Science.gov

Sample records for layer growth kinetics

  1. The kinetic boundary layer around an absorbing sphere and the growth of small droplets

    SciTech Connect

    Widder, M.E.; Titulaer, U.M. )

    1989-06-01

    Deviations from the classical Smoluchowski expression for the growth rate of a droplet in a supersaturated vapor can be expected when the droplet radius is not large compared to the mean free path of a vapor molecule. The growth rate then depends significantly on the structure of the kinetic boundary layer around a sphere. The authors consider this kinetic boundary layer for a dilute system of Brownian particles. For this system a large class of boundary layer problems for a planar wall have been solved. They show how the spherical boundary layer can be treated by a perturbation expansion in the reciprocal droplet radius. In each order one has to solve a finite number of planar boundary layer problems. The first two corrections to the planar problem are calculated explicitly. For radii down to about two velocity persistence lengths (the analog of the mean free path for a Brownian particle) the successive approximations for the growth rate agree to within a few percent. A reasonable estimate of the growth rate for all radii can be obtained by extrapolating toward the exactly known value at zero radius. Kinetic boundary layer effects increase the time needed for growth from 0 to 10 (or 2{1/2}) velocity persistence lengths by roughly 35% (or 175%).

  2. The Powder-Pack Nitriding Process: Growth Kinetics of Nitride Layers on Pure Iron

    NASA Astrophysics Data System (ADS)

    Campos-Silva, I.; Ortiz-Dominguez, M.; Elias-Espinosa, M.; Vega-Morón, R. C.; Bravo-Bárcenas, D.; Figueroa-López, U.

    2015-09-01

    In this study, the growth kinetics of nitride layers that develop during the powder-pack nitriding process on the surface of ARMCO pure iron was estimated. The powder-pack nitriding of pure iron was performed according to the Pulnieren© (H.E.F. Durferrit) method using a "Pulnier" powder and an activator, at 798-848 K with different exposure times (2-12 h) for each temperature. In addition, for the entire set of nitriding conditions, three different activator/"Pulnier" powder ratios (0.20, 0.25, and 0.35) were used to evaluate the activation level during the growth of nitride layers. The kinetics of the nitride layers over the surface of ARMCO pure iron were estimated by two mathematical approaches, that consider the mass balance equations at the growth interphases. The resulting expressions for the effective diffusion coefficients in the nitride layers were evaluated as a function of nitriding temperatures and activator/"Pulnier" powder ratio. Finally, based on the experimental parameters ascribed to the powder-pack nitriding process, two expressions were proposed to estimate the nitride layer thicknesses at 798 and 823 K after 9 h of exposure for each temperature, to validate the diffusion models used in this work.

  3. Layer-growth kinetics on gaseous nitriding of pure iron: Evaluation of diffusion coefficients for nitrogen in iron nitrides

    NASA Astrophysics Data System (ADS)

    Somers, Marcel A. J.; Mittemeijer, Eric J.

    1995-01-01

    Models were derived for monolayer and bilayer growth into a substrate in which diffusion of the solute governs the growth kinetics, as in gas-solid reactions, for example. In the models, the composition dependence of the solute diffusivity in the phases constituting the layers was accounted for by appropriate definition of an effective diffusion coefficient for a (sub)layer. This effective diffusion coefficient is the intrinsic diffusion coefficient weighted over the composition range of the (sub)layer. The models were applied for analyzing the growth kinetics of a γ'-Fe4N1-x monolayer on an α-Fe substrate and the growth kinetics of an ɛ-Fe2N1-z/γ'-Fe4N1-x bilayer on an α-Fe substrate, as observed by gaseous nitriding in an NH3/H2-gas mixture at 843 K. The kinetics of layer development and the evolution of the microstructure were investigated by means of thermogravimetry, layer-thickness measurements, light microscopy, and electron probe X-ray microanalysis (EPMA). The effective and self-diffusion coefficients were determined for each of the nitride layers. The composition dependence of the intrinsic (and effective) diffusion coefficients was established. Re-evaluating literature data for diffusion in γ'-Fe4N1-x on the basis of the present model, it followed that the previous and present data are consistent. The activation energy for diffusion of nitrogen in γ'-Fe4N1-x was determined from the temperature dependence of the self-diffusion coefficient. The self-diffusion coefficient for nitrogen in ɛ-Fe2N1-z was significantly larger than that for γ'-Fe4N1-x. This was explained qualitatively, considering the possible mechanisms for interstitial diffusion of nitrogen atoms in the close-packed iron lattices of the ɛ and γ' iron nitrides.

  4. Effect of GaAs substrate orientation on the growth kinetic of GaN layer grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Laifi, J.; Chaaben, N.; Bouazizi, H.; Fourati, N.; Zerrouki, C.; El Gmili, Y.; Bchetnia, A.; Salvestrini, J. P.; El Jani, B.

    2016-06-01

    We have investigated the kinetic growth of low temperature GaN nucleation layers (LT-GaN) grown on GaAs substrates with different crystalline orientations. GaN nucleation layers were grown by metal organic vapor phase epitaxy (MOVPE) in a temperature range of 500-600 °C on oriented (001), (113), (112) and (111) GaAs substrates. The growth was in-situ monitored by laser reflectometry (LR). Using an optical model, including time-dependent surface roughness and growth rate profiles, simulations were performed to best approach the experimental reflectivity curves. Results are discussed and correlated with ex-situ analyses, such as atomic force microscopy (AFM) and UV-visible reflectance (SR). We show that the GaN nucleation layers growth results the formation of GaN islands whose density and size vary greatly with both growth temperature and substrate orientation. Arrhenius plots of the growth rate for each substrate give values of activation energy varying from 0.20 eV for the (001) orientation to 0.35 eV for the (113) orientation. Using cathodoluminescence (CL), we also show that high temperature (800-900 °C) GaN layers grown on top of the low temperature (550 °C) GaN nucleation layers, grown themselves on the GaAs substrates with different orientations, exhibit cubic or hexagonal phase depending on both growth temperature and substrate orientation.

  5. An identification algorithm of model kinetic parameters of the interfacial layer growth in fiber composites

    NASA Astrophysics Data System (ADS)

    Zubov, V.; Lurie, S.; Solyaev, Y.

    2016-04-01

    This paper considers the identification algorithm of parameters included in a parabolic law that is often used to predict the time dependence of the thickness of the interfacial layers in the structure of composite materials based on a metal matrix. The incubation period of the process and the speed of reaction and pressure are taken into account. The proposed algorithm of identification is based on the introduction of a minimized objective function of a special kind. The problem of identification of unknown parameters in the parabolic law is formulated in a variational form. The authors of the paper have determined the desired parameters, under which the objective function has a minimum value. It is shown that on the basis of four known experimental values of the interfacial layer thickness, corresponding to different values of temperature, pressure and the time of the interfacial layer growth, it is possible to identified four model parameters. They are the activation energy, a pre-exponential parameter, the delay time of the start of the interfacial layer formation, and the parameter determining the pressure effect on the rate of interfacial layer growth. The stability of the proposed identification algorithm is also studied.

  6. Self-catalyzed growth of S layers via an amorphous-to-crystalline transition limited by folding kinetics

    PubMed Central

    Chung, Sungwook; Shin, Seong-Ho; Bertozzi, Carolyn R.; De Yoreo, James J.

    2010-01-01

    The importance of nonclassical, multistage crystallization pathways is increasingly evident from theoretical studies on colloidal systems and experimental investigations of proteins and biomineral phases. Although theoretical predictions suggest that proteins follow these pathways as a result of fluctuations that create unstable dense-liquid states, microscopic studies indicate these states are long-lived. Using in situ atomic force microscopy to follow 2D assembly of S-layer proteins on supported lipid bilayers, we have obtained a molecular-scale picture of multistage protein crystallization that reveals the importance of conformational transformations in directing the pathway of assembly. We find that monomers with an extended conformation first form a mobile adsorbed phase, from which they condense into amorphous clusters. These clusters undergo a phase transition through S-layer folding into crystalline clusters composed of compact tetramers. Growth then proceeds by formation of new tetramers exclusively at cluster edges, implying tetramer formation is autocatalytic. Analysis of the growth kinetics leads to a quantitative model in which tetramer creation is rate limiting. However, the estimated barrier is much smaller than expected for folding of isolated S-layer proteins, suggesting an energetic rationale for this multistage pathway. PMID:20823255

  7. High temperature materials synthesis without heat: Oxide layer growth on electronic materials using high-kinetic-energy atomic oxygen

    SciTech Connect

    Hoffbauer, M.A.; Cross, J.B.; Archuleta, F.A.

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors examined thin-film materials-synthesis processes in which chemical reactions are initiated using high-kinetic-energy neutral atomic species instead of high temperatures. The research is aimed at producing device-quality insulating oxide layers on semiconductor materials. Thick, uniform, and fully oxidized insulating layers of unprecedented quality are formed on gallium arsenide by exposure of wafer substrates to a high kinetic-energy ({approximately}3eV) neutral atomic-oxygen beam. The nonthermal oxidation process does not disrupt the crystalline order of the substrate and no detectable elemental arsenic is produced at the oxide/gallium arsenide interface.

  8. Growth and dissolution kinetics of tetragonal lysozyme

    NASA Technical Reports Server (NTRS)

    Monaco, L. A.; Rosenberger, F.

    1993-01-01

    The growth and dissolution kinetics of lysozyme in a 25 ml solution bridge inside a closed growth cell was investigated. It was found that, under all growth conditions, the growth habit forming (110) and (101) faces grew through layer spreading with different growth rate dependence on supersaturation/temperature. On the other hand, (100) faces which formed only at low temperatures underwent a thermal roughening transition around 12 C.

  9. Kinetics of Prion Growth

    PubMed Central

    Pöschel, Thorsten; Brilliantov, Nikolai V.; Frömmel, Cornelius

    2003-01-01

    We study the kinetics of prion fibril growth, described by the nucleated polymerization model analytically and by means of numerical experiments. The elementary processes of prion fibril formation lead us to a set of differential equations for the number of fibrils, their total mass, and the number of prion monomers. In difference to previous studies we analyze this set by explicitly taking into account the time-dependence of the prion monomer concentration. The theoretical results agree with experimental data, whereas the generally accepted hypothesis of constant monomer concentration leads to a fibril growth behavior which is not in agreement with experiments. The obtained size distribution of the prion fibril aggregates is shifted significantly toward shorter lengths as compared to earlier results, which leads to a enhanced infectivity of the prion material. Finally, we study the effect of filtering of the inoculated material on the incubation time of the disease. PMID:14645042

  10. High In-content InGaN layers synthesized by plasma-assisted molecular-beam epitaxy: Growth conditions, strain relaxation, and In incorporation kinetics

    SciTech Connect

    Valdueza-Felip, S. Bellet-Amalric, E.; Pouget, S.; Monroy, E.; Wang, Y.; Chauvat, M.-P.; Ruterana, P.; Lorenz, K.; Alves, E.

    2014-12-21

    We report the interplay between In incorporation and strain relaxation kinetics in high-In-content In{sub x}Ga{sub 1-x}N (x = 0.3) layers grown by plasma-assisted molecular-beam epitaxy. For In mole fractions x = 0.13–0.48, best structural and morphological qualities are obtained under In excess conditions, at In accumulation limit, and at a growth temperature where InGaN decomposition is active. Under such conditions, in situ and ex situ analyses of the evolution of the crystalline structure with the layer thickness point to an onset of misfit relaxation after the growth of 40 nm, and a gradual relaxation during more than 200 nm, which results in an inhomogeneous strain distribution along the growth axis. This process is associated with a compositional pulling effect, i.e., indium incorporation is partially inhibited in presence of compressive strain, resulting in a compositional gradient with increasing In mole fraction towards the surface.

  11. Domain Growth Kinetics in Stratifying Foam Films

    NASA Astrophysics Data System (ADS)

    Zhang, Yiran; Sharma, Vivek

    2015-03-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Typical foam films consist of two surfactant-laden surfaces that are μ 5 nm - 10 micron apart. Sandwiched between these interfacial layers is a fluid that drains primarily under the influence of viscous and interfacial forces, including disjoining pressure. Interestingly, for certain low molecular weight surfactants, a layered ordering of micelles inside the foam films (thickness <100 nm) leads to a stepwise thinning phenomena called stratification. We experimentally elucidate the influence of these different driving forces, and confinement on drainage kinetics of horizontal stratifying foam films. Thinner, darker domains spontaneously grow within foam films. Quantitative characterization of domain growth visualized in a using Scheludko-type thin film cell and a theoretical model based on lubrication analysis, provide critical insights into hydrodynamics of thin foam films, and the strength and nature of surface forces, including supramolecular oscillatory structural forces.

  12. A Simple Kinetic Model for the Growth of Fe2B Layers on AISI 1026 Steel During the Powder-pack Boriding

    NASA Astrophysics Data System (ADS)

    Flores-Rentería, M. A.; Ortiz-Domínguez, M.; Keddam, M.; Damián-Mejía, O.; Elias-Espinosa, M.; Flores-González, M. A.; Medina-Moreno, S. A.; Cruz-Avilés, A.; Villanueva-Ibañez, M.

    2015-02-01

    This work focused on the determination of boron diffusion coefficient through the Fe2B layers on AISI 1026 steel using a mathematical model. The suggested model solves the mass balance equation at the (Fe2B/substrate) interface. This thermochemical treatment was carried out in the temperature range of 1123-1273 K for a treatment time ranging from 2 to 8 h. The generated boride layers were characterized by different experimental techniques such as light optical microscopy, scanning electron microscopy, XRD analysis and the Daimler-Benz Rockwell-C indentation technique. As a result, the boron activation energy for AISI 1026 steel was estimated as 178.4 kJ/mol. Furthermore, this kinetic model was validated by comparing the experimental Fe2B layer thickness with the predicted one at a temperature of 1253 K for 5 h of treatment. A contour diagram relating the layer thickness to the boriding parameters was proposed to be used in practical applications.

  13. Domain growth kinetics in stratifying foam films

    NASA Astrophysics Data System (ADS)

    Zhang, Yiran; Sharma, Vivek

    2015-11-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Typical foam films consist of two surfactant-laden surfaces that are ~ 5 nm - 10 micron apart. Sandwiched between these interfacial layers is a fluid that drains primarily under the influence of viscous and interfacial forces, including disjoining pressure. Interestingly, a layered ordering of micelles inside the foam films (thickness <100 nm) leads to a stepwise thinning phenomena called stratification, which results in a thickness-dependent variation in reflected light intensity, visualized as progressively darker shades of gray. Thinner, darker domains spontaneously grow within foam films. We show that the domain expansion dynamics exhibit two distinct growth regimes with characteristic scaling laws. Though several studies have focused on the expansion dynamics of isolated domains that exhibit a diffusion-like scaling, the change in expansion kinetics observed after domains contact with the Plateau border has not been reported and analyzed before.

  14. Growth kinetics and structural perfection of (InN)1/(GaN)1-20 short-period superlattices on +c-GaN template in dynamic atomic layer epitaxy

    NASA Astrophysics Data System (ADS)

    Kusakabe, Kazuhide; Hashimoto, Naoki; Itoi, Takaomi; Wang, Ke; Imai, Daichi; Yoshikawa, Akihiko

    2016-04-01

    The growth kinetics and structural perfection of (InN)1/(GaN)1-20 short-period superlattices (SPSs) were investigated with their application to ordered alloys in mind. The SPSs were grown on +c-GaN template at 650 °C by dynamic atomic layer epitaxy in conventional plasma-assisted molecular beam epitaxy. It was found that coherent structured InN/GaN SPSs could be fabricated when the thickness of the GaN barrier was 4 ML or above. Below 3 ML, the formation of SPSs was quite difficult owing to the increased strain in the SPS structure caused by the use of GaN as a template. The effective or average In composition of the (InN)1/(GaN)4 SPSs was around 10%, and the corresponding InN coverage in the ˜1 ML-thick InN wells was 50%. It was found that the effective InN coverage in ˜1 ML-thick InN wells could be varied with the growth conditions. In fact, the effective In composition could be increased up to 13.5%, i.e., the corresponding effective InN coverage was about 68%, by improving the capping/freezing speed by increasing the growth rate of the GaN barrier layer.

  15. Growth kinetics of tetragonal lysozyme crystals

    NASA Technical Reports Server (NTRS)

    Pusey, M.; Naumann, R.

    1986-01-01

    A method for immobilizing protein crystals in small volumes to determine growth rates on various faces is applied to study the growth kinetics of the (100) face of tetragonal hen-egg white lysozyme crystals at different degrees of bulk saturation. In normal gravity, transport is found to be dominated by convection for crystal sizes larger than a few microns, while in a microgravity environment, transport is diffusion-limited for sizes up to a few mm. It is found that convection can be significant even in microgravity for crystals approaching cm sizes, and that lysozyme growth is limited by surface kinetics in normal gravity.

  16. Growth kinetics for temperature-controlled atomic layer deposition of GaN using trimethylgallium and remote-plasma-excited NH3

    NASA Astrophysics Data System (ADS)

    Pansila, P.; Kanomata, K.; Miura, M.; Ahmmad, B.; Kubota, S.; Hirose, F.

    2015-12-01

    Fundamental surface reactions in the atomic layer deposition of GaN with trimethylgallium (TMG) and plasma-excited NH3 are investigated by multiple-internal-reflection infrared absorption spectroscopy (MIR-IRAS) at surface temperatures varying from room temperature (RT) to 400 °C. It is found that TMG is saturated at RT on GaN surfaces when the TMG exposure exceeds 8 × 104 Langmuir (L), where 1 L corresponds to 1.33 × 10-4 Pa s (or 1.0 × 10-6 Torr s), and its saturation density reaches the maximum value at RT. Nitridation with the plasma-excited NH3 on the TMG-saturated GaN surface is investigated by X-ray photoelectron spectroscopy (XPS). The nitridation becomes effective at surface temperatures in excess of 100 °C. The reaction models of TMG adsorption and nitridation on the GaN surface are proposed in this paper. Based on the surface analysis, a temperature-controlled ALD process consisting of RT-TMG adsorption and nitridation at 115 °C is examined, where the growth per cycle of 0.045 nm/cycle is confirmed. XPS analysis indicates that all N atoms are bonded as GaN. Atomic force microscopy indicates an average roughness of 0.23 nm. We discuss the reaction mechanism of GaN ALD in the low-temperature region at around 115 °C with TMG and plasma-excited NH3.

  17. Kinetics of phosphate limited algal growth.

    PubMed

    Nyholm, N

    1977-04-01

    The kinetics of phosphate limited growth of two green algae Chlorella pyrenoidosa and Selenastrum capricornutum have been studied in chemostats. Several kinetic models which express the specific growth rate as a function of the intracellular phosphorus content have been examined, and one of the models was found to be significantly better than the other models. The principles of this model were described in a recent paper by Nyholm. The kinetics of phosphate uptake have been investigated by adding pulses of phosphate to the chemostats, The uptake by phosphorus deficient cells could be described by Michaelis-Menten kinetics for phosphate concentrations below approximately 500 microng P/liter. Further, with the assumption of a discontinuous adjustment of the uptake rate at the onset of phosphorus deficiency, a complete kinetic model for growth and phosphate removal is proposed. The mean cell size and the contents of chlorophyll a and RNA per unit dry weight have been measured for C. pyrenoidosa as a function of the dilution rate. PMID:856323

  18. In-layer stacking competition during ice growth

    NASA Astrophysics Data System (ADS)

    Choi, Saehyun; Jang, Eunseon; Kim, Jun Soo

    2014-01-01

    When ice grows, the growth rates are unequal along different growth directions and some layers contain planar defective regions. With the aim of helping to understand these phenomena, we report the molecular dynamics simulations of ice growth on the basal and prismatic faces of initial hexagonal ice, using the TIP5P-E water model. By presenting the time evolution of the two-dimensional density profiles of water molecules in each layer and the kinetics of layer formation during ice growth at the temperature of 11 K supercooling, we show that two forms of ice arrangements, hexagonal and cubic, develop competitively within the same ice layer on the basal face, whereas such in-layer stacking-competition is insignificant on the prismatic face. It is shown that, on the basal face, the occurrence of significant in-layer stacking competition in one of the layers significantly delays the layer formation in several overlying layers and explains the overall delay in ice growth on the basal face compared to that on the prismatic face. In addition, it is observed that large planar defects form on the basal face, as a consequence of the long-lasting in-layer stacking competition when the overlying layer grows rapidly.

  19. Transport and Growth Kinetics in Microgravity Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Otalora, F.; Garcia-Ruiz, J. M.; Carotenuto, L.; Castagnolo, D.; Novella, M. L.; Chernov, A. A.

    2002-01-01

    The dynamic coupling between mass transport and incorporation of growth units into the surface of a crystal growing from solution in microgravity is used to derive quantitative information on the crystal growth kinetics. To this end, new procedures for experiment preparation, interferometric data processing and model fitting have been developed. The use of experimental data from the bulk diffusive maw transport together with a model for steady state stagnant crystal growth allows the detailed quantitative understanding of the kinetics of both the concentration depletion zone around the crystal and the growth of the crystal interface. The protein crystal used in the experiment is shown to be growing in the mixed kinetic regime (0.2 x 10(exp -6) centimeters per second less than beta R/D less than 0.9 x 10(exp -6) centimeters per second).

  20. Reaction kinetics of dolomite rim growth

    NASA Astrophysics Data System (ADS)

    Helpa, V.; Rybacki, E.; Abart, R.; Morales, L. F. G.; Rhede, D.; Jeřábek, P.; Dresen, G.

    2014-04-01

    Reaction rims of dolomite (CaMg[CO3]2) were produced by solid-state reactions at the contacts of oriented calcite (CaCO3) and magnesite (MgCO3) single crystals at 400 MPa pressure, 750-850 °C temperature, and 3-146 h annealing time to determine the reaction kinetics. The dolomite reaction rims show two different microstructural domains. Elongated palisades of dolomite grew perpendicular into the MgCO3 interface with length ranging from about 6 to 41 µm. At the same time, a 5-71 µm wide rim of equiaxed granular dolomite grew at the contact with CaCO3. Platinum markers showed that the original interface is located at the boundary between the granular and palisade-forming dolomite. In addition to dolomite, a 12-80 µm thick magnesio-calcite layer formed between the dolomite reaction rims and the calcite single crystals. All reaction products show at least an axiotactic crystallographic relationship with respect to calcite reactant, while full topotaxy to calcite prevails within the granular dolomite and magnesio-calcite. Dolomite grains frequently exhibit growth twins characterized by a rotation of 180° around one of the equivalent axis. From mass balance considerations, it is inferred that the reaction rim of dolomite grew by counter diffusion of MgO and CaO. Assuming an Arrhenius-type temperature dependence, activation energies for diffusion of CaO and MgO are E a (CaO) = 192 ± 54 kJ/mol and E a (MgO) = 198 ± 44 kJ/mol, respectively.

  1. Kinetics of Initial Layer-by-Layer Oxidation of Si(001) Surfaces

    NASA Astrophysics Data System (ADS)

    Watanabe, Heiji; Kato, Koichi; Uda, Tsuyoshi; Fujita, Ken; Ichikawa, Masakazu; Kawamura, Takaaki; Terakura, Kiyoyuki

    1998-01-01

    Layer-by-layer oxidation of Si(001) surfaces has been studied by scanning reflection electron microscopy (SREM). The oxidation kinetics of the top and second layers were independently investigated from the change in oxygen Auger peak intensity calibrated from the SREM observation. A barrierless oxidation of the first subsurface layer, as well as oxygen chemisorption onto the top layer, occurs at room temperature. The energy barrier of the second-layer oxidation was found to be 0.3 eV. The initial oxidation kinetics are discussed based on first-principles calculations.

  2. Protein crystal growth - Growth kinetics for tetragonal lysozyme crystals

    NASA Technical Reports Server (NTRS)

    Pusey, M. L.; Snyder, R. S.; Naumann, R.

    1986-01-01

    Results are reported from theoretical and experimental studies of the growth rate of lysozyme as a function of diffusion in earth-gravity conditions. The investigations were carried out to form a comparison database for future studies of protein crystal growth in the microgravity environment of space. A diffusion-convection model is presented for predicting crystal growth rates in the presence of solutal concentration gradients. Techniques used to grow and monitor the growth of hen egg white lysozyme are detailed. The model calculations and experiment data are employed to discuss the effects of transport and interfacial kinetics in the growth of the crystals, which gradually diminished the free energy in the growth solution. Density gradient-driven convection, caused by presence of the gravity field, was a limiting factor in the growth rate.

  3. Growth kinetics of Bacillus stearothermophilus BR219

    SciTech Connect

    Worden, R.M.; Subramanian, R.; Bly, M.J.; Winter, S.; Aronson, C.L.

    1991-12-31

    Bacillus stearothermophilus BR219, a phenol-resistant thermophile, can convert phenol to the specialty chemical catechol. The growth kinetics of this organism were studied in batch, continuous, and immobilized-cell culture. Batch growth was insensitive to pH between 6.0 and 8.0, but little growth occurred at 5.5. In continuous culture on a dilute medium supplemented with 10 mM phenol, several steady states were achieved between dilution rates of 0.25 and 1.3 h{sup -1}. Phenol degradation was found to be uncoupled from growth. Immobilized cells grew rapidly in a rich medium, but cell viability plummeted following a switch to a dilute medium supplemented with 5 mM phenol.

  4. Morphological stability and kinetics in crystal growth from vapors

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1990-01-01

    The following topics are discussed: (1) microscopy image storage and processing system; (2) growth kinetics and morphology study with carbon tetrabromide; (3) photothermal deflection vapor growth setup; (4) bridgman growth of iodine single crystals; (5) vapor concentration distribution measurement during growth; and (6) Monte Carlo modeling of anisotropic growth kinetics and morphology. A collection of presentations and publications of these results are presented.

  5. Growth morphology with anisotropic surface kinetics

    NASA Technical Reports Server (NTRS)

    Xiao, Rong-Fu; Alexander, J. Iwan D.; Rosenberger, Franz

    1990-01-01

    The morphological evolution of crystals growing from an incongruent vapor phase is studied using a Monte Carlo model, and the full range of growth morphologies is recovered. The diffusion in the bulk nutrient and the anisotropy in the interface kinetics are morphologically destabilizing and stabilizing, respectively. For a given set of simulation parameters and lattice symmetries there is a critical size, which scales linearly with the mean free path in the vapor, beyond which a crystal cannot retain its stable, macroscopically faceted growth shape. Surface diffusion stabilizes faceted growth on the shorter scale of the mean surface diffusion length. In simulations with a uniform drift superimposed on the random walk nutrient transport, crystal faces oriented toward the drift show enhanced morphological stability compared to the purely diffusive situation. Rotational drifts with periodic reversal of direction are morphologically stabilizing for all crystal facets.

  6. Volume Diffusion Growth Kinetics and Step Geometry in Crystal Growth

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan

    1998-01-01

    The role of step geometry in two-dimensional stationary volume diff4sion process used in crystal growth kinetics models is investigated. Three different interface shapes: a) a planar interface, b) an equidistant hemispherical bumps train tAx interface, and c) a train of right angled steps, are used in this comparative study. The ratio of the super-saturation to the diffusive flux at the step position is used as a control parameter. The value of this parameter can vary as much as 50% for different geometries. An approximate analytical formula is derived for the right angled steps geometry. In addition to the kinetic models, this formula can be utilized in macrostep growth models. Finally, numerical modeling of the diffusive and convective transport for equidistant steps is conducted. In particular, the role of fluid flow resulting from the advancement of steps and its contribution to the transport of species to the steps is investigated.

  7. Growth Layers on Ammonium Dihydrogen Phosphate.

    PubMed

    Torgesen, J L; Jackson, R W

    1965-05-14

    Microscopic observations of growth layers and etch pits on ammonium dihydrogen phosphate crystals reveal screw dislocations on the {100} face generating elliptical spirals that change rapidly but reversibly to rectangular shape when chromium-ion impurity is added. The effects of the impurity on crystal habit are judged to be secondary to changes in the morphology of the growth layers. No sources of growth are observed on the {101} faces; the layers spread inward from the edges and at times are mutually annihilating so that, temporarily, no steps are observed. Similar behavior is recorded for the {1011} faces of NaNO(3).

  8. Epitaxial growth of silicon for layer transfer

    DOEpatents

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  9. Temperature dependence of protein solubility-determination, application to crystallization, and growth kinetics studies

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1993-01-01

    A scintillation method was developed for determinations of the temperature dependence of the solubility, and of nucleation induction times of proteins, in 50-100 mu(l) volumes of solution. Solubility data for lysozyme and horse serum albumin were obtained for various combinations of pH and precipitant concentrations. These data and the nucleation induction information were used for dynamic crystallization control, that is, for the controlled separation of nucleation and growth stages. Individual lysozyme and horse serum albumin crystals were grown in 15-20 mu(l) solution volumes contained in x-ray capillaries. The morphology and kinetics of the growth and dissolution of lysozyme in aqueous solutions with 2.5 percent NaCl and at pH = 4.5 was studied in situ with a depth resolution of 300 A (4 unit cells) by high resolution optical microscopy and digital image processing. The bulk super- or under saturation, sigma, of the solution inside a closed growth cell was controlled by temperature. The growth habit was bound by (110) and (101) faces that grew through layer spreading, although with different growth rate dependencies on supersaturation/temperature. At sigma less than 10 (obtained at higher temperatures) growth was purely kinetic ally controlled, with impurity effects (macrostep formation and kinetic hindrance) becoming significant for sigma less than 2. At sigma greater than 10 (lower temperatures), anisotropies in the interfacial kinetics were more pronounced, with interfacial kinetics and bulk transport becoming equally important to the growth morphology. Growth rates were growth history dependent. The formation of striations (layers of irregularly incorporated solution) was unambiguously correlated with growth temperature variations. Etching exposed dislocations and various high-index faces whose growth morphologies were studied during return to the steady state growth form. Growth steps were observed to originate from two-dimensional nuclei or from outcrops

  10. Diamagnetic boundary layers - A kinetic theory. [for collisionless magnetized plasmas

    NASA Technical Reports Server (NTRS)

    Lemaire, J.; Burlaga, L. F.

    1976-01-01

    A kinetic theory is presented for boundary layers associated with MHD tangential 'discontinuities' in a collisionless magnetized plasma, such as those observed in the solar wind. The theory consists of finding self-consistent solutions of Vlasov's equation and Maxwell's equation for stationary one-dimensional boundary layers separating two Maxwellian plasma states. Layers in which the current is carried by electrons are found to have a thickness of the order of a few electron gyroradii, but the drift speed of the current-carrying electrons is found to exceed the Alfven speed, and accordingly such layers are not stable. Several types of layers in which the current is carried by protons are discussed; in particular, cases are considered in which the magnetic-field intensity, direction, or both, changed across the layer. In every case, the thickness was of the order of a few proton gyroradii, and the field changed smoothly, although the characteristics depended somewhat on the boundary conditions. The drift speed was always less than the Alfven speed, consistent with stability of such structures. These results are consistent with observations of boundary layers in the solar wind near 1 AU.

  11. Influence of deformation on dolomite rim growth kinetics

    NASA Astrophysics Data System (ADS)

    Helpa, Vanessa; Rybacki, Erik; Grafulha Morales, Luiz Fernando; Dresen, Georg

    2015-04-01

    Using a gas-deformation apparatus stacks of oriented calcite (CaCO3) and magnesite (MgCO3) single crystals were deformed at T = 750° C and P = 400 MPa to examine the influence of stress and strain on magnesio-calcite and dolomite (CaMg[CO3]2) growth kinetics. Triaxial compression and torsion tests performed at constant stresses between 7 and 38 MPa and test durations between 4 and 171 hours resulted in bulk strains of 0.03-0.2 and maximum shear strains of 0.8-5.6, respectively. The reaction rims consist of fine-grained (2-7 μm) dolomite with palisade-shaped grains growing into magnesite reactants and equiaxed granular dolomite grains next to calcite. In between dolomite and pure calcite, magnesio-calcite grains evolved with an average grain size of 20-40 μm. Grain boundaries tend to be straighter at high bulk strains and equilibrium angles at grain triple junctions are common within the magnesio-calcite layer. Transmission electron microscopy shows almost dislocation free palisades and increasing dislocation density within granular dolomite towards the magnesio-calcite boundary. Within magnesio-calcite grains, dislocations are concentrated at grain boundaries. Variation of time at fixed stress (˜17 MPa) yields a parabolic time dependence of dolomite rim width, indicating diffusion-controlled growth, similar to isostatic rim growth behavior. In contrast, the magnesio-calcite layer growth is enhanced compared to isostatic conditions. Triaxial compression at given time shows no significant change of dolomite rim thickness (11±2 μm) and width of magnesio-calcite layers (33±5 μm) with increasing stress. In torsion experiments, reaction layer thickness and grain size decrease from the center (low stress/strain) to the edge (high strain/stress) of samples. Chemical analysis shows nearly stoichiometric composition of dolomite palisades, but enhanced Ca content within granular grains, indicating local disequilibrium with magnesio-calcite, in particular for twisted

  12. Large-scale epitaxial growth kinetics of graphene: A kinetic Monte Carlo study

    SciTech Connect

    Jiang, Huijun; Hou, Zhonghuai

    2015-08-28

    Epitaxial growth via chemical vapor deposition is considered to be the most promising way towards synthesizing large area graphene with high quality. However, it remains a big theoretical challenge to reveal growth kinetics with atomically energetic and large-scale spatial information included. Here, we propose a minimal kinetic Monte Carlo model to address such an issue on an active catalyst surface with graphene/substrate lattice mismatch, which facilitates us to perform large scale simulations of the growth kinetics over two dimensional surface with growth fronts of complex shapes. A geometry-determined large-scale growth mechanism is revealed, where the rate-dominating event is found to be C{sub 1}-attachment for concave growth-front segments and C{sub 5}-attachment for others. This growth mechanism leads to an interesting time-resolved growth behavior which is well consistent with that observed in a recent scanning tunneling microscopy experiment.

  13. Growth kinetics of Al–Fe intermetallic compounds during annealing treatment of friction stir lap welds

    SciTech Connect

    Movahedi, M.; Kokabi, A.H.; Seyed Reihani, S.M.; Najafi, H.; Farzadfar, S.A.; Cheng, W.J.; Wang, C.J.

    2014-04-01

    In this study, we explored the growth kinetics of the Al–Fe intermetallic (IM) layer at the joint interface of the St-12/Al-5083 friction stir lap welds during post-weld annealing treatment at 350, 400 and 450 °C for 30 to 180 min. Optical microscope (OM), field emission gun scanning electron microscope (FEG-SEM) and transmission electron microscope (TEM) were employed to investigate the structure of the weld zone. The thickness and composition of the IM layers were evaluated using image analysis system and electron back-scatter diffraction (EBSD), respectively. Moreover, kernel average misorientation (KAM) analysis was performed to evaluate the level of stored energy in the as-welded state. The results showed that the growth kinetics of the IM layer was not governed by a parabolic diffusion law. Presence of the IM compounds as well as high stored energy near the joint interface of the as-welded sample was recognized to be the origin of the observed deviation from the parabolic diffusion law. - Highlights: • This work provided a new insight into growth kinetics of Al–Fe IM thickness. • The growth kinetics of IM layer was not governed by a parabolic diffusion law. • IM near the joint interface was the origin of deviation from the parabolic law. • High stored energy at joint interface was origin of deviation from parabolic law.

  14. Growth Kinetics of Suspended Microbial Cells: From Single-Substrate-Controlled Growth to Mixed-Substrate Kinetics

    PubMed Central

    Kovárová-Kovar, Karin; Egli, Thomas

    1998-01-01

    Growth kinetics, i.e., the relationship between specific growth rate and the concentration of a substrate, is one of the basic tools in microbiology. However, despite more than half a century of research, many fundamental questions about the validity and application of growth kinetics as observed in the laboratory to environmental growth conditions are still unanswered. For pure cultures growing with single substrates, enormous inconsistencies exist in the growth kinetic data reported. The low quality of experimental data has so far hampered the comparison and validation of the different growth models proposed, and only recently have data collected from nutrient-controlled chemostat cultures allowed us to compare different kinetic models on a statistical basis. The problems are mainly due to (i) the analytical difficulty in measuring substrates at growth-controlling concentrations and (ii) the fact that during a kinetic experiment, particularly in batch systems, microorganisms alter their kinetic properties because of adaptation to the changing environment. For example, for Escherichia coli growing with glucose, a physiological long-term adaptation results in a change in KS for glucose from some 5 mg liter−1 to ca. 30 μg liter−1. The data suggest that a dilemma exists, namely, that either “intrinsic” KS (under substrate-controlled conditions in chemostat culture) or μmax (under substrate-excess conditions in batch culture) can be measured but both cannot be determined at the same time. The above-described conventional growth kinetics derived from single-substrate-controlled laboratory experiments have invariably been used for describing both growth and substrate utilization in ecosystems. However, in nature, microbial cells are exposed to a wide spectrum of potential substrates, many of which they utilize simultaneously (in particular carbon sources). The kinetic data available to date for growth of pure cultures in carbon-controlled continuous culture

  15. Unstirred Water Layers and the Kinetics of Organic Cation Transport

    PubMed Central

    Shibayama, Takahiro; Morales, Mark; Zhang, Xiaohong; Martinez, Lucy; Berteloot, Alfred; Secomb, Timothy W.; Wright, Stephen H.

    2015-01-01

    Purpose Unstirred water layers (UWLs) present an unavoidable complication in the measurement of transport kinetics in cultured cells and the high rates of transport achieved by overexpressing heterologous transporters exacerbate the UWL effect. This study examined the correlation between measured Jmax and Kt values and the effect of manipulating UWL thickness or transport Jmax on the accuracy of experimentally determined kinetics of the multidrug transporters, OCT2 and MATE1. Methods Transport of TEA and MPP was measured in CHO cells that stably expressed human OCT2 or MATE1. UWL thickness was manipulated by vigorous reciprocal shaking. Several methods were used to manipulate maximal transport rates. Results Vigorous stirring stimulated uptake of OCT2-mediated transport by decreasing apparent Kt (Ktapp) values. Systematic reduction in transport rates was correlated with reduction in Ktapp values. The slope of these relationships indicated a 1500 µm UWL in multiwell plates. Reducing the influence of UWLs (by decreasing either their thickness or the Jmax of substrate transport) reduced Ktapp by 2-fold to >10-fold. Conclusions Failure to take into account the presence of UWLs in experiments using cultured cells to measure transport kinetics can result in significant underestimates of the affinity of multidrug transporters for substrates. PMID:25791216

  16. Cancer Progression and Tumor Growth Kinetics

    NASA Astrophysics Data System (ADS)

    Blagoev, Krastan; Kalpathy-Cramer, Jayashree; Wilkerson, Julia; Sprinkhuizen, Sara; Song, Yi-Qiao; Bates, Susan; Rosen, Bruce; Fojo, Tito

    2013-03-01

    We present and analyze tumor growth data from prostate and brain cancer. Scaling the data from different patients shows that early stage prostate tumors show non-exponential growth while advanced prostate and brain tumors enter a stage of exponential growth. The scaling analysis points to the existence of cancer stem cells and/or massive apoptosis in early stage prostate cancer and that late stage cancer growth is not dominated by cancer stem cells. Statistical models of these two growth modes are discussed. Work supported by the National Science Foundation and the National Institutes of Health

  17. Model for computing kinetics of the graphene edge epitaxial growth on copper

    NASA Astrophysics Data System (ADS)

    Khenner, Mikhail

    2016-06-01

    A basic kinetic model that incorporates a coupled dynamics of the carbon atoms and dimers on a copper surface is used to compute growth of a single-layer graphene island. The speed of the island's edge advancement on Cu[111] and Cu[100] surfaces is computed as a function of the growth temperature and pressure. Spatially resolved concentration profiles of the atoms and dimers are determined, and the contributions provided by these species to the growth speed are discussed. Island growth under the conditions of a thermal cycling is studied.

  18. Crystal growth kinetics of the two-step model

    NASA Astrophysics Data System (ADS)

    Tai, Clifford Y.; Lin, Chiu-Hsiung

    1987-03-01

    The single crystal technique was used to measure the growth rate of the potassium alum (111) face and the magnesium sulfate (110) face. The two-step model was found appropriate to describe the growth kinetics with the surface integration order of two for potassium alum crystal and of one for magnesium sulfate crystal. The individual rate constants, Kd and Kr, were determined accordingly.

  19. The role of layer structure in tin oxidation kinetics

    NASA Astrophysics Data System (ADS)

    Duhalde, S.; Arcondo, B.; Sirkin, H.

    1991-11-01

    Tin exhibits different oxidation kinetics which are composition dependent, when it forms intermetallic compounds with the chalcogenides S and Se. This phenomenon is related to the layer compounds SnS2 and SnSe2 crystalline structure. These minerals have anisotropic bonding characteristics, due to Van der Waals bonds presence between chalcogenides adjoining planes. The mentioned weak bonds allow the oxygen diffusion to the bulk, favouring the reaction with the inner tin atoms. In this work we study samples of Sn-S alloy with different thermal treatment by XRD and Mössbauer spectroscopy. Results are discussed and compared with those obtained for Sn-Se alloy in an early work [1].

  20. Crystal Growth Kinetics and Viscous Behavior in Ge2Sb2Se5 Undercooled Melt.

    PubMed

    Barták, Jaroslav; Koštál, Petr; Podzemná, Veronika; Shánělová, Jana; Málek, Jiří

    2016-08-18

    Crystal growth, viscosity, and melting were studied in Ge2Sb2Se5 bulk samples. The crystals formed a compact layer on the surface of the sample and then continued to grow from the surface to the central part of the sample. The formed crystalline layer grew linearly with time, which suggests that the crystal growth is controlled by liquid-crystal interface kinetics. Combining the growth data with the measured viscosities and melting data, crystal growth could be described on the basis of standard crystal growth models. The screw dislocation growth model seems to be operative in describing the temperature dependence of the crystal growth rate in the studied material in a wide temperature range. A detailed discussion on the relation between the kinetic coefficient of crystal growth and viscosity (ukin ∝ η(-ξ)) is presented. The activation energy of crystal growth was found to be higher than the activation energy of crystallization obtained from differential scanning calorimetry, which covers the whole nucleation-growth process. This difference is considered and explained under the experimental conditions. PMID:27441575

  1. Nonlinear Transient Growth and Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    Parabolized stability equations (PSE) are used in a variational approach to study the optimal, non-modal disturbance growth in a Mach 3 at plate boundary layer and a Mach 6 circular cone boundary layer. As noted in previous works, the optimal initial disturbances correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The nonlinear evolution of the linearly optimal stationary perturbations is computed using the nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching technique is used to facilitate the computation of nonlinear streaks with large amplitudes. To assess the effect of the finite-amplitude streaks on transition, the linear form of plane- marching PSE is used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. The onset of bypass transition is estimated by using an N- factor criterion based on the amplification of the streak instabilities. Results show that, for both flow configurations of interest, streaks of sufficiently large amplitude can lead to significantly earlier onset of transition than that in an unperturbed boundary layer without any streaks.

  2. Pattern Formation and Growth Kinetics in Eutectic Systems

    SciTech Connect

    Teng, Jing

    2007-01-01

    Growth patterns during liquid/solid phase transformation are governed by simultaneous effects of heat and mass transfer mechanisms, creation of new interfaces, jump of the crystallization units from liquid to solid and their rearrangement in the solid matrix. To examine how the above processes influence the scale of microstructure, two eutectic systems are chosen for the study: a polymeric system polyethylene glycol-p-dibromobenzene (PEG-DBBZ) and a simple molecular system succinonitrile (SCN)-camphor. The scaling law for SCN-camphor system is found to follow the classical Jackson-Hunt model of circular rod eutectic, where the diffusion in the liquid and the interface energy are the main physics governing the two-phase pattern. In contrast, a significantly different scaling law is observed for the polymer system. The interface kinetics of PEG phase and its solute concentration dependence thus have been critically investigated for the first time by directional solidification technique. A model is then proposed that shows that the two-phase pattern in polymers is governed by the interface diffusion and the interface kinetics. In SCN-camphor system, a new branch of eutectic, elliptical shape rodl, is found in thin samples where only one layer of camphor rods is present. It is found that the orientation of the ellipse can change from the major axis in the direction of the thickness to the direction of the width as the velocity and/or the sample thickness is decreased. A theoretical model is developed that predicts the spacing and orientation of the elliptical rods in a thin sample. The single phase growth patterns of SCN-camphor system were also examined with emphasis on the three-dimensional single cell and cell/dendrite transition. For the 3D single cell in a capillary tube, the entire cell shape ahead of the eutectic front can be described by the Saffmann-Taylor finger only at extremely low growth rate. A 3D directional solidification model is developed to

  3. Multiple substrate growth kinetics of Leptothrix discophora SP-6.

    PubMed

    Yurt, Nurdan; Sears, John; Lewandowski, Zbigniew

    2002-01-01

    The growth parameters of Leptothrix discophora SP-6 were quantified on the basis of the steady-state concentrations and utilization rates of pyruvate, dissolved oxygen, and concentration of microorganisms in a chemostat operated at 25 degrees C, pH 7.2, and an agitation rate of 350 rpm. The results showed that the microbial growth was limited by both pyruvate and dissolved oxygen. A combined growth kinetics model using Monod growth kinetics for pyruvate and Tessier growth kinetics for oxygen showed the best correlation with the experimental data when analyzed using an interactive multiple substrate model. The growth kinetics parameters and the respective confidence limits, estimated using the Monte Carlo simulation, were mu(max) = 0.576 +/- 0.021 h(-1), K(sMp) = 38.81 +/- 4.24 mg L(-1), K(sTo) = 0.39 +/- 0.04 mg L(-1), Y(X/p) = 0.150 (mg microorganism mg(-1) pyruvate), Y(X/o) = 1.24 (mg microorganism mg(-1) oxygen), the maintenance factors for pyruvate and oxygen were m(p) = 0.129 (mg pyruvate consumed mg(-1) microorganism h(-1)) and m(o) = 0.076 (mg oxygen consumed mg(-1) microorganism h(-1)), respectively. PMID:12363350

  4. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure.

    PubMed

    Losurdo, Maria; Giangregorio, Maria Michela; Capezzuto, Pio; Bruno, Giovanni

    2011-12-14

    Understanding the chemical vapor deposition (CVD) kinetics of graphene growth is important for advancing graphene processing and achieving better control of graphene thickness and properties. In the perspective of improving large area graphene quality, we have investigated in real-time the CVD kinetics using CH(4)-H(2) precursors on both polycrystalline copper and nickel. We highlighted the role of hydrogen in differentiating the growth kinetics and thickness of graphene on copper and nickel. Specifically, the growth kinetics and mechanism is framed in the competitive dissociative chemisorption of H(2) and dehydrogenating chemisorption of CH(4), and in the competition of the in-diffusion of carbon and hydrogen, being hydrogen in-diffusion faster in copper than nickel, while carbon diffusion is faster in nickel than copper. It is shown that hydrogen acts as an inhibitor for the CH(4) dehydrogenation on copper, contributing to suppress deposition onto the copper substrate, and degrades quality of graphene. Additionally, the evidence of the role of hydrogen in forming C-H out of plane defects in CVD graphene on Cu is also provided. Conversely, resurfacing recombination of hydrogen aids CH(4) decomposition in the case of Ni. Understanding better and providing other elements to the kinetics of graphene growth is helpful to define the optimal CH(4)/H(2) ratio, which ultimately can contribute to improve graphene layer thickness uniformity even on polycrystalline substrates. PMID:22006173

  5. Fetal growth velocity: kinetic, clinical, and biological aspects.

    PubMed Central

    Bertino, E.; Di Battista, E.; Bossi, A.; Pagliano, M.; Fabris, C.; Aicardi, G.; Milani, S.

    1996-01-01

    With the aim of determining fetal growth kinetics, prenatal data were analysed which had been longitudinally collected in the framework of a perinatal growth survey. The sample comprised 238 singleton normal pregnancies, selected in Genoa and Turin (between 1987 and 1990), and repeatedly assessed by ultrasound scans (five to nine per pregnancy). Five morphometric traits were considered: BPD (biparietal diameter), OFD (occipitofrontal diameter), HC (head circumference), FDL (femur diaphysis length) and AC (abdomen circumference). Growth rate seemed to increase in the early part of the second trimester, and decrease subsequently: velocity peaks were steeper and earlier for head diameters and circumference (about 18 weeks) than for femur length (20 weeks) and abdomen circumference (22 weeks). Velocity standards were traced using a longitudinal two-stage linear model: this ensures unbiased description of the shape of the growth curve, even when growth kinetics are asynchronous, and efficient estimation of the outer centiles--the most useful for diagnostic purposes. PMID:8653429

  6. Dependence of the growth rate of an AlN layer on nitrogen pressure in a reactor for sublimation growth of AlN crystals

    SciTech Connect

    Wolfson, A. A. Mokhov, E. N.

    2010-10-15

    The dependence of the layer growth rate on nitrogen pressure in a reactor has been examined in order to analyze the conditions of growth of AlN thick layers and bulk crystals by the sublimation sandwich method. It is shown that the layer growth rate steadily increases as the pressure in the reactor is lowered within the range 1-0.02 bar. This suggests that a key role in the layer growth kinetics is played by the source-to-substrate transfer of the components (Al, N), rather than by their adsorption (desorption) on the substrate surface.

  7. Thermodynamic and kinetic control of the lateral Si wire growth

    SciTech Connect

    Dedyulin, Sergey N. Goncharova, Lyudmila V.

    2014-03-24

    Reproducible lateral Si wire growth has been realized on the Si (100) surface. In this paper, we present experimental evidence showing the unique role that carbon plays in initiating lateral growth of Si wires on a Si (100) substrate. Once initiated in the presence of ≈5 ML of C, lateral growth can be achieved in the range of temperatures, T = 450–650 °C, and further controlled by the interplay of the flux of incoming Si atoms with the size and areal density of Au droplets. Critical thermodynamic and kinetic aspects of the growth are discussed in detail.

  8. Metastable Solution Thermodynamic Properties and Crystal Growth Kinetics

    NASA Technical Reports Server (NTRS)

    Kim, Soojin; Myerson, Allan S.

    1996-01-01

    The crystal growth rates of NH4H2PO4, KH2PO4, (NH4)2SO4, KAl(SO4)2 central dot 12H2O, NaCl, and glycine and the nucleation rates of KBr, KCl, NaBr central dot 2H2O, (NH4)2Cl, and (NH4)2SO4 were expressed in terms of the fundamental driving force of crystallization calculated from the activity of supersaturated solutions. The kinetic parameters were compared with those from the commonly used kinetic expression based on the concentration difference. From the viewpoint of thermodynamics, rate expressions based on the chemical potential difference provide accurate kinetic representation over a broad range of supersaturation. The rates estimated using the expression based on the concentration difference coincide with the true rates of crystallization only in the concentration range of low supersaturation and deviate from the true kinetics as the supersaturation increases.

  9. Monte Carlo study of interfacial silicon suboxide layers and oxidation kinetics

    NASA Astrophysics Data System (ADS)

    da Silva, E. F.; de Vasconcelos, E. A.; Stošić, B. D.

    2002-05-01

    A simple simulation scheme that simultaneously describes the growth kinetics of SiO 2 films at the nanometer scale and the SiO x/Si interface dynamics (its extent, and spatial/temporal evolution) is presented. The simulation successfully applies to experimental data in the region above and below 10 nm, reproduces the Deal and Grove linear-parabolic law and the oxide growth rate enhancement in the very thin film regime (the so-called anomalous region). According to the simulation, the oxidation is governed mainly by two processes: (a) the formation of a transition suboxide layer and (b) its subsequent drift towards the silicon bulk. We found that it is the superposition of these two processes that produces the crossover from the anomalous oxidation region behavior to the linear-parabolic law.

  10. Kinetics of laser-assisted carbon nanotube growth.

    PubMed

    van de Burgt, Y; Bellouard, Y; Mandamparambil, R

    2014-03-21

    Laser-assisted chemical vapour deposition (CVD) growth is an attractive mask-less process for growing locally aligned carbon nanotubes (CNTs) in selected places on temperature sensitive substrates. The nature of the localized process results in fast carbon nanotube growth with high experimental throughput. Here, we report on the detailed investigation of growth kinetics related to physical and chemical process characteristics. Specifically, the growth kinetics is investigated by monitoring the dynamical changes in reflected laser beam intensity during growth. Benefiting from the fast growth and high experimental throughput, we investigate a wide range of experimental conditions and propose several growth regimes. Rate-limiting steps are determined using rate equations linked to the proposed growth regimes, which are further characterized by Raman spectroscopy and Scanning Electron Microscopy (SEM), therefore directly linking growth regimes to the structural quality of the CNTs. Activation energies for the different regimes are found to be in the range of 0.3-0.8 eV. PMID:24481313

  11. Growth Kinetics and Modeling of ZnO Nanoparticles

    ERIC Educational Resources Information Center

    Hale, Penny S.; Maddox, Leone M.; Shapter, Joe G.; Voelcker, Nico H.; Ford, Michael J.; Waclawik, Eric R.

    2005-01-01

    The technique for producing quantum-sized zinc oxide (ZnO) particles is much safer than a technique that used hydrogen sulfide gas to produce cadmium sulfide and zinc sulfide nanoparticles. A further advantage of this method is the ability to sample the solution over time and hence determine the growth kinetics.

  12. Grain boundary curvature and grain growth kinetics with particle pinning

    NASA Astrophysics Data System (ADS)

    Shahandeh, Sina; Militzer, Matthias

    2013-08-01

    Second-phase particles are used extensively in design of polycrystalline materials to control the grain size. According to Zener's theory, a distribution of particles creates a pinning pressure on a moving grain boundary. As a result, a limiting grain size is observed, but the effect of pinning on the detail of grain growth kinetics is less known. The influence of the particles on the microstructure occurs in multiple length scales, established by particle radius and the grain size. In this article, we use a meso-scale phase-field model that simulates grain growth in the presence of a uniform pinning pressure. The curvature of the grain boundary network is measured to determine the driving pressure of grain growth in 2D and 3D systems. It was observed that the grain growth continues, even under conditions where the average driving pressure is smaller than the pinning pressure. The limiting grain size is reached when the maximum of driving pressure distribution in the structure is equal to the pinning pressure. This results in a limiting grain size, larger than the one predicted by conventional models, and further analysis shows consistency with experimental observations. A physical model is proposed for the kinetics of grain growth using parameters based on the curvature analysis of the grain boundaries. This model can describe the simulated grain growth kinetics.

  13. Kinetic effects on the Kelvin-Helmholtz instability in ion-to-magnetohydrodynamic scale transverse velocity shear layers: Particle simulations.

    PubMed

    Nakamura, T K M; Hasegawa, H; Shinohara, I

    2010-04-01

    Ion-to-magnetohydrodynamic scale physics of the transverse velocity shear layer and associated Kelvin-Helmholtz instability (KHI) in a homogeneous, collisionless plasma are investigated by means of full particle simulations. The shear layer is broadened to reach a kinetic equilibrium when its initial thickness is close to the gyrodiameter of ions crossing the layer, namely, of ion-kinetic scale. The broadened thickness is larger in B⋅Ω<0 case than in B⋅Ω>0 case, where Ω is the vorticity at the layer. This is because the convective electric field, which points out of (into) the layer for B⋅Ω<0 (B⋅Ω>0), extends (reduces) the gyrodiameters. Since the kinetic equilibrium is established before the KHI onset, the KHI growth rate depends on the broadened thickness. In the saturation phase of the KHI, the ion vortex flow is strengthened (weakened) for B⋅Ω<0 (B⋅Ω>0), due to ion centrifugal drift along the rotational plasma flow. In ion inertial scale vortices, this drift effect is crucial in altering the ion vortex size. These results indicate that the KHI at Mercury-like ion-scale magnetospheric boundaries could show clear dawn-dusk asymmetries in both its linear and nonlinear growth.

  14. Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy.

    PubMed

    Alloyeau, Damien; Dachraoui, Walid; Javed, Yasir; Belkahla, Hannen; Wang, Guillaume; Lecoq, Hélène; Ammar, Souad; Ersen, Ovidiu; Wisnet, Andreas; Gazeau, Florence; Ricolleau, Christian

    2015-04-01

    The growth of colloidal nanoparticles is simultaneously driven by kinetic and thermodynamic effects that are difficult to distinguish. We have exploited in situ scanning transmission electron microscopy in liquid to study the growth of Au nanoplates by radiolysis and unravel the mechanisms influencing their formation and shape. The electron dose provides a straightforward control of the growth rate that allows quantifying the kinetic effects on the planar nanoparticles formation. Indeed, we demonstrate that the surface-reaction rate per unit area has the same dose-rate dependent behavior than the concentration of reducing agents in the liquid cell. Interestingly, we also determine a critical supply rate of gold monomers for nanoparticle faceting, corresponding to three layers per second, above which the formation of nanoplates is not possible because the growth is then dominated by kinetic effects. At lower electron dose, the growth is driven by thermodynamic and the formation and shape of nanoplates are directly related to the twin-planes formed during the growth.

  15. Growth kinetics of CdTe colloidal nanocrystals.

    PubMed

    Ferreira, D Lourençoni; Silva, F Oliveira; Viol, L Cristina de Souza; Licínio, P; Valadares, M; Cury, L Alberto; Schiavon, M Antônio; Alves, J Luiz Aarestrup

    2009-08-28

    The growth kinetics of CdTe colloidal nanocrystals has been analyzed quantitatively by means of dynamic light scattering and photoluminescence measurements. The growth rates, size distributions, critical radii, and diffusion constants have been calculated in the framework of the Sugimoto theoretical model. A two-step diffusion-controlled growth regime has been proposed for the reported synthesis and a set of relations for the time evolution of the size distribution has been derived and discussed in the sense of the size distribution focusing concept. PMID:19725626

  16. Capture kinetics at deep-level defects in MBE-grown CdTe layers

    NASA Astrophysics Data System (ADS)

    Olender, Karolina; Wosinski, Tadeusz; Makosa, Andrzej; Kret, Slawomir; Kolkovsky, Valery; Karczewski, Grzegorz

    2011-04-01

    The results of deep-level transient spectroscopy (DLTS) investigations in n-type CdTe layers grown by the molecular-beam epitaxy (MBE) technique on lattice-mismatched GaAs substrates are described. Three electron traps and one hole trap, at rather low concentrations of the order of 1013 cm-3, have been revealed in the DLTS spectra measured under various bias conditions of Schottky diodes prepared on the as-grown CdTe layers. One of the electron traps has been attributed to electron states of dislocations on the ground of the logarithmic capture kinetics for capture of electrons into the trap states. The other three traps, displaying exponential capture kinetics, have been attributed to native point defects produced during the epitaxial growth of CdTe. The microscopic nature of the defects responsible for the traps is discussed taking into account recent results of first-principles calculations of the properties of dominant native defects in CdTe.

  17. Heterogeneity of epidermal growth factor binding kinetics on individual cells.

    PubMed Central

    Chung, J C; Sciaky, N; Gross, D J

    1997-01-01

    Binding of fluorescein-conjugated epidermal growth factor (EGF) to individual A431 cells at 4 degrees C is measured by a quantitative fluorescence imaging technique. After background fluorescence and cell autofluorescence photobleaching corrections, the kinetic data are fit to simple models of one monovalent site and two independent monovalent sites, both of which include a first-order dye photobleaching process. Model simulations and the results from data analysis indicate that the one-monovalent-site model does not describe EGF binding kinetics at the single-cell level, whereas the two-site model is consistent with, but not proved by, the single-cell binding data. In addition, the kinetics of binding of fluorescein-EGF to different cells from the same coverslip often differ significantly from each other, indicating cell-to-cell variations in the binding properties of the EGF receptor. PMID:9251825

  18. Insitu Measurements and Modeling of Carbon Nanotube Array Growth Kinetics during Chemical Vapor Deposition

    SciTech Connect

    Puretzky, Alexander A; Geohegan, David B; Jesse, Stephen; Ivanov, Ilia N; Eres, Gyula

    2005-01-01

    Direct measurements of carbon nanotube growth kinetics are described based upon time-resolved reflectivity (TRR) of a HeNe laser beam from vertically aligned nanotube arrays (VANTAs) as they grow during chemical vapor deposition (CVD). Growth rates and terminal lengths were measured in situ for VANTAs growing during CVD between 535 C and 900 C on Si substrates with evaporated Al/Fe/Mo multi-layered catalysts and acetylene feedstock at different feedstock partial pressures. Methods of analysis of the TRR signals are presented to interpret catalyst particle formation and oxidation, as well as the porosity of the VANTAs. A rate-equation model is developed to describe the measured kinetics in terms of activation energies and rate constants for surface carbon formation and diffusion on the catalyst nanoparticle, nanotube growth, and catalyst over-coating. Taken together with the TRR data, this model enables basic understanding and optimization of growth conditions for any catalyst/feedstock combination. The model lends insight into the main processes responsible for the growth of VANTAs, the measured number of walls in the nanotubes at different temperatures, conditions for growth of single-wall carbon nanotube arrays, and likely catalyst poisoning mechanisms responsible for the sharp decline in growth rates observed at high temperatures.

  19. Growth morphologies of wax in the presence of kinetic inhibitors

    NASA Astrophysics Data System (ADS)

    Tetervak, Alexander A.

    Driven by the need to prevent crystallization of normal alkanes from diesel fuels in cold climates, the petroleum industry has developed additives to slow the growth of these crystals and alter their morphologies. Although the utility of these kinetic inhibitors has been well demonstrated in the field, few studies have directly monitored their effect at microscopic morphology, and the mechanisms by which they act remain poorly understood. Here we present a study of the effects of such additives on the crystallization of long-chain n-alkanes from solution. The additives change the growth morphology from plate-like crystals to a microcrystalline mesh. When we impose a front velocity by moving the sample through a temperature gradient, the mesh growth may form a macroscopic banded pattern and also exhibit a burst-crystallization behavior. In this study, we characterize these crystallization phenomena and also two growth models: a continuum model that demonstrates the essential behavior of the banded crystallization, and a simple qualitative cellular automata model that captures basics of the burst-crystallization process. Keywords: solidification; mesh crystallization; kinetic inhibitor; burst growth.

  20. Role of Transport and Kinetics in Growth of Renal Stones

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Iskovitz, Ilana

    2012-01-01

    Renal stone disease is not only a concern on earth but could conceivably pose as a serious risk to the astronauts health and safety in Space. In this paper, a combined transport-kinetics model for growth of calcium oxalate crystals is presented. The model is used to parametrically investigate the growth of renal calculi in urine with a focus on the coupled effects of transport and surface reaction on the ionic concentrations at the surface of the crystal and their impact on the resulting growth rates. It is shown that under nominal conditions of low solution supersaturation and low Damkohler number that typically exist on Earth, the surface concentrations of calcium and oxalate approach their bulk solution values in the urine and the growth rate is most likely limited by the surface reaction kinetics. But for higher solution supersaturations and larger Damkohler numbers that may be prevalent in the microgravity environment of Space, the calcium and oxalate surface concentrations tend to shift more towards their equilibrium or saturation values and thus the growth process may be limited by the transport through the medium. Furthermore, parametric numerical studies suggest that changes to the renal biochemistry of astronauts due in space may promote development of renal calculi during long duration space expeditions.

  1. Computer simulation of grain growth kinetics with solute drag

    SciTech Connect

    Fan, D.; Chen, S.P.; Chen, L.

    1999-03-01

    The effects of solute drag on the grain growth kinetics were studied in two-dimensional (2D) computer simulations by using a diffuse-interface field model. It is shown that, in the low velocity/low driving force regime, the velocity of a grain boundary motion departs from a linear relation with driving force (curvature) with solute drag. The nonlinear relation of migration velocity and driving force comes from the dependence of grain boundary energy and width on the curvature. The growth exponent {ital m} of power growth law for a polycrystalline system is affected by the segregation of solutes to grain boundaries. With the solute drag, the growth exponent {ital m} can take any value between 2 and 3, depending on the ratio of lattice diffusion to grain boundary mobility. The grain size and topological distributions are unaffected by solute drag, which are the same as those in a pure system. {copyright} {ital 1999 Materials Research Society.}

  2. Computer Simulation of Grain Growth Kinetics with Solute Drag

    SciTech Connect

    Chen, L.; Chen, S.P.; Fan, D.

    1998-12-23

    The effects of solute dragon grain growth kinetics were studied in two dimensional (2-D) computer simulations by using a diffuse-interface field model. It is shown that, in the low velocity / low driving force regime, the velocity of a grain boundary motion departs from a linear relation with driving force (curvature) with solute drag. The nonlinear relation of migration velocity and driving force comes from the dependence of grain boundary energy and width on the curvature. The growth exponent m of power growth law for a polycrystalline system is affected by the segregation of solutes to grain boundaries. With the solute drag, the growth exponent m can take any value between 2 and 3 depending on the ratio of lattice diffusion to grain boundary mobility. The grain size and topological distributions are unaffected by solute drag, which are the same as those in a pure system.

  3. In situ ceramic layer growth on coated fuel particles dispersed in a zirconium metal matrix

    SciTech Connect

    Terrani, Kurt A; Silva, G W Chinthaka M; Kiggans, Jim; Cai, Zhonghou; Shin, Dongwon; Snead, Lance Lewis

    2013-01-01

    The extent and nature of the chemical interaction between the outermost coating layer of coated fuel particles embedded in zirconium metal during fabrication of metal matrix microencapsulated fuels was examined. Various particles with outermost coating layers of pyrocarbon, SiC, and ZrC have been investigated in this study. ZrC-Zr interaction was least substantial while PyC-Zr reaction can be exploited to produce a ZrC layer at the interface in an in situ manner. The thickness of the ZrC layer in the latter case can be controlled by adjusting the time and temperature during processing. The kinetics of ZrC layer growth is significantly faster from what is predicted using literature carbon diffusivity data in ZrC. SiC-Zr interaction is more complex and results in formation of various chemical phases in a layered aggregate morphology at the interface.

  4. In situ ceramic layer growth on coated fuel particles dispersed in a zirconium metal matrix

    NASA Astrophysics Data System (ADS)

    Terrani, K. A.; Silva, C. M.; Kiggans, J. O.; Cai, Z.; Shin, D.; Snead, L. L.

    2013-06-01

    The extent and nature of the chemical interaction between the outermost coating layer of coated fuel particles embedded in zirconium metal during fabrication of metal matrix microencapsulated fuels were examined. Various particles with outermost coating layers of pyrocarbon, SiC, and ZrC have been investigated in this study. ZrC-Zr interaction was the least substantial, while the PyC-Zr reaction can be exploited to produce a ZrC layer at the interface in an in situ manner. The thickness of the ZrC layer in the latter case can be controlled by adjusting the time and temperature during processing. The kinetics of ZrC layer growth is significantly faster from what is predicted using literature carbon diffusivity data in ZrC. SiC-Zr interaction is more complex and results in formation of various chemical phases in a layered aggregate morphology at the interface.

  5. Turbulent kinetic energy generation in the convective boundary layer derived from thermodynamics

    NASA Astrophysics Data System (ADS)

    Slameršak, Aljoša; Renner, Maik; Ganzeveld, Laurens; Hartogensis, Oscar; Kolle, Olaf; Kleidon, Axel

    2016-04-01

    Turbulent heat fluxes facilitate the bulk of heat transfer between the surface and lower atmosphere, which results in the diurnal growth of convective boundary layer (CBL) and turbulent kinetic energy generation (TKE). Here we postulate the hypothesis that TKE generation in the CBL occurs as a result of heat transfer in a "Carnot-like" heat engine with temporal changes in the internal energy of the boundary layer. We used the Tennekes energy-balance model of CBL and extended it with the analysis of the entropy balance to derive the estimates of TKE generation in the CBL. These TKE generation estimates were compared to the turbulent dissipation from a simple dissipation model from Moeng and Sullivan, to test the validity of our heat engine hypothesis. In addition, to evaluate the performance of the dissipation model, this was independently validated by a comparison of its estimates with the turbulent dissipation calculations based on spectral analysis of eddy covariance wind measurements at a German field station. Our analysis demonstrates how a consistent application of thermodynamics can be used to obtain an independent physical constraint on the diurnal boundary layer evolution. Furthermore, our analysis suggests that the CBL operates at the thermodynamic limit, thus imposing a thermodynamic constraint on surface-atmosphere exchange.

  6. Calcite growth kinetics: Modeling the effect of solution stoichiometry

    NASA Astrophysics Data System (ADS)

    Wolthers, Mariëtte; Nehrke, Gernot; Gustafsson, Jon Petter; Van Cappellen, Philippe

    2012-01-01

    Until recently the influence of solution stoichiometry on calcite crystal growth kinetics has attracted little attention, despite the fact that in most aqueous environments calcite precipitates from non-stoichiometric solution. In order to account for the dependence of the calcite crystal growth rate on the cation to anion ratio in solution, we extend the growth model for binary symmetrical electrolyte crystals of Zhang and Nancollas (1998) by combining it with the surface complexation model for the chemical structure of the calcite-aqueous solution interface of Wolthers et al. (2008). To maintain crystal stoichiometry, the rate of attachment of calcium ions to step edges is assumed to equal the rate of attachment of carbonate plus bicarbonate ions. The model parameters are optimized by fitting the model to the step velocities obtained previously by atomic force microscopy (AFM, Teng et al., 2000; Stack and Grantham, 2010). A variable surface roughness factor is introduced in order to reconcile the new process-based growth model with bulk precipitation rates measured in seeded calcite growth experiments. For practical applications, we further present empirical parabolic rate equations fitted to bulk growth rates of calcite in common background electrolytes and in artificial seawater-type solutions. Both the process-based and empirical growth rate equations agree with measured calcite growth rates over broad ranges of ionic strength, pH, solution stoichiometry and degree of supersaturation.

  7. Kinetic limitation of chemical ordering in Bi2Te3-x Se x layers grown by molecular beam epitaxy.

    PubMed

    Schreyeck, S; Brunner, K; Kirchner, A; Bass, U; Grauer, S; Schumacher, C; Gould, C; Karczewski, G; Geurts, J; Molenkamp, L W

    2016-04-13

    We study the chemical ordering in Bi2Te3-x Se x grown by molecular beam epitaxy on Si substrates. We produce films in the full composition range from x = 0 to 3, and determine their material properties using energy dispersive x-ray spectroscopy, x-ray diffraction and Raman spectroscopy. By fitting the parameters of a kinetic growth model to these results, we obtain a consistent description of growth at a microscopic level. Our main finding is that despite the incorporation of Se in the central layer being much more probable than that of Te, the formation of a fully ordered Te-Bi-Se-Bi-Te layer is prevented by kinetic of the growth process. Indeed, the Se concentration in the central layer of Bi2Te2Se1 reaches a maximum of only ≈ 75% even under ideal growth conditions. A second finding of our work is that the intensity ratio of the 0 0 12 and 0 0 6 x-ray reflections serves as an experimentally accessible quantitative measure of the degree of ordering in these films.

  8. Kinetic limitation of chemical ordering in Bi2Te3-x Se x layers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Schreyeck, S.; Brunner, K.; Kirchner, A.; Bass, U.; Grauer, S.; Schumacher, C.; Gould, C.; Karczewski, G.; Geurts, J.; Molenkamp, L. W.

    2016-04-01

    We study the chemical ordering in Bi2Te3-x Se x grown by molecular beam epitaxy on Si substrates. We produce films in the full composition range from x  =  0 to 3, and determine their material properties using energy dispersive x-ray spectroscopy, x-ray diffraction and Raman spectroscopy. By fitting the parameters of a kinetic growth model to these results, we obtain a consistent description of growth at a microscopic level. Our main finding is that despite the incorporation of Se in the central layer being much more probable than that of Te, the formation of a fully ordered Te-Bi-Se-Bi-Te layer is prevented by kinetic of the growth process. Indeed, the Se concentration in the central layer of Bi2Te2Se1 reaches a maximum of only  ≈75% even under ideal growth conditions. A second finding of our work is that the intensity ratio of the 0 0 12 and 0 0 6 x-ray reflections serves as an experimentally accessible quantitative measure of the degree of ordering in these films.

  9. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics

    PubMed Central

    Prescott, Aaron M.; McCollough, Forest W.; Eldreth, Bryan L.; Binder, Brad M.; Abel, Steven M.

    2016-01-01

    Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene

  10. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics

    PubMed Central

    Prescott, Aaron M.; McCollough, Forest W.; Eldreth, Bryan L.; Binder, Brad M.; Abel, Steven M.

    2016-01-01

    Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene

  11. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics.

    PubMed

    Prescott, Aaron M; McCollough, Forest W; Eldreth, Bryan L; Binder, Brad M; Abel, Steven M

    2016-01-01

    Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene

  12. Spherulitic growth of wax in the presence of kinetic inhibitors

    NASA Astrophysics Data System (ADS)

    Hutter, Jeffrey L.; Smith, Chris; Khmaladze, Alexander

    2001-03-01

    The petroleum industry has developed polymeric additives to prevent the precipitation of wax from diesel fuels in cold climates. These additives affect the crystallization kinetics of wax growth without affecting the thermodynamics. Some additives apparently operate by adsorbing to crystalline surfaces and blocking step flow, though direct evidence is lacking. We have used optical microscopy to study this process in model n-alkane systems with inhibitors added as a 1 wt% impurity. We find that the presence of the polymer dramatically alters the growth morphology of the wax --- rather than the usual plate-like growth, we see forms with all of the attributes of spherulites typical of bulk polymer growth, including radially oriented lamellae and banding. Since models for spherulitic growth postulate lamellar alignment by entropic pressure due to dangling polymer chains, the surface-adsorbed polymers are likely responsible for the similar alignment in wax spherulites. The banding seen in this case, however, results from periodic growth, rather than from the lamellar twisting seen in traditional polymer spherulites. We have modeled this effect as a coupling between the polymer adsorption rate and the growth rate of wax crystals.

  13. Conductive layer for biaxially oriented semiconductor film growth

    DOEpatents

    Findikoglu, Alp T.; Matias, Vladimir

    2007-10-30

    A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.

  14. Kinetic model of impurity poisoning during growth of calcite

    SciTech Connect

    DeYoreo, J; Wasylenki, L; Dove, P; Wilson, D; Han, N

    2004-05-18

    The central role of the organic component in biologically controlled mineralization is widely recognized. These proteins are characterized by a high proportion of acidic amino acid residues, especially aspartate, Asp. At the same time, biomineralization takes place in the presence of a number of naturally-occurring, inorganic impurities, particularly Mg and Sr. In an attempt to decipher the controls on calcite growth imposed by both classes of modifiers, we have used in situ AFM to investigate the dependence of growth morphology and step kinetics on calcite in the presence of Sr{sup 2+}, as well as a wide suite of Aspartic acid-bearing polypeptides. In each case, we observe a distinct and step-specific modification. Most importantly, we find that the step speed exhibits a characteristic dependence on impurity concentration not predicted by existing crystal growth models. While all of the impurities clearly induce appearance of a 'dead zone,' neither the width of that dead zone nor the dependence of step speed on activity or impurity content can be explained by invoking the Gibbs-Thomson effect, which is the basis for the Cabrera-Vermilyea model of impurity poisoning. Common kink-blocking models also fail to explain the observed dependencies. Here we propose a kinetic model of inhibition based on a 'cooperative' effect of impurity adsorption at adjacent kink sites. The model is in qualitative agreement with the experimental results in that it predicts a non-linear dependence of dead zone width on impurity concentration, as well as a sharp drop in step speed above a certain impurity content. However, a detailed model of impurity adsorption kinetics that give quantitative agreement with the data has yet to be developed.

  15. Glass susceptibility: Growth kinetics and saturation under shear

    NASA Astrophysics Data System (ADS)

    Nandi, Saroj Kumar; Ramaswamy, Sriram

    2016-07-01

    We study the growth kinetics of glassy correlations in a structural glass by monitoring the evolution, within mode-coupling theory, of a suitably defined three-point function χC(t ,tw) with time t and waiting time tw. From the complete wave-vector-dependent equations of motion for domain growth, we pass to a schematic limit to obtain a numerically tractable form. We find that the peak value χCP of χC(t ,tw) , which can be viewed as a correlation volume, grows as tw0.5, and the relaxation time as tw0.8, following a quench to a point deep in the glassy state. These results constitute a theoretical explanation of the simulation findings of Parisi [J. Phys. Chem. B 103, 4128 (1999), 10.1021/jp983967m] and Kob and Barrat [Phys. Rev. Lett. 78, 4581 (1997), 10.1103/PhysRevLett.78.4581], and they are also in qualitative agreement with Parsaeian and Castillo [Phys. Rev. E 78, 060105(R) (2008), 10.1103/PhysRevE.78.060105]. On the other hand, if the quench is to a point on the liquid side, the correlation volume grows to saturation. We present a similar calculation for the growth kinetics in a p -spin spin glass mean-field model where we find a slower growth, χCP˜tw0.13 . Further, we show that a shear rate γ ˙ cuts off the growth of glassy correlations when tw˜1 /γ ˙ for quench in the glassy regime and tw=min(tr,1 /γ ˙) in the liquid, where tr is the relaxation time of the unsheared liquid. The relaxation time of the steady-state fluid in this case is ∝γ˙-0.8 .

  16. Selective growth of graphene in layer-by-layer via chemical vapor deposition.

    PubMed

    Park, Jaehyun; An, Hyosub; Choi, Dong-Chul; Hussain, Sajjad; Song, Wooseok; An, Ki-Seok; Lee, Won-Jun; Lee, Naesung; Lee, Wan-Gyu; Jung, Jongwan

    2016-08-14

    Selective and precise control of the layer number of graphene remains a critical issue for the practical applications of graphene. First, it is highly challenging to grow a continuous and uniform few-layer graphene since once the monolayer graphene fully covers a copper (Cu) surface, the growth of the second layer stops, resulting in mostly nonhomogeneous films. Second, from the selective adlayer growth point of view, there is no clear pathway for achieving this. We have developed the selective growth of a graphene adlayer in layer-by-layer via chemical vapor deposition (CVD) which makes it possible to stack graphene on a specific position. The key idea is to deposit a thin Cu layer (∼40 nm thick) on pre-grown monolayer graphene and to apply additional growth. The thin Cu atop the graphene/Cu substrate acts as a catalyst to decompose methane (CH4) gas during the additional growth. The adlayer is grown selectively on the pre-grown graphene, and the thin Cu is removed through evaporation during CVD, eventually forming large-area and uniform double layer graphene. With this technology, highly uniform graphene films with precise thicknesses of 1 to 5 layers and graphene check patterns with 1 to 3 layers were successfully demonstrated. This method provides precise LBL growth for a uniform graphene film and a technique for the design of new graphene devices. PMID:27436358

  17. Surface induced constant composition crystal growth kinetics studies. The brushite gypsum system

    NASA Astrophysics Data System (ADS)

    Hina, A.; Nancollas, G. H.; Grynpas, M.

    2001-02-01

    The possible oriented growth of one crystalline phase on the surface of another is especially important in systems containing both phosphate and sulfate salts of calcium. Whether the overgrowth results from a true epitaxial relationship is dependent on factors such as the thermodynamic driving forces and the free energies of the surfaces. Despite the fact that calcium sulfate dihydrate (CSD, gypsum) and calcium hydrogen phosphate dihydrate (DCPD, brushite) show many crystallographic and structural analogies, their surface reactions are quite different. The nucleation and growth of gypsum on brushite surfaces has been investigated in supersaturated solutions of calcium sulfate dihydrate at 25.0°C using the constant composition (CC) method. During the kinetics experiments, the harvested solid phases were examined by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDS). Induction periods, τ, preceding the initial formation of gypsum crystals at the brushite surfaces, varied markedly with relative supersaturation, σ. A thin layer wicking method was used to investigate the interfacial free energies of the growing phases, and these data were also calculated from the kinetics results. The interfacial free energy, γ, estimated from initial growth rates was 8.4 mJ m -2, while that calculated from the induction times was 8.9 mJ m -2. These values were in agreement with those determined directly using thin layer wicking.

  18. Growth of oxide exchange bias layers

    DOEpatents

    Chaiken, A.; Michel, R.P.

    1998-07-21

    An oxide (NiO, CoO, NiCoO) antiferromagnetic exchange bias layer produced by ion beam sputtering of an oxide target in pure argon (Ar) sputtering gas, with no oxygen gas introduced into the system. Antiferromagnetic oxide layers are used, for example, in magnetoresistive readback heads to shift the hysteresis loops of ferromagnetic films away from the zero field axis. For example, NiO exchange bias layers have been fabricated using ion beam sputtering of an NiO target using Ar ions, with the substrate temperature at 200 C, the ion beam voltage at 1000V and the beam current at 20 mA, with a deposition rate of about 0.2 {angstrom}/sec. The resulting NiO film was amorphous. 4 figs.

  19. Growth of oxide exchange bias layers

    DOEpatents

    Chaiken, Alison; Michel, Richard P.

    1998-01-01

    An oxide (NiO, CoO, NiCoO) antiferromagnetic exchange bias layer produced by ion beam sputtering of an oxide target in pure argon (Ar) sputtering gas, with no oxygen gas introduced into the system. Antiferromagnetic oxide layers are used, for example, in magnetoresistive readback heads to shift the hysteresis loops of ferromagnetic films away from the zero field axis. For example, NiO exchange bia layers have been fabricated using ion beam sputtering of an NiO target using Ar ions, with the substrate temperature at 200.degree. C., the ion beam voltage at 1000V and the beam current at 20 mA, with a deposition rate of about 0.2 .ANG./sec. The resulting NiO film was amorphous.

  20. Kinetic study on hot-wire-assisted atomic layer deposition of nickel thin films

    SciTech Connect

    Yuan, Guangjie Shimizu, Hideharu; Momose, Takeshi; Shimogaki, Yukihiro

    2014-01-15

    High-purity Ni films were deposited using hot-wire-assisted atomic layer deposition (HW-ALD) at deposition temperatures of 175, 250, and 350 °C. Negligible amount of nitrogen or carbon contamination was detected, even though the authors used NH{sub 2} radical as the reducing agent and nickelocene as the precursor. NH{sub 2} radicals were generated by the thermal decomposition of NH{sub 3} with the assist of HW and used to reduce the adsorbed metal growth precursors. To understand and improve the deposition process, the kinetics of HW-ALD were analyzed using a Langmuir-type model. Unlike remote-plasma-enhanced atomic layer deposition, HW-ALD does not lead to plasma-induced damage. This is a significant advantage, because the authors can supply sufficient NH{sub 2} radicals to deposit high-purity metallic films by adjusting the distance between the hot wire and the substrate. NH{sub 2} radicals have a short lifetime, and it was important to use a short distance between the radical generation site and substrate. Furthermore, the impurity content of the nickel films was independent of the deposition temperature, which is evidence of the temperature-independent nature of the NH{sub 2} radical flux and the reactivity of the NH{sub 2} radicals.

  1. Kinetically controlled growth of gallium on stepped Si (553) surface

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Pasha, Syed Khalid; Govind

    2013-10-01

    Kinetically controlled growth of gallium (Ga) metal has been reported on high index stepped Si (553) surface and its thermal stability with various novel superstructural phases has been analyzed. Auger electron spectroscopy studies revealed that the adsorption of Ga at room temperature (RT) follows Frank-van der Merwe (FM) growth mode while for higher substrate temperature, Ga adsorption remains within the submonolayer range. Thermal desorption and low energy electron diffraction studies investigated the formation of thermally stable Ga-islands and the various Ga induced superstructural phase on Si (553). During room temperature adsorption, (1 1 1)7 × 7 facet of Si (553) reconstructed into (1 1 1)6 × 6 facet while during desorption process, stable (1 1 1)6 × 6 and (1 1 1)√3 × √3-R30° surface reconstructions has been observed.

  2. Troilite formation kinetics and growth mechanism in the solar nebula. [Abstract only

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.; Fegley, B., Jr.

    1994-01-01

    Troilite formation via the reaction Fe(s) + H2S(g) + H2(g) is the major mechanism for S retention in grains in the solar nebula. Thermodynamic calculations predict that troilite condenses from a solar composition gas. We present experimental results on the kinetics and growth of troilite crystals on Fe metal at temperature (450-650 C) and composition (50-1000 ppm H2S in H2) conditions similar to those in the solar nebula. The fraction of Fe reacted (based on gravimetric data) is plotted at 450, 505, 575, and 650 C. The thickness change of unreacted iron (measured by optical microscopy) is plotted at 575 and 650 C vs. time. the weight change per unit area varies as the square root of time at the lower temperatures and varies linearly with time at the highest temperature. The growth behavior along the lower isotherms is due to diffusion. This behavior suggests sulfide diffusion to the metal-sulfide interface and suggests Fe(2+) diffusion to the sulfide-gas interface. The reaction along the highest isotherm appears to be interface controlled. The formation of troilite crystals is a rapid process forming measurable layers in a few hours. The crystalgrowth is complicated. Initially there are intergrowths of troilite into the pure Fe metal. As the reaction progresses two distinct layers of troilite crystals form. One is in contact with the Fe metal and consists of small randomly oriented crystals with pore space between them. The outermost layer contains large crystals that are all oriented in the same direction. The intergrowth layer is much smaller at 650 C than at 575 C. This suggest that FeS nucleation is inhibited at the higher temperature, accounting for the initially slower reaction rate. Once nucleated, the reaction kinetics are apparently controlled by the growth of the crystals at the interface.

  3. Continuous growth kinetics of Candida utilis in pineapple cannery effluent

    SciTech Connect

    Prior, B.A.

    1984-01-01

    Candida utilis was grown on a pineapple cannery effluent as the sole carbon and energy source in a chemostat at dilution rates between 0.10 and 0.62 h/sup -1/ to determine the growth kinetics. The principal sugars in the effluent were sucrose, glucose, and fructose. The cell yield coefficient on carbohydrate varied with dilution rate and a maximum value of 0.63 was observed at a dilution rate of 0.33 h/sup -1/. The steady-state concentrations of carbohydrate, reducing sugar, and chemical oxygen demand (COD) appeared to follow Monod saturation kinetics with increasing dilution rate, although none of the measured parameters represented a pure substrate. The maximum specific growth rate and reducing sugar saturation constant were 0.64 h/sup -1/ and 0.060 g/L, respectively. A maximum cell mass productivity of 2.3 g/L h was observed at a dilution rate of 0.51 h/sup -1/. At this dilution rate, only 68% of the COD was removed. A 95% COD removal was attained at a dilution rate of 0.10 h/sup -1/. Optimal yeast productivity and COD reduction occurred at a dilution rate of 0.33 h/sup -1/.

  4. Thermodynamic-kinetic simulation of constrained dendrite growth in steels

    SciTech Connect

    Miettinen, J.

    2000-04-01

    A model of constrained dendritic growth for steels, based on thermodynamic and kinetic theory, is presented. The model links thermodynamic chemical potential-equality equations to an existing, approximate treatment of constrained dendritic growth in multicomponent steels, taking into account the deviation from the local thermodynamic equilibrium of the phase interface caused by interface friction, capillarity, and solute trapping. Due to the thermodynamic approach, with a thermodynamic model and recently assessed data, the present treatment yields a more accurate determination of phase stabilities than the earlier methods. Depending on the steel composition and the growth conditions (growth rate and temperature gradient), the model determines the dendrite tip undercooling, the primary solid phase (ferrite or austenite), the stability of that phase, certain dimensions of the microstructure, and the solute accumulation ahead of the dendrite tip. A special optional calculations is that of the equally probable formation of ferrite and austenite in stainless steels. Calculations for testing the model and for validation it with experimental data are presented.

  5. Kinetics of ice particles growth in the polar summer mesosphere

    NASA Astrophysics Data System (ADS)

    Zasetsky, A. Y.; Petelina, S. V.

    2009-05-01

    The growth kinetics of ice particles in the polar summer mesosphere is discussed. The particle growth time is calculated using the temperature, water vapor density, and ice number density simultaneously measured by the infrared Fourier Transform Spectrometer on the Atmospheric Chemistry Experiment (ACE-FTS) satellite. The formation rate for ice particles is a very strong function of temperature and water vapor concentration. We found the equilibrium radius of ice particles to be in the range from 20 to 70 nm, and the formation time - from about 2 hours at 150 K to about 18 hours at 125 K. Our results imply that in addition to the commonly accepted particle growth during their sedimentation from higher altitudes, in-situ growth to radii of 50-70 nm at mesospheric temperatures near 150 K in two hours or less may also be possible. Our analysis of possible shapes for mesospheric ice particles using the band shape of ice absorption feature measured by ACE-FTS suggests that cubes or compact hexagonal prisms (with an aspect ratio of 1.1) are the best candidates to represent the crystalline ice particles in the polar summer mesosphere.

  6. Boundary-layer analysis for the convection/diffusion transition in dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Huang, S. C.

    1981-01-01

    The supercooling dependence of dendritic growth kinetics under the influence of convective heat transport is investigated theoretically and experimentally with emphasis on theoretical prediction of the supercooling level at which the transition from diffusion-controlled to convection-controlled dendritic growth occurs. It is shown that the crossover between diffusive and convective transport depends on the relative thickness of the Stefan length compared with the thermal boundary layer. These lengths become equal at a supercooling which may be calculated from diffusion theory and fluid mechanics. It is also shown that the crossover supercooling varies weakly with the gravitational acceleration, melt viscosity, and the volumetric expansion coefficient.

  7. Buffer layer effect on ZnO nanorods growth alignment

    NASA Astrophysics Data System (ADS)

    Zhao, Dongxu; Andreazza, Caroline; Andreazza, Pascal; Ma, Jiangang; Liu, Yichun; Shen, Dezhen

    2005-06-01

    Vertical aligned ZnO nanorods array was fabricated on Si with introducing a ZnO thin film as a buffer layer. Two different nucleation mechanisms were found in growth process. With using Au catalyst, Zn vapor could diffuse into Au nanoclusters with forming a solid solution. Then the ZnO nucleation site is mainly on the catalyst by oxidation of Au/Zn alloy. Without catalyst, nucleation could occur directly on the surface of buffer layer by homoepitaxy. The density and the size of ZnO nanorods could be governed by morphological character of catalyst and buffer layer. The nanorods growth is followed by vapor-solid mechanism.

  8. Kinetics of droplet growth observed in recent field campaigns

    NASA Astrophysics Data System (ADS)

    Mei, F.; Wang, J.

    2012-12-01

    Atmospheric aerosols can indirectly influence global climate budget by changing the microphysical structure, lifetime, and coverage of clouds. While it is generally agreed that aerosol indirect effects act to cool the Earth-atmosphere system by increasing cloud reflectivity and coverage, the magnitudes of the indirect effects are poorly understood. The formation of cloud droplets from aerosol particles is kinetically controlled by the availability of water vapor, equilibrium water vapor pressure above the growing droplet surface, and both the gas phase and aerosol phase mass transfer resistances. It has been hypothesized that the formation of surface organic films or the delay in dissolution of solute could significantly delay the growth of cloud droplets. Such delay could lead to a higher maximum supersaturation within a rising cloud parcel, therefore higher droplet number concentration and smaller droplet size at constant liquid water content. When only a subset of the droplets experiences significant growth delay, the overall droplet size spectrum will be broadened, which facilitates the formation of precipitation. During three recent field campaigns (CalNex-LA, CARES, and Aerosol Intensive Observation Period at Brookhaven National Laboratory), the CCN activity and droplet growth of size selected particles ranging from 25 to 320 nm were characterized by a CCN counter under supersaturations from 0.1% to 0.8%. The three campaigns allow us to examine the droplet growth for many representative organic aerosol types, including biogenic SOA, anthropogenic SOA, and organic aerosols from biomass burning. The droplet growth of size-selected ambient particles inside the CCN counter was found to be influenced by a number of parameters, including particle critical supersaturation, heterogeneity in particle composition, and particle concentration. For example, reduced droplet growth due to water vapor depletion was observed when particle concentration was higher than 200 cm

  9. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE PAGES

    Godinho, Jose R. A.; Stack, Andrew G.

    2015-03-30

    Here we investigate the growth kinetics and morphology of barite (BaSO4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overall growth ratemore » of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m-2∙h-1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl2, respectively.« less

  10. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    SciTech Connect

    Godinho, Jose R. A.; Stack, Andrew G.

    2015-03-30

    Here we investigate the growth kinetics and morphology of barite (BaSO4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overall growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m-2∙h-1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl2, respectively.

  11. Glass susceptibility: Growth kinetics and saturation under shear.

    PubMed

    Nandi, Saroj Kumar; Ramaswamy, Sriram

    2016-07-01

    We study the growth kinetics of glassy correlations in a structural glass by monitoring the evolution, within mode-coupling theory, of a suitably defined three-point function χ_{C}(t,t_{w}) with time t and waiting time t_{w}. From the complete wave-vector-dependent equations of motion for domain growth, we pass to a schematic limit to obtain a numerically tractable form. We find that the peak value χ_{C}^{P} of χ_{C}(t,t_{w}), which can be viewed as a correlation volume, grows as t_{w}^{0.5}, and the relaxation time as t_{w}^{0.8}, following a quench to a point deep in the glassy state. These results constitute a theoretical explanation of the simulation findings of Parisi [J. Phys. Chem. B 103, 4128 (1999)JPCBFK1520-610610.1021/jp983967m] and Kob and Barrat [Phys. Rev. Lett. 78, 4581 (1997)PRLTAO0031-900710.1103/PhysRevLett.78.4581], and they are also in qualitative agreement with Parsaeian and Castillo [Phys. Rev. E 78, 060105(R) (2008)PLEEE81539-375510.1103/PhysRevE.78.060105]. On the other hand, if the quench is to a point on the liquid side, the correlation volume grows to saturation. We present a similar calculation for the growth kinetics in a p-spin spin glass mean-field model where we find a slower growth, χ_{C}^{P}∼t_{w}^{0.13}. Further, we show that a shear rate γ[over ̇] cuts off the growth of glassy correlations when t_{w}∼1/γ[over ̇] for quench in the glassy regime and t_{w}=min(t_{r},1/γ[over ̇]) in the liquid, where t_{r} is the relaxation time of the unsheared liquid. The relaxation time of the steady-state fluid in this case is ∝γ[over ̇]^{-0.8}. PMID:27575179

  12. Lidar observations of mixed layer dynamics - Tests of parameterized entrainment models of mixed layer growth rate

    NASA Technical Reports Server (NTRS)

    Boers, R.; Eloranta, E. W.; Coulter, R. L.

    1984-01-01

    Ground based lidar measurements of the atmospheric mixed layer depth, the entrainment zone depth and the wind speed and wind direction were used to test various parameterized entrainment models of mixed layer growth rate. Six case studies under clear air convective conditions over flat terrain in central Illinois are presented. It is shown that surface heating alone accounts for a major portion of the rise of the mixed layer on all days. A new set of entrainment model constants was determined which optimized height predictions for the dataset. Under convective conditions, the shape of the mixed layer height prediction curves closely resembled the observed shapes. Under conditions when significant wind shear was present, the shape of the height prediction curve departed from the data suggesting deficiencies in the parameterization of shear production. Development of small cumulus clouds on top of the layer is shown to affect mixed layer depths in the afternoon growth phase.

  13. Nanoshells made easy: improving Au layer growth on nanoparticle surfaces.

    PubMed

    Brinson, Bruce E; Lassiter, J Britt; Levin, Carly S; Bardhan, Rizia; Mirin, Nikolay; Halas, Naomi J

    2008-12-16

    The growth of a continuous, uniform Au layer on a dielectric nanoparticle is the critical step in the synthesis of nanoparticles such as nanoshells or nanorice, giving rise to their unique geometry-dependent plasmon resonant properties. Here, we report a novel, streamlined method for Au layer metallization on prepared nanoparticle surfaces using carbon monoxide as the reducing agent. This approach consistently yields plasmonic nanoparticles with highly regular shell layers and is immune to variations in precursor or reagent preparation. Single particle spectroscopy combined with scanning electron microscopy reveal that thinner, more uniform shell layers with correspondingly red-shifted optical resonances are achievable with this approach. PMID:19360963

  14. Arabidopsis thaliana root growth kinetics and lunisolar tidal acceleration.

    PubMed

    Fisahn, Joachim; Yazdanbakhsh, Nima; Klingele, Emile; Barlow, Peter

    2012-07-01

    • All living organisms on Earth are continually exposed to diurnal variations in the gravitational tidal force due to the Sun and Moon. • Elongation of primary roots of Arabidopsis thaliana seedlings maintained at a constant temperature was monitored for periods of up to 14 d using high temporal- and spatial-resolution video imaging. The time-course of the half-hourly elongation rates exhibited an oscillation which was maintained when the roots were placed in the free-running condition of continuous illumination. • Correlation between the root growth kinetics collected from seedlings initially raised under several light protocols but whose roots were subsequently in the free-running condition and the lunisolar tidal profiles enabled us to identify that the latter is the probable exogenous determinant of the rhythmic variation in root elongation rate. Similar observations and correlations using roots of Arabidopsis starch mutants suggest a central function of starch metabolism in the response to the lunisolar tide. The periodicity of the lunisolar tidal signal and the concomitant adjustments in root growth rate indicate that an exogenous timer exists for the modulation of root growth and development. • We propose that, in addition to the sensitivity to Earthly 1G gravity, which is inherent to all animals and plants, there is another type of responsiveness which is attuned to the natural diurnal variations of the lunisolar tidal force. PMID:22583121

  15. Arabidopsis thaliana root growth kinetics and lunisolar tidal acceleration.

    PubMed

    Fisahn, Joachim; Yazdanbakhsh, Nima; Klingele, Emile; Barlow, Peter

    2012-07-01

    • All living organisms on Earth are continually exposed to diurnal variations in the gravitational tidal force due to the Sun and Moon. • Elongation of primary roots of Arabidopsis thaliana seedlings maintained at a constant temperature was monitored for periods of up to 14 d using high temporal- and spatial-resolution video imaging. The time-course of the half-hourly elongation rates exhibited an oscillation which was maintained when the roots were placed in the free-running condition of continuous illumination. • Correlation between the root growth kinetics collected from seedlings initially raised under several light protocols but whose roots were subsequently in the free-running condition and the lunisolar tidal profiles enabled us to identify that the latter is the probable exogenous determinant of the rhythmic variation in root elongation rate. Similar observations and correlations using roots of Arabidopsis starch mutants suggest a central function of starch metabolism in the response to the lunisolar tide. The periodicity of the lunisolar tidal signal and the concomitant adjustments in root growth rate indicate that an exogenous timer exists for the modulation of root growth and development. • We propose that, in addition to the sensitivity to Earthly 1G gravity, which is inherent to all animals and plants, there is another type of responsiveness which is attuned to the natural diurnal variations of the lunisolar tidal force.

  16. Effect of yeast extract on growth kinetics of Monascus purpureus.

    PubMed

    Pereira, D G; Kilikian, B V

    2001-01-01

    Growth kinetics and red pigment production of Monascus purpureus CCT 3802 was studied. A reproducible inoculum with extremely dispersed hyphae for bioreactor runs was obtained through a two-step cultivation in a shaker. First, the spores were cultivated in a complex medium rendering a suspension of vegetative cells. In the second step these cells were grown in a semisynthetic medium. Two types of media were employed in the bioreactor runs: a semisynthetic (glucose, salts, and yeast extract), and a synthetic, without yeast extract. The inclusion of yeast extract, caused an increase in cell yield on glucose (Yx/s) as high as 40%. Also, yeast extract probably yielded a higher proportion of red pigment associated with the cell, relative to the synthetic medium. On the other hand, cells grown on the synthetic medium were slightly higher producers of red soluble pigments.

  17. Selective growth of graphene in layer-by-layer via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Park, Jaehyun; An, Hyosub; Choi, Dong-Chul; Hussain, Sajjad; Song, Wooseok; An, Ki-Seok; Lee, Won-Jun; Lee, Naesung; Lee, Wan-Gyu; Jung, Jongwan

    2016-07-01

    Selective and precise control of the layer number of graphene remains a critical issue for the practical applications of graphene. First, it is highly challenging to grow a continuous and uniform few-layer graphene since once the monolayer graphene fully covers a copper (Cu) surface, the growth of the second layer stops, resulting in mostly nonhomogeneous films. Second, from the selective adlayer growth point of view, there is no clear pathway for achieving this. We have developed the selective growth of a graphene adlayer in layer-by-layer via chemical vapor deposition (CVD) which makes it possible to stack graphene on a specific position. The key idea is to deposit a thin Cu layer (~40 nm thick) on pre-grown monolayer graphene and to apply additional growth. The thin Cu atop the graphene/Cu substrate acts as a catalyst to decompose methane (CH4) gas during the additional growth. The adlayer is grown selectively on the pre-grown graphene, and the thin Cu is removed through evaporation during CVD, eventually forming large-area and uniform double layer graphene. With this technology, highly uniform graphene films with precise thicknesses of 1 to 5 layers and graphene check patterns with 1 to 3 layers were successfully demonstrated. This method provides precise LBL growth for a uniform graphene film and a technique for the design of new graphene devices.Selective and precise control of the layer number of graphene remains a critical issue for the practical applications of graphene. First, it is highly challenging to grow a continuous and uniform few-layer graphene since once the monolayer graphene fully covers a copper (Cu) surface, the growth of the second layer stops, resulting in mostly nonhomogeneous films. Second, from the selective adlayer growth point of view, there is no clear pathway for achieving this. We have developed the selective growth of a graphene adlayer in layer-by-layer via chemical vapor deposition (CVD) which makes it possible to stack graphene

  18. Release Kinetics of Paclitaxel and Cisplatin from Two and Three Layered Gold Nanoparticles

    PubMed Central

    England, Christopher G.; Miller, M. Clarke; Kuttan, Ashani; Trent, John O.; Frieboes, Hermann B.

    2015-01-01

    Gold nanoparticles functionalized with biologically-compatible layers may achieve stable drug release while avoiding adverse effects in cancer treatment. We study cisplatin and paclitaxel release from gold cores functionalized with hexadecanethiol (TL) and phosphatidylcholine (PC) to form two-layer nanoparticles, or TL, PC, and high density lipoprotein (HDL) to form three-layer nanoparticles. Drug release was monitored for 14 days to assess long term effects of the core surface modifications on release kinetics. Release profiles were fitted to previously developed kinetic models to differentiate possible release mechanisms. The hydrophilic drug (cisplatin) showed an initial (5-hr.) burst, followed by a steady release over 14 days. The hydrophobic drug (paclitaxel) showed a steady release over the same time period. Two layer nanoparticles released 64.0 ± 2.5% of cisplatin and 22.3 ± 1.5% of paclitaxel, while three layer nanoparticles released the entire encapsulated drug. The Korsmeyer-Peppas model best described each release scenario, while the simplified Higuchi model also adequately described paclitaxel release from the two layer formulation. We conclude that functionalization of gold nanoparticles with a combination of TL and PC may help to modulate both hydrophilic and hydrophobic drug release kinetics, while the addition of HDL may enhance long term release of hydrophobic drug. PMID:25753197

  19. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    SciTech Connect

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  20. Correlation between growth kinetics and nanoscale resistive switching properties of SrTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Muenstermann, Ruth; Menke, Tobias; Dittmann, Regina; Mi, Shaobo; Jia, Chun-Lin; Park, Daesung; Mayer, Joachim

    2010-12-01

    We deliberately fabricated SrTiO3 thin films deviating from ideal stoichiometry and from two-dimensional layer-by-layer growth mode, in order to study the impact of well pronounced defect arrangements on the nanoscale electrical properties. By combining transmission electron microscopy with conductive-tip atomic force microscopy we succeeded to elucidate the microstructure of thin films grown by pulsed laser deposition under kinetically limited growth conditions and to correlate it with the local electrical properties. SrTiO3 thin films, grown in a layer-by-layer growth mode, exhibit a defect structure and conductivity pattern close to single crystals, containing irregularly distributed, resistive switching spots. In contrast to this, Ti-rich films exhibit short-range-ordered, well-conducting resistive switching units. For Ti-rich films grown in a kinetically more restricted island growth mode, we succeeded to identify defective island boundaries with the location of tip-induced resistive switching. The observed nanoscale switching behavior is consistent with a voltage driven oxygen vacancy movement that induces a local redox-based metal-to-insulator transition. Switching occurs preferentially in defect-rich regions, that exhibit a high concentration of oxygen vacancies and might act as easy-diffusion-channels.

  1. Kinetics and mechanisms of crystal growth inhibition of indomethacin by model precipitation inhibitors

    NASA Astrophysics Data System (ADS)

    Patel, Dhaval

    Supersaturating Drug Delivery Systems (SDDS) could enhance oral bioavailability of poorly water soluble drugs (PWSD). Precipitation inhibitors (PIs) in SDDS could maintain supersaturation by inhibiting nucleation, crystal growth, or both. The mechanisms by which these effects are realized are generally unknown. The goal of this dissertation was to explore the mechanisms underpinning the effects of model PIs including hydroxypropyl beta-cyclodextrins (HP-beta-CD), hydroxypropyl methylcellulose (HPMC), and polyvinylpyrrolidone (PVP) on the crystal growth of indomethacin, a model PWSD. At high degrees of supersaturation (S), the crystal growth kinetics of indomethacin was bulk diffusion-controlled, which was attributed to a high energy form deposited on the seed crystals. At lower S, indomethacin growth kinetics was surface integration-controlled. The effect of HP-beta-CD at high S was successfully modeled using the reactive diffusion layer theory. The superior effects of PVP and HPMC as compared to HP-beta-CD at high S were attributed to a change in the rate limiting step from bulk diffusion to surface integration largely due to prevention of the high energy form formation. The effects of PIs at low S were attributed to significant retardation of the surface integration rate, a phenomenon that may reflect the adsorption of PIs onto the growing surface. PVP was selected to further understand the relationship between adsorption and crystal growth inhibition. The Langmuir adsorption isotherm model fit the adsorption isotherms of PVP and N-vinylpyrrolidone well. The affinity and extent of adsorption of PVP were significantly higher than those of N-vinylpyrrolidone, which was attributed to cooperative interactions between PVP and indomethacin. The extent of PVP adsorption on a weight-basis was greater for higher molecular weight PVP but less on a molar-basis indicating an increased percentage of loops and tails for higher molecular weight PVPs. PVP significantly inhibited

  2. Physiologic growth hormone replacement improves fasting lipid kinetics in patients with HIV lipodystrophy syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    HIV lipodystrophy syndrome (HLS) is characterized by accelerated lipolysis, inadequate fat oxidation, increased hepatic reesterification, and a high frequency of growth hormone deficiency (GHD). The effect of growth hormone (GH) replacement on these lipid kinetic abnormalities is unknown. We aimed ...

  3. Direct Observation of Aggregative Nanoparticle Growth: Kinetic Modeling of the Size Distribution and Growth Rate

    SciTech Connect

    Woehl, Taylor J.; Park, Chiwoo; Evans, James E.; Arslan, Ilke; Ristenpart, William D.; Browning, Nigel D.

    2014-01-08

    Direct observations of solution-phase nanoparticle growth using in situ liquid transmission electron microscopy (TEM) have demonstrated the importance of “non-classical” growth mechanisms, such as aggregation and coalescence, on the growth and final morphology of nanocrystals at the atomic and single nanoparticle scales. To date, groups have quantitatively interpreted the mean growth rate of nanoparticles in terms of the Lifshitz-Slyozov-Wagner (LSW) model for Ostwald ripening, but less attention has been paid to modeling the corresponding particle size distribution. Here we use in situ fluid stage scanning TEM to demonstrate that silver nanoparticles grow by a length-scale dependent mechanism, where individual nanoparticles grow by monomer attachment but ensemble-scale growth is dominated by aggregation. Although our observed mean nanoparticle growth rate is consistent with the LSW model, we show that the corresponding particle size distribution is broader and more symmetric than predicted by LSW. Following direct observations of aggregation, we interpret the ensemble-scale growth using Smoluchowski kinetics and demonstrate that the Smoluchowski model quantitatively captures the mean growth rate and particle size distribution.

  4. Growth kinetics of forsterite reaction rims at high-pressure

    NASA Astrophysics Data System (ADS)

    Nishihara, Yu; Maruyama, Genta; Nishi, Masayuki

    2016-08-01

    Growth kinetics of forsterite (Fo) reaction rims between periclase (Per) and enstatite (En) were studied experimentally at pressure (P) and temperature (T) conditions of 3.0-11.1 GPa and 1473-1873 K, respectively. Pt markers originally placed at the Per-En interface were always observed at the Per-Fo interface, which indicates that Mg and O are the diffusing species in Fo rim growth (Mg-O coupled diffusion). The presence of some En inclusions in Fo grains and the growth rate of the Fo rim suggests that grain boundary diffusion is dominant rather than lattice diffusion. Considering the very fast grain boundary diffusion of O in olivine, the Mg-O coupled grain boundary diffusion in Fo is deduced to be rate-limited by the diffusivity of Mg. Based on an analysis of data collected under dry conditions, the product of the Mg grain boundary diffusion coefficient (Dgb) and the effective grain boundary width (δ) was determined to be δDgb = δDgb,0exp[-(E∗ + PV∗)/RT] with δDgb,0 = 10-9.68 ± 1.51 m3/s, E∗ = 379 ± 44 kJ/mol and V∗ = -1.9 ± 1.4 cm3/mol. Our results, combined with previously reported data on Mg lattice diffusion in Fo, suggest that for Mg, the significance of grain boundary diffusion increases with depth in the Earth's upper mantle, although lattice diffusion is still dominant for typical mantle grain sizes of 1-10 mm.

  5. Growth kinetic model that describes the inhibitory and lytic effects of phenol on Candida tropicalis yeast.

    PubMed

    Ruiz-Ordaz, N; Hernández-Manzano, E; Ruiz-Lagúnez, J C; Cristiani-Urbina, E; Galíndez-Mayer, J

    1998-01-01

    The object of this work was to carry out a kinetic study on the Candida tropicalis cell lysis and to obtain a kinetic model that would describe the inhibitory and lytic effects of phenol on the yeast growth. From the experiments, a model for the growth kinetic behavior of the yeast was evolved. The proposed model describes satisfactorily the inhibitory and lytic effects of phenol on yeast cultures. From the kinetic model constants, it was found that C. tropicalis showed high affinity and tolerance toward phenol. The overall growth yields decreased when the initial phenol concentration increased, and it may be due to an increased maintenance coefficient and to cell lysis.

  6. Buoyant production and consumption of turbulence kinetic energy in cloud-topped mixed layers

    NASA Technical Reports Server (NTRS)

    Randall, D. A.

    1984-01-01

    It is pointed out that studies of the entraining planetary boundary layer (PBL) have generally emphasized the role of buoyancy fluxes in driving entrainment. The buoyancy flux is proportional to the rate of conversion of the potential energy of the mean flow into the kinetic energy of the turbulence. It is not unusual for conversion to proceed in both directions simultaneously. This occurs, for instance, in both clear and cloudy convective mixed layers which are capped by inversions. A partitioning of the net conversion into positive parts, generating turbulence kinetic energy (TKE), and negative parts (TKE-consuming), would make it possible to include the positive part in the gross production rate, and closure would be achieved. Three different approaches to partitioning have been proposed. The present investigation is concerned with a comparison of the three partitioning theories. Particular attention is given to the cloud-topped mixed layer because in this case the differences between two partitioning approaches are most apparent.

  7. Determination of kinetic parameters of crystal growth rate of borax in aqueous solution by using the rotating disc technique

    NASA Astrophysics Data System (ADS)

    Sahin, Omer; Aslan, Fevzi; Ozdemir, Mustafa; Durgun, Mustafa

    2004-10-01

    Growth rate of polycrystalline disc of borax compressed at different pressure and rotated at various speed has been measured in a rotating disc crystallizer under well-defined conditions of supersaturation. It was found that the mass transfer coefficient, K, increased while overall growth rate constant, Kg, and surface reaction constant, kr, decreased with increasing smoothness of the disc. It was also determined that kinetic parameters (kr , r , K , g) of crystal growth rate of borax decreased with increasing rotating speed of the polycrystalline disc. The effectiveness factor was calculated from the growth rate data to evaluate the relative magnitude of the steps in series bulk diffusion through the mass transfer boundary layer and the surface integration. At low rotating speed of disc, the crystal growth rate of borax is mainly controlled by integration. However, both diffusion and integration steps affect the growth rate of borax at higher rotating speed of polycrystalline disc.

  8. Growth of oxide layers on thin aluminum nitride samples measured by electron energy-loss spectroscopy

    SciTech Connect

    Sternitzke, M. . Dept. of Materials Science)

    1993-09-01

    AlN ceramics with different amounts of oxygen impurities were investigated by electron energy-loss spectroscopy (EELS). Because of the high dynamics of EEL spectra, a method was developed to record partial spectra and then to join them together to form a complete spectrum. The data obtained from EEL spectra were the nitrogen/oxygen concentration ratio, sample thickness, and energy-loss nearedge structures (ELNES). Because of spontaneous formation of an oxide layer on AIN samples immediately after ion milling, a method had to be developed which yielded the oxide layer thickness and the bulk oxygen content. The growth kinetics of the oxide layer were investigated by exposing the AlN samples at room temperature to air and to water for various times. From these measurements a logarithmic rate law for the oxidation of AlN at room temperature was obtained.

  9. Nonextensive treatment of nucleation and growth in a thin layer

    NASA Astrophysics Data System (ADS)

    Cetinel, Hakan; Kayacan, Ozhan

    2007-01-01

    In this study, a generalized method based upon nonextensive statistics is presented for nucleation and growth processes in a thin layer between two interfaces. It is shown that the presented mathematical model, which uses an index called the entropic index that measures the nonextensivity of the physical system, successfully deals with the nucleation and growth processes, and works better than Johnson-Mehl-Avrami-Kolmogorov model. The presented model also contains Austin-Rickett model as a special case.

  10. The kinetics of dolomite reaction rim growth under isostatic and non-isostatic pressure conditions

    NASA Astrophysics Data System (ADS)

    Helpa, V.; Rybacki, E.; Morales, L. G.; Abart, R.; Dresen, G. H.

    2013-12-01

    During burial and exhumation, rocks are simultaneously exposed to metamorphic reactions and tectonic stresses. Therefore, the reaction rate of newly formed minerals may depend on chemical and mechanical driving forces. Here, we investigate the reaction kinetics of dolomite (CaMg[CO3]2) rim growth by solid-state reactions experiments on oriented calcite (CaCO3) and magnesite (MgCO3) single crystals under isostatic and non-isostatic pressure conditions. Cylindrical samples of 3-5 mm length and 7 mm diameter were drilled and polished perpendicular to the rhombohedral cleavage planes of natural clear crystals. The tests were performed using a Paterson-type deformation apparatus at P = 400 MPa confining pressure, temperatures, T, between 750 and 850°C, and reaction durations, t, of 2 - 146 h to calculate the kinetic parameters of dolomite rim growth under isostatic stress conditions. For non-isostatic reaction experiments we applied in addition differential stresses, σ, up to 40 MPa perpendicular to the contact interface at T = 750°C for 4 - 171 h duration, initiating minor inelastic deformation of calcite. The thickness of the resulting dolomite reaction rims increases linearly with the square root of time, indicating a diffusion-controlled reaction. The rims consist of two different textural domains. Granular dolomite grains (≈ 2 -5 μm grain size) form next to calcite and elongated palisade-shaped grains (1-6 μm diameter) grow perpendicular to the magnesite interface. Texture measurements with the electron backscatter diffraction technique indicate that the orientations of dolomite grains are mainly influenced by the orientation of the calcite educt crystal, in particular in the granular rim. To some extent, the texture of dolomite palisades is also influenced by the orientation of magnesite. The thickness of the two individual layers increases with temperature. At 400 MPa isostatic pressure, T = 750°C and t = 29 hours, a 5 μm thick granular dolomite layer

  11. Deformation kinetics of layered personal protective material under impact via terahertz reflectometry

    NASA Astrophysics Data System (ADS)

    Rahman, Anis; Rahman, Aunik; Mentzer, Mark A.

    2014-05-01

    Terahertz dynamic scanning reflectometry (TDSR) was used for measuring layered materials' deformation kinetics spectra. Multi-layered materials are used for protective devices such as helmet and body armor. An in-situ measurement of deformation profile and other dynamic characteristics is important when such material is subjected to ballistic impacts. Current instrumentation is limited in their abilities to provide sub-surface information in a non-destructive fashion. A high sensitivity TDSR has been used to measure dynamic surface deformation characteristics in real-time (in-situ) and also at post deformation (ex-situ). Real-time ballistic deformation kinetics was captured with a high speed measurement system. The kinetics spectra was used to compute a number of crucial parameters such as deformation length and its propagation profile, the relaxation position, and the macroscopic vibration profile. In addition, the loss of mass due to impact was quantified for accurate determination of the trauma causing energy. For non-metallic substrates, a transmitted beam was used to calibrate mass loss, a priori, of the laminate layers due to impact. Deformation kinetics information may then be used to formulate trauma diagnosis conditions from blunt hit via the Sturdivan criterion [1]. The basic difference in the proposed approach is that here diagnostic criteria are inferred by measuring the helmet itself; no need to draw blood or any biopsy from the patient.

  12. Structure and charging kinetics of electrical double layers at large electrode voltage

    SciTech Connect

    Cagle, Clint; Feng, Guang; Qiao, Rui; Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent

    2009-01-01

    The structure and charging kinetics of electrical double layers (EDLs) at interfaces of NaCl solutions and planar electrodes are studied by molecular dynamics (MD) and Poisson Nernst Planck (PNP) simulations. Based on the MD results and prior experimental data, we show that counterion packing in planar EDLs does not reach the steric limit at electrode voltages below 1 V. In addition, we demonstrate that a PNP model, when complemented with a Stern model, can be effectively used to capture the overall charging kinetics. However, the PNP/Stern model can only give a qualitative description of the fine features of the EDL.

  13. Nucleation and Early Stages of Layer-by-Layer Growth of Metal Organic Frameworks on Surfaces

    PubMed Central

    2015-01-01

    High resolution atomic force microscopy (AFM) is used to resolve the evolution of crystallites of a metal organic framework (HKUST-1) grown on Au(111) using a liquid-phase layer-by-layer methodology. The nucleation and faceting of individual crystallites is followed by repeatedly imaging the same submicron region after each cycle of growth and we find that the growing surface is terminated by {111} facets leading to the formation of pyramidal nanostructures for [100] oriented crystallites, and triangular [111] islands with typical lateral dimensions of tens of nanometres. AFM images reveal that crystallites can grow by 5–10 layers in each cycle. The growth rate depends on crystallographic orientation and the morphology of the gold substrate, and we demonstrate that under these conditions the growth is nanocrystalline with a morphology determined by the minimum energy surface. PMID:26709359

  14. Isothermal Ice Crystallization Kinetics in the Gas-Diffusion Layer of a Proton-Exchange-Membrane Fuel Cell

    SciTech Connect

    Dursch, Thomas J.; Ciontea, Monica A.; Radke, Clayton J.; Weber, Adam Z.

    2011-12-01

    Nucleation and growth of ice in the fibrous gas-diffusion layer (GDL) of a proton-exchange membrane fuel cell (PEMFC) are studied using isothermal differential scanning calorimetry (DSC). Isothermal crystallization rates and pseudo-steady-state nucleation rates are obtained as a function of subcooling from heat-flow and induction-time measurements. Kinetics of ice nucleation and growth are studied at two polytetrafluoroethylene (PTFE) loadings (0 and 10 wt %) in a commercial GDL for temperatures between 240 and 273 K. A nonlinear ice-crystallization rate expression is developed using Johnson–Mehl–Avrami–Kolmogorov (JMAK) theory, in which the heat-transfer-limited growth rate is determined from the moving-boundary Stefan problem. Induction times follow a Poisson distribution and increase upon addition of PTFE, indicating that nucleation occurs more slowly on a hydrophobic fiber than on a hydrophilic fiber. The determined nucleation rates and induction times follow expected trends from classical nucleation theory. Finally, a validated rate expression is now available for predicting ice-crystallization kinetics in GDLs.

  15. Phase transitions and kinetic properties of gold nanoparticles confined between two-layer graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Wu, Nanhua; Chen, Jionghua; Wang, Jinjian; Shao, Jingling; Zhu, Xiaolei; Lu, Xiaohua; Guo, Lucun

    2016-11-01

    The thermodynamic and kinetic behaviors of gold nanoparticles confined between two-layer graphene nanosheets (two-layer-GNSs) are examined and investigated during heating and cooling processes via molecular dynamics (MD) simulation technique. An EAM potential is applied to represent the gold-gold interactions while a Lennard-Jones (L-J) potential is used to describe the gold-GNS interactions. The MD melting temperature of 1345 K for bulk gold is close to the experimental value (1337 K), confirming that the EAM potential used to describe gold-gold interactions is reliable. On the other hand, the melting temperatures of gold clusters supported on graphite bilayer are corrected to the corresponding experimental values by adjusting the εAu-C value. Therefore, the subsequent results from current work are reliable. The gold nanoparticles confined within two-layer GNSs exhibit face center cubic structures, which is similar to those of free gold clusters and bulk gold. The melting points, heats of fusion, and heat capacities of the confined gold nanoparticles are predicted based on the plots of total energies against temperature. The density distribution perpendicular to GNS suggests that the freezing of confined gold nanoparticles starts from outermost layers. The confined gold clusters exhibit layering phenomenon even in liquid state. The transition of order-disorder in each layer is an essential characteristic in structure for the freezing phase transition of the confined gold clusters. Additionally, some vital kinetic data are obtained in terms of classical nucleation theory.

  16. Coupled simulation of kinetic pedestal growth and MHD ELM crash

    SciTech Connect

    Park, G-Y; Cummings, J.; Chang, C S; Podhorszki, Norbert; Klasky, Scott A; Ku, S.; Pankin, A.; Samtaney, Ravi; Shoshani, A.; Snyder, P.; Sugiyama, L.

    2009-01-01

    Edge pedestal height and the accompanying ELM crash are critical elements of ITER physics yet to be understood and predicted through high performance computing. An entirely self-consistent first principles simulation is being pursued as a long term research goal, and the plan is planned for completion in time for ITER operation. However, a proof-of-principle work has already been established using a computational tool that employs the best first principles physics available at the present time. A kinetic edge equilibrium code XGC0, which can simulate the neoclassically dominant pedestal growth from neutral ionization (using a phenomenological residual turbulence diffusion motion superposed upon the neoclassical particle motion) is coupled to an extended MHD code M3D, which can perform the nonlinear ELM crash. The stability boundary of the pedestal is checked by an ideal MHD linear peeling-ballooning code, which has been validated against many experimental data sets for the large scale (type I) ELMs onset boundary. The coupling workflow and scientific results to be enabled by it are described.

  17. Coupled simulation of kinetic pedestal growth and MHD ELM crash

    SciTech Connect

    Park, G.; Cummings, J.; Chang, C. S.; Klasky, Scott A; Ku, S.; Podhorszki, Norbert; Pankin, A.; Samtaney, Ravi; Shoshani, A.; Snyder, P.; Strauss, H.; Sugiyama, L.; CPES Team, the

    2007-01-01

    Edge pedestal height and the accompanying ELM crash are critical elements of ITER physics yet to be understood and predicted through high performance computing. An entirely self-consistent first principles simulation is being pursued as a long term research goal, and the plan is planned for completion in time for ITER operation. However, a proof-of-principle work has already been established using a computational tool that employs the best first principles physics available at the present time. A kinetic edge equilibrium code XGC0, which can simulate the neoclassically dominant pedestal growth from neutral ionization (using a phenomenological residual turbulence diffusion motion superposed upon the neoclassical particle motion) is coupled to an extended MHD code M3D, which can perform the nonlinear ELM crash. The stability boundary of the pedestal is checked by an ideal MHD linear peeling-ballooning code, which has been validated against many experimental data sets for the large scale (type I) ELMs onset boundary. The coupling workflow and scientific results to be enabled by it are described.

  18. Reactions of allylic radicals that impact molecular weight growth kinetics.

    PubMed

    Wang, Kun; Villano, Stephanie M; Dean, Anthony M

    2015-03-01

    The reactions of allylic radicals have the potential to play a critical role in molecular weight growth (MWG) kinetics during hydrocarbon oxidation and/or pyrolysis. Due to their stability (when compared to alkyl radicals), they can accumulate to relatively high concentrations. Thus, even though the rate coefficients for their various reactions are small, the rates of these reactions may be significant. In this work, we use electronic structure calculations to examine the recombination, addition, and abstraction reactions of allylic radicals. For the recombination reaction of allyl radicals, we assign a high pressure rate rule that is based on experimental data. Once formed, the recombination product can potentially undergo an H-atom abstraction reaction followed by unimolecular cyclization and β-scission reactions. Depending upon the conditions (e.g., higher pressures) these pathways can lead to the formation of stable MWG species. The addition of allylic radicals to olefins can also lead to MWG species formation. Once again, cyclization of the adduct followed by β-scission is an important energy accessible route. Since the recombination and addition reactions produce chemically-activated adducts, we have explored the pressure- and temperature-dependence of the overall rate constants as well as that for the multiple product channels. We describe a strategy for estimating these pressure-dependencies for systems where detailed electronic structure information is not available. We also derive generic rate rules for hydrogen abstraction reactions from olefins and diolefins by methyl and allyl radicals.

  19. Growth mode evolution of hafnium oxide by atomic layer deposition

    SciTech Connect

    Nie, Xianglong; Ma, Fei; Ma, Dayan; Xu, Kewei

    2014-01-15

    HfO{sub 2} thin films were deposited using tetrakis-ethylmethylamido hafnium and H{sub 2}O as precursors on silicon by atomic layer deposition (ALD). The morphology and microstructures at different ALD cycles were characterized by atomic force microscopy and high-resolution transmission electron microscopy. Based on the height–height correlation function and power spectral density function, quantitative analysis of surface morphologies was performed. Three characteristic dimensions (ξ{sub 1}, ξ{sub 2}, and ξ{sub 3}) corresponding to three surface structures, islands, local and global fluctuations, were identified. The evolution of ALD growth mode at range of the three critical scales was investigated, respectively. It suggests the transformation of growth mode from quasi two-dimensional layer-by-layer to three-dimensional island for global fluctuations.

  20. Direct atomic-scale observation of layer-by-layer oxide growth during magnesium oxidation

    SciTech Connect

    Zheng, He; Wu, Shujing; Sheng, Huaping; Liu, Chun; Liu, Yu; Cao, Fan; Zhou, Zhichao; Zhao, Dongshan E-mail: dszhao@whu.edu.cn; Wang, Jianbo E-mail: dszhao@whu.edu.cn; Zhao, Xingzhong

    2014-04-07

    The atomic-scale oxide growth dynamics are directly revealed by in situ high resolution transmission electron microscopy during the oxidation of Mg surface. The oxidation process is characterized by the layer-by-layer growth of magnesium oxide (MgO) nanocrystal via the adatom process. Consistently, the nucleated MgO crystals exhibit faceted surface morphology as enclosed by (200) lattice planes. It is believed that the relatively lower surface energies of (200) lattice planes should play important roles, governing the growth mechanism. These results facilitate the understanding of the nanoscale oxide growth mechanism that will have an important impact on the development of magnesium or magnesium alloys with improved resistance to oxidation.

  1. Growth of iron cobalt oxides by atomic layer deposition.

    PubMed

    Lie, Martin; Barnholt Klepper, Karina; Nilsen, Ola; Fjellvåg, Helmer; Kjekshus, Arne

    2008-01-14

    Thin films of iron cobalt oxides with spinel-type structure are made by the atomic layer deposition (ALD) technique using Fe(thd)3 (Hthd = 2,2,6,6-tetramethylheptane-3,5-dione), Co(thd)2, and ozone as precursors. Pulse parameters for ALD-type growth are established and such growth can be achieved at deposition temperatures between 185 and 310 degrees C. Films have been deposited on amorphous soda-lime glass and single-crystalline substrates of Si(100), MgO(100), and alpha-Al2O3(001) which all provide crystalline films, but with various orientations and crystallite sizes. Application of an external magnetic field during the film growth does not influence film growth characteristics (growth rate, crystallinity, topography etc.). Magnetization data are reported for phase-pure films of spinel-type structure with composition Fe2CoO4.

  2. Adsorption of cobalt ferrite nanoparticles within layer-by-layer films: a kinetic study carried out using quartz crystal microbalance.

    PubMed

    Alcantara, Gustavo B; Paterno, Leonardo G; Afonso, André S; Faria, Ronaldo C; Pereira-da-Silva, Marcelo A; Morais, Paulo C; Soler, Maria A G

    2011-12-28

    The paper reports on the successful use of the quartz crystal microbalance technique to assess accurate kinetics and equilibrium parameters regarding the investigation of in situ adsorption of nanosized cobalt ferrite particles (CoFe(2)O(4)--10.5 nm-diameter) onto two different surfaces. Firstly, a single layer of nanoparticles was deposited onto the surface provided by the gold-coated quartz resonator functionalized with sodium 3-mercapto propanesulfonate (3-MPS). Secondly, the layer-by-layer (LbL) technique was used to build multilayers in which the CoFe(2)O(4) nanoparticle-based layer alternates with the sodium sulfonated polystyrene (PSS) layer. The adsorption experiments were conducted by modulating the number of adsorbed CoFe(2)O(4)/PSS bilayers (n) and/or by changing the CoFe(2)O(4) nanoparticle concentration while suspended as a stable colloidal dispersion. Adsorption of CoFe(2)O(4) nanoparticles onto the 3-MPS-functionalized surface follows perfectly a first order kinetic process in a wide range (two orders of magnitude) of nanoparticle concentrations. These data were used to assess the equilibrium constant and the adsorption free energy. Alternatively, the Langmuir adsorption constant was obtained while analyzing the isotherm data at the equilibrium. Adsorption of CoFe(2)O(4) nanoparticles while growing multilayers of CoFe(2)O(4)/PSS was conducted using colloidal suspensions with CoFe(2)O(4) concentration in the range of 10(-8) to 10(-6) (moles of cobalt ferrite per litre) and for different numbers of cycles n = 1, 3, 5, and 10. We found the adsorption of CoFe(2)O(4) nanoparticles within the CoFe(2)O(4)/PSS bilayers perfectly following a first order kinetic process, with the characteristic rate constant growing with the increase of CoFe(2)O(4) nanoparticle concentration and decreasing with the rise of the number of LbL cycles (n). Additionally, atomic force microscopy was employed for assessing the LbL film roughness and thickness. We found the film

  3. Methods for improved growth of group III nitride buffer layers

    DOEpatents

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  4. In situ atomic force microscopy of layer-by-layer crystal growth and key growth concepts

    NASA Astrophysics Data System (ADS)

    Rashkovich, L. N.; de Yoreo, J. J.; Orme, C. A.; Chernov, A. A.

    2006-12-01

    Contradictions that have been found recently between the representations of classical theory and experiments on crystal growth from solutions are considered. Experimental data show that the density of kinks is low in many cases as a result of the low rate of their fluctuation generation, the Gibbs-Thomson law is not always applicable in these cases, and there is inconsistency with the Cabrera-Vermilyea model. The theory of growth of non-Kossel crystals, which is to be developed, is illustrated by the analysis of the experimental dependence of the growth rate on the solution stoichiometry.

  5. Arbitrary amplitude double layers in warm dust kinetic Alfven wave plasmas

    SciTech Connect

    Gogoi, Runmoni; Devi, Nirupama

    2008-07-15

    Large amplitude electrostatic structures associated with low-frequency dust kinetic Alfvenic waves are investigated under the pressure (temperature) gradient indicative of dust dynamics. The set of equations governing the dust dynamics, Boltzmann electrons, ions and Maxwell's equation have been reduced to a single equation known as the Sagdeev potential equation. Parameter ranges for the existence of arbitrary amplitude double layers are observed. Exact analytical expressions for the energy integral is obtained and computed numerically through which sub-Alfvenic arbitrary amplitude rarefactive double layers are found to exist.

  6. Reduced kinetic mechanism of ignition for nonpremixed hydrogen/air in a supersonic mixing layer

    SciTech Connect

    Ju, Y.; Niioka, T. . Inst. of Fluid Science)

    1994-11-01

    Transient ignition processes in a two-dimensional spatially evolving supersonic mixing layer consisting of a parallel nonpremixed airstream and a hydrogen stream both with temperatures higher than 1,000 K were investigated numerically by using the full chemistry and its reduced chemistry. A phenomenon different from that examined in previous studies, in which ignition of hydrogen/oxygen mixtures was considered, was found in the nonpremixed case examined here. It was shown that the concentration of O was greater than that of OH before ignition, but became smaller with the development of ignition process. Fourteen important reactions for ignition were obtained and verified using sensitivity analyses of ignition delay time and radical concentrations. Several different four-step and three-step reduced kinetic mechanisms were then deduced by introducing the steady-state approximation to different species. Comparison of these reduced kinetic mechanisms with the full chemistry showed that the steady-state approximation of O used in previous studies caused serious errors in the prediction of ignition delay time in supersonic flow, in which nonpremixed character is predominant and the transport phenomenon is important. Ignition locations predicted with the proper four-step and three-step reduced kinetic mechanisms were within 5% and 20% of those predicted with the full chemistry. Finally, these two reduced mechanisms were used to evaluate the effect of viscous dissipation on ignition in the supersonic shear layer. Good agreements between the results of the present reduced kinetic mechanisms and those of the full chemistry were obtained.

  7. Kinetics of protein adsorption/desorption mediated by pH-responsive polymer layer

    NASA Astrophysics Data System (ADS)

    Su, Xiao-Hang; Lei, Qun-Li; Ren, Chun-Lai

    2015-11-01

    We propose a new way of regulating protein adsorption by using a pH-responsive polymer. According to the theoretical results obtained from the molecular theory and kinetic approaches, both thermodynamics and kinetics of protein adsorption are verified to be well controlled by the solution pH. The kinetics and the amount of adsorbed proteins at equilibrium are greatly increased when the solution environment changes from acid to neutral. The reason is that the increased pH promotes the dissociation of the weak polyelectrolyte, resulting in more charged monomers and more stretched chains. Thus the steric repulsion within the polymer layer is weakened, which effectively lowers the barrier felt by the protein during the process of adsorption. Interestingly, we also find that the kinetics of protein desorption is almost unchanged with the variation of pH. It is because although the barrier formed by the polymer layer changes along with the change of pH, the potential at contact with the surface varies equally. Our results may provide useful insights into controllable protein adsorption/desorption in practical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 21274062, 11474155, and 91027040).

  8. Notes on Interface Growth Kinetics 50 Years after Burton, Cabrera and Frank

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    2004-01-01

    This overview is devoted to some unresolved basic problems in crystal growth kinetics. The density wave approach to propagation of a spatially diffuse interface between a growing crystal and its simple (e.g., metallic) melt is discussed is Section 2. This approach allows for the calculation of kinetic coefficients and is an alternative to the localized interface concept in which each atom belongs to either a solid or a liquid. Sections 3 and 4 deals mainly with layer growth from solution. Mutual retardation of the growth steps via their bulk and d a c e diffusion fields is the major subject. The influence of solution flow on step bunching (Section 4) suggests the essential influence of bulk diffusion on the surface morphology. The flow within the solution boundary layer enhances step-step interaction, influences the step bunching process and the resulting step pattern morphology on the growing surface. Recent experiments on the rates at which strongly polygonized steps on protein and small molecule crystals propagate during growth from solution are analyzed in Section 5 . We have shown that the step segments may be "singular" and that "one-dimensional nucleation" may be the rate limiting stage for the segments that are shorter or comparable in length to the thermodynamically equilibrium interlink distance. In this case, the reciprocal dependence of the segment propagation rate on the segment length that follow from the Gibbs-Thompson law, should be replaced by an abrupt switch from zero to a finite constant velocity. Until recently, the Kossel crystal remained the only model used in crystal growth theory. In such Kossel Gibbs-Thomson law, should be replaced by an abrupt switch &om zero to a finite constant velocity. crystals, all kinks at the steps are identical and the kink rate is a linear function of the supersaturation. In the non-Kossel crystals, there may be several kink configurations characterized by different geometries and energies. These configurations

  9. Exploring growth kinetics of carbon nanotube arrays by in situ optical diagnostics and modeling

    SciTech Connect

    Puretzky, Alexander A; Geohegan, David B; Pannala, Sreekanth; Rouleau, Christopher

    2014-01-01

    Simple kinetic models of carbon nanotube growth have been able to successfully link together many experimental parameters involved in the growth of carbon nanotubes for practical applications including the prediction of growth rates, terminal lengths, number of walls, activation energies, and their dependences on the growth environment. The implications of recent experiments utilizing in situ monitoring of carbon nanotube growth on our past kinetic model are first reviewed. Then, sub-second pulsed feedstock gas introduction is discussed to explore the nucleation and initial growth of carbon nanotubes in the context of the kinetic model. Moreover, kinetic effects in "pulsed CVD" - using repeated pulsed gas introduction to stop and restart nanotube growth - are explored to understand renucleation, the origin of alignment in nanotube arrays, and incremental growth. Time-resolved reflectivity of the surface is used to remotely understand the kinetics of nucleation and the coordinated growth of arrays. This approach demonstrates that continuous vertically aligned single wall carbon nanotubes can be grown incrementally by pulsed CVD, and that the first exposure of fresh catalyst to feedstock gas is critical to nanotubes site density required for coordinated growth. Aligned nanotube arrays (as short as 60 nm) are shown to nucleate and grow within single, sub-second gas pulses. The multiple-pulse growth experiments (> 100 pulses) show that a high fraction of nanotubes renucleate on subsequent gas pulses.

  10. Synthesis of layer-tunable graphene: A combined kinetic implantation and thermal ejection approach

    SciTech Connect

    Wang, Gang; Zhang, Miao; Liu, Su; Xie, Xiaoming; Ding, Guqiao; Wang, Yongqiang; Chu, Paul K.; Gao, Heng; Ren, Wei; Yuan, Qinghong; Zhang, Peihong; Wang, Xi; Di, Zengfeng

    2015-05-04

    Layer-tunable graphene has attracted broad interest for its potentials in nanoelectronics applications. However, synthesis of layer-tunable graphene by using traditional chemical vapor deposition (CVD) method still remains a great challenge due to the complex experimental parameters and the carbon precipitation process. Herein, by performing ion implantation into a Ni/Cu bilayer substrate, the number of graphene layers, especially single or double layer, can be controlled precisely by adjusting the carbon ion implant fluence. The growth mechanism of the layer-tunable graphene is revealed by monitoring the growth process is observed that the entire implanted carbon atoms can be expelled towards the substrate surface and thus graphene with designed layer number can be obtained. Such a growth mechanism is further confirmed by theoretical calculations. The proposed approach for the synthesis of layer-tunable graphene offers more flexibility in the experimental conditions. Being a core technology in microelectronics processing, ion implantation can be readily implemented in production lines and is expected to expedite the application of graphene to nanoelectronics.

  11. Synthesis of layer-tunable graphene: A combined kinetic implantation and thermal ejection approach

    DOE PAGES

    Wang, Gang; Zhang, Miao; Liu, Su; Xie, Xiaoming; Ding, Guqiao; Wang, Yongqiang; Chu, Paul K.; Gao, Heng; Ren, Wei; Yuan, Qinghong; et al

    2015-05-04

    Layer-tunable graphene has attracted broad interest for its potentials in nanoelectronics applications. However, synthesis of layer-tunable graphene by using traditional chemical vapor deposition (CVD) method still remains a great challenge due to the complex experimental parameters and the carbon precipitation process. Herein, by performing ion implantation into a Ni/Cu bilayer substrate, the number of graphene layers, especially single or double layer, can be controlled precisely by adjusting the carbon ion implant fluence. The growth mechanism of the layer-tunable graphene is revealed by monitoring the growth process is observed that the entire implanted carbon atoms can be expelled towards the substratemore » surface and thus graphene with designed layer number can be obtained. Such a growth mechanism is further confirmed by theoretical calculations. The proposed approach for the synthesis of layer-tunable graphene offers more flexibility in the experimental conditions. Being a core technology in microelectronics processing, ion implantation can be readily implemented in production lines and is expected to expedite the application of graphene to nanoelectronics.« less

  12. Structure and Growth of the Marine Boundary Layer

    NASA Technical Reports Server (NTRS)

    Mccumber, M.

    1984-01-01

    LANDSAT visible imagery and a one-dimensional Lagrangian boundary layer model were used to hypothesize the nature and the development of the marine boundary layer during a winter episode of strong seaward cold air advection. Over-water heating and moistening of the cold, dry continental air is estimable from linear relations involving horizontal gradients of the near-surface air temperature and humidity. A line of enhanced convection paralleling the Atlantic U.S. coast from south of New York Bay to the vicinity of Virginia Beach, VA was attributed to stronger convergence at low levels. This feature was characterized as a mesoscale front. With the assistance of a three-dimensional mesoscale boundary layer model, initialized with data obtained from the MASEX, the marine boundary layer can be mapped over the entire Atlantic coastal domain and the evolution of the boundary layer can be studied as a function of different characteristics of important surface level forcings. The effects on boundary layer growth due to the magnitude and pattern of sea surface temperature, to the shape of the coastline, and to atmospheric conditions, such as the orientation of the prevailing wind are examined.

  13. Phase-field Model for Interstitial Loop Growth Kinetics and Thermodynamic and Kinetic Models of Irradiated Fe-Cr Alloys

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Khaleel, Mohammad A.

    2011-06-15

    Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubble evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink

  14. Carbon nanotube forests growth using catalysts from atomic layer deposition

    SciTech Connect

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John; Bhardwaj, Sunil; Cepek, Cinzia

    2014-04-14

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  15. Computing the reconnection rate in turbulent kinetic layers by using electron mixing to identify topology

    SciTech Connect

    Daughton, W.; Nakamura, T. K. M.; Karimabadi, H.; Roytershteyn, V.; Loring, B.

    2014-05-15

    Three-dimensional kinetic simulations of magnetic reconnection for parameter regimes relevant to the magnetopause current layer feature the development of turbulence, driven by the magnetic and velocity shear, and dominated by coherent structures including flux ropes, current sheets, and flow vortices. Here, we propose a new approach for computing the global reconnection rate in the presence of this complexity. The mixing of electrons originating from separate sides of the magnetopause layer is used as a proxy to rapidly identify the magnetic topology and track the evolution of magnetic flux. The details of this method are illustrated for an asymmetric current layer relevant to the subsolar magnetopause and for a flow shear dominated layer relevant to the lower latitude magnetopause. While the three-dimensional reconnection rates show a number of interesting differences relative to the corresponding two-dimensional simulations, the time scale for the energy conversion remains very similar. These results suggest that the mixing of field lines between topologies is more easily influenced by kinetic turbulence than the physics responsible for the energy conversion.

  16. Kinetic Alfven wave in the presence of kappa distribution function in plasma sheet boundary layer

    SciTech Connect

    Shrivastava, G. Ahirwar, G.; Shrivastava, J.

    2015-07-31

    The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping/growth rate and associated currents in the presence of kappa distribution function. Kinetic effect of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (T{sub i}/T{sub e}), and kappa distribution function affect the dispersion relation, damping/growth rate and associated currents in both cases(warm and cold electron limit).The treatment of kinetic Alfven wave instability is based on assumption that the plasma consist of resonant and non resonant particles. The resonant particles participate in an energy exchange process, whereas the non resonant particles support the oscillatory motion of the wave.

  17. The effect of growth temperature of seed layer on the structural and optical properties of ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Gautam, Khyati; Singh, Inderpreet; Bhatnagar, P. K.; Peta, Koteswara Rao

    2016-05-01

    The structural and optical properties of ZnO nanorods are investigated as a function of growth temperature of the seed layer. The seed layer comprising of ZnO nanocrystallites is grown on ITO substrates at five different temperatures (150-550 °C) and the nanorods are grown on the seed layer by the facile hydrothermal method. The seed layer grown at 350 °C is observed to be uniformly textured with c-axis orientation leading to the synthesis of vertically aligned nanorods with smaller diameter. The HR-TEM analysis and the intense peak along (002) direction in the XRD spectra of this sample implied that the nanorods possess c-axis orientation. An enhanced UV emission is also observed in the photoluminescence spectra of this sample. The diversity in the morphology and orientation of the seeds at different temperatures has been explained by the growth kinetics of the ZnO nanocrystallites.

  18. Kinetic aspects of the ion current layer in a reconnection outflow exhaust

    SciTech Connect

    Zenitani, Seiji; Wada, Tomohide; Shinohara, Iku; Nagai, Tsugunobu

    2013-09-15

    Kinetic aspects of the ion current layer at the center of a reconnection outflow exhaust near the X-type region are investigated by a two-dimensional particle-in-cell (PIC) simulation. The layer consists of magnetized electrons and unmagnetized ions that carry a perpendicular electric current. The ion fluid appears to be nonideal, sub-Alfvénic, and nondissipative. The ion velocity distribution functions contain multiple populations, such as global Speiser ions, local Speiser ions, and trapped ions. The particle motion of the local Speiser ions in an appropriately rotated coordinate system explains the ion fluid properties very well. The trapped ions are the first demonstration of the regular orbits in the chaotic particle dynamics [Chen and Palmadesso, J. Geophys. Res. 91, 1499 (1986)] in self-consistent PIC simulations. They would be observational signatures in the ion current layer near reconnection sites.

  19. Study of oxide and α-Zr(O) growth kinetics from high temperature steam oxidation of Zircaloy-4 cladding

    NASA Astrophysics Data System (ADS)

    Sawarn, Tapan K.; Banerjee, Suparna; Samanta, Akanksha; Rath, B. N.; Kumar, Sunil

    2015-12-01

    Oxidation kinetics of Zircaloy-4 cladding of fuel pins of Indian pressurized heavy water reactors (IPHWRs) under a simulated loss of coolant accident (LOCA) condition was investigated. The kinetic rate constants for the oxide and oxygen stabilized α-Zr phase growth were established from the isothermal metal-steam reaction at high temperatures (900-1200 °C) with soaking periods in the range of 60-900 s. Oxide and α-Zr(O) layer thickness were measured to derive the respective growth rates. The observed rates obeyed a parabolic law and Arrhenius expressions of rate constants were established. Percentage equivalent clad reacted (%ECR) was calculated using Baker-Just equation. Hydrogen estimation was carried out on the oxidized samples using inert gas fusion technique. The hydrogen pick up was found to be in the range 10-30 ppm. The measured values of oxide and α-Zr(O) layer thickness were compared with the results obtained using OXYCON, an indigenously developed model. The model predicts the oxide growth reasonably well but under predicts the α-Zr(O) growth significantly at thickness values higher than 80 μm.

  20. Notes on Interface Growth Kinetics 50 Years After Burton, Cabrera and Frank

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    2003-01-01

    This is an overview of basic problems of crystal growth kinetics controlled by processes on the crystal interface with solution and melt. Included, also, are results on fundamental issues concerning morphological stability of crystal-solution interface that engage both interface kinetics and mass transport by diffusion and convection.

  1. Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability.

    PubMed

    Bag, Monojit; Renna, Lawrence A; Adhikari, Ramesh Y; Karak, Supravat; Liu, Feng; Lahti, Paul M; Russell, Thomas P; Tuominen, Mark T; Venkataraman, D

    2015-10-14

    Solar cells fabricated using alkyl ammonium metal halides as light absorbers have the right combination of high power conversion efficiency and ease of fabrication to realize inexpensive but efficient thin film solar cells. However, they degrade under prolonged exposure to sunlight. Herein, we show that this degradation is quasi-reversible, and that it can be greatly lessened by simple modifications of the solar cell operating conditions. We studied perovskite devices using electrochemical impedance spectroscopy (EIS) with methylammonium (MA)-, formamidinium (FA)-, and MA(x)FA(1-x) lead triiodide as active layers. From variable temperature EIS studies, we found that the diffusion coefficient using MA ions was greater than when using FA ions. Structural studies using powder X-ray diffraction (PXRD) show that for MAPbI3 a structural change and lattice expansion occurs at device operating temperatures. On the basis of EIS and PXRD studies, we postulate that in MAPbI3 the predominant mechanism of accelerated device degradation under sunlight involves thermally activated fast ion transport coupled with a lattice-expanding phase transition, both of which are facilitated by absorption of the infrared component of the solar spectrum. Using these findings, we show that the devices show greatly improved operation lifetimes and stability under white-light emitting diodes, or under a solar simulator with an infrared cutoff filter or with cooling. PMID:26414066

  2. Modified energetics and growth kinetics on H-terminated GaAs (110)

    SciTech Connect

    Galiana, B.; Benedicto, M.; Díez-Merino, L.; Tejedor, P.; Lorbek, S.; Hlawacek, G.; Teichert, C.

    2013-10-28

    Atomic hydrogen modification of the surface energy of GaAs (110) epilayers, grown at high temperatures from molecular beams of Ga and As{sub 4}, has been investigated by friction force microscopy (FFM). The reduction of the friction force observed with longer exposures to the H beam has been correlated with the lowering of the surface energy originated by the progressive de-relaxation of the GaAs (110) surface occurring upon H chemisorption. Our results indicate that the H-terminated GaAs (110) epilayers are more stable than the As-stabilized ones, with the minimum surface energy value of 31 meV/Å{sup 2} measured for the fully hydrogenated surface. A significant reduction of the Ga diffusion length on the H-terminated surface irrespective of H coverage has been calculated from the FFM data, consistent with the layer-by-layer growth mode and the greater As incorporation coefficient determined from real-time reflection high-energy electron diffraction studies. Arsenic incorporation through direct dissociative chemisorption of single As{sub 4} molecules mediated by H on the GaAs (110) surface has been proposed as the most likely explanation for the changes in surface kinetics observed.

  3. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions.

    PubMed

    Duan, Xidong; Wang, Chen; Shaw, Jonathan C; Cheng, Rui; Chen, Yu; Li, Honglai; Wu, Xueping; Tang, Ying; Zhang, Qinling; Pan, Anlian; Jiang, Jianhui; Yu, Ruqing; Huang, Yu; Duan, Xiangfeng

    2014-12-01

    Two-dimensional layered semiconductors such as MoS₂ and WSe₂ have attracted considerable interest in recent times. Exploring the full potential of these layered materials requires precise spatial modulation of their chemical composition and electronic properties to create well-defined heterostructures. Here, we report the growth of compositionally modulated MoS₂-MoSe₂ and WS₂-WSe₂ lateral heterostructures by in situ modulation of the vapour-phase reactants during growth of these two-dimensional crystals. Raman and photoluminescence mapping studies demonstrate that the resulting heterostructure nanosheets exhibit clear structural and optical modulation. Transmission electron microscopy and elemental mapping studies reveal a single crystalline structure with opposite modulation of sulphur and selenium distributions across the heterostructure interface. Electrical transport studies demonstrate that the WSe₂-WS₂ heterojunctions form lateral p-n diodes and photodiodes, and can be used to create complementary inverters with high voltage gain. Our study is an important advance in the development of layered semiconductor heterostructures, an essential step towards achieving functional electronics and optoelectronics.

  4. Volume diffusion-controlled growth kinetics and mechanisms in binary alloys

    SciTech Connect

    Trivedi, R.

    1981-01-01

    Growth kinetics and stability of simple precipitate morphologies which develop during solid-solid phase transformations in binary alloys will be briefly reviewed. Emphasis will be placed on our current understanding of the dependence of growth kinetics on the shape of precipitates and on the interfacial structure. As an example, we shall consider the lengthening kinetics of Widmanstatten precipitates and develop a stability criteria which determines the dimension of the advancing tip of these precipitates. These theoretical results will then be compared with the available experimental data in binary alloys. The importance of interface structure in determining growth kinetics will also be illustrated by considering the migration rate of partially coherent interphase boundaries with ledge structures. These results will then be synthesized to understand the development and stability of microstructures in binary alloys.

  5. Large area growth of layered WSe2 films

    NASA Astrophysics Data System (ADS)

    Browning, Robert; Kuperman, Neal; Solanki, Raj; Kanzyuba, Vasily; Rouvimov, Sergei

    2016-09-01

    Growth of smooth and continuous films of WSe2 has been demonstrated by employing atomic layer deposition (ALD) on 5 cm × 5 cm substrates. The substrates consisted of silicon wafers with a layer of SiO2. The ALD precursors were WCl5 and H2Se. The film properties characterized using Raman spectroscopy and x-ray photoelectron spectroscopy are comparable to those reported for WSe2 films produced by chemical vapor deposition and exfoliation. Carrier mobilities were determined with back-gated transistors. With Pd contacts, median electron and hole mobilities of 531 cm2 V-1 s-1 and 354 cm2 V-1 s-1, respectively, were measured.

  6. Large area growth of layered WSe2 films

    NASA Astrophysics Data System (ADS)

    Browning, Robert; Kuperman, Neal; Solanki, Raj; Kanzyuba, Vasily; Rouvimov, Sergei

    2016-09-01

    Growth of smooth and continuous films of WSe2 has been demonstrated by employing atomic layer deposition (ALD) on 5 cm × 5 cm substrates. The substrates consisted of silicon wafers with a layer of SiO2. The ALD precursors were WCl5 and H2Se. The film properties characterized using Raman spectroscopy and x-ray photoelectron spectroscopy are comparable to those reported for WSe2 films produced by chemical vapor deposition and exfoliation. Carrier mobilities were determined with back-gated transistors. With Pd contacts, median electron and hole mobilities of 531 cm2 V‑1 s‑1 and 354 cm2 V‑1 s‑1, respectively, were measured.

  7. Zinc oxide nanoparticle suspensions and layer-by-layer coatings inhibit staphylococcal growth.

    PubMed

    McGuffie, Matthew J; Hong, Jin; Bahng, Joong Hwan; Glynos, Emmanouil; Green, Peter F; Kotov, Nicholas A; Younger, John G; VanEpps, J Scott

    2016-01-01

    Despite a decade of engineering and process improvements, bacterial infection remains the primary threat to implanted medical devices. Zinc oxide nanoparticles (ZnO-NPs) have demonstrated antimicrobial properties. Their microbial selectivity, stability, ease of production, and low cost make them attractive alternatives to silver NPs or antimicrobial peptides. Here we sought to (1) determine the relative efficacy of ZnO-NPs on planktonic growth of medically relevant pathogens; (2) establish the role of bacterial surface chemistry on ZnO-NP effectiveness; (3) evaluate NP shape as a factor in the dose-response; and (4) evaluate layer-by-layer (LBL) ZnO-NP surface coatings on biofilm growth. ZnO-NPs inhibited bacterial growth in a shape-dependent manner not previously seen or predicted. Pyramid shaped particles were the most effective and contrary to previous work, larger particles were more effective than smaller particles. Differential susceptibility of pathogens may be related to their surface hydrophobicity. LBL ZnO-NO coatings reduced staphylococcal biofilm burden by >95%. From the Clinical Editor: The use of medical implants is widespread. However, bacterial colonization remains a major concern. In this article, the authors investigated the use of zinc oxide nanoparticles (ZnO-NPs) to prevent bacterial infection. They showed in their experiments that ZnO-NPs significantly inhibited bacterial growth. This work may present a new alternative in using ZnO-NPs in medical devices. PMID:26515755

  8. Kinetic model for an auroral double layer that spans many gravitational scale heights

    SciTech Connect

    Robertson, Scott

    2014-12-15

    The electrostatic potential profile and the particle densities of a simplified auroral double layer are found using a relaxation method to solve Poisson's equation in one dimension. The electron and ion distribution functions for the ionosphere and magnetosphere are specified at the boundaries, and the particle densities are found from a collisionless kinetic model. The ion distribution function includes the gravitational potential energy; hence, the unperturbed ionospheric plasma has a density gradient. The plasma potential at the upper boundary is given a large negative value to accelerate electrons downward. The solutions for a wide range of dimensionless parameters show that the double layer forms just above a critical altitude that occurs approximately where the ionospheric density has fallen to the magnetospheric density. Below this altitude, the ionospheric ions are gravitationally confined and have the expected scale height for quasineutral plasma in gravity.

  9. Modeling of Interaction Layer Growth Between U-Mo Particles and an Al Matrix

    SciTech Connect

    Yeon Soo Kim; G. L. Hofman; Ho Jin Ryu; Jong Man Park; A. B. Robinson; D. M. Wachs

    2013-12-01

    Interaction layer growth between U-Mo alloy fuel particles and Al in a dispersion fuel is a concern due to the volume expansion and other unfavorable irradiation behavior of the interaction product. To reduce interaction layer (IL) growth, a small amount of Si is added to the Al. As a result, IL growth is affected by the Si content in the Al matrix. In order to predict IL growth during fabrication and irradiation, empirical models were developed. For IL growth prediction during fabrication and any follow-on heating process before irradiation, out-of-pile heating test data were used to develop kinetic correlations. Two out-of-pile correlations, one for the pure Al matrix and the other for the Al matrix with Si addition, respectively, were developed, which are Arrhenius equations that include temperature and time. For IL growth predictions during irradiation, the out-of-pile correlations were modified to include a fission-rate term to consider fission enhanced diffusion, and multiplication factors to incorporate the Si addition effect and the effect of the Mo content. The in-pile correlation is applicable for a pure Al matrix and an Al matrix with the Si content up to 8 wt%, for fuel temperatures up to 200 degrees C, and for Mo content in the range of 6 – 10wt%. In order to cover these ranges, in-pile data were included in modeling from various tests, such as the US RERTR-4, -5, -6, -7 and -9 tests and Korea’s KOMO-4 test, that were designed to systematically examine the effects of the fission rate, temperature, Si content in Al matrix, and Mo content in U-Mo particles. A model converting the IL thickness to the IL volume fraction in the meat was also developed.

  10. Epitaxy growth kinetics of GaN films

    NASA Astrophysics Data System (ADS)

    Wu, Bei; Ma, Ronghui; Zhang, Hui

    2003-03-01

    Group III nitrides, such as GaN, AlN and InGaN, have attracted a lot of attention due to the development of blue-green and ultraviolet light emitting diodes and lasers. A GaN crystal can be grown from the vapor phase by either evaporation of Gallium (Ga) metal or sublimation of GaN powder in ammonia (NH 3) atmosphere at a temperature-controlled growth furnace. In this paper, an integrated GaN growth model using a sublimation growth model has been developed based on the conservation of momentum, mass, chemical species and energy together with necessary boundary conditions that account for heterogeneous chemical reactions both at the source and seed surfaces. For the growth rate, the effects of the gas-flow rate, source temperature, temperature difference, and the gap width of the growth cell on the growth process have been studied.

  11. Kinetics of drug release from ointments: Role of transient-boundary layer.

    PubMed

    Xu, Xiaoming; Al-Ghabeish, Manar; Krishnaiah, Yellela S R; Rahman, Ziyaur; Khan, Mansoor A

    2015-10-15

    In the current work, an in vitro release testing method suitable for ointment formulations was developed using acyclovir as a model drug. Release studies were carried out using enhancer cells on acyclovir ointments prepared with oleaginous, absorption, and water-soluble bases. Kinetics and mechanism of drug release was found to be highly dependent on the type of ointment bases. In oleaginous bases, drug release followed a unique logarithmic-time dependent profile; in both absorption and water-soluble bases, drug release exhibited linearity with respect to square root of time (Higuchi model) albeit differences in the overall release profile. To help understand the underlying cause of logarithmic-time dependency of drug release, a novel transient-boundary hypothesis was proposed, verified, and compared to Higuchi theory. Furthermore, impact of drug solubility (under various pH conditions) and temperature on drug release were assessed. Additionally, conditions under which deviations from logarithmic-time drug release kinetics occur were determined using in situ UV fiber-optics. Overall, the results suggest that for oleaginous ointments containing dispersed drug particles, kinetics and mechanism of drug release is controlled by expansion of transient boundary layer, and drug release increases linearly with respect to logarithmic time.

  12. Two types of quasi-liquid layers on ice crystals are formed kinetically.

    PubMed

    Asakawa, Harutoshi; Sazaki, Gen; Nagashima, Ken; Nakatsubo, Shunichi; Furukawa, Yoshinori

    2016-02-16

    Surfaces of ice are covered with thin liquid water layers, called quasi-liquid layers (QLLs), even below their melting point (0 °C), which govern a wide variety of phenomena in nature. We recently found that two types of QLL phases appear that exhibit different morphologies (droplets and thin layers) [Sazaki G. et al. (2012) Proc Natl Acad Sci USA 109(4):1052-1055]. However, revealing the thermodynamic stabilities of QLLs remains a longstanding elusive problem. Here we show that both types of QLLs are metastable phases that appear only if the water vapor pressure is higher than a certain critical supersaturation. We directly visualized the QLLs on ice crystal surfaces by advanced optical microscopy, which can detect 0.37-nm-thick elementary steps on ice crystal surfaces. At a certain fixed temperature, as the water vapor pressure decreased, thin-layer QLLs first disappeared, and then droplet QLLs vanished next, although elementary steps of ice crystals were still growing. These results clearly demonstrate that both types of QLLs are kinetically formed, not by the melting of ice surfaces, but by the deposition of supersaturated water vapor on ice surfaces. To our knowledge, this is the first experimental evidence that supersaturation of water vapor plays a crucially important role in the formation of QLLs.

  13. Two types of quasi-liquid layers on ice crystals are formed kinetically

    PubMed Central

    Asakawa, Harutoshi; Sazaki, Gen; Nagashima, Ken; Nakatsubo, Shunichi; Furukawa, Yoshinori

    2016-01-01

    Surfaces of ice are covered with thin liquid water layers, called quasi-liquid layers (QLLs), even below their melting point (0 °C), which govern a wide variety of phenomena in nature. We recently found that two types of QLL phases appear that exhibit different morphologies (droplets and thin layers) [Sazaki G. et al. (2012) Proc Natl Acad Sci USA 109(4):1052−1055]. However, revealing the thermodynamic stabilities of QLLs remains a longstanding elusive problem. Here we show that both types of QLLs are metastable phases that appear only if the water vapor pressure is higher than a certain critical supersaturation. We directly visualized the QLLs on ice crystal surfaces by advanced optical microscopy, which can detect 0.37-nm-thick elementary steps on ice crystal surfaces. At a certain fixed temperature, as the water vapor pressure decreased, thin-layer QLLs first disappeared, and then droplet QLLs vanished next, although elementary steps of ice crystals were still growing. These results clearly demonstrate that both types of QLLs are kinetically formed, not by the melting of ice surfaces, but by the deposition of supersaturated water vapor on ice surfaces. To our knowledge, this is the first experimental evidence that supersaturation of water vapor plays a crucially important role in the formation of QLLs. PMID:26831089

  14. Turbulence Kinetic Energy Budgets and Dissipation Rates in Disturbed Stable Boundary Layers

    SciTech Connect

    Lundquist, J K; Piper, M; Kosovic, B

    2004-06-18

    An important parameter in the numerical simulation of atmospheric boundary layers is the dissipation length scale, l{sub {var_epsilon}}. It is especially important in weakly to moderately stable conditions, in which a tenuous balance between shear production of turbulence, buoyant destruction of turbulence, and turbulent dissipation is maintained. In large-scale models, the dissipation rate is often parameterized using a diagnostic equation based on the production of turbulent kinetic energy (TKE) and an estimate of the dissipation length scale. Proper parameterization of the dissipation length scale from experimental data requires accurate estimation of the rate of dissipation of TKE from experimental data. Using data from the MICROFRONTS and CASES-99 field programs, we evaluate turbulent kinetic energy (TKE), TKE dissipation rate {var_epsilon}, and dissipation length l{sub {var_epsilon}} over a range of stability regimes represented by a stable boundary layer (SBL), a destabilizing intrusion (by first a cold front and second a density current) and recovery. These data may be utilized to test recent parameterizations of dissipation rate {var_epsilon} and l{sub {var_epsilon}} in order to determine the suitability of these models for inclusion in mesoscale models for numerical weather prediction or pollution dispersion prediction.

  15. Desorption isotherms and mathematical modeling of thin layer drying kinetics of tomato

    NASA Astrophysics Data System (ADS)

    Belghith, Amira; Azzouz, Soufien; ElCafsi, Afif

    2016-03-01

    In recent years, there is an increased demand on the international market of dried fruits and vegetables with significant added value. Due to its important production, consumption and nutrient intake, drying of tomato has become a subject of extended and varied research works. The present work is focused on the drying behavior of thin-layer tomato and its mathematical modeling in order to optimize the drying processes. The moisture desorption isotherms of raw tomato were determined at four temperature levels namely 45, 50, 60 and 65 °C using the static gravimetric method. The experimental data obtained were modeled by five equations and the (GAB) model was found to be the best-describing these isotherms. The drying kinetics were experimentally investigated at 45, 55 and 65 °C and performed at air velocities of 0.5 and 2 m/s. In order to investigate the effect of the exchange surface on drying time, samples were dried into two different shapes: tomato halves and tomato quarters. The impact of various drying parameters was also studied (temperature, air velocity and air humidity). The drying curves showed only the preheating period and the falling drying rate period. In this study, attention was paid to the modeling of experimental thin-layer drying kinetics. The experimental results were fitted with four different models.

  16. Modeling of Scale-Dependent Bacterial Growth by Chemical Kinetics Approach

    PubMed Central

    Martínez, Haydee; Cruz, José-Manuel; Ayala, Guadalupe; Rivera, Marco; Buhse, Thomas

    2014-01-01

    We applied the so-called chemical kinetics approach to complex bacterial growth patterns that were dependent on the liquid-surface-area-to-volume ratio (SA/V) of the bacterial cultures. The kinetic modeling was based on current experimental knowledge in terms of autocatalytic bacterial growth, its inhibition by the metabolite CO2, and the relief of inhibition through the physical escape of the inhibitor. The model quantitatively reproduces kinetic data of SA/V-dependent bacterial growth and can discriminate between differences in the growth dynamics of enteropathogenic E. coli, E. coli  JM83, and Salmonella typhimurium on one hand and Vibrio cholerae on the other hand. Furthermore, the data fitting procedures allowed predictions about the velocities of the involved key processes and the potential behavior in an open-flow bacterial chemostat, revealing an oscillatory approach to the stationary states. PMID:25105169

  17. Modeling of scale-dependent bacterial growth by chemical kinetics approach.

    PubMed

    Martínez, Haydee; Sánchez, Joaquín; Cruz, José-Manuel; Ayala, Guadalupe; Rivera, Marco; Buhse, Thomas

    2014-01-01

    We applied the so-called chemical kinetics approach to complex bacterial growth patterns that were dependent on the liquid-surface-area-to-volume ratio (SA/V) of the bacterial cultures. The kinetic modeling was based on current experimental knowledge in terms of autocatalytic bacterial growth, its inhibition by the metabolite CO2, and the relief of inhibition through the physical escape of the inhibitor. The model quantitatively reproduces kinetic data of SA/V-dependent bacterial growth and can discriminate between differences in the growth dynamics of enteropathogenic E. coli, E. coli JM83, and Salmonella typhimurium on one hand and Vibrio cholerae on the other hand. Furthermore, the data fitting procedures allowed predictions about the velocities of the involved key processes and the potential behavior in an open-flow bacterial chemostat, revealing an oscillatory approach to the stationary states.

  18. Comprehensive kinetic analysis of the plasma-wall transition layer in a strongly tilted magnetic field

    SciTech Connect

    Tskhakaya, D. D.; Kos, L.

    2014-10-15

    The magnetized plasma-wall transition (MPWT) layer at the presence of the obliquity of the magnetic field to the wall consists of three sub-layers: the Debye sheath (DS), the magnetic pre-sheath (MPS), and the collisional pre-sheath (CPS) with characteristic lengths λ{sub D} (electron Debye length), ρ{sub i} (ion gyro-radius), and ℓ (the smallest relevant collision length), respectively. Tokamak plasmas are usually assumed to have the ordering λ{sub D}≪ρ{sub i}≪ℓ, when the above-mentioned sub-layers can be distinctly distinguished. In the limits of ε{sub Dm}(λ{sub D}/ρ{sub i})→0 and ε{sub mc}(ρ{sub i}/ℓ)→0 (“asymptotic three-scale (A3S) limits”), these sub-layers are precisely defined. Using the smallness of the tilting angle of the magnetic field to the wall, the ion distribution functions are found for three sub-regions in the analytic form. The equations and characteristic length-scales governing the transition (intermediate) regions between the neighboring sub-layers (CPS – MPS and MPS – DS) are derived, allowing to avoid the singularities arising from the ε{sub Dm}→0 and ε{sub mc}→0 approximations. The MPS entrance and the related kinetic form of the Bohm–Chodura condition are successfully defined for the first time. At the DS entrance, the Bohm condition maintains its usual form. The results encourage further study and understanding of physics of the MPWT layers in the modern plasma facilities.

  19. Nanowire growth kinetics in aberration corrected environmental transmission electron microscopy

    DOE PAGES

    Chou, Yi -Chia; Panciera, Federico; Reuter, Mark C.; Stach, Eric A.; Ross, Frances M.

    2016-03-15

    Here, we visualize atomic level dynamics during Si nanowire growth using aberration corrected environmental transmission electron microscopy, and compare with lower pressure results from ultra-high vacuum microscopy. We discuss the importance of higher pressure observations for understanding growth mechanisms and describe protocols to minimize effects of the higher pressure background gas.

  20. Determining the Kinetic Parameters Characteristic of Microalgal Growth.

    ERIC Educational Resources Information Center

    Martinez Sancho, Maria Eugenie; And Others

    1991-01-01

    An activity in which students obtain a growth curve for algae, identify the exponential and linear growth phases, and calculate the parameters which characterize both phases is described. The procedure, a list of required materials, experimental conditions, analytical technique, and a discussion of the interpretations of individual results are…

  1. An Estimation of Turbulent Kinetic Energy and Energy Dissipation Rate Based on Atmospheric Boundary Layer Similarity Theory

    NASA Technical Reports Server (NTRS)

    Han, Jongil; Arya, S. Pal; Shaohua, Shen; Lin, Yuh-Lang; Proctor, Fred H. (Technical Monitor)

    2000-01-01

    Algorithms are developed to extract atmospheric boundary layer profiles for turbulence kinetic energy (TKE) and energy dissipation rate (EDR), with data from a meteorological tower as input. The profiles are based on similarity theory and scalings for the atmospheric boundary layer. The calculated profiles of EDR and TKE are required to match the observed values at 5 and 40 m. The algorithms are coded for operational use and yield plausible profiles over the diurnal variation of the atmospheric boundary layer.

  2. Fractal growth kinetics and electric potential oscillations during electropolymerization of pyrrole.

    PubMed

    Das, Ishwar; Agrawal, Namita R; Gupta, Sanjeev Kumar; Gupta, Sujeet Kumar; Rastogi, R P

    2009-05-01

    Fractal growth, growth kinetics, and electrical conductivity of aggregates obtained during electropolymerization in the systems (A) pyrrole-4-toluene sulfonic acid silver salt (4-TSS)-acetonitrile, (B) pyrrole-4-TSS-ZnSO(4)-acetonitrile, and (C) pyrrole-4-TSS-aniline-acetonitrile were investigated. In the case of system (A), effect of [4-TSS], [pyrrole], field intensity, and solvents H(2)O and CH(3)OH on morphology, fractal character, and growth kinetics was also studied. Fractal growth data were examined in detail. During studies on system (A), electric potential oscillations were observed and subjected to detailed study. The results indicate that fractal growth pattern and electric potential oscillations are inter-related. The mechanism of development of fractal growth, dendritic structure, and electric potential oscillations is discussed in terms of diffusion-limited aggregation and modified Diaz's mechanism, which explains the random movement of radical cations.

  3. Monoculture parameters successfully predict coculture growth kinetics of Bacteroides thetaiotaomicron and two Bifidobacterium strains.

    PubMed

    Van Wey, A S; Cookson, A L; Roy, N C; McNabb, W C; Soboleva, T K; Shorten, P R

    2014-11-17

    Microorganisms rarely live in isolation but are most often found in a consortium. This provides the potential for cross-feeding and nutrient competition among the microbial species, which make it challenging to predict the growth kinetics in coculture. In this paper we developed a mathematical model to describe substrate consumption and subsequent microbial growth and metabolite production for bacteria grown in monoculture. The model characterized substrate utilization kinetics of 18 Bifidobacterium strains. Some bifidobacterial strains demonstrated preferential degradation of oligofructose in that sugars with low degree of polymerization (DP) (DP≤3 or 4) were metabolized before sugars of higher DP, or vice versa. Thus, we expanded the model to describe the preferential degradation of oligofructose. In addition, we adapted the model to describe the competition between human colonic bacteria Bacteroides thetaiotaomicron LMG 11262 and Bifidobacterium longum LMG 11047 or Bifidobacterium breve Yakult for inulin as well as cross-feeding of breakdown products from the extracellular hydrolysis of inulin by B. thetaiotaomicron LMG 11262. We found that the coculture growth kinetics could be predicted based on the respective monoculture growth kinetics. Using growth kinetics from monoculture experiments to predict coculture dynamics will reduce the number of in vitro experiments required to parameterize multi-culture models.

  4. Kinetics of monolayer graphene growth by segregation on Pd(111)

    SciTech Connect

    Mok, H. S.; Murata, Y.; Kodambaka, S.; Ebnonnasir, A.; Ciobanu, C. V.; Nie, S.; McCarty, K. F.

    2014-03-10

    Using in situ low-energy electron microscopy and density functional theory calculations, we follow the growth of monolayer graphene on Pd(111) via surface segregation of bulk-dissolved carbon. Upon lowering the substrate temperature, nucleation of graphene begins on graphene-free Pd surface and continues to occur during graphene growth. Measurements of graphene growth rates and Pd surface work functions establish that this continued nucleation is due to increasing C adatom concentration on the Pd surface with time. We attribute this anomalous phenomenon to a large barrier for attachment of C adatoms to graphene coupled with a strong binding of the non-graphitic C to the Pd surface.

  5. Unstirred layer and kinetics of electrogenic glucose absorption in the human jejunum in situ

    PubMed Central

    Read, N. W.; Barber, D. C.; Levin, R. J.; Holdsworth, C. D.

    1977-01-01

    Using an electrical technique we estimated the thickness of the unstirred layer in the human jejunum during kinetic studies of electrogenic glucose absorption. The unstirred layer in seven healthy volunteers (632 ± 24 μm: mean ± SEM) was significantly thicker than in 10 patients with active coeliac disease (442 ± 23 μm) but not significantly different in seven patients who had responded to treatment by gluten withdrawal (585 ± 49 μm). There were similar differences in the values of `Apparent Km' for electrogenic glucose absorption between healthy control subjects (36 ± 6 mM) active coeliac patients (11 ± 1 mM) and treated coeliac patients (31 ± 5 mM). The changes in PDmax however, showed a different pattern. The PDmax in the active coeliac group (6·8 ± 0·7 mV) was lower than in controls (7·6 ± 0·6 mV) but not significantly so, while the PDmax in the treated coeliac group (10·6 ± 0·9 mV) was significantly higher than in both the active coeliac and control groups. It should be noted that both operational kinetic parameters obtained in the present study are much lower than those obtained previously (Read et al., 1976b) because of the use of siphonage. Analysis of the results using a computer simulation indicates that the reduction in Apparent Km in active coeliac disease can be caused by the interaction of the decreased maximal absorption rate for glucose (Jmax) with the attenuated unstirred layer. In these circumstances it is not necessary to postulate any change in the affinity of the transport mechanism for glucose (`Real Km'). It is remarkable that the disease process produces an Apparent Km which is much closer to the Real Km than that found in health. PMID:590846

  6. Effect of Cross-Interaction between Ni and Cu on Growth Kinetics of Intermetallic Compounds in Ni/Sn/Cu Diffusion Couples during Aging

    NASA Astrophysics Data System (ADS)

    Hong, K. K.; Ryu, J. B.; Park, C. Y.; Huh, J. Y.

    2008-01-01

    The solid-state, cross-interaction between the Ni layer on the component side and the Cu pad on the printed circuit board (PCB) side in ball grid array (BGA) solder joints was investigated by employing Ni(15 μm)/Sn(65 μm)/Cu ternary diffusion couples. The ternary diffusion couples were prepared by sequentially electroplating Sn and Ni on a Cu foil and were aged isothermally at 150, 180, and 200°C. The growth of the intermetallic compound (IMC) layer on the Ni side was coupled with that on the Cu side by the mass flux across the Sn layer that was caused by the difference in the Ni content between the (Cu1- x Ni x )6Sn5 layer on the Ni side and the (Cu1- y Ni y )6Sn5 layer on the Cu side. As the consequence of the coupling, the growth rate of the (Cu1- x Ni x )6 Sn5 layer on the Ni side was rapidly accelerated by decreasing Sn layer thickness and increasing aging temperature. Owing to the cross-interaction with the top Ni layer, the growth rate of the (Cu1- y Ni y )6Sn5 layer on the Cu side was accelerated at 150°C and 180°C but was retarded at 200°C, while the growth rate of the Cu3Sn layer was always retarded. The growth kinetic model proposed in an attempt to interpret the experimental results was able to reproduce qualitatively all of the important experimental observations pertaining to the growth of the IMC layers in the Ni/Sn/Cu diffusion couple.

  7. Kinetics of nucleation with decreasing rate of growth

    NASA Astrophysics Data System (ADS)

    Kurasov, Victor

    2015-10-01

    Extension of analytical description of the stage of nucleation to the case of the slow growth rates of the embryos growth has been constructed. The metastable phase consumption by the already formed embryos affects the nucleation rate which leads to the non-linear evolution. The power exponentials which are smaller than that for the diffusion growth are chosen as the model laws of the embryos growth. All main characteristics of the nucleation period including the form of the embryos sizes spectrum are found. Analytical description of nucleation in the closed systems as well as in the open systems with the metastable phase influx is presented. It is shown that the relative errors of this description are small.

  8. Kinetic constants of abnormal grain growth in nanocrystalline nickel

    NASA Astrophysics Data System (ADS)

    Aleshin, A. N.

    2016-02-01

    The grain growth in nanocrystalline nickel with a purity of 99.5 at % during non-isothermal annealing was experimentally investigated using differential scanning calorimetry and transmission electron microscopy. Nanocrystalline nickel was prepared by electrodeposition and had an average grain size of approximately 20 nm. It was shown that, at a temperature corresponding to the calorimetric signal peak, abnormal grain growth occurs with the formation of a bimodal grain microstructure. Calorimeters signals were processed within the Johnson-Mehl-Avrami formalism. This made it possible to determine the exponent of the corresponding equation, the frequency factor, and the activation energy of the grain growth, which was found to be equal to the activation energy of the vacancy migration. The reasons for the abnormal grain growth in nanocrystalline nickel were discussed.

  9. Empirical force field-based kinetic Monte Carlo simulation of precipitate evolution and growth in Al–Cu alloys

    NASA Astrophysics Data System (ADS)

    Joshi, Kaushik; Chaudhuri, Santanu

    2016-10-01

    Ability to accelerate the morphological evolution of nanoscale precipitates is a fundamental challenge for atomistic simulations. Kinetic Monte Carlo (KMC) methodology is an effective approach for accelerating the evolution of nanoscale systems that are dominated by so-called rare events. The quality and accuracy of energy landscape used in KMC calculations can be significantly improved using DFT-informed interatomic potentials. Using newly developed computational framework that uses molecular simulator LAMMPS as a library function inside KMC solver SPPARKS, we investigated formation and growth of Guiner–Preston (GP) zones in dilute Al–Cu alloys at different temperature and copper concentrations. The KMC simulations with angular dependent potential (ADP) predict formation of coherent disc-shaped monolayers of copper atoms (GPI zones) in early stage. Such monolayers are then gradually transformed into energetically favored GPII phase that has two aluminum layers sandwiched between copper layers. We analyzed the growth kinetics of KMC trajectory using Johnson–Mehl–Avrami (JMA) theory and obtained a phase transformation index close to 1.0. In the presence of grain boundaries, the KMC calculations predict the segregation of copper atoms near the grain boundaries instead of formation of GP zones. The computational framework presented in this work is based on open source potentials and MD simulator and can predict morphological changes during the evolution of the alloys in the bulk and around grain boundaries.

  10. Growth Kinetics and Mechanics of Hydrate Films by Interfacial Rheology.

    PubMed

    Leopércio, Bruna C; de Souza Mendes, Paulo R; Fuller, Gerald G

    2016-05-01

    A new approach to study and understand the kinetics and mechanical properties of hydrates by interfacial rheology is presented. This is made possible using a "double wall ring" interfacial rheology cell that has been designed to provide the necessary temperature control. Cyclopentane and water are used to form hydrates, and this model system forms these structures at ambient pressures. Different temperature and water/hydrocarbon contact protocols are explored. Of particular interest is the importance of first contacting the hydrocarbon against ice crystals in order to initiate hydrate formation. Indeed, this is found to be the case, even though the hydrates may be created at temperatures above the melting point of ice. Once hydrates completely populate the hydrocarbon/water interface, strain sweeps of the interfacial elastic and viscous moduli are conducted to interrogate the mechanical response and fragility of the hydrate films. The dependence on temperature, Tf, by the kinetics of formation and the mechanical properties is reported, and the cyclopentane hydrate dissociation temperature was found to be between 6 and 7 °C. The formation time (measured from the moment when cyclopentane first contacts ice crystals) as well as the elastic modulus and the yield strain increase as Tf increases. PMID:27076092

  11. Epitaxial growth of tungsten layers on MgO(001)

    SciTech Connect

    Zheng, Pengyuan; Ozsdolay, Brian D.; Gall, Daniel

    2015-11-15

    Smooth single crystal W(001) layers were grown on MgO(001) substrates by magnetron sputtering at 900 °C. X-ray diffraction ω–2θ scans, ω-rocking curves, pole figures, and reciprocal space maps indicate a 45°-rotated epitaxial relationship: (001){sub W}‖(001){sub MgO} and [010]{sub W}‖[110]{sub MgO}, and a relaxed lattice constant of 3.167 ± 0.001 nm. A residual in-plane biaxial compressive strain is primarily attributed to differential thermal contraction after growth and decreases from −0.012 ± 0.001 to −0.001 ± 0.001 with increasing layer thickness d = 4.8–390 nm, suggesting relaxation during cooling by misfit dislocation growth through threading dislocation glide. The in-plane x-ray coherence length increases from 3.4 to 33.6 nm for d = 4.8–390 nm, while the out-of-plane x-ray coherence length is identical to the layer thickness for d ≤ 20 nm, but is smaller than d for d ≥ 49.7 nm, indicating local strain variations along the film growth direction. X-ray reflectivity analyses indicate that the root-mean-square surface roughness increases from 0.50 ± 0.05 to 0.95 ± 0.05 nm for d = 4.8–19.9 nm, suggesting a roughness exponent of 0.38, but remains relatively constant for d > 20 nm with a roughness of 1.00 ± 0.05 nm at d = 47.9 nm.

  12. Monte Carlo simulation of domain growth in the kinetic Ising model on the connection machine

    NASA Astrophysics Data System (ADS)

    Amar, Jacques G.; Sullivan, Francis

    1989-10-01

    A fast multispin algorithm for the Monte Carlo simulation of the two-dimensional spin-exchange kinetic Ising model, previously described by Sullivan and Mountain and used by Amar et al. has been adapted for use on the Connection Machine and applied as a first test in a calculation of domain growth. Features of the code include: (a) the use of demon bits, (b) the simulation of several runs simultaneously to improve the efficiency of the code, (c) the use of virtual processors to simulate easily and efficiently a larger system size, (d) the use of the (NEWS) grid for last communication between neighbouring processors and updating of boundary layers, (e) the implementation of an efficient random number generator much faster than that provided by Thinking Machines Corp., and (f) the use of the LISP function "funcall" to select which processors to update. Overall speed of the code when run on a (128x128) processor machine is about 130 million attempted spin-exchanges per second, about 9 times faster than the comparable code, using hardware vectorised-logic operations and 64-bit multispin coding on the Cyber 205. The same code can be used on a larger machine (65 536 processors) and should produce speeds in excess of 500 million attempted spin-exchanges per second.

  13. Nanoporous anodic titanium dioxide layers as potential drug delivery systems: Drug release kinetics and mechanism.

    PubMed

    Jarosz, Magdalena; Pawlik, Anna; Szuwarzyński, Michał; Jaskuła, Marian; Sulka, Grzegorz D

    2016-07-01

    Nanoporous anodic titanium dioxide (ATO) layers on Ti foil were prepared via a three step anodization process in an electrolyte based on an ethylene glycol solution with fluoride ions. Some of the ATO samples were heat-treated in order to achieve two different crystallographic structures - anatase (400°C) and a mixture of anatase and rutile (600°C). The structural and morphological characterizations of ATO layers were performed using a field emission scanning electron microscope (SEM). The hydrophilicity of ATO layers was determined with contact angle measurements using distilled water. Ibuprofen and gentamicin were loaded effectively inside the ATO nanopores. Afterwards, an in vitro drug release was conducted for 24h under a static and dynamic flow conditions in a phosphate buffer solution at 37°C. The drug concentrations were determined using UV-Vis spectrophotometry. The absorbance of ibuprofen was measured directly at 222nm, whether gentamicin was determined as a complex with silver nanoparticles (Ag NPs) at 394nm. Both compounds exhibited long term release profiles, despite the ATO structure. A new release model, based on the desorption of the drug from the ATO top surface followed by the desorption and diffusion of the drug from the nanopores, was derived. The proposed release model was fitted to the experimental drug release profiles, and kinetic parameters were calculated. PMID:27037782

  14. Nanoporous anodic titanium dioxide layers as potential drug delivery systems: Drug release kinetics and mechanism.

    PubMed

    Jarosz, Magdalena; Pawlik, Anna; Szuwarzyński, Michał; Jaskuła, Marian; Sulka, Grzegorz D

    2016-07-01

    Nanoporous anodic titanium dioxide (ATO) layers on Ti foil were prepared via a three step anodization process in an electrolyte based on an ethylene glycol solution with fluoride ions. Some of the ATO samples were heat-treated in order to achieve two different crystallographic structures - anatase (400°C) and a mixture of anatase and rutile (600°C). The structural and morphological characterizations of ATO layers were performed using a field emission scanning electron microscope (SEM). The hydrophilicity of ATO layers was determined with contact angle measurements using distilled water. Ibuprofen and gentamicin were loaded effectively inside the ATO nanopores. Afterwards, an in vitro drug release was conducted for 24h under a static and dynamic flow conditions in a phosphate buffer solution at 37°C. The drug concentrations were determined using UV-Vis spectrophotometry. The absorbance of ibuprofen was measured directly at 222nm, whether gentamicin was determined as a complex with silver nanoparticles (Ag NPs) at 394nm. Both compounds exhibited long term release profiles, despite the ATO structure. A new release model, based on the desorption of the drug from the ATO top surface followed by the desorption and diffusion of the drug from the nanopores, was derived. The proposed release model was fitted to the experimental drug release profiles, and kinetic parameters were calculated.

  15. Growth Kinetics of Attached Iron-Oxidizing Bacteria

    PubMed Central

    Wichlacz, Paul L.; Unz, Richard F.

    1985-01-01

    A model of growth and substrate utilization for ferrous-iron-oxidizing bacteria attached to the disks of a rotating biological contactor was developed and tested. The model describes attached bacterial growth as a saturation function in which the rate of substrate utilization is determined by a maximum substrate oxidation rate constant (P), a half-saturation constant (Ks), and the concentration of substrate within the rotating biological contactor (S1). The maximum oxidation rate constant was proportional to flow rate, and the substrate concentration in the reactor varied with influent substrate concentration (S0). The model allowed the prediction of metabolic constants and included terms for both constant and growth-rate-dependent maintenance energies. Estimates for metabolic constants of the attached population of acidophilic, chemolithotrophic, iron-oxidizing bacteria limited by ferrous iron were: maximum specific growth rate (μmax), 1.14 h−1; half-saturation constant (Ks) for ferrous iron, 54.9 mg/liter; constant maintenance energy coefficient (m1), 0.154 h−1; growth-rate-dependent maintenance energy coefficient (m′), 0.07 h−1; maximum yield (Yg), 0.063 mg of organic nitrogen per mg of Fe(II) oxidized. PMID:16346863

  16. When is one layer complete? Using simultaneous in-situ RHEED and x-ray reflectivity to map layer-by-layer thin-film oxide growth

    NASA Astrophysics Data System (ADS)

    Sullivan, M. C.; Ward, M. J.; Joress, H.; Gutierrez-Llorente, A.; White, A. E.; Woll, A.; Brock, J. D.

    2014-03-01

    The most popular tool for characterizing in situ layer-by-layer growth is Reflection High-Energy Electron Diffraction (RHEED). X-ray reflectivity can also be used to study layer-by-layer growth, as long as the incident angle of the x-rays is far from a Bragg peak. During layer-by-layer homoepitaxial growth, both the RHEED intensity and the reflected x-ray intensity will oscillate, and each complete oscillation indicates the addition of one layer of material. However, it is well documented, but not well understood, that the maxima in the RHEED intensity oscillations do not necessarily occur at the completion of a layer. In contrast, the maxima in the x-ray intensity oscillations do occur at the completion of a layer, thus the RHEED and x-ray oscillations are rarely in phase. We present our results on simultaneous in situ x-ray reflectivity and RHEED during layer-by-layer growth of SrTiO3 and discuss how to determine the completion of a layer for RHEED oscillations independent of the phase of the RHEED oscillation. Supported by DOE Office of Basic Energy Sciences Award DE-SC0001086, CHESS is supported by the NSF & NIH/NIGMS via NSF award DMR-0936384.

  17. Role of plasma activation in the kinetics of CNT growth in PECVD process

    NASA Astrophysics Data System (ADS)

    Lebedeva, Irina; Gavrikov, Alexey; Baranov, Alexey; Belov, Maxim; Knizhnik, Andrey; Potapkin, Boris; Sommerer, Timothy

    2009-10-01

    The work presents kinetic modeling of the effect of acceleration for the growth kinetics of carbon nanotubes by hydrocarbon gas mixture modification with plasma discharge. The plasma activation creates active species in hydrocarbon gas mixture, which can easily adsorb and dissociate on the catalyst surface. So plasma treatment of the gas mixture in the CVD process allows to increase the carbon supply rate by a few orders of magnitude compared to that in thermal CVD process. On the other hand, plasma can also provide etching of carbon species from the catalyst surface. To correctly reproduce both of these effects of plasma, the kinetic model of growth of carbon nanotubes is developed based on first-principles analysis of heterogeneous processes on the catalyst surface and detailed kinetics of gas phase chemistry. The model is used to compare the growth rates of carbon nanotubes in thermal and plasma-enhanced CVD processes and to determine critical gas pressures, at which CNT growth kinetics switches from the adsorption limitation to the limitation by reaction and diffusion on the catalyst.

  18. Crystal nucleation and cluster-growth kinetics in a model glass under shear.

    PubMed

    Mokshin, Anatolii V; Barrat, Jean-Louis

    2010-08-01

    Crystal nucleation and growth processes induced by an externally applied shear strain in a model metallic glass are studied by means of nonequilibrium molecular dynamics simulations, in a range of temperatures. We observe that the nucleation-growth process takes place after a transient, induction regime. The critical cluster size and the lag-time associated with this induction period are determined from a mean first-passage time analysis. The laws that describe the cluster-growth process are studied as a function of temperature and strain rate. A theoretical model for crystallization kinetics that includes the time dependence for nucleation and cluster growth is developed within the framework of the Kolmogorov-Johnson-Mehl-Avrami scenario and is compared with the molecular dynamics data. Scalings for the cluster-growth laws and for the crystallization kinetics are also proposed and tested. The observed nucleation rates are found to display a nonmonotonic strain rate dependency. PMID:20866816

  19. Kinetic Monte Carlo Simulation of Epitaxial Thin Film Growth: Formation of Submonolayer Islands and Multilayer Mounds

    SciTech Connect

    Evans, J. W.; Thiel, P. A.; Li, Maozhi

    2007-06-14

    We consider homoepitaxy (or low-misfit heteroepitaxy) via vapor deposition or MBE under UHV conditions. Thin film growth is initiated by nucleation and growth of 2D islands in the submonolayer regime. For atoms subsequently deposited on top of islands, a step edge barrier often inhibits downward transport and produces kinetic roughening during multilayer growth. Such unstable growth is characterized by the formation of 3D mounds (multilayer stacks of 2D islands). Kinetic Monte Carlo (KMC) simulation of suitable atomistic lattice-gas models can address fundamental or general issues related to both submonolayer and multilayer film evolution, and can also provide a predictive tool for morphological evolution in specific systems. Examples of the successes of KMC modeling are provided for metal homoepitaxial film growth, specifically for contrasting behavior in the classic Ag/Ag(100) and Ag/Ag(111) systems.

  20. Growth of transition metals on cerium tungstate model catalyst layers

    NASA Astrophysics Data System (ADS)

    Skála, T.; Tsud, N.; Stetsovych, V.; Mysliveček, J.; Matolín, V.

    2016-10-01

    Two model catalytic metal/oxide systems were investigated by photoelectron spectroscopy and scanning tunneling microscopy. The mixed-oxide support was a cerium tungstate epitaxial thin layer grown in situ on the W(1 1 0) single crystal. Active particles consisted of palladium and platinum 3D islands deposited on the tungstate surface at 300 K. Both metals were found to interact weakly with the oxide support and the original chemical state of both support and metals was mostly preserved. Electronic and morphological changes are discussed during the metal growth and after post-annealing at temperatures up to 700 K. Partial transition-metal coalescence and self-cleaning from the CO and carbon impurities were observed.

  1. Graphene Layer Growth Chemistry: Five-Six-Ring Flip Reaction

    SciTech Connect

    Whitesides, R.; Domin, D.; Salomon-Ferrer, R.; Lester Jr., W.A.; Frenklach, M.

    2007-12-01

    Reaction pathways are presented for hydrogen-mediated isomerization of a five and six member carbon ring complex on the zigzag edge of a graphene layer. A new reaction sequence that reverses orientation of the ring complex, or 'flips' it, was identified. Competition between the flip reaction and 'ring separation' was examined. Ring separation is the reverse of the five and six member ring complex formation reaction, previously reported as 'ring collision'. The elementary steps of the pathways were analyzed using density-functional theory (DFT). Rate coefficients were obtained by solution of the energy master equation and classical transition state theory utilizing the DFT energies, frequencies, and geometries. The results indicate that the flip reaction pathway dominates the separation reaction and should be competitive with other pathways important to the graphene zigzag edge growth in high temperature environments.

  2. Growth of transition metals on cerium tungstate model catalyst layers.

    PubMed

    Skála, T; Tsud, N; Stetsovych, V; Mysliveček, J; Matolín, V

    2016-10-01

    Two model catalytic metal/oxide systems were investigated by photoelectron spectroscopy and scanning tunneling microscopy. The mixed-oxide support was a cerium tungstate epitaxial thin layer grown in situ on the W(1 1 0) single crystal. Active particles consisted of palladium and platinum 3D islands deposited on the tungstate surface at 300 K. Both metals were found to interact weakly with the oxide support and the original chemical state of both support and metals was mostly preserved. Electronic and morphological changes are discussed during the metal growth and after post-annealing at temperatures up to 700 K. Partial transition-metal coalescence and self-cleaning from the CO and carbon impurities were observed. PMID:27494195

  3. Relationship between kinetics of growth and production of exo-electrons: Case study with Geobacter toluenoxydans.

    PubMed

    Szöllősi, Attila; Narr, László; Kovács, Attila G; Styevkó, Gabriella

    2015-09-01

    Kinetics of growth and product formation of G. toluenoxydans DSMZ 19350 strain were investigated using sodium-acetate as substrate and Fe(3+)-ions and fumarate as electron acceptor. Response surface method was adapted for evaluation of growth of bacteria. Results showed that maximum growth was detected in the case of 2.2 g/L substrate concentration. Application of higher substrate concentration (>2.5 g/L sodium acetate) significantly inhibits the bacterial growth. Luong's model was found to be the most suitable to determine kinetic parameters (μ(max) = 0.033 1/h, KS = 0.205 g/L) of growth of G.toluenoxydans strain, and the growth was completely inhibited at substrate concentration higher than 3.1 g/L. In the case of product formation the Haldane model was used and kinetic parameters are μ(Pmax) = 0.123 mg/h, K(PS)= 0.184 g/L. Correlation between microbial growth and product formation was observed using the Luedeking-Piret empirical method. Both factors (growth and number of cells) affected significantly iron(III)-reduction, thus the product formation. These results are important and open the possibility to design a continuous MFC setting operating with G. toluenoxydans as biocatalyst. PMID:26551573

  4. Effect of low dose rate radiation on cell growth kinetics.

    PubMed Central

    Gregg, E C; Yau, T M; Kim, S C

    1979-01-01

    Experimental determinations were made of cell number as a function of time for two strains of L5178Y mammalian cells maintained continuously in various environments of radiation. One strain possessed a shoulder in its dose response curve whereas the other did not. Neither strain showed any significant difference in growth rate for interdivision doses on the order of the median lethal dose or less delivered continuously at a low dose rate or pulsed every 4 h at a high instantaneous dose rate. It was also shown that large numbers of dead cells have little effect on growth rate and that these dead cells last as discrete entities for many days. A simple theory of growth rate in the presence of radiation is presented, and the agreement with the observations implies that there is no effect of any sublethal low dose rate radiation received in one generation on the growth rate or radiation sensitivity of the succeeding generation. Further analysis of the data also showed that for the no-shoulder cells at 37 degrees C, tritiated water had a relative biological effect close to unity for cell sterilization. PMID:262446

  5. Kinetic analysis of MgB2 layer formation in advanced internal magnesium infiltration (AIMI) processed MgB2 wires

    PubMed Central

    Li, G. Z.; Sumption, M. D.; Collings, E. W.

    2015-01-01

    Significantly enhanced critical current density (Jc) for MgB2 superconducting wires can be obtained following the advanced internal Mg infiltration (AIMI) route. But unless suitable precautions are taken, the AIMI-processed MgB2 wires will exhibit incomplete MgB2 layer formation, i.e. reduced superconductor core size and hence suppressed current-carrying capability. Microstructural characterization of AIMI MgB2 wires before and after the heat treatment reveals that the reaction mechanism changes from a “Mg infiltration-reaction” at the beginning of the heat treatment to a “Mg diffusion-reaction” once a dense MgB2 layer is formed. A drastic drop in the Mg transport rate from infiltration to diffusion causes the termination of the MgB2 core growth. To quantify this process, a two-stage kinetic model is built to describe the MgB2 layer formation and growth. The derived kinetic model and the associated experimental observations indicate that fully reacted AIMI-processed MgB2 wires can be achieved following the optimization of B particle size, B powder packing density, MgB2 reaction activation energy and its response to the additions of dopants. PMID:26973431

  6. Intercalation and adsorption of ciprofloxacin by layered chalcogenides and kinetics study.

    PubMed

    Li, Jian-Rong; Wang, Yun-Xia; Wang, Xu; Yuan, Baoling; Fu, Ming-Lai

    2015-09-01

    The hydrothermally synthesized layered chalcogenide, K(2x)Mn(x)Sn(3-x)S6 (x=0.5-0.95) (KMS-1), was applied to remove ciprofloxacin from aqueous solution. Kinetic data showed the removal reaction followed a pseudo-second-order kinetic model and the rate controlling step was both through external film and intraparticle diffusion. The adsorption of CIP by KMS-1 is endothermic and the maximum adsorption capacity of KMS-1 was 199.6, 230.9 and 269.5 mg/g at temperature of 10, 25 and 40°C, respectively. The heavy metal ions had great effect on the removal efficiency of CIP and the degree of inhibition followed the order: Pb(2+)>Zn(2+)>Cd(2+)>Ni(2+). The shift of Bragg peaks from XRD at various pH accompanying CIP removal and FE-SEM images confirmed that cation exchange is the major mechanism for the adsorption of CIP by KMS-1. In the pH range of 4.0-7.0, the intercalation of cationic CIP adopted a titled orientation of di-molecular CIP in KMS-1 with the titling angle of 68° and 42°, respectively. A vertical arrangement of the zwitterionic CIP adsorbed on the surface of KMS-1 was also confirmed. These results suggested that KMS-1 is an effective adsorbent to remove CIP from water. PMID:25965434

  7. Effect of blanching on thin layer drying kinetics of aonla (Emblica officinalis) shreds.

    PubMed

    Gupta, R K; Sharma, Alka; Kumar, Pradeep; Vishwakarma, R K; Patil, R T

    2014-07-01

    The effect of hot water blanching treatment on thin layer drying kinetics of aonla shreds was studied at drying air temperatures of 50, 55 and 60 °C with the air velocity of 1.2 m/s. The drying time decreased with the increase in air temperature and blanching. The drying process was observed in falling rate. Drying after blanching reduced the vitamin C content of aonla shreds by 69.36% whereas it decreased by 27.78% in unblanched shreds. Eight commonly used mathematical models were evaluated to predict the drying behavior of aonla shreds. The Midilli model described the drying behaviour of unblanched aonla shreds at all temperatures better than other models whereas two-term model described the drying kinetics of blanched aonla shreds satisfactorily. The effective diffusivities of the unblanched and blanched aonla shreds were determined using Fick's law of diffusion. The activation energy was found to be 47.21 kJ/mol for unblanched and 43.98 kJ/mol for blanched aonla shreds. PMID:24966422

  8. Crystalline Grain Interior Configuration Affects Lithium Migration Kinetics in Li-Rich Layered Oxide.

    PubMed

    Yu, Haijun; So, Yeong-Gi; Kuwabara, Akihide; Tochigi, Eita; Shibata, Naoya; Kudo, Tetsuichi; Zhou, Haoshen; Ikuhara, Yuichi

    2016-05-11

    The electrode kinetics of Li-ion batteries, which are important for battery utilization in electric vehicles, are affected by the grain size, crystal orientation, and surface structure of electrode materials. However, the kinetic influences of the grain interior structure and element segregation are poorly understood, especially for Li-rich layered oxides with complex crystalline structures and unclear electrochemical phenomena. In this work, cross-sectional thin transmission electron microscopy specimens are "anatomized" from pristine Li1.2Mn0.567Ni0.167Co0.067O2 powders using a new argon ion slicer technique. Utilizing advanced microscopy techniques, the interior configuration of a single grain, multiple monocrystal-like domains, and nickel-segregated domain boundaries are clearly revealed; furthermore, a randomly distributed atomic-resolution Li2MnO3-like with an intergrown LiTMO2 (TM = transitional metals) "twin domain" is demonstrated to exist in each domain. Further theoretical calculations based on the Li2MnO3-like crystal domain boundary model reveal that Li(+) migration in the Li2MnO3-like structure with domain boundaries is sluggish, especially when the nickel is segregated in domain boundaries. Our work uncovers the complex configuration of the crystalline grain interior and provides a conceptual advance in our understanding of the electrochemical performance of several compounds for Li-ion batteries. PMID:27088669

  9. Effect of blanching on thin layer drying kinetics of aonla (Emblica officinalis) shreds.

    PubMed

    Gupta, R K; Sharma, Alka; Kumar, Pradeep; Vishwakarma, R K; Patil, R T

    2014-07-01

    The effect of hot water blanching treatment on thin layer drying kinetics of aonla shreds was studied at drying air temperatures of 50, 55 and 60 °C with the air velocity of 1.2 m/s. The drying time decreased with the increase in air temperature and blanching. The drying process was observed in falling rate. Drying after blanching reduced the vitamin C content of aonla shreds by 69.36% whereas it decreased by 27.78% in unblanched shreds. Eight commonly used mathematical models were evaluated to predict the drying behavior of aonla shreds. The Midilli model described the drying behaviour of unblanched aonla shreds at all temperatures better than other models whereas two-term model described the drying kinetics of blanched aonla shreds satisfactorily. The effective diffusivities of the unblanched and blanched aonla shreds were determined using Fick's law of diffusion. The activation energy was found to be 47.21 kJ/mol for unblanched and 43.98 kJ/mol for blanched aonla shreds.

  10. Mechanism And Kinetics Of Silylation Of Resist Layers From The Gas Phase

    NASA Astrophysics Data System (ADS)

    Visser, Robert-Jan; Schellekens, Jack P. W.; Reuhman-Huisken, Marian E.

    1987-09-01

    The silylation from the gas phase of photoresists based on diazoquinone and novolac or polyvinylphenol, which can be used in dry developable systems has been investigated. It is shown that the phenolic hydroxyl groups are almost completely silylated. The kinetics of the reaction have been followed by gravimetry, IR spectroscopy and Rutherford backscattering spectrometry. During the reaction a completely silylated, swollen layer is formed with a sharp front separating it from the unreacted resin. The rate control-ling processes are the relaxation of the polymer and the diffusion of the reagent. When the relaxation is slow with respect to diffusion, linear reaction kinetics as in Case II diffusion are observed. When the relaxation is fast the reaction proceeds with the square root of time. The increase of the reaction rate with UV exposure of the resist is attributed to an increase in the relaxation rate of the resist. A model explains the higher photoselectivity of the reaction at elevated temperatures. Results with a number of model resists indicate that some diazoquinones can act as physical crosslinks between polymer chains via the formation of hydrogen bonds whereas the corresponding in-denecarboxylic acids cannot. Due to the high content of silicon after the treatment these resists become highly etch-resistant towards oxygen plasmas.

  11. Kinetic surface roughening and wafer bow control in heteroepitaxial growth of 3C-SiC on Si(111) substrates

    PubMed Central

    Wang, Li; Walker, Glenn; Chai, Jessica; Iacopi, Alan; Fernandes, Alanna; Dimitrijev, Sima

    2015-01-01

    A thin, chemically inert 3C-SiC layer between GaN and Si helps not only to avoid the “melt-back” effect, but also to inhibit the crack generation in the grown GaN layers. The quality of GaN layer is heavily dependent on the unique properties of the available 3C-SiC/Si templates. In this paper, the parameters influencing the roughness, crystalline quality, and wafer bow are investigated and engineered to obtain high quality, low roughness 3C-SiC/Si templates suitable for subsequent GaN growth and device processing. Kinetic surface roughening and SiC growth mechanisms, which depend on both deposition temperature and off-cut angle, are reported for heteroepitaxial growth of 3C-SiC on Si substrates. The narrower terrace width on 4° off-axis Si enhances the step-flow growth at 1200 °C, with the roughness of 3C-SiC remaining constant with increasing thickness, corresponding to a scaling exponent of zero. Crack-free 3C-SiC grown on 150-mm Si substrate with a wafer bow of less than 20 μm was achieved. Both concave and convex wafer bow can be obtained by in situ tuning of the deposited SiC layer thicknesses. The 3C-SiC grown on off-axis Si, compared to that grown on on-axis Si, has lower surface roughness, better crystallinity, and smaller bow magnitude. PMID:26487465

  12. Kinetic surface roughening and wafer bow control in heteroepitaxial growth of 3C-SiC on Si(111) substrates.

    PubMed

    Wang, Li; Walker, Glenn; Chai, Jessica; Iacopi, Alan; Fernandes, Alanna; Dimitrijev, Sima

    2015-10-21

    A thin, chemically inert 3C-SiC layer between GaN and Si helps not only to avoid the "melt-back" effect, but also to inhibit the crack generation in the grown GaN layers. The quality of GaN layer is heavily dependent on the unique properties of the available 3C-SiC/Si templates. In this paper, the parameters influencing the roughness, crystalline quality, and wafer bow are investigated and engineered to obtain high quality, low roughness 3C-SiC/Si templates suitable for subsequent GaN growth and device processing. Kinetic surface roughening and SiC growth mechanisms, which depend on both deposition temperature and off-cut angle, are reported for heteroepitaxial growth of 3C-SiC on Si substrates. The narrower terrace width on 4° off-axis Si enhances the step-flow growth at 1200 °C, with the roughness of 3C-SiC remaining constant with increasing thickness, corresponding to a scaling exponent of zero. Crack-free 3C-SiC grown on 150-mm Si substrate with a wafer bow of less than 20 μm was achieved. Both concave and convex wafer bow can be obtained by in situ tuning of the deposited SiC layer thicknesses. The 3C-SiC grown on off-axis Si, compared to that grown on on-axis Si, has lower surface roughness, better crystallinity, and smaller bow magnitude.

  13. Atomistic kinetic Monte Carlo study of atomic layer deposition derived from density functional theory.

    PubMed

    Shirazi, Mahdi; Elliott, Simon D

    2014-01-30

    To describe the atomic layer deposition (ALD) reactions of HfO2 from Hf(N(CH3)2)4 and H2O, a three-dimensional on-lattice kinetic Monte-Carlo model is developed. In this model, all atomistic reaction pathways in density functional theory (DFT) are implemented as reaction events on the lattice. This contains all steps, from the early stage of adsorption of each ALD precursor, kinetics of the surface protons, interaction between the remaining precursors (steric effect), influence of remaining fragments on adsorption sites (blocking), densification of each ALD precursor, migration of each ALD precursors, and cooperation between the remaining precursors to adsorb H2O (cooperative effect). The essential chemistry of the ALD reactions depends on the local environment at the surface. The coordination number and a neighbor list are used to implement the dependencies. The validity and necessity of the proposed reaction pathways are statistically established at the mesoscale. The formation of one monolayer of precursor fragments is shown at the end of the metal pulse. Adsorption and dissociation of the H2O precursor onto that layer is described, leading to the delivery of oxygen and protons to the surface during the H2O pulse. Through these processes, the remaining precursor fragments desorb from the surface, leaving the surface with bulk-like and OH-terminated HfO2, ready for the next cycle. The migration of the low coordinated remaining precursor fragments is also proposed. This process introduces a slow reordering motion (crawling) at the mesoscale, leading to the smooth and conformal thin film that is characteristic of ALD.

  14. Si-adatom kinetics in defect mediated growth of multilayer epitaxial graphene films on 6H-SiC

    NASA Astrophysics Data System (ADS)

    Shetu, Shamaita S.; Omar, S. U.; Daniels, K. M.; Daas, B.; Andrews, J.; Ma, S.; Sudarshan, T. S.; Chandrashekhar, M. V. S.

    2013-10-01

    We present a quantitative study on the growth of multilayer epitaxial graphene (EG) by solid-state decomposition of SiC on polar (c-plane Si and C-face) and non-polar (a and m planes) 6H-SiC faces, with distinctly different defect profiles. The growth rates are slower than expected from a mechanism that involves Si loss from an open and free surface, and much faster than expected for the nucleation of a defect-free EG layer, implying that defects in the EG play a critical role in determining the growth kinetics. We show that a Deal-Grove growth model, which assumes vertical diffusion of Si through these defects as the limiting factor for EG growth, is unsuitable for describing multilayer growth. Instead, we introduce a lateral "adatom" diffusion mechanism for Si out-diffusion, based on a modified Burton, Cabrera, and Frank model. In this model, defects in epitaxial graphene serve as sinks for Si desorption loss, taking the place of reactive sites, such as step edges for nucleation and growth of crystals produced with external precursors. This analysis shows that the surface diffusion of Si atoms to the grain boundaries of EG limits the growth on c-plane C-face and non-polar faces, rather than the purely vertical diffusion of Si through the grain boundaries described in the Deal-Grove model. However, for Si-face c-plane growth, diffusion of Si to the defects, as well as desorption of Si at the grain boundaries are both relevant, leading to a different temperature trend compared with the other faces. This distinct qualitative difference is ascribed to point-defects in Si-face growth, as contrasted with line defects/grain boundaries on the other faces. The size of the EG grains correlates with the surface diffusion length extracted from this model. The longer a Si adatom diffuses, the higher the quality of the grown EG film, an insight that provides valuable information on Si adatom kinetics for optimizing EG growth. We discuss the applicability of this model to

  15. Modified Gompertz equation for electrotherapy murine tumor growth kinetics: predictions and new hypotheses

    PubMed Central

    2010-01-01

    Background Electrotherapy effectiveness at different doses has been demonstrated in preclinical and clinical studies; however, several aspects that occur in the tumor growth kinetics before and after treatment have not yet been revealed. Mathematical modeling is a useful instrument that can reveal some of these aspects. The aim of this paper is to describe the complete growth kinetics of unperturbed and perturbed tumors through use of the modified Gompertz equation in order to generate useful insight into the mechanisms that underpin this devastating disease. Methods The complete tumor growth kinetics for control and treated groups are obtained by interpolation and extrapolation methods with different time steps, using experimental data of fibrosarcoma Sa-37. In the modified Gompertz equation, a delay time is introduced to describe the tumor's natural history before treatment. Different graphical strategies are used in order to reveal new information in the complete kinetics of this tumor type. Results The first stage of complete tumor growth kinetics is highly non linear. The model, at this stage, shows different aspects that agree with those reported theoretically and experimentally. Tumor reversibility and the proportionality between regions before and after electrotherapy are demonstrated. In tumors that reach partial remission, two antagonistic post-treatment processes are induced, whereas in complete remission, two unknown antitumor mechanisms are induced. Conclusion The modified Gompertz equation is likely to lead to insights within cancer research. Such insights hold promise for increasing our understanding of tumors as self-organizing systems and, the possible existence of phase transitions in tumor growth kinetics, which, in turn, may have significant impacts both on cancer research and on clinical practice. PMID:21029411

  16. Phosphate-limited continuous culture of Rhodotorula rubra: kinetics of transport, leakage, and growth.

    PubMed Central

    Robertson, B R; Button, D K

    1979-01-01

    The phosphate-limited growth kinetics of Rhodotorula rubra, a small yeast of marine origin, were examined by analysis of 32P distributions in continuous cultures. Isotope relaxation procedures were used to identify unidirectional flows of Pi and organic phosphate among compartments modeled during growth. The concentrations of phosphates in these compartments at various growth rates were used, together with attendant flows, to produce a mathematical model of growth. Both Pi and phosphate-containing metabolic intermediates leaked from cells during growth. Total leakage ranged from 4 to 10% of influx and was comprised mostly of Pi. Transport capacity was at least 10 times that required for growth at saturating Pi concentrations, so that influx was linear with concentration during growth. This led to the realization that the curvature of Monod plots (Kmu = 12 nM mumax = 0.18/h, and the threshold At = 2.5 nM) is due to change in yield with growth rate. Growth rate related to Pi by the affinity, aA (= 0.43 liter/mg of cells.h) of cells for Pi and the growth rate-dependent yield. It was also specified by a series of kinetic constants that specified flow among the various compartments and equilibrium compartment concentrations as they were set by extracellular Pi. The importance of leakage by healthy cells to the organic chemistry of aquatic systems is noted. PMID:37231

  17. Growth kinetics of calcium oxalate monohydrate. III. Variation of solution composition

    NASA Astrophysics Data System (ADS)

    Bijvoet, Olav L. M.; Blomen, Leo J. M. J.; Will, Eric J.; van der Linden, Hanneke

    1983-11-01

    The influence of the variations of initial supersaturation, ionic strength and calcium-to-oxalate ratio on the growth kinetics of calcium oxalate monohydrate from suspension at 37°C have been investigated in an isotopic system. All experiments can be described with a single growth formula, containing three constants: kA (growth rate constant), La (thermodynamic solubility product) and [ tm] (a parameter describing the agglomeration of any seed suspension). This formula is able to predict any growth curve when the initial concentrations of seed, oxalate and indifferent electrolyte are known. Comparisons with datak from the literature are discussed.

  18. Kinetics and thermodynamics of sucrose crystal growth in the presence of a non-ionic surfactant

    NASA Astrophysics Data System (ADS)

    Kumar, K. Vasanth; Rocha, F.

    2010-06-01

    Batch experiments were carried out to study the effect of Hodag CB6, a non-ionic surfactant, on the growth kinetics of sucrose crystals as a function of supersaturation, impurity concentration and temperature. The growth promoting effect of the added impurity, studied using a recently introduced spiral nucleation model (SNM), was due to the decrease in the surface free energy induced by the added surfactant. The growth process was influenced by both kinetic and thermodynamic effect, the latter being predominant. The coverage of impurity molecules on the sucrose surface followed a Henry type expression according to Langmuir isotherm at studied temperatures. In the case of a pure system, the total active kink density was found to be around 10 16 kinks/m 2. The active growth sites on the crystal surface were found to be two orders of magnitude lower than the total number of sucrose molecules.

  19. The logistic growth of duckweed (Lemna minor) and kinetics of ammonium uptake.

    PubMed

    Zhang, Kun; Chen, You-Peng; Zhang, Ting-Ting; Zhao, Yun; Shen, Yu; Huang, Lei; Gao, Xu; Guo, Jin-Song

    2014-01-01

    Mathematical models have been developed to describe nitrogen uptake and duckweed growth experimentally to study the kinetics of ammonium uptake under various concentrations. The kinetics of duckweed ammonium uptake was investigated using the modified depletion method after plants were grown for two weeks at different ammonium concentrations (0.5-14 mg/L) in the culture medium. The maximum uptake rate and Michaelis-Menten constant for ammonium were estimated as 0.082 mg/(g fresh weight x h) and 1.877 mg/L, respectively. Duckweed growth was assessed when supplied at different total nitrogen (TN) concentrations (1-5 mg/L) in the culture medium. The results showed that the intrinsic growth rate was from 0.22 to 0.26 d(-1), and TN concentrations had no significant influence on the duckweed growth rate.

  20. On role of kinetic fluctuations in laminar-turbulent transition in chemically nonequilibrium boundary layer flows

    NASA Astrophysics Data System (ADS)

    Tumin, Anatoli

    2015-11-01

    Zavol'skii and Reutov (1983), Luchini (2008, 2010), Fedorov (2010, 2012, 2014) explored potential role of kinetic fluctuations (KF) in incompressible and calorically perfect gas boundary layer flows. The results indicate that role of KF is comparable with other disturbance sources in flight experiments and in quiet wind tunnels. The analysis is based on the Landau and Lifshitz (1957) concept of fluctuating hydrodynamics representing the dissipative fluxes as an average and fluctuating parts. We are extending analysis of the receptivity problem to the fluctuating dissipative fluxes in chemically reacting nonequilibrium boundary layer flows of binary mixtures. There are new terms in the energy, and the species equations. The species conservation equation includes the dissipative diffusion flux and the species generation due to dissociation. The momentum equation includes fluctuating stress tensor. The energy equation includes fluctuating heat flux, energy flux due to diffusion of the species, and fluctuating dissipative flux due to viscosity. The effects are compared for the cases stemming from constraints of the HTV project (Klentzman and Tumin, AIAA Paper 2013-2882). Supported by AFOSR.

  1. Effect of wall growth on the kinetic modeling of nitrite oxidation in a CSTR.

    PubMed

    Dokianakis, Spiros N; Kornaros, Michael; Lyberatos, Gerasimos

    2006-03-01

    A simple kinetic model was developed for describing nitrite oxidation by autotrophic aerobic nitrifiers in a continuous stirred tank reactor (CSTR), in which mixed (suspended and attached) growth conditions prevail. The CSTR system was operated under conditions of constant nitrite feed concentration and varying volumetric flow rates. Experimental data from steady-state conditions in the CSTR system and from batch experiments were used for the determination of the model's kinetic parameters. Model predictions were verified against experimental data obtained under transient operating conditions, when volumetric flow rate and nitrite feed concentration disturbances were imposed on the CSTR. The presented kinetic modeling procedure is quite simple and general and therefore can also be applied to other mixed growth biological systems.

  2. Kinetic Roughening and Energetics of Tetragonal Lysozyme Crystal Growth: A Preliminary Atomic Force Microscopy Investigation

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    We examined particulars of crystal growth from measurements obtained at both microscopic and molecular levels. The crystal growth measurements performed at the microscopic level are well characterized by a model that balances the flux of macromolecules towards the crystal surface with the flux of the crystal surface. Numerical evaluation of model with measurements of crystal growth, in time, provided accurate estimates for the average growth velocities. Growth velocities thus obtained were also interpreted using well-established phenomenological theories. Moreover, we find that microscopic measurements of growth velocity measurements obtained as a function of temperature best characterizes changes in crystal growth modes, when present. We also examined the possibility of detecting a change in crystal growth modes at the molecular level using atomic force microscopy, AFM. From preliminary AFM measurements performed at various supersaturations, we find that magnitude of surface height fluctuations, h(x), increases with supersaturation. Further examination of surface height fluctuations using methods established for fluctuation spectroscopy also enabled the discovery of the existence of a characteristic length, c, which may possibly determine the mode of crystal growth. Although the results are preliminary, we establish the non- critical divergence of 5 and the root-mean-square (rms) magnitude of height-height fluctuations as the kinetic roughening transition temperatures are approached. Moreover, we also examine approximate models for interpreting the non-critical behavior of both 6 and rms magnitude of height-height fluctuations, as the solution supersaturation is increased towards the kinetic roughening supersaturation.

  3. Growth Kinetics of Intracellular RNA/Protein Droplets: Signature of a Liquid-Liquid Phase Transition?

    NASA Astrophysics Data System (ADS)

    Berry, Joel; Weber, Stephanie C.; Vaidya, Nilesh; Zhu, Lian; Haataja, Mikko; Brangwynne, Clifford P.

    2015-03-01

    Nonmembrane-bound organelles are functional, dynamic assemblies of RNA and/or protein that can self-assemble and disassemble within the cytoplasm or nucleoplasm. The possibility that underlying intracellular phase transitions may drive and mediate the morphological evolution of some membrane-less organelles has been supported by several recent studies. In this talk, results from a collaborative experimental-theoretical study of the growth and dissolution kinetics of nucleoli and extranucleolar droplets (ENDs) in C. elegans embryos will be presented. We have employed Flory-Huggins solution theory, reaction-diffusion kinetics, and quantitative statistical dynamic scaling analysis to characterize the specific growth mechanisms at work. Our findings indicate that both in vivo and in vitro droplet scaling and growth kinetics are consistent with those resulting from an equilibrium liquid-liquid phase transition mediated by passive nonequilibrium growth mechanisms - simultaneous Brownian coalescence and Ostwald ripening. This supports a view in which cells can employ phase transitions to drive structural organization, while utilizing active processes, such as local transcriptional activity, to fine tune the kinetics of these phase transitions in response to given conditions.

  4. Mathematical modeling and growth kinetics of Clostridium sporogenes in cooked beef

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clostridium sporogenes PA 3679 is a common surrogate for proteolytic Clostridium botulinum for thermal process development and validation. However, little information is available concerning the growth kinetics of C. sporogenes in food. Therefore, the objective of this study was to investigate the...

  5. Generality of the growth kinetics of the average individual cell in different bacterial populations.

    PubMed Central

    Trueba, F J; Neijssel, O M; Woldringh, C L

    1982-01-01

    The kinetics of growth of all the cells in a population is reflected in the shape of the size distribution of the population. To ascertain whether the kinetics of growth of the average individual cell is similar for different strains or growth conditions, we compared the shape of normalized size distributions obtained from steady-state populations. Significant differences in the size distributions were found, but these could be ascribed either to the precision achieved at division or to a constriction period which is long relative to the total cell cycle time. The remaining difference is quite small. Thus, without establishing the pattern itself, it is concluded that the basic course of growth is very similar for the various Escherichia coli strains examined and probably also for other rod-shaped bacteria. The effects of differences in culture technique (batch or chemostat culture), growth rate, and differences among strains were not found to influence the shape of the size distributions and hence the growth kinetics in a direct manner; small differences were found, but only when the precision at division or the fraction of constricted cells (long constriction period) were different as well. PMID:6804435

  6. The Kinetic Scale Structure of the Low Latitude Boundary Layer: Initial MMS Results

    NASA Astrophysics Data System (ADS)

    Dorelli, John; Gershman, Dan; Avanov, Levon; Pollock, Craig; Giles, Barbara; Gliese, Ulrik; Barrie, Alexander; Holland, Matthew; Salo, Chad; Dickson, Charles; Coffey, Victoria; Chandler, Michael; Sato, Yoshifumi; Strangeway, Robert; Russell, Christopher; Baumjohann, Wolfgang; Khotyainstev, Yuri; Torbert, Roy; Burch, James

    2016-04-01

    Since its launch in March of 2015, NASA's Magnetospheric Multiscale (MMS) mission has captured thousands of high resolution magnetopause crossings, routinely resolving the sub-Larmor radius structure of the magnetopause boundary layer for the first time. The primary goal of MMS is to understand the microphysics of magnetic reconnection, and it is well on its way to achieving this objective. However, MMS is also making routine measurements of the electron and ion gyroviscous and heat flux tensors with unprecedented resolution and accuracy. This opens up the possibility of directly observing the physical processes that facilitate momentum and energy transport across the magnetopause boundary layer under arbitrary conditions (e.g., magnetic field geometry and flow shear) far from the reconnection X line. Currently, our global magnetosphere fluid models (e.g., resistive or Hall MHD) do not include accurate descriptions of viscosity and heat flow, both of which are known to be critical players at the magnetopause (not just at the reconnection sites), and several groups are attempting to make progress on this difficult fluid closure problem. In this talk, we will address the fluid closure problem in the context of MMS observations of the Low Latitude Boundary Layer (LLBL), focusing on high resolution particle observations by the Fast Plasma Investigation (FPI). FPI electron bulk velocities are accurate enough to compute current density in both the high density magnetosheath and low density magnetosphere and have already revealed that the LLBL has a complex parallel current structure on the proton Larmor radius scale. We discuss the relationship between these parallel currents and the Hall electric field structures predicted by kinetic models. We also present first observations of the ion and electron gyroviscous and heat flux tensors in the LLBL and discuss implications for the fluid closure problem at Earth's magnetopause.

  7. Growth of high quality GaN layer on carbon nanotube-graphene network structure as intermediate layer

    NASA Astrophysics Data System (ADS)

    Seo, Taeo Hoon; Park, Ah Hyun; Park, Sungchan; Kim, Myung Jong; Suh, Eun-Kyung

    2015-03-01

    In general, high-quality GaN layers are synthesized on low-temperature (LT) GaN buffer layer on a single crystal sapphire substrate. However, large differences in fundamental properties such as lattice constants and thermal expansion coefficients between GaN layer and sapphire substrate generate high density of threading dislocation (TD) that leads to deterioration of optical and structural properties. Graphene has been attracting much attention due to its excellent physical properties However, direct epitaxial growth of GaN film onto graphene layer on substrates is not easily accessible due to the lack of chemical reactivity on graphene which consisted of C-C bond of sp2 hexagonally arranged carbon atoms with no dangling bonds. In this work, an intermediate layer for the GaN growth on sapphire substrate was constructed by inserting carbon nanotubes and graphene hybrid structure (CGH) Optical and structural properties of GaN layer grown on CGH were compared with those of GaN layer directly grown on sapphire CNTs act as nucleation sites and play a crucial role in the growth of single crystal high-quality GaN on graphene layer. Also, graphene film acts as a mask for epitaxial lateral overgrowth of GaN layer, which can effectively reduce TD density. A grant from the Korea Institute of Science and Technology (KIST) institutional program.

  8. Multistep Kinetic Behavior of the Thermal Decomposition of Granular Sodium Percarbonate: Hindrance Effect of the Outer Surface Layer.

    PubMed

    Wada, Takeshi; Nakano, Masayoshi; Koga, Nobuyoshi

    2015-09-24

    The kinetics and mechanism of the thermal decomposition of granular sodium percarbonate (SPC), which is used as a household oxygen bleach, were studied by thermoanalytical measurements under systematically changing conditions and morphological observation of the reactant solids at different reaction stages. A physico-geometrical kinetic behavior of the reaction that occurs in a core-shell structure composed of an outer surface layer and internal aggregates of SPC crystalline particles was illustrated through detailed kinetic analyses using the kinetic deconvolution method. Simultaneously, the hazardous nature of SPC as a combustion improver was evaluated on the basis of the kinetic behavior of the thermal decomposition. It was found that the outer surface layers of the SPC granules hinder the diffusional removal of product gases generated by the thermal decomposition of the internal SPC crystalline particles. The reaction rate decelerates because of an increase in the internal gaseous pressure as the reaction advances. However, the reaction rate accelerates once crack formation occurs in the outer surface layer at the midpoint of the reaction. Therefore, the overall reaction was empirically demonstrated to consist of two overlapping reaction steps owing to the changes in the self-generated reaction conditions in the interior of the SPC granules. PMID:26372469

  9. Endosomal receptor kinetics determine the stability of intracellular growth factor signalling complexes

    PubMed Central

    Tzafriri, A. Rami; Edelman, Elazer R.

    2006-01-01

    There is an emerging paradigm that growth factor signalling continues in the endosome and that cell response to a growth factor is defined by the integration of cell surface and endosomal events. As activated receptors in the endosome are exposed to a different set of binding partners, they probably elicit differential signals compared with when they are at the cell surface. As such, complete appreciation of growth factor signalling requires understanding of growth factor–receptor binding and trafficking kinetics both at the cell surface and in endosomes. Growth factor binding to surface receptors is well characterized, and endosomal binding is assumed to follow surface kinetics if one accounts for changes in pH. Yet, specific binding kinetics within the endosome has not been examined in detail. To parse the factors governing the binding state of endosomal receptors we analysed a whole-cell mathematical model of epidermal growth factor receptor trafficking and binding. We discovered that the stability of growth factor–receptor complexes within endosomes is governed by three primary independent factors: the endosomal dissociation constant, total endosomal volume and the number of endosomal receptors. These factors were combined into a single dimensionless parameter that determines the endosomal binding state of the growth factor–receptor complex and can distinguish different growth factors from each other and different cell states. Our findings indicate that growth factor binding within endosomal compartments cannot be appreciated solely on the basis of the pH-dependence of the dissociation constant and that the concentration of receptors in the endosomal compartment must also be considered. PMID:17117924

  10. Thermodynamics and kinetic behaviors of thickness-dependent crystallization in high-k thin films deposited by atomic layer deposition

    SciTech Connect

    Nie, Xianglong; Ma, Fei; Ma, Dayan; Xu, Kewei

    2015-01-15

    Atomic layer deposition is adopted to prepare HfO{sub 2} and Al{sub 2}O{sub 3} high-k thin films. The HfO{sub 2} thin films are amorphous at the initial growth stage, but become crystallized when the film thickness (h) exceeds a critical value (h{sub critical}{sup *}). This phase transition from amorphous to crystalline is enhanced at higher temperatures and is discussed, taking into account the effect of kinetic energy. At lower temperatures, the amorphous state can be maintained even when h>h{sub critical}{sup *} owing to the small number of activated atoms. However, the number of activated atoms increases with the temperature, allowing crystallization to occur even in films with smaller thickness. The Al{sub 2}O{sub 3} thin films, on the other hand, maintain their amorphous state independent of the film thickness and temperature owing to the limited number of activated atoms. A thermodynamic model is proposed to describe the thickness-dependent phase transition.

  11. Growth kinetics of three species of Tetrahymena on solid agar

    SciTech Connect

    Dobra, K.W.; McArdle, E.W.; Ehret, C.F.

    1980-01-01

    A nutrient-agar method without liquid overlay has been developed for cultivation of ciliates. Three species of Tetrahymena-T. pyriformis strain W, T. rostrata strain UNI, and T. vorax strain V/sub 2/S, representing the 3 main groups of Tetrahymena species, were used; however the method should apply to other ciliates. Growth on the surface of the agar was facilitated by an optimal surface-to-volume ratio yielding a high density of ciliates and short generation times. At the highest density achieved, the cells became irregularly hexagonal and formed a monolayer tissue on the agar. Ciliates grown on agar were like those in liquid culture, typical oral ciliature, food-vacuole formation, and typical cortical patterns being retained. Advantages of this method include high cell density, easy recovery, and optimal O/sub 2/ supply. The organisms can also be cultivated on the surface of sterile cellulose-nitrate filters, facilitating in situ fixation and staining as well as transfer into different media by transfer of filters with cells, without prior centrifugation and resuspension.

  12. Direct growth of multilayer graphene by precipitation using W capping layer

    NASA Astrophysics Data System (ADS)

    Yamada, Jumpei; Ueda, Yuki; Maruyama, Takahiro; Naritsuka, Shigeya

    2016-10-01

    In this study, the direct growth of multilayer graphene from amorphous carbon on a sapphire (0001) substrate by precipitation using a nickel catalyst layer and a tungsten capping layer was examined. The findings revealed that a tungsten carbide layer was formed on top of the catalyst, and this suppressed the diffusion of carbon atoms upwards towards the surface. This caused the graphene layer to precipitate below the catalyst layer rather than above it. Under optimized growth conditions, Raman spectroscopy indicated that a high-quality graphene layer was formed with a low D/G peak intensity ratio of 0.10.

  13. Kinetics of growth of thin-films of Co2Si, Ni2Si, WSi2 and VSi2 during a reactive diffusion process

    NASA Astrophysics Data System (ADS)

    Akintunde, S. O.; Selyshchev, P. A.

    A theoretical approach is developed which describes the growth kinetics of thin films of near noble metal silicide (especially of cobalt silicide (Co2Si) and nickel silicide (Ni2Si)) and refractory metal silicide (particularly of tungsten disilicide (WSi2) and vanadium disilicide (VSi2)) at the interfaces of metal-silicon system. In this approach, metal species are presented as A-atoms, silicon as B-atoms, and silicide as AB-compound. The AB-compound is formed as a result of chemical transformation between A- and B-atoms at the reaction interfaces A/AB and AB/B. The growth of AB-compound at the interfaces occurs in two stages. The first growth stage is reaction controlled stage which takes place at the interface with excess A or B-atoms and the second stage is diffusion limited stage which occurs at both interfaces. The critical thickness of AB-compound and the corresponding time is determined at the transition point between the two growth stages. The result that follows from this approach shows that the growth kinetics of any growing silicides depends on the number of kinds of dominant diffusing species in the silicide layer and also on their number densities at the reaction interface. This result shows a linear-parabolic growth kinetics for WSi2, VSi2, Co2Si, and Ni2Si and it is in good agreement with experiment.

  14. Growth kinetics of calcium fluoride at high supersaturation in a fluidized bed reactor.

    PubMed

    Jiang, K; Zhou, K G; Yang, Y C; Du, H

    2014-01-01

    Crystallization process in a fluidized bed reactor (FBR) has been regarded as an environmentally friendly technology for the removal and recovery of fluoride from industrial wastewater. The growth kinetics of calcium fluoride at high supersaturation was studied for design, control, and operation of an FBR. The main variables, including supersaturation, superficial velocity, pH value, and particle size of seed that influenced the crystal growth were investigated. Then, a growth model was used to predict the linear growth rate of calcium fluoride at a high influent concentration of fluoride. The pressure difference in the FBR was used as a feature to characterize the growth rate of calcium fluoride. The aggregation and adsorption between seeds and fine particles were proven to be a possible mechanism for growth of calcium fluoride.

  15. Analytical solution of Luedeking-Piret equation for a batch fermentation obeying Monod growth kinetics.

    PubMed

    Garnier, Alain; Gaillet, Bruno

    2015-12-01

    Not so many fermentation mathematical models allow analytical solutions of batch process dynamics. The most widely used is the combination of the logistic microbial growth kinetics with Luedeking-Piret bioproduct synthesis relation. However, the logistic equation is principally based on formalistic similarities and only fits a limited range of fermentation types. In this article, we have developed an analytical solution for the combination of Monod growth kinetics with Luedeking-Piret relation, which can be identified by linear regression and used to simulate batch fermentation evolution. Two classical examples are used to show the quality of fit and the simplicity of the method proposed. A solution for the combination of Haldane substrate-limited growth model combined with Luedeking-Piret relation is also provided. These models could prove useful for the analysis of fermentation data in industry as well as academia.

  16. Analysis of layer-by-layer thin-film oxide growth using RHEED and Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Adler, Eli; Sullivan, M. C.; Gutierrez-Llorente, Araceli; Joress, H.; Woll, A.; Brock, J. D.

    2015-03-01

    Reflection high energy electron diffraction (RHEED) is commonly used as an in situ analysis tool for layer-by-layer thin-film growth. Atomic force microscopy is an equally common ex situ tool for analysis of the film surface, providing visual evidence of the surface morphology. During growth, the RHEED intensity oscillates as the film surface changes in roughness. It is often assumed that the maxima of the RHEED oscillations signify a complete layer, however, the oscillations in oxide systems can be misleading. Thus, using only the RHEED maxima is insufficient. X-ray reflectivity can also be used to analyze growth, as the intensity oscillates in phase with the smoothness of the surface. Using x-ray reflectivity to determine the thin film layer deposition, we grew three films where the x-ray and RHEED oscillations were nearly exactly out of phase and halted deposition at different points in the growth. Pre-growth and post-growth AFM images emphasize the fact that the maxima in RHEED are not a justification for determining layer completion. Work conducted at the Cornell High Energy Synchrotron Source (CHESS) supported by NSF Awards DMR-1332208 and DMR-0936384 and the Cornell Center for Materials Research Shared Facilities are supported through DMR-1120296.

  17. Kinetic Monte Carlo simulations of thermally activated magnetization reversal in dual-layer Exchange Coupled Composite recording media

    NASA Astrophysics Data System (ADS)

    Plumer, M. L.; Almudallal, A. M.; Mercer, J. I.; Whitehead, J. P.; Fal, T. J.

    The kinetic Monte Carlo (KMC) method developed for thermally activated magnetic reversal processes in single-layer recording media has been extended to study dual-layer Exchange Coupled Composition (ECC) media used in current and next generations of disc drives. The attempt frequency is derived from the Langer formalism with the saddle point determined using a variant of Bellman Ford algorithm. Complication (such as stagnation) arising from coupled grains having metastable states are addressed. MH-hysteresis loops are calculated over a wide range of anisotropy ratios, sweep rates and inter-layer coupling parameter. Results are compared with standard micromagnetics at fast sweep rates and experimental results at slow sweep rates.

  18. Kinetic Simulation of Gold Nanorod Growth in Solution Based on Optical Spectra

    NASA Astrophysics Data System (ADS)

    Wang, Ying-ying; Li, Bo-xuan; Vdovic, Silvije; Wang, Xue-fei; Xia, An-dong

    2012-04-01

    By monitoring the time evolution of the optical absorption spectrum corresponding to dynamic information of aspect ratio (AR) and volume, we succeeded in following the growth kinetics of gold nanorods. The results indicate that the rods growth consists of two stages: seeds develop into rods with a fast AR increase and the rods grow big with constant AR. Here, a charge transfer model, involving positive charge transfer from Au(I) to seed and neutralization by electron from ascorbic acid, has been introduced to explain the autocatalysis mechanism of rod growth. The good agreement between the numerical simulation based on this model and experimental results supports the proposed mechanism.

  19. In-situ ellipsometric characterization of the growth of porous anisotropic nanocrystalline ZnO layers

    SciTech Connect

    Laha, P. Terryn, H.; Ustarroz, J.; Nazarkin, M. Y. Gavrilov, S. A.; Volkova, A. V.; Simunin, M. M.

    2015-03-09

    ZnO films have increasingly been in the spotlight due to their largely varied electro-physical and optical properties. For several applications, porous anisotropic nanocrystalline layers are especially interesting. To study the growth kinetics of such films during different fabrication processes, a powerful non-destructive in-situ technique is required. In this work, both ex-situ and in-situ spectroscopic ellipsometry are used along with advanced modelling techniques that are able to take both the anisotropy and the porosity of the films into account. Scanning electron microscopy, along with nitrogen absorption methods for measuring porosity, validated the ellipsometric data and proposed model. The film, grown by chemical bath deposition, was monitored from around 700 to 1800 nm in thickness. This same principle can now be used to monitor any other porous and/or anisotropic structure in an effective in-situ manner, e.g., growth of porous anodic aluminium oxides, nano-porous silica films, etc.

  20. Adsorption kinetics and dynamics in Si(100) epitaxial growth and oxidation

    NASA Astrophysics Data System (ADS)

    Ferguson, Bradley Alan

    rate law consistent with chemisorption occurring on two adjacent unoccupied surface sites. Calculated thermal gas adsorption probabilities indicate that the trapping-mediated mechanism dominates adsorption over the entire range of conditions investigated. A simple disilane decomposition kinetic model has been used to calculate hydrogen surface coverage and growth rates as a function of temperature and disilane partial pressure, and produces good agreement with experimental growth rate measurements.

  1. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition.

    PubMed

    Ma, Teng; Ren, Wencai; Zhang, Xiuyun; Liu, Zhibo; Gao, Yang; Yin, Li-Chang; Ma, Xiu-Liang; Ding, Feng; Cheng, Hui-Ming

    2013-12-17

    The controlled growth of large-area, high-quality, single-crystal graphene is highly desired for applications in electronics and optoelectronics; however, the production of this material remains challenging because the atomistic mechanism that governs graphene growth is not well understood. The edges of graphene, which are the sites at which carbon accumulates in the two-dimensional honeycomb lattice, influence many properties, including the electronic properties and chemical reactivity of graphene, and they are expected to significantly influence its growth. We demonstrate the growth of single-crystal graphene domains with controlled edges that range from zigzag to armchair orientations via growth-etching-regrowth in a chemical vapor deposition process. We have observed that both the growth and the etching rates of a single-crystal graphene domain increase linearly with the slanted angle of its edges from 0° to ∼19° and that the rates for an armchair edge are faster than those for a zigzag edge. Such edge-structure-dependent growth/etching kinetics of graphene can be well explained at the atomic level based on the concentrations of the kinks on various edges and allow the evolution and control of the edge and morphology in single-crystal graphene following the classical kinetic Wulff construction theory. Using these findings, we propose several strategies for the fabrication of wafer-sized, high-quality, single-crystal graphene.

  2. Growth kinetics of Hyphomicrobium and Thiobacillus spp. in mixed cultures degrading dimethyl sulfide and methanol.

    PubMed

    Hayes, Alexander C; Liss, Steven N; Allen, D Grant

    2010-08-01

    The growth kinetics of Hyphomicrobium spp. and Thiobacillus spp. on dimethyl sulfide (DMS) and methanol (in the case of Hyphomicrobium spp.) in an enrichment culture created from a biofilter cotreating DMS and methanol were studied. Specific growth rates of 0.099 h(-1) and 0.11 h(-1) were determined for Hyphomicrobium spp. and Thiobacillus spp., respectively, growing on DMS at pH 7. These specific growth rates are double the highest maximum specific growth rate for bacterial growth on DMS reported to date in the literature. When the pH of the medium was decreased from pH 7 to pH 5, the specific growth rate of Hyphomicrobium spp. decreased by 85%, with a near 100-fold decline in the yield of Hyphomicrobium 16S rRNA gene copies in the mixed culture. Through the same pH shift, the specific growth rate and 16S rRNA gene yield of Thiobacillus spp. remained similar. When methanol was used as a substrate, the specific growth rate of Hyphomicrobium spp. declined much less over the same pH range (up to 30%) while the yield of 16S rRNA gene copies declined by only 50%. Switching from an NH(4)(+)-N-based source to a NO(3)(-)-N-based source resulted in the same trends for the specific growth rate of these microorganisms with respect to pH. This suggests that pH has far more impact on the growth kinetics of these microorganisms than the nitrogen source. The results of these mixed-culture batch experiments indicate that the increased DMS removal rates observed in previous studies of biofilters cotreating DMS and methanol are due to the proliferation of DMS-degrading Hyphomicrobium spp. on methanol at pH levels not conducive to high growth rates on DMS alone. PMID:20562269

  3. Growth of III-V nitrides and buffer layer investigation by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Huang, Tzu-Fang

    1999-11-01

    III-V nitrides have been investigated intensively due to the enormous interest in optoelectronic device applications in the green, blue, violet, and near-ultraviolet regions. Advances in III-V nitride materials for short wavelength light sources will lead to both a revolution in optical disk storage, as higher densities can be achieved with short wavelengths, and a major impact on imaging and graphic technology as high quality red, green, and blue light-emitting diodes (LED) and lasers become available. High quality GaN films have mostly been prepared by metal-organic vapor phase epitaxy (MOCVD), molecular beam epitaxy (MBE) and vapor phase epitaxy (VPE). Compared to these techniques, pulsed laser deposition (PLD) is a relatively new growth technique used widely for the growth of oxide thin films. However, several advantages of PLD make it worthy of study as a method of growing nitrides. The congruent ablation achieved with short UV-laser pulses allows deposition of a multicomponent material by employing a single target and the ability for depositing a wide variety of materials. This advantage makes PLD very suitable for growing multilayer structures sequentially in the same chamber and investigating the effect of buffer layers. Moreover, the strong nonequilibrium growth conditions of PLD may lead to different nucleation and growth processes. In this work, GaN and (Al,Ga)N films have been epitaxially grown on (0001) sapphire substrate by PLD, which has been successfully applied to controlling the lattice constant and band gap of (Al,Ga)N. Room-temperature photoluminescence of PLD-GaN exhibits a strong band edge emission at 3.4eV. The threading dislocations of GaN are predominantly screw dislocations with Burgers vector of <0001> while edge dislocations with Burgers vector of 1/3<11-20> are the dominant ones in GaN grown by MBE, MOCVD and VPE. This variation observed in defect characteristics may come from the difference in nucleation and growth kinetics between PLD

  4. Dynamics of interfacial layers-experimental feasibilities of adsorption kinetics and dilational rheology.

    PubMed

    Mucic, N; Javadi, A; Kovalchuk, N M; Aksenenko, E V; Miller, R

    2011-10-14

    Each experimental method has a certain range of application, and so do the instruments for measuring dynamic interfacial tension and dilational rheology. While the capillary pressure tensiometry provides data for the shortest adsorption times starting from milliseconds at liquid/gas and tens of milliseconds at liquid/liquid interfaces, the drop profile tensiometry allows measurements in a time window from seconds to many hours. Although both methods together cover a time range of about eight orders of magnitude (10(-3) s to 10(5) s), not all surfactants can be investigated with these techniques in the required concentration range. The same is true for studies of the dilational rheology. While drop profile tensiometry allows oscillations between 10(-3) Hz and 0.2 Hz, which can be complemented by measurements with capillary pressure oscillating drops and the capillary wave damping method (up to 10(3) Hz) these six orders of magnitude in frequency are often insufficient for a complete characterization of interfacial dilational relaxations of surfactant adsorption layers. The presented analysis provides a guide to select the most suitable experimental method for a given surfactant to be studied. The analysis is based on a diffusion controlled adsorption kinetics and a Langmuir adsorption model.

  5. Recyclable Mg-Al layered double hydroxides for fluoride removal: Kinetic and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2015-12-30

    Mg-Al layered double hydroxides (LDHs) intercalated with NO3(-) (NO3 · Mg-Al LDH) and Cl(-) (Cl · Mg-Al LDH) were found to adsorb fluoride from aqueous solutions. Fluoride is removed by anion exchange in solution with NO3(-) and Cl(-) intercalated in the LDH interlayer. In both cases, the residual F concentration is lower than the effluent standards for F in Japan (8 mg/L). The rate-determining step in the removal of F using NO3 · Mg-Al and Cl · Mg-Al LDH is chemical adsorption involving F(-) anion exchange with intercalated NO3(-) and Cl(-) ions. The removal of F is described by pseudo-second-order reaction kinetics, with Langmuir-type adsorption. The values obtained for the maximum adsorption and the equilibrium adsorption constant are respectively 3.3 mmol g(-1) and 2.8 with NO3 · Mg-Al LDH, and 3.2 mmol g(-1) and 1.5 with Cl · Mg-Al LDH. The F in the F · Mg-Al LDH produced in these reactions was found to exchange with NO3(-) and Cl(-) ions in solution. The regenerated NO3 · Mg-Al and Cl · Mg-Al LDHs thus obtained can be used once more to capture aqueous F. This suggests that NO3 · Mg-Al and Cl · Mg-Al LDHs can be recycled and used repeatedly for F removal.

  6. Kinetics of growth and caffeine demethylase production of Pseudomonas sp. in bioreactor.

    PubMed

    Gummadi, Sathyanarayana N; Santhosh, Devarai

    2010-09-01

    The effect of various initial caffeine concentrations on growth and caffeine demethylase production by Pseudomonas sp. was studied in bioreactor. At initial concentration of 6.5 g l(-1) caffeine, Pseudomonas sp. showed a maximum specific growth rate of 0.2 h(-1), maximum degradation rate of 1.1 g h(-1), and caffeine demethylase activity of 18,762 U g CDW(-1) (CDW: cell dry weight). Caffeine degradation rate was 25 times higher in bioreactor than in shake flask. For the first time, we show highest degradation of 75 g caffeine (initial concentration 20 g l(-1)) in 120 h, suggesting that the tested strain has potential for successful bioprocess for caffeine degradation. Growth kinetics showed substrate inhibition phenomenon. Various substrate inhibition models were fitted to the kinetic data, amongst which the double-exponential (R(2) = 0.94), Luong (R(2) = 0.92), and Yano and Koga 2 (R(2) = 0.94) models were found to be the best. The Luedeking-Piret model showed that caffeine demethylase production kinetics was growth related. This is the first report on production of high levels of caffeine demethylase in batch bioreactor with faster degradation rate and high tolerance to caffeine, hence clearly suggesting that Pseudomonas sp. used in this study is a potential biocatalyst for industrial decaffeination.

  7. Kinetics of growth and caffeine demethylase production of Pseudomonas sp. in bioreactor.

    PubMed

    Gummadi, Sathyanarayana N; Santhosh, Devarai

    2010-09-01

    The effect of various initial caffeine concentrations on growth and caffeine demethylase production by Pseudomonas sp. was studied in bioreactor. At initial concentration of 6.5 g l(-1) caffeine, Pseudomonas sp. showed a maximum specific growth rate of 0.2 h(-1), maximum degradation rate of 1.1 g h(-1), and caffeine demethylase activity of 18,762 U g CDW(-1) (CDW: cell dry weight). Caffeine degradation rate was 25 times higher in bioreactor than in shake flask. For the first time, we show highest degradation of 75 g caffeine (initial concentration 20 g l(-1)) in 120 h, suggesting that the tested strain has potential for successful bioprocess for caffeine degradation. Growth kinetics showed substrate inhibition phenomenon. Various substrate inhibition models were fitted to the kinetic data, amongst which the double-exponential (R(2) = 0.94), Luong (R(2) = 0.92), and Yano and Koga 2 (R(2) = 0.94) models were found to be the best. The Luedeking-Piret model showed that caffeine demethylase production kinetics was growth related. This is the first report on production of high levels of caffeine demethylase in batch bioreactor with faster degradation rate and high tolerance to caffeine, hence clearly suggesting that Pseudomonas sp. used in this study is a potential biocatalyst for industrial decaffeination. PMID:20495941

  8. Kinetic modeling of Moorella thermoacetica growth on single and dual-substrate systems.

    PubMed

    Schmitt, Elliott; Bura, Renata; Gustafson, Rick; Ehsanipour, Mandana

    2016-10-01

    Acetic acid is an important chemical raw material that can be produced directly from sugars in lignocellulosic biomass. Development of kinetic models that capture the bioconversion dynamics of multiple sugar systems will be critical to optimization and process control in future lignocellulosic biorefinery processes. In this work, a kinetic model was developed for the single- and dual-substrate conversion of xylose and glucose to acetic acid using the acetogen Moorella thermoacetica. Batch fermentations were performed experimentally at 20 g L(-1) total sugar concentration using synthetic glucose, xylose, and a mixture of glucose and xylose at a 1:1 ratio. The product yield, calculated as total product formed divided by total sugars consumed, was 79.2, 69.9, and 69.7 % for conversion of glucose, xylose, and a mixture of glucose and xylose (1:1 ratio), respectively. During dual-substrate fermentation, M. thermoacetica demonstrated diauxic growth where xylose (the preferred substrate) was almost entirely consumed before consumption of glucose began. Kinetic parameters were similar for the single-substrate fermentations, and a strong linear correlation was determined between the maximum specific growth rate μ max and substrate inhibition constant, K s . Parameters estimated for the dual-substrate system demonstrated changes in the specific growth rate of both xylose and glucose consumption. In particular, the maximum growth rate related to glucose tripled compared to the single-substrate system. Kinetic growth is affected when multiple substrates are present in a fermentation system, and models should be developed to reflect these features. PMID:27262717

  9. Diffusivity in turbulent fluid containing two dominant scales, and compressible shear layer according to a kinetic theory

    NASA Technical Reports Server (NTRS)

    Chung, P. M.

    1976-01-01

    The solution of the two nonequilibrium-degree kinetic equation was first determined for the effective length scale and turbulence energy for a spatially homogeneous turbulence field with two characteristic length scales, where the source for one family of eddies exists. This solution was applied to the evaluation of the eddy diffusivity in the combustion chamber of an internal combustion engine. The result was compared with another existing solution. This was carried out to demonstrate the feasibility of obtaining an effective length-scale equation within the context of the kinetic theory. A formulation and partial solution of the compressible plane shear layer are also presented.

  10. Si(011)16x2 gas-source molecular beam epitaxy: Growth kinetics

    SciTech Connect

    Taylor, N.; Kim, H.; Desjardins, P.; Foo, Y. L.; Greene, J. E.

    2000-05-15

    The growth rates R{sub Si} of Si layers deposited on Si(011)''16x2'' by gas-source molecular beam epitaxy from Si{sub 2}H{sub 6} were determined as a function of temperature T{sub s} (400-975 degree sign C) and Si{sub 2}H{sub 6} flux J{sub Si{sub 2}}{sub H{sub 6}}(5.0x10{sup 15}-9.0x10{sup 16} cm{sup -2} s{sup -1}). R{sub Si} ranges from 0.0015 {mu}m h-1 at T{sub s}=400 degree sign C to 0.415 {mu}m h-1 at T{sub s}=975 degree sign C with J{sub Si{sub 2}}{sub H{sub 6}}=2.2x10{sup 16} cm{sup -2} s{sup -1}. In the surface-reaction-limited regime at T{sub s}<725 degree sign C, R{sub Si} initially exhibits an exponential decrease with 1/T{sub s}, then decreases at a slower rate at T{sub s}{<=}550 degree sign C as an additional deposition pathway becomes operative. In the impingement-flux-limited regime, 725{<=}T{sub s}{<=}900 degree sign C, R{sub Si} is independent of T{sub s} but increases linearly with J{sub Si{sub 2}}{sub H{sub 6}}. At T{sub s}>900 degree sign C, R{sub Si}(T{sub s}) increases with T{sub s} due to surface roughening. Overall, R{sub Si}(J{sub Si{sub 2}}{sub H{sub 6}},T{sub s}) is well described at T{sub s}{<=}900 degree sign C by a kinetic model incorporating two competing film growth mechanisms: (1) dissociative chemisorption of Si{sub 2}H{sub 6} onto dangling bonds followed by fast surface dissociation steps and second-order H{sub 2} desorption from the surface monohydride phase; and (2) Si{sub 2}H{sub 6} insertion into Si-H surface bonds followed by second-order desorption of SiH{sub 4}. (c) 2000 American Institute of Physics.

  11. Growth of lanthanum manganate buffer layers for coated conductors via a metal-organic decomposition process

    NASA Astrophysics Data System (ADS)

    Venkataraman, Kartik

    LaMnO3 (LMO) was identified as a possible buffer material for YBa2Cu3O7-x conductors due to its diffusion barrier properties and close lattice match with YBa2Cu 3O7-x. Growth of LMO films via a metal-organic decomposition (MOD) process on Ni, Ni-5at.%W (Ni-5W), and single crystal SrTiO3 substrates was investigated. Phase-pure LMO was grown via MOD on Ni and SrTiO 3 substrates at temperatures and oxygen pressures within a thermodynamic "process window" wherein LMO, Ni, Ni-5W, and SrTiO3 are all stable components. LMO could not be grown on Ni-5W in the "process window" because tungsten diffused from the substrate into the overlying film, where it reacted to form La and Mn tungstates. The kinetics of tungstate formation and crystallization of phase-pure LMO from the La and Mn acetate precursors are competitive in the temperature range explored (850--1100°C). Temperatures <850°C might mitigate tungsten diffusion from the substrate to the film sufficiently to obviate tungstate formation, but LMO films deposited via MOD require temperatures ≥850°C for nucleation and grain growth. Using a Y2O3 seed layer on Ni-5W to block tungsten from diffusing into the LMO film was explored; however, Y2O3 reacts with tungsten in the "process window" at 850--1100°C. Tungsten diffusion into Y2O3 can be blocked if epitaxial, crack-free NiWO4 and NiO layers are formed at the interface between Ni-5W and Y2O3. NiWO 4 only grows epitaxially if the overlying NiO and buffer layers are thick enough to mechanically suppress (011)-oriented NiWO4 grain growth. This is not the case when a bare 75 nm-thick Y2O3 film on Ni-5W is processed at 850°C. These studies show that the Ni-5W substrate must be at a low temperature to prevent tungsten diffusion, whereas the LMO precursor film must be at elevated temperature to crystallize. An excimer laser-assisted MOD process was used where a Y2O 3-coated Ni-5W substrate was held at 500°C in air and the pulsed laser photo-thermally heated the Y2O3 and LMO

  12. Analysis of Arabidopsis thaliana root growth kinetics with high temporal and spatial resolution

    PubMed Central

    Yazdanbakhsh, Nima; Fisahn, Joachim

    2010-01-01

    Background Methods exist to quantify the distribution of growth rate over the root axis. However, non-destructive, high-throughput evaluations of total root elongation in controlled environments and the field are lacking in growth studies. A new imaging approach to analyse total root elongation is described. Scope High pixel resolution of the images enables the study of growth in short time intervals and provides high temporal resolution. Using the method described, total root elongation rates are calculated from the displacement of the root tip. Although the absolute root elongation rate changes in response to growth conditions, this set-up enables root growth of Arabidopsis wild-type seedlings to be followed for more than 1 month after germination. The method provides an easy approach to decipher root extension rate and much simpler calculations compared with other methods that use segmental growth to address this question. Conclusions The high temporal resolution allows small modifications of total root elongation growth to be revealed. Furthermore, with the options to investigate growth of various mutants in diverse growth conditions the present tool allows modulations in root growth kinetics due to different biotic and abiotic stimuli to be unravelled. Measurements performed on Arabidopsis thaliana wild-type (Col0) plants revealed rhythms superimposed on root elongation. Results obtained from the starchless mutant pgm, however, present a clearly modified pattern. As expected, deviation is strongest during the dark period. PMID:20421235

  13. Kinetics and Mechanisms of Cadmium Carbonate Heteroepitaxial Growth at the Calcite (101¯4) Surface

    SciTech Connect

    Xu, Man; Kovarik, Libor; Arey, Bruce W.; Felmy, Andrew R.; Rosso, Kevin M.; Kerisit, Sebastien N.

    2014-06-01

    Elucidating the kinetics and mechanisms of heteroepitaxial nucleation and growth at mineral-water interfaces is essential to understanding surface reactivity in geochemical systems. In the present work, the formation of heteroepitaxial cadmium carbonate coatings at calcite-water interfaces was investigated by exposing calcite (10-14) surfaces to Cd-bearing aqueous solutions. In situ atomic force microscopy (AFM) was employed as the primary technique. The AFM results indicate that the heteroepitaxial growth of cadmium carbonate proceeds via three different mechanisms depending on the initial supersaturation of the aqueous solution: advancement of existing steps, nucleation and growth of three-dimensional (3D) islands, and nucleation and spread of two-dimensional (2D) nuclei. The 3D islands and 2D nuclei exhibit different morphologies and growth kinetics. The effects of supersaturation on heteroepitaxial growth mechanisms can be interpreted in terms of the free energy barrier for nucleation. At low initial supersaturation, where 3D nucleation dominates, it is hypothesized, from the growth rate and morphology of the 3D islands observed with AFM, that the crystallization of the overgrowth follows a non-classical pathway involving the formation of a surface precursor that is not fully crystalline, whereas high supersaturation favors the formation of crystalline 2D nuclei whose morphology is based on the atomic structure of the calcite substrate. Cross-sectional transmission electron microscopy (TEM) images reveal that the atomic structure of the interface between the cadmium carbonate coating and calcite shows perfect, dislocation-free epitaxy.

  14. Growth and dissolution kinetics of α and γ polymorphs of DL-methionine

    NASA Astrophysics Data System (ADS)

    Wantha, Lek; Flood, Adrian E.

    2013-01-01

    Growth kinetics of the two common polymorphs of DL-methionine (DL-met), α-DL-met and γ-DL-met, and dissolution kinetics of γ-DL-met, were studied in aqueous solution as part of an attempt to complete an a-priori model of the solution-mediated transformation (SMT) of polymorphs in this system, which will then be compared to measured rates of polymorph transformation. The growth rates of α-DL-met and γ-DL-met were found to be linearly dependent on the relative supersaturation of DL-met in the system. The dissolution rate of γ-DL-met was found to linearly depend on the relative undersaturation of DL-met in the system. Both the growth and dissolution rate constants are temperature dependent and follow an Arrhenius relationship. At all temperatures studied, both the growth rate of α-DL-met and the dissolution rate of γ-DL-met are faster than the growth rate of γ-DL-met, indicating that if the dissolution is a diffusion controlled process, then the SMT of the polymorphs of DL-met is likely to be controlled by the growth rate of γ-DL-met.

  15. Kinetics of gypsum crystal growth from high ionic strength solutions: A case study of Dead Sea - seawater mixtures

    NASA Astrophysics Data System (ADS)

    Reznik, Itay J.; Gavrieli, Ittai; Antler, Gilad; Ganor, Jiwchar

    2011-04-01

    Gypsum precipitation kinetics were examined from a wide range of chemical compositions (11growth theory ( Burton et al., 1951) and other layer-by-layer growth mechanisms ( Goto and Ridge, 1967; Van Rosmalen et al., 1981; Bosbach and Rammensee, 1994). Under further-away-from-equilibrium conditions, the reaction is dominated by an apparent 10th order reaction. A conceptual model for gypsum growth kinetics is presented. The model is based on the 2nd order kinetic coefficients determined in the present study and data from the literature and is valid under a wide range of ionic strengths and Ca/SO42- ratios. According to this model, the integration of SO42- to kinks on the surface of the growing crystals is the rate-limiting step in the precipitation reaction. At ionic strengths above 8.5 m the precipitation rate of gypsum is enhanced, possibly due to the formation of CaSO4° ion pairs and/or a decrease in hydration frequencies.

  16. Study of spatial growth of disturbances in an Incompressible Double Shear Layer flow configuration

    NASA Astrophysics Data System (ADS)

    Natarajan, Hareshram; Jacobs, Gustaaf

    2014-11-01

    The spatial growth of disturbance within the linear instability regime in an incompressible 2D double shear layer flow configuration is studied by performing a Direct Numerical Simulation. The motivation of this study is to characterize the effect of the presence of an additional shear layer on the spatial growth of a shear layer instability. Initially, a DNS of an incompressible single shear layer is performed and the spatial growth rate of various disturbance frequency modes are validated with Linear Stability Analysis. The addtional shear layer is found to impact the spatial growth rates of the different disturbances and the frequency of the mode with the maximum growth rate is found to be shifted.

  17. Electron molecular beam epitaxy: Layer-by-layer growth of complex oxides via pulsed electron-beam deposition

    NASA Astrophysics Data System (ADS)

    Comes, Ryan; Gu, Man; Khokhlov, Mikhail; Liu, Hongxue; Lu, Jiwei; Wolf, Stuart A.

    2013-01-01

    Complex oxide epitaxial film growth is a rich and exciting field, owing to the wide variety of physical properties present in oxides. These properties include ferroelectricity, ferromagnetism, spin-polarization, and a variety of other correlated phenomena. Traditionally, high quality epitaxial oxide films have been grown via oxide molecular beam epitaxy or pulsed laser deposition. Here, we present the growth of high quality epitaxial films using an alternative approach, the pulsed electron-beam deposition technique. We demonstrate all three epitaxial growth modes in different oxide systems: Frank-van der Merwe (layer-by-layer); Stranski-Krastanov (layer-then-island); and Volmer-Weber (island). Analysis of film quality and morphology is presented and techniques to optimize the morphology of films are discussed.

  18. Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy

    NASA Astrophysics Data System (ADS)

    Liu, Xinfeng; Johnson, Sara; Liu, Shou; Kanojia, Deepak; Yue, Wei; Singn, Udai; Wang, Qian; Wang, Qi; Nie, Qing; Chen, Hexin

    2013-08-01

    Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC population varies widely among cancerous tissues and cell lines, and is often associated with aggressive breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC population both in vitro and in vivo. Our mathematical models and supporting experiments suggest that there exist non-linear growth kinetics of CSCs and negative feedback mechanisms to control the balance between the population of CSCs and that of non-stem cancer cells. The model predictions can help us explain a few long-standing questions in the field of cancer stem cell research, and can be potentially used to predict the efficicacy of anti-cancer therapy.

  19. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters.

    PubMed

    Adadi, Roi; Volkmer, Benjamin; Milo, Ron; Heinemann, Matthias; Shlomi, Tomer

    2012-01-01

    Identifying the factors that determine microbial growth rate under various environmental and genetic conditions is a major challenge of systems biology. While current genome-scale metabolic modeling approaches enable us to successfully predict a variety of metabolic phenotypes, including maximal biomass yield, the prediction of actual growth rate is a long standing goal. This gap stems from strictly relying on data regarding reaction stoichiometry and directionality, without accounting for enzyme kinetic considerations. Here we present a novel metabolic network-based approach, MetabOlic Modeling with ENzyme kineTics (MOMENT), which predicts metabolic flux rate and growth rate by utilizing prior data on enzyme turnover rates and enzyme molecular weights, without requiring measurements of nutrient uptake rates. The method is based on an identified design principle of metabolism in which enzymes catalyzing high flux reactions across different media tend to be more efficient in terms of having higher turnover numbers. Extending upon previous attempts to utilize kinetic data in genome-scale metabolic modeling, our approach takes into account the requirement for specific enzyme concentrations for catalyzing predicted metabolic flux rates, considering isozymes, protein complexes, and multi-functional enzymes. MOMENT is shown to significantly improve the prediction accuracy of various metabolic phenotypes in E. coli, including intracellular flux rates and changes in gene expression levels under different growth rates. Most importantly, MOMENT is shown to predict growth rates of E. coli under a diverse set of media that are correlated with experimental measurements, markedly improving upon existing state-of-the art stoichiometric modeling approaches. These results support the view that a physiological bound on cellular enzyme concentrations is a key factor that determines microbial growth rate. PMID:22792053

  20. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters.

    PubMed

    Adadi, Roi; Volkmer, Benjamin; Milo, Ron; Heinemann, Matthias; Shlomi, Tomer

    2012-01-01

    Identifying the factors that determine microbial growth rate under various environmental and genetic conditions is a major challenge of systems biology. While current genome-scale metabolic modeling approaches enable us to successfully predict a variety of metabolic phenotypes, including maximal biomass yield, the prediction of actual growth rate is a long standing goal. This gap stems from strictly relying on data regarding reaction stoichiometry and directionality, without accounting for enzyme kinetic considerations. Here we present a novel metabolic network-based approach, MetabOlic Modeling with ENzyme kineTics (MOMENT), which predicts metabolic flux rate and growth rate by utilizing prior data on enzyme turnover rates and enzyme molecular weights, without requiring measurements of nutrient uptake rates. The method is based on an identified design principle of metabolism in which enzymes catalyzing high flux reactions across different media tend to be more efficient in terms of having higher turnover numbers. Extending upon previous attempts to utilize kinetic data in genome-scale metabolic modeling, our approach takes into account the requirement for specific enzyme concentrations for catalyzing predicted metabolic flux rates, considering isozymes, protein complexes, and multi-functional enzymes. MOMENT is shown to significantly improve the prediction accuracy of various metabolic phenotypes in E. coli, including intracellular flux rates and changes in gene expression levels under different growth rates. Most importantly, MOMENT is shown to predict growth rates of E. coli under a diverse set of media that are correlated with experimental measurements, markedly improving upon existing state-of-the art stoichiometric modeling approaches. These results support the view that a physiological bound on cellular enzyme concentrations is a key factor that determines microbial growth rate.

  1. Step-Edge-Guided Nucleation and Growth of Aligned WSe2 on Sapphire via a Layer-over-Layer Growth Mode.

    PubMed

    Chen, Liang; Liu, Bilu; Ge, Mingyuan; Ma, Yuqiang; Abbas, Ahmad N; Zhou, Chongwu

    2015-08-25

    Two-dimensional (2D) materials beyond graphene have drawn a lot of attention recently. Among the large family of 2D materials, transitional metal dichalcogenides (TMDCs), for example, molybdenum disulfides (MoS2) and tungsten diselenides (WSe2), have been demonstrated to be good candidates for advanced electronics, optoelectronics, and other applications. Growth of large single-crystalline domains and continuous films of monolayer TMDCs has been achieved recently. Usually, these TMDC flakes nucleate randomly on substrates, and their orientation cannot be controlled. Nucleation control and orientation control are important steps in 2D material growth, because randomly nucleated and orientated flakes will form grain boundaries when adjacent flakes merge together, and the formation of grain boundaries may degrade mechanical and electrical properties of as-grown materials. The use of single crystalline substrates enables the alignment of as-grown TMDC flakes via a substrate-flake epitaxial interaction, as demonstrated recently. Here we report a step-edge-guided nucleation and growth approach for the aligned growth of 2D WSe2 by a chemical vapor deposition method using C-plane sapphire as substrates. We found that at temperatures above 950 °C the growth is strongly guided by the atomic steps on the sapphire surface, which leads to the aligned growth of WSe2 along the step edges on the sapphire substrate. In addition, such atomic steps facilitate a layer-over-layer overlapping process to form few-layer WSe2 structures, which is different from the classical layer-by-layer mode for thin-film growth. This work introduces an efficient way to achieve oriented growth of 2D WSe2 and adds fresh knowledge on the growth mechanism of WSe2 and potentially other 2D materials. PMID:26221865

  2. Step-Edge-Guided Nucleation and Growth of Aligned WSe2 on Sapphire via a Layer-over-Layer Growth Mode.

    PubMed

    Chen, Liang; Liu, Bilu; Ge, Mingyuan; Ma, Yuqiang; Abbas, Ahmad N; Zhou, Chongwu

    2015-08-25

    Two-dimensional (2D) materials beyond graphene have drawn a lot of attention recently. Among the large family of 2D materials, transitional metal dichalcogenides (TMDCs), for example, molybdenum disulfides (MoS2) and tungsten diselenides (WSe2), have been demonstrated to be good candidates for advanced electronics, optoelectronics, and other applications. Growth of large single-crystalline domains and continuous films of monolayer TMDCs has been achieved recently. Usually, these TMDC flakes nucleate randomly on substrates, and their orientation cannot be controlled. Nucleation control and orientation control are important steps in 2D material growth, because randomly nucleated and orientated flakes will form grain boundaries when adjacent flakes merge together, and the formation of grain boundaries may degrade mechanical and electrical properties of as-grown materials. The use of single crystalline substrates enables the alignment of as-grown TMDC flakes via a substrate-flake epitaxial interaction, as demonstrated recently. Here we report a step-edge-guided nucleation and growth approach for the aligned growth of 2D WSe2 by a chemical vapor deposition method using C-plane sapphire as substrates. We found that at temperatures above 950 °C the growth is strongly guided by the atomic steps on the sapphire surface, which leads to the aligned growth of WSe2 along the step edges on the sapphire substrate. In addition, such atomic steps facilitate a layer-over-layer overlapping process to form few-layer WSe2 structures, which is different from the classical layer-by-layer mode for thin-film growth. This work introduces an efficient way to achieve oriented growth of 2D WSe2 and adds fresh knowledge on the growth mechanism of WSe2 and potentially other 2D materials.

  3. Mg doping and its effect on the semipolar GaN(1122) growth kinetics

    SciTech Connect

    Lahourcade, L.; Wirthmueller, A.; Monroy, E.; Chauvat, M. P.; Ruterana, P.; Laufer, A.; Eickhoff, M.

    2009-10-26

    We report the effect of Mg doping on the growth kinetics of semipolar GaN(1122) synthesized by plasma-assisted molecular-beam epitaxy. Mg tends to segregate on the surface, inhibiting the formation of the self-regulated Ga film which is used as a surfactant for the growth of undoped and Si-doped GaN(1122). We observe an enhancement of Mg incorporation in GaN(1122) compared to GaN(0001). Typical structural defects or polarity inversion domains found in Mg-doped GaN(0001) were not observed for the semipolar films investigated in the present study.

  4. Effect of clofibrate on the growth-kinetics of the murine P 1798(sc) lymphoma.

    PubMed Central

    Ubeira, F. M.; Seoane, R.; Puentes, E.; Faro, J.; Regueiro, B. J.

    1983-01-01

    Clofibrate (CPIB) is a drug applied as an antilipidaemic agent in mammals. In this work we have tested its efficacy in vivo on the growth kinetics of P 1798(sc) lymphoma transplanted to recipient (BALB/c x AKR)F1 mice. Our results show a facilitation of the tumour growth rate in treated recipients. This fact may be related to an effect of the agent on the recipient which produces a decrease in the immune response as was confirmed on testing CPIB on thymus-dependent antigens in haemolytic plaque assays. Images Figure 3 PMID:6351886

  5. Influence of protein hydrolysis on the growth kinetics of β-lg fibrils.

    PubMed

    Kroes-Nijboer, Ardy; Venema, Paul; Bouman, Jacob; van der Linden, Erik

    2011-05-17

    Recently it was found that protein hydrolysis is an important step in the formation of β-lactoglobulin fibrils at pH 2 and elevated temperatures. The objective of the present study was to further investigate the influence of hydrolysis on the kinetics of fibril formation. Both the hydrolysis of β-lactoglobulin and the growth of the fibrils were followed as a function of time and temperature, using SDS polyacrylamide gel electrophoresis and a Thioflavin T fluorescence assay. As an essential extension to existing models, the quantification of the effect of the hydrolysis on the fibrillar growth was established by a simple polymerization model including a hydrolysis step.

  6. Narrow growth window for stoichiometric, layer-by-layer growth of LaAlO3 thin films using pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Golalikhani, M.; Lei, Q. Y.; Wolak, M. A.; Davidson, B. A.; Xi, X. X.

    2016-06-01

    We study the structure and surface morphology of the 100 nm homoepitaxial LaAlO3 films grown by pulsed laser deposition in a broad range of growth parameters. We show that there is a narrow window of growth conditions in which the stoichiometric, bulk-like structure is obtained while maintaining a 2-dimensional (2D) layer-by-layer growth mode. In our system, these optimum growth conditions are 100 mTorr background pressure with laser energy density 1.5-2 J/cm2. The sensitivity to growth conditions of the stoichiometry and structure of LaAlO3 films can have a crucial role in the 2-D electron gas formed at the LaAlO3/SrTiO3 interface.

  7. Turbulent kinetics of a large wind farm and their impact in the neutral boundary layer

    SciTech Connect

    Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo; Jin, Emilia Kyung; Linn, Rodman; Lee, Joon Sang

    2015-12-28

    High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines creates the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.

  8. Turbulent kinetics of a large wind farm and their impact in the neutral boundary layer

    DOE PAGES

    Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo; Jin, Emilia Kyung; Linn, Rodman; Lee, Joon Sang

    2015-12-28

    High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines createsmore » the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.« less

  9. Effects of Alloying on Nanoscale Grain Growth in Substitutional Binary Alloy System: Thermodynamics and Kinetics

    NASA Astrophysics Data System (ADS)

    Peng, Haoran; Chen, Yuzeng; Liu, Feng

    2015-11-01

    Applying the regular solution model, the Gibbs free energy of mixing for substitutional binary alloy system was constructed. Then, thermodynamic and kinetic parameters, e.g., driving force and solute drag force, controlling nanoscale grain growth of substitutional binary alloy systems were derived and compared to their generally accepted definitions and interpretations. It is suggested that for an actual grain growth process, the classical driving force P = γ/D ( γ the grain boundary (GB) energy, D the grain size) should be replaced by a new expression, i.e., P^' = γ /D - Δ P . Δ P represents the energy required to adjust nonequilibrium solute distribution to equilibrium solute distribution, which is equivalent to the generally accepted solute drag force impeding GB migration. By incorporating the derived new driving force for grain growth into the classical grain growth model, the reported grain growth behaviors of nanocrystalline Fe-4at. pct Zr and Pd-19at. pct Zr alloys were analyzed. On this basis, the effect of thermodynamic and kinetic parameters ( i.e., P, Δ P and the GB mobility ( M GB)) on nanoscale grain growth, were investigated. Upon grain growth, the decrease of P is caused by the reduction of γ as a result of solute segregation in GBs; the decrease of Δ P is, however, due to the decrease of grain growth velocity; whereas the decrease of M GB is attributed to the enhanced difference of solute molar fractions between the bulk and the GBs as well as the increased activation energy for GB diffusion.

  10. Structure and kinetics of formation of interphase layers of synthetic fatty acid aluminum soap at the water/oil interface

    SciTech Connect

    Chalykh, A.E.; Matveev, V.V.; Mityuk, D.Y.; Shal't, S.Y.; Tarasevich, B.N.

    1986-02-01

    The authors investigate the kinetics of formation of interphase layers (IL) at the interface between the phases: a 0.15% solution of aluminum soap of synthetic fatty acids (SFA) (fraction C/sub 17/-C/sub 21/) in n-decane/distilled water. The structure and the morphological properties of IL were investigated by transmission electron spectroscopy. The electron micrographs of the interphase layer of the soap at different stages of its formation show that the formation of a new phase starts with the appearance of small dispersed particles with spherical and fibrillar shapes. The results obtained supplement the authors' concepts about the mechanism of spontaneous microemulsification.

  11. Stepwise crystallization and the layered distribution in crystallization kinetics of ultra-thin poly(ethylene terephthalate) film

    NASA Astrophysics Data System (ADS)

    Zuo, Biao; Xu, Jianquan; Sun, Shuzheng; Liu, Yue; Yang, Juping; Zhang, Li; Wang, Xinping

    2016-06-01

    Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films, with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.

  12. A two Turbulence Kinetic Energy model as a scale-adaptive approach to modeling the planetary boundary layer

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ritthik; Stevens, Bjorn

    2016-03-01

    A two Turbulence Kinetic Energy (2TKE) model is developed to address the boundary layer "grey zone" problem. The model combines ideas from local and nonlocal models into a single energetically consistent framework. By applying the Reynolds averaging to the large eddy simulation (LES) equations that employ Deardorff's subgrid TKE, we arrive at a system of equations for the boundary layer quantities and two turbulence kinetic energies: one which encapsulates the TKE of large boundary-layer-scale eddies and another which represents the energy of eddies subgrid to the vertical grid size of a typical large-scale model. These two energies are linked via the turbulent cascade of energy from larger to smaller scales and are used to model the mixing in the boundary layer. The model is evaluated for three dry test cases and found to compare favorably to large eddy simulations. The usage of two TKEs for mixing helps reduce the dependency of the model on the vertical grid scale as well as on the free tropospheric stability and facilitates a smoother transition from convective to stable regimes. The usage of two TKEs representing two ranges of scales satisfies the prerequisite for modeling the boundary layer in the "grey zone": an idea that is explored further in a companion paper.

  13. Direct observation of kinetic traps associated with structural transformations leading to multiple pathways of S-layer assembly.

    PubMed

    Shin, Seong-Ho; Chung, Sungwook; Sanii, Babak; Comolli, Luis R; Bertozzi, Carolyn R; De Yoreo, James J

    2012-08-01

    The concept of a folding funnel with kinetic traps describes folding of individual proteins. Using in situ Atomic Force Microscopy to investigate S-layer assembly on mica, we show this concept is equally valid during self-assembly of proteins into extended matrices. We find the S-layer-on-mica system possesses a kinetic trap associated with conformational differences between a long-lived transient state and the final stable state. Both ordered tetrameric states emerge from clusters of the monomer phase, however, they then track along two different pathways. One leads directly to the final low-energy state and the other to the kinetic trap. Over time, the trapped state transforms into the stable state. By analyzing the time and temperature dependencies of formation and transformation we find that the energy barriers to formation of the two states differ by only 0.7 kT, but once the high-energy state forms, the barrier to transformation to the low-energy state is 25 kT. Thus the transient state exhibits the characteristics of a kinetic trap in a folding funnel. PMID:22822216

  14. Direct observation of kinetic traps associated with structural transformations leading to multiple pathways of S-layer assembly

    PubMed Central

    Shin, Seong-Ho; Chung, Sungwook; Sanii, Babak; Comolli, Luis R.; Bertozzi, Carolyn R.; De Yoreo, James J.

    2012-01-01

    The concept of a folding funnel with kinetic traps describes folding of individual proteins. Using in situ Atomic Force Microscopy to investigate S-layer assembly on mica, we show this concept is equally valid during self-assembly of proteins into extended matrices. We find the S-layer-on-mica system possesses a kinetic trap associated with conformational differences between a long-lived transient state and the final stable state. Both ordered tetrameric states emerge from clusters of the monomer phase, however, they then track along two different pathways. One leads directly to the final low-energy state and the other to the kinetic trap. Over time, the trapped state transforms into the stable state. By analyzing the time and temperature dependencies of formation and transformation we find that the energy barriers to formation of the two states differ by only 0.7 kT, but once the high-energy state forms, the barrier to transformation to the low-energy state is 25 kT. Thus the transient state exhibits the characteristics of a kinetic trap in a folding funnel. PMID:22822216

  15. Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-ray Scattering.

    PubMed

    Liu, Qi; Gao, Min-Rui; Liu, Yuzi; Okasinski, John S; Ren, Yang; Sun, Yugang

    2016-01-13

    The fast reaction kinetics presented in the microwave synthesis of colloidal silver nanoparticles was quantitatively studied, for the first time, by integrating a microwave reactor with in situ X-ray diffraction at a high-energy synchrotron beamline. Comprehensive data analysis reveals two different types of reaction kinetics corresponding to the nucleation and growth of the Ag nanoparticles. The formation of seeds (nucleation) follows typical first-order reaction kinetics with activation energy of 20.34 kJ/mol, while the growth of seeds (growth) follows typical self-catalytic reaction kinetics. Varying the synthesis conditions indicates that the microwave colloidal chemistry is independent of concentration of surfactant. These discoveries reveal that the microwave synthesis of Ag nanoparticles proceeds with reaction kinetics significantly different from the synthesis present in conventional oil bath heating. The in situ X-ray diffraction technique reported in this work is promising to enable further understanding of crystalline nanomaterials formed through microwave synthesis.

  16. Release kinetics of platelet-derived and plasma-derived growth factors from autologous plasma rich in growth factors.

    PubMed

    Anitua, Eduardo; Zalduendo, Mari Mar; Alkhraisat, Mohammad Hamdan; Orive, Gorka

    2013-10-01

    Many studies have evaluated the biological effects of platelet rich plasma reporting the final outcomes on cell and tissues. However, few studies have dealt with the kinetics of growth factor delivery by plasma rich in growth factors. Venous blood was obtained from three healthy volunteers and processed with PRGF-Endoret technology to prepare autologous plasma rich in growth factors. The gel-like fibrin scaffolds were then incubated in triplicate, in a cell culture medium to monitor the release of PDGF-AB, VEGF, HGF and IGF-I during 8 days of incubation. A leukocyte-platelet rich plasma was prepared employing the same technology and the concentrations of growth factors and interleukin-1β were determined after 24h of incubation. After each period, the medium was collected, fibrin clot was destroyed and the supernatants were stored at -80°C until analysis. The growth factor delivery is diffusion controlled with a rapid initial release by 30% of the bioactive content after 1h of incubation and a steady state release when almost 70% of the growth factor content has been delivered. Autologous fibrin matrix retained almost 30% of the amount of the growth factors after 8 days of incubation. The addition of leukocytes to the formula of platelet rich plasma did not increase the concentration of the growth factors, while it drastically increased the presence of pro-inflammatory IL-1β. Further studies employing an in vitro inflammatory model would be interesting to study the difference in growth factors and pro-inflammatory cytokines between leukocyte-free and leukocyte-rich platelet rich plasma.

  17. A phase-field model coupled with lattice kinetics solver for modeling crystal growth in furnaces

    SciTech Connect

    Lin, Guang; Bao, Jie; Xu, Zhijie; Tartakovsky, Alexandre M.; Henager, Charles H.

    2014-02-02

    In this study, we present a new numerical model for crystal growth in a vertical solidification system. This model takes into account the buoyancy induced convective flow and its effect on the crystal growth process. The evolution of the crystal growth interface is simulated using the phase-field method. Two novel phase-field models are developed to model the crystal growth interface in vertical gradient furnaces with two temperature profile setups: 1) fixed wall temperature profile setup and 2) time-dependent temperature profile setup. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. This model is used to investigate the effect of furnace operational conditions on crystal growth interface profiles and growth velocities. For a simple case of macroscopic radial growth, the phase-field model is validated against an analytical solution. Crystal growth in vertical gradient furnaces with two temperature profile setups have been also investigated using the developed model. The numerical simulations reveal that for a certain set of temperature boundary conditions, the heat transport in the melt near the phase interface is diffusion dominant and advection is suppressed.

  18. Kinetics of Si and Ge nanowires growth through electron beam evaporation

    PubMed Central

    2011-01-01

    Si and Ge have the same crystalline structure, and although Si-Au and Ge-Au binary alloys are thermodynamically similar (same phase diagram, with the eutectic temperature of about 360°C), in this study, it is proved that Si and Ge nanowires (NWs) growth by electron beam evaporation occurs in very different temperature ranges and fluence regimes. In particular, it is demonstrated that Ge growth occurs just above the eutectic temperature, while Si NWs growth occurs at temperature higher than the eutectic temperature, at about 450°C. Moreover, Si NWs growth requires a higher evaporated fluence before the NWs become to be visible. These differences arise in the different kinetics behaviors of these systems. The authors investigate the microscopic growth mechanisms elucidating the contribution of the adatoms diffusion as a function of the evaporated atoms direct impingement, demonstrating that adatoms play a key role in physical vapor deposition (PVD) NWs growth. The concept of incubation fluence, which is necessary for an interpretation of NWs growth in PVD growth conditions, is highlighted. PMID:21711696

  19. Mixing layer growth and background air-quality measurements over the Colorado oil-shale area

    SciTech Connect

    Laulainen, N.S.; Whiteman, C.D.; Davis, W.E.; Thorp, J.M.

    1981-06-01

    The daily growth of convective boundary layers over the complex terrain of the oil shale areas of Colorado is a prominent feature of the meteorology of the region. The development of these layers was investigated using airsondes, rawinsondes, and aircraft. The deep growth of the layers in August, to heights in excess of 5500-m MSL on clear or partly cloudy days, is expected to have important implications for the dispersal of pollutants released in the region as the oil shale resource undergoes future development. Aircraft observations show that the present background air quality is good over the region and that pollutants, when present, become well mixed throughout the depth of the convective boundary layer. The layer therefore represents an important natural means of dilution for pollutants introduced into the atmosphere. Work is proceeding to incorporate the time-dependent convective boundary layer growth into air pollution models for the region.

  20. Aging formula for lithium ion batteries with solid electrolyte interphase layer growth

    NASA Astrophysics Data System (ADS)

    Tanim, Tanvir R.; Rahn, Christopher D.

    2015-10-01

    Hybrid Electric Vehicle (HEV) current profiles are dynamic, consisting of repeated charge and discharge pulses. Accurate prediction of the battery response to these inputs requires models with open circuit voltage and Butler-Volmer kinetic nonlinearities. This paper derives a nonlinear, electrolyte-enhanced, single particle model (NESPM) that includes aging due to solid electrolyte interphase layer growth. The model is validated with experimental full charge, discharge, HEV cycle, and aging data from 4.5 Ah graphite/LiFePO4 cells. The NESPM is capable of operating up to 3C constant charge-discharge cycles and up to 25C and 10 s charge-discharge pulses within 35-65% state of charge (SOC) with less than 2% error. The NESPM aging model is then simplified to obtain explicit formulas for capacity fade and impedance rise that depend on the battery parameters and current input history. The formulas show that aging increases with SOC, operating temperature, time, and root mean square (RMS) current. The formula predicts that HEV current profiles with the (i) same average SOC, (ii) small SOC swing, (iii) same operating temperature, (iv) same cycle length, and (v) same RMS current, will have the same cell capacity fade.

  1. Dynamic kinetic analysis of growth of Listeria monocytogenes in a simulated comminuted, non-cured cooked pork product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to directly construct a tertiary growth model for Listeria monocytogenes in cooked pork and simultaneously determine the kinetic parameters using a combination of dynamic and isothermal growth curves. Growth studies were conducted using a cocktail of 5 strains of L. ...

  2. Synthesis, growth kinetics and optical properties of zinc oxide nanoparticle suspensions and thin films

    NASA Astrophysics Data System (ADS)

    Wong, Eva May

    2000-10-01

    Colloidal chemistry techniques were used to synthesize ZnO particles in the nanometer size regime. The particle aging kinetics were determined by monitoring the optical band edge absorption and using the effective mass model to approximate the particle size as a function of time. The growth kinetics of the ZnO particles were found to follow the Lifshitz, Slyozov, Wagner theory for Ostwald ripening. In this model, the higher curvature and hence chemical potential of smaller particles provides a driving force for dissolution. The larger particles continue to grow by diffusion limited transport of species dissolved in solution. Thin films of ZnO quantum particles were fabricated by electrophoretic deposition from suspensions prepared via a colloidal chemistry synthesis route. Films were prepared at constant current thus eliminating the limited deposition rate associated with constant voltage deposition. The kinetics for the deposition of thin films were determined using optical absorbance techniques in conjunction with atomic absorption spectrometry. The particle velocity during deposition and the charge on the particles were determined from the deposition kinetics. The thin films prepared by electrophoretic deposition exhibited optical properties characteristic of the quantum size particles. The average particle size, and hence the optical properties, were tailored by controlling the aging time and temperature of the suspensions. Both the band-to-band and visible photoluminescence were progressively blue shifted, relative to the bulk value, with decreasing particle size in the film. A linear dependence was found between the band-to-band and visible emission. Finally, particle growth was manipulated by the specific adsorption of a series of capping ligands at the particle surface. The adsorption of the capping ligands was found to produce a diffusion barrier such that particle growth was stunted following incorporation with the extent of this effect being dependent

  3. Atomistic Simulation Of Stability Properties And Growth Of Strained Layer Structures

    NASA Astrophysics Data System (ADS)

    Taylor, Paul A.; Dodson, Brian W.

    1987-04-01

    Monte Carlo based microscopic techniques were used to study the stability and metastability of thin coherently strained layers of mismatched silicon-like semi-conductor material grown on the (111) silicon surface. The structural energy was calculated using three-body empirical potentials. For layers greater than roughly 20 A in thickness, the critical layer thickness associated with thermodynamic stability agrees quantitatively with continuum theory. For thinner layers, however, considerable variations from the continuum theory are found. For a strained layer six monolayers thick, the test system is found to be metastable against the nucleation of misfit dislocations to a lattice mismatch of approximately 11%, compared to the 4% equilibrium stability limit. Additionally, simulation of strained layer growth of two-dimensional Lennard-Jones crystal lattices has been performed using x.)lecular dynamics. In particular, we have studied the influences of lattice mismatch and substrate temperature on the growth, from the vapor phase, of overlayer material possessing a different bulk lattice constant than that of the substrate material. Simulation results predict that at substrate temperatures less than 50% of melting, epitaxial growth occurs for mismatch values less than 14% whereas above this value, defective growth is observed. At temperatures above 50% of the melt temperature, mass transport occurs across the layer interface and rapid diffusion is observed in the top-most atomic layers, resulting in liquid-like behavior in a thin layer over ordered strained layer crystal.

  4. Growth Kinetics of Thiobacillus thiooxidans on the Surface of Elemental Sulfur.

    PubMed

    Konishi, Y; Asai, S; Yoshida, N

    1995-10-01

    The growth kinetics of Thiobacillus thiooxidans on elemental sulfur in batch cultures at 30(deg)C and pH 1.5 was studied by measuring the time courses of the concentration of adsorbed cells on sulfur, the concentration of free cells suspended in liquid medium, and the amount of sulfur oxidized. As the elemental sulfur was oxidized to sulfate ions, the surface concentration of adsorbed cells per unit mass of sulfur approached a maximum value (maximum adsorption capacity of sulfur particles) whereas the concentration of free cells continued to increase with time. There was a close relationship between the concentrations of free and adsorbed cells during the microbial sulfur oxidation, and the two cell concentrations were well correlated by the Langmuir isotherm with adsorption equilibrium constant K(infA) and maximum adsorption capacity X(infAm) of 2.10 x 10(sup-9) ml per cell and 4.57 x 10(sup10) cells per g, respectively. The total concentration of free and adsorbed cells increased in parallel with the amount of sulfate formed. The total growth on elemental sulfur gave a characteristic growth curve in which a linear-growth phase followed the period of an initial exponential phase. The batch rate data collected under a wide variety of inoculum levels (about 10(sup5) to 10(sup8) cells per ml) were consistent with a kinetic model assuming that the growth rate of adsorbed bacteria is proportional to the product of the concentration, X(infA), of adsorbed cells and the fraction, (theta)(infV), of adsorption sites unoccupied by cells. The kinetic and stoichiometric parameters appearing in the model were estimated from the experimental data, and the specific growth rate, (mu)(infA), and growth yield, Y(infA), were 2.58 day(sup-1) and 2.05 x 10(sup11) cells per g, respectively. The proposed model and the parameter values allowed us to predict quantitatively the surface attachment of T. thiooxidans cells on elemental sulfur and the bacterial growth in both initial

  5. Diverse Growth Kinetics in Suspension Culture of a Model Eukaryote Dictyostelium discoideum, Confirmation of Lagless Growth

    NASA Astrophysics Data System (ADS)

    Franck, Carl; Zhou, Xaio-Qiao S.; Deshmukh, Amrish; Bogart, Elijah; Lau, Sharon; Daie, Kayvon; Bae, Albert

    2010-03-01

    In recent work we explored the notion that the transition between slow and fast growth, the lag-log transition, with increasing density seen in shaken cell culture represents a collective effect. (Phys. Rev. E 77, 041905 (2008)). We reported preliminary observations in which the lag phase was apparently missing. Here, we present significantly more measurements than in our original work as well as increased sensitivity at low densities. We confirm that instances of nearly exponential (``log'') growth do in fact appear, but more frequently, we find evidence of lagging. The degree of lagging fluctuates significantly from run to run, in contrast to our earlier observations and theory, but in all cases exponential growth is established with increasing density once the range of 10^4 to 10^5 cells/ml is reached. We present evidence against two natural explanations for these fluctuations: 1) a mixture of strains which have different growth phenotypes or 2) a single strain variation due to an epigenetic switch which can be set to the low growth state by subjecting cells to high density environments. The appearance of such growth variations has considerable practical significance and suggests that there is an additional dynamical variable besides density in play.

  6. A combined transport-kinetics model for the growth of renal calculi

    NASA Astrophysics Data System (ADS)

    Kassemi, Mohammad; Brock, Robert; Nemeth, Noel

    2011-10-01

    Renal stone disease is not only a concern on the Earth but could conceivably pose a serious risk to the astronauts' health and safety in Space. In this study, a combined transport-kinetics model for the growth of calcium oxalate (CaOx) crystals is presented. The model is used to parametrically investigate the growth of renal calculi in urine with a focus on the coupled effects of transport and surface reaction on the ionic concentrations at the surface of the crystal and their impact on the resulting growth rates. It is shown that under nominal conditions of low solution supersaturation and low Damköhler number that typically exist on the Earth, the surface concentrations of calcium and oxalate approach their bulk solution values in the urine and the growth rate is most likely limited by the surface reaction kinetics. But for higher solution supersaturations and large Damköhler numbers that may be prevalent in the microgravity environment of Space, the calcium and oxalate surface concentrations tend to shift more towards their equilibrium or saturation values and thus the growth process may be limited by the transport through the medium. Furthermore, it is shown that as the crystal size increases a shift towards a transport-limited growth process is likely. In this situation beyond a critical radius that is a function of the physiochemical parameters of the renal environment, the growth rate will not be independent of the radius as in a reaction-limited situation but will decrease as the crystal size increases.

  7. Evaluation of a kinetic model for computer simulation of growth and fermentation by Scheffersomyces (Pichia) stipitis fed D-xylose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scheffersomyces (formly Pichia) stipitis is a potential biocatalyst for converting lignocelluloses to ethanol because the yeast natively ferments xylose. An unstructured kinetic model based upon a system of linear differential equations has been formulated that describes growth and ethanol productio...

  8. A mathematical model of the kinetics of beta-amyloid fibril growth from the denatured state.

    PubMed Central

    Pallitto, M M; Murphy, R M

    2001-01-01

    Spontaneous conversion of beta-amyloid peptide (Abeta) from soluble monomer to insoluble fibril may underlie the neurodegeneration associated with Alzheimer's disease. A complete description of Abeta self-association kinetics requires identification of the oligomeric species present and the pathway of association, as well as quantitation of rate constants and reaction order. Abeta was rendered monomeric and denatured by dissolution in 8 M urea, pH 10. "Refolding" and fibrillization were initiated by rapid dilution into phosphate-buffered saline, pH 7.4. The kinetics of growth were followed at three different concentrations, using size exclusion chromatography, dynamic light scattering, and static light scattering. A multi-step pathway for fibril formation and growth was postulated. This pathway included 1) rapid commitment to either stable monomer/dimer or unstable intermediate, 2) cooperative association of intermediate into a multimeric "nucleus," 3) elongation of the "nucleus" into filaments via addition of intermediate, 4) lateral aggregation of filaments into fibrils, and 5) fibril elongation via end-to-end association. Differential and algebraic equations describing this kinetic pathway were derived, and model parameters were determined by fitting the data. The utility of the model for identifying toxic Abeta oligomeric specie(s) is demonstrated. The model should prove useful for designing compounds that inhibit Abeta aggregation and/or toxicity. PMID:11509390

  9. Kinetics of substrate utilization and bacterial growth of crude oil degraded by Pseudomonas aeruginosa.

    PubMed

    Talaiekhozani, Amirreza; Jafarzadeh, Nematollah; Fulazzaky, Mohamad Ali; Talaie, Mohammad Reza; Beheshti, Masoud

    2015-01-01

    Pollution associated with crude oil (CO) extraction degrades the quality of waters, threatens drinking water sources and may ham air quality. The systems biology approach aims at learning the kinetics of substrate utilization and bacterial growth for a biological process for which very limited knowledge is available. This study uses the Pseudomonas aeruginosa to degrade CO and determines the kinetic parameters of substrate utilization and bacterial growth modeled from a completely mixed batch reactor. The ability of Pseudomonas aeruginosa can remove 91 % of the total petroleum hydrocarbons and 83 % of the aromatic compounds from oily environment. The value k of 9.31 g of substrate g(-1) of microorganism d(-1) could be far higher than the value k obtained for petrochemical wastewater treatment and that for municipal wastewater treatment. The production of new cells of using CO as the sole carbon and energy source can exceed 2(3) of the existing cells per day. The kinetic parameters are verified to contribute to improving the biological removal of CO from oily environment. PMID:26413306

  10. Control of Electron Beam-Induced Au Nanocrystal Growth Kinetics through Solution Chemistry.

    PubMed

    Park, Jeung Hun; Schneider, Nicholas M; Grogan, Joseph M; Reuter, Mark C; Bau, Haim H; Kodambaka, Suneel; Ross, Frances M

    2015-08-12

    Measurements of solution-phase crystal growth provide mechanistic information that is helpful in designing and synthesizing nanostructures. Here, we examine the model system of individual Au nanocrystal formation within a defined liquid geometry during electron beam irradiation of gold chloride solution, where radiolytically formed hydrated electrons reduce Au ions to solid Au. By selecting conditions that favor the growth of well-faceted Au nanoprisms, we measure growth rates of individual crystals. The volume of each crystal increases linearly with irradiation time at a rate unaffected by its shape or proximity to neighboring crystals, implying a growth process that is controlled by the arrival of atoms from solution. Furthermore, growth requires a threshold dose rate, suggesting competition between reduction and oxidation processes in the solution. Above this threshold, the growth rate follows a power law with dose rate. To explain the observed dose rate dependence, we demonstrate that a reaction-diffusion model is required that explicitly accounts for the species H(+) and Cl(-). The model highlights the necessity of considering all species present when interpreting kinetic data obtained from beam-induced processes, and suggest conditions under which growth rates can be controlled with higher precision.

  11. Control of Electron Beam-Induced Au Nanocrystal Growth Kinetics through Solution Chemistry.

    PubMed

    Park, Jeung Hun; Schneider, Nicholas M; Grogan, Joseph M; Reuter, Mark C; Bau, Haim H; Kodambaka, Suneel; Ross, Frances M

    2015-08-12

    Measurements of solution-phase crystal growth provide mechanistic information that is helpful in designing and synthesizing nanostructures. Here, we examine the model system of individual Au nanocrystal formation within a defined liquid geometry during electron beam irradiation of gold chloride solution, where radiolytically formed hydrated electrons reduce Au ions to solid Au. By selecting conditions that favor the growth of well-faceted Au nanoprisms, we measure growth rates of individual crystals. The volume of each crystal increases linearly with irradiation time at a rate unaffected by its shape or proximity to neighboring crystals, implying a growth process that is controlled by the arrival of atoms from solution. Furthermore, growth requires a threshold dose rate, suggesting competition between reduction and oxidation processes in the solution. Above this threshold, the growth rate follows a power law with dose rate. To explain the observed dose rate dependence, we demonstrate that a reaction-diffusion model is required that explicitly accounts for the species H(+) and Cl(-). The model highlights the necessity of considering all species present when interpreting kinetic data obtained from beam-induced processes, and suggest conditions under which growth rates can be controlled with higher precision. PMID:26207841

  12. Antifreeze effect of carboxylated ε-poly-L-lysine on the growth kinetics of ice crystals.

    PubMed

    Vorontsov, Dmitry A; Sazaki, Gen; Hyon, Suong-Hyu; Matsumura, Kazuaki; Furukawa, Yoshinori

    2014-08-28

    Some biological substances control the nucleation and growth of inorganic crystals. Antifreeze proteins, which prohibit ice crystal growth in living organisms, promise are also important as biological antifreezes for medical applications and in the frozen food industries. In this work, we investigated the crystallization of ice in the presence of a new cryoprotector, carboxylated ε-poly-L-lysine (COOH-PLL). In order to reveal the characteristics and the mechanism of its antifreeze effect, free-growth experiments of ice crystals were carried out in solutions with various COOH-PLL concentrations and degrees of supercooling, and the depression of the freezing point and growth rates of the tips of ice dendrites were obtained using optical microscopy. Hysteresis of growth rates and depression of the freezing point was revealed in the presence of COOH-PLL. The growth-inhibition effect of COOH-PLL molecules could be explained on the basis of the Gibbs-Thomson law and the use of Langmuir's adsorption isotherm. Theoretical kinetic curves for hysteresis calculated on the basis of Punin-Artamonova's model were in good agreement with experimental data. We conclude that adsorption of large biological molecules in the case of ice crystallization has a non-steady-state character and occurs more slowly than the process of embedding of crystal growth units. PMID:25113284

  13. Antifreeze effect of carboxylated ε-poly-L-lysine on the growth kinetics of ice crystals.

    PubMed

    Vorontsov, Dmitry A; Sazaki, Gen; Hyon, Suong-Hyu; Matsumura, Kazuaki; Furukawa, Yoshinori

    2014-08-28

    Some biological substances control the nucleation and growth of inorganic crystals. Antifreeze proteins, which prohibit ice crystal growth in living organisms, promise are also important as biological antifreezes for medical applications and in the frozen food industries. In this work, we investigated the crystallization of ice in the presence of a new cryoprotector, carboxylated ε-poly-L-lysine (COOH-PLL). In order to reveal the characteristics and the mechanism of its antifreeze effect, free-growth experiments of ice crystals were carried out in solutions with various COOH-PLL concentrations and degrees of supercooling, and the depression of the freezing point and growth rates of the tips of ice dendrites were obtained using optical microscopy. Hysteresis of growth rates and depression of the freezing point was revealed in the presence of COOH-PLL. The growth-inhibition effect of COOH-PLL molecules could be explained on the basis of the Gibbs-Thomson law and the use of Langmuir's adsorption isotherm. Theoretical kinetic curves for hysteresis calculated on the basis of Punin-Artamonova's model were in good agreement with experimental data. We conclude that adsorption of large biological molecules in the case of ice crystallization has a non-steady-state character and occurs more slowly than the process of embedding of crystal growth units.

  14. Work-function oscillations during the surfactant induced layer-by-layer growth of copper on oxygen precovered Ru(0001)

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Wolter, H.; Wandelt, K.

    1994-04-01

    In the present work the Cu-film growth on a clean and an oxygen precovered Ru(0001) surface, as monitored with dynamical work function measurements (ΔΦ measurements) during the Cu evaporation using a special Kelvin-probe is compared. For Cu adsorption on the clean surface the observed temperature dependence of the ΔΦ measurements is understood in terms of a change of the growth structure of the Cu films from layer-by-layer growth up to ~ 3 ML at ~ 600 K to a 3D-growth mode at ~ 400 K. In turn, as recently reported, in the case of Cu adsorption on the oxygen-precovered surface at ~ 400 K remarkable ΔΦ oscillations are observed, which could be resolved over many periods clearly indicating a layer-wise growth of high quality at this temperature. Furthermore, in the present paper we report on new and detailed results about the dependence of the ΔΦ oscillations on the oxygen precoverage as well as the Cu deposition rate.

  15. Kinetics of tumor growth and regression in IgG multiple myeloma

    PubMed Central

    Sullivan, Peter W.; Salmon, Sydney E.

    1972-01-01

    Studies of immunoglobulin synthesis, total body tumor cell number, and tumor kinetics were carried out in a series of patients with IgG multiple myeloma. The changes in tumor size associated with tumor growth or with regression were underestimated when the concentration of serum M-component was used as the sole index of tumor mass. Calculation of the total body M-component synthetic rate (corrected for concentration-dependent changes in IgG metabolism) and tumor cell number gave a more accurate and predictable estimate of changes in tumor size. Tumor growth and drug-induced tumor regression were found to follow Gompertzian kinetics, with progressive retardation of the rate of change of tumor size in both of these circumstances. This retardation effect, describable with a constant α, may be caused by a shift in the proportion of tumor cells in the proliferative cycle. Drug sensitivity of the tumor could be described quantitatively with a calculation of BO, the tumor's initial sensitivity to a given drug regimen. Of particular clinical significance, the magnitude of a given patient's tumor regression could be predicted from the ratio of BO to α. Mathematical proof was obtained that the retardation constant determined during tumor regression also applied to the earlier period of tumor growth, and this constant was used to reconstruct the preclinical history of disease. In the average patient, fewer than 5 yr elapse from the initial tumor cell doubling to its clinical presentation with from 1011 to more than 1012 myeloma cells in the body. The reduction in total body tumor mass in most patients responding to therapy ranges from less than one to almost two orders of magnitude. Application of predictive kinetic analysis to the design of sequential drug regimens may lead to further improvement in the treatment of multiple myeloma and other tumors with similar growth characteristics. PMID:5040867

  16. Kinetics of crystal nucleation and growth in Pd(40)Ni(40)P(20) glass

    NASA Technical Reports Server (NTRS)

    Drehman, A. J.; Greer, A. L.

    1984-01-01

    Samples of Pd(40)Ni(40)P(20) glass, produced by cooling the melt at 1 or 800 K/s, are heated in a differential scanning calorimeter to determine the crystallization kinetics. Optical microscopy shows that eutectic crystallization proceeds both by growth from the surface of the samples and by the growth of spherical regions around preexisting nuclei in the interior. A modified Kissinger (1957) analysis is used to obtain the activation energy for crystal growth (3.49 eV). The steady state homogeneous nucleation frequency at 590 K is about 10 million/cu m per sec. This is estimated to be the maximum nucleation frequency: it is too low to account for the observed population of quenched-in nuclei, which are therefore presumed to be heterogeneous. The major practical obstacle to glass formation in this system is heterogeneous nucleation.

  17. Nonlinear kinetic description of Raman growth using an envelope code, and comparisons with Vlasov simulations

    SciTech Connect

    Benisti, Didier; Morice, Olivier; Gremillet, Laurent; Siminos, Evangelos; Strozzi, David J.

    2010-10-15

    In this paper, we present our nonlinear kinetic modeling of stimulated Raman scattering in a uniform and collisionless plasma using envelope equations. We recall the derivation of these equations, as well as our theoretical predictions for each of the nonlinear kinetic terms, the precision of which having been carefully checked against Vlasov simulations. We particularly focus here on the numerical resolution of these equations, which requires the additional concept of ''self-optimization'' that we explain, and we describe the envelope code BRAMA that we used. As an application of our modeling, we present one-dimensional BRAMA simulations of stimulated Raman scattering which predict threshold intensities, as well as time scales for Raman growth above threshold, in very good agreement with those inferred from Vlasov simulations. Finally, we discuss the differences between our modeling and other published ones.

  18. Nonlinear kinetic description of Raman growth using an envelope code, and comparisons with Vlasov simulations

    NASA Astrophysics Data System (ADS)

    Bénisti, Didier; Morice, Olivier; Gremillet, Laurent; Siminos, Evangelos; Strozzi, David J.

    2010-10-01

    In this paper, we present our nonlinear kinetic modeling of stimulated Raman scattering in a uniform and collisionless plasma using envelope equations. We recall the derivation of these equations, as well as our theoretical predictions for each of the nonlinear kinetic terms, the precision of which having been carefully checked against Vlasov simulations. We particularly focus here on the numerical resolution of these equations, which requires the additional concept of "self-optimization" that we explain, and we describe the envelope code BRAMA that we used. As an application of our modeling, we present one-dimensional BRAMA simulations of stimulated Raman scattering which predict threshold intensities, as well as time scales for Raman growth above threshold, in very good agreement with those inferred from Vlasov simulations. Finally, we discuss the differences between our modeling and other published ones.

  19. The importance of growth kinetic analysis in determining bacterial susceptibility against antibiotics and silver nanoparticles.

    PubMed

    Theophel, Karsten; Schacht, Veronika J; Schlüter, Michael; Schnell, Sylvia; Stingu, Catalina-Suzana; Schaumann, Reiner; Bunge, Michael

    2014-01-01

    Routine antibiotics susceptibility testing still relies on standardized cultivation-based analyses, including measurement of inhibition zones in conventional agar diffusion tests and endpoint turbidity-based measurements. Here, we demonstrate that common off-line monitoring and endpoint determination after 18-24 h could be insufficient for reliable growth-dependent evaluation of antibiotic susceptibility. Different minimal inhibitory concentrations were obtained in 20- and 48 h microdilution plate tests using an Enterococcus faecium clinical isolate (strain UKI-MB07) as a model organism. Hence, we used an on-line kinetic assay for simultaneous cultivation and time-resolved growth analysis in a 96-well format instead of off-line susceptibility testing. Growth of the Enterococcus test organism was delayed up to 30 h in the presence of 0.25 μg mL(-1) of vancomycin and 8 μg mL(-1) of fosfomycin, after which pronounced growth was observed. Despite the delayed onset of growth, treatment with fosfomycin, daptomycin, fusidic acid, cefoxitin, or gentamicin resulted in higher maximum growth rates and/or higher final optical density values compared with antibiotic-free controls, indicating that growth stimulation and hormetic effects may occur with extended exposure to sublethal antibiotic concentrations. Whereas neither maximum growth rate nor final cell density correlated with antibiotic concentration, the lag phase duration for some antibiotics was a more meaningful indicator of dose-dependent growth inhibition. Our results also reveal that non-temporal growth profiles are only of limited value for cultivation-based antimicrobial silver nanoparticle susceptibility testing. The exposure to Ag(0) nanoparticles led to plasma membrane damage in a concentration-dependent manner and induced oxidative stress in Enterococcus faecium UKI-MB07, as shown by intracellular ROS accumulation. PMID:25426104

  20. The importance of growth kinetic analysis in determining bacterial susceptibility against antibiotics and silver nanoparticles

    PubMed Central

    Theophel, Karsten; Schacht, Veronika J.; Schlüter, Michael; Schnell, Sylvia; Stingu, Catalina-Suzana; Schaumann, Reiner; Bunge, Michael

    2014-01-01

    Routine antibiotics susceptibility testing still relies on standardized cultivation-based analyses, including measurement of inhibition zones in conventional agar diffusion tests and endpoint turbidity-based measurements. Here, we demonstrate that common off-line monitoring and endpoint determination after 18–24 h could be insufficient for reliable growth-dependent evaluation of antibiotic susceptibility. Different minimal inhibitory concentrations were obtained in 20- and 48 h microdilution plate tests using an Enterococcus faecium clinical isolate (strain UKI-MB07) as a model organism. Hence, we used an on-line kinetic assay for simultaneous cultivation and time-resolved growth analysis in a 96-well format instead of off-line susceptibility testing. Growth of the Enterococcus test organism was delayed up to 30 h in the presence of 0.25 μg mL-1 of vancomycin and 8 μg mL-1 of fosfomycin, after which pronounced growth was observed. Despite the delayed onset of growth, treatment with fosfomycin, daptomycin, fusidic acid, cefoxitin, or gentamicin resulted in higher maximum growth rates and/or higher final optical density values compared with antibiotic-free controls, indicating that growth stimulation and hormetic effects may occur with extended exposure to sublethal antibiotic concentrations. Whereas neither maximum growth rate nor final cell density correlated with antibiotic concentration, the lag phase duration for some antibiotics was a more meaningful indicator of dose-dependent growth inhibition. Our results also reveal that non-temporal growth profiles are only of limited value for cultivation-based antimicrobial silver nanoparticle susceptibility testing. The exposure to Ag(0) nanoparticles led to plasma membrane damage in a concentration-dependent manner and induced oxidative stress in Enterococcus faecium UKI-MB07, as shown by intracellular ROS accumulation. PMID:25426104

  1. Anisotropy in growth kinetics of tetrahydrofuran clathrate hydrate: a molecular dynamics study.

    PubMed

    Nada, Hiroki

    2009-04-01

    The growth kinetics of a tetrahydrofuran (THF) clathrate hydrate at the interface between the clathrate and an aqueous THF solution were investigated by means of a molecular dynamic simulation. The simulation was carried out for the interface of both the {100} and {111} planes of the THF clathrate. The simulation indicated the same anisotropic growth as that observed in real systems: the growth of the THF clathrate was much slower at the {111} interface than at the {100} interface. When the THF clathrate grew, THF molecules that were dissolved in the solution first were arranged at both large and small cage sites on the interface. Subsequently, the formation of cages by H(2)O molecules occurred in regions surrounded or sandwiched by those arranged THF molecules. As the formation of cages progressed, the THF molecules that had once been arranged at small cage sites gradually moved away from the sites, and finally the structure of the clathrate was completely formed. Simulation results strongly suggested that the rate-determining process for clathrate growth was the rearrangement of THF molecules at the interface from a disordered state to a state in which THF molecules were ideally arranged at large cage sites only. This rearrangement occurred much more slowly at the {111} interface than at the {100} interface, owing to the formation of a modified structure in which large and small cages were formed at opposite positions of the {111} interface. The anisotropic growth kinetics of the THF clathrate, which were obtained in this study, are consistent with the fact that growth shapes of THF clathrates in real systems are octahedral with flat {111} planes.

  2. Interface engineering in epitaxial growth of layered oxides via a conducting layer insertion

    SciTech Connect

    Yun, Yu; Meng, Dechao; Wang, Jianlin; Ma, Chao; Zhai, Xiaofang; Huang, Haoliang; Fu, Zhengping; Peng, Ranran; Brown, Gail J.; and others

    2015-07-06

    There is a long-standing challenge in the fabrication of layered oxide epitaxial films due to their thermodynamic phase-instability and the large stacking layer number. Recently, the demand for high-quality thin films is strongly pushed by their promising room-temperature multiferroic properties. Here, we find that by inserting a conducting and lattice matched LaNiO{sub 3} buffer layer, high quality m = 5 Bi{sub 6}FeCoTi{sub 3}O{sub 18} epitaxial films can be fabricated using the laser molecular beam epitaxy, in which the atomic-scale sharp interface between the film and the metallic buffer layer explains the enhanced quality. The magnetic and ferroelectric properties of the high quality Bi{sub 6}FeCoTi{sub 3}O{sub 18} films are studied. This study demonstrates that insertion of the conducting layer is a powerful method in achieving high quality layered oxide thin films, which opens the door to further understand the underline physics and to develop new devices.

  3. Controllable growth of layered selenide and telluride heterostructures and superlattices using molecular beam epitaxy

    DOE PAGES

    Vishwanath, Suresh; Liu, Xinyu; Rouvimov, Sergei; Basile, Leonardo; Lu, Ning; Azcatl, Angelica; Magno, Katrina; Wallace, Robert M.; Kim, Moon; Idrobo, Juan -Carlos; et al

    2016-01-06

    Layered materials are an actively pursued area of research for realizing highly scaled technologies involving both traditional device structures as well as new physics. Lately, non-equilibrium growth of 2D materials using molecular beam epitaxy (MBE) is gathering traction in the scientific community and here we aim to highlight one of its strengths, growth of abrupt heterostructures, and superlattices (SLs). In this work we present several of the firsts: first growth of MoTe2 by MBE, MoSe2 on Bi2Se3 SLs, transition metal dichalcogenide (TMD) SLs, and lateral junction between a quintuple atomic layer of Bi2Te3 and a triple atomic layer of MoTe2.more » In conclusion, reflected high electron energy diffraction oscillations presented during the growth of TMD SLs strengthen our claim that ultrathin heterostructures with monolayer layer control is within reach.« less

  4. Effects of spill-treating agents on growth kinetics of marine microalgae.

    PubMed

    Rial, Diego; Murado, Miguel A; Menduiña, Araceli; Fuciños, Pablo; González, Pilar; Mirón, Jesús; Vázquez, José A

    2013-12-15

    The effects of four spill-treating agents (STAs) (CytoSol, Finasol(®) OSR 51, Agma OSD 569 and OD4000) on the growth kinetics of three marine microalgae (Isochrysis galbana, Chaetoceros gracilis, Phaeodactylum tricornutum) were studied. Chlorophyll a concentration and optical density at 700 nm were assessed to describe the logistic growth of algae in batch cultures. The optical density data were initially analyzed as described for standard algal growth inhibition tests and subsequently modelled by a bivariate model, as a function of time and dose, to assess the toxic effects on growth parameters. Increasing trends in EC50 and EC10 values with time were found with the standard approach. In 8 of the 11 tests, the lag phase (λ) or the time required to achieve half the maximum biomass (τ) was significantly dependent on the STA concentration. A global parameter (EC50,τ) was calculated to summarize the effects of STAs on growth parameters in the bivariate model. The ranking of sensitivity as EC50,τ values was I. galbana>C. gracilis>P. tricornutum. For all species tested, the least toxic agent was Agma OSD 569, followed by CytoSol. The mathematical model allowed successful ecotoxicological evaluation of chemicals on microalgal growth. PMID:23911058

  5. Effects of spill-treating agents on growth kinetics of marine microalgae.

    PubMed

    Rial, Diego; Murado, Miguel A; Menduiña, Araceli; Fuciños, Pablo; González, Pilar; Mirón, Jesús; Vázquez, José A

    2013-12-15

    The effects of four spill-treating agents (STAs) (CytoSol, Finasol(®) OSR 51, Agma OSD 569 and OD4000) on the growth kinetics of three marine microalgae (Isochrysis galbana, Chaetoceros gracilis, Phaeodactylum tricornutum) were studied. Chlorophyll a concentration and optical density at 700 nm were assessed to describe the logistic growth of algae in batch cultures. The optical density data were initially analyzed as described for standard algal growth inhibition tests and subsequently modelled by a bivariate model, as a function of time and dose, to assess the toxic effects on growth parameters. Increasing trends in EC50 and EC10 values with time were found with the standard approach. In 8 of the 11 tests, the lag phase (λ) or the time required to achieve half the maximum biomass (τ) was significantly dependent on the STA concentration. A global parameter (EC50,τ) was calculated to summarize the effects of STAs on growth parameters in the bivariate model. The ranking of sensitivity as EC50,τ values was I. galbana>C. gracilis>P. tricornutum. For all species tested, the least toxic agent was Agma OSD 569, followed by CytoSol. The mathematical model allowed successful ecotoxicological evaluation of chemicals on microalgal growth.

  6. Growth kinetics of a diesel-degrading bacterial strain from petroleum-contaminated soil.

    PubMed

    Dahalan, S F A; Yunus, I; Johari, W L W; Shukor, M Y; Halmi, M I E; Shamaan, N A; Syed, M A

    2014-03-01

    A diesel-degrading bacterium was isolated from a diesel-contaminated site in Selangor, Malaysia. The isolate was tentatively identified as Acinetobacter sp. strain DRY12 based on partial 16S rDNA molecular phylogeny and Biolog GN microplate panels and Microlog database. Optimum growth occurred from 3 to 5% diesel and the strain was able to tolerate as high as 8% diesel. The optimal pH that supported growth of the bacterium was between pH 7.5 to 8.0. The isolate exhibited optimal growth in between 30 and 35 degrees C. The best nitrogen source was potassium nitrate (between 0.6 and 0.9% (w/v)) followed by ammonium chloride, sodium nitrite and ammonium sulphate in descending order. An almost complete removal of diesel components was seen from the reduction in hydrocarbon peaks observed using Solid Phase Microextraction Gas Chromatography analysis after 10 days of incubation. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibiting growth with a correlation coefficient value of 0.97. The maximum growth rate- micromax was 0.039 hr(-1) while the saturation constant or half velocity constant Ks and inhibition constant Ki, were 0.387% and 4.46%, respectively. MATH assays showed that 75% of the bacterium was found in the hexadecane phase indicating that the bacterium was hydrophobic. The characteristics of this bacterium make it useful for bioremediation works in the Tropics.

  7. Step-flow kinetics model for the vapor-solid-solid Si nanowires growth.

    PubMed

    Cui, H; Lü, Y Y; Yang, G W; Chen, Y M; Wang, C X

    2015-05-13

    Vapor-solid-solid (VSS) process has recently received continued attention as an alternative to grow Si nanowire. In comparison with common vapor-liquid-solid (VLS) growth with liquid catalyst, VSS growth can prevent the catalyst species from incorporating into nanowires with deep-level impurity, and achieve the compositionally abrupt interfaces by restraining the so-called "reservoir effect". However, despite the huge advances in experimental observations with in situ electron microscopy, VSS growth still remains much less understood in theory. Here, we developed a general mass-transport-limited kinetic model to describe the VSS growth process of Si nanowires by considering three surface diffusion processes and a slow interface diffusion process, where the former determines the atoms supplies way, while the latter dominates the growth of nanowires. The present model is not only well consistent with the available experimental data of Si nanowire, but also gives a clear physical image for the successive side-to-side ledge flow VSS growth.

  8. Growth kinetics of a diesel-degrading bacterial strain from petroleum-contaminated soil.

    PubMed

    Dahalan, S F A; Yunus, I; Johari, W L W; Shukor, M Y; Halmi, M I E; Shamaan, N A; Syed, M A

    2014-03-01

    A diesel-degrading bacterium was isolated from a diesel-contaminated site in Selangor, Malaysia. The isolate was tentatively identified as Acinetobacter sp. strain DRY12 based on partial 16S rDNA molecular phylogeny and Biolog GN microplate panels and Microlog database. Optimum growth occurred from 3 to 5% diesel and the strain was able to tolerate as high as 8% diesel. The optimal pH that supported growth of the bacterium was between pH 7.5 to 8.0. The isolate exhibited optimal growth in between 30 and 35 degrees C. The best nitrogen source was potassium nitrate (between 0.6 and 0.9% (w/v)) followed by ammonium chloride, sodium nitrite and ammonium sulphate in descending order. An almost complete removal of diesel components was seen from the reduction in hydrocarbon peaks observed using Solid Phase Microextraction Gas Chromatography analysis after 10 days of incubation. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibiting growth with a correlation coefficient value of 0.97. The maximum growth rate- micromax was 0.039 hr(-1) while the saturation constant or half velocity constant Ks and inhibition constant Ki, were 0.387% and 4.46%, respectively. MATH assays showed that 75% of the bacterium was found in the hexadecane phase indicating that the bacterium was hydrophobic. The characteristics of this bacterium make it useful for bioremediation works in the Tropics. PMID:24665769

  9. Ascorbic-acid-assisted growth of high quality M@ZnO: a growth mechanism and kinetics study.

    PubMed

    Yang, Yun; Han, Shuhua; Zhou, Guangju; Zhang, Lijie; Li, Xingliang; Zou, Chao; Huang, Shaoming

    2013-12-01

    We present a general route for synthesizing M@ZnO nanoparticles (NPs) by using ascorbic acid (AA) to induce deposition of ZnO on various shaped and structured cationic-surfactant-capped NP surfaces (noble, magnetic, semiconductor, rod-like, spherical, cubic, dendrite, alloy, core@shell). The results show that the complexing (AA and Zn(2+)) and cooperative effects (AA and CTAB) play important roles in the formation of polycrystalline ZnO shells. Besides, the growth kinetics of M@ZnO was systematically studied. It was found that the slow growth rate favors the successful formation of uniform core@ZnO NPs with relatively loose shells. An appropriate growth rate allows achieving high quality M@ZnO NPs with dense shells. However, very fast growth causes significant additional nucleation and the formation of pure ZnO NPs. This general method is suitable for preparing M@ZnO using seed NPs prepared in both water and organic phases. It might be an alternative route for functionalizing NPs for bioapplications (ZnO is biocompatible), modulating material properties as designed, or synthesizing template materials for building other nanostructures. PMID:24122007

  10. The effect of Co alloying content on the kinetics of reaction zone growth in tungsten fiber reinforced superalloy composites

    NASA Technical Reports Server (NTRS)

    Rodriguez, A.; Tien, J. K.; Caulfield, T.; Petrasek, D. W.

    1988-01-01

    A Co-free modified superalloy similar in composition to Waspaloy is investigated in an effort to understand the effect of Co on reaction zone growth kinetics and verify the chemistry dependence of reaction zone growth in the matrix of tungsten fiber reinforced superalloy composites. The values of the parabolic rate constant, characterizing the kinetics of reaction zone growth, for the Waspaloy matrix and the C-free alloy as well as five other alloys from a previous study confirm the dependence of reaction zone growth kinetics on cobalt content of the matrix. The Co-free alloy composite exhibits the slowest reaction zone growth among all tungsten fiber reinforced composites studied to date.

  11. Polymorph-specific kinetics and thermodynamics of β-amyloid fibril growth

    PubMed Central

    Qiang, Wei; Kelley, Kevin; Tycko, Robert

    2013-01-01

    Amyloid fibrils formed by the 40-residue β-amyloid peptide (Aβ1–40) are highly polymorphic, with molecular structures that depend on the details of growth conditions. Underlying differences in physical properties are not well understood. Here, we investigate differences in growth kinetics and thermodynamic stabilities of two Aβ1–40 fibril polymorphs for which detailed structural models are available from solid state nuclear magnetic resonance (NMR) studies. Rates of seeded fibril elongation in the presence of excess soluble Aβ1–40 and shrinkage in the absence of soluble Aβ1–40 are determined with atomic force microscopy (AFM). From these rates, we derive polymorph-specific values for the soluble Aβ1–40 concentration at quasi-equilibrium, from which relative stabilities can be derived. The AFM results are supported by direct measurements by ultraviolet absorbance, using a novel dialysis system to establish quasi-equilibrium. At 24° C, the two polymorphs have significantly different elongation and shrinkage kinetics but similar thermodynamic stabilities. At 37° C, differences in kinetics are reduced, and thermodynamic stabilities are increased significantly. Fibril length distributions in AFM images provide support for an intermittent growth model, in which fibrils switch randomly between an "on" state (capable of elongation) and an "off" state (incapable of elongation). We also monitor interconversion between polymorphs at 24° C by solid state NMR, showing that the two-fold symmetric "agitated" () polymorph is more stable than the three-fold symmetric "quiescent" polymorph. Finally, we show that the two polymorphs have significantly different rates of fragmentation in the presence of shear forces, a difference that helps explain the observed predominance of the structure when fibrils are grown in agitated solutions. PMID:23627695

  12. Single crystal growth and properties of two layered oxytellurides

    NASA Astrophysics Data System (ADS)

    Besara, Tiglet; Ramirez, Daniel; Siegrist, Theo; Sun, Jifeng; Whalen, Jeffrey; Tokumoto, Takahisa; McGill, Stephen; Stillwell, Ryan; Tozer, Stanley; Singh, David

    2015-03-01

    We report on the synthesis, structure, and physical properties of two layered oxytellurides: Ba3Yb2O5Te and Ba2TeO. Both compound were grown in single crystalline form using a molten metal flux, and crystallize in a tetragonal space group: P4 / mmm for Ba3Yb2O5Te and P4 / nmm for Ba2TeO. Ba3Yb2O5TeconsistsofBa2Yb2O5 perovskite double layers separated by a CsCl-type BaTe slab, while Ba2TeO consists of an inverse PbO-type BaO layer separated by an NaCl-type BaTe slab. Ba3Yb2O5Te displays short range 2D magnetic ordering below 4 K, and a sharp optical absorption feature at 1.27 eV consistent with a 2F7 / 2-->2F5 / 2 transition of Yb3+. For Ba2TeO, optical measurements display a sharp increase in absorbance, a manifest of a band edge. DOS corroborates the band gap, at 2.93 eV, indicating semiconducting behavior. DOE DE-SC0008832 (T.B., D.R., J.S., T.S.), NSF DMR-1157490 (NHMFL).

  13. Hafnium nitride buffer layers for growth of GaN on silicon

    DOEpatents

    Armitage, Robert D.; Weber, Eicke R.

    2005-08-16

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  14. Understanding filamentary growth in electrochemical metallization memory cells using kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Menzel, Stephan; Kaupmann, Philip; Waser, Rainer

    2015-07-01

    We report on a 2D kinetic Monte Carlo model that describes the resistive switching in electrochemical metallization cells. To simulate the switching process, we consider several different processes on the atomic scale: electron-transfer reactions at the boundaries, ion migration, adsorption/desorption from/to interfaces, surface diffusion and nucleation. These processes result in a growth/dissolution of a metallic filament within an insulating matrix. In addition, the model includes electron tunneling between the growing filament and the counter electrode, which allows for simulating multilevel switching. It is shown that the simulation model can reproduce the reported switching kinetics, switching variability and multilevel capabilities of ECM devices. As a major result, the influence of mechanical stress working on the host matrix due to the filamentary growth is investigated. It is demonstrated that the size and shape of the filament depend on the Young's modulus of the insulating matrix. For high values a wire-like structure evolves, whereas the shape is dendritic if the Young's modulus is negligible.We report on a 2D kinetic Monte Carlo model that describes the resistive switching in electrochemical metallization cells. To simulate the switching process, we consider several different processes on the atomic scale: electron-transfer reactions at the boundaries, ion migration, adsorption/desorption from/to interfaces, surface diffusion and nucleation. These processes result in a growth/dissolution of a metallic filament within an insulating matrix. In addition, the model includes electron tunneling between the growing filament and the counter electrode, which allows for simulating multilevel switching. It is shown that the simulation model can reproduce the reported switching kinetics, switching variability and multilevel capabilities of ECM devices. As a major result, the influence of mechanical stress working on the host matrix due to the filamentary growth is

  15. Quantifying in vitro growth and metabolism kinetics of human mesenchymal stem cells using a mathematical model.

    PubMed

    Higuera, Gustavo; Schop, Deborah; Janssen, Frank; van Dijkhuizen-Radersma, Riemke; van Boxtel, Ton; van Blitterswijk, C A

    2009-09-01

    Better quantitative understanding of human mesenchymal stem cells (hMSCs) metabolism is needed to identify, understand, and subsequently optimize the processes in expansion of hMSCs in vitro. For this purpose, we analyzed growth of hMSCs in vitro with a mathematical model based on the mass balances for viable cell numbers, glucose, lactate, glutamine, and glutamate. The mathematical modeling had two aims: (1) to estimate kinetic parameters of important metabolites for hMSC monolayer cultures, and (2) to quantitatively assess assumptions on growth of hMSCs. Two cell seeding densities were used to investigate growth and metabolism kinetics of MSCs from three human donors. We analyzed growth up to confluency and used metabolic assumptions described in literature. Results showed a longer initial phase, a slower growth rate, and a higher glucose, lactate, glutamine, and glutamate metabolic rates at the lower cell seeding density. Higher metabolic rates could be induced by a lower contact inhibition effect when seeding at 100 cells/cm2 than when seeding at 1000 cells/cm2. In addition, parameter estimation describing kinetics of hMSCs in culture, depending on the seeding density, showed doubling times in the order of 17-32h, specific glucose consumption in the order of 1.25 x 10(-1) to 3.77 x 10(-1) pmol/cell/h, specific lactate production in the order of 2.48 x 10(-1) to 7.67 x 10(-1)pmol/cell/h, specific glutamine production in the order of 7.04 x 10(-3) to 2.27 pmol/cell/h, and specific glutamate production in the order of 4.87 x 10(-1) to 23.4 pmol/cell/h. Lactate-to-glucose yield ratios confirmed that hMSCs use glucose via anaerobic glycolysis. In addition, glutamine and glutamate metabolic shifts were identified that could be important for understanding growth of hMSCs in vitro. This study showed that the mathematical modeling approach supports quantitative analysis of important mechanisms in proliferation of hMSCs in vitro.

  16. Surface structure and surface kinetics of InN grown by plasma-assisted atomic layer epitaxy: A HREELS study

    SciTech Connect

    Acharya, Ananta R. E-mail: anantaach@gmail.com; Thoms, Brian D.; Nepal, Neeraj; Eddy, Charles R.

    2015-03-15

    The surface bonding configuration and kinetics of hydrogen desorption from InN grown by plasma-assisted atomic layer epitaxy have been investigated. High resolution electron energy loss spectra exhibited loss peaks assigned to a Fuchs–Kliewer surface phonon, N-N and N-H surface species. The surface N-N vibrations are attributed to surface defects. The observation of N-H but no In-H surface species suggested N-terminated InN. Isothermal desorption data were best fit by the first-order desorption kinetics with an activation energy of (0.88 ± 0.06) eV and pre-exponential factor of (1.5 ± 0.5) × 10{sup 5 }s{sup −1}.

  17. Adaption of kinetics to solid electrolyte interphase layer formation and application to electrolyte-soluble reaction products

    NASA Astrophysics Data System (ADS)

    Gourdin, Gerald; Zheng, Dong; Qu, Deyang

    2015-12-01

    During the electrochemical lithiation of a carbon electrode, carbonate-based electrolytes react with the electrode surface and undergo reductive decomposition to form a solid electrolyte interphase (SEI) layer that passivates the surface of the carbon electrode. In addition, reduction of the electrolyte also results in the generation of electrolyte-soluble products. Structural similarities between the soluble and insoluble products provide an opportunity to examine the formation kinetics of the SEI layer through an analysis of the kinetic behavior of the soluble products. In this work, the electrolyte-soluble products generated by reductive decomposition of a baseline electrolyte were analyzed at different stages and at different hold times during the initial lithiation of an amorphous carbon electrode. A statistical regression analysis of that data was used to produce a representative lithiation experiment from which was calculated the potential-dependent formation rates for the soluble decomposition products. The predicted formation rate data was fitted using an adapted rate equation that accounts for the effect of the SEI layer to obtain estimated formation rate constants and redox potentials.

  18. Comparison of the growth kinetics and proteolytic activities of Chryseobacterium species and Pseudomonas fluorescens.

    PubMed

    Bekker, A; Steyn, L; Charimba, G; Jooste, P; Hugo, C

    2015-12-01

    The effect of temperature on the growth kinetics and proteolytic activity of Chryseobacterium joostei and Chryseobacterium bovis was determined during this study. The results were compared with the activities of Pseudomonas fluorescens, which is regarded to be a major food spoilage psychrotolerant microorganism. For the growth studies, cultures were incubated in nutrient broth in a temperature gradient incubator (from 9 to 50 °C) and separately at 4 °C, and the optical density was measured at different time intervals. Growth temperature profiles for each organism were constructed. For determination of proteolytic activity, the cultures were incubated in fat-free ultra-high temperature processed milk in the temperature gradient incubator for 72 h (temperature range as above). Cell-free extracts were used to determine the proteolytic activity using the azocasein method. Results of the growth studies showed that C. joostei had the ability to grow over a wider temperature range than C. bovis and P. fluorescens without being affected by changes in the temperature. For the proteolytic activity, C. joostei had significantly (p < 0.001) higher activity per milligram of protein at 15.5 °C, followed by C. bovis and P. fluorescens. The results showed that C. joostei potentially has an even greater spoilage capacity in milk on the basis of growth rate and proteolytic activity than did P. fluorescens.

  19. Flux-Dependent Growth Kinetics and Diameter Selectivity in Single-Wall Carbon Nanotube Arrays

    SciTech Connect

    Geohegan, David B; Puretzky, Alexander A; Jackson, Jeremy Joseph; Rouleau, Christopher M; Eres, Gyula; More, Karren Leslie

    2011-01-01

    The nucleation and growth kinetics of single-wall carbon nanotubes in aligned arrays have been measured using fast pulses of acetylene and in situ optical diagnostics in conjunction with low pressure chemical vapor deposition (CVD). Increasing the acetylene partial pressure is shown to decrease nucleation times by three orders of magnitude, permitting aligned nanotube arrays to nucleate and grow to microns lengths within single gas pulses at high (up to 7 micron/s) peak growth rates and short ~ 0.5 s times.Low-frequency Raman scattering (> 10 cm-1) and transmission electron microscopy measurements show that increasing the feedstock flux in both continuous-CVD and pulsed-CVD shifts the product distribution to large single-wall carbon nanotube diameters > 2.5 nm. Sufficiently high acetylene partial pressures in pulsed-CVD appear to temporarily terminate the growth of the fastest- growing, small-diameter nanotubes by overcoating the more catalytically-active, smaller catalyst nanoparticles within the ensemble with non-nanotube carbon in agreement with a growth model. The results indicate that subsets of catalyst nanoparticle ensembles nucleate, grow, and terminate growth within different flux ranges according to their catalytic activity.

  20. Kinetic boundary layers in gas mixtures: Systems described by nonlinearly coupled kinetic and hydrodynamic equations and applications to droplet condensation and evaporation

    SciTech Connect

    Widder, M.E.; Titulaer, U.M. )

    1993-03-01

    The authors consider a mixture of heavy vapor molecules and a light carrier gas surrounding a liquid droplet. The vapor is described by a variant of the Klein-Kramers equation; the gas is described by the Navier-Stokes equations; the droplet acts as a heat source due to the released heat of condensation. The exchange of momentum and energy between the constituents of the mixture is taken into account by force terms in the kinetic equation and source terms in the Navier-Stokes equations. These are chosen to obtain maximal agreement with the irreversible thermodynamics of a gas mixture. The structure of the kinetic boundary layer around the sphere is determined from the self-consistent solution of this set of coupled equations with appropriate boundary conditions at the surface of the sphere. The kinetic equation is rewritten as a set of coupled moment equations. A complete set of solutions of these moment equations is constructed by numerical integration inward from the region far away from the droplet, where the background inhomogeneities are small. A technique developed earlier is used to deal with the numerical instability of the moment equations. The solutions obtained for given temperature and pressure profiles in the gas are then combined linearly such that they obey the boundary conditions at the droplet surface; from this solution source terms for the Navier-Stokes equation of the gas are constructed and used to determine improved temperature and pressure profiles for the background gas. For not too large temperature differneces between the droplet and the gas at infinity, self-consistency is reached after a few iterations. The method is applied to the condensation of droplets from a supersaturated vapor as well as to strong evaporation of droplets under the influence of an external heat source, where corrections of up to 40% are obtained.

  1. Atomic layer-by-layer growth of superconducting Bi Sr Ca Cu O thin films by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Bove, P.; Rogers, D. J.; Hosseini Teherani, F.

    2000-11-01

    In situ reflection high-energy electron diffraction (RHEED) is employed to investigate the growth kinetics, and monitor the crystal surface evolution, during plasma-assisted molecular beam epitaxy growth of Bi 2Sr 2Ca n-1 Cu nO (BSCCO) compounds. By varying the growth parameters such as operating pressure, substrate temperature, cation flux and shutter opening pulse duration, it is found that the crystal growth front exhibits surface reconstructions with (1×1), (2×2), c(2×2) and (3×1) symmetries for the Sr, Ca and Cu species, and a RHEED pattern characteristic of twinning for Bi. Through manipulation of these surface reconstructions, and use of an adapted growth mode, it was possible to achieve a monolayer coverage for each species supplied. For the n=1, 2 and 3 compounds the resulting films exhibit a crystal quality characterised by an X-ray diffraction rocking curve width of 0.03° and an atomic force microscope mean surface roughness of 0.9 nm [over 10×10 μm] for 40 nm thick films.

  2. Layer-by-Layer Polyelectrolyte Assisted Growth of 2D Ultrathin MoS2 Nanosheets on Various 1D Carbons for Superior Li-Storage.

    PubMed

    Qu, Qunting; Qian, Feng; Yang, Siming; Gao, Tian; Liu, Weijie; Shao, Jie; Zheng, Honghe

    2016-01-20

    Transitional metal sulfide/carbon hybrids with well-defined structures could not only maximize the functional properties of each constituent but engender some unique synergistic effects, holding great promise for applications in Li-ion batteries and supercapacitors and for catalysis. Herein, a facile and versatile approach is developed to controllably grow 2D ultrathin MoS2 nanosheets with a large quantity of exposed edges onto various 1D carbons, including carbon nanotubes (CNTs), electrospun carbon nanofibers, and Te-nanowire-templated carbon nanofibers. The typical approach involves the employment of layer-by-layer (LBL) self-assembled polyelectrolyte, which controls spatially the uniform growth and orientation of ultrathin MoS2 nanosheets on these 1D carbons irrespective of their surface properties. Such unique structures of the as-prepared CNTs@MoS2 hybrid are significantly favorable for the fast diffusions of both Li-ions and electrons, satisfying the kinetic requirements of high-power lithium ion batteries. As a result, CNTs@MoS2 hybrids exhibit excellent electrochemical performances for lithium storage, including a high reversible capacity (1027 mAh g(-1)), high-rate capability (610 mAh g(-1) at 5 C), and excellent cycling stability (negligible capacity loss after 200 continuous cycles).

  3. Layer-by-Layer Polyelectrolyte Assisted Growth of 2D Ultrathin MoS2 Nanosheets on Various 1D Carbons for Superior Li-Storage.

    PubMed

    Qu, Qunting; Qian, Feng; Yang, Siming; Gao, Tian; Liu, Weijie; Shao, Jie; Zheng, Honghe

    2016-01-20

    Transitional metal sulfide/carbon hybrids with well-defined structures could not only maximize the functional properties of each constituent but engender some unique synergistic effects, holding great promise for applications in Li-ion batteries and supercapacitors and for catalysis. Herein, a facile and versatile approach is developed to controllably grow 2D ultrathin MoS2 nanosheets with a large quantity of exposed edges onto various 1D carbons, including carbon nanotubes (CNTs), electrospun carbon nanofibers, and Te-nanowire-templated carbon nanofibers. The typical approach involves the employment of layer-by-layer (LBL) self-assembled polyelectrolyte, which controls spatially the uniform growth and orientation of ultrathin MoS2 nanosheets on these 1D carbons irrespective of their surface properties. Such unique structures of the as-prepared CNTs@MoS2 hybrid are significantly favorable for the fast diffusions of both Li-ions and electrons, satisfying the kinetic requirements of high-power lithium ion batteries. As a result, CNTs@MoS2 hybrids exhibit excellent electrochemical performances for lithium storage, including a high reversible capacity (1027 mAh g(-1)), high-rate capability (610 mAh g(-1) at 5 C), and excellent cycling stability (negligible capacity loss after 200 continuous cycles). PMID:26709711

  4. Role of growth temperature and the presence of dopants in layer-by-layer plasma deposition of thin microcrystalline silicon (μc-Si:H) doped layers

    NASA Astrophysics Data System (ADS)

    Gordijn, A.; Rath, J. K.; Schropp, R. E. I.

    2004-06-01

    Microcrystalline silicon (μc-Si:H) p- and n-type layers have been developed by Layer-by-Layer (LbL) deposition at high temperatures. The LbL deposition consists of alternating boron or phosphorus doped amorphous silicon depositions and hydrogen plasma treatments by Very High Frequency Chemical Vapor Deposition (VHF PECVD). The layers are developed to be resistant to the temperature and hydrogen flux of a micro- of polycrystalline intrinsic layer grown at a high deposition rate in a p-i-n or an n-i-p solar cell device. It is concluded that the LbL method is suitable to produce device quality μc-Si:H p- and n-type doped layers in a temperature range from 250 to 400 °C. This is not possible with standard continuous PECVD employing high hydrogen dilution of silane, where the addition of dopants reduces the crystallinity. An optimum effective thickness per deposition cycle (total thickness divided by the number of cycles) of 1.5 nm/cycle is needed for the crystallization. This optimal effective sub layer thickness is independent of dopants and deposition temperature. However, a minimum thickness of the first layer is needed for a sustaining growth in the LbL process. The doped layers grown by LbL are smoother than reference samples grown by continuous wave (cw). The doping efficiencies in our LbL deposited layers are structurally higher than those in cw deposition (for p layers a doping efficiency of 39% in case of LbL, compared to 1% for cw). The properties of the best high-temperature doped layers are as follows: for LbL p-type μc-Si:H (Ts=350 °C, 29 nm), activation energy=0.11 eV and dark conductivity=0.1 Ω-1 cm-1; for LbL n-type μc-Si:H (Ts=400 °C, 31 nm), activation energy=0.056 eV and dark conductivity=2.7 Ω-1 cm-1. Test solar cells have been deposited using Hot-Wire CVD (HWCVD) and VHF PECVD deposited μc-Si:H i-layers on top of the high-temperature LbL μc-Si:H n-type doped layer in an n-i-p configuration on a stainless steel substrate without a back

  5. Layer-by-Layer Growth of InAlN Films on ZnO(0001) Substrates at Room Temperature

    NASA Astrophysics Data System (ADS)

    Kajima, Tomofumi; Kobayashi, Atsushi; Shimomoto, Kazuma; Ueno, Kohei; Fujii, Tomoaki; Ohta, Jitsuo; Fujioka, Hiroshi; Oshima, Masaharu

    2010-02-01

    We have grown In-rich InxAl1-xN (x = 0.6-0.7) films on nearly lattice-matched ZnO(0001) substrates at various temperatures ranging from room temperature (RT) to 600 °C by the use of pulsed laser deposition and investigated their structural properties. Grazing-incidence X-ray reflection and X-ray diffraction revealed that films grown at RT are composed of single-phase InAlN and possess atomically flat surfaces and abrupt interfaces. In addition, we have found that RT-growth of InAlN films on ZnO(0001) surfaces proceeds in a layer-by-layer mode from the initial stages of film growth.

  6. Kinetic model for dependence of thin film stress on growth rate, temperature, and microstructure

    NASA Astrophysics Data System (ADS)

    Chason, E.; Shin, J. W.; Hearne, S. J.; Freund, L. B.

    2012-04-01

    During deposition, many thin films go through a range of stress states, changing from compressive to tensile and back again. In addition, the stress depends strongly on the processing and material parameters. We have developed a simple analytical model to describe the stress evolution in terms of a kinetic competition between different mechanisms of stress generation and relaxation at the triple junction where the surface and grain boundary intersect. The model describes how the steady state stress scales with the dimensionless parameter D/LR where D is the diffusivity, R is the growth rate, and L is the grain size. It also explains the transition from tensile to compressive stress as the microstructure evolves from isolated islands to a continuous film. We compare calculations from the model with measurements of the stress dependence on grain size and growth rate in the steady state regime and of the evolution of stress with thickness for different temperatures.

  7. Grain growth kinetics and its effect on instrumented indentation response to nanocrystalline Ni

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arnomitra; Sharma, Garima; Chakravartty, J. K.

    2013-02-01

    Thermal instability in nanocrystalline (nc) Ni with a grain size of ˜60 nm was studied in detail. The kinetics of thermal grain growth behavior was studied by DSC and resistivity experiments. Thermal instability was characterized by determining the activation energy required for grain growth in the temperature range of 100-400 °C. The activation energy was found to be ˜ 100 kJ/mol below Curie temperature and ˜ 298 kJ/mol above Curie temperature. The effect of grain size on hardness and activation volume was investigated using nanoindentation technique. The interaction of dislocations-grain boundaries mediated mechanism was found to be the rate controlling plastic deformation mechanism.

  8. Media for study of growth kinetics and envelope properties of iron-deprived bacteria.

    PubMed

    Kadurugamuwa, J L; Anwar, H; Brown, M R; Shand, G H; Ward, K H

    1987-05-01

    Ion-exchange chromatography was used to remove iron from complex and chemically defined laboratory media. The kinetics of metal cation removal from the media was investigated by using atomic absorption spectrophotometry, and the results indicated that over 90% of the iron could be eliminated from certain complex media by this treatment. The treated medium was used for growth studies in a gram-positive and a number of gram-negative organisms that were isolated from infections in humans. High-molecular-weight outer membrane proteins that are known to be induced under iron-depleted growth conditions (iron-regulated membrane proteins) were observed when a number of gram-negative pathogens were cultivated in the treated media. Iron uptake by Staphylococcus aureus varied, depending on the iron content of the medium. PMID:3108311

  9. Growth kinetics of racemic heptahelicene-2-carboxylic acid nanowires on calcite (104)

    NASA Astrophysics Data System (ADS)

    Einax, Mario; Richter, Tobias; Nimmrich, Markus; Rahe, Philipp; Stará, Irena G.; Starý, Ivo; Kühnle, Angelika; Maass, Philipp

    2016-10-01

    Molecular self-assembly of racemic heptahelicene-2-carboxylic acid on a dielectric substrate at room temperature can be used to generate wire-like organic nanostructures consisting of single and double molecular rows. By means of non-contact atomic force microscopy, we investigate the growth of the wire-like pattern after deposition by experimental and theoretical means. From analyzing the time dependence of the mean row length, two distinct regimes were found. At the early post-deposition stage, the mean length grows in time. Subsequently, a crossover to a second regime is observed, where the mean row length remains nearly constant. We explain these findings by a mean-field rate equation approach providing a comprehensive picture of the growth kinetics. As a result, we demonstrate that the crossover between the two distinct regimes is accomplished by vanishing of the homochiral single rows. At later stages only heterochiral double row structures remain.

  10. Experimental Studies of the Growth Kinetics of Methane Clathrate Hydrates & Superfluid Hydrodynamics on the Nanoscale

    NASA Astrophysics Data System (ADS)

    Botimer, Jeffrey David

    This thesis details the experimental findings of three distinct research projects. The first studies the growth kinetics of methane clathrate hydrates grown under the influence of multiple factors including surfactants, porous media, substrate wetting properties, and salt content. The second investigates the flow behaviors of superfluid helium through single, high aspect ratio nanopipes. The third models the frequency response of a quartz tuning fork in high pressure normal and superfluid helium and demonstrates how quartz tuning forks can be used as cheap, small, in situ, cryogenic pressure gauges. The first project reports studies of the kinetics of growth of methane hydrates from liquid water containing small amounts of surfactant (<500 ppm of sodium dodecyl sulfate, SDS). The kinetics are monitored using simultaneous measurements of the uptake of methane detected by a pressure drop in the gas phase, and either visual observations of the amount of liquid water and solid phase in the reaction vessel, or in situ micro-Raman measurements or in situ NMR measurements. These diagnostics show that the uptake of methane and the conversion of liquid water to a solid phase do not occur simultaneously; the uptake of gas always lags the visual and spectroscopic signatures of the disappearance of liquid water and the formation of solid. The evidence suggests that the SDS causes water to form an intermediate immobile solid-like state before combining with the methane to form hydrate. The growth mechanism is related to the surfactant and disappears for low SDS concentrations (<25 ppm). Also reported are studies of the growth rates of methane hydrates as a function of substrate wetting properties, driving force, and growth media. The second project studies pressure driven flow of superfluid helium through single high aspect ratio glass nanopipes into a vacuum has been studied for a wide range of pressure drop (0--30 atm), reservoir temperature (0.8--2.5K), pipe lengths (1-30mm

  11. Direct dynamic kinetic analysis and computer simulation of growth of Clostridium perfringens in cooked turkey during cooling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research applied a new one-step methodology to directly construct a tertiary model for describing the growth of C. perfringens in cooked turkey meat under dynamically cooling conditions. The kinetic parameters of the growth models were determined by numerical analysis and optimization using mu...

  12. Prediction of fatigue crack growth kinetics in the plane structural elements of aircraft in the biaxial stress state

    NASA Astrophysics Data System (ADS)

    Shanyavskij, A. A.; Karaev, K. Z.; Grigor'ev, V. M.; Koronov, M. Z.; Orlov, E. F.

    1991-07-01

    The kinetics of fatigue crack growth in the case of a complex stress state is investigated with particular reference to D16T aluminum alloy. By using simulation models in the form of plane cruciform specimens, the characteristics of fatigue crack growth are investigated under conditions of uniaxial and biaxial tension-compression, with the ratio of the main stresses varying from -1 to 1.5. An algorithm is developed which makes it possible to predict the kinetics of fatigue crack growth and the equivalent stress level under conditions of multiparametric loading.

  13. LPE growth and characterization of 1.3 μm (Hg, Cd)Te layers

    NASA Astrophysics Data System (ADS)

    Janik, E.; Ferah, M.; Legros, R.; Triboulet, R.; Brossat, T.; Riant, Y.

    1985-08-01

    The growth of epitaxial layers of Cd xHg 1- xTe with x=0.7, suitable for optoelectronic applications, is obtained. The growth is performed by LPE from a Te-rich solution in a closed tube tipping system, on hydroplane polished CdTe or Cd 1- yZn yTe substrates. The growth apparatus and procedure are described. Layers of thickness 10-40 μm, grown at 500-600°C, were obtained. Attention was paid mainly to the surface morphological quality and good decantation from the layers. The surface morphology was observed by Nomarski contrast photography, the profile concentration measured by electron microprobe, and back reflection Laue patterns are presented also. We report, also, the results of measurements of the optical and electrical parameters of grown layers and the characteristics of photodiodes made from them.

  14. Kinetic Model of Photoautotrophic Growth of Chlorella sp. Microalga, Isolated from the Setúbal Lagoon.

    PubMed

    Heinrich, Josué Miguel; Irazoqui, Horacio Antonio

    2015-01-01

    In this work, a kinetic expression relating light availability in the culture medium with the rate of microalgal growth is obtained. This expression, which is valid for low illumination conditions, was derived from the reactions that take part in the light-dependent stage of photosynthesis. The kinetic expression obtained is a function of the biomass concentration in the culture, as well as of the local volumetric rate of absorption of photons, and only includes two adjustable parameters. To determine the value of these parameters and to test the validity of the hypotheses made, autotrophic cultures of the Chlorella sp. strain were carried out in a modified BBM medium at three CO2 concentrations in the gas stream, namely 0.034%, 0.34% and 3.4%. Moreover, the local volumetric rate of photon absorption was predicted based on a physical model of the interaction of the radiant energy with the suspended biomass, together with a Monte Carlo simulation algorithm. The proposed intrinsic expression of the biomass growth rate, together with the Monte Carlo radiation field simulator, are key to scale up photobioreactors when operating under low irradiation conditions, independently of the configuration of the reactor and of its light source.

  15. Simulating the growth process of aromatic polyamide layer by monomer concentration controlling method

    NASA Astrophysics Data System (ADS)

    Jin, Yan; Liang, Songmiao; Wu, Zongce; Cai, Zhiqi; Zhao, Ning

    2014-09-01

    With the wide distribution and gradual increase of TMC concentration (CTMC) from 1 × 10-4 wt% to 2.5 × 10-1 wt%, the main purpose of this work is to simulate the surface structure and properties of polyamide layer of reverse osmosis membranes at its different growth stage. The surface structure and properties of the resulted membranes were then characterized by atomic force microscopy (AFM), scanning electron microscope (SEM), attenuated total reflectance infrared (ATR-IR) spectroscopy, drop shape analysis system and electrokinetic analyzer. The structure growth of polyamide layer underwent in turn three different stages including spherical aggregator, leaf-like and typical ridge-valley structure. Spherical aggregator is the intrinsic structure in the inner layer of polyamide while leaf-like structure is transitional on the outmost polyamide layer. Furthermore, to clarify the effect of the structure change on the properties of polyamide layer, contact angle and zeta potential in the surface of polyamide layer were studied. Hydrophilic surface of polyamide layer is accessible at higher TMC concentration because of the presence of negative charged groups. Performances of the membranes were further measured with an emphasis on studying its structure-performance relationship during the growth process of polyamide layer.

  16. Graphene Layer Growth: Collision of Migrating Five-MemberRings

    SciTech Connect

    Whitesides, Russell; Kollias, Alexander C.; Domin, Dominik; Lester Jr., William A.; Frenklach, Michael

    2005-12-02

    A reaction pathway is explored in which two cyclopenta groups combine on the zigzag edge of a graphene layer. The process is initiated by H addition to a five-membered ring, followed by opening of that ring and the formation of a six-membered ring adjacent to another five-membered ring. The elementary steps of the migration pathway are analyzed using density functional theory to examine the region of the potential energy surface associated with the pathway. The calculations are performed on a substrate modeled by the zigzag edge of tetracene. Based on the obtained energetics, the dynamics of the system are analyzed by solving the energy transfer master equations. The results indicate energetic and reaction-rate similarity between the cyclopenta combination and migration reactions. Also examined in the present study are desorption rates of migrating cyclopenta rings which are found to be comparable to cyclopenta ring migration.

  17. Graphene Layer Growth Chemistry: Five-Six-Ring Flip Reaction

    SciTech Connect

    Whitesides, Russell; Domin, Dominik; Lester Jr., William A.; Frenklach, Michael

    2007-03-24

    A theoretical study revealed a new reaction pathway, in which a fused five and six-membered ring complex on the zigzag edge of a graphene layer isomerizes to reverse its orientation, or 'flips,' after activation by a gaseous hydrogen atom. The process is initiated by hydrogen addition to or abstraction from the surface complex. The elementary steps of the migration pathway were analyzed using density-functional theory (DFT) calculations to examine the region of the potential energy surface associated with the pathway. The DFT calculations were performed on substrates modeled by the zigzag edges of tetracene and pentacene. Rate constants for the flip reaction were obtained by the solution of energy master equation utilizing the DFT energies, frequencies, and geometries. The results indicate that this reaction pathway is competitive with other pathways important to the edge evolution of aromatic species in high temperature environments.

  18. Characterization and growth of epitaxial layers of Gs exhibiting high resistivity for ionic implantation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Either classical or low temperature epitaxial growth techniques can be used to control the deposition of buffer layers of GaAs on semiconducting substrates and to obtain the resistivity and purity desired. Techniques developed to study, as a function of thickness, the evolution of mobilities by photoHall, and the spectroscopy of shallow and deep centers by cathodoluminescence and current transients reveal one very pure layer of medium resistivity and high mobility, and another "dead layer" of elevated resistivity far from the surface. The highly resistive layer remains pure over several microns, which appears interesting for implantation.

  19. Spiral growth of few-layer MoS2 by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Dong, X.; Yan, C.; Tomer, D.; Li, C. H.; Li, L.

    2016-08-01

    Growth spirals exhibit appealing properties due to a preferred layer stacking and lack of inversion symmetry. Here, we report spiral growth of MoS2 during chemical vapor deposition on SiO2/Si and epitaxial graphene/SiC substrates, and their physical and electronic properties. We determine the layer-dependence of the MoS2 bandgap, ranging from 2.4 eV for the monolayer to a constant of 1.3 eV beyond the fifth layer. We further observe that spirals predominantly initiate at the step edges of the SiC substrate, based on which we propose a growth mechanism driven by screw dislocation created by the coalescence of two growth fronts at steps.

  20. Chlorine adlayer-templated growth of a hybrid inorganic-organic layered structure on Au(111)

    NASA Astrophysics Data System (ADS)

    Rzeźnicka, I. I.; Horino, H.; Yagyu, K.; Suzuki, T.; Kajimoto, S.; Fukumura, H.

    2016-10-01

    Growth of a hybrid inorganic-organic layered structure on the Au(111) surface using a one-step solution growth is reported. The hybrid structure is consist of 4,4‧-bipyridine [4,4‧-BiPyH2]2 + cations, Cl anions and Au adatoms, provided from substrate by means of the adsorbate-induced surface phase transition of a surface reconstruction. Its surface and bulk structures were characterized by scanning tunneling microscopy (STM), secondary ion mass spectrometry (SIMS), and Raman spectroscopy. STM results reveal growth of the first [4,4‧-BiPyH2]2 + layer on top of the p(√{ 3} ×√{ 3})" separators=", R 30 ° chlorine overlayer formed on the Au(111) surface. These two layers are found to provide a platform for a following three-dimensional growth facilitated by hydrogen bonding, aurophilic and π-π stacking interactions.

  1. Direct Growth Properties of Graphene Layers on Sapphire Substrate by Alcohol-Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Nakamura, Atsushi; Miyasaka, Yuta; Temmyo, Jiro

    2012-04-01

    Few nanometers thick graphene layers were directly grown on a-plane (11bar 20) sapphire substrates by alcohol-chemical vapor deposition (alcohol-CVD) using ethanol as a carbon source and without any catalytic metal on the substrate surface. The growth relationship between the graphene layer and substrate was analyzed using a transmission electron microscope (TEM). The growth rate of graphene layers with different growth temperatures revealed that the Al atom act as a catalyst for synthesizing a graphitic material during the decomposition of ethanol. An optical transmittance and a sheet resistance of the graphene sheet directly grown on sapphire substrate were observed. SiO2/Si and n-6H-SiC substrates were also examined for graphene direct growth to discuss the catalytic behavior of Si atoms compared with Al atoms.

  2. Microstructure and growth kinetics of nickel silicide ultra-thin films synthesized by solid-state reactions

    NASA Astrophysics Data System (ADS)

    Coia, Cedrik

    substrate is not a necessary condition for θ-Ni2Si to form. Activated CMOS dopants and alloying impurities delay the growth of all Ni-rich compounds and eventually suppress the formation of θ-Ni2Si possibly because of a limited solubility. Impurities implanted without subsequent re-crystallization anneals stabilize the compound partly through the presence of an amorphous interface, at least at the beginning of the reaction. A quantitative investigation of the growth kinetics of θ-Ni 2Si on undoped Si(001) reveals two distinct stages which are well described by a model incorporating 2D nucleation-controlled growth at the silicide/Si interface and the non-planar diffusion-controlled penetration of θ-Ni 2Si in the overlying delta-Ni2Si grains. Despite the very good fit of the model to our data, we cannot rule out the possibility that the second stage consists of a 1D diffusion-controlled planar growth during which the composition of the non-stoichiometric θ-Ni2Si changes. In F-doped samples, the second stage corresponds to a 1D diffusion-controlled growth in the absence of delta-Ni2Si and Ni, suggesting a possible compositional change during growth. The results presented in this thesis show that thanks to the use of powerful in situ monitoring techniques we have observed the kinetic competition between different growing compounds in the early stages of their growth. This competition has been predicted by many growth models, yet to our knowledge it has not been observed so far. We also have shown that this competition can lead to the lateral co-existence of several compounds in the same layer whereas most solid-state reaction models assume or require a layer-by-layer co-existence scheme. Finally, we show that the combination of (i) strong interfacial concentration gradients, (ii) structural similarities between delta-Ni 2Si, NiSi and θ-Ni2Si, and (iii) the ability of the latter to sustain vacancies and to nucleate in concentration gradients lead to a very peculiar

  3. Three-layered architecture of the popliteal fascia that acts as a kinetic retinaculum for the hamstring muscles.

    PubMed

    Satoh, Masahiro; Yoshino, Hiroyuki; Fujimura, Akira; Hitomi, Jiro; Isogai, Sumio

    2016-09-01

    When patients report pain in the popliteal fossa upon knee extension, the pain is usually localized in the lower region of the popliteal fossa. However, some patients complain of pain in the upper region of the popliteal fossa as the knee is flexed, which motivated us to examine the role of the popliteal fascia as the retinaculum of the hamstring muscles. Thirty-four thighs from 19 Japanese cadavers were dissected. The popliteal fascia was defined as the single aponeurotic sheet covering the popliteal fossa. We found that the fascia acted as a three-layered retinaculum for the flexor muscles of the thigh and provided a secure route for neurovascular structures to the lower leg in any kinetic position of the knee joint. The superficial layer of the popliteal fascia covering the thigh was strongly interwoven with the epimysium of biceps femoris along its lateral aspect and with that of the semimembranosus along its medial aspect, ensuring that the flexor muscles remained in their correct positions. The intermediate layer arose from the medial side of biceps femoris and merged medially with the superficial layer. The profound layer stretched transversely between the biceps femoris and the semimembranosus. Moreover, we investigated the nerve distribution in the popliteal fascia using Sihler's staining and whole-mount immunostaining for neurofilaments. The three-layered fascia was constantly innervated by branches from the posterior femoral cutaneous or saphenous nerve. The nerves were closely related and distributed to densely packed collagen fibers in the superficial layer as free or encapsulated nerve endings, suggesting that the fascia is involved in pain in the upper region of the popliteal fossa.

  4. Three-dimensional kinetic Monte Carlo simulations of cubic transition metal nitride thin film growth

    NASA Astrophysics Data System (ADS)

    Nita, F.; Mastail, C.; Abadias, G.

    2016-02-01

    A three-dimensional kinetic Monte Carlo (KMC) model has been developed and used to simulate the microstructure and growth morphology of cubic transition metal nitride (TMN) thin films deposited by reactive magnetron sputtering. Results are presented for the case of stoichiometric TiN, chosen as a representative TMN prototype. The model is based on a NaCl-type rigid lattice and includes deposition and diffusion events for both N and Ti species. It is capable of reproducing voids and overhangs, as well as surface faceting. Simulations were carried out assuming a uniform flux of incoming particles approaching the surface at normal incidence. The ballistic deposition model is parametrized with an interaction parameter r0 that mimics the capture distance at which incoming particles may stick on the surface, equivalently to a surface trapping mechanism. Two diffusion models are implemented, based on the different ways to compute the site-dependent activation energy for hopping atoms. The influence of temperature (300-500 K), deposition flux (0.1-100 monolayers/s), and interaction parameter r0 (1.5-6.0 Å) on the obtained growth morphology are presented. Microstructures ranging from highly porous, [001]-oriented straight columns with smooth top surface to rough columns emerging with different crystallographic facets are reproduced, depending on kinetic restrictions, deposited energy (seemingly captured by r0), and shadowing effect. The development of facets is a direct consequence of the diffusion model which includes an intrinsic (minimum energy-based) diffusion anisotropy, although no crystallographic diffusion anisotropy was explicitly taken into account at this stage. The time-dependent morphological evolution is analyzed quantitatively to extract the growth exponent β and roughness exponent α , as indicators of kinetic roughening behavior. For dense TiN films, values of α ≈0.7 and β =0.24 are obtained in good agreement with existing experimental data. At this

  5. Systematic identification of genes involved in divergent skeletal muscle growth rates of broiler and layer chickens

    PubMed Central

    Zheng, Qi; Zhang, Yong; Chen, Ying; Yang, Ning; Wang, Xiu-Jie; Zhu, Dahai

    2009-01-01

    Background The genetic closeness and divergent muscle growth rates of broilers and layers make them great models for myogenesis study. In order to discover the molecular mechanisms determining the divergent muscle growth rates and muscle mass control in different chicken lines, we systematically identified differentially expressed genes between broiler and layer skeletal muscle cells during different developmental stages by microarray hybridization experiment. Results Taken together, 543 differentially expressed genes were identified between broilers and layers across different developmental stages. We found that differential regulation of slow-type muscle gene expression, satellite cell proliferation and differentiation, protein degradation rate and genes in some metabolic pathways could give great contributions to the divergent muscle growth rates of the two chicken lines. Interestingly, the expression profiles of a few differentially expressed genes were positively or negatively correlated with the growth rates of broilers and layers, indicating that those genes may function in regulating muscle growth during development. Conclusion The multiple muscle cell growth regulatory processes identified by our study implied that complicated molecular networks involved in the regulation of chicken muscle growth. These findings will not only offer genetic information for identifying candidate genes for chicken breeding, but also provide new clues for deciphering mechanisms underlining muscle development in vertebrates. PMID:19232135

  6. Grain Growth Kinetics of BaTiO3 Nanocrystals During Calcining Process

    NASA Astrophysics Data System (ADS)

    Song, Xiao-lan; He, Xi; Yang, Hai-ping; Qu, Yi-xin; Qiu, Guan-zhou

    2008-06-01

    BaTiO3 nanocrystals were synthesized by sol-gel method using barium acetate (Ba(CH3COO)2) and tetra-butyl titanate (Ti(OC4H9)4) as raw materials. Xerogel precursors and products were characterized by means of thermogravimetric/differential scanning calorimetry (TG/DSC), X-ray diffraction (XRD) and transmission electron microscope (TEM). The influence of the calcination temperature and duration on the lattice constant, the lattice distortion, and the grain size of BaTiO3 nanocrystals was discussed based on the XRD results. The grain growth kinetics of BaTiO3 nanocrystals during the calcination process were simulated with a conventional grain growth model which only takes into account diffusion, and an isothermal model proposed by Qu and Song, which takes into account both diffusion and surface reactions. Using these models, the pre-exponential factor and the activation energy of the rate constant were estimated. The simulation results indicate that the isothermal model is superior to the conventional one in describing the grain growth process, implying that both diffusion and surface reactions play important roles in the grain growth process.

  7. Process development for hydrogen production with Chlamydomonas reinhardtii based on growth and product formation kinetics.

    PubMed

    Lehr, Florian; Morweiser, Michael; Rosello Sastre, Rosa; Kruse, Olaf; Posten, Clemens

    2012-11-30

    Certain strains of microalgae are long known to produce hydrogen under anaerobic conditions. In Chlamydomonas reinhardtii the oxygen-sensitive hydrogenase enzyme recombines electrons from the chloroplast electron transport chain with protons to form molecular hydrogen directly inside the chloroplast. A sustained hydrogen production can be obtained under low sulfur conditions in C. reinhardtii, reducing the net oxygen evolution by reducing the photosystem II activity and thereby overcoming the inhibition of the hydrogenases. The development of specially adapted hydrogen production strains led to higher yields and optimized biological process preconditions. So far sustainable hydrogen production required a complete exchange of the growth medium to establish sulfur-deprived conditions after biomass growth. In this work we demonstrate the transition from the biomass growth phase to the hydrogen production phase in a single batch culture only by exact dosage of sulfur. This eliminates the elaborate and energy intensive solid-liquid separation step and establishes a process strategy to proceed further versus large scale production. This strategy has been applied to determine light dependent biomass growth and hydrogen production kinetics to assess the potential of H₂ production with C. reinhardtii as a basis for scale up and further process optimization.

  8. Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass.

    PubMed

    Kumar, Kanhaiya; Dasgupta, Chitralekha Nag; Das, Debabrata

    2014-09-01

    The present study investigates the effects of different physico-chemical parameters for the growth of Chlorella sorokiniana and subsequently determination of nutritional values of its biomass. Most suitable temperature, light intensity, pH, and acetic acid concentration were 30°C, 100 μmol m(-2)s(-1), pH 7.5, and 34.8mM, respectively for the growth of this microorganism. Arrhenius growth activation energy, Ea was calculated as 7.08 kJ mol(-1). Monod kinetics constants: maximum specific growth rate (μ max) and substrate (acetic acid) affinity coefficient (Ks) were determined as 0.1 ± 0.01 h(-1) and 76 ± 8 mg L(-1), respectively. Stoichiometric analysis revealed the capture of 1.83 g CO2 and release of 1.9 g O2 for 1g algal biomass synthesis. Algal biomass of C. sorokiniana was found rich in protein and several important minerals such as Mg, Ca, and Fe. Astaxanthin and β-carotene were extracted and quantified using high performance liquid chromatography.

  9. Process development for hydrogen production with Chlamydomonas reinhardtii based on growth and product formation kinetics.

    PubMed

    Lehr, Florian; Morweiser, Michael; Rosello Sastre, Rosa; Kruse, Olaf; Posten, Clemens

    2012-11-30

    Certain strains of microalgae are long known to produce hydrogen under anaerobic conditions. In Chlamydomonas reinhardtii the oxygen-sensitive hydrogenase enzyme recombines electrons from the chloroplast electron transport chain with protons to form molecular hydrogen directly inside the chloroplast. A sustained hydrogen production can be obtained under low sulfur conditions in C. reinhardtii, reducing the net oxygen evolution by reducing the photosystem II activity and thereby overcoming the inhibition of the hydrogenases. The development of specially adapted hydrogen production strains led to higher yields and optimized biological process preconditions. So far sustainable hydrogen production required a complete exchange of the growth medium to establish sulfur-deprived conditions after biomass growth. In this work we demonstrate the transition from the biomass growth phase to the hydrogen production phase in a single batch culture only by exact dosage of sulfur. This eliminates the elaborate and energy intensive solid-liquid separation step and establishes a process strategy to proceed further versus large scale production. This strategy has been applied to determine light dependent biomass growth and hydrogen production kinetics to assess the potential of H₂ production with C. reinhardtii as a basis for scale up and further process optimization. PMID:22750091

  10. Revealing the surface and bulk regimes of isothermal graphene growth on Ni with in situ kinetic measurements and modeling

    SciTech Connect

    Puretzky, Alexander A; Merkulov, Igor A; Rouleau, Christopher M; Eres, Gyula; Geohegan, David B

    2014-01-01

    In situ optical diagnostics are used to reveal the isothermal nucleation and growth mechanisms of graphene on Ni across a wide temperature range (560 C < T < 840 C) by chemical vapor deposition from single, sub-second pulses of acetylene. An abrupt, two-orders of magnitude change in growth times (~ 100s to 1s) is revealed at T = 680 C. Below and above this temperature, similar sigmoidal kinetics are measured and attributed to autocatalytic growth reactions but by two different mechanisms, surface assembly and dissolution/precipitation, respectively. These data are used to develop a simple and general kinetic model for graphene growth that includes the nucleation phase and includes the effects of carbon solubility in metals, describes delayed nucleation, and allows the interpretation of the competition between surface and bulk growth modes. The sharp transition in growth kinetics at T = 680 C is explained by a change in defect site density required for nucleation due to a transition in the carbon-induced mobility of the Ni surface. The easily-implemented optical reflectivity diagnostics and the simple kinetic model described here allow a pathway to optimize the growth of graphene on metals with arbitrary carbon solubility.

  11. Influence of atomic layer deposition valve temperature on ZrN plasma enhanced atomic layer deposition growth

    SciTech Connect

    Muneshwar, Triratna Cadien, Ken

    2015-11-15

    Atomic layer deposition (ALD) relies on a sequence of self-limiting surface reactions for thin film growth. The effect of non-ALD side reactions, from insufficient purging between pulses and from precursor self-decomposition, on film growth is well known. In this article, precursor condensation within an ALD valve is described, and the effect of the continuous precursor source from condensate evaporation on ALD growth is discussed. The influence of the ALD valve temperature on growth and electrical resistivity of ZrN plasma enhanced ALD (PEALD) films is reported. Increasing ALD valve temperature from 75 to 95 °C, with other process parameters being identical, decreased both the growth per cycle and electrical resistivity (ρ) of ZrN PEALD films from 0.10 to 0.07 nm/cycle and from 560 to 350 μΩ cm, respectively. Our results show that the non-ALD growth resulting from condensate accumulation is eliminated at valve temperatures close to the pressure corrected boiling point of precursor.

  12. Kinetics-controlled growth of bimetallic RhAg on Au nanorods and their catalytic properties

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Guo, Xia; Xie, Fang; Zhu, Rui; Zhao, Qing; Yang, Jian

    2014-03-01

    Controlled growth of hybrid metallic nanocomposites for a desirable structure in a combination of selected components is highly important for their applications. Herein, the controllable growth of RhAg on the gold nanorods is achieved from the dumbbell-like RhAg-tipped nanorods to the brushy RhAg-coated nanorods, or the rod-like Au@Ag-Rh nanorattles. These different growth modes of RhAg on the gold nanorods are correlated with the reducing kinetics of RhCl3 and AgNO3. In view of the promising catalytic properties of Rh, the gold nanorods modified by RhAg in different structures are examined as catalysts for the oxidation of o-phenylenediamine. It is found that brushy RhAg-coated nanorods present a higher catalytic efficiency than dumbbell-like RhAg-tipped nanorods and rod-like Au@Ag-Rh nanorattles. These results would benefit the overgrowth control on the one-dimensional metallic nanorods and the rational design of new generation heterogeneous catalysts and optical devices.Controlled growth of hybrid metallic nanocomposites for a desirable structure in a combination of selected components is highly important for their applications. Herein, the controllable growth of RhAg on the gold nanorods is achieved from the dumbbell-like RhAg-tipped nanorods to the brushy RhAg-coated nanorods, or the rod-like Au@Ag-Rh nanorattles. These different growth modes of RhAg on the gold nanorods are correlated with the reducing kinetics of RhCl3 and AgNO3. In view of the promising catalytic properties of Rh, the gold nanorods modified by RhAg in different structures are examined as catalysts for the oxidation of o-phenylenediamine. It is found that brushy RhAg-coated nanorods present a higher catalytic efficiency than dumbbell-like RhAg-tipped nanorods and rod-like Au@Ag-Rh nanorattles. These results would benefit the overgrowth control on the one-dimensional metallic nanorods and the rational design of new generation heterogeneous catalysts and optical devices. Electronic

  13. Suppression in droplet growth kinetics by the addition of organics to sulfate particles

    NASA Astrophysics Data System (ADS)

    Wong, Jenny P. S.; Liggio, John; Li, Shao-Meng; Nenes, Athanasios; Abbatt, Jonathan P. D.

    2014-11-01

    Aerosol-cloud interactions are affected by the rate at which water vapor condenses onto particles during cloud droplet growth. Changes in droplet growth rates can impact cloud droplet number and size distribution. The current study investigated droplet growth kinetics of acidic and neutral sulfate particles which contained various amounts and types of organic compounds, from model compounds (carbonyls) to complex mixtures (α-pinene secondary organic aerosol and diesel engine exhaust). In most cases, the formed droplet size distributions were shifted to smaller sizes relative to control experiments (pure sulfate particles), due to suppression in droplet growth rates in the cloud condensation nuclei counter. The shift to smaller droplets correlated with increasing amounts of organic material, with the largest effect observed for acidic seed particles at low relative humidity. For all organics incorporated onto acidic particles, formation of high molecular weight compounds was observed, probably by acid-catalyzed Aldol condensation reactions in the case of carbonyls. To test the reversibility of this process, carbonyl experiments were conducted with acidic particles exposed to higher relative humidity. High molecular weight compounds were not measured in this case and no shift in droplet sizes was observed, suggesting that high molecular weight compounds are the species affecting the rate of water uptake. While these results provide laboratory evidence that organic compounds can slow droplet growth rates, the modeled mass accommodation coefficient of water on these particles (α > 0.1) indicates that this effect is unlikely to significantly affect cloud properties, consistent with infrequent field observations of slower droplet growth rates.

  14. Prognostic markers and tumour growth kinetics in melanoma patients progressing on vemurafenib.

    PubMed

    Seifert, Heike; Fisher, Rosalie; Martin-Liberal, Juan; Edmonds, Kim; Hughes, Peta; Khabra, Komel; Gore, Martin; Larkin, James

    2016-04-01

    The BRAF inhibitor vemurafenib is an effective drug in patients with BRAF mutant metastatic melanoma, but resistance occurs after a median of 6 months. The anti-CTLA4-antibody, ipilimumab, is a standard first-line and second-line treatment option in Europe, with a median time to response of 2-3 months, but some patients show rapid clinical deterioration before that. The aim of this analysis was to identify prognostic markers for survival after failure of vemurafenib treatment to identify patients who have a sufficient life expectancy to respond to new immunotherapy treatments. We retrospectively analysed 101 consecutive unselected patients treated with vemurafenib for metastatic melanoma at a single institution. The association between clinical parameters and death within 3 months after cessation of vemurafenib (n=69) was assessed by binary logistic and Cox regression. Of the patients, 45% died within 3 months of progression on vemurafenib. Elevated baseline serum lactate dehydrogenase, absence of normalization of serum lactate dehydrogenase on vemurafenib therapy, performance status of at least 2 at progression and time from primary tumour to metastatic disease less than 5 years were identified as poor prognostic markers. In an exploratory tumour growth kinetics analysis (n=16), we found that following cessation of vemurafenib, approximately a third each showed a stable, decelerated or accelerated rate of tumour growth. Patients with these poor prognostic markers are unlikely to have sufficient life expectancy to complete ipilimumab treatment after failure with vemurafenib. Consideration needs to be given to the elective use of immunotherapy before patients become resistant to vemurafenib. This requires prospective randomized evaluation. Our tumour growth kinetics analysis requires confirmation; however, it may suggest that intermittent vemurafenib treatment should be investigated in clinical trials.

  15. Prognostic markers and tumour growth kinetics in melanoma patients progressing on vemurafenib.

    PubMed

    Seifert, Heike; Fisher, Rosalie; Martin-Liberal, Juan; Edmonds, Kim; Hughes, Peta; Khabra, Komel; Gore, Martin; Larkin, James

    2016-04-01

    The BRAF inhibitor vemurafenib is an effective drug in patients with BRAF mutant metastatic melanoma, but resistance occurs after a median of 6 months. The anti-CTLA4-antibody, ipilimumab, is a standard first-line and second-line treatment option in Europe, with a median time to response of 2-3 months, but some patients show rapid clinical deterioration before that. The aim of this analysis was to identify prognostic markers for survival after failure of vemurafenib treatment to identify patients who have a sufficient life expectancy to respond to new immunotherapy treatments. We retrospectively analysed 101 consecutive unselected patients treated with vemurafenib for metastatic melanoma at a single institution. The association between clinical parameters and death within 3 months after cessation of vemurafenib (n=69) was assessed by binary logistic and Cox regression. Of the patients, 45% died within 3 months of progression on vemurafenib. Elevated baseline serum lactate dehydrogenase, absence of normalization of serum lactate dehydrogenase on vemurafenib therapy, performance status of at least 2 at progression and time from primary tumour to metastatic disease less than 5 years were identified as poor prognostic markers. In an exploratory tumour growth kinetics analysis (n=16), we found that following cessation of vemurafenib, approximately a third each showed a stable, decelerated or accelerated rate of tumour growth. Patients with these poor prognostic markers are unlikely to have sufficient life expectancy to complete ipilimumab treatment after failure with vemurafenib. Consideration needs to be given to the elective use of immunotherapy before patients become resistant to vemurafenib. This requires prospective randomized evaluation. Our tumour growth kinetics analysis requires confirmation; however, it may suggest that intermittent vemurafenib treatment should be investigated in clinical trials. PMID:26684061

  16. Observational Constraints on Modeling Growth and Evaporation Kinetics of Isoprene SOA

    NASA Astrophysics Data System (ADS)

    Zaveri, R. A.; Shilling, J. E.; Zelenyuk, A.; Liu, J.; Wilson, J. M.; Laskin, A.; Wang, B.; Fast, J. D.; Easter, R. C.; Wang, J.; Kuang, C.; Thornton, J. A.; Setyan, A.; Zhang, Q.; Onasch, T. B.; Worsnop, D. R.

    2014-12-01

    Isoprene is thought to be a major contributor to the global secondary organic aerosol (SOA) budget, and therefore has the potential to exert a significant influence on earth's climate via aerosol direct and indirect radiative effects. Both aerosol optical and cloud condensation nuclei properties are quite sensitive to aerosol number size distribution, as opposed to the total aerosol mass concentration. Recent studies suggest that SOA particles can be highly viscous, which can affect the kinetics of SOA partitioning and size distribution evolution when the condensing organic vapors are semi-volatile. In this study, we examine the growth kinetics of SOA formed from isoprene photooxidation in the presence of pre-existing Aitken and accumulation mode aerosols in: (a) the ambient atmosphere during the CARES field campaign, and (b) the environmental chamber at PNNL. Each growth episode is analyzed and interpreted with the updated MOSAIC aerosol box model, which performs kinetic gas-particle partitioning of SOA and takes into account diffusion and chemical reaction within the particle phase. The model is initialized with the observed aerosol size distribution and composition at the beginning of the experiment, and the total amount of SOA formed in the model at any given time is constrained by the observed total amount of SOA formed. The variable model parameters include the number of condensing organic species, their gas-phase formation rates, their effective volatilities, and their bulk diffusivities in the Aitken and accumulation modes. The objective of the constrained modeling exercise is then to determine which model configuration is able to best reproduce the observed size distribution evolution, thus providing valuable insights into the possible mechanism of SOA formation. We also examine the evaporation kinetics of size-selected particles formed in the environmental chamber to provide additional constraints on the effective volatility and bulk diffusivity of the

  17. Impact of physicochemical parameters on in vitro assembly and disassembly kinetics of recombinant triple-layered rotavirus-like particles.

    PubMed

    Mellado, Maria Candida M; Mena, Jimmy A; Lopes, António; Ramírez, Octavio T; Carrondo, Manuel J T; Palomares, Laura A; Alves, Paula M

    2009-11-01

    Virus-like particles constitute potentially relevant vaccine candidates. Nevertheless, their behavior in vitro and assembly process needs to be understood in order to improve their yield and quality. In this study we aimed at addressing these issues and for that purpose triple- and double-layered rotavirus-like particles (TLP 2/6/7 and DLP 2/6, respectively) size and zeta potential were measured using dynamic light scattering at different physicochemical conditions, namely pH, ionic strength, and temperature. Both TLP and DLP were stable within a pH range of 3-7 and at 5-25 degrees C. Aggregation occurred at 35-45 degrees C and their disassembly became evident at 65 degrees C. The isoelectric points of TLP and DLP were 3.0 and 3.8, respectively. In vitro kinetics of TLP disassembly was monitored. Ionic strength, temperature, and the chelating agent employed determined disassembly kinetics. Glycerol (10%) stabilized TLP by preventing its disassembly. Disassembled TLP was able to reassemble by dialysis at high calcium conditions. VP7 monomers were added to DLP in the presence of calcium to follow in vitro TLP assembly kinetics; its assembly rate being mostly affected by pH. Finally, DLP and TLP were found to coexist under certain conditions as determined from all reaction products analyzed by capillary electrophoresis. Overall, these results contribute to the design of new strategies for the improvement of TLP yield and quality by reducing the VP7 detachment from TLP.

  18. Effect of damage rate on the kinetics of void nucleation and growth by phase field modeling for materials under irradiations

    NASA Astrophysics Data System (ADS)

    Ding, Xuejian; Zhao, Jiejiang; Huang, Hao; Ding, Shurong; Huo, Yongzhong

    2016-11-01

    The void formation and growth in materials under irradiations is studied by a modified Cahn-Hilliard equation coupled with the explicit nucleation algorithm. Through the numerical simulations, the stages of incubation, nucleation, growth and coalescence of the irradiation induced voids are clearly observed with a faster kinetics for stronger damage rate. There seems to exist a critical damage rate g˙vc at which the kinetics speeds up significantly. For smaller damage rates, very few voids can be nucleated. But the nucleated voids can grow rather large with its average radius growing as Rv ∝t1/d. For stronger irradiations, much more voids could be nucleated, but they cannot grow very large before coarsening. The growth follows a much faster kinetics as Rv ∝t2/d. The critical damage rate g˙vc should be determined by the competition of the rate of diffusion and the rate of vacancy production due to irradiations.

  19. Phosphate-intercalated Ca-Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate

    SciTech Connect

    Woo, Myong A.; Woo Kim, Tae; Paek, Mi-Jeong; Ha, Hyung-Wook; Choy, Jin-Ho; Hwang, Seong-Ju

    2011-01-15

    The nitrate-form of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) was synthesized via co-precipitation method, and its phosphate-intercalates were prepared by ion-exchange reaction. According to X-ray diffraction analysis, the Ca-Fe-LDH-NO{sub 3}{sup -} compound and its H{sub 2}PO{sub 4}{sup -}-intercalate showed hexagonal layered structures, whereas the ion-exchange reaction with HPO{sub 4}{sup 2-} caused a frustration of the layer ordering of LDH. Fe K-edge X-ray absorption spectroscopy clearly demonstrated that the Ca-Fe-LDH lattice with trivalent iron ions was well-maintained after the ion-exchange with HPO{sub 4}{sup 2-} and H{sub 2}PO{sub 4}{sup -}. Under acidic conditions, phosphate ions were slowly released from the Ca-Fe-LDH lattice and the simultaneous release of hydroxide caused the neutralization of acidic media. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. This study strongly suggested that Ca-Fe-LDH is applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil. -- Graphical abstract: We synthesized phosphate-intercalated Ca-Fe-LDH materials that can act as bifunctional inorganic vectors for the slow release of phosphate fertilizer and also the neutralization of acid soil. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. Display Omitted Research Highlights: {yields} The phosphate forms of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) were synthesized via co-precipitation method. The crystal structure, bonding character, and release kinetics of phosphate of the phosphate-intercalates were investigated. These Ca-Fe-LDH materials are applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil.

  20. A diffusion-controlled kinetic model for growth of Au-catalyzed ZnO nanorods: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Hejazi, S. R.; Madaah Hosseini, H. R.

    2007-11-01

    A kinetic model for growth of ZnO nanorods via vapor-liquid-solid (VLS) mechanism based on the bulk diffusion of Zn atoms through the Au-Zn droplet is presented. The dependences of the growth rate on size are given quantitatively. A general expression for the growth rate of nanorods during VLS process is derived. The derived formula shows the dependences of growth rate on lateral size of nanorods, concentration and supersaturation of Zn atoms in the liquid droplet. Based on the presented kinetic model the smaller nanorods have faster growth rate. Au-catalyzed ZnO nanorods are grown by chemical vapor transport and condensation (CVTC) process experimentally. Theoretical and experimental rate/radius curves are compared to each other. Theoretical predictions are in good agreement with the experimental results.

  1. Effect of buffer layer growth temperature on epitaxial GaN films deposited by magnetron sputtering

    SciTech Connect

    Mohanta, P.; Singh, D.; Kumar, R.; Ganguli, T.; Srinivasa, R. S.; Major, S. S.

    2012-06-05

    Epitaxial GaN films were deposited by reactive sputtering of a GaAs target in 100 % nitrogen at 700 deg. C on ZnO buffer layers grown at different substrate temperatures over sapphire substrates. High resolution X-ray diffraction measurements and the corresponding analysis show that the growth temperature of buffer layers significantly affects the micro-structural parameters of GaN epilayer, such as lateral coherence length, tilt and twist, while the vertical coherence length remains unaffected. The optimum substrate temperature for buffer layer growth has been found to be 300 deg. C. High epitaxial quality GaN film grown on such a buffer layer exhibited micro strain of 1.8x10{sup -4} along with screw and edge type dislocation densities of 7.87x10{sup 9} and 1.16x10{sup 11}, respectively.

  2. Low-temperature growth of silicon epitaxial layers codoped with erbium and oxygen atoms

    SciTech Connect

    Shengurov, D. V.; Chalkov, V. Yu.; Denisov, S. A.; Shengurov, V. G.; Stepikhova, M. V.; Drozdov, M. N.; Krasilnik, Z. F.

    2013-03-15

    The fabrication technology and properties of light-emitting Si structures codoped with erbium and oxygen are reported. The layers are deposited onto (100) Si by molecular beam epitaxy (MBE) using an Er-doped silicon sublimation source. The partial pressure of the oxygen-containing gases in the growth chamber of the MBE facility before layer growth is lower than 5 Multiplication-Sign 10{sup -10} Torr. The oxygen and erbium concentrations in the Si layers grown at 450 Degree-Sign C is {approx}1 Multiplication-Sign 10{sup 19} and 10{sup 18} cm{sup -3}, respectively. The silicon epitaxial layers codoped with erbium and oxygen have high crystal quality and yield effective photoluminescence and electroluminescence signals with the dominant optically active Er-1 center forming upon postgrowth annealing at a temperature of 800 Degree-Sign C.

  3. Influence of Nitrogen Content on Thermal Stability and Grain Growth Kinetics of Cryomilled Al Nanocomposites

    NASA Astrophysics Data System (ADS)

    Hashemi-Sadraei, L.; Mousavi, S. E.; Vogt, R.; Li, Y.; Zhang, Z.; Lavernia, E. J.; Schoenung, J. M.

    2012-02-01

    Nanocomposite powders of Al 5083/B4C were produced via cryogenic milling (cryomilling) of boron carbide (B4C) particles in Al 5083 matrix. The effect of milling time (up to 24 hours), and consequential nitrogen content, on grain growth in the nanocrystalline Al 5083 matrix was investigated. Thermal stability was studied at temperatures as high as ~0.96 T m and annealing times of up to 24 hours. Average grain sizes increased with time and temperature and tended to stabilize after longer annealing times, regardless of nitrogen content. Higher thermal stability was observed in samples with higher nitrogen content, with the average grain size remaining in the range of 30 nm, even after exposure to the most extreme annealing conditions. This behavior was attributed to the retarding effect that nitrides have on grain growth, as a result of pinning grain boundaries. Kinetic studies based on the Burke equation showed two thermally activated grain growth regimes—a low-temperature regime with an activation energy of 15 kJ/mol and a high-temperature regime with an activation energy of 58 kJ/mol.

  4. Growth of MoS2 Layers by Two-Step Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Sheu, An-Di

    Monolayer molybdenum disulfide (MoS2), a two-dimensional (2D) crystal with a direct bandgap, is a promising candidate for nano electronic devices, energy storage, and photocatalysts. People are researching for large-area single-layer MoS2 growth. In my work, I investigated the growth of monolayer MoS2 on SiO2/Si substrate by chemical vapor deposition (CVD). Using sulfur and molybdenum trioxide (MoO3) as precursors to grow 2D MoS2 in the tube furnace CVD system. As part of my thesis, I carried out several growth experiments while varying the deposition parameters. The as-grown samples are characterized using optical, scanning electron, and atomic force microscopes and Raman spectroscopy. I have also developed a two-step approach to grow MoS2 layers. This new approach has great potential to grow large-area single-layer MoS2.

  5. Growth and micro structural studies on Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) buffer layers

    NASA Technical Reports Server (NTRS)

    Srinivas, S.; Pinto, R.; Pai, S. P.; Dsousa, D. P.; Apte, P. R.; Kumar, D.; Purandare, S. C.; Bhatnagar, A. K.

    1995-01-01

    Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si (100), Sapphire and LaAlO3 (100) substrates. The effect of substrate temperatures up to 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa2Cu3O7-x (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.

  6. Kinetics of subdiffusive growth of new phase particles in supersaturated solid solutions

    SciTech Connect

    Svetukhin, V. V. Sibatov, R. T.

    2015-04-15

    The kinetics of the subdiffusion-limited growth of spherical precipitates is studied. The process is described by the equation of anomalous diffusion with a fractional derivative with respect to time. It is shown that a decrease in the concentration of monomers is described by the law exp(−kt{sup 3α/2}) at the initial stage and the power law t{sup −α} at large times, where 0 < α ≤ 1 is the dispersion parameter coinciding with the order of time derivative in the subdiffusion equation. The time dependence of the size of a spherical precipitate is obtained. The results generalize the Ham diffusion theory and are in agreement with the Monte Carlo simulation data.

  7. Solubility, phase transition, kinetic ripening and growth rates of porcine pancreatic α-amylase isoenzymes

    NASA Astrophysics Data System (ADS)

    Boistelle, Roland; Astier, Jean Pierre; Marchis-Mouren, Guy; Desseaux, Véronique; Haser, Richard

    1992-09-01

    Two polymorphic modifications, A and B, of porcine pancreatic α-amylase were grown between 4 and 30°C. A and B crystals are made up by two isoenzymes so that four crystal varieties (AI, AII, BI, BII) exist. A and B are easily distinguished due to their typical crystal habits but there is no difference between AI and AII or BI and BII respectively at least as concerns their unit cells, crystal habits and solubilities for instance. On the other hand, the growth rates are somewhat different, even if the overall rate determining step is volume diffusion. The transition temperature between A and B polymorphs is 18°C, A being stable above this temperature. A and B can undergo a phase transition by slightly changing the temperature around the transition point. Kinetic ripening experiments show that ripening can be used for growing larger crystals at the expenses of smaller ones.

  8. Controlling single and few-layer graphene crystals growth in a solid carbon source based chemical vapor deposition

    SciTech Connect

    Papon, Remi; Sharma, Subash; Shinde, Sachin M.; Vishwakarma, Riteshkumar; Tanemura, Masaki; Kalita, Golap

    2014-09-29

    Here, we reveal the growth process of single and few-layer graphene crystals in the solid carbon source based chemical vapor deposition (CVD) technique. Nucleation and growth of graphene crystals on a polycrystalline Cu foil are significantly affected by the injection of carbon atoms with pyrolysis rate of the carbon source. We observe micron length ribbons like growth front as well as saturated growth edges of graphene crystals depending on growth conditions. Controlling the pyrolysis rate of carbon source, monolayer and few-layer crystals and corresponding continuous films are obtained. In a controlled process, we observed growth of large monolayer graphene crystals, which interconnect and merge together to form a continuous film. On the other hand, adlayer growth is observed with an increased pyrolysis rate, resulting few-layer graphene crystal structure and merged continuous film. The understanding of monolayer and few-layer crystals growth in the developed CVD process can be significant to grow graphene with controlled layer numbers.

  9. Kinetics of low pressure CVD growth of SiO2 on InP and Si

    NASA Technical Reports Server (NTRS)

    Iyer, R.; Lile, D. L.

    1988-01-01

    The kinetics of low pressure CVD growth of SiO2 from SiH4 and O2 has been investigated for the case of an indirect (remote) plasma process. Homogeneous (gas phase) and heterogeneous operating ranges have been experimentally identified. The process was shown to be consistent within the heterogeneous surface-reaction dominated range of operation. A kinetic rate equation is given for growth at 14 W RF power input and 400 mtorr total pressure on both InP and Si substrates. The process exhibits an activation energy of 8.4 + or - 0.6 kcal/mol.

  10. Enhanced Generic Phase-field Model of Irradiation Materials: Fission Gas Bubble Growth Kinetics in Polycrystalline UO2

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2012-05-30

    Experiments show that inter-granular and intra-granular gas bubbles have different growth kinetics which results in heterogeneous gas bubble microstructures in irradiated nuclear fuels. A science-based model predicting the heterogeneous microstructure evolution kinetics is desired, which enables one to study the effect of thermodynamic and kinetic properties of the system on gas bubble microstructure evolution kinetics and morphology, improve the understanding of the formation mechanisms of heterogeneous gas bubble microstructure, and provide the microstructure to macroscale approaches to study their impact on thermo-mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking. In our previous report 'Mesoscale Benchmark Demonstration, Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing', we developed a phase-field model to simulate the intra-granular gas bubble evolution in a single crystal during post-irradiation thermal annealing. In this work, we enhanced the model by incorporating thermodynamic and kinetic properties at grain boundaries, which can be obtained from atomistic simulations, to simulate fission gas bubble growth kinetics in polycrystalline UO2 fuels. The model takes into account of gas atom and vacancy diffusion, vacancy trapping and emission at defects, gas atom absorption and resolution at gas bubbles, internal pressure in gas bubbles, elastic interaction between defects and gas bubbles, and the difference of thermodynamic and kinetic properties in matrix and grain boundaries. We applied the model to simulate gas atom segregation at grain boundaries and the effect of interfacial energy and gas mobility on gas bubble morphology and growth kinetics in a bi-crystal UO2 during post-irradiation thermal annealing. The preliminary results demonstrate that the model can produce the equilibrium thermodynamic properties and the morphology of gas bubbles at

  11. Tissue binding affects the kinetics of theophylline diffusion through the stratum corneum barrier layer of skin.

    PubMed

    Frasch, H Frederick; Barbero, Ana M; Hettick, Justin M; Nitsche, Johannes M

    2011-07-01

    New data sets on both (i) equilibrium theophylline (TH) partitioning/binding in stratum corneum and (ii) transient TH diffusion through human epidermis are explained by an extended partition-diffusion model with reversible binding. Data conform to a linear binding isotherm within the tested concentration range (0-2000 μg/mL) with an equilibrium ratio of bound-to-free solute of approximately 1.4. The permeability coefficient for TH is 4.86 × 10(-5) cm/h, and the lag time is 20.1 h. Binding occurs as a slow process, significantly affecting the kinetics of dermal penetration.

  12. Comprehensive study of Al-induced layer-exchange growth for orientation-controlled Si crystals on SiO{sub 2} substrates

    SciTech Connect

    Kurosawa, Masashi; Sadoh, Taizoh; Miyao, Masanobu

    2014-11-07

    Orientation-controlled crystalline Si films on insulating substrates are strongly required to achieve high-performance thin-film devices for next-generation electronics. We have comprehensively investigated the layer-exchange kinetics of Al-induced crystallization (AIC) in stacked structures, i.e., amorphous-Si/Al-oxide/Al/SiO{sub 2}-substrates, as a function of the air-exposure time of Al surfaces (t{sub air}: 0–24 h) to form Al-oxide interface-layers, the thickness of Al and Si layers (d{sub Al,} d{sub Si}: 50–200 nm), the annealing temperature (450–500 °C), and the annealing time (0–50 h). It has been clarified that longer t{sub air} (>60 min) and/or thinner d{sub Al} and d{sub Si} (<50 nm) lead to the (111) oriented growth; in contrast, shorter t{sub air} (<60 min) and/or thicker d{sub Al} and d{sub Si} (>100 nm) lead to the (100) oriented growth. No correlation between the annealing temperature and the crystal orientation is observed. Detailed analysis reveals that the layer-exchange kinetics are dominated by “supply-limited” processing, i.e., diffusion of Si atoms into Al layers through Al-oxide layer. Based on the growth rate dependent Si concentration profiles in Al layers, and the free-energy of Si at Al-oxide/Al or Al/SiO{sub 2} interfaces, a comprehensive model for layer-exchange growth is proposed. This well explains the experimental results of not only Si-AIC but also another material system such as gold-induced crystallization of Ge. In this way, a growth technique achieving the orientation-controlled Si crystals on insulating substrates is established from both technological and scientific points of view.

  13. Crossflow effects on the growth rate of inviscid Goertler vortices in a hypersonic boundary layer

    NASA Technical Reports Server (NTRS)

    Fu, Yibin; Hall, Philip

    1992-01-01

    The effects of crossflow on the growth rate of inviscid Goertler vortices in a hypersonic boundary layer with pressure gradient are studied. Attention is focused on the inviscid mode trapped in the temperature adjustment layer; this mode has greater growth rate than any other mode. The eigenvalue problem which governs the relationship between the growth rate, the crossflow amplitude, and the wavenumber is solved numerically, and the results are then used to clarify the effects of crossflow on the growth rate of inviscid Goertler vortices. It is shown that crossflow effects on Goertler vortices are fundamentally different for incompressible and hypersonic flows. The neutral mode eigenvalue problem is found to have an exact solution, and as a by-product, we have also found the exact solution to a neutral mode eigenvalue problem which was formulated, but unsolved before, by Bassom and Hall (1991).

  14. Synergistic effects of the Lactobacillus acidophilus surface layer and nisin on bacterial growth.

    PubMed

    Prado-Acosta, Mariano; Ruzal, Sandra M; Allievi, Mariana C; Palomino, María Mercedes; Sanchez Rivas, Carmen

    2010-02-01

    We have previously described a murein hydrolase activity for the surface layer (S-layer) of Lactobacillus acidophilus ATCC 4356. Here we show that, in combination with nisin, this S-layer acts synergistically to inhibit the growth of pathogenic Gram-negative Salmonella enterica and potential pathogenic Gram-positive bacteria, Staphylococcus aureus and Bacillus cereus. In addition, bacteriolytic effects were observed for the Gram-positive species tested. We postulate that the S-layer enhances the access of nisin into the cell membrane by enabling it to cross the cell wall, while nisin provides the sudden ion-nonspecific dissipation of the proton motive force required to enhance the S-layer murein hydrolase activity. PMID:19948852

  15. Non-classical nuclei and growth kinetics of Cr precipitates in FeCr alloys during ageing

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Zhang, Lei; Sun, Xin

    2014-01-10

    In this manuscript, we quantitatively calculated the thermodynamic properties of critical nuclei of Cr precipitates in FeCr alloys. The concentration profiles of the critical nuclei and nucleation energy barriers were predicted by the constrained shrinking dimer dynamics (CSDD) method. It is found that Cr concentration distribution in the critical nuclei strongly depend on the overall Cr concentration as well as temperature. The critical nuclei are non-classical because the concentration in the nuclei is smaller than the thermodynamic equilibrium value. These results are in agreement with atomic probe observation. The growth kinetics of both classical and non-classical nuclei was investigated by the phase field approach. The simulations of critical nucleus evolution showed a number of interesting phenomena: 1) a critical classical nucleus first shrinks toward its non-classical nucleus and then grows; 2) a non-classical nucleus has much slower growth kinetics at its earlier growth stage compared to the diffusion-controlled growth kinetics. 3) a critical classical nucleus grows faster at the earlier growth stage than the non-classical nucleus. All of these results demonstrate that it is critical to introduce the correct critical nuclei in order to correctly capture the kinetics of precipitation.

  16. Image analysis and green tea color change kinetics during thin-layer drying.

    PubMed

    Shahabi, Mohammad; Rafiee, Shahin; Mohtasebi, Seyed Saeid; Hosseinpour, Soleiman

    2014-09-01

    This study was conducted to investigate the effect of air temperature and air flow velocity on kinetics of color parameter changes during hot-air drying of green tea, to obtain the best model for hot-air drying of green tea, to apply a computer vision system and to study the color changes during drying. In the proposed computer vision system system, at first RGB values of the images were converted into XYZ values and then to Commission International d'Eclairage L*a*b* color coordinates. The obtained color parameters of L*, a* and b* were calibrated with Hunter-Lab colorimeter. These values were also used for calculation of the color difference, chroma, hue angle and browning index. The values of L* and b* decreased, while the values of a* and color difference (ΔE*ab ) increased during hot-air drying. Drying data were fitted to three kinetic models. Zero, first-order and fractional conversion models were utilized to describe the color changes of green tea. The suitability of fitness was determined using the coefficient of determination (R (2)) and root-mean-square error. Results showed that the fraction conversion model had more acceptable fitness than the other two models in most of color parameters.

  17. Growth of Staphylococcus aureus in Cooked Potato and Potato Salad--A One-Step Kinetic Analysis.

    PubMed

    Huang, Lihan

    2015-12-01

    Staphylococcus aureus is a Gram-positive spherically-shaped bacterium capable of producing heat-stable enterotoxins that cause acute gastrointestinal diseases. The growth of this pathogen in food is a major threat to public health worldwide. Potato salad is a frequent vehicle for infection and food poisoning caused by S. aureus. Therefore, the objective of this study was to investigate the growth kinetics of S. aureus in cooked potato and potato salad. Samples of potato cubes and potato salad inoculated with S. aureus were incubated at temperatures between 8 and 43 °C to observe its growth for developing growth models. No growth was observed at 8 °C. The experimental results showed that the growth curves did not exhibit lag phases, and can be described by a 3-parameter logistic model. A one-step kinetic analysis approach was used to simultaneously analyze all growth curves by direct construction of both the primary and secondary (Ratkowsky square root) models using nonlinear regression to minimize the global residual error. The estimated nominal minimum growth temperature of S. aureus was 6.12 °C in potato cubes and 8.80 °C in potato salad. The estimated maximum growth temperatures of S. aureus in potato cubes and potato salad were very close to each other (46.3 and 46.8 °C, respectively). On the average, the specific growth rates of S. aureus in potato cubes were approximately 70% higher than those in potato salad. This study suggests that cooked potato and potato salad should be stored below 6 °C or above 47 °C to prevent the growth of S. aureus. The mathematical models and kinetic parameters can be used to accurately evaluate the effect of temperature abuse on the growth of S. aureus and conduct risk assessments of S. aureus in cooked potato and potato salad. PMID:26539902

  18. Growth of Staphylococcus aureus in Cooked Potato and Potato Salad--A One-Step Kinetic Analysis.

    PubMed

    Huang, Lihan

    2015-12-01

    Staphylococcus aureus is a Gram-positive spherically-shaped bacterium capable of producing heat-stable enterotoxins that cause acute gastrointestinal diseases. The growth of this pathogen in food is a major threat to public health worldwide. Potato salad is a frequent vehicle for infection and food poisoning caused by S. aureus. Therefore, the objective of this study was to investigate the growth kinetics of S. aureus in cooked potato and potato salad. Samples of potato cubes and potato salad inoculated with S. aureus were incubated at temperatures between 8 and 43 °C to observe its growth for developing growth models. No growth was observed at 8 °C. The experimental results showed that the growth curves did not exhibit lag phases, and can be described by a 3-parameter logistic model. A one-step kinetic analysis approach was used to simultaneously analyze all growth curves by direct construction of both the primary and secondary (Ratkowsky square root) models using nonlinear regression to minimize the global residual error. The estimated nominal minimum growth temperature of S. aureus was 6.12 °C in potato cubes and 8.80 °C in potato salad. The estimated maximum growth temperatures of S. aureus in potato cubes and potato salad were very close to each other (46.3 and 46.8 °C, respectively). On the average, the specific growth rates of S. aureus in potato cubes were approximately 70% higher than those in potato salad. This study suggests that cooked potato and potato salad should be stored below 6 °C or above 47 °C to prevent the growth of S. aureus. The mathematical models and kinetic parameters can be used to accurately evaluate the effect of temperature abuse on the growth of S. aureus and conduct risk assessments of S. aureus in cooked potato and potato salad.

  19. NiO growth on Ag(001): A layer-by-layer vibrational study

    NASA Astrophysics Data System (ADS)

    Kostov, K. L.; Schumann, F. O.; Polzin, S.; Sander, D.; Widdra, W.

    2016-08-01

    The vibrational properties of NiO(001) films on Ag(001) with thicknesses up to 50 monolayers (ML) are characterized with high-resolution electron energy loss spectroscopy (HREELS). For NiO growth at 300 K, four different coverage regions are distinguished by HREELS. The film-thickness-dependent Fuchs-Kliewer (FK) phonon frequency shifts and intensity changes are identified from the NiO monolayer to bulklike thick films. Characteristic changes of the vibrational properties are analyzed to resolve restructuring processes during annealing and thermal decomposition of NiO films. A quantitative comparison of the experimental data, including a line shape analysis, with the calculated loss function based on dielectric theory reveals an excellent agreement between the bulk and the NiO(001) thin film phonon properties for film thicknesses above 15 ML. In contrast, a strong FK phonon softening is observed for thin films below 5 ML that cannot be explained by dielectric theory nor phonon standing waves. This softening is attributed to the presence of surface stress, which results from the -2 % lattice mismatch between NiO and Ag.

  20. Growth of nanotubular oxide layer on Ti-Ni alloys with different Ni contents

    NASA Astrophysics Data System (ADS)

    Kim, Min-Su; Tsuchiya, Hiroaki; Fujimoto, Shinji

    2016-04-01

    Anodization of near-equiatomic Ti-Ni alloys was performed in an ethylene glycol based electrolyte under various conditions in order to investigate the effects of crystal structure and chemical composition of the Ti-Ni alloy on the morphology of the resulting oxide layers. X-ray diffraction patterns revealed that Ti-Ni substrates with Ni content lower than 50.0 at.% were in the martensitic phase, while substrates with Ni content higher than 50.0 at.% were in the austenitic phase. Oxide layers formed at 20 or 35 V for 5 min exhibited no distinct nanotubular structures; however, at 50 V, nanotubular oxide layers were formed. After anodization at 50 V for 20 min, the growth of an irregular-shaped porous layer underneath the nanotubular oxide layer was observed for Ti-Ni alloys with Ni content lower than 52.2 at.%, whereas the oxide layer consisted of only irregular-shaped porous structures for the Ti-52.5 at.% Ni alloy. Further anodization resulted in the formation of irregular-shaped porous oxide layers on all Ti-Ni alloys examined. Energy-dispersive X-ray analysis indicated that this morphological transition is related to Ni accumulation in the vicinity of the interface between the bottoms of the oxide layers and the surfaces of the substrate alloys. Therefore, nanotubular oxide layers cannot be grown, and instead irregular-shaped porous oxide layers are formed underneath the nanotubular layers. These results indicate that the morphology of anodic oxide layers formed on the near-equiatomic Ti-Ni alloys is not affected by their crystal structure, but by Ni content and anodization time.

  1. Estimation of the growth kinetic parameters of Bacillus cereus spores as affected by pulsed light treatment.

    PubMed

    Aguirre, Juan S; de Fernando, Gonzalo García; Hierro, Eva; Hospital, Xavier F; Ordóñez, Juan A; Fernández, Manuela

    2015-06-01

    Quantitative microbial risk assessment requires the knowledge of the effect of food preservation technologies on the growth parameters of the survivors of the treatment. This is of special interest in the case of the new non-thermal technologies that are being investigated for minimal processing of foods. This is a study on the effect of pulsed light technology (PL) on the lag phase of Bacillus cereus spores surviving the treatment and the maximum growth rate (μmax) of the survivors after germination. The D value was estimated as 0.35 J/cm(2) and our findings showed that PL affected the kinetic parameters of the microorganism. A log linear relationship was observed between the lag phase and the intensity of the treatment. Increasing the lethality lengthened the mean lag phase and proportionally increased its variability. A polynomial regression was fitted between the μmax of the survivors and the inactivation achieved. The μmax decreased as intensity increased. From these data, and their comparison to published results on the effect of heat and e-beam irradiation on B. cereus spores, it was observed that the shelf-life of PL treated foods would be longer than those treated with heat and similar to irradiated ones. These findings offer information of interest for the implementation of PL for microbial decontamination in the food industry. PMID:25755081

  2. Estimation of the growth kinetic parameters of Bacillus cereus spores as affected by pulsed light treatment.

    PubMed

    Aguirre, Juan S; de Fernando, Gonzalo García; Hierro, Eva; Hospital, Xavier F; Ordóñez, Juan A; Fernández, Manuela

    2015-06-01

    Quantitative microbial risk assessment requires the knowledge of the effect of food preservation technologies on the growth parameters of the survivors of the treatment. This is of special interest in the case of the new non-thermal technologies that are being investigated for minimal processing of foods. This is a study on the effect of pulsed light technology (PL) on the lag phase of Bacillus cereus spores surviving the treatment and the maximum growth rate (μmax) of the survivors after germination. The D value was estimated as 0.35 J/cm(2) and our findings showed that PL affected the kinetic parameters of the microorganism. A log linear relationship was observed between the lag phase and the intensity of the treatment. Increasing the lethality lengthened the mean lag phase and proportionally increased its variability. A polynomial regression was fitted between the μmax of the survivors and the inactivation achieved. The μmax decreased as intensity increased. From these data, and their comparison to published results on the effect of heat and e-beam irradiation on B. cereus spores, it was observed that the shelf-life of PL treated foods would be longer than those treated with heat and similar to irradiated ones. These findings offer information of interest for the implementation of PL for microbial decontamination in the food industry.

  3. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations.

    PubMed

    Weiss, Volker C; Rullich, Markus; Köhler, Christof; Frauenheim, Thomas

    2011-07-21

    In experiments, the growth rate of ice from supercooled water is seen to increase with the degree of supercooling, that is, the lower the temperature, the faster the crystallization takes place. In molecular dynamics simulations of the freezing process, however, the temperature is usually kept constant by means of a thermostat that artificially removes the heat released during the crystallization by scaling the velocities of the particles. This direct removal of energy from the system replaces a more realistic heat-conduction mechanism and is believed to be responsible for the curious observation that the thermostatted ice growth proceeds fastest near the melting point and more slowly at lower temperatures, which is exactly opposite to the experimental findings [M. A. Carignano, P. B. Shepson, and I. Szleifer, Mol. Phys. 103, 2957 (2005)]. This trend is explained by the diffusion and the reorientation of molecules in the liquid becoming the rate-determining steps for the crystal growth, both of which are slower at low temperatures. Yet, for a different set of simulations, a kinetic behavior analogous to the experimental finding has been reported [H. Nada and Y. Furukawa, J. Crystal Growth 283, 242 (2005)]. To clarify this apparent contradiction, we perform relatively long simulations of the TIP4P/Ice model in an extended range of temperatures. The temperature dependence of the thermostatted ice growth is seen to be more complex than was previously reported: The crystallization process is very slow close to the melting point at 270 K, where the thermodynamic driving force for the phase transition is weak. On lowering the temperature, the growth rate initially increases, but displays a maximum near 260 K. At even lower temperatures, the freezing process slows down again due to the reduced diffusivity in the liquid. The velocity of the thermostatted melting process, in contrast, shows a monotonic increase upon raising the temperature beyond the normal melting point

  4. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations

    NASA Astrophysics Data System (ADS)

    Weiss, Volker C.; Rullich, Markus; Köhler, Christof; Frauenheim, Thomas

    2011-07-01

    In experiments, the growth rate of ice from supercooled water is seen to increase with the degree of supercooling, that is, the lower the temperature, the faster the crystallization takes place. In molecular dynamics simulations of the freezing process, however, the temperature is usually kept constant by means of a thermostat that artificially removes the heat released during the crystallization by scaling the velocities of the particles. This direct removal of energy from the system replaces a more realistic heat-conduction mechanism and is believed to be responsible for the curious observation that the thermostatted ice growth proceeds fastest near the melting point and more slowly at lower temperatures, which is exactly opposite to the experimental findings [M. A. Carignano, P. B. Shepson, and I. Szleifer, Mol. Phys. 103, 2957 (2005), 10.1080/00268970500243796]. This trend is explained by the diffusion and the reorientation of molecules in the liquid becoming the rate-determining steps for the crystal growth, both of which are slower at low temperatures. Yet, for a different set of simulations, a kinetic behavior analogous to the experimental finding has been reported [H. Nada and Y. Furukawa, J. Crystal Growth 283, 242 (2005), 10.1016/j.jcrysgro.2005.05.057]. To clarify this apparent contradiction, we perform relatively long simulations of the TIP4P/Ice model in an extended range of temperatures. The temperature dependence of the thermostatted ice growth is seen to be more complex than was previously reported: The crystallization process is very slow close to the melting point at 270 K, where the thermodynamic driving force for the phase transition is weak. On lowering the temperature, the growth rate initially increases, but displays a maximum near 260 K. At even lower temperatures, the freezing process slows down again due to the reduced diffusivity in the liquid. The velocity of the thermostatted melting process, in contrast, shows a monotonic increase upon

  5. Growth and decay of the Pd(1 1 1)-Pd 5O 4 surface oxide: Pressure-dependent kinetics and structural aspects

    NASA Astrophysics Data System (ADS)

    Gabasch, Harald; Unterberger, Werner; Hayek, Konrad; Klötzer, Bernhard; Kresse, Georg; Klein, Christof; Schmid, Michael; Varga, Peter

    2006-01-01

    Growth and decomposition of the Pd 5O 4 surface oxide on Pd(1 1 1) were studied at sample temperatures between 573 and 683 K and O 2 gas pressures between 10 -7 and 6 × 10 -5 mbar, by means of an effusive O 2 beam from a capillary array doser, scanning tunnelling microscopy (STM) and thermal desorption spectrometry (TDS). Exposures beyond the p(2 × 2)O adlayer (saturation coverage 0.25) at 683 K (near thermodynamic equilibrium with respect to Pd 5O 4 surface oxide formation) lead to incorporation of additional oxygen into the surface. To initiate the incorporation, a critical pressure beyond the thermodynamic stability limit of the surface oxide is required. This thermodynamic stability limit is near 8.9 × 10 -6 mbar at 683 K, in good agreement with calculations by density functional theory. A controlled kinetic study was feasible by generating nuclei by only a short O 2 pressure pulse and then following further growth kinetics in the lower (10 -6 mbar) pressure range. Growth of the surface oxide layer at a lower temperature (573 K) studied by STM is characterized by a high degree of heterogeneity. Among various metastable local structures, a seam of disordered oxide formed at the step edges is a common structural feature characteristic of initial oxide growth. Further oxide nucleation appears to be favoured along the interface between the p(2 × 2)O structure and these disordered seams. Among the intermediate phases one specifically stable phase was detected both during growth and decomposition of the Pd 5O 4 layer. It is hexagonal with a distance of about 0.62 nm between the protrusions. Its well-ordered form is a (√{67}×√{67})R12.2° superstructure. Isothermal decay of the Pd 5O 4 oxide layer at 693 K involves at first a rearrangement into the (√{67}×√{67})R12.2° structure, indicating its high-temperature stability. This structure can break up into small clusters of uniform size and leaves a free metal surface area covered by a p(2 × 2)O adlayer

  6. In situ atomic scale visualization of surface kinetics driven dynamics of oxide growth on a Ni-Cr surface.

    PubMed

    Luo, Langli; Zou, Lianfeng; Schreiber, Daniel K; Olszta, Matthew J; Baer, Donald R; Bruemmer, Stephen M; Zhou, Guangwen; Wang, Chong-Min

    2016-02-25

    We report the in situ atomic-scale visualization of the dynamic three-dimensional growth of NiO during the initial oxidation of Ni-10at%Cr using environmental transmission electron microscopy. A step-by-step adatom growth mechanism in 3D is observed and a change in the surface planes of growing oxide islands can be induced by local surface kinetic variations. PMID:26815841

  7. New CVD-based method for the growth of high-quality crystalline zinc oxide layers

    NASA Astrophysics Data System (ADS)

    Huber, Florian; Madel, Manfred; Reiser, Anton; Bauer, Sebastian; Thonke, Klaus

    2016-07-01

    High-quality zinc oxide (ZnO) layers were grown using a new chemical vapour deposition (CVD)-based low-cost growth method. The process is characterized by total simplicity, high growth rates, and cheap, less hazardous precursors. To produce elementary zinc vapour, methane (CH4) is used to reduce a ZnO powder. By re-oxidizing the zinc with pure oxygen, highly crystalline ZnO layers were grown on gallium nitride (GaN) layers and on sapphire substrates with an aluminum nitride (AlN) nucleation layer. Using simple CH4 as precursor has the big advantage of good controllability and the avoidance of highly toxic gases like nitrogen oxides. In photoluminescence (PL) measurements the samples show a strong near-band-edge emission and a sharp line width at 5 K. The good crystal quality has been confirmed in high resolution X-ray diffraction (HRXRD) measurements. This new growth method has great potential for industrial large-scale production of high-quality single crystal ZnO layers.

  8. GaAs buffer layer technique for vertical nanowire growth on Si substrate

    SciTech Connect

    Xu, Xiaoqing Parizi, Kokab B.; Huo, Yijie; Kang, Yangsen; Philip Wong, H.-S.; Li, Yang

    2014-02-24

    Gold catalyzed vapor-liquid-solid method is widely applied to III–V nanowire (NW) growth on Si substrate. However, the easy oxidation of Si, possible Si contamination in the NWs, high defect density in the NWs, and high sensitivity of the NW morphology to growth conditions largely limit its controllability. In this work, we developed a buffer layer technique by introducing a GaAs thin film with predefined polarity as a template. It is found that samples grown on these buffer layers all have high vertical NW yields in general, due to the single-orientation of the buffer layers. Low temperature buffer with smoother surface leads to highest yield of vertical NWs, while high temperature (HT) buffer with better crystallinity results in perfect NW quality. The defect-free property we observed here is very promising for optoelectronic device applications based on GaAs NW. Moreover, the buffer layers can eliminate Si contamination by preventing Si-Au alloy formation and by increasing the thickness of the Si diffusion barrier, thus providing more flexibility to vertical NW growth. The buffer layer technique we demonstrated here could be easily extended to other III-V on Si system for electronic and photonic applications.

  9. The Growth Behavior of Titanium Boride Layers in α and β Phase Fields of Titanium

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Hu, Lingyun; Shuang, Yajing; Liu, Jianhua; Lai, Yanqing; Jiang, Liangxing; Li, Jie

    2016-07-01

    In this study, the commercially pure titanium was successfully electrochemical borided in a borax-based electrolyte. The process was carried out at a constant cathodic current density of 300 mA cm-2 and at temperatures of 1123 K and 1223 K (850 °C and 950 °C) for 0.5, 1, 2, 3, and 5 hours. The growth behavior of titanium boride layers in the α phase field of titanium was compared with that in the β phase field. After boriding, the presence of both the TiB2 top layer and TiB whisker sub-layer was confirmed by the X-ray diffraction (XRD) and scanning electron microscope. The relationship between the thickness of boride layers and boriding time was found to have a parabolic character in both α and β phase fields of titanium. The TiB whiskers showed ultra-fast growth rate in the β phase field. Its growth rate constant was found to be as high as 3.2002 × 10-13 m2 s-1. Besides, the chemical resistance of the TiB2 layer on the surface of titanium substrate was characterized by immersion tests in molten aluminum.

  10. Growth Kinetics of Listeria monocytogenes in Broth and Beef Frankfurters– Determination of Lag Phase Duration and Exponential Growth Rate under Isothermal Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to develop a new kinetic model to describe the isothermal growth of microorganisms. The new model was tested with Listeria monocytogenes in broth and frankfurters, and compared with two commonly used models - Baranyi and modified Gompertz models. Bias factor (BF)...

  11. Biomineralization: Systematics of organic-directed controls on carbonate growth morphologies and kinetics determined by in situ AFM. Final report

    SciTech Connect

    Dove, P.M.

    1998-12-01

    During the three years of this project, tremendous progress has been made in understanding the microscopic kinetic controls on calcite growth and in investigations of amino acid controls on modifying crystal growth and dissolution. The project began with a focus on the aspartate-calcite system because previous studies have found that acidic matrix macromolecules involved in the regulation of biological crystal growth usually contain aspartic acid-rick domains. Indeed, several studies have shown that aspartate (Asp) modifies the growth morphology of calcite. Aspartate-rich proteins and {beta}-sheet polyaspartate adsorbed on sulfonated polystyrene surfaces were shown to stabilize {l_brace}0001{r_brace} growth surfaces. It was also shown that aspartate also stabilizes the prismatic {l_brace}1{bar 1}00{r_brace} growth forms. For the first time, the author has an understanding of the microscopic controls of aspartate on growth and dissolution.

  12. Growth and Stress-induced Transformation of Zinc blende AlN Layers in Al-AlN-TiN Multilayers

    PubMed Central

    Li, Nan; Yadav, Satyesh K.; Wang, Jian; Liu, Xiang-Yang; Misra, Amit

    2015-01-01

    AlN nanolayers in sputter deposited {111}Al/AlN/TiN multilayers exhibit the metastable zinc-blende-structure (z-AlN). Based on density function theory calculations, the growth of the z-AlN is ascribed to the kinetically and energetically favored nitridation of the deposited aluminium layer. In situ nanoindentation of the as-deposited {111}Al/AlN/TiN multilayers in a high-resolution transmission electron microscope revealed the z-AlN to wurzite AlN phase transformation through collective glide of Shockley partial dislocations on every two {111} planes of the z-AlN. PMID:26681109

  13. Growth and stress-induced transformation of zinc blende AlN layers in Al-AlN-TiN multilayers

    DOE PAGES

    Li, Nan; Yadav, Satyesh K.; Wang, Jian; Liu, Xiang -Yang; Misra, Amit

    2015-12-18

    We report that AlN nanolayers in sputter deposited {111}Al/AlN/TiN multilayers exhibit the metastable zinc-blende-structure (z-AlN). Based on density function theory calculations, the growth of the z-AlN is ascribed to the kinetically and energetically favored nitridation of the deposited aluminium layer. In situ nanoindentation of the as-deposited {111}Al/AlN/TiN multilayers in a high-resolution transmission electron microscope revealed the z-AlN to wurzite AlN phase transformation through collective glide of Shockley partial dislocations on every two {111} planes of the z-AlN.

  14. Growth and micro structural studies on Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) buffer layers

    SciTech Connect

    Srinivas, S.; Bhatnagar, A.K.; Pinto, R.

    1994-12-31

    Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si<100>, Sapphire and LaAlO{sub 3} <100> substrates. The effect of substrate temperatures upto 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar structure with variation growth conditions. The buffer layers of YSZ and STO showed orientation. The tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa{sub 2}Cu{sub 9}O{sub 7-x} (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.

  15. The growth of oxide and oxygen-stabilized alpha layers in steam-oxidized zircaloy

    NASA Astrophysics Data System (ADS)

    Biederman, R. R.; Ocken, H.; Sisson, R. D.

    1981-04-01

    Experimental investigations of the oxidation of Zircaloy in steam at high temperatures suggest temperature gradients exist across the oxide and oxygen-stabilized α layers even when specimens are exposed under nominally isothermal conditions. This paper presents a simple model that permits one to calculate the ratio of the thickness, of the oxide to oxygen-stabilized α layers in the presence of temperature gradients as well as under truly isothermal exposure conditions. The shape of the oxide to oxygen-stabilized α thickness ratio curve as a function of temperature was found to be in excellent agreement with oxidation kinetics data that were used to derive a scaling factor for the model. Variations in the temperature dependence of this ratio from independent measurements can be reproduced if it is assumed that temperature differences on the order of 10°C exist between the oxide layer and the oxygen-stabilized α layer. Metallographic evidence is presented that suggests the rate-controlling oxidation step occurs in the vicinity of the interface between the oxide and oxygen-stabilized a layers

  16. Experimental study of water desorption isotherms and thin-layer convective drying kinetics of bay laurel leaves

    NASA Astrophysics Data System (ADS)

    Ghnimi, Thouraya; Hassini, Lamine; Bagane, Mohamed

    2016-02-01

    The aim of this work is to determine the desorption isotherms and the drying kinetics of bay laurel leaves (Laurus Nobilis L.). The desorption isotherms were performed at three temperature levels: 50, 60 and 70 °C and at water activity ranging from 0.057 to 0.88 using the statistic gravimetric method. Five sorption models were used to fit desorption experimental isotherm data. It was found that Kuhn model offers the best fitting of experimental moisture isotherms in the mentioned investigated ranges of temperature and water activity. The Net isosteric heat of water desorption was evaluated using The Clausius-Clapeyron equation and was then best correlated to equilibrium moisture content by the empirical Tsami's equation. Thin layer convective drying curves of bay laurel leaves were obtained for temperatures of 45, 50, 60 and 70 °C, relative humidity of 5, 15, 30 and 45 % and air velocities of 1, 1.5 and 2 m/s. A non linear regression procedure of Levenberg-Marquardt was used to fit drying curves with five semi empirical mathematical models available in the literature, The R2 and χ2 were used to evaluate the goodness of fit of models to data. Based on the experimental drying curves the drying characteristic curve (DCC) has been established and fitted with a third degree polynomial function. It was found that the Midilli Kucuk model was the best semi-empirical model describing thin layer drying kinetics of bay laurel leaves. The bay laurel leaves effective moisture diffusivity and activation energy were also identified.

  17. Phase-field Modeling of Void Migration and Growth Kinetics in Materials under Irradiation and Temperature Field

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Gao, Fei; Henager, Charles H.; Khaleel, Mohammad A.

    2010-12-15

    A phase-field model is developed to investigate the migration of vacancies, interstitials, and voids as well as void growth kinetics in materials under radiation and temperature field. The model takes into account the generation of vacancies and interstitials associated with the irradiation damage, the recombination between vacancies and interstitials, defect diffusion, and defect sinks. The effect of void sizes, vacancy concentration, vacancy generation rate, recombination rate, and temperature gradient on a single void migration and growth kinetics is parametrically studied. The results demonstrate that the temperature gradient causes void migration and defect fluxes, i.e., the Soret effect, which affects void stability and growth kinetics. It is found that 1) the void migration mobility is independent of the void size, which is in agreement with the theoretical prediction with the assumption of bulk diffusion controlled migration; 2) the void migration mobility strongly depends on temperature gradient; and 3) the effect of defect concentration, generation rate, and recombination rate on void migration mobility is minor although they strongly influence the void growth kinetics.

  18. KINETICS OF GROWTH AND ETHANOL PRODUCTION ON DIFFERENT CARBON SUBSTRATES USING GENETICALLY ENGINEERED XYLOSE-FERMENTING YEAST

    EPA Science Inventory

    Saccharomyces cerevisiae 424A (LNH-ST) strain was used for fermentation of glucose and xylose. Growth kinetics and ethanol productivity were calculated for batch fermentation on media containing different combinations of glucose and xylose to give a final sugar concentra...

  19. Growth of large-grain silicon layers by atmospheric iodine vapor transport

    SciTech Connect

    Wang, T.H.; Ciszek, T.F.

    2000-05-01

    A novel growth method for high speed deposition of large-grain polycrystalline silicon layers on foreign substrates is described. The deposited silicon layers with a thickness of 10--40 {micro}m on high temperature glass substrate exhibit good uniformity and large grain sizes up to 20 {micro}m. A typical deposition rate is 3 {micro}m/min for a source/substrate temperature of 1,100/950 C. The growth method is based on iodine vapor transport of silicon at atmospheric pressure with a vertical thermal gradient. A gravity trapping effect allows use of an open-tube system without much loss of the volatile gas species or reduced iodine partial pressure, as is the case in a normal open system involving a carrier gas. The material appears to be an excellent candidate for thin-layer crystalline silicon solar cells.

  20. Layer-controlled stylolite growth and the creation and destruction of local seals

    NASA Astrophysics Data System (ADS)

    Koehn, Daniel; Pataki Rood, Daisy; Beaudoin, Nicolas; Aleksans, Janis; Bons, Paul; Gomez-Rivas, Enrique

    2015-04-01

    Cores of carbonate Zechstein sediments in the Lean Gas Field in northern Germany show a dense set of sedimentary stylolites. We studied these structures in detail using scans of cores, thin-sections, roughness analysis, SEM-EDS studies and a set of numerical simulations in order to understand timing and depth of stylolite growth, the development of varying stylolite patterns and their influence on fluid flow. The studied cores have a depth of about 4000m and it is expected that they experienced a minor inversion in the Cretaceous so that their original depth may have been up to 4500m. We studied the roughness of the stylolites and used a stress inversion technique to determine the depth at which they grew. The determined depth of growth is in the order of 4150m with an error of plus-minus 300m. This value represents the latest stylolite activity and indicates that they have been active until late in the burial history. SEM and EDS analysis on stylolite thin sections shows that the stylolites separate strongly dedolomitized sections from sections that still contain a large amount of dolomite. In addition stylolite seams capture or shield dolomitized parts of the rock. Dissolution holes are also partly linked to stylolite teeth indicating that fluid flow is significantly influenced by the presence of stylolites. Stylolite shapes and thus potentially their sealing capacity vary significantly throughout the cores from flat stylolites to small wavy ones all the way to stylolites showing extreme spikes and teeth. Quite often dark layers seem to control stylolite shapes. In order to understand the influence of layers on stylolite growth we use a numerical model that can treat the dynamics of the process linking elasticity with a dissolution routine. In this model we find that layers that dissolve slower can pin stylolite teeth and thus develop extremely long and spiky geometries. Growth typically happens in two to three stages depending on whether or not the pinning layer

  1. High-throughput quantitative analysis with cell growth kinetic curves for low copy number mutant cells.

    PubMed

    Xing, James Z; Gabos, Stephan; Huang, Biao; Pan, Tianhong; Huang, Min; Chen, Jie

    2012-10-01

    The mutation rate in cells induced by environmental genotoxic hazards is very low and difficult to detect using traditional cell counting assays. The established genetic toxicity tests currently recognized by regulatory authorities, such as conventional Ames and hypoxanthine guanine phosphoribosyl-transferase (HPRT) assays, are not well suited for higher-throughput screening as they require large amounts of test compounds and are very time consuming. In this study, we developed a novel cell-based assay for quantitative analysis of low numbers of cell copies with HPRT mutation induced by an environmental mutagen. The HPRT gene mutant cells induced by the mutagen were selected by 6-thioguanine (6-TG) and the cell's kinetic growth curve monitored by a real-time cell electronic sensor (RT-CES) system. When a threshold is set at a certain cell index (CI) level, samples with different initial mutant cell copies take different amounts of time in order for their growth (or CI accumulation) to cross this threshold. The more cells that are initially seeded in the test well, the faster the cell accumulation and therefore the shorter the time required to cross this threshold. Therefore, the culture time period required to cross the threshold of each sample corresponds to the original number of cells in the sample. A mutant cell growth time threshold (MT) value of each sample can be calculated to predict the number of original mutant cells. For mutagenesis determination, the RT-CES assay displayed an equal sensitivity (p > 0.05) and coefficients of variation values with good correlation to conventional HPRT mutagenic assays. Most importantly, the RT-CES mutation assay has a higher throughput than conventional cellular assays.

  2. Kinetics of Nucleation and Crystal Growth in Glass Forming Melts in Microgravity

    NASA Technical Reports Server (NTRS)

    Day, Delbert E.; Ray, Chandra S.

    1999-01-01

    The following list summarizes the most important results that have been consistently reported for glass forming melts in microgravity: (1) Glass formation is enhanced for melts prepared in space; (2) Glasses prepared in microgravity are more chemically homogeneous and contain fewer and smaller chemically heterogeneous regions than identical glasses prepared on earth; (3) Heterogeneities that are deliberately introduced such as Pt particles are more uniformly distributed in a glass melted in space than in a glass melted on earth; (4) Glasses prepared in microgravity are more resistant to crystallization and have a higher mechanical strength and threshold energy for radiation damage; and (5) Glasses crystallized in space have a different microstructure, finer grains more uniformly distributed, than equivalent samples crystallized on earth. The preceding results are not only scientifically interesting, but they have considerable practical implications. These results suggest that the microgravity environment is advantageous for developing new and improved glasses and glass-ceramics that are difficult to prepare on earth. However, there is no suitable explanation at this time for why a glass melted in microgravity will be more chemically homogeneous and more resistant to crystallization than a glass melted on earth. A fundamental investigation of melt homogenization, nucleation, and crystal growth processes in glass forming melts in microgravity is important to understanding these consistently observed, but yet unexplained results. This is the objective of the present research. A lithium disilicate (Li2O.2SiO2) glass will be used for this investigation, since it is a well studied system, and the relevant thermodynamic and kinetic parameters for nucleation and crystal growth at 1-g are available. The results from this research are expected to improve our present understanding of the fundamental mechanism of nucleation and crystal growth in melts and liquids, and to lead

  3. Growth Kinetics, Characterization, and Plasticity of Human Menstrual Blood Stem Cells

    PubMed Central

    Mehrabani, Davood; Nazarabadi, Roshanak Bahrami; Kasraeian, Maryam; Tamadon, Amin; Dianatpour, Mehdi; Vahdati, Akbar; Zare, Shahrokh; Ghobadi, Farnaz

    2016-01-01

    One of the readily available sources of mesenchymal stem cells (MSCs) is menstrual blood-derived stem cells (Men-SCs), which exhibit characteristics similar to other types of MSCs. This study was performed to determine the growth kinetics, plasticity, and characterization of Men-SCs in women. During spring 2014 in the southern Iranian city of Shiraz, menstrual blood (5 mL) was obtained from 10 women on their third day of menstruation in 2 age groups of 30 to 40 and 40 to 50 years old. Ficoll was used to separate the mononuclear cell fraction. After the Men-SCs were cultured, they were subcultured up to passage 4. Growth behavior and population doubling time were evaluated by seeding 5×104 cells into 12- and 24-well culture plates, and the colonies were enumerated. The expression of CD44, CD90, and CD34 was evaluated. The osteogenic potential was assessed by alizarin red staining. The Men-SCs were shown to be plastic adherent and spindle-shaped. Regarding the growth curves in the 12- and 24-well culture plates, it was demonstrated that in the women aged between 30 and 40 years, population doubling time was 55.5 and 62 hours, respectively, while these values in the women aged between 40 and 50 years were 70.4 and 72.4 hours, correspondingly. Positive expression of CD44 and CD90 and negative expression of CD34 were noted. In the osteogenic differentiation medium, the cells differentiated toward osteoblasts. As human Men-SCs are easily collectable without any invasive procedure and are a safe and rapid source of MSCs, they can be a good candidate for stem cell banking and cell transplantation in women. PMID:26989284

  4. Growth Kinetics, Characterization, and Plasticity of Human Menstrual Blood Stem Cells.

    PubMed

    Mehrabani, Davood; Nazarabadi, Roshanak Bahrami; Kasraeian, Maryam; Tamadon, Amin; Dianatpour, Mehdi; Vahdati, Akbar; Zare, Shahrokh; Ghobadi, Farnaz

    2016-03-01

    One of the readily available sources of mesenchymal stem cells (MSCs) is menstrual blood-derived stem cells (Men-SCs), which exhibit characteristics similar to other types of MSCs. This study was performed to determine the growth kinetics, plasticity, and characterization of Men-SCs in women. During spring 2014 in the southern Iranian city of Shiraz, menstrual blood (5 mL) was obtained from 10 women on their third day of menstruation in 2 age groups of 30 to 40 and 40 to 50 years old. Ficoll was used to separate the mononuclear cell fraction. After the Men-SCs were cultured, they were subcultured up to passage 4. Growth behavior and population doubling time were evaluated by seeding 5×10(4) cells into 12- and 24-well culture plates, and the colonies were enumerated. The expression of CD44, CD90, and CD34 was evaluated. The osteogenic potential was assessed by alizarin red staining. The Men-SCs were shown to be plastic adherent and spindle-shaped. Regarding the growth curves in the 12- and 24-well culture plates, it was demonstrated that in the women aged between 30 and 40 years, population doubling time was 55.5 and 62 hours, respectively, while these values in the women aged between 40 and 50 years were 70.4 and 72.4 hours, correspondingly. Positive expression of CD44 and CD90 and negative expression of CD34 were noted. In the osteogenic differentiation medium, the cells differentiated toward osteoblasts. As human Men-SCs are easily collectable without any invasive procedure and are a safe and rapid source of MSCs, they can be a good candidate for stem cell banking and cell transplantation in women.

  5. Growth kinetics of AlN and GaN films grown by molecular beam epitaxy on R-plane sapphire substrates

    SciTech Connect

    Chandrasekaran, R.; Moustakas, T. D.; Ozcan, A. S.; Ludwig, K. F.; Zhou, L.; Smith, David J.

    2010-08-15

    This paper reports the growth by molecular beam epitaxy of AlN and GaN thin films on R-plane sapphire substrates. Contrary to previous findings that GaN grows with its (1120) A-plane parallel to the (1102) R-plane of sapphire, our results indicate that the crystallographic orientation of the III-nitride films is strongly dependent on the kinetic conditions of growth for the GaN or AlN buffer layers. Thus, group III-rich conditions for growth of either GaN or AlN buffers result in nitride films having (1120) planes parallel to the sapphire surface, and basal-plane stacking faults parallel to the growth direction. The growth of these buffers under N-rich conditions instead leads to nitride films with (1126) planes parallel to the sapphire surface, with inclined c-plane stacking faults that often terminate threading dislocations. Moreover, electron microscope observations indicate that slight miscut ({approx}0.5 deg. ) of the R-plane sapphire substrate almost completely suppresses the formation of twinning defects in the (1126) GaN films.

  6. A Chemical-Adsorption Strategy to Enhance the Reaction Kinetics of Lithium-Rich Layered Cathodes via Double-Shell Surface Modification.

    PubMed

    Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo

    2016-09-21

    Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption. PMID:27582053

  7. A Chemical-Adsorption Strategy to Enhance the Reaction Kinetics of Lithium-Rich Layered Cathodes via Double-Shell Surface Modification.

    PubMed

    Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo

    2016-09-21

    Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.

  8. Kinetics of the interaction of myelin basic protein with phospholipid layers

    NASA Astrophysics Data System (ADS)

    Facci, Paolo; Cavatorta, Paolo; Cristofolini, Luigi; Fontana, M. P.; Riccio, Paolo

    1999-04-01

    The time dependence of the adsorption of myelin basic protein onto dipalmitoyl phosphatidyl glycerol multilayers has been followed directly, using a novel application of a microgravimetric gauge. Our results, supplemented by other data obtained by FTIR, show the ease and versatility of the quartz microbalance for investigating the interaction processes between proteins and phospholipid layers and show that the protein adsorption is accompanied by structural changes in the proteolipid ensemble and adsorbed liquid water; it is furthermore dependent on the mesoscopic defect morphology of the ensemble.

  9. Influence of temperature on the controlled growth kinetics and superstructural phase formation of indium on a reconstructed Si (113) 3 × 2 surface

    NASA Astrophysics Data System (ADS)

    Krishna TC, Shibin; Deshmukh, Rahul; Singh Chauhan, Amit Kumar; Goswami, Lalit; Govind

    2014-03-01

    The kinetics of growth, thermal stability and superstructural phase formation of the indium atom on a reconstructed Si (113) 3 × 2 surface at room temperature (RT), as well as at high substrate temperature (HT), is discussed. It was observed that at a very low flux rate of 0.08 ML min-1, In-adsorption at RT follows the Frank-van der Merwe (FM) growth mode, while for HT (>200 °C), In-islands (the Volmer-Weber-growth mode) were formed. The residual thermal desorption (RTD) analysis revealed the anomalous behaviour of temperature-driven layering to the clustering rearrangement of In atoms on the Si (113) surface for RT- and 200 °C-grown systems. The RTD study also demonstrates the effect of temperature on growth kinetics as well as on the multilayer/monolayer desorption pathway. The calculated bilayer desorption energy was found to be different for RT- (T B, 0.48 eV) and HT- (T B, 1.57 eV) grown In/Si(113) systems, while the monolayer desorption energy (T M, 2.56 eV) was the same in both the cases. Various coverage-dependent superstructural phases, such as Si(113) 3 × 2 + 3 × 1, 3 × 1, 3 × 2 + 1 × 3 and 1 × 1, have been observed during the RT- and HT-growth of In on the Si (113) surface. A complete phase diagram of In/Si(113) is deduced which depicts the evolution of novel phases as a function of substrate temperature and coverage.

  10. Pack-boriding of Fe-Mn binary alloys: Characterization and kinetics of the boride layers

    SciTech Connect

    Bektes, M.; Calik, A.; Ucar, N.; Keddam, M.

    2010-02-15

    In this work, the boronizing of Fe-Mn binary alloys at 0.42, 0.76 and 0.94 wt.% Mn was carried out in a solid medium using the powder pack method. In this method, commercial Ekabor-II boron source and activator (ferro-silicon) were thoroughly mixed to form the boriding medium. The samples were boronized in an electrical resistance furnace for exposure times of 2, 4, 6 and 8 h at 1173 K under atmospheric pressure and a series of boronized samples in the temperature range 1073-1373 K for 3 h. After the furnace process, boronized samples were removed from the furnace and cooled in air. Afterwards, the boride layers generated by the pack-boronizing process were characterized by optical microscopy, scanning electron microscopy, XRD analysis, Vickers microhardness and tensile testing. The generated boride layers, showing a saw-tooth morphology, had a surface microhardness in the range 1400-1270 HV0.1. It was shown that the values of yield stresses and ultimate tensile stresses were increased as the Mn content increases in the boronized Fe-Mn binary alloys. In contrast, the values of elongations determined from the stress-strain curves were decreased. Furthermore, it was found that the calculated mean value of the activation energy of boron diffusion was close to 119 J/mol.

  11. Layered growth of crayfish gastrolith: about the stability of amorphous calcium carbonate and role of additives.

    PubMed

    Habraken, Wouter J E M; Masic, Admir; Bertinetti, Luca; Al-Sawalmih, Ali; Glazer, Lilah; Bentov, Shmuel; Fratzl, Peter; Sagi, Amir; Aichmayer, Barbara; Berman, Amir

    2015-01-01

    Previous studies on pre-molt gastroliths have shown a typical onion-like morphology of layers of amorphous mineral (mostly calcium carbonate) and chitin, resulting from the continuous deposition and densification of amorphous mineral spheres on a chitin-matrix during time. To investigate the consequences of this layered growth on the local structure and composition of the gastrolith, we performed spatially-resolved Raman, X-ray and SEM-EDS analysis on complete pre-molt gastrolith cross-sections. Results show that especially the abundance of inorganic phosphate, phosphoenolpyruvate (PEP)/citrate and proteins is not uniform throughout the organ but changes from layer to layer. Based on these results we can conclude that ACC stabilization in the gastrolith takes place by more than one compound and not by only one of these additives.

  12. Formation and Growth Kinetics of Reverted Austenite During Tempering of a High Co-Ni Steel

    NASA Astrophysics Data System (ADS)

    Gruber, Marina; Ressel, Gerald; Méndez Martín, Francisca; Ploberger, Sarah; Marsoner, Stefan; Ebner, Reinhold

    2016-09-01

    It is well known that high Co-Ni steels exhibit excellent toughness. Since the good toughness in these steels is supposed to be related to thin layers of austenite between martensite crystals, this work presents an experimental study corroborated with diffusional calculations to characterize the evolution of reverted austenite. Atom probe measurements were conducted for analyzing the element distribution in austenite and martensite during tempering. These results were correlated with crystallographic information, which was obtained by using transmission electron microscopy investigations. Additionally, the experimental findings were compared with kinetic calculations with DICTRA™. The investigations reveal that reverted austenite formation during tempering is connected with a redistribution of Ni, Co, Cr, and Mo atoms. The austenite undergoes a Ni and Cr enrichment and a Co depletion, while in the neighboring martensite, a zone of Ni and Cr depletion and Co enrichment is formed. The changes in the chemical composition of austenite during tempering affect the stability of the austenite against phase transformation to martensite during plastic deformation and have thus decisive influence on the toughness of the material.

  13. A simple parameterization for the turbulent kinetic energy transport terms in the convective boundary layer derived from large eddy simulation

    NASA Astrophysics Data System (ADS)

    Puhales, Franciano Scremin; Rizza, Umberto; Degrazia, Gervásio Annes; Acevedo, Otávio Costa

    2013-02-01

    In this work a parametrization for the transport terms of the turbulent kinetic energy (TKE) budget equation, valid for a convective boundary layer (CBL) is presented. This is a hard task to accomplish from experimental data, especially because of the difficulty associated to the measurements of pressure turbulent fluctuations, which are necessary to determine the pressure correlation TKE transport term. Thus, employing a large eddy simulation (LES) a full diurnal planetary boundary layer (PBL) cycle was simulated. In this simulation a forcing obtained from experimental data is used, so that the numerical experiment represents a more realistic case than a stationary PBL. For this study all terms of the TKE budget equation were determined for a CBL. From these data, polynomials that describe the TKE transport terms’ vertical profiles were adjusted. The polynomials found are a good description of the LES data, and from them it is shown that a simple formulation that directly relates the transport terms to the TKE magnitude has advantages on other parameterizations commonly used in CBL numerical models. Furthermore, the present study shows that the TKE turbulent transport term dominates over the TKE transport by pressure perturbations and that for most of the CBL these two terms have opposite signs.

  14. The growth of deactivated layers on CsI(Na) scintillating crystals

    NASA Technical Reports Server (NTRS)

    Goodman, N. B.

    1975-01-01

    An effective and sensitive measurement of the depth of a deactivated or dead layer can be obtained from the relative attenuation of the 22.162 KeV and 87.9 KeV X-rays emitted by Cd 109. The alpha-particles emitted by Am 241 are also useful in measuring dead layers less than 25 microns. The properties and temporal development of dead layers are discussed in detail. The rate of growth of a deal layer is closely related to the ambient humidity, and the damage to the crystal is irreversible by any known process. The dead layer can be minimized by polishing all crystal surfaces and by keeping the crystal in a vacuum or a dry atmosphere. Since a dead layer seriously inhibits the response of a crystal to X-rays of energies below approximately 20 keV, CsI(Na) detectors should not be used at these energies unless precautions are taken to ensure that no dead layer forms.

  15. Development of Comprehensive Reduced Kinetic Models for Supersonic Reacting Shear Layer Simulations

    NASA Technical Reports Server (NTRS)

    Zambon, A. C.; Chelliah, H. K.; Drummond, J. P.

    2006-01-01

    Large-scale simulations of multi-dimensional unsteady turbulent reacting flows with detailed chemistry and transport can be computationally extremely intensive even on distributed computing architectures. With the development of suitable reduced chemical kinetic models, the number of scalar variables to be integrated can be decreased, leading to a significant reduction in the computational time required for the simulation with limited loss of accuracy in the results. A general MATLAB-based automated mechanism reduction procedure is presented to reduce any complex starting mechanism (detailed or skeletal) with minimal human intervention. Based on the application of the quasi steady-state (QSS) approximation for certain chemical species and on the elimination of the fast reaction rates in the mechanism, several comprehensive reduced models, capable of handling different fuels such as C2H4, CH4 and H2, have been developed and thoroughly tested for several combustion problems (ignition, propagation and extinction) and physical conditions (reactant compositions, temperatures, and pressures). A key feature of the present reduction procedure is the explicit solution of the concentrations of the QSS species, needed for the evaluation of the elementary reaction rates. In contrast, previous approaches relied on an implicit solution due to the strong coupling between QSS species, requiring computationally expensive inner iterations. A novel algorithm, based on the definition of a QSS species coupling matrix, is presented to (i) introduce appropriate truncations to the QSS algebraic relations and (ii) identify the optimal sequence for the explicit solution of the concentration of the QSS species. With the automatic generation of the relevant source code, the resulting reduced models can be readily implemented into numerical codes.

  16. A kinetic model describing cell growth and production of highly active, recombinant ice nucleation protein in Escherichia coli.

    PubMed

    Palaiomylitou, M A; Matis, K A; Zouboulis, A I; Kyriakidis, D A

    2002-05-01

    A structured kinetic model, which describes the production of the recombinant ice nucleation protein in different conditions, was applied. The model parameters were estimated based on the variation of the specific growth rate and the intracellular product concentration during cultivation. The equations employed relate the cellular plasmid content or plasmid copy number with the cloned-gene expression; these correlations were successfully tested on the experimental data. The optimal nutrient conditions for the growth of Escherichia coli expressing the inaZ gene of Pseudomonas syringae were determined for the production of active ice nucleation protein. The kinetics of the cultures expressing the inaZ gene were studied in a bioreactor at different growth temperatures and nutrient conditions. PMID:11920448

  17. Kinetics of Nucleation and Crystal Growth in Glass Forming Melts in Microgravity

    NASA Technical Reports Server (NTRS)

    Day, Delbert E.; Ray, Chandra S.

    2003-01-01

    This flight definition project has the specific objective of investigating the kinetics of nucleation and crystal growth in high temperature inorganic oxide, glass forming melts in microgravity. It is related to one1 of our previous NASA projects that was concerned with glass formation for high temperature containerless melts in microgravity. The previous work culminated in two experiments which were conducted aboard the space shuttle in 1983 and 1985 and which consisted of melting (at 1500 C) and cooling levitated 6 to 8 mm diameter spherical samples in a Single Axis Acoustic Levitator (SAAL) furnace. Compared to other types of materials, there have been relatively few experiments, 6 to 8, conducted on inorganic glasses in space. These experiments have been concerned with mass transport (alkali diffusion), containerless melting, critical cooling rate for glass formation, chemical homogeneity, fiber pulling, and crystallization of glass forming melts. One of the most important and consistent findings in all of these experiments has been that the glasses prepared in microgravity are more resistant to crystallization (better glass former) and more chemically homogeneous than equivalent glasses made on earth (1g). The chemical composition of the melt appears relatively unimportant since the same general results have been reported for oxide, fluoride and chalcogenide melts. These results for space-processed glasses have important implications, since glasses with a higher resistance to crystallization or higher chemical homogeneity than those attainable on earth can significantly advance applications in areas such as fiber optics communications, high power laser glasses, and other photonic devices where glasses are the key functional materials. The classical theories for nucleation and crystal growth for a glass or melt do not contain any parameter that is directly dependent upon the g-value, so it is not readily apparent why glasses prepared in microgravity should be

  18. Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus.

    PubMed

    Zhang, Jia Lin; Zhao, Songtao; Han, Cheng; Wang, Zhunzhun; Zhong, Shu; Sun, Shuo; Guo, Rui; Zhou, Xiong; Gu, Cheng Ding; Yuan, Kai Di; Li, Zhenyu; Chen, Wei

    2016-08-10

    Blue phosphorus, a previously unknown phase of phosphorus, has been recently predicted by theoretical calculations and shares its layered structure and high stability with black phosphorus, a rapidly rising two-dimensional material. Here, we report a molecular beam epitaxial growth of single layer blue phosphorus on Au(111) by using black phosphorus as precursor, through the combination of in situ low temperature scanning tunneling microscopy and density functional theory calculation. The structure of the as-grown single layer blue phosphorus on Au(111) is explained with a (4 × 4) blue phosphorus unit cell coinciding with a (5 × 5) Au(111) unit cell, and this is verified by the theoretical calculations. The electronic bandgap of single layer blue phosphorus on Au(111) is determined to be 1.10 eV by scanning tunneling spectroscopy measurement. The realization of epitaxial growth of large-scale and high quality atomic-layered blue phosphorus can enable the rapid development of novel electronic and optoelectronic devices based on this emerging two-dimensional material. PMID:27359041

  19. Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus.

    PubMed

    Zhang, Jia Lin; Zhao, Songtao; Han, Cheng; Wang, Zhunzhun; Zhong, Shu; Sun, Shuo; Guo, Rui; Zhou, Xiong; Gu, Cheng Ding; Yuan, Kai Di; Li, Zhenyu; Chen, Wei

    2016-08-10

    Blue phosphorus, a previously unknown phase of phosphorus, has been recently predicted by theoretical calculations and shares its layered structure and high stability with black phosphorus, a rapidly rising two-dimensional material. Here, we report a molecular beam epitaxial growth of single layer blue phosphorus on Au(111) by using black phosphorus as precursor, through the combination of in situ low temperature scanning tunneling microscopy and density functional theory calculation. The structure of the as-grown single layer blue phosphorus on Au(111) is explained with a (4 × 4) blue phosphorus unit cell coinciding with a (5 × 5) Au(111) unit cell, and this is verified by the theoretical calculations. The electronic bandgap of single layer blue phosphorus on Au(111) is determined to be 1.10 eV by scanning tunneling spectroscopy measurement. The realization of epitaxial growth of large-scale and high quality atomic-layered blue phosphorus can enable the rapid development of novel electronic and optoelectronic devices based on this emerging two-dimensional material.

  20. Growth and optical characteristics of high-quality ZnO thin films on graphene layers

    SciTech Connect

    Park, Suk In; Tchoe, Youngbin; Baek, Hyeonjun; Hyun, Jerome K.; Yi, Gyu-Chul E-mail: gcyi@snu.ac.kr; Heo, Jaehyuk; Jo, Janghyun; Kim, Miyoung; Kim, Nam-Jung E-mail: gcyi@snu.ac.kr

    2015-01-01

    We report the growth of high-quality, smooth, and flat ZnO thin films on graphene layers and their photoluminescence (PL) characteristics. For the growth of high-quality ZnO thin films on graphene layers, ZnO nanowalls were grown using metal-organic vapor-phase epitaxy on oxygen-plasma treated graphene layers as an intermediate layer. PL measurements were conducted at low temperatures to examine strong near-band-edge emission peaks. The full-width-at-half-maximum value of the dominant PL emission peak was as narrow as 4 meV at T = 11 K, comparable to that of the best-quality films reported previously. Furthermore, the stimulated emission of ZnO thin films on the graphene layers was observed at the low excitation energy of 180 kW/cm{sup 2} at room temperature. Their structural and optical characteristics were investigated using X-ray diffraction, transmission electron microscopy, and PL spectroscopy.

  1. Fatigue crack growth monitoring in multi-layered structures using guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Kostson, E.; Fromme, P.

    2009-11-01

    This contribution investigates the application of low frequency guided ultrasonic waves for monitoring fatigue crack growth at fastener holes in the 2nd layer of multi-layered plate structures, a common problem in aerospace industry. The model multi-layered structure investigated consists of two aluminum plate-strips adhesively bonded using a structural paste adhesive. Guided ultrasonic waves were excited using multiple piezoelectric discs bonded to the surface of the multi-layered structure. The wave propagation in the tensile specimen was measured using a laser interferometer and compared to numerical simulations. Thickness and width mode shapes of the excited flexural waves were identified from Semi-Analytical Finite Element (SAFE) calculations. Experiments and 3D Finite Element (FE) simulations show a change in the scattered field around fastener holes caused by a defect in the 2nd layer. The amplitude of the guided ultrasonic wave was monitored during fatigue experiments at a single point. The measured changes in the amplitude of the ultrasonic signal due to fatigue crack growth agree well with FE simulations.

  2. Transient Growth Analysis of Compressible Boundary Layers with Parabolized Stability Equations

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of parabolized linear stability equations (PSE) is used in a variational approach to extend the previous body of results for the optimal, non-modal disturbance growth in boundary layer flows. This methodology includes the non-parallel effects associated with the spatial development of boundary layer flows. As noted in literature, the optimal initial disturbances correspond to steady counter-rotating stream-wise vortices, which subsequently lead to the formation of stream-wise-elongated structures, i.e., streaks, via a lift-up effect. The parameter space for optimal growth is extended to the hypersonic Mach number regime without any high enthalpy effects, and the effect of wall cooling is studied with particular emphasis on the role of the initial disturbance location and the value of the span-wise wavenumber that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary layer equations, mean flow solutions based on the full Navier-Stokes (NS) equations are used in select cases to help account for the viscous-inviscid interaction near the leading edge of the plate and also for the weak shock wave emanating from that region. These differences in the base flow lead to an increasing reduction with Mach number in the magnitude of optimal growth relative to the predictions based on self-similar mean-flow approximation. Finally, the maximum optimal energy gain for the favorable pressure gradient boundary layer near a planar stagnation point is found to be substantially weaker than that in a zero pressure gradient Blasius boundary layer.

  3. Discovery of novel insulin-like growth factor-1 receptor inhibitors with unique time-dependent binding kinetics.

    PubMed

    Jin, Meizhong; Petronella, Brenda A; Cooke, Andy; Kadalbajoo, Mridula; Siu, Kam W; Kleinberg, Andrew; May, Earl W; Gokhale, Prafulla C; Schulz, Ryan; Kahler, Jennifer; Bittner, Mark A; Foreman, Kenneth; Pachter, Jonathan A; Wild, Robert; Epstein, David; Mulvihill, Mark J

    2013-07-11

    This letter describes a series of small molecule inhibitors of IGF-1R with unique time-dependent binding kinetics and slow off-rates. Structure-activity and structure-kinetic relationships were elucidated and guided further optimizations within the series, culminating in compound 2. With an IGF-1R dissociative half-life (t 1/2) of >100 h, compound 2 demonstrated significant and extended PD effects in conjunction with tumor growth inhibition in xenograft models at a remarkably low and intermittent dose, which correlated with the observed in vitro slow off-rate properties. PMID:24900721

  4. Layered transition metal dichalcogenides: promising near-lattice-matched substrates for GaN growth

    NASA Astrophysics Data System (ADS)

    Gupta, Priti; Rahman, A. A.; Subramanian, Shruti; Gupta, Shalini; Thamizhavel, Arumugam; Orlova, Tatyana; Rouvimov, Sergei; Vishwanath, Suresh; Protasenko, Vladimir; Laskar, Masihhur R.; Xing, Huili Grace; Jena, Debdeep; Bhattacharya, Arnab

    2016-03-01

    Most III-nitride semiconductors are grown on non-lattice-matched substrates like sapphire or silicon due to the extreme difficulty of obtaining a native GaN substrate. We show that several layered transition-metal dichalcogenides are closely lattice-matched to GaN and report the growth of GaN on a range of such layered materials. We report detailed studies of the growth of GaN on mechanically-exfoliated flakes WS2 and MoS2 by metalorganic vapour phase epitaxy. Structural and optical characterization show that strain-free, single-crystal islands of GaN are obtained on the underlying chalcogenide flakes. We obtain strong near-band-edge emission from these layers, and analyse their temperature-dependent photoluminescence properties. We also report a proof-of-concept demonstration of large-area growth of GaN on CVD MoS2. Our results show that the transition-metal dichalcogenides can serve as novel near-lattice-matched substrates for nitride growth.

  5. Layered transition metal dichalcogenides: promising near-lattice-matched substrates for GaN growth.

    PubMed

    Gupta, Priti; Rahman, A A; Subramanian, Shruti; Gupta, Shalini; Thamizhavel, Arumugam; Orlova, Tatyana; Rouvimov, Sergei; Vishwanath, Suresh; Protasenko, Vladimir; Laskar, Masihhur R; Xing, Huili Grace; Jena, Debdeep; Bhattacharya, Arnab

    2016-03-30

    Most III-nitride semiconductors are grown on non-lattice-matched substrates like sapphire or silicon due to the extreme difficulty of obtaining a native GaN substrate. We show that several layered transition-metal dichalcogenides are closely lattice-matched to GaN and report the growth of GaN on a range of such layered materials. We report detailed studies of the growth of GaN on mechanically-exfoliated flakes WS2 and MoS2 by metalorganic vapour phase epitaxy. Structural and optical characterization show that strain-free, single-crystal islands of GaN are obtained on the underlying chalcogenide flakes. We obtain strong near-band-edge emission from these layers, and analyse their temperature-dependent photoluminescence properties. We also report a proof-of-concept demonstration of large-area growth of GaN on CVD MoS2. Our results show that the transition-metal dichalcogenides can serve as novel near-lattice-matched substrates for nitride growth.

  6. Layered transition metal dichalcogenides: promising near-lattice-matched substrates for GaN growth

    PubMed Central

    Gupta, Priti; Rahman, A. A.; Subramanian, Shruti; Gupta, Shalini; Thamizhavel, Arumugam; Orlova, Tatyana; Rouvimov, Sergei; Vishwanath, Suresh; Protasenko, Vladimir; Laskar, Masihhur R.; Xing, Huili Grace; Jena, Debdeep; Bhattacharya, Arnab

    2016-01-01

    Most III-nitride semiconductors are grown on non-lattice-matched substrates like sapphire or silicon due to the extreme difficulty of obtaining a native GaN substrate. We show that several layered transition-metal dichalcogenides are closely lattice-matched to GaN and report the growth of GaN on a range of such layered materials. We report detailed studies of the growth of GaN on mechanically-exfoliated flakes WS2 and MoS2 by metalorganic vapour phase epitaxy. Structural and optical characterization show that strain-free, single-crystal islands of GaN are obtained on the underlying chalcogenide flakes. We obtain strong near-band-edge emission from these layers, and analyse their temperature-dependent photoluminescence properties. We also report a proof-of-concept demonstration of large-area growth of GaN on CVD MoS2. Our results show that the transition-metal dichalcogenides can serve as novel near-lattice-matched substrates for nitride growth. PMID:27025461

  7. Growth kinetics of hexagonal sub-micrometric β-tricalcium phosphate particles in ethylene glycol.

    PubMed

    Galea, Laetitia; Bohner, Marc; Thuering, Juerg; Doebelin, Nicola; Ring, Terry A; Aneziris, Christos G; Graule, Thomas

    2014-09-01

    Recently, uniform, non-agglomerated, hexagonal β-tricalcium phosphate (β-TCP) platelets (diameter≈400-1700nm, h≈100-200nm) were obtained at fairly moderate temperatures (90-170°C) by precipitation in ethylene glycol. Unfortunately, the platelet aspect ratios (diameter/thickness) obtained in the latter study were too small to optimize the strength of polymer-β-TCP composites. Therefore, the aim of the present study was to investigate β-TCP platelet crystallization kinetics, and based on this, to find ways to better control the β-TCP aspect ratio. For that purpose, precipitations were performed at different temperatures (90-170°C) and precursor concentrations (4, 16 and 32mM). Solution aliquots were retrieved at regular intervals (10s-24h), and the size of the particles was measured on scanning electron microscopy images, hence allowing the determination of the particle growth rates. The β-TCP platelets were observed to nucleate and grow very rapidly. For example, the first crystals were observed after 30s at 150°C, and crystallization was complete within 2min. The crystal growth curves could be well-fitted with both diffusion- and reaction-controlled equations, but the high activation energies (∼100kJmol(-1)) pointed towards a reaction-controlled mechanism. The results revealed that the best way to increase the diameter and aspect ratio of the platelets was to increase the precursor concentration. Aspect ratios as high as 14 were obtained, but the synthesis of such particles was always associated with the presence of large fractions of monetite impurities. PMID:24632361

  8. Growth of single-layer boron nitride dome-shaped nanostructures catalysed by iron clusters.

    PubMed

    Torre, A La; Åhlgren, E H; Fay, M W; Ben Romdhane, F; Skowron, S T; Parmenter, C; Davies, A J; Jouhannaud, J; Pourroy, G; Khlobystov, A N; Brown, P D; Besley, E; Banhart, F

    2016-08-11

    We report on the growth and formation of single-layer boron nitride dome-shaped nanostructures mediated by small iron clusters located on flakes of hexagonal boron nitride. The nanostructures were synthesized in situ at high temperature inside a transmission electron microscope while the e-beam was blanked. The formation process, typically originating at defective step-edges on the boron nitride support, was investigated using a combination of transmission electron microscopy, electron energy loss spectroscopy and computational modelling. Computational modelling showed that the domes exhibit a nanotube-like structure with flat circular caps and that their stability was comparable to that of a single boron nitride layer. PMID:27486917

  9. Kinetics of Diffusional Droplet Growth in a Liquid/Liquid Two-Phase System

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Fradkov, V. E.

    1996-01-01

    We address the problem of diffusional interactions in a finite sized cluster of spherical particles for volume fractions, V(sub v) in the range 0-0.01. We determined the quasi-static monopole diffusion solution for n particles distributed at random in a continuous matrix. A global mass conservation condition is employed, obviating the need for any external boundary condition. The numerical results provide the instantaneous (snapshot) growth or shrinkage rate of each particle, precluding the need for extensive time-dependent computations. The close connection between these snapshot results and the coarsegrained kinetic constants are discussed. A square-root dependence of the deviations of the rate constants from their zero volume fraction value is found for the higher V(sub v) investigated. This behavior is consistent with predictions from diffusion Debye-Huckel screening theory. By contrast, a cube-root dependence, reported in earlier numerical studies, is found for the lower V(sub v) investigated. The roll-over region of the volume fraction where the two asymptotics merge depends on the number of particles, n, alone. A theoretical estimate for the roll-over point predicts that the corresponding V(sub v) varies as n(sup -2), in good agreement with the numerical results.

  10. Different antibacterial activity of novel theophylline-based ionic liquids - Growth kinetic and cytotoxicity studies.

    PubMed

    Borkowski, Andrzej; Ławniczak, Łukasz; Cłapa, Tomasz; Narożna, Dorota; Selwet, Marek; Pęziak, Daria; Markiewicz, Bartosz; Chrzanowski, Łukasz

    2016-08-01

    The aim of this study was to investigate novel theophylline-based ionic liquids and their cytotoxic effects towards model Gram-positive and Gram-negative bacteria (Bacillus cereus and Escherichia coli, respectively). Growth kinetics, respiratory rates and dehydrogenase activities were studied in the presence of ionic liquids at concentrations ranging from 10 to 1000mg/L. Additionally, the influence of ionic liquids on bacterial cells associated with specific interactions based on the structure of cell wall was evaluated. This effect was assessed by viability tests and scanning electron microscope observations. The obtained results confirmed that ionic liquids exhibit different levels of toxicity in relation to Gram-positive and Gram-negative bacteria. Those effects are associated with the chemical structure of the cationic species of the ionic liquids and their critical micelle concentration value. It was established that the presence of an alkyl or allyl group increased the toxicity, whereas the presence of an aryl group in the cation decreased the toxic effect of ILs. Results presented in this study also revealed unexpected effects of self-aggregation of E. coli cells. Overall, it was established that the studied ILs exhibited higher toxicity towards Gram-positive bacteria due to different interactions between the ILs and the cell membranes. These findings may be of importance for the design of ILs with targeted antimicrobial properties.

  11. Cellular kinetics in growth anomalies of the scleractinian corals Porites australiensis and Montipora informis .

    PubMed

    Yasuda, Naoko; Hidaka, Michio

    2012-12-01

    Growth anomalies (GAs) in corals are characterized by morphological abnormalities of the skeleton as well as polyps and coenosarcs. GAs commonly appear as protuberances with fewer polyps and are paler in color due to decreased zooxanthellae density. To test the hypothesis that morphological anomalies in GAs may be caused by unregulated cellular kinetics, the relative abundances of apoptotic cells and proliferating cells were compared between GAs and apparently healthy regions in 2 corals, Porites australiensis and Montipora informis. Apoptotic cells and proliferating cells were detected using TUNEL assays and BrdU incorporation assays, respectively. The labeling indices for apoptotic nuclei and BrdU-labeled nuclei were measured in the epidermis, oral gastrodermis, aboral gastrodermis, and calicodermis. The labeling index for apoptotic nuclei in the oral gastrodermis and the calicodermis was significantly lower in GAs than in healthy regions in both coral species. The index for BrdU-labeled cells in the calicodermis was significantly higher in GAs than in healthy regions in both coral species. When GA regions partially died, the GA tissues directly adjacent to the dead areas exhibited signs of necrosis, although some apoptotic cells were also present. Healthy oral gastrodermis adjacent to the border between the healthy and GA regions exhibited higher frequencies of apoptotic cells. These results suggest that apoptotic pathways were suppressed and cell proliferation was promoted in GA regions, although cells in GAs may die through both necrosis and apoptosis. PMID:23209073

  12. Mechanism and kinetics of biofilm growth process influenced by shear stress in sewers.

    PubMed

    Ai, Hainan; Xu, Jingwei; Huang, Wei; He, Qiang; Ni, Bingjie; Wang, Yinliang

    2016-01-01

    Sewer biofilms play an important role in the biotransformation of substances for methane and sulfide emission in sewer networks. The dynamic flows and the particular shear stress in sewers are the key factors determining the growth of the sewer biofilm. In this work, the development of sewer biofilm with varying shear stress is specifically investigated to gain a comprehensive understanding of the sewer biofilm dynamics. Sewer biofilms were cultivated in laboratory-scale gravity sewers under different hydraulic conditions with the corresponding shell stresses are 1.12 Pa, 1.29 Pa and 1.45 Pa, respectively. The evolution of the biofilm thickness were monitored using microelectrodes, and the variation in total solids (TS) and extracellular polymer substance (EPS) levels in the biofilm were also measured. The results showed that the steady-state biofilm thickness were highly related to the corresponding shear stresses with the biofilm thickness of 2.4 ± 0.1 mm, 2.7 ± 0.1 mm and 2.2 ± 0.1 mm at shear stresses of 1.12 Pa, 1.29 Pa and 1.45 Pa, respectively, which the chemical oxygen demand concentration is 400 mg/L approximately. Based on these observations, a kinetic model for describing the development of sewer biofilms was developed and demonstrated to be capable of reproducing all the experimental data. PMID:27054728

  13. Hyperhalophilic archaeal biofilms: growth kinetics, structure, and antagonistic interaction in continuous culture.

    PubMed

    Di Meglio, Leonardo; Busalmen, Juan Pablo; Pastore, Juan Ignacio; Ballarín, Virginia Laura; Nercessian, Débora

    2014-02-01

    Biofilms by the hyperhalophilic archaea Halorubrum sp. and Halobacterium sp. were analyzed, and for the first time the progression of structural features and the developmental parameters of these sessile populations are described. Optical slicing and digital analysis of sequential micrographs showed that their three dimensional structure was microorganism dependent. Biofilms of Halobacterium sp. developed in clusters that covered about 30% of the supporting surface at the interface level and expanded over about 86 ± 4 μm in thickness, while Halorubrum sp. biofilms covered less than 20% of the surface and reached a thickness of 41 ± 1 μm. The kinetics of growth was lower in biofilms, with generation times of 27 ± 1 and 36 ± 2 h for Halobacterium sp. and Halorubrum sp., respectively, as compared to 8.4 ± 0.3 and 14 ± 1 h in planktonic cultures. Differences between microorganisms were also observed at the cell morphology level. The interaction between the two microorganisms was also evaluated, showing that Halobacterium sp. can outcompete already established Halorubrum sp. biofilms by a mechanism that might include the combined action of tunnelling swimmers and antimicrobial compounds.

  14. Measurement of fatigue crack growth kinetics of Copper-Kapton laminates by dynamic mechanical thermal analysis

    SciTech Connect

    Pickard, J.M.; Walters, R.R.

    1986-01-01

    Copper-Kapton laminates fabricated with epoxy and Du Pont WA acrylic adhesives are used in printed circuit applications that are of current interest to the Department of Energy. Kinetics for fatigue crack growth at the Cu-epoxy interface were measured under a helium atmosphere over the temperature range of 473 to 563 K by dynamic mechanical thermal analysis (DMTA). A least squares treatment of data derived on the basis of a first-order fatigue mechanism resulted in: log(k(T)/s/sup -1/ = (14.6 +- 0.4) - (175.4 +- 3.8)/2.303RT, where k(T) is the rate coefficient for thermal fatigue, T is absolute temperature, and R is the ideal gas law constant (R = 0.00831 kJ/K mol). Error estimates for the pre-exponential factor and activation energy correspond to one standard deviation. Arguments are presented which indicate that the upper temperature limit for continuous use of the laminate is 85/sup 0/C. It is concluded that the laminate will meet and possibly exceed the 27-y shelf life required by the DOE.

  15. Cell growth kinetics of the human cell line Colo-205 irradiated with photons and astatine-211 alpha-particles.

    PubMed

    Palm, S; Andersson, H; Bäck, T; Claesson, I; Delle, U; Hultborn, R; Jacobsson, L; Köpf, I; Lindegren, S

    2000-01-01

    Cell growth kinetics following Astatine-211 (211At, alpha-particle emitter) and photon irradiation were studied for the human colorectal cell line Colo-205. A growth assay using 96-well plates was chosen. The growth kinetics could be simulated by assuming certain fractions of cells with various proliferative capacities, i.e. from none up to 5 cell doublings, in addition to the defined survivors with remaining unlimited clonogenic capacity. No significant difference in cell growth characteristics was seen between 211At and photon irradiation. The cell doubling time, as calculated from the increment in optical density, was compared with the results from BrdU experiments in the early phases of growth (Tpot = 18.5 +/- 0.6 h for LDR (low dose rate) photon irradiated and 20.3 +/- 0.8 hours for sham-irradiated cells 40-45 hours post-irradiation) confirming the transient accelerated growth of irradiated cells. No statistically significant difference in growth was found between LDR, MDR (medium dose rate) and HDR (high dose rate) photon irradiation.

  16. Human epidermal growth factor for the stratification of synovial lining layer and neovascularisation in rheumatoid arthritis.

    PubMed Central

    Shiozawa, S; Shiozawa, K; Tanaka, Y; Morimoto, I; Uchihashi, M; Fujita, T; Hirohata, K; Hirata, Y; Imura, S

    1989-01-01

    Immunohistochemical study showed selective localisation of human epidermal growth factor (hEGF) to the synovial lining layer. Although the synovial lining layer of the rheumatoid, osteoarthritic, and traumatic joints was hEGF positive, hEGF staining was especially dense at the rheumatoid synovial lining layer; the staining increasing linearly according to the degree of stratification of the lining layer (r = 1). Human epidermal growth factor was ultrastructurally localised to cytoplasm, especially to rough endoplasmic reticulum, of the synovial lining fibroblast-like (type B) cell. Only the cell surface of macrophage-like (type A) cells was hEGF positive. When different histological variables were compared with each other a positive correlation was found between hEGF staining of the synovial lining layer and the degree of neovascularisation of rheumatoid synovium (r = 0.72). Although some lymphocytes were weakly hEGF positive, neovascularisation did not correlate with the extent of lymphocyte infiltration or of hEGF staining of lymphocytes. Lymphocyte infiltration or hEGF staining of lymphocytes did not correlate with hEGF staining of the synovial lining layer, whereas the lymphocyte infiltration correlated positively with the extent of perivascular accumulation of lymphocytes (r = 0.89). These findings suggest that (a) hEGF is synthesised by and secreted through endoplasmic reticulum and Golgi apparatus from the synovial lining type B cell; (b) hEGF is at least partially responsible for the pathogenesis of stratification of the rheumatoid synovial lining layer, and perhaps of neovascularisation of the rheumatoid synovium, whereas it is not responsible for lymphocyte accumulation to the rheumatoid synovium. Images PMID:2479344

  17. Thin Layer Drying Kinetics of By-Products from Olive Oil Processing

    PubMed Central

    Montero, Irene; Miranda, Teresa; Arranz, Jose Ignacio; Rojas, Carmen Victoria

    2011-01-01

    The thin-layer behavior of by-products from olive oil production was determined in a solar dryer in passive and active operation modes for a temperature range of 20–50 °C. The increase in the air temperature reduced the drying time of olive pomace, sludge and olive mill wastewater. Moisture ratio was analyzed to obtain effective diffusivity values, varying in the oil mill by-products from 9.136 × 10−11 to 1.406 × 10−9 m2/s in forced convection (ma = 0.22 kg/s), and from 9.296 × 10−11 to 6.277 × 10−10 m2/s in natural convection (ma = 0.042 kg/s). Diffusivity values at each temperature were obtained using the Fick’s diffusion model and, regardless of the convection, they increased with the air temperature. The temperature dependence on the effective diffusivity was determined by an Arrhenius type relationship. The activation energies were found to be 38.64 kJ/mol, 30.44 kJ/mol and 47.64 kJ/mol for the olive pomace, the sludge and the olive mill wastewater in active mode, respectively, and 91.35 kJ/mol, 14.04 kJ/mol and 77.15 kJ/mol in natural mode, in that order. PMID:22174639

  18. Thin layer drying kinetics of by-products from olive oil processing.

    PubMed

    Montero, Irene; Miranda, Teresa; Arranz, Jose Ignacio; Rojas, Carmen Victoria

    2011-01-01

    The thin-layer behavior of by-products from olive oil production was determined in a solar dryer in passive and active operation modes for a temperature range of 20-50 °C. The increase in the air temperature reduced the drying time of olive pomace, sludge and olive mill wastewater. Moisture ratio was analyzed to obtain effective diffusivity values, varying in the oil mill by-products from 9.136 × 10(-11) to 1.406 × 10(-9) m(2)/s in forced convection (m(a) = 0.22 kg/s), and from 9.296 × 10(-11) to 6.277 × 10(-10) m(2)/s in natural convection (m(a) = 0.042 kg/s). Diffusivity values at each temperature were obtained using the Fick's diffusion model and, regardless of the convection, they increased with the air temperature. The temperature dependence on the effective diffusivity was determined by an Arrhenius type relationship. The activation energies were found to be 38.64 kJ/mol, 30.44 kJ/mol and 47.64 kJ/mol for the olive pomace, the sludge and the olive mill wastewater in active mode, respectively, and 91.35 kJ/mol, 14.04 kJ/mol and 77.15 kJ/mol in natural mode, in that order. PMID:22174639

  19. Coupling between hydration layer dynamics and unfolding kinetics of HP-36

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Sanjoy; Chakraborty, Sudip; Bagchi, Biman

    2006-08-01

    We have performed atomistic molecular dynamics simulations of aqueous solutions of HP-36 at 300K in its native state, as well as at high temperatures to explore the unfolding dynamics of the protein and its correlation with the motion of water around it. On increasing the temperature a partially unfolded molten globule state is formed where the smallest α helix (helix 2) unfolds into a coil. It is observed that the unfolding is initiated around the residue Phe-18 which shows a sharp displacement during unfolding. We have noticed that the unfolding of the protein affects the density of water near the protein surface. Besides, the dynamics of water in the protein hydration layer has been found to be strongly correlated with the time evolution of the unfolding process. We have introduced and calculated a displacement time correlation function to monitor the change in water motion relative to the protein backbone during unfolding. We find that the unfolding of helix 2 is associated with an increase in mobility of water around it as compared to water around the other two helices. We have also explored the microscopic aspects of secondary structure specific and site specific solvation dynamics of the protein. The calculations reveal that unfolding influences the solvation dynamics of the protein molecule in a heterogeneous manner depending on the location of the polar probe residues. This seems to be in agreement with recent experimental findings.

  20. Vacuum hydride epitaxy of silicon: kinetics of monosilane pyrolysis on the growth surface

    SciTech Connect

    Orlov, L. K.; Ivin, S. V.

    2011-04-15

    Analytical expressions relating the rate of silicon atom incorporation into a growing crystal to the typical frequency of silane molecule pyrolysis on the silicon surface in the growth temperature range are derived. Based on currently available experimental data, the range of typical decomposition frequencies of hydride molecule radicals adsorbed at the silicon wafer surface in the temperature range of 450-700 Degree-Sign C is determined for the most widely used physicochemical models. It is shown that the most probable molecular decomposition model can be chosen based on the experimental study of the temperature dependence of the decomposition rate of adsorbed hydride molecules. A change in the silane molecule pyrolysis rate or the hydrogen desorption rate from the surface in principle makes it possible to increase the Si layer growth rate without additional substrate heating under conditions of low-temperature epitaxy (450-550 Degree-Sign C), but no larger than by a factor of 2-3 in the former case and up to 100 times in the latter case. The analysis performed shows that physicochemical pyrolysis models in which hydrogen is trapped by the surface, mostly at the stage of decomposition of silane radicals adsorbed by the surface, are more realistic.

  1. Controlling Interfacial Reactions and Intermetallic Compound Growth at the Interface of a Lead-free Solder Joint with Layer-by-Layer Transferred Graphene.

    PubMed

    Ko, Yong-Ho; Lee, Jong-Dae; Yoon, Taeshik; Lee, Chang-Woo; Kim, Taek-Soo

    2016-03-01

    The immoderate growth of intermetallic compounds (IMCs) formed at the interface of a solder metal and the substrate during soldering can degrade the mechanical properties and reliability of a solder joint in electronic packaging. Therefore, it is critical to control IMC growth at the solder joints between the solder and the substrate. In this study, we investigated the control of interfacial reactions and IMC growth by the layer-by-layer transfer of graphene during the reflow process at the interface between Sn-3.0Ag-0.5Cu (in wt %) lead-free solder and Cu. As the number of graphene layers transferred onto the surface of the Cu substrate increased, the thickness of the total IMC (Cu6Sn5 and Cu3Sn) layer decreased. After 10 repetitions of the reflow process for 50 s above 217 °C, the melting temperature of Sn-3.0Ag-0.5Cu, with a peak temperature of 250 °C, the increase in thickness of the total IMC layer at the interface with multiple layers of graphene was decreased by more than 20% compared to that at the interface of bare Cu without graphene. Furthermore, the average diameter of the Cu6Sn5 scallops at the interface with multiple layers of graphene was smaller than that at the interface without graphene. Despite 10 repetitions of the reflow process, the growth of Cu3Sn at the interface with multiple layers of graphene was suppressed by more than 20% compared with that at the interface without graphene. The multiple layers of graphene at the interface between the solder metal and the Cu substrate hindered the diffusion of Cu atoms from the Cu substrate and suppressed the reactions between Cu and Sn in the solder. Thus, the multiple layers of graphene transferred at the interface between dissimilar metals can control the interfacial reaction and IMC growth occurring at the joining interface. PMID:26856638

  2. Understanding the performance of sulfate reducing bacteria based packed bed reactor by growth kinetics study and microbial profiling.

    PubMed

    Dev, Subhabrata; Roy, Shantonu; Bhattacharya, Jayanta

    2016-07-15

    A novel marine waste extract (MWE) as alternative nitrogen source was explored for the growth of sulfate reducing bacteria (SRB). Variation of sulfate and nitrogen (MWE) showed that SRB growth follows an uncompetitive inhibition model. The maximum specific growth rates (μmax) of 0.085 and 0.124 h(-1) and inhibition constants (Ki) of 56 and 4.6 g/L were observed under optimized sulfate and MWE concentrations, respectively. The kinetic data shows that MWE improves the microbial growth by 27%. The packed bed bioreactor (PBR) under optimized sulfate and MWE regime showed sulfate removal efficiency of 62-66% and metals removal efficiency of 66-75% on using mine wastewater. The microbial community analysis using DGGE showed dominance of SRB (87-89%). The study indicated the optimum dosing of sulfate and cheap organic nitrogen to promote the growth of SRB over other bacteria.

  3. Understanding the performance of sulfate reducing bacteria based packed bed reactor by growth kinetics study and microbial profiling.

    PubMed

    Dev, Subhabrata; Roy, Shantonu; Bhattacharya, Jayanta

    2016-07-15

    A novel marine waste extract (MWE) as alternative nitrogen source was explored for the growth of sulfate reducing bacteria (SRB). Variation of sulfate and nitrogen (MWE) showed that SRB growth follows an uncompetitive inhibition model. The maximum specific growth rates (μmax) of 0.085 and 0.124 h(-1) and inhibition constants (Ki) of 56 and 4.6 g/L were observed under optimized sulfate and MWE concentrations, respectively. The kinetic data shows that MWE improves the microbial growth by 27%. The packed bed bioreactor (PBR) under optimized sulfate and MWE regime showed sulfate removal efficiency of 62-66% and metals removal efficiency of 66-75% on using mine wastewater. The microbial community analysis using DGGE showed dominance of SRB (87-89%). The study indicated the optimum dosing of sulfate and cheap organic nitrogen to promote the growth of SRB over other bacteria. PMID:27085153

  4. Chemical vapour deposition growth and Raman characterization of graphene layers and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lai, Y.-C.; Rafailov, P. M.; Vlaikova, E.; Marinova, V.; Lin, S. H.; Yu, P.; Yu, S.-C.; Chi, G. C.; Dimitrov, D.; Sveshtarov, P.; Mehandjiev, V.; Gospodinov, M. M.

    2016-02-01

    Single-layer graphene films were grown by chemical vapour deposition (CVD) on Cu foil. The CVD process was complemented by plasma enhancement to grow also vertically aligned multiwalled carbon nanotubes using Ni nanoparticles as catalyst. The obtained samples were characterized by Raman spectroscopy analysis. Nature of defects in the samples and optimal growth conditions leading to achieve high quality of graphene and carbon nanotubes are discussed.

  5. Effect of interwire separation on growth kinetics and properties of site-selective GaAs nanowires

    SciTech Connect

    Rudolph, D.; Schweickert, L.; Morkötter, S.; Loitsch, B.; Hertenberger, S.; Becker, J.; Bichler, M.; Finley, J. J.; Koblmüller, G.; Abstreiter, G.

    2014-07-21

    We report tuning of the growth kinetics, geometry, and properties of autocatalytic GaAs nanowires (NW) by precisely controlling their density on SiO{sub 2}-mask patterned Si (111) substrates using selective area molecular beam epitaxy. Using patterned substrates with different mask opening size (40–120 nm) and pitch (0.25–3 μm), we find that the NW geometry (length, diameter) is independent of the opening size, in contrast to non-catalytic GaAs NWs, whereas the NW geometry strongly depends on pitch, i.e., interwire separation and NW density. In particular, two distinct growth regimes are identified: a diffusion-limited regime for large pitches (low NW density) and a competitive growth regime for smaller pitches (high NW density), where axial and radial NW growth rates are reduced. The transition between these two regimes is significantly influenced by the growth conditions and shifts to smaller pitches with increasing As/Ga flux ratio. Ultimately, the pitch-dependent changes in growth kinetics lead to distinctly different photoluminescence properties, highlighting that mask template design is a very critical parameter for tuning intrinsic NW properties.

  6. Sputtering temperature dependent growth kinetics and CO2 sensing properties of ZnO deposited over porous silicon

    NASA Astrophysics Data System (ADS)

    Martínez, L.; Holguín-Momaca, J. T.; Karthik, T. V. K.; Olive-Méndez, S. F.; Campos-Alvarez, J.; Agarwal, V.

    2016-10-01

    We report the growth kinetics and sensing properties of ZnO deposited over macro-porous silicon substrates at 400 and 600 °C using magnetron-sputtering technique. Scanning electron microscopy was employed to investigate the morphology and the particle size of the ZnO nanoparticles (NPs). The grain growth kinetics was analyzed with the help of the phenomenological equation rn =k0 texp(- Q / RT) finding an activation energy Q = 13.92 kJ/mol. The grain growth exponent (n = 2.85) for the growth at 400 °C corresponds to an Ostwald ripening process, while the growth at 600 °C is described by n = 1.66 implying a higher growth rate attributed to a high surface diffusion of add-atoms contributing to the formation of larger grains. The sensing response of the complete structure has been tested at different temperatures. The highest sensitivity, S ∼10, was obtained at a sensor temperature of 300 °C on the ZnO NPs sputtered on to the porous silicon substrate at 400 °C. The high response is attributed to the infiltration, uniform and homogenous distribution of the ZnO NPs into the pores. ZnO NPs sputtered at 400 °C are found to be smaller than those grown at 600 °C, exhibiting a larger surface-area/volume ratio and hence increasing the oxygen adsorption resulting in an enhanced CO2 sensitivity.

  7. Wafer-scale growth of MoS2 thin films by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Pyeon, Jung Joon; Kim, Soo Hyun; Jeong, Doo Seok; Baek, Seung-Hyub; Kang, Chong-Yun; Kim, Jin-Sang; Kim, Seong Keun

    2016-05-01

    The wafer-scale synthesis of MoS2 layers with precise thickness controllability and excellent uniformity is essential for their application in the nanoelectronics industry. Here, we demonstrate the atomic layer deposition (ALD) of MoS2 films with Mo(CO)6 and H2S as the Mo and S precursors, respectively. A self-limiting growth behavior is observed in the narrow ALD window of 155-175 °C. Long H2S feeding times are necessary to reduce the impurity contents in the films. The as-grown MoS2 films are amorphous due to the low growth temperature. Post-annealing at high temperatures under a H2S atmosphere efficiently improves the film properties including the crystallinity and chemical composition. An extremely uniform film growth is achieved even on a 4 inch SiO2/Si wafer. These results demonstrate that the current ALD process is well suited for the synthesis of MoS2 layers for application in industry.

  8. Ground layer plant species turnover and beta diversity in southern-European old-growth forests.

    PubMed

    Sabatini, Francesco Maria; Burrascano, Sabina; Tuomisto, Hanna; Blasi, Carlo

    2014-01-01

    Different assembly processes may simultaneously affect local-scale variation of species composition in temperate old-growth forests. Ground layer species diversity reflects chance colonization and persistence of low-dispersal species, as well as fine-scale environmental heterogeneity. The latter depends on both purely abiotic factors, such as soil properties and topography, and factors primarily determined by overstorey structure, such as light availability. Understanding the degree to which plant diversity in old-growth forests is associated with structural heterogeneity and/or to dispersal limitation will help assessing the effectiveness of silvicultural practices that recreate old-growth patterns and structures for the conservation or restoration of plant diversity. We used a nested sampling design to assess fine-scale species turnover, i.e. the proportion of species composition that changes among sampling units, across 11 beech-dominated old-growth forests in Southern Europe. For each stand, we also measured a wide range of environmental and structural variables that might explain ground layer species turnover. Our aim was to quantify the relative importance of dispersal limitation in comparison to that of stand structural heterogeneity while controlling for other sources of environmental heterogeneity. For this purpose, we used multiple regression on distance matrices at the within-stand extent, and mixed effect models at the extent of the whole dataset. Species turnover was best predicted by structural and environmental heterogeneity, especially by differences in light availability and in topsoil nutrient concentration and texture. Spatial distances were significant only in four out of eleven stands with a relatively low explanatory power. This suggests that structural heterogeneity is a more important driver of local-scale ground layer species turnover than dispersal limitation in southern European old-growth beech forests.

  9. Ground Layer Plant Species Turnover and Beta Diversity in Southern-European Old-Growth Forests

    PubMed Central

    Sabatini, Francesco Maria; Burrascano, Sabina; Tuomisto, Hanna; Blasi, Carlo

    2014-01-01

    Different assembly processes may simultaneously affect local-scale variation of species composition in temperate old-growth forests. Ground layer species diversity reflects chance colonization and persistence of low-dispersal species, as well as fine-scale environmental heterogeneity. The latter depends on both purely abiotic factors, such as soil properties and topography, and factors primarily determined by overstorey structure, such as light availability. Understanding the degree to which plant diversity in old-growth forests is associated with structural heterogeneity and/or to dispersal limitation will help assessing the effectiveness of silvicultural practices that recreate old-growth patterns and structures for the conservation or restoration of plant diversity. We used a nested sampling design to assess fine-scale species turnover, i.e. the proportion of species composition that changes among sampling units, across 11 beech-dominated old-growth forests in Southern Europe. For each stand, we also measured a wide range of environmental and structural variables that might explain ground layer species turnover. Our aim was to quantify the relative importance of dispersal limitation in comparison to that of stand structural heterogeneity while controlling for other sources of environmental heterogeneity. For this purpose, we used multiple regression on distance matrices at the within-stand extent, and mixed effect models at the extent of the whole dataset. Species turnover was best predicted by structural and environmental heterogeneity, especially by differences in light availability and in topsoil nutrient concentration and texture. Spatial distances were significant only in four out of eleven stands with a relatively low explanatory power. This suggests that structural heterogeneity is a more important driver of local-scale ground layer species turnover than dispersal limitation in southern European old-growth beech forests. PMID:24748155

  10. Kinetics of Nucleation and Crystal Growth in Glass Forming Melts in Microgravity

    NASA Technical Reports Server (NTRS)

    Day, Delbert E.; Ray, Chandra S.

    2001-01-01

    This flight definition project has the specific objective of investigating the kinetics of nucleation and crystal growth in high temperature inorganic oxide, glass forming melts in microgravity. It is related to one of our previous NASA projects that was concerned with glass formation for high temperature containerless melts in microgravity. The previous work culminated in two experiments which were conducted aboard the space shuttle in 1983 and 1985 and which consisted of melting (at 1500 C) and cooling levitated 6 to 8 mm diameter spherical samples in a Single Axis Acoustic Levitator (SAAL) furnace. Compared to other types of materials, there have been relatively few experiments, 6 to 8, conducted on inorganic glasses in space. These experiments have been concerned with mass transport (alkali diffusion), containerless melting, critical cooling rate for glass formation, chemical homogeneity, fiber pulling, and crystallization of glass forming melts. One of the most important and consistent findings in all of these experiments has been that the glasses prepared in microgravity are more resistant to crystallization (better glass former) and more chemically homogeneous than equivalent glasses made on Earth (1 g). The chemical composition of the melt appears relatively unimportant since the same general results have been reported for oxide, fluoride and chalcogenide melts. These results for space-processed glasses have important implications, since glasses with a higher resistance to crystallization or higher chemical homogeneity than those attainable on Earth can significantly advance applications in areas such as fiber optics communications, high power laser glasses, and other photonic devices where glasses are the key functional materials.

  11. Plagioclase nucleation and growth kinetics in a hydrous basaltic melt by decompression experiments

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Agostini, C.; Landi, P.; Fortunati, A.; Mancini, L.; Carroll, M. R.

    2015-12-01

    Isothermal single-step decompression experiments (at temperature of 1075 °C and pressure between 5 and 50 MPa) were used to study the crystallization kinetics of plagioclase in hydrous high-K basaltic melts as a function of pressure, effective undercooling (Δ T eff) and time. Single-step decompression causes water exsolution and a consequent increase in the plagioclase liquidus, thus imposing an effective undercooling (∆ T eff), accompanied by increased melt viscosity. Here, we show that the decompression process acts directly on viscosity and thermodynamic energy barriers (such as interfacial-free energy), controlling the nucleation process and favoring the formation of homogeneous nuclei also at high pressure (low effective undercoolings). In fact, this study shows that similar crystal number densities ( N a) can be obtained both at low and high pressure (between 5 and 50 MPa), whereas crystal growth processes are favored at low pressures (5-10 MPa). The main evidence of this study is that the crystallization of plagioclase in decompressed high-K basalts is more rapid than that in rhyolitic melts on similar timescales. The onset of the crystallization process during experiments was characterized by an initial nucleation event within the first hour of the experiment, which produced the largest amount of plagioclase. This nucleation event, at short experimental duration, can produce a dramatic change in crystal number density ( N a) and crystal fraction ( ϕ), triggering a significant textural evolution in only 1 h. In natural systems, this may affect the magma rheology and eruptive dynamics on very short time scales.

  12. Thin layer convective air drying of wild edible plant (Allium roseum) leaves: experimental kinetics, modeling and quality.

    PubMed

    Ben Haj Said, Leila; Najjaa, Hanen; Farhat, Abdelhamid; Neffati, Mohamed; Bellagha, Sihem

    2015-06-01

    The present study deals with the valorization of an edible spontaneous plant of the Tunisian arid areas: Allium roseum. This plant is traditionally used for therapeutic and culinary uses. Thin-layer drying behavior of Allium roseum leaves was investigated at 40, 50 and 60 °C drying air temperatures and 1 and l.5 m/s air velocity, in a convective dryer. The increase in air temperature significantly affected the moisture loss and reduced the drying time while air velocity was an insignificant factor during drying of Allium roseum leaves. Five models selected from the literature were found to satisfactorily describe drying kinetics of Allium roseum leaves for all tested drying conditions. Drying data were analyzed to obtain moisture diffusivity values. During the falling rate-drying period, moisture transfer from Allium roseum leaves was described by applying the Fick's diffusion model. Moisture diffusivity varied from 2.55 × 10(-12) to 8.83 × 10(-12) m(2)/s and increased with air temperature. Activation energy during convective drying was calculated using an exponential expression based on Arrhenius equation and ranged between 46.80 and 52.68 kJ/mol. All sulfur compounds detected in the fresh leaves were detected in the dried leaves. Convective air drying preserved the sulfur compounds potential formation.

  13. Adsorption and photodegradation kinetics of herbicide 2,4,5-trichlorophenoxyacetic acid with MgFeTi layered double hydroxides.

    PubMed

    Nguyen, Thi Kim Phuong; Beak, Min-wook; Huy, Bui The; Lee, Yong-Ill

    2016-03-01

    The calcined layered double hydroxides (cLDHs) Ti-doped and undoped MgFe for this study were prepared by co-precipitation method followed by calcination at 500 °C. The as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer Emmett Teller (BET) and UV-Vis diffuse reflectance spectrum (DRS) techniques and tested for adsorption and photodegradation (including photocatalytic and photo-Fenton-like) of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) in aqueous solutions under visible light irradiation. In the range of studied operating conditions, the as-prepared samples exhibited excellent photo-Fenton-like activity, leading to more than 80-95% degradation of 2,4,5-T at initial concentration of 100 mg L(-1) with 4 g calcined LDHs per liter, was accomplished in 360 min, while 2,4,5-T half-life time was as short as 99-182 min. The kinetics of adsorption and photodegradation of 2,4,5-T were also discussed. These results offered a green, low cost and high efficiency photocatalyst for environmental remediation.

  14. Nucleation and growth of ZnO on PMMA by low-temperature atomic layer deposition

    SciTech Connect

    Napari, Mari Malm, Jari; Lehto, Roope; Julin, Jaakko; Arstila, Kai; Sajavaara, Timo; Lahtinen, Manu

    2015-01-15

    ZnO films were grown by atomic layer deposition at 35 °C on poly(methyl methacrylate) substrates using diethylzinc and water precursors. The film growth, morphology, and crystallinity were studied using Rutherford backscattering spectrometry, time-of-flight elastic recoil detection analysis, atomic force microscopy, scanning electron microscopy, and x-ray diffraction. The uniform film growth was reached after several hundreds of deposition cycles, preceded by the precursor penetration into the porous bulk and island-type growth. After the full surface coverage, the ZnO films were stoichiometric, and consisted of large grains (diameter 30 nm) with a film surface roughness up to 6 nm (RMS). The introduction of Al{sub 2}O{sub 3} seed layer enhanced the initial ZnO growth substantially and changed the surface morphology as well as the crystallinity of the deposited ZnO films. Furthermore, the water contact angles of the ZnO films were measured, and upon ultraviolet illumination, the ZnO films on all the substrates became hydrophilic, independent of the film crystallinity.

  15. Low-Temperature Growth of Two-Dimensional Layered Chalcogenide Crystals on Liquid.

    PubMed

    Zhou, Yubing; Deng, Bing; Zhou, Yu; Ren, Xibiao; Yin, Jianbo; Jin, Chuanhong; Liu, Zhongfan; Peng, Hailin

    2016-03-01

    The growth of high-quality two-dimensional (2D) layered chalcogenide crystals is highly important for practical applications in future electronics, optoelectronics, and photonics. Current route for the synthesis of 2D chalcogenide crystals by vapor deposition method mainly involves an energy intensive high-temperature growth process on solid substrates, often suffering from inhomogeneous nucleation density and grain size distribution. Here, we first demonstrate a facile vapor-phase synthesis of large-area high-quality 2D layered chalcogenide crystals on liquid metal surface with relatively low surface energy at a growth temperature as low as ∼100 °C. Uniform and large-domain-sized 2D crystals of GaSe and GaxIn1-xSe were grown on liquid metal surface even supported on a polyimide film. As-grown 2D GaSe crystals have been fabricated to flexible photodetectors, showing high photoresponse and excellent flexibility. Our strategy of energy-sustainable low-temperature growth on liquid metal surface may open a route to the synthesis of high-quality 2D crystals of Ga-, In-, Bi-, Hg-, Pb-, or Sn-based chalcogenides and halides.

  16. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers.

    PubMed

    Najmaei, Sina; Liu, Zheng; Zhou, Wu; Zou, Xiaolong; Shi, Gang; Lei, Sidong; Yakobson, Boris I; Idrobo, Juan-Carlos; Ajayan, Pulickel M; Lou, Jun

    2013-08-01

    Single-layered molybdenum disulphide with a direct bandgap is a promising two-dimensional material that goes beyond graphene for the next generation of nanoelectronics. Here, we report the controlled vapour phase synthesis of molybdenum disulphide atomic layers and elucidate a fundamental mechanism for the nucleation, growth, and grain boundary formation in its crystalline monolayers. Furthermore, a nucleation-controlled strategy is established to systematically promote the formation of large-area, single- and few-layered films. Using high-resolution electron microscopy imaging, the atomic structure and morphology of the grains and their boundaries in the polycrystalline molybdenum disulphide atomic layers are examined, and the primary mechanisms for grain boundary formation are evaluated. Grain boundaries consisting of 5- and 7- member rings are directly observed with atomic resolution, and their energy landscape is investigated via first-principles calculations. The uniformity in thickness, large grain sizes, and excellent electrical performance signify the high quality and scalable synthesis of the molybdenum disulphide atomic layers.

  17. Influence of Dopant on Growth of Intermetallic Layers in Sn-Ag-Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Li, G. Y.; Bi, X. D.; Chen, Q.; Shi, X. Q.

    2011-02-01

    The interfacial interaction between Cu substrates and Sn-3.5Ag-0.7Cu- xSb ( x = 0, 0.2, 0.5, 0.8, 1.0, 1.5, and 2.0) solder alloys has been investigated under different isothermal aging temperatures of 100°C, 150°C, and 190°C. Scanning electron microscopy (SEM) was used to measure the thickness of the intermetallic compound (IMC) layer and observe the microstructural evolution of the solder joints. The IMC phases were identified by energy-dispersive x-ray spectroscopy (EDX) and x-ray diffractometry (XRD). The growth of both the Cu6Sn5 and Cu3Sn IMC layers at the interface between the Cu substrate and the solder fits a power-law relationship with the exponent ranging from 0.42 to 0.83, which suggests that the IMC growth is primarily controlled by diffusion but may also be influenced by interface reactions. The activation energies and interdiffusion coefficients of the IMC formation of seven solder alloys were determined. The addition of Sb has a strong influence on the growth of the Cu6Sn5 layer, but very little influence on the formation of the Cu3Sn IMC phase. The thickness of the Cu3Sn layer rapidly increases with aging time and temperature, whereas the thickness of the Cu6Sn5 layer increases slowly. This is probably due to the formation of Cu3Sn at the interface between two IMC phases, which occurs with consumption of Cu6Sn5. Adding antimony to Sn-3.5Ag-0.7Cu solder can evidently increase the activation energy of Cu6Sn5 IMC formation, reduce the atomic diffusion rate, and thus inhibit excessive growth of Cu6Sn5 IMCs. This study suggests that grain boundary pinning is one of the most important mechanisms for inhibiting the growth of Cu6Sn5 IMCs in such solder joints when Sb is added.

  18. Layered Plant-Growth Media for Optimizing Gaseous, Liquid and Nutrient Requirements: Modeling, Design and Monitoring

    NASA Astrophysics Data System (ADS)

    Heinse, R.; Jones, S. B.; Bingham, G.; Bugbee, B.

    2006-12-01

    Rigorous management of restricted root zones utilizing coarse-textured porous media greatly benefits from optimizing the gas-water balance within plant-growth media. Geophysical techniques can help to quantify root- zone parameters like water content, air-filled porosity, temperature and nutrient concentration to better address the root systems performance. The efficiency of plant growth amid high root densities and limited volumes is critically linked to maintaining a favorable water content/air-filled porosity balance while considering adequate fluxes to replenish water at decreasing hydraulic conductivities during uptake. Volumes adjacent to roots also need to be optimized to provide adequate nutrients throughout the plant's life cycle while avoiding excessive salt concentrations. Our objectives were to (1) design and model an optimized root zone system using optimized porous media layers, (2) verify our design by monitoring the water content distribution and tracking nutrient release and transport, and (3) mimic water and nutrient uptake using plants or wicks to draw water from the root system. We developed a unique root-zone system using layered Ottawa sands promoting vertically uniform water contents and air-filled porosities. Watering was achieved by maintaining a shallow saturated layer at the bottom of the column and allowing capillarity to draw water upward, where coarser particle sizes formed the bottom layers with finer particles sizes forming the layers above. The depth of each layer was designed to optimize water content based on measurements and modeling of the wetting water retention curves. Layer boundaries were chosen to retain saturation between 50 and 85 percent. The saturation distribution was verified by dual-probe heat-pulse water-content sensors. The nutrient experiment involved embedding slow release fertilizer in the porous media in order to detect variations in electrical resistivity versus time during the release, diffusion and uptake of

  19. Study of Grain-Growth Kinetics in Delta-Ferrite and Austenite with Application to Thin-Slab Cast Direct-Rolling Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Zhou, Tihe; O'Malley, Ronald J.; Zurob, Hatem S.

    2010-08-01

    The high-temperature grain-growth kinetics in delta-ferrite and austenite is investigated. The delta-ferrite growth kinetics was observed directly on a model alloy that contained 2.5 wt pct aluminum in order to stabilize delta-ferrite down to room temperature. The gamma grain-growth kinetics was by etching the former austenite grain boundaries in a precipitate-free variant of APIX60 steel. At high temperatures and in the absence of precipitation, the growth kinetics in both delta-ferrite and austenite appeared to follow a simple parabolic growth law. The findings are applied to the problem of grain-size control during the process of thin-slab casting direct rolling (TSCDR).

  20. MBE growth technology for high quality strained III-V layers

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J. (Inventor); Liu, John K. (Inventor); Hancock, Bruce R. (Inventor)

    1992-01-01

    III-V films are grown on large automatically perfect terraces of III-V substrates which have a different lattice constant, with temperature and Group II and V arrival rates chosen to give a Group III element stable surface. The growth is pulsed to inhibit Group III metal accumulation to low temperature, and to permit the film to relax to equilibrium. The method of the invention 1) minimizes starting step density on sample surface; 2) deposits InAs and GaAs using an interrupted growth mode (0.25 to 2 mono-layers at a time); 3) maintains the instantaneous surface stoichiometry during growth (As-stable for GaAs, In-stable for InAs); and 4) uses time-resolved RHEED to achieve aspects (1)-14 (3).

  1. Analysis of an Energy Localization Approximation applied to three-dimensional Kinetic Monte Carlo simulations of heteroepitaxial growth

    NASA Astrophysics Data System (ADS)

    Golenbiewski, Kyle L.; Schulze, Tim P.

    2016-10-01

    Heteroepitaxial growth involves depositing one material onto another with a different lattice spacing. This misfit leads to long-range elastic stresses that affect the behavior of the film. Previously, an Energy Localization Approximation was applied to Kinetic Monte Carlo simulations of two-dimensional growth in which the elastic field is updated using a sequence of nested domains. We extend the analysis of this earlier work to a three-dimensional setting and show that while it scales with the increase in dimensionality, a more intuitive Energy Truncation Approximation does not.

  2. Mechanochemical approach to get layered double hydroxides: Mechanism explore on crystallite growth

    NASA Astrophysics Data System (ADS)

    Zeng, Mei-Gui; Huo, Xiao-Lei; Liu, Su-Qing; Li, Shu-Ping; Li, Xiao-Dong

    2014-02-01

    In this paper, the mechanochemical approach, which includes solid state reactions and hydrothermal treatment, has been proposed to synthesize magnesium-aluminum-layered double hydroxides (Mg-Al-LDHs). Specially, the reaction process of solid state reactions has been explored, and it presents that crystallite growth is the rate-controlling process. The hydrothermal treatment is performed after solid state reactions, on one hand, the crystallinity and monodispersity of final LDHs particles can be improved, on the other hand, such treatment can tailor the particle size efficiently. Furthermore, the relationship between particle size and hydrothermal conditions (time and temperature) has been systematically investigated, which indicates that the particle size and monodispersity can be effectively controlled. The crystallite growth along a-b plane and c-axis has been emphatically discussed, and the results show that under relatively low temperatures such as 100 °C, the gradual growth along c-axis has been found in the range of 48 h, and high temperatures will hider its growth on the contrary. Crystal growth along a-b plane could be accelerated by higher hydrothermal temperature and longer treatment time. Our studies also show that during the hydrothermal treatment, such events as aggregation, disaggregation and particle growth, occur in series or in parallel with time. At last, the Mg-Al-CO3-LDHs samples (synthesized at 100 °C for 24, 36 and 48 h) which were acid activated by HCOOH were used to adsorb fluoride ions present in aqueous solution.

  3. Crack Growth Prediction Methodology for Multi-Site Damage: Layered Analysis and Growth During Plasticity

    NASA Technical Reports Server (NTRS)

    James, Mark Anthony

    1999-01-01

    A finite element program has been developed to perform quasi-static, elastic-plastic crack growth simulations. The model provides a general framework for mixed-mode I/II elastic-plastic fracture analysis using small strain assumptions and plane stress, plane strain, and axisymmetric finite elements. Cracks are modeled explicitly in the mesh. As the cracks propagate, automatic remeshing algorithms delete the mesh local to the crack tip, extend the crack, and build a new mesh around the new tip. State variable mapping algorithms transfer stresses and displacements from the old mesh to the new mesh. The von Mises material model is implemented in the context of a non-linear Newton solution scheme. The fracture criterion is the critical crack tip opening displacement, and crack direction is predicted by the maximum tensile stress criterion at the crack tip. The implementation can accommodate multiple curving and interacting cracks. An additional fracture algorithm based on nodal release can be used to simulate fracture along a horizontal plane of symmetry. A core of plane strain elements can be used with the nodal release algorithm to simulate the triaxial state of stress near the crack tip. Verification and validation studies compare analysis results with experimental data and published three-dimensional analysis results. Fracture predictions using nodal release for compact tension, middle-crack tension, and multi-site damage test specimens produced accurate results for residual strength and link-up loads. Curving crack predictions using remeshing/mapping were compared with experimental data for an Arcan mixed-mode specimen. Loading angles from 0 degrees to 90 degrees were analyzed. The maximum tensile stress criterion was able to predict the crack direction and path for all loading angles in which the material failed in tension. Residual strength was also accurately predicted for these cases.

  4. Atmospheric pressure flow reactor / aerosol mass spectrometer studies of tropospheric aerosol nucleat and growth kinetics. Final report, June, 2001

    SciTech Connect

    Worsnop, Douglas R.

    2001-06-01

    The objective of this program was to determine the mechanisms and rates of growth and transformation and growth processes that control secondary aerosol particles in both the clear and polluted troposphere. The experimental plan coupled an aerosol mass spectrometer (AMS) with a chemical ionization mass spectrometer to provide simultaneous measurement of condensed and particle phases. The first task investigated the kinetics of tropospheric particle growth and transformation by measuring vapor accretion to particles (uptake coefficients, including mass accommodation coefficients and heterogeneous reaction rate coefficients). Other work initiated investigation of aerosol nucleation processes by monitoring the appearance of submicron particles with the AMS as a function of precursor gas concentrations. Three projects were investigated during the program: (1) Ozonolysis of oleic acid aerosols as model of chemical reactivity of secondary organic aerosol; (2) Activation of soot particles by measurement deliquescence in the presence of sulfuric acid and water vapor; (3) Controlled nucleation and growth of sulfuric acid aerosols.

  5. Influence of layering on the formation and growth of dissolution pipes in karst systems

    NASA Astrophysics Data System (ADS)

    Petrus, Karine; Pecelerowicz, Michal; Szymczak, Piotr

    2015-04-01

    In karst systems, hydraulic conduits called dissolution pipes (a.k.a. wormholes) are formed as a result of the dissolution of limestone rocks by the water surcharged with CO2. The dissolution pipes are the end result of a positive feedback between spatial variations in porosity in the initial matrix and the local dissolution rate. A small enhancement in porosity at some point in the reaction front increases the fluid flow in that region, which convects reactant further downstream. By this means any local variation in porosity is amplified as the reaction front passes through and propagates downstream with the front, eventually developing into dissolution pipes. As dissolution proceeds the growing pipes interact, competing for the available flow, and eventually the growth of the shorter ones ceases. Here, we investigate numerically the effect of rock stratification on the dissolution pipe growth, using a simple model system with a number of horizontal bedding planes, which are less porous than the rest of the matrix. Stratification is shown to affect the resulting piping patterns in a variety of ways. First of all, it enhances the competition between the pipes, impeding the growth of the shorter ones and enhancing the flow in the longer ones, which therefore grow longer. Next, it affects the shapes of individual dissolution pipes, with characteristic widening of the profiles in between the layers and narrowing within the layers. These results are in qualitative agreement with the piping morphologies observed in nature. Importantly, measuring the ratio between the pipe diameters in different layers can provide one with information on the conditions prevailing during the formation of the pattern as well as on the physical characteristics of the layers in a given natural system. Additionally, we have investigated the model with layers of the same porosity but a smaller dissolution rate. Interestingly, in this case, the stratification is shown to weaken the competition

  6. Quantification of epidermal growth factor receptor expression level and binding kinetics on cell surfaces by surface plasmon resonance imaging.

    PubMed

    Zhang, Fenni; Wang, Shaopeng; Yin, Linliang; Yang, Yunze; Guan, Yan; Wang, Wei; Xu, Han; Tao, Nongjian

    2015-10-01

    Epidermal growth factor receptor (EGFR, also known as ErbB-1 or HER-1) is a membrane bound protein that has been associated with a variety of solid tumors and the control of cell survival, proliferation, and metabolism. Quantification of the EGFR expression level in cell membranes and the interaction kinetics with drugs are thus important for cancer diagnosis and treatment. Here we report mapping of the distribution and interaction kinetics of EGFR in their native environment with the surface plasmon resonance imaging (SPRi) technique. The monoclonal anti-EGFR antibody was used as a model drug in this study. The binding of the antibody to EGFR overexpressed A431 cells was monitored in real time, which was found to follow the first-order kinetics with an association rate constant (ka) and dissociation rate constant (kd) of (2.7 ± 0.6) × 10(5) M(-1) s(-1) and (1.4 ± 0.5) × 10(-4) s(-1), respectively. The dissociation constant (KD) was determined to be 0.53 ± 0.26 nM with up to seven-fold variation among different individual A431 cells. In addition, the averaged A431 cell surface EGFR density was found to be 636/μm(2) with an estimation of 5 × 10(5) EGFR per cell. Additional measurement also revealed that different EGFR positive cell lines (A431, HeLa, and A549) show receptor density dependent anti-EGFR binding kinetics. The results demonstrate that SPRi is a valuable tool for direct quantification of membrane protein expression level and ligand binding kinetics at single cell resolution. Our findings show that the local environment affects the drug-receptor interactions, and in situ measurement of membrane protein binding kinetics is important.

  7. Growth and characterization of epitaxial aluminum layers on gallium-arsenide substrates for superconducting quantum bits

    NASA Astrophysics Data System (ADS)

    Tournet, J.; Gosselink, D.; Miao, G.-X.; Jaikissoon, M.; Langenberg, D.; McConkey, T. G.; Mariantoni, M.; Wasilewski, Z. R.

    2016-06-01

    The quest for a universal quantum computer has renewed interest in the growth of superconducting materials on semiconductor substrates. High-quality superconducting thin films will make it possible to improve the coherence time of superconducting quantum bits (qubits), i.e., to extend the time a qubit can store the amplitude and phase of a quantum state. The electrical losses in superconducting qubits highly depend on the quality of the metal layers the qubits are made from. Here, we report on the epitaxy of single-crystal Al (011) layers on GaAs (001) substrates. Layers with 110 nm thickness were deposited by means of molecular beam epitaxy at low temperature and monitored by in situ reflection high-energy electron diffraction performed simultaneously at four azimuths. The single-crystal nature of the layers was confirmed by ex situ high-resolution x-ray diffraction. Differential interference contrast and atomic force microscopy analysis of the sample’s surface revealed a featureless surface with root mean square roughness of 0.55 nm. A detailed in situ study allowed us to gain insight into the nucleation mechanisms of Al layers on GaAs, highlighting the importance of GaAs surface reconstruction in determining the final Al layer crystallographic orientation and quality. A highly uniform and stable GaAs (001)-(2× 4) reconstruction reproducibly led to a pure Al (011) phase, while an arsenic-rich GaAs (001)-(4× 4) reconstruction yielded polycrystalline films with an Al (111) dominant orientation. The near-atomic smoothness and single-crystal character of Al films on GaAs, in combination with the ability to trench GaAs substrates, could set a new standard for the fabrication of superconducting qubits.

  8. A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production.

    PubMed

    Lo, Tat-Ming; Chng, Si Hui; Teo, Wei Suong; Cho, Han-Saem; Chang, Matthew Wook

    2016-08-01

    We present a synthetic gene circuit for decoupling cell growth from metabolite production through autonomous regulation of enzymatic pathways by integrated modules that sense nutrient and substrate. The two-layer circuit allows Escherichia coli to selectively utilize target substrates in a mixed pool; channel metabolic resources to growth by delaying enzymatic conversion until nutrient depletion; and activate, terminate, and re-activate conversion upon substrate availability. We developed two versions of controller, both of which have glucose nutrient sensors but differ in their substrate-sensing modules. One controller is specific for hydroxycinnamic acid and the other for oleic acid. Our hydroxycinnamic acid controller lowered metabolic stress 2-fold and increased the growth rate 2-fold and productivity 5-fold, whereas our oleic acid controller lowered metabolic stress 2-fold and increased the growth rate 1.3-fold and productivity 2.4-fold. These results demonstrate the potential for engineering strategies that decouple growth and production to make bio-based production more economical and sustainable. PMID:27559924

  9. A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production.

    PubMed

    Lo, Tat-Ming; Chng, Si Hui; Teo, Wei Suong; Cho, Han-Saem; Chang, Matthew Wook

    2016-08-01

    We present a synthetic gene circuit for decoupling cell growth from metabolite production through autonomous regulation of enzymatic pathways by integrated modules that sense nutrient and substrate. The two-layer circuit allows Escherichia coli to selectively utilize target substrates in a mixed pool; channel metabolic resources to growth by delaying enzymatic conversion until nutrient depletion; and activate, terminate, and re-activate conversion upon substrate availability. We developed two versions of controller, both of which have glucose nutrient sensors but differ in their substrate-sensing modules. One controller is specific for hydroxycinnamic acid and the other for oleic acid. Our hydroxycinnamic acid controller lowered metabolic stress 2-fold and increased the growth rate 2-fold and productivity 5-fold, whereas our oleic acid controller lowered metabolic stress 2-fold and increased the growth rate 1.3-fold and productivity 2.4-fold. These results demonstrate the potential for engineering strategies that decouple growth and production to make bio-based production more economical and sustainable.

  10. Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system

    PubMed Central

    Kulkarni, Abhishek; Ertekin, Deniz; Lee, Chi-Hon; Hummel, Thomas

    2016-01-01

    The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila. DOI: http://dx.doi.org/10.7554/eLife.13715.001 PMID:26987017

  11. Reduced growth temperature of Bi6FeCoTi3O18 thin films by conductive bottom layers

    NASA Astrophysics Data System (ADS)

    Yun, Yu; Huang, Haoliang; Meng, Dechao; Cui, Zhangzhang; Wang, Jianlin; Fu, Zhengping; Peng, Ranran; Zhai, Xiaofang; Lu, Yalin

    2016-11-01

    The Aurivillius layered oxide homologous series attract wide interests due to their room temperature multiferroic properties. Unfortunately, the synthesis of such layered oxide epitaxial thin films has been a major challenge owing to the occurrence of growth defects and narrow growth temperature window. To obtain high quality epitaxial Bi6FeCoTi3O18 (BFCTO) thin films, the effects of insulating and conductive bottom layers were studied by laser molecular beam epitaxy. We found that the optimal deposition temperature for growth on conductive bottom layers is more than 90 °C lower than that on insulating bottom layers, which indicates the interface between BFCTO and conductive bottom layers has smaller interfacial energy than the interface between BFCTO and insulating bottom layers. The magnetic and ferroelectric properties of the optimized BFCTO thin films on insulating substrate and conductive bottom layers were studied. This study is important to control the growth of complex layered oxide thin films and exploit the applications for future room temperature multiferroic devices.

  12. Epitaxial Growth of Perovskite Strontium Titanate on Germanium via Atomic Layer Deposition.

    PubMed

    Lin, Edward L; Edmondson, Bryce I; Hu, Shen; Ekerdt, John G

    2016-01-01

    Atomic layer deposition (ALD) is a commercially utilized deposition method for electronic materials. ALD growth of thin films offers thickness control and conformality by taking advantage of self-limiting reactions between vapor-phase precursors and the growing film. Perovskite oxides present potential for next-generation electronic materials, but to-date have mostly been deposited by physical methods. This work outlines a method for depositing SrTiO3 (STO) on germanium using ALD. Germanium has higher carrier mobilities than silicon and therefore offers an alternative semiconductor material with faster device operation. This method takes advantage of the instability of germanium's native oxide by using thermal deoxidation to clean and reconstruct the Ge (001) surface to the 2×1 structure. 2-nm thick, amorphous STO is then deposited by ALD. The STO film is annealed under ultra-high vacuum and crystallizes on the reconstructed Ge surface. Reflection high-energy electron diffraction (RHEED) is used during this annealing step to monitor the STO crystallization. The thin, crystalline layer of STO acts as a template for subsequent growth of STO that is crystalline as-grown, as confirmed by RHEED. In situ X-ray photoelectron spectroscopy is used to verify film stoichiometry before and after the annealing step, as well as after subsequent STO growth. This procedure provides framework for additional perovskite oxides to be deposited on semiconductors via chemical methods in addition to the integration of more sophisticated heterostructures already achievable by physical methods. PMID:27501462

  13. Capping hazardous red mud using acidic soil with an embedded layer of zeolite for plant growth.

    PubMed

    Ma, Yingqun; Si, Chunhua; Lin, Chuxia

    2014-01-01

    A nearly three-year microcosm experiment was conducted to test the effectiveness of capping red mud using acidic soil with an embedded layer of zeolite in sustaining the growth of a grass species. This 'sandwich-structured' design allowed self-sustaining growth of the plants under rain-fed conditions no matter whether the underlying red mud was neutralized or not. During the initial stage, the plants grew better when the red mud was not neutralized with MgCl2 probably due to pH rise in the root zone. Neutralization of red mud led to salinization and pH decrease in the root zone. However, the difference in plant growth performance between these scenarios became less remarkable over time due to gradual improvement of soil conditions in the neutralized scenarios. Continuous leaching of soluble salts and alkali by rainwater extended the root zone to the red mud layer. As a result of vegetative production, soil organic matter rapidly accumulated. This, combined with increase in pH and decrease in salinity, markedly facilitated microbial activities and consequently improved the supply of nutrients. This study provides abasis for field-scale experimental design that will have implications for effectively establishing vegetative cover in red mud disposal sites to control dust hazards.

  14. Hydrodynamic Instability Growth Measurements at the Ablator-Fuel Interface in Layered ICF Capsule Implosions

    NASA Astrophysics Data System (ADS)

    Doeppner, Tilo; Weber, Chris; Casey, Dan; Bunn, Tom; Carlson, Lane; Dylla-Spears, Rebecca; Kozioziemski, Bernie; Macphee, Andy; Sater, Jim; Robey, Harry; Smalyuk, Vladimir

    2015-11-01

    Based on the well-established Hydro-growth Radiography (HGR) concept we have successfully developed and fielded a new target platform to measure instability growth at the ablator-fuel interface in layered capsule implosions on the NIF. We present the results of a proof-of-principle experiment for which mode 60 perturbations with an amplitude of 4.4 μm peak-to-valley were laser-machined at the inside of a 0.8-scale plastic ablator capsule. A 55 μm thick, polycrystalline DT ice layer was grown on top of these perturbations. High quality radiography data were recorded at 4 times, showing the growth of these perturbations in both the linear and non-linear stage. We find good agreement with preliminary HYDRA simulations that include small-scale perturbations introduced by the laser machining. Future directions will be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE- AC52-07NA27344.

  15. Reduced interaction layer growth of U-Mo dispersion in Al-Si

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Park, Jong Man; Ryu, Ho Jin; Jung, Yang Hong; Hofman, G. L.

    2012-11-01

    Development of high U-density U-Mo fuel particle dispersion in Al is needed to convert high power research and test reactors from HEU to LEU. Interaction layer growth between U-Mo and Al poses a challenge to this goal. The KOMO-4 test was designed at KAERI and irradiated in the HANARO reactor to ˜50% burnup of initial 19.75% U-235 enrichment at ˜200 °C. The main objective of the test was to examine the effect of the Si content in the matrix up to 8 wt.%. U-Mo/Al-Si dispersion samples with a Si addition in the range 0-8 wt.% in the matrix were tested. A sample with pre-irradiation Si-containing interaction layers (ILs) was also tested. As the Si content in the matrix increases, the IL growth was progressively reduced. Contrary to the thermodynamics prediction and out-of-pile observations, however, Si accumulation in the ILs occurred near the IL-matrix interface with only a slight increase in concentration. The effect of the pre-formed ILs was insignificant in reducing IL growth.

  16. New insight into the ZnO sulfidation reaction: mechanism and kinetics modeling of the ZnS outward growth.

    PubMed

    Neveux, Laure; Chiche, David; Pérez-Pellitero, Javier; Favergeon, Loïc; Gay, Anne-Sophie; Pijolat, Michèle

    2013-02-01

    Zinc oxide based materials are commonly used for the final desulfurization of synthesis gas in Fischer-Tropsch based XTL processes. Although the ZnO sulfidation reaction has been widely studied, little is known about the transformation at the crystal scale, its detailed mechanism and kinetics. A model ZnO material with well-determined characteristics (particle size and shape) has been synthesized to perform this study. Characterizations of sulfided samples (using XRD, TEM and electron diffraction) have shown the formation of oriented polycrystalline ZnS nanoparticles with a predominant hexagonal form (wurtzite phase). TEM observations also have evidenced an outward development of the ZnS phase, showing zinc and oxygen diffusion from the ZnO-ZnS internal interface to the surface of the ZnS particle. The kinetics of ZnO sulfidation by H(2)S has been investigated using isothermal and isobaric thermogravimetry. Kinetic tests have been performed that show that nucleation of ZnS is instantaneous compared to the growth process. A reaction mechanism composed of eight elementary steps has been proposed to account for these results, and various possible rate laws have been determined upon approximation of the rate-determining step. Thermogravimetry experiments performed in a wide range of H(2)S and H(2)O partial pressures have shown that the ZnO sulfidation reaction rate has a nonlinear variation with H(2)S partial pressure at the same time no significant influence of water vapor on reaction kinetics has been observed. From these observations, a mixed kinetics of external interface reaction with water desorption and oxygen diffusion has been determined to control the reaction kinetics and the proposed mechanism has been validated. However, the formation of voids at the ZnO-ZnS internal interface, characterized by TEM and electron tomography, strongly slows down the reaction rate. Therefore, the impact of the decreasing ZnO-ZnS internal interface on reaction kinetics has been

  17. The role of Ag buffer layer in Fe islands growth on Ge (111) surfaces

    SciTech Connect

    Fu, Tsu-Yi Wu, Jia-Yuan; Jhou, Ming-Kuan; Hsu, Hung-Chan

    2015-05-07

    Sub-monolayer iron atoms were deposited at room temperature on Ge (111)-c(2 × 8) substrates with and without Ag buffer layers. The behavior of Fe islands growth was investigated by using scanning tunneling microscope (STM) after different annealing temperatures. STM images show that iron atoms will cause defects and holes on substrates at room temperature. As the annealing temperature rises, iron atoms pull out germanium to form various kinds of alloyed islands. However, the silver layer can protect the Ag/Ge(111)-(√3×√3) reconstruction from forming defects. The phase diagram shows that ring, dot, and triangular defects were only found on Ge (111)-c(2 × 8) substrates. The kinds of islands found in Fe/Ge system are similar to Fe/Ag/Ge system. It indicates that Ge atoms were pulled out to form islands at high annealing temperatures whether there was a Ag layer or not. But a few differences in big pyramidal or strip islands show that the silver layer affects the development of islands by changing the surface symmetry and diffusion coefficient. The structure characters of various islands are also discussed.

  18. Electrochemical and spectroelectrochemical behavior of the TCNQ(0/)(-) couple on a glassy carbon electrode. Layer-by-layer nucleation and growth.

    PubMed

    Gómez, L; Rodríguez-Amaro, R

    2006-08-15

    On the basis of the electrochemical results obtained for thin films of 7,7,8,8- tetracyanoquinodimethane (TCNQ) on a glassy carbon electrode, the reduction and oxidation of the [TCNQ](0/)(-) couple in KCl aqueous media occurs via a mechanism involving layer-by-layer nucleation and growth. In situ recorded UV-visible spectroelectrochemical data allow two different crystal structures for the oxidized form of TCNQ to be discriminated. PMID:16893249

  19. Electrochemical and spectroelectrochemical behavior of the TCNQ(0/)(-) couple on a glassy carbon electrode. Layer-by-layer nucleation and growth.

    PubMed

    Gómez, L; Rodríguez-Amaro, R

    2006-08-15

    On the basis of the electrochemical results obtained for thin films of 7,7,8,8- tetracyanoquinodimethane (TCNQ) on a glassy carbon electrode, the reduction and oxidation of the [TCNQ](0/)(-) couple in KCl aqueous media occurs via a mechanism involving layer-by-layer nucleation and growth. In situ recorded UV-visible spectroelectrochemical data allow two different crystal structures for the oxidized form of TCNQ to be discriminated.

  20. Kinetic modeling of anthocyanin degradation and microorganism growth during postharvest storage of açai fruits (Euterpe oleracea).

    PubMed

    Rogez, Hervé; Akwie, Santuscha N L T; Moura, Fábio G; Larondelle, Yvan

    2012-12-01

    The unavoidable damage of açai (Euterpe oleracea) fruits (AF) during picking leads to microbial contamination and anthocyanin degradation, which prejudice the consumed fruit drink. Thirteen lots of AF (24 kg) from different municipal districts of the Pará State (Brazil) were monitored during a 75-h-long storage in the dark at 30 °C for microbial growth, and 7 lots for anthocyanin degradation. On arrival at the laboratory, anthocyanins presented a mean concentration of 828 mg kg(-1) fruits with a standard deviation of 323 mg kg(-1) fruits whereas mean microbial contamination was 2.64 10(6) CFU g(-1) of dry matter for total mesophilic bacteria, 1.98 10(3) MPN g(-1) DM for fecal coliforms, and 1.11 10(5) CFU g(-1) DM for moulds and yeasts. Kinetic growth of the microbes could be fitted to a quadratic equation with an unusual rapid growth during the 1st 24 h. The kinetics of anthocyanin degradation fitted a 1st-order equation. The mean velocity constant of the reaction (k(1)) was of 0.0137 h(-1) and the mean half-life (t(½)) of the anthocyanins was 50 h. These results indicate that the AF simultaneously suffer extensive anthocyanin degradation and explosive microbial growth during the postharvest period needing a special care.

  1. Activation of oxygen-mediating pathway using copper ions: fine-tuning of growth kinetics in gold nanorod overgrowth.

    PubMed

    Liu, Wenqi; Zhang, Hui; Wen, Tao; Yan, Jiao; Hou, Shuai; Shi, Xiaowei; Hu, Zhijian; Ji, Yinglu; Wu, Xiaochun

    2014-10-21

    Growth kinetics plays an important role in the shape control of nanocrystals (NCs). Herein, we presented a unique way to fine-tune the growth kinetics via oxidative etching activated by copper ions. For the overgrowth of gold nanorods (Au NRs), competitive adsorption of dissolved oxygen on rod surface was found to slow down the overgrowth rate. Copper ions were able to remove the adsorbed oxygen species from the Au surface via oxidative etching, thus exposing more reaction sites for Au deposition. In this way, copper ions facilitated the overgrowth process. Furthermore, Cu(2+) rather than Cu(+) acted as the catalyst for the oxidative etching. Comparative study with Ag(+) indicated that Cu(2+) cannot regulate NC shapes via an underpotential deposition mechanism. In contrast, Ag(+) led to the formation of Au tetrahexahedra (THH) and a slight decrease of the growth rate at similar growth conditions. Combining the distinct roles of the two ions enabled elongated THH to be produced. Copper ions activating the O2 pathway suggested that dissolved oxygen has a strong affinity for the Au surface. Moreover, the results of NC-sensitized singlet oxygen ((1)O2) indicated that the absorbed oxygen species on the surface of Au NCs bounded with low-index facets mainly existed in the form of molecular O2. PMID:25244407

  2. Growth of delta-doped layers on silicon CCD/S for enhanced ultraviolet response

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor); Grunthaner, Paula J. (Inventor); Grunthaner, Frank J. (Inventor); Terhune, Robert W. (Inventor); Hecht, Michael H. (Inventor)

    1994-01-01

    The backside surface potential well of a backside-illuminated CCD is confined to within about half a nanometer of the surface by using molecular beam epitaxy (MBE) to grow a delta-doped silicon layer on the back surface. Delta-doping in an MBE process is achieved by temporarily interrupting the evaporated silicon source during MBE growth without interrupting the evaporated p+ dopant source (e.g., boron). This produces an extremely sharp dopant profile in which the dopant is confined to only a few atomic layers, creating an electric field high enough to confine the backside surface potential well to within half a nanometer of the surface. Because the probability of UV-generated electrons being trapped by such a narrow potential well is low, the internal quantum efficiency of the CCD is nearly 100% throughout the UV wavelength range. Furthermore, the quantum efficiency is quite stable.

  3. Growth and optical properties of gold nanoshells prior to the formation of a continuous metallic layer.

    PubMed

    Preston, Thomas C; Signorell, Ruth

    2009-11-24

    The growth and optical properties of incomplete gold layers on silica particles (229 nm) are studied using visible/near-infrared spectroscopy and transmission electron microscopy. The gold particles that eventually coalesce to form a continuous gold layer are found to have droplet-like shapes. The optical properties of these systems are different from those of complete gold nanoshells. Using the discrete dipole approximation, it is found that the plasmon modes of such systems should exhibit two bands: one from 500-600 nm ("high energy") and the other from 600-800 nm ("low energy"). The calculations show that, for increasing coating density of the droplet-like particles, the lower energy band (i) becomes stronger relative to the higher energy band and (ii) is red-shifted. Both of these trends are found in the spectra of the prepared particles. Furthermore, the observed plasmon bands fall within the limits established by the model. PMID:19785392

  4. Selective growth of Pb islands on graphene/SiC buffer layers

    SciTech Connect

    Liu, X. T.; Miao, Y. P.; Ma, D. Y.; Hu, T. W.; Ma, F. E-mail: kwxu@mail.xjtu.edu.cn; Chu, Paul K.; Xu, K. W. E-mail: kwxu@mail.xjtu.edu.cn

    2015-02-14

    Graphene is fabricated by thermal decomposition of silicon carbide (SiC) and Pb islands are deposited by Pb flux in molecular beam epitaxy chamber. It is found that graphene domains and SiC buffer layer coexist. Selective growth of Pb islands on SiC buffer layer rather than on graphene domains is observed. It can be ascribed to the higher adsorption energy of Pb atoms on the 6√(3) reconstruction of SiC. However, once Pb islands nucleate on graphene domains, they will grow very large owing to the lower diffusion barrier of Pb atoms on graphene. The results are consistent with first-principle calculations. Since Pb atoms on graphene are nearly free-standing, Pb islands grow in even-number mode.

  5. Numerical simulations of multifrequency instability-wave growth and suppression in the Blasius boundary layer

    NASA Astrophysics Data System (ADS)

    Pal, A.; Bower, W. W.; Meyer, G. H.

    1991-02-01

    A mathematical model based on the Orr-Sommerfeld equation is developed to describe the growth and suppression of multifrequency, two-dimensional instability waves in the Blasius boundary layer over a flat place through localized perturbations at the surface caused by time-varying suction/blowing. It is shown for harmonic (single-frequency) perturbations that the instability wave can be decomposed into two components: an idealized Tollmien-Schlichting wave and a second perturbation that approximately cancels the first component upstream of the surface disturbance and becomes small downstream. Because the first component alone fully expresses the instability of the flow, the need to perform numerical Fourier transformation over the wave number is eliminated, permitting easy extension of the analysis to the more general case of arbitrary waveform of the perturbation. Numerical results are presented for examples of instability-wave generation and suppression in the boundary layer.

  6. A novel MOCVD reactor for growth of high-quality GaN-related LED layers

    NASA Astrophysics Data System (ADS)

    Hu, Shaolin; Liu, Sheng; Zhang, Zhi; Yan, Han; Gan, Zhiyin; Fang, Haisheng

    2015-04-01

    Gallium nitride (GaN), a direct bandgap semiconductor widely used in bright light-emitting diodes (LEDs), is mostly grown by metal-organic chemical vapor deposition (MOCVD) method. A good reactor design is critical for the production of high-quality GaN thin films. In this paper, we presented a novel buffered distributed spray (BDS) MOCVD reactor with vertical gas sprayers and horizontal gas inlets. Experiments based on a 36×2″ BDS reactor were conducted to examine influence of the process parameters, such as the operating pressure and the gas flow rate, on the growth efficiency and on the layer thickness uniformity. Transmission electron microscopy (TEM) and photoluminescence (PL) are further conducted to evaluate quality of the epitaxial layers and to check performance of the reactor. Results show that the proposed novel reactor is of high performance in growing high-quality thin films, including InGaN/GaN multiquantum wells (MQWs) structures.

  7. Understanding the role of few-layer graphene nanosheets in enhancing the hydrogen sorption kinetics of magnesium hydride.

    PubMed

    Liu, Guang; Wang, Yijing; Jiao, Lifang; Yuan, Huatang

    2014-07-23

    The catalytic effects of few-layer, highly wrinkled graphene nanosheet (GNS) addition on the dehydrogenation/rehydrogenation performance of MgH2 were investigated. It was found that MgH2-5 wt %GNSs nanocomposites prepared by ball milling exhibit relatively lower sorption temperature, faster sorption kinetics, and more stable cycling performance than that of pure-milled MgH2. The dehydrogenation step confirms that the Avrami exponent n increases from 1.22 to 2.20 by the Johnson-Mehl-Avrami (JMA) formalism when the desorption temperature is reduced from 350 °C to 320 °C and 300 °C, implying that a change in the decomposition temperature can alter the mechanism during the dehydrogenation process. For rehydrogenation, the Avrami value n is close to 1; further study by several models coincident with n = 1 reveals that the absorption process of the MgH2-5 wt %GNSs sample conforms to the Mampel equation formulated through the random nucleation approach and that the nature of the absorption mechanism does not change within the temperature range studied. Furthermore, microstructure analysis demonstrated that the defective GNSs are distributed uniformly among the MgH2 particles and that the grain size of the MgH2-5 wt %GNSs nanocomposite is approximately 5-9 nm. The efficient metal-free catalytic dehydrogenation/rehydrogenation of MgH2 can be attributed to the coupling of the nanosize effect and defective GNSs.

  8. Nucleation, Growth, and Strain Relaxation of Lattice-Mismatched III-V Semiconductor Epitaxial Layers

    NASA Technical Reports Server (NTRS)

    Welser, R. E.; Guido, L. J.

    1994-01-01

    We have investigated the early stages of evolution of highly strained 2-D InAs layers and 3-D InAs islands grown by metal-organic chemical vapor deposition (MOCVD) on (100) and (111) B GaAs substrates. The InAs epilayer / GaAs substrate combination has been chosen because the lattice-mismatch is severe (approx. 7.20%), yet these materials are otherwise very similar. By examining InAs-on-GaAs composites Instead of the more common In(x)Ga(1-x)As alloy, we remove an additional degree of freedom (x) and thereby simplify data interpretation. A matrix of experiments is described in which the MOCVD growth parameters -- susceptor temperature, TMIn flux, and AsH3 flux -- have been varied over a wide range. Scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and electron microprobe analysis have been employed to observe the thin film surface morphology. In the case of 3-D growth, we have extracted activation energies and power-dependent exponents that characterize the nucleation process. As a consequence, optimized growth conditions have been identified for depositing approx. 250 A thick (100) and (111)B oriented InAs layers with relatively smooth surfaces. Together with preliminary data on the strain relaxation of these layers, the above results on the evolution of thin InAs films indicate that the (111)B orientation is particularly promising for yielding lattice-mismatched films that are fully relaxed with only misfit dislocations at the epilayer / substrate interface.

  9. Nucleation, growth, and strain relaxation of lattice-mismatched 3-5 semiconductor epitaxial layers

    NASA Technical Reports Server (NTRS)

    Welser, R. E.; Guido, L. J.

    1994-01-01

    We have investigated the early stages of evolution of highly strained 2-D InAs layers and 3-D InAs islands grown by metal-organic chemical vapor deposition (MOCVD) on (100) and (111)B GaAs substrates. The InAs epilayer/GaAs substrate combination has been chosen because the lattice-mismatch is severe (approximately 7.2 percent), yet these materials are otherwise very similar. By examining InAs-on-GaAs composites instead of the more common In(x)Ga(1-x)As alloy we remove an additional degree of freedom (x) and thereby simplify data interpretation. A matrix of experiments is described in which the MOCVD growth parameters - susceptor temperature, Thin flux, and AsH3 flux - have been varied over a wide range. Scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and electron microprobe analysis have been employed to observe the thin film surface morphology. In the case of 3-D growth, we have extracted activation energies and power-dependent exponents that characterize the nucleation process. As a consequence, optimized growth conditions have been identified for depositing approximately 250 A thick (100) and (111)B oriented InAs layers with relatively smooth surfaces. Together with preliminary data on the strain relaxation of these layers, the above results on the evolution of thin InAs films indicate that the (111)B orientation is particularly promising for yielding lattice-mismatched films that are fully relaxed with only misfit dislocations at the epilayer/substrate interface.

  10. Growth mechanism of atomic layer deposition of zinc oxide: A density functional theory approach

    SciTech Connect

    Afshar, Amir; Cadien, Kenneth C.

    2013-12-16

    Atomic layer deposition of zinc oxide (ZnO) using diethylzinc (DEZ) and water is studied using density functional theory. The reaction pathways between the precursors and ZnO surface sites are discussed. Both reactions proceed by the formation of intermediate complexes on the surface. The Gibbs free energy of the formation of these complexes is positive at temperatures above ∼120 °C and ∼200 °C for DEZ and water half-reactions, respectively. Spectroscopic ellipsometry results show that the growth per cycle changes at approximately the same temperatures.

  11. Optimization of growth medium for Sporosarcina pasteurii in bio-based cement pastes to mitigate delay in hydration kinetics.

    PubMed

    Williams, Sarah L; Kirisits, Mary Jo; Ferron, Raissa Douglas

    2016-04-01

    Microbial-induced calcium carbonate precipitation has been identified as a novel method to improve durability and remediate cracks in concrete. One way to introduce microorganisms to concrete is by replacing the mixing water with a bacterial culture in nutrient medium. In the literature, yeast extract often has been used as a carbon source for this application; however, severe retardation of hydration kinetics has been observed when yeast extract is added to cement. This study investigates the suitability of alternative carbon sources to replace yeast extract for microbial-induced calcium carbonate precipitation in cement-based materials. A combination of meat extract and sodium acetate was identified as a suitable replacement in growth medium for Sporosarcina pasteurii; this alternative growth medium reduced retardation by 75 % (as compared to yeast extract) without compromising bacterial growth, urea hydrolysis, cell zeta potential, and ability to promote calcium carbonate formation.

  12. Growth kinetics of low temperature single-wall and few walled carbon nanotubes grown by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Gohier, A.; Minea, T. M.; Djouadi, M. A.; Jiménez, J.; Granier, A.

    2007-03-01

    Single-wall, double walled or few walled nanotubes (FWNT) are grown by electron cyclotron resonance plasma enhanced chemical vapor deposition (ECR-PECVD) at temperature as low as 600 °C. Most of these structures are isolated and self-oriented perpendicular to the substrate. The growth mechanism observed for single-wall and few walled (less than seven walls) nanotubes is the “base-growth” mode. Their grow kinetics is investigated regarding two parameters namely the growth time and the synthesis temperature. It is shown that nucleation and growth rate is correlated with the number of walls into FWNT. It also provides an evidence of a critical temperature for FWNT synthesis.

  13. Enzyme-linked immunosorbent assay for detection of type A streptococcal exotoxin: kinetics and regulation during growth of Streptococcus pyogenes.

    PubMed Central

    Houston, C W; Ferretti, J J

    1981-01-01

    We describe the detection and quantitation of type A streptococcal exotoxin (erythrogenic toxin, streptococcal pyrogenic exotoxin) by an enzyme-linked immunosorbent assay. This sensitive and specific technique detected microgram amounts of type A exotoxin and was useful for studying the kinetics and regulation of type A exotoxin production during the growth of Streptococcus pyogenes NY5. Maximum production of type A exotoxin was observed during the mid-log phase of growth, similar to the production of other streptococcal extracellular products. When S. pyogenes NY5 was grown at 42 degrees C, decreases in both growth and type A exotoxin production were observed. The results obtained when we studied the influence of nutrient additives and metal ions on the production of type A exotoxin led to the conclusion that none of these factors significantly affected type A exotoxin synthesis and that regulation was constitutive. Images PMID:7026447

  14. Salix polaris growth responses to active layer detachment and solifluction processes in High Arctic.

    NASA Astrophysics Data System (ADS)

    Siekacz, Liliana

    2015-04-01

    The work is dedicated to demonstrate the potential of Salix polaris grow properties in the dendrogemorphologic image, analyzing periglacially induced slope processes in the high Arctic.. Observed anatomical and morphological plants responses to solifluction and active layer detachment processes are presented qualitatively and quantitatively as a summary of presented features frequency. The results are discussed against the background of the other research results in this field. The investigations was performed in Ebba valley, in the vicinity of Petunia Bay, northernmost part of Billefjorden in central Spitsbergen (Svalbard). Environmental conditions are characterized by annual precipitation sum lower than 200 mm (Hagen et al.,1993) and average summer temperature of about 5°C, with maximum daily temperatures rarely exceeding 10°C (Rachlewicz, 2009). Collected shrub material was prepared according to the methods presented by Schweingruber and Poschlod (2005). Thin (approx. 15-20μm) sections of the whole cross-section were prepared with a sledge microtome, stained with Safranine and Astra blue and finally permanently fixed on microslides with Canada balsam and dried. Snapshots were taken partially for each cross-section with digital camera (ColorView III, Olympus) connected to a microscope (Olympus BX41) and merged into one, high resolution image. After all, ring widths were measured in 3-4 radii in every single cross-section using ImageJ software. Analyzed plants revealed extremely harsh environmental conditions of their growth. Buchwał et al. (2013) provided quantitative data concerning missing rings and partially missing rings in shrubs growing on Ebba valley floor. Mean ring width at the level of 79μm represents one of the smallest values of yearly growth ever noted. The share of missing rings and partially missing rings was 11,2% and 13,6% respectively. Plants growing on Ebba valley slope indicate almost twice smaller values of ring width (41μm), and higher

  15. Growth of bi- and tri-layered graphene on silicon carbide substrate via molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Min, Tjun Kit; Lim, Thong Leng; Yoon, Tiem Leong

    2015-04-01

    Molecular dynamics (MD) simulation with simulated annealing method is used to study the growth process of bi- and tri-layered graphene on a 6H-SiC (0001) substrate via molecular dynamics simulation. Tersoff-Albe-Erhart (TEA) potential is used to describe the inter-atomic interactions among the atoms in the system. The formation temperature, averaged carbon-carbon bond length, pair correlation function, binding energy and the distance between the graphene formed and the SiC substrate are quantified. The growth mechanism, graphitization of graphene on the SiC substrate and characteristics of the surface morphology of the graphene sheet obtained in our MD simulation compare well to that observed in epitaxially grown graphene experiments and other simulation works.

  16. Growth of bi- and tri-layered graphene on silicon carbide substrate via molecular dynamics simulation

    SciTech Connect

    Min, Tjun Kit; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Molecular dynamics (MD) simulation with simulated annealing method is used to study the growth process of bi- and tri-layered graphene on a 6H-SiC (0001) substrate via molecular dynamics simulation. Tersoff-Albe-Erhart (TEA) potential is used to describe the inter-atomic interactions among the atoms in the system. The formation temperature, averaged carbon-carbon bond length, pair correlation function, binding energy and the distance between the graphene formed and the SiC substrate are quantified. The growth mechanism, graphitization of graphene on the SiC substrate and characteristics of the surface morphology of the graphene sheet obtained in our MD simulation compare well to that observed in epitaxially grown graphene experiments and other simulation works.

  17. Assessment of carbon layer growth induced by resists outgassing in multi e-beams lithography

    NASA Astrophysics Data System (ADS)

    Marusic, JC; Pourteau, ML; Cêtre, S.; Pain, L.; Mebiene-Engohang, AP; David, S.; Labau, S.; Boussey, J.

    2014-10-01

    The development of multiple e-beam lithography equipment is seen as an alternative for next generation lithography. However, similarly to EUV lithography, this technology faces important challenges in controlling the contamination of the optics due to deposition of carbon layer induced by the outgassed chemical species from resist under electron bombardment. An experimental setup was designed and built at LETI to study the outgassed species and observe the carbon layer. In this setup, resist coated wafers 100 mm size are exposed under a 5 kV e-beam gun. During exposure, byproducts from outgassed species are monitored with a Residual Gas Analyzer (RGA). The identification of outgassed chemical species is done with an ex-situ TD-GC-MS analysis (ThermoDesorption-Gaz Chromatography-Mass Spectrometry). In a second part of this investigation, we observed the contamination carbon layer growth induced by the outgassing. Thereby, we fabricated a device which consists of a silicon membrane with micro-machined apertures. During e-beam exposure, this device simulates the multiple parallel beams of the optic system of a maskless lithography tool. The deposited contamination layer on device is then observed and thickness measured under SEM. In this paper, we present the results of outgassing and contamination on 3 chemically amplified resists showing that contamination is not directly dependent of the overall outgassing rate but on first order of the outgassing from Photo Acid Generator (PAG). It also reports on the performance in reducing outgassing and contamination of applying a top-coat layer on top of the resist and shows that reduction is more important for contamination than for outgassing.

  18. Layer-Controlled Chemical Vapor Deposition Growth of MoS2 Vertical Heterostructures via van der Waals Epitaxy.

    PubMed

    Samad, Leith; Bladow, Sage M; Ding, Qi; Zhuo, Junqiao; Jacobberger, Robert M; Arnold, Michael S; Jin, Song

    2016-07-26

    The fascinating semiconducting and optical properties of monolayer and few-layer transition metal dichalcogenides, as exemplified by MoS2, have made them promising candidates for optoelectronic applications. Controllable growth of heterostructures based on these layered materials is critical for their successful device applications. Here, we report a direct low temperature chemical vapor deposition (CVD) synthesis of MoS2 monolayer/multilayer vertical heterostructures with layer-controlled growth on a variety of layered materials (SnS2, TaS2, and graphene) via van der Waals epitaxy. Through precise control of the partial pressures of the MoCl5 and elemental sulfur precursors, reaction temperatures, and careful tracking of the ambient humidity, we have successfully and reproducibly grown MoS2 vertical heterostructures from 1 to 6 layers over a large area. The monolayer MoS2 heterostructure was verified using cross-sectional high resolution transmission electron microscopy (HRTEM) while Raman and photoluminescence spectroscopy confirmed the layer-controlled MoS2 growth and heterostructure electronic interactions. Raman, photoluminescence, and energy dispersive X-ray spectroscopy (EDS) mappings verified the uniform coverage of the MoS2 layers. This reaction provides an ideal method for the scalable layer-controlled growth of transition metal dichalcogenide heterostructures via van der Waals epitaxy for a variety of optoelectronic applications. PMID:27373305

  19. Layer-Controlled Chemical Vapor Deposition Growth of MoS2 Vertical Heterostructures via van der Waals Epitaxy.

    PubMed

    Samad, Leith; Bladow, Sage M; Ding, Qi; Zhuo, Junqiao; Jacobberger, Robert M; Arnold, Michael S; Jin, Song

    2016-07-26

    The fascinating semiconducting and optical properties of monolayer and few-layer transition metal dichalcogenides, as exemplified by MoS2, have made them promising candidates for optoelectronic applications. Controllable growth of heterostructures based on these layered materials is critical for their successful device applications. Here, we report a direct low temperature chemical vapor deposition (CVD) synthesis of MoS2 monolayer/multilayer vertical heterostructures with layer-controlled growth on a variety of layered materials (SnS2, TaS2, and graphene) via van der Waals epitaxy. Through precise control of the partial pressures of the MoCl5 and elemental sulfur precursors, reaction temperatures, and careful tracking of the ambient humidity, we have successfully and reproducibly grown MoS2 vertical heterostructures from 1 to 6 layers over a large area. The monolayer MoS2 heterostructure was verified using cross-sectional high resolution transmission electron microscopy (HRTEM) while Raman and photoluminescence spectroscopy confirmed the layer-controlled MoS2 growth and heterostructure electronic interactions. Raman, photoluminescence, and energy dispersive X-ray spectroscopy (EDS) mappings verified the uniform coverage of the MoS2 layers. This reaction provides an ideal method for the scalable layer-controlled growth of transition metal dichalcogenide heterostructures via van der Waals epitaxy for a variety of optoelectronic applications.

  20. Study of Intermetallic Growth and Kinetics in Fine-Pitch Lead-Free Solder Bumps for Next-Generation Flip-Chip Assemblies

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Chow, Justin; Liu, Xi; Wu, Yi Ping; Sitaraman, Suresh K.

    2013-02-01

    With continued advances in microelectronics, it is anticipated that next-generation microelectronic assemblies will require a reduction of the flip-chip solder bump pitch to 100 μm or less from the current industrial practice of 130 μm to 150 μm. With this reduction in pitch size, and thus in bump height and diameter, the interaction between die pad metallurgy and substrate pad metallurgy becomes more critical due to the shorter diffusion path and greater stress. Existing literature has not addressed such metallurgical interaction in actual fine-pitch flip-chip assemblies. This work studies intermetallic growth and kinetics in fine-pitch lead-free solder bumps through thermal aging of flip-chip assemblies. Based on this study, it is seen that Ni from the die pad diffuses to the substrate pad region and Cu from the substrate pad diffuses to the die pad region, thus the resulting intermetallic compounds at the die and substrate pad regions are influenced by the other pad as well. Such cross-pad interaction is much stronger in fine-pitch solder bumps with smaller standoff height. It is seen that the die pad region contains Ni3P and (Cu,Ni)6Sn5 after thermal aging, while the substrate pad region contains Cu3Sn and (Cu,Ni)6Sn5. By digitally measuring the thickness of the interfacial phases, the kinetics parameters and the activation energy were calculated for the growth of (Cu,Ni)6Sn5 on the substrate side. The Cu diffusion coefficient through the intermetallic compound (IMC) layer was found to be 0.03370 μm2/h, 0.1423 μm2/h, and 0.4463 μm2/h at 100°C, 125°C, and 150°C, respectively, and the apparent activation energy for the growth of compound layers was 67.89 kJ/mol.

  1. Vertically oriented few-layered HfS2 nanosheets: growth mechanism and optical properties

    NASA Astrophysics Data System (ADS)

    Zheng, Binjie; Chen, Yuanfu; Wang, Zegao; Qi, Fei; Huang, Zhishuo; Hao, Xin; Li, Pingjian; Zhang, Wanli; Li, Yanrong

    2016-09-01

    For the first time, large-area, vertically oriented few-layered hafnium disulfide (V-{{{HfS}}}2) nanosheets have been grown by chemical vapor deposition. The individual {{{HfS}}}2 nanosheets are well [001] oriented, with highly crystalline quality. Far different from conventional van der Waals epitaxial growth mechanism for two-dimensional transition metal dichalcogenides, a novel dangling-bond-assisted self-seeding growth mechanism is proposed to describe the growth of V-{{{HfS}}}2 nanosheets: difficult migration of {{{HfS}}}2 adatoms on substrate surface results in {{{HfS}}}2 seeds growing perpendicularly to the substrate; V-{{{HfS}}}2 nanosheets inherit the growth direction of {{{HfS}}}2 seeds; V-{{{HfS}}}2 nanosheets further expand in the in-plane direction with time evolution. Moreover, the V-{{{HfS}}}2 nanosheets show strong and broadened photons absorption from near infrared to ultraviolet; the V-{{{HfS}}}2-based photodetector exhibits an ultrafast photoresponse time of 24 ms, and a high photosensitivity ca. 103 for 405 nm laser.

  2. Epitaxial growth of ultrathin MgO layers on Fe3O4(0 0 1) films

    NASA Astrophysics Data System (ADS)

    Nordmann, T.; Kuschel, O.; Wollschläger, J.

    2016-09-01

    The initial growth stages of MgO on Fe3O4 films are studied by means of X-ray photoelectron spectroscopy and low energy electron diffraction to clarify stoichiometric and structural properties of these layered structures. This bilayer structure is important to fabricate high quality magnetic tunnel junctions based on Fe3O4 electrodes and MgO tunneling barriers. For this purpose, the deposition temperature of MgO has been varied between 100 °C and 250 °C. Initially, MgO grows layer-by-layer on Fe3O4/MgO(0 0 1) forming a wetting layer. Depending on the growth temperature, after growth of a 2-3 nm thick laminar wetting layer, the MgO films finally start to roughen during growth. Thus the growth of MgO on Fe3O4/MgO(0 0 1) is described by a Stranski-Krastanov growth mode. Diffraction experiments show that the magnetite (√{ 2} ×√{ 2})R45° superstructure is removed already during the initial stages of MgO deposition. Furthermore, these experiments show that MgO films are rougher for growth at low deposition temperatures.

  3. Gas-source molecular beam epitaxy of SiGe virtual substrates: I. Growth kinetics and doping

    NASA Astrophysics Data System (ADS)

    Hartmann, J. M.; Gallas, B.; Ferguson, R.; Fernàndez, J.; Zhang, J.; Harris, J. J.

    2000-04-01

    We have studied the growth by gas-source molecular beam epitaxy (GS-MBE) of SiGe virtual substrates. We have first determined the relationship existing between the Ge concentration in SiGe thick films and the gas phase ratio of disilane and germane, and its behaviour versus growth temperature. We find that Si atoms are 4.6 times more likely to be incorporated than Ge atoms at 550 °C. This incorporation probability decreases as the growth temperature increases, following a thermally activated law with a 0.082-0.126 eV characteristic energy. The dependence of SiGe growth rate on substrate temperatures has a cross-over point at approximately 8% of Ge, above which the growth rate decreases significantly as the temperature increases . Otherwise, we show what p-type or n-type doping levels are typically achievable in SiGe virtual substrates, and the influence diluted diborane and arsine have on the growth kinetics of SiGe. Additionally, we demonstrate that the `pre-build-up/flash-off' technique originally proposed by Iyer et al for solid-source MBE (1981 J. Appl. Phys. 52 5608) yields abrupt arsenic doping profiles in GS-MBE.

  4. From Peptides to Proteins: Systematic Control of Net Molecular Charge and Hydrophilicity on the Kinetics of Calcite Growth

    NASA Astrophysics Data System (ADS)

    Elhadj, S.; de Yoreo, J. J.; Hoyer, J. J.; Dove, P. M.

    2006-12-01

    The compartment-specific compositions of biologic molecules isolated from biominerals suggest that control of mineral growth may be linked to biochemical features. Here we define a systematic relationship between the ability of biomolecules in solution to promote the growth of calcite (CaCO3) and their net negative molecular charge and hydrophilicity. The degree of enhancement is dependent on peptide composition, but not on peptide sequence. Data analysis shows that this rate enhancement arises from an increase in the kinetic coefficient. We interpret the mechanism of growth enhancement to be a catalytic process whereby biomolecules reduce the magnitude of the diffusive barrier, Ek, by perturbations that displace water molecules- a water shell destruction mechanism. The result is a decrease in the repulsive barrier for attachment of solutes to the solid phase. This previously unrecognized relationship also rationalizes recently reported data showing acceleration of calcite growth rates over rates measured in the pure system by nanomolar levels of abalone nacre proteins. These findings show that the growth-modifying properties of small model peptides may be scaled up to analyze mineralization processes that are mediated by more complex proteins. We suggest that enhancement of calcite growth may now be estimated a priori from the composition of peptide sequences and the calculated values of hydrophilicity and net molecular charge without need for detailed tests for each biomolecule. This insight may contribute to an improved understanding of mineralization in diverse systems of biomineralization.

  5. Callus Growth Kinetics of Physic Nut (Jatropha curcas L.) and Content of Fatty Acids from Crude Oil Obtained In Vitro.

    PubMed

    da Luz Costa, Jefferson; da Silva, André Luís Lopes; Bier, Mário César Jucoski; Brondani, Gilvano Ebling; Gollo, André Luiz; Letti, Luiz Alberto Junior; Erasmo, Eduardo Andrea Lemus; Soccol, Carlos Ricardo

    2015-06-01

    The callus growth kinetics allows identifying the appropriate moment for callus pealing and monitoring the accumulation of primary and secondary metabolites. The physic nut (Jatropha curcas L.) is a plant species used for biofuel production due to its high oil content; however, this plant presents a great amount of bioactive compounds which can be useful for industry. The aim of this research was to establish a calli growth curve and to evaluate the fatty acid profile of crude oil extracted from callus. The callus growth kinetics presented a sigmoid standard curve with six distinct phases: lag, exponential, linear, deceleration, stationary, and decline. Total soluble sugars were higher at the inoculation day. Reducing sugars were higher at the inoculation day and at the 80th day. The highest percentage of ethereal extract (oil content) was obtained at the 120th day of culture, reaching 18 % of crude oil from the callus. The calli produced medium-chain and long-chain fatty acids (from 10 to 18 carbon atoms). The palmitic acid was the fatty acid with the highest proportion in oil (55.4 %). The lipid profile obtained in callus oil was different from the seed oil profile. PMID:25917545

  6. Sequential and coordinated action of phytochromes A and B during Arabidopsis stem growth revealed by kinetic analysis

    NASA Technical Reports Server (NTRS)

    Parks, B. M.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Photoreceptor proteins of the phytochrome family mediate light-induced inhibition of stem (hypocotyl) elongation during the development of photoautotrophy in seedlings. Analyses of overt mutant phenotypes have established the importance of phytochromes A and B (phyA and phyB) in this developmental process, but kinetic information that would augment emerging molecular models of phytochrome signal transduction is absent. We have addressed this deficiency by genetically dissecting phytochrome-response kinetics, after having solved the technical issues that previously limited growth studies of small Arabidopsis seedlings. We show here, with resolution on the order of minutes, that phyA initiated hypocotyl growth inhibition upon the onset of continuous red light. This primary contribution of phyA began to decrease after 3 hr of irradiation, the same time at which immunochemically detectable phyA disappeared and an exclusively phyB-dependent phase of inhibition began. The sequential and coordinated actions of phyA and phyB in red light were not observed in far-red light, which inhibited growth persistently through an exclusively phyA-mediated pathway.

  7. Growth of metal-free carbon nanotubes on glass substrate with an amorphous carbon catalyst layer.

    PubMed

    Seo, Jae Keun; Choi, Won Seok; Kim, Hee Dong; Lee, Jae-Hyeoung; Choi, Eun Chang; Kim, Hyung Jin; Hong, Byungyou

    2011-12-01

    We have investigated the direct growth of metal-free carbon nanotubes (CNTs) on glass substrates with microwave-plasma enhanced chemical vapor deposition (MPECVD). Amorphous carbon (a-C) films were used as a catalyst layer to grow metal-free CNTs. The a-C films were deposited on Corning glass substrates using RF magnetron sputtering with the use of a carbon target (99.99%) at room temperature. They were pretreated with hydrogen plasma using a microwave PECVD at 600 degrees C. Then, CNTs were prepared using microwave PECVD with a mixture of methane (CH4) and hydrogen (H2) gases. The CNTs were grown at different substrate temperatures (400 degrees C, 500 degrees C, and 600 degrees C) for 30 minutes. Other conditions were fixed. The growth trends of CNTs against substrate temperature were observed by field emission scanning electron microscopy (FE-SEM). The structure of a-C catalyst layer and grown CNTs were measured by Raman spectroscopy. High-resolution transmission electron microscopy (HR-TEM) images showed that the CNTs had bamboo-like multi-walled structures. Energy dispersive spectroscopy (EDS) measurements confirmed that the CNTs consisted of only carbon. PMID:22409050

  8. Age determination in manatees using growth-layer-group counts in bone

    USGS Publications Warehouse

    Marmontel, M.; O'Shea, T.J.; Kochman, H.I.; Humphrey, S.R.

    1996-01-01

    Growth layers were observed in histological preparations of bones of known-age, known minimum-age, and tetracycline-marked free-ranging and captive Florida manatees (Trichechus manatus latirostris), substantiating earlier preliminary findings of other studies. Detailed analysis of 17 new case histories showed that growth-layer group (GLG) counts in the periotic bone were consistent with known age, or time since tetracycline administration, but were less reliable in other bones. GLG counts were also made in periotic bones of 1,196 Florida manatees of unknown age found dead from 1974 through 1991. These counts were conducted in order to assess variability and to determine relationships among estimated age, size, sex, and degree of bone resorption. Resorption can interfere with accuracy of GLG counts. This effect does not occur until ages greater than about 15 yr and body lengths greater than 300 cm are attained. GLGs were also observed in periotic bones of Antillean manatees (Trichechus manatus manatus) but were not validated against known-age specimens. Use of GLG counts in the periotic bone is suitable for application to studies of population dynamics and other age-related aspects of manatee biology.

  9. Effects of Bonding Wires and Epoxy Molding Compound on Gold and Copper Ball Bonds Intermetallic Growth Kinetics in Electronic Packaging

    NASA Astrophysics Data System (ADS)

    Gan, C. L.; Classe, F. C.; Chan, B. L.; Hashim, U.

    2014-04-01

    This paper discusses the influence of bonding wires and epoxy mold compounds (EMC) on intermetallic compound (IMC) diffusion kinetics and apparent activation energies ( E aa) of CuAl and AuAl IMCs in a fineline ball grid array package. The objective of this study is to study the CuAl and AuAl IMC growth rates with different epoxy mold compounds and to determine the apparent activation energies of different combination of package bills of materials. IMC thickness measurement has been carried out to estimate the coefficient of diffusion ( D o) and E aa various aging conditions of different EMCs and bonding wires. Apparent activation energies ( E aa) of both wire types were investigated after high temperature storage life tests (HTSL) for both molding compounds. Au bonds were identified to have faster IMC formation, compared to slower IMC growth of Cu. The E aa obtained for CuAl IMC diffusion kinetics are 1.08 and 1.04 eV with EMC A and EMC B, respectively. For AuAl IMC diffusion kinetics, the E aa obtained are 1.04 and 0.98 eV, respectively, on EMC A and EMC B. These values are close to previous HTSL studies conducted on Au and Cu ball bonds and are in agreement to the theory of HTSL performance of Au and Cu bonding wires.Overall, EMC B shows slightly lower apparent activation energy ( E aa) valueas in CuAl and AuAl IMCs. This proves that the different types of epoxy mold compounds have some influence on IMC growth rates.

  10. Barrierless growth of precursor-free, ultrafast laser-fragmented noble metal nanoparticles by colloidal atom clusters - A kinetic in situ study.

    PubMed

    Jendrzej, Sandra; Gökce, Bilal; Amendola, Vincenzo; Barcikowski, Stephan

    2016-02-01

    Unintended post-synthesis growth of noble metal colloids caused by excess amounts of reactants or highly reactive atom clusters represents a fundamental problem in colloidal chemistry, affecting product stability or purity. Hence, quantified kinetics could allow defining nanoparticle size determination in dependence of the time. Here, we investigate in situ the growth kinetics of ps pulsed laser-fragmented platinum nanoparticles in presence of naked atom clusters in water without any influence of reducing agents or surfactants. The nanoparticle growth is investigated for platinum covering a time scale of minutes to 50days after nanoparticle generation, it is also supplemented by results obtained from gold and palladium. Since a minimum atom cluster concentration is exceeded, a significant growth is determined by time resolved UV/Vis spectroscopy, analytical disc centrifugation, zeta potential measurement and transmission electron microscopy. We suggest a decrease of atom cluster concentration over time, since nanoparticles grow at the expense of atom clusters. The growth mechanism during early phase (<1day) of laser-synthesized colloid is kinetically modeled by rapid barrierless coalescence. The prolonged slow nanoparticle growth is kinetically modeled by a combination of coalescence and Lifshitz-Slyozov-Wagner kinetic for Ostwald ripening, validated experimentally by the temperature dependence of Pt nanoparticle size and growth quenching by Iodide anions.

  11. Atomic Layers: Tellurium-Assisted Epitaxial Growth of Large-Area, Highly Crystalline ReS2 Atomic Layers on Mica Substrate (Adv. Mater. 25/2016).

    PubMed

    Cui, Fangfang; Wang, Cong; Li, Xiaobo; Wang, Gang; Liu, Kaiqiang; Yang, Zhou; Feng, Qingliang; Liang, Xing; Zhang, Zhongyue; Liu, Shengzhong; Lei, Zhibin; Liu, Zonghuai; Xu, Hua; Zhang, Jin

    2016-07-01

    H. Xu, J. Zhang, and co-workers synthesize anisotropic 2D-layered rhenium disulfide with high crystal quality and uniform monolayer thickness. As described on page 5019, tellurium-assisted epitaxial growth on a mica substrate is chosen to generate such structures. PMID:27372721

  12. Comparing large eddy simulations and measurements of the turbulent kinetic energy budget in an urban canopy layer

    NASA Astrophysics Data System (ADS)

    Parlange, M. B.; Giometto, M. G.; Meneveau, C. V.; Fang, J.; Christen, A.

    2013-12-01

    Local turbulent kinetic energy (TKE) in the Urban Canopy Layer (UCL) is highly dependent on the actual configuration of obstacles relative to mean wind and stability. For many applications, building-resolving information is neither required nor feasible, and simply beyond the numerical capabilities of operational systems. Common urban canopy parameterizations (UCP) used in dispersion and mesoscale forecasting models hence rely on a horizontally averaged approach, where the UCL is represented as a 1D column, often for simplified geometries such as infinite street canyons. We use Large Eddy Simulations (LES) of the airflow over and within a realistic urban geometry in the city of Basel, Switzerland to determine all terms of the TKE budget in order to guide and validate current approaches used in UCPs. A series of high-resolution LES runs of the fully developed flow are performed in order to characterize the TKE budget terms in a horizontally averaged frame of view for various directions of the approaching flow under neutral conditions. Equations are solved on a regular domain with a horizontal resolution of 2 m. A Lagrangian scale-dependent LES model is adopted to parametrize the subgrid-scale stresses and buildings are taken into account adopting an immersed boundary approach with the geometry taken from a highly accurate digital building model. The modeled (periodic) domain is centered on the location of a 32 m tall tower, where measurements of turbulence were performed, during the BUBBLE program in 2001/02 (Rotach et al., Theor. Appl. Clim., 82, 231-261, 2005). Selected terms of the TKE budget were inferred from six levels of ultrasonic anemometer measurements operated over nearly a full year between ground level and two times the mean building height. This contribution answers the questions: (1) How well do TKE budget terms calculated by the LES at the exact tower location match the single point measurements on the tower under comparable conditions? (2) How

  13. Thermotolerance kinetics and growth rate changes in the R1H tumour heated at 43 degrees C.

    PubMed

    Mooibroek, J; Dikomey, E; Zywietz, F; Jung, H

    1988-01-01

    R1H rhabdomyosarcomas implanted into the foot of the right hind leg of female WAG/Rij rats were exposed to fractionated hyperthermia at 43 degrees C and the kinetics of thermotolerance and heat-induced growth rate changes were studied. Tumours of anaesthetized animals were exposed to heat by immersing the leg up to the thigh in a water bath. Tumour growth delay (TGD) and tumour volume doubling time were calculated from individual growth curves. After single heating, TGD increased with increasing heating time, the increase being linear for heating times exceeding 60 min. Thermotolerance was induced by a priming heat treatment at 43 degrees C for 60 min and the kinetics of development and decay was studied for fractionation intervals ranging from 4 to 144 h. After 4 h the thermal sensitivity of the tumours was enhanced by about 30 per cent, probably due to the sensitizing effect of heat-induced physiological alterations in the tumour tissue such as suboptimal environmental conditions caused by depressed blood flow. For longer time intervals thermotolerance developed and reached a maximum at 24 h where the thermotolerance ratio was 4.5 +/- 1.5. From 24 to 144 h thermotolerance decayed exponentially with a half-time of 28 +/- 8 h. Heat also affected the growth rate of the treated tumours. After single heat treatments at 43 degrees C for 15-60 min the tumours grew faster than untreated control tumours. This change was statistically significant. After prolonged single heating, growth rate was found to be reduced. Tumour volume doubling time was not detectably changed after fractionated heat treatments. PMID:3171262

  14. Growth from Solutions: Kink dynamics, Stoichiometry, Face Kinetics and stability in turbulent flow

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.; DeYoreo, J. J.; Rashkovich, L. N.; Vekilov, P. G.

    2005-01-01

    1. Kink dynamics. The first segment of a polygomized dislocation spiral step measured by AFM demonstrates up to 60% scattering in the critical length l*- the length when the segment starts to propagate. On orthorhombic lysozyme, this length is shorter than that the observed interkink distance. Step energy from the critical segment length based on the Gibbs-Thomson law (GTL), l* = 20(omega)alpha/(Delta)mu is several times larger than the energy from 2D nucleation rate. Here o is tine building block specific voiume, a is the step riser specific free energy, Delta(mu) is the crystallization driving force. These new data support our earlier assumption that the classical Frenkel, Burton -Cabrera-Frank concept of the abundant kink supply by fluctuations is not applicable for strongly polygonized steps. Step rate measurements on brushite confirms that statement. This is the1D nucleation of kinks that control step propagation. The GTL is valid only if l* growth velocity vk. This is equivalent to supersaturations sigma less than approx. alpha/2l*, where alpha is the building block size. For lysozyme, sigma much less than (1%). Conventionally used interstep distance generated by screw dislocation, 19(omega)alpha/Delta(mu) should be replaced by the very different real one, approx.4l*. 2. Stoichiometry. Kink, and thus step and face rates of a non-Kossel complex molecular monocomponent or any binary, AB, lattice was found theoretically to be proportional to 1/(zeta(sup 1/2) + zeta(sup - 1/2)), where zeta = [B]/[A] is the stoichiometry ratio in solution. The velocities reach maxima at zeta = 1. AFM studies of step rates on CaOxalate monohydrate (kidney stones) from aqueous solution was found to obey the law mentioned above. Generalization for more complex lattice will be discussed. 3. Turbulence. In agreement with theory, high precision in-situ laser interferometry of the (101) KDP crystal face shows step

  15. Origin of vesicle layering and double imbrication by endogenous growth in the Birkett basalt flow (Columbia river plateau)

    NASA Astrophysics Data System (ADS)

    Walker, George P. L.; Cañón-Tapia, Edgardo; Herrero-Bervera, Emilio

    1999-01-01

    The 40-m thick Birkett basalt pahoehoe flow at Sentinel Gap in the Columbia River Plateau has an unusually thick (≥15 m) upper vesicular zone. This zone includes a striking layering in which the layers have contrasted vesicle abundances and sizes. Most layers show a reverse grading of vesicle size and abundance. The layering is interpreted to have grown endogenously by the cyclic injection of vesicular lava layers under the growing top crust, accommodated by uplift of that crust. Grading of the layers resulted from vesicle growth and ascent. Each injection occurred at or near the boundary between vesicular and non-vesicular lava of the preceding layer and split that layer into an upper vesicular part and a lower non-vesicular part. Critical to this interpretation are (1) a pervasive foliation and lineation, defined by the parallelism of strongly flattened and elongate vesicles, transects the vesicle layers obliquely; and (2) the magnetic fabric (the anisotropy of magnetic susceptibility) is oriented similarly to the vesicle foliation, and also defines a cryptic foliation in the non-vesicular zone having a dip opposed to that in the layered zone. These foliations are interpreted to be opposed imbrications and indicate the flow azimuth of the lava. They strongly support the concept of lava growth by successive thin sill-like insertions of fresh vesicular lava between hot but static and effectively solid floor and roof.

  16. Integration of biological kinetics and computational fluid dynamics to model the growth of Nannochloropsis salina in an open channel raceway.

    PubMed

    Park, Stephen; Li, Yebo

    2015-05-01

    Microalgal growth and systemic productivity is not only affected by environmental conditions such as temperature, irradiance, and nutrient concentrations, but also by physical processes such as fluid flow and particulate sedimentation. Modeling and simulating the system is a cost-effective way to predict the growth behavior under various environmental and physical conditions while determining effective engineering approaches to maximize productivity. Many mathematical models have been proposed to describe microalgal growth, while computational fluid dynamics (CFD) have been used to model the behavior of many fluid systems. Integrating the growth kinetics into a CFD model can help researchers understand the impact of a variety of parameters and determine what measures can be taken to overcome some obstacles in the aquaculture industry--self-shading, biomass sedimentation, and contamination--which prevent the production of high biomass yields. The aim of this study was to integrate physical and environmental effects to predict space- and time-dependent algal growth in industrial scale raceways. A commercial CFD software, ANSYS-Fluent 14.5, was used to solve the proposed models in regards to fluid flow, heat transfer, and nutrient balance. User-defined functions written in C language were used to incorporate the kinetic equations into a three-dimensional standard k-ε turbulence model of an open channel raceway system driven by a single paddlewheel. Simulated results were compared with light intensity, temperature, nutrient concentration, and algal biomass data acquired for 56 day from an industrial scale raceway pond constructed for the growth of Nannochloropsis salina and were observed to be in good agreement with one another. There was up to a 17.6% increase in simulated productivity when the incoming CO2 concentration was increased from 0.0006 to 0.150 g L(-1), while the effect of paddlewheel velocity was not significant. Sensitivity analysis showed that the model

  17. Submonolayer nucleation and growth and the initial stage of multilayer kinetic roughening during Ag/Ag (100) homoepitaxy

    SciTech Connect

    Zhang, C.

    1996-08-01

    A comprehensive Scanning Tunneling Microscopy (STM) study of submonolayer nucleation and growth of 2D islands in Ag/Ag(100) homoepitaxy for temperature between 295K and 370K is presented. The initial stages of multilayer kinetic roughening is also studied. Analysis of an appropriate model for metal (100) homoepitaxy, produces estimates of 350 meV for the terrace diffusion barrier, 400 meV for the adatom bond energy, and 25 meV for the additional Ehrlich-Schwoebel step-edge barrier.

  18. Novel growth method of carbon nanotubes using catalyst-support layer developed by alumina grit blasting.

    PubMed

    Watanabe, Hiromichi; Ishii, Juntaro; Ota, Keishin

    2016-08-19

    We propose an efficient method of growing carbon nanotube (CNT) arrays on a variety of metals, alloys, and carbon materials using chemical vapor deposition (CVD) assisted by a simple surface treatment of the materials. The main feature of this method is the application of grit blasting with fine alumina particles to the development of a catalyst-support layer required for the growth of CNTs on various conductive materials, including ultra-hard metals such as tungsten. Auger electron spectroscopy shows that grit blasting can form a non-continuous layer where alumina nanoparticles are embedded as residues in the blasting media left on the treated surfaces. This work reveals that such a non-continuous alumina layer can behave as the catalyst-support layer, which is generally prepared by sputter or a vacuum evaporation coating process that considerably restricts the practical applications of CNTs. We have attempted to grow CNTs on grit-blasted substrates of eighteen conventionally used conductive materials using CVD together with a floating iron catalyst. The proposed method was successful in growing multi-walled CNT arrays on the grit-blasted surfaces of all the examined materials, demonstrating its versatility. Furthermore, we found that the group IV metal oxide films thermally grown on the as-received substrates can support the catalytic activity of iron nanoparticles in the CVD process just as well as the alumina film developed by grit blasting. Spectral emissiv