Fouling mechanisms of gel layer in a submerged membrane bioreactor.
Hong, Huachang; Zhang, Meijia; He, Yiming; Chen, Jianrong; Lin, Hongjun
2014-08-01
The fouling mechanisms underlying gel layer formation and its filtration resistance in a submerged membrane bioreactor (MBR) were investigated. It was found that gel layer rather than cake layer was more easily formed when soluble microbial products content in sludge suspension was relatively high. Thermodynamic analyses showed that gel layer formation process should overcome a higher energy barrier as compared with cake layer formation process. However, when separation distance <2.3 nm, attractive interaction energy of gelling foulant-membrane combination was remarkably higher than that of sludge floc-membrane combination. The combined effects were responsible for gel layer formation. Filtration tests showed that specific filtration resistance (SFR) of gel layer was almost 100 times higher than that of cake layer. The unusually high SFR of gel layer could be ascribed to the gelling propensity and osmotic pressure mechanism. These findings shed significant light on fouling mechanisms of gel layer in MBRs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Method for improving the performance of oxidizable ceramic materials in oxidizing environments
NASA Technical Reports Server (NTRS)
Nagaraj, Bangalore A. (Inventor)
2002-01-01
Improved adhesion of thermal barrier coatings to nonmetallic substrates using a dense layer of ceramic on an underlying nonmetallic substrate that includes at least one oxidizable component. The improved adhesion occurs because the application of the dense ceramic layer forms a diffusion barrier for oxygen. This diffusion barrier prevents the oxidizable component of the substrate from decomposing. The present invention applies ceramic by a process that deposits a relatively thick and dense ceramic layer on the underlying substrate. The formation of the dense layer of ceramic avoids the problem of void formation associated with ceramic formation by most prior art thermal decomposition processes. The formation of voids has been associated with premature spalling of thermal barrier layers and other protective layers applied to substrates.
Investigation of formation of cut off layers and productivity of screw milling process
NASA Astrophysics Data System (ADS)
Ambrosimov, S. K.; Morozova, A. V.
2018-03-01
The article presents studies of a new method for complex milling surfaces with a screw feed motion. Using the apparatus of algebra of logic, the process of formation of cut metal layers and processing capacity is presented.
In situ heat treatment of a tar sands formation after drive process treatment
Vinegar, Harold J.; Stanecki, John
2010-09-21
A method for treating a tar sands formation includes providing a drive fluid to a hydrocarbon containing layer of the tar sands formation to mobilize at least some hydrocarbons in the layer. At least some first hydrocarbons from the layer are produced. Heat is provided to the layer from one or more heaters located in the formation. At least some second hydrocarbons are produced from the layer of the formation. The second hydrocarbons include at least some hydrocarbons that are upgraded compared to the first hydrocarbons produced by using the drive fluid.
NASA Astrophysics Data System (ADS)
Akintunde, S. O.; Selyshchev, P. A.
2016-05-01
A theoretical approach is developed that describes the formation of a thin-film of AB-compound layer under the influence of radiation-induced vacancy. The AB-compound layer is formed as a result of a chemical reaction between the atomic species of A and B immiscible layers. The two layers are irradiated with a beam of energetic particles and this process leads to several vacant lattice sites creation in both layers due to the displacement of lattice atoms by irradiating particles. A- and B-atoms diffuse via these lattice sites by means of a vacancy mechanism in considerable amount to reaction interfaces A/AB and AB/B. The reaction interfaces increase in thickness as a result of chemical transformation between the diffusing species and surface atoms (near both layers). The compound layer formation occurs in two stages. The first stage begins as an interfacial reaction controlled process, and the second as a diffusion controlled process. The critical thickness and time are determined at a transition point between the two stages. The influence of radiation-induced vacancy on layer thickness, speed of growth, and reaction rate is investigated under irradiation within the framework of the model presented here. The result obtained shows that the layer thickness, speed of growth, and reaction rate increase strongly as the defect generation rate rises in the irradiated layers. It also shows the feasibility of producing a compound layer (especially in near-noble metal silicide considered in this study) at a temperature below their normal formation temperature under the influence of radiation.
Implementation of a diffusion convection surface evolution model in WallDYN
NASA Astrophysics Data System (ADS)
Schmid, K.
2013-07-01
In thermonuclear fusion experiments with multiple plasma facing materials the formation of mixed materials is inevitable. The formation of these mixed material layers is a dynamic process driven the tight interaction between transport in the plasma scrape off layer and erosion/(re-) deposition at the surface. To track this global material erosion/deposition balance and the resulting formation of mixed material layers the WallDYN code has been developed which couples surface processes and plasma transport. The current surface model in WallDYN cannot fully handle the growth of layers nor does it include diffusion. However at elevated temperatures diffusion is a key process in the formation of mixed materials. To remedy this shortcoming a new surface model has been developed which, for the first time, describes both layer growth/recession and diffusion in a single continuous diffusion/convection equation. The paper will detail the derivation of the new surface model and compare it to TRIDYN calculations.
The effect of boriding on wear resistance of cold work tool steel
NASA Astrophysics Data System (ADS)
Anzawa, Y.; Koyama, S.; Shohji, I.
2017-05-01
Recently, boriding has attracted extensive attention as surface stiffening processing of plain steel. In this research, the influence of processing time on the formation layer of cold work tool steel (KD11MAX) by Al added fused salt bath was examined. In addition, in order to improve the abrasion resistance of KD11MAX, the effect of the treatment of boronization on the formation layer has been investigated. Boriding were performed in molten borax which contained about 10 mass% Al at processing time of 1.8 ~ 7.2 ks (processing temperature of 1303 K). As a result of the examination, the hardness of the boriding layer becomes about 1900 HV when the processing time of 3.6 ks. Also the abrasion resistance has improved remarkably. Furthermore, it was revealed that the formation layer was boronized iron from the Vickers hardness and analysis of the X-ray diffraction measurement.
Formation and evolution of anodic TiO2 nanotube embryos
NASA Astrophysics Data System (ADS)
Jin, Rong; Liao, Maoying; Lin, Tong; Zhang, Shaoyu; Shen, Xiaoping; Song, Ye; Zhu, Xufei
2017-06-01
Anodic TiO2 nanotubes (ATNTs) have been widely investigated for decades due to their interesting nanostructures and various applications. However, the formation mechanism of ATNTs still remains unclear. To date, most of researches focus on the tubular structure but neglect the formation process of initial nanotube embryos. Herein, polyethylene glycol (PEG) is added into the traditional electrolyte to moderate the transformation process from compact layer to porous layer. Based on ‘oxygen bubble mould’ and ‘plastic flow model’ theory, the formation and evolution process of nanotube embryo is clarified firstly. Results validate the effect of ‘oxygen bubble mould’ on the formation of nanotube embryo, which has a great effect on regulating the morphology of ATNT arrays. Besides, nanotubes prepared in electrolytes with PEG show shorter tube length with larger diameter than that prepared in traditional electrolytes. The addition of PEG can also effectively avoid the breakdown phenomenon. Highlights Transformation from compact layer into porous layer is observed in PEG electrolyte. The effect of oxygen bubble mould is first demonstrated and observed. The formation process of TiO2 nanotube embryo is described systematically. TiO2 nanotubes prepared in PEG electrolyte show short length and large diameter.
Poprawa, Izabela
2005-01-01
The eggs of Dactylobiotus dispar, similar to other Tardigrada eggs, are covered with two shells: the vitelline envelope and the chorion. Ultrastructural studies have shown that the oocyte actively participates in the formation of both shells. The process of egg capsule formation begins at the midpoint of vitellogenesis. The chorion at first appears as isolated cones resulting from the exocytotic activity of the oocyte and the ovarian epithelium. Subsequently, connections between the cones are formed. Three layers can be distinguished in the completely developed chorion: (1) the inner layer of medium electron density; (2) the middle, labyrinthine layer; (3) the outer layer of medium electron density with cones (future conical processes). After chorion formation, a vitelline envelope is secreted by the oocyte. The Dactylobiotus dispar egg is covered with small, conical processes with hooked tips. The surface of the chorion is covered with a mesh-like network consisting of elongated interstices. The egg capsule has no micropylar opening.
Hybrid joule heating/electro-osmosis process for extracting contaminants from soil layers
Carrigan, Charles R.; Nitao, John J.
2003-06-10
Joule (ohmic) heating and electro-osmosis are combined in a hybrid process for removal of both water-soluble contaminants and non-aqueous phase liquids from contaminated, low-permeability soil formations that are saturated. Central to this hybrid process is the partial desaturation of the formation or layer using electro-osmosis to remove a portion of the pore fluids by induction of a ground water flow to extraction wells. Joule heating is then performed on a partially desaturated formation. The joule heating and electro-osmosis operations can be carried out simultaneously or sequentially if the desaturation by electro-osmosis occurs initially. Joule heating of the desaturated formation results in a very effective transfer or partitioning of liquid state contaminants to the vapor phase. The heating also substantially increases the vapor phase pressure in the porous formation. As a result, the contaminant laden vapor phase is forced out into soil layers of a higher permeability where other conventional removal processes, such as steam stripping or ground water extraction can be used to capture the contaminants. This hybrid process is more energy efficient than joule heating or steam stripping for cleaning low permeability formations and can share electrodes to minimize facility costs.
NASA Astrophysics Data System (ADS)
Rusakov, V. S.; Sukhorukov, I. A.; Zhankadamova, A. M.; Kadyrzhanov, K. K.
2010-05-01
Results of the simulation of thermally induced processes of diffusion and phase formation in model and experimentally investigated layered binary metallic systems are presented. The physical model is based on the Darken phenomenological theory and on the mechanism of interdiffusion of components along the continuous diffusion channels of phases in the two-phase regions of the system. The simulation of processes in the model systems showed that the thermally stabilized concentration profiles in two-layer binary metallic systems are virtually independent of the partial diffusion coefficients; for the systems with the average concentration of components that is the same over the sample depth, the time of the thermal stabilization of the structural and phase state inhomogeneous over the depth grows according to a power law with increasing thickness of the system in such a manner that the thicknesses of the surface layers grow, while the thickness of the intermediate layer approaches a constant value. The results of the simulation of the processes of diffusion and phase formation in experimentally investigated layered binary systems Fe-Ti and Cu-Be upon sequential isothermal and isochronous annealings agree well with the experimental data.
Chemical-mechanical planarization of aluminum and copper interconnects with magnetic liners
NASA Astrophysics Data System (ADS)
Wang, Bin
2000-10-01
Chemical Mechanical Planarization (CMP) has been employed to achieve Damascene patterning of aluminum and copper interconnects with unique magnetic liners. A one-step process was developed for each interconnect scheme, using a double-layered pad with mesh cells, pores, and perforations on a top hard layer. In a hydrogen peroxide-based slurry, aluminum CMP was a process of periodic removal and formation of a surface oxide layer. Cu CMP in the same slurry, however, was found to be a dissolution dominant process. In a potassium iodate-based slurry, copper removal was the result of two competing reactions: copper dissolution and a non-native surface layer formation. Guided by electrochemistry, slurries were developed to remove nickel in different regimes of the corrosion kinetics diagram. Nickel CMP in a ferric sulfate-based slurry resulted in periodic removal and formation of a passive surface layer. In a potassium permanganate-based slurry, nickel removal is a dissolution dominant process. Visible Al(Cu) surface damages obtained with copper-doped aluminum could be eliminated by understanding the interactions between the substrate, the pad, and the abrasive agglomerate. Increasing substrate hardness by annealing prior to CMP led to a surface finish free of visible scratches. A similar result was also obtained by preventing formation of abrasive agglomerates and minimizing their contact with the substrate.
Formation of porous surface layers in reaction bonded silicon nitride during processing
NASA Technical Reports Server (NTRS)
Shaw, N. J.; Glasgow, T. K.
1979-01-01
An effort was undertaken to determine if the formation of the generally observed layer of large porosity adjacent to the as-nitride surfaces of reaction bonded silicon nitrides could be prevented during processing. Isostatically pressed test bars were prepared from wet vibratory milled Si powder. Sintering and nitriding were each done under three different conditions:(1) bars directly exposed to the furnance atmosphere; (2) bars packed in Si powder; (3) bars packed in Si3N4 powder. Packing the bars in either Si of Si3N4 powder during sintering retarded formation of the layer of large porosity. Only packing the bars in Si prevented formation of the layer during nitridation. The strongest bars (316 MPa) were those sintered in Si and nitrided in Si3N4 despite their having a layer of large surface porosity; failure initiated at very large pores and inclusions. The alpha/beta ratio was found to be directly proportional to the oxygen content; a possible explanation for this relationship is discussed.
Discrete element simulation of charging and mixed layer formation in the ironmaking blast furnace
NASA Astrophysics Data System (ADS)
Mitra, Tamoghna; Saxén, Henrik
2016-11-01
The burden distribution in the ironmaking blast furnace plays an important role for the operation as it affects the gas flow distribution, heat and mass transfer, and chemical reactions in the shaft. This work studies certain aspects of burden distribution by small-scale experiments and numerical simulation by the discrete element method (DEM). Particular attention is focused on the complex layer-formation process and the problems associated with estimating the burden layer distribution by burden profile measurements. The formation of mixed layers is studied, and a computational method for estimating the extent of the mixed layer, as well as its voidage, is proposed and applied on the results of the DEM simulations. In studying a charging program and its resulting burden distribution, the mixed layers of coke and pellets were found to show lower voidage than the individual burden layers. The dynamic evolution of the mixed layer during the charging process is also analyzed. The results of the study can be used to gain deeper insight into the complex charging process of the blast furnace, which is useful in the design of new charging programs and for mathematical models that do not consider the full behavior of the particles in the burden layers.
NASA Astrophysics Data System (ADS)
Esnault, L.; Jullien, M.; Mustin, C.; Bildstein, O.; Libert, M.
In deep geological environments foreseen for the disposal of radioactive waste, metallic containers will undergo anaerobic corrosion. In this context, the formation of corrosion products such as magnetite may reduce the rate of corrosion processes through the formation of a protective layer. This study aims at determining the direct impact of iron-reducing bacteria (IRB) activity on the stability of corrosion protective layers. Batch experiments investigating iron corrosion processes including the formation of secondary magnetite and its subsequent alteration in the presence of IRB show the bacteria ability to use structural Fe(III) for respiration which leads to the sustainment of a high corrosion rate. With the bio-reduction of corrosion products such as magnetite, and H 2 as electron donor, IRB promote the reactivation of corrosion processes in corrosive environments by altering the protective layer. This phenomenon could have a major impact on the long-term stability of metallic compounds involved in multi-barrier system for high-level radioactive waste containment.
NASA Technical Reports Server (NTRS)
Josephson, John R.
1989-01-01
A layered-abduction model of perception is presented which unifies bottom-up and top-down processing in a single logical and information-processing framework. The process of interpreting the input from each sense is broken down into discrete layers of interpretation, where at each layer a best explanation hypothesis is formed of the data presented by the layer or layers below, with the help of information available laterally and from above. The formation of this hypothesis is treated as a problem of abductive inference, similar to diagnosis and theory formation. Thus this model brings a knowledge-based problem-solving approach to the analysis of perception, treating perception as a kind of compiled cognition. The bottom-up passing of information from layer to layer defines channels of information flow, which separate and converge in a specific way for any specific sense modality. Multi-modal perception occurs where channels converge from more than one sense. This model has not yet been implemented, though it is based on systems which have been successful in medical and mechanical diagnosis and medical test interpretation.
Engineering of layered, lipid-encapsulated drug nanoparticles through spray-drying.
Sapra, Mahak; Mayya, Y S; Venkataraman, Chandra
2017-06-01
Drug-containing nanoparticles have been synthesized through the spray-drying of submicron droplet aerosols by using matrix materials such as lipids and biopolymers. Understanding layer formation in composite nanoparticles is essential for the appropriate engineering of particle substructures. The present study developed a droplet-shrinkage model for predicting the solid-phase formation of two non-volatile solutes-stearic acid lipid and a set of drugs, by considering molecular volume and solubility. Nanoparticle formation was simulated to define the parameter space of material properties and process conditions for the formation of a layered structure with the preferential accumulation of the lipid in the outer layer. Moreover, lipid-drug demarcation diagrams representing a set of critical values of ratios of solute properties at which the two solutes precipitate simultaneously were developed. The model was validated through the preparation of stearic acid-isoniazid nanoparticles under controlled processing conditions. The developed model can guide the selection of solvents, lipids, and processing conditions such that drug loading and lipid encapsulation in composite nanoparticles are optimized. Copyright © 2017 Elsevier B.V. All rights reserved.
Preservation of Archaeal Surface Layer Structure During Mineralization
NASA Astrophysics Data System (ADS)
Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François
2016-05-01
Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer “ghosts” during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record.
NASA Technical Reports Server (NTRS)
Wolf, M.; Goldman, H.
1981-01-01
The attributes of the various metallization processes were investigated. It is shown that several metallization process sequences will lead to adequate metallization for large area, high performance solar cells at a metallization add on price in the range of $6. to 12. m squared, or 4 to $.8/W(peak), assuming 15% efficiency. Conduction layer formation by thick film silver or by tin or tin/lead solder leads to metallization add-on prices significantly above the $6. to 12/m squared range c.) The wet chemical processes of electroless and electrolytic plating for strike/barrier layer and conduction layer formation, respectively, seem to be most cost effective.
NASA Astrophysics Data System (ADS)
Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott
2009-05-01
The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type and location of data sought by multiple processes to the attention of each processing station, just that specifically sought data is downloaded to each process application. The Sensor Layer Prototype participated in a proof-of-concept demonstration in April 2008. This event allowed multiple MITRE innovation programs to interact among themselves to demonstrate the ability to couple value-adding but previously unanticipated users to the enterprise. For this event, the Sensor Layer Prototype was used to show data entering the environment in real time. Multiple data types were encapsulated and added to the database via the Sensor Layer Prototype, specifically National Imagery Transmission Format 2.1 (NITF), NATO Standardization Format 4607 (STANAG 4607), Cursor-on-Target (CoT), Joint Photographic Experts Group (JPEG), Hierarchical Data Format (HDF5) and several additional sensor file formats describing multiple sensors addressing a common scenario.
Dohr, M; Ehmann, H M A; Jones, A O F; Salzmann, I; Shen, Q; Teichert, C; Ruzié, C; Schweicher, G; Geerts, Y H; Resel, R; Sferrazza, M; Werzer, O
2017-03-22
Film forming properties of semiconducting organic molecules comprising alkyl-chains combined with an aromatic unit have a decisive impact on possible applications in organic electronics. In particular, knowledge on the film formation process in terms of wetting or dewetting, and the precise control of these processes, is of high importance. In the present work, the subtle effect of temperature on the morphology and structure of dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) films deposited on silica surfaces by spin coating is investigated in situ via X-ray diffraction techniques and atomic force microscopy. Depending on temperature, bulk C8-BTBT exhibits a crystalline, a smectic A and an isotropic phase. Heating of thin C8-BTBT layers at temperatures below the smectic phase transition temperature leads to a strong dewetting of the films. Upon approaching the smectic phase transition, the molecules start to rewet the surface in the form of discrete monolayers with a defined number of monolayers being present at a given temperature. The wetting process and layer formation is well defined and thermally stable at a given temperature. On cooling the reverse effect is observed and dewetting occurs. This demonstrates the full reversibility of the film formation behavior and reveals that the layering process is defined by an equilibrium thermodynamic state, rather than by kinetic effects.
NASA Technical Reports Server (NTRS)
Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.
1993-01-01
A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.
NASA Astrophysics Data System (ADS)
Gokhale, Pritesh; Mitra, Dana; Sowade, Enrico; Yoti Mitra, Kalyan; Leonel Gomes, Henrique; Ramon, Eloi; Al-Hamry, Ammar; Kanoun, Olfa; Baumann, Reinhard R.
2017-12-01
During the last years, intense pulsed light (IPL) processing has been employed and studied intensively for the drying and sintering of metal nanoparticle layers deposited by means of printing methods on flexible polymer substrates. IPL was found to be a very fast and substrate-gentle approach qualified for the field of flexible and large-area printed electronics, i.e. manufactured via roll-to-roll processing. In this contribution, IPL is used for the fine-patterning of printed silver nanoparticle layers. The patterning is obtained by induced and controlled crack formation in the thin silver layer due to the intense exposure of IPL. The crack formation is controlled by selection of the substrate material, the fine-tuning of the morphology of the silver layer and an application of a dielectric layer on top of the silver layer that acts as a stress concentrator. Careful optimization of the IPL parameters allowed to adjust the lateral width of the crack. This novel approach turned out to be a fast and reproducible high-resolution patterning process for multiple applications, e.g. to pattern the source-drain electrodes for all-inkjet-printed thin-film transistors.
NASA Astrophysics Data System (ADS)
Vasil'eva, E. V.; Bochkov, V. E.; Mikheev, É. A.; Lyakishev, V. A.; Afanas'eva, T. N.
1983-10-01
With an increase in carbon content in the steel being treated, the thickness of the alloyed layer increases and its microhardness also increases. The carbon exerts a deoxidizing action on the layer being formed and promotes a reduction in the threshold of deerosion and also additional strengthening of the layer as the result of the formation of binary η-carbides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Kun, E-mail: kpeng@hnu.edu.cn; Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082; Jiang, Pan
2014-12-15
Graphical abstract: Layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared. - Highlights: • Novel hexagonal layer-stack structure CdO micro-rods were synthesized by a thermal evaporation method. • The pre-oxidation, vapor pressure and substrate nature play a key role on the formation of CdO rods. • The formation mechanism of CdO micro-rods was explained. - Abstract: Novel layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared by pre-oxidizing Cd granules and subsequent thermal oxidation under normal atmospheric pressure. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to characterize the phase structure and microstructure. The pre-oxidation process, vapor pressure and substratemore » nature were the key factors for the formation of CdO micro-rods. The diameter of micro-rod and surface rough increased with increasing of thermal evaporation temperature, the length of micro-rod increased with the increasing of evaporation time. The formation of hexagonal layer-stack structure was explained by a vapor–solid mechanism.« less
Formation mechanism of the graphite-rich protective layer in blast furnace hearths
NASA Astrophysics Data System (ADS)
Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Feng; Liang, Li-sheng
2016-01-01
A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase from hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face temperature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.
Effects of Burning Conditions to the Formation of Gold Layer Photograph and Gold Layer Hologram
NASA Astrophysics Data System (ADS)
Kuge, Ken'ichi; Takahashi, Ataru; Harada, Takahito; Doi, Keiji; Sakai, Tomoko
Burning stage from gold nanoparticles to gold layer in the formation process of gold-layer photograph using gold deposition development was investigated. The gelatin layer holding gold nanoparticles is carbonized at about 400°C and burned out until about 500°C. Because gold nanoparticles would be compressed only to vertical direction and then melt to form the gold layer, the gold-layer photograph still holds the high resolution. Gold nanoparaticles do not melt completely even at 900°C, and form continuous clusters of several hundred nm.
AA6082 to DX56-Steel Laser Brazing: Process Parameter-Intermetallic Formation Correlation
NASA Astrophysics Data System (ADS)
Narsimhachary, D.; Pal, S.; Shariff, S. M.; Padmanabham, G.; Basu, A.
2017-09-01
In the present study, laser-brazed AA6082 to DX56-galvanized steel joints were investigated to understand the influence of process parameters on joint strength in terms of intermetallic layer formation. 1.5-mm-thick sheet of aluminum alloy (AA6082-T6) and galvanized steel (DX56) sheet of 0.7 mm thickness were laser-brazed with 1.5-mm-diameter Al-12% Si solid filler wire. During laser brazing, laser power (4.6 kW) and wire feed rate (3.4 m/min) were kept constant with a varying laser scan speed of 3.5, 3, 2.5, 2, 1.5, and 1 m/min. Microstructure of brazed joint reveals epitaxial growth at the aluminum side and intermetallic layer formation at steel interface. Intermetallic layer formation was confirmed by EDS analysis and XRD study. Hardness profile showed hardness drop in filler region, and failure during tensile testing was initiated through the filler region near the steel interface. As per both experimental study and numerical analysis, it was observed that intermetallic layer thickness decreases with increasing brazing speed. Zn vaporization from galvanized steel interface also affected the joint strength. It was found that high laser scan speed or faster cooling rate can be chosen for suppressing intermetallic layer formation or at least decreasing the layer thickness which results in improved mechanical properties.
Formation of nanofilament field emission devices
Morse, Jeffrey D.; Contolini, Robert J.; Musket, Ronald G.; Bernhardt, Anthony F.
2000-01-01
A process for fabricating a nanofilament field emission device. The process enables the formation of high aspect ratio, electroplated nanofilament structure devices for field emission displays wherein a via is formed in a dielectric layer and is self-aligned to a via in the gate metal structure on top of the dielectric layer. The desired diameter of the via in the dielectric layer is on the order of 50-200 nm, with an aspect ratio of 5-10. In one embodiment, after forming the via in the dielectric layer, the gate metal is passivated, after which a plating enhancement layer is deposited in the bottom of the via, where necessary. The nanofilament is then electroplated in the via, followed by removal of the gate passification layer, etch back of the dielectric, and sharpening of the nanofilament. A hard mask layer may be deposited on top of the gate metal and removed following electroplating of the nanofilament.
Liu, Yue; Williams, Mackenzie G.; Miller, Timothy J.; Teplyakov, Andrew V.
2015-01-01
This paper establishes a strategy for chemical deposition of functionalized nanoparticles onto solid substrates in a layer-by-layer process based on self-limiting surface chemical reactions leading to complete monolayer formation within the multilayer system without any additional intermediate layers – nanoparticle layer deposition (NPLD). This approach is fundamentally different from previously established traditional layer-by-layer deposition techniques and is conceptually more similar to well-known atomic and molecular – layer deposition processes. The NPLD approach uses efficient chemical functionalization of the solid substrate material and complementary functionalization of nanoparticles to produce a nearly 100% coverage of these nanoparticles with the use of “click chemistry”. Following this initial deposition, a second complete monolayer of nanoparticles is deposited using a copper-catalyzed “click reaction” with the azide-terminated silica nanoparticles of a different size. This layer-by-layer growth is demonstrated to produce stable covalently-bound multilayers of nearly perfect structure over macroscopic solid substrates. The formation of stable covalent bonds is confirmed spectroscopically and the stability of the multilayers produced is tested by sonication in a variety of common solvents. The 1-, 2- and 3-layer structures are interrogated by electron microscopy and atomic force microscopy and the thickness of the multilayers formed is fully consistent with that expected for highly efficient monolayer formation with each cycle of growth. This approach can be extended to include a variety of materials deposited in a predesigned sequence on different substrates with a highly conformal filling. PMID:26726273
NASA Astrophysics Data System (ADS)
Matilainen, Ville-Pekka; Piili, Heidi; Salminen, Antti; Nyrhilä, Olli
Laser additive manufacturing (LAM) is a fabrication technology that enables production of complex parts from metallic materials with mechanical properties comparable to conventionally manufactured parts. In the LAM process, parts are manufactured by melting metallic powder layer-by-layer with a laser beam. This manufacturing technology is nowadays called powder bed fusion (PBF) according to the ASTM F2792-12a standard. This strategy involves several different independent and dependent thermal cycles, all of which have an influence on the final properties of the manufactured part. The quality of PBF parts depends strongly on the characteristics of each single laser-melted track and each single layer. This study consequently concentrates on investigating the effects of process parameters such as laser power on single track and layer formation and laser-material interaction phenomena occurring during the PBF process. Experimental tests were done with two different machines: a modified research machine based on an EOS EOSINT M-series system and an EOS EOSINT M280 system. The material used was EOS stainless steel 17-4 PH. Process monitoring was done with an active illuminated high speed camera system. After microscopy analysis, it was concluded that a keyhole can form during laser additive manufacturing of stainless steel. It was noted that heat input has an important effect on the likelihood of keyhole formation. The threshold intensity value for keyhole formation of 106 W/cm2 was exceeded in all manufactured single tracks. Laser interaction time was found to have an effect on penetration depth and keyhole formation, since the penetration depth increased with increased laser interaction time. It was also concluded that active illuminated high speed camera systems are suitable for monitoring of the manufacturing process and facilitate process control.
Li, G. Z.; Sumption, M. D.; Collings, E. W.
2015-01-01
Significantly enhanced critical current density (Jc) for MgB2 superconducting wires can be obtained following the advanced internal Mg infiltration (AIMI) route. But unless suitable precautions are taken, the AIMI-processed MgB2 wires will exhibit incomplete MgB2 layer formation, i.e. reduced superconductor core size and hence suppressed current-carrying capability. Microstructural characterization of AIMI MgB2 wires before and after the heat treatment reveals that the reaction mechanism changes from a “Mg infiltration-reaction” at the beginning of the heat treatment to a “Mg diffusion-reaction” once a dense MgB2 layer is formed. A drastic drop in the Mg transport rate from infiltration to diffusion causes the termination of the MgB2 core growth. To quantify this process, a two-stage kinetic model is built to describe the MgB2 layer formation and growth. The derived kinetic model and the associated experimental observations indicate that fully reacted AIMI-processed MgB2 wires can be achieved following the optimization of B particle size, B powder packing density, MgB2 reaction activation energy and its response to the additions of dopants. PMID:26973431
Physical processes associated with current collection by plasma contactors
NASA Technical Reports Server (NTRS)
Katz, Ira; Davis, Victoria A.
1990-01-01
Recent flight data confirms laboratory observations that the release of neutral gas increases plasma sheath currents. Plasma contactors are devices which release a partially ionized gas in order to enhance the current flow between a spacecraft and the space plasma. Ionization of the expellant gas and the formation of a double layer between the anode plasma and the space plasma are the dominant physical processes. A theory is presented of the interaction between the contactor plasma and the background plasma. The conditions for formation of a double layer between the two plasmas are derived. Double layer formation is shown to be a consequence of the nonlinear response of the plasmas to changes in potential. Numerical calculations based upon this model are compared with laboratory measurements of current collection by hollow cathode-based plasma contactors.
Heteroepitaxial growth of GaAs on (100) Ge/Si using migration enhanced epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanoto, H.; Loke, W. K.; Yoon, S. F.
In this paper, heteroepitaxial growth of GaAs on nominal (100) Ge/Si substrate was investigated. The root-mean square surface roughness of the sample where the first few monolayers of the GaAs were nucleated by migration enhanced epitaxy (MEE) is four times smaller compared to the sample without such a process, indicating better surface planarity. From the (004) x-ray diffraction rocking curve measurement, the full width at half maximum of the GaAs layer nucleated by MEE is 40% lower compared to that of the GaAs layer without such a process, indicating better crystal quality. Furthermore, it was found that the sample wheremore » the GaAs layer was nucleated by MEE experienced early relaxation. As the MEE process promotes two-dimensional growth, the GaAs layer where nucleation was initiated by such a process has fewer islandlike formations. This leads to a pseudomorphically grown GaAs layer, which experiences higher strain compared to the GaAs layer with more islandlike formations, where most relaxation occurs on the free surface of the islands. Therefore, for the same layer thickness, the GaAs layer on (100) Ge/Si substrate where nucleation was initiated by MEE relaxed first.« less
Influence of oxygen on the carbide formation on tungsten
NASA Astrophysics Data System (ADS)
Luthin, J.; Linsmeier, Ch.
2001-03-01
As a first wall material in nuclear fusion devices, tungsten will interact with carbon and oxygen from the plasma. In this study, we report on the process of thermally induced carbide formation of thin carbon films on polycrystalline tungsten and the influence of oxygen on this process. All investigations are performed using X-ray photoelectron spectroscopy (XPS). Carbon films are supplied through electron beam evaporation of graphite. The carbidization process, monitored during increased substrate temperature, can be divided into four phases. In phase I disordered carbon converts into graphite-like carbon. In phase II significant diffusion and the reaction to W 2C is observed, followed by phase III which is dominated by the presence of W 2C and the beginning reaction to WC. Finally in phase IV only WC is present, but the total carbon amount has strongly decreased. Different mechanisms of oxygen influence on the carbide formation are proposed and measurements of the reaction of carbon on tungsten with intermediate oxide layers are presented in detail. A WO 2+ x intermediate layer completely inhibits the carbide formation, while a WO 2 layer leads to WC formation at temperatures above 1270 K.
Thin Film Transistors On Plastic Substrates
Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.
2004-01-20
A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.
Salt dissolution and sinkhole formation: Results of laboratory experiments
NASA Astrophysics Data System (ADS)
Oz, Imri; Eyal, Shalev; Yoseph, Yechieli; Ittai, Gavrieli; Elad, Levanon; Haim, Gvirtzman
2016-10-01
The accepted mechanism for the formation of thousands of sinkholes along the coast of the Dead Sea suggests that their primary cause is dissolution of a salt layer by groundwater undersaturated with respect to halite. This is related to the drop in the Dead Sea level, which caused a corresponding drop of the freshwater-saltwater interface, resulting in fresher groundwater replacing the brines that were in contact with the salt layer. In this study we used physical laboratory experiments to examine the validity of this mechanism by reproducing the full dynamic natural process and to examine the impact of different hydrogeological characteristics on this process. The experimental results show surface subsidence and sinkhole formation. The stratigraphic configurations of the aquifer, together with the mechanical properties of the salt layer, determine the dynamic patterns of the sinkhole formation (instantaneous versus gradual formation). Laboratory experiments were also used to study the potential impact of future stratification in the Dead Sea, if and when the "Red Sea-Dead Sea Canal" project is carried out, and the Dead Sea level remains stable. The results show that the dissolution rates are slower by 1 order of magnitude in comparison with a nonstratified saltwater body, and therefore, the processes of salt dissolution and sinkhole formation will be relatively restrained under these conditions.
Tang, Jian; Qu, Zhou; Luo, Jianhui; He, Lanyan; Wang, Pingmei; Zhang, Ping; Tang, Xianqiong; Pei, Yong; Ding, Bin; Peng, Baoliang; Huang, Yunqing
2018-02-15
The detachment process of an oil molecular layer situated above a horizontal substrate was often described by a three-stage process. In this mechanism, the penetration and diffusion of water molecules between the oil phase and the substrate was proposed to be a crucial step to aid in removal of oil layer/drops from substrate. In this work, the detachment process of a two-dimensional alkane molecule layer from a silica surface in aqueous surfactant solutions is studied by means of molecular dynamics (MD) simulations. By tuning the polarity of model silica surfaces, as well as considering the different types of surfactant molecules and the water flow effects, more details about the formation of water molecular channel and the expansion processes are elucidated. It is found that for both ionic and nonionic type surfactant solutions, the perturbation of surfactant molecules on the two-dimensional oil molecule layer facilitates the injection and diffusion of water molecules between the oil layer and silica substrate. However, the water channel formation and expansion speed is strongly affected by the substrate polarity and properties of surfactant molecules. First, only for the silica surface with relative stronger polarity, the formation of water molecular channel is observed. Second, the expansion speed of the water molecular channel upon the ionic surfactant (dodecyl trimethylammonium bromide, DTAB and sodium dodecyl benzenesulfonate, SDBS) flooding is more rapidly than the nonionic surfactant system (octylphenol polyoxyethylene(10) ether, OP-10). Third, the water flow speed may also affect the injection and diffusion of water molecules. These simulation results indicate that the water molecular channel formation process is affected by multiple factors. The synergistic effects of perturbation of surfactant molecules and the electrostatic interactions between silica substrate and water molecules are two key factors aiding in the injection and diffusion of water molecules and helpful for the oil detachment from silica substrate.
Panzer, Fabian; Hanft, Dominik; Gujar, Tanaji P; Kahle, Frank-Julian; Thelakkat, Mukundan; Köhler, Anna; Moos, Ralf
2016-04-08
We present the successful fabrication of CH₃NH₃PbI₃ perovskite layers by the aerosol deposition method (ADM). The layers show high structural purity and compactness, thus making them suitable for application in perovskite-based optoelectronic devices. By using the aerosol deposition method we are able to decouple material synthesis from layer processing. Our results therefore allow for enhanced and easy control over the fabrication of perovskite-based devices, further paving the way for their commercialization.
Germ layer differentiation during early hindgut and cloaca formation in rabbit and pig embryos
Hassoun, Romia; Schwartz, Peter; Rath, Detlef; Viebahn, Christoph; Männer, Jörg
2010-01-01
Relative to recent advances in understanding molecular requirements for endoderm differentiation, the dynamics of germ layer morphology and the topographical distribution of molecular factors involved in endoderm formation at the caudal pole of the embryonic disc are still poorly defined. To discover common principles of mammalian germ layer development, pig and rabbit embryos at late gastrulation and early neurulation stages were analysed as species with a human-like embryonic disc morphology, using correlative light and electron microscopy. Close intercellular contact but no direct structural evidence of endoderm formation such as mesenchymal–epithelial transition between posterior primitive streak mesoderm and the emerging posterior endoderm were found. However, a two-step process closely related to posterior germ layer differentiation emerged for the formation of the cloacal membrane: (i) a continuous mesoderm layer and numerous patches of electron-dense flocculent extracellular matrix mark the prospective region of cloacal membrane formation; and (ii) mesoderm cells and all extracellular matrix including the basement membrane are lost locally and close intercellular contact between the endoderm and ectoderm is established. The latter process involves single cells at first and then gradually spreads to form a longitudinally oriented seam-like cloacal membrane. These gradual changes were found from gastrulation to early somite stages in the pig, whereas they were found from early somite to mid-somite stages in the rabbit; in both species cloacal membrane formation is complete prior to secondary neurulation. The results highlight the structural requirements for endoderm formation during development of the hindgut and suggest new mechanisms for the pathogenesis of common urogenital and anorectal malformations. PMID:20874819
Thermal analysis of microlens formation on a sensitized gelatin layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muric, Branka; Pantelic, Dejan; Vasiljevic, Darko
2009-07-01
We analyze a mechanism of direct laser writing of microlenses. We find that thermal effects and photochemical reactions are responsible for microlens formation on a sensitized gelatin layer. An infrared camera was used to assess the temperature distribution during the microlens formation, while the diffraction pattern produced by the microlens itself was used to estimate optical properties. The study of thermal processes enabled us to establish the correlation between thermal and optical parameters.
Łaszcz, A; Katcki, J; Ratajczak, J; Tang, Xiaohui; Dubois, E
2006-10-01
Very thin erbium silicide layers have been used as source and drain contacts to n-type Si in low Schottky barrier MOSFETs on silicon-on-insulator substrates. Erbium silicide is formed by a solid-state reaction between the metal and silicon during annealing. The influence of annealing temperature (450 degrees C, 525 degrees C and 600 degrees C) on the formation of an erbium silicide layer in the Pt/Er/Si/SiO(2)/Si structure was analysed by means of cross-sectional transmission electron microscopy. The Si grains/interlayer formed at the interface and the presence of Si grains within the Er-related layer constitute proof that Si reacts with Er in the presence of a Pt top layer in the temperature range 450-600 degrees C. The process of silicide formation in the Pt/Er/Si structure differs from that in the Er/Si structure. At 600 degrees C, the Pt top layer vanishes and a (Pt-Er)Si(x) system is formed.
NASA Astrophysics Data System (ADS)
Matsui, Masaki; Dokko, Kaoru; Akita, Yasuhiro; Munakata, Hirokazu; Kanamura, Kiyoshi
2012-07-01
Surface layer formation processes on a LiCoO2 thin film electrode in a non-aqueous electrolyte containing lithium bis(oxalate)borate (LiBOB) were investigated using in situ FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). The in situ FTIR spectra of the electrolyte solution containing LiBOB showed that the adsorption of BOB anions on the electrode surface occurred during the charge process of the LiCoO2 thin film electrode above 4.0 V. XPS analysis for the LiCoO2 thin film electrode charged in an electrolyte containing LiBOB suggested that the adsorbed BOB anions on the electrode surface prevent the continuous decomposition of hexafluorophosphate (PF6) anions resulting in the formation of a very thin surface layer containing organic species, while the LiCoO2 charged in a LiPF6 solution had a relatively thick surface layer containing organic species and inorganic species.
In Vitro Characterization of the Two-Stage Non-Classical Reassembly Pathway of S-Layers
Breitwieser, Andreas; Iturri, Jagoba; Toca-Herrera, Jose-Luis; Sleytr, Uwe B.; Pum, Dietmar
2017-01-01
The recombinant bacterial surface layer (S-layer) protein rSbpA of Lysinibacillus sphaericus CCM 2177 is an ideal model system to study non-classical nucleation and growth of protein crystals at surfaces since the recrystallization process may be separated into two distinct steps: (i) adsorption of S-layer protein monomers on silicon surfaces is completed within 5 min and the amount of bound S-layer protein sufficient for the subsequent formation of a closed crystalline monolayer; (ii) the recrystallization process is triggered—after washing away the unbound S-layer protein—by the addition of a CaCl2 containing buffer solution, and completed after approximately 2 h. The entire self-assembly process including the formation of amorphous clusters, the subsequent transformation into crystalline monomolecular arrays, and finally crystal growth into extended lattices was investigated by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). Moreover, contact angle measurements showed that the surface properties of S-layers change from hydrophilic to hydrophobic as the crystallization proceeds. This two-step approach is new in basic and application driven S-layer research and, most likely, will have advantages for functionalizing surfaces (e.g., by spray-coating) with tailor-made biological sensing layers. PMID:28216572
Hindered settling and the formation of layered intrusions
NASA Astrophysics Data System (ADS)
Bons, Paul D.; Baur, Albrecht; Elburg, Marlina A.; Lindhuber, Matthias J.; Marks, Michael A. W.; Soesoo, Alvar; van Milligen, Boudewijn P.; Walte, Nicolas P.
2015-04-01
Layered intrusions are characterized by (often repetitive) layering on a range of scales. Many explanations for the formation of such layering have been proposed over the past decades. We investigated the formation of "mats" by hindered crystal settling, a model that was first suggested by Lauder (1964). The interaction of sinking and rising crystals leads to the amplification of perturbations in crystal density within a magma chamber, a process similar to the formation of traffic jams in dense traffic (Bons et al., 2015). Once these "crystal traffic jams" form they constitute a barrier for further settling of crystals. Between these barriers, the magma evolves in a semi-closed system in which stratification may develop by gravitational sorting. Barriers, and therefore layers, form sequentially during inward cooling of the magma chamber. Barring later equilibration, mineralogical and geochemical trends within the layers are repetitive, but with variations due to the random process of initial perturbation formation. Layers can form in the transition between two end-member regimes: (1) in a fast cooling and/or viscous magma crystals cannot sink or float a significant distance and minerals are distributed homogeneously throughout the chamber; (2) in a slow cooling and/or low-viscosity magma crystals can quickly settle at the top and bottom of the chamber and crystals concentrations are never high enough to form "traffic jams". As a result, heavy and light minerals get fully separated in the chamber. Between these two end members, crystals can sink and float a significant distance, but not the whole height of the magma chamber before entrapment in "traffic jams". We illustrate the development of layers with numerical models and compare the results with the layered nepheline syenites (kakortokites) of the Ilímaussaq intrusion in SW Greenland. References: Bons, P.D., Baur, A., Elburg, M.A., Lindhuber, M.J., Marks, M.A.W., Soesoo, A., van Milligen, B.P., Walte, N.P. 2015. Layered intrusions and traffic jams. Geology 43, 71-74 Lauder, W. 1964. Mat formation and crystal settling in magma. Nature 202, 1100-1101.
Silicide formation process of Er films with Ta and TaN capping layers.
Choi, Juyun; Choi, Seongheum; Kim, Jungwoo; Na, Sekwon; Lee, Hoo-Jeong; Lee, Seok-Hee; Kim, Hyoungsub
2013-12-11
The phase development and defect formation during the silicidation reaction of sputter-deposited Er films on Si with ∼20-nm-thick Ta and TaN capping layers were examined. TaN capping effectively prevented the oxygen incorporation from the annealing atmosphere, which resulted in complete conversion to the ErSi2-x phase. However, significant oxygen penetration through the Ta capping layer inhibited the ErSi2-x formation, and incurred the growth of several Er-Si-O phases, even consuming the ErSi2-x layer formed earlier. Both samples produced a number of small recessed defects at an early silicidation stage. However, large rectangular or square-shaped surface defects, which were either pitlike or pyramidal depending on the capping layer identity, were developed as the annealing temperature increased. The origin of different defect generation mechanisms was suggested based on the capping layer-dependent silicidation kinetics.
Wagner, Lukas; Mundt, Laura E; Mathiazhagan, Gayathri; Mundus, Markus; Schubert, Martin C; Mastroianni, Simone; Würfel, Uli; Hinsch, Andreas; Glunz, Stefan W
2017-11-02
Relating crystallization of the absorber layer in a perovskite solar cell (PSC) to the device performance is a key challenge for the process development and in-depth understanding of these types of high efficient solar cells. A novel approach that enables real-time photo-physical and electrical characterization using a graphite-based PSC is introduced in this work. In our graphite-based PSC, the device architecture of porous monolithic contact layers creates the possibility to perform photovoltaic measurements while the perovskite crystallizes within this scaffold. The kinetics of crystallization in a solution based 2-step formation process has been analyzed by real-time measurement of the external photon to electron quantum efficiency as well as the photoluminescence emission spectra of the solar cell. With this method it was in particular possible to identify a previously overlooked crystallization stage during the formation of the perovskite absorber layer. This stage has significant influence on the development of the photocurrent, which is attributed to the formation of electrical pathways between the electron and hole contact, enabling efficient charge carrier extraction. We observe that in contrast to previously suggested models, the perovskite layer formation is indeed not complete with the end of crystal growth.
Novel Chemical Process for Producing Chrome Coated Metal
Pelar, Christopher; Greenaway, Karima; Zea, Hugo; Wu, Chun-Hsien
2018-01-01
This work demonstrates that a version of the Reduction Expansion Synthesis (RES) process, Cr-RES, can create a micron scale Cr coating on an iron wire. The process involves three steps. I. A paste consisting of a physical mix of urea, chrome nitrate or chrome oxide, and water is prepared. II. An iron wire is coated by dipping. III. The coated, and dried, wire is heated to ~800 °C for 10 min in a tube furnace under a slow flow of nitrogen gas. The processed wires were then polished and characterized, primarily with scanning electron microscopy (SEM). SEM indicates the chrome layer is uneven, but only on the scale of a fraction of a micron. The evidence of porosity is ambiguous. Elemental mapping using SEM electron microprobe that confirmed the process led to the formation of a chrome metal layer, with no evidence of alloy formation. Additionally, it was found that thickness of the final Cr layer correlated with the thickness of the precursor layer that was applied prior to the heating step. Potentially, this technique could replace electrolytic processing, a process that generates carcinogenic hexavalent chrome, but further study and development is needed. PMID:29303977
Novel Chemical Process for Producing Chrome Coated Metal.
Pelar, Christopher; Greenaway, Karima; Zea, Hugo; Wu, Chun-Hsien; Luhrs, Claudia C; Phillips, Jonathan
2018-01-05
This work demonstrates that a version of the Reduction Expansion Synthesis (RES) process, Cr-RES, can create a micron scale Cr coating on an iron wire. The process involves three steps. I. A paste consisting of a physical mix of urea, chrome nitrate or chrome oxide, and water is prepared. II. An iron wire is coated by dipping. III. The coated, and dried, wire is heated to ~800 °C for 10 min in a tube furnace under a slow flow of nitrogen gas. The processed wires were then polished and characterized, primarily with scanning electron microscopy (SEM). SEM indicates the chrome layer is uneven, but only on the scale of a fraction of a micron. The evidence of porosity is ambiguous. Elemental mapping using SEM electron microprobe that confirmed the process led to the formation of a chrome metal layer, with no evidence of alloy formation. Additionally, it was found that thickness of the final Cr layer correlated with the thickness of the precursor layer that was applied prior to the heating step. Potentially, this technique could replace electrolytic processing, a process that generates carcinogenic hexavalent chrome, but further study and development is needed.
NASA Astrophysics Data System (ADS)
Jasinski, J. J.; Fraczek, T.; Kurpaska, L.; Lubas, M.; Sitarz, M.
2018-07-01
The paper presents a structure of a nitrided layer formed with active screen plasma nitriding (ASPN) technique, which is a modification of plasma nitriding. The model investigated material was Fe Armco. The nitriding processes were carried out at 773 K for 6 h and 150 Pa. The main objective of this study was to confirm nitrogen migration effect and its influence on the nitride layer formation in different area of the layer interfaces (ε/ε+γ‧/γ‧). The results of the tests were evaluated using scanning electron microscopy (SEM, SEM/EBSD), transmission electron microscopy - electron energy loss spectroscopy (TEM-EFTEM), secondary ion mass spectroscopy (SIMS) and Wavelength Dispersive X-Ray Spectrometry (WDS). The analysis of the results suggests that the structures of the nitrided layers and nitrides morphology differ for various parameters and are dependent on the surface layer saturation mechanism for each of the temperatures and process parameters. New approaches in diffusion of nitrogen and carbon atoms and optimizing process were also analyzed. Nitrogen and also carbon transport in the sublayer was observed by several effects i.e. uphill diffusion effect which confirmed migration of the atoms in diffusive layer towards top surface (ε/ε+γ‧ interface) and stress change effect in the nitrogen saturation area of the (Fe(C,N)+γ‧) layer. Results showed in the paper might be used both for optimization of ASPN processes, modeling of nitrided layers formation mechanism and for controlling the nitrided layers morphology when nitriding different Fe based materials.
Development and Properties of Advanced Internal Magnesium Infiltration (AIMI) Processed MgB2 Wires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collings, Prof Edward William; Sumption, Prof Michael D; Li, Guangze
The development, processing, properties, and formation mechanisms of Advanced Internal Magnesium Infiltration (AIMI) MgB2 wires are discussed against a background of the related and original processes, Internal-Magnesium-Diffusion (IMD) and Magnesium-Reactive-Liquid-Infiltration (Mg-RLI). First reviewed are the formation, properties and applications of Mg-RLI bulks as basis for discussions of Mg-RLI-processed and IMD-processed wires. The transition from Mg-RLI- and IMD- to AIMI wires is explained, and the relative performances of powder-in-tube (PIT), IMD and AIMI wires are summarized in the form of an iso-Je diagram of Jc,nb versus Anb/ATOT in which ATOT, Anb, Jc,nb, and Je are, respectively, the wire s cross-sectional area,more » the area inside the chemical barrier, the critical current (Ic) normalized to Anb, and Ic normalized to ATOT. After the details of AIMI wire fabrication selection of starting powders, dopants, and reaction heat treatments are introduced the report goes on to describe in detail the development of high performance AIMI wires: layer Jcs, fill factors, Jes, and the effects of wire size, multifilamentarization, doping with C, and co-doping with C and Dy2O3. The two-stage mechanism of layer formation in AIMI wires is discussed: first the reactive infiltration of liquid Mg into a porous B pack, a process that terminates with the formation of a dense MgB2 layer; second the slow diffusion of Mg into any remaining B through that MgB2 layer. The report concludes with a brief general discussion of anisotropy, current percolation, and the Jc field dependence of MgB2 wires.« less
Low-damage direct patterning of silicon oxide mask by mechanical processing
2014-01-01
To realize the nanofabrication of silicon surfaces using atomic force microscopy (AFM), we investigated the etching of mechanically processed oxide masks using potassium hydroxide (KOH) solution. The dependence of the KOH solution etching rate on the load and scanning density of the mechanical pre-processing was evaluated. Particular load ranges were found to increase the etching rate, and the silicon etching rate also increased with removal of the natural oxide layer by diamond tip sliding. In contrast, the local oxide pattern formed (due to mechanochemical reaction of the silicon) by tip sliding at higher load was found to have higher etching resistance than that of unprocessed areas. The profile changes caused by the etching of the mechanically pre-processed areas with the KOH solution were also investigated. First, protuberances were processed by diamond tip sliding at lower and higher stresses than that of the shearing strength. Mechanical processing at low load and scanning density to remove the natural oxide layer was then performed. The KOH solution selectively etched the low load and scanning density processed area first and then etched the unprocessed silicon area. In contrast, the protuberances pre-processed at higher load were hardly etched. The etching resistance of plastic deformed layers was decreased, and their etching rate was increased because of surface damage induced by the pre-processing. These results show that etching depth can be controlled by controlling the etching time through natural oxide layer removal and mechanochemical oxide layer formation. These oxide layer removal and formation processes can be exploited to realize low-damage mask patterns. PMID:24948891
NASA Astrophysics Data System (ADS)
Ahmed, Sazzad Hossain; Mian, Ahsan; Srinivasan, Raghavan
2016-07-01
In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.
Control of Reaction Kinetics During Friction Stir Processing
Das, Shamiparna; Martinez, Nelson Y.; Mishra, Rajiv S.; ...
2017-02-17
Friction stir processing (FSP) was used to successfully embed galfenol particles into aluminum (AA 1100 Al) matrix uniformly. But, intermetallic layer of Al 3Fe was formed around the galfenol particles. We estimated the activation energy for Al 3Fe formation during FSP, and attempts were made to minimize the Al 3Fe layer thickness. By changing the processing conditions, FSP successfully eliminated the intermetallic layer. Therefore, FSP, in addition to microstructural control, can successfully fabricate intermetallic-free embedded regions by controlling the reaction kinetics.
In situ spectroscopic ellipsometry study of low-temperature epitaxial silicon growth
NASA Astrophysics Data System (ADS)
Halagačka, L.; Foldyna, M.; Leal, R.; Roca i Cabarrocas, P.
2018-07-01
Low-temperature growth of doped epitaxial silicon layers is a promising way to reduce the cost of p-n junction formation in c-Si solar cells. In this work, we study process of highly doped epitaxial silicon layer growth using in situ spectroscopic ellipsometry. The film was deposited by plasma-enhanced chemical vapor deposition (PECVD) on a crystalline silicon substrate at a low substrate temperature of 200 °C. In the deposition process, SiF4 was used as a precursor, B2H6 as doping gas, and a hydrogen/argon mixture as carrier gas. A spectroscopic ellipsometer with a wide spectral range was used for in situ spectroscopic measurements. Since the temperature during process is 200 °C, the optical functions of silicon differ from these at room temperature and have to be adjusted. Thickness of the epitaxial silicon layer was fitted on in situ ellipsometric data. As a result we were able to determine the dynamics of epitaxial layer growth, namely initial layer formation time and epitaxial growth rate. This study opens new perspectives in understanding and monitoring the epitaxial silicon deposition processes as the model fitting can be applied directly during the growth.
NASA Astrophysics Data System (ADS)
Yeom, Bongjun; Char, Kookheon
2016-06-01
Laminated nanostructures in nacre have been adopted as models in the fabrication of strong, tough synthetic nanocomposites. However, the utilization of CaCO3 biominerals in these composites is limited by the complexity of the synthesis method for nanosized biominerals. In this study, we use the enzymatic reaction of urease to generate a nanoscale CaCO3 thin film to prepare CaCO3/polymer hybrid nanolaminates. Additional layers of CaCO3 thin film are consecutively grown over the base CaCO3 layer with the intercalation of organic layers. The morphology and crystallinity of the added CaCO3 layers depend strongly on the thickness of the organic layer coated on the underlying CaCO3 layer. When the organic layer is less than 20 nm thick, the amorphous CaCO3 layer is spontaneously transformed into crystalline calcite layer during the growth process. We also observe crystalline continuity between adjacent CaCO3 layers through interconnecting mineral bridges. The formation of these mineral bridges is crucial to the epitaxial growth of CaCO3 layers, similar to the formation of natural nacre.
Methods and systems for in-situ electroplating of electrodes
Zappi, Guillermo Daniel; Zarnoch, Kenneth Paul; Huntley, Christian Andrew; Swalla, Dana Ray
2015-06-02
The present techniques provide electrochemical devices having enhanced electrodes with surfaces that facilitate operation, such as by formation of a porous nickel layer on an operative surface, particularly of the cathode. The porous metal layer increases the surface area of the electrode, which may result in increasing the efficiency of the electrochemical devices. The formation of the porous metal layer is performed in situ, that is, after the assembly of the electrodes into an electrochemical device. The in situ process offers a number of advantages, including the ability to protect the porous metal layer on the electrode surface from damage during assembly of the electrochemical device. The enhanced electrode and the method for its processing may be used in any number of electrochemical devices, and is particularly well suited for electrodes in an electrolyzer useful for splitting water into hydrogen and oxygen.
Role of graphene inter layer on the formation of the MoS2-CZTS interface during growth
NASA Astrophysics Data System (ADS)
Vishwakarma, Manoj; Thota, Narayana; Karakulina, Olesia; Hadermann, Joke; Mehta, B. R.
2018-05-01
The growth of MoS2 layer near the Mo/CZTS interface during sulphurization process can have an impact on back contact cell parameters (series resistance and fill factor) depending upon the thickness or quality of MoS2. This study reports the dependence of the thickness of interfacial MoS2 layer on the growth of graphene at the interface between molybdenum back contact and deposited CZTS layer. The graphene layer reduces the accumulation of Zn/ZnS, Sn/SnO2 and formation of pores near the MoS2-CZTS interface. The use of graphene as interface layer can be potentially useful for improving the quality of Mo/MoS2/CZTS interface.
Electrochemical formation of field emitters
Bernhardt, Anthony F.
1999-01-01
Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michikoshi, Shugo; Kokubo, Eiichiro; Inutsuka, Shu-ichiro, E-mail: michikoshi@cfca.j, E-mail: kokubo@th.nao.ac.j, E-mail: inutsuka@tap.scphys.kyoto-u.ac.j
2009-10-01
The gravitational instability of a dust layer is one of the scenarios for planetesimal formation. If the density of a dust layer becomes sufficiently high as a result of the sedimentation of dust grains toward the midplane of a protoplanetary disk, the layer becomes gravitationally unstable and spontaneously fragments into planetesimals. Using a shearing box method, we performed local N-body simulations of gravitational instability of a dust layer and subsequent coagulation without gas and investigated the basic formation process of planetesimals. In this paper, we adopted the accretion model as a collision model. A gravitationally bound pair of particles ismore » replaced by a single particle with the total mass of the pair. This accretion model enables us to perform long-term and large-scale calculations. We confirmed that the formation process of planetesimals is the same as that in the previous paper with the rubble pile models. The formation process is divided into three stages: the formation of nonaxisymmetric structures; the creation of planetesimal seeds; and their collisional growth. We investigated the dependence of the planetesimal mass on the simulation domain size. We found that the mean mass of planetesimals formed in simulations is proportional to L {sup 3/2} {sub y}, where L{sub y} is the size of the computational domain in the direction of rotation. However, the mean mass of planetesimals is independent of L{sub x} , where L{sub x} is the size of the computational domain in the radial direction if L{sub x} is sufficiently large. We presented the estimation formula of the planetesimal mass taking into account the simulation domain size.« less
Dark current of organic heterostructure devices with insulating spacer layers
NASA Astrophysics Data System (ADS)
Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; Saxena, Avadh; Smith, Darryl L.; Ruden, P. Paul
2015-03-01
The dark current density at fixed voltage bias in donor/acceptor organic planar heterostructure devices can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of an interfacial exciplex state. If the exciplex formation rate limits current flow, the insulating interface layer can increase dark current whereas, if the exciplex recombination rate limits current flow, the insulating interface layer decreases dark current. We present a device model to describe this behavior and illustrate it experimentally for various donor/acceptor systems, e.g. P3HT/LiF/C60.
Conditions for double layers in the earth's magnetosphere and perhaps in other astrophysical objects
NASA Technical Reports Server (NTRS)
Lyons, L. R.
1987-01-01
It is suggested that the features which govern the formation of the double layers are: (1) the divergence of the magnetospheric electric field, (2) the ionospheric conductivity, and (3) the current-voltage characteristics of auroral magnetic field lines. Also considered are conditions in other astrophysical objects that could lead to the formation of DLs in a manner analogous to what occurs in the earth's auroral zones. It is noted that two processes can drive divergent Pedersen currents within a collisional conducting layer: (1) sheared plasma flow applied anywhere along the magnetic field lines connected to the conducting layer and (2) a neutral flow with shear within the conducting layer.
Current–voltage characteristics of organic heterostructure devices with insulating spacer layers
Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; ...
2015-05-14
The dark current density in donor/acceptor organic planar heterostructure devices at a given forward voltage bias can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of interfacial exciplex states. If the exciplex recombination rate limits current flow, an insulating interface layer decreases the dark current. However, if the exciplex formation rate limits the current, an insulating interface layer may increase the dark current. As a result, we present a device model to describe this behavior, and wemore » discuss relevant experimental data.« less
Disruption of vertical motility by shear triggers formation of thin phytoplankton layers.
Durham, William M; Kessler, John O; Stocker, Roman
2009-02-20
Thin layers of phytoplankton are important hotspots of ecological activity that are found in the coastal ocean, meters beneath the surface, and contain cell concentrations up to two orders of magnitude above ambient concentrations. Current interpretations of their formation favor abiotic processes, yet many phytoplankton species found in these layers are motile. We demonstrated that layers formed when the vertical migration of phytoplankton was disrupted by hydrodynamic shear. This mechanism, which we call gyrotactic trapping, can be responsible for the thin layers of phytoplankton commonly observed in the ocean. These results reveal that the coupling between active microorganism motility and ambient fluid motion can shape the macroscopic features of the marine ecological landscape.
Semiconductor structure and recess formation etch technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Bin; Sun, Min; Palacios, Tomas Apostol
2017-02-14
A semiconductor structure has a first layer that includes a first semiconductor material and a second layer that includes a second semiconductor material. The first semiconductor material is selectively etchable over the second semiconductor material using a first etching process. The first layer is disposed over the second layer. A recess is disposed at least in the first layer. Also described is a method of forming a semiconductor structure that includes a recess. The method includes etching a region in a first layer using a first etching process. The first layer includes a first semiconductor material. The first etching processmore » stops at a second layer beneath the first layer. The second layer includes a second semiconductor material.« less
Timm, Rainer; Head, Ashley R; Yngman, Sofie; Knutsson, Johan V; Hjort, Martin; McKibbin, Sarah R; Troian, Andrea; Persson, Olof; Urpelainen, Samuli; Knudsen, Jan; Schnadt, Joachim; Mikkelsen, Anders
2018-04-12
Atomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor-oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy. We find that the widely used ligand exchange model of the ALD process for the removal of native oxide on the semiconductor and the simultaneous formation of the first hafnium dioxide layer must be significantly revised. Our study provides substantial evidence that the efficiency of the self-cleaning process and the quality of the resulting semiconductor-oxide interface can be controlled by the molecular adsorption process of the ALD precursors, rather than the subsequent oxide formation.
Formation of anodic layers on InAs (111)III. Study of the chemical composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valisheva, N. A., E-mail: valisheva@thermo.isp.nsc.ru; Tereshchenko, O. E.; Prosvirin, I. P.
2012-04-15
The chemical composition of {approx}20-nm-thick anodic layers grown on InAs (111)III in alkaline and acid electrolytes containing or not containing NH{sub 4}F is studied by X-ray photoelectron spectroscopy. It is shown that the composition of fluorinated layers is controlled by the relation between the concentrations of fluorine and hydroxide ions in the electrolyte and by diffusion processes in the growing layer. Fluorine accumulates at the (anodic layer)/InAs interface. Oxidation of InAs in an acid electrolyte with a low oxygen content and a high NH{sub 4}F content brings about the formation of anodic layers with a high content of fluorine andmore » elemental arsenic and the formation of an oxygen-free InF{sub x}/InAs interface. Fluorinated layers grown in an alkaline electrolyte with a high content of O{sup 2-} and/or OH{sup -} groups contain approximately three times less fluorine and consist of indium and arsenic oxyfluorides. No distinction between the compositions of the layers grown in both types of fluorine-free electrolytes is established.« less
USDA-ARS?s Scientific Manuscript database
Tuber wounds incurred at harvest and upon seed cutting require rapid suberization as a major part of the healing process to prevent infection and desiccation. The first stage of this healing process is referred to as closing layer development and is followed by the second stage, wound periderm deve...
Impact of diabatic processes on the tropopause inversion layer formation in baroclinic life cycles
NASA Astrophysics Data System (ADS)
Kunkel, Daniel; Hoor, Peter; Wirth, Volkmar
2015-04-01
Observations of temperature profiles in the extratropical upper troposphere/lower stratosphere (UTLS) show the presence of an inversion layer just above the thermal tropopause, i.e., the tropopause inversion layer (TIL). In recent studies both diabatic and adiabatic processes have been identified to contribute to the formation of this layer. In particular, adiabatic simulations indicate a TIL formation without the explicit simulation of diabatic, i.e. radiative or humidity related, processes after wave breaking during baroclinic life cycles. One goal of this study is to assess the additional contribution of diabatic processes to the formation and strength of the TIL in such life cycles. Moreover, since irreversible stratosphere-troposphere exchange (STE) is another inherent feature of baroclinic life cycles and a consequence of diabatic processes, we study whether there is a relationship between STE and TIL. We use the non-hydrostatic model COSMO in an idealized mid-latitude channel configuration to simulate baroclinic life cycles. In a first step contributions of individual diabatic processes from turbulence, radiation, and cloud microphysics to the formation of the TIL are analyzed. These results are compared to those from adiabatic simulations of baroclinic life cycles in which the TIL forms during the life cycle with the limitation of being less sharp than in observations. In a second step the combined effects of several diabatic processes are studied to further include interactions between these processes as well as to advance towards a more realistic model setup. The results suggest a much more vigorous development of the TIL due to microphysics and the release of latent heat. Moreover, radiative effects can foster an increase in static stability above the thermal tropopause when large gradients of either water vapor or cloud ice are present at the level of the tropopause. By additionally adding sub-grid scale turbulence, a co-location of high static stability and increased turbulent kinetic energy is found in the vicinity of cirrus clouds at the tropopause level. The potential relation between STE and high static stability is further discussed based on results from trajectory calculations and the distribution of passive tracers of tropospheric and stratospheric origin.
NASA Astrophysics Data System (ADS)
Kunkel, D.; Hoor, P. M.; Wirth, V.
2016-12-01
Recent studies revealed the existence of a quasi-permanent layer of enhanced static stability above the thermal tropopause. This so-called tropopause inversion layer (TIL) is evident in adiabatic baroclinic life cycles suggesting that dry dynamics contribute to its formation. However, compared to observations the TIL in these life cycles is too weak, indicating that other contributions from diabatic processes are relevant. Such processes could be related to moisture or radiation, or other non-linear, subgrid-scale processes such as gravity wave breaking. Moreover, whether there is a causal relation between the occurrence of the TIL and stratosphere-troposphere exchange (STE) is still under debate. In this study various types of baroclinic life cycles are simulated using a non-hydrostatic model in an idealized mid-latitude channel configuration. A simulation using only the dynamical core of the model serves as base simulation, which is modified subsequently by adding different processes. First, these processes such as vertical turbulence, cloud microphysics, radiation as well as surface fluxes for heat and momentum are added individually. In a second set of simulations combinations of these processes are studied to assess the relative importance of the individual processes in the formation of the TIL. Finally, the static stability is analyzed in regions of STE. These regions are identified with the help of passive tracer as well as a Lagrangian trajectory analysis.
Characterization of chemical interactions during chemical mechanical polishing (CMP) of copper
NASA Astrophysics Data System (ADS)
Lee, Seung-Mahn
2003-10-01
Chemical mechanical polishing (CMP) has received much attention as an unique technique to provide a wafer level planarization in semiconductor manufacturing. However, despite the extensive use of CMP, it still remains one of the least understood areas in semiconductor processing. The lack of the fundamental understanding is a significant barrier to further advancements in CMP technology. One critical aspect of metal CMP is the formation of a thin surface layer on the metal surface. The formation and removal of this layer controls all the aspects of the CMP process, including removal rate, surface finish, etc. In this dissertation, we focus on the characterization of the formation and removal of the thin surface layer on the copper surface. The formation dynamics was investigated using static and dynamic electrochemical techniques, including potentiodynamic scans and chronoamperometry. The results were validated using XPS measurements. The mechanical properties of the surface layer were investigated using nanoindentation measurements. The electrochemical investigation showed that the thickness of the surface layer is controlled by the chemicals such as an oxidizer (hydrogen peroxide), a corrosion inhibitor (benzotriazole), a complexing agent (citric acid), and their concentrations. The dynamic electrochemical measurements indicated that the initial layer formation kinetics is unaffected by the corrosion inhibitors. The passivation due to the corrosion inhibitor becomes important only on large time scales (>200 millisecond). The porosity and the density of the chemically modified surface layer can be affected by additives of other chemicals such as citric acid. An optimum density of the surface layer is required for high polishing rate while at the same time maintaining a high degree of surface finish. Nanoindentation measurements indicated that the mechanical properties of the surface layer are strongly dependent on the chemical additives in the slurry. The CMP removal rates were found to be in good agreement with the initial reaction kinetics as well as the mechanical properties of the chemically modified surface layer. In addition, the material removal model based on the micro- and nano-scale interactions, which were measured experimentally, has been developed.
A model for thin layer formation by delayed particle settling at sharp density gradients
NASA Astrophysics Data System (ADS)
Prairie, Jennifer C.; White, Brian L.
2017-02-01
Thin layers - regions where plankton or particles accumulate vertically on scales of a few meters or less - are common in coastal waters, and have important implications for both trophic dynamics and carbon cycling. These features can form by a variety of biological and physical mechanisms, including localized growth, shear-thinning, and directed swimming. An additional mechanism may result in the formation of thin layers of marine aggregates, which have been shown to decrease their settling velocity when passing through sharp density gradients, a behavior termed delayed settling. Here, we apply a simple vertical advection-diffusion model to predict the properties of aggregate thin layers formed by this process. We assume a constant vertical flux of particles from the surface, which is parameterized by observations from laboratory experiments with marine aggregates. The formation, maintenance, and shape of the layers are described in relation to non-dimensional numbers that depend on environmental conditions and particle settling properties. In particular, model results demonstrate layer intensity and sharpness both increase with higher Péclet number (Pe), that is, under conditions with weaker mixing relative to layer formation. Similarly, more intense and sharper layers are found when the delayed settling behavior of aggregates is characterized by a lower velocity minimum. The model also predicts layers that are vertically asymmetric and highly "peaky" when compared with a Gaussian distribution, features often seen in thin layers in natural environments. Lastly, by comparing model predictions with observations of thin layers in the field, we are able to gain some insight into the applicability of delayed settling as a thin layer formation mechanism in different environmental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Sazzad Hossain; Mian, Ahsan, E-mail: ahsan.mian@wright.edu; Srinivasan, Raghavan
In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materialsmore » can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.« less
NASA Astrophysics Data System (ADS)
Baig, Mirza A.; Patel, Faheemuddin; Alhooshani, Khalid; Muraza, Oki; Wang, Evelyn N.; Laoui, Tahar
2015-12-01
LTA zeolite layer was successfully grown on a superhydrophilic mesoporous titania layer coated onto porous α-alumina substrate. Mesoporous titania layer was formed as an intermediate bridge in the pore size variation between the macroporous α-alumina support and micro-porous LTA zeolite layer. In-situ aging microwave heating synthesis method was utilized to deposit the LTA zeolite layer. Mesoporous titania layer was pre-treated with UV photons and this was observed to have played a major role in improving the surface hydrophilicity of the substrate leading to formation of increased number of Ti-OH groups on the surface. This increase in Ti-OH groups enhanced the interaction between the synthesis gel and the substrate leading to strong attachment of the amorphous gel on the substrate, thus enhancing coverage of the LTA zeolite layer to almost the entire surface of the 1-inch (25.4 mm) diameter membrane. LTA zeolite layer was developed via in-situ aged under microwave irradiation to study the effect of synthesis parameters such as in-situ aging time and synthesis time on the formation of the LTA zeolite layer. Optimized process parameters resulted in the formation of crack-free porous zeolite layer yielding a zeolite-titania-alumina multi-layer membrane with a gradient in porosity.
Direct growth of graphene-dielectric bi-layer structure on device substrates from Si-based polymer
NASA Astrophysics Data System (ADS)
Seo, Hong-Kyu; Kim, Kyunghun; Min, Sung-Yong; Lee, Yeongjun; Eon Park, Chan; Raj, Rishi; Lee, Tae-Woo
2017-06-01
To facilitate the utilization of graphene films in conventional semiconducting devices (e.g. transistors and memories) which includes an insulating layer such as gate dielectric, facile synthesis of bi-layers composed of a graphene film and an insulating layer by one-step thermal conversion will be very important. We demonstrate a simple, inexpensive, scalable and patternable process to synthesize graphene-dielectric bi-layer films from solution-processed polydimethylsiloxane (PDMS) under a Ni capping layer. This method fabricates graphene-dielectric bi-layer structure simultaneously directly on substrate by thermal conversion of PDMS without using additional graphene transfer and patterning process or formation of an expensive dielectric layer, which makes the device fabrication process much easier. The graphene-dielectric bi-layer on a conducting substrate was used in bottom-contact pentacene field-effect transistors that showed ohmic contact and small hysteresis. Our new method will provide a way to fabricate flexible electronic devices simply and inexpensively.
How Does Tropical Cyclone Size Affect the Onset Timing of Secondary Eyewall Formation?
NASA Astrophysics Data System (ADS)
Guan, Liang; Ge, Xuyang
2018-02-01
By using idealized numerical simulations, the impact of tropical cyclone size on secondary eyewall formation (SEF) is examined. Both unbalanced boundary layer and balanced processes are examined to reveal the underlying mechanism. The results show that a tropical cyclone (TC) with a larger initial size favors a quicker SEF and a larger outer eyewall. For a TC with a larger initial size, it will lead to a stronger surface entropy flux, and thus more active outer convection. Meanwhile, a greater inertial stability helps the conversion from diabatic heating to kinetic energy. Furthermore, the progressively broadening of the tangential wind field will induce significant boundary layer imbalances. This unbalanced boundary layer process results in a supergradient wind zone that acts as an important mechanism for triggering and maintaining deep convection. In short, different behaviors of balanced and unbalanced processes associated with the initial wind profile lead to different development rates of the secondary eyewall.
Electrochemical formation of field emitters
Bernhardt, A.F.
1999-03-16
Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays is disclosed. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area. 12 figs.
Porous silicon formation during Au-catalyzed etching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Algasinger, Michael; Bernt, Maximilian; Koynov, Svetoslav
2014-04-28
The formation of “black” nano-textured Si during the Au-catalyzed wet-chemical etch process was investigated with respect to photovoltaic applications. Cross-sectional scanning electron microscopy (SEM) images recorded at different stages of the etch process exhibit an evolution of a two-layer structure, consisting of cone-like Si hillocks covered with a nano-porous Si (np-Si) layer. Optical measurements confirm the presence of a np-Si phase which appears after the first ∼10 s of the etch process and continuously increases with the etch time. Furthermore, the etch process was investigated on Si substrates with different doping levels (∼0.01–100 Ω cm). SEM images show a transition frommore » the two-layer morphology to a structure consisting entirely of np-Si for higher doping levels (<0.1 Ω cm). The experimental results are discussed on the basis of the model of a local electrochemical etch process. A better understanding of the metal-catalyzed etch process facilitates the fabrication of “black” Si on various Si substrates, which is of significant interest for photovoltaic applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, Denis A., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Sosnin, Kirill V., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Budovskikh, Evgenij A., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru
2014-11-14
For the first time, the high intensity electron beam modification of electroexplosion composite coatings of MoCu, MoCCu, WCu, WCCu and TiB{sub 2}Cu systems was done. The studies of phase and elemental composition, defective structure conditions of these coatings were carried out. The regimes of electron-beam processing making possible to form the dense, specular luster surface layers having a submicrocrystalline structure were revealed. It was established that electron-beam processing of elecroexplosion spraying of layer of elecroexplosion spraying carried out in the regime of melting results in the formation of structurally and contrationally homogeneous surface layer. Investigation of the effect of electron-beammore » processing of electroexplosion electroerosion resistant coatings on their tribological properties (wear resistanse and coefficient of friction) and electroerosion resistance was done. It was shown that all the examined costings demonstrate the increase of electroerosion resistance in spark erosion up to 10 times.« less
NASA Astrophysics Data System (ADS)
Khan, Z. M.; Adams, D. O.; Anas, S.
2016-01-01
As advanced composite materials having superior physical and mechanical properties are being developed, the optimization of their processing techniques is eagerly sought. One of the most common defects arising during processing of structural composites is layer waviness. The layer waviness is more pronounced in thick-section flat and cylindrical laminates, which are extensively used in large wind turbine blades, submersibles, and space platforms. The layer waviness undulates the entire layer of a multidirectional laminate in the throughthe-thickness direction, leading to a gross deterioration of its compressive strength. This research investigates the influence of multiple layer waviness in a double nest formation on the compression strength of a composite laminate. Different wave fractions of wavy 0° layers were fabricated in an IM/8551-7 carbon-epoxy composite laminate on a steel mold by using a single-step fabrication procedure. The test laminates were cured on a heated press according to the specific curing cycle of epoxy. Their static compression testing was performed using a NASA short block compression fixture on an MTS servohydraulic machine. The purpose of these tests was to determine the effects of multiple layer wave regions on the compression strength of the composite laminate. The experimental and analytical results obtained revealed that the reduction in the compression strength of composite laminate was constant after the fraction of the wavy 0° layers exceeded 35%. This analysis indicated that the percentage of the 0° wavy layer may be used to estimate the reduction in the compression strength of a double nested wave formation in a composite laminate.
Yabutsuka, Takeshi; Fukushima, Keito; Hiruta, Tomoko; Takai, Shigeomi; Yao, Takeshi
2017-12-01
When bioinert substrates with fine-sized pores are immersed in a simulated body fluid (SBF) and the pH value or the temperature is increased, fine particles of calcium phosphate, which the authors denoted as 'precursor of apatite' (PrA), are formed in the pores. By this method, hydroxyapatite formation ability can be provided to various kinds of bioinert materials. In this study, the authors studied fabrication methods of bioactive PEEK by using the above-mentioned process. First, the fine-sized pores were formed on the surface of the PEEK substrate by H 2 SO 4 treatment. Next, to provide hydrophilic property to the PEEK, the surfaces of the PEEK were treated with O 2 plasma. Finally, PrA were formed in the pores by the above-mentioned process, which is denoted as 'Alkaline SBF' treatment, and the bioactive PEEK was obtained. By immersing in SBF with the physiological condition, hydroxyapatite formation was induced on the whole surface of the substrate within 1day. The formation of PrA directly contributed to hydroxyapatite formation ability. By applying the O 2 plasma treatment, hydroxyapatite formation was uniformly performed on the whole surface of the substrate. The H 2 SO 4 treatment contributed to a considerable enhancement of adhesive strength of the formed hydroxyapatite layer formed in SBF because of the increase of surface areas of the substrate. As a comparative study, the sandblasting method was applied as the pores formation process instead of the H 2 SO 4 treatment. Although hydroxyapatite formation was provided also in this case, however, the adhesion of the formed hydroxyapatite layer to the substrate was not sufficient even if the O 2 plasma treatment was conducted. This result indicates that the fine-sized pores should be formed on the whole surface of the substrate uniformly to achieve high adhesive strength of the hydroxyapatite layer. Therefore, it is considered that the H 2 SO 4 treatment before the O 2 plasma and the 'Alkaline SBF' treatment is an important factor to achieve high adhesive strength of hydroxyapatite layer to the PEEK substrate. This material is expected to be a candidate for next-generation implant materials with high bioactivity. Copyright © 2017 Elsevier B.V. All rights reserved.
Evidence of the layer structure formation of chitosan microtubes by the Liesegang ring mechanism
NASA Astrophysics Data System (ADS)
Babicheva, T. S.; Gegel, N. O.; Shipovskaya, A. B.
2018-04-01
In the work, an experiment was performed to simulate the process of chitosan microtube formation through the interphase polysalt -> polybase chemical reaction, on the one hand, and the formation of spatially separated structures under the conditions of reactive diffusion of one of the components, on the other hand. The formation of alternating dark and light bands or concentric rings of the chitosan polybase as a result of the polymer-analogous transformation is visualized by optical microscopy. The results obtained confirm our assumption that the layered structure of our chitosan microtubes is formed according to the Liesegang reaction mechanism.
On atomic structure of Ge huts growing on the Ge/Si(001) wetting layer
NASA Astrophysics Data System (ADS)
Arapkina, Larisa V.; Yuryev, Vladimir A.
2013-09-01
Structural models of growing Ge hut clusters—pyramids and wedges—are proposed on the basis of data of recent STM investigations of nucleation and growth of Ge huts on the Si(001) surface in the process of molecular beam epitaxy. It is shown that extension of a hut base along ⟨110⟩ directions goes non-uniformly during the cluster growth regardless of its shape. Growing pyramids, starting from the second monolayer, pass through cyclic formation of slightly asymmetrical and symmetrical clusters, with symmetrical ones appearing after addition of every fourth monolayer. We suppose that pyramids of symmetrical configurations composed by 2, 6, 10, etc., monolayers over the wetting layer are more stable than asymmetrical ones. This might explain less stability of pyramids in comparison with wedges in dense arrays forming at low temperatures of Ge deposition. Possible nucleation processes of pyramids and wedges on wetting layer patches from identical embryos composed by 8 dimers through formation of 1 monolayer high 16-dimer nuclei different only in their symmetry is discussed. Schematics of these processes are presented. It is concluded from precise STM measurements that top layers of wetting layer patches are relaxed when huts nucleate on them.
On atomic structure of Ge huts growing on the Ge/Si(001) wetting layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arapkina, Larisa V.; Yuryev, Vladimir A.
Structural models of growing Ge hut clusters—pyramids and wedges—are proposed on the basis of data of recent STM investigations of nucleation and growth of Ge huts on the Si(001) surface in the process of molecular beam epitaxy. It is shown that extension of a hut base along <110> directions goes non-uniformly during the cluster growth regardless of its shape. Growing pyramids, starting from the second monolayer, pass through cyclic formation of slightly asymmetrical and symmetrical clusters, with symmetrical ones appearing after addition of every fourth monolayer. We suppose that pyramids of symmetrical configurations composed by 2, 6, 10, etc., monolayersmore » over the wetting layer are more stable than asymmetrical ones. This might explain less stability of pyramids in comparison with wedges in dense arrays forming at low temperatures of Ge deposition. Possible nucleation processes of pyramids and wedges on wetting layer patches from identical embryos composed by 8 dimers through formation of 1 monolayer high 16-dimer nuclei different only in their symmetry is discussed. Schematics of these processes are presented. It is concluded from precise STM measurements that top layers of wetting layer patches are relaxed when huts nucleate on them.« less
NASA Technical Reports Server (NTRS)
Lee, L. C.; Wei, C. Q.
1993-01-01
The transport of mass, momentum, energy and waves from the solar wind to the Earth's magnetosphere takes place in the magnetopause-boundary layer region. Various plasma processes that may occur in this region have been proposed and studied. In this paper, we present a brief review of the plasma processes in the dayside magnetopause-boundary layer. These processes include (1) flux transfer events at the dayside magnetopause, (2) formation of plasma vortices in the low-latitude boundary layer by the Kelvin-Helmholtz instability and coupling to the polar ionosphere, (3) the response of the magnetopause to the solar wind dynamic pressure pulses, and (4) the impulsive penetration of solar wind plasma filaments through the dayside magnetopause into the magnetospheric boundary layer. Through the coupling of the magnetopause-boundary layer to the polar ionosphere, those above processes may lead to occurrence of magnetic impulse events observed in the high-latitude stations.
Hardfacing of duplex stainless steel using melting and diffusion processes
NASA Astrophysics Data System (ADS)
Lailatul, H.; Maleque, M. A.
2017-03-01
Duplex stainless steel (DSS) is a material with high potential successes in many new applications such as rail car manufacturing, automotive and chemical industries. Although DSS is widely used in various industries, this material has faced wear and hardness problems which obstruct a wider capability of this material and causes problems in current application. Therefore, development of surface modification has been introduced to produce hard protective layer or coating on DSS. The main aim of this work is to brief review on hard surface layer formation on DSS using melting and diffusion processes. Melting technique using tungsten inert gas (TIG) torch and diffusion technique using gas nitriding are the effective process to meet this requirement. The processing route plays a significant role in developing the hard surface layer for any application with effective cost and environmental factors. The good understanding and careful selection of processing route to form products are very important factors to decide the suitable techniques for surface engineering treatment. In this paper, an attempt is also made to consolidate the important research works done on melting and diffusion techniques of DSS in the past. The advantages and disadvantages between melting and diffusion technique are presented for better understanding on the feasibility of hard surface formation on DSS. Finally, it can be concluded that this work will open an avenue for further research on the application of suitable process for hard surface formation on DSS.
NASA Astrophysics Data System (ADS)
Dhaneswara, Donanta; Suharno, Bambang; Nugroho, Janu Ageng; Ariobimo, Rianti Dewi S.; Sofyan, Nofrijon
2017-03-01
One of the problems in thin wall ductile iron (TWDI) fabrication is skin formation during the casting. The presence of this skin will decrease strength and strain of the TWDI. One of the ways to control this skin formation is to change the cooling rate during the process through a mold coating. In testing the effectiveness of skin prevention, the following variables were used for the mold coating i.e. (i) graphite: (ii) zirconium; and (iii) double layer of graphite-zirconium. After the process, the plates were characterized by non-etching, etching, tensile test, and SEM observation. The results showed that the average skin formation using graphite: 65 µm; zirconium: 13.04 µm; and double layer of graphite-zirconium: 33.25 µm. It seems that zirconium has the most effect on the skin prevention due to sulfur binding and magnesium locked, which then prevented rapid cooling resulting in less skin formation. The results also showed the number of nodules obtained in specimen with graphite: 703 nodules/mm2 with average diameter of 12.57 µm, zirconium: 798 nodules/mm2 with average diameter of 12.15 µm, and double layer of graphite-zirconium: 697 nodules/mm2 with average diameter of 11.9 µm and nodularity percentage of 82.58%, 84.53%, and 84.22%, respectively. Tensile test showed that the strength of the specimen with graphite is 301.1 MPa, with zirconium is 388.8 MPa, and with double layer of graphite-zirconium is 304 MPa. In overall, zirconium give the best performance on the skin formation prevention in TWDI fabrication.
The electromagnetic field for an open magnetosphere
NASA Technical Reports Server (NTRS)
Heikkila, W. J.
1984-01-01
The boundary-layer-dominated models of the earth EM field developed by Heikkila (1975, 1978, 1982, and 1983) and Heikkila et al. (1979) to account for deficiencies in the electric-field descriptions of quasi-steady-state magnetic-field-reconnection models (such as that of Cowley, 1980) are characterized, reviewing the arguments and indicating the most important implications. The mechanisms of boundary-layer formation and field direction reversal are explained and illustrated with diagrams, and it is inferred that boundary-layer phenomena rather than magnetic reconnection may be the cause of large-scale magnetospheric circulation, convection, plasma-sheet formation and sunward convection, and auroras, the boundary layer acting basically as a viscous process mediating solar-wind/magnetosphere interactions.
Szubert, M; Adamska, K; Szybowicz, M; Jesionowski, T; Buchwald, T; Voelkel, A
2014-01-01
The aim of this study was the surface modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) grafting and characterization of modificates. The bioactivity examination was carried out by the determination to grow an apatite layer on modified materials during incubation in simulated body fluid at 37°C. The additional issue taken up in this paper was to investigate the influence of fluid replacement. The process of the surface modification of biomaterials was evaluated by means of infrared and Raman spectroscopy. Formation of the apatite layer was assessed by means of scanning electron microscopy and confirmed by energy dispersive, Raman and Fourier transformed infrared spectroscopy. During exposure in simulated body fluid, the variation of the zeta potential, pH measurement and relative weight was monitored. Examination of scanning electron microscopy micrographs suggests that modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) significantly increases apatite layer formation. Raman spectroscopy evaluation revealed that the formation of the apatite layer was more significant in the case of hydroxyapatite modificate, when compared to the β-tricalcium phosphate modificate. Both modificates were characterized by stable pH, close to the natural pH of human body fluids. Furthermore, we have shown that a weekly changed, simulated body fluid solution increases apatite layer formation. © 2013.
Laser surface modification of Ti and TiC coatings on magnesium alloy
NASA Astrophysics Data System (ADS)
Kim, J. M.; Lee, S. G.; Park, J. S.; Kim, H. G.
2014-12-01
In order to enhance the surface properties of magnesium alloy, a highly intense laser surface melting process following plasma spraying of Ti or TiC on AZ31 alloy were employed. When laser surface melting was applied to Ti coated magnesium alloy, the formation of fine Ti particle dispersed surface layer on the substrate occurred. The corrosion potential of the AZ31 alloy with Ti dispersed surface was significantly increased in 3.5 wt % NaCl solution. Additionally, an improved hardness was observed for the laser treated specimens as compared to the untreated AZ31 alloy. Laser melting process following plasma thermal deposition was also applied for obtaining in situ TiC coating layer on AZ31 alloy. The TiC coating layer could be successfully formed via in situ reaction between pure titanium and carbon powders. Incomplete TiC formation was observed in the plasma sprayed specimen, while completely transformed TiC layer was found after post laser melting process. It was also confirmed that the laser post treatment induced enhanced adhesion strength between the coating and the substrate.
Investigations into the structure of PEO-layers for understanding of layer formation
NASA Astrophysics Data System (ADS)
Friedemann, A. E. R.; Thiel, K.; Haßlinger, U.; Ritter, M.; Gesing, Th. M.; Plagemann, P.
2018-06-01
Plasma electrolytic oxidation (PEO) is a type of high-voltage anodic oxidation process capable of producing a thick oxide layer with a wide variety of structural and chemical properties influenced by the electrolytic system. This process enables the combined adjustment of various characteristics, i.e. the morphology and chemical composition. The procedure facilitates the possibility of generating an individual structure as well as forming a crystalline surface in a single step. A highly porous surface with a high crystalline content consisting of titanium dioxide phases is ensured through the process of plasma electrolytic oxidizing pure titanium. In the present study plasma electrolytic oxidized TiO2-layers were investigated regarding their crystallinity through the layer thickness. The layers were prepared with a high applied voltage of 280 V to obtain a PEO-layer with highly crystalline anatase and rutile amounts. Raman spectroscopy and electron backscatter diffraction (EBSD) were selected to clarify the structure of the oxide layer with regard to its crystallinity and phase composition. The composition of the TiO2-phases is more or less irregularly distributed as a result of the higher energy input on the uppermost side of the layer. Scanning transmission electron microscopy (STEM) provided a deeper understanding of the structure and the effects of plasma discharges on the layer. It was observed that the plasma discharges have a strong influence on crystallite formation on top of the oxide layer and also at the boundary layer to the titanium substrate. Therefore, small crystallites of TiO2 could be detected in these regions. In addition, it was shown that amorphous TiO2 phases are formed around the characteristic pore structures, which allows the conclusion to be drawn that a rapid cooling from the gas phase had to take place in these areas.
Delta-like 1 regulates Bergmann glial monolayer formation during cerebellar development.
Hiraoka, Yuichi; Komine, Okiru; Nagaoka, Mai; Bai, Ning; Hozumi, Katsuto; Tanaka, Kohichi
2013-05-21
Bergmann glia (BG) are unipolar cerebellar astrocytes. The somata of mature BG reside in the Purkinje cell layer and extend radially arranged processes to the pial surface. BG have multiple branched processes, which enwrap the synapses of Purkinje cell dendrites. They migrate from the ventricular zone and align next to the Purkinje cell layer during development. Previously, we reported that Notch1, Notch2, and RBPj genes in the BG play crucial roles in the monolayer formation and morphogenesis of BG. However, it remains to be determined which ligand activates Nocth1 and Notch 2 on BG. Delta-like 1 (Dll1) is a major ligand of Notch receptors that is expressed in the developing cerebellum. In this study, we used human glial fibrillary acidic protein (hGFAP) promoter-driven Cre-mediated recombination to delete Dll1 in BG. Dll1-conditional mutant mice showed disorganization of Bergmann fibers, ectopic localization of BG in the molecular layer and a reduction in the number of BG. These results suggest that Dll1 is required for the formation of the BG layer and its morphological maturation, apparently through a Notch1/2-RBPj dependent signaling pathway.
NASA Astrophysics Data System (ADS)
Zhang, Zhiwei; Chen, Pei; Qin, Fei; An, Tong; Yu, Huiping
2018-05-01
Ultra-thin silicon wafer is highly demanded by semi-conductor industry. During wafer thinning process, the grinding technology will inevitably induce damage to the surface and subsurface of silicon wafer. To understand the mechanism of subsurface damage (SSD) layer formation and mechanical properties of SSD layer, atomistic simulation is the effective tool to perform the study, since the SSD layer is in the scale of nanometer and hardly to be separated from underneath undamaged silicon. This paper is devoted to understand the formation of SSD layer, and the difference between mechanical properties of damaged silicon in SSD layer and ideal silicon. With the atomistic model, the nano-grinding process could be performed between a silicon workpiece and diamond tool under different grinding speed. To reach a thinnest SSD layer, nano-grinding speed will be optimized in the range of 50-400 m/s. Mechanical properties of six damaged silicon workpieces with different depths of cut will be studied. The SSD layer from each workpiece will be isolated, and a quasi-static tensile test is simulated to perform on the isolated SSD layer. The obtained stress-strain curve is an illustration of overall mechanical properties of SSD layer. By comparing the stress-strain curves of damaged silicon and ideal silicon, a degradation of Young's modulus, ultimate tensile strength (UTS), and strain at fracture is observed.
How do Kakortokites form? Additional evidence from the Ilimaussaq Complex, S. Greenland
NASA Astrophysics Data System (ADS)
Hunt, E. J.; Finch, A. A.; Donaldson, C. H.
2012-04-01
The Ilímaussaq Complex, South Greenland, contains some of the most evolved igneous rocks in the world and is widely considered to represent one of the largest deposits of rare-earth elements, Ta, Nb and Zr. Our work is focused on the kakortokite layered series at the base of the complex. The layered series is composed of 29 repetitive 3-layer units (named -11 to +17, Bohse et al. 1971), successively enriched in arfvedsonite, eudialyte and nepheline. Despite a large body of work on the development of the kakortokite series, no consensus on the process/processes that produced the layering has been forthcoming. We present the preliminary findings of a combined petrographical, quantitative textural and geochemical analysis on the kakortokite series, initially focused on layer 0. Although many of the hypotheses for the formation of these rocks invoke a pressure change, the enrichment of the series in volatile constituents (CH4 and H; Konnerup-Madsen, 2001) has led many authors to suggest crystallisation occurred in a closed system, with processes of gravitational settling formed the layering. Crystal size distribution (CSD) analysis, performed on hand-digitised photomicrographs, provides insight into processes of crystal nucleation and growth. The results indicate that simple cumulate settling is untenable for layer 0. Instead the plot gradients indicate that the arfvedsonite in the black kakortokite crystallised in situ above a sharp boundary to the white kakortokite. The CSD plots for the alkali feldspars indicate secondary nucleation occurred, with the small crystal size fraction forming in situ. The feldspar phenocrysts also exhibit embayment textures indicating partial resorption. These graphs are consistent with a model whereby an influx of hotter magma results in the partial thermal erosion of the underlying white kakortokite, followed by in situ crystallisation of arfvedsonite above the melt infiltration boundary, followed by in situ crystallisation of eudialyte. Then nepheline and alkali feldspar crystallised through multiple modes of nucleation, developing the characteristic layering. Geochemical trends described by Pfaff et al. (2008) support an open system replenishment model during the formation of layer 0, and potentially also layers +4 and +8. To further this work we intend to apply this combined approach to investigate the formation of individual layers, scaling these processes into a model for the development of the Ilímaussaq complex. Bohse et al. (1971). Rapport Grønlands Geologiske Undergesølgelse, 36, 43 pp. Konnerup-Madsen (2001). Geology Greenland Surv. Bull., 190, 159-166. Pfaff et al. (2008). Lithos, 106, 280-296.
Advances in surfaces and osseointegration in implantology. Biomimetic surfaces
Albertini, Matteo; Fernandez-Yague, Marc; Lázaro, Pedro; Herrero-Climent, Mariano; Bullon, Pedro; Gil, Francisco-Javier
2015-01-01
The present work is a revision of the processes occurring in osseointegration of titanium dental implants according to different types of surfaces -namely, polished surfaces, rough surfaces obtained from subtraction methods, as well as the new hydroxyapatite biomimetic surfaces obtained from thermochemical processes. Hydroxyapatite’s high plasma-projection temperatures have proven to prevent the formation of crystalline apatite on the titanium dental implant, but lead to the formation of amorphous calcium phosphate (i.e., with no crystal structure) instead. This layer produce some osseointegration yet the calcium phosphate layer will eventually dissolve and leave a gap between the bone and the dental implant, thus leading to osseointegration failure due to bacterial colonization. A new surface -recently obtained by thermochemical processes- produces, by crystallization, a layer of apatite with the same mineral content as human bone that is chemically bonded to the titanium surface. Osseointegration speed was tested by means of minipigs, showing bone formation after 3 to 4 weeks, with the security that a dental implant can be loaded. This surface can be an excellent candidate for immediate or early loading procedures. Key words:Dental implants, implants surfaces, osseointegration, biomimetics surfaces. PMID:25662555
Lundgren, Anders; Hedlund, Julia; Andersson, Olof; Brändén, Magnus; Kunze, Angelika; Elwing, Hans; Höök, Fredrik
2011-10-15
A single-chip electrochemical method based on impedance measurements in resonance mode has been employed to study lipid monolayer and bilayer formation on hydrophobic alkanethiolate and SiO(2) substrates, respectively. The processes were monitored by temporally resolving changes in interfacial capacitance and resistance, revealing information about the rate of formation, coverage, and defect density (quality) of the layers at saturation. The resonance-based impedance measurements were shown to reveal significant differences in the layer formation process of bilayers made from (i) positively charged lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (POEPC), (ii) neutral lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) on SiO(2), and (iii) monolayers made from POEPC on hydrophobic alkanethiolate substrates. The observed responses were represented with an equivalent circuit, suggesting that the differences primarily originate from the presence of a conductive aqueous layer between the lipid bilayers and the SiO(2). In addition, by adding the ion channel gramicidin D to bilayers supported on SiO(2), channel-mediated charge transport could be measured with high sensitivity (resolution around 1 pA). © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Petrus, Karine; Szymczak, Piotr
2016-04-01
Karst formation is controlled by the processes of the fluid flow and reactant transport coupled to the chemical erosion of the limestone rock [1]. The coupling between these processes can lead to a number of different instabilities, resulting in the formation of dissolutional voids, caverns and conduits. Arguably the simplest systems of this kind are solution pipes, in which gravitationally driven water movement carves vertical conduits in limestone rocks. In the homogeneous rocks these conduits are often cylindrical, with almost a constant diameter along their length. However, in a stratified medium, the morphology of the pipes changes. For example, if a number of less porous layers is introduced in an otherwise homogeneous medium, then the pipes are observed to narrow as they cross the layers and then widen up to form bulbous caverns as they emerge from the layer [1]. In this communication, we investigate these effects more closely, considering different kind of lithographic discontinuities to be present in the system: the layers of increased/decreased porosity and/or permeability as well as the solubility which is different from the rest of the system. Using a Darcy-scale numerical model we analyze the effects these layers have on the shape and growth of solution pipes and compare the results on the piping morphologies observed in nature. Finally we comment on the possible relevance of these results to the cave-formation phenomena and the inception horizon concept [3]. References: 1.Howard A. D., The development of karst features, Bull. Natl. Spel. Soc. 25, 45-65 (1963) 2. Petrus, K. and Szymczak, P., Influence of layering on the formation and growth of solution pipes. Frontiers in Physics (submitted) 3.Filipponi , M., Jeannin, P. and Tacher, L., Evidence of inception horizons in karst conduit networks, Geomorphology, 106, 86-99 (2009)
An, Seong Jin; Li, Jianlin; Daniel, Claus; ...
2016-04-09
An in-depth review is presented on the science of lithium-ion battery (LIB) solid electrolyte interphase (SEI) formation on the graphite anode, including structure, morphology, chemical composition, electrochemistry, formation mechanism, and LIB formation cycling. During initial operation of LIBs, the SEI layer forms on the graphite surfaces, the most commonly used anode material, due to side reactions with the electrolyte solvent/salt at low electro-reduction potentials. It is accepted that the SEI layer is essential to the long-term performance of LIBs, and it also has an impact on its initial capacity loss, self-discharge characteristics, cycle life, rate capability, and safety. While themore » presence of the anode SEI layer is vital, it is difficult to control its formation and growth, as the chemical composition, morphology, and stability depend on several factors. These factors include the type of graphite, electrolyte composition, electrochemical conditions, and cell temperature. Thus, SEI layer formation and electrochemical stability over long-term operation should be a primary topic of future investigation in the development of LIB technology. We review the progression of knowledge gained about the anode SEI, from its discovery in 1979 to the current state of understanding, and covers its formation process, differences in the chemical and structural makeup when cell materials and components are varied, methods of characterization, and associated reactions with the liquid electrolyte phase. It also discusses the relationship of the SEI layer to the LIB formation step, which involves both electrolyte wetting and subsequent slow charge-discharge cycles to grow the SEI.« less
NASA Astrophysics Data System (ADS)
Niinistö, J.; Putkonen, M.; Niinistö, L.; Kukli, K.; Ritala, M.; Leskelä, M.
2004-01-01
ZrO2 thin films with thicknesses below 20 nm were deposited by the atomic layer deposition process on Si(100) substrates at 350 °C. An organometallic precursor, Cp2Zr(CH3)2 (Cp=cyclopentadienyl, C5H5) was used as the zirconium source and water or ozone as oxygen source. The influence of oxygen source and substrate pretreatment on the dielectric properties of ZrO2 films was investigated. Structural characterization with high-resolution transmission electron microscopy was performed to films grown onto HF-etched or native oxide covered silicon. Strong inhibition of ZrO2 film growth was observed with the water process on HF-etched Si. Ozone process on HF-etched Si resulted in interfacial SiO2 formation between the dense and uniform film and the substrate while water process produced interfacial layer with intermixing of SiO2 and ZrO2. The effective permittivity of ZrO2 in Al/ZrO2/Si/Al capacitor structures was dependent on the ZrO2 layer thickness and oxygen source used. The interfacial layer formation increased the capacitance equivalent oxide thickness (CET). CET of 2.0 nm was achieved with 5.9 nm ZrO2 film deposited with the H2O process on HF-stripped Si. The ozone-processed films showed good dielectric properties such as low hysteresis and nearly ideal flatband voltage. The leakage current density was lower and breakdown field higher for the ozone-processed ZrO2 films.
2015-09-30
effecting the salinity of the upper layer and the formation of the barrier layer (BL) within the isothermal layer. The BL in turn controls vertical mixing...daily values over a month with a 1° horizontal resolution [Reynolds et al., 2002]. Daily data (from Coriolis project) and Monthly gridded Argo
Influence of sulfur dioxide-related interactions on PM2.5 formation in iron ore sintering.
Ji, Zhiyun; Fan, Xiaohui; Gan, Min; Chen, Xuling; Lv, Wei; Li, Qiang; Zhou, Yang; Tian, Ye; Jiang, Tao
2017-04-01
The formation of PM 2.5 (aerosol particulate matter less than 2.5 µm in aerodynamic diameter) in association with SO 2 emission during sintering process has been studied by dividing the whole sintering process into six typical sampling stages. A low-pressure cascade impactor was used to collect PM 2.5 by automatically segregating particulates into six sizes. It was found that strong correlation existed between the emission properties of PM 2.5 and SO 2 . Wet mixture layer (overwetted layer and raw mixture layer) had the function to simultaneously capture SO 2 and PM 2.5 during the early sintering stages, and released them back into flue gas mainly in the flue gas temperature-rising period. CaSO 4 crystals constituted the main SO 2 -related PM 2.5 during the disappearing process of overwetted layer, which was able to form perfect individual crystals or to form particles with complex chemical compositions. Besides the existence of individual CaSO 4 crystals, mixed crystals of K 2 SO 4 -CaSO 4 in PM 2.5 were also found during the first half of the temperature-rising period of flue gas. The interaction between fine-grained Ca-based fluxes, potassium vapors, and SO 2 was the potential source of SO 2 -related PM 2.5 . The emission property of PM 2.5 and SO 2 throughout the sintering process exhibited well similarity. This phenomenon tightened the relationship between the formation of PM 2.5 and the emission of SO 2 . Through revealing the properties of SO 2 -related PM 2.5 during sintering process, the potential interaction between fine-grained Ca-based fluxes, potassium vapors, and SO 2 was found to be the source of SO 2 -related PM 2.5 . This information can serve as the guidance to develop efficient techniques to control the formation and emission of PM 2.5 in practical sintering plants.
Liftoff process for exfoliation of thin film photovoltaic devices and back contact formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haight, Richard A.; Hannon, James B.; Oida, Satoshi
A method for forming a back contact on an absorber layer in a photovoltaic device includes forming a two dimensional material on a first substrate. An absorber layer including Cu--Zn--Sn--S(Se) (CZTSSe) is grown over the first substrate on the two dimensional material. A buffer layer is grown on the absorber layer on a side opposite the two dimensional material. The absorber layer is exfoliated from the two dimensional material to remove the first substrate from a backside of the absorber layer opposite the buffer layer. A back contact is deposited on the absorber layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Peng; Dong, Xiquan; Xi, Baike
Determining the factors affecting drizzle formation in marine boundary layer (MBL) clouds remains a challenge for both observation and modeling communities. To investigate the roles of vertical wind shear and buoyancy (static instability) in drizzle formation, ground-based observations from the Atmospheric Radiation Measurement (ARM) Program at the Azores are analyzed for two types of conditions. The type I clouds should last for at least five hours and more than 90% time must be non-drizzling, and then followed by at least two hours of drizzling periods while the type II clouds are characterized by mesoscale convection cellular (MCC) structures with drizzlemore » occur every two to four hours. By analyzing the boundary layer wind profiles (direction and speed), it was found that either directional or speed shear is required to promote drizzle production in the type I clouds. Observations and a recent model study both suggest that vertical wind shear helps the production of turbulent kinetic energy (TKE), stimulates turbulence within cloud layer, and enhances drizzle formation near the cloud top. The type II clouds do not require strong wind shear to produce drizzle. The small values of lower-tropospheric stability (LTS) and negative Richardson number ( Ri) in the type II cases suggest that boundary layer instability plays an important role in TKE production and cloud-drizzle processes. As a result, by analyzing the relationships between LTS and wind shear for all cases and all time periods, a stronger connection was found between LTS and wind directional shear than that between LTS and wind speed shear.« less
Wu, Peng; Dong, Xiquan; Xi, Baike; ...
2017-04-20
Determining the factors affecting drizzle formation in marine boundary layer (MBL) clouds remains a challenge for both observation and modeling communities. To investigate the roles of vertical wind shear and buoyancy (static instability) in drizzle formation, ground-based observations from the Atmospheric Radiation Measurement (ARM) Program at the Azores are analyzed for two types of conditions. The type I clouds should last for at least five hours and more than 90% time must be non-drizzling, and then followed by at least two hours of drizzling periods while the type II clouds are characterized by mesoscale convection cellular (MCC) structures with drizzlemore » occur every two to four hours. By analyzing the boundary layer wind profiles (direction and speed), it was found that either directional or speed shear is required to promote drizzle production in the type I clouds. Observations and a recent model study both suggest that vertical wind shear helps the production of turbulent kinetic energy (TKE), stimulates turbulence within cloud layer, and enhances drizzle formation near the cloud top. The type II clouds do not require strong wind shear to produce drizzle. The small values of lower-tropospheric stability (LTS) and negative Richardson number ( Ri) in the type II cases suggest that boundary layer instability plays an important role in TKE production and cloud-drizzle processes. As a result, by analyzing the relationships between LTS and wind shear for all cases and all time periods, a stronger connection was found between LTS and wind directional shear than that between LTS and wind speed shear.« less
USDA-ARS?s Scientific Manuscript database
Tuber wound-healing processes are complex, and the associated regulation and modulation of these processes are poorly understood. Polyamines (PA) have been shown to be involved in modulating a variety of responses to biotic and abiotic plant stresses and have been suggested to be involved in tuber ...
Materials and methods for the preparation of nanocomposites
Nag, Angshuman; Talapin, Dmitri V.
2018-01-30
Disclosed herein is an isolable colloidal particle comprising a nanoparticle and an inorganic capping agent bound to the surface of the nanoparticle, a method for making the same in a biphasic solvent mixture, and the formation of structures and solids from the isolable colloidal particle. The process can yield photovoltaic cells, piezoelectric crystals, thermoelectric layers, optoelectronic layers, light emitting diodes, ferroelectric layers, thin film transistors, floating gate memory devices, phase change layers, and sensor devices.
Sniegowski, Jeffrey J.; Rodgers, Murray S.; McWhorter, Paul J.; Aeschliman, Daniel P.; Miller, William M.
2002-01-01
A microturbine fabricated by a three-level semiconductor batch-fabrication process based on polysilicon surface-micromachining. The microturbine comprises microelectromechanical elements formed from three polysilicon multi-layer surfaces applied to a silicon substrate. Interleaving sacrificial oxide layers provides electrical and physical isolation, and selective etching of both the sacrificial layers and the polysilicon layers allows formation of individual mechanical and electrical elements as well as the required space for necessary movement of rotating turbine parts and linear elements.
NASA Astrophysics Data System (ADS)
Pang, Shengli; Xu, Kaijie; Wang, Yonggang; Shen, Xiangqian; Wang, Wenzhi; Su, Yanjing; Zhu, Meng; Xi, Xiaoming
2017-10-01
Li-rich layered oxides are promising cathode materials for advanced Li-ion batteries because of their high specific capacity and operating potential. In this work, the Li-rich layered oxide Li1·2Mn0·54Ni0·13Co0·13O2 (LMNC), is modified via a carbonization-reduction process (yielding the corresponding reduced compound denoted LMNC-R). Compared to the pristine oxide, LMNC-R delivers significantly enhanced initial discharge capacity/columbic efficiency, remarkably improved rate performance with an accelerated Li+ diffusion rate, and significantly increased capacity/voltage retention. The specific energy density and energy retention after 100 cycles increase from 378.2 Wh kg-1 and 47.7% for LMNC to 572.0 Wh kg-1 and 71.3%, respectively, for LMNC-R. The enhancement in the electrochemical performance of LMNC-R can be attributed to the synchronous formation of the oxygen non-stoichiometric Li2MnO3-δ component and to the carbon/spinel double coating layer in the material that resulted from the post-treatment process. Thus, the carbonization-reduction modification process can be used to tailor the structural evolution procedure and to suppress the metal ion dissolution of the Li-rich layered oxide during cycling.
Formation of nickel germanides from Ni layers with thickness below 10 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jablonka, Lukas; Kubart, Tomas; Primetzhofer, Daniel
2017-03-01
The authors have studied the reaction between a Ge (100) substrate and thin layers of Ni ranging from 2 to 10 nm in thickness. The formation of metal-rich Ni5Ge3Ni5Ge3 was found to precede that of the monogermanide NiGe by means of real-time in situ x-ray diffraction during ramp-annealing and ex situ x-ray pole figure analyses for phase identification. The observed sequential growth of Ni5Ge3Ni5Ge3 and NiGe with such thin Ni layers is different from the previously reported simultaneous growth with thicker Ni layers. The phase transformation from Ni5Ge3Ni5Ge3 to NiGe was found to be nucleation-controlled for Ni thicknesses <5 nm<5more » nm, which is well supported by thermodynamic considerations. Specifically, the temperature for the NiGe formation increased with decreasing Ni (rather Ni5Ge3Ni5Ge3) thickness below 5 nm. In combination with sheet resistance measurement and microscopic surface inspection of samples annealed with a standard rapid thermal processing, the temperature range for achieving morphologically stable NiGe layers was identified for this standard annealing process. As expected, it was found to be strongly dependent on the initial Ni thickness« less
Fhaner, Mathew; Zhao, Hong; Bian, Xiaochun; Galligan, James J.; Swain, Greg M.
2010-01-01
In order to increase the initial nucleation density for the growth of boron-doped diamond on platinum wires, we employed the novel nucleation process (NNP) originally developed by Rotter et al. and discussed by others [1–3]. This pretreatment method involves (i) the initial formation of a thin carbon layer over the substrate followed by (ii) ultrasonic seeding of this “soft” carbon layer with nanoscale particles of diamond. This two-step pretreatment is followed by the deposition of boron-doped diamond by microwave plasma-assisted CVD. Both the diamond seed particles and sites on the carbon layer itself function as the initial nucleation zones for diamond growth from an H2-rich source gas mixture. We report herein on the characterization of the pre-growth carbon layer formed on Pt as well as boron-doped films grown for 2, 4 and 6 h post NNP pretreatment. Results from scanning electron microscopy, Raman spectroscopy and electrochemical studies are reported. The NNP method increases the initial nucleation density on Pt and leads to the formation of a continuous diamond film in a shorter deposition time than is typical for wires pretreated by conventional ultrasonic seeding. The results indicate that the pregrowth layer itself consists of nanoscopic domains of diamond and functions well to enhance the initial nucleation of diamond without any diamond powder seeding. PMID:21617759
NASA Astrophysics Data System (ADS)
Ovcharenko, V. E.; Ivanov, K. V.; Mohovikov, A. A.; Yu, B.; Xu, Yu; Zhong, L.
2018-01-01
Metal-ceramic composites are the main materials for high-load parts in tribomechanical systems. Modern approaches to extend the operation life of tribomechanical systems are based on increasing the strength and tribological properties of the surface layer having 100 to 200 microns in depth. The essential improvement of the properties occurs when high dispersed structure is formed in the surface layer using high-energy processing. As a result of the dispersed structure formation the more uniform distribution of elastic stresses takes place under mechanical or thermal action, the energy of stress concentrators emergence significantly increases and the probability of internal defects formation reduces. The promising method to form the dispersed structure in the surface layer is pulse electron irradiation in the plasmas of inert gases combining electron irradiation and ion bombardment in one process. The present work reports upon the effect of pulse electron irradiation in plasmas of different inert gases with different atomic mass and ionization energy on the structure and tribological properties of the surface layer of TiC/(Ni-Cr) metal-ceramic composite with the volume ratio of the component being 50:50. It is experimentally shown that high-dispersed heterophase structure with a fraction of nanosized particles is formed during the irradiation. Electron microscopy study reveals that refining of the initial coarse TiC particles occurs via their dissolution in the molten metal binder followed by the precipitation of secondary fine particles in the interparticle layers of the binder. The depth of modified layer and the fraction of nanosized particles increase when the atomic number of the plasma gas increases and ionization energy decreases. The wear resistance of metal-ceramic composite improves in accordance to the formation of nanocrystalline structure in the surface layer.
Growth of single-layer boron nitride dome-shaped nanostructures catalysed by iron clusters.
Torre, A La; Åhlgren, E H; Fay, M W; Ben Romdhane, F; Skowron, S T; Parmenter, C; Davies, A J; Jouhannaud, J; Pourroy, G; Khlobystov, A N; Brown, P D; Besley, E; Banhart, F
2016-08-11
We report on the growth and formation of single-layer boron nitride dome-shaped nanostructures mediated by small iron clusters located on flakes of hexagonal boron nitride. The nanostructures were synthesized in situ at high temperature inside a transmission electron microscope while the e-beam was blanked. The formation process, typically originating at defective step-edges on the boron nitride support, was investigated using a combination of transmission electron microscopy, electron energy loss spectroscopy and computational modelling. Computational modelling showed that the domes exhibit a nanotube-like structure with flat circular caps and that their stability was comparable to that of a single boron nitride layer.
NASA Astrophysics Data System (ADS)
Choi, Yun-Il; Beom, Won-Jin; Park, Chan-Jin; Paik, Doojin; Hong, Moon-Hi
2010-12-01
This study examined the surface oxidation of high-strength steels electrodeposited with Cu or Fe and the resultant defect formation in their coating during the following galvanizing and galvannealing processes. The high-strength steels were coated with an Cu or Fe layer by the electroplating method. Then, the coated steels were annealed in a reducing atmosphere, dipped in a molten zinc, and finally transformed into galvannealed steels through the galvannealing process. The formation of Si and Mn oxides on the surface of the high-strength steel was effectively suppressed, and the density of surface defects on the galvanized steel was significantly reduced by the pre-electrodeposition of Cu and Fe. This effect was more prominent for the steels electrodeposited at higher cathodic current densities. The finer electrodeposit layer formed at higher cathodic current density on the steels enabled the suppression of partial surface oxidation by Mn or Si and better wetting of Zn on the surface of the steels in the following galvanizing process. Furthermore, the pre-electrodeposited steels exhibited a smoother surface without surface cracks after the galvannealing process compared with the untreated steel. The diffusion of Fe and Zn in the Zn coating layer in the pre-electrodeposited steels appears to occur more uniformly during the galvannealing process due to the low density of surface defects induced by oxides.
Chen, Lei; Wen, Jialin; Zhang, Peng; Yu, Bingjun; Chen, Cheng; Ma, Tianbao; Lu, Xinchun; Kim, Seong H; Qian, Linmao
2018-04-18
Topographic nanomanufacturing with a depth precision down to atomic dimension is of importance for advancement of nanoelectronics with new functionalities. Here we demonstrate a mask-less and chemical-free nanolithography process for regio-specific removal of atomic layers on a single crystalline silicon surface via shear-induced mechanochemical reactions. Since chemical reactions involve only the topmost atomic layer exposed at the interface, the removal of a single atomic layer is possible and the crystalline lattice beneath the processed area remains intact without subsurface structural damages. Molecular dynamics simulations depict the atom-by-atom removal process, where the first atomic layer is removed preferentially through the formation and dissociation of interfacial bridge bonds. Based on the parametric thresholds needed for single atomic layer removal, the critical energy barrier for water-assisted mechanochemical dissociation of Si-Si bonds was determined. The mechanochemical nanolithography method demonstrated here could be extended to nanofabrication of other crystalline materials.
2013-01-01
formate and oxalate , both breakdown products of fatty acid oxidation. We hypothesize that surfactants from the marine surface layer coat much of the...characteristics as CCN activity and light scattering k mg be form oxal Species Figurei. Comparison of the mean chemical concentration of the dominant...Figure 1. The insert shows more clearly the changes in formate and oxalate efficiency has been a main objective of this study. To address this, we
Ke, Nguyen Huu; Trinh, Le Thi Tuyet; Phung, Pham Kim; Loan, Phan Thi Kieu; Tuan, Dao Anh; Truong, Nguyen Huu; Tran, Cao Vinh; Hung, Le Vu Tuan
2016-01-01
In this study, two layers: i-ZnO nanorods and p-Cu2O were fabricated by electrochemical deposition. The fabricating process was the initial formation of ZnO nanorods layer on the n-IGZO thin film which was prepared by sputtering method, then a p-Cu2O layer was deposited on top of rods to form the p-Cu2O/i-ZnO nanorods/n-ZnO heterojunction. The XRD, SEM, UV-VIS, I-V characteristics methods were used to define structure, optical and electrical properties of these heterojunction layers. The fabricating conditions and thickness of the Cu2O layers significantly affected to the formation, microstructure, electrical and optical properties of the junction. The length of i-ZnO nanorods layer in the structure of the heterojunction has strongly affected to the carriers transport mechanism and performance of this heterojunction.
Ohisa, Satoru; Endo, Kohei; Kasuga, Kosuke; Suzuki, Michinori; Chiba, Takayuki; Pu, Yong-Jin; Kido, Junji
2018-02-19
We report the development of solution-processed reduced phosphomolybdic acid (rPMA) containing molybdenum oxide units for post-treatment-free hole-injection layers (HILs) in organic light-emitting devices (OLEDs). The physical and chemical properties of rPMA, including its structure, solubility in several solvents, film surface roughness, work function, and valence states, were investigated. The formation of gap states just below the Fermi level of rPMA was observed. Without any post-treatment after the formation of rPMA films, OLEDs employing rPMA as an HIL exhibited a very low driving voltage and a high luminous efficiency. The low driving voltage was attributed to the energy level alignment between the gap states formed by reduction and the HOMO level of the hole-transport layer material N,N'-bis(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine.
Vertebrate development: the subtle art of germ-layer specification.
Stemple, D L
2001-10-30
Nodal signalling is essential for vertebrate germ-layer formation. How this single signal can generate such a diverse array of tissues remains a mystery and is an area of intense research. Three recent reports reveal unanticipated subtleties to the process and provide new mechanisms for generating distinct responses.
Vertical profiling of aerosol particles and trace gases over the central Arctic Ocean during summer
NASA Astrophysics Data System (ADS)
Kupiszewski, P.; Leck, C.; Tjernström, M.; Sjogren, S.; Sedlar, J.; Graus, M.; Müller, M.; Brooks, B.; Swietlicki, E.; Norris, S.; Hansel, A.
2013-12-01
Unique measurements of vertical size-resolved aerosol particle concentrations, trace gas concentrations and meteorological data were obtained during the Arctic Summer Cloud Ocean Study (ASCOS, www.ascos.se), an International Polar Year project aimed at establishing the processes responsible for formation and evolution of low-level clouds over the high Arctic summer pack ice. The experiment was conducted from on board the Swedish icebreaker Oden, and provided both ship- and helicopter-based measurements. This study focuses on the vertical helicopter profiles and onboard measurements obtained during a three-week period when Oden was anchored to a drifting ice floe, and sheds light on the characteristics of Arctic aerosol particles and their distribution throughout the lower atmosphere. Distinct differences in aerosol particle characteristics within defined atmospheric layers are identified. Within the lowermost couple hundred metres, transport from the marginal ice zone (MIZ), condensational growth and cloud processing develop the aerosol population. During two of the four representative periods defined in this study, such influence is shown. At altitudes above about 1 km, long-range transport occurs frequently. However, only infrequently does large-scale subsidence descend such air masses to become entrained into the mixed layer in the high Arctic, and therefore long-range transport plumes are unlikely to directly influence low-level stratiform cloud formation. Nonetheless, such plumes can influence the radiative balance of the planetary boundary layer (PBL) by influencing formation and evolution of higher clouds, as well as through precipitation transport of particles downwards. New particle formation was occasionally observed, particularly in the near-surface layer. We hypothesize that the origin of these ultrafine particles could be in biological processes, both primary and secondary, within the open leads between the pack ice and/or along the MIZ. In general, local sources, in combination with upstream boundary-layer transport of precursor gases from the MIZ, are considered to constitute the origin of cloud condensation nuclei (CCN) particles and thus be of importance for the formation of interior Arctic low-level clouds during summer, and subsequently, through cloud influences, for the melting and freezing of sea ice.
Experimental analysis of armouring process
NASA Astrophysics Data System (ADS)
Lamberti, Alberto; Paris, Ennio
Preliminary results from an experimental investigation on armouring processes are presented. Particularly, the process of development and formation of the armour layer under different steady flow conditions has been analyzed in terms of grain size variations and sediment transport rate associated to each size fraction.
Analysis of factors influencing the bond strength in roll bonding processes
NASA Astrophysics Data System (ADS)
Khaledi, Kavan; Wulfinghoff, Stephan; Reese, Stefanie
2018-05-01
Cold Roll Bonding (CRB) is recognized as an industrial technique in which the metal sheets are joined together in order to produce laminate metal composites. In this technique, a metallurgical bond resulting from severe plastic deformation is formed between the rolled metallic layers. The main objective of this paper is to analyse different factors which may affect the bond formation in rolling processes. To achieve this goal, first, an interface model is employed which describes both the bonding and debonding. In this model, the bond strength evolution between the metallic layers is calculated based on the film theory of bonding. On the other hand, the debonding process is modelled by means of a bilinear cohesive zone model. In the numerical section, different scenarios are taken into account to model the roll bonding process of metal sheets. The numerical simulation includes the modelling of joining during the roll bonding process followed by debonding in a Double Cantilever Beam (DCB) peeling test. In all simulations, the metallic layers are regarded as elastoplastic materials subjected to large plastic deformations. Finally, the effects of some important factors on the bond formation are numerically investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escobedo-Cousin, Enrique; Vassilevski, Konstantin; Hopf, Toby
Patterned few-layer graphene (FLG) films were obtained by local solid phase growth from nickel silicide supersaturated with carbon, following a fabrication scheme, which allows the formation of self-aligned ohmic contacts on FLG and is compatible with conventional SiC device processing methods. The process was realised by the deposition and patterning of thin Ni films on semi-insulating 6H-SiC wafers followed by annealing and the selective removal of the resulting nickel silicide by wet chemistry. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to confirm both the formation and subsequent removal of nickel silicide. The impact of process parameters such asmore » the thickness of the initial Ni layer, annealing temperature, and cooling rates on the FLG films was assessed by Raman spectroscopy, XPS, and atomic force microscopy. The thickness of the final FLG film estimated from the Raman spectra varied from 1 to 4 monolayers for initial Ni layers between 3 and 20 nm thick. Self-aligned contacts were formed on these patterned films by contact photolithography and wet etching of nickel silicide, which enabled the fabrication of test structures to measure the carrier concentration and mobility in the FLG films. A simple model of diffusion-driven solid phase chemical reaction was used to explain formation of the FLG film at the interface between nickel silicide and silicon carbide.« less
NASA Astrophysics Data System (ADS)
Nagpal, Swati; Aurora, Aradhna
1999-11-01
In DOW type of phase change optical memories the focus has been mainly on gestate based systems due to their good overwriting capability and very high order cyclability. To avoid the material deterioration problems such as material flow, high melting point, high viscosity or high-density components such as CrTe, (which have the same refractive index) can be added to the active layer. This has led to an improved performance of overwrite cycles from 105 to 106. Material flow occurs due to void formation. Voids and sinks are formed due to porosity of the active layer because the active layer has a density lower than that of the bulk material. One of the reasons for the formation and coalescence of voids is the way in which the film is deposited viz. Sputtering which makes Ar atoms accumulate in the films during deposition. Also the mechanical strength of the protective layer effects the repeatability of the active layer. All the above mentioned processes occur during melting and re- solidification of the nano-sized spots which are laser irradiated. Since the structure of the protective layers is very important in controlling the void formation, it is very important to study the thermal modeling of the full layer structure.
Prospects for reducing the processing cost of lithium ion batteries
Wood III, David L.; Li, Jianlin; Daniel, Claus
2014-11-06
A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; doubling the thicknesses of the anode and cathode to raise energy density; and, reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and amore » standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).« less
Evidence for interfacial dissolution-precipitation during low-temperature mineral weathering
NASA Astrophysics Data System (ADS)
Ruiz-Agudo, Encarnacion; Putnis, Christine V.; Rodriguez-Navarro, Carlos; Putnis, Andrew
2013-04-01
The dissolution of most common multicomponent minerals and glasses is typically "incongruent" as shown by the nonstoichiometric release of the solid phase components. This frequently results in the formation of so-called surface leached layers. The mechanism of this process has been a recurrent subject of research and debate over the past two decades, due to its relevance to a wide range of natural and technological processes, as well as being crucial in defining rate laws for mineral reactions. Here we report experimental, in situ nanoscale observations that confirm the formation of a cation depleted layer at the mineral-solution interface during dissolution of multicomponent minerals at acidic pH. Our in situ Atomic Force Microscopy studies of the dissolution of wollastonite, CaSiO3, and dolomite, Ca0.5Mg0.5CO3, combined with compositional analysis of reaction products, provide, for the first time, clear direct experimental evidence that cation-depleted (i.e. leached) layers are formed in a tight interface-coupled two step process: stoichiometric dissolution of the pristine mineral surfaces and subsequent precipitation of a secondary phase from a supersaturated boundary layer of fluid in contact with the mineral surface. Such a mechanism presents a new paradigm that differs from the concept of preferential leaching of cations, as postulated by most currently accepted incongruent dissolution models. References Ruiz Agudo, E; Putnis, CV; Rodríguez Navarro, C and Putnis, A. (2012) Mechanism of leached layer formation during chemical weathering of silicate minerals. Geology, 40, 947-950 Urosevic, M; Rodríguez Navarro,C; Putnis, CV; Cardell, C; Putnis, A and Ruiz Agudo, E (2012) In situ nanoscale observations of the dissolution of [10-14] dolomite cleavage surfaces. Geochimica et Cosmochimica Acta, 80, 1-13
Pedersen, E B L; Angmo, D; Dam, H F; Thydén, K T S; Andersen, T R; Skjønsfjell, E T B; Krebs, F C; Holler, M; Diaz, A; Guizar-Sicairos, M; Breiby, D W; Andreasen, J W
2015-08-28
Organic solar cells have great potential for upscaling due to roll-to-roll processing and a low energy payback time, making them an attractive sustainable energy source for the future. Active layers coated with water-dispersible Landfester particles enable greater control of the layer formation and easier access to the printing industry, which has reduced the use of organic solvents since the 1980s. Through ptychographic X-ray computed tomography (PXCT), we image quantitatively a roll-to-roll coated photovoltaic tandem stack consisting of one bulk heterojunction active layer and one Landfester particle active layer. We extract the layered morphology with structural and density information including the porosity present in the various layers and the silver electrode with high resolution in 3D. The Landfester particle layer is found to have an undesired morphology with negatively correlated top- and bottom interfaces, wide thickness distribution and only partial surface coverage causing electric short circuits through the layer. By top coating a polymer material onto the Landfester nanoparticles we eliminate the structural defects of the layer such as porosity and roughness, and achieve the increased performance larger than 1 V expected for a tandem cell. This study highlights that quantitative imaging of weakly scattering stacked layers of organic materials has become feasible by PXCT, and that this information cannot be obtained by other methods. In the present study, this technique specifically reveals the need to improve the coatability and layer formation of Landfester nanoparticles, thus allowing improved solar cells to be produced.
NASA Astrophysics Data System (ADS)
Zaraska, Leszek; Gilek, Dominika; Gawlak, Karolina; Jaskuła, Marian; Sulka, Grzegorz D.
2016-12-01
A simple anodic oxidation of metallic tin in fluoride-free alkaline electrolyte at low potentials was proposed as a new and effective strategy for fabrication of crack-free nanoporous tin oxide layers. A low-purity Sn foil (98.8%) was used as a starting material, and a series of anodizations were performed in 1 M NaOH at different conditions such as anodizing potential, and duration of the process. It was proved for the first time that nanostructured tin oxides with ultra-small nanochannels having diameters of <15 nm can be synthesized by simple anodization of metallic tin at a potential of 2 V in 1 M NaOH electrolyte. Increasing anodizing potential to 3 and 4 V allowed for formation of tin oxide layers with much larger pores (40-50 nm in diameter) which were still free from internal cracks and transversal pores. Applying such low potentials significantly reduces the oxide growth rate and suppresses vigorous oxygen evolution at the anode. As a result mechanical deterioration of the oxide structure is prevented while strongly alkaline electrolyte is responsible for formation of the porous layer with completely open pores even at such low potentials. On the contrary, when anodization was carried out at potentials of 5 and 6 V, much faster formation of anodic layer, accompanied by vigorous oxygen gas formation, was observed. In consequence, as grown oxide layers exhibited typical cracked or even stacked internal structure. Finally, we demonstrated for the first time that nanoporous tin oxide layers with segments of different channel sizes can be successfully obtained by simple altering potential during anodization.
A Case Study of Ship Track Formation in a Polluted Marine Boundary Layer.
NASA Astrophysics Data System (ADS)
Noone, Kevin J.; Johnson, Doug W.; Taylor, Jonathan P.; Ferek, Ronald J.; Garrett, Tim; Hobbs, Peter V.; Durkee, Philip A.; Nielsen, Kurt; Öström, Elisabeth; O'Dowd, Colin; Smith, Michael H.; Russell, Lynn M.; Flagan, Richard C.; Seinfeld, John H.; de Bock, Lieve; van Grieken, René E.; Hudson, James G.; Brooks, Ian; Gasparovic, Richard F.; Pockalny, Robert A.
2000-08-01
A case study of the effects of ship emissions on the microphysical, radiative, and chemical properties of polluted marine boundary layer clouds is presented. Two ship tracks are discussed in detail. In situ measurements of cloud drop size distributions, liquid water content, and cloud radiative properties, as well as aerosol size distributions (outside-cloud, interstitial, and cloud droplet residual particles) and aerosol chemistry, are presented. These are related to remotely sensed measurements of cloud radiative properties.The authors examine the processes behind ship track formation in a polluted marine boundary layer as an example of the effects of anthropogenic particulate pollution on the albedo of marine stratiform clouds.
Coating transformations in the early stages of hot-dip galvannealing of steel sheet
NASA Astrophysics Data System (ADS)
McDevitt, Erin Todd
The present, comprehensive study of the reactions occurring early in galvanneal processing under conditions typical of commercial production represents the first detailed investigation of the microstructural evolution of the coating in the early stages of galvannealing and the results shed new light on the course of the coating microstructural development. During hot dipping, an Fe2Al5 inhibition layer formed on the surface of the steel substrate in the first instants of immersion in Zn baths containing as low as 0.10 wt.% Al. When hot-dipping in a 0.14 wt.% Al, the as-dipped coating microstructure consisted of an Fe2Al 5 layer on the steel surface. That layer was covered by a layer of the Fe-Zn compound Gamma1, which was covered by the zeta phase or unalloyed Zn. Substrate chemistry did not affect coating microstructure development in the bath. Thermodynamic predictions of the precipitation behavior during the bath reactions agrees well with experimental observations. A mechanism for coating microstructure development in the Zn bath which is consistent with all the experimental results is proposed. From this information, the metallurgical variables which govern inhibition layer formation are discerned. The breakdown of the Fe2Al5 inhibition layer during galvannealing at 500°C occurred without the formation of outbursts. Instead, the grain boundary diffusion of Al into the steel substrate accounted for dissolution of the inhibition layer in the first second of galvannealing. A mechanism for inhibition layer breakdown is presented. P-additions affected only the rate at which the inhibition layer dissolved and did not affect the rate of Fe-Zn compound formation. P in the substrate blocked grain boundary diffusion of Al into the substrate thus slowing inhibition layer dissolution. The slower overall galvannealing behavior often observed on P-bearing substrates is due to a longer period of inhibition layer survival which results in a longer incubation period for the initiation of the formation of Fe-Zn compounds. The coating solidified after inhibition layer dissolution by the continuous formation of new delta grains from the liquid at the solidification front. The microstructural evolution of the entire coating, including the formation of Gamma and Gammal, during solidification is also presented.
Materials and methods for the preparation of nanocomposites
Talapin, Dmitri V.; Kovalenko, Maksym V.; Lee, Jong-Soo; Jiang, Chengyang
2016-05-24
Disclosed herein is an isolable colloidal particle comprising a nanoparticle and an inorganic capping agent bound to the surface of the nanoparticle, a solution of the same, a method for making the same from a biphasic solvent mixture, and the formation of structures and solids from the isolable colloidal particle. The process can yield photovoltaic cells, piezoelectric crystals, thermoelectric layers, optoelectronic layers, light emitting diodes, ferroelectric layers, thin film transistors, floating gate memory devices, imaging devices, phase change layers, and sensor devices.
NASA Astrophysics Data System (ADS)
Brahma, Sanjaya; Liu, C.-W.; Huang, R.-J.; Chang, S.-J.; Lo, K.-Y.
2015-11-01
We demonstrate the formation of self-assembled homogenous flower-like ZnO nanorods over a ZnO seed layer deposited on a HF-etched Si (111) substrate. The typical flower-like morphology of ZnO nanorod arrays is ascribed to the formation of the island-like seed layer which is deposited by the drop method followed by annealing at 300 °C. The island-like ZnO seed layer consists of larger ZnO grains, and is built by constraining of the Si (111) surface due to pattern matching. Pattern matching of Si with ZnO determines the shape and size of the seed layer and this controls the final morphology of ZnO nanorods to be either flower like or vertically aligned. The high quality of the island-like ZnO seed layer enhances the diameter and length of ZnO nanorods. Besides, while the amorphous layer formed during the annealing process would influence the strained ZnO grain, that subsequent amorphous layer will not block the constraining between the ZnO grain and the substrate.
Gómez Gómez, José María; Medina, Jesús; Hochberg, David; Mateo-Martí, Eva; Martínez-Frías, Jesús; Rull, Fernando
2014-07-01
Water is the fundamental molecule for life on Earth. Thus, the search for hibernating life-forms in waterless environments is an important research topic for astrobiology. To date, however, the organizational patterns containing microbial life in extremely dry places, such as the deserts of Earth, the Dry Valleys of Antarctica, or Mars analog regolith, have been poorly characterized. Here, we report on the formation of bacterial biosaline self-organized drying patterns formed over plastic surfaces. These emerge during the evaporation of sessile droplets of aqueous NaCl salt 0.15 M solutions containing Escherichia coli cells. In the present study, scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS) analyses indicated that the bacterial cells and the NaCl in these biosaline formations are organized in a two-layered characteristic 3-D architectural morphology. A thin filmlike top layer formed by NaCl conjugated to, and intermingled with, "mineralized" bacterial cells covers a bottom layer constructed by the bulk of the nonmineralized bacterial cells; both layers have the same morphological pattern. In addition, optical microscopic time-lapsed movies show that the formation of these patterns is a kinetically fast process that requires the coupled interaction between the salt and the bacterial cells. Apparently, this mutual interaction drives the generative process of self-assembly that underlies the drying pattern formation. Most notably, the bacterial cells inside these drying self-assembled patterns enter into a quiescent suspended anhydrobiotic state resistant to complete desiccation and capable of vital reanimation upon rehydration. We propose that these E. coli biosaline drying patterns represent an excellent experimental model for understanding different aspects of anhydrobiosis phenomena in bacteria as well as for revealing the mechanisms of bacterially induced biomineralization, both highly relevant topics for the search of life in extraterrestrial locations.
Conversion coatings prepared or treated with calcium hydroxide solutions
NASA Technical Reports Server (NTRS)
Maxey, Jason (Inventor); Nelson, Carl (Inventor); Eylem, Cahit (Inventor); Minevski, Zoran (Inventor); Clarke, Eric (Inventor)
2002-01-01
A conversion coating process that forms a stable and corrosion-resistant oxide layer on metal or metal oxide substrates or layers. Particularly, the conversion coating process involves contacting the metal or metal oxide substrate or layer with the aqueous calcium hydroxide solutions in order to convert the surface of the substrate to a stable metal oxide layer or coating. According to the present invention, the calcium hydroxide solution is prepared by removing carbon dioxide from water or an aqueous solution before introducing the calcium hydroxide. In this manner, formation of calcium carbonate particles is avoided and the porosity of the conversion coating produced by the calcium hydroxide solution is reduced to below about 1%.
Peláez, R J; Espinós, J P; Afonso, C N
2017-04-28
The aging of supported Ag nanostructures upon storage in ambient conditions (air and room temperature) for 20 months has been studied. The samples are produced on glass substrates by pulsed laser deposition (PLD); first a 15 nm thick buffer layer of amorphous aluminum oxide (a-Al 2 O 3 ) is deposited, followed by PLD of Ag. The amount of deposited Ag ranges from that leading to a discontinuous layer up to an almost-percolated layer with a thickness of <6 nm. Some regions of the as-grown silver layers are converted, by laser induced dewetting, into round isolated nanoparticles (NPs) with diameters of up to ∼25 nm. The plasmonic, structural and chemical properties of both as-grown and laser exposed regions upon aging have been followed using extinction spectroscopy, scanning electron microscopy and x-ray photoelectron spectroscopy, respectively. The results show that the discontinuous as-grown regions are optically and chemically unstable and that the metal becomes oxidized faster, the smaller the amount of Ag. The corrosion leads to the formation of nitrile species due to the reaction between NO x species from the atmosphere adsorbed at the surface of Ag, and hydrocarbons adsorbed in defects at the surface of the a-Al 2 O 3 layer during the deposition of the Ag nanostructures by PLD that migrate to the surface of the metal with time. The nitrile formation thus results in the main oxidation mechanism and inhibits almost completely the formation of sulphate/sulphide. Finally, the optical changes upon aging offer an easy-to-use tool for following the aging process. They are dominated by an enhanced absorption in the UV side of the spectrum and a blue-shift of the surface plasmon resonance that are, respectively, related to the formation of a dielectric overlayer on the Ag nanostructure and changes in the dimensions/features of the nanostructures, both due to the oxidation process.
Kinetics of the electric double layer formation modelled by the finite difference method
NASA Astrophysics Data System (ADS)
Valent, Ivan
2017-11-01
Dynamics of the elctric double layer formation in 100 mM NaCl solution for sudden potentail steps of 10 and 20 mV was simulated using the Poisson-Nernst-Planck theory and VLUGR2 solver for partial differential equations. The used approach was verified by comparing the obtained steady-state solution with the available exact solution. The simulations allowed for detailed analysis of the relaxation processes of the individual ions and the electric potential. Some computational aspects of the problem were discussed.
Formation mechanism of complex pattern on fishes' skin
NASA Astrophysics Data System (ADS)
Li, Xia; Liu, Shuhua
2009-10-01
In this paper, the formation mechanism of the complex patterns observed on the skin of fishes has been investigated by a two-coupled reaction diffusion model. The effects of coupling strength between two layers play an important role in the pattern-forming process. It is found that only the epidermis layer can produce complicated patterns that have structures on more than one length scale. These complicated patterns including super-stripe pattern, mixture of spots and stripe, and white-eye pattern are similar to the pigmentation patterns on fishes' skin.
NASA Astrophysics Data System (ADS)
Romankov, S.; Park, Y. C.; Shchetinin, I. V.
2017-11-01
Cobalt (Co), molybdenum (Mo), and nickel (Ni) components were simultaneously introduced onto titanium (Ti) surfaces from a composed target using ball collisions. Tungsten carbide (WC) balls were selected for processing as the source of a cemented carbide reinforcement phase. During processing, ball collisions continuously introduced components from the target and the grinding media onto the Ti surface and induced mechanical intermixing of the elements, resulting in formation of a complex nanocomposite structure onto the Ti surface. The as-fabricated microstructure consisted of uniformly dispersed WC particles embedded within an integrated metallic matrix composed of an amorphous phase with nanocrystalline grains. The phase composition of the alloyed layers, atomic reactions, and the matrix grain sizes depended on the combination of components introduced onto the Ti surface during milling. The as-fabricated layer exhibited a very high hardness compared to industrial metallic alloys and tool steel materials. This approach could be used for the manufacture of both cemented carbides and amorphous matrix composite layers.
NASA Technical Reports Server (NTRS)
Wikramanayake, Athula H.; Hong, Melanie; Lee, Patricia N.; Pang, Kevin; Byrum, Christine A.; Bince, Joanna M.; Xu, Ronghui; Martindale, Mark Q.
2003-01-01
The human oncogene beta-catenin is a bifunctional protein with critical roles in both cell adhesion and transcriptional regulation in the Wnt pathway. Wnt/beta-catenin signalling has been implicated in developmental processes as diverse as elaboration of embryonic polarity, formation of germ layers, neural patterning, spindle orientation and gap junction communication, but the ancestral function of beta-catenin remains unclear. In many animal embryos, activation of beta-catenin signalling occurs in blastomeres that mark the site of gastrulation and endomesoderm formation, raising the possibility that asymmetric activation of beta-catenin signalling specified embryonic polarity and segregated germ layers in the common ancestor of bilaterally symmetrical animals. To test whether nuclear translocation of beta-catenin is involved in axial identity and/or germ layer formation in 'pre-bilaterians', we examined the in vivo distribution, stability and function of beta-catenin protein in embryos of the sea anemone Nematostella vectensis (Cnidaria, Anthozoa). Here we show that N. vectensis beta-catenin is differentially stabilized along the oral-aboral axis, translocated into nuclei in cells at the site of gastrulation and used to specify entoderm, indicating an evolutionarily ancient role for this protein in early pattern formation.
NASA Astrophysics Data System (ADS)
Buongiorno Nardelli, B.; Guinehut, S.; Verbrugge, N.; Cotroneo, Y.; Zambianchi, E.; Iudicone, D.
2017-12-01
The depth of the upper ocean mixed layer provides fundamental information on the amount of seawater that directly interacts with the atmosphere. Its space-time variability modulates water mass formation and carbon sequestration processes related to both the physical and biological pumps. These processes are particularly relevant in the Southern Ocean, where surface mixed-layer depth estimates are generally obtained either as climatological fields derived from in situ observations or through numerical simulations. Here we demonstrate that weekly observation-based reconstructions can be used to describe the variations of the mixed-layer depth in the upper ocean over a range of space and time scales. We compare and validate four different products obtained by combining satellite measurements of the sea surface temperature, salinity, and dynamic topography and in situ Argo profiles. We also compute an ensemble mean and use the corresponding spread to estimate mixed-layer depth uncertainties and to identify the more reliable products. The analysis points out the advantage of synergistic approaches that include in input the sea surface salinity observations obtained through a multivariate optimal interpolation. Corresponding data allow to assess mixed-layer depth seasonal and interannual variability. Specifically, the maximum correlations between mixed-layer anomalies and the Southern Annular Mode are found at different time lags, related to distinct summer/winter responses in the Antarctic Intermediate Water and Sub-Antarctic Mode Waters main formation areas.
Formation of thin walled ceramic solid oxide fuel cells
Claar, Terry D.; Busch, Donald E.; Picciolo, John J.
1989-01-01
To reduce thermal stress and improve bonding in a high temperature monolithic solid oxide fuel cell (SOFC), intermediate layers are provided between the SOFC's electrodes and electrolyte which are of different compositions. The intermediate layers are comprised of a blend of some of the materials used in the electrode and electrolyte compositions. Particle size is controlled to reduce problems involving differential shrinkage rates of the various layers when the entire structure is fired at a single temperature, while pore formers are provided in the electrolyte layers to be removed during firing for the formation of desired pores in the electrode layers. Each layer includes a binder in the form of a thermosetting acrylic which during initial processing is cured to provide a self-supporting structure with the ceramic components in the green state. A self-supporting corrugated structure is thus formed prior to firing, which the organic components of the binder and plasticizer removed during firing to provide a high strength, high temperature resistant ceramic structure of low weight and density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikodemski, Stefan; Dameron, Arrelaine A.; Perkins, John D.
Transparent conducting oxide (TCO) coatings with decreased cost and greater process or performance versatility are needed for a variety of optoelectronic applications. Among potential new TCO candidates, doped titanium dioxide is receiving particular interest. In this study, niobium-doped titania bilayer structures consisting of a nanoscale seed layer (deposited by atomic layer deposition or RF magnetron sputtering) followed by a thick bulk-like layer were grown directly on glass in order to examine the effects of the seed layer processing on the subsequent crystallization and electrical properties of these heterostructures. Observations from Raman spectroscopy suggest that higher oxygen content in the seedmore » layer suppresses the formation of detrimental titania polymorph phases, found in films produced by annealing directly after synthesis without any exposure to oxygen. Here, our results indicate that the generation of excellent Nb:TiO 2 conductors on glass (without breaking vacuum) only occurs within a narrow processing range and that the sequential deposition of oxygen-poor layers on oxygen-rich layers is a critical step towards achieving films with low resistivity.« less
Nikodemski, Stefan; Dameron, Arrelaine A.; Perkins, John D.; ...
2016-09-09
Transparent conducting oxide (TCO) coatings with decreased cost and greater process or performance versatility are needed for a variety of optoelectronic applications. Among potential new TCO candidates, doped titanium dioxide is receiving particular interest. In this study, niobium-doped titania bilayer structures consisting of a nanoscale seed layer (deposited by atomic layer deposition or RF magnetron sputtering) followed by a thick bulk-like layer were grown directly on glass in order to examine the effects of the seed layer processing on the subsequent crystallization and electrical properties of these heterostructures. Observations from Raman spectroscopy suggest that higher oxygen content in the seedmore » layer suppresses the formation of detrimental titania polymorph phases, found in films produced by annealing directly after synthesis without any exposure to oxygen. Here, our results indicate that the generation of excellent Nb:TiO 2 conductors on glass (without breaking vacuum) only occurs within a narrow processing range and that the sequential deposition of oxygen-poor layers on oxygen-rich layers is a critical step towards achieving films with low resistivity.« less
NASA Astrophysics Data System (ADS)
Xiao, D.; Brantley, S.; Li, L.
2017-12-01
Chemical weathering transforms rock to soil and determine soil texture, bedrock depth, and soil hydrological properties. At the Shale Hills watershed in central Pennsylvania, field evidence indicated that the regolith depth, hydrologic processes, and chemical depletion are different at the two aspects. Current regolith formation models considering reactive transport processes have a limitation in coupling complex and evolving hydrodynamic conditions. We hypothesize that deeper regolith forms when more water flushes dissolved mass out of the system. The hypothesis is tested by developing a two-dimensional regolith formation model at the hillslope scale using measured mineral composition and hydrologic properties at Shale Hills using CrunchFlow. A 2-D hillslope domain was setup to simulate hydrogeochemical processes at north and south aspects and to understand the evolution of hydrodynamics, rock properties, and extent of chemical reactions. The bedrock has the primary minerals of quartz, illite, chlorite, calcite, and pyrite; goethite and kaolinite precipitated as secondary minerals. The permeability, mass transfer, and groundwater table depth were constrained by field measurement. We implemented different recharge rates on north and south aspects based on the annually averaged fluxes from a current reanalysis using a hydrologic model. The simulation started from a homogeneous bedrock composition at 10,000 years ago. After 10,000 years' weathering, the south facing aspect with small recharge rate has a shallower soil and regolith. The simulation output indicates the formation of a shallow and a deep groundwater, based on the formation of lateral flow that connects to the stream. One is at the interface between high permeability soil zone and low permeability regolith zone, forming a relatively high-velocity perched groundwater layer. The remnant water infiltrates into the deeper low permeability zone and forms the regional groundwater layer. Because of high permeability in perched layer on north facing aspect, the remnant water in regional groundwater layer leads to shallower water table depth on north facing aspect. The model will be used to understand the role fractures, climate, and mineral compositions in affecting regolith formation.
Yonezawa, Yorinobu; Ishida, Sumio; Suzuki, Shinobu; Sunada, Hisakazu
2002-09-01
Generalization of the release process through the wax matrix layer was examined by use of a reservoir device tablet. The wax matrix layer of the reservoir device tablet was prepared from a physical mixture of lactose and hydrogenated castor oil to simplify the release properties. Release through the wax matrix layer showed zero-order kinetics in a steady state after a given lag time, and could be divided into two stages. The first stage was the formation process of water channel by dissolving the soluble component in the wax matrix layer. The lag time obtained by applying the square root law equation was well connected with the amount of the matrix layer and mixed weight ratio of components in this layer. The second stage was the zero-order release process of drug in the reservoir through the wax matrix layer, because the effective surface area was fixed. The release rate constants were connected with thickness of the matrix layer and permeability coefficient, and the permeability coefficients were connected with the diffusion coefficient of drug and porosity. Hence the release rate constant could be connected with the amount of matrix layer and the mixed weight ratio of components in the matrix layer. It was therefore suggested that the release process could be generalized using the amount of matrix layer and the mixed weight ratio of components in the matrix layer.
Treatment of TNT red water by layer melt crystallization.
Jo, Jeong-Hyeon; Ernest, Takyi; Kim, Kwang-Joo
2014-09-15
Treatment of the red water, which is wastewater of 2,4,6- trinitrotoluene (TNT) manufacturing process has been explored using ice crystallization. This study focuses on the formation of ice crystals from the red water in a layer crystallizer under various operating conditions. Among the parameters which affect layer crystallization, attention was given to cooling rate, cooling temperature, sweating rate and concentration of the red water. The study highlights the effect of subcooling and growth rate on purity of the ice crystalline layers produced. After sweating, the COD value of crystalline ice layer was significantly reduced from 10,000 mg/L to below 20mg/L. Most organic contaminants were removed in sweating fractions of 0.5. Eventually, the red water was treated by layer crystallization combined with the sweating process. Copyright © 2014 Elsevier B.V. All rights reserved.
Formation of porous surface layers in reaction bonded silicon nitride during processing
NASA Technical Reports Server (NTRS)
Shaw, N. J.; Glasgow, T. K.
1979-01-01
Microstructural examination of reaction bonded silicon nitride (RBSN) has shown that there is often a region adjacent to the as-nitrided surfaces that is even more porous than the interior of this already quite porous material. Because this layer of large porosity is considered detrimental to both the strength and oxidation resistance of RBSN, a study was undertaken to determine if its formation could be prevented during processing. All test bars studied were made from a single batch of Si powder which was milled for 4 hours in heptane in a vibratory mill using high density alumina cylinders as the grinding media. After air drying the powder, bars were compacted in a single acting die and hydropressed.
Laser ablation of single-crystalline silicon by radiation of pulsed frequency-selective fiber laser
NASA Astrophysics Data System (ADS)
Veiko, V. P.; Skvortsov, A. M.; Huynh, C. T.; Petrov, A. A.
2015-07-01
We have studied the process of destruction of the surface of a single-crystalline silicon wafer scanned by the beam of a pulsed ytterbium-doped fiber laser radiation with a wavelength of λ = 1062 nm. It is established that the laser ablation can proceed without melting of silicon and the formation of a plasma plume. Under certain parameters of the process (radiation power, beam scan velocity, and beam overlap density), pronounced oxidation of silicon microparticles with the formation of a characteristic loose layer of fine powdered silicon dioxide has been observed for the first time. The range of lasing and beam scanning regimes in which the growth of SiO2 layer takes place is determined.
The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel
NASA Astrophysics Data System (ADS)
Wilbraham, Richard J.; Boxall, Colin; Goddard, David T.; Taylor, Robin J.; Woodbury, Simon E.
2015-09-01
For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H2O2-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H2O2] ⩽ 100 μmol dm-3 the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H2O2 concentrations between 1 mmol dm-3 and 0.1 mol dm-3, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H2O2] > 0.1 mol dm-3 the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO2 films has not hitherto been observed or explored, either in terms of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the transition to the formation of soluble uranyl-peroxide complexes under mildly alkaline, high [H2O2] conditions - a conclusion that has implications for the design of both acid minimal, metal ion oxidant-free decontamination strategies with low secondary waste arisings, and single step processes for spent nuclear fuel dissolution such as the Carbonate-based Oxidative Leaching (COL) process.
Passivation layer breakdown during laser-fired contact formation for photovoltaic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghavan, A.; DebRoy, T.; Palmer, T. A.
2014-07-14
Low resistance laser-fired ohmic contacts (LFCs) can be formed on the backside of Si-based solar cells using microsecond pulses. However, the impact of these longer pulse durations on the dielectric passivation layer is not clear. Retention of the passivation layer during processing is critical to ensure low recombination rates of electron-hole pairs at the rear surface of the device. In this work, advanced characterization tools are used to demonstrate that although the SiO{sub 2} passivation layer melts directly below the laser, it is well preserved outside the immediate LFC region over a wide range of processing parameters. As a result,more » low recombination rates at the passivation layer/wafer interface can be expected despite higher energy densities associated with these pulse durations.« less
Fabrication of Microstripline Wiring for Large Format Transition Edge Sensor Arrays
NASA Technical Reports Server (NTRS)
Chervenak, James A.; Adams, J. M.; Bailey, C. N.; Bandler, S.; Brekosky, R. P.; Eckart, M. E.; Erwin, A. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.;
2012-01-01
We have developed a process to integrate microstripline wiring with transition edge sensors (TES). The process includes additional layers for metal-etch stop and dielectric adhesion to enable recovery of parameters achieved in non-microstrip pixel designs. We report on device parameters in close-packed TES arrays achieved with the microstrip process including R(sub n), G, and T(sub c) uniformity. Further, we investigate limits of this method of producing high-density, microstrip wiring including critical current to determine the ultimate scalability of TES arrays with two layers of wiring.
Li, Xiang Yuan; Shao, Xing Long; Wang, Yi Chuan; Jiang, Hao; Hwang, Cheol Seong; Zhao, Jin Shi
2017-02-09
Ta 2 O 5 has been an appealing contender for the resistance switching random access memory (ReRAM). The resistance switching (RS) in this material is induced by the repeated formation and rupture of the conducting filaments (CFs) in the oxide layer, which are accompanied by the almost inevitable randomness of the switching parameters. In this work, a 1 to 2 nm-thick Ti layer was deposited on the 10 nm-thick Ta 2 O 5 RS layer, which greatly improved the RS performances, including the much-improved switching uniformity. The Ti metal layer was naturally oxidized to TiO x (x < 2) and played the role of a series resistor, whose resistance value was comparable to the on-state resistance of the Ta 2 O 5 RS layer. The series resistor TiO x efficiently suppressed the adverse effects of the voltage (or current) overshooting at the moment of switching by the appropriate voltage partake effect, which increased the controllability of the CF formation and rupture. The switching cycle endurance was increased by two orders of magnitude even during the severe current-voltage sweep tests compared with the samples without the thin TiO x layer. The Ti deposition did not induce any significant overhead to the fabrication process, making the process highly promising for the mass production of a reliable ReRAM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Chong Wee; Shin, Chan Soo; Gall, Daniel
A method for forming an epitaxial cobalt silicide layer on a MOS device includes sputter depositing cobalt in an ambient to form a first layer of cobalt suicide on a gate and source/drain regions of the MOS device. Subsequently, cobalt is sputter deposited again in an ambient of argon to increase the thickness of the cobalt silicide layer to a second thickness.
Mainz, Roland; Walker, Bryce C; Schmidt, Sebastian S; Zander, Ole; Weber, Alfons; Rodriguez-Alvarez, Humberto; Just, Justus; Klaus, Manuela; Agrawal, Rakesh; Unold, Thomas
2013-11-07
The selenization of Cu-Zn-Sn-S nanocrystals is a promising route for the fabrication of low-cost thin film solar cells. However, the reaction pathway of this process is not completely understood. Here, the evolution of phase formation, grain size, and elemental distributions is investigated during the selenization of Cu-Zn-Sn-S nanoparticle precursor thin films by synchrotron-based in situ energy-dispersive X-ray diffraction and fluorescence analysis as well as by ex situ electron microscopy. The precursor films are heated in a closed volume inside a vacuum chamber in the presence of selenium vapor while diffraction and fluorescence signals are recorded. The presented results reveal that during the selenization the cations diffuse to the surface to form large grains on top of the nanoparticle layer and the selenization of the film takes place through two simultaneous reactions: (1) a direct and fast formation of large grained selenides, starting with copper selenide which is subsequently transformed into Cu2ZnSnSe4; and (2) a slower selenization of the remaining nanoparticles. As a consequence of the initial formation of copper selenides at the surface, the subsequent formation of CZTSe starts under Cu-rich conditions despite an overall Cu-poor composition of the film. The implications of this process path for the film quality are discussed. Additionally, the proposed growth model provides an explanation for the previously observed accumulation of carbon from the nanoparticle precursor beneath the large grained layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianming; Yan, Pengfei; Mei, Donghai
2016-02-08
Lithium (Li) metal has been extensively investigated as an anode for rechargeable battery applications due to its ultrahigh specific capacity and the lowest redox potential. However, significant challenges including dendrite growth and low Coulombic efficiency are still hindering the practical applications of rechargeable Li metal batteries. Here, we demonstrate that long-term cycling of Li metal batteries can be realized by the formation of a transient high concentration electrolyte layer near the surface of Li metal anode during high rate discharge process. The highly concentrated Li+ ions in this transient layer will immediately solvate with the available solvent molecules and facilitatemore » the formation of a stable and flexible SEI layer composed of a poly(ethylene carbonate) framework integrated with other organic/inorganic lithium salts. This SEI layer largely suppresses the corrosion of Li metal anode by free organic solvents and enables the long-term operation of Li metal batteries. The fundamental findings in this work provide a new direction for the development and operation of Li metal batteries that could be operated at high current densities for a wide range of applications.« less
Han, Yong; Lii-Rosales, A.; Zhou, Y.; ...
2017-10-13
Theory and stochastic lattice-gas modeling is developed for the formation of intercalated metal islands in the gallery between the top layer and the underlying layer at the surface of layered materials. Our model for this process involves deposition of atoms, some fraction of which then enter the gallery through well-separated pointlike defects in the top layer. Subsequently, these atoms diffuse within the subsurface gallery leading to nucleation and growth of intercalated islands nearby the defect point source. For the case of a single point defect, continuum diffusion equation analysis provides insight into the nucleation kinetics. However, complementary tailored lattice-gas modelingmore » produces a more comprehensive and quantitative characterization. We analyze the large spread in nucleation times and positions relative to the defect for the first nucleated island. We also consider the formation of subsequent islands and the evolution of island growth shapes. The shapes reflect in part our natural adoption of a hexagonal close-packed island structure. As a result, motivation and support for the model is provided by scanning tunneling microscopy observations of the formation of intercalated metal islands in highly-ordered pyrolytic graphite at higher temperatures.« less
Moya, A A
2015-02-21
This work aims to extend the study of the formation of the electric double layer at the interface defined by a solution and an ion-exchange membrane on the basis of the Nernst-Planck and Poisson equations, including different values of the counter-ion diffusion coefficient and the dielectric constant in the solution and membrane phases. The network simulation method is used to obtain the time evolution of the electric potential, the displacement electric vector, the electric charge density and the ionic concentrations at the interface between a binary electrolyte solution and a cation-exchange membrane with total co-ion exclusion. The numerical results for the temporal evolution of the interfacial electric potential and the surface electric charge are compared with analytical solutions derived in the limit of the shortest times by considering the Poisson equation for a simple cationic diffusion process. The steady-state results are justified from the Gouy-Chapman theory for the diffuse double layer in the limits of similar and high bathing ionic concentrations with respect to the fixed-charge concentration inside the membrane. Interesting new physical insights arise from the interpretation of the process of the formation of the electric double layer at the ion exchange membrane-solution interface on the basis of a membrane model with total co-ion exclusion.
NASA Astrophysics Data System (ADS)
Mizuno, Tomohisa; Omata, Yuhsuke; Kanazawa, Rikito; Iguchi, Yusuke; Nakada, Shinji; Aoki, Takashi; Sasaki, Tomokazu
2018-04-01
We experimentally studied the optimization of the hot-C+-ion implantation process for forming nano-SiC (silicon carbide) regions in a (100) Si-on-insulator substrate at various hot-C+-ion implantation temperatures and C+ ion doses to improve photoluminescence (PL) intensity for future Si-based photonic devices. We successfully optimized the process by hot-C+-ion implantation at a temperature of about 700 °C and a C+ ion dose of approximately 4 × 1016 cm-2 to realize a high intensity of PL emitted from an approximately 1.5-nm-thick C atom segregation layer near the surface-oxide/Si interface. Moreover, atom probe tomography showed that implanted C atoms cluster in the Si layer and near the oxide/Si interface; thus, the C content locally condenses even in the C atom segregation layer, which leads to SiC formation. Corrector-spherical aberration transmission electron microscopy also showed that both 4H-SiC and 3C-SiC nanoareas near both the surface-oxide/Si and buried-oxide/Si interfaces partially grow into the oxide layer, and the observed PL photons are mainly emitted from the surface SiC nano areas.
In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.
Parasitic reactions of electrolyte and polysulfide with the Li-anode in lithium sulfur (Li-S) batteries lead to the formation of solid-electrolyte interphase (SEI) layers, which are the major reason behind severe capacity fading in these systems. Despite numerous studies, the evolution mechanism of the SEI layer and specific roles of polysulfides and other electrolyte components are still unclear. Here, we report an in-situ X-ray photoelectron spectroscopy (XPS) and chemical imaging analysis combined with ab initio molecular dynamics (AIMD) computational modeling to gain fundamental understanding regarding the evolution of SEI layers on Li-anodes within Li-S batteries. A multi-modal approach involving AIMD modelingmore » and in-situ XPS characterization uniquely reveals the chemical identity and distribution of active participants in parasitic reactions as well as the SEI layer evolution mechanism. The SEI layer evolution has three major stages: the formation of a primary composite mixture phase involving stable lithium compounds (Li 2S, LiF, Li 2O etc); and formation of a secondary matrix type phase due to cross interaction between reaction products and electrolyte components, which is followed by a highly dynamic mono-anionic polysulfide (i.e. LiS 5) fouling process. In conclusion, these new molecular-level insights into the SEI layer evolution on Li- anodes are crucial for delineating effective strategies for the development of Li–S batteries.« less
In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.
Parasitic reactions of electrolyte and polysulfide with the Li-anode in lithium sulfur (Li-S) batteries lead to the for-mation of solid electrolyte interphase (SEI) layers, which are the major reason behind severe capacity fading in these systems. Despite numerous studies, the evolution mechanism of the SEI layer and specific roles of polysulfides and oth-er electrolyte components are still unclear. We report an in-situ X-ray photoelectron spectroscopy (XPS) and chemical imaging analysis combined with ab initio molecular dynamics (AIMD) computational modeling to gain fundamental understanding regarding the evolution of SEI layers on Li-anodes within Li-S batteries. A multi-modal approach in-volving AIMD modelingmore » and in-situ XPS characterization uniquely reveals the chemical identity and distribution of active participants in parasitic reactions as well as the SEI layer evolution mechanism. The SEI layer evolution has three major stages: the formation of a primary composite mixture phase involving stable lithium compounds (Li2S, LiF, Li2O etc); and formation of a secondary matrix type phase due to cross interaction between reaction products and elec-trolyte components, which is followed by a highly dynamic mono-anionic polysulfide (i.e. LiS5) fouling process. These new molecular-level insights into the SEI layer evolution on Li- anodes are crucial for delineating effective strategies for the development of Li–S batteries.« less
In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries
Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.; ...
2017-05-03
Parasitic reactions of electrolyte and polysulfide with the Li-anode in lithium sulfur (Li-S) batteries lead to the formation of solid-electrolyte interphase (SEI) layers, which are the major reason behind severe capacity fading in these systems. Despite numerous studies, the evolution mechanism of the SEI layer and specific roles of polysulfides and other electrolyte components are still unclear. Here, we report an in-situ X-ray photoelectron spectroscopy (XPS) and chemical imaging analysis combined with ab initio molecular dynamics (AIMD) computational modeling to gain fundamental understanding regarding the evolution of SEI layers on Li-anodes within Li-S batteries. A multi-modal approach involving AIMD modelingmore » and in-situ XPS characterization uniquely reveals the chemical identity and distribution of active participants in parasitic reactions as well as the SEI layer evolution mechanism. The SEI layer evolution has three major stages: the formation of a primary composite mixture phase involving stable lithium compounds (Li 2S, LiF, Li 2O etc); and formation of a secondary matrix type phase due to cross interaction between reaction products and electrolyte components, which is followed by a highly dynamic mono-anionic polysulfide (i.e. LiS 5) fouling process. In conclusion, these new molecular-level insights into the SEI layer evolution on Li- anodes are crucial for delineating effective strategies for the development of Li–S batteries.« less
NASA Astrophysics Data System (ADS)
Y, Yusnenti F. M.; M, Othman; Mustapha, Mazli; I, MohdYusri
2016-02-01
A new Silicanizing process on formation of coating on mild steel using Tronoh Silica Sand (TSS) is presented. The process was performed in the temperature range 1000- 1100°C and with varying deposition time of 1-4 hours. Influence of the layer and the substrate constituents on the coating compatibility of the whole silicanized layer is described in detail. Morphology and structure of the silicanized layer were investigated by XRF, XRD and SEM. It is observed that diffusion coatings containing high concentrations of silica which profile distribution of SiO2 in the silicanized layer was encountered and the depth from the surface to the substrate was taken as the layer thickness. The results also depicted that a longer deposition time have tendency to produce a looser and larger grain a hence rougher layer. The silicanized layer composed of FeSi and Fe2SiO4 phases with preferred orientation within the experimental range. It is also found that longer deposition time and higher temperature resulted in an increase in SiO2 concentration on the substrate (mild steel).
In situ heat treatment from multiple layers of a tar sands formation
Vinegar, Harold J.
2010-11-30
A method for treating a tar sands formation is disclosed. The method includes providing a drive fluid to a first hydrocarbon containing layer of the formation to mobilize at least some hydrocarbons in the first layer. At least some of the mobilized hydrocarbons are allowed to flow into a second hydrocarbon containing layer of the formation. Heat is provided to the second layer from one or more heaters located in the second layer. At least some hydrocarbons are produced from the second layer of the formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yong; Lii-Rosales, A.; Zhou, Y.
Theory and stochastic lattice-gas modeling is developed for the formation of intercalated metal islands in the gallery between the top layer and the underlying layer at the surface of layered materials. Our model for this process involves deposition of atoms, some fraction of which then enter the gallery through well-separated pointlike defects in the top layer. Subsequently, these atoms diffuse within the subsurface gallery leading to nucleation and growth of intercalated islands nearby the defect point source. For the case of a single point defect, continuum diffusion equation analysis provides insight into the nucleation kinetics. However, complementary tailored lattice-gas modelingmore » produces a more comprehensive and quantitative characterization. We analyze the large spread in nucleation times and positions relative to the defect for the first nucleated island. We also consider the formation of subsequent islands and the evolution of island growth shapes. The shapes reflect in part our natural adoption of a hexagonal close-packed island structure. As a result, motivation and support for the model is provided by scanning tunneling microscopy observations of the formation of intercalated metal islands in highly-ordered pyrolytic graphite at higher temperatures.« less
Ceramic fabrication process before firing-surface treatment of ceramic powder
NASA Technical Reports Server (NTRS)
Tsunoda, T.
1984-01-01
The surface treatment of powders is discussed. Stability of ceramic powders and surfaces and the improvement of moldability are addressed. Characteristics of surface treatment technology are given, including formation of inorganic surface-treated layers, liquid phase reactions, gas treatment, surface treatment by coupling agents, and the formation of results of surface treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chubenko, E. B., E-mail: eugene.chubenko@gmail.com; Redko, S. V.; Sherstnyov, A. I.
2016-03-15
The influence of the surface layer on the process of the electrochemical deposition of metals and semiconductors into porous silicon is studied. It is shown that the surface layer differs in structure and electrical characteristics from the host porous silicon bulk. It is established that a decrease in the conductivity of silicon crystallites that form the surface layer of porous silicon has a positive effect on the process of the filling of porous silicon with metals and semiconductors. This is demonstrated by the example of nickel and zinc oxide. The effect can be used for the formation of nanocomposite materialsmore » on the basis of porous silicon and nanostructures with a high aspect ratio.« less
Methods for improved growth of group III nitride buffer layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro
Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphologymore » of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).« less
Surface-interface exploration of Mg deposited on Si(100) and oxidation effect on interfacial layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarpi, B.; Daineche, R.; Girardeaux, C.
Using scanning tunneling microscopy and spectroscopy, Auger electron spectroscopy, and low energy electron diffraction, we have studied the growth of Mg deposited on Si(100)-(2 × 1). Coverage from 0.05 monolayer (ML) to 3 ML was investigated at room temperature. The growth mode of the magnesium is a two steps process. At very low coverage, there is formation of an amorphous ultrathin silicide layer with a band gap of 0.74 eV, followed by a layer-by-layer growth of Mg on top of this silicide layer. Topographic images reveal that each metallic Mg layer is formed by 2D islands coalescence process on top of the silicidemore » interfacial layer. During oxidation of the Mg monolayer, the interfacial silicide layer acts as diffusion barrier for the oxygen atoms with a decomposition of the silicide film to a magnesium oxide as function of O{sub 2} exposure.« less
Preparation of freestanding GaN wafer by hydride vapor phase epitaxy on porous silicon
NASA Astrophysics Data System (ADS)
Wu, Xian; Li, Peng; Liang, Renrong; Xiao, Lei; Xu, Jun; Wang, Jing
2018-05-01
A freestanding GaN wafer was prepared on porous Si (111) substrate using hydride vapor phase epitaxy (HVPE). To avoid undesirable effects of the porous surface on the crystallinity of the GaN, a GaN seed layer was first grown on the Si (111) bare wafer. A pattern with many apertures was fabricated in the GaN seed layer using lithography and etching processes. A porous layer was formed in the Si substrate immediately adjacent to the GaN seed layer by an anodic etching process. A 500-μm-thick GaN film was then grown on the patterned GaN seed layer using HVPE. The GaN film was separated from the Si substrate through the formation of cracks in the porous layer caused by thermal mismatch stress during the cooling stage of the HVPE. Finally, the GaN film was polished to obtain a freestanding GaN wafer.
NASA Astrophysics Data System (ADS)
Badalyan, A. M.; Bakhturova, L. F.; Kaichev, V. V.; Polyakov, O. V.; Pchelyakov, O. P.; Smirnov, G. I.
2011-09-01
A new technique for depositing thin nanostructured layers on semiconductor and insulating substrates that is based on heterogeneous gas-phase synthesis from low-dimensional volatile metal complexes is suggested and tried out. Thin nanostructured copper layers are deposited on silicon and quartz substrates from low-dimensional formate complexes using a combined synthesis-mass transport process. It is found that copper in layers thus deposited is largely in a metal state (Cu0) and has the form of closely packed nanograins with a characteristic structure.
Process for the formation of wear- and scuff-resistant carbon coatings
Malaczynski, Gerard W.; Qiu, Xiaohong; Mantese, Joseph V.; Elmoursi, Alaa A.; Hamdi, Aboud H.; Wood, Blake P.; Walter, Kevin C.; Nastasi, Michael A.
1995-01-01
A process for forming an adherent diamond-like carbon coating on a workpiece of suitable material such as an aluminum alloy is disclosed. The workpiece is successively immersed in different plasma atmospheres and subjected to short duration, high voltage, negative electrical potential pulses or constant negative electrical potentials or the like so as to clean the surface of oxygen atoms, implant carbon atoms into the surface of the alloy to form carbide compounds while codepositing a carbonaceous layer on the surface, bombard and remove the carbonaceous layer, and to thereafter deposit a generally amorphous hydrogen-containing carbon layer on the surface of the article.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gries, K. I.; Vogel, S.; Straubinger, R.
The self-assembled formation of ordered, vertically stacked rocksalt/wurtzite Mg{sub x}Zn{sub 1−x}O heterostructures by planar phase separation is shown. These heterostructures form quasi “natural” two-dimensional hetero-interfaces between the different phases upon annealing of MgO-oversaturated wurtzite Mg{sub x}Zn{sub 1−x}O layers grown by plasma-assisted molecular beam epitaxy on c-plane sapphire substrates. The optical absorption spectra show a red shift simultaneous with the appearance of a cubic phase upon annealing at temperatures between 900 °C and 1000 °C. Transmission electron microscopy reveals that these effects are caused by phase separation leading to the formation of a vertically ordered rock salt/wurtzite heterostructures. To explain these observations, wemore » suggest a phase separation epitaxy model that considers this process being initiated by the formation of a cubic (Mg,Zn)Al{sub 2}O{sub 4} spinel layer at the interface to the sapphire substrate, acting as a planar seed for the epitaxial precipitation of rock salt Mg{sub x}Zn{sub 1−x}O. The equilibrium fraction x of magnesium in the resulting wurtzite (rock salt) layers is approximately 0.15 (0.85), independent of the MgO content of the as-grown layer and determined by the annealing temperature. This model is confirmed by photoluminescence analysis of the resulting layer systems after different annealing temperatures. In addition, we show that the thermal annealing process results in a significant reduction in the density of edge- and screw-type dislocations, providing the possibility to fabricate high quality templates for quasi-homoepitaxial growth.« less
Effects of Environment Forcing on Marine Boundary Layer Cloud-Drizzle Processes
NASA Astrophysics Data System (ADS)
Dong, X.
2017-12-01
Determining the factors affecting drizzle formation in marine boundary layer (MBL) clouds remains a challenge for both observation and modeling communities. To investigate the roles of vertical wind shear and buoyancy (static instability) in drizzle formation, ground-based observations from the Atmospheric Radiation Measurement (ARM) Program at the Azores are analyzed for two types of conditions. The type I clouds should last for at least five hours and more than 90% time must be non-drizzling, and then followed by at least two hours of drizzling periods while the type II clouds are characterized by mesoscale convection cellular (MCC) structures with drizzle occur every two to four hours. By analyzing the boundary layer wind profiles (direction and speed), it was found that either directional or speed shear is required to promote drizzle production in the type I clouds. Observations and a recent model study both suggest that vertical wind shear helps the production of turbulent kinetic energy (TKE), stimulates turbulence within cloud layer, and enhances drizzle formation near the cloud top. The type II clouds do not require strong wind shear to produce drizzle. The small values of lower-tropospheric stability (LTS) and negative Richardson number (Ri) in the type II cases suggest that boundary layer instability plays an important role in TKE production and cloud-drizzle processes. By analyzing the relationships between LTS and wind shear for all cases and all time periods, a stronger connection was found between LTS and wind directional shear than that between LTS and wind speed shear.
A Study of the Physical Processes of an Advection Fog Boundary Layer
NASA Astrophysics Data System (ADS)
Liu, Duan Yang; Yan, Wen Lian; Yang, Jun; Pu, Mei Juan; Niu, Sheng Jie; Li, Zi Hua
2016-01-01
A large quantity of advection fog appeared in the Yangtze River delta region between 1 and 2 December 2009. Here, we detail the fog formation and dissipation processes and the background weather conditions. The fog boundary layer and its formation and dissipation mechanisms have also been analyzed using field data recorded in a northern suburb of Nanjing. The results showed the following: (1) This advection fog was generated by interaction between advection of a north-east cold ground layer and a south-east warm upper layer. The double-inversion structure generated by this interaction between the cold and warm advections and steady south-east vapour transport was the main cause of this long-lasting fog. The double-inversion structure provided good thermal conditions for the thick fog, and the south-east vapour transport was not only conducive to maintaining the thickness of the fog but also sustained its long duration. (2) The fog-top altitude was over 600 m for most of the time, and the fog reduced visibility to less than 100 m for approximately 12 h. (3) The low-level jet near the lower inversion layer also played a role in maintaining the thick fog system by promoting heat, momentum and south-east vapour transport.
NASA Astrophysics Data System (ADS)
Menelaou, K.; Yau, M. K.; Martinez, Y.
2014-09-01
Some aspects of the problem of secondary eyewall formation (SEF) are investigated with the aid of an idealized model. A series of experiments are conducted, starting with a strong annular vortex embedded in a quiescent background flow and forced by the sustained heating associated with a spiral rainband (control experiment). Following this, two experiments are configured to assess the impact of vertical wind shear (VWS) in the SEF process. The importance of the boundary layer force imbalance is finally investigated in a number of simulations in which surface and boundary layer physics are included. From the control experiment, it is found that in the absence of background environmental flow, the sustained latent heating associated with a spiral rainband can form a secondary eyewall even in the absence of a frictional boundary layer. The presence of VWS acts negatively in the SEF process by disrupting the organization of the potential vorticity induced by the rainband. When boundary layer physics is included, some similarities with previous studies are seen, but there is no SEF. These results suggest that the boundary layer most likely contributes to, rather than initiate, a secondary eyewall. This article was corrected on 10 OCT 2014. See the end of the full text for details.
Electrochemical deposition of layered copper thin films based on the diffusion limited aggregation
Wei, Chenhuinan; Wu, Guoxing; Yang, Sanjun; Liu, Qiming
2016-01-01
In this work layered copper films with smooth surface were successfully fabricated onto ITO substrate by electrochemical deposition (ECD) and the thickness of the films was nearly 60 nm. The resulting films were characterized by SEM, TEM, AFM, XPS, and XRD. We have investigated the effects of potential and the concentration of additives and found that 2D dendritic-like growth process leaded the formation of films. A suitable growth mechanism based on diffusion limited aggregation (DLA) mechanism for the copper films formation is presented, which are meaningful for further designing homogeneous and functional films. PMID:27734900
New twinning route in face-centered cubic nanocrystalline metals.
Wang, Lihua; Guan, Pengfei; Teng, Jiao; Liu, Pan; Chen, Dengke; Xie, Weiyu; Kong, Deli; Zhang, Shengbai; Zhu, Ting; Zhang, Ze; Ma, Evan; Chen, Mingwei; Han, Xiaodong
2017-12-15
Twin nucleation in a face-centered cubic crystal is believed to be accomplished through the formation of twinning partial dislocations on consecutive atomic planes. Twinning should thus be highly unfavorable in face-centered cubic metals with high twin-fault energy barriers, such as Al, Ni, and Pt, but instead is often observed. Here, we report an in situ atomic-scale observation of twin nucleation in nanocrystalline Pt. Unlike the classical twinning route, deformation twinning initiated through the formation of two stacking faults separated by a single atomic layer, and proceeded with the emission of a partial dislocation in between these two stacking faults. Through this route, a three-layer twin was nucleated without a mandatory layer-by-layer twinning process. This route is facilitated by grain boundaries, abundant in nanocrystalline metals, that promote the nucleation of separated but closely spaced partial dislocations, thus enabling an effective bypassing of the high twin-fault energy barrier.
Evolution of Akaganeite in Rust Layers Formed on Steel Submitted to Wet/Dry Cyclic Tests
Ye, Wei; Song, Xiaoping; Ma, Yuantai; Li, Ying
2017-01-01
The evolution of akaganeite in rust layers strongly impacts the atmospheric corrosion behavior of steel during long-term exposure; however, the factors affecting the evolution of akaganeite and its mechanism of formation are vague. In this work, wet-dry cyclic corrosion tests were conducted to simulate long-term exposure. Quantitative X-ray diffraction analysis was employed to analyze variations in the relative amounts of akaganeite; scanning electron microscopy and electron probe microanalysis were used to study the migration of relevant elements in the rust layer, which could help elucidate the mechanism of akaganeite evolution. The results indicate that the fraction of akaganeite tends to decrease as the corrosion process proceeded, which is a result of the decrease in the amount of soluble chloride available and the ability of the thick rust layer to block the migration of relevant ions. This work also explores the location of akaganeite formation within the rust layer. PMID:29099061
Organic light emitting device having multiple separate emissive layers
Forrest, Stephen R [Ann Arbor, MI
2012-03-27
An organic light emitting device having multiple separate emissive layers is provided. Each emissive layer may define an exciton formation region, allowing exciton formation to occur across the entire emissive region. By aligning the energy levels of each emissive layer with the adjacent emissive layers, exciton formation in each layer may be improved. Devices incorporating multiple emissive layers with multiple exciton formation regions may exhibit improved performance, including internal quantum efficiencies of up to 100%.
NASA Astrophysics Data System (ADS)
Jeong, Min-Woo; Na, Sekwon; Shin, Haishan; Park, Hong-Bum; Lee, Hoo-Jeong; Joo, Young-Chang
2018-07-01
Performance enhancement has been studied for thin-film thermoelectric materials for small-scale energy applications. The microstructural evolution of bismuth telluride (Bi2Te3) was investigated with respect to performance enhancement via in situ thermomechanical analysis due to the post-annealing process. The thermomechanical behavior of Bi2Te3 changes gradually at approximately 200 °C with the formation of a quintuple-layer structure, which was confirmed by X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It was found that highly oriented (006), (0015) was formed with a quintuple-layer structure parallel to the substrate, and the E g 2 Raman vibration mode of Bi2Te3 significantly increased after forming the layer structure with decreased defects. Therefore, the slope of the stress curve was affected by the longer atomic distance of the van der Waals bonds with the formation of (00 l) oriented layered-structure grain. The decreased number of defects in the layer structure affects the electrical and thermal properties of the Bi2Te3 thin film. Due to the microstructural evolution, the power factor of Bi2Te3 was enhanced by approximately 14.8 times by the quintuple-layer structure of Bi2Te3 formed during the annealing process, which contributed to a better understanding of the performance enhancement via post-annealing and to research on other highly oriented layer structure materials.
NASA Astrophysics Data System (ADS)
Jeong, Min-Woo; Na, Sekwon; Shin, Haishan; Park, Hong-Bum; Lee, Hoo-Jeong; Joo, Young-Chang
2018-04-01
Performance enhancement has been studied for thin-film thermoelectric materials for small-scale energy applications. The microstructural evolution of bismuth telluride (Bi2Te3) was investigated with respect to performance enhancement via in situ thermomechanical analysis due to the post-annealing process. The thermomechanical behavior of Bi2Te3 changes gradually at approximately 200 °C with the formation of a quintuple-layer structure, which was confirmed by X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It was found that highly oriented (006), (0015) was formed with a quintuple-layer structure parallel to the substrate, and the Eg 2Raman vibration mode of Bi2Te3 significantly increased after forming the layer structure with decreased defects. Therefore, the slope of the stress curve was affected by the longer atomic distance of the van der Waals bonds with the formation of (00l) oriented layered-structure grain. The decreased number of defects in the layer structure affects the electrical and thermal properties of the Bi2Te3 thin film. Due to the microstructural evolution, the power factor of Bi2Te3 was enhanced by approximately 14.8 times by the quintuple-layer structure of Bi2Te3 formed during the annealing process, which contributed to a better understanding of the performance enhancement via post-annealing and to research on other highly oriented layer structure materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egorov, V I; Sidorov, A I; Nashchekin, A V
It is shown that pulsed irradiation (a wavelength of 10.6 μm and an energy density of 0.6 – 8.5 J cm{sup -2}) of glass with a waveguide layer containing silver ion leads to the formation of a ring, surrounding the irradiated zone and consisting of silver nanoparticles deposited on the glass surface. The possible process of formation of silver nanoparticles under laser irradiation is discussed. (optics and technology of nanostructures)
Vacuum casting of thick polymeric films
NASA Technical Reports Server (NTRS)
Cuddihy, E. F.; Moacanin, J.
1979-01-01
Bubble formation and layering, which often plague vacuum-evaporated films, are prevented by properly regulating process parameters. Vacuum casting may be applicable to forming thick films of other polymer/solvent solutions.
Rapid magnetosome formation shown by real-time x-ray magnetic circular dichroism.
Staniland, Sarah; Ward, Bruce; Harrison, Andrew; van der Laan, Gerrit; Telling, Neil
2007-12-04
Magnetosomes are magnetite nanoparticles formed by biomineralization within magnetotactic bacteria. Although there have been numerous genetic and proteomic studies of the magnetosome-formation process, there have been only limited and inconclusive studies of mineral-phase evolution during the formation process, and no real-time studies of such processes have yet been performed. Thus, suggested formation mechanisms still need substantiating with data. Here we report the examination of the magnetosome material throughout the formation process in a real-time in vivo study of Magnetospirillum gryphiswaldense, strain MSR-1. Transmission EM and x-ray absorption spectroscopy studies reveal that full-sized magnetosomes are seen 15 min after formation is initiated. These immature magnetosomes contain a surface layer of the nonmagnetic iron oxide-phase hematite. Mature magnetite is found after another 15 min, concurrent with a dramatic increase in magnetization. This rapid formation result is contrary to previously reported studies and discounts the previously proposed slow, multistep formation mechanisms. Thus, we conclude that the biomineralization of magnetite occurs rapidly in magnetotactic bacteria on a similar time scale to high-temperature chemical precipitation reactions, and we suggest that this finding is caused by a biological catalysis of the process.
Evidence of circular Rydberg states in beam-foil experiments: Role of the surface wake field
NASA Astrophysics Data System (ADS)
Sharma, Gaurav; Puri, Nitin K.; Kumar, Pravin; Nandi, T.
2017-12-01
We have employed the concept of the surface wake field to model the formation of the circular Rydberg states in the beam-foil experiments. The experimental studies of atomic excitation processes show the formation of circular Rydberg states either in the bulk of the foil or at the exit surface, and the mechanism is explained by several controversial theories. The present model is based on the interesting fact that the charge state fraction as well as the surface wake field depend on the foil thickness and it resolves a long-standing discrepancy on the mechanism of the formation of circular Rydberg states. The influence of exit layers is twofold. Initially, the high angular momentum Rydberg states are produced in the last layers of the foil by the Stark switching due to the bulk wake field and finally, they are transferred to the circular Rydberg states as a single multiphoton process due to the influence of the surface wake field.
Räupke, André; Albrecht, Fabian; Maibach, Julia; Behrendt, Andreas; Polywka, Andreas; Heiderhoff, Ralf; Helzel, Jonatan; Rabe, Torsten; Johannes, Hans-Hermann; Kowalsky, Wolfgang; Mankel, Eric; Mayer, Thomas; Görrn, Patrick; Riedl, Thomas
2014-01-22
The gas-phase molecular layer deposition (MLD) of conformal and highly luminescent monolayers of tris(8-hydroxyquinolinato)aluminum (Alq3) is reported. The controlled formation of Alq3 monolayers is achieved for the first time by functionalization of the substrate with amino groups, which serve as initial docking sites for trimethyl aluminum (TMA) molecules binding datively to the amine. Thereby, upon exposure to 8-hydroxyquinoline (8-HQ), the self-limiting formation of highly luminescent Alq3 monolayers is afforded. The growth process and monolayer formation were studied and verified by in situ quartz crystal monitoring, optical emission and absorption spectroscopy, and X-ray photoelectron spectroscopy. The nature of the MLD process provides an avenue to coat arbitrarily shaped 3D surfaces and porous structures with high surface areas, as demonstrated in this work for silica aerogels. The concept presented here paves the way to highly sensitive luminescent sensors and dye-sensitized metal oxides for future applications (e.g., in photocatalysis and solar cells).
Fast formation cycling for lithium ion batteries
An, Seong Jin; Li, Jianlin; Du, Zhijia; ...
2017-01-09
The formation process for lithium ion batteries typically takes several days or more, and it is necessary for providing a stable solid electrolyte interphase on the anode (at low potentials vs. Li/Li +) for preventing irreversible consumption of electrolyte and lithium ions. An analogous layer known as the cathode electrolyte interphase layer forms at the cathode at high potentials vs. Li/Li +. However, several days, or even up to a week, of these processes result in either lower LIB production rates or a prohibitively large size of charging-discharging equipment and space (i.e. excessive capital cost). In this study, a fastmore » and effective electrolyte interphase formation protocol is proposed and compared with an Oak Ridge National Laboratory baseline protocol. Graphite, NMC 532, and 1.2 M LiPF 6 in ethylene carbonate: diethyl carbonate were used as anodes, cathodes, and electrolytes, respectively. Finally, results from electrochemical impedance spectroscopy show the new protocol reduced surface film (electrolyte interphase) resistances, and 1300 aging cycles show an improvement in capacity retention.« less
NASA Astrophysics Data System (ADS)
Bykovskii, N. E.; Senatskii, Yu. V.
2018-02-01
The dynamics of Newton interference rings appearing in the ablation area on the surface of various condensed media under irradiation with femtosecond laser pulses is analyzed (according to published data on fs ablation). The data on the refractive index evolution in the expanding material cloud from the metal, semiconductor, and dielectric surface, obtained by interference pattern processing. The mechanism of the concentration of the energy absorbed by a medium from the laser beam in the thin layer under the irradiated sample surface is considered. The appearance of the inner layer with increased energy release explains why the ablation process from the metal, semiconductor, and dielectric surface, despite the differences in their compositions and radiation absorption mechanisms, occurs similarly, i.e., with the formation of a thin shell at the outer ablation cloud boundary, which consists of a condensed medium reflecting radiation and, together with the target surface, forms a structure necessary for interference formation.
Cloud and boundary layer interactions over the Arctic sea-ice in late summer
NASA Astrophysics Data System (ADS)
Shupe, M. D.; Persson, P. O. G.; Brooks, I. M.; Tjernström, M.; Sedlar, J.; Mauritsen, T.; Sjogren, S.; Leck, C.
2013-05-01
Observations from the Arctic Summer Cloud Ocean Study (ASCOS), in the central Arctic sea-ice pack in late summer 2008, provide a detailed view of cloud-atmosphere-surface interactions and vertical mixing processes over the sea-ice environment. Measurements from a suite of ground-based remote sensors, near surface meteorological and aerosol instruments, and profiles from radiosondes and a helicopter are combined to characterize a week-long period dominated by low-level, mixed-phase, stratocumulus clouds. Detailed case studies and statistical analyses are used to develop a conceptual model for the cloud and atmosphere structure and their interactions in this environment. Clouds were persistent during the period of study, having qualities that suggest they were sustained through a combination of advective influences and in-cloud processes, with little contribution from the surface. Radiative cooling near cloud top produced buoyancy-driven, turbulent eddies that contributed to cloud formation and created a cloud-driven mixed layer. The depth of this mixed layer was related to the amount of turbulence and condensed cloud water. Coupling of this cloud-driven mixed layer to the surface boundary layer was primarily determined by proximity. For 75% of the period of study, the primary stratocumulus cloud-driven mixed layer was decoupled from the surface and typically at a warmer potential temperature. Since the near-surface temperature was constrained by the ocean-ice mixture, warm temperatures aloft suggest that these air masses had not significantly interacted with the sea-ice surface. Instead, back trajectory analyses suggest that these warm airmasses advected into the central Arctic Basin from lower latitudes. Moisture and aerosol particles likely accompanied these airmasses, providing necessary support for cloud formation. On the occasions when cloud-surface coupling did occur, back trajectories indicated that these air masses advected at low levels, while mixing processes kept the mixed layer in equilibrium with the near-surface environment. Rather than contributing buoyancy forcing for the mixed-layer dynamics, the surface instead simply appeared to respond to the mixed-layer processes aloft. Clouds in these cases often contained slightly higher condensed water amounts, potentially due to additional moisture sources from below.
Cloud and boundary layer interactions over the Arctic sea ice in late summer
NASA Astrophysics Data System (ADS)
Shupe, M. D.; Persson, P. O. G.; Brooks, I. M.; Tjernström, M.; Sedlar, J.; Mauritsen, T.; Sjogren, S.; Leck, C.
2013-09-01
Observations from the Arctic Summer Cloud Ocean Study (ASCOS), in the central Arctic sea-ice pack in late summer 2008, provide a detailed view of cloud-atmosphere-surface interactions and vertical mixing processes over the sea-ice environment. Measurements from a suite of ground-based remote sensors, near-surface meteorological and aerosol instruments, and profiles from radiosondes and a helicopter are combined to characterize a week-long period dominated by low-level, mixed-phase, stratocumulus clouds. Detailed case studies and statistical analyses are used to develop a conceptual model for the cloud and atmosphere structure and their interactions in this environment. Clouds were persistent during the period of study, having qualities that suggest they were sustained through a combination of advective influences and in-cloud processes, with little contribution from the surface. Radiative cooling near cloud top produced buoyancy-driven, turbulent eddies that contributed to cloud formation and created a cloud-driven mixed layer. The depth of this mixed layer was related to the amount of turbulence and condensed cloud water. Coupling of this cloud-driven mixed layer to the surface boundary layer was primarily determined by proximity. For 75% of the period of study, the primary stratocumulus cloud-driven mixed layer was decoupled from the surface and typically at a warmer potential temperature. Since the near-surface temperature was constrained by the ocean-ice mixture, warm temperatures aloft suggest that these air masses had not significantly interacted with the sea-ice surface. Instead, back-trajectory analyses suggest that these warm air masses advected into the central Arctic Basin from lower latitudes. Moisture and aerosol particles likely accompanied these air masses, providing necessary support for cloud formation. On the occasions when cloud-surface coupling did occur, back trajectories indicated that these air masses advected at low levels, while mixing processes kept the mixed layer in equilibrium with the near-surface environment. Rather than contributing buoyancy forcing for the mixed-layer dynamics, the surface instead simply appeared to respond to the mixed-layer processes aloft. Clouds in these cases often contained slightly higher condensed water amounts, potentially due to additional moisture sources from below.
Vertical profiling of aerosol particles and trace gases over the central Arctic Ocean during summer
NASA Astrophysics Data System (ADS)
Kupiszewski, P.; Leck, C.; Tjernström, M.; Sjogren, S.; Sedlar, J.; Graus, M.; Müller, M.; Brooks, B.; Swietlicki, E.; Norris, S.; Hansel, A.
2013-04-01
Unique measurements of vertical size resolved aerosol particle concentrations, trace gas concentrations and meteorological data were obtained during the Arctic Summer Cloud Ocean Study (ASCOS, http://www.ascos.se), an International Polar Year project aimed at establishing the processes responsible for formation and evolution of low-level clouds over the high Arctic summer pack ice. The experiment was conducted from onboard the Swedish icebreaker Oden, and provided both ship- and helicopter-based measurements. This study focuses on the vertical helicopter profiles and onboard measurements obtained during a three-week period when Oden was anchored to a drifting ice floe, and sheds light on the characteristics of Arctic aerosol particles and their distribution throughout the lower atmosphere. Distinct differences in aerosol particle characteristics within defined atmospheric layers are identified. Near the surface (lowermost couple hundred meters), transport from the marginal ice zone (MIZ), if sufficiently short (less than ca. 2 days), condensational growth and cloud-processing develop the aerosol population. During two of the four representative periods defined in this study, such influence is shown. At altitudes above about 1 km, long-range transport occurs frequently. However, only infrequently does large-scale subsidence descend such air masses to become entrained into the mixed layer in the high Arctic, and therefore they are unlikely to directly influence low-level stratiform cloud formation. Nonetheless, long-range transport plumes can influence the radiative balance of the PBL by influencing formation and evolution of higher clouds, as well as through precipitation transport of particles downwards. New particle formation was occasionally observed, particularly in the near-surface layer. We hypothesize that the origin of these ultrafine particles can be from biological processes, both primary and secondary, within the open leads between the pack ice and/or along the MIZ. In general, local sources, in combination with upstream boundary layer transport of precursor gases from the MIZ, are suggested to constitute the origin of CCN particles and thus be of importance for the formation of interior Arctic low level clouds during summer, and subsequently, through cloud influences, on the melting and freezing of sea ice.
3D Printing of Shape Memory Polymers for Flexible Electronic Devices.
Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo
2016-06-01
The formation of 3D objects composed of shape memory polymers for flexible electronics is described. Layer-by-layer photopolymerization of methacrylated semicrystalline molten macromonomers by a 3D digital light processing printer enables rapid fabrication of complex objects and imparts shape memory functionality for electrical circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Establishment of the Vertebrate Germ Layers.
Tseng, Wei-Chia; Munisha, Mumingjiang; Gutierrez, Juan B; Dougan, Scott T
2017-01-01
The process of germ layer formation is a universal feature of animal development. The germ layers separate the cells that produce the internal organs and tissues from those that produce the nervous system and outer tissues. Their discovery in the early nineteenth century transformed embryology from a purely descriptive field into a rigorous scientific discipline, in which hypotheses could be tested by observation and experimentation. By systematically addressing the questions of how the germ layers are formed and how they generate overall body plan, scientists have made fundamental contributions to the fields of evolution, cell signaling, morphogenesis, and stem cell biology. At each step, this work was advanced by the development of innovative methods of observing cell behavior in vivo and in culture. Here, we take an historical approach to describe our current understanding of vertebrate germ layer formation as it relates to the long-standing questions of developmental biology. By comparing how germ layers form in distantly related vertebrate species, we find that highly conserved molecular pathways can be adapted to perform the same function in dramatically different embryonic environments.
Weld formation during material extrusion additive manufacturing.
Seppala, Jonathan E; Hoon Han, Seung; Hillgartner, Kaitlyn E; Davis, Chelsea S; Migler, Kalman B
2017-10-04
Material extrusion (ME) is a layer-by-layer additive manufacturing process that is now used in personal and commercial production where prototyping and customization are required. However, parts produced from ME frequently exhibit poor mechanical performance relative to those from traditional means; moreover, fundamental knowledge of the factors leading to development of inter-layer strength in this highly non-isothermal process is limited. In this work, we seek to understand the development of inter-layer weld strength from the perspective of polymer interdiffusion under conditions of rapidly changing mobility. Our framework centers around three interrelated components: in situ thermal measurements (via infrared imaging), temperature dependent molecular processes (via rheology), and mechanical testing (via mode III fracture). We develop the concept of an equivalent isothermal weld time and test its relationship to fracture energy. For the printing conditions studied the equivalent isothermal weld time for T ref = 230 °C ranged from 0.1 ms to 100 ms. The results of these analysis provide a basis for optimizing inter-layer strength, the limitations of the ME process, and guide development of new materials.
Liang, Jian; Xie, Jun; Gao, Jing; Xu, Chao-Qun; Yan, Yi; Jia, Gan-Chu; Xiang, Liang; Xie, Li-Ping; Zhang, Rong-Qing
2016-12-01
Mantle can secret matrix proteins playing key roles in regulating the process of shell formation. The genes encoding lysine-rich matrix proteins (KRMPs) are one of the most highly expressed matrix genes in pearl oysters. However, the expression pattern of KRMPs is limited and the functions of them still remain unknown. In this study, we isolated and identified six new members of lysine-rich matrix proteins, rich in lysine, glycine and tyrosine, and all of them are basic matrix proteins. Combined with four members of the KRMPs previously reported, all these proteins can be divided into three subclasses according to the results of phylogenetic analyses: KRMP1-3 belong to subclass KPI, KRMP4-5 belong to KPII, and KRMP6-10 belong to KPIII. Three subcategories of lysine-rich matrix proteins are highly expressed in the D-phase, the larvae and adult mantle. Lysine-rich matrix proteins are involved in the shell repairing process and associated with the formation of the shell and pearl. What's more, they can cause abnormal shell growth after RNA interference. In detail, KPI subgroup was critical for the beginning formation of the prismatic layer; both KPII and KPIII subgroups participated in the formation of prismatic layer and nacreous layer. Compared with different temperatures and salinity stimulation treatments, the influence of changes in pH on KRMPs gene expression was the greatest. Recombinant KRMP7 significantly inhibited CaCO 3 precipitation, changed the morphology of calcite, and inhibited the growth of aragonite in vitro. Our results are beneficial to understand the functions of the KRMP genes during shell formation.
NASA Astrophysics Data System (ADS)
Si, Lina; Guo, Dan; Luo, Jianbin; Lu, Xinchun
2010-03-01
Molecular dynamics simulations of nanoscratching processes were used to study the atomic-scale removal mechanism of single crystalline silicon in chemical mechanical polishing (CMP) process and particular attention was paid to the effect of scratching depth. The simulation results under a scratching depth of 1 nm showed that a thick layer of silicon material was removed by chip formation and an amorphous layer was formed on the silicon surface after nanoscratching. By contrast, the simulation results with a depth of 0.1 nm indicated that just one monoatomic layer of workpiece was removed and a well ordered crystalline surface was obtained, which is quite consistent with previous CMP experimental results. Therefore, monoatomic layer removal mechanism was presented, by which it is considered that during CMP process the material was removed by one monoatomic layer after another, and the mechanism could provide a reasonable understanding on how the high precision surface was obtained. Also, the effects of the silica particle size and scratching velocity on the removal mechanism were investigated; the wear regimes and interatomic forces between silica particle and workpiece were studied to account for the different removal mechanisms with indentation depths of 0.1 and 1 nm.
Methods for improved growth of group III nitride semiconductor compounds
Melnik, Yuriy; Chen, Lu; Kojiri, Hidehiro
2015-03-17
Methods are disclosed for growing group III-nitride semiconductor compounds with advanced buffer layer technique. In an embodiment, a method includes providing a suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. The method includes forming an AlN buffer layer by flowing an ammonia gas into a growth zone of the processing chamber, flowing an aluminum halide containing precursor to the growth zone and at the same time flowing additional hydrogen halide or halogen gas into the growth zone of the processing chamber. The additional hydrogen halide or halogen gas that is flowed into the growth zone during buffer layer deposition suppresses homogeneous AlN particle formation. The hydrogen halide or halogen gas may continue flowing for a time period while the flow of the aluminum halide containing precursor is turned off.
Chemistry and Formation of the Beilby Layer During Polishing of Fused Silica Glass
Suratwala, Tayyab; Steele, William; Wong, Lana; ...
2015-05-19
The chemical characteristics and the proposed formation mechanisms of the modified surface layer (called the Beilby layer) on polished fused silica glasses are described. Fused silica glass samples were polished using different slurries, polyurethane pads, and at different rotation rates. The concentration profiles of several key contaminants, such as Ce, K, and H, were measured in the near surface layer of the polished samples using Secondary Ion Mass Spectroscopy (SIMS). The penetration of K, originating from KOH used for pH control during polishing, decreased with increase in polishing material removal rate. In contrast, penetration of the Ce and H increasedmore » with increase in polishing removal rate. In addition, Ce penetration was largely independent of the other polishing parameters (e.g., particle size distribution and the properties of the polishing pad). The resulting K concentration depth profiles are described using a two-step diffusion process: (1) steady-state moving boundary diffusion (due to material removal during polishing) followed by (2) simple diffusion during ambient postpolishing storage. Using known alkali metal diffusion coefficients in fused silica glass, this diffusion model predicts concentration profiles that are consistent with the measured data at various polishing material removal rates. On the other hand, the observed Ce profiles are inconsistent with diffusion based transport. Rather we propose that Ce penetration is governed by the ratio of Ce–O–Si and Si–O–Si hydrolysis rates; where this ratio increases with interface temperature (which increases with polishing material removal rate) resulting in greater Ce penetration into the Beilby layer. Calculated Ce surface concentrations using this mechanism are in good agreement to the observed change in measured Ce surface concentrations with polishing material removal rate. In conclusion, these new insights into the chemistry of the Beilby layer, combined together with details of the single particle removal function during polishing, are used to develop a more detailed and quantitative picture of the polishing process and the formation of the Beilby layer.« less
Reynolds number influence on the formation of vortical structures on a pitching flat plate.
Widmann, Alexander; Tropea, Cameron
2017-02-06
The impact of chord-based Reynolds number on the formation of leading-edge vortices (LEVs) on unsteady pitching flat plates is investigated. The influence of secondary flow structures on the shear layer feeding the LEV and the subsequent topological change at the leading edge as the result of viscous processes are demonstrated. Time-resolved velocity fields are measured using particle image velocimetry simultaneously in two fields of view to correlate local and global flow phenomena in order to identify unsteady boundary-layer separation and the subsequent flow structures. Finally, the Reynolds number is identified as a parameter that is responsible for the transition in mechanisms leading to LEV detachment from an aerofoil, as it determines the viscous response of the boundary layer in the vortex-wall interaction.
The formation of magnetic silicide Fe3Si clusters during ion implantation
NASA Astrophysics Data System (ADS)
Balakirev, N.; Zhikharev, V.; Gumarov, G.
2014-05-01
A simple two-dimensional model of the formation of magnetic silicide Fe3Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field.
Reynolds number influence on the formation of vortical structures on a pitching flat plate
Tropea, Cameron
2017-01-01
The impact of chord-based Reynolds number on the formation of leading-edge vortices (LEVs) on unsteady pitching flat plates is investigated. The influence of secondary flow structures on the shear layer feeding the LEV and the subsequent topological change at the leading edge as the result of viscous processes are demonstrated. Time-resolved velocity fields are measured using particle image velocimetry simultaneously in two fields of view to correlate local and global flow phenomena in order to identify unsteady boundary-layer separation and the subsequent flow structures. Finally, the Reynolds number is identified as a parameter that is responsible for the transition in mechanisms leading to LEV detachment from an aerofoil, as it determines the viscous response of the boundary layer in the vortex–wall interaction. PMID:28163871
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimon, E.S.; Shirokov, A.V.; Kovynev, N.P.
1995-04-01
Transport properties of solid-electrolyte layers (SEL) formed in lithium-iodine batteries were studied by the galvanostatic pulse technique. It was found that the rate of the anodic process at the lithium electrode is determined by the formation of an ionic space charge of lithium cations injected into solid-electrolyte layers. The mobility and concentration of mobile lithium cations in SELs at various depths of discharge of the power source were determined.
Phase autowaves in the near-electrode layer in the electrochemical cell with a magnetic fluid
NASA Astrophysics Data System (ADS)
Chekanov, V. V.; Kandaurova, N. V.; Chekanov, V. S.
2017-06-01
A change in color of the thin pellicle when light is reflected from the surface of the magnetic fluid at the interface with the transparent electrode in the electric field was observed. The formation of variable thickness near-electrode layer leads to a change in the spectrum of the reflected light depending on the applied voltage. Autowaves, that were observed in the layer are a unique object for the study of self-organization process.
Ma, Xiao-Xin; Zhu, Jun-Quan; Zhou, Hong; Yang, Wan-Xi
2012-02-01
The egg envelope is an essential structure occurring during oogenesis. It plays an important role during the process of fertilization in the large yellow croaker Pseudosciaena crocea. Elucidation of egg envelope formation helps us to understand fertilization mechanisms in teleosts. In the present work, we studied the formation of egg envelope in P. crocea by light microscopy, as well as by transmission and scanning electron microscopy. Four layers exist outside the oocyte plasmalemma, i.e., theca cell layer, basal membrane, granulosa cell layer and zona radiata. According to our observation, zona radiata is a multilaminar structure just like the same structure reported in teleosts, but the origin of this structure is a little different. Before it is formed, a peripheral space filled with different density of vesicles is the place where zona radiata is formed. Zona radiata (Z1) is secreted only by oocyte itself, it belongs to the primary envelope; zona radiata 2 (Z2) and zona radiata 3 (Z3) belong to the secondary envelope, because the two layers are formed after granulosa cells appear, and microvilli participate this process. It is very interesting that Z2 and Z3 are situated between Z1 and the granulosa cell first, but they translocate to the other side of Z1. This microanatomy difference may due to the participation of microvilli. The new finding about egg envelope formation in P. crocea will help us to do further investigation on fertilization mechanisms and will make artificial breeding possible which may contribute to the resource recovery of this species. Copyright © 2011 Elsevier Ltd. All rights reserved.
Self-assembly and continuous growth of hexagonal graphene flakes on liquid Cu
NASA Astrophysics Data System (ADS)
Cho, Seong-Yong; Kim, Min-Sik; Kim, Minsu; Kim, Ki-Ju; Kim, Hyun-Mi; Lee, Do-Joong; Lee, Sang-Hoon; Kim, Ki-Bum
2015-07-01
Graphene growth on liquid Cu has received great interest, owing to the self-assembly behavior of hexagonal graphene flakes with aligned orientation and to the possibility of forming a single grain of graphene through a commensurate growth of these graphene flakes. Here, we propose and demonstrate a two-step growth process which allows the formation of self-assembled, completely continuous graphene on liquid Cu. After the formation of full coverage on the liquid Cu, grain boundaries were revealed via selective hydrogen etching and the original grain boundaries were clearly resolved. This result indicates that, while the flakes self-assembled with the same orientation, there still remain structural defects, gaps and voids that were not resolved by optical microscopy or scanning electron microscopy. To overcome this limitation, the two-step growth process was employed, consisting of a sequential process of a normal single-layer graphene growth and self-assembly process with a low carbon flux, followed by the final stage of graphene growth at a high degree of supersaturation with a high carbon flux. Continuity of the flakes was verified via hydrogen etching and a NaCl-assisted oxidation process, as well as by measuring the electrical properties of the graphene grown by the two-step process. Two-step growth can provide a continuous graphene layer, but commensurate stitching should be further studied.Graphene growth on liquid Cu has received great interest, owing to the self-assembly behavior of hexagonal graphene flakes with aligned orientation and to the possibility of forming a single grain of graphene through a commensurate growth of these graphene flakes. Here, we propose and demonstrate a two-step growth process which allows the formation of self-assembled, completely continuous graphene on liquid Cu. After the formation of full coverage on the liquid Cu, grain boundaries were revealed via selective hydrogen etching and the original grain boundaries were clearly resolved. This result indicates that, while the flakes self-assembled with the same orientation, there still remain structural defects, gaps and voids that were not resolved by optical microscopy or scanning electron microscopy. To overcome this limitation, the two-step growth process was employed, consisting of a sequential process of a normal single-layer graphene growth and self-assembly process with a low carbon flux, followed by the final stage of graphene growth at a high degree of supersaturation with a high carbon flux. Continuity of the flakes was verified via hydrogen etching and a NaCl-assisted oxidation process, as well as by measuring the electrical properties of the graphene grown by the two-step process. Two-step growth can provide a continuous graphene layer, but commensurate stitching should be further studied. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03352g
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, W; Zhou, Yunshen; Hou, Wenjia
Direct formation of graphene with controlled number of graphitic layers on dielectric surfaces is highly desired for practical applications. Despite significant progress achieved in understanding the formation of graphene on metallic surfaces through chemical vapor deposition (CVD) of hydrocarbons, very limited research is available elucidating the graphene formation process via rapid thermal processing (RTP) of solid-state amorphous carbon, through which graphene is formed directly on dielectric surfaces accompanied by autonomous nickel evaporation. It is suggested that a metastable hexagonal nickel carbide (Ni 3C) intermediate phase plays a critical role in transforming amorphous carbon to 2D crystalline graphene and contributing tomore » the autonomous Ni evaporation. Temperature resolved carbon and nickel evolution in the RTP process is investigated using Auger electron spectroscopic (AES) depth profiling and glancing-angle X-ray diffraction (GAXRD). Formation, migration and decomposition of the hexagonal Ni 3C are confirmed to be responsible for the formation of graphene and the evaporation of Ni at 1100 °C. The Ni 3C-assisted graphene formation mechanism expands the understanding of Ni-catalyzed graphene formation, and provides insightful guidance for controlled growth of graphene through the solid-state transformation process.« less
Snowball gouge-aggregates formed in experimental fault gouges at seismic slip rates
NASA Astrophysics Data System (ADS)
Kim, J. H.; Ree, J. H.; Hirose, T.; Yang, K.; Kim, J. W.
2015-12-01
Clay-clast aggregates (CCA) have commonly been reported from experimental and natural fault gouges, but their formation process and mechanical meaning are not so clear. We call CCA snowball gouge aggregate (SGA) since its formation process is similar to that of snowball (see below) and CCA-like structure has been reported also from pure quartz and pure calcite gouges. Here, we discuss the formation process of SGA and its implication for faulting from experimental results of simulated gouges. We conducted high-velocity rotary shear experiments on Ca-bentonite gouges at a normal stress of 1 MPa, slip rate of 1.31 m/s, room temperature and room humidity conditions. Ca-bentonite gouge consists of montmorillonite (>95%) and other minor minerals including quartz and plagioclase. Upon displacement, the friction abruptly increases to the 1st peak (friction coefficient μ≈ 0.7) followed by slip weakening to reach a steady state (μ≈ 0.25~0.3). The simulated fault zone can be divided into slip-localization zone (SLZ) and low-slip-rate zone (LSZ) based on grain size. Spherical SGAs with their size ranging from 1 to 100 μm occur only in LSZ, and their proportion is more than 90%. Two types of SGA occur; SGA with and without a central clast. Both types of SGA show a concentric layering defined by the alternation of pore-rich (1-1.5 μm thick) and pore-poor layers (1.5-2 μm thick). Clay minerals locally exhibit a preferred orientation with their basal plane parallel to the layer boundary. We interpret that the pore-poor layers are clay-accumulated layers formed by rolling of SGA nuclei, and pore-rich layers correspond to the boundary between accumulated clay layers. Water produced from dehydration of clays due to frictional heating presumably acts as an adhesion agent of clay minerals during rolling of SGA. Since the number of layers within each SGA represents the number of rolling, the minimum displacement estimated from the number of layers and layer thickness of the largest SGA (with a diameter of 100 μm) is about 2.7 mm (slip rate≈ 170 μm/s) which is much less than the total displacement of 20 m, suggesting that most of the displacement occurred along the SLZ. Our results imply that SGA can be formed only in subseismic slip-rate zones and that minimum displacement and slip rate can be estimated from SGA.
De-adhesion dynamics of melanoma cells from brain endothelial layer.
Varga, Béla; Domokos, Réka Anita; Fazakas, Csilla; Wilhelm, Imola; Krizbai, István A; Szegletes, Zsolt; Gergely, Csilla; Váró, György; Végh, Attila G
2018-03-01
Metastasis formation is a complex and not entirely understood process. The poorest prognosis and the most feared complications are associated to brain metastases. Melanoma derived brain metastases show the highest prevalence. Due to the lack of classical lymphatic drainage, in the process of brain metastases formation the haematogenous route is of primordial importance. The first and crucial step in this multistep process is the establishment of firm adhesion between the blood travelling melanoma cells and the tightly connected layer of the endothelium, which is the fundamental structure of the blood-brain barrier. This study compares the de-adhesion properties and dynamics of three melanoma cells types (WM35, A2058 and A375) to a confluent layer of brain micro-capillary endothelial cells. Cell type dependent adhesion characteristics are presented, pointing towards the existence of metastatic potential related nanomechanical aspects. Apparent mechanical properties such as elasticity, maximal adhesion force, number, size and distance of individual rupture events showed altered values pointing towards cell type dependent aspects. Our results underline the importance of mechanical details in case of intercellular interactions. Nevertheless, it suggests that in adequate circumstances elastic and adhesive characterizations might be used as biomarkers. Copyright © 2017. Published by Elsevier B.V.
Effect of hydrophobic inclusions on polymer swelling kinetics studied by magnetic resonance imaging.
Gajdošová, Michaela; Pěček, Daniel; Sarvašová, Nina; Grof, Zdeněk; Štěpánek, František
2016-03-16
The rate of drug release from polymer matrix-based sustained release formulations is often controlled by the thickness of a gel layer that forms upon contact with dissolution medium. The effect of formulation parameters on the kinetics of elementary rate processes that contribute to gel layer formation, such as water ingress, polymer swelling and erosion, is therefore of interest. In the present work, gel layer formation has been investigated by magnetic resonance imaging (MRI), which is a non-destructive method allowing direct visualization of effective water concentration inside the tablet and its surrounding. Using formulations with Levetiracetam as the active ingredient, HPMC as a hydrophilic matrix former and carnauba wax (CW) as a hydrophobic component in the matrix system, the effect of different ratios of these two ingredients on the kinetics of gel formation (MRI) and drug release (USP 4 like dissolution test) has been investigated and interpreted using a mathematical model. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ogle, S. E.; Tamsitt, V.; Josey, S. A.; Gille, S. T.; Cerovečki, I.; Talley, L. D.; Weller, R. A.
2018-05-01
The Ocean Observatories Initiative air-sea flux mooring deployed at 54.08°S, 89.67°W, in the southeast Pacific sector of the Southern Ocean, is the farthest south long-term open ocean flux mooring ever deployed. Mooring observations (February 2015 to August 2017) provide the first in situ quantification of annual net air-sea heat exchange from one of the prime Subantarctic Mode Water formation regions. Episodic turbulent heat loss events (reaching a daily mean net flux of -294 W/m2) generally occur when northeastward winds bring relatively cold, dry air to the mooring location, leading to large air-sea temperature and humidity differences. Wintertime heat loss events promote deep mixed layer formation that lead to Subantarctic Mode Water formation. However, these processes have strong interannual variability; a higher frequency of 2 σ and 3 σ turbulent heat loss events in winter 2015 led to deep mixed layers (>300 m), which were nonexistent in winter 2016.
NASA Technical Reports Server (NTRS)
Boclair, J. W.; Braterman, P. S.; Jiang, J.; Lou, S.; Yarberry, F.
1999-01-01
Solutions containing divalent metal [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+] chlorides and CrCl3 6H2O were titrated with NaOH to yield, for M(II) = Zn, Co, and Ni, hydrotalcite-like layered double hydroxides (LDHs), [[M(II)]1-z[Cr(III)]z(OH)2][Cl]z yH2O, in a single step, without intermediate formation of chromium hydroxide. Analysis of the resultant titration curves yields solubility constants for these compounds. These are in the order Zn < Ni approximately Co, with a clear preference for formation of the phase with z = 1/3. With Mg2+ as chloride, titration gives a mixture of Cr(OH)3 and Mg(OH)2, but the metal sulfates give Mg2Cr(OH)6 1/2(SO4) by a two-step process. Titrimetric and spectroscopic evidence suggests short-range cation order in the one-step LDH systems.
Theoretical Investigation of the Interfacial Reactions during Hot-Dip Galvanizing of Steel
NASA Astrophysics Data System (ADS)
Mandal, G. K.; Balasubramaniam, R.; Mehrotra, S. P.
2009-03-01
In the modern galvanizing line, as soon as the steel strip enters the aluminum-containing zinc bath, two reactions occur at the strip and the liquid-zinc alloy interface: (1) iron rapidly dissolves from the strip surface, raising the iron concentration in the liquid phase at the strip-liquid interface; and (2) aluminum forms a stable aluminum-iron intermetallic compound layer at the strip-coating interface due to its greater affinity toward iron. The main objective of this study is to develop a simple and realistic mathematical model for better understanding of the kinetics of galvanizing reactions at the strip and the liquid-zinc alloy interface. In the present study, a model is proposed to simulate the effect of various process parameters on iron dissolution in the bath, as well as, aluminum-rich inhibition layer formation at the substrate-coating interface. The transient-temperature profile of the immersed strip is predicted based on conductive and convective heat-transfer mechanisms. The inhibition-layer thickness at the substrate-coating interface is predicted by assuming the cooling path of the immersed strip consists of a series of isothermal holds of infinitesimal time-step. The influence of galvanizing reaction is assessed by considering nucleation and growth mechanisms at each hold time, which is used to estimate the total effect of the immersion time on the formation mechanism of the inhibition layer. The iron- dissolution model is developed based on well established principles of diffusion taking into consideration the area fraction covered by the intermetallic on the strip surface during formation of the inhibition layer. The model can be effectively used to monitor the dross formation in the bath by optimizing the process parameters. Theoretical predictions are compared with the findings of other researchers. Simulated results are in good agreement with the theoretical and experimental observation carried out by other investigators.
Ubiquitylation Functions in the Calcium Carbonate Biomineralization in the Extracellular Matrix
Fang, Dong; Pan, Cong; Lin, Huijuan; Lin, Ya; Xu, Guangrui; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing
2012-01-01
Mollusks shell formation is mediated by matrix proteins and many of these proteins have been identified and characterized. However, the mechanisms of protein control remain unknown. Here, we report the ubiquitylation of matrix proteins in the prismatic layer of the pearl oyster, Pinctada fucata. The presence of ubiquitylated proteins in the prismatic layer of the shell was detected with a combination of western blot and immunogold assays. The coupled ubiquitins were separated and identified by Edman degradation and liquid chromatography/mass spectrometry (LC/MS). Antibody injection in vivo resulted in large amounts of calcium carbonate randomly accumulating on the surface of the nacreous layer. These ubiquitylated proteins could bind to specific faces of calcite and aragonite, which are the two main mineral components of the shell. In the in vitro calcium carbonate crystallization assay, they could reduce the rate of calcium carbonate precipitation and induce the calcite formation. Furthermore, when the attached ubiquitins were removed, the functions of the EDTA-soluble matrix of the prismatic layer were changed. Their potency to inhibit precipitation of calcium carbonate was decreased and their influence on the morphology of calcium carbonate crystals was changed. Taken together, ubiquitylation is involved in shell formation. Although the ubiquitylation is supposed to be involved in every aspect of biophysical processes, our work connected the biomineralization-related proteins and the ubiquitylation mechanism in the extracellular matrix for the first time. This would promote our understanding of the shell biomineralization and the ubiquitylation processes. PMID:22558208
NASA Astrophysics Data System (ADS)
Petrova, L. G.; Aleksandrov, V. A.; Malakhov, A. Yu.
2017-07-01
The effect of thin films of copper oxide deposited before nitriding on the phase composition and the kinetics of growth of diffusion layers in carbon steels is considered. The process of formation of an oxide film involves chemical reduction of pure copper on the surface of steel specimens from a salt solution and subsequent oxidation under air heating. The oxide film exerts a catalytic action in nitriding of low- and medium-carbon steels, which consists in accelerated growth of the diffusion layer, the nitride zone in the first turn. The kinetics of the nitriding process and the phase composition of the layer are controlled by the thickness of the copper oxide precursor, i.e., the deposited copper film.
NASA Astrophysics Data System (ADS)
Konishi, Satoshi; Nakagami, Chise; Kobayashi, Taizo; Tonomura, Wataru; Kaizuma, Yoshihiro
2015-04-01
In this work, a lift-off process with bi-layer photoresist patterns was applied to the formation of hydrophobic/hydrophilic micropatterns on practical polymer substrates used in healthcare diagnostic commercial products. The bi-layer photoresist patterns with undercut structures made it possible to peel the conformal-coated silicon oxide (SiOx) films from substrates. SiOx and silicon carbide (SiCx) layers were deposited by pulsed plasma chemical vapor deposition (PPCVD) method which can form roughened surfaces to enhance hydrophilicity of SiOx and hydrophobicity of SiCx. Microfluidic applications using hydrophobic/hydrophilic patterns were also demonstrated on low-cost substrates such as poly(ethylene terephthalate) (PET) and paper films.
Zhu, Xiaojing; He, Jiangtao; Su, Sihui; Zhang, Xiaoliang; Wang, Fei
2016-05-01
To explore the interactions between soil organic matter and minerals, humic acid (HA, as organic matter), kaolin (as a mineral component) and Ca(2+) (as metal ions) were used to prepare HA-kaolin and Ca-HA-kaolin complexes. These complexes were used in trichloroethylene (TCE) sorption experiments and various characterizations. Interactions between HA and kaolin during the formation of their complexes were confirmed by the obvious differences between the Qe (experimental sorbed TCE) and Qe_p (predicted sorbed TCE) values of all detected samples. The partition coefficient kd obtained for the different samples indicated that both the organic content (fom) and Ca(2+) could significantly impact the interactions. Based on experimental results and various characterizations, a concept model was developed. In the absence of Ca(2+), HA molecules first patched onto charged sites of kaolin surfaces, filling the pores. Subsequently, as the HA content increased and the first HA layer reached saturation, an outer layer of HA began to form, compressing the inner HA layer. As HA loading continued, the second layer reached saturation, such that an outer-third layer began to form, compressing the inner layers. In the presence of Ca(2+), which not only can promote kaolin self-aggregation but can also boost HA attachment to kaolin, HA molecules were first surrounded by kaolin. Subsequently, first and second layers formed (with inner layer compression) via the same process as described above in the absence of Ca(2+), except that the second layer continued to load rather than reach saturation, within the investigated conditions, because of enhanced HA aggregation caused by Ca(2+). Copyright © 2016 Elsevier Ltd. All rights reserved.
Wetted Foam Liquid DT Layer ICF Experiments at the NIF
NASA Astrophysics Data System (ADS)
Olson, R. E.; Leeper, R. J.; Peterson, R. R.; Yi, S. A.; Zylstra, A. B.; Kline, J. L.; Bradley, P. A.; Yin, L.; Wilson, D. C.; Haines, B. M.; Batha, S. H.
2016-10-01
A key physics issue in indirect-drive ICF relates to the understanding of the limitations on hot spot convergence ratio (CR), principally set by the hohlraum drive symmetry, the capsule mounting hardware (the ``tent''), and the capsule fill tube. An additional key physics issue relates to the complex process by which a hot spot must be dynamically formed from the inner ice surface in a DT ice-layer implosion. These physics issues have helped to motivate the development of a new liquid DT layer wetted foam platform at the NIF that provides an ability to form the hot spot from DT vapor and experimentally study and understand hot spot formation at a variety of CR's in the range of 12
NASA Astrophysics Data System (ADS)
Jia, Zhihai; Zhang, Liwei; Hong, Tianqiu
2010-05-01
The lower Triassic is well preserved in Chaohu Region, Anhui Province, East China. It can be divided into Yinkeng Formation (80 meters thick, was formed during the Indian and early Smitian), Helongshan Formation (21 meters thick, was formed during the end Smithian) and Nanlinghu Formation (more than 157 meters thick, was formed during the Spathian) from bottom to top. It is mainly composed of carbonatites such as micrite limestones and nodular limestones, as well as shales and calcareous marls. The lower Triassic in this area has been well researched for more than a decade, and many fossils such as ammonites, bivalves, fishes, ichthyosaurus, conodonts, and ichnofossils have been found, but the microbiolites have been neglected. Microbiolites were mainly outcropped in the Helongshan Formaiton and the lower Nanlinghu Formation. In the lower Helongshan Formaiton, tens microbial mat layers and thin bedded calcareous marl layers formed cyclothems which have been named as nodular limstones. The thin-section observation of the microbial mats indicate that many films and thin-shell bivalve fragments deposited almost horizontally. In the upper Helongshan Formaiton, six microstromatolite bioherm layers were outcropped in the thin bedded calcareous marl layers. The diameter of the stromatolite column is about 2 millimeters, the bioherms are lenticular and no more than 3 centimeters thick in the central, their diameters change from 5 centimeters to 30 centimeters, calcareous marls were deposited around the bioherms, and many ammonoids, bivalves and burrows were found in such layers. The microfacies differentiation of the stromatolites such as the basement, reef core and the capping beds can be recognised clearly in thin sections. Several microstromatolite layers were outcropped in the micritic limestones with a stable thickness of 15 millimeters in the lower Nanlinghu Formation and the stromatolite column look like the ones in the Helongshan Formation. Few microbiolites have been found in the middle and upper Nanlinghu Formation. The macro fossil association of the lower Triassic in Chaohu region is quite different in different Formations. Ammonoids and bivalves can be found in the whole lower Triassic strata, and they are especially dominant in the Yinkeng Formation and lower Helongshan Formaiton, worms and borrowing animals can be found in the middle Helongshan Formation, fishes can be found in the uppermost Helongshan Formation and the lower Nanlinghu Formation, and the oldest ichthyosaurus in the world can be found in the upper Nanlinghu Formation. According to the changing characters of the fossil association in this area, it is indicated that the high-level ecosystem had been formed in this area in the late early Triassic, and the appearance of the microbiolites in the Helongshan Formation might be the milestone for the early Triassic recovery. Though the global recovery process after the Permian-Triassic mass extinction might be postponed to the end of the early Triassic, regional recovery process in Chaohu region might start at the end Smithian and actualized at the middle Spathian. The microbioilites might be the original impetus for the early Triassic recovery. Key words: microbiolites, early Triassic, regional recovery, Chaohu region Acknowledgments This work is supported by the grants from National Natural Science Fundation of China (No. 40902096 and No.J0830522) and the IGCP 572 program. * Corresponding author: zhihai.jia@gmail.com
Current-free double layers: A review
NASA Astrophysics Data System (ADS)
Singh, Nagendra
2011-12-01
During the last decade, there has been an upsurge in the research on current-free DLs (CFDLs). Research includes theory, laboratory measurements, and various applications of CFDLs ranging from plasma thrusters to acceleration of charged particles in space and astrophysical plasmas. The purpose of this review is to present a unified understanding of the basic plasma processes, which lead to the formation of CFDLs. The review starts with the discussion on early research on electric fields and double layers (DLs) and ion acceleration in planar plasma expansion. The review continues with the formation of DLs and rarefaction shocks (RFS) in expanding plasma with two electron populations with different temperatures. The basic theory mitigating the formation of a CFDL by two-electron temperature population is reviewed; we refer to such CFDLs as double layers structures formation by two-temperature electron populations (TET-CFDLs). Application of TET-CFDLS to ion acceleration in laboratory and space plasmas was discussed including the formation of stationary steady-state DLs. A quite different type of CFDLs forms in a helicon plasma device (HPD), in which plasma abruptly expands from a narrow plasma source tube into a wide diffusion tube with abruptly diverging magnetic fields. The formation mechanism of the CFDL in HPD, referred here as current free double layer structure in helicon plasma device (HPD-CFDL), and its applications are reviewed. The formation of a TET-CFDL is due to the self-consistent separation of the two electron populations parallel to the ambient magnetic field. In contrast, a HPD-CFDL forms due to self-consistent separation of electrons and ion perpendicular to the abruptly diverging magnetic field in conjunction with the conducting wall of the expansion chamber in the HPD. One-dimensional theoretical models of CFDLs based on steady-state solution of Vlasov-Poisson system of equations are briefly discussed. Applications of CFDLs ranging from helicon double-layer thrusters (HDLTs) to the accelerations of ions in space and astrophysical plasmas are summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Fei; Jadhav, Nitin; Buchovecky, Eric
2016-03-14
We have performed X-ray synchrotron micro-diffraction measurements to study the processes controlling the formation of hillocks and whiskers in Sn layers on Cu. The studies were done in real-time on Sn layers that were electro-deposited immediately before the X-ray measurements were started. This enabled a region of the sample to be monitored from the as-deposited state until after a hillock feature formed. In addition to measuring the grain orientation and deviatoric strain (via Laue diffraction), the X-ray fluorescence was monitored to quantify the evolution of the Sn surface morphology and the formation of intermetallic compound (IMC) at the Sn-Cu interface.more » The results capture the simultaneous growth of the feature and the corresponding film stress, grain orientation, and IMC formation. The observations are compared with proposed mechanisms for whisker/hillock growth and nucleation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Posseme, N., E-mail: nicolas.posseme@cea.fr; Pollet, O.; Barnola, S.
2014-08-04
Silicon nitride spacer etching realization is considered today as one of the most challenging of the etch process for the new devices realization. For this step, the atomic etch precision to stop on silicon or silicon germanium with a perfect anisotropy (no foot formation) is required. The situation is that none of the current plasma technologies can meet all these requirements. To overcome these issues and meet the highly complex requirements imposed by device fabrication processes, we recently proposed an alternative etching process to the current plasma etch chemistries. This process is based on thin film modification by light ionsmore » implantation followed by a selective removal of the modified layer with respect to the non-modified material. In this Letter, we demonstrate the benefit of this alternative etch method in term of film damage control (silicon germanium recess obtained is less than 6 A), anisotropy (no foot formation), and its compatibility with other integration steps like epitaxial. The etch mechanisms of this approach are also addressed.« less
The tropopause inversion layer in baroclinic life-cycle experiments: the role of diabatic processes
NASA Astrophysics Data System (ADS)
Kunkel, D.; Hoor, P.; Wirth, V.
2016-01-01
Recent studies on the formation of a quasi-permanent layer of enhanced static stability above the thermal tropopause revealed the contributions of dynamical and radiative processes. Dry dynamics leads to the evolution of a tropopause inversion layer (TIL), which is, however, too weak compared to observations and thus diabatic contributions are required. In this study we aim to assess the importance of diabatic processes in the understanding of TIL formation at midlatitudes. The non-hydrostatic model COSMO (COnsortium for Small-scale MOdelling) is applied in an idealized midlatitude channel configuration to simulate baroclinic life cycles. The effect of individual diabatic processes related to humidity, radiation, and turbulence is studied first to estimate the contribution of each of these processes to the TIL formation in addition to dry dynamics. In a second step these processes are stepwise included in the model to increase the complexity and finally estimate the relative importance of each process. The results suggest that including turbulence leads to a weaker TIL than in a dry reference simulation. In contrast, the TIL evolves stronger when radiation is included but the temporal evolution is still comparable to the reference. Using various cloud schemes in the model shows that latent heat release and consecutive increased vertical motions foster an earlier and stronger appearance of the TIL than in all other life cycles. Furthermore, updrafts moisten the upper troposphere and as such increase the radiative effect from water vapor. Particularly, this process becomes more relevant for maintaining the TIL during later stages of the life cycles. Increased convergence of the vertical wind induced by updrafts and by propagating inertia-gravity waves, which potentially dissipate, further contributes to the enhanced stability of the lower stratosphere. Finally, radiative feedback of ice clouds reaching up to the tropopause is identified to potentially further affect the strength of the TIL in the region of the clouds.
Destouesse, Elodie; Chambon, Sylvain; Courtel, Stéphanie; Hirsch, Lionel; Wantz, Guillaume
2015-11-11
In organic photovoltaic (PV) devices based on solution-processed small molecules, we report here that the physicochemical properties of the substrate are critical for achieving high-performances organic solar cells. Three different substrates were tested: ITO coated with PSS, ZnO sol-gel, and ZnO nanoparticles. PV performances are found to be low when the ZnO nanoparticles layer is used. This performance loss is attributed to the formation of many dewetting points in the active layer, because of a relatively high roughness of the ZnO nanoparticles layer, compared to the other layers. We successfully circumvented this phenomenon by adding a small quantity of polystyrene (PS) in the active layer. The introduction of PS improves the quality of film forming and reduces the dark currents of solar cells. Using this method, high-efficiency devices were achieved, even in the case of substrates with higher roughness.
Interfacial elastic relaxation during the ejection of bi-layered tablets.
Anuar, M S; Briscoe, B J
2010-03-15
The predilection of a bi-layered tablet to fail in the interface region after its initial formation in the compaction process reduces its practicality as a choice for controlled release solid drug delivery system. Hence, a fundamental appreciation of the governing mechanism that causes the weakening of the interfacial bonds within the bi-layered tablet is crucial in order to improve the overall bi-layered tablet mechanical integrity. This work has shown that the occurrence of the elastic relaxation in the interface region during the ejection stage of the compaction process decreases with the increase in the bi-layered tablet interface strength. This is believed to be due to the increase in the plastic bonding in the interface region. The tablet diametrical elastic relaxation affects the tablet height elastic relaxation, where the impediment of the tablet height expansion is observed when the interface region experiences a diametrical expansion. 2009 Elsevier B.V. All rights reserved.
Underpotential deposition-mediated layer-by-layer growth of thin films
Wang, Jia Xu; Adzic, Radoslav R.
2015-05-19
A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.
Evolution and characteristics of GaN nanowires produced via maskless reactive ion etching.
Haab, Anna; Mikulics, Martin; Sutter, Eli; Jin, Jiehong; Stoica, Toma; Kardynal, Beata; Rieger, Torsten; Grützmacher, Detlev; Hardtdegen, Hilde
2014-06-27
The formation of nanowires (NWs) by reactive ion etching (RIE) of maskless GaN layers was investigated. The morphological, structural and optical characteristics of the NWs were studied and compared to those of the layer they evolve from. It is shown that the NWs are the result of a defect selective etching process. The evolution of density and length with etching time is discussed. Densely packed NWs with a length of more than 1 μm and a diameter of ∼60 nm were obtained by RIE of a ∼2.5 μm thick GaN layer. The NWs are predominantly free of threading dislocations and show an improvement of optical properties compared to their layer counterpart. The production of NWs via a top down process on non-masked group III-nitride layers is assessed to be very promising for photovoltaic applications.
NASA Astrophysics Data System (ADS)
Lin, Li-Hsiang; Chen, Shih-Chung; Wu, Ching-Zong; Hung, Jing-Ming; Ou, Keng-Liang
2011-06-01
Nitriding of AISI 303 austenitic stainless steel using microwave plasma system at various temperatures was conducted in the present study. The nitrided layers were characterized via scanning electron microscopy, glancing angle X-ray diffraction, transmission electron microscopy and Vickers microhardness tester. The antibacterial properties of this nitrided layer were evaluated. During nitriding treatment between 350 °C and 550 °C, the phase transformation sequence on the nitrided layers of the alloys was found to be γ → (γ + γ N) → (γ + α + CrN). The analytical results revealed that the surface hardness of AISI 303 stainless steel could be enhanced with the formation of γ N phase in nitriding process. Antibacterial test also demonstrated the nitrided layer processed the excellent antibacterial properties. The enhanced surface hardness and antibacterial properties make the nitrided AISI 303 austenitic stainless steel to be one of the essential materials in the biomedical applications.
NASA Astrophysics Data System (ADS)
Saito, Jo; Akiyama, Tsuyoshi; Suzuki, Atsushi; Oku, Takeo
2017-01-01
Insoluble fullerene-diamine adduct thin-films consisting of C60 and 1,2-diaminoethane were easily fabricated on an electrode by an alternate immersion process. Formation of the C60-diamine adduct films were confirmed using transmission absorption spectroscopy and atomic force microscopy. An inverted-type organic solar cells were fabricated by using the C60-diamine adduct film as the electron transport layer. The resultant photoelectric conversation performance of the solar cells suggested that photocurrent is generated via the photoexcitation of polythiophene. The result suggests that the present insoluble fullerene-diamine adduct films worked as buffer layer for organic thin-film solar cells.
NASA Astrophysics Data System (ADS)
Chen, Z.; Wang, Y. J.; Chen, G. N.; Liu, J.; Liu, Y. J.
2017-12-01
The In-situ Melting model of granite reveals that granitic magma generated by anatexis is layer-like and magma convection results in thickening of the layer. On the basis and by integrating the research findings on rheological transitions of rocks in crustal melting, we simulated the thermodynamic process of granite formation by using Underworld1.7. The size of the numerical model is 100km×25km with free-slip boundary. The solidus temperature is postulated being 600° and the fusing-off temperatures is 705° that corresponds to the solid-liquid transition (SLT) of the partial melting system with the melt fraction percentage around 40%. The viscosities of rock and magma are separately calculated according to this melt percentage. The model runs on Tian-He2 supercomputer and the result indicates: 1) when temperature exceeds the solidus of rock, anatexis appears in the area below the 600° isotherm; 2) when temperature surpasses the fusing-off temperature of rock, a magma layer occurs in the area below 705° isotherm; 3) the initiation of magma convection accompanied with stoping is at the temperature around 739.6°, and the upper surface of magma layer, i.e. the MI (magma interface)/SLT (solid-liquid transition) moves upwards with time; 4) the velocity of the upward motion of MI/SLT depends on the bottom temperature and the thickness of magma layer depends on the duration of convection. Summing up, this modeling result demonstrates that the In-situ Melting model of granite meets the basic principle of physics and reveals details on the thermodynamic circumstances interacting with the development of melting and granite formation.Acknowledgement: This research is financially supported by NSFC (No 41372223, No 41230206 and No 41574087).
Process for obtaining multiple sheet resistances for thin film hybrid microcircuit resistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norwood, D.P.
1989-01-31
A standard thin film circuit containing Ta/sub 2/N (100 ohms/square) resistors is fabricated by depositing on a dielectric substrate successive layers of Ta/sub 2/N, Ti and Pd, with a gold layer to provide conductors. The addition of a few simple photoprocessing steps to the standard TFN manufacturing process enables the formation of Ta/sub 2/N + Ti (10 ohms/square) and Ta/sub 2/N + Ti + Pd (1 ohm/square) resistors in the same otherwise standard thin film circuit structure.
Process for obtaining multiple sheet resistances for thin film hybrid microcircuit resistors
Norwood, David P.
1989-01-01
A standard thin film circuit containing Ta.sub.2 N (100 ohms/square) resirs is fabricated by depositing on a dielectric substrate successive layers of Ta.sub.2 N, Ti and Pd, with a gold layer to provide conductors. The addition of a few simple photoprocessing steps to the standeard TFN manufacturing process enables the formation of Ta.sub.2 N+Ti (10 ohms/square) and Ta.sub.2 N+Ti+Pd (1 ohm/square) resistors in the same otherwise standard thin film circuit structure.
Minero, Claudio; Maurino, Valter; Bono, Francesca; Pelizzetti, Ezio; Marinoni, Angela; Mailhot, Gilles; Carlotti, Maria Eugenia; Vione, Davide
2007-08-01
The effect of selected organic and inorganic compounds, present in snow and cloudwater was studied. Photolysis of solutions of nitrate to nitrite was carried out in the laboratory using a UVB light source. The photolysis and other reactions were then modelled. It is shown that formate, formaldehyde, methanesulphonate, and chloride to a lesser extent, can increase the initial formation rate of nitrite. The effect, particularly significant for formate and formaldehyde, is unlikely to be caused by scavenging of hydroxyl radicals. The experimental data obtained in this work suggest that possible causes are the reduction of nitrogen dioxide and nitrate by radical species formed on photooxidation of the organic compounds. Hydroxyl scavenging by organic and inorganic compounds would not affect the initial formation rate of nitrite, but would protect it from oxidation, therefore, increasing the concentration values reached at long irradiation times. The described processes can be relevant to cloudwater and the quasi-liquid layer on the surface of ice and snow, considering that in the polar regions irradiated snow layers are important sources of nitrous acid to the atmosphere. Formate and (at a lesser extent) formaldehyde are the compounds that play the major role in the described processes of nitrite/nitrous acid photoformation by initial rate enhancement and hydroxyl scavenging.
Schmidt, Elliot; Shi, Sha; Ruden, P Paul; Frisbie, C Daniel
2016-06-15
Although ionic liquids (ILs) have been used extensively in recent years as a high-capacitance "dielectric" in electric double layer transistors, the dynamics of the double layer formation have remained relatively unexplored. Better understanding of the dynamics and relaxation processes involved in electric double layer formation will guide device optimization, particularly with regard to switching speed. In this paper, we explore the dynamical characteristics of an IL in a metal/ionic liquid/metal (M/IL/M) capacitor. In particular, we examine a Au/IL/Au structure where the IL is 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate. The experiments consist of frequency-dependent impedance measurements and time-dependent current vs voltage measurements for applied linear voltage ramps and abrupt voltage steps. The parameters of an equivalent circuit model are determined by fits to the impedance vs frequency data and subsequently verified by calculating the current vs voltage characteristics for the applied potential profiles. The data analysis indicates that the dynamics of the structure are characterized by a wide distribution of relaxation times spanning the range of less than microseconds to longer than seconds. Possible causes for these time scales are discussed.
NASA Astrophysics Data System (ADS)
Anggit Maulana, Hiska; Haris, Abdul
2018-05-01
Reservoir and source rock Identification has been performed to deliniate the reservoir distribution of Talangakar Formation South Sumatra Basin. This study is based on integrated geophysical, geological and petrophysical data. The aims of study to determine the characteristics of the reservoir and source rock, to differentiate reservoir and source rock in same Talangakar formation, to find out the distribution of net pay reservoir and source rock layers. The method of geophysical included seismic data interpretation using time and depth structures map, post-stack inversion, interval velocity, geological interpretations included the analysis of structures and faults, and petrophysical processing is interpret data log wells that penetrating Talangakar formation containing hydrocarbons (oil and gas). Based on seismic interpretation perform subsurface mapping on Layer A and Layer I to determine the development of structures in the Regional Research. Based on the geological interpretation, trapping in the form of regional research is anticline structure on southwest-northeast trending and bounded by normal faults on the southwest-southeast regional research structure. Based on petrophysical analysis, the main reservoir in the field of research, is a layer 1,375 m of depth and a thickness 2 to 8.3 meters.
Food-safe modification of stainless steel food processing surfaces to reduce bacterial biofilms.
Awad, Tarek Samir; Asker, Dalal; Hatton, Benjamin D
2018-06-11
Biofilm formation on stainless steel (SS) surfaces of food processing plants, leading to foodborne illness outbreaks, is enabled by the attachment and confinement within microscale cavities of surface roughness (grooves, scratches). We report Foodsafe Oil-based Slippery Coatings (FOSCs) for food processing surfaces that suppress bacterial adherence and biofilm formation by trapping residual oil lubricant within these surface cavities to block microbial growth. SS surfaces were chemically functionalized with alkylphosphonic acid to preferentially wet a layer of food grade oil. FOSCs reduced the effective surface roughness, the adhesion of organic food residue, and bacteria. FOSCs significantly reduced Pseudomonas aeruginosa biofilm formation on standard roughness SS-316 by 5 log CFU cm-2, and by 3 log CFU cm-2 for mirror-finished SS. FOSCs also enhanced surface cleanability, which we measured by bacterial counts after conventional detergent cleaning. Importantly, both SS grades maintained their anti-biofilm activity after erosion of the oil layer by surface wear with glass beads, which suggests there is a residual volume of oil that remains to block surface cavity defects. These results indicate the potential of such low-cost, scalable approaches to enhance the cleanability of SS food processing surfaces and improve food safety by reducing biofilm growth.
Koo, Jaseok; Kim, Sammi; Cheon, Taehoon; Kim, Soo-Hyun; Kim, Woo Kyoung
2018-03-02
Amongst several processes which have been developed for the production of reliable chalcopyrite Cu(InGa)Se 2 photovoltaic absorbers, the 2-step metallization-selenization process is widely accepted as being suitable for industrial-scale application. Here we visualize the detailed thermal behavior and reaction pathways of constituent elements during commercially attractive rapid thermal processing of glass/Mo/CuGa/In/Se precursors on the basis of the results of systematic characterization of samples obtained from a series of quenching experiments with set-temperatures between 25 and 550 °C. It was confirmed that the Se layer crystallized and then melted between 250 and 350 °C, completely disappearing at 500 °C. The formation of CuInSe 2 and Cu(InGa)Se 2 was initiated at around 450 °C and 550 °C, respectively. It is suggested that pre-heat treatment to control crystallization of Se layer should be designed at 250-350 °C and Cu(InGa)Se 2 formation from CuGa/In/Se precursors can be completed within a timeframe of 6 min.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhongliang; Zhang, Xinghua; Wang, Hongyan
2007-07-15
Surface hydrophilicity has a strong influence on frost nucleation according to phase transition theory. To study this effect, a close observation of frost formation and deposition processes on a vertical plate was made under free convection conditions. The formation and shape variation of frost crystals during the initial period are described and the frost thickness variation with time on both hydrophobic and plain copper cold surfaces are presented. The various influencing factors are discussed in depth. The mechanism of surface hydrophilicity influence on frost formation was analyzed theoretically. This revealed that increasing the contact angle can increase the potential barriermore » and restrain crystal nucleation and growth and thus frost deposition. The experimental results show that the initial water drops formed on a hydrophobic surface are smaller and remain in the liquid state for a longer time compared with ones formed on a plain copper surface. It is also observed that the frost layer deposited on a hydrophobic surface is loose and weak. Though the hydrophobic surface can retard frost formation to a certain extent and causes a looser frost layer, our experimental results show that it does not depress the growth of the frost layer. (author)« less
Crater Formation Above Salt Caverns: Piston vs Hour-glass
NASA Astrophysics Data System (ADS)
Berest, P.
2016-12-01
Conditions leading to crater formation above salt caverns are discussed. In most cases, at the end of leaching, the cavern roof had reached the top of the salt formation, allowing direct contact between brine and marl (or argillite) layers that compose the overburden of the salt formation. These layers are prone to weathering when in contact with saturated brine. Stoping takes place, and the cavern roof rises through the overburden. This process may be several years or dozens of years long. In Lorraine salt formations, stoping stops when the rising cavern top reaches a competent layer, the Beaumont Dolomite. Operators then lower cavern-brine pressure to trigger collapse. A rigid cylinder of rock (a "piston") drops into the cavern, and a crater whose initial edges are vertical is created. Cavern drop is more abrupt when the cavern top is filled partly with air. The contour of the piston is circular, as a circle is the shape such that the ratio between perimeter and area is minimal. In other cases, for instance in Kansas, the cavern rises until the uppermost keystone in the bedrock at shallow depth is breached, permitting loose materials to flow into the cavern through a relatively narrow hole at the bottom of the sink hole, as in an hour glass.
NASA Astrophysics Data System (ADS)
McDonough, Richard T.; Zheng, Hewen; Alila, Mercy A.; Goodisman, Jerry; Chaiken, Joseph
2017-03-01
Biofilm produced by Escherichia coli (E. coli) or Pseudomonas aeruginosa (P. aeruginosa) on quartz or polystyrene is removed from the culture medium and drained. Observed optical interference fringes indicate the presence of a layer of uniform thickness with refractive index different from air-dried biofilm. Fringe wavelengths indicate that layer optical thickness is <20 μm or 1 to 2 orders of magnitude thinner than the biofilm as measured by confocal Raman microscopy or fluorescence imaging of the bacteria. Raman shows that films have an alginate-like carbohydrate composition. Fringe amplitudes indicate that the refractive index of the interfering layer is higher than dry alginate. Drying and rehydration nondestructively thins and restores the interfering layer. The strength of the 1451-nm near infrared water absorption varies in unison with thickness. Absorption and layer thickness are proportional for films with different bacteria, substrates, and growth conditions. Formation of the interfering layer is general, possibly depending more on the chemical nature of alginate-like materials than bacterial processes. Films grown during the exponential growth phase produce no observable interference fringes, indicating requirements for layer formation are not met, possibly reflecting bacterial activities at that stage. The interfering layer might provide a protective environment for bacteria when water is scarce.
Thin layer imaging process for microlithography using radiation at strongly attenuated wavelengths
Wheeler, David R.
2004-01-06
A method for patterning of resist surfaces which is particularly advantageous for systems having low photon flux and highly energetic, strongly attenuated radiation. A thin imaging layer is created with uniform silicon distribution in a bilayer format. An image is formed by exposing selected regions of the silylated imaging layer to radiation. The radiation incident upon the silyliated resist material results in acid generation which either catalyzes cleavage of Si--O bonds to produce moieties that are volatile enough to be driven off in a post exposure bake step or produces a resist material where the exposed portions of the imaging layer are soluble in a basic solution, thereby desilylating the exposed areas of the imaging layer. The process is self limiting due to the limited quantity of silyl groups within each region of the pattern. Following the post exposure bake step, an etching step, generally an oxygen plasma etch, removes the resist material from the de-silylated areas of the imaging layer.
NASA Astrophysics Data System (ADS)
Linsmeier, Christian
2004-12-01
The deposition of carbon on metals is the unavoidable consequence of the application of different wall materials in present and future fusion experiments like ITER. Presently used and prospected materials besides carbon (CFC materials in high heat load areas) are tungsten and beryllium. The simultaneous application of different materials leads to the formation of surface compounds due to the erosion, transport and re-deposition of material during plasma operations. The formation and erosion processes are governed by widely varying surface temperatures and kinetic energies as well as the spectrum of impinging particles from the plasma. The knowledge of the dependence on these parameters is crucial for the understanding and prediction of the compound formation on wall materials. The formation of surface layers is of great importance, since they not only determine erosion rates, but also influence the ability of the first wall for hydrogen isotope inventory accumulation and release. Surface compound formation, diffusion and erosion phenomena are studied under well-controlled ultra-high vacuum conditions using in-situ X-ray photoelectron spectroscopy (XPS) and ion beam analysis techniques available at a 3 MV tandem accelerator. XPS provides chemical information and allows distinguishing elemental and carbidic phases with high surface sensitivity. Accelerator-based spectroscopies provide quantitative compositional analysis and sensitivity for deuterium in the surface layers. Using these techniques, the formation of carbidic layers on metals is studied from room temperature up to 1700 K. The formation of an interfacial carbide of several monolayers thickness is not only observed for metals with exothermic carbide formation enthalpies, but also in the cases of Ni and Fe which form endothermic carbides. Additional carbon deposited at 300 K remains elemental. Depending on the substrate, carbon diffusion into the bulk starts at elevated temperatures together with additional carbide formation. Depending on the bond nature in the carbide (metallic in the transition metal carbides, ionic e.g. in Be2C), the surface carbide layer is dissolved upon further increased temperatures or remains stable. Carbide formation can also be initiated by ion bombardment, both of chemically inert noble gas ions or C+ or CO+ ions. In the latter case, a deposition-erosion equilibrium develops which leads to a ternary surface layer of constant thickness. A chemical erosion channel is also discussed for the enhanced erosion of thin carbon films on metals by deuterium ions.
Metal Matrix Composite Material by Direct Metal Deposition
NASA Astrophysics Data System (ADS)
Novichenko, D.; Marants, A.; Thivillon, L.; Bertrand, P. H.; Smurov, I.
Direct Metal Deposition (DMD) is a laser cladding process for producing a protective coating on the surface of a metallic part or manufacturing layer-by-layer parts in a single-step process. The objective of this work is to demonstrate the possibility to create carbide-reinforced metal matrix composite objects. Powders of steel 16NCD13 with different volume contents of titanium carbide are tested. On the base of statistical analysis, a laser cladding processing map is constructed. Relationships between the different content of titanium carbide in a powder mixture and the material microstructure are found. Mechanism of formation of various precipitated titanium carbides is investigated.
BOREAS Forest Cover Data Layers of the NSA in Raster Format
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Knapp, David; Tuinhoff, Manning
2000-01-01
This data set was processed by BORIS staff from the original vector data of species, crown closure, cutting class, and site classification/subtype into raster files. The original polygon data were received from Linnet Graphics, the distributor of data for MNR. In the case of the species layer, the percentages of species composition were removed. This reduced the amount of information contained in the species layer of the gridded product, but it was necessary in order to make the gridded product easier to use. The original maps were produced from 1:15,840-scale aerial photography collected in 1988 over an area of the BOREAS NSA MSA. The data are stored in binary, image format files and they are available from Oak Ridge National Laboratory. The data files are available on a CD-ROM (see document number 20010000884).
Lin, Ying-Chung; Li, Wei; Sun, Ying-Hsuan; Kumari, Sapna; Wei, Hairong; Li, Quanzi; Tunlaya-Anukit, Sermsawat; Sederoff, Ronald R.; Chiang, Vincent L.
2013-01-01
Wood is an essential renewable raw material for industrial products and energy. However, knowledge of the genetic regulation of wood formation is limited. We developed a genome-wide high-throughput system for the discovery and validation of specific transcription factor (TF)–directed hierarchical gene regulatory networks (hGRNs) in wood formation. This system depends on a new robust procedure for isolation and transfection of Populus trichocarpa stem differentiating xylem protoplasts. We overexpressed Secondary Wall-Associated NAC Domain 1s (Ptr-SND1-B1), a TF gene affecting wood formation, in these protoplasts and identified differentially expressed genes by RNA sequencing. Direct Ptr-SND1-B1–DNA interactions were then inferred by integration of time-course RNA sequencing data and top-down Graphical Gaussian Modeling–based algorithms. These Ptr-SND1-B1-DNA interactions were verified to function in differentiating xylem by anti-PtrSND1-B1 antibody-based chromatin immunoprecipitation (97% accuracy) and in stable transgenic P. trichocarpa (90% accuracy). In this way, we established a Ptr-SND1-B1–directed quantitative hGRN involving 76 direct targets, including eight TF and 61 enzyme-coding genes previously unidentified as targets. The network can be extended to the third layer from the second-layer TFs by computation or by overexpression of a second-layer TF to identify a new group of direct targets (third layer). This approach would allow the sequential establishment, one two-layered hGRN at a time, of all layers involved in a more comprehensive hGRN. Our approach may be particularly useful to study hGRNs in complex processes in plant species resistant to stable genetic transformation and where mutants are unavailable. PMID:24280390
NASA Astrophysics Data System (ADS)
Osnes, A. N.; Vartdal, M.; Pettersson Reif, B. A.
2018-05-01
The formation of jets from a shock-accelerated cylindrical shell of particles, confined in a Hele-Shaw cell, is studied by means of numerical simulation. A number of simulations have been performed, systematically varying the coupling between the gas and solid phases in an effort to identify the primary mechanism(s) responsible for jet formation. We find that coupling through drag is sufficient for the formation of jets. Including the effect of particle volume fraction and particle collisions did not alter the general behaviour, but had some influence on the length, spacing and number of jets. Furthermore, we find that the jet selection process starts early in the dispersal process, during the initial expansion of the particle layer.
NASA Astrophysics Data System (ADS)
Lee, Ilbok; Jeong, Gyoung Hwa; An, Soyeon; Kim, Sang-Wook; Yoon, Songhun
2018-01-01
Herein, MnNi-layered double hydroxides (LDH) were imbibed within the interlayers of graphene nanosheets. The anionic surfactant, sodium dodecyl sulfate played a role of graphite exfoliator adding interaction with metal cations. Using this process, layered MnNi-LDH-graphene nanocomposite was prepared without formation of graphene oxide. When applied into pseudocapacitor electrode, LDH-graphene with optimal ratio between Mn and Ni exhibited very stable cycle with 90% at 1400 cycles and high energy 47.29 Wh kg-1 at the power density of 7473 W kg-1, which was attributed to highly stable layered LDH structure within conductive graphene layers.
Highly uniform and vertically aligned SnO2 nanochannel arrays for photovoltaic applications
NASA Astrophysics Data System (ADS)
Kim, Jae-Yup; Kang, Jin Soo; Shin, Junyoung; Kim, Jin; Han, Seung-Joo; Park, Jongwoo; Min, Yo-Sep; Ko, Min Jae; Sung, Yung-Eun
2015-04-01
Nanostructured electrodes with vertical alignment have been considered ideal structures for electron transport and interfacial contact with redox electrolytes in photovoltaic devices. Here, we report large-scale vertically aligned SnO2 nanochannel arrays with uniform structures, without lateral cracks fabricated by a modified anodic oxidation process. In the modified process, ultrasonication is utilized to avoid formation of partial compact layers and lateral cracks in the SnO2 nanochannel arrays. Building on this breakthrough, we first demonstrate the photovoltaic application of these vertically aligned SnO2 nanochannel arrays. These vertically aligned arrays were directly and successfully applied in quasi-solid state dye-sensitized solar cells (DSSCs) as photoanodes, yielding reasonable conversion efficiency under back-side illumination. In addition, a significantly short process time (330 s) for achieving the optimal thickness (7.0 μm) and direct utilization of the anodized electrodes enable a simple, rapid and low-cost fabrication process. Furthermore, a TiO2 shell layer was coated on the SnO2 nanochannel arrays by the atomic layer deposition (ALD) process for enhancement of dye-loading and prolonging the electron lifetime in the DSSC. Owing to the presence of the ALD TiO2 layer, the short-circuit photocurrent density (Jsc) and conversion efficiency were increased by 20% and 19%, respectively, compared to those of the DSSC without the ALD TiO2 layer. This study provides valuable insight into the development of efficient SnO2-based photoanodes for photovoltaic application by a simple and rapid fabrication process.Nanostructured electrodes with vertical alignment have been considered ideal structures for electron transport and interfacial contact with redox electrolytes in photovoltaic devices. Here, we report large-scale vertically aligned SnO2 nanochannel arrays with uniform structures, without lateral cracks fabricated by a modified anodic oxidation process. In the modified process, ultrasonication is utilized to avoid formation of partial compact layers and lateral cracks in the SnO2 nanochannel arrays. Building on this breakthrough, we first demonstrate the photovoltaic application of these vertically aligned SnO2 nanochannel arrays. These vertically aligned arrays were directly and successfully applied in quasi-solid state dye-sensitized solar cells (DSSCs) as photoanodes, yielding reasonable conversion efficiency under back-side illumination. In addition, a significantly short process time (330 s) for achieving the optimal thickness (7.0 μm) and direct utilization of the anodized electrodes enable a simple, rapid and low-cost fabrication process. Furthermore, a TiO2 shell layer was coated on the SnO2 nanochannel arrays by the atomic layer deposition (ALD) process for enhancement of dye-loading and prolonging the electron lifetime in the DSSC. Owing to the presence of the ALD TiO2 layer, the short-circuit photocurrent density (Jsc) and conversion efficiency were increased by 20% and 19%, respectively, compared to those of the DSSC without the ALD TiO2 layer. This study provides valuable insight into the development of efficient SnO2-based photoanodes for photovoltaic application by a simple and rapid fabrication process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00202h
NASA Astrophysics Data System (ADS)
Otsuka, Shigenori; Takeshita, Megumi; Yoden, Shigeo
2014-12-01
The tropopause inversion layer (TIL) is a persistent layer with high static stability. Although some mechanisms for the formation of the TIL have been proposed, the time evolution of the TIL under realistic conditions especially when factoring in the contribution of small-scale processes such as gravity waves is not well understood. To gain an understanding of this factor, we conducted a numerical experiment on an explosive cyclogenesis in mid-latitudes using a nonhydrostatic regional atmospheric model. Although the TIL in the model is consistent with previous observations in the sense that it is stronger in the negative vorticity areas, the relationship is clear only in the development and mature stages of a cyclone, suggesting that the evolution of the cyclone plays an important role in the formation of the TIL. To ascertain the effects of gravity waves on the TIL, vertical convergence at the tropopause is analyzed. Histograms of maximum buoyancy frequency squared within the TIL show that regions of vertical convergence have higher , in addition to regions with high ∂ 2 w/ ∂ z 2, implying that waves having downward phase propagation also play an important role in the dynamical formation of the TIL. This tendency is clearer in regions of negative relative vorticity at the tropopause. By taking account of the fact that the gravity wave activities associated with the cyclone and the jet streak are enhanced during the development and mature stages of the cyclone, vertical convergence due to gravity waves associated with synoptic weather systems can be seen to be a key process in the formation of the negative correlation between the strength of the TIL and the local relative vorticity at the tropopause.
Reducing the stair step effect of layer manufactured surfaces by ball burnishing
NASA Astrophysics Data System (ADS)
Hiegemann, Lars; Agarwal, Chiranshu; Weddeling, Christian; Tekkaya, A. Erman
2016-10-01
The layer technology enables fast and flexible additive manufacturing of forming tools. The disadvantages of this system is the formation of stair steps in the range of tool radii. Within this work a new method to smooth this stair steps by ball burnishing is introduced. This includes studies on the general feasibility of the process and the determination of the influence of the rolling parameters. The investigations are carried out experimentally and numerically. Ultimately, the gained knowledge is applied to finish a deep drawing tool which is manufactured by layer technology.
STM studies of GeSi thin layers epitaxially grown on Si(111)
NASA Astrophysics Data System (ADS)
Motta, N.; Sgarlata, A.; De Crescenzi, M.; Derrien, J.
1996-08-01
Ge/Si alloys were prepared in UHV by solid phase epitaxy on Si(111) substrates. The alloy formation, as a function of the evaporation rate and the Ge layer thickness has been followed in situ by RHEED and scanning tunneling microscopy. The 5 × 5 surface reconstruction appeared after annealing at 450°C Ge layers (up to 10 Å thick), obtained from a low rate Knudsen cell evaporator. In this case a nearly flat and uniform layer of reconstructed alloy was observed. When using an e-gun high rate evaporator we needed to anneal the Ge layer up to 780°C to obtain a 5 × 5 reconstruction. The grown layer was not flat, with many steps and Ge clusters; at high coverages (10 Å and more) large Ge islands appeared. Moreover, we then succeeded in visualizing at atomic resolution the top of some of these Ge islands which displayed a 2 × 1 reconstruction, probably induced from the high compressive strain due to the lattice mismatch with the substrate. We suggest that this unusual behavior could be connected to the high evaporation rate, which helped the direct formation of Ge microcrystals on the Si substrate during the deposition process.
Fortes, Ana M; Testillano, Pilar S; Del Carmen Risueño, Maria; Pais, Maria S
2002-09-01
Callose and cutin deposition were followed by staining with Aniline Blue and Nile Red and by immunolocalization using antibodies raised against callose. Along with morphogenesis induction from internodes of Humulus lupulus var. Nugget, a temporal and spatial differential deposition of callose and cutin was observed. A cutin layer showing bright yellow autofluorescence appears, surrounding cells or groups of cells committed to express morphogenic competence. This cutin layer that evolves to a randomly organized network appeared underneath a callose layer and may create a specific cellular environment with altered permeability and altered receptors providing conditions for entering the cell cycle. The incipient callose accumulation in control explants cultured on basal medium suggests the involvement of callose in the initiation of the morphogenic programme leading to nodule formation. A scanning electron microscopic study during the organogenic process showed that before shoot bud regeneration, the cutin layer increases in thickness and acquires a smooth texture. This cutin layer is specific to nodular organogenic regions and disappeared with plantlet regeneration. This layer may control permeability to water and solute transfer throughout plantlet regeneration.
Wójcicki, Tomasz; Nowicki, Michał
2016-01-01
The article presents a selected area of research and development concerning the methods of material analysis based on the automatic image recognition of the investigated metallographic sections. The objectives of the analyses of the materials for gas nitriding technology are described. The methods of the preparation of nitrided layers, the steps of the process and the construction and operation of devices for gas nitriding are given. We discuss the possibility of using the methods of digital images processing in the analysis of the materials, as well as their essential task groups: improving the quality of the images, segmentation, morphological transformations and image recognition. The developed analysis model of the nitrided layers formation, covering image processing and analysis techniques, as well as selected methods of artificial intelligence are presented. The model is divided into stages, which are formalized in order to better reproduce their actions. The validation of the presented method is performed. The advantages and limitations of the developed solution, as well as the possibilities of its practical use, are listed. PMID:28773389
NASA Astrophysics Data System (ADS)
Khasanov, M. K.; Stolpovsky, M. V.; Gimaltdinov, I. K.
2018-05-01
In this article, in a flat-one-dimensional approximation, a mathematical model is presented for injecting warm carbon dioxide into a methane hydrate formation of finite length. It is established that the model of formation of hydrate of carbon dioxide in the absence of an area saturated with methane and water, under certain parameters, leads to thermodynamic contradiction. The mathematical model of carbon dioxide injection with formation of the region saturated with methane and water is constructed.
Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method
NASA Astrophysics Data System (ADS)
Kim, Jong-Woo; Yang, Ki-Yeon; Hong, Sung-Hoon; Lee, Heon
2008-06-01
For future device applications, fabrication of the metal nano-patterns on various substrates, such as Si wafer, non-planar glass lens and flexible plastic films become important. Among various nano-patterning technologies, nano-transfer print method is one of the simplest techniques to fabricate metal nano-patterns. In nano-transfer printing process, thin Au layer is deposited on flexible PDMS mold, containing surface protrusion patterns, and the Au layer is transferred from PDMS mold to various substrates due to the difference of bonding strength of Au layer to PDMS mold and to the substrate. For effective transfer of Au layer, self-assembled monolayer, which has strong bonding to Au, is deposited on the substrate as a glue layer. In this study, complicated SAM layer coating process was replaced to simple UV/ozone treatment, which can activates the surface and form the -OH radicals. Using simple UV/ozone treatments on both Au and substrate, Au nano-pattern can be successfully transferred to as large as 6 in. diameter Si wafer, without SAM coating process. High fidelity transfer of Au nano-patterns to non-planar glass lens and flexible PET film was also demonstrated.
NASA Astrophysics Data System (ADS)
Fernandes, B. B.; Mändl, S.; Oliveira, R. M.; Ueda, M.
2014-08-01
The formation of hard and wear resistant surface regions for austenitic stainless steel through different nitriding and nitrogen implantation processes at intermediate temperatures is an established technology. As the inserted nitrogen remains in solid solution, an expanded austenite phase is formed, accounting for these surface improvements. However, experiments on long-term behavior and exact wear processes within the expanded austenite layer are still missing. Here, the modified layers were produced using plasma immersion ion implantation with nitrogen gas and had a thickness of up to 4 μm, depending on the processing temperature. Thicker layers or those with higher surface nitrogen contents presented better wear resistance, according to detailed microscopic investigation on abrasion, plastic deformation, cracking and redeposition of material inside the wear tracks. At the same time, cyclic fatigue testing employing a nanoindenter equipped with a diamond ball was carried out at different absolute loads and relative unloadings. As the stress distribution between the modified layer and the substrate changes with increasing load, additional simulations were performed for obtaining these complex stress distributions. While high nitrogen concentration and/or thicker layers improve the wear resistance and hardness, these modifications simultaneously reduce the surface fatigue resistance.
Berger, Nele; Es-Souni, Mohammed
2016-07-12
Large-area ordered nanorod (NR) arrays of various functional materials can be easily and cost-effectively processed using on-substrate anodized porous aluminum oxide (PAO) films as templates. However, reproducibility in the processing of PAO films is still an issue because they are prone to delamination, and control of fabrication parameters such as electrolyte type and concentration and anodizing time is critical for making robust templates and subsequently mechanically reliable NR arrays. In the present work, we systematically investigate the effects of the fabrication parameters on pore base morphology, devise a method to avoid delamination, and control void formation under the barrier layer of PAO films on gold underlayers. Via systematic control of the anodization parameters, particularly the anodization current density and time, we follow the different stages of void development and discuss their formation mechanisms. The practical aspect of this work demonstrates how void size can be controlled and how void formation can be utilized to control the shape of NR bases for improving the mechanical stability of the NRs.
Xiong, W; Zhou, Yunshen; Hou, Wenjia; ...
2015-11-10
Direct formation of graphene with controlled number of graphitic layers on dielectric surfaces is highly desired for practical applications. Despite significant progress achieved in understanding the formation of graphene on metallic surfaces through chemical vapor deposition (CVD) of hydrocarbons, very limited research is available elucidating the graphene formation process via rapid thermal processing (RTP) of solid-state amorphous carbon, through which graphene is formed directly on dielectric surfaces accompanied by autonomous nickel evaporation. It is suggested that a metastable hexagonal nickel carbide (Ni 3C) intermediate phase plays a critical role in transforming amorphous carbon to 2D crystalline graphene and contributing tomore » the autonomous Ni evaporation. Temperature resolved carbon and nickel evolution in the RTP process is investigated using Auger electron spectroscopic (AES) depth profiling and glancing-angle X-ray diffraction (GAXRD). Formation, migration and decomposition of the hexagonal Ni 3C are confirmed to be responsible for the formation of graphene and the evaporation of Ni at 1100 °C. The Ni 3C-assisted graphene formation mechanism expands the understanding of Ni-catalyzed graphene formation, and provides insightful guidance for controlled growth of graphene through the solid-state transformation process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudo, Takuya; Inoue, Tomoya; Kita, Takashi
2008-10-01
Self-assembling process of InAs/GaAs quantum dots has been investigated by analyzing reflection high-energy electron diffraction chevron images reflecting the crystal facet structure surrounding the island. The chevron image shows dramatic changes during the island formation. From the temporal evolution of the chevron tail structure, the self-assembling process has been found to consist of four steps. The initial islands do not show distinct facet structures. Then, the island surface is covered by high-index facets, and this is followed by the formation of stable low-index facets. Finally, the flow of In atoms from the islands occurs, which contributes to flatten the wettingmore » layer. Furthermore, we have investigated the island shape evolution during the GaAs capping layer growth by using the same real-time analysis technique.« less
Microstructures and Mechanical Properties of Friction Stir Spot Welded Aluminum Alloy AA2014
NASA Astrophysics Data System (ADS)
Babu, S.; Sankar, V. S.; Janaki Ram, G. D.; Venkitakrishnan, P. V.; Madhusudhan Reddy, G.; Prasad Rao, K.
2013-01-01
Friction stir spot welding (FSSW) is a relatively recent development, which can provide a superior alternative to resistance spot welding and riveting for fabrication of aluminum sheet metal structures. In the current work, FSSW experiments were conducted in 3-mm thick sheets of aluminum alloy 2014 in T4 and T6 conditions, with and without Alclad layers. The effects of tool geometry and welding process parameters on joint formation were investigated. A good correlation between process parameters, bond width, hook height, joint strength, and fracture mode was observed. The presence of Alclad layers and the base metal temper condition were found to have no major effect on joint formation and joint strength. Friction stir spot welds produced under optimum conditions were found to be superior to riveted joints in lap-shear and cross-tension tests. The prospects of FSSW in aluminum sheet metal fabrication are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukov, Mikhail, E-mail: cloudjyk@yandex.ru; Golubok, Alexander; Institute for Analytical Instrumentation, Russian Academy of Sciences
The new specialized AFM-probes with hydroxyapatite structures for atomic force microscopy of heart tissues calcification were created and studied. A process of probe fabrication is demonstrated. The adhesive forces between specialized hydroxyapatite probe and endothelium/subendothelial layers were investigated. It was found that the adhesion forces are significantly higher for the subendothelial layers. We consider that it is connected with the formation and localization of hydroxyapatite in the area of subendothelial layers of heart tissues. In addition, the roughness analysis and structure visualization of the endothelial surface of the heart tissue were carried out. The results show high efficiency of createdmore » specialized probes at study a calcinations process of the aortic heart tissues.« less
Model of formation of droplets during electric arc surfacing of functional coatings
NASA Astrophysics Data System (ADS)
Sarychev, Vladimir D.; Granovskii, Alexei Yu; Nevskii, Sergey A.; Gromov, Victor E.
2016-01-01
The mathematical model was developed for the initial stage of formation of an electrode metal droplet in the process of arc welding. Its essence lies in the fact that the presence of a temperature gradient in the boundary layer of the molten metal causes thermo-capillary instability, which leads to the formation of electrode metal droplets. A system of equations including Navier-Stokes equations, heat conduction and Maxwell's equations was solved as well as the boundary conditions for the system electrodes-plasma. Dispersion equation for thermo-capillary waves in the linear approximation for the plane layer was received and analyzed. The values of critical wavelengths, at which thermo-capillary instability appears in the nanometer wavelength range, were found. The parameters at which the mode of a fine-droplet transfer of the material takes place were theoretically defined.
Experimental studies of combustion in a two dimensional free shear layer
NASA Technical Reports Server (NTRS)
Pitz, R. W.; Daily, J. W.
1979-01-01
The effect of combustion on the turbulent free shear layer formed at a rearward facing step has been studied. Schlieren movies confirm the importance of large scale vortices in determining entrainment and mixing behavior. The movies, long exposure schlieren photographs, and laser anemometry velocity profiles are used to observe the spreading rate of the layer and to study the vortex formation process. It is concluded that to first order, the primary effect of combustion is felt through the change in density ratio across the layer and acceleration of the flow due to volumetric expansion of the fluid in a confined duct.
Treating tar sands formations with dolomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinegar, Harold J.; Karanikas, John Michael
A method for treating a karsted formation containing heavy hydrocarbons and dolomite includes providing heat to at least part of one or more karsted layers in the formation from one or more heaters located in the karsted layers. A temperature in at least one of the karsted layers is allowed to reach a decomposition temperature of dolomite in the formation. The dolomite is allowed to decompose and at least some hydrocarbons are produced from at least one of the karsted layers of the formation.
Reading the climate record of the martian polar layered deposits
Hvidberg, C.S.; Fishbaugh, K.E.; Winstrup, M.; Svensson, A.; Byrne, S.; Herkenhoff, K. E.
2012-01-01
The martian polar regions have layered deposits of ice and dust. The stratigraphy of these deposits is exposed within scarps and trough walls and is thought to have formed due to climate variations in the past. Insolation has varied significantly over time and caused dramatic changes in climate, but it has remained unclear whether insolation variations could be linked to the stratigraphic record. We present a model of layer formation based on physical processes that expresses polar deposition rates of ice and dust in terms of insolation. In this model, layer formation is controlled by the insolation record, and dust-rich layers form by two mechanisms: (1) increased summer sublimation during high obliquity, and (2) variations in the polar deposition of dust modulated by obliquity variations. The model is simple, yet physically plausible, and allows for investigations of the climate control of the polar layered deposits (PLD). We compare the model to a stratigraphic column obtained from the north polar layered deposits (NPLD) (Fishbaugh, K.E., Hvidberg, C.S., Byrne, S., Russel, P.S., Herkenhoff, K.E., Winstrup, M., Kirk, R. [2010a]. Geophys. Res. Lett., 37, L07201) and show that the model can be tuned to reproduce complex layer sequences. The comparison with observations cannot uniquely constrain the PLD chronology, and it is limited by our interpretation of the observed stratigraphic column as a proxy for NPLD composition. We identified, however, a set of parameters that provides a chronology of the NPLD tied to the insolation record and consistently explains layer formation in accordance with observations of NPLD stratigraphy. This model dates the top 500 m of the NPLD back to ∼1 million years with an average net deposition rate of ice and dust of 0.55 mm a−1. The model stratigraphy contains a quasi-periodic ∼30 m cycle, similar to a previously suggested cycle in brightness profiles from the NPLD (Laskar, J., Levrard, B., Mustard, F. [2002]. Nature, 419, 375–377; Milkovich, S., Head, J.W. [2005]. J. Geophys. Res. 110), but here related to half of the obliquity cycles of 120 and 99 kyr and resulting from a combination of the two layer formation mechanisms. Further investigations of the non-linear insolation control of PLD formation should consider data from other geographical locations and include radar data and other stratigraphic datasets that can constrain the composition and stratigraphy of the NPLD layers.
The ocean mixed layer under Southern Ocean sea-ice: seasonal cycle and forcing.
NASA Astrophysics Data System (ADS)
Violaine, P.; Sallee, J. B.; Schmidtko, S.; Roquet, F.; Charrassin, J. B.
2016-02-01
The mixed-layer at the surface of the ocean is the gateway for all exchanges between air and sea. A vast area of the Southern Ocean is however seasonally capped by sea-ice, which alters this gateway and the characteristic the ocean mixed-layer. The interaction between the ocean mixed-layer and sea-ice plays a key role for water-mass formation and circulation, carbon cycle, sea-ice dynamics, and ultimately for the climate as a whole. However, the structure and characteristics of the mixed layer, as well as the processes responsible for its evolution, are poorly understood due to the lack of in-situ observations and measurements. We urgently need to better understand the forcing and the characteristics of the ocean mixed-layer under sea-ice if we are to understand and predict the world's climate. In this study, we combine a range of distinct sources of observation to overcome this lack in our understanding of the Polar Regions. Working on Elephant Seal-derived data as well as ship-based observations and Argo float data, we describe the seasonal cycle of the characteristics and stability of the ocean mixed layer over the entire Southern Ocean (South of 40°S), and specifically under sea-ice. Mixed-layer budgets of heat and freshwater are used to investigate the main forcings of the mixed-layer seasonal cycle. The seasonal variability of sea surface salinity and temperature are primarily driven by surface processes, dominated by sea-ice freshwater flux for the salt budget, and by air-sea flux for the heat budget. Ekman advection, vertical diffusivity and vertical entrainment play only secondary role.Our results suggest that changes in regional sea-ice distribution or sea-ice seasonal cycle duration, as currently observed, would widely affect the buoyancy budget of the underlying mixed-layer, and impacts large-scale water-mass formation and transformation.
Excimer laser annealing: A gold process for CZ silicon junction formation
NASA Technical Reports Server (NTRS)
Wong, David C.; Bottenberg, William R.; Byron, Stanley; Alexander, Paul
1987-01-01
A cold process using an excimer laser for junction formation in silicon has been evaluated as a way to avoid problems associated with thermal diffusion. Conventional thermal diffusion can cause bulk precipitation of SiOx and SiC or fail to completely activate the dopant, leaving a degenerate layer at the surface. Experiments were conducted to determine the feasibility of fabricating high quality p-n junctions using a pulsed excimer laser for junction formation at remelt temperature with ion-implanted surfaces. Solar-cell efficiency exceeding 16 percent was obtained using Czochralski single-crystal silicon without benefit of back surface field or surface passivation. Characterization shows that the formation of uniform, shallow junctions (approximately 0.25 micron) by excimer laser scanning preserves the minority carrier lifetime that leads to high current collection. However, the process is sensitive to initial surface conditions and handling parameters that drive the cost up.
Behr, Rüdiger; Heneweer, Carola; Viebahn, Christoph; Denker, Hans-Werner; Thie, Michael
2005-01-01
Rhesus monkey embryonic stem (rhES) cells were grown on mouse embryonic fibroblast (MEF) feeder layers for up to 10 days to form multilayered colonies. Within this period, stem cell colonies differentiated transiently into complex structures with a disc-like morphology. These complex colonies were characterized by morphology, immunohistochemistry, and marker mRNA expression to identify processes of epithelialization as well as epithelial-mesenchymal transition (EMT) and pattern formation. Typically, differentiated colonies were comprised of an upper and a lower ES cell layer, the former growing on top of the layer of MEF cells whereas the lower ES cell layer spread out underneath the MEF cells. Interestingly, in the central part of the colonies, a roundish pit developed. Here the feeder layer disappeared, and upper layer cells seemed to ingress and migrate through the pit downward to form the lower layer while undergoing a transition from the epithelial to the mesenchymal phenotype, which was indicated by the loss of the marker proteins E-cadherin and ZO-1 in the lower layer. In support of this, we found a concomitant 10-fold upregulation of the gene Snail2, which is a key regulator of the EMT process. Conversion of epiblast to mesoderm was also indicated by the regulated expression of the mesoderm marker Brachyury. An EMT is a characteristic process of vertebrate gastrulation. Thus, these rhES cell colonies may be an interesting model for studies on some basic processes involved in early primate embryogenesis and may open new ways to study the regulation of EMT in vitro.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oertel, M., E-mail: michael.oertel@uni-jena.de; Ronning, C.
2015-03-14
Phase reactions occurring during a low temperature selenization of thin In/Cu-multilayer stacks were investigated by ex-situ x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDS). Therefore, dc-sputtered In/Cu-multilayers onto molybdenum coated soda lime glass were selenized in a high vacuum system at temperatures between 260 and 340 °C with different dwell times and selenium supply. The combination of the results of the phase analysis by XRD and the measurements of the in-depth elemental distribution by EDS allowed a conclusion on the occurring reactions within the layer depth. We found two CuInSe{sub 2} formation processes depending on the applied temperature. Already, atmore » a heater temperature of 260 °C, the CuInSe{sub 2} formation can occur by the reaction of Cu{sub 2−x}Se with In{sub 4}Se{sub 3} and Se. At 340 °C, CuInSe{sub 2} is formed by the reaction of Cu{sub 2−x}Se with InSe and Se. Because both reactions need additional selenium, the selenium supply during the selenization can shift the reaction equilibria either to the metal binaries side or to the CuInSe{sub 2} side. Interestingly, a lower selenium supply shifts the equilibrium to the CuInSe{sub 2} side, because the amount of selenium incorporated into the metallic layer is higher for a lower selenium supply. Most likely, a larger number of grain boundaries are the reason for the stronger selenium incorporation. The results of the phase formation studies were used to design a two stage selenization process to get a defined structure of an indium selenide- and a copper selenide-layer at low temperatures as the origin for a controlled interdiffusion to form the CuInSe{sub 2}-absorber-layer at higher temperatures. The approach delivers a CuInSe{sub 2} absorber which reach total area efficiencies of 11.8% (13.0% active area) in a CuInSe{sub 2}-thin-film solar cell. A finished formation of CuInSe{sub 2} at low temperature was not observed in our experiments but is probably possible for longer dwell times.« less
Pd-Pt and Fe-Ni nanoparticles formed by covalent molecular assembly in supercritical carbon dioxide.
Puniredd, Sreenivasa Reddy; Weiyi, Seah; Srinivasan, M P
2008-04-01
We report the formation of Pd-Pt nanoparticles within a dendrimer-laden ultrathin film matrix immobilized on a solid support and constructed by covalent layer-by-layer (LbL) assembly using supercritical carbon dioxide (SCCO2) as the processing medium. Particle size distribution and composition were controlled by precursor composition. The precursor compositions are optimized for Pd-Pt nanoparticles and later extended to the formation of Fe-Ni nanoparticles. As an example of the application of nanoparticles in tribology, Fe-Ni nanoparticle-laden films were observed to exhibit better tribological properties than those containing the monometallic species, thereby suggesting that combination of nanoparticles can be used to derive greater benefits.
Mixed material formation and erosion
NASA Astrophysics Data System (ADS)
Linsmeier, Ch.; Luthin, J.; Goldstraß, P.
2001-03-01
The formation of mixed phases on materials relevant for first wall components of fusion devices is studied under well-defined conditions in ultra-high vacuum (UHV). This is necessary in order to determine fundamental parameters governing the basic processes of chemical reaction, material mixing and erosion. We examined the binary systems comprising of the wall materials beryllium, silicon, tungsten and titanium and carbon, the latter being both a wall material and a plasma impurity. Experiments were carried out to study the interaction of carbon in the form of a vapor-deposited component on clean, well-defined elemental surfaces. The chemical composition and the binding state are measured by X-ray photoelectron spectroscopy (XPS) after annealing treatments. For all materials, a limited carbide formation is found at room temperature. Annealing carbon films on elemental substrate leads to a complete carbidization of the carbon layer. The carbide layers on Be and Si are stable even at very high temperatures, whereas the carbides of Ti and W dissolve. The erosion of these two metals by sputtering is then identical to the pure metals, whereas for Be and Si a protective carbide layer can reduce the sputtering yields.
Tube Formation in Nanoscale Materials
2008-01-01
The formation of tubular nanostructures normally requires layered, anisotropic, or pseudo-layered crystal structures, while inorganic compounds typically do not possess such structures, inorganic nanotubes thus have been a hot topic in the past decade. In this article, we review recent research activities on nanotubes fabrication and focus on three novel synthetic strategies for generating nanotubes from inorganic materials that do not have a layered structure. Specifically, thermal oxidation method based on gas–solid reaction to porous CuO nanotubes has been successfully established, semiconductor ZnS and Nb2O5nanotubes have been prepared by employing sacrificial template strategy based on liquid–solid reaction, and an in situ template method has been developed for the preparation of ZnO taper tubes through a chemical etching reaction. We have described the nanotube formation processes and illustrated the detailed key factors during their growth. The proposed mechanisms are presented for nanotube fabrication and the important pioneering studies are discussed on the rational design and fabrication of functional materials with tubular structures. It is the intention of this contribution to provide a brief account of these research activities. PMID:20592945
NASA Technical Reports Server (NTRS)
Niles, P.B.
2008-01-01
The chemistry, sedimentology, and geology of the Meridiani sedimentary deposits are best explained by eolian reworking of the sublimation residue of a large scale ice/dust deposit. This large ice deposit was located in close proximity to Terra Meridiani and incorporated large amounts of dust, sand, and SO2 aerosols generated by impacts and volcanism during early martian history. Sulfate formation and chemical weathering of the initial igneous material is hypothesized to have occurred inside of the ice when the darker mineral grains were heated by solar radiant energy. This created conditions in which small films of liquid water were created in and around the mineral grains. This water dissolved the SO2 and reacted with the mineral grains forming an acidic environment under low water/rock conditions. Subsequent sublimation of this ice deposit left behind large amounts of weathered sublimation residue which became the source material for the eolian process that deposited the Terra Meridiani deposit. The following features of the Meridiani sediments are best explained by this model: The large scale of the deposit, its mineralogic similarity across large distances, the cation-conservative nature of the weathering processes, the presence of acidic groundwaters on a basaltic planet, the accumulation of a thick sedimentary sequence outside of a topographic basin, and the low water/rock ratio needed to explain the presence of very soluble minerals and elements in the deposit. Remote sensing studies have linked the Meridiani deposits to a number of other martian surface features through mineralogic similarities, geomorphic similarities, and regional associations. These include layered deposits in Arabia Terra, interior layered deposits in the Valles Marineris system, southern Elysium/Aeolis, Amazonis Planitia, and the Hellas basin, Aram Chaos, Aureum Chaos, and Ioni Chaos. The common properties shared by these deposits suggest that all of these deposits share a common formation process which must have acted over a large area of Mars. The results of this study suggest a mechanism for volatile transport on Mars without invoking an early greenhouse. They also imply a common formation mechanism for most of the sulfate minerals and layered deposits on Mars, which explains their common occurrence.
Mechanisms of nitrous oxide (N2 O) formation and reduction in denitrifying biofilms.
Sabba, Fabrizio; Picioreanu, Cristian; Nerenberg, Robert
2017-12-01
Nitrous oxide (N 2 O) is a potent greenhouse gas that can be formed in wastewater treatment processes by ammonium oxidizing and denitrifying microorganisms. While N 2 O emissions from suspended growth systems have been extensively studied, and some recent studies have addressed emissions from nitrifying biofilms, much less is known about N 2 O emissions from denitrifying biofilm processes. This research used modeling to evaluate the mechanisms of N 2 O formation and reduction in denitrifying biofilms. The kinetic model included formation and consumption of key denitrification species, including nitrate (NO3-), nitrite (NO2-), nitric oxide (NO), and N 2 O. The model showed that, in presence of excess of electron donor, denitrifying biofilms have two distinct layers of activity: an outer layer where there is net production of N 2 O and an inner layer where there is net consumption. The presence of oxygen (O 2 ) had an important effect on N 2 O emission from suspended growth systems, but a smaller effect on biofilm systems. The effects of NO3- and O 2 differed significantly based on the biofilm thickness. Overall, the effects of biofilm thickness and bulk substrate concentrations on N 2 O emissions are complex and not always intuitive. A key mechanism for denitrifying biofilms is the diffusion of N 2 O and other intermediates from one zone of the biofilm to another. This leads to zones of N 2 O formation or consumption transformations that would not exist in suspended growth systems. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhdanova, A. O.; Kuznetsov, G. V.; Strizhak, P. A.
2014-07-01
A numerical investigation of the physicochemical processes occurring during water evaporation from the pores of the surface layer of a forest combustible material has been carried out. The characteristic features of the suppression of the thermal decomposition reaction of a combustible material with water filling fullyits pores and formation of a water fi lm over its surface have been determined. The characteristic times of suppression of thermal decomposition reactions under various environmental conditions and the thickness and kinds of forest combustible material (birch leaves, pine and spruce needles, etc.) have been established.
Brine rejection from freezing salt solutions: a molecular dynamics study.
Vrbka, Lubos; Jungwirth, Pavel
2005-09-30
The atmospherically and technologically very important process of brine rejection from freezing salt solutions is investigated with atomic resolution using molecular dynamics simulations. The present calculations allow us to follow the motion of each water molecule and salt ion and to propose a microscopic mechanism of brine rejection, in which a fluctuation (reduction) of the ion density in the vicinity of the ice front is followed by the growth of a new ice layer. The presence of salt slows down the freezing process, which leads to the formation of an almost neat ice next to a disordered brine layer.
NASA Astrophysics Data System (ADS)
Helling, Ch.; Woitke, P.; Thi, W.-F.
2008-07-01
Aims: Brown dwarfs are covered by dust cloud layers which cause inhomogeneous surface features and move below the observable τ = 1 level during the object's evolution. The cloud layers have a strong influence on the structure and spectral appearance of brown dwarfs and extra-solar planets, e.g. by providing high local opacities and by removing condensable elements from the atmosphere causing a sub-solar metalicity in the atmosphere. We aim at understanding the formation of cloud layers in quasi-static substellar atmospheres that consist of dirty grains composed of numerous small islands of different solid condensates. Methods: The time-dependent description is a kinetic model describing nucleation, growth and evaporation. It is extended to treat gravitational settling and is applied to the static-stationary case of substellar model atmospheres. From the solution of the dust moments, we determine the grain size distribution function approximately which, together with the calculated material volume fractions, provides the basis for applying effective medium theory and Mie theory to calculate the opacities of the composite dust grains. Results: The cloud particles in brown dwarfs and hot giant-gas planets are found to be small in the high atmospheric layers (a ≈ 0.01 μm), and are composed of a rich mixture of all considered condensates, in particular MgSiO3[s], Mg2SiO4[s] and SiO2[s]. As the particles settle downward, they increase in size and reach several 100 μm in the deepest layers. The more volatile parts of the grains evaporate and the particles stepwise purify to form composite particles of high-temperature condensates in the deeper layers, mainly made of Fe[s] and Al2O3[s]. The gas phase abundances of the elements involved in the dust formation process vary by orders of magnitudes throughout the atmosphere. The grain size distribution is found to be relatively broad in the upper atmospheric layers but strongly peaked in the deeper layers. This reflects the cessation of the nucleation process at intermediate heights. The spectral appearance of the cloud layers in the mid IR (7-20 μm) is close to a grey body with only weak broad features of a few percent, mainly caused by MgSiO3[s], and Mg2SiO4[s]. These features are, nevertheless, a fingerprint of the dust in the higher atmospheric layers that can be probed by observations. Conclusions: Our models predict that the gas phase depletion is much weaker than phase-equilibrium calculations in the high atmospheric layers. Because of the low densities, the dust formation process is incomplete there, which results in considerable amounts of left-over elements that might produce stronger and broader neutral metallic lines.
Graham, Wall B.R.; Girbacea, R.; Mesonjesi, A.; Aydin, A.
2006-01-01
The process of fracture and fault formation in carbonates of the Albanides fold-thrust belt has been systematically documented using hierarchical development of structural elements from hand sample, outcrop, and geologic-map scales. The function of fractures and faults in fluid migration was elucidated using calcite cement and bitumen in these structures as a paleoflow indicator. Two prefolding pressure-solution and vein assemblages were identified: an overburden assemblage and a remote tectonic stress assemblage. Sheared layer-parallel pressure-solution surfaces of the overburden assemblage define mechanical layers. Shearing of mechanical layers associated with folding resulted in the formation of a series of folding assemblage fractures at different orientations, depending on the slip direction of individual mechanical layers. Prefolding- and folding-related fracture assemblages together formed fragmentation zones in mechanical layers and are the sites of incipient fault localization. Further deformation along these sites was accommodated by rotation and translation of fragmented rock, which formed breccia and facilitated fault offset across multiple mechanical layers. Strike-slip faults formed by this process are organized in two sets in an apparent conjugate pattern. Calcite cement and bitumen that accumulated along fractures and faults are evidence of localized fluid flow along fault zones. By systematic identification of fractures and faults, their evolution, and their fluid and bitumen contents, along with subsurface core and well-log data, we identify northeast-southwest-trending strike-slip faults and the associated structures as dominant fluid pathways in the Albanides fold-thrust belt. Copyright ?? 2006. The American Association of Petroleum Geologists. All rights reserved.
Wang, Shan; Liao, Tingting; Wang, Lili; Sun, Yang
2016-02-01
Ground observation data from 8 meteorological stations in Xi'an, air mass concentration data from 13 environmental quality monitoring sites in Xi'an, as well as radiosonde observation and wind profile radar data, were used in this study. Thereby, the process, causes and boundary layer meteorological characteristics of a heavy haze episode occurring from 16 to 25 December 2013 in Xi'an were analyzed. Principal component analysis showed that this haze pollution was mainly caused by the high-intensity emission and formation of gaseous pollutants (NO2, CO and SO2) and atmospheric particles (PM2.5 (fine particles) and PM10 (respirable suspended particle). The second cause was the relative humidity and continuous low temperature. The third cause was the allocation of the surface pressure field. The presence of a near-surface temperature inversion at the boundary layer formed favorable stratification conditions for the formation and maintenance of heavy haze pollution. The persistent thick haze layer weakened the solar radiation. Meanwhile, a warming effect in the urban canopy layer and in the transition zone from the urban friction sublayer to the urban canopy was indicated. All these conditions facilitated the maintenance and reinforcement of temperature inversion. The stable atmospheric stratification finally acted on the wind field in the boundary layer, and further weakened the exchange capacity of vertical turbulence. The superposition of a wind field with the horizontal gentle wind induced the typical air stagnation and finally caused the deterioration of air quality during this haze event. Copyright © 2015. Published by Elsevier B.V.
Spatial and directional control of self-assembled wrinkle patterns by UV light absorption
NASA Astrophysics Data System (ADS)
Kortz, C.; Oesterschulze, E.
2017-12-01
Wrinkle formation on surfaces is a phenomenon that is observed in layered systems with a compressed elastic thin capping layer residing on a viscoelastic film. So far, the properties of the viscoelastic material could only be changed replacing it by another material. Here, we propose to use a photosensitive material whose viscoelastic properties, Young's modulus, and glass transition temperature can easily be adjusted by the absorption of UV light. Employing UV lithography masks during the exposure, we gain additionally spatial and directional control of the self-assembled wrinkle pattern formation that relies on a spinodal decomposition process. Inspired by the results on surface wrinkling and its dependence on the intrinsic stress, we also derive a method to avoid wrinkling locally by tailoring the mechanical stress distribution in the layered system choosing UV masks with convex patterns. This is of particular interest in technical applications where the buckling of surfaces is undesirable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padbury, Richard P.; Jur, Jesse S., E-mail: jsjur@ncsu.edu
Previous research exploring inorganic materials nucleation behavior on polymers via atomic layer deposition indicates the formation of hybrid organic–inorganic materials that form within the subsurface of the polymer. This has inspired adaptations to the process, such as sequential vapor infiltration, which enhances the diffusion of organometallic precursors into the subsurface of the polymer to promote the formation of a hybrid organic–inorganic coating. This work highlights the fundamental difference in mass uptake behavior between atomic layer deposition and sequential vapor infiltration using in-situ methods. In particular, in-situ quartz crystal microgravimetry is used to compare the mass uptake behavior of trimethyl aluminummore » in poly(butylene terephthalate) and polyamide-6 polymer thin films. The importance of trimethyl aluminum diffusion into the polymer subsurface and the subsequent chemical reactions with polymer functional groups are discussed.« less
Morphology of Two-Phase Layers with Large Bubbles
NASA Astrophysics Data System (ADS)
Vékony, Klára; Kiss, László I.
2010-10-01
The understanding of formation and movement of bubbles nucleated during aluminum reduction is essential for a good control of the electrolysis process. In our experiments, we filmed and studied the formation of a bubble layer under the anode in a real-size air-water electrolysis cell model. The maximum height of the bubbles was found to be up to 2 cm because of the presence of the so-called Fortin bubbles. Also, the mean height of the bubble layer was found to be much higher than published previously. The Fortin bubbles were investigated more closely, and their shape was found to be induced by a gravity wave formed at the gas-liquid interface. In addition, large bubbles were always observed to break up into smaller parts right before escaping from under the anode. This breakup and escape led to a large momentum transfer in the bath.
Xue, Nan; Khodaparast, Sepideh; Zhu, Lailai; Nunes, Janine K; Kim, Hyoungsoo; Stone, Howard A
2017-12-12
Inducing thermal gradients in fluid systems with initial, well-defined density gradients results in the formation of distinct layered patterns, such as those observed in the ocean due to double-diffusive convection. In contrast, layered composite fluids are sometimes observed in confined systems of rather chaotic initial states, for example, lattes formed by pouring espresso into a glass of warm milk. Here, we report controlled experiments injecting a fluid into a miscible phase and show that, above a critical injection velocity, layering emerges over a time scale of minutes. We identify critical conditions to produce the layering, and relate the results quantitatively to double-diffusive convection. Based on this understanding, we show how to employ this single-step process to produce layered structures in soft materials, where the local elastic properties vary step-wise along the length of the material.
NASA Astrophysics Data System (ADS)
Tkachenko, Ekaterina
2017-11-01
This work presents a hypothesis about the mechanism of bromine activation during polar boundary layer ozone depletion events (ODEs) as well as the mechanism of aerosol formation from the frost flowers. The author suggests that ODEs may be initiated by the electric-field gradients created at the sharp tips of ice formations as a result of the combined effect of various environmental conditions. According to the author's estimates, these electric-field gradients may be sufficient for the onset of point or corona discharges followed by generation of high local concentrations of the reactive oxygen species and initiation of free-radical and redox reactions. This process may be responsible for the formation of seed bromine which then undergoes further amplification by HOBr-driven bromine explosion. The proposed hypothesis may explain a variety of environmental conditions and substrates as well as poor reproducibility of ODE initiation observed by researchers in the field. According to the author's estimates, high wind can generate sufficient conditions for overcoming the Rayleigh limit and thus can initiate ;spraying; of charged aerosol nanoparticles. These charged aerosol nanoparticles can provoke formation of free radicals, turning the ODE on. One can also envision a possible emission of halogen ion as a result of the ;electrospray; process analogous to that of electrospray ionization mass-spectrometry.
NASA Astrophysics Data System (ADS)
Gin, S.; Jollivet, P.; Barba Rossa, G.; Tribet, M.; Mougnaud, S.; Collin, M.; Fournier, M.; Cadel, E.; Cabie, M.; Dupuy, L.
2017-04-01
Significant efforts have been made into understanding the dissolution of silicate glasses and minerals, but there is still debate about the formation processes and the properties of surface layers. Here, we investigate glass coupons of ISG glass - a 6 oxide borosilicate glass of nuclear interest - altered at 90 °C in conditions close to saturation and for durations ranging from 1 to 875 days. Altered glass coupons were characterized from atomic to macroscopic levels to better understand how surface layers become protective. With this approach, it was shown that a rough interface, whose physical characteristics have been modeled, formed in a few days and then propagated into the pristine material at a rate controlled by the reactive transport of water within the growing alteration layer. Several observations such as stiff interfacial B, Na, and Ca profiles and damped profiles within the rest of the alteration layer are not consistent with the classical inter-diffusion model, or with the interfacial dissolution-precipitation model. A new paradigm is proposed to explain these features. Inter-diffusion, a process based on water ingress into the glass and ion-exchange, may only explain the formation of the rough interface in the early stage of glass corrosion. A thin layer of altered glass is formed by this process, and as the layer grows, the accessibility of water to the reactive interface becomes rate-limiting. As a consequence, only the most easily accessible species are dissolved. The others remain undissolved in the alteration layer, probably fixed in highly hydrolysis resistant clusters. A new estimation of water diffusivity in the glass when covered by the passivating layer was determined from the shift between B and H profiles, and was 10-23 m2.s-1, i.e. approximately 3 orders of magnitude lower than water diffusivity in the pristine material. Overall, in the absence of secondary crystalline phases that could consume the major components of the alteration layer (Si, Al), it is assumed that the glass dissolution rate continuously decreases due to the growth of the transport limiting alteration layer, in good agreement with residual rates reported in the literature for this glass. According to our results it can be expected that new kinetic models should emerge from an accurate time dependent budget of water within the nanoporous alteration layer.
NASA Astrophysics Data System (ADS)
Wei, Xiaobing; Gong, Cairong; Chen, Xujuan; Fan, Guoliang; Xu, Xinhua
2017-03-01
Hollow silica spheres possessing excellent mechanical properties were successfully prepared through a layer-by-layer process using uniform polystyrene (PS) latex fabricated by dispersion polymerization as template. The formation of hollow SiO2 micro-spheres, structures and properties were observed in detail by zeta potential, SEM, TEM, FTIR, TGA and nitrogen sorption porosimetry. The results indicated that the hollow spheres were uniform with particle diameter of 1.6 μm and shell thickness of 150 nm. The surface area was 511 m2/g and the pore diameter was 8.36 nm. A new stationary phase for HPLC was obtained by using C18-derivatized hollow SiO2 micro-spheres as packing materials and the chromatographic properties were evaluated for the separation of some regular small molecules. The packed column showed low column pressure, high values of efficiency (up to about 43 000 plates/m) and appropriate asymmetry factors.
Modeling of the processes of natural and waste water purification in the reactor-clarifier
NASA Astrophysics Data System (ADS)
Primak, O. D.; Skolubovich, Yu. L.; Fedorova, N. N.; Voitov, E. L.
2018-03-01
The results of the filtration process simulation in a reactor-clarifier installation using a suspended loading layer are presented. Calculations were carried out in ANSYS Fluent on the basis of the Navier-Stokes equations supplemented by the equations of the Eulerian model of multiphase taking into account granularity of the particle phase. The unsteady picture of the formation of a fluidized («boiling») layer of particles is obtained. The results of parametric calculations allowing to estimate the effect of the flow velocity, the loading layer thickness, the thickness of sand and other parameters on the fluidized bed structure are presented. The liquid flow rate at which the loading grains are not washed out is determined. The diameter of particles and the height of the loading layer, at which the filter material is suspended and thus normal operation of the plant is ensured, are defined.
Todoran, R; Todoran, D; Szakács, Zs
2016-01-05
In this work we propose optical luminescence measurements as a method to evaluate the kinetics of adsorption processes. Measurement of the intensity of the integral optical radiation obtained from the mineral-xanthate interface layer, stimulated with a monochromatic pulsating optical signal, as a function of time were made. The luminescence radiation was obtained from the thin interface layer formed at the separation surface between the sphalerite natural mineral and potassium ethyl xanthate solution, for different solution concentrations and pH-es at the constant industry standard temperature. This method enabled us to determine the time to achieve dynamic equilibrium in the formation of the interface layer of approximately 20min, gaining information on the adsorption kinetics in the case of xanthate on mineral surface and leading to the optimization of the industrial froth flotation process. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlov, D. A.; Bidus, N. V.; Bobrov, A. I., E-mail: bobrov@phys.unn.ru
2015-01-15
The distribution of elastic strains in a system consisting of a quantum-dot layer and a buried GaAs{sub x}P{sub 1−x} layer is studied using geometric phase analysis. A hypothesis is offered concerning the possibility of controlling the process of the formation of InAs quantum dots in a GaAs matrix using a local isovalent phosphorus impurity.
A transient analysis of frost formation on a parallel plate evaporator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Frias, J.; Aceves, S.M.; Hernandez-Guerrero, A.
1996-12-31
This paper presents the development of a transient model for evaluating frost formation on a parallel plate evaporator for heat pump applications. The model treats the frost layer as a porous substance, and applies the equations of conservation of mass, momentum and energy to calculate the growth and densification of the frost layer. Empirical correlations for thermal conductivity and tortuosity as a function of density are incorporated from previous studies. Frost growth is calculated as a function of time, Reynolds number, longitudinal location, plate temperature, and ambient air temperature and humidity. The main assumptions are: ideal gas behavior for airmore » and water vapor, uniform frost density and thermal conductivity across the thickness of the frost layer; and quasi-steady conditions during the whole process. The mathematical model is validated by comparing the predicted values of frost thickness and frost density with results obtained in recent experimental studies. A good agreement was obtained in the comparison. The frost formation model calculates pressure drop and heat transfer resistance that result from the existence of the frost layer, and it can therefore be incorporated into a heat pump model to evaluate performance losses due to frosting as a function of weather conditions and time of operation since the last evaporator defrost.« less
Wang, Fuzhi; Sun, Gang; Li, Cong; Liu, Jiyan; Hu, Siqian; Zheng, Hua; Tan, Zhan'ao; Li, Yongfang
2014-06-25
Efficient polymer solar cells (PSCs) with enhanced open-circuit voltage (Voc) are fabricated by introducing solution-processed and UV-ozone (UVO)-treated nickel acetate (O-NiAc) as an anode buffer layer. According to X-ray photoelectron spectroscopy data, NiAc partially decomposed to NiOOH during the UVO treatment. NiOOH is a dipole species, which leads to an increase in the work function (as confirmed by ultraviolet photoemission spectroscopy), thus benefitting the formation of ohmic contact between the anode and photoactive layer and leading to increased Voc. In addition, the UVO treatment improves the wettability between the substrate and solvent of the active layer, which facilitates the formation of an upper photoactive layer with better morphology. Further, the O-NiAc layer can decrease the series resistance (Rs) and increase the parallel resistance (Rp) of the devices, inducing enhanced Voc in comparison with the as-prepared NiAc-buffered control devices without UVO treatment. For PSCs based on the P3HT:PCBM system, Voc increases from 0.50 to 0.60 V after the NiAc buffer layer undergoes UVO treatment. Similarly, in the P3HT:ICBA system, the Voc value of the device with a UVO-treated NiAc buffer layer increases from 0.78 to 0.88 V, showing an enhanced power conversion efficiency of 6.64%.
Solid oxide fuel cells with bi-layered electrolyte structure
NASA Astrophysics Data System (ADS)
Zhang, Xinge; Robertson, Mark; Decès-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Qu, Wei; Kesler, Olivera; Maric, Radenka; Ghosh, Dave
In this work, we have developed solid oxide fuel cells with a bi-layered electrolyte of 2 μm SSZ and 4 μm SDC using tape casting, screen printing, and co-firing processes. The cell reached power densities of 0.54 W cm -2 at 650 °C and 0.85 W cm -2 at 700 °C, with open circuit voltage (OCV) values larger than 1.02 V. The electrical leaking between anode and cathode through an SDC electrolyte has been blocked in the bi-layered electrolyte structure. However, both the electrolyte resistance (R el) and electrode polarization resistance (R p,a+c) increased in comparison to cells with single-layered SDC electrolytes. The formation of a solid solution of (Ce, Zr)O 2- x during sintering process and the flaws in the bi-layered electrolyte structure seem to be the main causes for the increase in the R el value (0.32 Ω cm 2) at 650 °C, which is almost one order of magnitude higher than the calculated value.
Lee, Seung-Jun; Kim, Seong-Kweon; Jeong, Jae-Yong; Kim, Seong-Jong
2014-12-01
Al alloy is a highly active metal but forms a protective oxide film having high corrosion resistance in atmosphere environment. However, the oxide film is not suitable for practical use, since the thickness of the film is not uniform and it is severly altered with formation conditions. This study focused on developing an aluminum anodizing layer having hardness, corrosion resistance and abrasion resistance equivalent to a commercial grade protective layer. Aluminum anodizing layer was produced by two-step aluminum anodizing oxide (AAO) process with different sulfuric acid concentrations, and the cavitation characteristics of the anodized coating layer was investigated. In hardness measurement, the anodized coating layer produced with 15 vol.% of sulfuric acid condition had the highest value of hardness but exhibited poor cavitation resistance due to being more brittle than those with other conditions. The 10 vol.% of sulfuric acid condition was thus considered to be the optimum condition as it had the lowest weight loss and damage depth.
Liu, Quan; Jia, Xingcan; Quan, Jiannong; Li, Jiayun; Li, Xia; Wu, Yongxue; Chen, Dan; Wang, Zifa; Liu, Yangang
2018-04-17
Severe haze events during which particulate matter (PM) increases quickly from tens to hundreds of microgram per cubic meter in 1-2 days frequently occur in China. Although it has been known that PM is influenced by complex interplays among emissions, meteorology, and physical and chemical processes, specific mechanisms remain elusive. Here, a new positive feedback mechanism between planetary boundary layer (PBL), relative humidity (RH), and secondary PM (SPM) formation is proposed based on a comprehensive field experiment and model simulation. The decreased PBL associated with increased PM increases RH by weakening the vertical transport of water vapor; the increased RH in turn enhances the SPM formation through heterogeneous aqueous reactions, which further enhances PM, weakens solar radiation, and decreases PBL height. This positive feedback, together with the PM-Radiation-PBL feedback, constitutes a key mechanism that links PM, radiation, PBL properties (e.g. PBL height and RH), and SPM formation, This mechanism is self-amplifying, leading to faster PM production, accumulation, and more severe haze pollution.
Method for formation of thin film transistors on plastic substrates
Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.
1998-10-06
A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.
Aluminizing a Ni sheet through severe plastic deformation induced by ball collisions
NASA Astrophysics Data System (ADS)
Romankov, S.; Shchetinin, I. V.; Park, Y. C.
2015-07-01
Aluminizing a Ni sheet was performed through severe plastic deformation induced by ball collisions. The Ni sheet was fixed in the center of a mechanically vibrated vial between two connected parts. The balls were loaded into the vial on both sides of the Ni disk. Al disks, which were fixed on the top and the bottom of the vial, served as the sources of Al contamination. During processing, the Ni sheet was subject to intense ball collisions. The Al fragments were transferred and alloyed to the surface of the Ni sheet by these collisions. The combined effects of deformation-induced plastic flow, mechanical intermixing, and grain refinement resulted in the formation of a dense, continuous nanostructured Al layer on the Ni surface on both sides of the sheet. The Al layer consisted of Al grains with an average size of about 40 nm. The Al layer was reinforced with nano-sized Ni flakes that were introduced from the Ni surface during processing. The local amorphization at the Ni/Al interface revealed that the bonding between Ni and Al was formed by mechanical intermixing of atomic layers at the interface. The hardness of the fabricated Al layer was 10 times that of the initial Al plate. The ball collisions destroyed the initial rolling texture of the Ni sheet and induced the formation of the mixed [1 0 0] + [1 1 1] fiber texture. The laminar rolling structure of the Ni was transformed into an ultrafine grain structure.
USDA-ARS?s Scientific Manuscript database
Potato tuber (Solanum tuberosum L.) wounds incurred at harvest and upon seed cutting require rapid suberization as a major part of the healing process to prevent infection and desiccation. However, little is known about the induction and expression of genes that are essential for these processes an...
NASA Astrophysics Data System (ADS)
Chu, Xinzhao; Yu, Zhibin
2017-06-01
With a thermosphere-ionosphere Fe/Fe+ (TIFe) model developed from first principles at the University of Colorado, we present the first quantitative investigation of formation mechanisms of thermospheric Fe layers observed by lidar in Antarctica. These recently discovered neutral metal layers in the thermosphere between 100 and 200 km provide unique tracers for studies of fundamental processes in the space-atmosphere interaction region. The TIFe model formulates and expands the TIFe theory originally proposed by Chu et al. that the thermospheric Fe layers are produced through the neutralization of converged Fe+ layers. Through testing mechanisms and reproducing the 28 May 2011 event at McMurdo, we conceive the lifecycle of meteoric metals via deposition, transport, chemistry, and wave dynamics for thermospheric Fe layers with gravity wave signatures. While the meteor injection of iron species is negligible above 120 km, the polar electric field transports metallic ions Fe+ upward from their main deposition region into the E-F regions, providing the major source of Fe+ (and accordingly Fe) in the thermosphere. Atmospheric wave-induced vertical shears of vertical and horizontal winds converge Fe+ to form dense Fe+ layers. Direct electron-Fe+ recombination is the major channel to neutralize Fe+ layers to form Fe above 120 km. Fe layer shapes are determined by multiple factors of neutral winds, electric field, and aurora activity. Gravity-wave-induced vertical wind plays a key role in forming gravity-wave-shaped Fe layers. Aurora particle precipitation enhances Fe+ neutralization by increasing electron density while accelerating Fe loss via charge transfer with enhanced NO+ and O2+ densities.
Numerical analysis of the formation process of aerosols in the alveoli
NASA Astrophysics Data System (ADS)
Haslbeck, Karsten; Seume, Jörg R.
2008-11-01
For a successful diagnosis of lung diseases through an analysis of non-volatile molecules in the exhaled breath, an exact understanding of the aerosol formation process is required. This process is modeled using Computational Fluid Dynamics (CFD). The model shows the interaction of the boundary surface between the streamed airway and the local epithelial liquid layer. A 2-D volume mesh of an alveolus is generated by taking into account the connection of the alveoli with the sacculi alveolares (SA). The Volume of Fluid (VOF) Method is used to model the interface between the gas and the liquid film. The non-Newtonian flow is modeled by the implementation of the Ostwald de Waele model. Surface tension is a function of the surfactant concentration. The VOF-Method allows the distribution of the concentration of the epithelial liquid layer at the surface to be traced in a transient manner. The simulations show the rupturing of the liquid film through the drop formation. Aerosol particles are ejected into the SA and do not collide with the walls. The quantity, the geometrical size as well as the velocity distributions of the generated aerosols are determined. The data presented in the paper provide the boundary conditions for future CFD analysis of the aerosol transport through the airways up to exhalation.
Use of a hard mask for formation of gate and dielectric via nanofilament field emission devices
Morse, Jeffrey D.; Contolini, Robert J.
2001-01-01
A process for fabricating a nanofilament field emission device in which a via in a dielectric layer is self-aligned to gate metal via structure located on top of the dielectric layer. By the use of a hard mask layer located on top of the gate metal layer, inert to the etch chemistry for the gate metal layer, and in which a via is formed by the pattern from etched nuclear tracks in a trackable material, a via is formed by the hard mask will eliminate any erosion of the gate metal layer during the dielectric via etch. Also, the hard mask layer will protect the gate metal layer while the gate structure is etched back from the edge of the dielectric via, if such is desired. This method provides more tolerance for the electroplating of a nanofilament in the dielectric via and sharpening of the nanofilament.
Kim, Won-Jun; Debnath, Pulak C; Lee, Junsu; Lee, Ju Han; Lim, Dae-Soon; Song, Yong-Won
2013-09-13
Multilayer graphene is synthesized by a simplified process employing an evaporator in which a target substrate is deposited with a Ni catalyst layer before being heated to grow graphene directly. Carbon atoms adsorbed onto the surface of the Ni source as impurities from the atmosphere are incorporated into the catalyst layer during the deposition, and diffuse toward the catalyst/substrate interface, where they crystallize as graphene with a thickness of less than 2 nm. The need for a transfer process and external carbon supply is eliminated. The graphene is characterized by conventional analysis approaches, including nano-scale visualization and Raman spectroscopy, and utilizing photonics, graphene-functionalized passive laser mode-locking is demonstrated to confirm the successful synthesis of the graphene layer, resulting in an operating center wavelength of 1569.4 nm, a pulse duration of 1.35 ps, and a repetition rate of 31.6 MHz.
Porous siliconformation and etching process for use in silicon micromachining
Guilinger, Terry R.; Kelly, Michael J.; Martin, Jr., Samuel B.; Stevenson, Joel O.; Tsao, Sylvia S.
1991-01-01
A reproducible process for uniformly etching silicon from a series of micromechanical structures used in electrical devices and the like includes providing a micromechanical structure having a silicon layer with defined areas for removal thereon and an electrochemical cell containing an aqueous hydrofluoric acid electrolyte. The micromechanical structure is submerged in the electrochemical cell and the defined areas of the silicon layer thereon are anodically biased by passing a current through the electrochemical cell for a time period sufficient to cause the defined areas of the silicon layer to become porous. The formation of the depth of the porous silicon is regulated by controlling the amount of current passing through the electrochemical cell. The micromechanical structure is then removed from the electrochemical cell and submerged in a hydroxide solution to remove the porous silicon. The process is subsequently repeated for each of the series of micromechanical structures to achieve a reproducibility better than 0.3%.
NASA Technical Reports Server (NTRS)
Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.
2006-01-01
Electron beam freeform fabrication (EBF3) is a new layer-additive process that has been developed for near-net shape fabrication of complex structures. EBF3 uses an electron beam to create a molten pool on the surface of a substrate. Wire is fed into the molten pool and the part translated with respect to the beam to build up a 3-dimensional structure one layer at a time. Unlike many other freeform fabrication processes, the energy coupling of the electron beam is extremely well suited to processing of aluminum alloys. The layer-additive nature of the EBF3 process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.
Ultra-thin multilayer capacitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renk, Timothy Jerome; Monson, Todd C.
2009-06-01
The fabrication of ultra-thin lanthanum-doped lead zirconium titanate (PLZT) multilayer ceramic capacitors (MLCCs) using a high-power pulsed ion beam was studied. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The goal of this work was to increase the energy density of ceramic capacitors through the formation of a multilayer device with excellent materials properties, dielectric constant, and standoff voltage. For successful device construction, there are a number of challenging requirements including achieving correct stoichiometric and crystallographic composition of the deposited PLZT, as well as the creation of a defect free homogenous film. This report detailsmore » some success in satisfying these requirements, although 900 C temperatures were necessary for PLZT perovskite phase formation. These temperatures were applied to a previously deposited multi-layer film which was then post-annealed to this temperature. The film exhibited mechanical distress attributable to differences in the coefficient of thermal expansion (CTE) of the various layers. This caused significant defects in the deposited films that led to shorts across devices. A follow-on single layer deposition without post-anneal produced smooth layers with good interface behavior, but without the perovskite phase formation. These issues will need to be addressed in order for ion beam deposited MLCCs to become a viable technology. It is possible that future in-situ heating during deposition may address both the CTE issue, and result in lowered processing temperatures, which in turn could raise the probability of successful MLCC formation.« less
Face-specific Replacement of Calcite by Amorphous Silica Nanoparticles
NASA Astrophysics Data System (ADS)
Liesegang, M.; Milke, R.; Neusser, G.; Mizaikoff, B.
2016-12-01
Amorphous silica, composed of nanoscale spheres, is an important biomineral, alteration product of silicate rocks on the Earth's surface, and precursor material for stable silicate minerals. Despite constant progress in silica sphere synthesis, fundamental knowledge of natural silica particle interaction and ordering processes leading to colloidal crystals is absent so far. To understand the formation pathways of silica spheres in a geologic environment, we investigated silicified Cretaceous mollusk shell pseudomorphs from Coober Pedy (South Australia) using focused ion beam (FIB)-SEM tomography, petrographic microscopy, µ-XRD, and EMPA. The shells consist of replaced calcite crystals (<2 mm) composed of ordered arrays of uniform, close-packed silica spheres 300 ± 10 nm in size. Concentric layered spheres composed of 40 nm-sized subparticles provide evidence that, at least in the final stage, particle aggregation was the major sphere growth mechanism. Silica sphere arrays in periodically changing orientations perfectly replicate polysynthetic twinning planes of calcite. FIB-SEM tomography shows that cubic closed-packed sphere arrangements preserve the twin lamellae, while the twin plane consists of a submicrometer layer of randomly ordered spheres and vacancies. To transfer crystallographic information from parent to product, the advancement of synchronized dissolution and precipitation fronts along lattice planes is essential. We assume that the volume-preserving replacement process proceeds via a face-specific dissolution-precipitation mechanism with intermediate subparticle aggregation and subsequent layer-by-layer deposition of spheres along a planar surface. Porosity created during the replacement reaction allows permanent fluid access to the propagating reaction interface. Fluid pH and ionic strength remain constant throughout the replacement process, permitting continuous silica nanoparticle formation and diffusion-limited colloid aggregation. Our study provides a natural example of the transformation of an atomic crystal to an amorphous, mesoscale ordered material; thus, links the research fields of natural colloidal crystal formation, carbonate-silica replacement, and crystallization by oriented particle aggregation (CPA).
Structural consequences of hydrogen intercalation of epitaxial graphene on SiC(0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emery, Jonathan D., E-mail: jdemery@anl.gov, E-mail: bedzyk@northwestern.edu; Johns, James E.; McBriarty, Martin E.
2014-10-20
The intercalation of various atomic species, such as hydrogen, to the interface between epitaxial graphene (EG) and its SiC substrate is known to significantly influence the electronic properties of the graphene overlayers. Here, we use high-resolution X-ray reflectivity to investigate the structural consequences of the hydrogen intercalation process used in the formation of quasi-free-standing (QFS) EG/SiC(0001). We confirm that the interfacial layer is converted to a layer structurally indistinguishable from that of the overlying graphene layers. This newly formed graphene layer becomes decoupled from the SiC substrate and, along with the other graphene layers within the film, is vertically displacedmore » by ∼2.1 Å. The number of total carbon layers is conserved during the process, and we observe no other structural changes such as interlayer intercalation or expansion of the graphene d-spacing. These results clarify the under-determined structure of hydrogen intercalated QFS-EG/SiC(0001) and provide a precise model to inform further fundamental and practical understanding of the system.« less
A framework for assessing the uncertainty in wave energy delivery to targeted subsurface formations
NASA Astrophysics Data System (ADS)
Karve, Pranav M.; Kallivokas, Loukas F.; Manuel, Lance
2016-02-01
Stress wave stimulation of geological formations has potential applications in petroleum engineering, hydro-geology, and environmental engineering. The stimulation can be applied using wave sources whose spatio-temporal characteristics are designed to focus the emitted wave energy into the target region. Typically, the design process involves numerical simulations of the underlying wave physics, and assumes a perfect knowledge of the material properties and the overall geometry of the geostructure. In practice, however, precise knowledge of the properties of the geological formations is elusive, and quantification of the reliability of a deterministic approach is crucial for evaluating the technical and economical feasibility of the design. In this article, we discuss a methodology that could be used to quantify the uncertainty in the wave energy delivery. We formulate the wave propagation problem for a two-dimensional, layered, isotropic, elastic solid truncated using hybrid perfectly-matched-layers (PMLs), and containing a target elastic or poroelastic inclusion. We define a wave motion metric to quantify the amount of the delivered wave energy. We, then, treat the material properties of the layers as random variables, and perform a first-order uncertainty analysis of the formation to compute the probabilities of failure to achieve threshold values of the motion metric. We illustrate the uncertainty quantification procedure using synthetic data.
NASA Astrophysics Data System (ADS)
Guo, Jinxue; Li, Xiaoyan; Sun, Yanfang; Liu, Qingyun; Quan, Zhenlan; Zhang, Xiao
2018-06-01
Development of noble-metal-free catalysts towards highly efficient electrochemical oxygen evolution reaction (OER) is critical but challenging in the renewable energy area. Herein, we firstly embed NiFe LDHs quantum dots (QDs) into expanded graphite (NiFe LDHs/EG) via in-situ confined formation process. The interlayer spacing of EG layers acts as nanoreactors for spatially confined formation of NiFe LDHs QDs. The QDs supply huge catalytic sites for OER. The in-situ decoration endows the strong affinity between QDs with EG, thus inducing fast charge transfer. Based on the aforementioned benefits, the designed catalyst exhibits outstanding OER properties, in terms of small overpotential (220 mV required to generate 10 mA cm-2), low Tafel slope, and good durable stability, making it a promising candidate for inexpensive OER catalyst.
Out-of-water constitutional self-organization of chitosan-cinnamaldehyde dynagels.
Marin, Luminita; Moraru, Simona; Popescu, Maria-Cristina; Nicolescu, Alina; Zgardan, Cristina; Simionescu, Bogdan C; Barboiu, Mihail
2014-04-14
An investigation of the constitutional adaptive gelation process of chitosan/cinnamaldehyde (C/Cy) dynagels is reported. These gels generate timely variant macroscopic organization across extended scales. In the first stage, imine-bond formation takes place "in-water" and generates low-ordered hydrogels. The progressive formation of imine bonds further induces "out-of-water" increased reactivity within interdigitated hydrophobic self-assembled layers of Cy, with a protecting environmental effect against hydrolysis and that leads to the stabilization of the imine bonds. The hydrophobic swelling due to Cy layers at the interfaces reaches a critical step when lamellar self-organized hybrids are generated (24 hours). This induces an important restructuration of the hydrogels on the micrometric scale, thus resulting in the formation of highly ordered microporous xerogel morphologies of high potential interest for chemical separations, drug delivery, and sensors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Formation of gut-like structures in vitro from mouse embryonic stem cells.
Torihashi, Shigeko
2006-01-01
Embryonic stem (ES) cells have the potential to differentiate into all cell types originating from the three germ layers; however, there are still few reports about the formation of functional organs from embryonic stem cells. Recently, we reported that by hanging drops of mouse ES cells, embryoid bodies (EBs) formed gut-like structures in vitro composed of three layers corresponding to the epithelium, lamina propria, and musculature. The morphological features and the process of formation are similar to gut and its organogenesis in vivo. Thus, this is a good model for development of the gut and a useful tool for analysis of the factors required for gut organogenesis. The protocol basically involves a method of hanging drops to make EBs, which are then plated on coated dishes for outgrowth. EBs develop to form gut-like structures when induced to spontaneously enter a program of differentiation in vitro without addition of any extrinsic factors.
Aghajanian, Patrick; Takashima, Shigeo; Paul, Manash; Younossi-Hartenstein, Amelia; Hartenstein, Volker
2016-12-01
The visceral musculature of the Drosophila intestine plays important roles in digestion as well as development. Detailed studies investigating the embryonic development of the visceral muscle exist; comparatively little is known about postembryonic development and metamorphosis of this tissue. In this study we have combined the use of specific markers with electron microscopy to follow the formation of the adult visceral musculature and its involvement in gut development during metamorphosis. Unlike the adult somatic musculature, which is derived from a pool of undifferentiated myoblasts, the visceral musculature of the adult is a direct descendant of the larval fibers, as shown by activating a lineage tracing construct in the larval muscle and obtaining labeled visceral fibers in the adult. However, visceral muscles undergo a phase of remodeling that coincides with the metamorphosis of the intestinal epithelium. During the first day following puparium formation, both circular and longitudinal syncytial fibers dedifferentiate, losing their myofibrils and extracellular matrix, and dissociating into mononuclear cells ("secondary myoblasts"). Towards the end of the second day, this process is reversed, and between 48 and 72h after puparium formation, a structurally fully differentiated adult muscle layer has formed. We could not obtain evidence that cells apart from the dedifferentiated larval visceral muscle contributed to the adult muscle, nor does it appear that the number of adult fibers (or nuclei per fiber) is increased over that of the larva by proliferation. In contrast to the musculature, the intestinal epithelium is completely renewed during metamorphosis. The adult midgut epithelium rapidly expands over the larval layer during the first few hours after puparium formation; in case of the hindgut, replacement takes longer, and proceeds by the gradual caudad extension of a proliferating growth zone, the hindgut proliferation zone (HPZ). The subsequent elongation of the hindgut and midgut, as well as the establishment of a population of intestinal stem cells active in the adult midgut and hindgut, requires the presence of the visceral muscle layer, based on the finding that ablation of this layer causes a severe disruption of both processes. Copyright © 2016 Elsevier Inc. All rights reserved.
Project Integration Architecture: Implementation of the CORBA-Served Application Infrastructure
NASA Technical Reports Server (NTRS)
Jones, William Henry
2005-01-01
The Project Integration Architecture (PIA) has been demonstrated in a single-machine C++ implementation prototype. The architecture is in the process of being migrated to a Common Object Request Broker Architecture (CORBA) implementation. The migration of the Foundation Layer interfaces is fundamentally complete. The implementation of the Application Layer infrastructure for that migration is reported. The Application Layer provides for distributed user identification and authentication, per-user/per-instance access controls, server administration, the formation of mutually-trusting application servers, a server locality protocol, and an ability to search for interface implementations through such trusted server networks.
NASA Astrophysics Data System (ADS)
Xu, Ziwei; Yan, Tianying; Liu, Guiwu; Qiao, Guanjun; Ding, Feng
2015-12-01
To explore the mechanism of graphene chemical vapor deposition (CVD) growth on a catalyst surface, a molecular dynamics (MD) simulation of carbon atom self-assembly on a Ni(111) surface based on a well-designed empirical reactive bond order potential was performed. We simulated single layer graphene with recorded size (up to 300 atoms per super-cell) and reasonably good quality by MD trajectories up to 15 ns. Detailed processes of graphene CVD growth, such as carbon atom dissolution and precipitation, formation of carbon chains of various lengths, polygons and small graphene domains were observed during the initial process of the MD simulation. The atomistic processes of typical defect healing, such as the transformation from a pentagon into a hexagon and from a pentagon-heptagon pair (5|7) to two adjacent hexagons (6|6), were revealed as well. The study also showed that higher temperature and longer annealing time are essential to form high quality graphene layers, which is in agreement with experimental reports and previous theoretical results.To explore the mechanism of graphene chemical vapor deposition (CVD) growth on a catalyst surface, a molecular dynamics (MD) simulation of carbon atom self-assembly on a Ni(111) surface based on a well-designed empirical reactive bond order potential was performed. We simulated single layer graphene with recorded size (up to 300 atoms per super-cell) and reasonably good quality by MD trajectories up to 15 ns. Detailed processes of graphene CVD growth, such as carbon atom dissolution and precipitation, formation of carbon chains of various lengths, polygons and small graphene domains were observed during the initial process of the MD simulation. The atomistic processes of typical defect healing, such as the transformation from a pentagon into a hexagon and from a pentagon-heptagon pair (5|7) to two adjacent hexagons (6|6), were revealed as well. The study also showed that higher temperature and longer annealing time are essential to form high quality graphene layers, which is in agreement with experimental reports and previous theoretical results. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06016h
Formation Energies of Native Point Defects in Strained-Layer Superlattices (Postprint)
2017-06-05
AFRL-RX-WP-JA-2017-0217 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES (POSTPRINT) Zhi-Gang Yu...2016 Interim 11 September 2013 – 5 November 2016 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES...native point defect (NPD) formation energies and absence of mid-gap levels. In this Letter we use first-principles calculations to study the formation
Automated Processing of Plasma Samples for Lipoprotein Separation by Rate-Zonal Ultracentrifugation.
Peters, Carl N; Evans, Iain E J
2016-12-01
Plasma lipoproteins are the primary means of lipid transport among tissues. Defining alterations in lipid metabolism is critical to our understanding of disease processes. However, lipoprotein measurement is limited to specialized centers. Preparation for ultracentrifugation involves the formation of complex density gradients that is both laborious and subject to handling errors. We created a fully automated device capable of forming the required gradient. The design has been made freely available for download by the authors. It is inexpensive relative to commercial density gradient formers, which generally create linear gradients unsuitable for rate-zonal ultracentrifugation. The design can easily be modified to suit user requirements and any potential future improvements. Evaluation of the device showed reliable peristaltic pump accuracy and precision for fluid delivery. We also demonstrate accurate fluid layering with reduced mixing at the gradient layers when compared to usual practice by experienced laboratory personnel. Reduction in layer mixing is of critical importance, as it is crucial for reliable lipoprotein separation. The automated device significantly reduces laboratory staff input and reduces the likelihood of error. Overall, this device creates a simple and effective solution to formation of complex density gradients. © 2015 Society for Laboratory Automation and Screening.
Recent Progress and Required Developments in Atmospheric Corrosion of Galvanised Steel and Zinc
Cole, Ivan S.
2017-01-01
This paper reviews the progress in atmospheric corrosion of zinc since 2009. It firstly summarises the state of the art in 2009, then outlines progress since 2009, and then looks at the significance of this progress and the areas the need more research. Within this framework, it looks at climate effects, oxide formation, oxide properties, pitting, laboratory duplication of atmospheric corrosion, and modelling. The major findings are that there have been major advances in the fields understanding of the structure of corrosion patina, in particular their layered structure and the presence of compact layers, local corrosion attacks have been found to be a significant process in atmospheric corrosion and experiments under droplets are leading to new understanding of the criticality of drop size in regulating atmospheric corrosion processes. Further research is indicating that zinc oxide within corrosion products may promote the oxygen reduction reaction (ORR) and that, in porous oxides, the ORR would control pore chemistry and may promote oxide densification. There is a strong need for more research to understand more deeply the formation and properties of these layered oxides as well as additional research to refine and quantify our emerging understanding of corrosion under droplets. PMID:29120373
Ice sublimation and rheology - Implications for the Martian polar layered deposits
NASA Astrophysics Data System (ADS)
Hofstadter, M. D.; Murray, B. C.
1990-04-01
If the sublimation and creep of water ice are important processes in the Martian polar layered deposits, ice-rich scenario formation and evolution schemes must invoke a mechanism for the inhibition of sublimation, such as a dust layer derived from the residue of the sublimating deposits. This layer could be of the order of 1 m in thickness. If the deposits are ice-rich, flows of more than 1 km should have occurred. It is noted that the dust particles in question may be cemented by such ice that may be present, but that impurities may also have served to cement dust particles together even in the absence of ice.
Ice sublimation and rheology - Implications for the Martian polar layered deposits
NASA Technical Reports Server (NTRS)
Hofstadter, Mark D.; Murray, Bruce C.
1990-01-01
If the sublimation and creep of water ice are important processes in the Martian polar layered deposits, ice-rich scenario formation and evolution schemes must invoke a mechanism for the inhibition of sublimation, such as a dust layer derived from the residue of the sublimating deposits. This layer could be of the order of 1 m in thickness. If the deposits are ice-rich, flows of more than 1 km should have occurred. It is noted that the dust particles in question may be cemented by such ice that may be present, but that impurities may also have served to cement dust particles together even in the absence of ice.
Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of graphene.
Michałowski, Paweł Piotr; Pasternak, Iwona; Ciepielewski, Paweł; Guinea, Francisco; Strupiński, Włodek
2018-07-27
Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp 2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 10 14 atoms cm -2 ) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.
Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of graphene
NASA Astrophysics Data System (ADS)
Piotr Michałowski, Paweł; Pasternak, Iwona; Ciepielewski, Paweł; Guinea, Francisco; Strupiński, Włodek
2018-07-01
Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 1014 atoms cm‑2) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.
Gyrotactic trapping: A numerical study
NASA Astrophysics Data System (ADS)
Ghorai, S.
2016-04-01
Gyrotactic trapping is a mechanism proposed by Durham et al. ["Disruption of vertical motility by shear triggers formation of thin Phytoplankton layers," Science 323, 1067-1070 (2009)] to explain the formation of thin phytoplankton layer just below the ocean surface. This mechanism is examined numerically using a rational model based on the generalized Taylor dispersion theory. The crucial role of sedimentation speed in the thin layer formation is demonstrated. The effects of variation in different parameters on the thin layer formation are also investigated.
NASA Astrophysics Data System (ADS)
Gali, Olufisayo A.
Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were determined to include grain boundary sliding which induced the cracks at the surface and subsurface of the alloy, magnesium diffusion to free surfaces, crack propagation from shear stresses and the shear strains inducing the nanocrystalline grain structure, the formation of shingles by the shear deformation of micro-wedges induced by the work roll grooves, and the deformation of this oxide covered micro-wedges inducing the rolled-in oxides. Magnesium diffusion to free surfaces was identified as inducing crack healing due to the formation of MgO within cracks and was responsible for the oxide decorated grain boundaries. An examination of the roll coating revealed a complex layered microstructure that was induced through tribo-chemical and mechanical entrapment mechanisms. The microstructure of the roll coating suggested that the work roll material and the rolled aluminum alloy were essential in determining its composition and structure. Subsequent hot forming processes revealed the rich oxide-layer of the near-surface microstructure was beneficial for reducing the coefficient of friction during tribological contact with the steel die. Damage to the microstructure include cracks induced from grain boundary sliding of near-surface grains and the formation of oxide fibres within cracks of the near-surface deformed layers.
Self-organization of palladium nanoislands on GaN and AlxGa1-xN/GaN heterostructures
NASA Astrophysics Data System (ADS)
Stafiniak, Andrzej; Szymański, Tomasz; Paszkiewicz, Regina
2017-12-01
We report on systematic study on the dewetting process of thin Pd layer and self-organized Pd nano-islands on SiO2, GaN and AlxGa1-xN/GaN heterostructures with various Al content. The influence of factors such as the thickness of metal layer, type of top layer of AlGaN/GaN heterostructures, temperature and time of annealing process on the dimensions, shapes and density of Pd islands was analyzed. Comparing the behavior of self-organization of Pd islands on Al0.25Ga0.75N/GaN and SiO2 we can conclude that solid-state dewetting process on SiO2 occures much faster than on Al0.25Ga0.75N. For substrates with SiO2 this process requires less energy and can arise for thicker layer. On the Al0.25Ga0.75N surface the islands take more crystalline shape which is probably due to surface reconstruction of Pd-Ga alloy thin layer on interface. For thin metal layer the coalescence of islands into larger islands similar to Ostwald ripening mechanism was observed. Greater surface roughness of AlxGa1-xN/GaN heterostructures with higher Al content causes an increase of surface density of islands and the reduction of their sizes which improves the roundness. In case of GaN and AlxGa1-xN layers with Al content lower than 20%, the surface degradation caused by annealing process was observed. Probably, this is due to the decomposition of layers with gallium droplet formation on catalytic metal islands.
Bumps and Ridges: Trabeculation Effects in Embryonic Heart Development
NASA Astrophysics Data System (ADS)
Battista, Nicholas; Lane, Andrea; Miller, Laura
2014-11-01
Trabeculae form in developing zebrafish hearts for Re on the order of 0.1; effects of trabeculae in this flow is not well understood. Dynamic processes, such as vortex formation, are important in the generation of shear at the endothelial surface layer and strains at the epithelial layer, which aid in proper morphology and functionality. In this study, CFD is used to quantify the effects of Re and idealized trabeculae height on the resulting flows.
2014-06-01
layer-by-layer manufacturing of a component by using PBF processes is accompanied by the establishment of a unidirectional heat transfer along the build...direction. Because grain growth during solidification preferably occurs in the opposite direction of heat transfer , the formation of elongated...development and deployment of phased array technology.[69] Phased array ultrasonic (PAUT) sensors use multiple elements instead of a single element
Nguyen, Quoc Manh; Huang, Shyh-Chour
2015-12-02
Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC) layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer's formation.
Mauger, Scott A.; Steirer, K. Xerxes; Boe, Jonas; ...
2016-01-19
Here, this work focuses on the role of humidity in the formation of ZnO thin films from a reactive diethylzinc precursor solution for use as the electron contact layer (ECL) in organic photovoltaic (OPV) devices. This method is well suited for flexible devices because the films are annealed at 120 °C, making the process compatible with polymer substrates. ZnO films were prepared by spin coating and annealing at different relative humidity (RH) levels. It is found that RH during coating and annealing affects the chemical and physical properties of the ZnO films. Using x-ray photoelectron spectroscopy it is found thatmore » increasing RH during the formation steps produces a more stoichiometric oxide and a higher Zn/O ratio. Spectroscopic ellipsometry data shows a small decrease in the optical band gap with increased humidity, consistent with a more stoichiometric oxide. Kelvin probe measurements show that increased RH during formation results in a larger work function (i.e. further from vacuum). Consistent with these data, but counter to what might be expected, when these ZnO films are used as ECLs in OPV devices those with ZnO ECLs processed in low RH (less stoichiometric) had higher power conversion efficiency than those with high-RH processed ZnO due to improved open-circuit voltage. The increase in open-circuit voltage with decreasing humidity was observed with two different donor polymers and fullerene acceptors, which shows the trend is due to changes in ZnO. The observed changes in open-circuit voltage follow the same trend as the ZnO work function indicating that the increase in open-circuit voltage with decreasing humidity is the result of improved energetics at the interface between the bulk-heterojunction and the ZnO layer due to a vacuum level shift.« less
Two-step growth mechanism of supported Co3O4-based sea-urchin like hierarchical nanostructures
NASA Astrophysics Data System (ADS)
Maurizio, Chiara; Edla, Raju; Michieli, Niccolo'; Orlandi, Michele; Trapananti, Angela; Mattei, Giovanni; Miotello, Antonio
2018-05-01
Supported 3D hierarchical nanostructures of transition metal oxides exhibit enhanced photocatalytic performances and long-term stability under working conditions. The growth mechanisms crucially determine their intimate structure, that is a key element to optimize their properties. We report on the formation mechanism of supported Co3O4 hierarchical sea urchin-like nanostructured catalyst, starting from Co-O-B layers deposited by Pulsed Laser Deposition (PLD). The particles deposited on the layer surface, that constitute the seeds for the urchin formation, have been investigated after separation from the underneath deposited layer, by X-ray diffraction, X-ray absorption spectroscopy and scanning electron microscopy. The comparison with PLD deposited layers without O and/or B indicates a crucial role of B for the urchin formation that (i) limits Co oxidation during the deposition process and (ii) induces a chemical reduction of Co, especially in the particle core, in the first step of air annealing (2 h, 500 °C). After 2 h heating Co oxidation proceeds and Co atoms outdiffuse from the Co fcc particle core likely through fast diffusion channel present in the shell and form Co3O4 nano-needles. The growth of nano-needles from the layer beneath the particles is prevented by a faster Co oxidation and a minimum fraction of metallic Co. This investigation shows how diffusion mechanisms and chemical effects can be effectively coupled to obtain hierarchical structures of transition metal oxides.
Modeling the processing of interstellar ices by energetic particles
NASA Astrophysics Data System (ADS)
Kalvāns, J.; Shmeld, I.
2013-06-01
Context. Interstellar ice is the main form of metal species in dark molecular clouds. Experiments and observations have shown that the ice is significantly processed after the freeze-out of molecules onto grains. The processing is caused by cosmic-ray particles and cosmic-ray-induced UV photons. These transformations are included in current astrochemical models only to a very limited degree. Aims: We aim to establish a model of the "cold" chemistry in interstellar ices and to evaluate its general impact on the composition of interstellar ices. Methods: The ice was treated as consisting of two layers - the surface and the mantle (or subsurface) layer. Subsurface chemical processes are described with photodissociation of ice species and binary reactions on the surfaces of cavities inside the mantle. Hydrogen atoms and molecules can diffuse between the layers. We also included deuterium chemistry. Results: The modeling results show that the content of chemically bound H is reduced in subsurface molecules by about 30% on average. This promotes the formation of more hydrogen-poor species in the ice. The enrichment of ice molecules with deuterium is significantly reduced by the subsurface processes. On average, it follows the gas-phase atomic D/H abundance ratio, with a delay. The delay produced by the model is on the order of several Myr. Conclusions: The processing of ice may place new constraints on the production of deuterated species on grains. In a mantle with a two-layer structure the upper layer (CO) should be processed substantially more intensively than the lower layer (H2O). Chemical explosions in interstellar ice might not be an important process. They destroy the structure of the mantle, which forms over long timescales. Besides, ices may lack the high radical content needed for the explosions.
NASA Astrophysics Data System (ADS)
Bentley, Samuel J.; Swales, Andrew; Pyenson, Benjamin; Dawe, Justin
2014-03-01
A study of muddy tidal-flat sedimentation and bioturbation was undertaken in the Waitetuna Arm of Raglan Harbor, New Zealand, to evaluate the physical and biological processes that control cycling of sediment between the intertidal seabed and sediment-water interface, and also the formation of tidal flat sedimentary fabric and fine-scale stratigraphy. Cores were collected along an intertidal transect, and analyzed for sedimentary fabric, 210Pb and 7Be radiochemical distributions, and grain size. At the same locations, a new approach for time-series core-X-radiography study was undertaken (spanning 191 days), using magnetite-rich sand as a tracer for sedimentation and bioturbation processes in shallow tidal flat sediments. Sedimentary fabric consists of a shallow stratified layer overlying a deeper zone of intensely bioturbated shelly mud. Bioadvection mixes the deeper zone and contributes fine sediment to the surface stratified layer, via biodeposition. Physical resuspension and deposition of surface muds by wave and tidal flow are also likely contributors to formation of the surficial stratified layer, but physical stratification is not observed below this depth. The deliberate tracer study allowed calculation of bioadvection rates that control strata formation, and can be used to model diagenetic processes. Results suggest that the upper ˜15 cm of seabed can be fully mixed over timescales <1.75 y. Such mixing will erase pre-existing sedimentary fabric and transport buried sediment and chemical compounds back to the tidal-flat surface. Shallow biodiffusion also exists, but produces much slower and shallower mass transport. Best fits for 210Pb profiles using a diagenetic bioadvection/sedimentation model and independently measured tiered bioadvection rates suggest that sediment accumulation rates (SARs) on the tidal flat are ˜0.25 cm/y, near the low end of contemporary New Zealand muddy intertidal SARs. Frequent deposition and erosion of the surface layer demonstrates that long-term sediment accumulation captures only a small fraction of sediment deposited at any one time. Model results also suggest that our magnetite tracer method may slightly underestimate short-term shallow mixing rates (demonstrated by 7Be profiles), and slightly overestimate longer-term, deeper bioturbation rates (demonstrated by 210Pb profiles).
NASA Astrophysics Data System (ADS)
Ferreira, C. P.; Gonçalves, M. C.; Caram, R.; Bertazzoli, R.; Rodrigues, C. A.
2013-11-01
The formation of nanotubular oxide layers on Ti and Ti alloys has been widely investigated for the photocatalytic degradation of organic compounds due to their excellent catalytic efficiency, chemical stability, and low cost and toxicity. Aiming to improve the photocatalytic efficiency of this nanostructured oxide, this work investigated the influence of substrate grain size on the growth of nanotubular oxide layers. Ti and Ti alloys (Ti-6Al, Ti-6Al-7Nb) were produced by arc melting with non-consumable tungsten electrode and water-cooled copper hearth under argon atmosphere. Some of the ingots were heat-treated at 1000 °C for 12 and 24 h in argon atmosphere, followed by slow cooling rates to reduce crystalline defects and increase the grain size of their microstructures. Three types of samples were anodized: commercial substrate, as-prepared and heat-treated samples. The anodization was performed using fluoride solution and a cell potential of 20 V. The samples were characterized by optical microscopy, field-emission scanning electron microscopy and X-ray diffraction. The heat treatment preceding the anodization process increased the grain size of pure Ti and Ti alloys and promoted the formation of Widmanstätten structures in Ti6Al7Nb. The nanotubes layers grown on smaller grain and thermally untreated samples were more regular and homogeneous. In the case of Ti-6Al-7Nb alloy, which presents a α + β phase microstructure, the morphology of nanotubes nucleated on α matrix was more regular than those of nanotubes nucleated on β phase. After the annealing process, the Ti-6Al-7Nb alloy presented full diffusion process and the growth of equilibrium phases resulting in the appearance of regions containing higher concentrations of Nb, i.e. beta phase. In those regions the dissolution rate of Nb2O5 is lower than that of TiO2, resulting in a nanoporous layer. In general, heat treating reduces crystalline defects and promotes the increasing of the grain sizes, not favoring the process of nanotube nucleation and growth on the metallic surface.
Fabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers
Inaba, Shusei; Vohra, Varun
2017-01-01
Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bulk heterojunction or sequentially deposited active layers. In particular, producing adequate vertical concentration gradients with higher concentrations of ED and EA close to the anode and cathode, respectively, results in an improved charge collection and consequently higher photovoltaic parameters such as the fill factor. In this review, we relate processes to generate active layers with ED–EA vertical concentration gradients. After summarizing the formation of such concentration gradients in single layer active layers through processes such as annealing or additives, we will verify that sequential deposition of multilayered active layers can be an efficient approach to remarkably increase the fill factor and PCE of PSCs. In fact, applying this challenging approach to fabricate inverted architecture PSCs has the potential to generate low-cost, high efficiency and stable devices, which may revolutionize worldwide energy demand and/or help develop next generation devices such as semi-transparent photovoltaic windows. PMID:28772878
Fabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers.
Inaba, Shusei; Vohra, Varun
2017-05-09
Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bulk heterojunction or sequentially deposited active layers. In particular, producing adequate vertical concentration gradients with higher concentrations of ED and EA close to the anode and cathode, respectively, results in an improved charge collection and consequently higher photovoltaic parameters such as the fill factor. In this review, we relate processes to generate active layers with ED-EA vertical concentration gradients. After summarizing the formation of such concentration gradients in single layer active layers through processes such as annealing or additives, we will verify that sequential deposition of multilayered active layers can be an efficient approach to remarkably increase the fill factor and PCE of PSCs. In fact, applying this challenging approach to fabricate inverted architecture PSCs has the potential to generate low-cost, high efficiency and stable devices, which may revolutionize worldwide energy demand and/or help develop next generation devices such as semi-transparent photovoltaic windows.
NASA Astrophysics Data System (ADS)
Langlois, A.; Royer, A.; Montpetit, B.; Johnson, C. A.; Brucker, L.; Dolant, C.; Richards, A.; Roy, A.
2015-12-01
With the current changes observed in the Arctic, an increase in occurrence of rain-on-snow (ROS) events has been reported in the Arctic (land) over the past few decades. Several studies have established that strong linkages between surface temperatures and passive microwaves do exist, but the contribution of snow properties under winter extreme events such as rain-on-snow events (ROS) and associated ice layer formation need to be better understood that both have a significant impact on ecosystem processes. In particular, ice layer formation is known to affect the survival of ungulates by blocking their access to food. Given the current pronounced warming in northern regions, more frequent ROS can be expected. However, one of the main challenges in the study of ROS in northern regions is the lack of meteorological information and in-situ measurements. The retrieval of ROS occurrence in the Arctic using satellite remote sensing tools thus represents the most viable approach. Here, we present here results from 1) ROS occurrence formation in the Peary caribou habitat using an empirically developed ROS algorithm by our group based on the gradient ratio, 2) ice layer formation across the same area using a semi-empirical detection approach based on the polarization ratio spanning between 1978 and 2013. A detection threshold was adjusted given the platform used (SMMR, SSM/I and AMSR-E), and initial results suggest high-occurrence years as: 1981-1982, 1992-1993; 1994-1995; 1999-2000; 2001-2002; 2002-2003; 2003-2004; 2006-2007; 2007-2008. A trend in occurrence for Banks Island and NW Victoria Island and linkages to caribou population is presented.
Reliable aluminum contact formation by electrostatic bonding
NASA Astrophysics Data System (ADS)
Kárpáti, T.; Pap, A. E.; Radnóczi, Gy; Beke, B.; Bársony, I.; Fürjes, P.
2015-07-01
The paper presents a detailed study of a reliable method developed for aluminum fusion wafer bonding assisted by the electrostatic force evolving during the anodic bonding process. The IC-compatible procedure described allows the parallel formation of electrical and mechanical contacts, facilitating a reliable packaging of electromechanical systems with backside electrical contacts. This fusion bonding method supports the fabrication of complex microelectromechanical systems (MEMS) and micro-opto-electromechanical systems (MOEMS) structures with enhanced temperature stability, which is crucial in mechanical sensor applications such as pressure or force sensors. Due to the applied electrical potential of -1000 V the Al metal layers are compressed by electrostatic force, and at the bonding temperature of 450 °C intermetallic diffusion causes aluminum ions to migrate between metal layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukamoto, S.; Arakawa, Y.; Bell, G. R.
2007-04-10
Dynamic images of InAs quantum dots (QDs) formation are obtained using a unique scanning tunneling microscope (STM) placed within the growth chamber. These images are interpreted with the aid of kinetic Monte Carlo (kMC) simulations of the QD nucleation process. Alloy fluctuations in the InGaAs wetting layer prior to QD formation assist in the nucleation of stable InAs islands containing tens of atoms which grow extremely rapidly to form QDs. Furthermore, not all deposited In is initially incorporated into the lattice, providing a large supply of material to rapidly form QDs at the critical thickness.
Hybrid structure of white layer in high carbon steel - Formation mechanism and its properties.
Hossain, Rumana; Pahlevani, Farshid; Witteveen, Evelien; Banerjee, Amborish; Joe, Bill; Prusty, B Gangadhara; Dippenaar, Rian; Sahajwalla, Veena
2017-10-16
This study identifies for the first time, the hybrid structure of the white layer in high carbon steel and describes its formation mechanism and properties. The so-called 'white layer' in steel forms during high strain rate deformation and appears featureless under optical microscopy. While many researchers have investigated the formation of the white layer, there has been no definitive study, nor is there sufficient evidence to fully explain the formation, structure and properties of the layer. In this study, the formation, morphology and mechanical properties of the white layer was determined following impact testing, using a combination of optical and SE- microscopy, HR-EBSD, TKD and TEM as well as nano-indentation hardness measurements and FE modelling. The phase transformation and recrystallization within and near the white layer was also investigated. The microstructure of the steel in the white layer consisted of nano-sized grains of martensite. A very thin layer of austenite with nano sized grains was identified within the white layer by HR-EBSD techniques, the presence of which is attributed to a thermally-induced reverse phase transformation. Overall, the combination of phase transformations, strain hardening and grain refinement led to a hybrid structure and an increase in hardness of the white layer.
In situ ceramic layer growth on coated fuel particles dispersed in a zirconium metal matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrani, Kurt A; Silva, G W Chinthaka M; Kiggans, Jim
2013-01-01
The extent and nature of the chemical interaction between the outermost coating layer of coated fuel particles embedded in zirconium metal during fabrication of metal matrix microencapsulated fuels was examined. Various particles with outermost coating layers of pyrocarbon, SiC, and ZrC have been investigated in this study. ZrC-Zr interaction was least substantial while PyC-Zr reaction can be exploited to produce a ZrC layer at the interface in an in situ manner. The thickness of the ZrC layer in the latter case can be controlled by adjusting the time and temperature during processing. The kinetics of ZrC layer growth is significantlymore » faster from what is predicted using literature carbon diffusivity data in ZrC. SiC-Zr interaction is more complex and results in formation of various chemical phases in a layered aggregate morphology at the interface.« less
Disappearing Enantiomorphs: Single Handedness in Racemate Crystals.
Parschau, Manfred; Ernst, Karl-Heinz
2015-11-23
Although crystallization is the most important method for the separation of enantiomers of chiral molecules in the chemical industry, the chiral recognition involved in this process is poorly understood at the molecular level. We report on the initial steps in the formation of layered racemate crystals from a racemic mixture, as observed by STM at submolecular resolution. Grown on a copper single-crystal surface, the chiral hydrocarbon heptahelicene formed chiral racemic lattice structures within the first layer. In the second layer, enantiomerically pure domains were observed, underneath which the first layer contained exclusively the other enantiomer. Hence, the system changed from a 2D racemate into a 3D racemate with enantiomerically pure layers after exceeding monolayer-saturation coverage. A chiral bias in form of a small enantiomeric excess suppressed the crystallization of one double-layer enantiomorph so that the pure minor enantiomer crystallized only in the second layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Singha, Bandana; Singh Solanki, Chetan
2016-03-01
In the production of n-type crystalline silicon solar cells with boron diffused emitters, the formation of a boron rich layer (BRL) is a common phenomenon and is largely responsible for bulk lifetime degradation. The phenomenon of BRL formation during diffusion of boron spin-on dopant and its impact on bulk lifetime degradation are investigated in this work. The BRL formed beneath the borosilicate glass layer has thicknesses varying from 10 nm-150 nm depending on the diffusion conditions. The effective and bulk minority carrier lifetimes, measured with Al2O3 deposited layers and a quinhydron-methanol solution, show that carrier lifetime degradation is proportional to the BRL thicknesses and their surface recombination velocities. The controlled diffusion processes and different oxidation techniques used in this work can partially reduce the BRL thickness and improve carrier lifetime by more than 10%. But for BRL thicknesses higher than 50 nm, different etching techniques further lower the carrier lifetime and the degradation in the device cannot be recovered.
NASA Astrophysics Data System (ADS)
Sayin, Mustafa; Dahint, Reiner
2017-03-01
Nanostructure formation via self-assembly processes offers a fast and cost-effective approach to generate surface patterns on large lateral scale. In particular, if the high precision of lithographic techniques is not required, a situation typical of many biotechnological and biomedical applications, it may be considered as the method of choice as it does not require any sophisticated instrumentation. However, in many cases the variety and complexity of the surface structures accessible with a single self-assembly based technique is limited. Here, we report on a new approach which combines two different self-assembly strategies, colloidal lithography and layer-by-layer deposition of polyelectrolytes, in order to significantly expand the spectrum of accessible patterns. In particular, flat and donut-like charge-patterned templates have been generated, which facilitate subsequent deposition of gold nanoparticles in dot, grid, ring, out-of-ring and circular patch structures. Potential applications are e.g. in the fields of biofunctional interfaces with well-defined lateral dimensions, optical devices with tuned properties, and controlled three-dimensional material growth.
Layering in peralkaline magmas, Ilímaussaq Complex, S Greenland
NASA Astrophysics Data System (ADS)
Hunt, Emma J.; Finch, Adrian A.; Donaldson, Colin H.
2017-01-01
The peralkaline to agpaitic Ilímaussaq Complex, S. Greenland, displays spectacular macrorhythmic (> 5 m) layering via the kakortokite (agpaitic nepheline syenite), which outcrops as the lowest exposed rocks in the complex. This study applies crystal size distribution (CSD) analyses and eudialyte-group mineral chemical compositions to study the marker horizon, Unit 0, and the contact to the underlying Unit - 1. Unit 0 is the best-developed unit in the kakortokites and as such is ideal for gaining insight into processes of crystal formation and growth within the layered kakortokite. The findings are consistent with a model whereby the bulk of the black and red layers developed through in situ crystallisation at the crystal mush-magma interface, whereas the white layer developed through a range of processes operating throughout the magma chamber, including density segregation (gravitational settling and flotation). Primary textures were modified through late-stage textural coarsening via grain overgrowth. An open-system model is proposed, where varying concentrations of halogens, in combination with undercooling, controlled crystal nucleation and growth to form Unit 0. Our observations suggest that the model is applicable more widely to the layering throughout the kakortokite series and potentially other layered peralkaline/agpaitic rocks around the world.
NASA Astrophysics Data System (ADS)
Czajkowski, Klaus; Ratzke, Markus; Varlamova, Olga; Reif, Juergen
2017-09-01
We investigate femtosecond laser induced periodic surface structures (LIPSS) on a complex multilayer target, namely a 20-GB computer hard disk (HD), consisting of a metallic substrate, a magnetic layer, and a thin polymeric protective layer. Depending on the dose (fluence × number of pulses) first the polymeric cover layer is completely removed, revealing a periodic surface modulation of the magnetic layer which seems not to be induced by the laser action. At higher dose, the magnetic layer morphology is strongly modified by laser-induced periodic structures (LIPS) and, finally, kind of an etch stop is reached at the bottom of the magnetic layer. The LIPS shows very high modulation depth below and above the original surface level. In the present work, the role of magnetization and magneto-mechanic forces in the structure formation process is studied by monitoring the bit-wise magnetization of the HD with a magnetic force microscope. It is shown that the structures at low laser dose are reflecting the magnetic bits. At higher dose the magnetic influence appears to be extinguished on the account of LIPS. This suggests a transient overcoming the Curie temperature and an associated loss of magnetic order. The results compare well with our model of LIPS/LIPSS formation by self-organized relaxation from a laser-induced thermodynamic instability.
NASA Astrophysics Data System (ADS)
Liu, Jingjing; Fallah-Mehrjardi, Ata; Shishin, Denis; Jak, Evgueni; Dorreen, Mark; Taylor, Mark
2017-12-01
In an aluminum electrolysis cell, the side ledge forms on side walls to protect it from the corrosive cryolitic bath. In this study, a series of laboratory analogue experiments have been carried out to investigate the microstructure and composition of side ledge (freeze linings) at different heat balance steady states. Three distinct layers are found in the freeze linings formed in the designed Cryolite-CaF2-AlF3-Al2O3 electrolyte system: a closed (columnar) crystalline layer, an open crystalline layer, and a sealing layer. This layered structure changes when the heat balance is shifted between different steady states, by melting or freezing the open crystalline layer. Phase chemistry of the freeze lining is studied in this paper to understand the side ledge formation process upon heat balance shifts. Electron probe X-ray microanalysis (EPMA) is used to characterize the microstructure and compositions of distinct phases existing in the freeze linings, which are identified as cryolite, chiolite, Ca-cryolite, and alumina. A freeze formation mechanism is further developed based on these microstructural/compositional investigations and also thermodynamic calculations through the software—FactSage. It is found that entrapped liquid channels exist in the open crystalline layer, assisting with the mass transfer between solidified crystals and bulk molten bath.
Properties of hot-rolled sheets from ferritic steel with increased strength
NASA Astrophysics Data System (ADS)
Perlovich, Yu.; Isaenkova, M.; Dobrokhotov, P.; Stolbov, S.; Bannykh, O.; Bannykh, I.; Antsyferova, M.
2017-10-01
Sheets from ferritic steel 3 mm thick with increased strength after thermal hardening were studied by use of various X-ray methods and mechanical testing. Rolling of steel was carried out at 1100°C with rather great reductions per pass, so that plastic deformation of metal spread by the significant distance from the surface. The texture of sheet proved to have two sharply different layers: the inner layer of ˜40% thick with the usual rolling texture of BCC metals and the external layer with the rolling texture of FCC metals. At that, within the intermediate layer the texture is weakened. Texture formation within the external layer is conditioned by the process of dynamical deformation ageing: interstitial impurities from atmosphere block dislocations, prevent from their slip and at increased temperatures promote their collective climb. As a result, the direction of lattice rotation as well as the final rolling texture change. Due to texture layering, by impact testing of the sheet the plane of crack propagation must be changed when this crack reaches the inner layer, and then an additional energy for its further movement is required. Thermal hardening of the sheet retains the type of rolling texture, though results in some its scattering, but at the same time the breaking point of steel grows twice owing to formation of intermetallic particles.
NASA Astrophysics Data System (ADS)
Parshin, Dmitry A.
2018-05-01
The additive process of forming a semicircular arched structure by means of layer-by-layer addition of material to its inner surface is simulated. The impact of this process running mode on the development of the technological stresses fields in the structure being formed under the action of gravity under properties of the material creep and aging is examined. In the framework of the linear mechanics of accreted solids a mathematical model of the process under study is offered and numerical experiments are conducted. It is shown that the stress-strain state of the additively formed heavy objects decisively depends on their formation mode. Various practically important trends and features of this dependence are studied.
The Surface Layer of a Crystal and Its Specific Role in the Process of Melt Formation
NASA Astrophysics Data System (ADS)
Sobolev, R. N.
2018-04-01
A crystal becomes melted in a few stages. The structure of the crystal surface differs from that of its interior. Therefore, as its interior is gradually involved in the melting process, the phase transition temperature becomes higher. The melting point becomes constant when all atoms have the same number of unsaturated bonds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Lifen; Chen, Zhen; Liu, Guokui
2015-01-01
The formation mechanism for red phosphors K 2TiF 6:Mn 4+synthesized at room temperature has been discussed. The luminescence intensity has been improved by optimizing the synthetic process. Encapsulation of the red phosphor K 2TiF 6:Mn 4+with YAG:Ce on a GaN layer produces “warm” white LEDs with color rendering 86 at 3251 K.
Ab initio modeling of zincblende AlN layer in Al-AlN-TiN multilayers
Yadav, S. K.; Wang, J.; Liu, X. -Y.
2016-06-13
An unusual growth mechanism of metastable zincblende AlN thin film by diffusion of nitrogen atoms into Al lattice is established. Using first-principles density functional theory, we studied the possibility of thermodynamic stability of AlN as a zincblende phase due to epitaxial strains and interface effect, which fails to explain the formation of zincblende AlN. We then compared the formation energetics of rocksalt and zincblende AlN in fcc Al through direct diffusion of nitrogen atoms to Al octahedral and tetrahedral interstitials. Furthermore, the formation of a zincblende AlN thin film is determined to be a kinetically driven process, not a thermodynamicallymore » driven process.« less
Process for obtaining multiple sheet resistances for thin film hybrid microcircuit resistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norwood, D P
1989-01-31
A standard thin film circuit containing Ta/sub 2/N (100 ohms/square) resistors is fabricated by depositing on a dielectric substrate successive layers of Ta/sub 2/N, Ti and Pd, with a gold layer to provide conductors. The addition of a few simple photoprocessing steps to the standard TFN (thin film network) manufacturing process enables the formation of Ta/sub 2/N + Ti (10 ohms/square) and Ta/sub 2/N + Ti + Pd (1 ohm/square) resistors in the same otherwise standard thin film circuit structure. All three types of resistors are temperature-stable and laser-trimmable for precise definition of resistance values.
Madueño, Rafael; Pineda, Teresa; Sevilla, José Manuel; Blázquez, Manuel
2005-02-03
This is a report on the kinetics of the destruction and formation processes of the 6-thioguanine self-assembled monolayer (6TG SAM) on a mercury electrode from acid solutions by chronoamperometry. The destruction of the 6TG SAM that has been previously formed under open circuit potential conditions is carried out by stepping the potential from an initial value where the chemisorbed layer is stable up to potentials where the molecules are no longer chemisorbed. The destruction of the SAM has been described by a model that involves three types of contributions: (i) a Langmuir-type adsorption process, (ii) a 2D nucleation mechanism followed by a growth controlled by surface diffusion, and (iii) a 2D nucleation mechanism followed by a growth at a constant rate. The nonlinear fit of the experimental transients by using this procedure allows the quantitative determination of the individual contributions to the overall process. The kinetics of the formation process is studied under electrochemical conditions. The chronoamperometric experiment allows us to monitor the early stages of 6TG SAM formation. The implications of the physisorbed state at low potentials in the type of monolayer formation and destruction processes as well as the influence of temperature are also discussed.
NASA Astrophysics Data System (ADS)
Bhusal, U. C.; Dwivedi, S.; Ghimire, H.; Ulak, P. D.; Khatiwada, B.; Rijal, M. L.; Neupane, Y.; Aryal, S.; Pandey, D.; Gautam, A.; Mishra, S.
2017-12-01
Sudden release of turbid groundwater through piping in the Kali Khola and subsequent formation of over one hundred twenty sinkholes since 18 November, 2013 to May, 2014 in Armala Valley in northern part of Pokhara created havoc to the local residents. The main objective of the work is to investigate subsurface anomalies so as to locate the subsurface cavities, groundwater movement and areas prone to sinkholes formation in the area. Findings of the several studies and observations carried out in area by the authors and preventive measures carried out by Department of Water Induced Disaster Management are presented in the paper. To fulfill the objective 2D-Electrical Resistivity Tomography Survey was carried out at sixty five profiles with minimum electrode spacing from 1 m to 5 m on different profiles using WDJD-4 Resistivity meter. Res2Dinv Software was used for processing and interpretation of the acquired data. Geological mapping, preparation of columnar section of the sinkholes and river bank were conducted. Hand auguring, tracer test and topography survey were also carried out in the area. Different geophysical anomalies were identified in 2D-ERT survey which indicates the presence of compositional difference in layered sediments, undulations in depositional pattern with top humus layer of thickness 0.5 m, loose unconsolidated gravel layer 0.5 m - 4 m and clayey silt/silty clay layer upto 75 m depth. The cavities were found both in clayey silt layer and gravel layer with size ranging from 1-2 m to 10-12 m in depth and 2 m-10 m in diameter either empty or water filled depending on locations. Fifteen cavities that were detected during survey were excavated and immediately filled up. Three major and four minor groundwater flow paths were detected which has been later confirmed by tracer test, formation of new sinkholes along the path and during excavation for construction of underground structures for blocking the underground flow. Major flow path was detected at a depth of 7 m. Undulations in the interface between gravel layer and underlying clayey silt layer, infiltration of acidic fluid, formation of fissures, cracks and dissolution, piping in the clayey silt layer increased the size of cavity, encroachment of Duhani Khola channel, rapid deepening of the Kali Khola are major causes for formation of sinkholes in Armala Valley.
NASA Astrophysics Data System (ADS)
Nicosia, Vincenzo; Skardal, Per Sebastian; Arenas, Alex; Latora, Vito
2017-03-01
We introduce a framework to intertwine dynamical processes of different nature, each with its own distinct network topology, using a multilayer network approach. As an example of collective phenomena emerging from the interactions of multiple dynamical processes, we study a model where neural dynamics and nutrient transport are bidirectionally coupled in such a way that the allocation of the transport process at one layer depends on the degree of synchronization at the other layer, and vice versa. We show numerically, and we prove analytically, that the multilayer coupling induces a spontaneous explosive synchronization and a heterogeneous distribution of allocations, otherwise not present in the two systems considered separately. Our framework can find application to other cases where two or more dynamical processes such as synchronization, opinion formation, information diffusion, or disease spreading, are interacting with each other.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cats, K. H.; Andrews, J. C.; Stephan, O.
In this study, the Fischer-Tropsch synthesis (FTS) reaction is one of the most promising processes to convert alternative energy sources, such as natural gas, coal or biomass, into liquid fuels and other high-value products. Despite its commercial implementation, we still lack fundamental insights into the various deactivation processes taking place during FTS. In this work, a combination of three methods for studying single catalyst particles at different length scales has been developed and applied to study the deactivation of Co/TiO 2 Fischer-Tropsch synthesis (FTS) catalysts. By combining transmission X-ray microscopy (TXM), scanning transmission X-ray microscopy (STXM) and scanning transmission electronmore » microscopy-electron energy loss spectroscopy (STEM-EELS) we visualized changes in the structure, aggregate size and distribution of supported Co nanoparticles that occur during FTS. At the microscale, Co nanoparticle aggregates are transported over several μm leading to a more homogeneous Co distribution, while at the nanoscale Co forms a thin layer of ~1-2 nm around the TiO 2 support. The formation of the Co layer is the opposite case to the “classical” strong metal-support interaction (SMSI) in which TiO 2 surrounds the Co, and is possibly related to the surface oxidation of Co metal nanoparticles in combination with coke formation. In other words, the observed migration and formation of a thin CoO x layer are similar to a previously discussed reaction-induced spreading of metal oxides across a TiO 2 surface.« less
NASA Astrophysics Data System (ADS)
Wu, L.; Braun, S. A.
2006-12-01
Over the past two decades, little advance has been made in prediction of tropical cyclone intensity while substantial improvements have been made in forecasting hurricane tracks. One reason is that we don't well understand the physical processes that govern tropical cyclone intensity. Recent studies have suggested that the Saharan Air Layer (SAL) may be yet another piece of the puzzle in advancing our understanding of tropical cyclone intensity change in the Atlantic basin. The SAL is an elevated mixed layer, forming as air moves across the vast Sahara Desert, in particular during boreal summer months. The SAL contains warm, dry air as well as a substantial amount of mineral dust, which can affect radiative heating and modify cloud processes. Using the retrieved temperature and humidity profiles from the AIRS suite on the NASA Aqua satellite, the SAL and its influences on the formation and intensification of Hurricane Isabel (2003) are analyzed and simulated with MM5. When the warmth and dryness of the SAL (the thermodynamic effect) is considered by relaxing the model thermodynamic state to the AIRS profiles, MM5 can well simulate the large-scale flow patterns and the activity of Hurricane Isabel in terms of the timing and location of formation and the subsequent track. Compared with the experiment without nudging the AIRS data, it is suggested that the simulated SAL effect may delay the formation and intensification of Hurricane Isabel. This case study generally confirms the argument by Dunion and Velden (2004) that the SAL can suppress Atlantic tropical cyclone activity by increasing the vertical wind shear, reducing the mean relative humidity, and stabilizing the environment at lower levels.
Method utilizing laser-processing for the growth of epitaxial p-n junctions
Young, R.T.; Narayan, J.; Wood, R.F.
1979-11-23
This invention is a new method for the formation of epitaxial p-n junctions in silicon. The method is relatively simple, rapid, and reliable. It produces doped epitaxial layers which are of well-controlled thickness and whose electrical properties are satisfactory. An illustrative form of the method comprises co-depositing a selected dopant and amorphous silicon on a crystalline silicon substrate to form a doped layer of amorphous silicon thereon. This layer then is irradiated with at least one laser pulse to generate a melt front which moves through the layer, into the silicon body to a depth effecting melting of virginal silicon, and back to the surface of the layer. The method may be conducted with dopants (e.g., boron and phosphorus) whose distribution coefficients approximate unity.
NASA Astrophysics Data System (ADS)
Murakoshi, Atsushi; Harada, Tsubasa; Miyano, Kiyotaka; Harakawa, Hideaki; Aoyama, Tomonori; Yamashita, Hirofumi; Kohyama, Yusuke
2017-09-01
To reduce the number of crystal defects in a p+Si diffusion layer by a low-thermal-budget annealing process, we have examined crystal recovery in the amorphous layer formed by the cryogenic implantation of germanium and boron combined with sub-melt laser spike annealing (LSA). The cryogenic implantation at -150 °C is very effective in suppressing vacancy clustering, which is advantageous for rapid crystal recovery during annealing. The crystallinity after LSA is shown to be very high and comparable to that after rapid thermal annealing (RTA) owing to the cryogenic implantation, although LSA is a low-thermal-budget annealing process that can suppress boron diffusion effectively. It is also shown that in the p+Si diffusion layer, there is high contact resistance due to the incomplete formation of a metal silicide contact, which originates from insufficient outdiffusion of surface contaminants such as fluorine. To widely utilize the marked reduction in the number of crystal defects, sufficient removal of surface contaminants will be required in the low-thermal-budget process.
Mechanism research on arsenic removal from arsenopyrite ore during a sintering process
NASA Astrophysics Data System (ADS)
Cheng, Ri-jin; Ni, Hong-wei; Zhang, Hua; Zhang, Xiao-kun; Bai, Si-cheng
2017-04-01
The mechanism of arsenic removal during a sintering process was investigated through experiments with a sintering pot and arsenic-bearing iron ore containing arsenopyrite; the corresponding chemical properties of the sinter were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray diffraction (XRD), and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS). The experimental results revealed that the reaction of arsenic removal is mainly related to the oxygen atmosphere and temperature. During the sintering process, arsenic could be removed in the ignition layer, the sinter layer, and the combustion zone. A portion of FeAsS reacted with excess oxygen to generate FeAsO4, and the rest of the FeAsS reacted with oxygen to generate As2O3(g) and SO2(g). A portion of As2O3(g) mixed with Al2O3 or CaO, which resulted in the formation of arsenates such as AlAsO4 and Ca3(AsO4)2, leading to arsenic residues in sintering products. The FeAsS component in the blending ore was difficult to decompose in the preliminary heating zone, the dry zone, or the bottom layer because of the relatively low temperatures; however, As2O3(g) that originated from the high-temperature zone could react with metal oxides, resulting in the formation of arsenate residues.
Cortical Merging in S1 as a Substrate for Tactile Input Grouping
Zennou-Azogui, Yoh’I; Xerri, Christian
2018-01-01
Abstract Perception is a reconstruction process guided by rules based on knowledge about the world. Little is known about the neural implementation of the rules of object formation in the tactile sensory system. When two close tactile stimuli are delivered simultaneously on the skin, subjects feel a unique sensation, spatially centered between the two stimuli. Voltage-sensitive dye imaging (VSDi) and electrophysiological recordings [local field potentials (LFPs) and single units] were used to extract the cortical representation of two-point tactile stimuli in the primary somatosensory cortex of anesthetized Long-Evans rats. Although layer 4 LFP responses to brief costimulation of the distal region of two digits resembled the sum of individual responses, approximately one-third of single units demonstrated merging-compatible changes. In contrast to previous intrinsic optical imaging studies, VSD activations reflecting layer 2/3 activity were centered between the representations of the digits stimulated alone. This merging was found for every tested distance between the stimulated digits. We discuss this laminar difference as evidence that merging occurs through a buildup stream and depends on the superposition of inputs, which increases with successive stages of sensory processing. These findings show that layers 2/3 are involved in the grouping of sensory inputs. This process that could be inscribed in the cortical computing routine and network organization is likely to promote object formation and implement perception rules. PMID:29354679
Technological capabilities of surface layers formation on implant made of Ti-6Al-4V ELI alloy.
Kiel-Jamrozik, Marta; Szewczenko, Janusz; Basiaga, Marcin; Nowińska, Katarzyna
2015-01-01
The aim of the presented research was to find a combination of surface modification methods of implants made of the Ti-6Al-4V ELI alloy, that lead to formation of effective barrier for metallic ions that may infiltrate into solution. To this end, the following tests were carried out: roughness measurement, the voltamperometric tests (potentiodynamic and potentiostatic), and the ion infiltration test. The electropolishing process resulted in the lowering of surface roughness in comparison with mechanical treatment of the surface layer. The anodization process and steam sterilization increased corrosion resistance regardless of the mechanical treatment or electropolishing. The crevice corrosion tests revealed that independent of the modification method applied, the Ti-6Al-4V ELI alloy has excellent crevice corrosion resistance. The smallest quantity of ions infiltrated to the solution was observed for surface modification consisting in the mechanical treatment and anodization with the potential of 97 V. Electric parameters deter- mined during studies were the basis for effectiveness estimation of particular surface treatment methods. The research has shown that the anodization process significantly influences the pitting corrosion resistance of the Ti-6Al-4V ELI alloy independent of the previous surface treatment methods (mechanical and electrochemical). The surface layer after such modification is a protective barrier for metallic ions infiltrated to solution and protects titanium alloy against corrosive environment influence.
Apatite-forming PEEK with TiO2 surface layer coating.
Kizuki, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi
2015-01-01
Polyetheretherketone (PEEK) is widely used in orthopedic implants, such as spinal fusion devices, because of its moderate elastic modulus, as well as relatively high mechanical strength. However, it does not bond to living bone, and hence it needs autograft to be fixed to the bone. In this study, we attempted to add bone-bonding properties to PEEK by coating with TiO2 synthesized by the sol-gel process. When a TiO2 sol solution consisting of titanium isopropoxide, water, ethanol, and nitric acid was deposited on a PEEK substrate without any pretreatment, the formed TiO2 gel layer was easily peeled off after subsequent treatments. However, when the same solution was deposited on PEEK that was preliminarily subjected to UV or O2 plasma treatment, the deposited TiO2 gel layer strongly adhered to the substrate even after subsequent treatments. The strong adhesion was attributed to the interaction among the C-O, C=O, and O-C=O groups on the PEEK owing to the UV or O2 plasma treatment and the Ti-O bond of the TiO2 gel. Apatite did not form on the as-formed TiO2 gel layer in a simulated body fluid (SBF) even within 3 days; however, apatite formed after soaking in 0.1 M HCl solution at 80 °C for 24 h. This apatite formation was attributed to positive surface charge of the TiO2 gel layer induced by the acid treatment. The PEEK with the TiO2 gel layer coating formed by the proposed process is expected to bond to living bone, because a positively charged titanium oxide which facilitates the formation of apatite in SBF within a short period is known to bond to living bone.
Method for formation of thin film transistors on plastic substrates
Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.
1998-10-06
A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.
Corrigan, Damion K; Vezza, Vincent; Schulze, Holger; Bachmann, Till T; Mount, Andrew R; Walton, Anthony J; Terry, Jonathan G
2018-06-09
For analytical applications involving label-free biosensors and multiple measurements, i.e., across an electrode array, it is essential to develop complete sensor systems capable of functionalization and of producing highly consistent responses. To achieve this, a multi-microelectrode device bearing twenty-four equivalent 50 µm diameter Pt disc microelectrodes was designed in an integrated 3-electrode system configuration and then fabricated. Cyclic voltammetry and electrochemical impedance spectroscopy were used for initial electrochemical characterization of the individual working electrodes. These confirmed the expected consistency of performance with a high degree of measurement reproducibility for each microelectrode across the array. With the aim of assessing the potential for production of an enhanced multi-electrode sensor for biomedical use, the working electrodes were then functionalized with 6-mercapto-1-hexanol (MCH). This is a well-known and commonly employed surface modification process, which involves the same principles of thiol attachment chemistry and self-assembled monolayer (SAM) formation commonly employed in the functionalization of electrodes and the formation of biosensors. Following this SAM formation, the reproducibility of the observed electrochemical signal between electrodes was seen to decrease markedly, compromising the ability to achieve consistent analytical measurements from the sensor array following this relatively simple and well-established surface modification. To successfully and consistently functionalize the sensors, it was necessary to dilute the constituent molecules by a factor of ten thousand to support adequate SAM formation on microelectrodes. The use of this multi-electrode device therefore demonstrates in a high throughput manner irreproducibility in the SAM formation process at the higher concentration, even though these electrodes are apparently functionalized simultaneously in the same film formation environment, confirming that the often seen significant electrode-to-electrode variation in label-free SAM biosensing films formed under such conditions is not likely to be due to variation in film deposition conditions, but rather kinetically controlled variation in the SAM layer formation process at these microelectrodes.
Distinct roles of the cortical layers of area V1 in figure-ground segregation.
Self, Matthew W; van Kerkoerle, Timo; Supèr, Hans; Roelfsema, Pieter R
2013-11-04
What roles do the different cortical layers play in visual processing? We recorded simultaneously from all layers of the primary visual cortex while monkeys performed a figure-ground segregation task. This task can be divided into different subprocesses that are thought to engage feedforward, horizontal, and feedback processes at different time points. These different connection types have different patterns of laminar terminations in V1 and can therefore be distinguished with laminar recordings. We found that the visual response started 40 ms after stimulus presentation in layers 4 and 6, which are targets of feedforward connections from the lateral geniculate nucleus and distribute activity to the other layers. Boundary detection started shortly after the visual response. In this phase, boundaries of the figure induced synaptic currents and stronger neuronal responses in upper layer 4 and the superficial layers ~70 ms after stimulus onset, consistent with the hypothesis that they are detected by horizontal connections. In the next phase, ~30 ms later, synaptic inputs arrived in layers 1, 2, and 5 that receive feedback from higher visual areas, which caused the filling in of the representation of the entire figure with enhanced neuronal activity. The present results reveal unique contributions of the different cortical layers to the formation of a visual percept. This new blueprint of laminar processing may generalize to other tasks and to other areas of the cerebral cortex, where the layers are likely to have roles similar to those in area V1. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vasin, Andriy V.; Ishikawa, Yukari; Shibata, Noriyoshi; Salonen, Jarno; Lehto, Vesa-Pekka
2007-05-01
A new approach to development of light-emitting SiO2:C layers on Si wafer is demonstrated. Carbon-incorporated silicon oxide was fabricated by three-step procedure: (1) formation of the porous silicon (por-Si) layer by ordinary anodization in HF:ethanol solution; (2) carbonization at 1000 °C in acetylene flow (formation of por-Si:C layer); (3) oxidation in the flow of moisturized argon at 800 °C (formation of SiO2:C layer). Resulting SiO2:C layer exhibited very strong and stable white photoluminescence at room temperature. It is shown that high reactivity of water vapor with nano-crystalline silicon and inertness with amorphous carbon play a key role in the formation of light-emitting SiO2:C layer.
Park, Hyung Wook; Kim, Hong-Lim; Park, Yong Soo; Kim, In-Beom
2018-02-01
The retina is a highly specialised part of the brain responsible for visual processing. It is well-laminated; three layers containing five different types of neurons are compartmentalised by two synaptic layers. Among the retinal layers, the inner nuclear layer (INL) is composed of horizontal, bipolar, and amacrine cell types. Bipolar cells form one sublayer in the distal half of the IPL, while amacrine cells form another sublayer in the proximal half, without any border-like structure. Here, we report that a plexiform layer-like structure exists temporarily in the border between the bipolar and amacrine sublayers in the INL in the rat retina during retinal development. This transient intermediate plexiform layer (TIPL) appeared at postnatal day (PD) 7 and then disappeared around PD 12. Most apoptotic cells in the INL were found near the TIPL. These results suggest that the TIPL may contribute to the formation of sublayers and the cell number limit in the INL.
Physical-chemical processes of diamond grinding
NASA Astrophysics Data System (ADS)
Lobanov, D. V.; Arhipov, P. V.; Yanyushkin, A. S.; Skeeba, V. Yu
2017-10-01
The article focuses on the relevance of the research into the problem of diamond abrasive metal-bonded tool performance loss with a view to enhancing the effectiveness of high-strength materials finishing processing. The article presents the results of theoretical and empirical studies of loading layer formation on the surface of diamond wheels during processing high-strength materials. The theoretical part deals with the physical and chemical processes at the contact area of the diamond wheel and work surface with the viewpoint of the electrochemical potentials equilibrium state. We defined dependencies for calculating the loading layer dimensions. The practical part of work centers on various electron-microscopic, spectral and X-ray diffraction studies of the metal-bonded wheel samples during diamond grinding. The analysis of the research results revealed the composition and structure of the loading layer. The validity of the theoretical data is confirmed by sufficient convergence of the calculated values with the results of empirical research. In order to reduce the intensity of loading and improve the cutting properties of metal-bonded diamond abrasive tools, it is recommended to use combined methods for more efficient processing of high-strength materials.
Eang, Khy Eam; Igarashi, Toshifumi; Fujinaga, Ryota; Kondo, Megumi; Tabelin, Carlito Baltazar
2018-03-06
Groundwater flow and its geochemical evolution in mines are important not only in the study of contaminant migration but also in the effective planning of excavation. The effects of groundwater on the stability of rock slopes and other mine constructions especially in limestone quarries are crucial because calcite, the major mineral component of limestone, is moderately soluble in water. In this study, evolution of groundwater in a limestone quarry located in Chichibu city was monitored to understand the geochemical processes occurring within the rock strata of the quarry and changes in the chemistry of groundwater, which suggests zones of deformations that may affect the stability of rock slopes. There are three distinct geological formations in the quarry: limestone layer, interbedded layer of limestone and slaty greenstone, and slaty greenstone layer as basement rock. Although the hydrochemical facies of all groundwater samples were Ca-HCO 3 type water, changes in the geochemical properties of groundwater from the three geological formations were observed. In particular, significant changes in the chemical properties of several groundwater samples along the interbedded layer were observed, which could be attributed to the mixing of groundwater from the limestone and slaty greenstone layers. On the rainy day, the concentrations of Ca 2+ and HCO 3 - in the groundwater fluctuated notably, and the groundwater flowing along the interbedded layer was dominated by groundwater from the limestone layer. These suggest that groundwater along the interbedded layer may affect the stability of rock slopes.
New hydrologic model of fluid migration in deep porous media
NASA Astrophysics Data System (ADS)
Dmitrievsky, A.; Balanyuk, I.
2009-04-01
The authors present a new hydrological model of mantle processes that effect on formation of oil-and-gas bearing basins, fault tectonics and thermal convection. Any fluid migration is initially induced by lateral stresses in the crust and lithosphere which result from global geodynamic processes related to the mantle convection. The global processes are further transformed into regional movements in weakness zones. Model of porous media in deep fractured zones and idea of self-oscillation processes in mantle layers and fractured zones of the crust at different depths was used as the basis for developed concept. The content of these notions resides in the fact that there are conditions of dynamic balance in mantle layers originating as a result of combination and alternate actions of compaction and dilatance mechanisms. These mechanisms can be manifested in different combinations and under different conditions as well as can be complemented by other processes influencing on regime of fluid migration. They can act under condition of passive margin, ocean rift and ocean subduction zones as well as in consolidated platform and sheet. Self-oscillation regime, sub vertical direction of fluid flows, anomalously high layer pressure, and high level of anomalies of various geophysical fields are common for them. A certain class of fluid dynamic models describing consolidation of sedimentary basins, free oscillation processes slow and quick (at the final stage) fluid dynamic processes of the evolution of a sedimentary basin in subduction zones is considered for the first time. The last model of quick fluid dynamic processes reflects the process of formation of hydrocarbon deposits in the zones of collision of lithosphere plates. The results of numerical simulation and diagrams reflecting consecutive stages of the gas-fluid dynamic front propagation are assessed of the Pri-Caspian depression as the example. Calculations with this model will simultaneously be carried out for the sedimentary basins of Timan-Pechora region, Barents Sea, Volga-Ural area, etc. Hydrologic model of deep porous media and the idea of self-oscillation processes in fractured layers of the crust at different depths were used as the basis for developed concept. The content of these notions resides in the fact that there are conditions of dynamic balance in fractured layers originating as a result of combination and alternate actions of compaction and dilatance mechanisms. These mechanisms can be manifested in different combinations and under different conditions as well as can be complemented by other processes influencing on regime of fluid migration. They can act under condition of passive margin, rift and subduction zones as well as in consolidated platform and sheet. Self-oscillation regime, sub vertical direction of fluid flows, anomalously high layer pressure, and high level of anomalies of various geophysical fields are common for them. Specific manifestations of these mechanisms can vary in dependence on geological settings and geodynamic situations. In particular, periods of self-oscillations and depths of fractured layers can be various. Orientation of layers can be not only horizontal, but vertical as well, that is, self-oscillations can occur not only in deep porous media, but in faults and impaired fractured zones as well. Predominating vertical fluid migration can be accompanied by horizontal migration along crust waveguide. A set of fluid dynamic models is considered. Mathematical modeling of geodynamic and fluid dynamic processes in these zones seems very promising. Combined consideration of geodynamic and fluid dynamic aspects in a model of lithosphere plates collision enables to understand the influence of P-T conditions and shear deformations on the mechanism of hydrocarbon generation and to look after their migration and to explain these processes, but also to predict some features essential for the search and exploration of hydrocarbon fields in these regions and their classification. In terms of compaction models, multiphase filtration in a piezo-conduction mode and models of deep porous media major stages of fluid evolution under the conditions of developing passive margins and in the zones of collision of plates are described. In particular, compaction models of one of the stages of fluid mode evolution within a sedimentary basin and fluid migration from the convergence zones toward the upper layers are considered. In the final part of work, computation of fluid transfer of hydrocarbons in a pulse mode described by the equation of piezo-conductivity is presented for a mature oil-bearing sedimentary basin over individual sections for short periods of a few hundreds of years. These calculations were executed on the basis of a new mathematical method TEKON and computer programs for quantitative analysis of fluid migration and formation of hydrocarbon deposits with account taken for actual geometrical and lithological properties of the layers. On the basis of the specified numerical calculations the scales, form, and routes of fluid movement were disclosed, as well as the formation of zones of anomalously high rock pressure and non-traditional hydrocarbon deposits.
Desert pavement study at Amboy, California
NASA Technical Reports Server (NTRS)
Williams, S.; Greeley, R.
1984-01-01
Desert pavement is a general term describing a surface that typically consists of a thin layer of cm-sized rock fragments set on top of a layer of finer material in which no fragments are found. An understanding of desert pavement is important to planetary geology because they may play a major role in the formation and visibility of various aeolian features such as wind streaks, which are important on Mars and may be important on Venus. A field study was conducted in Amboy, California to determine the formation mechanism of desert pavements. The probable sequence of events for the formation and evolution of a typical desert pavement surface, based on this experiment and the work of others, is as follows. Starting with a layer of surface material consisting of both fine particles and rock fragments, aeolian deflation will rapidly erode the surface until an armored lag is developed, after which aeolian processes become less important. The concentration of fragments then slowly increases as new fragments are brought to the surface from the subsurface and as fragments move downslope by sheet wash. Sheet wash would be responsible for removing very fine particles from the surface and for moving the fragments relative to one another, forming interlocks.
Pattern formation in early embryogenesis of Xenopus laevis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mglinets, V.A.
1995-07-01
Establishment of egg polarity, separation of germ layers, and the appearance of animal-vegetal, dorsoventral, and anteroposterior axes in Xenopus laevis embryos are considered. The control of these processes by gene coding for growth factors, protooncogens, and homeobox-containing genes is also been reviewed.
The Chemistry of Color Photography
ERIC Educational Resources Information Center
Guida, Wayne C.; Raber, Douglas J.
1975-01-01
Presents several topics in color photography which can serve as an introduction of scientific concepts into the classroom, such as: photochemistry (energy transport), organic chemistry (dye formation), physics (nature of light), psychology (color perception), and engineering (isolation of different chemical processes within layers of the film).…
In vitro organogenesis of gut-like structures from mouse embryonic stem cells.
Kuwahara, M; Ogaeri, T; Matsuura, R; Kogo, H; Fujimoto, T; Torihashi, S
2004-04-01
Embryonic stem (ES) cells have pluripotency and give rise to many cell types and tissues, including representatives of all three germ layers in the embryo. We have reported previously that mouse ES cells formed contracting gut-like organs from embryoid bodies (EBs). These gut-like structures contracted spontaneously, and had large lumens surrounded by three layers, i.e. epithelium, lamina propria and muscularis. Ganglia were scattered along the periphery, and interstitial cells of Cajal (ICC) were distributed among the smooth muscle cells. In the present study, to determine whether they can be a model of gut organogenesis, we investigated the formation process of the gut-like structures in comparison with embryonic gut development. As a result, we found that the fundamental process of formation in vitro was similar to embryonic gut development in vivo. The result indicates that the gut-like structure is a useful tool not only for developmental study to determine the factors that induce gut organogenesis, but also for studies of enteric neurone and ICC development.
NASA Technical Reports Server (NTRS)
Schenk, P.; Moore, J.; Stoker, C.
1998-01-01
Layered deposits and residual polar caps on Mars may record the deposition of ice and sediment modulated by periodic climate change. Topographic information relating to layer thicknesses, erosional processes, and formation of dark spirals within these deposits has been sparce or unreliable until the arrival of MOLA in orbit in September 1997. To assist in evaluating these terrains prior to launch and to assess formation and erosion processes in the polar deposits, we have assembled Viking stereo mosaics of the region and have produced the first reliable DEM models of the south polar deposits using automated stereogrammetry tools. Here we report our preliminary topographic results, pending final image pointing updates. The maximum total thickness of the layered deposits in the south polar region is 2.5 km. The thick layered deposits consist of a series of megaterraces. Each terrace is several tens of kilometers wide and is flat or slopes very gently toward the pole. These terraces step downward from a central plateau near the south pole. Terraces are bounded by relatively steep scarps 100-500 meters high that face toward the equator. These scarps correspond to the pattern of dark spirals observed within the residual cap in southern summer, and are interpreted as ice or frost-free surfaces warmed by solar insolation. Several tongue-shaped troughs, with rounded cirquelike heads, are observed near the margins of the deposit. These troughs are 300-600 meters in deep and may be similar to troughs observed in the northern polar deposit.
Nguyen, Quoc Manh; Huang, Shyh-Chour
2015-01-01
Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC) layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer’s formation. PMID:28793708
NASA Astrophysics Data System (ADS)
Jiang, Houshuo; Grosenbaugh, Mark A.
2002-11-01
Numerical simulations are used to study the laminar vortex ring formation in the presence of background flow. The numerical setup includes a round-headed axisymmetric body with a sharp-wedged opening at the posterior end where a column of fluid is pushed out by a piston inside the body. The piston motion is explicitly included into the simulations by using a deforming mesh. The numerical method is verified by simulating the standard vortex ring formation process in quiescent fluid for a wide range of piston stroke to cylinder diameter ratios (Lm/D). The results from these simulations confirm the existence of a universal formation time scale (formation number) found by others from experimental and numerical studies. For the case of vortex ring formation by the piston/cylinder arrangement in a constant background flow (i.e. the background flow is in the direction of the piston motion), the results show that a smaller fraction of the ejected circulation is delivered into the leading vortex ring, thereby decreasing the formation number. The mechanism behind this reduction is believed to be related to the modification of the shear layer profile between the jet flow and the background flow by the external boundary layer on the outer surface of the cylinder. In effect, the vorticity in the jet is cancelled by the opposite signed vorticity in the external boundary layer. Simulations using different end geometries confirm the general nature of the phenomenon. The thrust generated from the jet and the drag forces acting on the body are calculated with and without background flow for different piston programs. The implications of these results for squid propulsion are discussed.
NASA Astrophysics Data System (ADS)
Alonso-Zarza, Ana M.; Bustamante, Leticia; Huerta, Pedro; Rodríguez-Berriguete, Álvaro; Huertas, María José
2016-05-01
This paper studies the weathering and soil formation processes operating on detrital sediments containing alkaline volcanic rock fragments of the Mirador del Río dolocrete profile. The profile consists of a lower horizon of removilised weathered basalts, an intermediate red sandy mudstones horizon with irregular carbonate layers and a topmost horizon of amalgamated carbonate layers with root traces. Formation occurred in arid to semiarid climates, giving place to a complex mineralogical association, including Mg-carbonates and chabazite, rarely described in cal/dolocretes profiles. Initial vadose weathering processes occurred in the basalts and in directly overlying detrital sediments, producing (Stage 1) red-smectites and dolomicrite. Dominant phreatic (Stage 2) conditions allowed precipitation of coarse-zoned dolomite and chabazite filling porosities. In Stages 3 and 4, mostly pedogenic, biogenic processes played an important role in dolomite and calcite accumulation in the profile. Overall evolution of the profile and its mineralogical association involved initial processes dominated by alteration of host rock, to provide silica and Mg-rich alkaline waters, suitable for chabazite and dolomite formation, without a previous carbonate phase. Dolomite formed both abiogenically and biogenically, but without a previous carbonate precursor and in the absence of evaporites. Dominance of calcite towards the profile top is the result of Mg/Ca decrease in the interstitial meteoric waters due to decreased supply of Mg from weathering, and increased supply of Ca in aeolian dust. Meteoric origin of the water is confirmed by C and O isotope values, which also indicate lack of deep sourced CO2. The dolocrete studied and its complex mineral association reveal the complex interactions that occur at surface during weathering and pedogenesis of basalt-sourced rocks.
1993-04-01
the clusters appear to form monoatomic layers on the (i x 1) substrate. This assertion, derived from the apparent z-corrugation in the STH images, is...top-layer lattice and thereby displacing one of the nearest-neighbor atoms. A related , although more concerted, atomic motion can also provide a viable...microscopic rate-limiting step(s) for this process are not necessarily related straightforwardly to the free- energy difference for the overall macroscopic
Li, Weiyi; Liu, Xin; Wang, Yi-Ning; Chong, Tzyy Haur; Tang, Chuyang Y; Fane, Anthony G
2016-07-05
The development of novel tools for studying the fouling behavior during membrane processes is critical. This work explored optical coherence tomography (OCT) to quantitatively interpret the formation of a cake layer during a membrane process; the quantitative analysis was based on a novel image processing method that was able to precisely resolve the 3D structure of the cake layer on a micrometer scale. Fouling experiments were carried out with foulants having different physicochemical characteristics (silica nanoparticles and bentonite particles). The cake layers formed at a series of times were digitalized using the OCT-based characterization. The specific deposit (cake volume/membrane surface area) and surface coverage were evaluated as a function of time, which for the first time provided direct experimental evidence for the transition of various fouling mechanisms. Axial stripes were observed in the grayscale plots showing the deposit distribution in the scanned area; this interesting observation was in agreement with the instability analysis that correlated the polarized particle groups with the small disturbances in the boundary layer. This work confirms that the OCT-based characterization is able to provide deep insights into membrane fouling processes and offers a powerful tool for exploring membrane processes with enhanced performance.
NASA Astrophysics Data System (ADS)
Hu, Yiwei; Hao, Qiaoyan; Zhu, Baichuan; Li, Biao; Gao, Zhan; Wang, Yan; Tang, Kaibin
2018-01-01
Tantalum disulfide nanosheets have attracted great interest due to its electronic properties and device applications. Traditional solution-ased ultrasonic process is limited by ultrasound which may cause the disintegration into submicron-sized flake. Here, an efficient multi-step intercalation and ultrasound-free process has been successfully used to exfoliate 1T-TaS2. The obtained TaS2 nanosheets reveal an average thickness of 3 nm and several micrometers in size. The formation of few-layer TaS2 nanosheets as well as monolayer TaS2 sheets is further confirmed by atomic force microscopy images. The few-layer TaS2 nanosheets remain the 1T structure, whereas monolayer TaS2 sheets show lattice distortion and may adopt the 1H-like structure with trigonal prism coordination.
Characterization of few-layered graphene grown by carbon implantation
NASA Astrophysics Data System (ADS)
Lee, Kin Kiong; McCallum, Jeffrey C.; Jamieson, David N.
2014-02-01
Graphene is considered to be a very promising material for applications in nanotechnology. The properties of graphene are strongly dependent on defects that occur during growth and processing. These defects can be either detrimental or beneficial to device performance depending on defect type, location and device application. Here we present experimental results on formation of few-layered graphene by carbon ion implantation into nickel films and characteristics of graphene devices formed by graphene transfer and lithographic patterning. Micro-Raman spectroscopy was used to determine the number of graphene layers formed and identify defects arising from the device processing. The graphene films were cleaned by annealing in vacuum. Transport properties of cleaned graphene films were investigated by fabrication of back-gated field-effect transistors, which exhibited high hole and electron mobility of 1935 and 1905 cm2/Vs, respectively.
The effect of thermal pre-treatment of titanium hydride (TiH2) powder in argon condition
NASA Astrophysics Data System (ADS)
Franciska P., L.; Erryani, Aprilia; Annur, Dhyah; Kartika, Ika
2018-04-01
Titanium hydride (TiH2) powders are used to enhance the foaming process in the formation of a highly porous metallic material with a cellular structure. But, the low temperature of hydrogen release is one of its problems. The present study, different thermal pre-treatment temperatures were employed to investigate the decomposition behavior of TiH2 to retard or delay a hydrogen gas release process during foaming. As a foaming agent, TiH2 was subjected to various heat treatments prior at 450 and 500°C during 2 hours in argon condition. To study the formation mechanism, the thermal behavior of titanium hydride and hydrogen release are investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The morphology of pre-treated titanium hydride powders were examined using Scanning Electron Microscope (SEM) while unsure mapping and elemental composition of the pre-treated powders processed by Energy Dispersive Spectroscopy (EDS). To study the phase formation was characterized by X-ray diffraction analysis (XRD). In accordance with the results, an increase in pre-treatment temperature of TiH2 to higher degrees are changing the process of releasing hydrogen from titanium hydride powder. DTA/TGA results showed that thermal pre-treatment TiH2 at 450°C, released the hydrogen gas at 560°C in heat treatment when foaming process. Meanwhile, thermal pre-treatment in TiH2 at 500°C, released the hydrogen gas at 670°C when foaming process. There is plenty of direct evidence for the existence of oxide layers that showed by EDS analysis obtained in SEM. As oxygen is a light element and qualitative proof shows that the higher pre-treatment temperature produces more and thicker oxygen layers on the surface of the TiH2 powder particles. It might the thickness of oxide layer are different from different pre-treatment temperatures, which leading to the differences in the decomposition temperature. But from SEM result that oxidation of the powder does not change the powder morphology. The oxidation process also confirmed by XRD result, which showed higher thermal pre-treatment TiH2, more oxide higher peak is formed. The oxide layer of TiH2 particles is responsible for the observed shift in decomposition temperature and can prepare the stable foam that stabilizes forming of cell walls and avoid their collapse at higher temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benkert, A.; Schumacher, C.; Brunner, K.
The authors demonstrate in situ high-resolution x-ray diffraction applied during heteroepitaxy on (001)GaAs for instant layer characterization. The current thickness, composition, strain, and relaxation dynamics of pseudomorphic layers are precisely determined from q{sub z} scans at the (113) reflection measured at a molecular beam epitaxy chamber with a conventional x-ray tube in static geometry. A simple fitting routine enables real-time in situ x-ray diffraction analysis of layers as thin as 20 nm. Critical thicknesses for dislocation formation and plastic relaxation of ZnCdSe layers versus Cd content are determined. The strong influence of substrate temperature on heteroepitaxial nucleation process, deposition rate,more » composition, and strain relaxation dynamics of ZnCdSe on GaAs is also studied.« less
Emplacement of Widespread Fe/Mg Phyllosilicate Layer in West Margaritifer Terra, Mars
NASA Astrophysics Data System (ADS)
Seelos, K. D.; Maxwell, R. E.; Seelos, F. P.; Buczkowski, D.; Viviano-Beck, C. E.
2017-12-01
West Margaritifer Terra is located at the eastern end of Valles Marineris at the complex intersection of chaos terrains, cratered highlands, and multiple generations of outflow channels. Adjacent regions host layered phyllosilicates thought to indicate early Mars pedogenic and/or ground water-based alteration (e.g., Le Deit et al., 2012), and indeed, hydrologic modeling supports prolonged aqueous activity in the Noachian and Hesperian eras (Andrews-Hanna and Lewis, 2011). The remnant high-standing plateaus in West Margaritifer (0-15°S, 325-345°E) host numerous phyllosilicate-bearing outcrops as well and are the focus of this study. Here, we performed a systematic mapping and characterization of mineralogy and morphology of these deposits in order to assess similarity to other layered phyllosilicates and evaluate potential formation mechanisms. Utilizing multiple remote sensing datasets, we identified three types of phyllosilicate exposures distributed throughout the region: 1) along upper chaos fracture walls, 2) in erosional windows on the plains, and 3) in crater walls and ejecta. Outcrops are spectrally indicative of Fe/Mg smectite (most similar to saponite) and only rare, isolated occurrences of Al-phyllosilicate were observed. Morphologically, the layer is a few to 10 m thick, light-toned, polygonally fractured at decameter scales, and vertical subparallel banding is evident in places. These characteristics were used along with spatial distribution, elevation, and geologic context to evaluate 4 potential formation mechanisms: fluvio-lacustrine, pedogenesis, diagenesis, and hydrothermal alteration. We find that the widespread distribution and spectral homogeneity of the layer favors formation via groundwater alteration and/or pedogenic weathering. This is consistent with interpretations of similar layered phyllosilicates in NW Noachis Terra and the Valles Marineris plains to the west, and significantly extends the area over which these aqueous processes operated in Noachian times.
Photochemistry, Ion Chemistry, and Haze Formation in Pluto’s Atmosphere
NASA Astrophysics Data System (ADS)
Summers, Michael E.; Stern, S. A.; Gladstone, G. Randal; Young, Leslie A.; Olkin, C. B.; Weaver, H. A.; Cheng, A. F.; Strobel, D. F.; Ennico, K. A.; Kammer, J. A.; Parker, A. H.; Retherford, K. D.; Schindhelm, E.; Singer, K. N.; Steffl, A. J.; Tsang, C. C.; Versteeg, M. H.; Greathouse, T. K.; Linscott, I. R.; Tyler, L. G.; Woods, W. W.; Hinson, D. P.; Parker, J. W.; Renaud, J. P.; Ewell, M.; Lisse, Cary M.
2015-11-01
The detection of ethylene (C2H4) and acetylene (C2H2) in Pluto’s atmosphere provides important ground-truth observations for validating photochemical models of Pluto’s atmosphere. Their detection also confirms the production of precursor chemical compounds involved in the formation of tholins, which are thought to give Pluto’s surface its reddish color. Photochemical models predict many other hydrocarbon and nitrile products, currently undetected, which may also be participants in tholin production on Pluto’s surface or on atmospheric haze particles. The observed atmospheric haze layer extending to altitudes of ~140 km above Pluto’s surface, suggests a global and very robust process of atmospheric particle nucleation, growth, and sedimentation onto Pluto’s surface. The high altitude extent of the haze layer suggests that the nucleation process begins above the expected altitude range where hydrocarbons become supersaturated (below ~30 km altitude). This situation may be analogous to that in Titan’s atmosphere, wherein nucleation and aerosol growth is directly related to large negative ion production. In the case of Pluto, this means that nucleation may occur at altitudes as high as 1200 km altitude where ionization in Pluto’s atmosphere peaks. In this paper we discuss these processes and their implications for haze formation in Pluto’s atmosphere and its deposition onto Pluto’s surface. This work was supported by NASA's New Horizons project.
Block copolymer self-assembly derived ultrafiltration membranes: From science to start-up
NASA Astrophysics Data System (ADS)
Wiesner, Ulrich
In the last ten years a novel method to generate asymmetric ultrafiltration membranes has been established. It is based on the combination of block copolymer self-assembly with non-solvent induced phase separation (NIPS) and is now referred to as SNIPS. NIPS as an industry proven method for the formation of phase inversion membranes opening a pathway to scale up and commercialization of these membranes. The combination of NIPS with block copolymer self-assembly leads to asymmetric membranes with narrow pore size distributions in the top surface layer (so called isoporous membranes) as well as high pore densities, thereby potentially combining high resolution with high flux in membrane separation processes. Such membranes have potential applications in the biopharmaceutical industry where a large fraction of the costs are currently associated with time-consuming non-membrane based separation processes. This talk will describe a family of isoporous ultrafiltration membranes based on the self-assembly behavior of an ABC triblock terpolymer which has led to the formation of a start-up company out of Cornell University. After introduction of the SNIPS process in general, and its application to such ABC triblock terpolymers in particular, open scientific questions associated with the formation mechanisms of the top surface separation layer in such membranes is discussed, which is at the heart of enabling high performance separation behavior. Furthermore, challenges translating scientific work into industrial settings are highlighted.
NASA Astrophysics Data System (ADS)
Soares, Caroline Cibele Vieira; Varajão, Angélica Fortes Drummond Chicarino; Varajão, César Augusto Chicarino; Boulangé, Bruno
2014-12-01
X-ray diffraction (XRD), X-ray Fluorescence (XRF), optical microscopy, Scanning Electron Microscopy coupled with Energy Dispersive Spectrometry (SEM-EDS) and Electron Probe micro-analyser (EPMA) and Wavelength-Dispersive Spectroscopy (WDS) were conducted on charnockite from the Caparaó Suite and its alteration cortex to determine the mineralogical, micromorphological and geochemical transformations resulting from the weathering process. The hydrolysis of the charnockite occurred in different stages, in accordance with the order of stability of the minerals with respect to weathering: andesine/orthopyroxene, pargasite and alkali feldspar. The rock modifications had begun with the formation of a layer of incipient alteration due to the percolation of weathering solutions first in the pressure relief fractures and then in cleavage and mineral edges. The iron exuded from ferromagnesian minerals precipitated in the intermineral and intramineral discontinuities. The layer of incipient alteration evolves into an inner cortex where the plagioclase changes into gibbsite by direct alitisation, the ferromagnesian minerals initiate the formation of goethitic boxworks with kaolinitic cores, and the alkali feldspar initiates indirect transformation into gibbsite, forming an intermediate phase of illite and kaolinite. In the outer cortex, mostly traces of alkali feldspar remain, and they are surrounded by goethite and gibbsite as alteromorphics, characterising the formation of the isalteritic horizon that occurs along the slope and explains the bauxitization process at the Caparaó Range, SE Brazil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasil’ev, V. I.; Gagis, G. S., E-mail: galina.gagis@gmail.com; Kuchinskii, V. I.
2015-07-15
Processes are considered in which ultrathin layers of III–V ternary solid solutions are formed via the delivery of Group-V element vapors to GaAs and GaSb semiconductor plates, with solid-phase substitution reactions occurring in the surface layers of these plates. This method can form defect-free GaAs{sup 1–x}P{sup x}, GaAs{sup x}Sb{sup 1–x}, and GaP{sup x}Sb{sup 1–x} layers with thicknesses of 10–20 nm and a content x of the embedded components of up to 0.04.
A Study of the Physical Processes of an Advection Fog BoundaryLayer
NASA Astrophysics Data System (ADS)
Liu, D.; Yan, W.; Kang, Z.; Dai, Z.; Liu, D.; Liu, M.; Cao, L.; Chen, H.
2016-12-01
Using the fog boundary layer observation collected by a moored balloon between December 1 and 2, 2009, the processes of advection fog formation and dissipation under cold and warm double-advection conditions was studied. the conclusions are as follows: 1. The advection fog process was generated by the interaction between the near-surface northeast cold advection and the upper layer's southeast warm, humid advection. The ground fog formed in an advection cooling process, and the thick fog disappeared in two hours when the wind shifted from the northeast to the northwest. The top of the fog layer remained over 600 m for most of the time. 2. This advection fog featured a double-inversion structure. The interaction between the southeast warm, humid advection of the upper layer and the descending current generated the upper inversion layer. The northeast cold advection near the ground and the warm, humid advection in the high-altitude layer formed the lower layer clouds and lower inversion layer. The upper inversion layer was composed of southeast warm, humid advection and a descending current with increasing temperature. The double inversion provided good thermal conditions for maintaining the thick fog layer. 3. The southeast wind of the upper layer not only created the upper inversion layer but also brought vapour-rich air to the fog region. The steady southeast vapour transportation by the southeast wind was the main condition that maintained the fog thickness, homogeneous density, and long duration. The low-altitude low-level jet beneath the lower inversion layer helped maintain the thickness and uniform density of the fog layer by enhancing the exchange of heat, momentum and vapour within the lower inversion layer. 4. There were three transportation mechanisms associated with this advection fog: 1) The surface layer vapour was delivered to the lower fog layer. 2) The low-altitude southeast low-level jet transported the vapour to the upper layer. 3) The vapour was exchanged between the upper and lower layers via the turbulent exchange and vertical air motion, which mixed the fog density and maintained the thickness of the fog. These mechanisms explain why the fog top was higher than the lower inversion layer and reached the upper inversion layer, as well as why this advection fog was so thick.
Insights into the development of drumlin formation using ground-penetrating radar
NASA Astrophysics Data System (ADS)
Woodard, J.; Zoet, L.; Iverson, N. R.; Benediktsson, Í. Ö.; Schomacker, A.; Finlayson, A.
2016-12-01
Drumlins form as the result of subglacial slip, but the exact mechanisms responsible for their formation remain enigmatic. Resolution of drumlin internal stratigraphy provides a means for constraining the formation processes of drumlins, and thus the basal mechanics that result in their formation. Traditional litho-stratigraphic techniques have provided great insight into the internal stratigraphy of drumlins but are inherently limited to areas of natural exposure. We report on the application of geophysical methods used to image the internal stratigraphy of drumlins over a much larger area than is possible through litho-stratigraphic logging. Using ground penetrating radar we investigated the internal stratigraphy of seven drumlins from a recently exposed active drumlin field in the forefield of Múlajökull, Iceland. Data were collected using 100 and 200 MHz antennas that had maximum penetration depths of 15 m and 7 m with 0.4 m and 0.2 m resolution, respectively. Echograms demonstrated distinct layering of the diamictites. From the surface to ca. 2 m depth, till layers generally conformed to the longitudinal surface topography of the drumlins. Upper till layers exhibit unconformities on the flanks of the drumlins, except on their distal lee sides where layers were conformable. Till layers at approximately 2 m depth paralleled the drumlin surface and truncated lower layers. Below ca. 2 m depth distinct till layers dipped obliquely to the surface in the down-ice direction. These stratigraphic patterns were apparent in all drumlins measured at Múlajökull. The stratigraphic pattern observed in the drumlins of the Múlajökull forefield indicate a combination of deposition and erosion. Deposition occurred predominantly on the lee side and near the central axis of the drumlin, whereas erosion occurred along the flanks and stoss side. These observations support results from traditional litho-stratigraphic logs recorded on the same drumlins. Our observations suggest that drumlins migrated down ice and were initiated by a heterogeneous relief pattern in the drumlin forefield prior to the initial ice advance. This conceptual model supports observations that drumlins gained relief and became more elongated with time under the ice.
Road to Grid Parity through Deployment of Low-Cost 21.5% N-Type Si Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velundur, Vijay
This project seeks to develop and deploy differentiated 21.5% efficient n-type Si solar cells while reaching the SunShot module cost goal of ≤ $0.50/W. This objective hinges on development of enabling low cost technologies that simplify the manufacturing process and reduce overall processing costs. These comprise of (1) Boron emitter formation and passivation; (2) Simplified processing process for emitter and BSF layers; and (3) Advanced metallization for the front and back contacts.
Delay in convection in nocturnal boundary layer due to aerosol-induced cooling
NASA Astrophysics Data System (ADS)
Singh, Dhiraj Kumar; Ponnulakshmi, V. K.; Subramanian, G.; Sreenivas, K. R.
2012-11-01
Heat transfer processes in the nocturnal boundary layer (NBL) influence the surface energy budget, and play an important role in many micro-meteorological processes including the formation of inversion layers, radiation fog, and in the control of air-quality near the ground. Under calm clear-sky conditions, radiation dominates over other transport processes, and as a result, the air layers just above ground cool the fastest after sunset. This leads to an anomalous post-sunset temperature profile characterized by a minimum a few decimeters above ground (Lifted temperature minimum). We have designed a laboratory experimental setup to simulate LTM, involving an enclosed layer of ambient air, and wherein the boundary condition for radiation is decoupled from those for conduction and convection. The results from experiments involving both ambient and filtered air indicate that the high cooling rates observed are due to the presence of aerosols. Calculated Rayleigh number of LTM-type profiles is of the order 105-107 in the field and of order 103-105 in the laboratory. In the LTM region, there is convective motion when the Rayleigh number is greater than 104 rather than the critical Rayleigh number (Rac = 1709). The diameter of convection rolls is a function of height of minimum of LTM-type profiles. The results obtained should help in the parameterization of transport process in the nocturnal boundary layer, and highlight the need to accounting the effects of aerosols and ground emissivity in climate models.
NASA Astrophysics Data System (ADS)
Filatova, E. O.; Baraban, A. P.; Konashuk, A. S.; Konyushenko, M. A.; Selivanov, A. A.; Sokolov, A. A.; Schaefers, F.; Drozd, V. E.
2014-11-01
The effect of a transparent conductive oxide (TCO) buffer layer on the insulator matrix and on the resistive switching process in the metal/TiO2/TCO/metal assembly was studied depending on the material of the TCO (ITO-(In2O3)0.9(SnO2)0.1 or SnO2 or ZnO). For the first time electro-physical studies and near edge x-ray absorption fine structure (NEXAFS) studies were carried out jointly and at the same point of the sample, providing direct experimental evidence that the switching process strongly influences the lowest unoccupied bands and the local atomic structure of the TiO2 layers. It was established that a TCO layer in a metal/TiO2/TCO/metal assembly is an additional source of oxygen vacancies for the TiO2 film. The RL (RH) states are achieved presumably with the formation (rupture) of the electrically conductive path of oxygen vacancies. Inserting an Al2O3 thin layer between the TiO2 and TCO layers to some extent restricts the processes of migration of the oxygen ions and vacancies, and does not allow the anti-clockwise bipolar resistive switching in a Au/TiO2/Al2O3/ITO/Au assembly. The greatest value of the ratio RH/RL is observed for the assembly with a SnO2 buffer layer that will provide the maximum set of intermediate states (recording analog data) and increase the density of information recording in this case.
Overview of Boundary Layer Clouds Using Satellite and Ground-Based Measurements
NASA Astrophysics Data System (ADS)
Xi, B.; Dong, X.; Wu, P.; Qiu, S.
2017-12-01
A comprehensive summary of boundary layer clouds properties based on our few recently studies will be presented. The analyses include the global cloud fractions and cloud macro/micro- physical properties based on satellite measurements using both CERES-MODIS and CloudSat/Caliposo data products,; the annual/seasonal/diurnal variations of stratocumulus clouds over different climate regions (mid-latitude land, mid-latitude ocean, and Arctic region) using DOE ARM ground-based measurements over Southern great plain (SGP), Azores (GRW), and North slope of Alaska (NSA) sites; the impact of environmental conditions to the formation and dissipation process of marine boundary layer clouds over Azores site; characterizing Arctice mixed-phase cloud structure and favorable environmental conditions for the formation/maintainess of mixed-phase clouds over NSA site. Though the presentation has widely spread topics, we will focus on the representation of the ground-based measurements over different climate regions; evaluation of satellite retrieved cloud properties using these ground-based measurements, and understanding the uncertainties of both satellite and ground-based retrievals and measurements.
NASA Astrophysics Data System (ADS)
Kusuma, Chandrakanth; Ahmed, Sazzad H.; Mian, Ahsan; Srinivasan, Raghavan
2017-07-01
Selective laser melting (SLM) is an additive manufacturing technique that creates complex parts by selectively melting metal powder layer-by-layer using a laser. In SLM, the process parameters decide the quality of the fabricated component. In this study, single beads of commercially pure titanium (CP-Ti) were melted on a substrate of the same material using an in-house built SLM machine. Multiple combinations of laser power and scan speed were used for single bead fabrication, while the laser beam diameter and powder layer thickness were kept constant. This experimental study investigated the influence of laser power, scan speed, and laser energy density on the melt pool formation, surface morphology, geometry (width and height), and hardness of solidified beads. In addition, the observed unfavorable effect such as inconsistency in melt pool width formation is discussed. The results show that the quality, geometry, and hardness of solidified melt pool are significantly affected by laser power, scanning speed, and laser energy density.
NASA Astrophysics Data System (ADS)
Nagata, Masayoshi; Fujita, Akihiro; Ibragi, Youhei; Matsui, Takahiro; Kikuchi, Yusuke; Fukumoto, Naoyuki; Kanki, Takashi
2017-10-01
Plasmoid magnetic reconnections have been examined in the Coaxial Helicity Injection (CHI) experiments on HIST. Magnetic reconnections are required for the formation of closed flux surfaces in the transient-CHI start-up plasmas. So far, we have observed formation of plasmoids inside an elongated current layer to create the multiple X-points during the CHI process. According to the MHD simulation by F. Ebrahimi and R. Raman, the reconnection rate based on the plasmoid instability is faster than that by Sweet-Parker (S-P) model. To estimate the Lundquist number S number, we have measured spatial profiles of magnetic field strength, electron density and temperature in the current layer. In this meeting, we will present the effect of the guide (toroidal) magnetic field and mass (H, D and He) on the current layer thickness and reconnection rates of plasmoids. It is found that behavior of plasmoids is synchronized with Ion Doppler temperature, leading to ion heating.
Metal assisted photochemical etching of 4H silicon carbide
NASA Astrophysics Data System (ADS)
Leitgeb, Markus; Zellner, Christopher; Schneider, Michael; Schwab, Stefan; Hutter, Herbert; Schmid, Ulrich
2017-11-01
Metal assisted photochemical etching (MAPCE) of 4H-silicon carbide (SiC) in Na2S2O8/HF and H2O2/HF aqueous solutions is investigated with platinum as metallic cathode. The formation process of the resulting porous layer is studied with respect to etching time, concentration and type of oxidizing agent. From the experiments it is concluded that the porous layer formation is due to electron hole pairs generated in the semiconductor, which stem from UV light irradiation. The generated holes are consumed during the oxidation of 4H-SiC and the formed oxide is dissolved by HF. To maintain charge balance, the oxidizing agent has to take up electrons at the Pt/etching solution interface. Total dissolution of the porous layers is achieved when the oxidizing agent concentration decreases during MAPCE. In combination with standard photolithography, the definition of porous regions is possible. Furthermore chemical micromachining of 4 H-SiC at room temperature is possible.
Formation Of Nano Layered Lamellar Structure In a Processed γ-TiAl Based Alloy
NASA Astrophysics Data System (ADS)
Heshmati-Manesh, S.; Shakoorian, H.; Armaki, H. Ghassemi; Ahmadabadi, M. Nili
2009-06-01
In this research, microstructures of an intermetallic alloy based on γ-TiAl has been investigated by optical and transmission electron microscopy. Samples of Ti-47Al-2Cr alloy were subjected to either a cyclic heat treatment or thermomechanical treatment with the aim of microstructural refinement. In both cases it was found that very fine lamellar structure with an interlamellar spacing in the nano scale is formed. Upon cyclic heat treatment, nano layers of α2 and γ ordered intermetallic phases were either formed during rapid cooling cycle in competition with massive structure formation, or formed as secondary lamellar structure during final stages of cyclic heat treatment. Also, TEM observations in hot forged specimens with initial lamellar structure revealed that micro twins form during the deformation within lamellar structure with twinning plates parallel to lamellar interfaces. Concurrent dynamic recrystallisation results in a nano layered structure with an interlamellar spacing of less than 100 nm.
Preparation and properties of chrome-free colored Ti/Zr based conversion coating on aluminum alloy
NASA Astrophysics Data System (ADS)
Yi, AiHua; Li, WenFang; Du, Jun; Mu, SongLin
2012-06-01
A golden conversion coating on the surface of aluminum alloy was prepared by adding tannic acid and coating-forming accelerator in the treatment solution containing titanium and zirconium ions. The growth process, main component and corrosion resistance of the conversion coating were characterized by EDS, SEM, XRD, XPS, FIIR and electrochemical workstation. The results showed that the main components of the conversion coating were Na3AlF6 and the conversion coating owns a double-layer structure. The outer layer consists of metal-organic complex and the inner layer is mainly made up of Na3AlF6. The mechanism of the formation of the golden conversion coating can be deemed as nucleation, growth of Na3AlF6 crystal and formation of metal-organic complex. In potentiodynamic polarization test, the corrosion current density decreases to 0.283 μA cm-2 from 5.894 μA cm-2, which indicates an obvious improvement of corrosion resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Quan; Jia, Xingcan; Quan, Jiannong
Severe haze events during which particulate matter (PM) increases quickly from tens to hundreds of microgram per cubic meter in 1-2 days frequently occur in China. Although it has been known that PM is influenced by complex interplays among emissions, meteorology, and physical and chemical processes, specific mechanisms remain elusive. In this paper, a new positive feedback mechanism between planetary boundary layer (PBL), relative humidity (RH), and secondary PM (SPM) formation is proposed based on a comprehensive field experiment and model simulation. The decreased PBL associated with increased PM increases RH by weakening the vertical transport of water vapor; themore » increased RH in turn enhances the SPM formation through heterogeneous aqueous reactions, which further enhances PM, weakens solar radiation, and decreases PBL height. This positive feedback, together with the PM-Radiation-PBL feedback, constitutes a key mechanism that links PM, radiation, PBL properties (e.g. PBL height and RH), and SPM formation, This mechanism is self-amplifying, leading to faster PM production, accumulation, and more severe haze pollution.« less
Liu, Quan; Jia, Xingcan; Quan, Jiannong; ...
2018-04-17
Severe haze events during which particulate matter (PM) increases quickly from tens to hundreds of microgram per cubic meter in 1-2 days frequently occur in China. Although it has been known that PM is influenced by complex interplays among emissions, meteorology, and physical and chemical processes, specific mechanisms remain elusive. In this paper, a new positive feedback mechanism between planetary boundary layer (PBL), relative humidity (RH), and secondary PM (SPM) formation is proposed based on a comprehensive field experiment and model simulation. The decreased PBL associated with increased PM increases RH by weakening the vertical transport of water vapor; themore » increased RH in turn enhances the SPM formation through heterogeneous aqueous reactions, which further enhances PM, weakens solar radiation, and decreases PBL height. This positive feedback, together with the PM-Radiation-PBL feedback, constitutes a key mechanism that links PM, radiation, PBL properties (e.g. PBL height and RH), and SPM formation, This mechanism is self-amplifying, leading to faster PM production, accumulation, and more severe haze pollution.« less
Influence of temperature and molecular structure on ionic liquid solvation layers.
Wakeham, Deborah; Hayes, Robert; Warr, Gregory G; Atkin, Rob
2009-04-30
Atomic force microscopy (AFM) force profiling is used to investigate the structure of adsorbed and solvation layers formed on a mica surface by various room temperature ionic liquids (ILs) ethylammonium nitrate (EAN), ethanolammonium nitrate (EtAN), ethylammonium formate (EAF), propylammonium formate (PAF), ethylmethylammonium formate (EMAF), and dimethylethylammonium formate (DMEAF). At least seven layers are observed for EAN at 14 degrees C (melting point 13 degrees C), decreasing as the temperature is increased to 30 degrees C due to thermal energy disrupting solvophobic forces that lead to segregation of cation alkyl tails from the charged ammonium and nitrate moieties. The number and properties of the solvation layers can also be controlled by introducing an alcohol moiety to the cation's alkyl tail (EtAN), or by replacing the nitrate anion with formate (EAF and PAF), even leading to the detection of distinct cation and anion sublayers. Substitution of primary by secondary or tertiary ammonium cations reduces the number of solvation layers formed, and also weakens the cation layer adsorbed onto mica. The observed solvation and adsorbed layer structures are discussed in terms of the intermolecular cohesive forces within the ILs.
Formation mechanism of the protective layer in a blast furnace hearth
NASA Astrophysics Data System (ADS)
Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Xu, Meng; Liu, Feng
2015-10-01
A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium- bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, and distribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each component. Finally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layer mainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phase whose major crystalline phase is magnesium melilite (Ca2MgSi2O7) and the main source of the slag phase is coke ash. It is clearly determined that solid particles such as graphite, Ti(C,N) and MgAl2O4 play an important role in the formation of the protective layer, and the key factor for promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.
NASA Astrophysics Data System (ADS)
Kim, Chang Seong; Jang, Yirang; Samuel, Vinod O.; Kwon, Sanghoon; Park, Jung-Woo; Yi, Keewook; Choi, Seon-Gyu
2018-05-01
This study involves investigations on the Upper Paleoproterozoic iron formation (viz., Seosan iron formation) from the Seosan Group, Gyeonggi Massif of the southwestern Korean Peninsula. It occurs as thin banded layers within meta-arkosic sandstone, formed by alternating processes of chemical (hydrothermal) and detrital depositions under a shallow marine environment. It mainly consists of alternating layers of iron oxides, mostly hematite, and quartz. Minor amounts of magnetite surrounded by muscovite, clinopyroxene and amphibole indicate hydrothermal alteration since its formation. Meta-arkosic sandstone is composed of recrystallized or porphyroclastic quartz and microcline, with small amounts of hematite and pyrite clusters. The Seosan iron formation has high contents of total Fe2O3 and SiO2 with positive Eu anomalies similar to those of other Precambrian banded iron formations, and its formation is clearly related to hydrothermal alteration since its deposition. Detrital zircon SHRIMP U-Pb geochronology data from a meta-arkosic sandstone (SN-1) and an iron formation (SN-2) show mainly two age groups of ca. 2.5 Ga and ca. 1.9-1.75 Ga. This together with intrusion age of the granite gneiss (ca. 1.70-1.65 Ga) clearly indicate that the iron formations were deposited during the Upper Paleoproterozoic. The dominant Paleoproterozoic detrital zircon bimodal age peaks preserved in the Seosan iron formation compare well with those from the South China Craton sedimentary basins, reflecting global tectonic events related to the Columbia supercontinent in East Asia.
Mesoscopic Ni particles and nanowires by pulsed electrodeposition into porous Si
NASA Astrophysics Data System (ADS)
Michelakaki, E.; Valalaki, K.; G. Nassiopoulou, A.
2013-04-01
We report in this article on the formation of mesoscopic Ni particles and filling of continuous Ni nanowires into porous Si layers of thickness in the range of 0.5-4 μm with anisotropic vertical pores of average diameter in the range of 30-45 nm using pulsed electrodeposition from a Ni salt solution. The effect of pulse duration, number of pulses, and total process time on pore filling was investigated for porous Si with different porosities and porous Si layer thicknesses in the above thickness range. Scanning and transmission electron microscopy were used to characterize the samples. It was found that pore filling starts with Ni nucleation and nanoparticle formation at different points of the pore walls along the whole pore length and continues with nanoparticle coalescence to form continuous Ni nanowires that completely fill the pores. The mechanism involved in pore filling is particle nucleation and diffusion-controlled growth of Ni nanoparticles that coalesce to nanowires. From the beginning of the process, a metal film starts to form on the porous Si surface, and its thickness increases with increasing the process time. However, the presence of this film does not impede further pore filling and nanowire formation into the pores. This supports further the diffusion-controlled growth mechanism. Finally, it was demonstrated that full pore filling and continuous Ni nanowire formation were also achieved under direct current electrodeposition, and the results are quite similar to those obtained with pulsed electrodeposition when the same total deposition time is used in both cases.
NASA Astrophysics Data System (ADS)
Nakajima, Ryo; Azuma, Atsushi; Yoshida, Hayato; Shimizu, Tomohiro; Ito, Takeshi; Shingubara, Shoso
2018-06-01
Resistive random access memory (ReRAM) devices with a HfO2 dielectric layer have been studied extensively owing to the good reproducibility of their SET/RESET switching properties. Furthermore, it was reported that a thin Hf layer next to a HfO2 layer stabilized switching properties because of the oxygen scavenging effect. In this work, we studied the Hf thickness dependence of the resistance switching characteristics of a Ti/Hf/HfO2/Au ReRAM device. It is found that the optimum Hf thickness is approximately 10 nm to obtain good reproducibility of SET/RESET voltages with a small RESET current. However, when the Hf thickness was very small (∼2 nm), the device failed after the first RESET process owing to the very large RESET current. In the case of a very thick Hf layer (∼20 nm), RESET did not occur owing to the formation of a leaky dielectric layer. We observed the occurrence of multiple resistance states in the RESET process of the device with a Hf thickness of 10 nm by increasing the RESET voltage stepwise.
NASA Astrophysics Data System (ADS)
Małek, Anna K.; Marszałek, Konstanty W.; Rydosz, Artur M.
2016-12-01
Recently photovoltaics attracts much attention of research and industry. The multidirectional studies are carried out in order to improve solar cells performance, the innovative materials are still searched and existing materials and technology are optimized. In the multilayer structure of CIGS solar cells molybdenum (Mo) layer is used as a back contact. Mo layers meet all requirements for back side electrode: low resistivity, good adhesion to the substrate, high optical reflection in the visible range, columnar structure for Na ions diffusion, formation of an ohmic contact with the ptype CIGS absorber layer, and high stability during the corrosive selenization process. The high adhesion to the substrate and low resistivity in single Mo layer is difficult to be achieved because both properties depend on the deposition parameters, particularly on working gas pressure. Therefore Mo bilayers are applied as a back contact for CIGS solar cells. In this work the Mo layers were deposited by medium frequency sputtering at different process parameters. The effect of substrate temperature within the range of 50°C-200°C and working gas pressure from 0.7 mTorr to 7 mTorr on crystalline structure of Mo layers was studied.
Are amphitheater headed canyons indicative of a particular formative process?
NASA Astrophysics Data System (ADS)
Ryan, A. J.; Whipple, K. X.; Johnson, J. P.
2012-12-01
Tributary canyons with amphitheater-shaped heads have previously been interpreted as evidence for groundwater seepage erosion, particularly in environments where fluvial processes are assumed to be negligible. However, some have questioned whether this canyon morphology is truly diagnostic of a particular formative process. We seek to determine the relative roles of fluvial and groundwater-related processes and the strength of stratigraphic control on the Colorado Plateau through a combination of fieldwork and GIS analysis. Amphitheater valleys may have overhanging or steep-sided headwalls with a semicircular plan-view pattern. It is reasonable to assume that this form is a result of focused erosion at the base of the headwall (i.e. sapping). Two frequently cited agents may lead to undermining: plunge-pool scour at the base of waterfalls and seepage induced weathering and erosion where the groundwater table intersects the land surface. Both processes are enhanced where weaker, less permeable layers underlie stronger cap rock. We conducted preliminary fieldwork in two locations on the Colorado Plateau, where there are many classic examples of amphitheater headed canyons. The Escalante River landscape is highly variable with a range of canyon and valley-head forms, many of which cut through the thick Navajo Sandstone into the underlying shale and sand of the Kayenta Formation. Northeast of Escalante National Monument, at the base of the Henry Mountains, is Tarantula Mesa. The canyons there are also considerably variable, with nearly all containing at least one abrupt amphitheater knickpoint at the valley head or farther downstream. Our observations are presented here with an analysis of the canyon profiles, surrounding topography, and potential structural controls. We have found that nearly all amphitheaters in both locales show signs of groundwater seepage weathering and plausibly seepage erosion. However, many also contain plunge pools and evidence of substantial fluvial activity. In most cases, variability in amphitheater scale and location relates to the geometry of exposed strata, suggesting that contrasting, bimodal stratigraphy (i.e. strong, more permeable layer over weaker, less permeable layer) is required for amphitheater formation. This is particularly evident in Tarantula Mesa, where variations in the stratigraphy of the Tarantula Mesa Sandstone strongly influence canyon location and morphology. Amphitheaters form only where a thick, strong sandstone body is exposed in the headwaters of the drainage. Typical v-shaped canyon morphologies are seen nearby in otherwise identical drainages where the sandstone is interbedded with shale.
Trends and problems in CdS/Cu/x/S thin film solar cells - A review
NASA Astrophysics Data System (ADS)
Martinuzzi, S.
1982-03-01
The methods currently used to fabricate CdS/CuS solar cells are reviewed, along with comparisons of the effects on performance of the various preparation techniques. Attention is given to thermal evaporation, sputter, and chemical spray formation of the CdS layers, noting that most experience is presently with the evaporative and spray processes. CuS layers are formed in dip or wet process chemiplating, electroplating, vacuum deposition in flash and sputter modes, solid state reaction, or spray deposition. Any of the CuS film techniques can be used with any of the CdS layer processes, while spraying and sputtering are noted to offer the best alternatives for industrial production. Band profiles, I-V characteristics, photocurrent levels, and capacitance-voltage characteristics are outlined for the differently formed cells, and CdS/CuS and CdZnS/CuS cells are concluded to exhibit the highest performance features. Areas of improvement necessary to bring the cells to commercial status are discussed.
Liu, Yu; Zhang, Zhongkai; Lei, Jiuhou; Cao, Jinxiang; Yu, Pengcheng; Zhang, Xiao; Xu, Liang; Zhao, Yaodong
2016-09-01
In this work, the design and construction of the Keda Space Plasma EXperiment (KSPEX), which aims to study the boundary layer processes of ionospheric depletions, are described in detail. The device is composed of three stainless-steel sections: two source chambers at both ends and an experimental chamber in the center. KSPEX is a steady state experimental device, in which hot filament arrays are used to produce plasmas in the two sources. A Macor-mesh design is adopted to adjust the plasma density and potential difference between the two plasmas, which creates a boundary layer with a controllable electron density gradient and inhomogeneous radial electric field. In addition, attachment chemicals can be released into the plasmas through a tailor-made needle valve which leads to the generation of negative ions plasmas. Ionospheric depletions can be modeled and simulated using KSPEX, and many micro-physical processes of the formation and evolution of an ionospheric depletion can be experimentally studied.
On the genetic control of planar growth during tissue morphogenesis in plants.
Enugutti, Balaji; Kirchhelle, Charlotte; Schneitz, Kay
2013-06-01
Tissue morphogenesis requires extensive intercellular communication. Plant organs are composites of distinct radial cell layers. A typical layer, such as the epidermis, is propagated by stereotypic anticlinal cell divisions. It is presently unclear what mechanisms coordinate cell divisions relative to the plane of a layer, resulting in planar growth and maintenance of the layer structure. Failure in the regulation of coordinated growth across a tissue may result in spatially restricted abnormal growth and the formation of a tumor-like protrusion. Therefore, one way to approach planar growth control is to look for genetic mutants that exhibit localized tumor-like outgrowths. Interestingly, plants appear to have evolved quite robust genetic mechanisms that govern these aspects of tissue morphogenesis. Here we provide a short summary of the current knowledge about the genetics of tumor formation in plants and relate it to the known control of coordinated cell behavior within a tissue layer. We further portray the integuments of Arabidopsis thaliana as an excellent model system to study the regulation of planar growth. The value of examining this process in integuments was established by the recent identification of the Arabidopsis AGC VIII kinase UNICORN as a novel growth suppressor involved in the regulation of planar growth and the inhibition of localized ectopic growth in integuments and other floral organs. An emerging insight is that misregulation of central determinants of adaxial-abaxial tissue polarity can lead to the formation of spatially restricted multicellular outgrowths in several tissues. Thus, there may exist a link between the mechanisms regulating adaxial-abaxial tissue polarity and planar growth in plants.
NASA Astrophysics Data System (ADS)
Dai, Donghua; Gu, Dongdong; Zhang, Han; Xiong, Jiapeng; Ma, Chenglong; Hong, Chen; Poprawe, Reinhart
2018-02-01
Selective laser melting additive manufacturing of the AlSi12 material parts through the re-melting of the previously solidified layer using the continuous two layers 90° rotate scan strategy was conducted. The influence of the re-melting behavior and scan strategy on the formation of the ;track-track; and ;layer-layer; molten pool boundaries (MPBs), dimensional accuracy, microstructure feature, tensile properties, microscopic sliding behavior and the fracture mechanism as loaded a tensile force has been studied. It showed that the defects, such as the part distortion, delamination and cracks, were significantly eliminated with the deformation rate less than 1%. The microstructure of a homogeneous distribution of the Si phase, no apparent grain orientation on both sides of the MPBs, was produced in the as-fabricated part, promoting the efficient transition of the load stress. Cracks preferentially initiate at the ;track-track; MPBs when the tensile stress increases to a certain value, resulting in the formation of the cleavage steps along the tensile loading direction. The cracks propagate along the ;layer-layer; MPBs, generating the fine dimples. The mechanical behavior of the SLM-processed AlSi12 parts can be significantly enhanced with the ultimate tensile strength, yield strength and elongation of 476.3 MPa, 315.5 MPa and 6.7%, respectively.
NASA Astrophysics Data System (ADS)
Chuang, Kai-Chi; Chung, Hao-Tung; Chu, Chi-Yan; Luo, Jun-Dao; Li, Wei-Shuo; Li, Yi-Shao; Cheng, Huang-Chung
2018-06-01
An AlO x layer was deposited on HfO x , and bilayered dielectric films were found to confine the formation locations of conductive filaments (CFs) during the forming process and then improve device-to-device uniformity. In addition, the Ti interposing layer was also adopted to facilitate the formation of oxygen vacancies. As a result, the resistive random access memory (RRAM) device with TiN/Ti/AlO x (1 nm)/HfO x (6 nm)/TiN stack layers demonstrated excellent device-to-device uniformity although it achieved slightly larger resistive switching characteristics, which were forming voltage (V Forming) of 2.08 V, set voltage (V Set) of 1.96 V, and reset voltage (V Reset) of ‑1.02 V, than the device with TiN/Ti/HfO x (6 nm)/TiN stack layers. However, the device with a thicker 2-nm-thick AlO x layer showed worse uniformity than the 1-nm-thick one. It was attributed to the increased oxygen atomic percentage in the bilayered dielectric films of the 2-nm-thick one. The difference in oxygen content showed that there would be less oxygen vacancies to form CFs. Therefore, the random growth of CFs would become severe and the device-to-device uniformity would degrade.
Skibitzki, Oliver; Capellini, Giovanni; Yamamoto, Yuji; Zaumseil, Peter; Schubert, Markus Andreas; Schroeder, Thomas; Ballabio, Andrea; Bergamaschini, Roberto; Salvalaglio, Marco; Miglio, Leo; Montalenti, Francesco
2016-10-05
In this work, we demonstrate the growth of Ge crystals and suspended continuous layers on Si(001) substrates deeply patterned in high aspect-ratio pillars. The material deposition was carried out in a commercial reduced-pressure chemical vapor deposition reactor, thus extending the "vertical-heteroepitaxy" technique developed by using the peculiar low-energy plasma-enhanced chemical vapor deposition reactor, to widely available epitaxial tools. The growth process was thoroughly analyzed, from the formation of small initial seeds to the final coalescence into a continuous suspended layer, by means of scanning and transmission electron microscopy, X-ray diffraction, and μ-Raman spectroscopy. The preoxidation of the Si pillar sidewalls and the addition of hydrochloric gas in the reactants proved to be key to achieve highly selective Ge growth on the pillars top only, which, in turn, is needed to promote the formation of a continuous Ge layer. Thanks to continuum growth models, we were able to single out the different roles played by thermodynamics and kinetics in the deposition dynamics. We believe that our findings will open the way to the low-cost realization of tens of micrometers thick heteroepitaxial layer (e.g., Ge, SiC, and GaAs) on Si having high crystal quality.
Diao, Chien-Chen; Kuo, Hsin-Hui; Tzou, Wen-Cheng; Chen, Yen-Lin; Yang, Cheng-Fu
2014-01-03
In this study, a new thin-film deposition process, spray coating method (SPM), was investigated to deposit the high-densified CuInSe₂ absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe₂ precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe₂ absorber layers. After spraying on Mo/glass substrates, the CuInSe₂ thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N₂ as atmosphere. When the CuInSe₂ thin films were annealed, without extra Se or H₂Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe₂ absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe₂ absorber layers could be controlled as the volume of used dispersed CuInSe₂-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe₂ absorber layers obtained by the Spray Coating Method.
Liu, Xin; Li, Weiyi; Chong, Tzyy Haur; Fane, Anthony G
2017-03-01
Spacer design plays an important role in improving the performance of membrane processes for water/wastewater treatment. This work focused on a fundamental issue of spacer design, i.e., investigating the effects of spacer orientations on the fouling behavior during a membrane process. A series of fouling experiments with different spacer orientation were carried out to in situ characterize the formation of a cake layer in a spacer unit cell via 3D optical coherence tomography (OCT) imaging. The cake layers formed at different times were digitalized for quantitatively analyzing the variation in the cake morphology as a function of time. In particular, the local deposition rates were evaluated to determine the active regions where the instantaneous changes in deposit thickness were significant. The characterization results indicate that varying the spacer orientation could substantially change the evolution of membrane fouling by particulate foulants and thereby result in a cake layer with various morphologies; the competition between growth and erosion at different locations would instantaneously respond to the micro-hydrodynamic environment that might change with time. This work confirms that the OCT-based characterization method is a powerful tool for exploring novel spacer design. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Hong-Yan; Xia, Min; Wu, Zheng-Tao; Chan, Lap-Chung; Dai, Yong; Wang, Kun; Yan, Qing-Zhi; He, Man-Chao; Ge, Chang-Chun; Lu, Jian
2016-11-01
A nanostructured surface layer was fabricated on commercial pure tungsten using the method of surface mechanical attrition treatment (SMAT). The microstructure evolution of the surface layer was characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and its formation mechanism was discussed as well. Both refinement and elongation of the brittle W grains were confirmed. The elongated SMATed W was heavily strained, the maximum value of the strain at the grain boundaries reaches as high as 3-5%. Dislocation density in the SMATed W nanograins was found to be 5 × 1012 cm-2. The formation of the nanograins in the top surface layer of the W was ascribed to the extremely high strain and strain rate, as well as the multidirectional repetitive loading. Bending strength of commercial W could be improved from 825 MPa to 1850 MPa by SMAT process. Microhardness results indicated the strain range in SMATed W can reach up to 220 μm beneath the top surface. The notched Charpy testing results demonstrated that SMATed W possess higher ductility than that of commercial W. The top surface of the W plates with and without SMATe processing possesses residual compressive stress of about -881 MPa and -234 MPa in y direction, and -872 MPa and -879 MPa in x direction respectively. The improvement of toughness (DBTT shift) of SMATed W may be the synergistic effect of residual compressive stress, dislocation density improvement and microstructure refinement induced by SMAT processing. SMAT processing could be a complementary method to further decrease the DBTT value of tungsten based materials.
High-Performance Ink-Synthesized Cu-Gate Thin-Film Transistor with Diffusion Barrier Formation
NASA Astrophysics Data System (ADS)
Woo, Whang Je; Nam, Taewook; Oh, Il-Kwon; Maeng, Wanjoo; Kim, Hyungjun
2018-02-01
The improved electrical properties of Cu-gate thin-film transistors (TFTs) using an ink-synthesizing process were studied; this technology enables a low-cost and large area process for the display industry. We investigated the film properties and the effects of the ink-synthesized Cu layer in detail with respect to device characteristics. The mobility and reliability of the devices were significantly improved by applying a diffusion barrier at the interface between the Cu gate and the gate insulator. By using a TaN diffusion barrier layer, considerably improved and stabilized ink-Cu gated TFTs could be realized, comparable to sputtered-Cu gated TFTs under positive bias temperature stress measurements.
High-Performance Ink-Synthesized Cu-Gate Thin-Film Transistor with Diffusion Barrier Formation
NASA Astrophysics Data System (ADS)
Woo, Whang Je; Nam, Taewook; Oh, Il-Kwon; Maeng, Wanjoo; Kim, Hyungjun
2018-05-01
The improved electrical properties of Cu-gate thin-film transistors (TFTs) using an ink-synthesizing process were studied; this technology enables a low-cost and large area process for the display industry. We investigated the film properties and the effects of the ink-synthesized Cu layer in detail with respect to device characteristics. The mobility and reliability of the devices were significantly improved by applying a diffusion barrier at the interface between the Cu gate and the gate insulator. By using a TaN diffusion barrier layer, considerably improved and stabilized ink-Cu gated TFTs could be realized, comparable to sputtered-Cu gated TFTs under positive bias temperature stress measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Bo Wen; Tan, Kian Hua; Loke, Wan Khai
The relationship between growth temperature and the formation of periodic interfacial misfit (IMF) dislocations via the anion exchange process in InSb/GaAs heteroepitaxy was systematically investigated. The microstructural and electrical properties of the epitaxial layer were characterized using atomic force microscope, high-resolution x-ray diffraction, transmission electron microscopy, and Hall resistance measurement. The formation of interfacial misfit (IMF) dislocation arrays depended on growth temperature. A uniformly distributed IMF array was found in a sample grown at 310 °C, which also exhibited the lowest threading dislocation density. The analysis suggested that an incomplete As-for-Sb anion exchange process impeded the formation of IMF on samplemore » grown above 310 °C. At growth temperature below 310 °C, island coalescence led to the formation of 60° dislocations and the disruption of periodic IMF array. All samples showed higher electron mobility at 300 K than at 77 K.« less
Electroless silver plating of the surface of organic semiconductors.
Campione, Marcello; Parravicini, Matteo; Moret, Massimo; Papagni, Antonio; Schröter, Bernd; Fritz, Torsten
2011-10-04
The integration of nanoscale processes and devices demands fabrication routes involving rapid, cost-effective steps, preferably carried out under ambient conditions. The realization of the metal/organic semiconductor interface is one of the most demanding steps of device fabrication, since it requires mechanical and/or thermal treatments which increment costs and are often harmful in respect to the active layer. Here, we provide a microscopic analysis of a room temperature, electroless process aimed at the deposition of a nanostructured metallic silver layer with controlled coverage atop the surface of single crystals and thin films of organic semiconductors. This process relies on the reaction of aqueous AgF solutions with the nonwettable crystalline surface of donor-type organic semiconductors. It is observed that the formation of a uniform layer of silver nanoparticles can be accomplished within 20 min contact time. The electrical characterization of two-terminal devices performed before and after the aforementioned treatment shows that the metal deposition process is associated with a redox reaction causing the p-doping of the semiconductor. © 2011 American Chemical Society
Digital Printing of Titanium Dioxide for Dye Sensitized Solar Cells.
Cherrington, Ruth; Wood, Benjamin Michael; Salaoru, Iulia; Goodship, Vannessa
2016-05-04
Silicon solar cell manufacturing is an expensive and high energy consuming process. In contrast, dye sensitized solar cell production is less environmentally damaging with lower processing temperatures presenting a viable and low cost alternative to conventional production. This paper further enhances these environmental credentials by evaluating the digital printing and therefore additive production route for these cells. This is achieved here by investigating the formation and performance of a metal oxide photoelectrode using nanoparticle sized titanium dioxide. An ink-jettable material was formulated, characterized and printed with a piezoelectric inkjet head to produce a 2.6 µm thick layer. The resultant printed layer was fabricated into a functioning cell with an active area of 0.25 cm(2) and a power conversion efficiency of 3.5%. The binder-free formulation resulted in a reduced processing temperature of 250 °C, compatible with flexible polyamide substrates which are stable up to temperatures of 350 ˚C. The authors are continuing to develop this process route by investigating inkjet printing of other layers within dye sensitized solar cells.
Digital Printing of Titanium Dioxide for Dye Sensitized Solar Cells
Cherrington, Ruth; Wood, Benjamin Michael; Salaoru, Iulia; Goodship, Vannessa
2016-01-01
Silicon solar cell manufacturing is an expensive and high energy consuming process. In contrast, dye sensitized solar cell production is less environmentally damaging with lower processing temperatures presenting a viable and low cost alternative to conventional production. This paper further enhances these environmental credentials by evaluating the digital printing and therefore additive production route for these cells. This is achieved here by investigating the formation and performance of a metal oxide photoelectrode using nanoparticle sized titanium dioxide. An ink-jettable material was formulated, characterized and printed with a piezoelectric inkjet head to produce a 2.6 µm thick layer. The resultant printed layer was fabricated into a functioning cell with an active area of 0.25 cm2 and a power conversion efficiency of 3.5%. The binder-free formulation resulted in a reduced processing temperature of 250 °C, compatible with flexible polyamide substrates which are stable up to temperatures of 350 ˚C. The authors are continuing to develop this process route by investigating inkjet printing of other layers within dye sensitized solar cells. PMID:27166761
NASA Astrophysics Data System (ADS)
Peters, Katharina; Raupp, Sebastian; Hummel, Helga; Bruns, Michael; Scharfer, Philip; Schabel, Wilhelm
2016-06-01
Slot die coaters especially designed for low material consumption and doctor blades were used to process small molecule solutions for organic light-emitting diodes (OLEDs). Optimum process parameters were developed for the large-scale coating techniques to generate stable single and multiple layers only a few nanometers thick. Achieving a multilayer architecture for solution-processed OLEDs is the most challenging step. X-ray photoelectron spectroscopy sputter depth profiling was performed to determine defined interfaces between coated organic layers. Commercially available small molecules NPB (N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) and BAlq (Bis(8-hdroxy-2methylquinoline)-(4-phenylphenoxy)aluminum), originally developed for vacuum deposition, were used as hole, respectively electron transport material. Defined double-layers were processed with both scalable coating methods using the orthogonal solvent approach. The use of non-orthogonal solvents resulted in complete intermixing of the material. The results are explained by calculations of solubilities and simulating drying and diffusion kinetics of the small molecule solutions.
Spahn, O.B.; Lear, K.L.
1998-03-10
The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g., Al{sub 2}O{sub 3}), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3--1.6 {mu}m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation. 10 figs.
Spahn, Olga B.; Lear, Kevin L.
1998-01-01
A semiconductor structure. The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g. Al.sub.2 O.sub.3), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3-1.6 .mu.m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation.
Titanium nitride formation by a dual-stage femtosecond laser process
NASA Astrophysics Data System (ADS)
Hammouti, S.; Holybee, B.; Zhu, W.; Allain, J. P.; Jurczyk, B.; Ruzic, D. N.
2018-06-01
Formation of TiN by femtosecond laser processing in controlled gas atmosphere is reported. A dual-stage process was designed and aimed to first remove and restructure the native oxide layer of titanium surface through laser irradiation under an argon-controlled atmosphere, and then to maximize titanium nitride formation through an irradiation under a nitrogen reactive environment. An extensive XPS study was performed to identify and quantify laser-induced titanium surface chemistry modifications after a single-stage laser process (Ar and N2 individually), and a dual-stage laser process. The importance of each step that composes the dual-stage laser process was demonstrated and leads to the dual-stage laser process for the formation of TiO, Ti2O3 and TiN. In this study, the largest nitride formation occurs for the dual stage process with laser conditions at 4 W/1.3 J cm-2 under argon and 5 W/1.6 J cm-2 under nitrogen, yielding a total TiN composition of 8.9%. Characterization of both single-stage and dual-stage laser process-induced surface morphologies has been performed as well, leading to the observation of a wide range of hierarchical surface structures such as high-frequency ripples, grooves, protuberances and pillow-like patterns. Finally, water wettability was assessed by means of contact angle measurements on untreated titanium surface, and titanium surfaces resulting from either single-stage laser process or dual-stage laser process. Dual-stage laser process allows a transition of titanium surface, from phobic (93°) to philic (35°), making accessible both hydrophilic and chemically functionalized hierarchical surfaces.
Growth of Au on Ni(110): A Semiempirical Modeling of Surface Alloy Phases
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Ibanez-Meier, Rodrigo; Ferrante, John
1995-01-01
Recent experiments using scanning tunneling microscopy show evidence for the formation of surface alloys of otherwise immiscible metals. Such is the case for Au deposited in Ni(110), where experiments by Pleth Nielsen el al.indicate that at low Au coverage (less than 0. 5 ML), Au atoms replace Ni atoms in the surface layer forming a surface alloy while the Ni atoms form islands on the surface. In this paper, we present results of a theoretical modeling of this phenomenon using the recently developed Bozzolo-Ferrante-Smith method for alloys. We provide results of an extensive analysis of the growth process that strongly support the conclusions drawn from the experiment: at very low coverages, there is a tendency for dimer formation on the overlayer, which later exchange positions with Ni atoms in the surface layer, thus accounting for the large number of substituted dimers. Ni island formation as well as other alternative short-range-order patterns are discussed.
Analysis of microstructure in electro-spark deposited IN718 superalloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anisimov, E.; Khan, A.K.; Ojo, O.A., E-mail: olanr
2016-09-15
The microstructure of electro-spark deposited (ESD) superalloy IN718 was studied by the use of scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. In converse to general assumption, the extremely high cooling rate involved in the ESD process did not produce partitionless solidification that is devoid of second phase microconstituents in the material, nano-sized Laves phase and MC carbide particles were observed within the deposited layer. Notwithstanding the several thermal cycles involved in the process, the extremely low heat input of the process produced a deposited region that is free ofmore » the main strengthening phase of the alloy, γ″ phase precipitates, which is in contrast to what have been reported on laser deposition. Nevertheless, application of the standard full heat treatment of the alloy resulted in extensive formation of the γ″ phase precipitates and δ phase precipitates, the most stable secondary phase of the alloy, with nearly, if not complete, dissolution of the Laves phase particles. Furthermore, the XPS analysis done in the study revealed the formation of nano-oxides within the deposited layer, which increased the microhardness of the superalloy in the as-deposited condition and inhibited its grain growth during post-process heat treatment. The microstructure analysis done in this work is crucial to the understanding of properties of the superalloy processed by the ESD technique. - Highlights: •Electron microscopy analyses of electro-spark deposited IN 718 superalloy were performed. •Nano-sized secondary phase particles were observed within the deposited layer. •The study shows that the ESD did not produce partitionless solidification of the alloy.« less
Ding, An; Wang, Jinlong; Lin, Dachao; Tang, Xiaobin; Cheng, Xiaoxiang; Li, Guibai; Ren, Nanqi; Liang, Heng
2017-12-01
Gravity-driven membrane filtration systems are promising for decentralized sewage treatment due to their low energy consumption and low maintenance. However, the low stable permeability/flux is currently limiting their wider application. With the ultimate goal of increasing permeability, the aim of this study was to evaluate the effect of coagulation (in situ coagulation and pre-coagulation) on the performance of a gravity-driven membrane bioreactor (GDMBR) during treatment of synthetic sewage. Results show that in situ coagulation significantly increased permeability (more than two-fold); however, no stabilization of permeability occurred over the whole operation, when non-coagulated and pre-coagulated reactors were compared. The high permeability observed was attributed to the accumulated aluminium floc in the reactor, which prevented formation of fluorescent microbial metabolites (aromatic and tryptophan proteins, as well as fulvic acids), and further avoided membrane pore blocking. In addition, the surface porosity of the fouling layer was improved (from 11.2% to 32.4% for non-coagulated and in situ coagulated reactors). The unstable permeability was possibly associated with lower biological processes within the fouling layer. These might include lower adenosine triphosphate (ATP) content and lower fluorescent metabolites from the extracellular polymeric substances (EPS) caused by the accumulated Al (compared with the control). On the other hand, pre-coagulation improved the level of stable permeability compared with the control (80 versus 40 L/m 2 h bar), mainly because pre-coagulation decreased the EPS content and also maintained high ATP content of the fouling layer. In addition, both coagulation processes reduced the total filtration resistance, mainly the hydraulically reversible resistance and cake layer resistance, which could lower the cleaning frequency. Overall, coagulation could greatly increase the removal efficiency and improve the GDMBR permeability, which would make the process suitable for decentralized wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kalthoff, Norbert; Lohou, Fabienne; Brooks, Barbara; Jegede, Gbenga; Adler, Bianca; Babić, Karmen; Dione, Cheikh; Ajao, Adewale; Amekudzi, Leonard K.; Aryee, Jeffrey N. A.; Ayoola, Muritala; Bessardon, Geoffrey; Danuor, Sylvester K.; Handwerker, Jan; Kohler, Martin; Lothon, Marie; Pedruzo-Bagazgoitia, Xabier; Smith, Victoria; Sunmonu, Lukman; Wieser, Andreas; Fink, Andreas H.; Knippertz, Peter
2018-03-01
A ground-based field campaign was conducted in southern West Africa from mid-June to the end of July 2016 within the framework of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project. It aimed to provide a high-quality comprehensive data set for process studies, in particular of interactions between low-level clouds (LLCs) and boundary-layer conditions. In this region missing observations are still a major issue. During the campaign, extensive remote sensing and in situ measurements were conducted at three supersites: Kumasi (Ghana), Savè (Benin) and Ile-Ife (Nigeria). Daily radiosoundings were performed at 06:00 UTC, and 15 intensive observation periods (IOPs) were performed during which additional radiosondes were launched, and remotely piloted aerial systems were operated. Extended stratiform LLCs form frequently in southern West Africa during the nighttime and persist long into the following day. They affect the radiation budget and hence the evolution of the atmospheric boundary layer and regional climate. The relevant parameters and processes governing the formation and dissolution of the LLCs are still not fully understood. This paper gives an overview of the diurnal cycles of the energy-balance components, near-surface temperature, humidity, wind speed and direction as well as of the conditions (LLCs, low-level jet) in the boundary layer at the supersites and relates them to synoptic-scale conditions (monsoon layer, harmattan layer, African easterly jet, tropospheric stratification) in the DACCIWA operational area. The characteristics of LLCs vary considerably from day to day, including a few almost cloud-free nights. During cloudy nights we found large differences in the LLCs' formation and dissolution times as well as in the cloud-base height. The differences exist at individual sites and also between the sites. The synoptic conditions are characterized by a monsoon layer with south-westerly winds, on average about 1.9 km deep, and easterly winds above; the depth and strength of the monsoon flow show great day-to-day variability. Within the monsoon layer, a nocturnal low-level jet forms in approximately the same layer as the LLC. Its strength and duration is highly variable from night to night. This unique data set will allow us to test some new hypotheses about the processes involved in the development of LLCs and their interaction with the boundary layer and can also be used for model evaluation.
Cats, K. H.; Andrews, J. C.; Stephan, O.; ...
2016-02-16
In this study, the Fischer-Tropsch synthesis (FTS) reaction is one of the most promising processes to convert alternative energy sources, such as natural gas, coal or biomass, into liquid fuels and other high-value products. Despite its commercial implementation, we still lack fundamental insights into the various deactivation processes taking place during FTS. In this work, a combination of three methods for studying single catalyst particles at different length scales has been developed and applied to study the deactivation of Co/TiO 2 Fischer-Tropsch synthesis (FTS) catalysts. By combining transmission X-ray microscopy (TXM), scanning transmission X-ray microscopy (STXM) and scanning transmission electronmore » microscopy-electron energy loss spectroscopy (STEM-EELS) we visualized changes in the structure, aggregate size and distribution of supported Co nanoparticles that occur during FTS. At the microscale, Co nanoparticle aggregates are transported over several μm leading to a more homogeneous Co distribution, while at the nanoscale Co forms a thin layer of ~1-2 nm around the TiO 2 support. The formation of the Co layer is the opposite case to the “classical” strong metal-support interaction (SMSI) in which TiO 2 surrounds the Co, and is possibly related to the surface oxidation of Co metal nanoparticles in combination with coke formation. In other words, the observed migration and formation of a thin CoO x layer are similar to a previously discussed reaction-induced spreading of metal oxides across a TiO 2 surface.« less
Aluminum induced crystallization of amorphous Ge thin films on insulating substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Ch. Kishan, E-mail: kisn@igcar.gov.in; Tah, T.; Sunitha, D. T.
2016-05-23
Aluminium (metal) induced crystallization of amorphous Ge in bilayer and multilayer Ge/Al thin films deposited on quartz substrate at temperature well below the crystallization temperature of bulk Ge is reported. The crystallization of poly-Ge proceeds via formations of dendritic crystalline Ge grains in the Al matrix. The observed phases were characterized by Raman spectroscopy and X-ray diffraction. The microstructure of Al thin film layer was found to have a profound influence on such crystallization process and formation of dendritic grains.
NASA Astrophysics Data System (ADS)
Heydari, Ezat; Fairen, Alberto G.
2016-10-01
The Striated formation is one of the rock units that was deposited in Gale crater, Mars, during the Late Noachian to Hesperian time (4.2 to 3.6 billion years ago). It crops out for 3 km along the Curiosity's traverse. The Striated formation strikes N65○E and has a depositional dip of 10○ - 20○ to SE. It consists of 500 m to 1000 m of highly rhythmic layers each 1 m to 4 m in thickness. Study of MAHLI and MastCam images provided by the Curiosity Rover indicates that layers form fining-upward cycles consisting of thick-bedded to massive conglomerate at the base that grades upward to thinly bedded conglomerate, then to pebbly sandstone, and topped by laminated, fine grained sandstone. Layers show slump folds, soft sediment deformation, and cross-beddings.The highly rhythmic occurrence and the fining-upward grain size characteristic indicate that each layer within the Striated formation is a coarse-grained turbidite: a type of rock that forms when sediments move down-hill by gravity-driven turbidity flows and deposit in deep waters. We propose that turbidite layers of the Striated formation are related to delivery of sediments to Gale crater by megafloods through its northern rim. Upon entering Gale crater, sediments moved down-hill and deposited as turbidite layers when the crater may have been filled to the rim with water. About 1000 to 3000 turbidite layers are present suggesting the occurrences of as many megafloods during hothouse climatic intervals when Mars was warmer than the Present and had plenty of liquid water. Floods were generated by one or a combination of the following processes: (1) torrential rain along the margins of Mars's Northern Ocean, 500 km to 1000 km to the north, (2) rapid melting of ice in highland areas, and (3) tsunamis formed by impacts on the Northern Ocean. Cold and/or dry climate of icehouse intervals may have followed each warming episode. Mars's climate forcing mechanism and periodicities of climate change are not clear at this point. However, the highly regular and rhythmic nature of turbidite layers point to an orbital triggering mechanism, possibly driven by changes in obliquity.
Systems and methods for producing hydrocarbons from tar sands formations
Li, Ruijian [Katy, TX; Karanikas, John Michael [Houston, TX
2009-07-21
A system for treating a tar sands formation is disclosed. A plurality of heaters are located in the formation. The heaters include at least partially horizontal heating sections at least partially in a hydrocarbon layer of the formation. The heating sections are at least partially arranged in a pattern in the hydrocarbon layer. The heaters are configured to provide heat to the hydrocarbon layer. The provided heat creates a plurality of drainage paths for mobilized fluids. At least two of the drainage paths converge. A production well is located to collect and produce mobilized fluids from at least one of the converged drainage paths in the hydrocarbon layer.
Subsurface chlorophyll maximum layers: enduring enigma or mystery solved?
Cullen, John J
2015-01-01
The phenomenon of subsurface chlorophyll maximum layers (SCMLs) is not a unique ecological response to environmental conditions; rather, a broad range of interacting processes can contribute to the formation of persistent layers of elevated chlorophyll a concentration (Chl) that are nearly ubiquitous in stratified surface waters. Mechanisms that contribute to the formation and maintenance of the SCMLs include a local maximum in phytoplankton growth rate near the nutricline, photoacclimation of pigment content that leads to elevated Chl relative to phytoplankton biomass at depth, and a range of physiologically influenced swimming behaviors in motile phytoplankton and buoyancy control in diatoms and cyanobacteria that can lead to aggregations of phytoplankton in layers, subject to grazing and physical control. A postulated typical stable water structure characterizes consistent patterns in vertical profiles of Chl, phytoplankton biomass, nutrients, and light across a trophic gradient structured by the vertical flux of nutrients and characterized by the average daily irradiance at the nutricline. Hypothetical predictions can be tested using a nascent biogeochemical global ocean observing system. Partial results to date are generally consistent with predictions based on current knowledge, which has strong roots in research from the twentieth century.
Assembly of Layered Monetite-Chitosan Nanocomposite and Its Transition to Organized Hydroxyapatite.
Ruan, Qichao; Liberman, David; Zhang, Yuzheng; Ren, Dongni; Zhang, Yunpeng; Nutt, Steven; Moradian-Oldak, Janet
2016-06-13
Bioinspired synthesis of hierarchically structured calcium phosphate (CaP) material is a highly promising strategy for developing improved bone substitute materials. However, synthesis of CaP materials with outstanding mechanical properties still remains an ongoing challenge. Inspired by the formation of lamellar structure in nacre, we designed an organic matrix composed of chitosan and cis-butenediolic acid (maleic acid, MAc) that could assemble into a layered complex and further guide the mineralization of monetite crystals, resulting in the formation of organized and parallel arrays of monetite platelets with a brick-and-mortar structure. Using the layered monetite-chitosan composite as a precursor, we were able to synthesize hydroxyapatite (HAp) with multiscale hierarchically ordered structure via a topotactic phase transformation process. On the nanoscale, needlelike HAp crystallites assembled into organized bundles that aligned to form highly oriented plates on the microscale. On the large-scale level, these plates with different crystal orientations were stacked together to form a layered structure. The organized structures and composite feature yielded CaP materials with improved mechanical properties close to those of bone. Our study introduces a biomimetic approach that may be practical for the design of advanced, mechanically robust materials for biomedical applications.
Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan
2006-04-25
Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.
NASA Astrophysics Data System (ADS)
Korkmaz, Nuriye; Ostermann, Kai; Rödel, Gerhard
2011-03-01
Surface layer proteins have the appealing property to self-assemble in nanosized arrays in solution and on solid substrates. In this work, we characterize the formation of assembly structures of the recombinant surface layer protein SbsC of Geobacillus stearothermophilus ATTC 12980, which was tagged with enhanced green fluorescent protein and expressed in the yeast Saccharomyces cerevisiae. The tubular structures formed by the protein in vivo are retained upon bursting the cells by osmotic shock; however, their average length is decreased. During dialysis, monomers obtained by treatment with chaotropic chemicals recrystallize again to form tube-like structures. This process is strictly dependent on calcium (Ca2 + ) ions, with an optimal concentration of 10 mM. Further increase of the Ca2 + concentration results in multiple non-productive nucleation points. We further show that the lengths of the S-layer assemblies increase with time and can be controlled by pH. After 48 h, the average length at pH 9.0 is 4.13 µm compared to 2.69 µm at pH 5.5. Successful chemical deposition of platinum indicates the potential of recrystallized mSbsC-eGFP structures for nanobiotechnological applications.
Surface treatment to form a dispersed Y2O3 layer on Zircaloy-4 tubes
NASA Astrophysics Data System (ADS)
Jung, Yang-Il; Kim, Hyun-Gil; Guim, Hwan-Uk; Lim, Yoon-Soo; Park, Jung-Hwan; Park, Dong-Jun; Yang, Jae-Ho
2018-01-01
Zircaloy-4 is a traditional zirconium-based alloy developed for application in nuclear fuel cladding tubes. The surfaces of Zircaloy-4 tubes were treated using a laser beam to increase their mechanical strength. Laser beam scanning of a tube coated with yttrium oxide (Y2O3) resulted in the formation of a dispersed oxide layer in the tube's surface region. Y2O3 particles penetrated the Zircaloy-4 during the laser treatment and were distributed uniformly in the surface region. The thickness of the dispersed oxide layer varied from 50 to 140 μm depending on the laser beam trajectory. The laser treatment also modified the texture of the tube. The preferred basal orientation along the normal to the tube surface disappeared, and a random structure appeared after laser processing. The most obvious result was an increase in the mechanical strength. The tensile strength of Zircaloy-4 increased by 10-20% with the formation of the dispersed oxide layer. The compressive yield stress also increased, by more than 15%. Brittle fracture was observed in the surface-treated samples during tensile and compressive deformation at room temperature; however, the fracture behavior was changed in ductile at elevated temperatures.
Effect of Plasma Nitriding and Nitrocarburizing on HVOF-Sprayed Stainless Steel Coatings
NASA Astrophysics Data System (ADS)
Park, Gayoung; Bae, Gyuyeol; Moon, Kyungil; Lee, Changhee
2013-12-01
In this work, the effects of plasma nitriding (PN) and nitrocarburizing on HVOF-sprayed stainless steel nitride layers were investigated. 316 (austenitic), 17-4PH (precipitation hardening), and 410 (martensitic) stainless steels were plasma-nitrided and nitrocarburized using a N2 + H2 gas mixture and the gas mixture containing C2H2, respectively, at 550 °C. The results showed that the PN and nitrocarburizing produced a relatively thick nitrided layer consisting of a compound layer and an adjacent nitrogen diffusion layer depending on the crystal structures of the HVOF-sprayed stainless steel coatings. Also, the diffusion depth of nitrogen increased when a small amount of C2H2 (plasma nitrocarburizing process) was added. The PN and nitrocarburizing resulted in not only an increase of the surface hardness, but also improvement of the load bearing capacity of the HVOF-sprayed stainless steel coatings because of the formation of CrN, Fe3N, and Fe4N phases. Also, the plasma-nitrocarburized HVOF-sprayed 410 stainless steel had a superior surface microhardness and load bearing capacity due to the formation of Cr23C6 on the surface.
The Au/Si eutectic bonding compatibility with KOH etching for 3D devices fabrication
NASA Astrophysics Data System (ADS)
Liang, Hengmao; Liu, Mifeng; Liu, Song; Xu, Dehui; Xiong, Bin
2018-01-01
KOH etching and Au/Si eutectic bonding are cost-efficient technologies for 3D device fabrication. Aimed at investigating the process compatibility of KOH etching and Au/Si bonding, KOH etching tests have been carried out for Au/bulk Si and Au/amorphous Si (a-Si) bonding wafers in this paper. For the Au/bulk Si bonding wafer, a serious underetch phenomenon occurring on the damage layer in KOH etching definitely results in packaging failure. In the microstructure analysis, it is found that the formation of the damage layer between the bonded layer and bulk Si is attributed to the destruction of crystal Si lattices in Au/bulk Si eutectic reaction. Considering the occurrence of underetch for Au/Si bonding must meet two requirements: the superfluous Si and the defective layer near the bonded layer, the Au/a-Si bonding by regulating the a-Si/Au thickness ratio is presented in this study. Only when the a-Si/Au thickness ratio is relatively low are there not underetch phenomena, of which the reason is the full reaction of the a-Si layer avoiding the formation of the damage layer for easy underetch. Obviously, the Au/a-Si bonding via choosing a moderate a-Si/Au thickness ratio (⩽1.5:1 is suggested) could be reliably compatible with KOH etching, which provides an available and low-cost approach for 3D device fabrication. More importantly, the theory of the damage layer proposed in this study can be naturally applied to relevant analyses on the eutectic reaction of other metals and single crystal materials.
Dynamical Generation of the Transition Zone in the Earth's Mantle
NASA Astrophysics Data System (ADS)
Hansen, U.; Stemmer, K.
2005-12-01
The internal structure of the Earth is made up by a series of layers, though it is unclear how many layers exist and if there are layers invisible to remote sensing techniques. The transition zone is likely to be a boundary layer separating the convective systems in the lower and upper mantle. It seems likely that currently there is some mass exchange across this boundary, rather than the two systems beeing strictly separated.a Double-diffusive convection(d.d.c) is a vital mechanism which can generate layered structure and may thus be an important mmical machinery behind the formation of the transition zone. Double-diffusive convection determines the dynamics of systems whose density is influenced by at least two components with different molecular diffusivities.In the mantle, composition and temperature play the role of those two components. By means of numerical experiments we demonstrate that under mantle relevant conditions d.d.c typically leads to the formation of a transition zone. The calculations encompass two- and three dimensional Cartesian geometries as well as fully 3D spherical domains. We have further included strongly temperature dependent viscosity and find that this leads to even more pronounced layering. In most cases a layered flow pattern emerges, where two layers with a transition zone in between resembles a quasistationary state. Thus, the transition zone can be the result of a self organization process of the convective flow in the mantle. The presence of a phase transition further helps to stabilize the boundary against overturning, even on a time scale on the order of the age of the Earth.
NASA Astrophysics Data System (ADS)
Gunell, H.; Andersson, L.; De Keyser, J.; Mann, I.
2015-10-01
The plasma on a magnetic field line in the downward current region of the aurora is simulated using a Vlasov model. It is found that an electric field parallel to the magnetic fields is supported by a double layer moving toward higher altitude. The double layer accelerates electrons upward, and these electrons give rise to plasma waves and electron phase-space holes through beam-plasma interaction. The double layer is disrupted when reaching altitudes of 1-2 Earth radii where the Langmuir condition no longer can be satisfied due to the diminishing density of electrons coming up from the ionosphere. During the disruption the potential drop is in part carried by the electron holes. The disruption creates favourable conditions for double layer formation near the ionosphere and double layers form anew in that region. The process repeats itself with a period of approximately 1 min. This period is determined by how far the double layer can reach before being disrupted: a higher disruption altitude corresponds to a longer repetition period. The disruption altitude is, in turn, found to increase with ionospheric density and to decrease with total voltage. The current displays oscillations around a mean value. The period of the oscillations is the same as the recurrence period of the double layer formations. The oscillation amplitude increases with increasing voltage, whereas the mean value of the current is independent of voltage in the 100 to 800 V range covered by our simulations. Instead, the mean value of the current is determined by the electron density at the ionospheric boundary.
Self-Organized Mantle Layering After the Magma-Ocean Period
NASA Astrophysics Data System (ADS)
Hansen, U.; Dude, S.
2017-12-01
The thermal history of the Earth, it's chemical differentiation and also the reaction of the interior with the atmosphere is largely determined by convective processes within the Earth's mantle. A simple physical model, resembling the situation, shortly after core formation, consists of a compositionally stable stratified mantle, as resulting from fractional crystallization of the magma ocean. The early mantle is subject to heating from below by the Earth's core and cooling from the top through the atmosphere. Additionally internal heat sources will serve to power the mantle dynamics. Under such circumstances double diffusive convection will eventually lead to self -organized layer formation, even without the preexisting jumps is material properties. We have conducted 2D and 3D numerical experiments in Cartesian and spherical geometry, taking into account mantle realistic values, especially a strong temperature dependent viscosity and a pressure dependent thermal expansivity . The experiments show that in a wide parameter range. distinct convective layers evolve in this scenario. The layering strongly controls the heat loss from the core and decouples the dynamics in the lower mantle from the upper part. With time, individual layers grow on the expense of others and merging of layers does occur. We observe several events of intermittent breakdown of individual layers. Altogether an evolution emerges, characterized by continuous but also spontaneous changes in the mantle structure, ranging from multiple to single layer flow. Such an evolutionary path of mantle convection allows to interpret phenomena ranging from stagnation of slabs at various depth to variations in the chemical signature of mantle upwellings in a new framework.
Layered intrusion formation by top down thermal migration zone refining (Invited)
NASA Astrophysics Data System (ADS)
Lundstrom, C.
2009-12-01
The formation of layered mafic intrusions by crystallization from cooling magmas represents the textbook example of igneous differentiation, often attributed to fractional crystallization through gravitational settling. Yet in detail, such interpretations have significant problems such that it remains unclear how these important features form. Put in the Earth perspective that no km scale blob of >50% melt has ever been imaged geophysically and that geochronological studies repeatedly indicate age inconsistencies with “big tank” magma chambers, it may be questioned if km scale magma chambers have ever existed. I will present the case for forming layered intrusions by a top down process whereby arriving basaltic magma reaches a permeability barrier, begins to underplate and forms the intrusion incrementally by sill injection with the body growing downward at ~1 mm/yr rate or less. A temperature gradient zone occurs in the overlying previously emplaced sills, leading to chemical components migrating by diffusion. As long as the rate of diffusion can keep up with rate of sill addition, the body will differentiate along a path similar to a liquid line of descent. In this talk, I will integrate data from 3 areas: 1) laboratory experiments examining the behavior of partially molten silicates in a temperature gradient (thermal migration); 2) numerical modeling of the moving temperature gradient zone process using IRIDIUM (Boudreau, 2003); 3) measurements of Fe isotope ratios and geochronology from the Sonju Lake Intrusion in the Duluth Complex. This model provides the ability to form km scale intrusions by a seismically invisible means, can explain million year offsets in chronology, and has implications for reef development and PGE concentration. Most importantly, this model of top down layered intrusion formation, following a similar recent proposal for granitoid formation (Lundstrom, 2009), represents a testable hypothesis: because temperature gradient driven diffusion leads to the prediction of heavy isotope ratios near the top of the intrusion and light ratios near the bottom of the intrusion, analyses of Fe, Mg and Si isotopes provide an important new tool for examining igneous differentiation.
NASA Astrophysics Data System (ADS)
Newsom, H. E.; Belgacem, I.; Wiens, R. C.; Frydenvang, J.; Gasnault, O.; Maurice, S.; Gasda, P. J.; Clegg, S. M.; Cousin, A.; Rapin, W.; Jackson, R.; Vaci, Z.; Ha, B.; Blaney, D. L.; Bridges, N.; Francis, R.; Payré, V.; Gupta, S.; Banham, S.; Schroeder, J.; Calef, F. J., III; Edgett, K. S.; Fey, D.; Fisk, M. R.; Gellert, R.; Thompson, L. M.; Perrett, G. M.; Grotzinger, J. P.; Rubin, D. M.; Williams, A.; Kah, L. C.; Kronyak, R. E.
2015-12-01
MSL began investigating a contact between Murray formation, (fine grained lake deposits) and the younger Stimson formation at Marias Pass in May 2015, on the lower slopes of Mt. Sharp. Images show that the Murray formation, with numerous calcium sulfate veins compared to the Stimson, is truncated at an erosional contact. MAHLI images show a white layer a few mm thick at the contact that might be calcium sulfate. The lowermost beds of the Stimson unit in the Missoula area comprise horizontally laminated or cross-laminated sandstones. The sandstones are poorly sorted with floating granules and very coarse sand grains set in a fine- medium-grained sand 'matrix'. This material directly above the contact is a resistant, basal ledge-forming layer that also forms numerous blocks of float on top of the eroded Murray. This basal layer contains light toned fragments, possibly calcium sulfate, eroded from the Murray. The poor sorting and presence of sub-angular grains, together with the absence of preferential sorting into size sorted layers would seem to rule out eolian processes for the lowermost beds of the Stimson and suggest fluvial processes were responsible for deposition of these beds. For chemostratigraphy, the distance of each ChemCam or APXS observation above or below the contact was determined from images and the NavCam stereo mesh. The top of the Murray near the Missoula area is variable in composition, and additional analyses are planned to determine if weathering occurred at the eroded surface. Above the contact, the lowest 2 cm of the resistant slab is higher in SiO2, and lower in Al2O3, K2O and Na2O, relative to other Stimson analyses. In a few points with low totals, there is a correlation between Ca and missing components (presumed to be mostly S). These points could be connected to calcium sulfate in the form of cements and/or incorporation of eroded clasts of Murray vein materials.
A comparative study of heterostructured CuO/CuWO4 nanowires and thin films
NASA Astrophysics Data System (ADS)
Polyakov, Boris; Kuzmin, Alexei; Vlassov, Sergei; Butanovs, Edgars; Zideluns, Janis; Butikova, Jelena; Kalendarev, Robert; Zubkins, Martins
2017-12-01
A comparative study of heterostructured CuO/CuWO4 core/shell nanowires and double-layer thin films was performed through X-ray diffraction, confocal micro-Raman spectroscopy and electron (SEM and TEM) microscopies. The heterostructures were produced using a two-step process, starting from a deposition of amorphous WO3 layer on top of CuO nanowires and thin films by reactive DC magnetron sputtering and followed by annealing at 650 °C in air. The second step induced a solid-state reaction between CuO and WO3 oxides through a thermal diffusion process, revealed by SEM-EDX analysis. Morphology evolution of core/shell nanowires and double-layer thin films upon heating was studied by electron (SEM and TEM) microscopies. A formation of CuWO4 phase was confirmed by X-ray diffraction and confocal micro-Raman spectroscopy.
Self-organization processes and topological defects in nanolayers in a nematic liquid crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuvyrov, A. N.; Girfanova, F. M.; Mal'tsev, I. S.
Atomic force microscopy is used to study the self-organization processes that occur during the formation of topological defects in nanomolecular layers in a nematic liquid crystal with the homeotropic orientation of its molecules with respect to the substrate. In this case, a smectic monolayer with a thickness of one molecule length (about 2.2 nm) forms on the substrate, and a nanomolecular layer of a nematic liquid crystal forms above this monolayer. In such virtually two-dimensional layers, numerous different nanoclusters, namely, hut structures, pyramids, raft structures with symmetry C{sub nm} (where n = 2, 4, 5, 6, 7, ?, {infinity}), cones,more » and nanopools, form [1]. They have a regular shape close to the geometry of solid crystals. Modulated linear structures and topological point defects appear spontaneously in the nanopools and raft structures.« less
Chang, Liang-Yi; Gershon, Talia S.; Haight, Richard A.; Lee, Yun Seog
2016-12-27
A hybrid vapor phase-solution phase CZT(S,Se) growth technique is provided. In one aspect, a method of forming a kesterite absorber material on a substrate includes the steps of: depositing a layer of a first kesterite material on the substrate using a vapor phase deposition process, wherein the first kesterite material includes Cu, Zn, Sn, and at least one of S and Se; annealing the first kesterite material to crystallize the first kesterite material; and depositing a layer of a second kesterite material on a side of the first kesterite material opposite the substrate using a solution phase deposition process, wherein the second kesterite material includes Cu, Zn, Sn, and at least one of S and Se, wherein the first kesterite material and the second kesterite material form a multi-layer stack of the absorber material on the substrate. A photovoltaic device and method of formation thereof are also provided.
NASA Astrophysics Data System (ADS)
Kumm, J.; Samadi, H.; Chacko, R. V.; Hartmann, P.; Wolf, A.
2016-07-01
An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al2O3 layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatory to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.
NASA Astrophysics Data System (ADS)
Tan, Caiwang; Lu, Qingshuang; Chen, Bo; Song, Xiaoguo; Li, Liqun; Feng, Jicai; Wang, Yang
2017-03-01
AZ31B Magnesium (Mg) and Ti-6Al-4V titanium (Ti) alloys with Ni coating were joined by laser welding-brazing process using AZ92 Mg based filler. The influence of laser power on microstructure and mechanical properties were investigated. Ni coating was found to significantly promote good wetting-spreading ability of molten filler on the Ti sheet. Acceptable joints without obvious defects were obtained within a relatively wide processing window. In the process metallurgical bonding was achieved by the formation of Ti3Al phase at direct irradiation zone and Al-Ni phase followed by a layer of Mg-Al-Ni ternary compound adjacent to the fusion zone at the intermediate zone. The thickness of reaction layers increased slowly with the increasing laser power. The tensile-shear test indicated that joints produced at the laser power of 1300 W reached 2387 N fracture load, representing 88.5% joint efficiency with respect to the Mg base metal. The corresponding failure occurred in the fusion zone of the Mg base metal, while joints fractured at the interface at lower/higher laser power due to the crack or excessive intermetallic compound (IMC) formation along the interface.
NASA Astrophysics Data System (ADS)
Kunkel, D.; Hoor, P.; Wirth, V.
2015-08-01
Recent studies on the formation of a quasi-permanent layer of enhanced static stability above the thermal tropopause revealed the contributions of dynamical and radiative processes. Dry dynamics lead to the evolution of a tropopause inversion layer (TIL) which is, however, too weak compared to observations and thus diabatic contributions are required. In this study we aim to assess the importance of diabatic as well as mixing processes in the understanding of TIL formation at midlatitudes. The non-hydrostatic model COSMO is applied in an idealized mid-latitude channel configuration to simulate baroclinic life cycles. The effect of individual diabatic, i.e. related to humidity and radiation, and turbulent processes is studied first to estimate the additional contribution of these processes to dry dynamics. In a second step these processes are stepwise included in the model to increase the complexity and finally estimate the relative importance of each process. The results suggest that including turbulence leads to a weaker TIL than in a dry reference simulation. In contrast, the TIL evolves stronger when radiation is included but the temporal occurrence is still comparable to the reference. Using various cloud schemes in the model shows that latent heat release and consecutive increased vertical motions foster an earlier and stronger appearance of the TIL than in all other life cycles. Furthermore, updrafts moisten the upper troposphere and as such increase the radiative effect from water vapor. Particularly, this process becomes more relevant for maintaining the TIL during later stages of the life cycles. Increased convergence of the vertical wind induced by updrafts and by propagating and potentially dissipating inertia-gravity waves further contributes to the enhanced stability of the lower stratosphere. Furthermore, radiative feedback of ice clouds reaching up to the tropopause is identified to potentially further affect the strength of the TIL in the region of the cloud.
NASA Technical Reports Server (NTRS)
Walker, D. (Editor); Mccallum, I. S. (Editor)
1981-01-01
The significance of the lunar highland pristine cumulate samples were reevaluated with the aid of the additional insights provided by geologically constrained terrestrial investigations. This exercise involved a review of the state of knowledge about terrestrial and lunar cumulate rocks as well as an enumeration and reevaluation of the processes hypothesized to have been responsible for their formation, both classically and at present.
Interactions of natural resins and pigments in works of art.
Poli, Tommaso; Piccirillo, Anna; Nervo, Marco; Chiantore, Oscar
2017-10-01
The degradation process involving the formation of metal soaps in drying oils is a well-known problem due to cations from pigments reacting with free fatty acids from the oil. The aggregation of these carboxylates in semi-crystalline structures can lead to eruptions through the paint layers and 'blooming' on the surface. In this work, the metal soaps formation in presence of natural resins has been assessed and studied by means of Fourier transform infrared spectroscopy with experiments concerning the ageing of drying oil and different natural resins (shellac, dammar and colophony) in the presence of common historic pigments (smalt, ochre, umber, azurite, lead white, zinc white and titanium white). Mixtures of resins and pigments have been exposed to photo-ageing in solar box up to 1000h, thermal ageing at 50°C up to 1100h and 6month of room conditions exposure as reference. The decrease in the intensity of the carbonyl band in the spectra, as well as the contemporary increase of the metal carboxylates (in the range from 1500 to 1650cm -1 ) absorption bands, were used as the main indicators of metal soap formation. It has been observed that some pigments, particularly zinc white and smalt, present a 'catalytic' effect favouring the simultaneous formation of associated oxalates. The formation of oxalates and different degradation products from natural resins in the presence of pigments is particularly important, as it deeply affects the removability of varnishes and, more generally, the cleaning processes. Moreover, it permanently modifies the interface between painting and varnish layers as well as the aesthetic aspects of the painted surfaces. The influence of natural resins reactivity with pigments and their role in the oxalate formation is an issue still unexplored. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ibarra, Yadira; Corsetti, Frank A.
2016-04-01
The processes that govern the formation of stromatolites, structures that may represent macroscopic manifestation of microbial processes and a clear target for astrobiological investigation, occur at various scales (local versus regional), yet determining their relative importance remains a challenge, particularly for ancient deposits and/or if similar deposits are discovered elsewhere in the Solar System. We build upon the traditional multiscale level approach of investigation (micro-, meso-, macro-, mega-) by including a lateral comparative investigational component of fine- to large-scale features to determine the relative significance of local and/or nonlocal controls on stromatolite morphology, and in the process, help constrain the dominant influences on microbialite formation. In one example of lateral comparative investigation, lacustrine microbialites from the Miocene Barstow Formation (California) display two main mesofabrics: (1) micritic bands that drastically change in thickness and cannot directly be traced between adjacent decimeter-scale subunits and (2) sparry fibrous layers that are strikingly consistent across subunits, suggesting the formation of sparry fibrous layers was influenced by a process larger than the length scale between the subunits (likely lake chemistry). Microbialites from the uppermost Triassic Cotham Member, United Kingdom, occur as meter-scale mounds and contain a characteristic succession of laminated and dendrolitic mesofabrics. The same succession of laminated/dendrolitic couplets can be traced, not only from mound to mound, but over 100 km, indicating a regional-scale influence on very small structures (microns to centimeters) that would otherwise not be apparent without the lateral comparative approach, and demonstrating that the scale of the feature does not necessarily scale with the scope of the process. Thus, the combination of lateral comparative investigations and multiscale analyses can provide an effective approach for evaluating the dominant controls on stromatolite texture and morphology throughout the rock record and potentially on other planets via rover-scale analyses (e.g., Mars).
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Charette, R. F.
1987-01-01
To increase the effectiveness and efficiency of fiber-reinforced materials, the use of fibers in a curvilinear rather than the traditional straightline format is explored. The capacity of a laminated square plate with a central circular hole loaded in tension is investigated. The orientation of the fibers is chosen so that the fibers in a particular layer are aligned with the principle stress directions in that layer. Finite elements and an iteration scheme are used to find the fiber orientation. A noninteracting maximum strain criterion is used to predict load capacity. The load capacities of several plates with different curvilinear fibers format are compared with the capacities of more conventional straightline format designs. It is found that the most practical curvilinear design sandwiches a group of fibers in a curvilinear format between a pair of +/-45 degree layers. This design has a 60% greater load capacity than a conventional quasi-isotropic design with the same number of layers. The +/-45 degree layers are necessary to prevent matrix cracking in the curvilinear layers due to stresses perpendicular to the fibers in those layers. Greater efficiencies are achievable with composite structures than now realized.
NASA Astrophysics Data System (ADS)
Yang, Liu; Xiao-Jing, Yu; Jian-Ming, Ma; Yi-Wen, Guan; Jiang, Li; Qiang, Li; Sa, Yang
2017-06-01
A volumetric ablation model for EPDM (ethylene- propylene-diene monomer) is established in this paper. This model considers the complex physicochemical process in the porous structure of a char layer. An ablation physics model based on a porous structure of a char layer and another model of heterogeneous volumetric ablation char layer physics are then built. In the model, porosity is used to describe the porous structure of a char layer. Gas diffusion and chemical reactions are introduced to the entire porous structure. Through detailed formation analysis, the causes of the compact or loose structure in the char layer and chemical vapor deposition (CVD) reaction between pyrolysis gas and char layer skeleton are introduced. The Arrhenius formula is adopted to determine the methods for calculating carbon deposition rate C which is the consumption rate caused by thermochemical reactions in the char layer, and porosity evolution. The critical porosity value is used as a criterion for char layer porous structure failure under gas flow and particle erosion. This critical porosity value is obtained by fitting experimental parameters and surface porosity of the char layer. Linear ablation and mass ablation rates are confirmed with the critical porosity value. Results of linear ablation and mass ablation rate calculations generally coincide with experimental results, suggesting that the ablation analysis proposed in this paper can accurately reflect practical situations and that the physics and mathematics models built are accurate and reasonable.
The development of self-expanding peripheral stent with ion-modified surface layer
NASA Astrophysics Data System (ADS)
Lotkov, Alexander I.; Kashin, Oleg A.; Kudryashov, Andrey N.; Krukovskii, Konstantin V.; Kuznetsov, Vladimir M.; Borisov, Dmitry P.; Kretov, Evgenii I.
2016-11-01
In work researches of chemical composition of surface layers of self-expanding stents of nickel-titanium (NiTi) and their functional and mechanical properties after plasma immersion processing by ions of silicon (Si). It is established that in the treatment in the inner and outer surfaces of stents formed doped silicon layer with a thickness of 80 nm. The formation of the doped layer does not impair the functional properties of the stent. At human body temperature, the stent is fully restore its shape after removing the deforming load. The resulting graph of loading of stents during their compression between parallel plates. The research results allow the conclusion that Si-doped stents are promising for treatment of peripheral vascular disease. However, related studies on laboratory animals are required.
NASA Astrophysics Data System (ADS)
Yang, K.; Park, H.; Baik, H.; Kim, J.; Park, K. R.; Yoon, J.; Kim, J. W.
2016-12-01
Understanding the biogeochemical process in the Fe-Mn crust layer is important to reconstruct the paleo-environment when the Fe-Mn crust layer forms. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Electron Energy Loss Spectroscopy (EELS), and Polymerase Chain Reaction (PCR) were utilized to determine the redox states of Fe/Mn and microbial diversity at each layer. Samples were dredged from the western Pacific Magellan Seamount (OSM11) that consists of five well-defined layers from the rim (L1) to the core (L5). Some microbial like structures of sheath-like with filaments (L1 - L3), capsule-shaped (L2), fossilized coccolith mounds with phosphatized globules (L4), and bean-shaped (L4) were detected in entire layers. The cross sectional observation of bean-shaped microbe like structures encrusted with Fe-vernadite (L3) by Scanning Transmission Electron Microscopy (STEM) and Focused Ion Beam (FIB) technique revealed 1-μm diameter cavity in the center and porous structures of encrusting Fe-vernadite in periphery. Moreover, the organic carbon in the center cavity compared with inorganic C (from carbonate) in periphery was differentiated by C-K edge EELS spectra, suggesting that the microbe used to occupy. Indeed, the PCR analysis indicated the presence of functional gene (cumA; 1056bp & coxC; 810bp) association with Mn & Fe oxidizer that promote the formation of the crust. The cloning and sequencing of DNA PCR fragments revealed the appearance of geobacter species in L3 (G. sulfurreducens and G. lovleyi). The DNA molecular biological analysis and SEM direct observations suggest the evidence of biotic process in the formation of Fe-Mn crust.
Interfacial characterization in carbon nanotube reinforced aluminum matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Housaer, F., E-mail: francois.housaer@ed.univ-lille1.fr; Beclin, F., E-mail: franck.beclin@univ-lille1.fr; Touzin, M., E-mail: matthieu.touzin@univ-lille1.fr
2015-12-15
In this work, the effects of the sintering parameters, such as temperature and the techniques used (HP and SPS), on CNT/Al composite interfaces are studied. The major role of the native aluminum oxide (Al{sub 2}O{sub 3}) layer covering the aluminum grains is highlighted. It is shown that, for a sintering temperature below 620 °C, the amorphous Al{sub 2}O{sub 3} layer prevents the reaction between aluminum and carbon. For greater sintering temperatures, the breaking of the oxide layer due to its crystallization leads to the formation of aluminum carbide (Al{sub 4}C{sub 3}) by reaction between aluminum and the CNT. The Al{submore » 4}C{sub 3} crystals grow perpendicularly to the matrix grain boundaries by thermally activated diffusion of the carbon atoms coming from the CNT. It is also demonstrated that, by limiting the sintering time, which is the case in SPS, it is possible to limit the growth of the Al{sub 4}C{sub 3} crystals and thus to preserve the CNT. - Highlights: • The high reactivity between CNT and Al matrix, resulting Al{sub 4}C{sub 3} formation during the sintering process is highlighted. • We demonstrate, thanks to in-situ TEM observations, that Al{sub 4}C{sub 3} crystals grow into aluminum grains by carbon diffusion. • The native aluminum oxide around the aluminum particles prevents the diffusion of carbon into the aluminum grains. • We show that the protective layer can be broken because of its crystallization, leading to the formation of Al{sub 4}C{sub 3}. • SPS, by limiting the sintering duration, is an interesting way for preparing CNT/Al composites without carbide formation.« less
NASA Astrophysics Data System (ADS)
Liu, Jianxing; Mei, Xi; Shi, Xuefa; Liu, Qingsong; Liu, Yanguang; Ge, Shulan
2018-04-01
Sediments from continental shelves are sensitive to changes in both oceanic and terrestrial conditions, and, therefore, magnetic minerals in such sediments are affected strongly by depositional and diagenetic processes. Here, we investigated systematically an N-S transect of three sediment cores from the central South Yellow Sea (SYS) muddy area. Magnetic data indicate the presence of a horizontally distributed thick greigite-bearing layer. From an age model based on published magnetostratigraphy, accelerator mass spectrometry 14C dating ages, sedimentary characteristics and foraminiferal analysis, this layer was deposited within marine isotope stages (MIS) 17-13, following an enhanced sulphidic period over MIS 21-19 when the YS Warm Current and the associated YS Cold Water Mass were strong and where underlying sediments have higher total organic carbon, total sulphur and trace element molybdenum contents. Trace element cadmium enrichment in the greigite-bearing layers is documented for the first time, which indicates that weakly sulphidic (i.e. with trace levels of free H2S) conditions existed before greigite formed in a sulphidic environment during early diagenesis. It also indicates that subsequent conditions free of oxygen and H2S after greigite formation are more favourable for its preservation. We propose that organic matter supply was controlled over an extended period by moderate primary productivity. The combined effects of palaeoclimate and local tectonic subsidence were crucial for the formation and preservation of the identified greigite. In brief, our study improves understanding of the formation and preservation mechanisms of greigite in continental shelf sediments and reveals mid-Pleistocene palaeoenvironmental changes in the SYS.
Nitrous acid chemistry in Los Angeles during the CalNex-LA experiment
NASA Astrophysics Data System (ADS)
Stutz, J.; Tsai, C.; Wong, K.; Pikelnaya, O.; Hurlock, S. C.; Young, C. J.; Veres, P. R.; Washenfelder, R. A.; Brown, S. S.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.
2011-12-01
The role of nitrous acid, HONO, as an OH radical precursor during the early morning and during the day has received considerable attention over the past decade. Several studies have reported that HONO photolysis in the polluted boundary layer is the dominant source of OH in the early morning, and that it contributes up to 30% to the diurnally averaged primary OH formation. Despite the importance of HONO for boundary layer chemistry, our understanding of HONO sources is still incomplete. Laboratory studies suggest that HONO is formed by the conversion of NO2 on humid surfaces at night. As this process is too slow during the day, several photo-enhanced processes have been proposed that either accelerate the NO2 conversion, or involve other nitrogen species, such as HNO3. Field observations of vertical HONO and NO2 concentration profiles, together with accurate measurements of other nitrogen species and actinic flux measurements offer a unique opportunity to constrain the proposed HONO formation mechanisms. Here we present observations of HONO, NO2, and other parameters made by various instruments during the 2010 CalNex experiment on the east side of the Los Angeles basin. We will discuss the vertical profiles of HONO and NO2 measured by LP-DOAS, CEAS, CIMS, and photolytic conversion + CL with regard to the formation of HONO. The observations will be compared to 1D chemistry and transport model calculations to test various proposed formation mechanisms. We will discuss the most likely formation pathway of HONO and the potential impact of HONO on atmospheric chemistry in Los Angeles.
Design of alumina forming FeCrAl steels for lead or lead-bismuth cooled fast reactors
NASA Astrophysics Data System (ADS)
Lim, Jun; Hwang, Il Soon; Kim, Ji Hyun
2013-10-01
Iron-chromium-aluminum alloys containing 15-20 wt.% Cr and 4-6 wt.% Al have shown excellent corrosion resistance in the temperature range up to 600 °C or higher in liquid lead and lead-bismuth eutectic environments by the formation of protective Al2O3 layers. However, the higher Cr and Al concentrations in ferritic alloys could be problematic because of severe embrittlement in the manufacturing process as well as in service, caused by the formation of brittle phases. For this reason, efforts worldwide have so far mainly focused on the development of aluminizing surface treatments. However, aluminizing surface treatments have major disadvantages of cost, processing difficulties and reliability issues. In this study, a new FeCrAl alloy is proposed for structural materials in lead and lead-bismuth cooled nuclear applications. The alloy design relied on corrosion experiments in high temperature lead and lead-bismuth eutectic environments and computational thermodynamic calculations using the commercial software, JMatPro. The design of new alloys has focused on the optimization of Cr and Al levels for the formation of an external Al2O3 layer which can provide excellent oxidation and corrosion resistance in liquid lead alloys in the temperature range 300-600 °C while still retaining workable mechanical properties.
Formation Dynamics of CH3NH3PbI3 Perovskite Following Two-Step Layer Deposition.
Patel, Jay B; Milot, Rebecca L; Wright, Adam D; Herz, Laura M; Johnston, Michael B
2016-01-07
Hybrid metal-halide perovskites have emerged as a leading class of semiconductors for optoelectronic devices because of their desirable material properties and versatile fabrication methods. However, little is known about the chemical transformations that occur in the initial stages of perovskite crystal formation. Here we follow the real-time formation dynamics of MAPbI3 from a bilayer of lead iodide (PbI2) and methylammonium iodide (MAI) deposited through a two-step thermal evaporation process. By lowering the substrate temperature during deposition, we are able to initially inhibit intermixing of the two layers. We subsequently use infrared and visible light transmission, X-ray diffraction, and photoluminescence lifetime measurements to reveal the room-temperature transformations that occur in vacuum and ambient air, as MAI diffuses into the PbI2 lattice to form MAPbI3. In vacuum, the transformation to MAPbI3 is incomplete as unreacted MAI is retained in the film. However, exposure to moist air allows for conversion of the unreacted MAI to MAPbI3, demonstrating that moisture is essential in making MAI more mobile and thus aiding perovskite crystallization. These dynamic processes are reflected in the observed charge-carrier lifetimes, which strongly fluctuate during periods of large ion migration but steadily increase with improving crystallinity.
NASA Astrophysics Data System (ADS)
Hopf, J.; Eskelsen, J. R.; Chiu, M.; Ievlev, A. V.; Ovchinnikova, O. S.; Leonard, D.; Pierce, E. M.
2018-05-01
Silicate glass is a metastable and durable solid that has application to a number of energy and environmental challenges (e.g., microelectronics, fiber optics, and nuclear waste storage). If allowed to react with water over time silicate glass develops an altered layer at the solid-fluid interface. In this study, we used borosilicate glass (LAWB45) as a model material to develop a robust understanding of altered layer formation (i.e., amorphous hydrated surface layer and crystalline reaction products). Experiments were conducted at high surface area-to-volume ratio (∼200,000 m-1) and 90 °C in the pressurized unsaturated flow (PUF) apparatus for 1.5-years to facilitate the formation of thick altered layers and allow for the effluent solution chemistry to be monitored continuously. A variety of microscopy techniques were used to characterize reacted grains and suggest the average altered layer thickness is 13.2 ± 8.3 μm with the hydrated and clay layer representing 74.8% and 25.2% of the total altered layer, respectively. The estimate of hydrated layer thickness is within the experimental error of the value estimated from the B release rate data (∼10 ± 1 μm/yr) over the 1.5-year duration. PeakForce® quantitative nanomechanical mapping results suggest the hydrated layer has a modulus that ranges between ∼20 and 40 GPa, which is in the range of porous silica that contains from ∼20 to ∼50% porosity, yet significantly lower than dense silica (∼70-80 GPa). Scanning transmission electron microscopy (STEM) images confirm the presence of pores and an analysis of a higher resolution image provides a qualitative estimate of ≥22% porosity in the hydrated layer with variations in void volume with increasing distance from the unaltered glass. Chemical composition analyses, based on a combination of time-of-flight secondary-ion mass spectrometry (ToF-SIMS), scanning electron microscopy with X-ray energy dispersive spectroscopy (EDS), and STEM-EDS, clearly show that the altered layer is mainly composed of Al, H, Si, and O with the clay layer being enriched in Li, Zn, Fe, and Mg. The amorphous hydrated layer is enriched in Ca, H, and Zr with a minor amount of K. Furthermore, ToF-SIMS results also suggest the B profile is anti-correlated with the H profile in the hydrated layer. Our selected-area electron diffraction results suggest the structure of the hydrated layer closely resembles opal-AG (amorphous gel-like) with an average crystallite size of ∼0.7 nm which is smaller than the critical nucleus for silica nanoparticles (i.e., 1.4-3 nm). These results suggest the hydrated layer is more consistent with a polymeric gel rather than a colloidal gel and is comprised of molecular units (<1 nm in size) that result from the difficult to hydrolyze bonds, such as Sisbnd Osbnd Zr units, during the glass corrosion process. The size of individual particles or molecular units is a function of formation conditions (e.g., pH, ionic strength, nano-confinement, solute composition) in the hydrated layer.
Photobleachable Diazonium Salt-Phenolic Resin Two-Layer Resist System
NASA Astrophysics Data System (ADS)
Uchino, Shou-ichi; Iwayanagi, Takao; Hashimoto, Michiaki
1988-01-01
This article describes a new negative two-layer photoresist system formed by a simple, successive spin-coating method. An aqueous acetic acid solution of diazonium salt and poly(N-vinylpyrrolidone) is deposited so as to contact a phenolic resin film spin-coated on a silicon wafer. The diazonium salt diffuses into the phenolic resin layer after standing for several minutes. The residual solution on the phenolic resin film doped with diazonium salt is spun to form the diazonium salt-poly(N-vinylpyrrolidone) top layer. This forms a uniform two-layer resist without phase separation or striation. Upon UV exposure, the diazonium salt in the top layer bleaches to act as a CEL dye, while the diazonium salt in the bottom layer decomposes to cause insolubilization. Half μm line-and-space patterns are obtained with an i-line stepper using 4-diazo-N,N-dimethylaniline chloride zinc chloride double salt as the diazonium salt and a cresol novolac resin for the bottom polymer layer. The resist formation processes, insolubilization mechanism, and the resolution capability of the new two-layer resist are discussed.
NASA Astrophysics Data System (ADS)
Abdelhadi, Ousama Mohamed Omer
Continuous miniaturization of microelectronic interconnects demands smaller joints with comparable microstructural and structural sizes. As the size of joints become smaller, the volume of intermetallics (IMCs) becomes comparable with the joint size. As a result, the kinetics of bond formation changes and the types and thicknesses of IMC phases that form within the constrained region of the bond varies. This dissertation focuses on investigating combination effects of process parameters and size on kinetics of bond formation, resulting microstructure and the mechanical properties of joints that are formed under structurally constrained conditions. An experiment is designed where several process parameters such as time of bonding, temperature, and pressure, and bond thickness as structural chracteristic, are varied at multiple levels. The experiment is then implemented on the process. Scanning electron microscope (SEM) is then utilized to determine the bond thickness, IMC phases and their thicknesses, and morphology of the bonds. Electron backscatter diffraction (EBSD) is used to determine the grain size in different regions, including the bulk solder, and different IMC phases. Physics-based analytical models have been developed for growth kinetics of IMC compounds and are verified using the experimental results. Nanoindentation is used to determine the mechanical behavior of IMC phases in joints in different scales. Four-point bending notched multilayer specimen and four-point bending technique were used to determine fracture toughness of the bonds containing IMCs. Analytical modeling of peeling and shear stresses and fracture toughness in tri-layer four-point bend specimen containing intermetallic layer was developed and was verified and validated using finite element simulation and experimental results. The experiment is used in conjunction with the model to calculate and verify the fracture toughness of Cu6Sn5 IMC materials. As expected two different IMC phases, η-phase (Cu6Sn 5) and epsilon-phase (Cu3Sn), were found in almost all the cases regardless of the process parameters and size levels. The physics-based analytical model was successfully able to capture the governing mechanisms of IMC growth: chemical reaction controlled and diffusion-controlled. Examination of microstructures of solder joints of different sizes revealed the size of the solder joint has no effect on the type of IMCs formed during the process. Joint size, however, affected the thickness of IMC layers significantly. IMC layers formed in the solder joints of smaller sizes were found to be thicker than those in the solder joints of larger sizes. The growth rate constants and activation energies of Cu3Sn IMC layer were also reported and related to joint thickness. In an effort to optimize the EBSD imaging in the multi-layer configuration, an improved specimen preparation technique and optimum software parameters were determined. Nanoindentation results show that size effects play a major role on the mechanical properties of micro-scale solder joints. Smaller joints show higher Young's modulus, hardness, and yield strength and lower work hardening exponents comparing to thicker joints. To obtain the stress concentration factors in a multilayer specimen with IMC layer as bonding material, a four-point bending notched configuration was used. The analytical solutions developed for peeling and shear stresses in notched structure were used to evaluate the stresses at IMC interface layers. Results were in good agreement with the finite-element simulation. The values of interfacial stresses were utilized in obtaining fracture toughness of the IMC material. (Abstract shortened by UMI.)
Improved Seismic Acquisition System and Data Processing for the Italian National Seismic Network
NASA Astrophysics Data System (ADS)
Badiali, L.; Marcocci, C.; Mele, F.; Piscini, A.
2001-12-01
A new system for acquiring and processing digital signals has been developed in the last few years at the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The system makes extensive use of the internet communication protocol standards such as TCP and UDP which are used as the transport highway inside the Italian network, and possibly in a near future outside, to share or redirect data among processes. The Italian National Seismic Network has been working for about 18 years equipped with vertical short period seismometers and transmitting through analog lines, to the computer center in Rome. We are now concentrating our efforts on speeding the migration towards a fully digital network based on about 150 stations equipped with either broad band or 5 seconds sensors connected to the data center partly through wired digital communication and partly through satellite digital communication. The overall process is layered through intranet and/or internet. Every layer gathers data in a simple format and provides data in a processed format, ready to be distributed towards the next layer. The lowest level acquires seismic data (raw waveforms) coming from the remote stations. It handshakes, checks and sends data in LAN or WAN according to a distribution list where other machines with their programs are waiting for. At the next level there are the picking procedures, or "pickers", on a per instrument basis, looking for phases. A picker spreads phases, again through the LAN or WAN and according to a distribution list, to one or more waiting locating machines tuned to generate a seismic event. The event locating procedure itself, the higher level in this stack, can exchange information with other similar procedures. Such a layered and distributed structure with nearby targets allows other seismic networks to join the processing and data collection of the same ongoing event, creating a virtual network larger than the original one. At present we plan to cooperate with other Italian regional and local networks, and with the VBB Mediterranean Network (MedNet) to share waveforms and events detected in real time. The seismic acquisition system at INGV uses a relational database built on standard SQL, for every activity involving the seismic network.
Cosmic ray processing of N2-containing interstellar ice analogues at dark cloud conditions
NASA Astrophysics Data System (ADS)
Fedoseev, G.; Scirè, C.; Baratta, G. A.; Palumbo, M. E.
2018-04-01
N2 is believed to lock considerable part of nitrogen elemental budget and, therefore, to be one of the most abundant ice constituent in cold dark clouds. This laboratory-based research utilizes high energetic processing of N2 containing interstellar ice analogues using 200 keV H+ and He+ ions that mimics cosmic ray processing of the interstellar icy grains. It aims to investigate the formation of (iso)cyanates and cyanides in the ice mantles at the conditions typical for cold dark clouds and prestellar cores. Investigation of cosmic ray processing as a chemical trigger mechanism is explained by the high stability of N2 molecules that are chemically inert in most of the atom- and radical-addition reactions and cannot be efficiently dissociated by cosmic ray induced UV-field. Two sets of experiments are performed to closer address solid-state chemistry occurring in two distinct layers of the ice formed at different stages of dark cloud evolution, i.e. `H2O-rich' and `CO-rich' ice layers. Formation of HNCO and OCN- is discussed in all of the performed experiments. Corresponding kinetic curves for HNCO and OCN- are obtained. Furthermore, a feature around 2092 cm-1 assigned to the contributions of 13CO, CN-, and HCN is analysed. The kinetic curves for the combined HCN/CN- abundance are derived. In turn, normalized formation yields are evaluated by interpolation of the obtained results to the low irradiation doses relevant to dark cloud stage. The obtained values can be used to interpret future observations towards cold dark clouds using James Webb Space Telescope.
H I-to-H2 Transition Layers in the Star-forming Region W43
NASA Astrophysics Data System (ADS)
Bialy, Shmuel; Bihr, Simon; Beuther, Henrik; Henning, Thomas; Sternberg, Amiel
2017-02-01
The process of atomic-to-molecular (H I-to-H2) gas conversion is fundamental for molecular-cloud formation and star formation. 21 cm observations of the star-forming region W43 revealed extremely high H I column densities, of 120-180 {M}⊙ {{pc}}-2, a factor of 10-20 larger than predicted by H I-to-H2 transition theories. We analyze the observed H I with a theoretical model of the H I-to-H2 transition, and show that the discrepancy between theory and observation cannot be explained by the intense radiation in W43, nor be explained by variations of the assumed volume density or H2 formation rate coefficient. We show that the large observed H I columns are naturally explained by several (9-22) H I-to-H2 transition layers, superimposed along the sightlines of W43. We discuss other possible interpretations such as a non-steady-state scenario and inefficient dust absorption. The case of W43 suggests that H I thresholds reported in extragalactic observations are probably not associated with a single H I-to-H2 transition, but are rather a result of several transition layers (clouds) along the sightlines, beam-diluted with diffuse intercloud gas.
Arai, Noriyoshi; Yasuoka, Kenji; Zeng, Xiao Cheng
2016-08-23
A vesicle in a cell is an enclosed structure in which the interior fluid is encompassed by a lipid bilayer. Synthetic vesicles are known as the liposomes. Liposomes with a single phospholipid bilayer are called unilamellar liposomes; otherwise, they are called multilamellar liposomes or onion-like liposomes (vesicles). One prototype synthetic onion-like vesicle, namely, onion-like dendrimersomes, have been recently produced via the self-assembly of amphiphilic Janus dendrimers (Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 1162). Herein, we show computer simulation evidence of another type of onion-like vesicle, namely, onion-like oligomersomes, via the self-assembly of amphiphilic Janus oligomers in water. Specifically, we investigate the minimum-sized oligomers (or minimalist model) that can give rise to the onion-like oligomersomes as well as the composition-dependent phase diagrams. Insights into the formation condition and formation process of the onion-like oligomersomes are obtained. We demonstrate that the discharge of the in-vesicle water is through the remarkable "peeling-one-onion-layer-at-a-time" fashion, a feature that can be utilized for a clinical dosing regimen. The ability to control the formation of onion-like oligomersomes by design can be exploited for applications in drug and gene delivery.
Black layers on historical architecture.
Toniolo, Lucia; Zerbi, Carlotta M; Bugini, Roberto
2009-03-01
The external surface of any building in urban polluted environment is unavoidably destined to be covered with layers that assume a grey to black colour and are generally called 'black crusts'. These, according to standard protocols and glossary, are deteriorated surface layers of stone material; they can have variable thickness, are hard and fragile and can detach spontaneously from the substrate, which, in general, is quite decayed. Plain visual examination may lead to consider 'black crusts' all similar, whilst only a careful diagnostic investigation can distinguish 'black crusts' and the consequences of their formation on stone substrates. In this paper, various black layers on marble are studied and compared and the morphological and compositional characteristics discussed according to the related mechanisms of formation. Differences between old (hundred years) and recent crusts (30 years) are investigated and pointed out. Samples of black crusts collected from the Milan Cathedral façade (Candoglia Marble) have been studied and compared with the careful and synergic employ of traditional techniques: optical (transmission and reflected VIS light) and electron microscopy, X-ray spectrometry and micro-Fourier transform infrared spectroscopy. Visual examination of loose fragments does not allow to point out outstanding differences amongst the various samples; black layers have similar main mineral components, gypsum and airborne particles, with different spatial distribution. The microscopic studies allowed to point out the porosity differences, the gypsum crystallisation habit, different amount of embedded particles, level and progress of marble decay. The observations lead to define three main types of black crusts: black crust deriving from marble sulphation, compact deposit and encrustation due to exogenic materials deposition. Black crusts show evidence of sulphation in progress, without a clear continuity solution between crust and marble; the lack of separation is particularly evident in 'recent' crust, where the sulphation process is more active. Black compact deposits show a higher porosity than black crusts because gypsum is not coming from the chemical corrosion of the substrate but from outside; actually, in the former case, the substrate is sound. Encrustations show a highly regular crystal organisation of gypsum (close packed tabular crystals) that cannot be traced back to casual atmospheric deposit or to corrosion of the substrate but rather to the crystallisation of a solution coming from an external source. Also in this case, the marble is sound; evidence of the effect of some protection treatment is pointed out. In spite of the apparent similarity of the examined samples, analytical results have evidenced three main types of black crusts: black crust with decayed substrate, compact deposit and black encrustation showing a sound substrate underneath. Experimental evidence of calcite grains sulphation in progress, taking place according to a model recently proposed, has been observed. Sulphation process is prevented where particular conservation treatments had been applied in the past. New experimental studies can be focussed to understand the specific conditions (measurements of micro-climatic and thermodynamic parameters) and mechanisms for black crusts formation in situ. The problem of the kinetic of the sulphation process of marble, the assessment of black layers formation in the case of different carbonate stone materials and the study of acid attack in presence of surface protecting layers deserve further investigation.
NASA Astrophysics Data System (ADS)
Matsui, Miyako; Kuwahara, Kenichi
2018-06-01
A cyclic process for highly selective SiO2 etching with atomic-scale precision over Si3N4 was developed by using BCl3 and fluorocarbon gas chemistries. This process consists of two alternately performed steps: a deposition step using BCl3 mixed-gas plasma and an etching step using CF4/Ar mixed-gas plasma. The mechanism of the cyclic process was investigated by analyzing the surface chemistry at each step. BCl x layers formed on both SiO2 and Si3N4 surfaces in the deposition step. Early in the etching step, the deposited BCl x layers reacted with CF x radicals by forming CCl x and BF x . Then, fluorocarbon films were deposited on both surfaces in the etching step. We found that the BCl x layers formed in the deposition step enhanced the formation of the fluorocarbon films in the CF4 plasma etching step. In addition, because F radicals that radiated from the CF4 plasma reacted with B atoms while passing through the BCl x layers, the BCl x layers protected the Si3N4 surface from F-radical etching. The deposited layers, which contained the BCl x , CCl x , and CF x components, became thinner on SiO2 than on Si3N4, which promoted the ion-assisted etching of SiO2. This is because the BCl x component had a high reactivity with SiO2, and the CF x component was consumed by the etching reaction with SiO2.
Oblique impacts into low impedance layers
NASA Astrophysics Data System (ADS)
Stickle, A. M.; Schultz, P. H.
2009-12-01
Planetary impacts occur indiscriminately, in all locations and materials. Varied geologic settings can have significant effects on the impact process, including the coupling between the projectile and target, the final damage patterns and modes of deformation that occur. For example, marine impact craters are not identical to impacts directly into bedrock or into sedimentary materials, though many of the same fundamental processes occur. It is therefore important, especially when considering terrestrial impacts, to understand how a low impedance sedimentary layer over bedrock affects the deformation process during and after a hypervelocity impact. As a first step, detailed comparisons between impacts and hydrocode models were performed. Experiments performed at the NASA Ames Vertical Gun Range of oblique impacts into polymethylmethacrylate (PMMA) targets with low impedance layers were performed and compared to experiments of targets without low impedance layers, as well as to hydrocode models under identical conditions. Impact velocities ranged from 5 km/s to 5.6 km/s, with trajectories from 30 degrees to 90 degrees above the horizontal. High-speed imaging provided documentation of the sequence and location of failure due to impact, which was compared to theoretical models. Plasticine and ice were used to construct the low impedance layers. The combination of experiments and models reveals the modes of failure due to a hypervelocity impact. How such failure is manifested at large scales can present a challenge for hydrocodes. CTH models tend to overestimate the amount of damage occurring within the targets and have difficulties perfectly reproducing morphologies; nevertheless, they provide significant and useful information about the failure modes and style within the material. CTH models corresponding to the experiments allow interpretation of the underlying processes involved as well as provide a benchmark for the experimental analysis. The transparency of PMMA allows a clear view of failure patterns within the target, providing a 3D picture of the final damage, as well as damage formation and propagation. Secondly, PMMA has mechanical properties similar to those of brittle rocks in the upper crust, making it an appropriate material for comparison to geologic materials. An impact into a PMMA target with a one-projectile-diameter thick plasticine layer causes damage distinct from an impact into a PMMA target without a low impedance layer. The extent of the final damage is much less in the target with the low impedance layer and begins to form at later times, there is little to no crater visible on the surface, and the formation and propagation of the damage is completely different, creating distinct subsurface damage patterns. Three-dimensional CTH hydrocode models show that the pressure history of material around and underneath the impact point is also different when a low impedance layer is present, leading to the variations in damage forming within the targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaSalvia, J.C.; Meyers, M.A.
The micromechanisms involved in the combustion synthesis of a Ti-C-Ni-Mo mixture resulting in the formation of a TiC-based composite were examined using the combustion wave quenching technique developed by Rogachev et al. At the micron level, the main reaction occurs at the interface between a Ti-Ni-C melt and C particles, resulting in the formation of a solid TiC{sub x} layer on the C particles. This layer undergoes a successive process of rapid growth and decomposition into TiC{sub x} spherules until all of the C particle is consumed. This mechanism is consistent with the apparent activation energy (E = 100 kJ/mol)more » for the process obtained from a macrokinetic investigation of the system. The apparent uniformity in size (d = 1 {mu}m) of the TiC{sub x} spherules upon formation indicates a critical condition in the stability of the energetics involved in the process. These TiC{sub x} spherules undergo growth due to Ostwald ripening and coalescence mechanisms resulting in a final apparent size of 2.5 {mu}m. For the compositions investigated, the addition of Mo did not affect either the micromechanisms or macrokinetics of the combustion synthesis process. Densification of the porous body after the combustion synthesis process can be carried out while it is still in a easily deformable state. The highly porous body is densified by a combination of fracture (communition), plastic deformation, and sintering. The mechanisms are identified for the case of combustion synthesized TiC. Mechanical properties and microstructures of a number of materials (e.g. TiC, TiB{sub 2}, Al{sub 2}O{sub 3}-TiB{sub 2}, TiB{sub 2}-SiC, TiC-Ni-Mo) produced by combustion synthesis combined with a high-velocity forging step are reviewed.« less
Method of fabrication of electrodes and electrolytes
Jankowski, Alan F.; Morse, Jeffrey D.
2004-01-06
Fuel cell stacks contain an electrolyte layer surrounded on top and bottom by an electrode layer. Porous electrodes are prepared which enable fuel and oxidant to easily flow to the respective electrode-electrolyte interface without the need for high temperatures or pressures to assist the flow. Rigid, inert microspheres in combination with thin-film metal deposition techniques are used to fabricate porous anodes, cathodes, and electrolytes. Microshperes contained in a liquid are randomly dispersed onto a host structure and dried such that the microsperes remain in position. A thin-film deposition technique is subsequently employed to deposit a metal layer onto the microsperes. After such metal layer deposition, the microspheres are removed leaving voids, i.e. pores, in the metal layer, thus forming a porous electrode. Successive repetitions of the fabrication process result in the formation of a continuous fuel cell stack. Such stacks may produce power outputs ranging from about 0.1 Watt to about 50 Watts.
NASA Astrophysics Data System (ADS)
Meng, Lei
Solar energy harvesting through photovoltaic conversion has gained great attention as a sustainable and environmentally friendly solution to meet the rapidly increasing global energy demand. Currently, the high cost of solar-cell technology limits its widespread use. This situation has generated considerable interest in developing alternative solar-cell technologies that reduce cost through the use of less expensive materials and processes. Perovskite solar cells provide a promising low-cost technology for harnessing this energy source. In Chapter two, a moisture-assist method is introduced and studied to facilitate grain growth of solution processed perovskite films. As an approach to achieve high-quality perovskite films, I anneal the precursor film in a humid environment (ambient air) to dramatically increase grain size, carrier mobility, and charge carrier lifetime, thus improving electrical and optical properties and enhancing photovoltaic performance. It is revealed that mild moisture has a positive effect on perovskite film formation, demonstrating perovskite solar cells with 17.1% power conversion efficiency. Later on, in Chapter four, an ultrathin flexible device delivering a PCE of 14.0% is introduced. The device is based on silver-mesh substrates exhibiting superior durability against mechanical bending. Due to their low energy of formation, organic lead iodide perovskites are also susceptible to degradation in moisture and air. The charge transport layer therefore plays a key role in protecting the perovskite photoactive layer from exposure to such environments, thus achieving highly stable perovskite-based photovoltaic cells. Although incorporating organic charge transport layers can provide high efficiencies and reduced hysteresis, concerns remain regarding device stability and the cost of fabrication. In this work, perovskite solar cells that have all solution-processed metal oxide charge transport layers were demonstrated. Stability has been significantly improved compared with cells made with organic layers. Degradation mechanisms were investigated and important guidelines were derived for future device design with a view to achieving both highly efficient and stable solar devices. Organometal halide based perovskite material has great optoelectronic proprieties, for example, shallow traps, benign grain boundaries and high diffusion length. The perovskite LEDs show pure electroluminescence (EL) with narrow full width at half maximum (FWHM), which is an advantage for display, lighting or lasing applications. In chapter five, perovskite LEDs are demonstrated employing solution processed charge injection layers with a quantum efficiency of 1.16% with a very low driving voltage.
NASA Astrophysics Data System (ADS)
Nasakina, E. O.; Baikin, A. S.; Sergiyenko, K. V.; Kaplan, M. A.; Konushkin, S. V.; Yakubov, A. D.; Izvin, A. V.; Sudarchikova, M. A.; Sevost’yanov, M. A.; Kolmakov, A. G.
2018-04-01
The processes of formation of polymer polylactide or polyglycylidactide films for the subsequent creation of a layered composite with a biodegradable layer on the basis of a nickel-free shape memory alloy TiNbTaZr are studied. The structure of the samples was determined using an SEM. The correspondence of morphology of surfaces of and the substrate itself is noted. High adhesion of the polymer to the future basis of the developed composite material is supposed. The formed films is homogeneous and amorphous throughout the polymer volume. By varying the volume of solutions, it is possible to obtain films of a given thickness for any type of polymer, its molecular weight, and the solution concentration of the polymer in chloroform. Poly (glycolide-lactide) should be more plastic than polylactide.
Hydrogen blistering under extreme radiation conditions
NASA Astrophysics Data System (ADS)
Sznajder, Maciej; Geppert, Ulrich; Dudek, Miroslaw
2018-01-01
Metallic surfaces, exposed to a proton flux, start to degradate by molecular hydrogen blisters. These are created by recombination of protons with metal electrons. Continued irradiation progresses blistering, which is undesired for many technical applications. In this work, the effect of the proton flux magnitude onto the degradation of native metal oxide layers and its consequences for blister formation has been examined. To study this phenomenon, we performed proton irradiation experiments of aluminium surfaces. The proton kinetic energy was chosen so that all recombined hydrogen is trapped within the metal structure. As a result, we discovered that intense proton irradiation increases the permeability of aluminium oxide layers for hydrogen atoms, thereby counteracting blister formation. These findings may improve the understanding of the hydrogen blistering process, are valid for all metals kept under terrestrial ambient conditions, and important for the design of proton irradiation tests.
NASA Technical Reports Server (NTRS)
Barkatt, Aaron; Saad, E. E.; Adiga, R. B.; Sousanpour, W.; Barkatt, AL.; Feng, X.; O'Keefe, J. A.; Alterescu, S.
1988-01-01
This paper discusses mechanisms involving saturation and reactions that lead to the formation of altered phases in silicate glasses considered for use in geologic repositories for nuclear waste. It is shown that the rate of dissolution of silicate glasses exposed to a broad range of contact times, leachant compositions, and surface-to-volume ratios is strongly affected by the presence of reactive species such as Al, Mg, and Fe. The reactive materials may originate in the leachant or, under conditions of high surface-to-volume ratio, in the glass itself. The effects of glass composition on the course of the corrosion process can be viewed in terms of the formation of a surface layer on the leached glass; the type, composition, and structure of this layer control the dissolution behavior of the glass.
NASA Technical Reports Server (NTRS)
Kolev, I.; Parvanov, O.; Kaprielov, B.; Mitev, V.; Simeonov, V.; Grigorov, I.
1992-01-01
In recent years, the processes in the atmospheric planetary boundary layer (PBL) over urban areas were intensely investigated, due to ecological problems related to the air, soil, and water pollution. New pollution sources in new residential districts, when in contradiction to the microclimate and topography requirements of that region, create a number of considerable hazards and problems. The present study is a continuation of our preceding investigations and aims at revealing the aerosol structure and stratification during the transition after sunset as measured by two lidars. Such observation of the nocturnal, stable PBL formation over an urban area in Bulgaria has not been reported before. The lidars' high time and spatial resolutions allow the changes of the internal structure of the PBL's part located above the surface layer to be observed.
Deposition of vaporized species onto glassy fallout from a near-surface nuclear test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.
In a near-surface nuclear explosion where the resultant fireball can interact with the surface, vaporized materials from the nuclear device can be incorporated into molten soil and other carrier materials from that surface. This mixed material becomes a source of glassy fallout upon quenching and is locally deposited. Fallout formation models have been proposed; however, the specific mechanisms and physical conditions by which soil and other carrier materials interact in the fireball, as well as the subsequent incorporation of device materials with carrier materials, are not well constrained. We observe a surface deposition layer preserved at interfaces where two aerodynamicmore » fallout glasses agglomerated and fused, and characterized 11 such boundaries using spatial analyses to better understand the vaporization and condensation behavior of species in the fireball. Using nanoscale secondary ion mass spectrometry (NanoSIMS), we identify higher enrichments of uranium from the device ( 235U/ 238U ratio >7.5) in 8 of the interface layers. Major element analysis of the interfaces reveals the deposition layer to be enriched in Fe, Ca, Mg, Mn, and Na-bearing species and depleted in Ti and Al-bearing species. Most notably, the Fe and Ca-bearing species are enriched approximately 50% at the interface layer relative to the average concentrations measured within the fallout glasses, while Ti and Al-bearing species are depleted by approximately 20%. SiO 2 is found to be relatively invariable across the samples and interfaces (~3% standard deviation). The notable depletion of Al, a refractory oxide abundant in the soil, together with the enrichment of 235U and Fe, suggests an anthropogenic source of the enriched species or an unexpected vaporization/condensation behavior. The presence of both refractory (e.g., Ca and U) and volatile (e.g., Na) species approximately co-located in most of the observed layers (within 1.5 μm) suggests a continuous condensation process may also be occurring. Lastly, these fallout formation processes deviate from historical models of fallout formation, and have not been previously recognized in the literature.« less
Deposition of vaporized species onto glassy fallout from a near-surface nuclear test
NASA Astrophysics Data System (ADS)
Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.; Knight, Kim B.; Isselhardt, Brett H.; Matzel, Jennifer E.; Weber, Peter K.; Prussin, Stan G.; Hutcheon, Ian D.
2017-03-01
In a near-surface nuclear explosion where the resultant fireball can interact with the surface, vaporized materials from the nuclear device can be incorporated into molten soil and other carrier materials from that surface. This mixed material becomes a source of glassy fallout upon quenching and is locally deposited. Fallout formation models have been proposed; however, the specific mechanisms and physical conditions by which soil and other carrier materials interact in the fireball, as well as the subsequent incorporation of device materials with carrier materials, are not well constrained. We observe a surface deposition layer preserved at interfaces where two aerodynamic fallout glasses agglomerated and fused, and characterized 11 such boundaries using spatial analyses to better understand the vaporization and condensation behavior of species in the fireball. Using nanoscale secondary ion mass spectrometry (NanoSIMS), we identify higher enrichments of uranium from the device (235U/238U ratio >7.5) in 8 of the interface layers. Major element analysis of the interfaces reveals the deposition layer to be enriched in Fe, Ca, Mg, Mn, and Na-bearing species and depleted in Ti and Al-bearing species. Most notably, the Fe and Ca-bearing species are enriched approximately 50% at the interface layer relative to the average concentrations measured within the fallout glasses, while Ti and Al-bearing species are depleted by approximately 20%. SiO2 is found to be relatively invariable across the samples and interfaces (∼3% standard deviation). The notable depletion of Al, a refractory oxide abundant in the soil, together with the enrichment of 235U and Fe, suggests an anthropogenic source of the enriched species or an unexpected vaporization/condensation behavior. The presence of both refractory (e.g., Ca and U) and volatile (e.g., Na) species approximately co-located in most of the observed layers (within 1.5 μm) suggests a continuous condensation process may also be occurring. These fallout formation processes deviate from historical models of fallout formation, and have not been previously recognized in the literature.
Deposition of vaporized species onto glassy fallout from a near-surface nuclear test
Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.; ...
2016-10-29
In a near-surface nuclear explosion where the resultant fireball can interact with the surface, vaporized materials from the nuclear device can be incorporated into molten soil and other carrier materials from that surface. This mixed material becomes a source of glassy fallout upon quenching and is locally deposited. Fallout formation models have been proposed; however, the specific mechanisms and physical conditions by which soil and other carrier materials interact in the fireball, as well as the subsequent incorporation of device materials with carrier materials, are not well constrained. We observe a surface deposition layer preserved at interfaces where two aerodynamicmore » fallout glasses agglomerated and fused, and characterized 11 such boundaries using spatial analyses to better understand the vaporization and condensation behavior of species in the fireball. Using nanoscale secondary ion mass spectrometry (NanoSIMS), we identify higher enrichments of uranium from the device ( 235U/ 238U ratio >7.5) in 8 of the interface layers. Major element analysis of the interfaces reveals the deposition layer to be enriched in Fe, Ca, Mg, Mn, and Na-bearing species and depleted in Ti and Al-bearing species. Most notably, the Fe and Ca-bearing species are enriched approximately 50% at the interface layer relative to the average concentrations measured within the fallout glasses, while Ti and Al-bearing species are depleted by approximately 20%. SiO 2 is found to be relatively invariable across the samples and interfaces (~3% standard deviation). The notable depletion of Al, a refractory oxide abundant in the soil, together with the enrichment of 235U and Fe, suggests an anthropogenic source of the enriched species or an unexpected vaporization/condensation behavior. The presence of both refractory (e.g., Ca and U) and volatile (e.g., Na) species approximately co-located in most of the observed layers (within 1.5 μm) suggests a continuous condensation process may also be occurring. Lastly, these fallout formation processes deviate from historical models of fallout formation, and have not been previously recognized in the literature.« less
Growth and evolution of nickel germanide nanostructures on Ge(001).
Grzela, T; Capellini, G; Koczorowski, W; Schubert, M A; Czajka, R; Curson, N J; Heidmann, I; Schmidt, Th; Falta, J; Schroeder, T
2015-09-25
Nickel germanide is deemed an excellent material system for low resistance contact formation for future Ge device modules integrated into mainstream, Si-based integrated circuit technologies. In this study, we present a multi-technique experimental study on the formation processes of nickel germanides on Ge(001). We demonstrate that room temperature deposition of ∼1 nm of Ni on Ge(001) is realized in the Volmer-Weber growth mode. Subsequent thermal annealing results first in the formation of a continuous NixGey wetting layer featuring well-defined terrace morphology. Upon increasing the annealing temperature to 300 °C, we observed the onset of a de-wetting process, characterized by the appearance of voids on the NixGey terraces. Annealing above 300 °C enhances this de-wetting process and the surface evolves gradually towards the formation of well-ordered, rectangular NixGey 3D nanostructures. Annealing up to 500 °C induces an Ostwald ripening phenomenon, with smaller nanoislands disappearing and larger ones increasing their size. Subsequent annealing to higher temperatures drives the Ni-germanide diffusion into the bulk and the consequent formation of highly ordered, {111} faceted Ni-Ge nanocrystals featuring an epitaxial relationship with the substrate Ni-Ge (101); (010) || Ge(001); (110).
NASA Astrophysics Data System (ADS)
Rotunno, E.; Fabbri, F.; Cinquanta, E.; Kaplan, D.; Longo, M.; Lazzarini, L.; Molle, A.; Swaminathan, V.; Salviati, G.
2016-06-01
MoS2 multi-layer flakes, exfoliated from geological molybdenite, have been exposed to high dose electron irradiation showing clear evidence of crystal lattice and stoichiometry modifications. A massive surface sulfur depletion is induced together with the consequent formation of molybdenum nanoislands. It is found that a nanometric amorphous carbon layer, unwillingly deposited during the transmission electron microscope experiments, prevents the formation of the nanoislands. In the absence of the carbon layer, the formation of molybdenum grains proceeds both on the top and bottom surfaces of the flake. If carbon is present on both the surfaces then the formation of Mo grains is completely prevented.
Castillo-Dalí, G; Castillo-Oyagüe, R; Batista-Cruzado, A; López-Santos, C; Rodríguez-González-Elipe, A; Saffar, J-L; Lynch, C-D; Gutiérrez-Pérez, J-L; Torres-Lagares, D
2017-03-01
The use of cold plasmas may improve the surface roughness of poly(lactic-co-glycolic) acid (PLGA) membranes, which may stimulate the adhesion of osteogenic mediators and cells, thus accelerating the biodegradation of the barriers. Moreover, the incorporation of metallic-oxide particles to the surface of these membranes may enhance their osteoinductive capacity. Therefore, the aim of this paper was to evaluate the reliability of a new PLGA membrane after being treated with oxygen plasma (PO2) plus silicon dioxide (SiO2) layers for guided bone regeneration (GBR) processes. Circumferential bone defects (diameter: 11 mm; depth: 3 mm) were created on the top of eight experimentation rabbits' skulls and were randomly covered with: (1) PLGA membranes (control), or (2) PLGA/PO2/SiO2 barriers. The animals were euthanized two months afterwards. A micromorphologic study was then performed using ROI (region of interest) colour analysis. Percentage of new bone formation, length of mineralised bone, concentration of osteoclasts, and intensity of ostheosynthetic activity were assessed and compared with those of the original bone tissue. The Kruskal-Wallis test was applied for between-group com Asignificance level of a=0.05 was considered. The PLGA/PO2/SiO2 membranes achieved the significantly highest new bone formation, length of mineralised bone, concentration of osteoclasts, and ostheosynthetic activity. The percentage of regenerated bone supplied by the new membranes was similar to that of the original bone tissue. Unlike what happened in the control group, PLGA/PO2/SiO2 membranes predominantly showed bone layers in advanced stages of formation. The addition of SiO2 layers to PLGA membranes pre-treated with PO2 improves their bone-regeneration potential. Although further research is necessary to corroborate these conclusions in humans, this could be a promising strategy to rebuild the bone architecture prior to rehabilitate edentulous areas.
NASA Astrophysics Data System (ADS)
Endo, Takahiro; Tsunogae, Toshiaki; Santosh, M.; Shaji, E.; Rambeloson, Roger A.
2017-06-01
Incipient charnockites representing granulite formation on a mesoscopic scale occur in the Ambodin Ifandana area of Ikalamavony sub-domain in south-central Madagascar. Here we report new petrological data from these rocks, and discuss the process of granulite formation on the basis of petrography, mineral equilibrium modeling, and fluid inclusion studies. The incipient charnockites occur as brownish patches, lenses, and layers characterized by an assemblage of biotite + orthopyroxene + K-feldspar + plagioclase + quartz + magnetite + ilmenite within host orthopyroxene-free biotite gneiss with an assemblage of biotite + K-feldspar + plagioclase + quartz + magnetite + ilmenite. Lenses and layers of calc-silicate rock (clinopyroxene + garnet + plagioclase + quartz + titanite + calcite) are typically associated with the charnockite. Coarse-grained charnockite occurs along the contact between the layered charnockite and calc-silicate rock. The application of mineral equilibrium modeling on the mineral assemblages in charnockite and biotite gneiss employing the NCKFMASHTO system as well as fluid inclusion study on coarse-grained charnockite defines a P-T range of 8.5-10.5 kbar and 880-900 °C, which is nearly consistent with the inferred P-T condition of the Ikalamavony sub-domain (8.0-10.5 kbar and 820-880 °C). The result of T versus H2O activity (a(H2O)) modeling demonstrates that orthopyroxene-bearing assemblage in charnockite is stable under relatively low a(H2O) condition of 0.42-0.43, which is consistent with the popular models of incipient-charnockite formation related to the lowering of water activity and stabilization of orthopyroxene through dehydration of biotite. The occurrence of calc-silicate rocks adjacent to the charnockite suggests that the CO2-bearing fluid that caused dehydration and incipient-charnockite formation might have been derived through decarbonation of calc-silicate rocks during the initial stage of decompression slightly after the peak metamorphism. The calc-silicate rocks might have also behaved as a cap rock that trapped CO2 infiltrated from an external source. 'CO2-rich fluid ponds' formed beneath calc-silicate layers could have enhanced dehydration of biotite to orthopyroxene, and produced layers of coarse-grained charnockite adjacent to calc-silicate layers.
Properties influencing fat, oil, and grease deposit formation.
Keener, Kevin M; Ducoste, Joel J; Holt, Leon M
2008-12-01
Fat, oil, and grease (FOG) deposits are the reported cause of 50 to 75% of sanitary sewer overflows in the United States, resulting in 1.8 X 10(6) m3 (500 mil. gal) of raw wastewater released into the environment annually. The objective of this research was to characterize the chemical and physical properties of FOG deposits. Twenty-three cities from around the United States contributed FOG samples for the study. The FOG deposits showed a wide range in yield strength (4 to 34 kPa), porosity (10 to 24%), and moisture content (10 to 60%), suggesting uncontrolled formation processes. A majority of these deposits display hard, sandstonelike texture, with distinct layering effects, suggesting a discontinuous formation process. The results found that 84% of FOG deposits contained high concentrations of saturated fatty acids and calcium, suggesting preferential accumulation.
Klima, J
2011-02-01
An overview of possible mechanisms by which sonication can influence electrochemical processes is given. Four mechanisms are discussed: – acoustic streaming; – microstreaming and turbulence due to cavitation; – formation of microjets in the course of collapse of cavitation bubble; – shock waves; and possible effects are illustrated on several examples. The most effective process is formation of microjets,which can not only decrease diffusion layer thickness under 1 lm, but also activate (depassivate) electrode surface. Design of experimental arrangement with maximum participation of microjets is proposed. Two approaches are proposed: – focusing of ultrasound on the working electrode and reduction of energy losses by over-pressure; – ‘‘tuning” the reactor to obtain resonance, i.e. formation of stationary waves by activating reactor in itsresonant mode. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McCarthy, A. J.; Müntener, O.
2017-12-01
Different processes have been proposed to explain the variety of igneous layering in plutonic rocks. Vertical layering in particular has been described as resulting from various processes such as Ostwald ripening, oscillatory crystallization or reactive mush infiltration in cooling plutons. Comb layers and orbicules are formed by the growth of elongated, feather-like minerals growing ±perpendicular to the layering and nucleating either on dyke walls (comb layers) or on xenoliths (orbicules) at the contact between homogenous plutons. Through a detailed study of the mineralogy, bulk chemistry and the size-frequency distribution of representative comb layers and orbicules of the 110Ma Fisher Lake Pluton (Sierra Nevada, USA), we show that comb layers and orbicules show no evidence of forming through a self-organizing, oscillatory crystallization process, but represent crystallization fronts resulting from in-situ crystallization and extraction of evolved melt fractions during decompression-driven crystallization of superheated melts in subvolcanic conduits. The microstructures are dominated by the formation of a plagioclase-dominated cres-cumulate at the mm- to m-scale. We propose that the crystal content of the melt and the dynamics of the magmatic system control the mechanisms responsible for vertical igneous layering in shallow reservoirs. Moreover, the mineralogical and compositional variation of orbicules rims and comb layers can be ascribed to variations in pressure, temperature and cooling rates within the subvolcanic conduit, with estimated growth timescales of mm- to m-thick orbicules and comb layers ranging from weeks to years. Moreover, though plagioclase-glomerocrysts found in erupted volcanic products are generally interpreted as remobilized crystal-mush, we propose that some glomerocrysts might represent "failed" orbicules forming within vertical conduits upon eruption. Such glomerocrysts, as well as orbicules found in erupted volcanic products, might allow for unique insights into the dynamics, timescales and P-T conditions within volcanic conduits upon eruption.
Integrated stratigraphy of Paleocene lignite seams of the fluvial Tullock Formation, Montana (USA).
NASA Astrophysics Data System (ADS)
Noorbergen, Lars J.; Kuiper, Klaudia F.; Hilgen, Frederik J.; Krijgsman, Wout; Dekkers, Mark J.; Smit, Jan; Abels, Hemmo A.
2015-04-01
Coal-bearing fluvial sedimentation is generally thought to be dominated by autogenic processes that are processes intrinsic to the sedimentary system. Ongoing research however suggests that several fluvial processes such as floodplain inundation and avulsion, can also be controlled by external forcing such as orbital climate change. Still, the exact role of orbital climate forcing in fluvial sediments is difficult to decipher since riverine deposits are complicated by variable sedimentation rates including erosion of previously deposited material, by lateral heterogeneity of sedimentation, and by scarcity of independent dating methods. The early Paleocene lignite-bearing Tullock Formation of the Williston Basin in eastern Montana represents a record of fluvial sedimentation that is perfectly exposed and, displays a seemingly regular alternation of sandstones and lignite seams. These coal beds contain multiple volcanic ash layers. Here, we use an integrated stratigraphic approach (litho- and magnetostratigraphy, geochemical fingerprinting and radio-isotope dating of volcanic ash layers) to establish a high-resolution time frame for the early Paleocene fluvial sediments. First age estimations indicate that the Tullock Formation in Eastern Montana was deposited over a time span of ~ 1000 kyr subsequent to the Cretaceous - Paleogene boundary, dated at ~ 65.95 Ma [1]. Initial high-resolution magnetostratigraphy revealed the occurrence of the C29r/C29n polarity reversal which was stratigraphic consistent at different field locations. We investigate the regional significance of sedimentary change at multiple sites of the same age in order to provide improved insight on the role of orbital forcing in fluvial coal formation. References: [1] Kuiper, K.F., Deino, A., Hilgen, F.J., Krijgsman, W., Renne, P.R., Wijbrans, J.R. (2008). Synchronizing Rock Clocks of Earth History. Science 320, 500-504.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shesterikov, A. B.; Gubin, M. Yu.; Gladush, M. G.
The formation of pulses of surface electromagnetic waves at a metal–dielectric boundary is considered in the process of cooperative decay of excitons of quantum dots distributed near a metal surface in a dielectric layer. It is shown that the efficiency of exciton energy transfer to excited plasmons can, in principle, be increased by selecting the dielectric material with specified values of the complex permittivity. It is found that in the mean field approximation, the semiclassical model of formation of plasmon pulses in the system under study is reduced to the pendulum equation with the additional term of nonlinear losses.
Direct Magnetic Relief Recording Using As40S60: Mn-Se Nanocomposite Multilayer Structures.
Stronski, A; Achimova, E; Paiuk, O; Meshalkin, A; Prisacar, A; Triduh, G; Oleksenko, P; Lytvyn, P
2017-12-01
Processes of holographic recording of surface relief structures using As 2 S 3 :Mn-Se multilayer nanostructures as registering media were studied in this paper. Optical properties of As 2 S 3 :Mn, Se layers, and As 2 S 3 :Mn-Se multilayer nanostructures were investigated. Values of optical bandgaps were obtained from Tauc dependencies. Surface relief diffraction gratings were recorded. Direct one-stage formation of surface relief using multilayer nanostructures is considered. For the first time, possibility of direct formation of magnetic relief simultaneous with surface relief formation under optical recording using As 2 S 3 :Mn-Se multilayer nanostructures is shown.
Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozcan, Ahmet S., E-mail: asozcan@us.ibm.com; Lavoie, Christian; Jordan-Sweet, Jean
We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.
Compaction of Chromite Cumulates applying a Centrifuging Piston-Cylinder
NASA Astrophysics Data System (ADS)
Manoochehri, S.; Schmidt, M. W.
2012-12-01
Stratiform accumulations of chromite cumulates, such as the UG2 chromitite layer in the Bushveld Complex, is a common feature in most of the large layered mafic intrusions. The time scales and mechanics of gravitationally driven crystal settling and compaction and the feasibility of these processes for the formation of such cumulate layers is investigated through a series of high temperature (1280-1300 °C) centrifuge-assisted experiments at 100-2000 g, 0.4-0.6 GPa. A mixture of natural chromite, with defined grain sizes (means of 5 μm, 13 μm, and 52 μm), and a melt with a composition thought to represent the parental magma of the Bushveld Complex, was first chemically and texturally equilibrated at static conditions and then centrifuged. Centrifugation leads to a single cumulate layer formed at the gravitational bottom of the capsule. This layer was analysed for porosity, mean grain size, size distribution and also travelling distance of chromite crystals. The experimentally observed mechanical settling velocity of chromite grains in a suspension with ~ 24 vol% crystals is calculated to be about half (~ 0.53) of the Stokes settling velocity, consistent with a sedimentation exponent n of 2.35±0.3. The settling leads to a porosity of about 52 % in the chromite layer. Formation times of chromite orthocumulates with initial crystal content in the melt of 1 % and grain sizes of 2 mm are thus around 0.6 m/day. To achieve more compacted chromite piles, centrifugation times and acceleration were increased. Within each experiment the crystal content of the cumulate layer increases downward almost linearly at least in the lower 2/3 of the cumulate pile. Although porosity in the lowermost segment of the chromite layer decreases with increasing effective stress integrated over time, the absolute decrease is smaller than for experiments with olivine (from a previous study). Formation times of a ½ meter single chromite layer with 70 vol% chromite, is calculated to be around 20 years whereas this value is around 0.4 years for olivine cumulates. When considering a natural outcrop of a layered intrusion with multiple layers of about 50 meters height, adcumulate formation time decreases to a few months. With increasing the effective stress integrated over time, applied during centrifugation, crystal size distribution histograms move slightly toward larger grain sizes, but looking at mean grain sizes, a narrow range of changes can be observed. Classic crystal size distribution profiles corrected for real 3D sizes (CSDCorrectin program) of the chromite grains in different experiments illustrate a collection of parallel log-linear trends at larger grain sizes with a very slight overturn at small grain sizes. This is in close agreement with the idealized CSD plots of adcumulus growth.
NASA Astrophysics Data System (ADS)
Jaleh, Babak; Ghasemi, Samaneh; Torkamany, Mohammad Javad; Salehzadeh, Sadegh; Maleki, Farahnaz
2018-01-01
Laser ablation of a silicon wafer in graphene oxide-N-methyl-2-pyrrolidone (GO-NMP) suspension was carried out with a pulsed Nd:YAG laser (pulse duration = 250 ns, wavelength = 1064 nm). The surface of silicon wafer before and after laser ablation was studied using optical microscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results showed that the ablation of silicon surface in liquid by pulsed laser was done by the process of melt expulsion under the influence of the confined plasma-induced pressure or shock wave trapped between the silicon wafer and the liquid. The X-ray diffraction (XRD) pattern of Si wafer after laser ablation showed that 4H-SiC layer is formed on its surface. The formation of the above layer was also confirmed by Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS), as well as EDX was utilized. The reflectance of samples decreased with increasing pulse energy. Therefore, the morphological alteration and the formation of SiC layer at high energy increase absorption intensity in the UV-vis regions. Theoretical calculations confirm that the formation of silicon carbide from graphene oxide and silicon wafer is considerably endothermic. Development of new methods for increasing the reflectance without causing harmful effects is still an important issue for crystalline Si solar cells. By using the method described in this paper, the optical properties of solar cells can be improved.
Children's Models of the Ozone Layer and Ozone Depletion.
ERIC Educational Resources Information Center
Christidou, Vasilia; Koulaidis, Vasilis
1996-01-01
The views of 40 primary students on ozone and its depletion were recorded through individual, semi-structured interviews. The data analysis resulted in the formation of a limited number of models concerning the distribution and role of ozone in the atmosphere, the depletion process, and the consequences of ozone depletion. Identifies five target…
Identification of defense-related genes newly-associated with tomato flower abscission
USDA-ARS?s Scientific Manuscript database
The current abscission model suggests the formation of a post-abscission trans-differentiation of a protective layer as the last step of the process. The present report expands the repertoire of genes activated in the tomato flower abscission zone (AZ), which are likely to be involved in defense res...
Effect of Al gate on the electrical behaviour of Al-doped Ta2O5 stacks
NASA Astrophysics Data System (ADS)
Skeparovski, A.; Novkovski, N.; Atanassova, E.; Paskaleva, A.; Lazarov, V. K.
2011-06-01
The electrical behaviour of Al-doped Ta2O5 films on nitrided silicon and implemented in Al-gated MIS capacitors has been studied. The dopant was introduced into the Ta2O5 through its surface by deposing a thin Al layer on the top of Ta2O5 followed by an annealing process. The HRTEM images reveal that the initial double-layer structure of the stacks composed of doped Ta2O5 and interfacial SiON layer undergoes changes during the formation of the Al gate and transforms into a three-layer structure with an additional layer between the Al electrode and the doped Ta2O5. This layer, being a result of reaction between the Al gate and the Al-doped Ta2O5, affects the overall electrical properties of the stacks. Strong charge trapping/detrapping processes have been established in the vicinity of the doped Ta2O5/SiON interface resulting in a large C-V hysteresis effect. The charge trapping also influences the current conduction in the layers keeping the current density level rather low even at high electric fields (J < 10-6 A cm-2 at 7 MV cm-1). By employing a three-layer model of the stack, the permittivity of both, the Al-doped Ta2O5 and the additional layer, has been estimated and the corresponding conduction mechanisms identified.
Sea Fog Forecasting with Lagrangian Models
NASA Astrophysics Data System (ADS)
Lewis, J. M.
2014-12-01
In 1913, G. I. Taylor introduced us to a Lagrangian view of sea fog formation. He conducted his study off the coast of Newfoundland in the aftermath of the Titanic disaster. We briefly review Taylor's classic work and then apply these same principles to a case of sea fog formation and dissipation off the coast of California. The resources used in this study consist of: 1) land-based surface and upper-air observations, 2) NDBC (National Data Buoy Center) observations from moored buoys equipped to measure dew point temperature as well as the standard surface observations at sea (wind, sea surface temperature, pressure, and air temperature), 3) satellite observations of cloud, and 4) a one-dimensional (vertically directed) boundary layer model that tracks with the surface air motion and makes use of sophisticated turbulence-radiation parameterizations. Results of the investigation indicate that delicate interplay and interaction between the radiation and turbulence processes makes accurate forecasts of sea fog onset unlikely in the near future. This pessimistic attitude stems from inadequacy of the existing network of observations and uncertainties in modeling dynamical processes within the boundary layer.