form in which the equations are presented is readily adaptable to cases of steady, three-dimensional, incompressible boundary-layer flow like that over curved ducts or yawed wings; and it also may be used to describe the boundary-layer flow over various rotating surfaces, thus applying to turbomachinery, propellers, and helicopter blades.
On buffer layers as non-reflecting computational boundaries
NASA Technical Reports Server (NTRS)
Hayder, M. Ehtesham; Turkel, Eli L.
1996-01-01
We examine an absorbing buffer layer technique for use as a non-reflecting boundary condition in the numerical simulation of flows. One such formulation was by Ta'asan and Nark for the linearized Euler equations. They modified the flow inside the buffer zone to artificially make it supersonic in the layer. We examine how this approach can be extended to the nonlinear Euler equations. We consider both a conservative and a non-conservative form modifying the governing equations in the buffer layer. We compare this with the case that the governing equations in the layer are the same as in the interior domain. We test the effectiveness of these buffer layers by a simulation of an excited axisymmetric jet based on a nonlinear compressible Navier-Stokes equations.
Satellite Vulnerability to Space Debris- An Improved 3D Risk Assessment Methodology
NASA Astrophysics Data System (ADS)
Grassi, Lilith; Destefanis, Roberto; Tiboldo, Francesca; Donath, Therese; Winterboer, Arne; Evand, Leanne; Janovsky, Rolf; Kempf, Scott; Rudolph, Martin; Schafer, Frank; Gelhaus, Johannes
2013-08-01
The work described in the present paper, performed as a part of the PÇ-ROTECT project, presents an enhanced method to evaluate satellite vulnerability to micrometeoroids and orbital debris (MMOD), using the ESABASE2/Debris tool (developed under ESA contract). Starting from the estimation of induced failures on spacecraft (S/C) components and from the computation of lethal impacts (with an energy leading to the loss of the satellite), and considering the equipment redundancies and interactions between components, the debris-induced S/C functional impairment is assessed. The developed methodology, illustrated through its application to a case study satellite, includes the capability to estimate the number of failures on internal components, overcoming the limitations of current tools which do not allow propagating the debris cloud inside the S/C. The ballistic limit of internal equipment behind a sandwich panel structure is evaluated through the implementation of the Schäfer Ryan Lambert (SRL) Ballistic Limit Equation (BLE).
Newtonian Nudging For A Richards Equation-based Distributed Hydrological Model
NASA Astrophysics Data System (ADS)
Paniconi, C.; Marrocu, M.; Putti, M.; Verbunt, M.
In this study a relatively simple data assimilation method has been implemented in a relatively complex hydrological model. The data assimilation technique is Newtonian relaxation or nudging, in which model variables are driven towards observations by a forcing term added to the model equations. The forcing term is proportional to the difference between simulation and observation (relaxation component) and contains four-dimensional weighting functions that can incorporate prior knowledge about the spatial and temporal variability and characteristic scales of the state variable(s) being assimilated. The numerical model couples a three-dimensional finite element Richards equation solver for variably saturated porous media and a finite difference diffusion wave approximation based on digital elevation data for surface water dynamics. We describe the implementation of the data assimilation algorithm for the coupled model and report on the numerical and hydrological performance of the resulting assimila- tion scheme. Nudging is shown to be successful in improving the hydrological sim- ulation results, and it introduces little computational cost, in terms of CPU and other numerical aspects of the model's behavior, in some cases even improving numerical performance compared to model runs without nudging. We also examine the sensitiv- ity of the model to nudging term parameters including the spatio-temporal influence coefficients in the weighting functions. Overall the nudging algorithm is quite flexi- ble, for instance in dealing with concurrent observation datasets, gridded or scattered data, and different state variables, and the implementation presented here can be read- ily extended to any features not already incorporated. Moreover the nudging code and tests can serve as a basis for implementation of more sophisticated data assimilation techniques in a Richards equation-based hydrological model.
Dynamic System Renewal Planning Model
1989-09-01
17 III. TlE M ODEL ............................... 20 A. INTRODUCTION ........................... 20 B. APPROACH...58 B. ASSUM PTIONS ............................ 60 C. M ODULES . ......... ............. .... .. .. 61 1. PREAM BLE...61 2. M A IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3. INITIALIZE . . . . ... .. .. .. . . .. . . . . . .. . . .. 62 4
NASA Technical Reports Server (NTRS)
Tetervin, Neal; Lin, Chia Chiao
1951-01-01
A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.
NASA Technical Reports Server (NTRS)
Lee, Jong-Hun
1993-01-01
The basic governing equations for the second-order three-dimensional hypersonic thermal and chemical nonequilibrium boundary layer are derived by means of an order-of-magnitude analysis. A two-temperature concept is implemented into the system of boundary-layer equations by simplifying the rather complicated general three-temperature thermal gas model. The equations are written in a surface-oriented non-orthogonal curvilinear coordinate system, where two curvilinear coordinates are non-orthogonial and a third coordinate is normal to the surface. The equations are described with minimum use of tensor expressions arising from the coordinate transformation, to avoid unnecessary confusion for readers. The set of equations obtained will be suitable for the development of a three-dimensional nonequilibrium boundary-layer code. Such a code could be used to determine economically the aerodynamic/aerothermodynamic loads to the surfaces of hypersonic vehicles with general configurations. In addition, the basic equations for three-dimensional stagnation flow, of which solution is required as an initial value for space-marching integration of the boundary-layer equations, are given along with the boundary conditions, the boundary-layer parameters, and the inner-outer layer matching procedure. Expressions for the chemical reaction rates and the thermodynamic and transport properties in the thermal nonequilibrium environment are explicitly given.
Hybrid diffusion-P3 equation in N-layered turbid media: steady-state domain.
Shi, Zhenzhi; Zhao, Huijuan; Xu, Kexin
2011-10-01
This paper discusses light propagation in N-layered turbid media. The hybrid diffusion-P3 equation is solved for an N-layered finite or infinite turbid medium in the steady-state domain for one point source using the extrapolated boundary condition. The Fourier transform formalism is applied to derive the analytical solutions of the fluence rate in Fourier space. Two inverse Fourier transform methods are developed to calculate the fluence rate in real space. In addition, the solutions of the hybrid diffusion-P3 equation are compared to the solutions of the diffusion equation and the Monte Carlo simulation. For the case of small absorption coefficients, the solutions of the N-layered diffusion equation and hybrid diffusion-P3 equation are almost equivalent and are in agreement with the Monte Carlo simulation. For the case of large absorption coefficients, the model of the hybrid diffusion-P3 equation is more precise than that of the diffusion equation. In conclusion, the model of the hybrid diffusion-P3 equation can replace the diffusion equation for modeling light propagation in the N-layered turbid media for a wide range of absorption coefficients.
An IBeacon-Based Location System for Smart Home Control.
Liu, Qinghe; Yang, Xinshuang; Deng, Lizhen
2018-06-11
Indoor location and intelligent control system can bring convenience to people’s daily life. In this paper, an indoor control system is designed to achieve equipment remote control by using low-energy Bluetooth (BLE) beacon and Internet of Things (IoT) technology. The proposed system consists of five parts: web server, home gateway, smart terminal, smartphone app and BLE beacons. In the web server, fingerprint matching based on RSSI stochastic characteristic and posture recognition model based on geomagnetic sensing are used to establish a more efficient equipment control system, combined with Pedestrian Dead Reckoning (PDR) technology to improve the accuracy of location. A personalized menu of remote “one-click” control is finally offered to users in a smartphone app. This smart home control system has been implemented by hardware, and precision and stability tests have been conducted, which proved the practicability and good user experience of this solution.
The scaling of oblique plasma double layers
NASA Technical Reports Server (NTRS)
Borovsky, J. E.
1983-01-01
Strong oblique plasma double layers are investigated using three methods, i.e., electrostatic particle-in-cell simulations, numerical solutions to the Poisson-Vlasov equations, and analytical approximations to the Poisson-Vlasov equations. The solutions to the Poisson-Vlasov equations and numerical simulations show that strong oblique double layers scale in terms of Debye lengths. For very large potential jumps, theory and numerical solutions indicate that all effects of the magnetic field vanish and the oblique double layers follow the same scaling relation as the field-aligned double layers.
Unsteady transonic viscous-inviscid interaction using Euler and boundary-layer equations
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar; Whitfield, Dave
1989-01-01
The Euler code is used extensively for computation of transonic unsteady aerodynamics. The boundary layer code solves the 3-D, compressible, unsteady, mean flow kinetic energy integral boundary layer equations in the direct mode. Inviscid-viscous coupling is handled using porosity boundary conditions. Some of the advantages and disadvantages of using the Euler and boundary layer equations for investigating unsteady viscous-inviscid interaction is examined.
Multiple Sclerosis and Vitamin D
... vitamin D and which were in the placebo group. Copyright © 2011 by AAN Enterprises, Inc. e99 Previous studies on vitamin D in MS did not have such a strong study design. They were more suscepti- ble to bias, and ...
Fluid-structure interaction in Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Kempf, Martin Horst Willi
1998-10-01
The linear stability of a viscous fluid between two concentric, rotating cylinders is considered. The inner cylinder is a rigid boundary and the outer cylinder has an elastic layer exposed to the fluid. The subject is motivated by flow between two adjoining rollers in a printing press. The governing equations of the fluid layer are the incompressible Navier-Stokes equations, and the governing equations of the elastic layer are Navier's equations. A narrow gap, neutral stability, and axisymmetric disturbances are assumed. The solution involves a novel technique for treating two layer stability problems, where an exact solution in the elastic layer is used to isolate the problem in the fluid layer. The results show that the presence of the elastic layer has only a slight effect on the critical Taylor numbers for the elastic parameters of modern printing presses. However, there are parameter values where the critical Taylor number is dramatically different than the classical Taylor-Couette problem.
Towards Perfectly Absorbing Boundary Conditions for Euler Equations
NASA Technical Reports Server (NTRS)
Hayder, M. Ehtesham; Hu, Fang Q.; Hussaini, M. Yousuff
1997-01-01
In this paper, we examine the effectiveness of absorbing layers as non-reflecting computational boundaries for the Euler equations. The absorbing-layer equations are simply obtained by splitting the governing equations in the coordinate directions and introducing absorption coefficients in each split equation. This methodology is similar to that used by Berenger for the numerical solutions of Maxwell's equations. Specifically, we apply this methodology to three physical problems shock-vortex interactions, a plane free shear flow and an axisymmetric jet- with emphasis on acoustic wave propagation. Our numerical results indicate that the use of absorbing layers effectively minimizes numerical reflection in all three problems considered.
Assessment of a 3-D boundary layer code to predict heat transfer and flow losses in a turbine
NASA Technical Reports Server (NTRS)
Anderson, O. L.
1984-01-01
Zonal concepts are utilized to delineate regions of application of three-dimensional boundary layer (DBL) theory. The zonal approach requires three distinct analyses. A modified version of the 3-DBL code named TABLET is used to analyze the boundary layer flow. This modified code solves the finite difference form of the compressible 3-DBL equations in a nonorthogonal surface coordinate system which includes coriolis forces produced by coordinate rotation. These equations are solved using an efficient, implicit, fully coupled finite difference procedure. The nonorthogonal surface coordinate system is calculated using a general analysis based on the transfinite mapping of Gordon which is valid for any arbitrary surface. Experimental data is used to determine the boundary layer edge conditions. The boundary layer edge conditions are determined by integrating the boundary layer edge equations, which are the Euler equations at the edge of the boundary layer, using the known experimental wall pressure distribution. Starting solutions along the inflow boundaries are estimated by solving the appropriate limiting form of the 3-DBL equations.
NASA Technical Reports Server (NTRS)
Iyer, V.; Harris, J. E.
1987-01-01
The three-dimensional boundary-layer equations in the limit as the normal coordinate tends to infinity are called the surface Euler equations. The present paper describes an accurate method for generating edge conditions for three-dimensional boundary-layer codes using these equations. The inviscid pressure distribution is first interpolated to the boundary-layer grid. The surface Euler equations are then solved with this pressure field and a prescribed set of initial and boundary conditions to yield the velocities along the two surface coordinate directions. Results for typical wing and fuselage geometries are presented. The smoothness and accuracy of the edge conditions obtained are found to be superior to the conventional interpolation procedures.
NASA Technical Reports Server (NTRS)
Tam, Christopher; Krothapalli, A
1993-01-01
The research program for the first year of this project (see the original research proposal) consists of developing an explicit marching scheme for solving the parabolized stability equations (PSE). Performing mathematical analysis of the computational algorithm including numerical stability analysis and the determination of the proper boundary conditions needed at the boundary of the computation domain are implicit in the task. Before one can solve the parabolized stability equations for high-speed mixing layers, the mean flow must first be found. In the past, instability analysis of high-speed mixing layer has mostly been performed on mean flow profiles calculated by the boundary layer equations. In carrying out this project, it is believed that the boundary layer equations might not give an accurate enough nonparallel, nonlinear mean flow needed for parabolized stability analysis. A more accurate mean flow can, however, be found by solving the parabolized Navier-Stokes equations. The advantage of the parabolized Navier-Stokes equations is that its accuracy is consistent with the PSE method. Furthermore, the method of solution is similar. Hence, the major part of the effort of the work of this year has been devoted to the development of an explicit numerical marching scheme for the solution of the Parabolized Navier-Stokes equation as applied to the high-seed mixing layer problem.
NASA Astrophysics Data System (ADS)
Dumansky, Alexander M.; Tairova, Lyudmila P.
2008-09-01
A method for the construction of hereditary constitutive equation is proposed for the laminate on the basis of hereditary constitutive equations of a layer. The method is developed from the assumption that in the directions of axes of orthotropy the layer follows elastic behavior, and obeys hereditary constitutive equations under shear. The constitutive equations of the laminate are constructed on the basis of classical laminate theory and algebra of resolvent operators. Effective matrix algorithm and relationships of operator algebra are used to derive visco-elastic stiffness and compliance of the laminate. The example of construction of hereditary constitutive equations of cross-ply carbon fiber-reinforced plastic is presented.
NASA Technical Reports Server (NTRS)
Meade, Andrew James, Jr.
1989-01-01
A numerical study of the laminar and compressible boundary layer, about a circular cone in a supersonic free stream, is presented. It is thought that if accurate and efficient numerical schemes can be produced to solve the boundary layer equations, they can be joined to numerical codes that solve the inviscid outer flow. The combination of these numerical codes is competitive with the accurate, but computationally expensive, Navier-Stokes schemes. The primary goal is to develop a finite element method for the calculation of 3-D compressible laminar boundary layer about a yawed cone. The proposed method can, in principle, be extended to apply to the 3-D boundary layer of pointed bodies of arbitrary cross section. The 3-D boundary layer equations governing supersonic free stream flow about a cone are examined. The 3-D partial differential equations are reduced to 2-D integral equations by applying the Howarth, Mangler, Crocco transformations, a linear relation between viscosity, and a Blasius-type of similarity variable. This is equivalent to a Dorodnitsyn-type formulation. The reduced equations are independent of density and curvature effects, and resemble the weak form of the 2-D incompressible boundary layer equations in Cartesian coordinates. In addition the coordinate normal to the wall has been stretched, which reduces the gradients across the layer and provides high resolution near the surface. Utilizing the parabolic nature of the boundary layer equations, a finite element method is applied to the Dorodnitsyn formulation. The formulation is presented in a Petrov-Galerkin finite element form and discretized across the layer using linear interpolation functions. The finite element discretization yields a system of ordinary differential equations in the circumferential direction. The circumferential derivatives are solved by an implicit and noniterative finite difference marching scheme. Solutions are presented for a 15 deg half angle cone at angles of attack of 5 and 10 deg. The numerical solutions assume a laminar boundary layer with free stream Mach number of 7. Results include circumferential distribution of skin friction and surface heat transfer, and cross flow velocity distributions across the layer.
Boundary-layer equations in generalized curvilinear coordinates
NASA Technical Reports Server (NTRS)
Panaras, Argyris G.
1987-01-01
A set of higher-order boundary-layer equations is derived valid for three-dimensional compressible flows. The equations are written in a generalized curvilinear coordinate system, in which the surface coordinates are nonorthogonal; the third axis is restricted to be normal to the surface. Also, higher-order viscous terms which are retained depend on the surface curvature of the body. Thus, the equations are suitable for the calculation of the boundary layer about arbitrary vehicles. As a starting point, the Navier-Stokes equations are derived in a tensorian notation. Then by means of an order-of-magnitude analysis, the boundary-layer equations are developed. To provide an interface between the analytical partial differentiation notation and the compact tensor notation, a brief review of the most essential theorems of the tensor analysis related to the equations of the fluid dynamics is given. Many useful quantities, such as the contravariant and the covariant metrics and the physical velocity components, are written in both notations.
Exploring the Mechanism of Biomolecule Immobilization on Plasma-Treated Polymer Substrates
2012-01-01
Characterization • Functionalization 26.1 Introduction Microtitre plates are widely used in clinical diagnostics, biotech and pharmaceutical research...attachment is often unsta- ble and may cause protein denaturation, desorption and/or loss of biomolecule activity [ 1 ] . Thus, covalent biomolecule
Cotton-based nonwovens and their potential scope
USDA-ARS?s Scientific Manuscript database
Although the overall use of cotton fiber in modern nonwovens has been limited, certain recent commercial and research developments make the use of cotton and its derivatives more attractive in nonwovens. The commercial developments include the availability of pre-cleaned greige cotton, purified (ble...
On the Lagrangian description of unsteady boundary-layer separation. I - General theory
NASA Technical Reports Server (NTRS)
Van Dommelen, Leon L.; Cowley, Stephen J.
1990-01-01
Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.
On the Lagrangian description of unsteady boundary layer separation. Part 1: General theory
NASA Technical Reports Server (NTRS)
Vandommelen, Leon L.; Cowley, Stephen J.
1989-01-01
Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.
Photochemistry and dynamics of the ozone layer
NASA Technical Reports Server (NTRS)
Prinn, R. G.; Alyea, F. N.; Cunnold, D. M.
1978-01-01
The paper presents a broad review of the photochemical and dynamic theories of the ozone layer. The two theories are combined into the MIT three-dimensional dynamic-chemical quasi-geostrophic model with 26 levels in the vertical spaced in logarithmic pressure coordinates between the ground and 72-km altitude. The chemical scheme incorporates the important odd nitrogen, odd hydrogen, and odd oxygen chemistry, but is simplified in the sense that it requires specification of the distributions of NO2, OH and HO2. The prognostic equations are the vorticity equation, the perturbation thermodynamic equation, and the global mean and perturbation continuity equations for ozone; diagnostic equations include the hydrostatic equation, the balance condition, and the mass continuity equation. The model is applied to the investigation of the impact of supersonic aircraft on the ozone layer.
Filippoupolitis, Avgoustinos; Oliff, William; Takand, Babak; Loukas, George
2017-05-27
Activity recognition in indoor spaces benefits context awareness and improves the efficiency of applications related to personalised health monitoring, building energy management, security and safety. The majority of activity recognition frameworks, however, employ a network of specialised building sensors or a network of body-worn sensors. As this approach suffers with respect to practicality, we propose the use of commercial off-the-shelf devices. In this work, we design and evaluate an activity recognition system composed of a smart watch, which is enhanced with location information coming from Bluetooth Low Energy (BLE) beacons. We evaluate the performance of this approach for a variety of activities performed in an indoor laboratory environment, using four supervised machine learning algorithms. Our experimental results indicate that our location-enhanced activity recognition system is able to reach a classification accuracy ranging from 92% to 100%, while without location information classification accuracy it can drop to as low as 50% in some cases, depending on the window size chosen for data segmentation.
Bond Length Equalization with molecular aromaticity-A new measurement of aromaticity.
Shen, Chen-Fei; Liu, Zi-Zhong; Liu, Hong-Xia; Zhang, Hui-Qing
2018-05-08
A new method to measure the amount of aromaticity is presented through the process of Bond Length Equalization (BLE). Degree of Aromaticity (DOA), a two-dimensional intensive quantity including geometric and energetic factors, as a new measurement of aromaticity is proposed. The unique characteristic of DOA and the formation of DOA will be displayed. The calculation of the geometrical optimization, DOA, Nucleus Independent Chemical Shifts (NICS) and Ring Stretching Vibration Raman Spectroscopy Frequency (RSVRSF) for the aromatic ring molecules - G n H n m (G = C, Si, Ge, n = 3, 5-8, m = +1, -1, 0, +1, +2) were calculated using the method of Density Functional Theory (DFT). The correlation between radius angle and molecular energy is absolute quadratic in the process of BLE. As the increasing of the number of ring atoms, the value of DOA decreasing gradually, the aromaticity decreased gradually, which was a same conclusion as NICS and RSVRSF concluded. Copyright © 2018 Elsevier B.V. All rights reserved.
Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Smeltzer, Stanley S., III
2000-01-01
A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.
Opening of an interface flaw in a layered elastic half-plane under compressive loading
NASA Technical Reports Server (NTRS)
Kennedy, J. M.; Fichter, W. B.; Goree, J. G.
1984-01-01
A static analysis is given of the problem of an elastic layer perfectly bonded, except for a frictionless interface crack, to a dissimilar elastic half-plane. The free surface of the layer is loaded by a finite pressure distribution directly over the crack. The problem is formulated using the two dimensional linear elasticity equations. Using Fourier transforms, the governing equations are converted to a pair of coupled singular integral equations. The integral equations are reduced to a set of simultaneous algebraic equations by expanding the unknown functions in a series of Jacobi polynomials and then evaluating the singular Cauchy-type integrals. The resulting equations are found to be ill-conditioned and, consequently, are solved in the least-squares sense. Results from the analysis show that, under a normal pressure distribution on the free surface of the layer and depending on the combination of geometric and material parameters, the ends of the crack can open. The resulting stresses at the crack-tips are singular, implying that crack growth is possible. The extent of the opening and the crack-top stress intensity factors depend on the width of the pressure distribution zone, the layer thickness, and the relative material properties of the layer and half-plane.
NASA Technical Reports Server (NTRS)
Wolf, M.
1981-01-01
It is noted that in the case of low-level injection, space-charge quasi-neutrality, and spatially constant material parameters (including an electrostatic field), the individual layer can be treated analytically and the basic solar cell performance parameters can be evaluated from three equations. The first equation represents the transformation of the transport velocity across the layer from the other layer boundary. The second establishes the light-generated current output from the layer interface, under the influence of the transport velocities and minority-carrier density at both layer boundaries and of bulk recombination. The third equation describes the flow of these carriers across other layers. The power of the approach is considered to lie in its facility for analysis of the solar cell's performance layer by layer, giving a clear picture of the individual layer's influence on cell efficiency.
Comparison Between Navier-Stokes and Thin-Layer Computations for Separated Supersonic Flow
NASA Technical Reports Server (NTRS)
Degani, David; Steger, Joseph L.
1983-01-01
In the numerical simulation of high Reynolds-number flow, one can frequently supply only enough grid points to resolve the viscous terms in a thin layer. As a consequence, a body-or stream-aligned coordinate system is frequently used and viscous terms in this direction are discarded. It is argued that these terms cannot be resolved and computational efficiency is gained by their neglect. Dropping the streamwise viscous terms in this manner has been termed the thin-layer approximation. The thin-layer concept is an old one, and similar viscous terms are dropped, for example, in parabolized Navier-Stokes schemes. However, such schemes also make additional assumptions so that the equations can be marched in space, and such a restriction is not usually imposed on a thin-layer model. The thin-layer approximation can be justified in much the same way as the boundary-layer approximation; it requires, therefore, a body-or stream-aligned coordinate and a high Reynolds number. Unlike the boundary-layer approximation, the same equations are used throughout, so there is no matching problem. Furthermore, the normal momentum equation is not simplified and the convection terms are not one-sided differenced for marching. Consequently, the thin-layer equations are numerically well behaved at separation and require no special treatment there. Nevertheless, the thin-layer approximation receives criticism. It has been suggested that the approximation is invalid at separation and, more recently, that it is inadequate for unsteady transonic flow. Although previous comparisons between the thin-layer and Navier-Stokes equations have been made, these comparisons have not been adequately documented.
Review of X-33 Hypersonic Aerodynamic and Aerothermodynamic Development
2000-09-01
proposed development of a fully reusable, rocket pow- ered, single-stage-to-orbit ( SSTO ) vehicle capa- ble of delivering 25,000 lbs (including crew...space at greatly reduced cost. The “Access-to-Space” study identified critical technologies that required development before a SSTO reusable launch
The role of nonlinear critical layers in boundary layer transition
NASA Technical Reports Server (NTRS)
Goldstein, M.E.
1995-01-01
Asymptotic methods are used to describe the nonlinear self-interaction between pairs of oblique instability modes that eventually develops when initially linear spatially growing instability waves evolve downstream in nominally two-dimensional laminar boundary layers. The first nonlinear reaction takes place locally within a so-called 'critical layer', with the flow outside this layer consisting of a locally parallel mean flow plus a pair of oblique instability waves - which may or may not be accompanied by an associated plane wave. The amplitudes of these waves, which are completely determined by nonlinear effects within the critical layer, satisfy either a single integro-differential equation or a pair of integro-differential equations with quadratic to quartic-type nonlinearities. The physical implications of these equations are discussed.
NASA Astrophysics Data System (ADS)
Sardesai, Chetan R.
The primary objective of this research is to explore the application of optimal control theory in nonlinear, unsteady, fluid dynamical settings. Two problems are considered: (1) control of unsteady boundary-layer separation, and (2) control of the Saltzman-Lorenz model. The unsteady boundary-layer equations are nonlinear partial differential equations that govern the eruptive events that arise when an adverse pressure gradient acts on a boundary layer at high Reynolds numbers. The Saltzman-Lorenz model consists of a coupled set of three nonlinear ordinary differential equations that govern the time-dependent coefficients in truncated Fourier expansions of Rayleigh-Renard convection and exhibit deterministic chaos. Variational methods are used to derive the nonlinear optimal control formulations based on cost functionals that define the control objective through a performance measure and a penalty function that penalizes the cost of control. The resulting formulation consists of the nonlinear state equations, which must be integrated forward in time, and the nonlinear control (adjoint) equations, which are integrated backward in time. Such coupled forward-backward time integrations are computationally demanding; therefore, the full optimal control problem for the Saltzman-Lorenz model is carried out, while the more complex unsteady boundary-layer case is solved using a sub-optimal approach. The latter is a quasi-steady technique in which the unsteady boundary-layer equations are integrated forward in time, and the steady control equation is solved at each time step. Both sub-optimal control of the unsteady boundary-layer equations and optimal control of the Saltzman-Lorenz model are found to be successful in meeting the control objectives for each problem. In the case of boundary-layer separation, the control results indicate that it is necessary to eliminate the recirculation region that is a precursor to the unsteady boundary-layer eruptions. In the case of the Saltzman-Lorenz model, it is possible to control the system about either of the two unstable equilibrium points representing clockwise and counterclockwise rotation of the convection roles in a parameter regime for which the uncontrolled solution would exhibit deterministic chaos.
NASA Technical Reports Server (NTRS)
Biringen, S.; Danabasoglu, G.
1988-01-01
A Chebyshev matrix collocation method is outlined for the solution of the Orr-Sommerfeld equation for the Blausius boundary layer. User information is provided for FORTRAN program ORRBL which solves the equation by the QR method.
Dualchannel Fuel Control Program.
1981-08-01
Generator 1 S Fluidic Speed Sensor and Power Turbine Wheels T = 0.1 s (speed) Recuperator 15 to 19 s Fluidic Temperature Sensor (temperature) T = 0.7 s...tradeoff between the highest sensitivity obtainable (as small a gap as possi- ble) and the noise or output variations due to disc runout . In
Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Smeltzer, Stanley S., III
2000-01-01
An analytical, parametric study of the attenuation of bending boundary layers or edge effects in balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize and quantify the effects of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very general and encompassing manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all the laminate constructions considered, the results show that the differences between results that were obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that in some cases neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and in other cases it results in an overestimation.
Turbulence Modeling Validation, Testing, and Development
NASA Technical Reports Server (NTRS)
Bardina, J. E.; Huang, P. G.; Coakley, T. J.
1997-01-01
The primary objective of this work is to provide accurate numerical solutions for selected flow fields and to compare and evaluate the performance of selected turbulence models with experimental results. Four popular turbulence models have been tested and validated against experimental data often turbulent flows. The models are: (1) the two-equation k-epsilon model of Wilcox, (2) the two-equation k-epsilon model of Launder and Sharma, (3) the two-equation k-omega/k-epsilon SST model of Menter, and (4) the one-equation model of Spalart and Allmaras. The flows investigated are five free shear flows consisting of a mixing layer, a round jet, a plane jet, a plane wake, and a compressible mixing layer; and five boundary layer flows consisting of an incompressible flat plate, a Mach 5 adiabatic flat plate, a separated boundary layer, an axisymmetric shock-wave/boundary layer interaction, and an RAE 2822 transonic airfoil. The experimental data for these flows are well established and have been extensively used in model developments. The results are shown in the following four sections: Part A describes the equations of motion and boundary conditions; Part B describes the model equations, constants, parameters, boundary conditions, and numerical implementation; and Parts C and D describe the experimental data and the performance of the models in the free-shear flows and the boundary layer flows, respectively.
Simple equations guide high-frequency surface-wave investigation techniques
Xia, J.; Xu, Y.; Chen, C.; Kaufmann, R.D.; Luo, Y.
2006-01-01
We discuss five useful equations related to high-frequency surface-wave techniques and their implications in practice. These equations are theoretical results from published literature regarding source selection, data-acquisition parameters, resolution of a dispersion curve image in the frequency-velocity domain, and the cut-off frequency of high modes. The first equation suggests Rayleigh waves appear in the shortest offset when a source is located on the ground surface, which supports our observations that surface impact sources are the best source for surface-wave techniques. The second and third equations, based on the layered earth model, reveal a relationship between the optimal nearest offset in Rayleigh-wave data acquisition and seismic setting - the observed maximum and minimum phase velocities, and the maximum wavelength. Comparison among data acquired with different offsets at one test site confirms the better data were acquired with the suggested optimal nearest offset. The fourth equation illustrates that resolution of a dispersion curve image at a given frequency is directly proportional to the product of a length of a geophone array and the frequency. We used real-world data to verify the fourth equation. The last equation shows that the cut-off frequency of high modes of Love waves for a two-layer model is determined by shear-wave velocities and the thickness of the top layer. We applied this equation to Rayleigh waves and multi-layer models with the average velocity and obtained encouraging results. This equation not only endows with a criterion to distinguish high modes from numerical artifacts but also provides a straightforward means to resolve the depth to the half space of a layered earth model. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pimenova, Anastasiya V.; Goldobin, Denis S.; Lyubimova, Tatyana P.
2018-02-01
We study the waves at the interface between two thin horizontal layers of immiscible liquids subject to high-frequency tangential vibrations. Nonlinear governing equations are derived for the cases of two- and three-dimensional flows and arbitrary ratio of layer thicknesses. The derivation is performed within the framework of the long-wavelength approximation, which is relevant as the linear instability of a thin-layers system is long-wavelength. The dynamics of equations is integrable and the equations themselves can be compared to the Boussinesq equation for the gravity waves in shallow water, which allows one to compare the action of the vibrational field to the action of the gravity and its possible effective inversion.
Influence of heat conducting substrates on explosive crystallization in thin layers
NASA Astrophysics Data System (ADS)
Schneider, Wilhelm
2017-09-01
Crystallization in a thin, initially amorphous layer is considered. The layer is in thermal contact with a substrate of very large dimensions. The energy equation of the layer contains source and sink terms. The source term is due to liberation of latent heat in the crystallization process, while the sink term is due to conduction of heat into the substrate. To determine the latter, the heat diffusion equation for the substrate is solved by applying Duhamel's integral. Thus, the energy equation of the layer becomes a heat diffusion equation with a time integral as an additional term. The latter term indicates that the heat loss due to the substrate depends on the history of the process. To complete the set of equations, the crystallization process is described by a rate equation for the degree of crystallization. The governing equations are then transformed to a moving co-ordinate system in order to analyze crystallization waves that propagate with invariant properties. Dual solutions are found by an asymptotic expansion for large activation energies of molecular diffusion. By introducing suitable variables, the results can be presented in a universal form that comprises the influence of all non-dimensional parameters that govern the process. Of particular interest for applications is the prediction of a critical heat loss parameter for the existence of crystallization waves with invariant properties.
The Use of Kruskal-Newton Diagrams for Differential Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. Fishaleck and R.B. White
2008-02-19
The method of Kruskal-Newton diagrams for the solution of differential equations with boundary layers is shown to provide rapid intuitive understanding of layer scaling and can result in the conceptual simplification of some problems. The method is illustrated using equations arising in the theory of pattern formation and in plasma physics.
Solution to the Boltzmann equation for layered systems for current perpendicular to the planes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, W. H.; Zhang, X.-G.; MacLaren, J. M.
2000-05-01
Present theories of giant magnetoresistance (GMR) for current perpendicular to the planes (CPP) are based on an extremely restricted solution to the Boltzmann equation that assumes a single free electron band structure for all layers and all spin channels. Within this model only the scattering rate changes from one layer to the next. This model leads to the remarkable result that the resistance of a layered material is simply the sum of the resistances of each layer. We present a solution to the Boltzmann equation for CPP for the case in which the electronic structure can be different for differentmore » layers. The problem of matching boundary conditions between layers is much more complicated than in the current in the planes (CIP) geometry because it is necessary to include the scattering-in term of the Boltzmann equation even for the case of isotropic scattering. This term couples different values of the momentum parallel to the planes. When the electronic structure is different in different layers there is an interface resistance even in the absence of intermixing of the layers. The size of this interface resistance is affected by the electronic structure, scattering rates, and thicknesses of nearby layers. For Co-Cu, the calculated interface resistance and its spin asymmetry is comparable to that measured at low temperature in sputtered samples. (c) 2000 American Institute of Physics.« less
Modeling of the heat transfer in bypass transitional boundary-layer flows
NASA Technical Reports Server (NTRS)
Simon, Frederick F.; Stephens, Craig A.
1991-01-01
A low Reynolds number k-epsilon turbulence model and conditioned momentum, energy and turbulence equations were used to predict bypass transition heat transfer on a flat plate in a high-disturbance environment with zero pressure gradient. The use of conditioned equations was demonstrated to be an improvement over the use of the global-time-averaged equations for the calculation of velocity profiles and turbulence intensity profiles in the transition region of a boundary layer. The approach of conditioned equations is extended to include heat transfer and a modeling of transition events is used to predict transition onset and the extent of transition on a flat plate. The events, which describe the boundary layer at the leading edge, result in boundary-layer regions consisting of: (1) the laminar, (2) pseudolaminar, (3) transitional, and (4) turbulent boundary layers. The modeled transition events were incorporated into the TEXSTAN 2-D boundary-layer code which is used to numerically predict the heat transfer. The numerical predictions in general compared well with the experimental data and revealed areas where additional experimental information is needed.
Part 1 of a Computational Study of a Drop-Laden Mixing Layer
NASA Technical Reports Server (NTRS)
Okong'o, Nora A.; Bellan, Josette
2004-01-01
This first of three reports on a computational study of a drop-laden temporal mixing layer presents the results of direct numerical simulations (DNS) of well-resolved flow fields and the derivation of the large-eddy simulation (LES) equations that would govern the larger scales of a turbulent flow field. The mixing layer consisted of two counterflowing gas streams, one of which was initially laden with evaporating liquid drops. The gas phase was composed of two perfect gas species, the carrier gas and the vapor emanating from the drops, and was computed in an Eulerian reference frame, whereas each drop was tracked individually in a Lagrangian manner. The flow perturbations that were initially imposed on the layer caused mixing and eventual transition to turbulence. The DNS database obtained included transitional states for layers with various liquid mass loadings. For the DNS, the gas-phase equations were the compressible Navier-Stokes equations for conservation of momentum and additional conservation equations for total energy and species mass. These equations included source terms representing the effect of the drops on the mass, momentum, and energy of the gas phase. From the DNS equations, the expression for the irreversible entropy production (dissipation) was derived and used to determine the dissipation due to the source terms. The LES equations were derived by spatially filtering the DNS set and the magnitudes of the terms were computed at transitional states, leading to a hierarchy of terms to guide simplification of the LES equations. It was concluded that effort should be devoted to the accurate modeling of both the subgridscale fluxes and the filtered source terms, which were the dominant unclosed terms appearing in the LES equations.
Carbon isotope composition of ambient CO2 and recycling: a matrix simulation model
da Silveira Lobo Sternberg, Leonel; DeAngelis, Donald L.
2002-01-01
The relationship between isotopic composition and concentration of ambient CO2 in a canopy and its associated convective boundary layer was modeled. The model divides the canopy and convective boundary layer into several layers. Photosynthesis, respiration, and exchange between each layer can be simulated by matrix equations. This simulation can be used to calculate recycling; defined here as the amount of respired CO2 re-fixed by photosynthesis relative to the total amount of respired CO2. At steady state the matrix equations can be solved for the canopy and convective boundary layer CO2 concentration and isotopic profile, which can be used to calculate a theoretical recycling index according to a previously developed equation. There is complete agreement between simulated and theoretical recycling indices for different exchange scenarios. Recycling indices from a simulation of gas exchange between a heterogeneous vegetation canopy and the troposphere also agreed with a more generalized form of the theoretical recycling equation developed here.
Susceptibility of Adult Mosquitoes to Insecticides in Aqueous Sucrose Baits
2010-01-01
imidacloprid, followed by spinosad, thiamethoxam , bifenthrin, permethrin, and cyfluthrin. The least effective ingredients were chlorfenapyr and ivermectin...effective active ingredients were fipronil, deltamethrin and imidacloprid, followed by spinosad, thiamethoxam , bifenthrin, permethrin, and cyfluthrin. The...presented. Based on KD50 values, Cx. quinquefasciatus were most suscepti- ble to fipronil > imidacloprid > deltamethrin, spinosad, thiamethoxam , and
75 FR 61560 - Petition for Waiver of Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-05
... certain provisions of the Railroad Freight Car Safety Standards, 49 CFR 215.303, which requires stenciling of restricted cars. HVRM owns four cabooses (Car Numbers: B&LE 1989, EL C345, GTW 75072, and EJ&E 184... requirements of its safety standards. The individual petition is described below, including the party seeking...
USDA-ARS?s Scientific Manuscript database
We report large induction (> 65fold increases) of volatile organic compounds (VOCs) emitted from a single leaf of the invasive weed mossy sorrel, Rumex confertus Willd. (Polygonaceae), by herbivory of the dock leaf beetle, Gastrophysa polygoni L. (Coleoptera: Chrysomelidae). The R. confertus VOC ble...
Filippoupolitis, Avgoustinos; Oliff, William; Takand, Babak; Loukas, George
2017-01-01
Activity recognition in indoor spaces benefits context awareness and improves the efficiency of applications related to personalised health monitoring, building energy management, security and safety. The majority of activity recognition frameworks, however, employ a network of specialised building sensors or a network of body-worn sensors. As this approach suffers with respect to practicality, we propose the use of commercial off-the-shelf devices. In this work, we design and evaluate an activity recognition system composed of a smart watch, which is enhanced with location information coming from Bluetooth Low Energy (BLE) beacons. We evaluate the performance of this approach for a variety of activities performed in an indoor laboratory environment, using four supervised machine learning algorithms. Our experimental results indicate that our location-enhanced activity recognition system is able to reach a classification accuracy ranging from 92% to 100%, while without location information classification accuracy it can drop to as low as 50% in some cases, depending on the window size chosen for data segmentation. PMID:28555022
NASA Astrophysics Data System (ADS)
Schaffrin, Burkhard
2008-02-01
In a linear Gauss-Markov model, the parameter estimates from BLUUE (Best Linear Uniformly Unbiased Estimate) are not robust against possible outliers in the observations. Moreover, by giving up the unbiasedness constraint, the mean squared error (MSE) risk may be further reduced, in particular when the problem is ill-posed. In this paper, the α-weighted S-homBLE (Best homogeneously Linear Estimate) is derived via formulas originally used for variance component estimation on the basis of the repro-BIQUUE (reproducing Best Invariant Quadratic Uniformly Unbiased Estimate) principle in a model with stochastic prior information. In the present model, however, such prior information is not included, which allows the comparison of the stochastic approach (α-weighted S-homBLE) with the well-established algebraic approach of Tykhonov-Phillips regularization, also known as R-HAPS (Hybrid APproximation Solution), whenever the inverse of the “substitute matrix” S exists and is chosen as the R matrix that defines the relative impact of the regularizing term on the final result.
[Intelligent watch system for health monitoring based on Bluetooth low energy technology].
Wang, Ji; Guo, Hailiang; Ren, Xiaoli
2017-08-01
According to the development status of wearable technology and the demand of intelligent health monitoring, we studied the multi-function integrated smart watches solution and its key technology. First of all, the sensor technology with high integration density, Bluetooth low energy (BLE) and mobile communication technology were integrated and used in develop practice. Secondly, for the hardware design of the system in this paper, we chose the scheme with high integration density and cost-effective computer modules and chips. Thirdly, we used real-time operating system FreeRTOS to develop the friendly graphical interface interacting with touch screen. At last, the high-performance application software which connected with BLE hardware wirelessly and synchronized data was developed based on android system. The function of this system included real-time calendar clock, telephone message, address book management, step-counting, heart rate and sleep quality monitoring and so on. Experiments showed that the collecting data accuracy of various sensors, system data transmission capacity, the overall power consumption satisfy the production standard. Moreover, the system run stably with low power consumption, which could realize intelligent health monitoring effectively.
A water-powered Energy Harvesting system with Bluetooth Low Energy interface
NASA Astrophysics Data System (ADS)
Kroener, M.; Allinger, K.; Berger, M.; Grether, E.; Wieland, F.; Heller, S.; Woias, P.
2016-11-01
This paper reports the design, and testing of a water turbine generator system for typical flow rates in domestic applications, with an integrated power management and a Bluetooth low energy (BLE) based RF data transmission interface. It is based on a commercially available low cost hydro generator. The generator is built into a housing with optimized reduced fluidic resistance to enable operation with flow rates as low as 6 l/min. The power management combines rectification, buffering, defined start-up, and circuit protection. An MSP430FR5949 microcontroller is used for data acquisition and processing. The data are transmitted via RF, using a Bluegiga BLE112 module in advertisement mode, to a PC where the measured flow rate is stored and displayed. The transmission rate of the wireless sensor node (WSN) is set to 1 Hz if enough power is available, which is the case for flow rates above 5.5 l/min. The electronics power demand is calculated to be 340 μW in average, while the generator is capable of delivering more than 200 mW for flow rates above 15 l/min.
Investigation of viscous/inviscid interaction in transonic flow over airfoils with suction
NASA Technical Reports Server (NTRS)
Vemuru, C. S.; Tiwari, S. N.
1988-01-01
The viscous/inviscid interaction over transonic airfoils with and without suction is studied. The streamline angle at the edge of the boundary layer is used to couple the viscous and inviscid flows. The potential flow equations are solved for the inviscid flow field. In the shock region, the Euler equations are solved using the method of integral relations. For this, the potential flow solution is used as the initial and boundary conditions. An integral method is used to solve the laminar boundary-layer equations. Since both methods are integral methods, a continuous interaction is allowed between the outer inviscid flow region and the inner viscous flow region. To avoid the Goldstein singularity near the separation point the laminar boundary-layer equations are derived in an inverse form to obtain solution for the flows with small separations. The displacement thickness distribution is specified instead of the usual pressure distribution to solve the boundry-layer equations. The Euler equations are solved for the inviscid flow using the finite volume technique and the coupling is achieved by a surface transpiration model. A method is developed to apply a minimum amount of suction that is required to have an attached flow on the airfoil. The turbulent boundary layer equations are derived using the bi-logarithmic wall law for mass transfer. The results are found to be in good agreement with available experimental data and with the results of other computational methods.
Neoclassical, semi-collisional tearing mode theory in an axisymmetric torus
NASA Astrophysics Data System (ADS)
Connor, J. W.; Hastie, R. J.; Helander, P.
2017-12-01
A set of layer equations for determining the stability of semi-collisional tearing modes in an axisymmetric torus, incorporating neoclassical physics, in the small ion Larmor radius limit, is provided. These can be used as an inner layer module for inclusion in numerical codes that asymptotically match the layer to toroidal calculations of the tearing mode stability index, \\prime $ . They are more complete than in earlier work and comprise equations for the perturbed electron density and temperature, the ion temperature, Ampère's law and the vorticity equation, amounting to a twelvth-order set of radial differential equations. While the toroidal geometry is kept quite general when treating the classical and Pfirsch-Schlüter transport, parallel bootstrap current and semi-collisional physics, it is assumed that the fraction of trapped particles is small for the banana regime contribution. This is to justify the use of a model collision term when acting on the localised (in velocity space) solutions that remain after the Spitzer solutions have been exploited to account for the bulk of the passing distributions. In this respect, unlike standard neoclassical transport theory, the calculation involves the second Spitzer solution connected with a parallel temperature gradient, because this stability problem involves parallel temperature gradients that cannot occur in equilibrium toroidal transport theory. Furthermore, a calculation of the linearised neoclassical radial transport of toroidal momentum for general geometry is required to complete the vorticity equation. The solutions of the resulting set of equations do not match properly to the ideal magnetohydrodynamic (MHD) equations at large distances from the layer, and a further, intermediate layer involving ion corrections to the electrical conductivity and ion parallel thermal transport is invoked to achieve this matching and allow one to correctly calculate the layer \\prime $ .
Turbulence modeling for hypersonic flows
NASA Technical Reports Server (NTRS)
Marvin, J. G.; Coakley, T. J.
1989-01-01
Turbulence modeling for high speed compressible flows is described and discussed. Starting with the compressible Navier-Stokes equations, methods of statistical averaging are described by means of which the Reynolds-averaged Navier-Stokes equations are developed. Unknown averages in these equations are approximated using various closure concepts. Zero-, one-, and two-equation eddy viscosity models, algebraic stress models and Reynolds stress transport models are discussed. Computations of supersonic and hypersonic flows obtained using several of the models are discussed and compared with experimental results. Specific examples include attached boundary layer flows, shock wave boundary layer interactions and compressible shear layers. From these examples, conclusions regarding the status of modeling and recommendations for future studies are discussed.
Computation of turbulent boundary layers on curved surfaces, 1 June 1975 - 31 January 1976
NASA Technical Reports Server (NTRS)
Wilcox, D. C.; Chambers, T. L.
1976-01-01
An accurate method was developed for predicting effects of streamline curvature and coordinate system rotation on turbulent boundary layers. A new two-equation model of turbulence was developed which serves as the basis of the study. In developing the new model, physical reasoning is combined with singular perturbation methods to develop a rational, physically-based set of equations which are, on the one hand, as accurate as mixing-length theory for equilibrium boundary layers and, on the other hand, suitable for computing effects of curvature and rotation. The equations are solved numerically for several boundary layer flows over plane and curved surfaces. For incompressible boundary layers, results of the computations are generally within 10% of corresponding experimental data. Somewhat larger discrepancies are noted for compressible applications.
A near-wall four-equation turbulence model for compressible boundary layers
NASA Technical Reports Server (NTRS)
Sommer, T. P.; So, R. M. C.; Zhang, H. S.
1992-01-01
A near-wall four-equation turbulence model is developed for the calculation of high-speed compressible turbulent boundary layers. The four equations used are the k-epsilon equations and the theta(exp 2)-epsilon(sub theta) equations. These equations are used to define the turbulent diffusivities for momentum and heat fluxes, thus allowing the assumption of dynamic similarity between momentum and heat transport to be relaxed. The Favre-averaged equations of motion are solved in conjunction with the four transport equations. Calculations are compared with measurements and with another model's predictions where the assumption of the constant turbulent Prandtl number is invoked. Compressible flat plate turbulent boundary layers with both adiabatic and constant temperature wall boundary conditions are considered. Results for the range of low Mach numbers and temperature ratios investigated are essentially the same as those obtained using an identical near-wall k-epsilon model. In general, the numerical predictions are in very good agreement with measurements and there are significant improvements in the predictions of mean flow properties at high Mach numbers.
An interacting boundary layer model for cascades
NASA Technical Reports Server (NTRS)
Davis, R. T.; Rothmayer, A. P.
1983-01-01
A laminar, incompressible interacting boundary layer model is developed for two-dimensional cascades. In the limit of large cascade spacing these equations reduce to the interacting boundary layer equations for a single body immersed in an infinite stream. A fully implicit numerical method is used to solve the governing equations, and is found to be at least as efficient as the same technique applied to the single body problem. Solutions are then presented for a cascade of finite flat plates and a cascade of finite sine-waves, with cusped leading and trailing edges.
Simulations of free shear layers using a compressible k-epsilon model
NASA Technical Reports Server (NTRS)
Yu, S. T.; Chang, C. T.; Marek, C. J.
1991-01-01
A two-dimensional, compressible Navier-Stokes equations with a k-epsilon turbulence model are solved numerically to simulate the flows of compressible free shear layers. The appropriate form of k and epsilon equations for compressible flows are discussed. Sarkar's modeling is adopted to simulate the compressibility effects in the k and epsilon equations. The numerical results show that the spreading rate of the shear layers decreases with increasing convective Mach number. In addition, favorable comparison was found between the calculated results and Goebel and Dutton's experimental data.
Simulations of free shear layers using a compressible kappa-epsilon model
NASA Technical Reports Server (NTRS)
Yu, S. T.; Chang, C. T.; Marek, C. J.
1991-01-01
A two-dimensional, compressible Navier-Stokes equation with a k-epsilon turbulence model is solved numerically to simulate the flow of a compressible free shear layer. The appropriate form of k and epsilon equations for compressible flow is discussed. Sarkar's modeling is adopted to simulate the compressibility effects in the k and epsilon equations. The numerical results show that the spreading rate of the shear layers decreases with increasing convective Mach number. In addition, favorable comparison was found between the calculated results and experimental data.
A first continuous 4-aminoantipyrine (4-AAP)-based screening system for directed esterase evolution.
Lülsdorf, Nina; Vojcic, Ljubica; Hellmuth, Hendrik; Weber, Thomas T; Mußmann, Nina; Martinez, Ronny; Schwaneberg, Ulrich
2015-06-01
Esterases hydrolyze ester bonds with an often high stereoselectivity as well as regioselectivity and are therefore industrially employed in the synthesis of pharmaceuticals, in food processing, and in laundry detergents. Continuous screening systems based on p-nitrophenyl- (e.g., p-nitrophenyl acetate) or umbelliferyl-esters are commonly used in directed esterase evolution campaigns. Ongoing challenges in directed esterase evolution are screening formats which offer a broad substrate spectrum, especially for complex aromatic substrates. In this report, a novel continuous high throughput screening system for indirect monitoring of esterolytic activity was developed and validated by detection of phenols employing phenyl benzoate as substrate and p-nitrobenzyl esterase (pNBEBL from Bacillus licheniformis) as catalyst. The released phenol directly reacts with 4-aminoantipyrine yielding the red compound 1,5-dimethyl-4-(4-oxo-cyclohexa-2,5-dienylidenamino)-2-phenyl-1,2-dihydro-pyrazol-3-one. In this continuous B. licheniformis esterase activity detection system (cBLE-4AAP), the product formation is followed through an increase in absorbance at 509 nm. The cBLE-4AAP screening system was optimized in 96-well microtiter plate format in respect to standard deviation (5 %), linear detection range (15 to 250 μM), lower detection limit (15 μM), and pH (7.4 to 10.4). The cBLE-4AAP screening system was validated by screening a random epPCR pNBEBL mutagenesis library (2000 clones) for improved esterase activity at elevated temperatures. Finally, the variant T3 (Ser378Pro) was identified which nearly retains its specific activity at room temperature (WT 1036 U/mg and T3 929 U/mg) and shows compared to WT a 4.7-fold improved residual activity after thermal treatment (30 min incubation at 69.4 °C; WT 170 U/mg to T3 804 U/mg).
NASA Astrophysics Data System (ADS)
Régipa, R.
A partir d'une théorie sur la détermination des formes et des contraintes globales d'un ballon de révolution, ou s'en rapprochant, une nouvelle famille de ballons a été définie. Les ballons actuels, dits de ``forme naturelle'', sont calculés en général pour une tension circonférencielle nulle. Ainsi, pour une mission donnée, la tension longitudinale et la forme de l'enveloppe sont strictement imposées. Les ballons de la nouvelle génération sont globalement cylindriques et leurs pôles sont réunis par un câble axial, chargé de transmettre une partie des efforts depuis le crochet (pôle inférieur), directement au pôle supérieur. De plus, la zone latérale cylindrique est soumise à un faible champ de tensions circonférencielles. Ainsi, deux paramètres permettent de faire évoluer la distribution des tensions et la forme de l'enveloppe: - la tension du câble de liaison entre pôles (ou la longueur de ce câble) - la tension circonférencielle moyenne désirée (ou le rayon du ballon). On peut donc calculer et réaliser: - soit des ballons de forme adaptée, comme les ballons à fond plat pour le bon fonctionnement des montgolfières infrarouge (projet MIR); - soit des ballons optimisés pour une bonne répartition des contraintes et une meilleure utilisation des matériaux d'enveloppe, pour l'ensemble des programmes stratosphériques. Il s'ensuit une économie sensible des coûts de fabrication, une fiabilité accrue du fonctionnement de ces ballons et une rendement opérationnel bien supérieur, permettant entre autres, d'envisager des vols à très haute altitude en matériaux très légers.
de Blasio, Gabriel; Quesada-Arencibia, Alexis; García, Carmelo R; Molina-Gil, Jezabel Miriam; Caballero-Gil, Cándido
2017-06-06
This paper presents a study of positioning system that provides advanced information services based on Wi-Fi and Bluetooth Low Energy (BLE) technologies. It uses Wi-Fi for rough positioning and BLE for fine positioning. It is designed for use in public transportation system stations and terminals where the conditions are "hostile" or unfavourable due to signal noise produced by the continuous movement of passengers and buses, data collection conducted in the constant presence thereof, multipath fading, non-line of sight (NLOS) conditions, the fact that part of the wireless communication infrastructure has already been deployed and positioned in a way that may not be optimal for positioning purposes, variable humidity conditions, etc. The ultimate goal is to provide a service that may be used to assist people with special needs. We present experimental results based on scene analysis; the main distance metric used was the Euclidean distance but the Mahalanobis distance was also used in one case. The algorithm employed to compare fingerprints was the weighted k -nearest neighbor one. For Wi-Fi, with only three visible access points, accuracy ranged from 3.94 to 4.82 m, and precision from 5.21 to 7.0 m 90% of the time. With respect to BLE, with a low beacon density (1 beacon per 45.7 m²), accuracy ranged from 1.47 to 2.15 m, and precision from 1.81 to 3.58 m 90% of the time. Taking into account the fact that this system is designed to work in real situations in a scenario with high environmental fluctuations, and comparing the results with others obtained in laboratory scenarios, our results are promising and demonstrate that the system would be able to position users with these reasonable values of accuracy and precision.
Study on an Indoor Positioning System for Harsh Environments Based on Wi-Fi and Bluetooth Low Energy
de Blasio, Gabriel; Quesada-Arencibia, Alexis; García, Carmelo R.; Molina-Gil, Jezabel Miriam; Caballero-Gil, Cándido
2017-01-01
This paper presents a study of positioning system that provides advanced information services based on Wi-Fi and Bluetooth Low Energy (BLE) technologies. It uses Wi-Fi for rough positioning and BLE for fine positioning. It is designed for use in public transportation system stations and terminals where the conditions are “hostile” or unfavourable due to signal noise produced by the continuous movement of passengers and buses, data collection conducted in the constant presence thereof, multipath fading, non-line of sight (NLOS) conditions, the fact that part of the wireless communication infrastructure has already been deployed and positioned in a way that may not be optimal for positioning purposes, variable humidity conditions, etc. The ultimate goal is to provide a service that may be used to assist people with special needs. We present experimental results based on scene analysis; the main distance metric used was the Euclidean distance but the Mahalanobis distance was also used in one case. The algorithm employed to compare fingerprints was the weighted k-nearest neighbor one. For Wi-Fi, with only three visible access points, accuracy ranged from 3.94 to 4.82 m, and precision from 5.21 to 7.0 m 90% of the time. With respect to BLE, with a low beacon density (1 beacon per 45.7 m2), accuracy ranged from 1.47 to 2.15 m, and precision from 1.81 to 3.58 m 90% of the time. Taking into account the fact that this system is designed to work in real situations in a scenario with high environmental fluctuations, and comparing the results with others obtained in laboratory scenarios, our results are promising and demonstrate that the system would be able to position users with these reasonable values of accuracy and precision. PMID:28587285
Turbulent boundary layers with secondary flow
NASA Technical Reports Server (NTRS)
Grushwitz, E.
1984-01-01
An experimental analysis of the boundary layer on a plane wall, along which the flow occurs, whose potential flow lines are curved in plane parallel to the wall is discussed. According to the equation frequently applied to boundary layers in a plane flow, which is usually obtained by using the pulse law, a generalization is derived which is valid for boundary layers with spatial flow. The wall shear stresses were calculated with this equation.
Gao, Yingjie; Zhang, Jinhai; Yao, Zhenxing
2015-12-01
The complex frequency shifted perfectly matched layer (CFS-PML) can improve the absorbing performance of PML for nearly grazing incident waves. However, traditional PML and CFS-PML are based on first-order wave equations; thus, they are not suitable for second-order wave equation. In this paper, an implementation of CFS-PML for second-order wave equation is presented using auxiliary differential equations. This method is free of both convolution calculations and third-order temporal derivatives. As an unsplit CFS-PML, it can reduce the nearly grazing incidence. Numerical experiments show that it has better absorption than typical PML implementations based on second-order wave equation.
Finite volume solution of the compressible boundary-layer equations
NASA Technical Reports Server (NTRS)
Loyd, B.; Murman, E. M.
1986-01-01
A box-type finite volume discretization is applied to the integral form of the compressible boundary layer equations. Boundary layer scaling is introduced through the grid construction: streamwise grid lines follow eta = y/h = const., where y is the normal coordinate and h(x) is a scale factor proportional to the boundary layer thickness. With this grid, similarity can be applied explicity to calculate initial conditions. The finite volume method preserves the physical transparency of the integral equations in the discrete approximation. The resulting scheme is accurate, efficient, and conceptually simple. Computations for similar and non-similar flows show excellent agreement with tabulated results, solutions computed with Keller's Box scheme, and experimental data.
A Computational Study of Shear Layer Receptivity
NASA Astrophysics Data System (ADS)
Barone, Matthew; Lele, Sanjiva
2002-11-01
The receptivity of two-dimensional, compressible shear layers to local and external excitation sources is examined using a computational approach. The family of base flows considered consists of a laminar supersonic stream separated from nearly quiescent fluid by a thin, rigid splitter plate with a rounded trailing edge. The linearized Euler and linearized Navier-Stokes equations are solved numerically in the frequency domain. The flow solver is based on a high order finite difference scheme, coupled with an overset mesh technique developed for computational aeroacoustics applications. Solutions are obtained for acoustic plane wave forcing near the most unstable shear layer frequency, and are compared to the existing low frequency theory. An adjoint formulation to the present problem is developed, and adjoint equation calculations are performed using the same numerical methods as for the regular equation sets. Solutions to the adjoint equations are used to shed light on the mechanisms which control the receptivity of finite-width compressible shear layers.
NASA Technical Reports Server (NTRS)
Gupta, R. N.; Trimpi, R. L.
1973-01-01
An analytic investigation of the relaxation of the accelerating-gas boundary layer to the test-gas boundary layer over a flat plate mounted in an expansion tube has been conducted. In this treatment, nitrogen has been considered as the test gas and helium as the accelerating gas. The problem is analyzed in two conically similar limits: (1) when the time lag between the arrival of the shock and the interface at the leading edge of the plate is very large, and (2) when this time lag is negligible. The transient laminar boundary-layer equations of a perfect binary-gas mixture are taken as the flow governing equations. These coupled equations have been solved numerically by Gauss-Seidel line-relaxation method. The results predict the transient behavior as well as the time required for an all-helium accelerating-gas boundary layer to relax to an all-nitrogen boundary layer.
A fourth-order box method for solving the boundary layer equations
NASA Technical Reports Server (NTRS)
Wornom, S. F.
1977-01-01
A fourth order box method for calculating high accuracy numerical solutions to parabolic, partial differential equations in two variables or ordinary differential equations is presented. The method is the natural extension of the second order Keller Box scheme to fourth order and is demonstrated with application to the incompressible, laminar and turbulent boundary layer equations. Numerical results for high accuracy test cases show the method to be significantly faster than other higher order and second order methods.
NASA Astrophysics Data System (ADS)
Chen, Shanzhen; Jiang, Xiaoyun
2012-08-01
In this paper, analytical solutions to time-fractional partial differential equations in a multi-layer annulus are presented. The final solutions are obtained in terms of Mittag-Leffler function by using the finite integral transform technique and Laplace transform technique. In addition, the classical diffusion equation (α=1), the Helmholtz equation (α→0) and the wave equation (α=2) are discussed as special cases. Finally, an illustrative example problem for the three-layer semi-circular annular region is solved and numerical results are presented graphically for various kind of order of fractional derivative.
Online Group Work Design: Processes, Complexities, and Intricacies
ERIC Educational Resources Information Center
Kleinsasser, Robert; Hong, Yi-Chun
2016-01-01
This paper describes the challenges of designing and implementing online group work. We are responsible for a seven-and-a-half week's online literacy and bi-literacy graduate course in a Bilingual/English as a Second Language (BLE/ESL) Master of Arts program. One of the tasks includes online literacy circle exchanges where students are encouraged…
Molecular Characterization of Prostate Cancer Cell Oncolysis by Herpes Simplex Virus ICP0 Mutants
2006-04-01
ble-stranded RNA binding proteins of vaccinia virus. J. Virol. 76:5251–5259. 54. Yokota, S., N. Yokosawa , T. Kubota, T. Suzutani, I. Yoshida, S...Janus kinases during an early infection stage. Virology 286:119–124. 55. Yokota, S.-I., N. Yokosawa , T. Okabayashi, T. Suzutani, S. Miura, K. Jimbow
Nozzle Flow with Vibrational Nonequilibrium. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Landry, John Gary
1995-01-01
Flow of nitrogen gas through a converging-diverging nozzle is simulated. The flow is modeled using the Navier-Stokes equations that have been modified for vibrational nonequilibrium. The energy equation is replaced by two equations. One equation accounts for energy effects due to the translational and rotational degrees of freedom, and the other accounts for the affects due to the vibrational degree of freedom. The energy equations are coupled by a relaxation time which measures the time required for the vibrational energy component to equilibrate with the translational and rotational energy components. An improved relaxation time is used in this thesis. The equations are solved numerically using the Steger-Warming flux vector splitting method and the Implicit MacCormack method. The results show that uniform flow is produced outside of the boundary layer. Nonequilibrium exists in both the converging and diverging nozzle sections. The boundary layer region is characterized by a marked increase in translational-rotational temperature. The vibrational temperature remains frozen downstream of the nozzle, except in the boundary layer.
Nonlinear Interaction of Detuned Instability Waves in Boundary-Layer Transition: Amplitude Equations
NASA Technical Reports Server (NTRS)
Lee, Sang Soo
1998-01-01
The non-equilibrium critical-layer analysis of a system of frequency-detuned resonant-triads is presented. In this part of the analysis, the system of partial differential critical-layer equations derived in Part I is solved analytically to yield the amplitude equations which are analyzed using a combination of asymptotic and numerical methods. Numerical solutions of the inviscid non-equilibrium oblique-mode amplitude equations show that the frequency-detuned self-interaction enhances the growth of the lower-frequency oblique modes more than the higher-frequency ones. All amplitudes become singular at the same finite downstream position. The frequency detuning delays the occurrence of the singularity. The spanwise-periodic mean-flow distortion and low-frequency nonlinear modes are generated by the critical-layer interaction between frequency-detuned oblique modes. The nonlinear mean flow and higher harmonics as well as the primary instabilities become as large as the base mean flow in the inviscid wall layer in the downstream region where the distance from the singularity is of the order of the wavelength scale.
Gu, Xiao-Jun; Emerson, David R
2014-06-01
Understanding the thermal behavior of a rarefied gas remains a fundamental problem. In the present study, we investigate the predictive capabilities of the regularized 13 and 26 moment equations. In this paper, we consider low-speed problems with small gradients, and to simplify the analysis, a linearized set of moment equations is derived to explore a classic temperature problem. Analytical solutions obtained for the linearized 26 moment equations are compared with available kinetic models and can reliably capture all qualitative trends for the temperature-jump coefficient and the associated temperature defect in the thermal Knudsen layer. In contrast, the linearized 13 moment equations lack the necessary physics to capture these effects and consistently underpredict kinetic theory. The deviation from kinetic theory for the 13 moment equations increases significantly for specular reflection of gas molecules, whereas the 26 moment equations compare well with results from kinetic theory. To improve engineering analyses, expressions for the effective thermal conductivity and Prandtl number in the Knudsen layer are derived with the linearized 26 moment equations.
A two-layer model for buoyant inertial displacement flows in inclined pipes
NASA Astrophysics Data System (ADS)
Etrati, Ali; Frigaard, Ian A.
2018-02-01
We investigate the inertial flows found in buoyant miscible displacements using a two-layer model. From displacement flow experiments in inclined pipes, it has been observed that for significant ranges of Fr and Re cos β/Fr, a two-layer, stratified flow develops with the heavier fluid moving at the bottom of the pipe. Due to significant inertial effects, thin-film/lubrication models developed for laminar, viscous flows are not effective for predicting these flows. Here we develop a displacement model that addresses this shortcoming. The complete model for the displacement flow consists of mass and momentum equations for each fluid, resulting in a set of four non-linear equations. By integrating over each layer and eliminating the pressure gradient, we reduce the system to two equations for the area and mean velocity of the heavy fluid layer. The wall and interfacial stresses appear as source terms in the reduced system. The final system of equations is solved numerically using a robust, shock-capturing scheme. The equations are stabilized to remove non-physical instabilities. A linear stability analysis is able to predict the onset of instabilities at the interface and together with numerical solution, is used to study displacement effectiveness over different parametric regimes. Backflow and instability onset predictions are made for different viscosity ratios.
Some problems of the calculation of three-dimensional boundary layer flows on general configurations
NASA Technical Reports Server (NTRS)
Cebeci, T.; Kaups, K.; Mosinskis, G. J.; Rehn, J. A.
1973-01-01
An accurate solution of the three-dimensional boundary layer equations over general configurations such as those encountered in aircraft and space shuttle design requires a very efficient, fast, and accurate numerical method with suitable turbulence models for the Reynolds stresses. The efficiency, speed, and accuracy of a three-dimensional numerical method together with the turbulence models for the Reynolds stresses are examined. The numerical method is the implicit two-point finite difference approach (Box Method) developed by Keller and applied to the boundary layer equations by Keller and Cebeci. In addition, a study of some of the problems that may arise in the solution of these equations for three-dimensional boundary layer flows over general configurations.
Analytical solutions for avalanche-breakdown voltages of single-diffused Gaussian junctions
NASA Astrophysics Data System (ADS)
Shenai, K.; Lin, H. C.
1983-03-01
Closed-form solutions of the potential difference between the two edges of the depletion layer of a single diffused Gaussian p-n junction are obtained by integrating Poisson's equation and equating the magnitudes of the positive and negative charges in the depletion layer. By using the closed form solution of the static Poisson's equation and Fulop's average ionization coefficient, the ionization integral in the depletion layer is computed, which yields the correct values of avalanche breakdown voltage, depletion layer thickness at breakdown, and the peak electric field as a function of junction depth. Newton's method is used for rapid convergence. A flowchart to perform the calculations with a programmable hand-held calculator, such as the TI-59, is shown.
Treatment of ice cover and other thin elastic layers with the parabolic equation method.
Collins, Michael D
2015-03-01
The parabolic equation method is extended to handle problems involving ice cover and other thin elastic layers. Parabolic equation solutions are based on rational approximations that are designed using accuracy constraints to ensure that the propagating modes are handled properly and stability constrains to ensure that the non-propagating modes are annihilated. The non-propagating modes are especially problematic for problems involving thin elastic layers. It is demonstrated that stable results may be obtained for such problems by using rotated rational approximations [Milinazzo, Zala, and Brooke, J. Acoust. Soc. Am. 101, 760-766 (1997)] and generalizations of these approximations. The approach is applied to problems involving ice cover with variable thickness and sediment layers that taper to zero thickness.
Computation of turbulent high speed mixing layers using a two-equation turbulence model
NASA Technical Reports Server (NTRS)
Narayan, J. R.; Sekar, B.
1991-01-01
A two-equation turbulence model was extended to be applicable for compressible flows. A compressibility correction based on modelling the dilational terms in the Reynolds stress equations were included in the model. The model is used in conjunction with the SPARK code for the computation of high speed mixing layers. The observed trend of decreasing growth rate with increasing convective Mach number in compressible mixing layers is well predicted by the model. The predictions agree well with the experimental data and the results from a compressible Reynolds stress model. The present model appears to be well suited for the study of compressible free shear flows. Preliminary results obtained for the reacting mixing layers are included.
Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi
2014-01-01
Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found.
Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi
2014-01-01
Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found. PMID:24719582
Prediction of unsaturated flow and water backfill during infiltration in layered soils
NASA Astrophysics Data System (ADS)
Cui, Guotao; Zhu, Jianting
2018-02-01
We develop a new analytical infiltration model to determine water flow dynamics around layer interfaces during infiltration process in layered soils. The model mainly involves the analytical solutions to quadratic equations to determine the flux rates around the interfaces. Active water content profile behind the wetting front is developed based on the solution of steady state flow to dynamically update active parameters in sharp wetting front infiltration equations and to predict unsaturated flow in coarse layers before the front reaches an impeding fine layer. The effect of water backfill to saturate the coarse layers after the wetting front encounters the impeding fine layer is analytically expressed based on the active water content profiles. Comparison to the numerical solutions of the Richards equation shows that the new model can well capture water dynamics in relation to the arrangement of soil layers. The steady state active water content profile can be used to predict the saturation state of all layers when the wetting front first passes through these layers during the unsteady infiltration process. Water backfill effect may occur when the unsaturated wetting front encounters a fine layer underlying a coarse layer. Sensitivity analysis shows that saturated hydraulic conductivity is the parameter dictating the occurrence of unsaturated flow and water backfill and can be used to represent the coarseness of soil layers. Water backfill effect occurs in coarse layers between upper and lower fine layers when the lower layer is not significantly coarser than the upper layer.
Effect of surface wave propagation in a four-layered oceanic crust model
NASA Astrophysics Data System (ADS)
Paul, Pasupati; Kundu, Santimoy; Mandal, Dinbandhu
2017-12-01
Dispersion of Rayleigh type surface wave propagation has been discussed in four-layered oceanic crust. It includes a sandy layer over a crystalline elastic half-space and over it there are two more layers—on the top inhomogeneous liquid layer and under it a liquid-saturated porous layer. Frequency equation is obtained in the form of determinant. The effects of the width of different layers as well as the inhomogeneity of liquid layer, sandiness of sandy layer on surface waves are depicted and shown graphically by considering all possible case of the particular model. Some special cases have been deduced, few special cases give the dispersion equation of Scholte wave and Stoneley wave, some of which have already been discussed elsewhere.
Finite Difference Schemes as Algebraic Correspondences between Layers
NASA Astrophysics Data System (ADS)
Malykh, Mikhail; Sevastianov, Leonid
2018-02-01
For some differential equations, especially for Riccati equation, new finite difference schemes are suggested. These schemes define protective correspondences between the layers. Calculation using these schemes can be extended to the area beyond movable singularities of exact solution without any error accumulation.
John Yarie; Bert R. Mead
1988-01-01
Equations are presented for estimating the twig, foliage, and combined biomass for 58 plant species in interior Alaska. The equations can be used for estimating biomass from percentage of foliar cover of 10-centimeter layers in a vertical profile from 0 to 6 meters. Few differences were found in regressions of the same species between layers except when the ratio of...
Transport equations in an enzymatic glucose fuel cell
NASA Astrophysics Data System (ADS)
Jariwala, Soham; Krishnamurthy, Balaji
2018-01-01
A mathematical model is developed to study the effects of convective flux and operating temperature on the performance of an enzymatic glucose fuel cell with a membrane. The model assumes isothermal operating conditions and constant feed rate of glucose. The glucose fuel cell domain is divided into five sections, with governing equations describing transport characteristics in each region, namely - anode diffusion layer, anode catalyst layer (enzyme layer), membrane, cathode catalyst layer and cathode diffusion layer. The mass transport is assumed to be one-dimensional and the governing equations are solved numerically. The effects flow rate of glucose feed on the performance of the fuel cell are studied as it contributes significantly to the convective flux. The effects of operating temperature on the performance of a glucose fuel cell are also modeled. The cell performances are compared using cell polarization curves, which were found compliant with experimental observations.
Unsteady boundary layer flow over a sphere in a porous medium
NASA Astrophysics Data System (ADS)
Mohammad, Nurul Farahain; Waini, Iskandar; Kasim, Abdul Rahman Mohd; Majid, Nurazleen Abdul
2017-08-01
This study focuses on the problem of unsteady boundary layer flow over a sphere in a porous medium. The governing equations which consists of a system of dimensional partial differential equations is applied with dimensionless parameter in order to attain non-dimensional partial differential equations. Later, the similarity transformation is performed in order to attain nonsimilar governing equations. Afterwards, the nonsimilar governing equations are solved numerically by using the Keller-Box method in Octave programme. The effect of porosity parameter is examined on separation time, velocity profile and skin friction of the unsteady flow. The results attained are presented in the form of table and graph.
Multicore runup simulation by under water avalanche using two-layer 1D shallow water equations
NASA Astrophysics Data System (ADS)
Bagustara, B. A. R. H.; Simanjuntak, C. A.; Gunawan, P. H.
2018-03-01
The increasing of layers in shallow water equations (SWE) produces more dynamic model than the one-layer SWE model. The two-layer 1D SWE model has different density for each layer. This model becomes more dynamic and natural, for instance in the ocean, the density of water will decreasing from the bottom to the surface. Here, the source-centered hydro-static reconstruction (SCHR) numerical scheme will be used to approximate the solution of two-layer 1D SWE model, since this scheme is proved to satisfy the mathematical properties for shallow water equation. Additionally in this paper, the algorithm of SCHR is adapted to the multicore architecture. The simulation of runup by under water avalanche is elaborated here. The results show that the runup is depend on the ratio of density of each layers. Moreover by using grid sizes Nx = 8000, the speedup and efficiency by 2 threads are obtained 1.74779 times and 87.3896 % respectively. Nevertheless, by 4 threads the speedup and efficiency are obtained 2.93132 times and 73.2830 % respectively by similar number of grid sizes Nx = 8000.
A composite velocity procedure for the compressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Khosla, P. K.; Rubin, S. G.
1982-01-01
A new boundary-layer relaxation procedure is presented. In the spirit of the theory of matched asymptotic expansions, a multiplicative composite of the appropriate velocity representations for the inviscid and viscous regions is prescribed. The resulting equations are structured so that far from the surface of the body the momentum equations lead to the Bernoulli relation for the pressure, while the continuity equation reduces to the familiar compressible potential equation. Close to the body surface, the governing equations and solution techniques are characteristic of those describing interacting boundary-layers; although, the full Navier-Stokes equations are considered here. Laminar flow calculations for the subsonic flow over an axisymmetric boattail simulator geometry are presented for a variety of Reynolds and Mach numbers. A strongly implicit solution method is applied for the coupled velocity components.
Optimization of Layer Densities for Spacecraft Multilayered Insulation Systems
NASA Technical Reports Server (NTRS)
Johnson, W. L.
2009-01-01
Numerous tests of various multilayer insulation systems have indicated that there are optimal densities for these systems. However, the only method of calculating this optimal density was by a complex physics based algorithm developed by McIntosh. In the 1970's much data were collected on the performance of these insulation systems with many different variables analyzed. All formulas generated included number of layers and layer density as geometric variables in solving for the heat flux, none of them was in a differentiable form for a single geometric variable. It was recently discovered that by converting the equations from heat flux to thermal conductivity using Fourier's Law, the equations became functions of layer density, temperatures, and material properties only. The thickness and number of layers of the blanket were merged into a layer density. These equations were then differentiated with respect to layer density. By setting the first derivative equal to zero, and solving for the layer density, the critical layer density was determined. Taking a second derivative showed that the critical layer density is a minimum in the function and thus the optimum density for minimal heat leak, this is confirmed by plotting the original function. This method was checked and validated using test data from the Multipurpose Hydrogen Testbed which was designed using McIntosh's algorithm.
Computation of Three-Dimensional Boundary Layers Including Separation
1987-02-01
As demonstrated by the 1968 and 1980 -1981 STANFORD Conferences, integral methods remain a valuable engineering tool to calculate the effects of...has been given by WHITFIELD, 1980 , which is valid over the whole thickness of the boundary layer. Another method to generate a velocity profiles...boundary layer equations and inviscid equations. A very clear presentation of the problem is given for example by VELOMAN, 1980 . 6.3. Three-dimensional
The rollup of a vortex layer near a wall
NASA Technical Reports Server (NTRS)
Jimenez, Javier; Orlandi, Paolo
1993-01-01
The behavior of an inviscid vortex layer of non-zero thickness near a wall is studied, both through direct numerical simulation of the two-dimensional vorticity equation at high Reynolds numbers, and using an approximate ordinary nonlinear integro-differential equation which is satisfied in the limit of a thin layer under long-wavelength perturbations. For appropriate initial conditions the layer rolls up and breaks into compact vortices which move along the wall at constant speed. Because of the effect of the wall, they correspond to equilibrium counter-rotating vortex dipoles. This breakup can be related to the disintegration of the initial conditions of the approximate nonlinear dispersive equation into solitary waves. The study is motivated by the formation of longitudinal vortices from vortex sheets in the wall region of a turbulent channel.
An Approximate Axisymmetric Viscous Shock Layer Aeroheating Method for Three-Dimensional Bodies
NASA Technical Reports Server (NTRS)
Brykina, Irina G.; Scott, Carl D.
1998-01-01
A technique is implemented for computing hypersonic aeroheating, shear stress, and other flow properties on the windward side of a three-dimensional (3D) blunt body. The technique uses a 2D/axisymmetric flow solver modified by scale factors for a, corresponding equivalent axisymmetric body. Examples are given in which a 2D solver is used to calculate the flow at selected meridional planes on elliptic paraboloids in reentry flight. The report describes the equations and the codes used to convert the body surface parameters into input used to scale the 2D viscous shock layer equations in the axisymmetric viscous shock layer code. Very good agreement is obtained with solutions to finite rate chemistry 3D thin viscous shock layer equations for a finite rate catalytic body.
Similarity solutions for unsteady free-convection flow from a continuous moving vertical surface
NASA Astrophysics Data System (ADS)
Abd-El-Malek, Mina B.; Kassem, Magda M.; Mekky, Mohammad L.
2004-03-01
The transformation group theoretic approach is applied to present an analysis of the problem of unsteady free convection flow over a continuous moving vertical sheet in an ambient fluid. The thermal boundary layer induced within a vertical semi-infinite layer of Boussinseq fluid by a constant heated bounding plate. The application of two-parameter groups reduces the number of independent variables by two, and consequently the system of governing partial differential equations with the boundary conditions reduces to a system of ordinary differential equations with appropriate boundary conditions. The obtained ordinary differential equations are solved analytically for the temperature and numerically for the velocity using the shooting method. Effect of Prandtl number on the thermal boundary-layer and velocity boundary-layer are studied and plotted in curves.
Evaluation of Full Reynolds Stress Turbulence Models in FUN3D
NASA Technical Reports Server (NTRS)
Dudek, Julianne C.; Carlson, Jan-Renee
2017-01-01
Full seven-equation Reynolds stress turbulence models are a relatively new and promising tool for todays aerospace technology challenges. This paper uses two stress-omega full Reynolds stress models to evaluate challenging flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSGLRR full second-moment Reynolds stress models are evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST) two-equation models.
Transport of contaminants in the planetary boundary layer
NASA Technical Reports Server (NTRS)
Lee, I. Y.; Swan, P. R.
1978-01-01
A planetary boundary layer model is described and used to simulate PBL phenomena including cloud formation and pollution transport in the San Francisco Bay Area. The effect of events in the PBL on air pollution is considered, and governing equations for the average momentum, potential temperature, water vapor mixing ratio, and air contaminants are presented. These equations are derived by integrating the basic equations vertically through the mixed layer. Characteristics of the day selected for simulation are reported, and the results suggest that the diurnally cyclic features of the mesoscale motion, including clouds and air pollution, can be simulated in a readily interpretable way with the model.
NASA Technical Reports Server (NTRS)
Anderson, E. C.; Moss, J. N.
1975-01-01
The viscous shock layer equations applicable to hypersonic laminar, transitional, and turbulent flows of a perfect gas over two-dimensional plane or axially symmetric blunt bodies are presented. The equations are solved by means of an implicit finite difference scheme, and the results are compared with a turbulent boundary layer analysis. The agreement between the two solution procedures is satisfactory for the region of flow where streamline swallowing effects are negligible. For the downstream regions, where streamline swallowing effects are present, the expected differences in the two solution procedures are evident.
A Real-Time Systems Symposium Preprint.
1983-09-01
Real - Time Systems Symposium Preprint Interim Tech...estimate of the occurence of the error. Unclassii ledSECUqITY CLASSIF’ICA T" NO MI*IA If’ inDI /’rrd erter for~~ble. ’Corrputnqg A REAL - TIME SYSTEMS SYMPOSIUM...ABSTRACT This technical report contains a preprint of a paper accepted for presentation at the REAL - TIME SYSTEMS SYMPOSIUM, Arlington,
Increasing diversity in our profession
Davis, Ronald D.; Diswood, Samuel; Dominguez, Annette; Engel-Wilson, Ronald W.; Jefferson, Keith; Miles, A. Keith; Moore, Elizabeth F.; Reidinger, Russell; Ruther, Sherry; Valdez, Raul; Wilson, Kenneth; Zablan, Marilet A.
2002-01-01
The Wildlife Society's (TWS) Ethnic and Gender Diversity Committee (previously the Minority Affairs Committee) was established in 1998 and given several charges by TWS Council. This paper responds to our original charge to consider possi- ble actions and programs that TWS might undertake to increase minority participation in the wildlife profession and TWS (R.Anthony, 13 February 1998, Memo to MinorityAffairs Committee).
JPRS Report, Near East & South Asia.
1988-03-14
use of electricity: 60 percent, he said, is used by industry , while private households consume 40 percent. According to compara- ble international...LITERATURNAYA GAZETTA magazine. This text truly raises the alarm, assessing overwhelmingly the intensive industrialization policy of these past few years...was published in the LITE- RATURNAYA GAZETA. He specified that, without an overall solution involving all the chemical industries of Armenia, the
Guan, Yudong; Xu, Xiaohui; Liu, Xinyue; Sheng, Anran; Jin, Lan; Linhardt, Robert J; Chi, Lianli
2016-06-01
Currently porcine intestine is the only approved source for producing pharmaceutical heparin in most countries. Enoxaparin, prepared by benzylation and alkaline depolymerization from porcine intestine heparin, is prevalent in the anticoagulant drug market. It is predicted that porcine intestine heparin-derived enoxaparin (PIE) will encounter shortage, and expanding its production from heparins obtained from other animal tissues may, therefore, be inevitable. Bovine lung heparin is a potential alternative source for producing enoxaparin. Critical processing parameters for producing bovine lung heparin-derived enoxaparin (BLE) are discussed. Three batches of BLEs were prepared and their detailed structures were compared with PIEs using modern analytical techniques, including disaccharide composition, intact chain mapping by liquid chromatography-mass spectrometry and 2-dimensional nuclear magnetic resonance spectroscopy. The results suggested that the differences between PIEs and BLEs mainly result from N-acetylation differences derived from the parent heparins. In addition, bioactivities of BLEs were about 70% of PIEs based on anti-factor IIa and Xa chromogenic assays. We conclude that BLE has the potential to be developed as an analogue of PIE, although some challenges still remain. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
A two-layer multiple-time-scale turbulence model and grid independence study
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Chen, C.-P.
1989-01-01
A two-layer multiple-time-scale turbulence model is presented. The near-wall model is based on the classical Kolmogorov-Prandtl turbulence hypothesis and the semi-empirical logarithmic law of the wall. In the two-layer model presented, the computational domain of the conservation of mass equation and the mean momentum equation penetrated up to the wall, where no slip boundary condition has been prescribed; and the near wall boundary of the turbulence equations has been located at the fully turbulent region, yet very close to the wall, where the standard wall function method has been applied. Thus, the conservation of mass constraint can be satisfied more rigorously in the two-layer model than in the standard wall function method. In most of the two-layer turbulence models, the number of grid points to be used inside the near-wall layer posed the issue of computational efficiency. The present finite element computational results showed that the grid independent solutions were obtained with as small as two grid points, i.e., one quadratic element, inside the near wall layer. Comparison of the computational results obtained by using the two-layer model and those obtained by using the wall function method is also presented.
Hydrodynamic water impact. [Apollo spacecraft waterlanding
NASA Technical Reports Server (NTRS)
Kettleborough, C. F.
1972-01-01
The hydrodynamic impact of a falling body upon a viscous incompressible fluid was investigated by numerically solving the equations of motion. Initially the mathematical model simulated the axisymmetric impact of a rigid right circular cylinder upon the initially quiescent free surface of a fluid. A compressible air layer exists between the falling cylinder and the liquid free surface. The mathematical model was developed by applying the Navier-Stokes equations to the incompressible air layer and the incompressible fluid. Assuming the flow to be one dimensional within the air layer, the average velocity, pressure and density distributions were calculated. The liquid free surface was allowed to deform as the air pressure acting on it increases. For the liquid the normalized equations were expressed in two-dimensional cylindrical coordinates. The governing equations for the air layer and the liquid were expressed in finite difference form and solved numerically. For the liquid a modified version of the Marker-and-Cell method was used. The mathematical model has been reexamined and a new approach has recently been initiated. Essentially this consists of examining the impact of an inclined plate onto a quiesent water surface with the equations now formulated in cartesian coordinates.
Analytical solution for the advection-dispersion transport equation in layered media
USDA-ARS?s Scientific Manuscript database
The advection-dispersion transport equation with first-order decay was solved analytically for multi-layered media using the classic integral transform technique (CITT). The solution procedure used an associated non-self-adjoint advection-diffusion eigenvalue problem that had the same form and coef...
A spectrally accurate boundary-layer code for infinite swept wings
NASA Technical Reports Server (NTRS)
Pruett, C. David
1994-01-01
This report documents the development, validation, and application of a spectrally accurate boundary-layer code, WINGBL2, which has been designed specifically for use in stability analyses of swept-wing configurations. Currently, we consider only the quasi-three-dimensional case of an infinitely long wing of constant cross section. The effects of streamwise curvature, streamwise pressure gradient, and wall suction and/or blowing are taken into account in the governing equations and boundary conditions. The boundary-layer equations are formulated both for the attachment-line flow and for the evolving boundary layer. The boundary-layer equations are solved by marching in the direction perpendicular to the leading edge, for which high-order (up to fifth) backward differencing techniques are used. In the wall-normal direction, a spectral collocation method, based upon Chebyshev polynomial approximations, is exploited. The accuracy, efficiency, and user-friendliness of WINGBL2 make it well suited for applications to linear stability theory, parabolized stability equation methodology, direct numerical simulation, and large-eddy simulation. The method is validated against existing schemes for three test cases, including incompressible swept Hiemenz flow and Mach 2.4 flow over an airfoil swept at 70 deg to the free stream.
NASA Technical Reports Server (NTRS)
Hicks, Raymond M.; Cliff, Susan E.
1991-01-01
Full-potential, Euler, and Navier-Stokes computational fluid dynamics (CFD) codes were evaluated for use in analyzing the flow field about airfoils sections operating at Mach numbers from 0.20 to 0.60 and Reynolds numbers from 500,000 to 2,000,000. The potential code (LBAUER) includes weakly coupled integral boundary layer equations for laminar and turbulent flow with simple transition and separation models. The Navier-Stokes code (ARC2D) uses the thin-layer formulation of the Reynolds-averaged equations with an algebraic turbulence model. The Euler code (ISES) includes strongly coupled integral boundary layer equations and advanced transition and separation calculations with the capability to model laminar separation bubbles and limited zones of turbulent separation. The best experiment/CFD correlation was obtained with the Euler code because its boundary layer equations model the physics of the flow better than the other two codes. An unusual reversal of boundary layer separation with increasing angle of attack, following initial shock formation on the upper surface of the airfoil, was found in the experiment data. This phenomenon was not predicted by the CFD codes evaluated.
Active flow control insight gained from a modified integral boundary layer equation
NASA Astrophysics Data System (ADS)
Seifert, Avraham
2016-11-01
Active Flow Control (AFC) can alter the development of boundary layers with applications (e.g., reducing drag by separation delay or separating the boundary layers and enhancing vortex shedding to increase drag). Historically, significant effects of steady AFC methods were observed. Unsteady actuation is significantly more efficient than steady. Full-scale AFC tests were conducted with varying levels of success. While clearly relevant to industry, AFC implementation relies on expert knowledge with proven intuition and or costly and lengthy computational efforts. This situation hinders the use of AFC while simple, quick and reliable design method is absent. An updated form of the unsteady integral boundary layer (UIBL) equations, that include AFC terms (unsteady wall transpiration and body forces) can be used to assist in AFC analysis and design. With these equations and given a family of suitable velocity profiles, the momentum thickness can be calculated and matched with an outer, potential flow solution in 2D and 3D manner to create an AFC design tool, parallel to proven tools for airfoil design. Limiting cases of the UIBL equation can be used to analyze candidate AFC concepts in terms of their capability to modify the boundary layers development and system performance.
NASA Astrophysics Data System (ADS)
Poroseva, Svetlana V.
2013-11-01
Simulations of turbulent boundary-layer flows are usually conducted using a set of the simplified Reynolds-Averaged Navier-Stokes (RANS) equations obtained by order-of-magnitude analysis (OMA) of the original RANS equations. The resultant equations for the mean-velocity components are closed using the Boussinesq approximation for the Reynolds stresses. In this study OMA is applied to the fourth-order RANS (FORANS) set of equations. The FORANS equations are chosen as they can be closed on the level of the 5th-order correlations without using unknown model coefficients, i.e. no turbulent diffusion modeling is required. New models for the 2nd-, 3rd- and 4th-order velocity-pressure gradient correlations are derived for the current FORANS equations. This set of FORANS equations and models are analyzed for the case of two-dimensional mean flow. The equations include familiar transport terms for the mean-velocity components along with algebraic expressions for velocity correlations of different orders specific to the FORANS approach. Flat plate DNS data (Spalart, 1988) are used to verify these expressions and the areas of the OMA applicability within the boundary layer. The material is based upon work supported by NASA under award NNX12AJ61A.
Modeling evaporation using models that are not boundary-layer regulated.
Fingas, Merv F
2004-02-27
Experimentation shows that oil is not strictly air boundary-layer regulated. The fact that oil evaporation is not strictly boundary-layer regulated implies that a simplistic evaporation equation suffices to describe the process. The following processes do not require consideration: wind velocity, turbulence level, area, thickness, and scale size. The factors important to evaporation are time and temperature. The equation parameters found experimentally for the evaporation of oils can be related to commonly available distillation data for the oil. Specifically, it has been found that the distillation percentage at 180 degrees C correlates well with the equation parameters. Relationships have been developed enabling calculation of evaporation equations directly from distillation data: percentage evaporated = 0.165 (%D)ln(t) where %D is the percentage (by weight) distilled at 180 degrees C and t is the time in minutes. These equations were combined with the equations generated to account for the temperature variations: percentage evaporated = [0.165(%D)+0.045(T-15))ln(t) The results have application in oil spill prediction and modeling. The simple equations can be applied using readily available data such as sea temperature and time. Old equations required oil vapour pressure, specialized distillation data, spill area, wind speed, and mass transfer coefficients, all of which are difficult to obtain.
Multi criteria evaluation for universal soil loss equation based on geographic information system
NASA Astrophysics Data System (ADS)
Purwaamijaya, I. M.
2018-05-01
The purpose of this research were to produce(l) a conceptual, functional model designed and implementation for universal soil loss equation (usle), (2) standard operational procedure for multi criteria evaluation of universal soil loss equation (usle) using geographic information system, (3) overlay land cover, slope, soil and rain fall layers to gain universal soil loss equation (usle) using multi criteria evaluation, (4) thematic map of universal soil loss equation (usle) in watershed, (5) attribute table of universal soil loss equation (usle) in watershed. Descriptive and formal correlation methods are used for this research. Cikapundung Watershed, Bandung, West Java, Indonesia was study location. This research was conducted on January 2016 to May 2016. A spatial analysis is used to superimposed land cover, slope, soil and rain layers become universal soil loss equation (usle). Multi criteria evaluation for universal soil loss equation (usle) using geographic information system could be used for conservation program.
NASA Technical Reports Server (NTRS)
Johnston, K. D.; Hendricks, W. L.
1978-01-01
Results of solving the Navier-Stokes equations for chemically nonequilibrium, merged stagnation shock layers on spheres and two-dimensional cylinders are presented. The effects of wall catalysis and slip are also examined. The thin shock layer assumption is not made, and the thick viscous shock is allowed to develop within the computational domain. The results show good comparison with existing data. Due to the more pronounced merging of shock layer and boundary layer for the sphere, the heating rates for spheres become higher than those for cylinders as the altitude is increased.
NASA Technical Reports Server (NTRS)
Vadyak, J.; Hoffman, J. D.
1982-01-01
The flow field in supersonic mixed compression aircraft inlets at angle of attack is calculated. A zonal modeling technique is employed to obtain the solution which divides the flow field into different computational regions. The computational regions consist of a supersonic core flow, boundary layer flows adjacent to both the forebody/centerbody and cowl contours, and flow in the shock wave boundary layer interaction regions. The zonal modeling analysis is described and some computational results are presented. The governing equations for the supersonic core flow form a hyperbolic system of partial differential equations. The equations for the characteristic surfaces and the compatibility equations applicable along these surfaces are derived. The characteristic surfaces are the stream surfaces, which are surfaces composed of streamlines, and the wave surfaces, which are surfaces tangent to a Mach conoid. The compatibility equations are expressed as directional derivatives along streamlines and bicharacteristics, which are the lines of tangency between a wave surface and a Mach conoid.
Perfectly Matched Layer for Linearized Euler Equations in Open and Ducted Domains
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Auriault, Laurent; Cambuli, Francesco
1998-01-01
Recently, perfectly matched layer (PML) as an absorbing boundary condition has widespread applications. The idea was first introduced by Berenger for electromagnetic waves computations. In this paper, it is shown that the PML equations for the linearized Euler equations support unstable solutions when the mean flow has a component normal to the layer. To suppress such unstable solutions so as to render the PML concept useful for this class of problems, it is proposed that artificial selective damping terms be added to the discretized PML equations. It is demonstrated that with a proper choice of artificial mesh Reynolds number, the PML equations can be made stable. Numerical examples are provided to illustrate that the stabilized PML performs well as an absorbing boundary condition. In a ducted environment, the wave mode are dispersive. It will be shown that the group velocity and phase velocity of these modes can have opposite signs. This results in a confined environment, PML may not be suitable as an absorbing boundary condition.
Saffar, Saber; Abdullah, Amir
2013-08-01
Wave propagation in viscoelastic disk layers is encountered in many applications including studies of airborne ultrasonic transducers. For viscoelastic materials, both material and geometric dispersion are possible when the diameter of the matching layer is of the same order as the wavelength. Lateral motions of the matching layer(s) that result from the Poisson effect are accounted by using a new concept called the "effective-density". A new wave equation is derived for both metallic and non-metallic (polymeric) materials, usually employed for the matching layers of airborne ultrasonic transducer. The material properties are modeled by using the Kelvin model for metals and Linear Solid Standard model for non-metallic (polymeric) matching layers. The utilized model of the material of the matching layers has influence on amount and trend of variation in speed ratio. In this regard, 60% reduction in speed ratio is observed for Kelvin model for aluminum with diameter of 80 mm at 100 kHz while for a similar diameter but Standard Linear Model, the speed ratio increase to twice value at 15 kHz, and then reduced until 70% at 67 kHz for Polypropylene. The new wave theory simplifies to the one-dimensional solution for waves in metallic or polymeric matching layers if the Poisson ratio is set to zero. The predictions simplify to Love's equation for stress waves in elastic disks when loss term is removed from equations for both models. Afterwards, the new wave theory is employed to determine the airborne ultrasonic matching layers to maximize the energy transmission to the air. The optimal matching layers are determined by using genetic algorithm theory for 1, 2 and 3 airborne matching layers. It has been shown that 1-D equation is useless at frequencies less than 100 kHz and the effect of diameter of the matching layers must be considered to determine the acoustic impedances (matching layers) to design airborne ultrasonic transducers. Copyright © 2013 Elsevier B.V. All rights reserved.
Analysis of the interaction of a weak normal shock wave with a turbulent boundary layer
NASA Technical Reports Server (NTRS)
Melnik, R. E.; Grossman, B.
1974-01-01
The method of matched asymptotic expansions is used to analyze the interaction of a normal shock wave with an unseparated turbulent boundary layer on a flat surface at transonic speeds. The theory leads to a three-layer description of the interaction in the double limit of Reynolds number approaching infinity and Mach number approaching unity. The interaction involves an outer, inviscid rotational layer, a constant shear-stress wall layer, and a blending region between them. The pressure distribution is obtained from a numerical solution of the outer-layer equations by a mixed-flow relaxation procedure. An analytic solution for the skin friction is determined from the inner-layer equations. The significance of the mathematical model is discussed with reference to existing experimental data.
Rosenzweig instability in a thin layer of a magnetic fluid
NASA Astrophysics Data System (ADS)
Korovin, V. M.
2013-12-01
A simple mathematical model of the initial stage of nonlinear evolution of the Rosenzweig instability in a thin layer of a nonlinearly magnetized viscous ferrofluid coating a horizontal nonmagnetizable plate is constructed on the basis of the system of equations and boundary conditions of ferrofluid dynamics. A dispersion relation is derived and analyzed using the linearized equations of this model. The critical magnetization of the initial layer with a flat free surface, the threshold wavenumber, and the characteristic time of evolution of the most rapidly growing mode are determined. The equation for the neutral stability curve, which is applicable for any physically admissible law of magnetization of a ferrofluid, is derived analytically.
Asymptotic solution of the turbulent mixing layer for velocity ratio close to unity
NASA Technical Reports Server (NTRS)
Higuera, F. J.; Jimenez, J.; Linan, A.
1996-01-01
The equations describing the first two terms of an asymptotic expansion of the solution of the planar turbulent mixing layer for values of the velocity ratio close to one are obtained. The first term of this expansion is the solution of the well-known time-evolving problem and the second, which includes the effects of the increase of the turbulence scales in the stream-wise direction, obeys a linear system of equations. Numerical solutions of these equations for a two-dimensional reacting mixing layer show that the correction to the time-evolving solution may explain the asymmetry of the entrainment and the differences in product generation observed in flip experiments.
Adhesive contact between a rigid spherical indenter and an elastic multi-layer coated substrate
Stan, Gheorghe; Adams, George G.
2016-01-01
In this work the frictionless, adhesive contact between a rigid spherical indenter and an elastic multi-layer coated half-space was investigated by means of an integral transform formulation. The indented multi-layer coats were considered as made of isotropic layers that are perfectly bonded to each other and to an isotropic substrate. The adhesive interaction between indenter and contacting surface was treated as Maugis-type adhesion to provide general applicability within the entire range of adhesive interactions. By using a transfer matrix method, the stress-strain equations of the system were reduced to two coupled integral equations for the stress distribution under the indenter and the ratio between the adhesion radius and the contact radius, respectively. These resulting integral equations were solved through a numerical collocation technique, with solutions for the load dependencies of the contact radius and indentation depth for various values of the adhesion parameter and layer composition. The method developed here can be used to calculate the force-distance response of adhesive contacts on various inhomogeneous half-spaces that can be modeled as multi-layer coated half-spaces. PMID:27574338
Convection in superposed fluid and porous layers
NASA Technical Reports Server (NTRS)
Chen, Falin; Chen, C. F.
1992-01-01
Thermal convection due to heating from below in a porous layer underlying a fluid layer has been analyzed using the Navier-Stokes equations for the fluid layers and the extended Darcy equation (including Brinkman and Forchheimer terms) for the porous layer. The flow is assumed to be two-dimensional and periodic in the horizontal direction. The numerical scheme used is a combined Galerkin and finite-difference method, and appropriate boundary conditions are applied at the interface. Results have been obtained for depth ratios of 0, 0.1, 0.2, 0.5, and 1.0, where this ratio is defined as the ratio of the thickness of the fluid layer to that of the porous layer. For the depth ratio of 0.1, the convection is dominated by the porous layer, similar to the situation at onset, even though the Rayleigh number for the fluid layer is well into the supercritical regime.
NASA Technical Reports Server (NTRS)
Lee, Sang Soo
1998-01-01
The non-equilibrium critical-layer analysis of a system of frequency-detuned resonant-triads is presented using the generalized scaling of Lee. It is shown that resonant-triads can interact nonlinearly within the common critical layer when their (fundamental) Strouhal numbers are different by a factor whose magnitude is of the order of the growth rate multiplied by the wavenumber of the instability wave. Since the growth rates of the instability modes become larger and the critical layers become thicker as the instability waves propagate downstream, the frequency-detuned resonant-triads that grow independently of each other in the upstream region can interact nonlinearly in the later downstream stage. In the final stage of the non-equilibrium critical-layer evolution, a wide range of instability waves with the scaled frequencies differing by almost an Order of (l) can nonlinearly interact. Low-frequency modes are also generated by the nonlinear interaction between oblique waves in the critical layer. The system of partial differential critical-layer equations along with the jump equations are presented here. The amplitude equations with their numerical solutions are given in Part 2. The nonlinearly generated low-frequency components are also investigated in Part 2.
The Analysis and Construction of Perfectly Matched Layers for the Linearized Euler Equations
NASA Technical Reports Server (NTRS)
Hesthaven, J. S.
1997-01-01
We present a detailed analysis of a recently proposed perfectly matched layer (PML) method for the absorption of acoustic waves. The split set of equations is shown to be only weakly well-posed, and ill-posed under small low order perturbations. This analysis provides the explanation for the stability problems associated with the split field formulation and illustrates why applying a filter has a stabilizing effect. Utilizing recent results obtained within the context of electromagnetics, we develop strongly well-posed absorbing layers for the linearized Euler equations. The schemes are shown to be perfectly absorbing independent of frequency and angle of incidence of the wave in the case of a non-convecting mean flow. In the general case of a convecting mean flow, a number of techniques is combined to obtain a absorbing layers exhibiting PML-like behavior. The efficacy of the proposed absorbing layers is illustrated though computation of benchmark problems in aero-acoustics.
Accurate radiative transfer calculations for layered media.
Selden, Adrian C
2016-07-01
Simple yet accurate results for radiative transfer in layered media with discontinuous refractive index are obtained by the method of K-integrals. These are certain weighted integrals applied to the angular intensity distribution at the refracting boundaries. The radiative intensity is expressed as the sum of the asymptotic angular intensity distribution valid in the depth of the scattering medium and a transient term valid near the boundary. Integrated boundary equations are obtained, yielding simple linear equations for the intensity coefficients, enabling the angular emission intensity and the diffuse reflectance (albedo) and transmittance of the scattering layer to be calculated without solving the radiative transfer equation directly. Examples are given of half-space, slab, interface, and double-layer calculations, and extensions to multilayer systems are indicated. The K-integral method is orders of magnitude more accurate than diffusion theory and can be applied to layered scattering media with a wide range of scattering albedos, with potential applications to biomedical and ocean optics.
1988-08-22
crisis? [Answer] If one can generalize from the much more difficult economic scandals of other parties, one might conclude that the political effect...just revealed placement scandal made his posi- tion untenable. Aalto was politically primarily responsi- ble for the venture which had dragged SKP...into the mud and caused it much greater losses than had been reported publicly. Without the scandal Aalto would probably be sitting peacefully in
Beneficial and Deleterious Bacterial - Host Interactions in Chronic Wound Pathophysiology
2015-04-02
Lactobacillus plantarum supernatants disrupted biofilms made by a laboratory strain of P. aeruginosa by 43% and a P. aeruginosa clini- cal strain...that used L. plantarum topically,73–75 Lactobacillus septicemia is possi- ble in severely immunocompromised individuals, and seems to be strain...Bosch A, Yantorno OM, Valdez JC. Antipathogenic properties of Lactobacillus plantarum on Pseudomonas aeruginosa: the potential use of its
Sh ble and Cre adapted for functional genomics and metabolic engineering of Pichia stipitis
Jose M. Laplaza; Beatriz Rivas Torres; Yong-Su Jin; Thomas W. Jeffries
2006-01-01
Pichia stipitis is widely studied for its capacity to ferment d-xylose to ethanol. Strain improvement has been facilitated by recent completion of the P. stipitis genome. P. stipitis uses CUG to code for serine rather than leucine, as is the case for the universal genetic code thereby limiting the availability of heterologous drug resistance markers for transformation...
Intelligent Distributed Systems
2015-10-23
periodic gossiping algorithms by using convex combination rules rather than standard averaging rules. On a ring graph, we have discovered how to sequence...the gossips within a period to achieve the best possible convergence rate and we have related this optimal value to the classic edge coloring problem...consensus. There are three different approaches to distributed averaging: linear iterations, gossiping , and dou- ble linear iterations which are also known as
Tactical Unit Data and Decision Requirements for Urban Operations
2008-10-01
maneuverability, sensor optimization, weapon effects, terrain), and develop rich but lightweight information structures and architecture . Specifically, the goal...tion structure and systemic architecture that enable sharing common data in near real-time, and mission planning and analysis software for U-BE...Building Function Verify mosque and identify possi- ble schools or meeting places Identify types of cinema (stage/theatre) or other similar nearby
Generalizing on Multiple Grounds: Performance Learning in Model-Based Troubleshooting
1989-02-01
Aritificial Intelligence , 24, 1984. [Ble88] Guy E. Blelloch. Scan Primitives and Parallel Vector Models. PhD thesis, Artificial Intelligence Laboratory...Diagnostic reasoning based on strcture and behavior. Aritificial Intelligence , 24, 1984. [dK86] J. de Kleer. An assumption-based truth maintenance system...diagnosis. Aritificial Intelligence , 24. . )3 94 BIBLIOGRAPHY [Ham87] Kristian J. Hammond. Learning to anticipate and avoid planning prob- lems
A novel unsplit perfectly matched layer for the second-order acoustic wave equation.
Ma, Youneng; Yu, Jinhua; Wang, Yuanyuan
2014-08-01
When solving acoustic field equations by using numerical approximation technique, absorbing boundary conditions (ABCs) are widely used to truncate the simulation to a finite space. The perfectly matched layer (PML) technique has exhibited excellent absorbing efficiency as an ABC for the acoustic wave equation formulated as a first-order system. However, as the PML was originally designed for the first-order equation system, it cannot be applied to the second-order equation system directly. In this article, we aim to extend the unsplit PML to the second-order equation system. We developed an efficient unsplit implementation of PML for the second-order acoustic wave equation based on an auxiliary-differential-equation (ADE) scheme. The proposed method can benefit to the use of PML in simulations based on second-order equations. Compared with the existing PMLs, it has simpler implementation and requires less extra storage. Numerical results from finite-difference time-domain models are provided to illustrate the validity of the approach. Copyright © 2014 Elsevier B.V. All rights reserved.
The Mars Global Surveyor Ka-Band Link Experiment (MGS/KaBLE-II)
NASA Astrophysics Data System (ADS)
Morabito, D.; Butman, S.; Shambayati, S.
1999-01-01
The Mars Global Surveyor (MGS) spacecraft, launched on November 7, 1996, carries an experimental space-to-ground telecommunications link at Ka-band (32 GHz) along with the primary X-band (8.4-GHz) downlink. The signals are simultaneously transmitted from a 1.5-m-diameter parabolic antenna on MGS and received by a beam-waveguide (BWG) research and development (R&D) 34-meter a ntenna located in NASA's Goldstone Deep Space Network (DSN) complex near Barstow, California. This Ka-band link experiment (KaBLE-II) allows the performances of the Ka-band and X-band signals to be compared under nearly identical conditions. The two signals have been regularly tracked during the past 2 years. This article presents carrier-signal-level data (P_c/N_o) for both X-band and Ka-band acquired over a wide range of station elevation angles, weather conditions, and solar elongation angles. The cruise phase of the mission covered the period from launch (November 7, 1996) to Mars orbit capture (September 12, 1997). Since September 12, 1997, MGS has been in orbit around Mars. The measurements confirm that Ka-band could increase data capacity by at least a factor of three (5 dB) as compared with X-band. During May 1998, the solar corona experiment, in which the effects of solar plasma on the X-band and Ka-band links were studied, was conducted. In addition, frequency and difference frequency (f_x - f_(Ka)/3.8), ranging, and telemetry data results are presented. MGS/KaBLE-II measured signal strengths (for 54 percent of the experiments conducted) that were in reasonable agreement with predicted values based on preflight knowledge, and frequency residuals that agreed between bands and whose statistics were consistent with expected noise sources. For passes in which measured signal strengths disagreed with predicted values, the problems were traced to known deficiencies, for example, equipment operating under certain conditions, such as a cold Ka-band solid-state power amplifier (SSPA) temperature, and a degraded response at higher frequencies in certain modes. These efforts had continued with Deep Space 1 (DS1), launched in October 1998, which also emits Ka-band and X-band signals.
On the laminar-turbulent transition in the boundary layer of streamwise corner
NASA Astrophysics Data System (ADS)
Kirilovskiy, S. V.; Boiko, A. V.; Poplavskaya, T. V.
2017-10-01
The work is aimed at developing methods of numerical simulation of incompressible non-symmetric flow in streamwise corner by solving the Navier-Stokes equations with ANSYS Fluent and the self-similar equations of boundary-layer type. A comparison of the computations with each other and experimental data is provided.
Computation of transonic viscous-inviscid interacting flow
NASA Technical Reports Server (NTRS)
Whitfield, D. L.; Thomas, J. L.; Jameson, A.; Schmidt, W.
1983-01-01
Transonic viscous-inviscid interaction is considered using the Euler and inverse compressible turbulent boundary-layer equations. Certain improvements in the inverse boundary-layer method are mentioned, along with experiences in using various Runge-Kutta schemes to solve the Euler equations. Numerical conditions imposed on the Euler equations at a surface for viscous-inviscid interaction using the method of equivalent sources are developed, and numerical solutions are presented and compared with experimental data to illustrate essential points. Previously announced in STAR N83-17829
Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan
2016-01-01
Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations.
Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan
2016-01-01
Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations. PMID:27031232
Symmetry Analysis and Exact Solutions of the 2D Unsteady Incompressible Boundary-Layer Equations
NASA Astrophysics Data System (ADS)
Han, Zhong; Chen, Yong
2017-01-01
To find intrinsically different symmetry reductions and inequivalent group invariant solutions of the 2D unsteady incompressible boundary-layer equations, a two-dimensional optimal system is constructed which attributed to the classification of the corresponding Lie subalgebras. The comprehensiveness and inequivalence of the optimal system are shown clearly under different values of invariants. Then by virtue of the optimal system obtained, the boundary-layer equations are directly reduced to a system of ordinary differential equations (ODEs) by only one step. It has been shown that not only do we recover many of the known results but also find some new reductions and explicit solutions, which may be previously unknown. Supported by the Global Change Research Program of China under Grant No. 2015CB953904, National Natural Science Foundation of China under Grant Nos. 11275072, 11435005, 11675054, and Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things under Grant No. ZF1213
The Boundary Layer Flows of a Rivlin-Ericksen Fluid
NASA Astrophysics Data System (ADS)
Sadeghy, K.; Khabazi, N.; Taghavi, S. M.
The present work deals with the two-dimensional incompressible, laminar, steady-state boundary layer equations. First, we determine a family of velocity distributions outside the boundary layer such that these problems may have similarity solutions. We study the Falkner-Skan flow of a viscoelastic fluid governed by second order model, as the Reynolds number Re→ ∞. We obtain an ordinary forth order differential equation to obtain the stream function, velocity profile and the stress. The stream function is then governed by a generalized Falkner-Skan equation. In comparison with Newtonian Falkner-Skan equation that has two coefficients this new one has four coefficients that two of them represent elastic properties of the fluid. The effects of the elastic parameter on the velocity filed have been discussed. As it is shown in the figure there is a good agreement between numerical results and previous special cases confirm the validity of the presented algorithm.
NASA Astrophysics Data System (ADS)
Paimushin, V. N.
2017-11-01
For an analysis of internal and external buckling modes of a monolayer inside or at the periphery of a layered composite, refined geometrically nonlinear equations are constructed. They are based on modeling the monolayer as a thin plate interacting with binder layers at the points of boundary surfaces. The binder layer is modeled as a transversely soft foundation. It is assumed the foundations, previously compressed in the transverse direction (the first loading stage), have zero displacements of its external boundary surfaces at the second loading stage, but the contact interaction of the plate with foundations occurs without slippage or delamination. The deformation of the plate at a medium flexure is described by geometrically nonlinear relations of the classical plate theory based on the Kirchhoff-Love hypothesis (the first variant) or the refined Timoshenko model with account of the transverse shear and compression (the second variant). The foundation is described by linearized 3D equations of elasticity theory, which are simplified within the framework of the model of a transversely soft layer. Integrating the linearized equations along the transverse coordinate and satisfying the kinematic joining conditions of the plate with foundations, with account of their initial compression in the thickness direction, a system of 2D geometrically nonlinear equations and appropriate boundary conditions are derived. These equations describe the contact interaction between elements of the deformable system. The relations obtained are simplified for the case of a symmetric stacking sequence.
Marching iterative methods for the parabolized and thin layer Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Israeli, M.
1985-01-01
Downstream marching iterative schemes for the solution of the Parabolized or Thin Layer (PNS or TL) Navier-Stokes equations are described. Modifications of the primitive equation global relaxation sweep procedure result in efficient second-order marching schemes. These schemes take full account of the reduced order of the approximate equations as they behave like the SLOR for a single elliptic equation. The improved smoothing properties permit the introduction of Multi-Grid acceleration. The proposed algorithm is essentially Reynolds number independent and therefore can be applied to the solution of the subsonic Euler equations. The convergence rates are similar to those obtained by the Multi-Grid solution of a single elliptic equation; the storage is also comparable as only the pressure has to be stored on all levels. Extensions to three-dimensional and compressible subsonic flows are discussed. Numerical results are presented.
On the wall-normal velocity of the compressible boundary-layer equations
NASA Technical Reports Server (NTRS)
Pruett, C. David
1991-01-01
Numerical methods for the compressible boundary-layer equations are facilitated by transformation from the physical (x,y) plane to a computational (xi,eta) plane in which the evolution of the flow is 'slow' in the time-like xi direction. The commonly used Levy-Lees transformation results in a computationally well-behaved problem for a wide class of non-similar boundary-layer flows, but it complicates interpretation of the solution in physical space. Specifically, the transformation is inherently nonlinear, and the physical wall-normal velocity is transformed out of the problem and is not readily recovered. In light of recent research which shows mean-flow non-parallelism to significantly influence the stability of high-speed compressible flows, the contribution of the wall-normal velocity in the analysis of stability should not be routinely neglected. Conventional methods extract the wall-normal velocity in physical space from the continuity equation, using finite-difference techniques and interpolation procedures. The present spectrally-accurate method extracts the wall-normal velocity directly from the transformation itself, without interpolation, leaving the continuity equation free as a check on the quality of the solution. The present method for recovering wall-normal velocity, when used in conjunction with a highly-accurate spectral collocation method for solving the compressible boundary-layer equations, results in a discrete solution which is extraordinarily smooth and accurate, and which satisfies the continuity equation nearly to machine precision. These qualities make the method well suited to the computation of the non-parallel mean flows needed by spatial direct numerical simulations (DNS) and parabolized stability equation (PSE) approaches to the analysis of stability.
Goertler instability in compressible boundary layers along curved surfaces with suction and cooling
NASA Technical Reports Server (NTRS)
El-Hady, N.; Verma, A. K.
1982-01-01
The Goertler instability of the laminar compressible boundary layer flows along concave surfaces is investigated. The linearized disturbance equations for the three-dimensional, counter-rotating streamwise vortices in two-dimensional boundary layers are presented in an orthogonal curvilinear coordinate. The basic approximation of the disturbance equations, that includes the effect of the growth of the boundary layer, is considered and solved numerically. The effect of compressibility on critical stability limits, growth rates, and amplitude ratios of the vortices is evaluated for a range of Mach numbers for 0 to 5. The effect of wall cooling and suction of the boundary layer on the development of Goertler vortices is investigated for different Mach numbers.
Mean-field message-passing equations in the Hopfield model and its generalizations
NASA Astrophysics Data System (ADS)
Mézard, Marc
2017-02-01
Motivated by recent progress in using restricted Boltzmann machines as preprocessing algorithms for deep neural network, we revisit the mean-field equations [belief-propagation and Thouless-Anderson Palmer (TAP) equations] in the best understood of such machines, namely the Hopfield model of neural networks, and we explicit how they can be used as iterative message-passing algorithms, providing a fast method to compute the local polarizations of neurons. In the "retrieval phase", where neurons polarize in the direction of one memorized pattern, we point out a major difference between the belief propagation and TAP equations: The set of belief propagation equations depends on the pattern which is retrieved, while one can use a unique set of TAP equations. This makes the latter method much better suited for applications in the learning process of restricted Boltzmann machines. In the case where the patterns memorized in the Hopfield model are not independent, but are correlated through a combinatorial structure, we show that the TAP equations have to be modified. This modification can be seen either as an alteration of the reaction term in TAP equations or, more interestingly, as the consequence of message passing on a graphical model with several hidden layers, where the number of hidden layers depends on the depth of the correlations in the memorized patterns. This layered structure is actually necessary when one deals with more general restricted Boltzmann machines.
Low Altitude Near-the-Horizon Propagation: A Comparison Between RPO and M-Layer
1993-12-01
scaling based on the assumption that a single mode contributes to the complete field strength (Ref. 31, output from M-Layer [Ref. 4, 5] in the over-the...PE. The parabolic equation approximation to the Maxwell wave equations is developed under the optical assumption that the operating frequency is so...profile data are specified (an array) capm zim profile data (modified index of refraction; an array) (a) RPO: from I to n/evs; M-Layer from 0 to nzlayr
NASA Technical Reports Server (NTRS)
Duque, Earl P. N.; Biswas, Rupak; Strawn, Roger C.
1995-01-01
This paper summarizes a method that solves both the three dimensional thin-layer Navier-Stokes equations and the Euler equations using overset structured and solution adaptive unstructured grids with applications to helicopter rotor flowfields. The overset structured grids use an implicit finite-difference method to solve the thin-layer Navier-Stokes/Euler equations while the unstructured grid uses an explicit finite-volume method to solve the Euler equations. Solutions on a helicopter rotor in hover show the ability to accurately convect the rotor wake. However, isotropic subdivision of the tetrahedral mesh rapidly increases the overall problem size.
Light diffusion in N-layered turbid media: steady-state domain.
Liemert, André; Kienle, Alwin
2010-01-01
We deal with light diffusion in N-layered turbid media. The steady-state diffusion equation is solved for N-layered turbid media having a finite or an infinitely thick N'th layer. Different refractive indices are considered in the layers. The Fourier transform formalism is applied to derive analytical solutions of the fluence rate in Fourier space. The inverse Fourier transform is calculated using four different methods to test their performance and accuracy. Further, to avoid numerical errors, approximate formulas in Fourier space are derived. Fast solutions for calculation of the spatially resolved reflectance and transmittance from the N-layered turbid media ( approximately 10 ms) with small relative differences (<10(-7)) are found. Additionally, the solutions of the diffusion equation are compared to Monte Carlo simulations for turbid media having up to 20 layers.
ISUAL-Observed Blue Luminous Events: The Associated Sferics
NASA Astrophysics Data System (ADS)
Chou, Jung-Kuang; Hsu, Rue-Ron; Su, Han-Tzong; Chen, Alfred Bing-Chih; Kuo, Cheng-Ling; Huang, Sung-Ming; Chang, Shu-Chun; Peng, Kang-Ming; Wu, Yen-Jung
2018-04-01
The blue luminous events (BLEs) recorded by ISUAL (Imager of Sprites and Upper Atmospheric Lightning) radiate unambiguous middle ultraviolet to blue emissions (230-450 nm) but contain dim red emissions (623-754 nm). The BLE appears to be dot-like on one ISUAL image with an integration time of 29 ms. A few BLEs develop upward into blue jets/starters or type II gigantic jets (GJs). The associated sferics of the BLEs in the extremely low frequency to very low frequency band and in the low-frequency band exhibit similar patterns to the narrow bipolar events (NBEs) identified in the very low frequency and low-frequency band. The ISUAL BLEs are conjectured to be the accompanied light emissions of the NBEs. Both upward and downward propagating current obtained from the associated sferics of the BLEs have been found. The source heights of the six BLEs related to negative NBEs are estimated in the range of 16.2-17.8 km. These six events are suggested to occur between the upper positive charge layer and the negative screen charge layer on the top of the normally electrified thunderstorm. The six blue starters, one blue jet, and one type II GJ are inferred to be positive upward discharges from their associated sferics in the extremely low frequency to very low frequency band. Based on the simultaneous radio and optical observations, a NBE is conjectured to be the initiation discharge with rapidly flowing current within the thunderstorm, while a blue jet/starter or a type II GJ is suggested to be the ensuing discharge with slowly varying current propagating upward from the thunderstorm.
Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu
2008-04-01
In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the release properties. In previous papers, a combination of the square-root time law and cube-root law equations was confirmed to be a useful equation for qualitative treatment. It was also confirmed that the combination equation could analyze the release properties of layered granules as well as matrix granules. The drug release property from layered granules is different from that of matrix granules. A time lag occurs before release, and the entire release property of layered granules was analyzed using the combination of the square-root time law and cube-root law equations. It is considered that the analysis method is very useful and efficient for both matrix and layered granules. Comparing the granulation methods, it is easier to control the manufacturing process by tumbling granulation (method B) than by tumbling-fluidized bed granulation (method C). Ethylcellulose (EC) layered granulation by a fluidized bed granulator might be convenient for the preparation of controlled release dosage forms as compared with a tumbling granulator, because the layered granules prepared by the fluidized bed granulator can granulate and dry at the same time. The time required for drying by the fluidized bed granulator is shorter than that by the tumbling granulator, so the fluidized bed granulator is convenient for preparation of granules in handling and shorter processing time than the tumbling granulator. It was also suggested that the EC layered granules prepared by the fluidized bed granulator were suitable for a controlled release system as well as the EC matrix granules.
Falkner-Skan Boundary Layer Flow of a Sisko Fluid
NASA Astrophysics Data System (ADS)
Khan, Masood; Shahzad, Azeem
2012-09-01
In this paper, we investigate the steady boundary layer flow of a non-Newtonian fluid, represented by a Sisko fluid, over a wedge in a moving fluid. The equations of motion are derived for boundary layer flow of an incompressible Sisko fluid using appropriate similarity variables. The governing equations are reduced to a single third-order highly nonlinear ordinary differential equation in the dimensionless stream function, which is then solved analytically using the homotopy analysis method. Some important parameters have been discussed by this study, which include the power law index n, the material parameter A, the wedge shape factor b, and the skin friction coefficient Cf. A comprehensive study is made between the results of the Sisko and the power-law fluids.
NASA Technical Reports Server (NTRS)
Eckert, E.R.G.; Livingood, John N.B.
1951-01-01
An approximate method for development of flow and thermal boundary layers in laminar regime on cylinders with arbitrary cross section and transpiration-cooled walls is obtained by use of Karman's integrated momentum equation and an analogous heat-flow equation. Incompressible flow with constant property values throughout boundary layer is assumed. Shape parameters for approximated velocity and temperature profiles and functions necessary for solution of boundary-layer equations are presented as charts, reducing calculations to a minimum. The method is applied to determine local heat-transfer coefficients and surface temperature-cooled turbine blades for a given flow rate. Coolant flow distributions necessary for maintaining uniform blade temperatures are also determined.
NASA Astrophysics Data System (ADS)
Bagno, A. M.
2017-03-01
The propagation of quasi-Lamb waves in a prestrained compressible elastic layer interacting with a layer of an ideal compressible fluid is studied. The three-dimensional equations of linearized elasticity and the assumption of finite strains for the elastic layer and the three-dimensional linearized Euler equations for the fluid are used. The dispersion curves for the quasi-Lamb modes are plotted over a wide frequency range. The effect of prestresses and the thickness of the elastic and liquid layers on the frequency spectrum of normal quasi-Lamb waves is analyzed. The localization properties of the lower quasi-Lamb modes in the elastic-fluid waveguides are studied. The numerical results are presented in the form of graphs and analyzed
NASA Astrophysics Data System (ADS)
Kanetsyan, E. G.; Mkrtchyan, M. S.; Mkhitaryan, S. M.
2018-04-01
We consider a class of contact torsion problems on interaction of thin-walled elements shaped as an elastic thin washer – a flat circular plate of small height – with an elastic layer, in particular, with a half-space, and on interaction of thin cylindrical shells with a solid elastic cylinder, infinite in both directions. The governing equations of the physical models of elastic thin washers and thin circular cylindrical shells under torsion are derived from the exact equations of mathematical theory of elasticity using the Hankel and Fourier transforms. Within the framework of the accepted physical models, the solution of the contact problem between an elastic washer and an elastic layer is reduced to solving the Fredholm integral equation of the first kind with a kernel representable as a sum of the Weber–Sonin integral and some integral regular kernel, while solving the contact problem between a cylindrical shell and solid cylinder is reduced to a singular integral equation (SIE). An effective method for solving the governing integral equations of these problems are specified.
NASA Technical Reports Server (NTRS)
Green, M. J.; Nachtsheim, P. R.
1972-01-01
A numerical method for the solution of large systems of nonlinear differential equations of the boundary-layer type is described. The method is a modification of the technique for satisfying asymptotic boundary conditions. The present method employs inverse interpolation instead of the Newton method to adjust the initial conditions of the related initial-value problem. This eliminates the so-called perturbation equations. The elimination of the perturbation equations not only reduces the user's preliminary work in the application of the method, but also reduces the number of time-consuming initial-value problems to be numerically solved at each iteration. For further ease of application, the solution of the overdetermined system for the unknown initial conditions is obtained automatically by applying Golub's linear least-squares algorithm. The relative ease of application of the proposed numerical method increases directly as the order of the differential-equation system increases. Hence, the method is especially attractive for the solution of large-order systems. After the method is described, it is applied to a fifth-order problem from boundary-layer theory.
In-Transit Visibility Systems for an Expeditionary Force
2015-11-01
November–December 2015 Army Sustainment42 In September 2014, the outbreak of Ebola virus disease in West Africa overwhelmed the region’s...of system failures in theater, the MCB developed procedures to ensure that ITV was captured and maintained for all cargo entering Liberia . The...II during redeployment. All the systems were reimaged prior to arriving in Liberia and were capa- ble of operating alone or through a very small
A Framework for Resilient Remote Monitoring
2014-08-01
of low-level observables are availa- ble, audited , and recorded. This establishes the need for a re- mote monitoring framework that can integrate with...Security, WS-Policy, SAML, XML Signature, and XML Encryption. Pearson Higher Education, 2004. [3] OMG, “Common Secure Interoperability Protocol...www.darpa.mil/Our_Work/I2O/Programs/Integrated_Cyb er_Analysis_System_%28ICAS%29.aspx. [8] D. Miller and B. Pearson , Security information and event man
Development of a Dirigible Bomb
1943-04-15
X - ¥ control for all future high-angle dirigible bombs in spite of the instrumental complications involved. /. two gyro system consisting of t...ts found thet the bomb wos in roll equilibrium £.t aero roll orientetion . Moreover, these roll equilibrium positions ire stt-ble ss indicated by...tirflow giving rise to voll torques in the seme direction fcs roll dis- placements from the «ero orientetion , the roll equilibrium found for equel pitch
Exploring Terrorist Targeting Preferences
2007-01-01
of dramatic size, scale, and impact . Indeed, al Qaeda may well conclude that any attack capa- ble of awing its own members will also inspire...likely). Coordinated attack can be considered a sig- nature trait of al Qaeda operations: in Kenya ; Tanzania; New York; Washington, D.C.; Istanbul...1998, simultaneous bombings of the U.S. embassies in Kenya and Tanzania killed over 200 people—twelve of them U.S. citi- zens—and wounded more than
2006-07-31
military exercises. Discussions of possi- ble sales to India of major U.S.-built weapons systems are ongoing. Continuing U.S. interest in South Asia ...India and Pakistan. The United States also seeks to curtail the proliferation of nuclear weapons and ballistic missiles in South Asia . Both India and...RL33515, Combat Aircraft Sales to South Asia .) ! Rates of separatist-related violence in India-controlled Kashmir have spiked following a May massacre of
2013-05-01
multiple swirler configurations and fuel injector locations at atmospheric pressure con- ditions. Both single-element and multiple-element LDI...the swirl number, Reynolds’ number and injector location in the LDI element. Besides the multi-phase flow characteristics, several experimen- tal...region downstream of the fuel injector on account of a sta- ble and compact precessing vortex core. Recent ex- periments conducted by the Purdue group have
Quantum Electronics in the UK. A National-Survey Conference.
1985-10-30
flashlamp pumped chromium action, including transitions in dopants doped gadolinium /scandium/gallium garnet which have not previously shown laser lasers...frac- factors that limit performance. They ture. The Southampton scientists fabri - concluded that excited state absorption, cated the fibers by a...topics such as transverse power on the long wavelength side of a switching waves and cross-talk of bista- Fabry -Perot resonance peak at 844 nm, ble
Sensors to Support the Soldier
2005-02-01
limited by the need to be man- portable . The Marine infantryman relies on mobility , aggressiveness, and training 2 rather than elaborate equipment to...the ab- sence of conventional GPS guidance, including man- portable inertial inea- surement units, and digital imaging sensors combined with image...cell phones and 802.11 networks shows that walls and floors are not impenentra- ble to wireless signals; it is a question of power, range, and frequency
What’s in a URL? Genre Classification from URLs
2012-01-01
webpages with access to the content of a document and feature extraction from URLs alone. Feature Extraction from Webpages Stylistic and structural...2010). Character n-grams (sequence of n characters) are attractive because of their simplicity and because they encapsulate both lexical and stylistic ...report might be stylistic . Feature Extraction from URLs The syntactic characteristics of URLs have been fairly sta- ble over the years. URL terms are
Computational Modeling of Cultural Dimensions in Adversary Organizations
2010-01-01
Nodes”, In the Proceedings of the 9th Conference on Uncertainty in Artificial Intelli - gence, 1993. [8] Pearl, J. Probabilistic Reasoning in...the artificial life simulations; in con- trast, models with only a few agents typically employ quite sophisticated cognitive agents capa- ble of...Model Construction 45 cisions as to how to allocate scarce ISR assets (two Unmanned Air Systems, UAS ) among the two Red activities while at the same
Fusing Bluetooth Beacon Data with Wi-Fi Radiomaps for Improved Indoor Localization
Kanaris, Loizos; Kokkinis, Akis; Liotta, Antonio; Stavrou, Stavros
2017-01-01
Indoor user localization and tracking are instrumental to a broad range of services and applications in the Internet of Things (IoT) and particularly in Body Sensor Networks (BSN) and Ambient Assisted Living (AAL) scenarios. Due to the widespread availability of IEEE 802.11, many localization platforms have been proposed, based on the Wi-Fi Received Signal Strength (RSS) indicator, using algorithms such as K-Nearest Neighbour (KNN), Maximum A Posteriori (MAP) and Minimum Mean Square Error (MMSE). In this paper, we introduce a hybrid method that combines the simplicity (and low cost) of Bluetooth Low Energy (BLE) and the popular 802.11 infrastructure, to improve the accuracy of indoor localization platforms. Building on KNN, we propose a new positioning algorithm (dubbed i-KNN) which is able to filter the initial fingerprint dataset (i.e., the radiomap), after considering the proximity of RSS fingerprints with respect to the BLE devices. In this way, i-KNN provides an optimised small subset of possible user locations, based on which it finally estimates the user position. The proposed methodology achieves fast positioning estimation due to the utilization of a fragment of the initial fingerprint dataset, while at the same time improves positioning accuracy by minimizing any calculation errors. PMID:28394268
Fusing Bluetooth Beacon Data with Wi-Fi Radiomaps for Improved Indoor Localization.
Kanaris, Loizos; Kokkinis, Akis; Liotta, Antonio; Stavrou, Stavros
2017-04-10
Indoor user localization and tracking are instrumental to a broad range of services and applications in the Internet of Things (IoT) and particularly in Body Sensor Networks (BSN) and Ambient Assisted Living (AAL) scenarios. Due to the widespread availability of IEEE 802.11, many localization platforms have been proposed, based on the Wi-Fi Received Signal Strength (RSS) indicator, using algorithms such as K -Nearest Neighbour (KNN), Maximum A Posteriori (MAP) and Minimum Mean Square Error (MMSE). In this paper, we introduce a hybrid method that combines the simplicity (and low cost) of Bluetooth Low Energy (BLE) and the popular 802.11 infrastructure, to improve the accuracy of indoor localization platforms. Building on KNN, we propose a new positioning algorithm (dubbed i-KNN) which is able to filter the initial fingerprint dataset (i.e., the radiomap), after considering the proximity of RSS fingerprints with respect to the BLE devices. In this way, i-KNN provides an optimised small subset of possible user locations, based on which it finally estimates the user position. The proposed methodology achieves fast positioning estimation due to the utilization of a fragment of the initial fingerprint dataset, while at the same time improves positioning accuracy by minimizing any calculation errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maziarz, M.; Gallo, F.
1995-12-31
B.L. England Generating Station (BLE) is located in Beesleys Point, NJ. Beesleys Point is on Great Egg Bay, which is 20 minutes south of Atlantic City and one hour east of Philadelphia. BLE has three generating units: No. 1 is a 120 Megawatt (MW) B&W cyclone boiler; No. 2 is a 160 MW B&W cyclone boiler; & No. 3 is a tangential fired Combustion Engineering boiler. Units 1 & 2 burn medium sulfur eastern bituminous coal. Unit 3 burns No. 6 oil. Units 1&2 are equipped with precipitators (ESPs). The two ESPs were manufactured by Environmental Elements Corp. (EEC) andmore » were placed in service in 1980. Units are dual chamber with each having four mechanical fields and eight electrical fields. Each field has two Transformer/Rectifier (T/R) sets for a total of sixteen per ESP. The ESPs are rigid frame design (Rigitrode by EEC) with hammer & anvil rapping. Ash reinjection systems permit direct or cross reinjection of fly ash. Both ESPs have perforated plates for inlet & outlet gas flow distribution. There are three inlet plates and one outlet plate. The first inlet plates and the outlets are cleaned via electric reciprocating vibrators. There was no means of cleaning the remaining plates provided.« less
Boundary-layer effects in composite laminates: Free-edge stress singularities, part 6
NASA Technical Reports Server (NTRS)
Wanag, S. S.; Choi, I.
1981-01-01
A rigorous mathematical model was obtained for the boundary-layer free-edge stress singularity in angleplied and crossplied fiber composite laminates. The solution was obtained using a method consisting of complex-variable stress function potentials and eigenfunction expansions. The required order of the boundary-layer stress singularity is determined by solving the transcendental characteristic equation obtained from the homogeneous solution of the partial differential equations. Numerical results obtained show that the boundary-layer stress singularity depends only upon material elastic constants and fiber orientation of the adjacent plies. For angleplied and crossplied laminates the order of the singularity is weak in general.
NASA Technical Reports Server (NTRS)
Van Dalsem, W. R.; Steger, J. L.
1985-01-01
A simple and computationally efficient algorithm for solving the unsteady three-dimensional boundary-layer equations in the time-accurate or relaxation mode is presented. Results of the new algorithm are shown to be in quantitative agreement with detailed experimental data for flow over a swept infinite wing. The separated flow over a 6:1 ellipsoid at angle of attack, and the transonic flow over a finite-wing with shock-induced 'mushroom' separation are also computed and compared with available experimental data. It is concluded that complex, separated, three-dimensional viscous layers can be economically and routinely computed using a time-relaxation boundary-layer algorithm.
NASA Astrophysics Data System (ADS)
Helal, Alaa N. Abu; Taya, Sofyan A.; Elwasife, Khitam Y.
2018-06-01
The dispersion equation of an asymmetric three-layer slab waveguide, in which all layers are chiral materials is presented. Then, the dispersion equation of a symmetric slab waveguide, in which the claddings are chiral materials and the core layer is negative index material, is derived. Normalized cut-off frequencies, field profile, and energies flow of right-handed and left-handed circularly polarized modes are derived and plotted. We consider both odd and even guided modes. Numerical results of guided low-order modes are provided. Some novel features, such as abnormal dispersion curves, are found.
Integral method for the calculation of three-dimensional, laminar and turbulent boundary layers
NASA Technical Reports Server (NTRS)
Stock, H. W.
1978-01-01
The method for turbulent flows is a further development of an existing method; profile families with two parameters and a lag entrainment method replace the simple entrainment method and power profiles with one parameter. The method for laminar flows is a new development. Moment of momentum equations were used for the solution of the problem, the profile families were derived from similar solutions of boundary layer equations. Laminar and turbulent flows at the wings were calculated. The influence of wing tapering on the boundary layer development was shown. The turbulent boundary layer for a revolution ellipsoid is calculated for 0 deg and 10 deg incidence angles.
One-equation near-wall turbulence modeling with the aid of direct simulation data
NASA Technical Reports Server (NTRS)
Rodi, W.; Mansour, N. N.; Michelassi, V.
1993-01-01
The length scales appearing in the relations for the eddy viscosity and dissipation rate in one-equation models were evaluated from direct numerical (DNS) simulation data for developed channel and boundary-layer flow at two Reynolds numbers each. To prepare the ground for the evaluation, the distribution of the most relevant mean-flow and turbulence quantities is presented and discussed, also with respect to Reynolds-number influence and to differences between channel and boundary-layer flow. An alternative model is tested as near wall component of a two-layer model by application to developed-channel, boundary-layer and backward-facing-step flows.
NASA Technical Reports Server (NTRS)
Day, Brad A.; Meade, Andrew J., Jr.
1993-01-01
A semi-discrete Galerkin (SDG) method is under development to model attached, turbulent, and compressible boundary layers for transonic airfoil analysis problems. For the boundary-layer formulation the method models the spatial variable normal to the surface with linear finite elements and the time-like variable with finite differences. A Dorodnitsyn transformed system of equations is used to bound the infinite spatial domain thereby providing high resolution near the wall and permitting the use of a uniform finite element grid which automatically follows boundary-layer growth. The second-order accurate Crank-Nicholson scheme is applied along with a linearization method to take advantage of the parabolic nature of the boundary-layer equations and generate a non-iterative marching routine. The SDG code can be applied to any smoothly-connected airfoil shape without modification and can be coupled to any inviscid flow solver. In this analysis, a direct viscous-inviscid interaction is accomplished between the Euler and boundary-layer codes through the application of a transpiration velocity boundary condition. Results are presented for compressible turbulent flow past RAE 2822 and NACA 0012 airfoils at various freestream Mach numbers, Reynolds numbers, and angles of attack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, J.; Kosson, D.S., E-mail: david.s.kosson@vanderbilt.edu; Garrabrants, A.
2013-02-15
A robust numerical solution of the nonlinear Poisson-Boltzmann equation for asymmetric polyelectrolyte solutions in discrete pore geometries is presented. Comparisons to the linearized approximation of the Poisson-Boltzmann equation reveal that the assumptions leading to linearization may not be appropriate for the electrochemical regime in many cementitious materials. Implications of the electric double layer on both partitioning of species and on diffusive release are discussed. The influence of the electric double layer on anion diffusion relative to cation diffusion is examined.
Capillary Rise: Validity of the Dynamic Contact Angle Models.
Wu, Pingkeng; Nikolov, Alex D; Wasan, Darsh T
2017-08-15
The classical Lucas-Washburn-Rideal (LWR) equation, using the equilibrium contact angle, predicts a faster capillary rise process than experiments in many cases. The major contributor to the faster prediction is believed to be the velocity dependent dynamic contact angle. In this work, we investigated the dynamic contact angle models for their ability to correct the dynamic contact angle effect in the capillary rise process. We conducted capillary rise experiments of various wetting liquids in borosilicate glass capillaries and compared the model predictions with our experimental data. The results show that the LWR equations modified by the molecular kinetic theory and hydrodynamic model provide good predictions on the capillary rise of all the testing liquids with fitting parameters, while the one modified by Joos' empirical equation works for specific liquids, such as silicone oils. The LWR equation modified by molecular self-layering model predicts well the capillary rise of carbon tetrachloride, octamethylcyclotetrasiloxane, and n-alkanes with the molecular diameter or measured solvation force data. The molecular self-layering model modified LWR equation also has good predictions on the capillary rise of silicone oils covering a wide range of bulk viscosities with the same key parameter W(0), which results from the molecular self-layering. The advantage of the molecular self-layering model over the other models reveals the importance of the layered molecularly thin wetting film ahead of the main meniscus in the energy dissipation associated with dynamic contact angle. The analysis of the capillary rise of silicone oils with a wide range of bulk viscosities provides new insights into the capillary dynamics of polymer melts.
Computational modeling of mediator oxidation by oxygen in an amperometric glucose biosensor.
Simelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Razumienė, Julija
2014-02-07
In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior.
Computational Modeling of Mediator Oxidation by Oxygen in an Amperometric Glucose Biosensor
Šimelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Julija, Razumienė
2014-01-01
In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior. PMID:24514882
Boundary layers at the interface of two different shear flows
NASA Astrophysics Data System (ADS)
Weidman, Patrick D.; Wang, C. Y.
2018-05-01
We present solutions for the boundary layer between two uniform shear flows flowing in the same direction. In the upper layer, the flow has shear strength a, fluid density ρ1, and kinematic viscosity ν1, while the lower layer has shear strength b, fluid density ρ2, and kinematic viscosity ν2. Similarity transformations reduce the boundary-layer equations to a pair of ordinary differential equations governed by three dimensionless parameters: the shear strength ratio γ = b/a, the density ratio ρ = ρ2/ρ1, and the viscosity ratio ν = ν2/ν1. Further analysis shows that an affine transformation reduces this multi-parameter problem to a single ordinary differential equation which may be efficiently integrated as an initial-value problem. Solutions of the original boundary-value problem are shown to agree with the initial-value integrations, but additional dual and quadruple solutions are found using this method. We argue on physical grounds and through bifurcation analysis that these additional solutions are not tenable. The present problem is applicable to the trailing edge flow over a thin airfoil with camber.
NASA Technical Reports Server (NTRS)
Nicholson, Stephen; Moore, Joan G.; Moore, John
1987-01-01
A method was developed which calculates two-dimensional, transonic, viscous flow in ducts. The finite volume, time-marching formulation is used to obtain steady flow solutions of the Reynolds-averaged form of the Navier-Stokes equations. The entire calculation is performed in the physical domain. This paper investigates the introduction of a new formulation of the energy equation which gives improved transient behavior as the calculation converges. The effect of variable Prandtl number on the temperature distribution through the boundary layer is also investigated. A turbulent boundary layer in an adverse pressure gradient (M = 0.55) is used to demonstrate the improved transient temperature distribution obtained when the new formulation of the energy equation is used. A flat plate turbulent boundary layer with a supersonic free-stream Mach number of 2.8 is used to investigate the effect of Prandtl number on the distribution of properties through the boundary layer. The computed total temperature distribution and recovery factor agree well with the measurements when a variable Prandtl number is used through the boundary layer.
NASA Technical Reports Server (NTRS)
Nicholson, Stephen; Moore, Joan G.; Moore, John
1986-01-01
A method was developed which calculates two-dimensional, transonic, viscous flow in ducts. The finite volume, time-marching formulation is used to obtain steady flow solutions of the Reynolds-averaged form of the Navier-Stokes equations. The entire calculation is performed in the physical domain. This paper investigates the introduction of a new formulation of the energy equation which gives improved transient behavior as the calculation converges. The effect of variable Prandtl number on the temperature distribution through the boundary layer is also investigated. A turbulent boundary layer in an adverse pressure gradient (M = 0.55) is used to demonstrate the improved transient temperature distribution obtained when the new formulation of the energy equation is used. A flat plate turbulent boundary layer with a supersonic free-stream Mach number of 2.8 is used to investigate the effect of Prandtl number on the distribution of properties through the boundary layer. The computed total temperature distribution and recovery factor agree well with the measurements when a variable Prandtl number is used through the boundary layer.
Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach
NASA Astrophysics Data System (ADS)
Camassa, R.; Falqui, G.; Ortenzi, G.
2017-02-01
The theory of integrable systems of Hamiltonian PDEs and their near-integrable deformations is used to study evolution equations resulting from vertical-averages of the Euler system for two-layer stratified flows in an infinite two-dimensional channel. The Hamiltonian structure of the averaged equations is obtained directly from that of the Euler equations through the process of Hamiltonian reduction. Long-wave asymptotics together with the Boussinesq approximation of neglecting the fluids’ inertia is then applied to reduce the leading order vertically averaged equations to the shallow-water Airy system, albeit in a non-trivial way. The full non-Boussinesq system for the dispersionless limit can then be viewed as a deformation of this well known equation. In a perturbative study of this deformation, a family of approximate constants of the motion are explicitly constructed and used to find local solutions of the evolution equations by means of hodograph-like formulae.
ERIC Educational Resources Information Center
Raychaudhuri, D.
2007-01-01
The focus of this paper is on student interpretation and usage of the existence and uniqueness theorems for first-order ordinary differential equations. The inherent structure of the theorems is made explicit by the introduction of a framework of layers concepts-conditions-connectives-conclusions, and we discuss the manners in which students'…
Large-eddy simulation of a turbulent mixing layer
NASA Technical Reports Server (NTRS)
Mansour, N. N.; Ferziger, J. H.; Reynolds, W. C.
1978-01-01
The three dimensional, time dependent (incompressible) vorticity equations were used to simulate numerically the decay of isotropic box turbulence and time developing mixing layers. The vorticity equations were spatially filtered to define the large scale turbulence field, and the subgrid scale turbulence was modeled. A general method was developed to show numerical conservation of momentum, vorticity, and energy. The terms that arise from filtering the equations were treated (for both periodic boundary conditions and no stress boundary conditions) in a fast and accurate way by using fast Fourier transforms. Use of vorticity as the principal variable is shown to produce results equivalent to those obtained by use of the primitive variable equations.
Vector solution for the mean electromagnetic fields in a layer of random particles
NASA Technical Reports Server (NTRS)
Lang, R. H.; Seker, S. S.; Levine, D. M.
1986-01-01
The mean electromagnetic fields are found in a layer of randomly oriented particles lying over a half space. A matrix-dyadic formulation of Maxwell's equations is employed in conjunction with the Foldy-Lax approximation to obtain equations for the mean fields. A two variable perturbation procedure, valid in the limit of small fractional volume, is then used to derive uncoupled equations for the slowly varying amplitudes of the mean wave. These equations are solved to obtain explicit expressions for the mean electromagnetic fields in the slab region in the general case of arbitrarily oriented particles and arbitrary polarization of the incident radiation. Numerical examples are given for the application to remote sensing of vegetation.
Grid adaption based on modified anisotropic diffusion equations formulated in the parametic domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagmeijer, R.
1994-11-01
A new grid-adaption algorithm for problems in computational fluid dynamics is presented. The basic equations are derived from a variational problem formulated in the parametric domain of the mapping that defines the existing grid. Modification of the basic equations provides desirable properties in boundary layers. The resulting modified anisotropic diffusion equations are solved for the computational coordinates as functions of the parametric coordinates and these functions are numerically inverted. Numerical examples show that the algorithm is robust, that shocks and boundary layers are well-resolved on the adapted grid, and that the flow solution becomes a globally smooth function of themore » computational coordinates.« less
Interactive boundary-layer calculations of a transonic wing flow
NASA Technical Reports Server (NTRS)
Kaups, Kalle; Cebeci, Tuncer; Mehta, Unmeel
1989-01-01
Results obtained from iterative solutions of inviscid and boundary-layer equations are presented and compared with experimental values. The calculated results were obtained with an Euler code and a transonic potential code in order to furnish solutions for the inviscid flow; they were interacted with solutions of two-dimensional boundary-layer equations having a strip-theory approximation. Euler code results are found to be in better agreement with the experimental data than with the full potential code, especially in the presence of shock waves, (with the sole exception of the near-tip region).
Evaluation of Full Reynolds Stress Turbulence Models in FUN3D
NASA Technical Reports Server (NTRS)
Dudek, Julianne C.; Carlson, Jan-Renee
2017-01-01
Full seven-equation Reynolds stress turbulence models are promising tools for today’s aerospace technology challenges. This paper examines two such models for computing challenging turbulent flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSG/LRR full second-moment Reynolds stress models have been implemented into the FUN3D (Fully Unstructured Navier-Stokes Three Dimensional) unstructured Navier-Stokes code and were evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results computed using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST-V) two-equation turbulence models.
Evaluation of Full Reynolds Stress Turbulence Models in FUN3D
NASA Technical Reports Server (NTRS)
Dudek, Julianne C.; Carlson, Jan-Renee
2017-01-01
Full seven-equation Reynolds stress turbulence models are a relatively new and promising tool for todays aerospace technology challenges. This paper uses two stress-omega full Reynolds stress models to evaluate challenging flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSG/LRR full second-moment Reynolds stress models have been implemented into the FUN3D (Fully Unstructured Navier-Stokes Three Dimensional) unstructured Navier-Stokes code and are evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST-V) two-equation turbulence models.
Boundary-layer computational model for predicting the flow and heat transfer in sudden expansions
NASA Technical Reports Server (NTRS)
Lewis, J. P.; Pletcher, R. H.
1986-01-01
Fully developed turbulent and laminar flows through symmetric planar and axisymmetric expansions with heat transfer were modeled using a finite-difference discretization of the boundary-layer equations. By using the boundary-layer equations to model separated flow in place of the Navier-Stokes equations, computational effort was reduced permitting turbulence modelling studies to be economically carried out. For laminar flow, the reattachment length was well predicted for Reynolds numbers as low as 20 and the details of the trapped eddy were well predicted for Reynolds numbers above 200. For turbulent flows, the Boussinesq assumption was used to express the Reynolds stresses in terms of a turbulent viscosity. Near-wall algebraic turbulence models based on Prandtl's-mixing-length model and the maximum Reynolds shear stress were compared.
Ac electroosmotic flows above coplanar electrodes
NASA Astrophysics Data System (ADS)
Kweon Suh, Yong
2009-03-01
Interactive numerical method has been proposed to calculate the ac electroosmotic flows above a pair of coplanar electrodes. The thin electrical triple layer (ETL) has been modeled by an asymptotic theory developed by the authors. The model corresponds to a simple dynamic equation for the surface charge density representing the integrated charge over the inner layer. Interactive calculation of the dynamic equation and the Laplace equation for several periods of ac frequency then yielded steady-state distribution of potential and the potential drop across the Stern and inner layers. The Smoluchowski's slip velocity was then determined from those two set of data and used as the boundary condition for the calculation of the Stokes' flow above the electrodes. We have shown that our solutions compared well with the experimental data reported in the literature. We investigated the effect of various parameters on the slip velocity distribution, such as the ac frequency, the electrode length, the effective Stern-layer thickness and the adsorption coefficients.
NASA Technical Reports Server (NTRS)
Gloss, R. J.
1971-01-01
A finite difference turbulent boundary layer computer program which allows for mass transfer wall cooling and equilibrium chemistry effects is presented. The program is capable of calculating laminar or turbulent boundary layer solutions for an arbitrary ideal gas or an equilibrium hydrogen oxygen system. Either two dimensional or axisymmetric geometric configurations may be considered. The equations are solved, in nondimension-alized physical coordinates, using the implicit Crank-Nicolson technique. The finite difference forms of the conservation of mass, momentum, total enthalpy and elements equations are linearized and uncoupled, thereby generating easily solvable tridiagonal sets of algebraic equations. A detailed description of the computer program, as well as a program user's manual is provided. Detailed descriptions of all boundary layer subroutines are included, as well as a section defining all program symbols of principal importance. Instructions are then given for preparing card input to the program and for interpreting the printed output. Finally, two sample cases are included to illustrate the use of the program.
Quantum dot laser optimization: selectively doped layers
NASA Astrophysics Data System (ADS)
Korenev, Vladimir V.; Konoplev, Sergey S.; Savelyev, Artem V.; Shernyakov, Yurii M.; Maximov, Mikhail V.; Zhukov, Alexey E.
2016-08-01
Edge emitting quantum dot (QD) lasers are discussed. It has been recently proposed to use modulation p-doping of the layers that are adjacent to QD layers in order to control QD's charge state. Experimentally it has been proven useful to enhance ground state lasing and suppress the onset of excited state lasing at high injection. These results have been also confirmed with numerical calculations involving solution of drift-diffusion equations. However, deep understanding of physical reasons for such behavior and laser optimization requires analytical approaches to the problem. In this paper, under a set of assumptions we provide an analytical model that explains major effects of selective p-doping. Capture rates of elections and holes can be calculated by solving Poisson equations for electrons and holes around the charged QD layer. The charge itself is ruled by capture rates and selective doping concentration. We analyzed this self-consistent set of equations and showed that it can be used to optimize QD laser performance and to explain underlying physics.
NASA Technical Reports Server (NTRS)
Mcaninch, G. L.; Rawls, J. W., Jr.
1984-01-01
An acoustic disturbance's propagation through a boundary layer is discussed with a view to the analysis of the acoustic field generated by a propfan rotor incident to the fuselage of an aircraft. Applying the parallel flow assumption, the resulting partial differential equations are reduced to an ordinary acoustic pressure differential equation by means of the Fourier transform. The methods used for the solution of this equation include those of Frobenius and of analytic continuation; both yield exact solutions in series form. Two models of the aircraft fuselage-boundary layer system are considered, in the first of which the fuselage is replaced by a flat plate and the acoustic field is assumed to be two-dimensional, while in the second the fuselage is a cylinder in a fully three-dimensional acoustic field. It is shown that the boundary layer correction improves theory-data comparisons over simple application of a pressure-doubling rule at the fuselage.
NASA Astrophysics Data System (ADS)
Zheng, Jun; Han, Xinyue; Wang, ZhenTao; Li, Changfeng; Zhang, Jiazhong
2017-06-01
For about a century, people have been trying to seek for a globally convergent and closed analytical solution (CAS) of the Blasius Equation (BE). In this paper, we proposed a formally satisfied solution which could be parametrically expressed by two power series. Some analytical results of the laminar boundary layer of a flat plate, that were not analytically given in former studies, e.g. the thickness of the boundary layer and higher order derivatives, could be obtained based on the solution. Besides, the heat transfer in the laminar boundary layer of a flat plate with constant temperature could also be analytically formulated. Especially, the solution of the singular situation with Prandtl number Pr=0, which seems impossible to be analyzed in prior studies, could be given analytically. The method for finding the CAS of Blasius equation was also utilized in the problem of the boundary layer regulation through wall injection and slip velocity on the wall surface.
A numerical method for computing unsteady 2-D boundary layer flows
NASA Technical Reports Server (NTRS)
Krainer, Andreas
1988-01-01
A numerical method for computing unsteady two-dimensional boundary layers in incompressible laminar and turbulent flows is described and applied to a single airfoil changing its incidence angle in time. The solution procedure adopts a first order panel method with a simple wake model to solve for the inviscid part of the flow, and an implicit finite difference method for the viscous part of the flow. Both procedures integrate in time in a step-by-step fashion, in the course of which each step involves the solution of the elliptic Laplace equation and the solution of the parabolic boundary layer equations. The Reynolds shear stress term of the boundary layer equations is modeled by an algebraic eddy viscosity closure. The location of transition is predicted by an empirical data correlation originating from Michel. Since transition and turbulence modeling are key factors in the prediction of viscous flows, their accuracy will be of dominant influence to the overall results.
Two-Flux Method for Transient Radiative Transfer in a Semitransparent Layer
NASA Technical Reports Server (NTRS)
Siegel, Robert
1996-01-01
The two-flux method was used to obtain transient solutions for a plane layer including internal reflections and scattering. The layer was initially at uniform temperature, and was heated or cooled by external radiation and convection. The two-flux equations were examined as a means for evaluating the radiative flux gradient in the transient energy equation. Comparisons of transient temperature distributions using the two-flux method were made with results where the radiative flux gradient was evaluated from the exact radiative transfer equations. Good agreement was obtained for optical thicknesses from 0.5 to 5 and for refractive indices of 1 and 2. Illustrative results obtained with the two-flux method demonstrate the effect of isotropic scattering coupled with changing the refractive index. For small absorption with large scattering the maximum layer temperature is increased when the refractive index is increased. For larger absorption the effect is opposite, and the maximum temperature decreases with increased refractive index .
2012-03-22
understanding of fluid mechanics and aircraft design. The fundamental theories, concepts and equations developed by men like Newton, Bernoulli ...resulting instantaneous flow field data from PIV, boundary layer effects, turbulence characteristics, vortex formation, and momentum thickness, for...divided by the momentum thickness, δ2, and displacement thickness, δ1, as seen in Equations (2.8) and (2.9
ERIC Educational Resources Information Center
Mitchell, Eugene E., Ed.
In certain boundary layer or natural convection work, where a similarity transformation is valid, the equations can be reduced to a set of nonlinear ordinary differential equations. They are therefore well-suited to a fast solution on an analog/hybrid computer. This paper illustrates such usage of the analog/hybrid computer by a set of…
CERP in Afghanistan: Refining Military Capabilities in Development Activities
2012-03-01
under the leadership of Howard Warren Buffet , Jr. For more information, visit <http://tfbso.defense.gov/www/index.aspx>. 18 Arnold Fields, “Recurring...Pentagon auditors were not able to account for $135 million in allocated funds.45 It is impossi- ble to track success of the program if the spend- ing...itself is not accounted for. Second, intermediate outcomes such as increased local government funds for social programs, successful construction of
CERP in Afghanistan: Refining Military Capabilities in Development Activities
2012-03-01
account for $135 million in allocated funds.45 It is impossi- ble to track success of the program if the spend- ing itself is not accounted for...the revitalization of Iraq’s economy, it began operations in Afghanistan in 2010. Agriculture is a large focus under the leadership of Howard Warren ... Buffet , Jr. For more information, visit <http://tfbso.defense.gov/www/index.aspx>. 18 Arnold Fields, “Recurring Problems in Afghan Construction
An Annotation Framework for Dense Event Ordering
2014-06-01
document events that can properly eval- uate both relation identification and relation anno - tation. Figure 1 illustrates one document before and after...corpora. annotation adopts the VAGUE relation introduced by TempEval 2007, and our approach forces anno - tators to use it. This is the only work that...occur? Ta- ble 4 shows the 3 sources: (1) mutual vague: anno - tators agree it is vague, (2) partial vague: one anno - tator chooses vague, but the other
Autocorrel I: A Neural Network Based Network Event Correlation Approach
2005-05-01
which concern any component of the network. 2.1.1 Existing Intrusion Detection Systems EMERALD [8] is a distributed, scalable, hierarchal, customizable...writing this paper, the updaters of this system had not released their correlation unit to the public. EMERALD ex- plicitly divides statistical analysis... EMERALD , NetSTAT is scalable and composi- ble. QuidSCOR [12] is an open-source IDS, though it requires a subscription from its publisher, Qualys Inc
An Approach to Dynamic Service Management in Pervasive Computing Systems
2005-01-01
standard interface to them that is easily accessible by any user. This paper outlines the design of Centaurus , an infrastructure for presenting...based on Extensi- ble Markup Language (XML) for communication, giving the system a uniform and easily adaptable interface. Centaurus defines a...easy and automatic usage. This is the vision that guides our re- search on the Centaurus system. We define a SmartSpace as a dynamic environment that
High-Performance Plastic Sled Design for Polar Traversing
2015-06-01
snow resupply traverses in Antarctica and Greenland tow high- efficiency fuel sleds that consist of flexible fuel bladders strapped to flexi- ble sheets...Foundation, Division of Polar Programs (NSF-PLR), operates over-snow traverses in Antarctica and Greenland to resupply their science stations. The 1030...mile (one way) South Pole Traverse (SPoT) begins at McMurdo Station on Ross Island, travels across the Ross Ice Shelf, up the Leverett Glacier, and
Battery Calendar Life Estimator Manual Modeling and Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jon P. Christophersen; Ira Bloom; Ed Thomas
2012-10-01
The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.
Battery Life Estimator Manual Linear Modeling and Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jon P. Christophersen; Ira Bloom; Ed Thomas
2009-08-01
The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.
Fracture Mechanics Analysis for Short Cracks
1990-02-01
OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION I(if applicable ) United Technologies Res. Ctr. JF S 6c ADDRESS (City. State, and ZIP Code) 7b...plastic fracture mechanics ( EPFM ) with the pioneering works of Hult and McClintock (Ref. 3), Dugdale (Ref. 4), Barenblatt (Ref. 5), Bilby, Cottrell and...Swinden (Refs. 6 and 7), Rice (Ref. 8), and Hutchinson (Ref. 9). EPFM is applica- ble and needed especially for high toughness and low strength
ARES: A System for Real-Time Operational and Tactical Decision Support
1986-12-01
In B]LE LCLGf. 9 NAVAL POSTGRADUATE SCHOOL Monterey, California Vi,-. %*.. THESIS - ’ A RE S A SYSTEM -OR REAL- 1I I .-.. --- OPERATIONAL AND...able) aval Postgraduate School 54 Naval Postgraduate School NN DRESS (City,. State,. and ZIP Code) 7b ADDRESS (City,. State,. and ZIP Code...SUBJECT TERMS (Continue on reverse if necessaty and identify by block number) LD GROUP SUB-GROUP Decision Support System, Logistics Model, Operational
Methanol-Water Type, Low Pressure, Hydrogen Generator
1943-10-05
Air Forces when the Chief of Engineers became responsible for t IU de - velopment of barrage balloon equipment in April 1942. 2. In addition to...amounts to ^7,200 per month per LA battalion ^r VLA battalion operating balloons in tondem, f. Reduction of water requirements by more than ?. ,[300...been approved. How- ever, the plan of develrornent, giv.n in Appendix B, was written and tests of equipment were started under the de , irr.ble
Automated Structural Optimization System (ASTROS). Volume 2. User’s Manual
1988-04-07
preparation and on the use of advanced features that permit the user to modify the standard execution of ASTROS. f^Q^S*. ) I I J...software in considera- ble detail to direct the procedure to perform these alternative functions. The mechanisms by which these more advanced features are...grossly modify the existing capabilities of the system. These more advanced topics are treated in the Programmer’s and Application Manuals which
Fundamental Limits of Delay and Security in Device-to-Device Communication
2013-01-01
systematic MDS (maximum distance separable) codes and random binning strategies that achieve a Pareto optimal delayreconstruction tradeoff. The erasure MD...file, and a coding scheme based on erasure compression and Slepian-Wolf binning is presented. The coding scheme is shown to provide a Pareto optimal...ble) codes and random binning strategies that achieve a Pareto optimal delay- reconstruction tradeoff. The erasure MD setup is then used to propose a
NASA Technical Reports Server (NTRS)
Donoughe, Patrick L; Livingood, John N B
1955-01-01
Exact solution of the laminar-boundary-layer equations for wedge-type flow with constant property values are presented for transpiration-cooled surfaces with variable wall temperatures. The difference between wall and stream temperature is assumed proportional to a power of the distance from the leading edge. Solutions are given for a Prandtl number of 0.7 and ranges of pressure-gradient, cooling-air-flow, and wall-temperature-gradient parameters. Boundary-layer profiles, dimensionless boundary-layer thicknesses, and convective heat-transfer coefficients are given in both tabular and graphical form. Corresponding results for constant wall temperature and for impermeable surfaces are included for comparison purposes.
Parametric resonant triad interactions in a free shear layer
NASA Technical Reports Server (NTRS)
Mallier, R.; Maslowe, S. A.
1993-01-01
We investigate the weakly nonlinear evolution of a triad of nearly-neutral modes superimposed on a mixing layer with velocity profile u bar equals Um + tanh y. The perturbation consists of a plane wave and a pair of oblique waves each inclined at approximately 60 degrees to the mean flow direction. Because the evolution occurs on a relatively fast time scale, the critical layer dynamics dominate the process and the amplitude evolution of the oblique waves is governed by an integro-differential equation. The long-time solution of this equation predicts very rapid (exponential of an exponential) amplification and we discuss the pertinence of this result to vortex pairing phenomena in mixing layers.
Refractive Index Effects on Radiation in an Absorbing, Emitting, and Scattering Laminated Layer
NASA Technical Reports Server (NTRS)
Siegel, R.; Spuckler, C. M.
1993-01-01
A simple set of equations is derived for predicting temperature radiative energy flow in a two-region semitransparent laminated layer in the limit of zero heat conduction. The composite is heated on its two sides by unequal amounts of incident radiation. The two layers of the composite have different refractive indices, and each material absorbs, emits, and isotropically scatters radiation. The interfaces are diffuse, and all interface reflections are included. To illustrate the thermal behavior that is readily calculated from the equations, typical results an given for various optical thicknesses and refractive indices of the layers. Internal reflections have a substantial effect on the temperature distribution and radiative heat flow.
Nonlinear layered lattice model and generalized solitary waves in imperfectly bonded structures.
Khusnutdinova, Karima R; Samsonov, Alexander M; Zakharov, Alexey S
2009-05-01
We study nonlinear waves in a two-layered imperfectly bonded structure using a nonlinear lattice model. The key element of the model is an anharmonic chain of oscillating dipoles, which can be viewed as a basic lattice analog of a one-dimensional macroscopic waveguide. Long nonlinear longitudinal waves in a layered lattice with a soft middle (or bonding) layer are governed by a system of coupled Boussinesq-type equations. For this system we find conservation laws and show that pure solitary waves, which exist in a single equation and can exist in the coupled system in the symmetric case, are structurally unstable and are replaced with generalized solitary waves.
NASA Technical Reports Server (NTRS)
Cebeci, T.; Carr, L. W.
1978-01-01
A computer program is described which provides solutions of two dimensional equations appropriate to laminar and turbulent boundary layers for boundary conditions with an external flow which fluctuates in magnitude. The program is based on the numerical solution of the governing boundary layer equations by an efficient two point finite difference method. An eddy viscosity formulation was used to model the Reynolds shear stress term. The main features of the method are briefly described and instructions for the computer program with a listing are provided. Sample calculations to demonstrate its usage and capabilities for laminar and turbulent unsteady boundary layers with an external flow which fluctuated in magnitude are presented.
Transient Growth Analysis of Compressible Boundary Layers with Parabolized Stability Equations
NASA Technical Reports Server (NTRS)
Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan
2016-01-01
The linear form of parabolized linear stability equations (PSE) is used in a variational approach to extend the previous body of results for the optimal, non-modal disturbance growth in boundary layer flows. This methodology includes the non-parallel effects associated with the spatial development of boundary layer flows. As noted in literature, the optimal initial disturbances correspond to steady counter-rotating stream-wise vortices, which subsequently lead to the formation of stream-wise-elongated structures, i.e., streaks, via a lift-up effect. The parameter space for optimal growth is extended to the hypersonic Mach number regime without any high enthalpy effects, and the effect of wall cooling is studied with particular emphasis on the role of the initial disturbance location and the value of the span-wise wavenumber that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary layer equations, mean flow solutions based on the full Navier-Stokes (NS) equations are used in select cases to help account for the viscous-inviscid interaction near the leading edge of the plate and also for the weak shock wave emanating from that region. These differences in the base flow lead to an increasing reduction with Mach number in the magnitude of optimal growth relative to the predictions based on self-similar mean-flow approximation. Finally, the maximum optimal energy gain for the favorable pressure gradient boundary layer near a planar stagnation point is found to be substantially weaker than that in a zero pressure gradient Blasius boundary layer.
NASA Astrophysics Data System (ADS)
Shaharuz Zaman, Azmanira; Aziz, Ahmad Sukri Abd; Ali, Zaileha Md
2017-09-01
The double slips effect on the magnetohydrodynamic boundary layer flow over an exponentially stretching sheet with suction/blowing, radiation, chemical reaction and heat source is presented in this analysis. By using the similarity transformation, the governing partial differential equations of momentum, energy and concentration are transformed into the non-linear ordinary equations. These equations are solved using Runge-Kutta-Fehlberg method with shooting technique in MAPLE software environment. The effects of the various parameter on the velocity, temperature and concentration profiles are graphically presented and discussed.
NASA Astrophysics Data System (ADS)
Parand, Kourosh; Mahdi Moayeri, Mohammad; Latifi, Sobhan; Delkhosh, Mehdi
2017-07-01
In this paper, a spectral method based on the four kinds of rational Chebyshev functions is proposed to approximate the solution of the boundary layer flow of an Eyring-Powell fluid over a stretching sheet. First, by using the quasilinearization method (QLM), the model which is a nonlinear ordinary differential equation is converted to a sequence of linear ordinary differential equations (ODEs). By applying the proposed method on the ODEs in each iteration, the equations are converted to a system of linear algebraic equations. The results indicate the high accuracy and convergence of our method. Moreover, the effects of the Eyring-Powell fluid material parameters are discussed.
Critical study of higher order numerical methods for solving the boundary-layer equations
NASA Technical Reports Server (NTRS)
Wornom, S. F.
1978-01-01
A fourth order box method is presented for calculating numerical solutions to parabolic, partial differential equations in two variables or ordinary differential equations. The method, which is the natural extension of the second order box scheme to fourth order, was demonstrated with application to the incompressible, laminar and turbulent, boundary layer equations. The efficiency of the present method is compared with two point and three point higher order methods, namely, the Keller box scheme with Richardson extrapolation, the method of deferred corrections, a three point spline method, and a modified finite element method. For equivalent accuracy, numerical results show the present method to be more efficient than higher order methods for both laminar and turbulent flows.
Damping Property and Vibration Analysis of Blades with Viscoelastic Layers
NASA Astrophysics Data System (ADS)
Huang, Shyh-Chin; Chiu, Yi-Jui; Lu, Yao-Ju
This paper showed the damping effect and the vibration analysis of a shaft-disk-blade system with viscoelastic layers on blades. The focus of the research is on the shaft's torsional vibration and the blade's bending vibration. The equations of motion were derived from the energy approach. This model, unlike the previous, used only two displacement functions for layered blades. Then, the assumed-modes method was employed to discretize the equations. The analyses of natural frequencies damping property were discussed afterwards. The numerical results showed the damping effects due to various constraining layer (CL) thickness and viscoelastic material (VEM) thickness. The research also compared FRF's of the systems with and without viscoelastic layers. It is concluded that both CL and VEM layers promote the damping capability but the marginal effect decreases with their thickness. The CLD treatment also found drop the natural frequencies slightly.
a Fractal Permeability Model Coupling Boundary-Layer Effect for Tight Oil Reservoirs
NASA Astrophysics Data System (ADS)
Wang, Fuyong; Liu, Zhichao; Jiao, Liang; Wang, Congle; Guo, Hu
A fractal permeability model coupling non-flowing boundary-layer effect for tight oil reservoirs was proposed. Firstly, pore structures of tight formations were characterized with fractal theory. Then, with the empirical equation of boundary-layer thickness, Hagen-Poiseuille equation and fractal theory, a fractal torturous capillary tube model coupled with boundary-layer effect was developed, and verified with experimental data. Finally, the parameters influencing effective liquid permeability were quantitatively investigated. The research results show that effective liquid permeability of tight formations is not only decided by pore structures, but also affected by boundary-layer distributions, and effective liquid permeability is the function of fluid type, fluid viscosity, pressure gradient, fractal dimension, tortuosity fractal dimension, minimum pore radius and maximum pore radius. For the tight formations dominated with nanoscale pores, boundary-layer effect can significantly reduce effective liquid permeability, especially under low pressure gradient.
Nonlinear spatial evolution of inviscid instabilities on hypersonic boundary layers
NASA Technical Reports Server (NTRS)
Wundrow, David W.
1996-01-01
The spatial development of an initially linear vorticity-mode instability on a compressible flat-plate boundary layer is considered. The analysis is done in the framework of the hypersonic limit where the free-stream Mach number M approaches infinity. Nonlinearity is shown to become important locally, in a thin critical layer, when sigma, the deviation of the phase speed from unity, becomes o(M(exp -8/7)) and the magnitude of the pressure fluctuations becomes 0(sigma(exp 5/2)M(exp 2)). The unsteady flow outside the critical layer takes the form of a linear instability wave but with its amplitude completely determined by the nonlinear flow within the critical layer. The coupled set of equations which govern the critical-layer dynamics reflect a balance between spatial-evolution, (linear and nonlinear) convection and nonlinear vorticity-generation terms. The numerical solution to these equations shows that nonlinear effects produce a dramatic reduction in the instability-wave amplitude.
Resource Sharing via Planed Relay for [InlineEquation not available: see fulltext.
NASA Astrophysics Data System (ADS)
Shen, Chong; Rea, Susan; Pesch, Dirk
2008-12-01
We present an improved version of adaptive distributed cross-layer routing algorithm (ADCR) for hybrid wireless network with dedicated relay stations ([InlineEquation not available: see fulltext.]) in this paper. A mobile terminal (MT) may borrow radio resources that are available thousands mile away via secure multihop RNs, where RNs are placed at pre-engineered locations in the network. In rural places such as mountain areas, an MT may also communicate with the core network, when intermediate MTs act as relay node with mobility. To address cross-layer network layers routing issues, the cascaded ADCR establishes routing paths across MTs, RNs, and cellular base stations (BSs) and provides appropriate quality of service (QoS). We verify the routing performance benefits of [InlineEquation not available: see fulltext.] over other networks by intensive simulation.
Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas
2014-01-01
In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.
Accessible solitons of fractional dimension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Wei-Ping, E-mail: zhongwp6@126.com; Texas A&M University at Qatar, P.O. Box 23874, Doha; Belić, Milivoj
We demonstrate that accessible solitons described by an extended Schrödinger equation with the Laplacian of fractional dimension can exist in strongly nonlocal nonlinear media. The soliton solutions of the model are constructed by two special functions, the associated Legendre polynomials and the Laguerre polynomials in the fraction-dimensional space. Our results show that these fractional accessible solitons form a soliton family which includes crescent solitons, and asymmetric single-layer and multi-layer necklace solitons. -- Highlights: •Analytic solutions of a fractional Schrödinger equation are obtained. •The solutions are produced by means of self-similar method applied to the fractional Schrödinger equation with parabolic potential.more » •The fractional accessible solitons form crescent, asymmetric single-layer and multilayer necklace profiles. •The model applies to the propagation of optical pulses in strongly nonlocal nonlinear media.« less
NASA Technical Reports Server (NTRS)
Clark, R. K.
1972-01-01
The differential equations governing the transient response of a one-dimensional ablative thermal protection system undergoing stagnation ablation are derived. These equations are for thermal nonequilibrium effects between the pyrolysis gases and the char layer and kinetically controlled chemical reactions and mass transfer between the pyrolysis gases and the char layer. The boundary conditions are written for the particular case of stagnation heating with surface removal by oxidation or sublimation and pyrolysis of the uncharred layer occurring in a plane. The governing equations and boundary conditions are solved numerically using the modified implicit method (Crank-Nicolson method). Numerical results are compared with exact solutions for a number of simplified cases. The comparison is favorable in each instance.
Investigations on entropy layer along hypersonic hyperboloids using a defect boundary layer
NASA Technical Reports Server (NTRS)
Brazier, J. P.; Aupoix, B.; Cousteix, J.
1992-01-01
A defect approach coupled with matched asymptotic expansions is used to derive a new set of boundary layer equations. This method ensures a smooth matching of the boundary layer with the inviscid solution. These equations are solved to calculate boundary layers over hypersonic blunt bodies involving the entropy gradient effect. Systematic comparisons are made for both axisymmetric and plane flows in several cases with different Mach and Reynolds numbers. After a brief survey of the entropy layer characteristics, the defect boundary layer results are compared with standard boundary layer and full Navier-Stokes solutions. The entropy gradient effects are found to be more important in the axisymmetric case than in the plane one. The wall temperature has a great influence on the results through the displacement effect. Good predictions can be obtained with the defect approach over a cold wall in the nose region, with a first order solution. However, the defect approach gives less accurate results far from the nose on axisymmetric bodies because of the thinning of the entropy layer.
On the eigenfrequencies of elastic shear waves propagating in an inhomogeneous layer
NASA Astrophysics Data System (ADS)
Khachatryan, V. M.
2018-04-01
In this work, we consider the problem of eigenfrequencies of elastic shear waves propagating in a layer whose Young’s modulus and density are functions of the longitudinal coordinate. Taking into account the material inhomogeneity makes the problem of the eigenfrequencies of the waves propagating in the layer more complicated. In this paper, the problem of pure shear is considered. To solve the problem, we use an integral formula which allows us to represent the general solution of the original equation with variable coefficients in terms of the general solution of the accompanying equation with constant coefficients.
Calculation methods for compressible turbulent boundary layers, 1976
NASA Technical Reports Server (NTRS)
Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.
1977-01-01
Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.
Dust transportation in bounday layers on complex areas
NASA Astrophysics Data System (ADS)
Karelsky, Kirill; Petrosyan, Arakel
2017-04-01
This presentation is aimed at creating and realization of new physical model of impurity transfer (solid particles and heavy gases) in areas with non-flat and/or nonstationary boundaries. The main idea of suggested method is to use non-viscous equations for solid particles transport modeling in the vicinity of complex boundary. In viscous atmosphere with as small as one likes coefficient of molecular viscosity, the non-slip boundary condition on solid surface must be observed. This postulates the reduction of velocity to zero at a solid surface. It is unconditionally in this case Prandtle hypothesis must be observed: for rather wide range of conditions in the surface neighboring layers energy dissipation of atmosphere flows is comparable by magnitude with manifestation of inertia forces. That is why according to Prandtle hypothesis in atmosphere movement characterizing by a high Reynolds number the boundary layer is forming near a planet surface, within which the required transition from zero velocities at the surface to magnitudes at the external boundary of the layer that are quite close to ones in ideal atmosphere flow. In that layer fast velocity gradients cause viscous effects to be comparable in magnitude with inertia forces influence. For conditions considered essential changes of hydrodynamic fields near solid boundary caused not only by nonslip condition but also by a various relief of surface: mountains, street canyons, individual buildings. Transport of solid particles, their ascent and precipitation also result in dramatic changes of meteorological fields. As dynamic processes of solid particles transfer accompanying the flow past of complex relief surface by wind flows is of our main interest we are to use equations of non-viscous hydrodynamic. We should put up with on the one hand idea of high wind gradients in the boundary layer and on the other hand disregard of molecular viscosity in two-phase atmosphere equations. We deal with describing high field gradients with the aid of scheme viscosity of numerical algorithm used to model near-surface phenomena. This idea is implemented in the model of ideal gas equations with variable equation of state describing particulates transportation within boundary layer with obstacles.
NASA Technical Reports Server (NTRS)
Gupta, R. N.
1972-01-01
The relaxation of the accelerating-gas boundary layer to the test-gas boundary layer over a flat plate in an expansion tube is analyzed. Several combinations of test gas and acceleration gas are considered. The problem is treated in two conically similar limits: (1) when the time lag between the arrival of the shock and the interface at the leading edge of the plate is very large, and (2) when this lag is negligible. The time-dependent laminar-boundary-layer equations of a binary mixture of perfect gases are taken as the flow-governing equations. This coupled set of differential equations, written in terms of the Lam-Crocco variables, has been solved by a line-relaxation finite-difference techniques. The results presented include the Stanton number and the local skin-friction coefficient as functions of shock Mach number and the nondimensional distance-time variable. The results indicate that more than 95 percent of the test-gas boundary layer exists over a length, measured from the leading edge of the plate, equal to about three-tenths of the distance traversed by the interface in the free stream.
Stochastic layer scaling in the two-wire model for divertor tokamaks
NASA Astrophysics Data System (ADS)
Ali, Halima; Punjabi, Alkesh; Boozer, Allen
2009-06-01
The question of magnetic field structure in the vicinity of the separatrix in divertor tokamaks is studied. The authors have investigated this problem earlier in a series of papers, using various mathematical techniques. In the present paper, the two-wire model (TWM) [Reiman, A. 1996 Phys. Plasmas 3, 906] is considered. It is noted that, in the TWM, it is useful to consider an extra equation expressing magnetic flux conservation. This equation does not add any more information to the TWM, since the equation is derived from the TWM. This equation is useful for controlling the step size in the numerical integration of the TWM equations. The TWM with the extra equation is called the flux-preserving TWM. Nevertheless, the technique is apparently still plagued by numerical inaccuracies when the perturbation level is low, resulting in an incorrect scaling of the stochastic layer width. The stochastic broadening of the separatrix in the flux-preserving TWM is compared with that in the low mn (poloidal mode number m and toroidal mode number n) map (LMN) [Ali, H., Punjabi, A., Boozer, A. and Evans, T. 2004 Phys. Plasmas 11, 1908]. The flux-preserving TWM and LMN both give Boozer-Rechester 0.5 power scaling of the stochastic layer width with the amplitude of magnetic perturbation when the perturbation is sufficiently large [Boozer, A. and Rechester, A. 1978, Phys. Fluids 21, 682]. The flux-preserving TWM gives a larger stochastic layer width when the perturbation is low, while the LMN gives correct scaling in the low perturbation region. Area-preserving maps such as the LMN respect the Hamiltonian structure of field line trajectories, and have the added advantage of computational efficiency. Also, for a $1\\frac12$ degree of freedom Hamiltonian system such as field lines, maps do not give Arnold diffusion.
An analysis of a charring ablator with thermal nonequilibrium, chemical kinetics, and mass transfer
NASA Technical Reports Server (NTRS)
Clark, R. K.
1973-01-01
The differential equations governing the transient response of a one-dimensional ablative thermal protection system are presented for thermal nonequilibrium between the pyrolysis gases and the char layer and with finite rate chemical reactions occurring. The system consists of three layers (the char layer, the uncharred layer, and an optical insulation layer) with concentrated heat sinks at the back surface and between the second and third layers. The equations are solved numerically by using a modified implicit finite difference scheme to obtain solutions for the thickness of the charred and uncharred layers, surface recession and pyrolysis rates, solid temperatures, porosity profiles, and profiles of pyrolysis-gas temperature, pressure, composition, and flow rate. Good agreement is obtained between numerical results and exact solutions for a number of simplified cases. The complete numerical analysis is used to obtain solutions for an ablative system subjected to a constant heating environment. Effects of thermal, chemical, and mass transfer processes are shown.
Application of the implicit MacCormack scheme to the PNS equations
NASA Technical Reports Server (NTRS)
Lawrence, S. L.; Tannehill, J. C.; Chaussee, D. S.
1983-01-01
The two-dimensional parabolized Navier-Stokes equations are solved using MacCormack's (1981) implicit finite-difference scheme. It is shown that this method for solving the parabolized Navier-Stokes equations does not require the inversion of block tridiagonal systems of algebraic equations and allows the original explicit scheme to be employed in those regions where implicit treatment is not needed. The finite-difference algorithm is discussed and the computational results for two laminar test cases are presented. Results obtained using this method for the case of a flat plate boundary layer are compared with those obtained using the conventional Beam-Warming scheme, as well as those obtained from a boundary layer code. The computed results for a more severe test of the method, the hypersonic flow past a 15 deg compression corner, are found to compare favorably with experiment and a numerical solution of the complete Navier-Stokes equations.
Solution of the Fokker-Planck equation in a wind turbine array boundary layer
NASA Astrophysics Data System (ADS)
Melius, Matthew S.; Tutkun, Murat; Cal, Raúl Bayoán
2014-07-01
Hot-wire velocity signals from a model wind turbine array boundary layer flow wind tunnel experiment are analyzed. In confirming Markovian properties, a description of the evolution of the probability density function of velocity increments via the Fokker-Planck equation is attained. Solution of the Fokker-Planck equation is possible due to the direct computation of the drift and diffusion coefficients from the experimental measurement data which were acquired within the turbine canopy. A good agreement is observed in the probability density functions between the experimental data and numerical solutions resulting from the Fokker-Planck equation, especially in the far-wake region. The results serve as a tool for improved estimation of wind velocity within the array and provide evidence that the evolution of such a complex and turbulent flow is also governed by a Fokker-Planck equation at certain scales.
NASA Technical Reports Server (NTRS)
Kral, Linda D.; Ladd, John A.; Mani, Mori
1995-01-01
The objective of this viewgraph presentation is to evaluate turbulence models for integrated aircraft components such as the forebody, wing, inlet, diffuser, nozzle, and afterbody. The one-equation models have replaced the algebraic models as the baseline turbulence models. The Spalart-Allmaras one-equation model consistently performs better than the Baldwin-Barth model, particularly in the log-layer and free shear layers. Also, the Sparlart-Allmaras model is not grid dependent like the Baldwin-Barth model. No general turbulence model exists for all engineering applications. The Spalart-Allmaras one-equation model and the Chien k-epsilon models are the preferred turbulence models. Although the two-equation models often better predict the flow field, they may take from two to five times the CPU time. Future directions are in further benchmarking the Menter blended k-w/k-epsilon and algorithmic improvements to reduce CPU time of the two-equation model.
NASA Technical Reports Server (NTRS)
Loitsianskii. L. G.
1956-01-01
The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.
NASA Astrophysics Data System (ADS)
Latyshev, A. V.; Gordeeva, N. M.
2017-09-01
We obtain an analytic solution of the boundary problem for the behavior (fluctuations) of an electron plasma with an arbitrary degree of degeneracy of the electron gas in the conductive layer in an external electric field. We use the kinetic Vlasov-Boltzmann equation with the Bhatnagar-Gross-Krook collision integral and the Maxwell equation for the electric field. We use the mirror boundary conditions for the reflections of electrons from the layer boundary. The boundary problem reduces to a one-dimensional problem with a single velocity. For this, we use the method of consecutive approximations, linearization of the equations with respect to the absolute distribution of the Fermi-Dirac electrons, and the conservation law for the number of particles. Separation of variables then helps reduce the problem equations to a characteristic system of equations. In the space of generalized functions, we find the eigensolutions of the initial system, which correspond to the continuous spectrum (Van Kampen mode). Solving the dispersion equation, we then find the eigensolutions corresponding to the adjoint and discrete spectra (Drude and Debye modes). We then construct the general solution of the boundary problem by decomposing it into the eigensolutions. The coefficients of the decomposition are given by the boundary conditions. This allows obtaining the decompositions of the distribution function and the electric field in explicit form.
Real-Gas Effects on Binary Mixing Layers
NASA Technical Reports Server (NTRS)
Okong'o, Nora; Bellan, Josette
2003-01-01
This paper presents a computational study of real-gas effects on the mean flow and temporal stability of heptane/nitrogen and oxygen/hydrogen mixing layers at supercritical pressures. These layers consist of two counterflowing free streams of different composition, temperature, and density. As in related prior studies reported in NASA Tech Briefs, the governing conservation equations were the Navier-Stokes equations of compressible flow plus equations for the conservation of total energy and of chemical- species masses. In these equations, the expressions for heat fluxes and chemical-species mass fluxes were derived from fluctuation-dissipation theory and incorporate Soret and Dufour effects. Similarity equations for the streamwise velocity, temperature, and mass fractions were derived as approximations to the governing equations. Similarity profiles showed important real-gas, non-ideal-mixture effects, particularly for temperature, in departing from the error-function profile, which is the similarity solution for incompressible flow. The temperature behavior was attributed to real-gas thermodynamics and variations in Schmidt and Prandtl numbers. Temporal linear inviscid stability analyses were performed using the similarity and error-function profiles as the mean flow. For the similarity profiles, the growth rates were found to be larger and the wavelengths of highest instability shorter, relative to those of the errorfunction profiles and to those obtained from incompressible-flow stability analysis. The range of unstable wavelengths was found to be larger for the similarity profiles than for the error-function profiles
Guided elastic waves in a pre-stressed compressible interlayer
Sotiropoulos
2000-03-01
The propagation of guided elastic waves in a pre-stressed elastic compressible layer embedded in a different compressible material is examined. The waves propagate parallel to the planar layer interfaces as a superposed dynamic stress state on the statically pre-stressed layer and host material. The underlying stress condition in the two materials is characterized by equibiaxial in-plane deformations with common principal axes of strain, one of the axes being perpendicular to the layering. Both materials have arbitrary strain energy functions. The dispersion equation is derived in explicit form. Analysis of the dispersion equation reveals the propagation characteristics and their dependence on frequency, material parameters and stress parameters. Combinations of these parameters are also defined for which guided waves cannot propagate.
Heat transfer to the transpired turbulent boundary layer.
NASA Technical Reports Server (NTRS)
Kays, W. M.
1972-01-01
This paper contains a summarization of five years work on an investigation on heat transfer to the transpired turbulent boundary layer. Experimental results are presented for friction coefficient and Stanton number over a wide range of blowing and suction for the case of constant free-stream velocity, holding certain blowing parameters constant. The problem of the accelerated turbulent boundary layer with transpiration is considered, experimental data are presented and discussed, and theoretical models for solution of the momentum equation under these conditions are presented. Data on turbulent Prandtl number are presented so that solutions to the energy equation may be obtained. Some examples of boundary layer heat transfer and friction coefficient predictions are presented using one of the models discussed, employing a finite difference solution method.
NASA Technical Reports Server (NTRS)
Stochl, R. J.
1974-01-01
An experimental investigation was conducted to determine the thermal effectiveness of an aluminized Mylar-silk net insulation system containing up to 160 layers. The experimentally measured heat flux was compared with results predicted by using (1) a previously developed semi-empirical equation and (2) an effective-thermal-conductivity value. All tests were conducted at a nominal hot-boundary temperature of 294 K (530 R) with liquid hydrogen as the heat sink. The experimental results show that the insulation performed as expected and that both the semi-empirical equation and effective thermal conductivity of a small number of layers were adequate in predicting the thermal performance of a large number of layers of insulation.
The Effect of Common Therapeutic Drugs on Vision
1975-05-01
and has been aug- 1964; Potts, 196ut Carr et al, 1968; gested for the treatment of infectious Leopold, 1968). mononucleosis (Cawley and Myers, 1962). It...studies are complicated ble changes in the eyes of guinea pigs, not only by variations in dosage, slight effects in rabbits and monkeys, ch.l’nic or...serious ocular complications : blurring of vi- 1. Aralen was developed as a ma- sion, difficulty in accommodation, larial suppressive and is still
1989-07-01
MONITORING ORGANIZATION REPORT NUMBER(S) Ga . NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION NATO Symposium...is a brief consideration of several new drugs which may prove to be valua- ble therapeutic agents in trauma, shock and related conditions. In...Bertrand, M. Lismonde Vol Detection of Pentane as a Measurement of Lipid Peroxidation in Humans Using Gas Chromatography With a Photoionization Detector
Considerations for Operations on Urban Terrain by Light Forces
1985-01-01
precaution to make themselves "less detecta.ble* in the city. Some, because of the way in which they draped belts of ammunition over themse es...German Infantry Weapons of world Wa_ !I. London: 4rms and Armour Press, 1969. Bavly. Dan. Fire in Beirut. Briarcliff Manor: Stein and Day Publishers, 1984...Echelon.* Unpublished paper, Fort Leavenworth, 1983. Smith, Field Officer R.G. "The Soviet Armoured threat and NATO Anti- Armour capabilities." The- Army
2013-10-01
on body weight regulation through hormonal alterations (e.g., leptin, ghrelin , insulin) that may affect appetite regulation, and sleep- mediated...sleep duration for trou- ble sleeping in multivariable modeling yielded nearly identical results, with significantly higher risk seen with ,6 h of sleep...Riddle, Colonel (Retired) (U.S. Air Force, Bio - medical Science Corps); Margaret Ryan (Naval Hospital Camp Pendleton, Camp Pendleton, CA); and Timothy
The Metallurgical Design of Steels for Optimum Mechanical Properties
1945-10-22
to’casting and working), and to some extent, during deforma- tion. Th,. vwr{oua alloying elements have little effect upon the nature of the...procoed, tWho so-ca~lled "equilibrium~ states". This topic lies in thc fiold of thcr- modynrunics. When the equilibrium conditions are( understood, it...is ~o[ssi- ble to considnr thc rates Pand the moch~rmisms of the tra.-nsforr-Wtins: ton- ice in the field of reaction kinetics. Equilibrium Conditions
Lessons Not Learned: Civil-Military Disconnect in Afghanistan
2010-09-01
NATO- COL. CHARLES D. ALLEN is a retired Army officer and a professor of cultural science at the Army War College. PERSPECTIVES Lessons not learned...T he relief of two four-star operational commanders inAfghanistan, America’s “ war of necessity,” warrants anexamination of not only civil-military...respected offi- cer with a stellar reputation within the Army, he was responsi- ble for the secondary theater of war while the national focus was on
The People’s Liberation Army and China in Transition
2003-08-01
and long- range land-attack cruise missiles. China currently has just one FBM, the Xia, which may not be opera - ble. Its successor class, the Type...prospects for U.S.- China relations and military-to-military cooperation, and the implications of these developments for U.S. defense planning...A R T I THE PEOPLE’S LIBERATION ARMY AND CHINA IN TRANSITION edited by Stephen J. Flanagan and Michael E. Marti, with contributions from: Richard
Multi-Sensory Features for Personnel Detection at Border Crossings
2011-07-08
challenging problem. Video sensors consume high amounts of power and require a large volume for storage. Hence, it is preferable to use non- imaging sensors...temporal distribution of gait beats [5]. At border crossings, animals such as mules, horses, or donkeys are often known to carry loads. Animal hoof...field, passive ultrasonic, sonar, and both infrared and visi- ble video sensors. Each sensor suite is placed along the path with a spacing of 40 to
The Validity of Conventional Assumptions Concerning Flexible Response
1989-01-01
could hold until reinforcements arrive. A Soviet attack on NATO would be met by a NATO covering force, consisting largely of armoured cavalry forma...inter- diction of the follow-on forces. Air Defense Under [.resent NATO operational concepts, most aircraft capa- ble of fighting alr-to-air will be...existing Nike and Hercules units by 1990--two years early to save money. The result is critical gaps in defense of English Channel ports. (29:36) Follow-on
NASA Astrophysics Data System (ADS)
Lin, Yo-Sheng; Hu, Chun-Hao; Chang, Chi-Ho; Tsao, Ping-Chang
2018-06-01
In this work, we demonstrate novel one-dimensional (1D) and two-dimensional (2D) antenna arrays for both microwave wireless power transfer (MWPT) systems and dual-antenna transceivers. The antenna array can be used as the MWPT receiving antenna of an integrated MWPT and Bluetooth (BLE) communication module (MWPT-BLE module) for smart CNC (computer numerical control) spindle incorporated with the cloud computing system SkyMars. The 2D antenna array has n rows of 1 × m 1D array, and each array is composed of multiple (m) differential feeding antenna elements. Each differential feeding antenna element is a differential feeding structure with a microstrip antenna stripe. The stripe length is shorter than one wavelength to minimise the antenna area and to prevent being excited to a high-order mode. That is, the differential feeding antenna element can suppress the even mode. The mutual coupling between the antenna elements can be suppressed, and the isolation between the receiver and the transmitter can be enhanced. An inclination angle of the main beam aligns with the broadside, and the main beam is further concentrated and shrunk at the elevation direction. Moreover, if more differential feeding antenna elements are used, antenna gain and isolation can be further enhanced. The excellent performance of the proposed antenna arrays indicates that they are suitable for both MWPT systems and dual-antenna transceivers.
Sm, Saumya; Mahaboob Basha, P
2017-06-01
Fluoride toxicity is known to pose infertility in fluoride-intoxicated animals as well as in people residing in fluoride endemic zones. The present study addresses the degree of impairments caused due to co-exposure of high fluoride toxicity in diabetic mice. Swiss mice, Mus musculus, were subjected to fluoride toxicity by providing fluoride-supplemented drinking water (600 ppm NaF) for a period of 30 days after the confirmation of streptozotocin-induced diabetes(STZ, 50 mg/kgbw). Consequently, aggravated hyperglycemia and tissue fluoride accumulation were witnessed in fluoride-intoxicated diabetic mice; later, these toxicated mice were treated with ginseng extract (GE) and banaba leaf extract, (BLE) at dose of 150 mg/kgbw/day alone and in combination for 15 and 30-day duration to check the efficacy of phytoextracts in reversing the toxicity. The spermatological indices studied, such as sperm density, motility, viability and morphology as well as the testicular biochemical parameters showed enhanced impairment in reproductive status of fluoride-intoxicated diabetic mice. Further, 15-days administration of GE and BLE in combination at a dose of 150 mg/kgbw/day was found to be beneficial in normalizing the alterations observed upon fluoride intoxication to diabetic mice. However, the correlates showed moderate association between blood glucose levels and the spermatological as well as biochemical indices wherein the tissue fluoride levels correlate least.
Early Steps in Automated Behavior Mapping via Indoor Sensors.
Arsan, Taner; Kepez, Orcun
2017-12-16
Behavior mapping (BM) is a spatial data collection technique in which the locational and behavioral information of a user is noted on a plan layout of the studied environment. Among many indoor positioning technologies, we chose Wi-Fi, BLE beacon and ultra-wide band (UWB) sensor technologies for their popularity and investigated their applicability in BM. We tested three technologies for error ranges and found an average error of 1.39 m for Wi-Fi in a 36 m² test area (6 m × 6 m), 0.86 m for the BLE beacon in a 37.44 m² test area (9.6 m × 3.9 m) and 0.24 m for ultra-wide band sensors in a 36 m² test area (6 m × 6 m). We simulated the applicability of these error ranges for real-time locations by using a behavioral dataset collected from an active learning classroom. We used two UWB tags simultaneously by incorporating a custom-designed ceiling system in a new 39.76 m² test area (7.35 m × 5.41 m). We considered 26 observation points and collected data for 180 s for each point (total 4680) with an average error of 0.2072 m for 23 points inside the test area. Finally, we demonstrated the use of ultra-wide band sensor technology for BM.
Early Steps in Automated Behavior Mapping via Indoor Sensors
Arsan, Taner
2017-01-01
Behavior mapping (BM) is a spatial data collection technique in which the locational and behavioral information of a user is noted on a plan layout of the studied environment. Among many indoor positioning technologies, we chose Wi-Fi, BLE beacon and ultra-wide band (UWB) sensor technologies for their popularity and investigated their applicability in BM. We tested three technologies for error ranges and found an average error of 1.39 m for Wi-Fi in a 36 m2 test area (6 m × 6 m), 0.86 m for the BLE beacon in a 37.44 m2 test area (9.6 m × 3.9 m) and 0.24 m for ultra-wide band sensors in a 36 m2 test area (6 m × 6 m). We simulated the applicability of these error ranges for real-time locations by using a behavioral dataset collected from an active learning classroom. We used two UWB tags simultaneously by incorporating a custom-designed ceiling system in a new 39.76 m2 test area (7.35 m × 5.41 m). We considered 26 observation points and collected data for 180 s for each point (total 4680) with an average error of 0.2072 m for 23 points inside the test area. Finally, we demonstrated the use of ultra-wide band sensor technology for BM. PMID:29258178
The Design of WORKER'S Behavior Analysis Method in Workplace Using Indoor Positioning Technology
NASA Astrophysics Data System (ADS)
Tabata, K.; Konno, H.; Nakajima, M.
2016-06-01
This study presents a method for analyzing workers' behavior using indoor positioning technology and field test in the workplace. Recently, various indoor positioning methods, such as Wi-Fi, Bluetooth low energy (BLE), visible light communication, Japan's indoor messaging system, ultra-wide band (UWB), and pedestrian dead reckoning (PDR), have been investigated. The development of these technologies allows tracking of movement of both people and/or goods in indoor spaces, people and/or goods behavior analysis is expected as one of the key technologies for operation optimization. However, when we use these technologies for human tracking, there are some problem as follows. 1) Many cases need to use dedicated facilities (e.g. UWB). 2) When we use smartphone as sensing device, battery depletion is one of the big problem (especially using PDR). 3) the accuracy is instability for tracking (e.g. Wi-Fi). Based on these matters, in this study we designed and developed an indoor positioning system using BLE positioning. And, we adopted smartphone for business use as sensing device, developed a smartphone application runs on android OS. Moreover, we conducted the field test of developed system at Itoki Corporation's ITOKI Tokyo Innovation Center, SYNQA, office (Tokyo, Japan). Over 40 workers participated in this field test, and worker tracking log data were collected for 6 weeks. We analyzed the characteristics of the workers' behavior using this log data as a prototyping.
Large Eddy Simulation of a Supercritical Turbulent Mixing Layer
NASA Astrophysics Data System (ADS)
Sheikhi, Reza; Hadi, Fatemeh; Safari, Mehdi
2017-11-01
Supercritical turbulent flows are relevant to a wide range of applications such as supercritical power cycles, gas turbine combustors, rocket propulsion and internal combustion engines. Large eddy simulation (LES) analysis of such flows involves solving mass, momentum, energy and scalar transport equations with inclusion of generalized diffusion fluxes. These equations are combined with a real gas equation of state and the corresponding thermodynamic mixture variables. Subgrid scale models are needed for not only the conventional convective terms but also the additional high pressure effects arising due to the nonlinearity associated with generalized diffusion fluxes and real gas equation of state. In this study, LES is carried out to study the high pressure turbulent mixing of methane with carbon dioxide in a temporally developing mixing layer under supercritical condition. LES results are assessed by comparing with data obtained from direct numerical simulation (DNS) of the same layer. LES predictions agree favorably with DNS data and represent several key supercritical turbulent flow features such as high density gradient regions. Supported by DOE Grant SC0017097; computational support is provided by DOE National Energy Research Scientific Computing Center.
NASA Technical Reports Server (NTRS)
Suzen, Y. Bora; Huang, P. G.; Hultgren, Lennart S.; Ashpis, David E.
2001-01-01
A new transport equation for the intermittency factor was proposed to predict separated and transitional boundary layers under low-pressure turbine airfoil conditions. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub t), with the intermittency factor, gamma. Turbulent quantities are predicted by using Menter's two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model, which not only can reproduce the experimentally observed streamwise variation of the intermittency in the transition zone, but also can provide a realistic cross-stream variation of the intermittency profile. In this paper, the intermittency model is used to predict a recent separated and transitional boundary layer experiment under low pressure turbine airfoil conditions. The experiment provides detailed measurements of velocity, turbulent kinetic energy and intermittency profiles for a number of Reynolds numbers and freestream turbulent intensity conditions and is suitable for validation purposes. Detailed comparisons of computational results with experimental data are presented and good agreements between the experiments and predictions are obtained.
NASA Technical Reports Server (NTRS)
Suzen, Y. B.; Huang, P. G.; Hultgren, Lennart S.; Ashpis, David E.
2003-01-01
A new transport equation for the intermittency factor was proposed to predict separated and transitional boundary layers under low-pressure turbine airfoil conditions. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, t , with the intermittency factor, y. Turbulent quantities are predicted by using Menter s two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model, which not only can reproduce the experimentally observed streamwise variation of the intermittency in the transition zone, but also can provide a realistic cross-stream variation of the intermittency profile. In this paper, the intermittency model is used to predict a recent separated and transitional boundary layer experiment under low pressure turbine airfoil conditions. The experiment provides detailed measurements of velocity, turbulent kinetic energy and intermittency profiles for a number of Reynolds numbers and freestream turbulent intensity conditions and is suitable for validation purposes. Detailed comparisons of computational results with experimental data are presented and good agreements between the experiments and predictions are obtained.
Some Basic Aspects of Magnetohydrodynamic Boundary-Layer Flows
NASA Technical Reports Server (NTRS)
Hess, Robert V.
1959-01-01
An appraisal is made of existing solutions of magnetohydrodynamic boundary-layer equations for stagnation flow and flat-plate flow, and some new solutions are given. Since an exact solution of the equations of magnetohydrodynamics requires complicated simultaneous treatment of the equations of fluid flow and of electromagnetism, certain simplifying assumptions are generally introduced. The full implications of these assumptions have not been brought out properly in several recent papers. It is shown in the present report that for the particular law of deformation which the magnetic lines are assumed to follow in these papers a magnet situated inside the missile nose would not be able to take up any drag forces; to do so it would have to be placed in the flow away from the nose. It is also shown that for the assumption that potential flow is maintained outside the boundary layer, the deformation of the magnetic lines is restricted to small values. The literature contains serious disagreements with regard to reductions in heat-transfer rates due to magnetic action at the nose of a missile, and these disagreements are shown to be mainly due to different interpretations of reentry conditions rather than more complicated effects. In the present paper the magnetohydrodynamic boundary-layer equation is also expressed in a simple form that is especially convenient for physical interpretation. This is done by adapting methods to magnetic forces which in the past have been used for forces due to gravitational or centrifugal action. The simplified approach is used to develop some new solutions of boundary-layer flow and to reinterpret certain solutions existing in the literature. An asymptotic boundary-layer solution representing a fixed velocity profile and shear is found. Special emphasis is put on estimating skin friction and heat-transfer rates.
NASA Astrophysics Data System (ADS)
Rao, R. R.; Horii, T.; Masumoto, Y.; Mizuno, K.
2017-08-01
The observed variability of zonal currents (ZC) at the Equator, 90°E shows a strong seasonal cycle in the near-surface 40-350 m water column with periodic east-west reversals most pronounced at semiannual frequency. Superposed on this, a strong intraseasonal variability of 30-90 day periodicity is also prominently seen in the near-surface layer (40-80 m) almost throughout the year with the only exception of February-March. An eastward flowing equatorial undercurrent (EUC) is present in the depth range of 80-160 m during March-April and October-November. The observed intraseasonal variability in the near-surface layer is primarily determined by the equatorial zonal westerly wind bursts (WWBs) through local frictional coupling between the zonal flow in the surface layer and surface zonal winds and shows large interannual variability. The eastward flowing EUC maintained by the ZPG set up by the east-west slope of the thermocline remotely controlled by the zonal wind (ZW) and zonally propagating wave fields also shows significant interannual variability. This observed variability on interannual time scales appears to be controlled by the corresponding variability in the alongshore winds off the Somalia coast during the preceding boreal winter, the ZW field along the equator, and the associated zonally propagating Kelvin and Rossby waves. The salinity induced vertical stratification observed in the near-surface layer through barrier layer thickness (BLT) effects also shows a significant influence on the ZC field on intraseasonal time scale. Interestingly, among all the 8 years (2001-2008), relatively weaker annual cycle is seen in both ZC in the 40-350 m water column and boreal spring sea surface temperature (SST) only during 2001 and 2008 along the equator caused through propagating wave dynamics.
Prediction of heat release effects on a mixing layer
NASA Technical Reports Server (NTRS)
Farshchi, M.
1986-01-01
A fully second-order closure model for turbulent reacting flows is suggested based on Favre statistics. For diffusion flames the local thermodynamic state is related to single conserved scalar. The properties of pressure fluctuations are analyzed for turbulent flows with fluctuating density. Closure models for pressure correlations are discussed and modeled transport equations for Reynolds stresses, turbulent kinetic energy dissipation, density-velocity correlations, scalar moments and dissipation are presented and solved, together with the mean equations for momentum and mixture fraction. Solutions of these equations are compared with the experimental data for high heat release free mixing layers of fluorine and hydrogen in a nitrogen diluent.
Iontophoretic transdermal drug delivery: a multi-layered approach.
Pontrelli, Giuseppe; Lauricella, Marco; Ferreira, José A; Pena, Gonçalo
2017-12-11
We present a multi-layer mathematical model to describe the transdermal drug release from an iontophoretic system. The Nernst-Planck equation describes the basic convection-diffusion process, with the electric potential obtained by solving the Laplace's equation. These equations are complemented with suitable interface and boundary conditions in a multi-domain. The stability of the mathematical problem is discussed in different scenarios and a finite-difference method is used to solve the coupled system. Numerical experiments are included to illustrate the drug dynamics under different conditions. © The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
NASA Astrophysics Data System (ADS)
Dzulkifli, Nor Fadhilah; Bachok, Norfifah; Yacob, Nor Azizah; Arifin, Norihan Md; Rosali, Haliza
2017-04-01
The study of unsteady three-dimensional boundary layer rotating flow with heat transfer in Copper-water nanofluid over a shrinking sheet is discussed. The governing equations in terms of partial differential equations are transformed to ordinary differential equations by introducing the appropriate similarity variables which are then solved numerically by a shooting method with Maple software. The numerical results of velocity gradient in x and y directions, skin friction coefficient and local Nusselt number as well as dual velocity and temperature profiles are shown graphically. The study revealed that dual solutions exist in certain range of s > 0.
Three-Dimensional Structure of Boundary Layers in Transition to Turbulence
1989-03-01
step-by-step Orr- Sommerfeld solution and integration. What is needed is an initial condition and initial wavenumber. These data can be obtained from a ...general than unsteady boundary-layer equations and Orr- Sommerfeld equation which are special cases. There- fore, the PSE will be a valuable tool for...spectra (discrete, continuous) result in a given problem is discussed in monographs and journal articles. Here, we try to find solutions to the
Linear and nonlinear stability of the Blasius boundary layer
NASA Technical Reports Server (NTRS)
Bertolotti, F. P.; Herbert, TH.; Spalart, P. R.
1992-01-01
Two new techniques for the study of the linear and nonlinear instability in growing boundary layers are presented. The first technique employs partial differential equations of parabolic type exploiting the slow change of the mean flow, disturbance velocity profiles, wavelengths, and growth rates in the streamwise direction. The second technique solves the Navier-Stokes equation for spatially evolving disturbances using buffer zones adjacent to the inflow and outflow boundaries. Results of both techniques are in excellent agreement. The linear and nonlinear development of Tollmien-Schlichting (TS) waves in the Blasius boundary layer is investigated with both techniques and with a local procedure based on a system of ordinary differential equations. The results are compared with previous work and the effects of non-parallelism and nonlinearity are clarified. The effect of nonparallelism is confirmed to be weak and, consequently, not responsible for the discrepancies between measurements and theoretical results for parallel flow.
Chini, G P; Montemuro, B; White, C M; Klewicki, J
2017-03-13
Field observations and laboratory experiments suggest that at high Reynolds numbers Re the outer region of turbulent boundary layers self-organizes into quasi-uniform momentum zones (UMZs) separated by internal shear layers termed 'vortical fissures' (VFs). Motivated by this emergent structure, a conceptual model is proposed with dynamical components that collectively have the potential to generate a self-sustaining interaction between a single VF and adjacent UMZs. A large-Re asymptotic analysis of the governing incompressible Navier-Stokes equation is performed to derive reduced equation sets for the streamwise-averaged and streamwise-fluctuating flow within the VF and UMZs. The simplified equations reveal the dominant physics within-and isolate possible coupling mechanisms among-these different regions of the flow.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
Montemuro, B.; White, C. M.; Klewicki, J.
2017-01-01
Field observations and laboratory experiments suggest that at high Reynolds numbers Re the outer region of turbulent boundary layers self-organizes into quasi-uniform momentum zones (UMZs) separated by internal shear layers termed ‘vortical fissures’ (VFs). Motivated by this emergent structure, a conceptual model is proposed with dynamical components that collectively have the potential to generate a self-sustaining interaction between a single VF and adjacent UMZs. A large-Re asymptotic analysis of the governing incompressible Navier–Stokes equation is performed to derive reduced equation sets for the streamwise-averaged and streamwise-fluctuating flow within the VF and UMZs. The simplified equations reveal the dominant physics within—and isolate possible coupling mechanisms among—these different regions of the flow. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167583
Theoretical model for thin ferroelectric films and the multilayer structures based on them
NASA Astrophysics Data System (ADS)
Starkov, A. S.; Pakhomov, O. V.; Starkov, I. A.
2013-06-01
A modified Weiss mean-field theory is used to study the dependence of the properties of a thin ferroelectric film on its thickness. The possibility of introducing gradient terms into the thermodynamic potential is analyzed using the calculus of variations. An integral equation is introduced to generalize the well-known Langevin equation to the case of the boundaries of a ferroelectric. An analysis of this equation leads to the existence of a transition layer at the interface between ferroelectrics or a ferroelectric and a dielectric. The permittivity of this layer is shown to depend on the electric field direction even if the ferroelectrics in contact are homogeneous. The results obtained in terms of the Weiss model are compared with the results of the models based on the correlation effect and the presence of a dielectric layer at the boundary of a ferroelectric and with experimental data.
NASA Technical Reports Server (NTRS)
Cohen, Clarence B; Reshotko, Eli
1956-01-01
Stewartson's transformation is applied to the laminar compressible boundary-layer equations and the requirement of similarity is introduced, resulting in a set of ordinary nonlinear differential equations previously quoted by Stewartson, but unsolved. The requirements of the system are Prandtl number of 1.0, linear viscosity-temperature relation across the boundary layer, an isothermal surface, and the particular distributions of free-stream velocity consistent with similar solutions. This system admits axial pressure gradients of arbitrary magnitude, heat flux normal to the surface, and arbitrary Mach numbers. The system of differential equations is transformed to integral system, with the velocity ratio as the independent variable. For this system, solutions are found by digital computation for pressure gradients varying from that causing separation to the infinitely favorable gradient and for wall temperatures from absolute zero to twice the free-stream stagnation temperature. Some solutions for separated flows are also presented.
The equilibrium and stability of the gaseous component of the galaxy, 2
NASA Technical Reports Server (NTRS)
Kellman, S. A.
1971-01-01
A time-independent, linear, plane and axially-symmetric stability analysis was performed on a self-gravitating, plane-parallel, isothermal layer of nonmagnetic, nonrotating gas. The gas layer was immersed in a plane-stratified field isothermal layer of stars which supply a self-consistent gravitational field. Only the gaseous component was perturbed. Expressions were derived for the perturbed gas potential and perturbed gas density that satisfied both the Poisson and hydrostatic equilibrium equations. The equation governing the size of the perturbations in the mid-plane was found to be analogous to the one-dimensional time-independent Schrodinger equation for a particle bound by a potential well, and with similar boundary conditions. The radius of the neutral state was computed numerically and compared with the Jeans' and Ledoux radius. The inclusion of a rigid stellar component increased the Ledoux radius, though only slightly. Isodensity contours of the neutrual or marginally unstable state were constructed.
Propagation of seismic waves in tall buildings
Safak, E.
1998-01-01
A discrete-time wave propagation formulation of the seismic response of tall buildings is introduced. The building is modeled as a layered medium, similar to a layered soil medium, and is subjected to vertically propagating seismic shear waves. Soil layers and the bedrock under the foundation are incorporated in the formulation as additional layers. Seismic response is expressed in terms of the wave travel times between the layers, and the wave reflection and transmission coefficients at the layer interfaces. The equations account for the frequency-dependent filtering effects of the foundation and floor masses. The calculation of seismic response is reduced to a pair of simple finite-difference equations for each layer, which can be solved recursively starting from the bedrock. Compared to the commonly used vibration formulation, the wave propagation formulation provides several advantages, including simplified calculations, better representation of damping, ability to account for the effects of the soil layers under the foundation, and better tools for identification and damage detection from seismic records. Examples presented show the versatility of the method. ?? 1998 John Wiley & Sons, Ltd.
The three-dimensional turbulent boundary layer near a plane of symmetry
NASA Technical Reports Server (NTRS)
Degani, A. T.; Smith, F. T.; Walker, J. D. A.
1992-01-01
The asymptotic structure of the three-dimensional turbulent boundary layer near a plane of symmetry is considered in the limit of large Reynolds number. A self-consistent two-layer structure is shown to exist wherein the streamwise velocity is brought to rest through an outer defect layer and an inner wall layer in a manner similar to that in two-dimensional boundary layers. The cross-stream velocity distribution is more complex and two terms in the asymptotic expansion are required to yield a complete profile which is shown to exhibit a logarithmic region. The flow in the inner wall layer is demonstrated to be collateral to leading order; pressure-gradient effects are formally of higher order but can cause the velocity profile to skew substantially near the wall at the large but finite Reynolds numbers encountered in practice. The governing set of ordinary differential equations describing a self-similar flow is derived. The calculated numerical solutions of these equations are matched asymptotically to an inner wall-layer solution and the results show trends that are consistent with experimental observations.
Seasonal Mixed Layer Heat Budget in the Southeast Tropical Atlantic
NASA Astrophysics Data System (ADS)
Scannell, H. A.; McPhaden, M. J.
2016-12-01
We analyze a mixed layer heat budget at 6ºS, 8ºE from a moored buoy of the Prediction and Research Moored Array in the Atlantic (PIRATA) to better understand the causes of seasonal mixed layer temperature variability in the southeast tropical Atlantic. This region is of interest because it is susceptible to warm biases in coupled global climate models and has historically been poorly sampled. Previous work suggests that thermodynamic changes in both latent heat loss and absorbed solar radiation dominate mixed layer properties away from the equator in the tropical Atlantic, while advection and entrainment are more important near the equator. Changes in mixed layer salinity can also influence temperature through the formation of barrier layers and density gradients. Freshwater flux from the Congo River, migration of the Intertropical Convergence Zone and advection of water masses are considered important contributors to mixed layer salinity variability in our study region. We analyze ocean temperature, salinity and meteorological data beginning in 2013 using mooring, Argo, and satellite platforms to study how seasonal temperature variability in the mixed layer is influenced by air-sea interactions and ocean dynamics.
Generation of long subharmonic internal waves by surface waves
NASA Astrophysics Data System (ADS)
Tahvildari, Navid; Kaihatu, James M.; Saric, William S.
2016-10-01
A new set of Boussinesq equations is derived to study the nonlinear interactions between long waves in a two-layer fluid. The fluid layers are assumed to be homogeneous, inviscid, incompressible, and immiscible. Based on the Boussinesq equations, an analytical model is developed using a second-order perturbation theory and applied to examine the transient evolution of a resonant triad composed of a surface wave and two oblique subharmonic internal waves. Wave damping due to weak viscosity in both layers is considered. The Boussinesq equations and the analytical model are verified. In contrast to previous studies which focus on short internal waves, we examine long waves and investigate some previously unexplored characteristics of this class of triad interaction. In viscous fluids, surface wave amplitudes must be larger than a threshold to overcome viscous damping and trigger internal waves. The dependency of this critical amplitude as well as the growth and damping rates of internal waves on important parameters in a two-fluid system, namely the directional angle of the internal waves, depth, density, and viscosity ratio of the fluid layers, and surface wave amplitude and frequency is investigated.
NASA Astrophysics Data System (ADS)
Zhong, Xiaolin
1998-08-01
Direct numerical simulation (DNS) has become a powerful tool in studying fundamental phenomena of laminar-turbulent transition of high-speed boundary layers. Previous DNS studies of supersonic and hypersonic boundary layer transition have been limited to perfect-gas flow over flat-plate boundary layers without shock waves. For hypersonic boundary layers over realistic blunt bodies, DNS studies of transition need to consider the effects of bow shocks, entropy layers, surface curvature, and finite-rate chemistry. It is necessary that numerical methods for such studies are robust and high-order accurate both in resolving wide ranges of flow time and length scales and in resolving the interaction between the bow shocks and flow disturbance waves. This paper presents a new high-order shock-fitting finite-difference method for the DNS of the stability and transition of hypersonic boundary layers over blunt bodies with strong bow shocks and with (or without) thermo-chemical nonequilibrium. The proposed method includes a set of new upwind high-order finite-difference schemes which are stable and are less dissipative than a straightforward upwind scheme using an upwind-bias grid stencil, a high-order shock-fitting formulation, and third-order semi-implicit Runge-Kutta schemes for temporal discretization of stiff reacting flow equations. The accuracy and stability of the new schemes are validated by numerical experiments of the linear wave equation and nonlinear Navier-Stokes equations. The algorithm is then applied to the DNS of the receptivity of hypersonic boundary layers over a parabolic leading edge to freestream acoustic disturbances.
On the Connection Between One-and Two-Equation Models of Turbulence
NASA Technical Reports Server (NTRS)
Menter, F. R.; Rai, Man Mohan (Technical Monitor)
1994-01-01
A formalism will be presented that allows the transformation of two-equation eddy viscosity turbulence models into one-equation models. The transformation is based on an assumption that is widely accepted over a large range of boundary layer flows and that has been shown to actually improve predictions when incorporated into two-equation models of turbulence. Based on that assumption, a new one-equation turbulence model will be derived. The new model will be tested in great detail against a previously introduced one-equation model and against its parent two-equation model.
NASA Technical Reports Server (NTRS)
Schoenauer, W.; Daeubler, H. G.; Glotz, G.; Gruening, J.
1986-01-01
An implicit difference procedure for the solution of equations for a chemically reacting hypersonic boundary layer is described. Difference forms of arbitrary error order in the x and y coordinate plane were used to derive estimates for discretization error. Computational complexity and time were minimized by the use of this difference method and the iteration of the nonlinear boundary layer equations was regulated by discretization error. Velocity and temperature profiles are presented for Mach 20.14 and Mach 18.5; variables are velocity profiles, temperature profiles, mass flow factor, Stanton number, and friction drag coefficient; three figures include numeric data.
NASA Technical Reports Server (NTRS)
Pittman, C. M.; Howser, L. M.
1972-01-01
The differential equations governing the transient response of the char layer of an ablating axisymmetric body, internal pyrolysis gas flow effects being considered, have been derived. These equations have been expanded into finite difference form and programed for numerical solution on a digital computer. Numerical results compare favorably with simplified exact solutions. The complete numerical analysis was used to obtain solutions for two representative body shapes subjected to a typical entry heating environment. Pronounced effects of the lateral flow of pyrolysis gases on the mass flow field within the char layer and the associated surface and pyrolysis interface recession rates are shown.
Torsion analysis of cracked circular bars actuated by a piezoelectric coating
NASA Astrophysics Data System (ADS)
Hassani, A. R.; Faal, R. T.
2016-12-01
This study presents a formulation for a bar with circular cross-section, coated by a piezoelectric layer and subjected to Saint-Venant torsion loading. The bar is weakened by a Volterra-type screw dislocation. First, with aid of the finite Fourier transform, the stress fields in the circular bar and the piezoelectric layer are obtained. The problem is then reduced to a set of singular integral equations with a Cauchy-type singularity. Unknown dislocation density is achieved by numerical solution of these integral equations. Numerical results are discussed, to reveal the effect of the piezoelectric layer on the reduction of the mechanical stress intensity factor in the bar.
Forward marching procedure for separated boundary-layer flows
NASA Technical Reports Server (NTRS)
Carter, J. E.; Wornom, S. F.
1975-01-01
A forward-marching procedure for separated boundary-layer flows which permits the rapid and accurate solution of flows of limited extent is presented. The streamwise convection of vorticity in the reversed flow region is neglected, and this approximation is incorporated into a previously developed (Carter, 1974) inverse boundary-layer procedure. The equations are solved by the Crank-Nicolson finite-difference scheme in which column iteration is carried out at each streamwise station. Instabilities encountered in the column iterations are removed by introducing timelike terms in the finite-difference equations. This provides both unconditional diagonal dominance and a column iterative scheme, found to be stable using the von Neumann stability analysis.
Large gyres as a shallow-water asymptotic solution of Euler's equation in spherical coordinates
NASA Astrophysics Data System (ADS)
Constantin, A.; Johnson, R. S.
2017-04-01
Starting from the Euler equation expressed in a rotating frame in spherical coordinates, coupled with the equation of mass conservation and the appropriate boundary conditions, a thin-layer (i.e. shallow water) asymptotic approximation is developed. The analysis is driven by a single, overarching assumption based on the smallness of one parameter: the ratio of the average depth of the oceans to the radius of the Earth. Consistent with this, the magnitude of the vertical velocity component through the layer is necessarily much smaller than the horizontal components along the layer. A choice of the size of this speed ratio is made, which corresponds, roughly, to the observational data for gyres; thus the problem is characterized by, and reduced to an analysis based on, a single small parameter. The nonlinear leading-order problem retains all the rotational contributions of the moving frame, describing motion in a thin spherical shell. There are many solutions of this system, corresponding to different vorticities, all described by a novel vorticity equation: this couples the vorticity generated by the spin of the Earth with the underlying vorticity due to the movement of the oceans. Some explicit solutions are obtained, which exhibit gyre-like flows of any size; indeed, the technique developed here allows for many different choices of the flow field and of any suitable free-surface profile. We comment briefly on the next order problem, which provides the structure through the layer. Some observations about the new vorticity equation are given, and a brief indication of how these results can be extended is offered.
NASA Technical Reports Server (NTRS)
Harris, J. E.; Blanchard, D. K.
1982-01-01
A numerical algorithm and computer program are presented for solving the laminar, transitional, or turbulent two dimensional or axisymmetric compressible boundary-layer equations for perfect-gas flows. The governing equations are solved by an iterative three-point implicit finite-difference procedure. The software, program VGBLP, is a modification of the approach presented in NASA TR R-368 and NASA TM X-2458, respectively. The major modifications are: (1) replacement of the fourth-order Runge-Kutta integration technique with a finite-difference procedure for numerically solving the equations required to initiate the parabolic marching procedure; (2) introduction of the Blottner variable-grid scheme; (3) implementation of an iteration scheme allowing the coupled system of equations to be converged to a specified accuracy level; and (4) inclusion of an iteration scheme for variable-entropy calculations. These modifications to the approach presented in NASA TR R-368 and NASA TM X-2458 yield a software package with high computational efficiency and flexibility. Turbulence-closure options include either two-layer eddy-viscosity or mixing-length models. Eddy conductivity is modeled as a function of eddy viscosity through a static turbulent Prandtl number formulation. Several options are provided for specifying the static turbulent Prandtl number. The transitional boundary layer is treated through a streamwise intermittency function which modifies the turbulence-closure model. This model is based on the probability distribution of turbulent spots and ranges from zero to unity for laminar and turbulent flow, respectively. Several test cases are presented as guides for potential users of the software.
Vibration Power Flow In A Constrained Layer Damping Cylindrical Shell
NASA Astrophysics Data System (ADS)
Wang, Yun; Zheng, Gangtie
2012-07-01
In this paper, the vibration power flow in a constrained layer damping (CLD) cylindrical shell using wave propagation approach is investigated. The dynamic equations of the shell are derived with the Hamilton principle in conjunction with the Donnell shell assumption. With these equations, the dynamic responses of the system under a line circumferential cosine harmonic exciting force is obtained by employing the Fourier transform and the residue theorem. The vibration power flows inputted to the system and transmitted along the shell axial direction are both studied. The results show that input power flow varies with driving frequency and circumferential mode order, and the constrained damping layer can obviously restrict the exciting force from inputting power flow into the base shell especially for a thicker viscoelastic layer, a thicker or stiffer constraining layer (CL), and a higher circumferential mode order, can rapidly attenuate the vibration power flow transmitted along the base shell axial direction.
NASA Technical Reports Server (NTRS)
Harris, J. E.
1975-01-01
An implicit finite-difference procedure is presented for solving the compressible three-dimensional boundary-layer equations. The method is second-order accurate, unconditionally stable (conditional stability for reverse cross flow), and efficient from the viewpoint of computer storage and processing time. The Reynolds stress terms are modeled by (1) a single-layer mixing length model and (2) a two-layer eddy viscosity model. These models, although simple in concept, accurately predicted the equilibrium turbulent flow for the conditions considered. Numerical results are compared with experimental wall and profile data for a cone at an angle of attack larger than the cone semiapex angle. These comparisons clearly indicate that the numerical procedure and turbulence models accurately predict the experimental data with as few as 21 nodal points in the plane normal to the wall boundary.
The response of a laminar boundary layer in supersonic flow to small amplitude progressive waves
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1989-01-01
The effect of a small amplitude progressive wave on the laminar boundary layer on a semi-infinite flat plate, due to a uniform supersonic freestream flow, is considered. The perturbation to the flow divides into two streamwise zones. In the first, relatively close to the leading edge of the plate, on a transverse scale comparable to the boundary layer thickness, the perturbation flow is described by a form of the unsteady linearized compressible boundary layer equations. In the freestream, this component of flow is governed by the wave equation, the solution of which provides the outer velocity conditions for the boundary layer. This system is solved numerically, and also the asymptotic structure in the far downstream limit is studied. This reveals a breakdown and a subsequent second streamwise zone, where the flow disturbance is predominantly inviscid. The two zones are shown to match in a proper asymptotic sense.
The nonlinear evolution of modes on unstable stratified shear layers
NASA Technical Reports Server (NTRS)
Blackaby, Nicholas; Dando, Andrew; Hall, Philip
1993-01-01
The nonlinear development of disturbances in stratified shear flows (having a local Richardson number of value less than one quarter) is considered. Such modes are initially fast growing but, like related studies, we assume that the viscous, non-parallel spreading of the shear layer results in them evolving in a linear fashion until they reach a position where their amplitudes are large enough and their growth rates have diminished sufficiently so that amplitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer theories. Four different basic integro-differential amplitude equations are possible, including one due to a novel mechanism; the relevant choice of amplitude equation, at a particular instance, being dependent on the relative sizes of the disturbance amplitude, the growth rate of the disturbance, its wavenumber, and the viscosity of the fluid. This richness of choice of possible nonlinearities arises mathematically from the indicial Frobenius roots of the governing linear inviscid equation (the Taylor-Goldstein equation) not, in general, differing by an integer. The initial nonlinear evolution of a mode will be governed by an integro-differential amplitude equations with a cubic nonlinearity but the resulting significant increase in the size of the disturbance's amplitude leads on to the next stage of the evolution process where the evolution of the mode is governed by an integro-differential amplitude equations with a quintic nonlinearity. Continued growth of the disturbance amplitude is expected during this stage, resulting in the effects of nonlinearity spreading to outside the critical level, by which time the flow has become fully nonlinear.
Boundary layer transition: A review of theory, experiment and related phenomena
NASA Technical Reports Server (NTRS)
Kistler, E. L.
1971-01-01
The overall problem of boundary layer flow transition is reviewed. Evidence indicates a need for new, basic physical hypotheses in classical fluid mechanics math models based on the Navier-Stokes equations. The Navier-Stokes equations are challenged as inadequate for the investigation of fluid transition, since they are based on several assumptions which should be expected to alter significantly the stability characteristics of the resulting math model. Strong prima facie evidence is presented to this effect.
On the nonlinear development of the most unstable Goertler vortex mode
NASA Technical Reports Server (NTRS)
Denier, James P.; Hall, Philip
1991-01-01
The nonlinear development of the most unstable Gortler vortex mode in boundary layer flows over curved walls is investigated. The most unstable Gortler mode is confined to a viscous wall layer of thickness O(G -1/5) and has spanwise wavelength O(G 11/5); it is, of course, most relevant to flow situations where the Gortler number G is much greater than 1. The nonlinear equations covering the evolution of this mode over an O(G -3/5) streamwise lengthscale are derived and are found to be of a fully nonparallel nature. The solution of these equations is achieved by making use of the numerical scheme used by Hall (1988) for the numerical solution of the nonlinear Gortler equations valid for O(1) Gortler numbers. Thus, the spanwise dependence of the flow is described by a Fourier expansion, whereas the streamwise and normal variations of the flow are dealt with by employing a suitable finite difference discretization of the governing equations. Our calculations demonstrate that, given a suitable initial disturbance, after a brief interval of decay, the energy in all the higher harmonics grows until a singularity is encountered at some downstream position. The structure of the flowfield as this singularity is approached suggests that the singularity is responsible for the vortices, which are initially confined to the thin viscous wall layer, moving away from the wall and into the core of the boundary layer.
Thermal Boundary Layer Equation for Turbulent Rayleigh-Bénard Convection
NASA Astrophysics Data System (ADS)
Ching, Emily Sc; Shishkina, Olga; Horn, Susanne; Wagner, Sebastian
Turbulent Rayleigh-Bénard convection, consisting of a fluid confined between two horizontal plates, heated from below and cooled from above, is a paradigm system for studying turbulent thermal convection, which is ubiquitous in nature. In turbulent Rayleigh-Bénard convection, there are viscous boundary layers near all rigid walls and two thermal boundary layers, one above the bottom plate and one below the top plate. The classical Prandtl-Blasius-Pohlhausen theory has often been used to describe the mean velocity and temperature boundary layer profiles but systematic deviations are known to exist. These deviations are due to turbulent fluctuations. In this talk, we report a new thermal boundary layer equation for turbulent Rayleigh-Bénard convection derived for Prandtl number (Pr) greater than 1, which takes into account the effects of turbulent fluctuations by using the idea of an eddy thermal diffusivity. Solving this equation, we have obtained two analytical mean temperature profiles for Pr ~ 1 and Pr >> 1 . These two theoretical predictions are shown to be in excellent agreement with the results of our direct numerical simulations for Pr=4.38 (water) and Pr=2547.9 (glycerol). Work of ESCC was supported by the Hong Kong Research Grants Council under Grant No. CUHK-400311.
Tube wave signatures in cylindrically layered poroelastic media computed with spectral method
NASA Astrophysics Data System (ADS)
Karpfinger, Florian; Gurevich, Boris; Valero, Henri-Pierre; Bakulin, Andrey; Sinha, Bikash
2010-11-01
This paper describes a new algorithm based on the spectral method for the computation of Stoneley wave dispersion and attenuation propagating in cylindrical structures composed of fluid, elastic and poroelastic layers. The spectral method is a numerical method which requires discretization of the structure along the radial axis using Chebyshev points. To approximate the differential operators of the underlying differential equations, we use spectral differentiation matrices. After discretizing equations of motion along the radial direction, we can solve the problem as a generalized algebraic eigenvalue problem. For a given frequency, calculated eigenvalues correspond to the wavenumbers of different modes. The advantage of this approach is that it can very efficiently analyse structures with complicated radial layering composed of different fluid, solid and poroelastic layers. This work summarizes the fundamental equations, followed by an outline of how they are implemented in the numerical spectral schema. The interface boundary conditions are then explained for fluid/porous, elastic/porous and porous interfaces. Finally, we discuss three examples from borehole acoustics. The first model is a fluid-filled borehole surrounded by a poroelastic formation. The second considers an additional elastic layer sandwiched between the borehole and the formation, and finally a model with radially increasing permeability is considered.
Application of a Reynolds stress turbulence model to the compressible shear layer
NASA Technical Reports Server (NTRS)
Sarkar, S.; Balakrishnan, L.
1990-01-01
Theoretically based turbulence models have had success in predicting many features of incompressible, free shear layers. However, attempts to extend these models to the high-speed, compressible shear layer have been less effective. In the present work, the compressible shear layer was studied with a second-order turbulence closure, which initially used only variable density extensions of incompressible models for the Reynolds stress transport equation and the dissipation rate transport equation. The quasi-incompressible closure was unsuccessful; the predicted effect of the convective Mach number on the shear layer growth rate was significantly smaller than that observed in experiments. Having thus confirmed that compressibility effects have to be explicitly considered, a new model for the compressible dissipation was introduced into the closure. This model is based on a low Mach number, asymptotic analysis of the Navier-Stokes equations, and on direct numerical simulation of compressible, isotropic turbulence. The use of the new model for the compressible dissipation led to good agreement of the computed growth rates with the experimental data. Both the computations and the experiments indicate a dramatic reduction in the growth rate when the convective Mach number is increased. Experimental data on the normalized maximum turbulence intensities and shear stress also show a reduction with increasing Mach number.
Engineering Development Tests Airdrop Controlled Exit System (ACES)
1980-09-01
AIRDROP CONTROLLED EXIT SYSTEM ( ACES ) RECOVERY PARACHUTES TELEMETERING DATA 20. D5TFAC c• Cat •u•u am revers e• ift n•ceesafy ad Ide•lityf by block...rTECHNICAL REPORT , NATICK /TR-82 /017 f C’n Engineering Development Tests Airdropý Controlled Exit System ( ACES ) COPY CLV40ble to DTIC doe’ io C...and,50.,,,10) s. TYPE OF REPORT A PERIOn COVEnEo Test Report ENCINEERTNG DEVELOPMENT TESTS Oct 79 - Apr 80 AIRDROP CONTROLLED EXIT SYSTEM ( ACES ) 6
Computer Program Applications to Tactical Missile Conceptual Design.
1981-06-01
initialized at a potential maximum of 1.25 inches/second (Ref. 21 and is allowed to decrease to arrive at a compati- ble burn area and web thickness...the same restrictions. The burn rate starts at 0.45 inches/sec- ond (Ref. 21 and is decreased to provide an acceptable web thickness and burn area. The...0.45 inches/sec- ond to provide a proper web thickness. "THE.SUSTAINER MOTOR HAS AN END BURNING GRAIN." The required burn area for the sustainer was
Information Processing Theory of Human Performance and Related Research.
1979-05-01
features are analyzed or compared at one or more times. Excellent reviews are available ( LaBerge , 1976; Sutherland, 1973). Without belaboring the issue, the...We propose then that it is not absolute values which are "features," but rela- tive values, and more specifically based on the work of Stevens ... Stevens , 1975a, 1975b; Stevens & Galanter, 1957) and his colleagues, that a feature is a ratio of actual stimulation to an identifia~ble absolute value on a
[A Smart Low-Power-Consumption ECG Monitor Based on MSP430F5529 and CC2540].
Gong, Yuan; Cao, Jin; Luo, Zehui; Zhou, Guohui
2015-07-01
A design of ECG monitor was presented in this paper. It is based on the latest MCU and BLE4.0 technologies and can interact with multi-platform smart devices with extra low power consumption. Besides, a clinical expansion part can realize functions including displaying the real-time ECG and heart rate curve, reading abnormal ECG signals stored in the monitor, and setting alarm threshold. These functions are suitable for follow-up use.
Conversion of the Forces Mobilization Model (FORCEMOB) from FORTRAN to C
2015-08-01
300 K !’"vale Data 18.192 K 136 K Slack 2.560 K 84 K Mapped File 412 K 412 K Sharel!ble 5.444 K 4.440 K Managed Heap - r age Table l.klusable...the C version of FORCEMOB is ready for operational use. This page is intentionally blank. v Contents 1. Introduction...without a graphical user interface (GUI): once run, FORCEMOB reads user-created input files, performs mathematical operations upon them, and outputs text
Changing Mindsets to Transform Security: Leader Development for an Unpredictable and Complex World
2013-01-01
fields of phys- ical science, the amount of information is doubling every one to two years, meaning that more than half of what a college student has...beyond a review of current events or it being at a “ informational ” level. Naval War College Professor Mackubin Owens stated in 2006, that, The new... information technology in education and training underpinned by a sta- ble and experienced academic community that can support the exponential growth
CTC Sentinel. Volume 3, Issue 8, August 2010. Evaluating the Al-Qaida Threat to the U.S. Homeland
2010-08-01
February and March 2010 as the suspects allegedly sought to obtain quantities of chemicals suitable for making peroxide-based high explosives, also...used by the 7/7 London bombers as well as by previously intercepted terrorist cells in Denmark and Germany. The amount of chemicals was far smaller...dangerous chemicals with harmless substances.11 9 “Norge var terrormålet,” Aftenposten, July 10, 2010; ”Eksplosivene ble ikke oppbevart hos siktede
1984-10-01
risk level.derive human health criteria. Most evaluation and synthesis. Scientific SurmyofteJlrc &2criteria are based solely on exposure judg~~nt was...State drinking water and human health standards, criteria, and guidelines applica- ble in the State of New Jersey. On November 28, 1980, the U.S...established recommended maximum concentrations for acute and chronic exposure to these pollutants by both humans and aquatic life. The derivation of these
Census Report: Volume VI, 1987 through 1992. Sanitized Version.
1994-08-01
0599BLANKNSHIP, THOMAS J 0837 BLE.ASDALE, PETER A 0483 BLEVINS, BEVERLY R 0599 BLISS, GERALD H III 0533* BLOORE, ERNEST W 0908 BLUM, JACQUELI J 0972...BLISS, GERALD H III 0533* BLOORE, ERNEST W 0908 BLUM, JACQUELI J 0972 BOATWRIGHT, DEEDIE A 0638 BODDICKER, MATHIAS C II 0687 BODIN, ANTHONY A 0971...ROYCE R 0599 JACOBSON, JOHN R 0640 JACOBSON, ROGER LEIF 0918 JACQUES , DARIO J 0599 JAKSICH, RODNEY T 0599 JAKUSZ, DAVID 0599 JAMES, RICHARD H 0687
To Merge Or Not to Merge: A Survey Of Arab Movements Toward Socio-Political Union
1974-01-01
Correlation of this paradigm with the events of Islamic history makes it possi- ble to isolate those points at which myth becomes fact. Second , the study... war s, i te5, Peisians--hecame islamicized ani , to .ertiin extent. arabzed. This was acomiplished with the gradual Lntegration of’ the conquered...were powerless against the impingements of the formidable Ottoman war machine which, by the sixteenth century, had engulfed the Arab world from its
1991-12-01
effort (Krieg-Brckner, 1984:299). Given two languages Alang and Blang, if the language concepts of the sublanguages, Asublang (the sublanguage for a...language Alang ) and Bsublang (the sublanguage for a lan- guage Blang), correspond in a one-to-one manner, then Asub- lang and Bsublang are said to be...then Aotherlang is said to be indirectly compati- ble with Bsublang. If Asublang is complete in the sense that all concepts of Alang can be mapped into
Tollmien-Schlichting/vortex interactions in compressible boundary layer flows
NASA Technical Reports Server (NTRS)
Blackaby, Nicholas D.
1993-01-01
The weakly nonlinear interaction of oblique Tollmien-Schlichting waves and longitudinal vortices in compressible, high Reynolds number, boundary-layer flow over a flat plate is considered for all ranges of the Mach number. The interaction equations comprise of equations for the vortex which is indirectly forced by the waves via a boundary condition, whereas a vortex term appears in the amplitude equation for the wave pressure. The downstream solution properties of interaction equations are found to depend on the sign of an interaction coefficient. Compressibility is found to have a significant effect on the interaction properties; principally through its impact on the waves and their governing mechanism, the triple-deck structure. It is found that, in general, the flow quantities will grow slowly with increasing downstream co-ordinate; i.e. in general, solutions do not terminate in abrupt, finite-distance 'break-ups'.
Model of formation of droplets during electric arc surfacing of functional coatings
NASA Astrophysics Data System (ADS)
Sarychev, Vladimir D.; Granovskii, Alexei Yu; Nevskii, Sergey A.; Gromov, Victor E.
2016-01-01
The mathematical model was developed for the initial stage of formation of an electrode metal droplet in the process of arc welding. Its essence lies in the fact that the presence of a temperature gradient in the boundary layer of the molten metal causes thermo-capillary instability, which leads to the formation of electrode metal droplets. A system of equations including Navier-Stokes equations, heat conduction and Maxwell's equations was solved as well as the boundary conditions for the system electrodes-plasma. Dispersion equation for thermo-capillary waves in the linear approximation for the plane layer was received and analyzed. The values of critical wavelengths, at which thermo-capillary instability appears in the nanometer wavelength range, were found. The parameters at which the mode of a fine-droplet transfer of the material takes place were theoretically defined.
An experimental investigation of turbulent boundary layers along curved surfaces
NASA Technical Reports Server (NTRS)
So, R. M. C.; Mellor, G. L.
1972-01-01
A curved wall tunnel was designed, and an equilibrium turbulent boundary layer was set up on the straight section preceding the curved test section. Turbulent boundary layer flows with uniform and adverse pressure distributions along convex and concave walls were investigated. Hot-wire measurements along the convex surface indicated that turbulent mixing between fluid layers was very much reduced. However, the law of the wall held and the skin friction, thus determined, correlated well with other measurements. Hot-wire measurements along the concave test wall revealed a system of longitudinal vortices inside the boundary layer and confirmed that concave curvature enhances mixing. A self-consistent set of turbulent boundary layer equations for flows along curved surfaces was derived together with a modified eddy viscosity. Solution of these equations together with the modified eddy viscosity gave results that correlated well with the present data on flows along the convex surface with arbitrary pressure distribution. However, it could only be used to predict the mean characteristics of the flow along concave walls because of the existence of the system of longitudinal vortices inside the boundary layer.
Study of helium emissions from active solar regions
NASA Technical Reports Server (NTRS)
Kulander, J. L.
1973-01-01
A theoretical study is made of the visible and UV line radiation of He I atoms and He II ions from a plane-parallel model flare layer. Codes were developed for the solution of the statistically steady state equation for a 30 level He I - II - III model, and the line and continuum transport equations. These codes are described and documented in the report along with sample solutions. Optical depths and some line intensities are presented for a 1000 km thick layer. Solutions of the steady state equations are presented for electron temperatures 10,000 to 50,000 K and electron densities 10 to the 10th power to 10 to the 14th power/cu cm.
NASA Technical Reports Server (NTRS)
Schneider, J.; Boccio, J.
1972-01-01
A computer program is described capable of determining the properties of a compressible turbulent boundary layer with pressure gradient and heat transfer. The program treats the two-dimensional problem assuming perfect gas and Crocco integral energy solution. A compressibility transformation is applied to the equation for the conservation of mass and momentum, which relates this flow to a low speed constant property flow with simultaneous mass transfer and pressure gradient. The resulting system of describing equations consists of eight ordinary differential equations which are solved numerically. For Part 1, see N72-12226; for Part 2, see N72-15264.
The structure of a three-dimensional turbulent boundary layer
NASA Technical Reports Server (NTRS)
Degani, A. T.; Smith, F. T.; Walker, J. D. A.
1993-01-01
The three-dimensional turbulent boundary layer is shown to have a self-consistent two-layer asymptotic structure in the limit of large Reynolds number. In a streamline coordinate system, the streamwise velocity distribution is similar to that in two-dimensional flows, having a defect-function form in the outer layer which is adjusted to zero at the wall through an inner wall layer. An asymptotic expansion accurate to two orders is required for the cross-stream velocity which is shown to exhibit a logarithmic form in the overlap region. The inner wall-layer flow is collateral to leading order but the influence of the pressure gradient, at large but finite Reynolds numbers, is not negligible and can cause substantial skewing of the velocity profile near the wall. Conditions under which the boundary layer achieves self-similarity and the governing set of ordinary differential equations for the outer layer are derived. The calculated solution of these equations is matched asymptotically to an inner wall-layer solution and the composite profiles so formed describe the flow throughout the entire boundary layer. The effects of Reynolds number and cross-stream pressure gradient on the crossstream velocity profile are discussed and it is shown that the location of the maximum cross-stream velocity is within the overlap region.
Role of Turbulent Prandtl Number on Heat Flux at Hypersonic Mach Number
NASA Technical Reports Server (NTRS)
Xiao, X.; Edwards, J. R.; Hassan, H. A.
2004-01-01
Present simulation of turbulent flows involving shock wave/boundary layer interaction invariably overestimates heat flux by almost a factor of two. One possible reason for such a performance is a result of the fact that the turbulence models employed make use of Morkovin's hypothesis. This hypothesis is valid for non-hypersonic Mach numbers and moderate rates of heat transfer. At hypersonic Mach numbers, high rates of heat transfer exist in regions where shock wave/boundary layer interactions are important. As a result, one should not expect traditional turbulence models to yield accurate results. The goal of this investigation is to explore the role of a variable Prandtl number formulation in predicting heat flux in flows dominated by strong shock wave/boundary layer interactions. The intended applications involve external flows in the absence of combustion such as those encountered in supersonic inlets. This can be achieved by adding equations for the temperature variance and its dissipation rate. Such equations can be derived from the exact Navier-Stokes equations. Traditionally, modeled equations are based on the low speed energy equation where the pressure gradient term and the term responsible for energy dissipation are ignored. It is clear that such assumptions are not valid for hypersonic flows. The approach used here is based on the procedure used in deriving the k-zeta model, in which the exact equations that governed k, the variance of velocity, and zeta, the variance of vorticity, were derived and modeled. For the variable turbulent Prandtl number, the exact equations that govern the temperature variance and its dissipation rate are derived and modeled term by term. The resulting set of equations are free of damping and wall functions and are coordinate-system independent. Moreover, modeled correlations are tensorially consistent and invariant under Galilean transformation. The final set of equations will be given in the paper.
Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces
NASA Technical Reports Server (NTRS)
Wang, Chi R.
2005-01-01
This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one-equation turbulence model is an effective approach for turbulence modeling in the near solid wall surface region of flow over a concave wall.
Switching probability of all-perpendicular spin valve nanopillars
NASA Astrophysics Data System (ADS)
Tzoufras, M.
2018-05-01
In all-perpendicular spin valve nanopillars the probability density of the free-layer magnetization is independent of the azimuthal angle and its evolution equation simplifies considerably compared to the general, nonaxisymmetric geometry. Expansion of the time-dependent probability density to Legendre polynomials enables analytical integration of the evolution equation and yields a compact expression for the practically relevant switching probability. This approach is valid when the free layer behaves as a single-domain magnetic particle and it can be readily applied to fitting experimental data.
Approximate convective heating equations for hypersonic flows
NASA Technical Reports Server (NTRS)
Zoby, E. V.; Moss, J. N.; Sutton, K.
1979-01-01
Laminar and turbulent heating-rate equations appropriate for engineering predictions of the convective heating rates about blunt reentry spacecraft at hypersonic conditions are developed. The approximate methods are applicable to both nonreacting and reacting gas mixtures for either constant or variable-entropy edge conditions. A procedure which accounts for variable-entropy effects and is not based on mass balancing is presented. Results of the approximate heating methods are in good agreement with existing experimental results as well as boundary-layer and viscous-shock-layer solutions.
Anisotropic Turbulence Models for Acoustic Propagation Through the Neutral Atmospheric Surface Layer
1998-02-01
and Brost (1984). †Specific means per unit mass. 2 Observations Top-Down Approach Bottom-Up Approach Equations for the energy spectra Equations for...R. A. Brost (1984): Top-down and bottom-up diffusion of a scalar in the convective boundary layer. J. Atmos. Sci., 41, 102–112. 62 Distribution 63...Agency Attn W21 Longbothum 9800 Savage Rd FT George G Meade MD 20755-6000 TACOM Attn AMSTA-TR-R E Shalis Mail Stop 263 Warren MI 48090 US Army
Derivation of Zagarola-Smits scaling in zero-pressure-gradient turbulent boundary layers
NASA Astrophysics Data System (ADS)
Wei, Tie; Maciel, Yvan
2018-01-01
This Rapid Communication derives the Zagarola-Smits scaling directly from the governing equations for zero-pressure-gradient turbulent boundary layers (ZPG TBLs). It has long been observed that the scaling of the mean streamwise velocity in turbulent boundary layer flows differs in the near surface region and in the outer layer. In the inner region of small-velocity-defect boundary layers, it is generally accepted that the proper velocity scale is the friction velocity, uτ, and the proper length scale is the viscous length scale, ν /uτ . In the outer region, the most generally used length scale is the boundary layer thickness, δ . However, there is no consensus on velocity scales in the outer layer. Zagarola and Smits [ASME Paper No. FEDSM98-4950 (1998)] proposed a velocity scale, U ZS=(δ1/δ ) U∞ , where δ1 is the displacement thickness and U∞ is the freestream velocity. However, there are some concerns about Zagarola-Smits scaling due to the lack of a theoretical base. In this paper, the Zagarola-Smits scaling is derived directly from a combination of integral, similarity, and order-of-magnitude analysis of the mean continuity equation. The analysis also reveals that V∞, the mean wall-normal velocity at the edge of the boundary layer, is a proper scale for the mean wall-normal velocity V . Extending the analysis to the streamwise mean momentum equation, we find that the Reynolds shear stress in ZPG TBLs scales as U∞V∞ in the outer region. This paper also provides a detailed analysis of the mass and mean momentum balance in the outer region of ZPG TBLs.
A molecular model for cohesive slip at polymer melt/solid interfaces.
Tchesnokov, M A; Molenaar, J; Slot, J J M; Stepanyan, R
2005-06-01
A molecular model is proposed which predicts wall slip by disentanglement of polymer chains adsorbed on a wall from those in the polymer bulk. The dynamics of the near-wall boundary layer is found to be governed by a nonlinear equation of motion, which accounts for such mechanisms on surface chains as convection, retraction, constraint release, and thermal fluctuations. This equation is valid over a wide range of grafting regimes, including those in which interactions between neighboring adsorbed molecules become essential. It is not closed since the dynamics of adsorbed chains is shown to be coupled to that of polymer chains in the bulk via constraint release. The constitutive equations for the layer and bulk, together with continuity of stress and velocity, are found to form a closed system of equations which governs the dynamics of the whole "bulk+boundary layer" ensemble. Its solution provides a stick-slip law in terms of the molecular parameters and extruder geometry. The model is quantitative and contains only those parameters that can be measured directly, or extracted from independent rheological measurements. The model predictions show a good agreement with available experimental data.
NASA Technical Reports Server (NTRS)
Swafford, Timothy W.; Huddleston, David H.; Busby, Judy A.; Chesser, B. Lawrence
1992-01-01
Computations of viscous-inviscid interacting internal flowfields are presented for steady and unsteady quasi-one-dimensional (Q1D) test cases. The unsteady Q1D Euler equations are coupled with integral boundary-layer equations for unsteady, two-dimensional (planar or axisymmetric), turbulent flow over impermeable, adiabatic walls. The coupling methodology differs from that used in most techniques reported previously in that the above mentioned equation sets are written as a complete system and solved simultaneously; that is, the coupling is carried out directly through the equations as opposed to coupling the solutions of the different equation sets. Solutions to the coupled system of equations are obtained using both explicit and implicit numerical schemes for steady subsonic, steady transonic, and both steady and unsteady supersonic internal flowfields. Computed solutions are compared with measurements as well as Navier-Stokes and inverse boundary-layer methods. An analysis of the eigenvalues of the coefficient matrix associated with the quasi-linear form of the coupled system of equations indicates the presence of complex eigenvalues for certain flow conditions. It is concluded that although reasonable solutions can be obtained numerically, these complex eigenvalues contribute to the overall difficulty in obtaining numerical solutions to the coupled system of equations.
NASA Astrophysics Data System (ADS)
Afzal, Bushra; Noor Afzal Team; Bushra Afzal Team
2014-11-01
The momentum and thermal turbulent boundary layers over a continuous moving sheet subjected to a free stream have been analyzed in two layers (inner wall and outer wake) theory at large Reynolds number. The present work is based on open Reynolds equations of momentum and heat transfer without any closure model say, like eddy viscosity or mixing length etc. The matching of inner and outer layers has been carried out by Izakson-Millikan-Kolmogorov hypothesis. The matching for velocity and temperature profiles yields the logarithmic laws and power laws in overlap region of inner and outer layers, along with friction factor and heat transfer laws. The uniformly valid solution for velocity, Reynolds shear stress, temperature and thermal Reynolds heat flux have been proposed by introducing the outer wake functions due to momentum and thermal boundary layers. The comparison with experimental data for velocity profile, temperature profile, skin friction and heat transfer are presented. In outer non-linear layers, the lowest order momentum and thermal boundary layer equations have also been analyses by using eddy viscosity closure model, and results are compared with experimental data. Retired Professor, Embassy Hotel, Rasal Ganj, Aligarh 202001 India.
Mahillo-Isla, R; Gonźalez-Morales, M J; Dehesa-Martínez, C
2011-06-01
The slowly varying envelope approximation is applied to the radiation problems of the Helmholtz equation with a planar single-layer and dipolar sources. The analyses of such problems provide procedures to recover solutions of the Helmholtz equation based on the evaluation of solutions of the parabolic wave equation at a given plane. Furthermore, the conditions that must be fulfilled to apply each procedure are also discussed. The relations to previous work are given as well.
Partial differential equations of 3D boundary layer and their numerical solutions in turbomachinery
NASA Astrophysics Data System (ADS)
Zhang, Guoqing; Hua, Yaonan; Wu, Chung-Hua
1991-08-01
This paper studies the 3D boundary layer equations (3DBLE) and their numerical solutions in turbomachinery: (1) the general form of 3DBLE in turbomachines with rotational and curvature effects are derived under the semiorthogonal coordinate system, in which the normal pressure gradient is not equal to zero; (2) the method of solution of the 3DBLE is discussed; (3) the 3D boundary layers on the rotating blade surface, IGV endwall, rotor endwall (with a relatively moving boundary) are numerically solved, and the predicted data correlates well with the measured data; and (4) the comparison is made between the numerical results of 3DBLE with and without normal pressure gradient.
Time-accurate simulations of a shear layer forced at a single frequency
NASA Technical Reports Server (NTRS)
Claus, R. W.; Huang, P. G.; Macinnes, J. M.
1988-01-01
Calculations are presented for the forced shear layer studied experimentally by Oster and Wygnanski, and Weisbrot. Two different computational approaches are examined: Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES). The DNS approach solves the full three dimensional Navier-Stokes equations for a temporally evolving mixing layer, while the LES approach solves the two dimensional Navier-Stokes equations with a subgrid scale turbulence model. While the comparison between these calculations and experimental data was hampered by a lack of information on the inflow boundary conditions, the calculations are shown to qualitatively agree with several aspects of the experiment. The sensitivity of these calculations to factors such as mesh refinement and Reynolds number is illustrated.
Fick's second law transformed: one path to cloaking in mass diffusion.
Guenneau, S; Puvirajesinghe, T M
2013-06-06
Here, we adapt the concept of transformational thermodynamics, whereby the flux of temperature is controlled via anisotropic heterogeneous diffusivity, for the diffusion and transport of mass concentration. The n-dimensional, time-dependent, anisotropic heterogeneous Fick's equation is considered, which is a parabolic partial differential equation also applicable to heat diffusion, when convection occurs, for example, in fluids. This theory is illustrated with finite-element computations for a liposome particle surrounded by a cylindrical multi-layered cloak in a water-based environment, and for a spherical multi-layered cloak consisting of layers of fluid with an isotropic homogeneous diffusivity, deduced from an effective medium approach. Initial potential applications could be sought in bioengineering.
A quantitative approach to aquifer vulnerability mapping
NASA Astrophysics Data System (ADS)
Connell, L. D.; Daele, Gerd van den
2003-05-01
This paper presents a procedure for calculating the transport to groundwater of surface-released contaminants. The approach is derived from a series of analytical and semi-analytical solutions to the advection-dispersion equation that include root zone and unsaturated water movement effects on the transport process. The steady-state form of these equations provides an efficient means of calculating the maximum concentration at the watertable and therefore has potential for use in vulnerability mapping. A two-layer approach is used in the solutions to represent the unsaturated profile, with the root zone corresponding to the upper layer where evapotranspiration can occur and transport properties can be in contrast to the rest of the profile. A novel transformation is applied to the advection-dispersion equation that considerably simplifies the way in which water movement is represented. To provide a combined flow and transport model an approximate procedure for water movement, using averages of the infiltration and transpiration rates with a novel, simple, quasi-steady state solution, is presented that can be used in conjunction with the solutions to the advection-dispersion equation. This quasi-steady state approximation for water movement allows for layering in the soil profile and root water uptake. Results from the combined quasi-steady state water movement and semi-analytical solute transport procedure compare well with numerical solutions to the coupled unsaturated flow and solute transport equations in a series of hypothetical simulations.
Auden, E. C.; Vizkelethy, G.; Serkland, D. K.; ...
2017-03-24
Here, the Hecht equation can be used to model the nonlinear degradation of charge collection efficiency (CCE) in response to radiation-induced displacement damage in both fully and partially depleted GaAs photodiodes. CCE degradation is measured for laser-generated photocurrent as a function of fluence and bias in Al 0.3Ga 0.7As/GaAs/Al 0.25Ga 0.75As p-i-n photodiodes which have been irradiated with 12 MeV C and 7.5 MeV Si ions. CCE is observed to degrade more rapidly with fluence in partially depleted photodiodes than in fully depleted photodiodes. When the intrinsic GaAs layer is fully depleted, the 2-carrier Hecht equation describes CCE degradation asmore » photogenerated electrons and holes recombine at defect sites created by radiation damage in the depletion region. If the GaAs layer is partially depleted, CCE degradation is more appropriately modeled as the sum of the 2-carrier Hecht equation applied to electrons and holes generated within the depletion region and the 1-carrier Hecht equation applied to minority carriers that diffuse from the field-free (non-depleted) region into the depletion region. Enhanced CCE degradation is attributed to holes that recombine within the field-free region of the partially depleted intrinsic GaAs layer before they can diffuse into the depletion region.« less
NASA Astrophysics Data System (ADS)
Auden, E. C.; Vizkelethy, G.; Serkland, D. K.; Bossert, D. J.; Doyle, B. L.
2017-05-01
The Hecht equation can be used to model the nonlinear degradation of charge collection efficiency (CCE) in response to radiation-induced displacement damage in both fully and partially depleted GaAs photodiodes. CCE degradation is measured for laser-generated photocurrent as a function of fluence and bias in Al0.3Ga0.7As/GaAs/Al0.25Ga0.75As p-i-n photodiodes which have been irradiated with 12 MeV C and 7.5 MeV Si ions. CCE is observed to degrade more rapidly with fluence in partially depleted photodiodes than in fully depleted photodiodes. When the intrinsic GaAs layer is fully depleted, the 2-carrier Hecht equation describes CCE degradation as photogenerated electrons and holes recombine at defect sites created by radiation damage in the depletion region. If the GaAs layer is partially depleted, CCE degradation is more appropriately modeled as the sum of the 2-carrier Hecht equation applied to electrons and holes generated within the depletion region and the 1-carrier Hecht equation applied to minority carriers that diffuse from the field-free (non-depleted) region into the depletion region. Enhanced CCE degradation is attributed to holes that recombine within the field-free region of the partially depleted intrinsic GaAs layer before they can diffuse into the depletion region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auden, E. C.; Vizkelethy, G.; Serkland, D. K.
Here, the Hecht equation can be used to model the nonlinear degradation of charge collection efficiency (CCE) in response to radiation-induced displacement damage in both fully and partially depleted GaAs photodiodes. CCE degradation is measured for laser-generated photocurrent as a function of fluence and bias in Al 0.3Ga 0.7As/GaAs/Al 0.25Ga 0.75As p-i-n photodiodes which have been irradiated with 12 MeV C and 7.5 MeV Si ions. CCE is observed to degrade more rapidly with fluence in partially depleted photodiodes than in fully depleted photodiodes. When the intrinsic GaAs layer is fully depleted, the 2-carrier Hecht equation describes CCE degradation asmore » photogenerated electrons and holes recombine at defect sites created by radiation damage in the depletion region. If the GaAs layer is partially depleted, CCE degradation is more appropriately modeled as the sum of the 2-carrier Hecht equation applied to electrons and holes generated within the depletion region and the 1-carrier Hecht equation applied to minority carriers that diffuse from the field-free (non-depleted) region into the depletion region. Enhanced CCE degradation is attributed to holes that recombine within the field-free region of the partially depleted intrinsic GaAs layer before they can diffuse into the depletion region.« less
NASA Astrophysics Data System (ADS)
Ibrahim, Wubshet
2018-03-01
This article numerically examines three dimensional boundary layer flow of a rotating Powell-Eyring nanofluid. In modeling heat transfer processes, non-Fourier heat flux theory and for mass transfer non-Fick's mass flux theory are employed. This theory is recently re-initiated and it becomes the active research area to resolves some drawback associated with the famous Fourier heat flux and mass flux theory. The mathematical model of the flow problem is a system of non-linear partial differential equations which are obtained using the boundary layer analysis. The non-linear partial differential equations have been transformed into non-linear high order ordinary differential equations using similarity transformation. Employing bvp4c algorithm from matlab software routine, the numerical solution of the transformed ordinary differential equations is obtained. The governing equations are constrained by parameters such as rotation parameter λ , the non-Newtonian parameter N, dimensionless thermal relaxation and concentration relaxation parameters δt and δc . The impacts of these parameters have been discussed thoroughly and illustrated using graphs and tables. The findings show that thermal relaxation time δt reduces the thermal and concentration boundary layer thickness. Further, the results reveal that the rotational parameter λ has the effect of decreasing the velocity boundary layer thickness in both x and y directions. Further examination pinpoints that the skin friction coefficient along x-axis is an increasing and skin friction coefficient along y-axis is a decreasing function of rotation parameter λ . Furthermore, the non-Newtonian fluid parameter N has the characteristic of reducing the amount of local Nusselt numbers -f″ (0) and -g″ (0) both in x and y -directions.
Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid
NASA Astrophysics Data System (ADS)
F, M. Abbasi; M, Mustafa; S, A. Shehzad; M, S. Alhuthali; T, Hayat
2016-01-01
We investigate the Cattaneo-Christov heat flux model for a two-dimensional laminar boundary layer flow of an incompressible Oldroyd-B fluid over a linearly stretching sheet. Mathematical formulation of the boundary layer problems is given. The nonlinear partial differential equations are converted into the ordinary differential equations using similarity transformations. The dimensionless velocity and temperature profiles are obtained through optimal homotopy analysis method (OHAM). The influences of the physical parameters on the velocity and the temperature are pointed out. The results show that the temperature and the thermal boundary layer thickness are smaller in the Cattaneo-Christov heat flux model than those in the Fourier’s law of heat conduction. Project supported by the Deanship of Scientific Research (DSR) King Abdulaziz University, Jeddah, Saudi Arabia (Grant No. 32-130-36-HiCi).
Stability of spatially developing boundary layers
NASA Astrophysics Data System (ADS)
Govindarajan, Rama
1993-07-01
A new formulation of the stability of boundary-layer flows in pressure gradients is presented, taking into account the spatial development of the flow. The formulation assumes that disturbance wavelength and eigenfunction vary downstream no more rapidly than the boundary-layer thickness, and includes all terms of O(1) and O(R(exp -1)) in the boundary-layer Reynolds number R. Although containing the Orr-Sommerfeld operator, the present approach does not yield the Orr-Sommerfeld equation in any rational limit. In Blasius flow, the present stability equation is consistent with that of Bertolotti et al. (1992) to terms of O(R(exp -1)). For the Falkner-Skan similarity solutions neutral boundaries are computed without the necessity of having to march in space. Results show that the effects of spatial growth are striking in flows subjected to adverse pressure gradients.
NASA Astrophysics Data System (ADS)
Jahani, Fereidoun
In the model for microbially induced crown corrosion, the diffusion of sulfide inside the concrete pores, its biological conversion to sulfuric acid, and the corrosion of calcium carbonate aggregates are represented. The corrosion front is modeled as a moving boundary. The location of the interface between the corrosion layer and the concrete is determined as part of the solution to the model equations. This model consisted of a system of one dimensional reaction-diffusion equations coupled to an equation describing the movement of the corrosion front. The equations were solved numerically using finite element Galerkin approximation. The concentration profiles of sulfide in the air and the liquid phases, the pH as a function of concrete depth, and the position of the corrosion front. A new equation for the corrosion rate was also derived. A more specific model for the degradation of a concrete specimen exposed to a sulfuric acid solution was also studied. In this model, diffusion of hydrogen ions and their reaction with alkaline components of concrete were expressed using Fick's Law of diffusion. The model equations described the moving boundary, the dissolution rate of alkaline components in the concrete, volume increase of sulfuric acid solution over the concrete specimen, and the boundary conditions on the surface of the concrete. An apparatus was designed and experiments were performed to measure pH changes on the surface of concrete. The data were used to calculate the dissolution rate of the concrete and, with the model, to determine the diffusion rate of sulfuric acid in the corrosion layer and corrosion layer thickness. Electrochemical Impedance Spectroscopy (EIS) was used to study the corrosion rate of iron pins embedded in the concrete sample. The open circuit potential (OCP) determined the onset of corrosion on the surface of the pins. Visual observation of the corrosion layer thickness was in good agreement with the simulation results.
Application of thin-layer Navier-Stokes equations near maximum lift
NASA Technical Reports Server (NTRS)
Anderson, W. K.; Thomas, J. L.; Rumsey, C. L.
1984-01-01
The flowfield about a NACA 0012 airfoil at a Mach number of 0.3 and Reynolds number of 1 million is computed through an angle of attack range, up to 18 deg, corresponding to conditions up to and beyond the maximum lift coefficient. Results obtained using the compressible thin-layer Navier-Stokes equations are presented as well as results from the compressible Euler equations with and without a viscous coupling procedure. The applicability of each code is assessed and many thin-layer Navier-Stokes benchmark solutions are obtained which can be used for comparison with other codes intended for use at high angles of attack. Reasonable agreement of the Navier-Stokes code with experiment and the viscous-inviscid interaction code is obtained at moderate angles of attack. An unsteady solution is obtained with the thin-layer Navier-Stokes code at the highest angle of attack considered. The maximum lift coefficient is overpredicted, however, in comparison to experimental data, which is attributed to the presence of a laminar separation bubble near the leading edge not modeled in the computations. Two comparisons with experimental data are also presented at a higher Mach number.
Pivovarov, Sergey
2009-04-01
This work presents a simple solution for the diffuse double layer model, applicable to calculation of surface speciation as well as to simulation of ionic adsorption within the diffuse layer of solution in arbitrary salt media. Based on Poisson-Boltzmann equation, the Gaines-Thomas selectivity coefficient for uni-bivalent exchange on clay, K(GT)(Me(2+)/M(+))=(Q(Me)(0.5)/Q(M)){M(+)}/{Me(2+)}(0.5), (Q is the equivalent fraction of cation in the exchange capacity, and {M(+)} and {Me(2+)} are the ionic activities in solution) may be calculated as [surface charge, mueq/m(2)]/0.61. The obtained solution of the Poisson-Boltzmann equation was applied to calculation of ionic exchange on clays and to simulation of the surface charge of ferrihydrite in 0.01-6 M NaCl solutions. In addition, a new model of acid-base properties was developed. This model is based on assumption that the net proton charge is not located on the mathematical surface plane but diffusely distributed within the subsurface layer of the lattice. It is shown that the obtained solution of the Poisson-Boltzmann equation makes such calculations possible, and that this approach is more efficient than the original diffuse double layer model.
Aerodynamic Analyses Requiring Advanced Computers, Part 1
NASA Technical Reports Server (NTRS)
1975-01-01
Papers are presented which deal with results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include: viscous flows, boundary layer equations, turbulence modeling and Navier-Stokes equations, and internal flows.
NASA Technical Reports Server (NTRS)
Cheng, H. K.; Wong, Eric Y.; Dogra, V. K.
1991-01-01
Grad's thirteen-moment equations are applied to the flow behind a bow shock under the formalism of a thin shock layer. Comparison of this version of the theory with Direct Simulation Monte Carlo calculations of flows about a flat plate at finite attack angle has lent support to the approach as a useful extension of the continuum model for studying translational nonequilibrium in the shock layer. This paper reassesses the physical basis and limitations of the development with additional calculations and comparisons. The streamline correlation principle, which allows transformation of the 13-moment based system to one based on the Navier-Stokes equations, is extended to a three-dimensional formulation. The development yields a strip theory for planar lifting surfaces at finite incidences. Examples reveal that the lift-to-drag ratio is little influenced by planform geometry and varies with altitudes according to a 'bridging function' determined by correlated two-dimensional calculations.
Three-dimensional boundary layer calculation by a characteristic method
NASA Technical Reports Server (NTRS)
Houdeville, R.
1992-01-01
A numerical method for solving the three-dimensional boundary layer equations for bodies of arbitrary shape is presented. In laminar flows, the application domain extends from incompressible to hypersonic flows with the assumption of chemical equilibrium. For turbulent boundary layers, the application domain is limited by the validity of the mixing length model used. In order to respect the hyperbolic nature of the equations reduced to first order partial derivative terms, the momentum equations are discretized along the local streamlines using of the osculator tangent plane at each node of the body fitted coordinate system. With this original approach, it is possible to overcome the use of the generalized coordinates, and therefore, it is not necessary to impose an extra hypothesis about the regularity of the mesh in which the boundary conditions are given. By doing so, it is possible to limit, and sometimes to suppress, the pre-treatment of the data coming from an inviscid calculation. Although the proposed scheme is only semi-implicit, the method remains numerically very efficient.
Two-Flux Green's Function Analysis for Transient Spectral Radiation in a Composite
NASA Technical Reports Server (NTRS)
Siegel, Robert
1996-01-01
An analysis is developed for obtaining transient temperatures in a two-layer semitransparent composite with spectrally dependent properties. Each external boundary of the composite is subjected to radiation and convection. The two-flux radiative transfer equations are solved by deriving a Green's function. This yields the local radiative heat source needed to numerically solve the transient energy equation. An advantage of the two-flux method is that isotropic scattering is included without added complexity. The layer refractive indices are larger than one. This produces internal reflections at the boundaries and the internal interface; the reflections are assumed diffuse. Spectral results using the Green's function method are verified by comparing with numerical solutions using the exact radiative transfer equations. Transient temperature distributions are given to illustrate the effect of radiative heating on one side of a composite with external convective cooling. The protection of a material from incident radiation is illustrated by adding scattering to the layer adjacent to the radiative source.
Analysis of Transition-Sensitized Turbulent Transport Equations
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Thacker, William D.; Gatski, Thomas B.; Grosch, Chester E,
2005-01-01
The dynamics of an ensemble of linear disturbances in boundary-layer flows at various Reynolds numbers is studied through an analysis of the transport equations for the mean disturbance kinetic energy and energy dissipation rate. Effects of adverse and favorable pressure-gradients on the disturbance dynamics are also included in the analysis Unlike the fully turbulent regime where nonlinear phase scrambling of the fluctuations affects the flow field even in proximity to the wall, the early stage transition regime fluctuations studied here are influenced cross the boundary layer by the solid boundary. The dominating dynamics in the disturbance kinetic energy and dissipation rate equations are described. These results are then used to formulate transition-sensitized turbulent transport equations, which are solved in a two-step process and applied to zero-pressure-gradient flow over a flat plate. Computed results are in good agreement with experimental data.
Moiş, George Dan; Sanislav, Teodora; Folea, Silviu Corneliu; Zeadally, Sherali
2018-05-25
Environmental conditions and air quality monitoring have become crucial today due to the undeniable changes of the climate and accelerated urbanization. To efficiently monitor environmental parameters such as temperature, humidity, and the levels of pollutants, such as fine particulate matter (PM2.5) and volatile organic compounds (VOCs) in the air, and to collect data covering vast geographical areas, the development of cheap energy-autonomous sensors for large scale deployment and fine-grained data acquisition is required. Rapid advances in electronics and communication technologies along with the emergence of paradigms such as Cyber-Physical Systems (CPSs) and the Internet of Things (IoT) have led to the development of low-cost sensor devices that can operate unattended for long periods of time and communicate using wired or wireless connections through the Internet. We investigate the energy efficiency of an environmental monitoring system based on Bluetooth Low Energy (BLE) beacons that operate in the IoT environment. The beacons developed measure the temperature, the relative humidity, the light intensity, and the CO₂ and VOC levels in the air. Based on our analysis we have developed efficient sleep scheduling algorithms that allow the sensor nodes developed to operate autonomously without requiring the replacement of the power supply. The experimental results show that low-power sensors communicating using BLE technology can operate autonomously (from the energy perspective) in applications that monitor the environment or the air quality in indoor or outdoor settings.
Liang, Zhen; Li, Bin; Huang, Mo; Zheng, Yanqi; Ye, Hui; Xu, Ken; Deng, Fangming
2017-04-19
In this work, a low cost Bluetooth Low Energy (BLE) transceiver for wireless sensor network (WSN) applications, with a receiver (RX)-matching network-reusing power amplifier (PA) load inductor, is presented. In order to decrease the die area, only two inductors were used in this work. Besides the one used in the voltage control oscillator (VCO), the PA load inductor was reused as the RX impedance matching component in the front-end. Proper controls have been applied to achieve high transmitter (TX) input impedance when the transceiver is in the receiving mode, and vice versa. This allows the TRX-switch/matching network integration without significant performance degradation. The RX adopted a low-IF structure and integrated a single-ended low noise amplifier (LNA), a current bleeding mixer, a 4th complex filter and a delta-sigma continuous time (CT) analog-to-digital converter (ADC). The TX employed a two-point PLL-based architecture with a non-linear PA. The RX achieved a sensitivity of -93 dBm and consumes 9.7 mW, while the TX achieved a 2.97% error vector magnitude (EVM) with 9.4 mW at 0 dBm output power. This design was fabricated in a 0.11 μm complementary metal oxide semiconductor (CMOS) technology and the front-end circuit only occupies 0.24 mm². The measurement results verify the effectiveness and applicability of the proposed BLE transceiver for WSN applications.
NASA Astrophysics Data System (ADS)
Mehne, P.; Lickert, F.; Bäumker, E.; Kroener, M.; Woias, P.
2016-11-01
In this paper we will first present the measurement of temperatures on different positions at a diesel-powered car. As a result, several locations are identified as suitable to implement a wireless sensor node powered by thermal energy harvesting. Based on the data gained a thermoelectric generator (TEG) has been selected, and measurements of energy generation have been performed. Further, a complete energy-autonomous wireless sensor node was designed, including the TEG with its mounting bracket, an electronic power management, and a Bluetooth Low Energy (BLE) sensor node. Based on temperature differences from -10 K up to 75.3 K occurring in test drives, a low power set up was chosen to achieve a system startup time below 10 minutes and to ensure service even under difficult ambient conditions, like high ambient temperatures or a slow movement of the car in stocking traffic. 2 minutes after starting the engine a power about of 10 mW is available from the chosen TEG, and in peak the power exceeds 1 W. In a 50 minute test drive it was possible to generate 650 J of energy. This information was used to develop the complete system, demonstrating the opportunity to deploy energy-autonomous wireless sensor nodes in a car, e.g. for exhaust gas monitoring. The system is used to gather sensor data, like temperature and humidity, and transmits data successfully via BLE to a prepared main node based on a Raspberry Pi.
NASA Astrophysics Data System (ADS)
Sepulveda, N.; Rohrer, K.
2008-05-01
The permeability of the semiconfining layers of the highly productive Floridan Aquifer System may be large enough to invalidate the assumptions of the leaky aquifer theory. These layers are the intermediate confining and the middle semiconfining units. The analysis of aquifer-test data with analytical solutions of the ground-water flow equation developed with the approximation of a low hydraulic conductivity ratio between the semiconfining layer and the aquifer may lead to inaccurate hydraulic parameters. An analytical solution is presented here for the flow in a confined leaky aquifer, the overlying storative semiconfining layer, and the unconfined aquifer, generated by a partially penetrating well in a two-aquifer system, and allowing vertical and lateral flow components to occur in the semiconfining layer. The equations describing flow caused by a partially penetrating production well are solved analytically to provide a method to accurately determine the hydraulic parameters in the confined aquifer, semiconfining layer, and unconfined aquifer from aquifer-test data. Analysis of the drawdown data from an aquifer test performed in central Florida showed that the flow solution presented here for the semiconfining layer provides a better match and a more unique identification of the hydraulic parameters than an analytical solution that considers only vertical flow in the semiconfining layer.
NASA Astrophysics Data System (ADS)
Wei, En-Bo
2011-10-01
The microwave vector radiative transfer (VRT) equation of a coated spherical bubble layer is derived by means of the second-order Rayleigh approximation field when the microwave wavelength is larger than the coated spherical particle diameter. Meanwhile, the perturbation method is developed to solve the second-order Rayleigh VRT equation for the small ratio of the volume scattering coefficient to the extinction coefficient. As an example, the emissive properties of a sea surface foam layer, which consists of seawater coated bubbles, are investigated. The extinction, absorption, and scattering coefficients of sea foam are obtained by the second-order Rayleigh approximation fields and discussed for the different microwave frequencies and the ratio of inner radius to outer radius of a coated bubble. Our results show that in the dilute limit, the volume scattering coefficient decreases with increasing the ratio of inner radius to outer radius and decreasing the frequencies. It is also found that the microwave emissivity and the extinction coefficient have a peak at very thin seawater coating and its peak value decreases with frequency decrease. Furthermore, with the VRT equation and effective medium approximation of densely coated bubbles, the mechanism of sea foam enhancing the emissivity of a sea surface is disclosed. In addition, excellent agreement is obtained by comparing our VRT results with the experimental data of microwave emissivities of sea surface covered by a sea foam layer at L-band (1.4 GHz) and the Camps' model.
Robust Controller for Turbulent and Convective Boundary Layers
2006-08-01
filter and an optimal regulator. The Kalman filter equation and the optimal regulator equation corresponding to the state-space equations, (2.20), are...separate steady-state algebraic Riccati equations. The Kalman filter is used here as a state observer rather than as an estimator since no noises are...2001) which will not be repeated here. For robustness, in the design, the Kalman filter input matrix G has been set equal to the control input
'Scaling' analysis of the ice accretion process on aircraft surfaces
NASA Technical Reports Server (NTRS)
Keshock, E. G.; Tabrizi, A. H.; Missimer, J. R.
1982-01-01
A comprehensive set of scaling parameters is developed for the ice accretion process by analyzing the energy equations of the dynamic freezing zone and the already frozen ice layer, the continuity equation associated with supercooled liquid droplets entering into and impacting within the dynamic freezing zone, and energy equation of the ice layer. No initial arbitrary judgments are made regarding the relative magnitudes of each of the terms. The method of intrinsic reference variables in employed in order to develop the appropriate scaling parameters and their relative significance in rime icing conditions in an orderly process, rather than utilizing empiricism. The significance of these parameters is examined and the parameters are combined with scaling criteria related to droplet trajectory similitude.
The semi-discrete Galerkin finite element modelling of compressible viscous flow past an airfoil
NASA Technical Reports Server (NTRS)
Meade, Andrew J., Jr.
1992-01-01
A method is developed to solve the two-dimensional, steady, compressible, turbulent boundary-layer equations and is coupled to an existing Euler solver for attached transonic airfoil analysis problems. The boundary-layer formulation utilizes the semi-discrete Galerkin (SDG) method to model the spatial variable normal to the surface with linear finite elements and the time-like variable with finite differences. A Dorodnitsyn transformed system of equations is used to bound the infinite spatial domain thereby permitting the use of a uniform finite element grid which provides high resolution near the wall and automatically follows boundary-layer growth. The second-order accurate Crank-Nicholson scheme is applied along with a linearization method to take advantage of the parabolic nature of the boundary-layer equations and generate a non-iterative marching routine. The SDG code can be applied to any smoothly-connected airfoil shape without modification and can be coupled to any inviscid flow solver. In this analysis, a direct viscous-inviscid interaction is accomplished between the Euler and boundary-layer codes, through the application of a transpiration velocity boundary condition. Results are presented for compressible turbulent flow past NACA 0012 and RAE 2822 airfoils at various freestream Mach numbers, Reynolds numbers, and angles of attack. All results show good agreement with experiment, and the coupled code proved to be a computationally-efficient and accurate airfoil analysis tool.
Boundary-Layer Receptivity and Integrated Transition Prediction
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Choudhari, Meelan
2005-01-01
The adjoint parabold stability equations (PSE) formulation is used to calculate the boundary layer receptivity to localized surface roughness and suction for compressible boundary layers. Receptivity efficiency functions predicted by the adjoint PSE approach agree well with results based on other nonparallel methods including linearized Navier-Stokes equations for both Tollmien-Schlichting waves and crossflow instability in swept wing boundary layers. The receptivity efficiency function can be regarded as the Green's function to the disturbance amplitude evolution in a nonparallel (growing) boundary layer. Given the Fourier transformed geometry factor distribution along the chordwise direction, the linear disturbance amplitude evolution for a finite size, distributed nonuniformity can be computed by evaluating the integral effects of both disturbance generation and linear amplification. The synergistic approach via the linear adjoint PSE for receptivity and nonlinear PSE for disturbance evolution downstream of the leading edge forms the basis for an integrated transition prediction tool. Eventually, such physics-based, high fidelity prediction methods could simulate the transition process from the disturbance generation through the nonlinear breakdown in a holistic manner.
Theory of viscous transonic flow over airfoils at high Reynolds number
NASA Technical Reports Server (NTRS)
Melnik, R. E.; Chow, R.; Mead, H. R.
1977-01-01
This paper considers viscous flows with unseparated turbulent boundary layers over two-dimensional airfoils at transonic speeds. Conventional theoretical methods are based on boundary layer formulations which do not account for the effect of the curved wake and static pressure variations across the boundary layer in the trailing edge region. In this investigation an extended viscous theory is developed that accounts for both effects. The theory is based on a rational analysis of the strong turbulent interaction at airfoil trailing edges. The method of matched asymptotic expansions is employed to develop formal series solutions of the full Reynolds equations in the limit of Reynolds numbers tending to infinity. Procedures are developed for combining the local trailing edge solution with numerical methods for solving the full potential flow and boundary layer equations. Theoretical results indicate that conventional boundary layer methods account for only about 50% of the viscous effect on lift, the remaining contribution arising from wake curvature and normal pressure gradient effects.
Ademi, Abdulakim; Grozdanov, Anita; Paunović, Perica; Dimitrov, Aleksandar T
2015-01-01
Summary A model consisting of an equation that includes graphene thickness distribution is used to calculate theoretical 002 X-ray diffraction (XRD) peak intensities. An analysis was performed upon graphene samples produced by two different electrochemical procedures: electrolysis in aqueous electrolyte and electrolysis in molten salts, both using a nonstationary current regime. Herein, the model is enhanced by a partitioning of the corresponding 2θ interval, resulting in significantly improved accuracy of the results. The model curves obtained exhibit excellent fitting to the XRD intensities curves of the studied graphene samples. The employed equation parameters make it possible to calculate the j-layer graphene region coverage of the graphene samples, and hence the number of graphene layers. The results of the thorough analysis are in agreement with the calculated number of graphene layers from Raman spectra C-peak position values and indicate that the graphene samples studied are few-layered. PMID:26665083
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurin, Péter; Varga, Szabolcs
2015-06-14
We extend the transfer matrix method of one-dimensional hard core fluids placed between confining walls for that case where the particles can pass each other and at most two layers can form. We derive an eigenvalue equation for a quasi-one-dimensional system of hard squares confined between two parallel walls, where the pore width is between σ and 3σ (σ is the side length of the square). The exact equation of state and the nearest neighbor distribution functions show three different structures: a fluid phase with one layer, a fluid phase with two layers, and a solid-like structure where the fluidmore » layers are strongly correlated. The structural transition between differently ordered fluids develops continuously with increasing density, i.e., no thermodynamic phase transition occurs. The high density structure of the system consists of clusters with two layers which are broken with particles staying in the middle of the pore.« less
NASA Technical Reports Server (NTRS)
Kustas, William P.; Choudhury, Bhaskar J.; Kunkel, Kenneth E.
1989-01-01
Surface-air temperature differences are commonly used in a bulk resistance equation for estimating sensible heat flux (H), which is inserted in the one-dimensional energy balance equation to solve for the latent heat flux (LE) as a residual. Serious discrepancies between estimated and measured LE have been observed for partial-canopy-cover conditions, which are mainly attributed to inappropriate estimates of H. To improve the estimates of H over sparse canopies, one- and two-layer resistance models that account for some of the factors causing poor agreement are developed. The utility of the two models is tested with remotely sensed and micrometeorological data for a furrowed cotton field with 20 percent cover and a dry soil surface. It is found that the one-layer model performs better than the two-layer model when a theoretical bluff-body correction for heat transfer is used instead of an empirical adjustment; otherwise, the two-layer model is better.
Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows
NASA Technical Reports Server (NTRS)
Yungster, Shaye
1991-01-01
A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.
Effects of Nose Bluntness on Hypersonic Boundary-Layer Receptivity and Stability Over Cones
NASA Technical Reports Server (NTRS)
Kara, Kursat; Balakumar, Ponnampalam; Kandil, Osama A.
2011-01-01
The receptivity to freestream acoustic disturbances and the stability properties of hypersonic boundary layers are numerically investigated for boundary-layer flows over a 5 straight cone at a freestream Mach number of 6.0. To compute the shock and the interaction of the shock with the instability waves, the Navier-Stokes equations in axisymmetric coordinates were solved. In the governing equations, inviscid and viscous flux vectors are discretized using a fifth-order accurate weighted-essentially-non-oscillatory scheme. A third-order accurate total-variation-diminishing Runge-Kutta scheme is employed for time integration. After the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. The appearance of instability waves near the nose region and the receptivity of the boundary layer with respect to slow mode acoustic waves are investigated. Computations confirm the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary-layer transition. The current solutions, compared with experimental observations and other computational results, exhibit good agreement.
Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows
NASA Technical Reports Server (NTRS)
Yungster, Shaye
1990-01-01
A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.
Two-Flux and Green's Function Method for Transient Radiative Transfer in a Semi-Transparent Layer
NASA Technical Reports Server (NTRS)
Siegel, Robert
1995-01-01
A method using a Green's function is developed for computing transient temperatures in a semitransparent layer by using the two-flux method coupled with the transient energy equation. Each boundary of the layer is exposed to a hot or cold radiative environment, and is heated or cooled by convection. The layer refractive index is larger than one, and the effect of internal reflections is included with the boundaries assumed diffuse. The analysis accounts for internal emission, absorption, heat conduction, and isotropic scattering. Spectrally dependent radiative properties are included, and transient results are given to illustrate two-band spectral behavior with optically thin and thick bands. Transient results using the present Green's function method are verified for a gray layer by comparison with a finite difference solution of the exact radiative transfer equations; excellent agreement is obtained. The present method requires only moderate computing times and incorporates isotropic scattering without additional complexity. Typical temperature distributions are given to illustrate application of the method by examining the effect of strong radiative heating on one side of a layer with convective cooling on the other side, and the interaction of strong convective heating with radiative cooling from the layer interior.
Numerical simulation of the vortical flow around a pitching airfoil
NASA Astrophysics Data System (ADS)
Fu, Xiang; Li, Gaohua; Wang, Fuxin
2017-04-01
In order to study the dynamic behaviors of the flapping wing, the vortical flow around a pitching NACA0012 airfoil is investigated. The unsteady flow field is obtained by a very efficient zonal procedure based on the velocity-vorticity formulation and the Reynolds number based on the chord length of the airfoil is set to 1 million. The zonal procedure divides up the whole computation domain in to three zones: potential flow zone, boundary layer zone and Navier-Stokes zone. Since the vorticity is absent in the potential flow zone, the vorticity transport equation needs only to be solved in the boundary layer zone and Navier-Stokes zone. Moreover, the boundary layer equations are solved in the boundary layer zone. This arrangement drastically reduces the computation time against the traditional numerical method. After the flow field computation, the evolution of the vortices around the airfoil is analyzed in detail.
Modeling of the processes of natural and waste water purification in the reactor-clarifier
NASA Astrophysics Data System (ADS)
Primak, O. D.; Skolubovich, Yu. L.; Fedorova, N. N.; Voitov, E. L.
2018-03-01
The results of the filtration process simulation in a reactor-clarifier installation using a suspended loading layer are presented. Calculations were carried out in ANSYS Fluent on the basis of the Navier-Stokes equations supplemented by the equations of the Eulerian model of multiphase taking into account granularity of the particle phase. The unsteady picture of the formation of a fluidized («boiling») layer of particles is obtained. The results of parametric calculations allowing to estimate the effect of the flow velocity, the loading layer thickness, the thickness of sand and other parameters on the fluidized bed structure are presented. The liquid flow rate at which the loading grains are not washed out is determined. The diameter of particles and the height of the loading layer, at which the filter material is suspended and thus normal operation of the plant is ensured, are defined.
The influence of meridional ice transport on Europa's ocean stratification and heat content
NASA Astrophysics Data System (ADS)
Zhu, Peiyun; Manucharyan, Georgy E.; Thompson, Andrew F.; Goodman, Jason C.; Vance, Steven D.
2017-06-01
Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess the previously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.
The influence of meridional ice transport on Europa's ocean stratification and heat content
NASA Astrophysics Data System (ADS)
Zhu, P.; Manucharyan, G.; Thompson, A. F.; Goodman, J. C.; Vance, S.
2017-12-01
Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess thepreviously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.
Chen, Wei J; Keh, Huan J
2013-08-22
An analysis for the quasi-steady electrophoretic motion of a soft particle composed of a charged spherical rigid core and an adsorbed porous layer positioned at the center of a charged spherical cavity filled with an arbitrary electrolyte solution is presented. Within the porous layer, frictional segments with fixed charges are assumed to distribute uniformly. Through the use of the linearized Poisson-Boltzmann equation and the Laplace equation, the equilibrium double-layer potential distribution and its perturbation caused by the applied electric field are separately determined. The modified Stokes and Brinkman equations governing the fluid flow fields outside and inside the porous layer, respectively, are solved subsequently. An explicit formula for the electrokinetic migration velocity of the soft particle in terms of the fixed charge densities on the rigid core surface, in the porous layer, and on the cavity wall is obtained from a balance between its electrostatic and hydrodynamic forces. This formula is valid for arbitrary values of κa, λa, r0/a, and a/b, where κ is the Debye screening parameter, λ is the reciprocal of the length characterizing the extent of flow penetration inside the porous layer, a is the radius of the soft particle, r0 is the radius of the rigid core of the particle, and b is the radius of the cavity. In the limiting cases of r0 = a and r0 = 0, the migration velocity for the charged soft sphere reduces to that for a charged impermeable sphere and that for a charged porous sphere, respectively, in the charged cavity. The effect of the surface charge at the cavity wall on the particle migration can be significant, and the particle may reverse the direction of its migration.
A single-scattering correction for the seismo-acoustic parabolic equation.
Collins, Michael D
2012-04-01
An efficient single-scattering correction that does not require iterations is derived and tested for the seismo-acoustic parabolic equation. The approach is applicable to problems involving gradual range dependence in a waveguide with fluid and solid layers, including the key case of a sloping fluid-solid interface. The single-scattering correction is asymptotically equivalent to a special case of a single-scattering correction for problems that only have solid layers [Küsel et al., J. Acoust. Soc. Am. 121, 808-813 (2007)]. The single-scattering correction has a simple interpretation (conservation of interface conditions in an average sense) that facilitated its generalization to problems involving fluid layers. Promising results are obtained for problems in which the ocean bottom interface has a small slope.
Exact solution of conductive heat transfer in cylindrical composite laminate
NASA Astrophysics Data System (ADS)
Kayhani, M. H.; Shariati, M.; Nourozi, M.; Karimi Demneh, M.
2009-11-01
This paper presents an exact solution for steady-state conduction heat transfer in cylindrical composite laminates. This laminate is cylindrical shape and in each lamina, fibers have been wound around the cylinder. In this article heat transfer in composite laminates is being investigated, by using separation of variables method and an analytical relation for temperature distribution in these laminates has been obtained under specific boundary conditions. Also Fourier coefficients in each layer obtain by solving set of equations that related to thermal boundary layer conditions at inside and outside of the cylinder also thermal continuity and heat flux continuity between each layer is considered. In this research LU factorization method has been used to solve the set of equations.
NASA Astrophysics Data System (ADS)
Wang, C. R.; Papell, S. S.; Graham, R. W.
Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30 degree inclination angle.
NASA Technical Reports Server (NTRS)
Wang, C. R.; Papell, S. S.; Graham, R. W.
1981-01-01
Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30 degree inclination angle.
NASA Astrophysics Data System (ADS)
Wang, C. R.; Papell, S. S.; Graham, R. W.
1981-03-01
Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center-line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30-deg inclination angle.
NASA Technical Reports Server (NTRS)
Wang, C. R.; Papell, S. S.; Graham, R. W.
1981-01-01
Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center-line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30-deg inclination angle.
NASA Astrophysics Data System (ADS)
Bradshaw, P.
Computational techniques for accounting for extra strain rates, abnormal distributions of delta-U/delta-y, fluctuating strain rates, and the effects of body forces in modeling shear flows are discussed. Consideration is given to simple shears where the extra strain rate does not affect turbulence, thin shear layers, moderately thin shear layers, and strongly distorted flows. Attention is given to formulations based on the exact transport equations for Reynolds stress as derived from the time-averaged Navier-Stokes equations. Extra strain rates arise from curvature, lateral divergence, and bulk compression, with Coriolis forces accounting for the first, intensification of the spanwise vorticity for the second, and compression or dilation of the shear layer producing the third. The curvature forces, e.g., buoyancy and Coriolis forces, are responsible for hurricanes and tornadoes.
Integrating shear velocity observations of the Hudson Bay
NASA Astrophysics Data System (ADS)
Porritt, R. W.; Miller, M. S.; Darbyshire, F. A.
2013-12-01
Hudson Bay is the core of the Laurentia craton of North America. This region contains some of the thickest lithosphere globally, reaching 250-300 km depth. Previous studies have shown that much of this region is composed of amalgamated proto-continents including the Western Churchill and Superior provinces and that much of the structure of these constituents has been retained since the Trans-Hudson Orogen at 1.8 Ga. Using the Hudson Bay Lithospheric Experiment (HuBLE) and other permanent and POLARIS broadband seismic data, we image the region with S to P receiver functions, joint inversion of P to S receiver functions with surface waves, and teleseismic S and P wave travel-times. The receiver function imaging reveals a persistent mid-lithospheric layer at ~80 km depth under all stations, but a variable lithospheric thickness. The teleseismic S delay times show a pattern of early arrivals around the center of the network, beneath Hudson Bay where the lithosphere is thickest, while the P delay times are early in the Superior province relative to the Western Churchill province. This suggests higher Vp/Vs ratios in the Superior province, which is evidence that stacked oceanic plates formed this province. The relatively flat Moho imaged by earlier receiver function studies and the lower mantle Vp/Vs of the Western Churchill province provides evidence of formation by plume head extraction. The joint inversion shows an LAB that is typically a broad discontinuity spanning ~20-30 km at ~220 km depth suggesting a primarily thermal boundary zone. The mid-lithospheric layer is composed of increasing velocity from the ~40 km depth Moho defined by H-k stacking of PRFs to a broad, constant velocity lithospheric lid spanning 80-200 km depth. We suggest this mid-lithospheric layer represents the mantle lithosphere of the proto-continents prior to collision and the lid formed due to post-collisional cooling. The integration of these seismic datasets furthers our understanding of plate tectonic and non-tectonic processes during the Archean formation of Laurentia craton.
NASA Technical Reports Server (NTRS)
Edwards, S.; Reuther, J.; Chattot, J. J.
1997-01-01
The objective of this paper is to present a control theory approach for the design of airfoils in the presence of viscous compressible flows. A coupled system of the integral boundary layer and the Euler equations is solved to provide rapid flow simulations. An adjunct approach consistent with the complete coupled state equations is employed to obtain the sensitivities needed to drive a numerical optimization algorithm. Design to target pressure distribution is demonstrated on an RAE 2822 airfoil at transonic speed.
Rarefaction and Non-equilibrium Effects in Hypersonic Flows about Leading Edges of Small Bluntness
NASA Astrophysics Data System (ADS)
Ivanov, Mikhail; Khotyanovsky, Dmitry; Kudryavtsev, Alexey; Shershnev, Anton; Bondar, Yevgeniy; Yonemura, Shigeru
2011-05-01
A hypersonic flow about a cylindrically blunted thick plate at a zero angle of attack is numerically studied with the kinetic (DSMC) and continuum (Navier-Stokes equations) approaches. The Navier-Stokes equations with velocity slip and temperature jump boundary conditions correctly predict the flow fields and surface parameters for values of the Knudsen number (based on the radius of leading edge curvature) smaller than 0.1. The results of computations demonstrate significant effects of the entropy layer on the boundary layer characteristics.
Hydroelastic effects in the aorta bifurcation zone
NASA Technical Reports Server (NTRS)
Volmir, A. S.; Gersheyn, M. S.; Purinya, B. A.
1980-01-01
The mechanical behavior of the vessels and blood is mathematically analyzed at the point of aortic bifurcation using a homogeneous single layer channel as a model of the aorta. Allowance is made for the fact that the aortic intima is considerably less rigid than the other layers. For analysis of blood flow in the major arteries, the blood is treated as a viscous Newtonian fluid whose movements are described by Navier-Stokes equations and a continuity equation. Blood flow dynamics at the aortic bifurcation are discussed on the basis of the results.
Thermal boundary layer due to sudden heating of fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurkal, K.R.; Munukutla, S.
This paper proposes to solve computationally the heat-transfer problems (introduced by Munukutla and Venkataraman, 1988) related to a closed-cycle pulsed high-power laser flow loop. The continuity and the momentum equations as well as the unsteady energy equation are solved using the Keller-Box method. The solutions were compared with the steady-state solutions at large times, and the comparison was found to be excellent. Empirical formulas are proposed for calculating the time-dependent boundary-layer thickness and mass-heat transfer, that can be used by laser flow loop designers. 6 refs.
Thermal boundary layer due to sudden heating of fluid
NASA Astrophysics Data System (ADS)
Kurkal, K. R.; Munukutla, S.
1989-10-01
This paper proposes to solve computationally the heat-transfer problems (introduced by Munukutla and Venkataraman, 1988) related to a closed-cycle pulsed high-power laser flow loop. The continuity and the momentum equations as well as the unsteady energy equation are solved using the Keller-Box method. The solutions were compared with the steady-state solutions at large times, and the comparison was found to be excellent. Empirical formulas are proposed for calculating the time-dependent boundary-layer thickness and mass-heat transfer, that can be used by laser flow loop designers.
Effect of biquadratic coupling on current induced magnetization switching in Co/Cu/Ni-Fe nanopillar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aravinthan, D.; Daniel, M., E-mail: danielcnld@gmail.com; Sabareesan, P.
2016-05-23
The effect of biquadratic coupling on spin current induced magnetization switching in a Co/Cu/Ni-Fe nanopillar device is investigated by solving the free layer magnetization switching dynamics governed by the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. The LLGS equation is numerically solved by using Runge-Kutta fourth order procedure for an applied current density of 5 × 10{sup 12} Am{sup -2}. Presence of biquadratic coupling in the ferromagnetic layers reduces the magnetization switching time of the nanopillar device from 61 ps to 49 ps.
NASA Astrophysics Data System (ADS)
Fritzsch, Robert; Kennedy, Mark W.; Aune, Ragnhild E.
2018-02-01
Special induction coils used for electro magnetic priming of ceramic foam filters in liquid metal filtration have been designed using a combination of analytical and finite element modeling. Relatively simple empirical equations published by Wheeler in 1928 and 1982 have been used during the design process. The equations were found to accurately predict the z-component of the magnetic flux densities of both single- and multi-layer coils as verified both experimentally and by using COMSOL® 5.1 multiphysics simulations.
Internal hypersonic flow. [in thin shock layer
NASA Technical Reports Server (NTRS)
Lin, T. C.; Rubin, S. G.
1974-01-01
An approach for studying hypersonic internal flow with the aid of a thin-shock-layer approximation is discussed, giving attention to a comparison of thin-shock-layer results with the data obtained on the basis of the imposition theory or a finite-difference integration of the Euler equations. Relations in the case of strong interaction are considered together with questions of pressure distribution and aspects of the boundary-layer solution.
Large Eddy Simulation of Entropy Generation in a Turbulent Mixing Layer
NASA Astrophysics Data System (ADS)
Sheikhi, Reza H.; Safari, Mehdi; Hadi, Fatemeh
2013-11-01
Entropy transport equation is considered in large eddy simulation (LES) of turbulent flows. The irreversible entropy generation in this equation provides a more general description of subgrid scale (SGS) dissipation due to heat conduction, mass diffusion and viscosity effects. A new methodology is developed, termed the entropy filtered density function (En-FDF), to account for all individual entropy generation effects in turbulent flows. The En-FDF represents the joint probability density function of entropy, frequency, velocity and scalar fields within the SGS. An exact transport equation is developed for the En-FDF, which is modeled by a system of stochastic differential equations, incorporating the second law of thermodynamics. The modeled En-FDF transport equation is solved by a Lagrangian Monte Carlo method. The methodology is employed to simulate a turbulent mixing layer involving transport of passive scalars and entropy. Various modes of entropy generation are obtained from the En-FDF and analyzed. Predictions are assessed against data generated by direct numerical simulation (DNS). The En-FDF predictions are in good agreements with the DNS data.
Artery buckling analysis using a two-layered wall model with collagen dispersion.
Mottahedi, Mohammad; Han, Hai-Chao
2016-07-01
Artery buckling has been proposed as a possible cause for artery tortuosity associated with various vascular diseases. Since microstructure of arterial wall changes with aging and diseases, it is essential to establish the relationship between microscopic wall structure and artery buckling behavior. The objective of this study was to developed arterial buckling equations to incorporate the two-layered wall structure with dispersed collagen fiber distribution. Seven porcine carotid arteries were tested for buckling to determine their critical buckling pressures at different axial stretch ratios. The mechanical properties of these intact arteries and their intima-media layer were determined via pressurized inflation test. Collagen alignment was measured from histological sections and modeled by a modified von-Mises distribution. Buckling equations were developed accordingly using microstructure-motivated strain energy function. Our results demonstrated that collagen fibers disperse around two mean orientations symmetrically to the circumferential direction (39.02°±3.04°) in the adventitia layer; while aligning closely in the circumferential direction (2.06°±3.88°) in the media layer. The microstructure based two-layered model with collagen fiber dispersion described the buckling behavior of arteries well with the model predicted critical pressures match well with the experimental measurement. Parametric studies showed that with increasing fiber dispersion parameter, the predicted critical buckling pressure increases. These results validate the microstructure-based model equations for artery buckling and set a base for further studies to predict the stability of arteries due to microstructural changes associated with vascular diseases and aging. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Iqbal, Z.; Azhar, Ehtsham; Maraj, E. N.
2017-12-01
In this study, we analyzed the induced magnetic field effect on stagnation-point flow of a Al2O3-Ag/water hybrid nanofluid over a stretching sheet. Hybrid nanofluid, a new type of conventional fluid has been used for enhancement of heat transfer within boundary layer flow. It is notable here that only 1% to 5% contribution of nanoparticles enhance thermal conductivity of water. Nonlinear governing equations are simplified into boundary layer equations under boundary layer approximation assumption. A coupled system of nonlinear partial differential equation is transformed into a nonlinear system of ordinary differential equation by implementing suitable similarity conversions. Numerical analysis is performed by means of Keller box scheme. Effects of different non-dimensional governing parameters on velocity, induced magnetic field and temperature profiles, along with skinfriction coefficient and local Nusselt number, are discussed and presented through graphs and tables. Hybrid nanofluid is considered by keeping the 0.1% volumetric fraction of silver. From this study it is observed that the heat transfer rate of hybrid nanofluid (Al2O3-Ag/water) is higher than nanofluid (Ag/water). Novel results computed are useful in academic studies of hybrid nanofluids in engineering and industry.
NASA Astrophysics Data System (ADS)
Parsakhoo, Zahra; Shao, Yaping
2017-04-01
Near-surface turbulent mixing has considerable effect on surface fluxes, cloud formation and convection in the atmospheric boundary layer (ABL). Its quantifications is however a modeling and computational challenge since the small eddies are not fully resolved in Eulerian models directly. We have developed a Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer based on the Ito Stochastic Differential Equation (SDE) for air parcels (particles). Due to the complexity of the mixing in the ABL, we find that linear Ito SDE cannot represent convections properly. Three strategies have been tested to solve the problem: 1) to make the deterministic term in the Ito equation non-linear; 2) to change the random term in the Ito equation fractional, and 3) to modify the Ito equation by including Levy flights. We focus on the third strategy and interpret mixing as interaction between at least two stochastic processes with different Lagrangian time scales. The model is in progress to include the collisions among the particles with different characteristic and to apply the 3D model for real cases. One application of the model is emphasized: some land surface patterns are generated and then coupled with the Large Eddy Simulation (LES).
A Productivity Enhancement Study of the FMSO (Fleet Material Support Office) Software Effort.
1983-11-01
Project management 20.~~~~~4 AUSTRAC’ *I**ne- eeee~ Iffteeee.sit aiftneilt by ble ninbee) This report presents the results of a productivity enhance...they a _-o.a: tc ouz=..e.s. it is -he opinion of the authors that FISO is weli managed and that employee morale is genarally goDd, bum tnat the or...Syszem that will suppcrt comput-r progriaming work, documen- tation and software management . h :his should be a / unified system (all parts of it cin
Autonomous Experimentation of Carbon Nanotube Using Response Surface Methods
2015-03-26
on the unique challenges of creating autonomous research robots . v Table of Contents Page Abstract...previous RSM results. 31 S AR Reset a l data les Disp ay Sta t Menu Adjust eas ble bounda es Ad ust acto evel size Dec de andom o speci ed n t...al sta t ni ial Sta t Gene ate andom sta t # o uns D splay O Block Menu C ea e O B ock des gn Disp ay ull O Design Menu C ea e O ull Design W
Installation Restoration Program Records Search for McChord Air Force Base, Washington.
1982-08-01
responsible for smoke testing for possi- ble outlets. g ŕ 115 0 V -j q * REFERENCES * .4 g SI * I w I WI j EU REFERENCES Brandin , R. M., and S. Sgt. S. A...Ms. R. Brandin . Griffin, W. C., et al. 1962. Water Resources of the Tacoma Area Washington. Geological Survey Water Supply Paper 1499-B. Prepared in...MEMBERS vS U STEVEN R. HOFFMAN Education B.S., Civil Engineering, South Dakota School of Mines and Technology, 1971 Experience - -. Mr. Hoffman is a
Defense Acquisition Research Journal. Volume 18, Number 3, Issue 59, July 2011
2011-07-01
cost estimate. Thus, it is important to adjust the original cost estimates reflected in the first SAR to account for the changes in the quan- tity...effect on the model (Figure 6). To account for this possibility, taBLE 4. oLS RESuLtS: PRoCuREMENt CoSt GRoWtH vS. aCtuaL CoNCuRRENCY Estimate Std...Kelley & Watkins, 1998). The pattern in which a relatively small proportion of programs account for virtually all of MDAP cost growth cannot be
Non-local Second Order Closure Scheme for Boundary Layer Turbulence and Convection
NASA Astrophysics Data System (ADS)
Meyer, Bettina; Schneider, Tapio
2017-04-01
There has been scientific consensus that the uncertainty in the cloud feedback remains the largest source of uncertainty in the prediction of climate parameters like climate sensitivity. To narrow down this uncertainty, not only a better physical understanding of cloud and boundary layer processes is required, but specifically the representation of boundary layer processes in models has to be improved. General climate models use separate parameterisation schemes to model the different boundary layer processes like small-scale turbulence, shallow and deep convection. Small scale turbulence is usually modelled by local diffusive parameterisation schemes, which truncate the hierarchy of moment equations at first order and use second-order equations only to estimate closure parameters. In contrast, the representation of convection requires higher order statistical moments to capture their more complex structure, such as narrow updrafts in a quasi-steady environment. Truncations of moment equations at second order may lead to more accurate parameterizations. At the same time, they offer an opportunity to take spatially correlated structures (e.g., plumes) into account, which are known to be important for convective dynamics. In this project, we study the potential and limits of local and non-local second order closure schemes. A truncation of the momentum equations at second order represents the same dynamics as a quasi-linear version of the equations of motion. We study the three-dimensional quasi-linear dynamics in dry and moist convection by implementing it in a LES model (PyCLES) and compare it to a fully non-linear LES. In the quasi-linear LES, interactions among turbulent eddies are suppressed but nonlinear eddy—mean flow interactions are retained, as they are in the second order closure. In physical terms, suppressing eddy—eddy interactions amounts to suppressing, e.g., interactions among convective plumes, while retaining interactions between plumes and the environment (e.g., entrainment and detrainment). In a second part, we employ the possibility to include non-local statistical correlations in a second-order closure scheme. Such non-local correlations allow to directly incorporate the spatially coherent structures that occur in the form of convective updrafts penetrating the boundary layer. This allows us to extend the work that has been done using assumed-PDF schemes for parameterising boundary layer turbulence and shallow convection in a non-local sense.
Shooting method for solution of boundary-layer flows with massive blowing
NASA Technical Reports Server (NTRS)
Liu, T.-M.; Nachtsheim, P. R.
1973-01-01
A modified, bidirectional shooting method is presented for solving boundary-layer equations under conditions of massive blowing. Unlike the conventional shooting method, which is unstable when the blowing rate increases, the proposed method avoids the unstable direction and is capable of solving complex boundary-layer problems involving mass and energy balance on the surface.
Practical calculation of laminar and turbulent bled-off boundary layers
NASA Technical Reports Server (NTRS)
Eppler, R.
1978-01-01
Bleed-off of boundary layer material is shown to be an effective means for reducing drag by conserving the laminar boundary layer and preventing separation of the turbulent boundary layer. The case in which the two effects of bleed-off overlap is examined. Empirical methods are extended to the case of bleed-off. Laminar and turbulent boundary layers are treated simultaneously and the approximation differential equations are solved without an uncertain error. The case without bleed-off is also treated.
Plasmon analysis and homogenization in plane layered photonic crystals and hyperbolic metamaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidovich, M. V., E-mail: davidovichmv@info.sgu.ru
2016-12-15
Dispersion equations are obtained and analysis and homogenization are carried out in periodic and quasiperiodic plane layered structures consisting of alternating dielectric layers, metal and dielectric layers, as well as graphene sheets and dielectric (SiO{sub 2}) layers. Situations are considered when these structures acquire the properties of hyperbolic metamaterials (HMMs), i.e., materials the real parts of whose effective permittivity tensor have opposite signs. It is shown that the application of solely dielectric layers is more promising in the context of reducing losses.
Analysis and Testing of Plates with Piezoelectric Sensors and Actuators
NASA Technical Reports Server (NTRS)
Bevan, Jeffrey S.
1998-01-01
Piezoelectric material inherently possesses coupling between electrostatics and structural dynamics. Utilizing linear piezoelectric theory results in an intrinsically coupled pair of piezoelectric constitutive equations. One equation describes the direct piezoelectric effect where strains produce an electric field and the other describes the converse effect where an applied electrical field produces strain. The purpose of this study is to compare finite element analysis and experiments of a thin plate with bonded piezoelectric material. Since an isotropic plate in combination with a thin piezoelectric layer constitutes a special case of a laminated composite, the classical laminated plate theory is used in the formulation to accommodated generic laminated composite panels with multiple bonded and embedded piezoelectric layers. Additionally, the von Karman large deflection plate theory is incorporated. The formulation results in laminate constitutive equations that are amiable to the inclusion of the piezoelectric constitutive equations yielding in a fully electro-mechanically coupled composite laminate. Using the finite element formulation, the governing differential equations of motion of a composite laminate with embedded piezoelectric layers are derived. The finite element model not only considers structural degrees of freedom (d.o.f.) but an additional electrical d.o.f. for each piezoelectric layer. Comparison between experiment and numerical prediction is performed by first treating the piezoelectric as a sensor and then again treating it as an actuator. To assess the piezoelectric layer as a sensor, various uniformly distributed pressure loads were simulated in the analysis and the corresponding generated voltages were calculated using both linear and nonlinear finite element analyses. Experiments were carried out by applying the same uniformly distributed loads and measuring the resulting generated voltages and corresponding maximum plate deflections. It is found that a highly nonlinear relationship exists between maximum deflection and voltage versus pressure loading. In order to assess comparisons of predicted and measured piezoelectric actuation, sinusoidal excitation voltages are simulated/applied and maximum deflections are calculated/measured. The maximum deflection as a function of time was determined using the linear finite elements analysis. Good correlation between prediction and measurement was achieved in all cases.
Turbulent kinetic energy equation and free mixing
NASA Technical Reports Server (NTRS)
Morel, T.; Torda, T. P.; Bradshaw, P.
1973-01-01
Calculation of free shear flows was carried out to investigate the usefulness of several concepts which were previously successfully applied to wall flows. The method belongs to the class of differential approaches. The turbulence is taken into account by the introduction of one additional partial differential equation, the transport equation for the turbulent shear stress. The structure of turbulence is modeled after Bradshaw et al. This model was used successfully in boundary layers and its applicability to other flows is demonstrated. The work reported differs substantially from that of an earlier attempt to use this approach for calculation of free flows. The most important difference is that the region around the center line is treated by invoking the interaction hypothesis (concerning the structure of turbulence in the regions separated by the velocity extrema). The compressibility effects on shear layer spreading at low and moderate Mach numbers were investigated. In the absence of detailed experiments in free flows, the evidence from boundary layers that at low Mach numbers the structure of turbulence is unaffected by the compressibility was relied on. The present model was tested over a range of self-preserving and developing flows including pressure gradients using identical empirical input. The dependence of the structure of turbulence on the spreading rate of the shear layer was established.
Thin layer model for nonlinear evolution of the Rayleigh-Taylor instability
NASA Astrophysics Data System (ADS)
Zhao, K. G.; Wang, L. F.; Xue, C.; Ye, W. H.; Wu, J. F.; Ding, Y. K.; Zhang, W. Y.
2018-03-01
On the basis of the thin layer approximation [Ott, Phys. Rev. Lett. 29, 1429 (1972)], a revised thin layer model for incompressible Rayleigh-Taylor instability has been developed to describe the deformation and nonlinear evolution of the perturbed interface. The differential equations for motion are obtained by analyzing the forces (the gravity and pressure difference) of fluid elements (i.e., Newton's second law). The positions of the perturbed interface are obtained from the numerical solution of the motion equations. For the case of vacuum on both sides of the layer, the positions of the upper and lower interfaces obtained from the revised thin layer approximation agree with that from the weakly nonlinear (WN) model of a finite-thickness fluid layer [Wang et al., Phys. Plasmas 21, 122710 (2014)]. For the case considering the fluids on both sides of the layer, the bubble-spike amplitude from the revised thin layer model agrees with that from the WN model [Wang et al., Phys. Plasmas 17, 052305 (2010)] and the expanded Layzer's theory [Goncharov, Phys. Rev. Lett. 88, 134502 (2002)] in the early nonlinear growth regime. Note that the revised thin layer model can be applied to investigate the perturbation growth at arbitrary Atwood numbers. In addition, the large deformation (the large perturbed amplitude and the arbitrary perturbed distributions) in the initial stage can also be described by the present model.
Nonhyperbolic reflection moveout for horizontal transverse isotropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Dajani, A.F.; Tsvankin, I.
1998-09-01
The transversely isotropic model with a horizontal axis of symmetry (HTI) has been used extensively in studies of shear-wave splitting to describe fractured formations with a single system of parallel vertical penny-shaped cracks. Here, the authors present an analytic description of long-spread reflection moveout in horizontally layered HTI media with arbitrary strength of anisotropy. To account for nonhyperbolic moveout, the authors have derived an exact expression for the azimuthally dependent quartic term of the Taylor series traveltime expansion valid for any pure mode in an HTI layer. The quartic moveout coefficient and the NMO velocity are then substituted into themore » nonhyperbolic moveout equation of Tsvankin and Thomsen, originally designed for vertical transverse isotropy (VTI). In multilayered HTI media, the NMO velocity and the quartic moveout coefficient reflect the influence of layering as well as azimuthal anisotropy. The authors show that the conventional Dix equation for NMO velocity remains entirely valid for any azimuth in HTI media if the group-velocity vectors (rays) for data in a common-midpoint (CMP) gather do not deviate from the vertical incidence plane. Although this condition is not exactly satisfied in the presence of azimuthal velocity variations, rms averaging of the interval NMO velocities represents a good approximation for models with moderate azimuthal anisotropy. Furthermore, the quartic moveout coefficient for multilayered HTI media can also be calculated with acceptable accuracy using the known averaging equations for vertical transverse isotropy. This allows one to extend the nonhyperbolic moveout equation to horizontally stratified media composed of any combination of isotropic, VTI, and HTI layers.« less
Three-dimensional boundary layers approaching separation
NASA Technical Reports Server (NTRS)
Williams, J. C., III
1976-01-01
The theory of semi-similar solutions of the laminar boundary layer equations is applied to several flows in which the boundary layer approaches a three-dimensional separation line. The solutions obtained are used to deduce the nature of three-dimensional separation. It is shown that in these cases separation is of the "ordinary" type. A solution is also presented for a case in which a vortex is embedded within the three-dimensional boundary layer.
Localized modes in optics of photonic liquid crystals with local anisotropy of absorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyakov, V. A., E-mail: bel1937@mail.ru, E-mail: bel@landau.ac.ru; Semenov, S. V.
2016-05-15
The localized optical modes in spiral photonic liquid crystals are theoretically studied for the certainty at the example of chiral liquid crystals (CLCs) for the case of CLC with an anisotropic local absorption. The model adopted here (absence of dielectric interfaces in the structures under investigation) makes it possible to get rid of mixing of polarizations on the surfaces of the CLC layer and of the defect structure and to reduce the corresponding equations to only the equations for light with polarization diffracting in the CLC. The dispersion equations determining connection of the edge mode (EM) and defect mode (DM)more » frequencies with the CLC layer parameters (anisotropy of local absorption, CLC order parameter) and other parameters of the DMS are obtained. Analytic expressions for the transmission and reflection coefficients of CLC layer and DMS for the case of CLC with an anisotropic local absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce the EM and DM lifetimes (and increase the lasing threshold) in the way different from the case of CLC with an isotropic local absorption. Due to the Borrmann effect revealing of which is different at the opposite stop-band edges in the case of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-bands edges may be significantly different. The options of experimental observations of the theoretically revealed phenomena are briefly discussed.« less
Localized modes in optics of photonic liquid crystals with local anisotropy of absorption
NASA Astrophysics Data System (ADS)
Belyakov, V. A.; Semenov, S. V.
2016-05-01
The localized optical modes in spiral photonic liquid crystals are theoretically studied for the certainty at the example of chiral liquid crystals (CLCs) for the case of CLC with an anisotropic local absorption. The model adopted here (absence of dielectric interfaces in the structures under investigation) makes it possible to get rid of mixing of polarizations on the surfaces of the CLC layer and of the defect structure and to reduce the corresponding equations to only the equations for light with polarization diffracting in the CLC. The dispersion equations determining connection of the edge mode (EM) and defect mode (DM) frequencies with the CLC layer parameters (anisotropy of local absorption, CLC order parameter) and other parameters of the DMS are obtained. Analytic expressions for the transmission and reflection coefficients of CLC layer and DMS for the case of CLC with an anisotropic local absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce the EM and DM lifetimes (and increase the lasing threshold) in the way different from the case of CLC with an isotropic local absorption. Due to the Borrmann effect revealing of which is different at the opposite stop-band edges in the case of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-bands edges may be significantly different. The options of experimental observations of the theoretically revealed phenomena are briefly discussed.
NASA Astrophysics Data System (ADS)
Doria, Mauro M.; Vargas-Paredes, Alfredo A.; Cariglia, Marco
2014-12-01
We consider an effective theory of superconductivity for layered superconductors using a two-component order parameter, and show that it allows the formation of a condensate with magnetic and charge degrees of freedom. This condensate is an inhomogeneous state, topologically stable, that exists without the presence of an applied magnetic field. In particular, it is associated to a charge density in the superconducting layers. We show that well defined angular momentum states have for their lowest moment an hexadecapole charge distribution, i.e. quartic in the momenta. Our approach is based on solving first order equations (FOE) that generalize the Abrikosov-Bogomolny equations of the Ginzburg-Landau theory with one order parameter. The FOE solve the variational equations of the theory in the limit of a small order parameter, which is achieved for the special temperature that corresponds to the crossing of the superconducting dome and the pseudogap transition line. This topologically stable state is a condensate of skyrmions that breaks time reversal symmetry and produces a weak local magnetic field below the threshold of experimental observation.
Optimal Growth in Hypersonic Boundary Layers
NASA Technical Reports Server (NTRS)
Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan
2016-01-01
The linear form of the parabolized linear stability equations is used in a variational approach to extend the previous body of results for the optimal, nonmodal disturbance growth in boundary-layer flows. This paper investigates the optimal growth characteristics in the hypersonic Mach number regime without any high-enthalpy effects. The influence of wall cooling is studied, with particular emphasis on the role of the initial disturbance location and the value of the spanwise wave number that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary-layer equations, mean flow solutions based on the full Navier-Stokes equations are used in select cases to help account for the viscous- inviscid interaction near the leading edge of the plate and for the weak shock wave emanating from that region. Using the full Navier-Stokes mean flow is shown to result in further reduction with Mach number in the magnitude of optimal growth relative to the predictions based on the self-similar approximation to the base flow.
On radiative heat transfer in stagnation point flow of MHD Carreau fluid over a stretched surface
NASA Astrophysics Data System (ADS)
Khan, Masood; Sardar, Humara; Mudassar Gulzar, M.
2018-03-01
This paper investigates the behavior of MHD stagnation point flow of Carreau fluid in the presence of infinite shear rate viscosity. Additionally heat transfer analysis in the existence of non-linear radiation with convective boundary condition is performed. Moreover effects of Joule heating is observed and mathematical analysis is presented in the presence of viscous dissipation. The suitable transformations are employed to alter the leading partial differential equations to a set of ordinary differential equations. The subsequent non-straight common ordinary differential equations are solved numerically by an effective numerical approach specifically Runge-Kutta Fehlberg method alongside shooting technique. It is found that the higher values of Hartmann number (M) correspond to thickening of the thermal and thinning of momentum boundary layer thickness. The analysis further reveals that the fluid velocity is diminished by increasing the viscosity ratio parameter (β∗) and opposite trend is observed for temperature profile for both hydrodynamic and hydromagnetic flows. In addition the momentum boundary layer thickness is increased with velocity ratio parameter (α) and opposite is true for thermal boundary layer thickness.
An Analysis of Processes in the Solar Wind in a Thin Layer Adjacent to the Front of the Shock Wave
NASA Astrophysics Data System (ADS)
Molotkov, I. A.; Atamaniuk, B.
2018-05-01
A two-dimensional stationary system of nonlinear magnetohydrodynamics (MHD) equations in a thin layer adjoining the front of the interplanetary shock wave has been solved. Previously, any available publications relied on linear transport equations. But the presence of high-energy particles in the solar wind (SW) requires taking into account the processes of self-interaction. Our analysis examines the nonlinear terms in the MHD equations. A solution has been constructed for three cases: (1) in the absence of magnetic reconnections; (2) for magnetic reconnections; and (3) with the simultaneous action of reconnections and junction of magnetic islands. In all three cases, expressions were found for the main parameters of the SW. The results obtained on the basis of the solution of the MHD equations are consistent with the conclusions based on the investigation of the particle velocity distribution functions. This makes it possible to confirm the previously established fraction of particles excited to energies above 1 MeV.
A numerical study of nonlinear waves in a transcritical flow of stratified fluid past an obstacle
NASA Astrophysics Data System (ADS)
Hanazaki, Hideshi
1992-10-01
A numerical study of the flow of stratified fluid past an obstacle in a horizontal channel is described. Upstream advancing of waves near critically (resonance) appears in the case of ordinary two-layer flow, in which case the flow is described well by the solution of the forced extended Korteweg-de Vries (KdV) equation which has a cubic nonlinear term. It is shown theoretically that the upstream waves in the general two-layer flow cannot be well described by the forced KdV equation except when the wave amplitude is very small. The critical-level flow is also governed by the forced extended KdV equation. However, because of the smallness of the coefficient of the quadratic nonlinear term, the bore cannot propagate upstream at exact resonance. The results for the linearly stratified Boussinesq flow show good agreement with the solution of the Grimshaw and Yi (1991) equation, at least for exact resonance.
A study of the viscous and nonadiabatic flow in radial turbines
NASA Technical Reports Server (NTRS)
Khalil, I.; Tabakoff, W.
1981-01-01
A method for analyzing the viscous nonadiabatic flow within turbomachine rotors is presented. The field analysis is based upon the numerical integration of the incompressible Navier-Stokes equations together with the energy equation over the rotors blade-to-blade stream channels. The numerical code used to solve the governing equations employs a nonorthogonal boundary fitted coordinate system that suits the most complicated blade geometries. Effects of turbulence are modeled with two equations; one expressing the development of the turbulence kinetic energy and the other its dissipation rate. The method of analysis is applied to a radial inflow turbine. The solution obtained indicates the severity of the complex interaction mechanism that occurs between different flow regimes (i.e., boundary layers, recirculating eddies, separation zones, etc.). Comparison with nonviscous flow solutions tend to justify strongly the inadequacy of using the latter with standard boundary layer techniques to obtain viscous flow details within turbomachine rotors. Capabilities and limitations of the present method of analysis are discussed.
Bellez, Sami; Bourlier, Christophe; Kubické, Gildas
2015-03-01
This paper deals with the evaluation of electromagnetic scattering from a three-dimensional structure consisting of two nested homogeneous dielectric bodies with arbitrary shape. The scattering problem is formulated in terms of a set of Poggio-Miller-Chang-Harrington-Wu integral equations that are afterwards converted into a system of linear equations (impedance matrix equation) by applying the Galerkin method of moments (MoM) with Rao-Wilton-Glisson basis functions. The MoM matrix equation is then solved by deploying the iterative propagation-inside-layer expansion (PILE) method in order to obtain the unknown surface current densities, which are thereafter used to handle the radar cross-section (RCS) patterns. Some numerical results for various structures including canonical geometries are presented and compared with those of the FEKO software in order to validate the PILE-based approach as well as to show its efficiency to analyze the full-polarized RCS patterns.
A near-wall turbulence model and its application to fully developed turbulent channel and pipe flows
NASA Technical Reports Server (NTRS)
Kim, S.-W.
1988-01-01
A near wall turbulence model and its incorporation into a multiple-time-scale turbulence model are presented. In the method, the conservation of mass, momentum, and the turbulent kinetic energy equations are integrated up to the wall; and the energy transfer rate and the dissipation rate inside the near wall layer are obtained from algebraic equations. The algebraic equations for the energy transfer rate and the dissipation rate inside the near wall layer were obtained from a k-equation turbulence model and the near wall analysis. A fully developed turbulent channel flow and fully developed turbulent pipe flows were solved using a finite element method to test the predictive capability of the turbulence model. The computational results compared favorably with experimental data. It is also shown that the present turbulence model could resolve the over shoot phenomena of the turbulent kinetic energy and the dissipation rate in the region very close to the wall.
Intelligent Flow Friction Estimation.
Brkić, Dejan; Ćojbašić, Žarko
2016-01-01
Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ). In the present study, a noniterative approach using Artificial Neural Network (ANN) was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re) and the relative roughness of pipe (ε/D) were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re) and the relative roughness (ε/D) ranging between 5000 and 10(8) and between 10(-7) and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation.
Numerical simulation of steady and unsteady asymmetric vortical flow
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Wong, Tin-Chee; Liu, C. H.
1992-01-01
The unsteady, compressible, thin-layer, Navier-Stokes (NS) equations are solved to simulate steady and unsteady, asymmetric, vortical laminar flow around cones at high incidences and supersonic Mach numbers. The equations are solved by using an implicit, upwind, flux-difference splitting (FDS), finite-volume scheme. The locally conical flow assumption is used and the solutions are obtained by forcing the conserved components of the flowfield vector to be equal at two axial stations located at 0.95 and 1.0. Computational examples cover steady and unsteady asymmetric flows around a circular cone and its control using side strakes. The unsteady asymmetric flow solution around the circular cone has also been validated using the upwind, flux-vector splitting (FVS) scheme with the thin-layer NS equations and the upwind FDS with the full NS equations. The results are in excellent agreement with each other. Unsteady asymmetric flows are also presented for elliptic- and diamond-section cones, which model asymmetric vortex shedding around round- and sharp-edged delta winds.
Computational multicore on two-layer 1D shallow water equations for erodible dambreak
NASA Astrophysics Data System (ADS)
Simanjuntak, C. A.; Bagustara, B. A. R. H.; Gunawan, P. H.
2018-03-01
The simulation of erodible dambreak using two-layer shallow water equations and SCHR scheme are elaborated in this paper. The results show that the two-layer SWE model in a good agreement with the data experiment which is performed by Louvain-la-Neuve Université Catholique de Louvain. Moreover, the parallel algorithm with multicore architecture are given in the results. The results show that Computer I with processor Intel(R) Core(TM) i5-2500 CPU Quad-Core has the best performance to accelerate the computational time. Moreover, Computer III with processor AMD A6-5200 APU Quad-Core is observed has higher speedup and efficiency. The speedup and efficiency of Computer III with number of grids 3200 are 3.716050530 times and 92.9% respectively.
Calculation of unsteady transonic flows with mild separation by viscous-inviscid interaction
NASA Technical Reports Server (NTRS)
Howlett, James T.
1992-01-01
This paper presents a method for calculating viscous effects in two- and three-dimensional unsteady transonic flow fields. An integral boundary-layer method for turbulent viscous flow is coupled with the transonic small-disturbance potential equation in a quasi-steady manner. The viscous effects are modeled with Green's lag-entrainment equations for attached flow and an inverse boundary-layer method for flows that involve mild separation. The boundary-layer method is used stripwise to approximate three-dimensional effects. Applications are given for two-dimensional airfoils, aileron buzz, and a wing planform. Comparisons with inviscid calculations, other viscous calculation methods, and experimental data are presented. The results demonstrate that the present technique can economically and accurately calculate unsteady transonic flow fields that have viscous-inviscid interactions with mild flow separation.
The Rayleigh-Taylor instability in a self-gravitating two-layer viscous sphere
NASA Astrophysics Data System (ADS)
Mondal, Puskar; Korenaga, Jun
2018-03-01
The dispersion relation of the Rayleigh-Taylor instability in the spherical geometry is of profound importance in the context of the Earth's core formation. Here we present a complete derivation of this dispersion relation for a self-gravitating two-layer viscous sphere. Such relation is, however, obtained through the solution of a complex transcendental equation, and it is difficult to gain physical insights directly from the transcendental equation itself. We thus also derive an empirical formula to compute the growth rate, by combining the Monte Carlo sampling of the relevant model parameter space with linear regression. Our analysis indicates that the growth rate of Rayleigh-Taylor instability is most sensitive to the viscosity of inner layer in a physical setting that is most relevant to the core formation.
Generation and Radiation of Acoustic Waves from a 2-D Shear Layer using the CE/SE Method
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Wang, Xiao Y.; Chang, Sin-Chung; Jorgenson, Philip C. E.
2000-01-01
In the present work, the generation and radiation of acoustic waves from a 2-D shear layer problem is considered. An acoustic source inside of a 2-D jet excites an instability wave in the shear layer, resulting in sound Mach radiation. The numerical solution is obtained by solving the Euler equations using the space time conservation element and solution element (CE/SE) method. Linearization is achieved through choosing a small acoustic source amplitude. The Euler equations are nondimensionalized as instructed in the problem statement. All other conditions are the same except that the Crocco's relation has a slightly different form. In the following, after a brief sketch of the CE/SE method, the numerical results for this problem are presented.
The transmission of finite amplitude sound beam in multi-layered biological media
NASA Astrophysics Data System (ADS)
Liu, Xiaozhou; Li, Junlun; Yin, Chang; Gong, Xiufen; Zhang, Dong; Xue, Honghui
2007-02-01
Based on the Khokhlov Zabolotskaya Kuznetsov (KZK) equation, a model in the frequency domain is given to describe the transmission of finite amplitude sound beam in multi-layered biological media. Favorable agreement between the theoretical analyses and the measured results shows this approach could effectively describe the transmission of finite amplitude sound wave in multi-layered biological media.
Analytical and Numerical Modeling of Tsunami Wave Propagation for double layer state in Bore
NASA Astrophysics Data System (ADS)
Yuvaraj, V.; Rajasekaran, S.; Nagarajan, D.
2018-04-01
Tsunami wave enters into the river bore in the landslide. Tsunami wave propagation are described in two-layer states. The velocity and amplitude of the tsunami wave propagation are calculated using the double layer. The numerical and analytical solutions are given for the nonlinear equation of motion of the wave propagation in a bore.
One-dimensional simulation of temperature and moisture in atmospheric and soil boundary layers
NASA Technical Reports Server (NTRS)
Bornstein, R. D.; Santhanam, K.
1981-01-01
Meteorologists are interested in modeling the vertical flow of heat and moisture through the soil in order to better simulate the vertical and temporal variations of the atmospheric boundary layer. The one dimensional planetary boundary layer model of is modified by the addition of transport equations to be solved by a finite difference technique to predict soil moisture.
Heat-Assisted Multiferroic Solid-State Memory
2017-01-01
A heat-assisted multiferroic solid-state memory design is proposed and analysed, based on a PbNbZrSnTiO3 antiferroelectric layer and Ni81Fe19 magnetic free layer. Information is stored as magnetisation direction in the free layer of a magnetic tunnel junction element. The bit writing process is contactless and relies on triggering thermally activated magnetisation switching of the free layer towards a strain-induced anisotropy easy axis. A stress is generated using the antiferroelectric layer by voltage-induced antiferroelectric to ferroelectric phase change, and this is transmitted to the magnetic free layer by strain-mediated coupling. The thermally activated strain-induced magnetisation switching is analysed here using a three-dimensional, temperature-dependent magnetisation dynamics model, based on simultaneous evaluation of the stochastic Landau-Lifshitz-Bloch equation and heat flow equation, together with stochastic thermal fields and magnetoelastic contributions. The magnetisation switching probability is calculated as a function of stress magnitude and maximum heat pulse temperature. An operating region is identified, where magnetisation switching always occurs, with stress values ranging from 80 to 180 MPa, and maximum temperatures normalised to the Curie temperature ranging from 0.65 to 0.99. PMID:28841185
Boundary-layer effects in droplet splashing
NASA Astrophysics Data System (ADS)
Riboux, Guillaume; Gordillo, Jose Manuel
2017-11-01
A drop falling onto a solid substrate will disintegrate into smaller parts when its impact velocity exceeds the so called critical velocity for splashing. Under these circumstances, the very thin liquid sheet ejected tangentially to the solid after the drop touches the substrate, lifts off as a consequence of the aerodynamic forces exerted on it and finally breaks into smaller droplets, violently ejected radially outwards, provoking the splash. Here, the tangential deceleration experienced by the fluid entering the thin liquid sheet is investigated making use of boundary layer theory. The velocity component tangent to the solid, computed using potential flow theory provides the far field boundary condition as well as the pressure gradient for the boundary layer equations. The structure of the flow permits to find a self similar solution of the boundary layer equations. This solution is then used to calculate the boundary layer thickness at the root of the lamella as well as the shear stress at the wall. The splash model presented in, which is slightly modified to account for the results obtained from the boundary layer analysis, provides a very good agreement between the measurements and the predicted values of the critical velocity for the splash.
Mukherji, Sutapa
2018-03-01
In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.
NASA Astrophysics Data System (ADS)
Zaryankin, A. E.
2017-11-01
The compatibility of the semiempirical turbulence theory of L. Prandtl with the actual flow pattern in a turbulent boundary layer is considered in this article, and the final calculation results of the boundary layer is analyzed based on the mentioned theory. It shows that accepted additional conditions and relationships, which integrate the differential equation of L. Prandtl, associating the turbulent stresses in the boundary layer with the transverse velocity gradient, are fulfilled only in the near-wall region where the mentioned equation loses meaning and are inconsistent with the physical meaning on the main part of integration. It is noted that an introduced concept about the presence of a laminar sublayer between the wall and the turbulent boundary layer is the way of making of a physical meaning to the logarithmic velocity profile, and can be defined as adjustment of the actual flow to the formula that is inconsistent with the actual boundary conditions. It shows that coincidence of the experimental data with the actual logarithmic profile is obtained as a result of the use of not particular physical value, as an argument, but function of this value.
NASA Astrophysics Data System (ADS)
Pan, E.; Chen, J. Y.; Bevis, M.; Bordoni, A.; Barletta, V. R.; Molavi Tabrizi, A.
2015-12-01
We present an analytical solution for the elastic deformation of an elastic, transversely isotropic, layered and self-gravitating Earth by surface loads. We first introduce the vector spherical harmonics to express the physical quantities in the layered Earth. This reduces the governing equations to a linear system of equations for the expansion coefficients. We then solve for the expansion coefficients analytically under the assumption (i.e. approximation) that in the mantle, the density in each layer varies as 1/r (where r is the radial coordinate) while the gravity is constant and that in the core the gravity in each layer varies linearly in r with constant density. These approximations dramatically simplify the subsequent mathematical analysis and render closed-form expressions for the expansion coefficients. We implement our solution in a MATLAB code and perform a benchmark which shows both the correctness of our solution and the implementation. We also calculate the load Love numbers (LLNs) of the PREM Earth for different degrees of the Legendre function for both isotropic and transversely isotropic, layered mantles with different core models, demonstrating for the first time the effect of Earth anisotropy on the LLNs.
Particle motion in atmospheric boundary layers of Mars and Earth
NASA Technical Reports Server (NTRS)
White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.
1975-01-01
To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.
NASA Astrophysics Data System (ADS)
Mukherji, Sutapa
2018-03-01
In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.
Heat-Assisted Multiferroic Solid-State Memory.
Lepadatu, Serban; Vopson, Melvin M
2017-08-25
A heat-assisted multiferroic solid-state memory design is proposed and analysed, based on a PbNbZrSnTiO₃ antiferroelectric layer and Ni 81 Fe 19 magnetic free layer. Information is stored as magnetisation direction in the free layer of a magnetic tunnel junction element. The bit writing process is contactless and relies on triggering thermally activated magnetisation switching of the free layer towards a strain-induced anisotropy easy axis. A stress is generated using the antiferroelectric layer by voltage-induced antiferroelectric to ferroelectric phase change, and this is transmitted to the magnetic free layer by strain-mediated coupling. The thermally activated strain-induced magnetisation switching is analysed here using a three-dimensional, temperature-dependent magnetisation dynamics model, based on simultaneous evaluation of the stochastic Landau-Lifshitz-Bloch equation and heat flow equation, together with stochastic thermal fields and magnetoelastic contributions. The magnetisation switching probability is calculated as a function of stress magnitude and maximum heat pulse temperature. An operating region is identified, where magnetisation switching always occurs, with stress values ranging from 80 to 180 MPa, and maximum temperatures normalised to the Curie temperature ranging from 0.65 to 0.99.
Diagnosis of boundary-layer circulations.
Beare, Robert J; Cullen, Michael J P
2013-05-28
Diagnoses of circulations in the vertical plane provide valuable insights into aspects of the dynamics of the climate system. Dynamical theories based on geostrophic balance have proved useful in deriving diagnostic equations for these circulations. For example, semi-geostrophic theory gives rise to the Sawyer-Eliassen equation (SEE) that predicts, among other things, circulations around mid-latitude fronts. A limitation of the SEE is the absence of a realistic boundary layer. However, the coupling provided by the boundary layer between the atmosphere and the surface is fundamental to the climate system. Here, we use a theory based on Ekman momentum balance to derive an SEE that includes a boundary layer (SEEBL). We consider a case study of a baroclinic low-level jet. The SEEBL solution shows significant benefits over Ekman pumping, including accommodating a boundary-layer depth that varies in space and structure, which accounts for buoyancy and momentum advection. The diagnosed low-level jet is stronger than that determined by Ekman balance. This is due to the inclusion of momentum advection. Momentum advection provides an additional mechanism for enhancement of the low-level jet that is distinct from inertial oscillations.
Asymptotic structure and similarity solutions for three-dimensional turbulent boundary layers
NASA Technical Reports Server (NTRS)
Degani, A. T.; Walker, J. D. A.
1989-01-01
The asymptotic structure of the three-dimensional turbulent boundary layer is investigated in the limit of large Reynolds numbers. A self-consistent, but relatively complex, two-layer structure exists and the simplest situation, corresponding to a plane of symmetry, is considered in this paper as a first step. The adjustment of the streamwise velocity to relative rest, through an outer defect layer and then an inner wall layer, is similar to that in two-dimensional flow. The adjustment of the cross-streamwise velocity is more complicated and it is shown that two terms in the expansion are required to obtain useful results, and in particular to obtain the velocity skew angle at the wall near the symmetry plane. The conditions under which self-similarity is achieved near a plane of symmetry are investigated. A set of ordinary differential equations is developed which describe the streamwise and cross-streamwise velocities near a plane of symmetry in a self-similar flow through two orders of magnitude. Calculated numerical solutions of these equations yield trends which are consistent with experimental observations.
NASA Technical Reports Server (NTRS)
Hall, Philip; Bennett, James
1986-01-01
The Taylor-Goertler vortex instability equations are formulated for steady and unsteady interacting boundary-layer flows. The effective Goertler number is shown to be a function of the wall shape in the boundary layer and the possibility of both steady and unsteady Taylor-Goertler modes exists. As an example the steady flow in a symmetrically constricted channel is considered and it is shown that unstable Goertler vortices exist before the boundary layers at the wall develop the Goldstein singularity discussed by Smith and Daniels (1981). As an example of an unsteady spatially varying basic state, it is considered the instability of high-frequency large-amplitude two- and three-dimensional Tollmien-Schlichting waves in a curved channel. It is shown that they are unstable in the first 'Stokes-layer stage' of the hierarchy of nonlinear states discussed by Smith and Burggraf (1985). This instability of Tollmien-Schlichting waves in an internal flow can occur in the presence of either convex or concave curvature. Some discussion of this instability in external flows is given.
The Effect of Hypertension on the Transport of LDL Across the Deformable Arterial Wall
NASA Astrophysics Data System (ADS)
Dabagh, Mahsa; Jalali, Payman
2010-05-01
The influences of increased endothelial cell turnover and deformation of the intima on the transport of low-density lipoprotein (LDL) under hypertension are investigated by applying a multilayered model of aortic wall. The thickness and properties of the endothelium, intima, internal elastic lamina (IEL), and media are affected by the transmural pressure. Navier-Stokes and Brinkman equations are applied for the transport of the transmural flow and the convective-diffusion equation is solved for LDL transport. LDL macromolecules enter the intima through leaky junctions, and then pass through the media layer where they permeate over the surface of smooth muscle cells (SMC). Uptake of LDL by cells is modeled through a uniform reaction evenly distributed in the macroscopically homogeneous media layer. The results show that transmural pressure significantly affects the LDL fluxes across the leaky junction, the intima, fenestral pores in the IEL, and the media layer. Many realistic predictions including the proper magnitudes for the permeability of endothelium and intimal layers, and the hydraulic conductivity of all layers as well as their trends with pressure are predicted by the present model.
The generalized scattering coefficient method for plane wave scattering in layered structures
NASA Astrophysics Data System (ADS)
Liu, Yu; Li, Chao; Wang, Huai-Yu; Zhou, Yun-Song
2017-02-01
The generalized scattering coefficient (GSC) method is pedagogically derived and employed to study the scattering of plane waves in homogeneous and inhomogeneous layered structures. The numerical stabilities and accuracies of this method and other commonly used numerical methods are discussed and compared. For homogeneous layered structures, concise scattering formulas with clear physical interpretations and strong numerical stability are obtained by introducing the GSCs. For inhomogeneous layered structures, three numerical methods are employed: the staircase approximation method, the power series expansion method, and the differential equation based on the GSCs. We investigate the accuracies and convergence behaviors of these methods by comparing their predictions to the exact results. The conclusions are as follows. The staircase approximation method has a slow convergence in spite of its simple and intuitive implementation, and a fine stratification within the inhomogeneous layer is required for obtaining accurate results. The expansion method results are sensitive to the expansion order, and the treatment becomes very complicated for relatively complex configurations, which restricts its applicability. By contrast, the GSC-based differential equation possesses a simple implementation while providing fast and accurate results.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
1998-01-01
Flow and turbulence models applied to the problem of shock buffet onset are studied. The accuracy of the interactive boundary layer and the thin-layer Navier-Stokes equations solved with recent upwind techniques using similar transport field equation turbulence models is assessed for standard steady test cases, including conditions having significant shock separation. The two methods are found to compare well in the shock buffet onset region of a supercritical airfoil that involves strong trailing-edge separation. A computational analysis using the interactive-boundary layer has revealed a Reynolds scaling effect in the shock buffet onset of the supercritical airfoil, which compares well with experiment. The methods are next applied to a conventional airfoil. Steady shock-separated computations of the conventional airfoil with the two methods compare well with experiment. Although the interactive boundary layer computations in the shock buffet region compare well with experiment for the conventional airfoil, the thin-layer Navier-Stokes computations do not. These findings are discussed in connection with possible mechanisms important in the onset of shock buffet and the constraints imposed by current numerical modeling techniques.
General solution for diffusion-controlled dissolution of spherical particles. 1. Theory.
Wang, J; Flanagan, D R
1999-07-01
Three classical particle dissolution rate expressions are commonly used to interpret particle dissolution rate phenomena. Our analysis shows that an assumption used in the derivation of the traditional cube-root law may not be accurate under all conditions for diffusion-controlled particle dissolution. Mathematical analysis shows that the three classical particle dissolution rate expressions are approximate solutions to a general diffusion layer model. The cube-root law is most appropriate when particle size is much larger than the diffusion layer thickness, the two-thirds-root expression applies when the particle size is much smaller than the diffusion layer thickness. The square-root expression is intermediate between these two models. A general solution to the diffusion layer model for monodispersed spherical particles dissolution was derived for sink and nonsink conditions. Constant diffusion layer thickness was assumed in the derivation. Simulated dissolution data showed that the ratio between particle size and diffusion layer thickness (a0/h) is an important factor in controlling the shape of particle dissolution profiles. A new semiempirical general particle dissolution equation is also discussed which encompasses the three classical particle dissolution expressions. The success of the general equation in explaining limitations of traditional particle dissolution expressions demonstrates the usefulness of the general diffusion layer model.
NASA Astrophysics Data System (ADS)
Guz, A. N.; Bagno, A. M.
2017-07-01
The dispersion curves are constructed and propagation of quasi-Lamb waves are studied for wide range of frequencies based on the Navier -Stokes three-dimensional linearized equations for a viscous liquid and linear equations of the classical theory of elasticity for an elastic layer. For a thick liquid layer, the effect of the viscosity of the liquid and the thickness of elastic and liquid layers on the phase velocities and attenuation coefficients of quasi-Lamb modes is analyzed. It is shown that in the case of a thick liquid layer for all modes, there are elastic layers of certain thickness with minimal effect of liquid viscosity on the phase velocities and attenuation coefficients of modes. It is also discovered that for some modes, there are both certain thicknesses and certain ranges of thickness where the effect of liquid viscosity on the phase velocities and attenuation coefficients of these modes is considerable. We ascertain that liquid viscosity promotes decrease of the penetration depth of the lowest quasi-Lamb mode into the liquid. The developed approach and the obtained results make it possible to ascertain for wave processes the limits of applicability of the model of ideal compressible fluid. Numerical results in the form of graphs are adduced and analyzed.
Design of metamirrors for linear to circular polarization conversion with super-octave bandwidth
NASA Astrophysics Data System (ADS)
Fartookzadeh, Mahdi
2017-10-01
In this paper, bandwidth improvement of reflection-mode linear to circular polarization converters (RMCPs) is studied. The proposed RMCP is based on multi-layer rectangular patches. Equivalent transmission line circuit of multi-layer reflection-mode polarization converters is used for designing the proposed metamirror. In addition, the approximate equation of axial ratio (AR) of the reflected wave is obtained from the structures containing rectangular patches on each layer. Polarization converters containing multi-layer rectangular patches can be utilized for different ranges of frequencies. However, the frequency range of 2-8 THz is considered in this paper without losing generality. The incident wave is assumed to be linearly polarized with 45° polarization angle. AR equation is used for initial optimization of the dimensions of rectangular patches to obtain the widest possible bandwidth of RMCPs with two- and three-layer patches. Secondary optimization is applied after specifying largest dimensions of the unit cell and excluding them from the variables of optimization. Finally, modified dimensions of the three-layer RMCP are obtained using parametrical study in simulations. The proposed three-layer polarization converter has the 3 dB axial ratio bandwidth of more than 116% and the permitted incident angle of higher than 25°.
A Canopy Density Model for Planar Orchard Target Detection Based on Ultrasonic Sensors
Li, Hanzhe; Zhai, Changyuan; Weckler, Paul; Wang, Ning; Yang, Shuo; Zhang, Bo
2016-01-01
Orchard target-oriented variable rate spraying is an effective method to reduce pesticide drift and excessive residues. To accomplish this task, the orchard targets’ characteristic information is needed to control liquid flow rate and airflow rate. One of the most important characteristics is the canopy density. In order to establish the canopy density model for a planar orchard target which is indispensable for canopy density calculation, a target density detection testing system was developed based on an ultrasonic sensor. A time-domain energy analysis method was employed to analyze the ultrasonic signal. Orthogonal regression central composite experiments were designed and conducted using man-made canopies of known density with three or four layers of leaves. Two model equations were obtained, of which the model for the canopies with four layers was found to be the most reliable. A verification test was conducted with different layers at the same density values and detecting distances. The test results showed that the relative errors of model density values and actual values of five, four, three and two layers of leaves were acceptable, while the maximum relative errors were 17.68%, 25.64%, 21.33% and 29.92%, respectively. It also suggested the model equation with four layers had a good applicability with different layers which increased with adjacent layers. PMID:28029132
Thermodynamic evaluation of transonic compressor rotors using the finite volume approach
NASA Technical Reports Server (NTRS)
Nicholson, S.; Moore, J.
1986-01-01
A method was developed which calculates two-dimensional, transonic, viscous flow in ducts. The finite volume, time marching formulation is used to obtain steady flow solutions of the Reynolds-averaged form of the Navier Stokes equations. The entire calculation is performed in the physical domain. The method is currently limited to the calculation of attached flows. The features of the current method can be summarized as follows. Control volumes are chosen so that smoothing of flow properties, typically required for stability, is now needed. Different time steps are used in the different governing equations to improve the convergence speed of the viscous calculations. A new pressure interpolation scheme is introduced which improves the shock capturing ability of the method. A multi-volume method for pressure changes in the boundary layer allows calculations which use very long and thin control volumes. A special discretization technique is also used to stabilize these calculations. A special formulation of the energy equation is used to provide improved transient behavior of solutions which use the full energy equation. The method is then compared with a wide variety of test cases. The freestream Mach numbers range from 0.075 to 2.8 in the calculations. Transonic viscous flow in a converging diverging nozzle is calculated with the method; the Mach number upstream of the shock is approximately 1.25. The agreement between the calculated and measured shock strength and total pressure losses is good. Essentially incompressible turbulent boundary layer flow in a adverse pressure gradient is calculated and the computed distribution of mean velocity and shear stress are in good agreement with the measurements. At the other end of the Mach number range, a flat plate turbulent boundary layer with a freestream Mach number of 2.8 is calculated using the full energy equation; the computed total temperature distribution and recovery factor agree well with the measurements when a variable Prandtl number is used through the boundary layer.
New approach to analyzing soil-building systems
Safak, E.
1998-01-01
A new method of analyzing seismic response of soil-building systems is introduced. The method is based on the discrete-time formulation of wave propagation in layered media for vertically propagating plane shear waves. Buildings are modeled as an extension of the layered soil media by assuming that each story in the building is another layer. The seismic response is expressed in terms of wave travel times between the layers, and the wave reflection and transmission coefficients at layer interfaces. The calculation of the response is reduced to a pair of simple finite-difference equations for each layer, which are solved recursively starting from the bedrock. Compared with commonly used vibration formulation, the wave propagation formulation provides several advantages, including the ability to incorporate soil layers, simplicity of the calculations, improved accuracy in modeling the mass and damping, and better tools for system identification and damage detection.A new method of analyzing seismic response of soil-building systems is introduced. The method is based on the discrete-time formulation of wave propagation in layered media for vertically propagating plane shear waves. Buildings are modeled as an extension of the layered soil media by assuming that each story in the building is another layer. The seismic response is expressed in terms of wave travel times between the layers, and the wave reflection and transmission coefficients at layer interfaces. The calculation of the response is reduced to a pair of simple finite-difference equations for each layer, which are solved recursively starting from the bedrock. Compared with commonly used vibration formulation, the wave propagation formulation provides several advantages, including the ability to incorporate soil layers, simplicity of the calculations, improved accuracy in modeling the mass and damping, and better tools for system identification and damage detection.
Pollock, Steve V; Colombo, Sergio L; Prout, Davey L; Godfrey, Ashley C; Moroney, James V
2003-12-01
This report describes a Chlamydomonas reinhardtii mutant that lacks Rubisco activase (Rca). Using the BleR (bleomycin resistance) gene as a positive selectable marker for nuclear transformation, an insertional mutagenesis screen was performed to select for cells that required a high-CO2 atmosphere for optimal growth. The DNA flanking the BleR insert of one of the high-CO2-requiring strains was cloned using thermal asymmetric interlaced-polymerase chain reaction and inverse polymerase chain reaction and sequenced. The flanking sequence matched the C. reinhardtii Rca cDNA sequence previously deposited in the National Center for Biotechnology Information database. The loss of a functional Rca in the strain was confirmed by the absence of Rca mRNA and protein. The open reading frame for Rca was cloned and expressed in pSL18, a C. reinhardtii expression vector conferring paromomycin resistance. This construct partially complemented the mutant phenotype, supporting the hypothesis that the loss of Rca was the reason the mutant grew poorly in a low-CO2 atmosphere. Sequencing of the C. reinhardtii Rca gene revealed that it contains 10 exons ranging in size from 18 to 470 bp. Low-CO2-grown rca1 cultures had a growth rate and maximum rate of photosynthesis 60% of wild-type cells. Results obtained from experiments on a cia5 rca1 double mutant also suggest that the CO2-concentrating mechanism partially compensates for the absence of an active Rca in the green alga C. reinhardtii.
Dauner, Allison L.; Gilliland, Theron C.; Mitra, Indrani; Pal, Subhamoy; Morrison, Amy C.; Hontz, Robert D.; Wu, Shuenn-Jue L.
2015-01-01
Loss of sample integrity during specimen transport can lead to false-negative diagnostic results. In an effort to improve upon the status quo, we used dengue as a model RNA virus to evaluate the stabilization of RNA and antibodies in three commercially available sample stabilization products: Whatman FTA Micro Cards (GE Healthcare Life Sciences, Pittsburgh, PA), DNAstāble Blood tubes (Biomātrica, San Diego, CA), and ViveST tubes (ViveBio, Alpharetta, GA). Both contrived and clinical dengue-positive specimens were stored on these products at ambient temperature or 37°C for up to 1 month. Antibody and viral RNA levels were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays, respectively, and compared with frozen unloaded controls. We observed reduced RNA and antibody levels between stabilized contrived samples and frozen controls at our earliest time point, and this was particularly pronounced for the FTA cards. However, despite some time and temperature dependent loss, a 94.6–97.3% agreement was observed between stabilized clinical specimens and their frozen controls for all products. Additional considerations such as cost, sample volume, matrix, and ease of use should inform any decision to incorporate sample stabilization products into a diagnostic testing workflow. We conclude that DNAstāble Blood and ViveST tubes are useful alternatives to traditional filter paper for ambient temperature shipment of clinical specimens for downstream molecular and serological testing. PMID:25940193
Supplement to the ICRPG turbulent boundary layer nozzle analysis computer program
NASA Technical Reports Server (NTRS)
Omori, S.; Gross, K. W.
1972-01-01
A supplement is presented for a turbulent boundary layer nozzle analysis computer program. It describes the program calculation sequence and presents a detailed documentation of each subroutine. Important equations are derived explicitly, and improvements to the program are discussed.