Sample records for layer height blh

  1. Boundary layer height determination from Lidar for improving air pollution episode modelling: development of new algorithm and evaluation

    NASA Astrophysics Data System (ADS)

    Yang, T.; Wang, Z.; Zhang, W.; Gbaguidi, A.; Sugimoto, N.; Matsui, I.; Wang, X.; Yele, S.

    2017-12-01

    Predicting air pollution events in low atmosphere over megacities requires thorough understanding of the tropospheric dynamic and chemical processes, involving notably, continuous and accurate determination of the boundary layer height (BLH). Through intensive observations experimented over Beijing (China), and an exhaustive evaluation existing algorithms applied to the BLH determination, persistent critical limitations are noticed, in particular over polluted episodes. Basically, under weak thermal convection with high aerosol loading, none of the retrieval algorithms is able to fully capture the diurnal cycle of the BLH due to pollutant insufficient vertical mixing in the boundary layer associated with the impact of gravity waves on the tropospheric structure. Subsequently, a new approach based on gravity wave theory (the cubic root gradient method: CRGM), is developed to overcome such weakness and accurately reproduce the fluctuations of the BLH under various atmospheric pollution conditions. Comprehensive evaluation of CRGM highlights its high performance in determining BLH from Lidar. In comparison with the existing retrieval algorithms, the CRGM potentially reduces related computational uncertainties and errors from BLH determination (strong increase of correlation coefficient from 0.44 to 0.91 and significant decreases of the root mean square error from 643 m to 142 m). Such newly developed technique is undoubtedly expected to contribute to improve the accuracy of air quality modelling and forecasting systems.

  2. Two-wavelength Lidar inversion algorithm for determining planetary boundary layer height

    NASA Astrophysics Data System (ADS)

    Liu, Boming; Ma, Yingying; Gong, Wei; Jian, Yang; Ming, Zhang

    2018-02-01

    This study proposes a two-wavelength Lidar inversion algorithm to determine the boundary layer height (BLH) based on the particles clustering. Color ratio and depolarization ratio are used to analyze the particle distribution, based on which the proposed algorithm can overcome the effects of complex aerosol layers to calculate the BLH. The algorithm is used to determine the top of the boundary layer under different mixing state. Experimental results demonstrate that the proposed algorithm can determine the top of the boundary layer even in a complex case. Moreover, it can better deal with the weak convection conditions. Finally, experimental data from June 2015 to December 2015 were used to verify the reliability of the proposed algorithm. The correlation between the results of the proposed algorithm and the manual method is R2 = 0.89 with a RMSE of 131 m and mean bias of 49 m; the correlation between the results of the ideal profile fitting method and the manual method is R2 = 0.64 with a RMSE of 270 m and a mean bias of 165 m; and the correlation between the results of the wavelet covariance transform method and manual method is R2 = 0.76, with a RMSE of 196 m and mean bias of 23 m. These findings indicate that the proposed algorithm has better reliability and stability than traditional algorithms.

  3. Tracking atmospheric boundary layer in tehran using combined lidar remote sensing and ground base measurements

    NASA Astrophysics Data System (ADS)

    Panahifar, Hossein; Khalesifard, Hamid

    2018-04-01

    The vertical structure of the atmospheric boundary layer (ABL) has been studied by use of a depolarized LiDAR over Tehran, Iran. The boundary layer height (BLH) remains under 1km, and its retrieval from LiDAR have been compared with sonding measurements and meteorological model outputs. It is also shown that the wind speed and direction as well as topography lead to the persistence of air pollution in Tehran. The situation aggravate in fall and winter due to temperature inversion.

  4. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    NASA Astrophysics Data System (ADS)

    Lac, C.; Donnelly, R. P.; Masson, V.; Pal, S.; Donier, S.; Queguiner, S.; Tanguy, G.; Ammoura, L.; Xueref-Remy, I.

    2012-10-01

    Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is challenging, but essential in order to utilize CO2 measurements in an atmospheric inverse framework to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration, during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town-Energy Balance (TEB) urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs) surface scheme, allowing a full interaction of CO2 between the surface and the atmosphere. Statistical scores show a good representation of the Urban Heat Island (UHI) and urban-rural contrasts. Boundary layer heights (BLH) at urban, sub-urban and rural sites are well captured, especially the onset time of the BLH increase and its growth rate in the morning, that are essential for tall tower CO2 observatories. Only nocturnal BLH at sub-urban sites are slightly underestimated a few nights, with a bias less than 50 m. At Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the Atmospheric Boundary Layer (ABL) growth reaches the measurement height. The timing of the CO2 cycle is well captured by the model, with only small biases on CO2 concentrations, mainly linked to the misrepresentation of anthropogenic emissions, as the Eiffel site is at the heart of trafic emission sources. At sub-urban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a very strong spatio-temporal variability. The CO2 cycle at these sites is generally well reproduced by the model, even if some biases on the nocturnal maxima appear in the Paris plume parly due to small errors on the vertical transport, or in the vicinity of airports due to small errors on the horizontal transport (wind direction). A sensitivity test without urban parameterisation removes UHI and underpredicts nighttime BLH over urban and sub-urban sites, leading to large overestimation of nocturnal CO2 concentration at the sub-urban sites. The agreement of daytime and nighttime BLH and CO2 predictions of the reference simulation over Paris agglomeration demonstrates the potential of using the meso-scale system on urban and sub-urban area in the context of inverse modelling.

  5. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    NASA Astrophysics Data System (ADS)

    Lac, C.; Donnelly, R. P.; Masson, V.; Pal, S.; Riette, S.; Donier, S.; Queguiner, S.; Tanguy, G.; Ammoura, L.; Xueref-Remy, I.

    2013-05-01

    Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is a challenging and interesting task needed to be performed in order to utilise CO2 measurements in an atmospheric inverse framework and to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town Energy Balance (TEB) urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs) surface scheme, allowing a full interaction of CO2 modelling between the surface and the atmosphere. Statistical scores show a good representation of the urban heat island (UHI) with stronger urban-rural contrasts on temperature at night than during the day by up to 7 °C. Boundary layer heights (BLH) have been evaluated on urban, suburban and rural sites during the campaign, and also on a suburban site over 1 yr. The diurnal cycles of the BLH are well captured, especially the onset time of the BLH increase and its growth rate in the morning, which are essential for tall tower CO2 observatories. The main discrepancy is a small negative bias over urban and suburban sites during nighttime (respectively 45 m and 5 m), leading to a few overestimations of nocturnal CO2 mixing ratios at suburban sites and a bias of +5 ppm. The diurnal CO2 cycle is generally well captured for all the sites. At the Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the atmospheric boundary layer (ABL) growth reaches the measurement height. At suburban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a strong spatio-temporal variability. A sensitivity test without urban parameterisation removes the UHI and underpredicts nighttime BLH over urban and suburban sites, leading to large overestimation of nocturnal CO2 mixing ratio at the suburban sites (bias of +17 ppm). The agreement between observation and prediction for BLH and CO2 concentrations and urban-rural increments, both day and night, demonstrates the potential of using the urban mesoscale system in the context of inverse modelling

  6. Impacts of meteorological conditions on wintertime PM2.5 pollution in Taiyuan, North China.

    PubMed

    Miao, Yucong; Liu, Shuhua; Guo, Jianping; Yan, Yan; Huang, Shunxiang; Zhang, Gen; Zhang, Yong; Lou, Mengyun

    2018-05-23

    Taiyuan frequently experiences heavy PM 2.5 pollution in winter under unfavorable meteorological conditions. To understand how the meteorological factors influence the pollution in Taiyuan, this study involved a systematic analysis for a continuous period from November 2016 to January 2017, using near-surface meteorological observations, radiosonde soundings, PM 2.5 measurements, and three-dimension numerical simulation, in combination with backward trajectory calculations. The results show that PM 2.5 concentration positively correlates with surface temperature and relative humidity and anti-correlates with near-surface wind speed and boundary layer height (BLH). The low BLH is often associated with a strong thermal inversion layer capping over. In addition to the high local emissions, it is found that under certain synoptic conditions, the southwesterly and southerly winds could bring pollutants from Linfen to Taiyuan, leading to a near-surface PM 2.5 concentration higher than 200 μg m -3 . Another pollution enhancing issue is due to the semi-closed basin of Taiyuan affecting the planetary boundary layer (PBL): the surrounding mountains favor the formation of a cold air pool in the basin, which inhibits vertical exchanges of heat, flux, and momentum between PBL and the free troposphere, resulting in stagnant conditions and poor air quality in Taiyuan. These findings can be utilized to improve the understanding of PM 2.5 pollution in Taiyuan, to enhance the accuracy of forecasting pollution, and to provide scientific support for policy makers to mitigate the pollution.

  7. Ovate family protein1 interaction with BLH3 regulates transition timing from vegetative to reproductive phase in Arabidopsis

    DOE PAGES

    Zhang, Liguo; Zhang, Xiaofei; Ju, Hanxun; ...

    2016-01-23

    We study the Three-Amino-acid-Loop-Extension(TALE) homeodomain transcription factor BLH3 that regulates timing of transition from vegetative to reproductive phase. Previous preliminary results obtained using large-scale yeast two-hybrids indicate that BLH3 protein possibly interact with Ovate Family Proteins(OFPs) transcription co-regulators. Nevertheless, it is uncertain whether OFP1–BLH3 complex is involved in regulation of timing of transition from vegetative to reproductive phase in Arabidopsis. The interaction between BLH3 and OFP1 was re-tested and verified by a yeast two-hybrid system. We found that the BLH3–OFP1 interaction was mainly mediated through the BLH3 homeodomain. Meanwhile, this interaction was further confirmed by bimolecular fluorescence complementation (BiFC) inmore » vivo. In addition, by establishing protoplast transient expression, we discovered that BLH3 acts as a transcriptional activator, whereas OFP1 functioned as a repressor. The interactions between OFP1 and BLH3 can reduce BLH3 transcriptional activity. The ofp1 mutant lines and blh3 mutant lines, OFP1 overexpress lines and BLH3 overexpress lines can both influence timing of transition from vegetative to reproductive phase. Furthermore, 35s:OFP1/blh3 plants exhibited flowering and leaf quantity similar to that of the wild-type controls. 35s:BLH3/ofp1 plants flowered earlier and had less leaves than wild-type controls, indicating that OFP1 protein might depend partially on BLH3 in its function to regulate the timing of transition from vegetative to reproductive phase. In conclusion, these results support our assumption that, by interacting with OFP1, BLH3 forms a functional protein complex that controls timing of progression from vegetative to reproductive phase, and OFP1 might negatively regulate BLH3 or the BLH-KNOX complex, an important interaction for sustaining the normal transition from vegetative to reproductive phase.« less

  8. Marine boundary layer structure as observed by A-train satellites

    DOE PAGES

    Luo, Tao; Wang, Zhien; Zhang, Damao; ...

    2016-05-13

    The marine boundary layer (MBL) structure is important to the marine low cloud processes, and the exchange of heat, momentum, and moisture between oceans and the low atmosphere. This study examines the MBL structure over the eastern Pacific region and further explores the controlling factors of MBL structure over the global oceans with a new 4-year satellite-based data set. The MBL top (boundary layer height, BLH) and the mixing layer height (MLH) were identified using the MBL aerosol lidar backscattering from the CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations). Results showed that the MBL is generally decoupled with MLH ∕ BLHmore » ratio ranging from  ∼  0.5 to  ∼  0.8 over the eastern Pacific Ocean region. The MBL decoupling magnitude is mainly controlled by estimated inversion strength (EIS), which in turn controls the cloud top entrainment process. The systematic differences between drizzling and non-drizzling stratocumulus tops also show dependence on EIS. This may be related to the meso-scale circulations or gravity wave in the MBL. Further analysis indicates that the MBL shows a similar decoupled structure for clear-sky and cumulus-cloud-topped conditions, but is better mixed under stratiform cloud breakup and overcast conditions.« less

  9. Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution

    NASA Astrophysics Data System (ADS)

    Miao, Yucong; Guo, Jianping; Liu, Shuhua; Liu, Huan; Li, Zhanqing; Zhang, Wanchun; Zhai, Panmao

    2017-02-01

    Meteorological conditions within the planetary boundary layer (PBL) are closely governed by large-scale synoptic patterns and play important roles in air quality by directly and indirectly affecting the emission, transport, formation, and deposition of air pollutants. Partly due to the lack of long-term fine-resolution observations of the PBL, the relationships between synoptic patterns, PBL structure, and aerosol pollution in Beijing have not been well understood. This study applied the obliquely rotated principal component analysis in T-mode to classify the summertime synoptic conditions over Beijing using the National Centers for Environmental Prediction reanalysis from 2011 to 2014, and investigated their relationships with PBL structure and aerosol pollution by combining numerical simulations, measurements of surface meteorological variables, fine-resolution soundings, the concentration of particles with diameters less than or equal to 2.5 µm, total cloud cover (CLD), and reanalysis data. Among the seven identified synoptic patterns, three types accounted for 67 % of the total number of cases studied and were associated with heavy aerosol pollution events. These particular synoptic patterns were characterized by high-pressure systems located to the east or southeast of Beijing at the 925 hPa level, which blocked the air flow seaward, and southerly PBL winds that brought in polluted air from the southern industrial zone. The horizontal transport of pollutants induced by the synoptic forcings may be the most important factor affecting the air quality of Beijing in summer. In the vertical dimension, these three synoptic patterns featured a relatively low boundary layer height (BLH) in the afternoon, accompanied by high CLD and southerly cold advection from the seas within the PBL. The high CLD reduced the solar radiation reaching the surface, and suppressed the thermal turbulence, leading to lower BLH. Besides, the numerical sensitive experiments show that cold advection induced by the large-scale synoptic forcing may have cooled the PBL, leading to an increase in near-surface stability and a decrease in the BLH in the afternoon. Moreover, when warm advection appeared simultaneously above the top level of the PBL, the thermal inversion layer capping the PBL may have been strengthened, resulting in the further suppression of PBL and thus the deterioration of aerosol pollution levels. This study has important implications for understanding the crucial roles that meteorological factors (at both synoptic and local scales) play in modulating and forecasting aerosol pollution in Beijing and its surrounding area.

  10. Elucidating the relationship between aerosol concentration and summertime boundary layer structure in central China.

    PubMed

    Liu, Lin; Guo, Jianping; Miao, Yucong; Liu, Lin; Li, Jian; Chen, Dandan; He, Jing; Cui, Chunguang

    2018-06-11

    Wuhan, a megacity in central China, suffers from frequent aerosol pollution and is accompanied by meteorological factors at both synoptic and local scales. Partly due to the lack of appropriate observations of planetary boundary layer (PBL), the associations between synoptic conditions, PBL, and pollution there are not yet fully understood. Thus, systematic analyses were conducted using the fine-resolution soundings, surface meteorological measurements, and aerosol observations in Wuhan during summer for the period 2013-2016, in combination with T-mode principal component analysis and simulations of backward trajectory. The results showed that the variations of boundary layer height (BLH) not only modulated the diurnal variation of PM 2.5 concentration in Wuhan, but also the daily pollution level. Five different synoptic patterns during summer in Wuhan were identified from reanalysis geopotential height fields. Among these synoptic patterns, two types characterized by northeasterly prevailing winds, were found to be associated with heavy pollution in Wuhan. Driven by the northeasterly winds, the polluted air mass from the heavily polluted regions could be easily transported to Wuhan, such as North China Plain and Yangtze River Delta. Such regional transports of pollutants must be partly responsible for the aerosol pollution in Wuhan. In addition, these two synoptic patterns were also featured by the relatively high cloud cover and low boundary layer height in Wuhan, which would favor the occurrence of pollution there. Overall, this study has important implications for understanding the important roles of meteorological factors in modulating aerosol pollution in central China. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Stability of the Baseline Holder in Readout Circuits For Radiation Detectors

    PubMed Central

    Chen, Y.; Cui, Y.; O’Connor, P.; Seo, Y.; Camarda, G. S.; Hossain, A.; Roy, U.; Yang, G.; James, R. B.

    2016-01-01

    Baseline holder (BLH) circuits are used widely to stabilize the analog output of application-specific integrated circuits (ASICs) for high-count-rate applications. The careful design of BLH circuits is vital to the overall stability of the analog-signal-processing chain in ASICs. Recently, we observed self-triggered fluctuations in an ASIC in which the shaping circuits have a BLH circuit in the feedback loop. In fact, further investigations showed that methods of enhancing small-signal stabilities cause an even worse situation. To resolve this problem, we used large-signal analyses to study the circuit’s stability. We found that a relatively small gain for the error amplifier and a small current in the non-linear stage of the BLH are required to enhance stability in large-signal analysis, which will compromise the properties of the BLH. These findings were verified by SPICE simulations. In this paper, we present our detailed analysis of the BLH circuits, and propose an improved version of them that have only minimal self-triggered fluctuations. We summarize the design considerations both for the stability and the properties of the BLH circuits. PMID:27182081

  12. Estimation of surface-level PM2.5 concentration using aerosol optical thickness through aerosol type analysis method

    NASA Astrophysics Data System (ADS)

    Chen, Qi-Xiang; Yuan, Yuan; Huang, Xing; Jiang, Yan-Qiu; Tan, He-Ping

    2017-06-01

    Surface-level particulate matter is closely related to column aerosol optical thickness (AOT). Previous researches have successfully used column AOT and different meteorological parameters to estimate surface-level PM concentration. In this study, the performance of a selected linear model that estimates surface-level PM2.5 concentration was evaluated following the aerosol type analysis method (ATAM) for the first time. We utilized 443 daily average data for Xuzhou, Jiangsu province, collected using Aerosol Robotic Network (AERONET) during the period October 2013 to April 2016. Several parameters including atmospheric boundary layer height (BLH), relative humidity (RH), and effective radius of the aerosol size distribution (Ref) were used to assess the relationship between the column AOT and PM2.5 concentration. By including the BLH, ambient RH, and effective radius, the correlation (R2) increased from 0.084 to 0.250 at Xuzhou, and with the use of ATAM, the correlation increased further to 0.335. To compare the results, 450 daily average data for Beijing, pertaining to the same period, were utilized. The study found that model correlations improved by varying degrees in different seasons and at different sites following ATAM. The average urban industry (UI) aerosol ratios at Xuzhou and Beijing were 0.792 and 0.451, respectively, demonstrating poorer air conditions at Xuzhou. PM2.5 estimation at Xuzhou showed lower correlation (R2 = 0.335) compared to Beijing (R2 = 0.407), and the increase of R2 at Xuzhou and Beijing site following use of ATAM were 33.8% and 12.4%, respectively.

  13. Impact of synoptic controls and boundary layer processes on ground-level ozone evolution at an urban site

    NASA Astrophysics Data System (ADS)

    Haman, Christine Lanier

    Houston, Texas frequently exceeds the standard for ground-level ozone during the spring and fall. The large commuting population and vast number of industrial sources provide the necessary ingredients for photochemical ozone production in the presence of favorable meteorological conditions. The lack of continuous boundary layer (BL) observations prevents a comprehensive understanding of its role in ozone evolution. In this study, almost two years of BL observations are utilized to investigate the impacts of synoptic and micrometeorological-scale forcings on ozone. Aerosol gradients derived from ceilometer backscatter retrievals are used to identify the BL and residual layers (RL). Overall agreement is found between ceilometer and sonde estimates of the RL and BL heights (BLH), but difficulty detecting the layers occurs during cloud periods or immediately following precipitation. Large monthly variability is present in the peak afternoon BLH (e.g. mean August and December peaks are ˜2000 and 1100 m, respectively). Monthly nocturnal BLHs display much smaller differences. The majority of ozone exceedances occur during large-scale subsidence and weak winds in a postfrontal environment. These conditions result in turbulent kinetic energy, mechanical mixing, and ventilation processes that are 2--3 times weaker on exceedance days, which inhibit morning BL growth by an average of ˜100 m·hr-1 compared to low ozone days. The spring has higher nocturnal ozone levels, which is likely attributable to longer day lengths (˜78 minutes), stronger winds (˜0.78 m·s -1), and higher background ozone (˜5 ppbv) compared to the fall. Boundary layer entrainment plays an important role in ozone evolution. Exceedance days show a characteristic early morning rapid rise of ozone. Vertical ozone profiles indicate the RL ozone peak is ˜60 ppbv on exceedance days, which is ˜25 ppbv (+/- 10 ppbv) greater than low ozone days. The Integrated Profile Mixing (IPM) and Photochemical Budget (PB) methods are used to quantify ozone transport and photochemical production. On low ozone days, both the IPM and PB methods indicate ozone entrainment is ˜3--4 ppbv·hr-1 in this low photochemical environment of ˜1--4 ppbv·hr-1. During the rapid early morning ozone rise on exceedance days, RL entrainment and photochemical ozone production rates are 5--10 and 10--15 ppbv·hr -1, respectively.

  14. A Role for Agroforestry in Forest Restoration in the Lower Mississippi Alluvial Valley

    Treesearch

    Michael G. Dosskey; Gary Bentrup; Michele Schoeneberger

    2012-01-01

    Agroforestry options are explored for restoring important functions and values of bottomland hardwood (BLH) forests in the lower Mississippi River Alluvial Valley (LMAV). Agroforestry practices can augment the size and quality of BLH habitat, provide corridors between BLH areas, and enable restoration of natural hydrologic patterns and water quality. Agroforestry...

  15. Constancy of built-in luminance meter measurements in diagnostic displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silosky, M., E-mail: michael.silosky@ucdenver.edu; Marsh, R. M.

    2013-12-15

    Purpose: Liquid crystal displays used to interpret medical images are often equipped with built-in luminance meters to evaluate luminance response and Grayscale Standard Display Function conformance. This work evaluates agreement between luminance reported by the built-in meters and external measurements. Methods: The white level luminance was measured using a built-in meter and an external meter for 93 primary review workstations (Models MFGD 3420 and MDCG 3120-CB) with between 117 and 49 336 backlight hours (BLH). Measured luminance values were compared viat-test for displays with less than 25 000 BLH and those with more than 25 000 BLH. Bias between meters was also evaluated.more » Changes in luminance uniformity with increasing backlight hours were explored by determining the maximum luminance deviation (MLD) for subsets of these displays with less than 800 BLH and greater than 35 000 BLH. Results: The mean difference between built-in and external luminance measurements was 5.84% and 38.92% for displays with less than 25 000 and greater than 25 000 BLH, respectively, with a statistically significant difference in the means (p < 0.001). For displays with low BLH, a statistically significant bias was observed (p < 0.001) between built-in and external measurements. A high degree of correlation was observed between measurements made with two separate external meters (r = 0.999). The mean MLD was 9.5% and 11.2% for MDCG 3120-CB displays with less than 800 and greater than 35 000 BLH, respectively. The difference in the mean values was not statistically significant (p < 0.001). Conclusions: Disagreement between the white level luminance measured using the built-in and external meter increased with BLH. Consequently, reliance on values reported by the built-in luminance meter may result in a reduction in image contrast with time. Recommendations have been proposed regarding luminance response testing and corrective action for failing displays.« less

  16. The influence of passenger car front shape on pedestrian injury risk observed from German in-depth accident data.

    PubMed

    Li, Guibing; Lyons, Mathew; Wang, Bingyu; Yang, Jikuang; Otte, Dietmar; Simms, Ciaran

    2017-04-01

    Quantified relationships between passenger car front shape and pedestrian injury risk derived from accident data are sparse, especially considering the significant recent changes in car front design. The purpose of this paper is therefore to investigate the detailed effects of passenger car front shape on injury risk to a pedestrian's head, thorax, pelvis and leg in the event of a vehicle pedestrian impact. Firstly, an accident sample of 594 pedestrian cases captured during 2000-2015 from the German In-Depth Accident Study (GIDAS) database was employed. Multicollinearity diagnostic statistics were then used to detect multicollinearity between the predictors. Following this, logistic regression was applied to quantify the effects of passenger car front shape on injury risks while controlling for impact speed and pedestrian age. Results indicate that the bumper lower depth (BLD), bumper lower height (BLH), bumper upper height (BUH) and normalised bumper lower/upper height (NBLH/NBUH) are statistically significant for AIS2+ leg injury risk. The normalised bonnet leading edge height (NBLEH) has a statistically significant influence on AIS2+ femur/pelvis injury occurrence. The passenger car front shape did not show statistical significance for AIS3+ thorax and head injuries. The impact speed and pedestrian age are generally significant factors influencing AIS2+ leg and pelvis injuries, and AIS3+ thorax and head injuries. However, when head impacts are fixed on the central windscreen region both pedestrian age and impact speed are not statistically significant for AIS3+ head injury. For quantified effects, when controlling for speed, age and BUH, an average 7% and 6% increase in AIS2+ leg injury odds was observed for every 1cm increase in BLD and BLH respectively; 1cm increase in BUH results in a 7% decrease in AIS2+ leg injury odds when the BLD or BLH are fixed respectively (again controlling for impact speed and pedestrian age); the average AIS2+ femur/pelvis injury odds increase by 74% for a 10% increase in NBLEH. These findings suggest that passenger car bumpers should support the lower leg with a low and flat lower bumper and even contact up to the femur area with a high upper bumper which extends above the knee to protect the pedestrian's leg. A low passenger car bonnet leading edge helps to reduce femur/pelvis injury risk. The passenger car front shape parameters are less influential than impact speed and pedestrian age for pedestrian injury risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Estimation of surface PM10 concentration in Seoul during the DRAGON-Asia campaign based on the physical relationship between AOD and PM

    NASA Astrophysics Data System (ADS)

    Seo, S.; Kim, J.; Lee, H.; Jeong, U.; Kim, W. V.; Holben, B. N.; Kim, S.

    2013-12-01

    Atmospheric aerosols are known to play a role in climate change while it also adverse effects on human health such as respiratory and cardiovascular diseases. Especially, in terms of air quality, many studies have been conducted to estimate surface-level particulate matter (PM) concentration by using the satellite measurements to overcome the spatial limitation of ground-based aerosol measurements. In this study, we investigate the relationship between the column aerosol optical depth (AOD) and the surface PM10 concentration using the aerosol measurements during the DRAGON (Distributed Regional Aerosol Gridded Observation Network) - Asia campaign took place in Seoul from March to May, 2012. Based on the physical relationship between AOD and PM concentration, we develop various empirical linear models and evaluate the performance of these models. The best correlation (r = 0.67) is shown when vertical and size distribution of aerosols are additionally considered by using the boundary layer height (BLH) from backscattered lidar signals and the effective radius provided in AERONET inversion products. Similarly, MODIS AOD divided by BLH shows the best correlation with hourly PM10 (r = 0.62). We also identify the variability of correlations between AOD and PM10 depending on the environment characteristics in a complex megacity, Seoul by using the aerosol optical properties measured at mesoscale-level at 10 AERONET sites during the DRAGON campaign. Both AERONET and MODIS show higher correlation in residential area than near source area. Finally, we investigate the seasonal effects on the performance of various empirical linear models and find important factors of each season in PM estimation.

  18. A novel monoclonal antibody-based enzyme-linked immunosorbent assay to determine luteinizing hormone in bovine plasma.

    PubMed

    Borromeo, V; Berrini, A; De Grandi, F; Cremonesi, F; Fiandanese, N; Pocar, P; Secchi, C

    2014-07-01

    The development of a novel enzyme-linked immunosorbent assay (ELISA) for determining luteinizing hormone (LH) in bovine plasma is described. Anti-bovine LH (bLH) monoclonal antibodies (mAbs) were produced and characterized. One mAb recognizing the bLH β subunit was used for immunoaffinity purification of substantial amounts of biologically active bLH from pituitary glands. The purified bLH in combination with 2 anti-bLH β subunit mAbs was used to develop a sandwich ELISA, which satisfied all the criteria required to investigate LH secretory patterns in the bovine species. The ELISA standard curve was linear over the range 0.05 to 2.5 ng/mL, and the assay proved suitable for measuring bLH in plasma without any prior treatment of samples. Cross-reactivity and recovery tests confirmed the specificity of the method. The intra- and inter-assay coefficients of variation ranged between 3.41% and 9.40%, and 9.29% and 15.84%, respectively. The analytical specificity of the method was validated in vivo by provocative tests for LH in heifers, using the LH releasing peptide gonadotropin-releasing hormone. In conclusion, the adoption of mAbs for this ELISA for coating the wells and labeling, combined with the easy one-step production of reference bLH, ensures long-term continuity in large-scale measurements of LH in the bovine species. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Ogo 4 observations of extremely low frequency hiss.

    NASA Technical Reports Server (NTRS)

    Muzzio, J. L. R.; Angerami, J. J.

    1972-01-01

    Analysis of ELF and VLF data from the Stanford University experiment on Ogo 4 revealed an ELF hiss band with characteristics not previously identified. The band, referred to as band-limited ELF hiss, is seen from low to medium latitudes. On the basis of wave-propagation properties, it is proposed that the BLH is generated at large wave normal angles in the equatorial region near L = 4. This model can be used to explain the characteristics of the BLH. Two mechanisms for the generation of BLH based on radiation from energetic electrons are considered.

  20. The importance of hydrology in restoration of bottomland hardwood wetland functions

    USGS Publications Warehouse

    Hunter, R.G.; Faulkner, S.P.; Gibson, K.A.

    2008-01-01

    Bottomland hardwood (BLH) forests have important biogeochemical functions and it is well known that certain structural components, including pulsed hydrology, hydric soils, and hydrophytic vegetation, enhance these functions. It is unclear, however, how functions of restored BLH wetlands compare to mature, undisturbed wetlands. We measured a suite of structural and functional attributes in replicated natural BLH wetlands (NAT), restored BLH wetlands with hydrology re-established (RWH), and restored BLH wetlands without hydrology re-established (RWOH) in this study. Trees were replanted in all restored wetlands at least four years prior to the study and those wetlands with hydrology re-established had flashboard risers placed in drainage ditches to allow seasonal surface flooding. Vegetation, soils, and selected biogeochemical functions were characterized at each site. There was a marked difference in woody vegetation among the wetlands that was due primarily to site age. There was also a difference in herbaceous vegetation among the restored sites that may have been related to differences in age or hydrology. Water table fluctuations of the RWH wetlands were comparable to those of the NAT wetlands. Thus, placing flashboard risers in existing drainage ditches, along with proper management, can produce a hydroperiod that is similar to that of a relatively undisturbed BLH. Average length of saturation within the upper 15 cm of soils was 37, 104, and 97 days for RWOH, RWH, and NAT, respectively. Soil moisture, denitrification potential, and soluble organic carbon concentrations differed among wetland sites, but soil carbon and nitrogen concentrations, heterotrophic microbial activity, and readily mineralizable carbon concentrations did not. Significant linear relationships were also found between soil moisture and heterotrophic microbial activity, readily mineralizable carbon, and soluble organic carbon. In addition, sedimentation rates were higher in NAT and RWH wetlands than in RWOH sites. Results of this study suggest that reconnection of bottomland hardwood wetlands to their surrounding watershed through the restoration of surface hydrology is necessary to restore wetland functions important to nutrient and sediment removal. ?? 2008 The Society of Wetland Scientists.

  1. Swamp rabbits as indicators of optimal scale for bottomland forest management

    Treesearch

    Joanne C. Crawford; Clayton K. Nielsen; Eric M. Schauber; John W. Groninger

    2014-01-01

    Specialist wildlife that evolved within forest ecosystems can be sensitive to disturbance regime changes and thereby serve as indicators of optimal scale for forest management. Bottomland hardwood (BLH) forests were once extensive within the Lower Mississippi Alluvial Valley, but land cover conversion has reduced BLH by about 80 percent over the last century. Since...

  2. Results of a workshop concerning assessment of the functions of bottomland hardwoods

    USGS Publications Warehouse

    Roelle, James E.; Auble, Gregor T.; Hamilton, David B.; Johnson, Richard L.; Segelquist, Charles A.

    1987-01-01

    Recognizing the importance of implementing an effective, nationally consistent, and scientifically defensible regulatory program, EPA, in October 1984, issued Interim Operating Guidance to its field personnel for implementing the Section 404 regulatory program in bottomland hardwood wetlands. With the goal of improving and finalizing that guidance, EPA is sponsoring a series of workshops designed to answer key questions concerning BLH wetlands, based on the best scientific and technical information currently available. The first two workshops were directed toward summarizing existing scientific and technical knowledge concerning the functions of BLH ecosystems, the characteristics that are important to each function, and the impact of various development activities on those characteristics. The first workshop, which was held in St. Francisville, Louisiana, in December, 1984, examined a wetland zonation concept as a framework for gaining a greater understanding of BLH structure and function. The workshop set out to determine whether characterization of BLH resources as a series of relatively distinct zones, defined by concomitant variation in hydrologic regime, soils, and vegetation, might provide the basis for a useful and scientifically sound regulatory framework. For examp1e, if certain zones are of particular importance to one or more wetland functions that the Clean Water Act was intended to protect, then the zonation concept might be useful from the perspective of how various activities should be regulated. Discussions during the first workshop, however, indicated that the zonation concept provides, at best, only an incomplete picture of the structure and function of BLH ecosystems. In many cases, BLH functions are not limited to or closely correlated with particular zones and, furthermore, many factors other than zone are important determinants of BLH functions. With these responses in mind, the second workshop, held at Lake Lanier, Georgia, in July, 1985, was designed to elicit information on two questions. First, if zones are not an adequate framework for understanding the functions of BLH systems, what characteristics (predictors) can be used to assess the extent to which a particular site performs these functions? And second, what are the impacts of various development activities that often occur in BLH ecosystems on those characteristics and thus on the functions themselves? At the second workshop, individual workgroups dealing with particular subject areas (e.g., hydrology, water quality, fisheries, wildlife, ecosystem processes, and cultural/recreational/economic resources) were able to identify site characteristics that are important determinants of the performance of various functions. For example, the Hydrology Workgroup identified flood storage as one of three major hydrologic functions that BLH ecosystems perform. The workgroup then identified the most important characteristic (e.g., surface area of the site, soil saturation, and others) that determine flood storage and the likely impact of several common activities (e.g., conversion to soybean production and levee construction) on these characteristics. Some of the workgroups also provided estimates of the aggregate impact of activities, acting through all of the characteristics, on certain functions. The workgroups also identified key characteristics that could be used to identify high-value wetlands for various functions. In addition, the workgroups pointed out a number of topics needing further examination and discussion. First, all of the workgroups identified the need to develop the technical basis and information sources to address the problem of cumulative impacts in the regulatory process. Second, most of the workgroups noted the important of contextual variables in assessing the function of a particular site. For example, the location of a BLH site in relationship to other tracts of habitat is an important variable for many wildlife species. Similarly, the extent to which a site retains or transforms contaminants is depended not only on the characteristics of the site, but also on its position in a watershed relative to contaminant inputs. And finally, several of the workgroups pointed out that assessing the impact of an activity on a function is not as simple as "adding up" the impact on individual characteristics, but may depend instead on complex interactions among characteristics. Addressing these questions, as summarized in the objectives and discussions that follow, was the focus of the third workshop, the results of which are described in this report.

  3. Modeling the feedback between aerosol and boundary layer processes: a case study in Beijing, China.

    PubMed

    Miao, Yucong; Liu, Shuhua; Zheng, Yijia; Wang, Shu

    2016-02-01

    Rapid development has led to frequent haze in Beijing. With mountains and sea surrounding Beijing, the pollution is found to be influenced by the mountain-plain breeze and sea-land breeze in complex ways. Meanwhile, the presence of aerosols may affect the surface energy balance and impact these boundary layer (BL) processes. The effects of BL processes on aerosol pollution and the feedback between aerosol and BL processes are not yet clearly understood. Thus, the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) is used to investigate the possible effects and feedbacks during a haze episode on 23 September 2011. Influenced by the onshore prevailing wind, sea-breeze, and upslope breeze, about 45% of surface particulate matter (PM)2.5 in Beijing are found to be contributed by its neighbor cities through regional transport. In the afternoon, the development of upslope breeze suppresses the growth of BL in Beijing by imposing a relatively low thermal stable layer above the BL, which exacerbates the pollution. Two kinds of feedback during the daytime are revealed as follows: (1) as the aerosols absorb and scatter the solar radiation, the surface net radiation and sensible heat flux are decreased, while BL temperature is increased, resulting in a more stable and shallower BL, which leads to a higher surface PM2.5 concentration in the morning and (2) in the afternoon, as the presence of aerosols increases the BL temperature over plains, the upslope breeze is weakened, and the boundary layer height (BLH) over Beijing is heightened, resulting in the decrease of the surface PM2.5 concentration there.

  4. Long term PM2.5 estimation and its impact on human health in Beijing, China

    NASA Astrophysics Data System (ADS)

    Zheng, Sheng; Pozzer, Andrea; Cao, Chunxiang

    2014-05-01

    Due to the economic growth and urbanization, the emissions of pollutants have increased significantly in the North China Plain (NCP). Beijing, the capital of China, is located at the northern tip of NCP, and it is considered one of the most densely populated cities with the poorest air quality. This is of major concerns, because of the impact of high pollutants concentration on human health. The present study analyses the characteristics of AOD and the particulate matter with diameter < 2.5 μm (PM2.5) and its impact on human health in the central Beijing areas. We acquire AOD from Aerosol Robotic Network (AERONET) in Beijing from 2001 to 2012. The AOD data are fitted with a lognormal distribution, and the 95% of the cumulative probability is used as the threshold for episodes of high AOD. Most episodes occur in summer, mostly in June, though this is combined with high precipitation. Episodes of high AOD caused by coarse pollutants occur only in March and April, and they are mostly caused by dust from the north. According to wind direction, wind speed, boundary layer height (BLH) and pollutant emission distribution, episodes of high AOD are due to the anthropogenic pollutants from the south (Hebei province). Based on ground PM2.5 observation from the US embassy in Beijing from 2010 to 2011, we establish a relationship between PM2.5and AERONET AOD, including BLH and relative humidity (RH) correction. Thanks to this method, 12 years of PM2.5 are estimated for the Beijing central area, allowing the estimation of long term concentrations of this pollutant. Since there is no obvious difference among the daily PM2.5 of six stations lying in Chaoyang, Dongcheng, and Xicheng district, we use the daily PM2.5 from US embassy station to represent the PM2.5 concentration in these three districts, and calculate yearly premature mortality due to long term exposure to PM2.5among the population with an age of ≥ 30 yr in these three districts.

  5. Tree regeneration by seed in bottomland hardwood forests: A review

    USGS Publications Warehouse

    Kroschel, Whitney A.; King, Sammy L.; Keim, Richard F.

    2016-01-01

    Bottomland hardwood forests (BLH) are found in temperate, humid regions of the southeastern US, primarily on alluvial floodplains adjacent to rivers. Altered hydrology in rivers and floodplains has caused changes in stand development and species composition of BLHs. We hypothesize that the driving mechanisms behind these changes are related to the regeneration process because of the complexity of recruitment and the vulnerability of species at that age in development. Here we review the state of our understanding regarding BLH regeneration, and identify potential bottlenecks throughout the stages of seed production, seed dispersal, germination, establishment, and survival. Our process-level understanding of regeneration by seed in BLHs is rudimentary, thus limiting our ability to predict the effects of hydrologic alterations on species composition. By focusing future research on the appropriate stages of regeneration, we can better understand the sources of forest-community transitions across the diverse range of BLH systems.

  6. Results of a workshop concerning impacts of various activities on the functions of bottomland hardwoods

    USGS Publications Warehouse

    Roelle, James E.; Auble, Gregor T.; Hamilton, David B.; Horak, Gerald C.; Johnson, Richard L.; Segelquist, Charles A.

    1987-01-01

    Under Section 404 of the Clean Water Act, the U.S. Environmental Protection Agency (EPA) has regulatory responsibilities related to the discharge of dredged or fill material into the Nation’s waters. In addition to its advisory role in the U.S. Army Corps of Engineers' permit program, EPA has a number of specific authorities, including formulation of the Section 404(b)(1) guidelines, use of Section 404(c) to prohibit disposal at particular sites, and enforcement actions for unauthorized discharges. A number of recent court cases focus on the geographic scope of Section 404 jurisdiction in potential bottomland hardwood (BLH) wetlands and the nature of landclearing activities in these areas that require a permit under Section 404. Accordingly, EPA needs to establish the scientific basis for implementing its responsibilities under Section 404 in bottomland hardwoods. EPA is approaching this task through a series of workshops designed to provide current scientific information on bottomland hardwoods and to organize that information in a manner pertinent to key policy questions. The first two workshops in the series were originally conceived as technically oriented meetings that would provide the information necessary to develop policy options at the third workshop. More specifically, the first workshop was designed to examine a zonation concept as a means of characterizing different BLH communities and describing variations in their functions along a soil moisture gradient. The second workshop was perceived as an attempt to evaluate the impacts of various activities on those functions. However, one conclusion of the first workshop, which was held in December 1984 in St. Francisville, Louisiana, was that the zonation approach does not describe the variability in the functions performed by BLH ecosystems sufficiently well to allow its use as the sole basis for developing a regulatory framework. That is, factors other than zone were considered critical for an effective characterization of the structure and functions of bottomland hardwoods. The approach to the second workshop, the results of which are described in this report, was therefore modified in response to the conclusions from the first workshop. The focus of the second workshop remained an analysis of the impacts of various activities or the functions of BLH ecosystems. However, as a prerequisite to this analysis, participants were also asked to develop a list of characteristics that determine the extent to which BLH sites perform the important functions. The workshop was organized such that alternating plenary and workgroup sessions allowed ample time for communication while still maintaining a focus on the overall goal. In the initial session, various individuals gave presentations concerning methodologies for evaluating the functions performed by wetlands, factors influencing the conversion of BLH forests to other uses, and the impacts of conversion activities. These were followed by a series of case study presentations designed to familiarize participants with the kinds of issues that are dealt with in the Section 404 program. These presentations are cited in this report as (author, workshop presentation). At the conclusion of these presentations, participants were divided into six workgroups to examine the functions of BLH ecosystems in the areas of hydrology, water quality, fisheries, wildlife, ecosystem processes, and culture/recreation/economics. Each workgroup was asked to undertake the following tasks. 1. Developed a list of functions performed by BLH ecosystems from the perspective of the workgroup's expertise and area of responsibility. 2. Identify those activities (e.g., impoundment construction, conversion to soybean farming) that impact the major functions (e.g., sediment retention, detrital export) performed by BLH ecosystems. 3. Develop a list of characteristics that determine the extent to which a BLH site performs each function and describe the relationship of each characteristic to the function. Develop, with supporting evidence where possible, an analysis of the impact of each activity (Task 2) on each characteristic (Task 3) and on each function as a whole. Upon completion of Task 2, in an effort to provide some uniformity in the analysis by the various workgroups, EPA personnel and several participants met and compiled a complete list of all the activities identified as having significant impacts in bottomland hardwoods (Table 1). From this list the group derived a set of seven activities, and a number of specific actions associated with each, for analysis by the workgroups (Table 2). These activities were selected on the basis of their perceived importance in BLH ecosystems and their interest from the perspective of EPA. Each workgroup was also encourage to ass any activities of particular important from its perspective. The workgroup reports that follow document the results of discussion concerning the above tasks. The WORKSHOP SUMMARY attempts to summarize these workgroup results, discuss availability of information, and identify some problems that must be addressed prior to the third workshop in this series.

  7. A Novel Method to Estimate Surface NO_{2} Concentrations from the Space-borne Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Li, Yanshun; Zhang, Qiang; Geng, Guannan; Zheng, Yixuan; Guo, Jianping

    2017-04-01

    Atmospheric NO2near the surface has notable health effects and is precursor of tropospheric ozone. In this work, we propose a novel method to estimate daily surface NO2 concentrations from the Ozone Monitoring Instrument (OMI) with improved accuracy. Two chemical transport models GEOS-Chem and WRF/CMAQ are used to simulate converting factors between OMI column densities and surface concentrations. GEOS-Chem is found to better capture the distribution of converting factors, while CMAQ has advantage in simulating the magnitude. We combine the two models to calculate optimal values of converting factors and further constrain them by using colocated boundary layer heights (BLH) derived from fine-resolution sounding observations made at OMI overpass time. Calculated converting factors over Chinese Mainland vary by more than three orders of magnitude (10-18 ˜10-15 μgṡcm-1ṡmolecule-1), indicating complexity of NO2 vertical structure over large spatial extent. We generate a map of surface NO2 mass concentrations during June 2013 from OMI retrievals at 0.1˚ ×0.1˚ grids. Estimated concentrations from our novel method show reasonable spatial agreement with in situ chemiluminescent measurements (R = 0.70, Slope = 0.58, N = 353), which significantly outperform estimations using only GEOS-Chem (R = 0.60, Slope = 0.20, N = 353) or WRF/CMAQ (R = 0.19, Slope = 0.52, N = 353) to simulate the converting factor. Preliminary results show that the novel method developed in this study could improve capability of satellite sensors to quantify surface NO2 pollution.

  8. Airborne mineral components and trace metals in Paris region: spatial and temporal variability.

    PubMed

    Poulakis, E; Theodosi, C; Bressi, M; Sciare, J; Ghersi, V; Mihalopoulos, N

    2015-10-01

    A variety of mineral components (Al, Fe) and trace metals (V, Cr, Mn, Ni, Cu, Zn, Cd, Pb) were simultaneously measured in PM2.5 and PM10 fractions at three different locations (traffic, urban, and suburban) in the Greater Paris Area (GPA) on a daily basis throughout a year. Mineral species and trace metal levels measured in both fractions are in agreement with those reported in the literature and below the thresholds defined by the European guidelines for toxic metals (Cd, Ni, Pb). Size distribution between PM2.5 and PM10 fractions revealed that mineral components prevail in the coarse mode, while trace metals are mainly confined in the fine one. Enrichment factor analysis, statistical analysis, and seasonal variability suggest that elements such as Mn, Cr, Zn, Fe, and Cu are attributed to traffic, V and Ni to oil combustion while Cd and Pb to industrial activities with regional origin. Meteorological parameters such as rain, boundary layer height (BLH), and air mass origin were found to significantly influence element concentrations. Periods with high frequency of northern and eastern air masses (from high populated and industrialized areas) are characterized by high metal concentrations. Finally, inner city and traffic emissions were also evaluated in PM2.5 fraction. Significant contributions (>50 %) were measured in the traffic site for Mn, Fe, Cr, Zn, and Cu, confirming that vehicle emissions contribute significantly to their levels, while in the urban site, the lower contributions (18 to 33 %) for all measured metals highlight the influence of regional sources on their levels.

  9. Observational assessment of the role of nocturnal residual-layer chemistry in determining daytime surface particulate nitrate concentrations

    NASA Astrophysics Data System (ADS)

    Prabhakar, Gouri; Parworth, Caroline L.; Zhang, Xiaolu; Kim, Hwajin; Young, Dominique E.; Beyersdorf, Andreas J.; Ziemba, Luke D.; Nowak, John B.; Bertram, Timothy H.; Faloona, Ian C.; Zhang, Qi; Cappa, Christopher D.

    2017-12-01

    This study discusses an analysis of combined airborne and ground observations of particulate nitrate (NO3-(p)) concentrations made during the wintertime DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically resolved observations relevant to Air Quality) study at one of the most polluted cities in the United States - Fresno, CA - in the San Joaquin Valley (SJV) and focuses on developing an understanding of the various processes that impact surface nitrate concentrations during pollution events. The results provide an explicit case-study illustration of how nighttime chemistry can influence daytime surface-level NO3-(p) concentrations, complementing previous studies in the SJV. The observations exemplify the critical role that nocturnal chemical production of NO3-(p) aloft in the residual layer (RL) can play in determining daytime surface-level NO3-(p) concentrations. Further, they indicate that nocturnal production of NO3-(p) in the RL, along with daytime photochemical production, can contribute substantially to the buildup and sustaining of severe pollution episodes. The exceptionally shallow nocturnal boundary layer (NBL) heights characteristic of wintertime pollution events in the SJV intensify the importance of nocturnal production aloft in the residual layer to daytime surface concentrations. The observations also demonstrate that dynamics within the RL can influence the early-morning vertical distribution of NO3-(p), despite low wintertime wind speeds. This overnight reshaping of the vertical distribution above the city plays an important role in determining the net impact of nocturnal chemical production on local and regional surface-level NO3-(p) concentrations. Entrainment of clean free-tropospheric (FT) air into the boundary layer in the afternoon is identified as an important process that reduces surface-level NO3-(p) and limits buildup during pollution episodes. The influence of dry deposition of HNO3 gas to the surface on daytime particulate nitrate concentrations is important but limited by an excess of ammonia in the region, which leads to only a small fraction of nitrate existing in the gas phase even during the warmer daytime. However, in the late afternoon, when diminishing solar heating leads to a rapid fall in the mixed boundary layer height (BLH), the impact of surface deposition is temporarily enhanced and can lead to a substantial decline in surface-level particulate nitrate concentrations; this enhanced deposition is quickly arrested by a decrease in surface temperature, which drops the gas-phase fraction to near zero. The overall importance of enhanced late-afternoon gas-phase loss to the multiday buildup of pollution events is limited by the very shallow nocturnal boundary layer. The case study here demonstrates that mixing down of NO3-(p) from the RL can contribute a majority of the surface-level NO3-(p) in the morning (here, ˜ 80 %), and a strong influence can persist into the afternoon even when photochemical production is maximum. The particular day-to-day contribution of aloft nocturnal NO3-(p) production to surface concentrations will depend on prevailing chemical and meteorological conditions. Although specific to the SJV, the observations and conceptual framework further developed here provide general insights into the evolution of pollution episodes in wintertime environments.

  10. Upper Tropospheric Methane Variation over Indian Region: Role of Meteorology

    NASA Astrophysics Data System (ADS)

    M, K.; Nair, P. R.

    2016-12-01

    Rising concern over the increase in anthropogenic greenhouse gas emissions and their dangerous consequences on global climate has fuelled systematic monitoring of these gases all over the globe. Methane (CH4) is the most abundant reactive greenhouse gas in the atmosphere, playing vital roles in the energy balance and chemistry of the tropospheric and stratospheric regions of the atmosphere. It is the second-most important anthropogenic greenhouse gas after carbon dioxide (CO2) in terms of net radiative forcing and is emitted from a wide variety of natural and anthropogenic sources. The present study addresses the seasonal changes in the mixing ratio of the upper troposphere (UCH4) and near surface CH4 along with the column averaged mixing ratio (XCH4), over three latitude sectors over Indian region, as observed by aircraft-based (CARIBIC), in-situ (Cape Rama, Goa and Ahmedabad) and satellite based (SCIAMACHY) measurements respectively. The observed seasonal features were examined in the light of the airflow pattern/air mass back trajectories, changes in convective activities, vertical winds and boundary layer height (BLH). In addition to this the vertical distribution of CH4 was analysed using AIRS observation. XCH4 and UCH4 were found to follow more or less similar pattern over all the three latitude sectors, with the peak occurring in July-August, and minimum in late winter. The seasonal amplitude in XCH4 is less at low latitude sector ( 64 ppbv) compared to that of high latitudes ( 101 ppbv at 18°-22°N and 88 ppbv at 22°-24°N). On the other hand, the near surface methane shows opposite pattern peaking in winter attaining low in monsoon. During monsoon when methane sources are active at the surface, XCH4 > UCH4 and during other seasons UCH4 > XCH4 indicating presence of high altitude layers. This analysis revealed non-homogeneous distribution of methane in the troposphere indicative of stratified layers. The analysis of CH4 using AIRS measurement over Indian region confirmed the above results. This study further revealed the role of monsoon signatures in the variation of the mid-upper tropospheric CH4 over Indian region (Latitude 0°-40° N and Longitude 50°-110°E).

  11. Structure and growth of Bi(110) islands on Si(111)√{3 }×√{3 }-B substrates

    NASA Astrophysics Data System (ADS)

    Nagase, Kentaro; Kokubo, Ikuya; Yamazaki, Shiro; Nakatsuji, Kan; Hirayama, Hiroyuki

    2018-05-01

    The structure and growth of ultrathin Bi(110) islands were investigated on a Si(111)√{3 }×√{3 }-B substrate by scanning tunneling microscopy and scanning tunneling spectroscopy (STS). Both even- and odd-layer-height islands nucleated on a one-monolayer-thick wetting layer. The islands preferred the even layer heights over the odd layer heights with an area ratio of 3:1. A weak, long-range corrugation was observed to overlap on the atomic arrangement at the top of the islands. The average distance between the peaks of the corrugation oscillated in accordance with the alternation of even and odd layer heights. Nucleation of single- and double-layer terraces occurred on the islands with even layer heights but not on those with odd layer heights. The unit cell of the single-layer terrace was aligned with that of the underlying even-layer-height island. The inequality in the height preference and the height-dependent oscillation of the corrugation suggested that the even- and odd-layer-height islands possessed different structures. The dominance and stability against terrace nucleation of the even-layer-height islands were consistent with the theoretically predicted stability of the paired layer-stacked black-phosphorus (BP)-like structure for ultrathin Bi(110) films. The alignment of the unit cell at the terrace on the island and STS spectra suggested a BP-like/bulklike/BP-like sandwich structure for the odd-layer-height Bi(110) islands.

  12. Revolutionising landscapes: Hydroelectricity and the heavy industrialisation of society and environment in the Comte de Beauharnois, 1927--1948

    NASA Astrophysics Data System (ADS)

    Pelletier, Louis-Raphael

    This dissertation analyses the rapid industrialisation of the rural Comte de Beauharnois and the adjacent stretch of the Fleuve Saint-Laurent owing to the construction, between 1929 and 1948, of a gigantic canal for hydroelectricity production and navigation by an electricity corporation called the Beauharnois Light Heat and Power (BLH&P). Using principally the archives of the BLH&P---especially its complaints files and its rich photographic record---this thesis argues that this process exemplifies the finance capitalist reorganisation of the society and ecosystems of the Canadian province of Quebec from the 19th century to the Great Depression. In keeping with recent work in environmental history, the transformation of rural landscapes and a river for heavy industry is described as an important dimension of a revolution in modes of production. More specifically, I argue that, in the case under study, the finance-capitalist reorganisation of Quebec revolved around two central and explicit projects, one social and the other environmental: the grouping of most individuals in an industrial working class without control over the means of production and the reorganisation of rural landscapes into reservoirs of modern energy and industrial natural resources.

  13. Variability of the Mixed-Layer Height Over Mexico City

    NASA Astrophysics Data System (ADS)

    García-Franco, J. L.; Stremme, W.; Bezanilla, A.; Ruiz-Angulo, A.; Grutter, M.

    2018-02-01

    The diurnal and seasonal variability of the mixed-layer height in urban areas has implications for ground-level air pollution and the meteorological conditions. Measurements of the backscatter of light pulses with a commercial lidar system were performed for a continuous period of almost six years between 2011 and 2016 in the southern part of Mexico City. The profiles were temporally and vertically smoothed, clouds were filtered out, and the mixed-layer height was determined with an ad hoc treatment of both the filtered and unfiltered profiles. The results are in agreement when compared with values of mixed-layer height reconstructed from, (i) radiosonde data, and (ii) surface and vertical column densities of a trace gas. The daily maxima of the mean mixed-layer height reach values > 3 km above ground level in the months of March-April, and are clearly lower (< 2.7 km ) during the colder months from September-December. Mean daily minima are typically observed at 0700 local time (UTC - 6h), and are lowest during the winter months with values on average below 500 m. The data presented here show an anti-correlation between high-pollution episodes and the height of the mixed layer. The growth rate of the convective mixed-layer height has a seasonal behaviour, which is characterized together with the mixed-layer-height anomalies. A clear residual layer is evident from the backscattered signals recorded in days with specific atmospheric conditions, but also from the cloud-filtered mean diurnal profiles. The occasional presence of a residual layer results in an overestimation of the reported mixed-layer height during the night and early morning hours.

  14. Variability of the Mixed-Layer Height Over Mexico City

    NASA Astrophysics Data System (ADS)

    García-Franco, J. L.; Stremme, W.; Bezanilla, A.; Ruiz-Angulo, A.; Grutter, M.

    2018-06-01

    The diurnal and seasonal variability of the mixed-layer height in urban areas has implications for ground-level air pollution and the meteorological conditions. Measurements of the backscatter of light pulses with a commercial lidar system were performed for a continuous period of almost six years between 2011 and 2016 in the southern part of Mexico City. The profiles were temporally and vertically smoothed, clouds were filtered out, and the mixed-layer height was determined with an ad hoc treatment of both the filtered and unfiltered profiles. The results are in agreement when compared with values of mixed-layer height reconstructed from, (i) radiosonde data, and (ii) surface and vertical column densities of a trace gas. The daily maxima of the mean mixed-layer height reach values > 3 km above ground level in the months of March-April, and are clearly lower (< 2.7 km) during the colder months from September-December. Mean daily minima are typically observed at 0700 local time (UTC - 6h), and are lowest during the winter months with values on average below 500 m. The data presented here show an anti-correlation between high-pollution episodes and the height of the mixed layer. The growth rate of the convective mixed-layer height has a seasonal behaviour, which is characterized together with the mixed-layer-height anomalies. A clear residual layer is evident from the backscattered signals recorded in days with specific atmospheric conditions, but also from the cloud-filtered mean diurnal profiles. The occasional presence of a residual layer results in an overestimation of the reported mixed-layer height during the night and early morning hours.

  15. Comparison of dust-layer heights from active and passive satellite sensors

    NASA Astrophysics Data System (ADS)

    Kylling, Arve; Vandenbussche, Sophie; Capelle, Virginie; Cuesta, Juan; Klüser, Lars; Lelli, Luca; Popp, Thomas; Stebel, Kerstin; Veefkind, Pepijn

    2018-05-01

    Aerosol-layer height is essential for understanding the impact of aerosols on the climate system. As part of the European Space Agency Aerosol_cci project, aerosol-layer height as derived from passive thermal and solar satellite sensors measurements have been compared with aerosol-layer heights estimated from CALIOP measurements. The Aerosol_cci project targeted dust-type aerosol for this study. This ensures relatively unambiguous aerosol identification by the CALIOP processing chain. Dust-layer height was estimated from thermal IASI measurements using four different algorithms (from BIRA-IASB, DLR, LMD, LISA) and from solar GOME-2 (KNMI) and SCIAMACHY (IUP) measurements. Due to differences in overpass time of the various satellites, a trajectory model was used to move the CALIOP-derived dust heights in space and time to the IASI, GOME-2 and SCIAMACHY dust height pixels. It is not possible to construct a unique dust-layer height from the CALIOP data. Thus two CALIOP-derived layer heights were used: the cumulative extinction height defined as the height where the CALIOP extinction column is half of the total extinction column, and the geometric mean height, which is defined as the geometrical mean of the top and bottom heights of the dust layer. In statistical average over all IASI data there is a general tendency to a positive bias of 0.5-0.8 km against CALIOP extinction-weighted height for three of the four algorithms assessed, while the fourth algorithm has almost no bias. When comparing geometric mean height there is a shift of -0.5 km for all algorithms (getting close to zero for the three algorithms and turning negative for the fourth). The standard deviation of all algorithms is quite similar and ranges between 1.0 and 1.3 km. When looking at different conditions (day, night, land, ocean), there is more detail in variabilities (e.g. all algorithms overestimate more at night than during the day). For the solar sensors it is found that on average SCIAMACHY data are lower by -1.097 km (-0.961 km) compared to the CALIOP geometric mean (cumulative extinction) height, and GOME-2 data are lower by -1.393 km (-0.818 km).

  16. Hydrologic effects on diameter growth phenology for Celtis laevigata and Quercus lyrata in the floodplain of the lower White River, Arkansas

    Treesearch

    Scott T. Allen; Ken W. Krauss; Richard F. Keim

    2016-01-01

    Bottomland hardwood (BLH) forests represent an extensive wetland system in the Mississippi Alluvial Valley and southeastern USA, and it is currently undergoing widespread transition in species composition. One such transition involves increased establishment of sugarberry (Celtis laevigata), and decreased establishment of overcup oak (Quercus lyrata). The ecological...

  17. Estimation of the mixing layer height over a high altitude site in Central Himalayan region by using Doppler lidar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, K. K.; Phanikumar, D. V.; Newsom, Rob K.

    2014-03-01

    A Doppler lidar was installed at Manora Peak, Nainital (29.4 N; 79.2 E, 1958 amsl) to estimate mixing layer height for the first time by using vertical velocity variance as basic measurement parameter for the period September-November 2011. Mixing layer height is found to be located ~0.57 +/- 0.1and 0.45 +/- 0.05km AGL during day and nighttime, respectively. The estimation of mixing layer height shows good correlation (R>0.8) between different instruments and with different methods. Our results show that wavelet co-variance transform is a robust method for mixing layer height estimation.

  18. An Algorithm for the Vertical Structure of Aerosol Extinction in the Lowest Kilometer of the Atmosphere: Rev. 1

    DTIC Science & Technology

    2017-11-01

    inversion layer, or the well-mixed boundary layer. In such cases a low cloud ceiling is not present. In all instances the atmospheric extinction profiles...height, radiation fog depth, or the inversion layer height. The visibility regions and several representative vertical profiles of extinction are...the coefficient B can be found by B = ln(D/A) . (2) The coefficient B is sometimes a function of the cloud ceiling height, the inversion layer height

  19. Tenderness Tester

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Space telemetry has been transferred to food processing in the Armour;Tenderorneter, an instrument that predicts the tenderness of meat. The space component of the instrument is a sensitive, highly reliable strain gage originally produced for NASA's Surveyor lunar lander and other space programs by BLH Electronics, Waltham, Mass. Several years ago Armour & Co. began to develop a method of testing a hanging carcass to predict how tender the meat would be after cooking; no such method then existed. After considerable experimentation, Armour came up with a manifold-mounted group of-needle-like probes, which when stuck into a carcass, could measure the degree to which the meat resisted penetration. This provided a basis for predicting tenderness, but the development required one more . step; a device that could translate meat resistance into an electrical readout. Armour found it in the BLH strain gage. The resulting Tenderometer, now a standard and important part of Armour's meat processing operation, includes a large, 10-pronged fork which is plunged into a carcass and a cable-connected, handheld electronic device that translates the sensings of the prongs into a tenderness reading on a dial. The instrument is used by Armour to select and guarantee a premium line of beef known as TesTender, whose annual sales run into tens of millions of pounds.

  20. Spatiotemporal Variability in Observations of Urban Mixed-Layer Heights from Surface-based Lidar Systems during DISCOVER-AQ 2011

    NASA Astrophysics Data System (ADS)

    Lewis, J. R.; Banks, R. F.; Berkoff, T.; Welton, E. J.; Joseph, E.; Thompson, A. M.; Decola, P.; Hegarty, J. D.

    2015-12-01

    Accurate characterization of the planetary boundary layer height is crucial for numerical weather prediction, estimating pollution emissions and modeling air quality. More so, given the increasing trend in global urban populations, there is a growing need to improve our understanding of the urban boundary layer structure and development. The Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality (DISCOVER-AQ) 2011 field campaign, which took place in the Baltimore-Washington DC region, offered a unique opportunity to study boundary layer processes in an urban area using a geographically dense collection of surface-based lidar systems (see figure). Lidars use aerosols as tracers for atmospheric boundary layer dynamics with high vertical and temporal resolutions. In this study, we use data from two permanent Micropulse Lidar Network (MPLNET) sites and five field deployed Micropulse lidar (MPL) systems in order to observe spatiotemporal variations in the daytime mixed layer height. We present and compare lidar-derived retrievals of the mixed layer height using two different methods. The first method uses the wavelet covariance transform and a "fuzzy logic" attribution scheme in order to determine the mixed layer height. The second method uses an objective approach utilizing a time-adaptive extended Kalman filter. Independent measurements of the boundary layer height are obtained using profiles from ozonesonde launches at the Beltsville and Edgewood sites for comparison with lidar observations.

  1. TALE and Shape: How to Make a Leaf Different.

    PubMed

    Di Giacomo, Elisabetta; Iannelli, Maria Adelaide; Frugis, Giovanna

    2013-05-06

    The Three Amino acid Loop Extension (TALE) proteins constitute an ancestral superclass of homeodomain transcription factors conserved in animals, plants and fungi. In plants they comprise two classes, KNOTTED1-LIKE homeobox (KNOX) and BEL1-like homeobox (BLH or BELL, hereafter referred to as BLH), which are involved in shoot apical meristem (SAM) function, as well as in the determination and morphological development of leaves, stems and inflorescences. Selective protein-protein interactions between KNOXs and BLHs affect heterodimer subcellular localization and target affinity. KNOXs exert their roles by maintaining a proper balance between undifferentiated and differentiated cell state through the modulation of multiple hormonal pathways. A pivotal function of KNOX in evolutionary diversification of leaf morphology has been assessed. In the SAM of both simple- and compound-leafed seed species, downregulation of most class 1 KNOX (KNOX1) genes marks the sites of leaf primordia initiation. However, KNOX1 expression is re-established during leaf primordia development of compound-leafed species to maintain transient indeterminacy and morphogenetic activity at the leaf margins. Despite the increasing knowledge available about KNOX1 protein function in plant development, a comprehensive view on their downstream effectors remains elusive. This review highlights the role of TALE proteins in leaf initiation and morphological plasticity with a focus on recent advances in the identification of downstream target genes and pathways.

  2. Retrieving the Height of Smoke and Dust Aerosols by Synergistic Use of VIIRS, OMPS, and CALIOP Observations

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae

    2015-01-01

    Aerosol Single scattering albedo and Height Estimation (ASHE) algorithm was first introduced in Jeong and Hsu (2008) to provide aerosol layer height as well as single scattering albedo (SSA) for biomass burning smoke aerosols. One of the advantages of this algorithm was that the aerosol layer height can be retrieved over broad areas, which had not been available from lidar observations only. The algorithm utilized aerosol properties from three different satellite sensors, i.e., aerosol optical depth (AOD) and Ångström exponent (AE) from Moderate Resolution Imaging Spectroradiometer (MODIS), UV aerosol index (UVAI) from Ozone Monitoring Instrument (OMI), and aerosol layer height from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Here, we extend the application of the algorithm to Visible Infrared Imaging Radiometer Suite (VIIRS) and Ozone Mapping and Profiler Suite (OMPS) data. We also now include dust layers as well as smoke. Other updates include improvements in retrieving the AOD of nonspherical dust from VIIRS, better determination of the aerosol layer height from CALIOP, and more realistic input aerosol profiles in the forward model for better accuracy.

  3. An Investigation of Instantaneous Plume Rise from Rocket Exhaust

    DTIC Science & Technology

    1996-12-01

    METERS) TOP = 2973.48 BASE= 210.62 SIGMAR (AZ) AT THE SURFACE (DEGREES) 13.5054 SIGMER(EL) AT THE SURFACE (DEGREES) 2.9738 MET. WIND WIND LAYER WIND SPEED...SELECTED LAYER HEIGHT- (METERS) TOP = 2973.48 BASE= 210.62 SIGMAR (AZ) AT THE SURFACE (DEGREES) 13.6911 SIGMER(EL) AT THE SURFACE (DEGREES) 2.9738 MET...TIME (SECS) 368.08 FIRST MIXING LAYER HEIGHT- (METERS) TOP = 210.62 BASE= 0.00 SECOND SELECTED LAYER HEIGHT- (METERS) TOP = 2973.48 BASE= 210.62 SIGMAR

  4. Retrieving the Height of Smoke and Dust Aerosols by Synergistic Use of Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae

    2016-01-01

    The Aerosol Single scattering albedo and Height Estimation (ASHE) algorithm was first introduced in Jeong and Hsu (2008) to provide aerosol layer height and single scattering albedo (SSA) for biomass burning smoke aerosols. By using multiple satellite sensors synergistically, ASHE can provide the height information over much broader areas than lidar observations alone. The complete ASHE algorithm uses aerosol data from MODIS or VIIRS, OMI or OMPS, and CALIOP. A simplified algorithm also exists that does not require CALIOP data as long as the SSA of the aerosol layer is provided by another source. Several updates have recently been made: inclusion of dust layers in the retrieval process, better determination of the input aerosol layer height from CALIOP, improvement in aerosol optical depth (AOD) for nonspherical dust, development of quality assurance (QA) procedure, etc.

  5. Passive remote sensing of aerosol layer height using near-UV multiangle polarization measurements

    NASA Astrophysics Data System (ADS)

    Wu, Lianghai; Hasekamp, Otto; van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John E.; Chowdhary, Jacek

    2016-08-01

    We demonstrate that multiangle polarization measurements in the near-UV and blue part of the spectrum are very well suited for passive remote sensing of aerosol layer height. For this purpose we use simulated measurements with different setups (different wavelength ranges, with and without polarization, different polarimetric accuracies) as well as airborne measurements from the Research Scanning Polarimeter (RSP) obtained over the continental USA. We find good agreement of the retrieved aerosol layer height from RSP with measurements from the Cloud Physics Lidar showing a mean absolute difference of less than 1 km. Furthermore, we found that the information on aerosol layer height is provided for large part by the multiangle polarization measurements with high accuracy rather than the multiangle intensity measurements. The information on aerosol layer height is significantly decreased when the shortest RSP wavelength (410 nm) is excluded from the retrieval and is virtually absent when 550 nm is used as shortest wavelength.

  6. Effect of an isolated semi-arid pine forest on the boundary layer height

    NASA Astrophysics Data System (ADS)

    Brugger, Peter; Banerjee, Tirtha; Kröniger, Konstantin; Preisler, Yakir; Rotenberg, Eyal; Tatarinov, Fedor; Yakir, Dan; Mauder, Matthias

    2017-04-01

    Forests play an important role for earth's climate by influencing the surface energy balance and CO2 concentrations in the atmosphere. Semi-arid forests and their effects on the local and regional climate are studied within the CliFF project (Climate Feedbacks and benefits of semi-arid Forests). This requires understanding of the atmospheric boundary layer over semi-arid forests, because it links the surface and the free atmosphere and determines the exchange of momentum, heat and trace gases. Our study site, Yatir, is a semi-arid isolated pine forest in the Negev desert in Israel. Higher roughness and lower albedo compared to the surrounding shrubland make it interesting to study the influences of the semi-arid Yatir forest on the boundary layer. Previous studies of the forest focused on the energy balance and secondary circulations. This study focuses on the boundary layer structure above the forest, in particular the boundary layer height. The boundary layer height is an essential parameter for many applications (e.g. construction of convective scaling parameters or air pollution modeling). We measured the boundary layer height upwind, over and downwind of the forest. In addition we measured at two sites wind profiles within the boundary layer and turbulent fluxes at the surface. This allows us to quantify the effects of the forest on boundary layer compared to the surrounding shrubland. Results show that the forest increases the boundary layer height in absence of a strong boundary layer top inversion. A model of the boundary layer height based on eddy-covariance data shows some agreement to the measurements, but fails during anticyclonic conditions and the transition to the nocturnal boundary layer. More complex models accounting for large scale influences are investigated. Further influences of the forest and surrounding shrubland on the turbulent transport of energy are discussed in a companion presentation (EGU2017-2219).

  7. Laboratory simulations of the atmospheric mixed-layer in flow ...

    EPA Pesticide Factsheets

    A laboratory study of the influence of complex terrain on the interface between a well-mixed boundary layer and an elevated stratified layer was conducted in the towing-tank facility of the U.S. Environmental Protection Agency. The height of the mixed layer in the daytime boundary layer can have a strong influence on the concentration of pollutants within this layer. Deflections of streamlines at the height of the interface are primarily a function of hill Froude number (Fr), the ratio of mixed-layer height (zi) to terrain height (h), and the crosswind dimension of the terrain. The magnitude of the deflections increases as Fr increases and zi / h decreases. For mixing-height streamlines that are initially below the terrain top, the response is linear with Fr; for those initially above the terrain feature the response to Fr is more complex. Once Fr exceeds about 2, the terrain related response of the mixed layer interface decreases somewhat with increasing Fr (toward more neutral flow). Deflections are also shown to increase as the crosswind dimensions of the terrain increases. Comparisons with numerical modeling, limited field data and other laboratory measurements reported in the literature are favorable. Additionally, visual observations of dye streamers suggests that the flow structure exhibited for our elevated inversions passing over three dimensional hills is similar to that reported in the literature for continuously stratified flow over two-dimensional h

  8. Outer layer effects in wind-farm boundary layers: Coriolis forces and boundary layer height

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2015-11-01

    In LES studies of wind-farm boundary layers, scale separation between the inner and outer region of the atmospheric boundary layer (ABL) is frequently assumed, i.e., wind turbines are presumed to fall within the inner layer and are not affected by outer layer effects. However, modern wind turbine and wind farm design tends towards larger rotor diameters and farm sizes, which means that outer layer effects will become more important. In a prior study, it was already shown for fully-developed wind farms that the ABL height influences the power performance. In this study, we use the in-house LES code SP-Wind to investigate the importance of outer layer effects on wind-farm boundary layers. In a suite of LES cases, the ABL height is varied by imposing a capping inversion with varying inversion strengths. Results indicate the growth of an internal boundary layer (IBL), which is limited in cases with low inversion layers. We further find that flow deceleration combined with Coriolis effects causes a change in wind direction throughout the farm. This effect increases with decreasing boundary layer height, and can result in considerable turbine wake deflection near the end of the farm. The authors are supported by the ERC (ActiveWindFarms, grant no: 306471). Computations were performed on VSC infrastructiure (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI.

  9. A modified S-DIMM+: applying additional height grids for characterizing daytime seeing profiles

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyong; Zhang, Lanqiang; Kong, Lin; Bao, Hua; Guo, Youming; Rao, Xuejun; Zhong, Libo; Zhu, Lei; Rao, Changhui

    2018-07-01

    Characterization of daytime atmospheric turbulence profiles is needed for the design of a multi-conjugate adaptive optical system. S-DIMM+ (solar differential image motion monitor+) is a technique to measure vertical seeing profiles. However, the number of height grids will be limited by the lenslet array of the wide-field Shack-Hartmann wavefront sensor (SHWFS). A small number of subaperture lenslet arrays will lead to a coarse height grid over the atmosphere, which can result in difficulty in finding the location of strong-turbulence layers and overestimates of the turbulence strength for the measured layers. To address this problem, we propose a modified S-DIMM+ method to measure seeing profiles iteratively with decreasing altitude range for a given number of height grids; finally they will be combined as a new seeing profile, with a denser and more uniform distribution of height grids. This method is tested with simulations and recovers the input height and contribution perfectly. Furthermore, this method is applied to the 102 data-sequences recorded from the 1-m New Vacuum Solar Telescope at Fuxian Solar Observatory, 55 of which were recorded at local time between 13:40 and 14:35 on 2016 October 6, and the other 47 between 12:50 and 13:40 on 2017 October 5. A 7x7 lenslet array of SHWFS is used to generate a 16-layer height grid to 15 km, each with 1 km height separation. The experimental results show that the turbulence has three origins in the lower (0-2 km) layers, the higher (3-6 km) layers and the uppermost (≥7 km) layers.

  10. Height Distribution Between Cloud and Aerosol Layers from the GLAS Spaceborne Lidar in the Indian Ocean Region

    NASA Technical Reports Server (NTRS)

    Hart, William D.; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis L.

    2005-01-01

    The Geoscience Laser Altimeter System (GLAS), a nadir pointing lidar on the Ice Cloud and land Elevation Satellite (ICESat) launched in 2003, now provides important new global measurements of the relationship between the height distribution of cloud and aerosol layers. GLAS data have the capability to detect, locate, and distinguish between cloud and aerosol layers in the atmosphere up to 40 km altitude. The data product algorithm tests the product of the maximum attenuated backscatter coefficient b'(r) and the vertical gradient of b'(r) within a layer against a predetermined threshold. An initial case result for the critical Indian Ocean region is presented. From the results the relative height distribution between collocated aerosol and cloud shows extensive regions where cloud formation is well within dense aerosol scattering layers at the surface. Citation: Hart, W. D., J. D. Spinhime, S. P. Palm, and D. L. Hlavka (2005), Height distribution between cloud and aerosol layers from the GLAS spaceborne lidar in the Indian Ocean region,

  11. Planetary Boundary Layer from AERI and MPL

    DOE Data Explorer

    Sawyer, Virginia

    2014-02-13

    The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of meters over a 24-hour period. The cap the PBL imposes on low-level aerosol transport makes aerosol concentration an effective proxy for PBL height: the top of the PBL is marked by a rapid transition from polluted, well-mixed boundary-layer air to the cleaner, more stratified free troposphere. Micropulse lidar (MPL) can provide much higher temporal resolution than radiosonde and better vertical resolution than infrared spectrometer (AERI), but PBL heights from all three instruments at the ARM SGP site are compared to one another for validation. If there is agreement among them, the higher-resolution remote sensing-derived PBL heights can accurately fill in the gaps left by the low frequency of radiosonde launches, and thus improve model parameterizations and our understanding of boundary-layer processes.

  12. The seasonal cycle of the mixing layer height and its impact on black carbon concentrations in the Kathmandu Valley (Nepal)

    NASA Astrophysics Data System (ADS)

    Mues, Andrea; Rupakheti, Maheswar; Hoor, Peter; Bozem, Heiko; Münkel, Christoph; Lauer, Axel; Butler, Tim

    2016-04-01

    The properties and the vertical structure of the mixing layer as part of the planetary boundary layer are of key importance for local air quality. They have a substantial impact on the vertical dispersion of pollutants in the lower atmosphere and thus on their concentrations near the surface. In this study, ceilometer measurements taken within the framework of the SusKat project (Sustainable Atmosphere for the Kathmandu Valley) are used to investigate the mixing layer height in the Kathmandu Valley, Nepal. The applied method is based on the assumption that the aerosol concentration is nearly constant in the vertical and distinctly higher within the mixing layer than in the air above. Thus, the height with the steepest gradient within the ceilometer backscatter profile marks the top of the mixing layer. Ceilometer and black carbon (BC) measurements conducted from March 2013 through February 2014 provide a unique and important dataset for the analysis of the meteorological and air quality conditions in the Kathmandu Valley. In this study the mean diurnal cycle of the mixing layer height in the Kathmandu Valley for each season (pre-monsoon, monsoon, post-monsoon and winter season) and its dependency on the meteorological situation is investigated. In addition, the impact of the mixing layer height on the BC concentration is analyzed and compared to the relevance of other important processes such as emissions, horizontal advection and deposition. In all seasons the diurnal cycle is typically characterized by low mixing heights during the night, gradually increasing after sun rise reaching to maximum values in the afternoon before decreasing again. Seasonal differences can be seen particularly in the height of the mixing layer, e.g. from on average 153/1200 m (pre-monsoon) to 241/755 m (monsoon season) during the night/day, and the duration of enhanced mixing layer heights during daytime (around 12 hours (pre-monsoon season) to 8 hours (winter)). During the monsoon season, the observed diurnal cycle typically shows the lowest amplitude and the lowest mixing height during the day and the highest in the night and morning hours of all seasons. These characteristics can mainly be explained with frequently present clouds and the associated lack of incoming solar radiation and outgoing longwave radiation. In general there is a clear anti-correlation of the BC concentration and the mixing layer height although this relation is less pronounced in the monsoon season. The shape and magnitude of the BC diurnal cycle differs between the seasons (e.g., daily maximum concentration from around 6 to 50 μg/m3 depending on the season). This is partly due to the different meteorological conditions including the mixing layer height but also caused by the different (seasonal and diurnal) time profiles of the main emission sources. From late December to April, for instance, brick kilns are major emitters of black carbon. The brick kilns emit continuously throughout the day whereas in the other months sources with more pronounced diurnal cycles, such as traffic and cooking activities, are dominating the total emissions.

  13. Genesis of Atlantic Lows Experiment NASA Electra Boundary Layer Flights Data Report

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Melfi, S. H.; Boers, Reinout

    1988-01-01

    The objective of this research was to obtain high resolution measurements of the height of the Marine Atmospheric Boundary Layer (MABL) during cold air outbreaks using an Airborne Lidar System. The research was coordinated with other investigators participating in the Genesis of Atlantic Lows Experiment (GALE). An objective computerized scheme was developed to obtain the Boundary Layer Height from the Lidar Data. The algorithm was used on each of the four flight days producing a high resolution data set of the MABL height over the GALE experiment area. Plots of the retrieved MABL height as well as tabular data summaries are presented.

  14. Choice of optimum heights for registration of ionospheric response onto earthquakes

    NASA Astrophysics Data System (ADS)

    Krasnov, Valerii; Gotur, Ivan; Kuleshov, Yurii; Cherny, Sergei

    2017-10-01

    To investigate the dependence of ionospheric disturbances on height we used model calculations, and the data of seismic and ionospheric observations during the Tohoku-Oki earthquake. High-altitude dependences of "portraits" of ionospheric disturbances are calculated for a case of influence of a seismic P-wave onto the ionosphere. We compared the "portraits" of ionospheric disturbances with the "portraits" of the seismic recording. The correlation coefficient of the recordings for the height of 100 km was about 0.81, for 130 km - 0.85, for 160 km - 0.77, for 180 km - 0.76, for 200 km - 0.7, for 230 km -0.54 and for 250 km - 0.41. At the same time the maximum of F2-layer was at the height about 250 km. Thus, the height of a maximum of F2-layer was not optimum for registration of ionospheric disturbances due to the earthquake. It was preferable to carry out measurements of the ionospheric disturbances at the heights below 200 km. The profile of amplitude of the ionospheric disturbance had no sharply expressed maximum at the height of a maximum of F2-layer. Therefore it is problematic to use the approach of the thin layer for interpretation of TEC disturbances.

  15. On the Creation of An Urban Boundary Layer Product Using The Radar Wind Profiler of the New York City Meteorological Network

    NASA Astrophysics Data System (ADS)

    Dempsey, M. J.; Booth, J.; Arend, M.; Melecio-Vazquez, D.

    2016-12-01

    The radar wind profiler (RWP) located on the Liberty Science Center in Jersey City, NJ is a part of the New York City Meteorological Network (NYCMetNet). An automatic algorithm based on those by Angevine [1] and Molod [2] is expanded upon and implemented to take RWP signal to noise ratio data and create an urban boundary layer (UBL) height product. Time series of the RWP UBL heights from clear and cloudy days are examined and compared to UBL height time series calculated from thermal data obtained from a NYCMetNet radiometer located on the roof of the Grove School of Engineering at The City College of New York. UBL data from the RWP are also compared to the MERRA (Modern Era Retrospective Analysis for Research and Applications) planetary boundary layer height time series product. A limited seasonal climatology is created from the available RWP data for clear and cloudy days and then compared to a limited seasonal climatology produced from boundary layer data obtained from MERRA and boundary layer data calculated from the CCNY radiometer. As with wind profilers in the NOAA wind profiler network, the signal return to the lowest range gates is not always the result of turbulent scattering, but from scattering from other targets such as the building itself, birds and insects. The algorithm attempts to address this during the daytime, when strong signal returns at the lowest range gates mask the SNR maxima above which are representative of the actual UBL height. Detecting the collapse and fall of the boundary layer meets with limited success, also, from the hours of 2:30pm to 5:00pm. Upper and lower range gates from the wind profiler limit observation of the nighttime boundary layer for heights falling below the lowest range gate and daytime convective boundary layer maxima rising above the highest. Due to the constraints of the instrument and the algorithm it is recommended that the boundary layer height product be constrained to the hours of 8am to 7pm.

  16. Evaluation of the operational Aerosol Layer Height retrieval algorithm for Sentinel-5 Precursor: application to O2 A band observations from GOME-2A

    NASA Astrophysics Data System (ADS)

    Sanders, A. F. J.; de Haan, J. F.; Sneep, M.; Apituley, A.; Stammes, P.; Vieitez, M. O.; Tilstra, L. G.; Tuinder, O. N. E.; Koning, C. E.; Veefkind, J. P.

    2015-06-01

    An algorithm setup for the operational Aerosol Layer Height product for TROPOMI on the Sentinel-5 Precursor mission is described and discussed, applied to GOME-2A data, and evaluated with lidar measurements. The algorithm makes a spectral fit of reflectance at the O2 A band in the near-infrared and the fit window runs from 758 to 770 nm. The aerosol profile is parameterized by a scattering layer with constant aerosol volume extinction coefficient and aerosol single scattering albedo and with a fixed pressure thickness. The algorithm's target parameter is the height of this layer. In this paper, we apply the algorithm to observations from GOME-2A in a number of systematic and extensive case studies and we compare retrieved aerosol layer heights with lidar measurements. Aerosol scenes cover various aerosol types, both elevated and boundary layer aerosols, and land and sea surfaces. The aerosol optical thicknesses for these scenes are relatively moderate. Retrieval experiments with GOME-2A spectra are used to investigate various sensitivities, in which particular attention is given to the role of the surface albedo. From retrieval simulations with the single-layer model, we learn that the surface albedo should be a fit parameter when retrieving aerosol layer height from the O2 A band. Current uncertainties in surface albedo climatologies cause biases and non-convergences when the surface albedo is fixed in the retrieval. Biases disappear and convergence improves when the surface albedo is fitted, while precision of retrieved aerosol layer pressure is still largely within requirement levels. Moreover, we show that fitting the surface albedo helps to ameliorate biases in retrieved aerosol layer height when the assumed aerosol model is inaccurate. Subsequent retrievals with GOME-2A spectra confirm that convergence is better when the surface albedo is retrieved simultaneously with aerosol parameters. However, retrieved aerosol layer pressures are systematically low (i.e., layer high in the atmosphere) to the extent that retrieved values are not realistically representing actual extinction profiles anymore. When the surface albedo is fixed in retrievals with GOME-2A spectra, convergence deteriorates as expected, but retrieved aerosol layer pressures become much higher (i.e., layer lower in atmosphere). The comparison with lidar measurements indicates that retrieved aerosol layer heights are indeed representative of the underlying profile in that case. Finally, subsequent retrieval simulations with two-layer aerosol profiles show that a model error in the assumed profile (two layers in the simulation but only one in the retrieval) is partly absorbed by the surface albedo when this parameter is fitted. This is expected in view of the correlations between errors in fit parameters and the effect is relatively small for elevated layers (less than 100 hPa). In case one of the scattering layers is near the surface (boundary layer aerosols), the effect becomes surprisingly large such that the retrieved height of the single layer is above the two-layer profile. Furthermore, we find that the retrieval solution, once retrieval converges, hardly depends on the starting values for the fit. Sensitivity experiments with GOME-2A spectra also show that aerosol layer height is indeed relatively robust against inaccuracies in the assumed aerosol model, even when the surface albedo is not fitted. We show spectral fit residuals, which can be used for further investigations. Fit residuals may be partly explained by spectroscopic uncertainties, which is suggested by an experiment showing the improvement of convergence when the absorption cross section is scaled in agreement with Butz et al. (2012) and Crisp et al. (2012) and a temperature offset to the a priori ECMWF temperature profile is fitted. Retrieved temperature offsets are always negative and quite large (ranging between -4 and -8 K), which is not expected if temperature offsets absorb remaining inaccuracies in meteorological data. Other sensitivity experiments investigate fitting of stray light and fluorescence emissions. We find negative radiance offsets and negative fluorescence emissions, also for non-vegetated areas, but from the results it is not clear whether fitting these parameters improves the retrieval. Based on the present results, the operational baseline for the Aerosol Layer Height product currently will not fit the surface albedo. The product will be particularly suited for elevated, optically thick aerosol layers. In addition to its scientific value in climate research, anticipated applications of the product for TROPOMI are providing aerosol height information for aviation safety and improving interpretation of the Absorbing Aerosol Index.

  17. Evaluation of the operational Aerosol Layer Height retrieval algorithm for Sentinel-5 Precursor: application to O2 A band observations from GOME-2A

    NASA Astrophysics Data System (ADS)

    Sanders, A. F. J.; de Haan, J. F.; Sneep, M.; Apituley, A.; Stammes, P.; Vieitez, M. O.; Tilstra, L. G.; Tuinder, O. N. E.; Koning, C. E.; Veefkind, J. P.

    2015-11-01

    An algorithm setup for the operational Aerosol Layer Height product for TROPOMI on the Sentinel-5 Precursor mission is described and discussed, applied to GOME-2A data, and evaluated with lidar measurements. The algorithm makes a spectral fit of reflectance at the O2 A band in the near-infrared and the fit window runs from 758 to 770 nm. The aerosol profile is parameterised by a scattering layer with constant aerosol volume extinction coefficient and aerosol single scattering albedo and with a fixed pressure thickness. The algorithm's target parameter is the height of this layer. In this paper, we apply the algorithm to observations from GOME-2A in a number of systematic and extensive case studies, and we compare retrieved aerosol layer heights with lidar measurements. Aerosol scenes cover various aerosol types, both elevated and boundary layer aerosols, and land and sea surfaces. The aerosol optical thicknesses for these scenes are relatively moderate. Retrieval experiments with GOME-2A spectra are used to investigate various sensitivities, in which particular attention is given to the role of the surface albedo. From retrieval simulations with the single-layer model, we learn that the surface albedo should be a fit parameter when retrieving aerosol layer height from the O2 A band. Current uncertainties in surface albedo climatologies cause biases and non-convergences when the surface albedo is fixed in the retrieval. Biases disappear and convergence improves when the surface albedo is fitted, while precision of retrieved aerosol layer pressure is still largely within requirement levels. Moreover, we show that fitting the surface albedo helps to ameliorate biases in retrieved aerosol layer height when the assumed aerosol model is inaccurate. Subsequent retrievals with GOME-2A spectra confirm that convergence is better when the surface albedo is retrieved simultaneously with aerosol parameters. However, retrieved aerosol layer pressures are systematically low (i.e., layer high in the atmosphere) to the extent that retrieved values no longer realistically represent actual extinction profiles. When the surface albedo is fixed in retrievals with GOME-2A spectra, convergence deteriorates as expected, but retrieved aerosol layer pressures become much higher (i.e., layer lower in atmosphere). The comparison with lidar measurements indicates that retrieved aerosol layer heights are indeed representative of the underlying profile in that case. Finally, subsequent retrieval simulations with two-layer aerosol profiles show that a model error in the assumed profile (two layers in the simulation but only one in the retrieval) is partly absorbed by the surface albedo when this parameter is fitted. This is expected in view of the correlations between errors in fit parameters and the effect is relatively small for elevated layers (less than 100 hPa). If one of the scattering layers is near the surface (boundary layer aerosols), the effect becomes surprisingly large, in such a way that the retrieved height of the single layer is above the two-layer profile. Furthermore, we find that the retrieval solution, once retrieval converges, hardly depends on the starting values for the fit. Sensitivity experiments with GOME-2A spectra also show that aerosol layer height is indeed relatively robust against inaccuracies in the assumed aerosol model, even when the surface albedo is not fitted. We show spectral fit residuals, which can be used for further investigations. Fit residuals may be partly explained by spectroscopic uncertainties, which is suggested by an experiment showing the improvement of convergence when the absorption cross section is scaled in agreement with Butz et al. (2013) and Crisp et al. (2012), and a temperature offset to the a priori ECMWF temperature profile is fitted. Retrieved temperature offsets are always negative and quite large (ranging between -4 and -8 K), which is not expected if temperature offsets absorb remaining inaccuracies in meteorological data. Other sensitivity experiments investigate fitting of stray light and fluorescence emissions. We find negative radiance offsets and negative fluorescence emissions, also for non-vegetated areas, but from the results it is not clear whether fitting these parameters improves the retrieval. Based on the present results, the operational baseline for the Aerosol Layer Height product currently will not fit the surface albedo. The product will be particularly suited for elevated, optically thick aerosol layers. In addition to its scientific value in climate research, anticipated applications of the product for TROPOMI are providing aerosol height information for aviation safety and improving interpretation of the Absorbing Aerosol Index.

  18. Observing the Vertical Extent of the Urban Boundary Layer Over Jersey City, NJ: A Diurnal and Seasonal Analysis

    NASA Astrophysics Data System (ADS)

    Dempsey, M. J.; Booth, J.; Arend, M.; Melecio-Vazquez, D.; Gonzalez, J.

    2015-12-01

    The atmospheric boundary remains one of the more difficult components of the climate system to classify. One of the most important characteristics is the boundary layer height, especially in urban settings. The current study examines the boundary layer height using the the New York City Meteorological Network or NYCMetNet. NYCMetNet is a network of weather stations, which report meteorological conditions in and around New York City, as part of the Optical Remote Sensing Laboratory of The City College of New York (ORSL). Of interest to this study is the data obtained from wind profiler station LSC01. The 915 MHz wind profiler is located 30m above the ground on the roof of the Liberty Science Center in Jersey City, NJ. It is a Vaisala Wind Profiler LAP 3000 with a wavelength of ~34cm, which means that the instrument responds primarily to Bragg backscattering. Can a seasonal urban boundary layer climatology be extrapolated from the data obtained from the wind profiler? What is the timing of boundary layer evolution and collapse over Jersey City? How effective is the profiler under cloudy skies and even in light rain or snow? This study examines the entire time period covered by the wind profile (2007 to present) and selects a series of clear days and a series of cloudy days. The top of the urban boundary layer is subjectively located from each half hour time stamp of signal to noise values. The urban boundary layer heights are recorded for clear and then cloudy days. Then the days are sorted seasonally (DJF, MAM, JJA, SON). A seasonal mean is calculated for every half hour time step. Finally a time series of seasonal urban boundary layer heights is constructed, and the timing of the urban boundary layer height maximum and time evolution and collapse of the boundary layer are generalized. A comparison is made against urban boundary layer heights obtained from Modern-Era Retrospective Analysis For Research And Applications (MERRA).

  19. [Characteristics of main layer and regeneration layer of Haloxylon ammodendron plantations at different ages on the southern edge of the Gurbantunggut Desert, Northwest China].

    PubMed

    Chen, Qi Min; Luo, Qing Hong; Ning, Hu Sen; Zhao, Cheng Yi; Duan, Wen Biao

    2017-03-18

    The population structure characteristics, natural regeneration, and the influential factors of Haloxylon ammodendron plantations at six different stand ages on the southern edge of the Gurbantunggut Desert were studied. The results showed that H. ammodendron plantation at the stand age of 7 could naturally regenerate. At the stand age of 17, the densities of the seedlings (<30 cm height), saplings (30≤H<50 height), and small trees (≥50 cm height) reached optimal class, and the mean height and base diameter of the small tress reached 1.10 m and 1.91 cm, respectively. The parent trees in H. ammodendron plantation at the stand age of 20 grew best. The height of 35% individuals grew up to 2.50-3.00 m, and the basal stem diameter of 23.1% individuals grew up to 8.00-10.00 cm. The height and diameter growth of the parent trees in H. ammodendron plantation at the stand age of 33 apparently declined, but the regeneration ability by natural seed dispersal was still strong. The regeneration density of natural seed dispersal showed the greatest correlation with the available nitrogen content in 0-100 cm soil layer (0.87), followed by the soil rapidly available phosphorus content (0.84) and the soil water content (0.79). The soils with pH 8.1-8.6 did not limit the nutrient growth of the regeneration layer. In the main stand layer, the individual density of whole regeneration layer showed the greatest correlation with the biomass of the parent trees (0.77), while the density of regeneration layer of the small trees showed the greatest correlation with the planting density (0.71) and the age of the parent trees (0.70).

  20. On the performance of surface renewal analysis to estimate sensible heat flux over two growing rice fields under the influence of regional advection

    NASA Astrophysics Data System (ADS)

    Castellví, F.; Snyder, R. L.

    2009-09-01

    SummaryHigh-frequency temperature data were recorded at one height and they were used in Surface Renewal (SR) analysis to estimate sensible heat flux during the full growing season of two rice fields located north-northeast of Colusa, CA (in the Sacramento Valley). One of the fields was seeded into a flooded paddy and the other was drill seeded before flooding. To minimize fetch requirements, the measurement height was selected to be close to the maximum expected canopy height. The roughness sub-layer depth was estimated to discriminate if the temperature data came from the inertial or roughness sub-layer. The equation to estimate the roughness sub-layer depth was derived by combining simple mixing-length theory, mixing-layer analogy, equations to account for stable atmospheric surface layer conditions, and semi-empirical canopy-architecture relationships. The potential for SR analysis as a method that operates in the full surface boundary layer was tested using data collected over growing vegetation at a site influenced by regional advection of sensible heat flux. The inputs used to estimate the sensible heat fluxes included air temperature sampled at 10 Hz, the mean and variance of the horizontal wind speed, the canopy height, and the plant area index for a given intermediate height of the canopy. Regardless of the stability conditions and measurement height above the canopy, sensible heat flux estimates using SR analysis gave results that were similar to those measured with the eddy covariance method. Under unstable cases, it was shown that the performance was sensitive to estimation of the roughness sub-layer depth. However, an expression was provided to select the crucial scale required for its estimation.

  1. A Lidar Point Cloud Based Procedure for Vertical Canopy Structure Analysis And 3D Single Tree Modelling in Forest

    PubMed Central

    Wang, Yunsheng; Weinacker, Holger; Koch, Barbara

    2008-01-01

    A procedure for both vertical canopy structure analysis and 3D single tree modelling based on Lidar point cloud is presented in this paper. The whole area of research is segmented into small study cells by a raster net. For each cell, a normalized point cloud whose point heights represent the absolute heights of the ground objects is generated from the original Lidar raw point cloud. The main tree canopy layers and the height ranges of the layers are detected according to a statistical analysis of the height distribution probability of the normalized raw points. For the 3D modelling of individual trees, individual trees are detected and delineated not only from the top canopy layer but also from the sub canopy layer. The normalized points are resampled into a local voxel space. A series of horizontal 2D projection images at the different height levels are then generated respect to the voxel space. Tree crown regions are detected from the projection images. Individual trees are then extracted by means of a pre-order forest traversal process through all the tree crown regions at the different height levels. Finally, 3D tree crown models of the extracted individual trees are reconstructed. With further analyses on the 3D models of individual tree crowns, important parameters such as crown height range, crown volume and crown contours at the different height levels can be derived. PMID:27879916

  2. Estimating Mixing Heights Using Microwave Temperature Profiler

    NASA Technical Reports Server (NTRS)

    Nielson-Gammon, John; Powell, Christina; Mahoney, Michael; Angevine, Wayne

    2008-01-01

    A paper describes the Microwave Temperature Profiler (MTP) for making measurements of the planetary boundary layer thermal structure data necessary for air quality forecasting as the Mixing Layer (ML) height determines the volume in which daytime pollution is primarily concentrated. This is the first time that an airborne temperature profiler has been used to measure the mixing layer height. Normally, this is done using a radar wind profiler, which is both noisy and large. The MTP was deployed during the Texas 2000 Air Quality Study (TexAQS-2000). An objective technique was developed and tested for estimating the ML height from the MTP vertical temperature profiles. In order to calibrate the technique and evaluate the usefulness of this approach, estimates from a variety of measurements during the TexAQS-2000 were compared. Estimates of ML height were used from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in-situ aircraft measurements in addition to those from the MTP.

  3. HSTRESS: A computer program to calculate the height of a hydraulic fracture in a multi-layered stress medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    A computer code for calculating hydraulic fracture height and width in a stressed-layer medium has been modified for easy use on a personal computer. HSTRESS allows for up to 51 layers having different thicknesses, stresses and fracture toughnesses. The code can calculate fracture height versus pressure or pressure versus fracture height, depending on the design model in which the data will be used. At any pressure/height, a width profile is calculated and an equivalent width factor and flow resistance factor are determined. This program is written in FORTRAN. Graphics use PLOT88 software by Plotworks, Inc., but the graphics software mustmore » be obtained by the user because of licensing restrictions. A version without graphics can also be run. This code is available through the National Energy Software Center (NESC), operated by Argonne National Laboratory. 14 refs., 21 figs.« less

  4. Beyond the classical kinetic model for chronic graphite oxidation by moisture in high temperature gas-cooled reactors

    DOE PAGES

    Contescu, Cristian I.; Mee, Robert W.; Lee, Yoonjo; ...

    2017-11-03

    Four grades of nuclear graphite with various microstructures were subjected to accelerated oxidation tests in helium with traces of moisture and hydrogen in order to evaluate the effects of chronic oxidation on graphite components in high temperature gas cooled reactors. Kinetic analysis showed that the Langmuir-Hinshelwood (LH) model cannot consistently reproduce all results. In particular, at high temperatures and water partial pressures oxidation was always faster than the LH model predicts, with stronger deviations for superfine grain graphite than for medium grain grades. It was also found empirically that the apparent reaction order for water has a sigmoid-type variation withmore » temperature which follows the integral Boltzmann distribution function. This suggests that the apparent activation with temperature of graphite reactive sites that causes deviations from the LH model is rooted in specific structural and electronic properties of surface sites on graphite. A semi-global kinetic model was proposed, whereby the classical LH model was modified with a temperature-dependent reaction order for water. The new Boltzmann-enhanced model (BLH) was shown to consistently predict experimental oxidation rates over large ranges of temperature (800-1100 oC) and partial pressures of water (3-1200 Pa) and hydrogen (0-300 Pa), not only for the four grades of graphite but also for the historic grade H-451. The BLH model offers as more reliable input for modeling the chemical environment effects during the life-time operation of new grades of graphite in advanced nuclear reactors operating at high and very high temperatures.« less

  5. Beyond the classical kinetic model for chronic graphite oxidation by moisture in high temperature gas-cooled reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contescu, Cristian I.; Mee, Robert W.; Lee, Yoonjo

    Four grades of nuclear graphite with various microstructures were subjected to accelerated oxidation tests in helium with traces of moisture and hydrogen in order to evaluate the effects of chronic oxidation on graphite components in high temperature gas cooled reactors. Kinetic analysis showed that the Langmuir-Hinshelwood (LH) model cannot consistently reproduce all results. In particular, at high temperatures and water partial pressures oxidation was always faster than the LH model predicts, with stronger deviations for superfine grain graphite than for medium grain grades. It was also found empirically that the apparent reaction order for water has a sigmoid-type variation withmore » temperature which follows the integral Boltzmann distribution function. This suggests that the apparent activation with temperature of graphite reactive sites that causes deviations from the LH model is rooted in specific structural and electronic properties of surface sites on graphite. A semi-global kinetic model was proposed, whereby the classical LH model was modified with a temperature-dependent reaction order for water. The new Boltzmann-enhanced model (BLH) was shown to consistently predict experimental oxidation rates over large ranges of temperature (800-1100 oC) and partial pressures of water (3-1200 Pa) and hydrogen (0-300 Pa), not only for the four grades of graphite but also for the historic grade H-451. The BLH model offers as more reliable input for modeling the chemical environment effects during the life-time operation of new grades of graphite in advanced nuclear reactors operating at high and very high temperatures.« less

  6. Sediment retention in a bottomland hardwood wetland in Eastern Arkansas

    USGS Publications Warehouse

    Kleiss, B.A.

    1996-01-01

    One of the often-stated functions of wetlands is their ability to remove sediments and other particulates from water, thus improving water quality in the adjacent aquatic system. However, actual rates of suspended sediment removal have rarely been measured in freshwater wetland systems. To address this issue, suspended sediment dynamics were measured in a 85-km2 bottomland hardwood (BLH) wetland adjacent to the highly turbid Cache River in eastern Arkansas during the 1988-1990 water years. A suspended sediment mass balance was calculated using depth-integrated, flow-weighted daily measurements at wetland inflow and outflow points. Over the three-year period, suspended sediment load decreased an average of 14% between upstream and downstream sampling points. To test the idea that the suspended sediments were retained by the adjacent wetland and to determine what portion of the BLH forest was most responsible for retaining the suspended sediments, concurrent measurements of sediment accretion were made at 30 sites in the wetland using feldspar clay marker horizons, sedimentation disks, the 137cesium method, and dendrogeomorphic techniques. Sedimentation rates exceeding 1 cm/yr were measured in frequently flooded areas dominated by Nyssa aquatica and Taxodium distichum. Maximum sedimentation rates did not occur on the natural levee, as would be predicted by classical fluvial geomorphology, but in the "first bottom," where retention time of the water reached a maximum. Multiple regression was used to relate sedimentation rates with several physical and biological factors. A combination of distance from the river, flood duration, and tree basal area accounted for nearly 90% of the variation in sedimentation rates.

  7. A quantitative assessment of the conservation benefits of the Wetlands Reserve Program to amphibians

    USGS Publications Warehouse

    Waddle, J. Hardin; Glorioso, Brad M.; Faulkner, Stephen P.

    2013-01-01

    The Mississippi Alluvial Valley (MAV) originally consisted of nearly contiguous bottomland hardwood (BLH) forest encompassing approximately 10 million hectares. Currently, only 20–25% of the historical BLH forests remain in small patches fragmented by agricultural lands. The Wetlands Reserve Program (WRP) was established to restore and protect the functions and values of wetlands in agricultural landscapes. To assess the potential benefit of WRP restoration to amphibians, we surveyed 30 randomly selected WRP sites and 20 nearby agricultural sites in the Mississippi Delta. We made repeat visits to each site from May to August 2008 and performed both visual encounter and vocalization surveys. We analyzed the encounter history data for 11 anuran species using a Bayesian hierarchical occupancy model that estimated detection probability and probability of occurrence simultaneously for each species. Nine of the 11 species had higher probabilities of occurrence at WRP sites compared to agriculture. Derived estimates of species richness were also higher for WRP sites. Five anuran species were significantly more likely to occur in WRP than in agriculture, four of which were among the most aquatic species. It appears that the restoration of a more permanent hydrology at the WRP sites may be the primary reason for this result. Although amphibians represent only one group of wildlife species, they are useful for evaluating restoration benefits for wildlife because of their intermediate trophic position. The methods used in this study to evaluate the benefit of restoration could be used in other locations and with other groups of indicator species.

  8. [Characteristics of Winter Atmospheric Mixing Layer Height in Beijing-Tianjin-Hebei Region and Their Relationship with the Atmospheric Pollution].

    PubMed

    Li, Meng; Tang, Gui-qian; Huang, Jun; Liu, Zi-rui; An, Jun-lin; Wang, Yue-si

    2015-06-01

    Atmospheric mixing layer height (MLH) is one of the main factors affecting the atmospheric diffusion and plays an important role in air quality assessment and distribution of the pollutants. Based on the ceilometers data, this paper has made synchronous observation on MLH in Beijing-Tianjin-Hebei region (Beijing, Tianjin, Shijiazhuang and Qinhuangdao) in heavy polluted February 2014 and analyzed the respective overall change and its regional features. Results show that in February 2014,the average of mixing layer height in Qinhuangdao is the highest, up to 865 +/- 268 m, and in Shijiazhuang is the lowest (568 +/- 207 m), Beijing's and Tianjin's are in between, 818 +/- 319 m and 834 +/- 334 m respectively; Combined with the meteorological data, we find that radiation and wind speed are main factors of the mixing layer height; The relationship between the particle concentration and mixing layer height in four sites suggests that mixing layer is less than 800 m, concentration of fine particulate matter in four sites will exceed the national standard (GB 3095-2012, 75 microg x m(-3)). During the period of observation, the proportion of days that mixing layer is less than 800 m in Beijing, Tianjin, Shijiazhuang and Qinhuangdao are 50%, 43%, 80% and 50% respectively. Shijiazhuang though nearly formation contaminant concentration is high, within the atmospheric mixed layer pollutant load is not high. Unfavorable atmospheric diffusion conditions are the main causes of heavy pollution in Shijiazhuang for a long time. The results of the study are of great significance for cognitive Beijing-Tianjin-Hebei area pollution distribution, and can provide a scientific reference for reasonable distribution of regional pollution sources.

  9. Assumptions about footprint layer heights influence the quantification of emission sources: a case study for Cyprus

    NASA Astrophysics Data System (ADS)

    Hüser, Imke; Harder, Hartwig; Heil, Angelika; Kaiser, Johannes W.

    2017-09-01

    Lagrangian particle dispersion models (LPDMs) in backward mode are widely used to quantify the impact of transboundary pollution on downwind sites. Most LPDM applications count particles with a technique that introduces a so-called footprint layer (FL) with constant height, in which passing air tracer particles are assumed to be affected by surface emissions. The mixing layer dynamics are represented by the underlying meteorological model. This particle counting technique implicitly assumes that the atmosphere is well mixed in the FL. We have performed backward trajectory simulations with the FLEXPART model starting at Cyprus to calculate the sensitivity to emissions of upwind pollution sources. The emission sensitivity is used to quantify source contributions at the receptor and support the interpretation of ground measurements carried out during the CYPHEX campaign in July 2014. Here we analyse the effects of different constant and dynamic FL height assumptions. The results show that calculations with FL heights of 100 and 300 m yield similar but still discernible results. Comparison of calculations with FL heights constant at 300 m and dynamically following the planetary boundary layer (PBL) height exhibits systematic differences, with daytime and night-time sensitivity differences compensating for each other. The differences at daytime when a well-mixed PBL can be assumed indicate that residual inaccuracies in the representation of the mixing layer dynamics in the trajectories may introduce errors in the impact assessment on downwind sites. Emissions from vegetation fires are mixed up by pyrogenic convection which is not represented in FLEXPART. Neglecting this convection may lead to severe over- or underestimations of the downwind smoke concentrations. Introducing an extreme fire source from a different year in our study period and using fire-observation-based plume heights as reference, we find an overestimation of more than 60  % by the constant FL height assumptions used for surface emissions. Assuming a FL that follows the PBL may reproduce the peak of the smoke plume passing through but erroneously elevates the background for shallow stable PBL heights. It might thus be a reasonable assumption for open biomass burning emissions wherever observation-based injection heights are not available.

  10. Planetary Boundary Layer Patterns, Height Variability and their Controls over the Indian Subcontinent with respect to Monsoon

    NASA Astrophysics Data System (ADS)

    Sathyanadh, A.; Karipot, A.; Prabhakaran, T.

    2016-12-01

    Planetary boundary layer (PBL) height and its controlling factors undergo large variations at different spatio-temporal scales over land regions. In the present study, Modern Era Retrospective analysis for Research and Applications (MERRA) data products are used to investigate variations of PBL height and its controls in relation to different phases of Indian monsoon. MERRA PBL height validations carried out against those estimated from radiosonde and Global Positioning System Radio Occultation atmospheric profiles revealed fairly good agreement. Different PBL patterns are identified in terms of maximum height, its time of occurrence and growth rate, and they vary with respect to geographical locations, terrain characteristics and monsoon circulation. The pre-monsoon boundary layers are the deepest over the region, often exceeding 4 km and grow at a rate of approximately 400 m hr-1. Large nocturnal BL depths, possibly related to weakly convective residual layers, are another feature noted during dry conditions. Monsoon BLs are generally shallower, except where rainfall is scanty. The break-monsoon periods have slightly deeper BLs than the active monsoon phase. The controlling factors for the observed boundary layer behaviour are investigated using supplementary MERRA datasets. Evaporative fraction is found to have dominant control on the PBL height varying with seasons and regions. The characteristics and controls of wet and dry boundary layer regimes over inland and coastal locations are different. The fractional diffusion (ratio of non-local and total diffusion) coefficient analyses indicated that enhanced entrainment during monsoon contributes to reduction in PBLH unlike in the dry period. The relationship between controls and PBLH are better defined over inland than coastal regions. The wavelet cross spectral analysis revealed temporal variations in dominant contributions from the controlling factors at different periodicities during the course of the year.

  11. Results of a workshop concerning ecological zonation in bottomland hardwoods

    USGS Publications Warehouse

    Roelle, James E.; Auble, Gregor T.; Hamilton, David B.; Johnson, Richard L.; Segelquist, Charles A.

    1987-01-01

    Under Section 404 of the Clean Water Act, the U.S. Environmental Protection Agency (EPA) has regulatory responsibilities concerning the discharge of dredged or fill material into the Nation's waters. In addition to its advisory role in the U.S. Army Corps of Engineers' permit program, EPA has a number of specific authorities, including formulation of the Section 404(b)(1) Guidelines, use of Section 404(c) to prohibit disposal at particular sites, and enforcement actions for unauthorized discharges. A number of recent court cases focus on the geographic scope of Section 404 jurisdiction in potential bottomland hardwood (BLH) wetlands and the nature of landclearing activities in these areas that require a permit under Section 404. Accordingly, EPA needs to establish the scientific basis for implementing its responsibilities under Section 404 in bottomland hardwoods. EPA is approaching this task through a series of workshops designed to provide current scientific information on bottomland hardwoods and to organize that information in a manner pertinent to key questions, including the following. What are the characteristics of bottomland hardwoods (in terms of hydrology, soils, vegetation, fish, wildlife, agricultural potential, and the like) and how can the functions (e.g., flood storage, water quality maintenance, detrital export) that they perform best be quantified? How do perturbations like landclearing, levee construction, and drainage impact the functions that bottomland hardwoods perform and how can these effects best be quantified? And finally, how significant are the impacts and how is their significance likely to change under various management scenarios? The first workshop in this series was held December 3-7, 1984, in St. Francisville, Louisiana. The workshop was attended by over 40 scientists and regulators (see ACKNOWLEDGMENTS section) and facilitated by the editors of this report under an Interagency Agreement between EPA and the U.S. Fish and Wildlife Service. The general objective of the workshop was to examine ways in which the structure and function of BLH ecosystems can be characterized and, in particular, to investigate the utility of a conceptual framework developed at a workshop held in Lake Lanier, Georgia, in 1980. In this framework, the transition from aquatic habitats to upland habitats through a BLH ecosystem is divided into six zones based on concomitant variation in the soil moisture regime and associated vegetation (Table 1). The zonation concept is of particular interest to EPA from at least two perspectives. The first is simply as a framework for organizing information. If the zones are discernible in the field, have recognizable characteristics, and perform identifiable functions, they might form a useful basis for tasks such as assessing the impacts of a particular site-specific activity. The second is the potential utility of the zonation concept in identifying the wetland portions of BLH communities. If the zones can be recognized in the field, and if one or more of them can be shown consistently to have wetland characteristics (i.e., perform functions, such as detrital export, often attributed to wetlands), while others do not, then the zones might have utility in identifying areas that fall under the jurisdiction of Section 404. The workshop itself was divided into two parts. The first was a series of papers in which authors described current research and data-synthesis activities in the context of the zonation concept. The second was a series of six workgroups in which participants discussed the zonation concept from the perspective of hydrology, soils, vegetation, fish, wildlife, and ecosystem processes. This report is a compilation of the written material from those workgroups, much of which was produced at the workshop. The formal papers presented in the first part of the workshop have been distributed to participants under separate cover, but are referenced in this report by citations such as: (Jones, workshop presentation).

  12. Assessment of mixed-layer height estimation from single-wavelength ceilometer profiles

    EPA Science Inventory

    Differing boundary/mixed-layer height measurement methods were assessed in moderately polluted and clean environments, with a focus on the Vaisala CL51 ceilometer. This intercomparison was performed as part of ongoing measurements at the Chemistry And Physics of the Atmospheric B...

  13. Optimal control of build height utilizing optical profilometry in cold spray deposits

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhijit; Shishkin, Sergey; Birnkrant, Michael J.

    2017-04-01

    Part-to-part variability and poor part quality due to failure to maintain geometric specifications pose a challenge for adopting Additive Manufacturing (AM) as a viable manufacturing process. In recent years, In-process Monitoring and Control (InPMC) has received a lot of attention as an approach to overcome these obstacles. The ability to sense geometry of the deposited layers accurately enables effective process monitoring and control of AM application. This paper demonstrates an application of geometry sensing technique for the coating deposition Cold Spray process, where solid powders are accelerated through a nozzle, collides with the substrate and adheres to it. Often the deposited surface has shape irregularities. This paper proposes an approach to suppress the iregularities by controlling the deposition height. An analytical control-oriented model is developed that expresses the resulting height of deposit as an integral function of nozzle velocity and angle. In order to obtain height information at each layer, a Micro-Epsilon laser line scanner was used for surface profiling after each deposition. This surface profile information, specifically the layer height, was then fed back to an optimal control algorithm which manipulated the nozzle speed to control the layer height to a pre specified height. While the problem is heavily nonlinear, we were able to transform it into equivalent Optimal Control problem linear w.r.t. input. That enabled development of two solution methods: one is fast and approximate, while another is more accurate but still efficient.

  14. Algae separation from urban landscape water using a high density microbubble layer enhanced by micro-flocculation.

    PubMed

    Chen, Shuwen; Xu, Jingcheng; Liu, Jia; Wei, Qiaoling; Li, Guangming; Huang, Xiangfeng

    2014-01-01

    Eutrophication of raw water results in outbreaks of algae, which hinders conventional water treatment. In this study, high density microbubble layers combined with micro-flocculation was adopted to remove algae from urban landscape water, and the effects of pressure, hydraulic loading, microbubble layer height and flocculation dosage on the removal efficiency for algae were studied. The greatest removal efficiency for algae, chemical oxygen demand, nitrogen and phosphorus was obtained at 0.42 MPa with hydraulic loading at 5 m/h and a flocculation dosage of 4 mg/L using a microbubble layer with a height of 130 cm. Moreover, the size, clearance distance and concentration of microbubbles were found to be affected by pressure and the height of the microbubble layer. Based on the study, this method was an alternative for algae separation from urban landscape water and water purification.

  15. Assessment of Mixed-Layer Height Estimation from Single-wavelength Ceilometer Profiles.

    PubMed

    Knepp, Travis N; Szykman, James J; Long, Russell; Duvall, Rachelle M; Krug, Jonathan; Beaver, Melinda; Cavender, Kevin; Kronmiller, Keith; Wheeler, Michael; Delgado, Ruben; Hoff, Raymond; Berkoff, Timothy; Olson, Erik; Clark, Richard; Wolfe, Daniel; Van Gilst, David; Neil, Doreen

    2017-01-01

    Differing boundary/mixed-layer height measurement methods were assessed in moderately-polluted and clean environments, with a focus on the Vaisala CL51 ceilometer. This intercomparison was performed as part of ongoing measurements at the Chemistry And Physics of the Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, Virginia and during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign that took place in and around Denver, Colorado. We analyzed CL51 data that were collected via two different methods (BLView software, which applied correction factors, and simple terminal emulation logging) to determine the impact of data collection methodology. Further, we evaluated the STRucture of the ATmosphere (STRAT) algorithm as an open-source alternative to BLView (note that the current work presents an evaluation of the BLView and STRAT algorithms and does not intend to act as a validation of either). Filtering criteria were defined according to the change in mixed-layer height (MLH) distributions for each instrument and algorithm and were applied throughout the analysis to remove high-frequency fluctuations from the MLH retrievals. Of primary interest was determining how the different data-collection methodologies and algorithms compare to each other and to radiosonde-derived boundary-layer heights when deployed as part of a larger instrument network. We determined that data-collection methodology is not as important as the processing algorithm and that much of the algorithm differences might be driven by impacts of local meteorology and precipitation events that pose algorithm difficulties. The results of this study show that a common processing algorithm is necessary for LIght Detection And Ranging (LIDAR)-based MLH intercomparisons, and ceilometer-network operation and that sonde-derived boundary layer heights are higher (10-15% at mid-day) than LIDAR-derived mixed-layer heights. We show that averaging the retrieved MLH to 1-hour resolution (an appropriate time scale for a priori data model initialization) significantly improved correlation between differing instruments and differing algorithms.

  16. Amendment to "Analytical Solution for the Convectively-Mixed Atmospheric Boundary Layer": Inclusion of Subsidence

    NASA Astrophysics Data System (ADS)

    Ouwersloot, H. G.; de Arellano, J. Vilà-Guerau

    2013-09-01

    In Ouwersloot and Vilà-Guerau de Arellano (Boundary-Layer Meteorol. doi: 10.1007/s10546-013-9816-z , 2013, this issue), the analytical solutions for the boundary-layer height and scalar evolutions are derived for the convective boundary layer, based on the prognostic equations of mixed-layer slab models without taking subsidence into account. Here, we include and quantify the added effect of subsidence if the subsidence velocity scales linearly with height throughout the atmosphere. This enables analytical analyses for a wider range of observational cases. As a demonstration, the sensitivity of the boundary-layer height and the potential temperature jump to subsidence and the free tropospheric stability is graphically presented. The new relations show the importance of the temporal distribution of the surface buoyancy flux in determining the evolution if there is subsidence.

  17. Variations of Scale Height at F-Region Peak Based on Ionosonde Measurements during Solar Maximum over the Crest of Equatorial Ionization Anomaly Region

    PubMed Central

    Chuo, Yu-Jung

    2014-01-01

    Scale height is an important parameter in characterizing the shape of the ionosphere and its physical processes. In this study, we attempt to examine and discuss the variation of scale height, H m, around the F-layer peak height during high solar activity at the northern crest of the equatorial ionization anomaly (EIA) region. H m exhibits day-to-day variation and seasonal variation, with a greater average daily variation during daytime in summer. Furthermore, the diurnal variation of H m exhibits an abnormal peak at presunrise during all the seasons, particularly in winter. This increase is also observed in the F2-layer peak height for the same duration with an upward movement associated with thermospheric wind toward the equator; this upward movement increases the N2/O ratio and H m, but it causes a decrease in the F2-layer maximum critical frequency during the presunrise period. PMID:25162048

  18. The height of electron content changes in the ionosphere from ATS 6 beacon data

    NASA Technical Reports Server (NTRS)

    Davies, K.; Heron, M. L.

    1984-01-01

    A technique is described which uses relative changes in Faraday rotation and modulation phase of satellite radio signals to determine the median height of the enhancement (or depletion) in the electron density of the ionosphere. During the post sunrise formation of the F layer the incremental layers have a median height of around 210 km (+ or - 40) and in the afternoon the decremental median is above the peak at 340 km (+ or - 40) on a winter day. A winter nighttime enhancement just after midnight appears as a thick layer extending upwards from the peak, with a median height at about 730 km. The method applies to large scale irregularities but not to small, dense, scintillation-causing irregularities for which Faraday and modulation phases do not represent the total electron content.

  19. Improved boundary layer height measurement using a fuzzy logic method: Diurnal and seasonal variabilities of the convective boundary layer over a tropical station

    NASA Astrophysics Data System (ADS)

    Allabakash, S.; Yasodha, P.; Bianco, L.; Venkatramana Reddy, S.; Srinivasulu, P.; Lim, S.

    2017-09-01

    This paper presents the efficacy of a "tuned" fuzzy logic method at determining the height of the boundary layer using the measurements from a 1280 MHz lower atmospheric radar wind profiler located in Gadanki (13.5°N, 79°E, 375 mean sea level), India, and discusses the diurnal and seasonal variations of the measured convective boundary layer over this tropical station. The original fuzzy logic (FL) method estimates the height of the atmospheric boundary layer combining the information from the range-corrected signal-to-noise ratio, the Doppler spectral width of the vertical velocity, and the vertical velocity itself, measured by the radar, through a series of thresholds and rules, which did not prove to be optimal for our radar system and geographical location. For this reason the algorithm was tuned to perform better on our data set. Atmospheric boundary layer heights obtained by this tuned FL method, the original FL method, and by a "standard method" (that only uses the information from the range-corrected signal-to-noise ratio) are compared with those obtained from potential temperature profiles measured by collocated Global Positioning System Radio Sonde during years 2011 and 2013. The comparison shows that the tuned FL method is more accurate than the other methods. Maximum convective boundary layer heights are observed between 14:00 and 15:00 local time (LT = UTC + 5:30) for clear-sky days. These daily maxima are found to be lower during winter and postmonsoon seasons and higher during premonsoon and monsoon seasons, due to net surface radiation and convective processes over this region being more intense during premonsoon and monsoon seasons and less intense in winter and postmonsoon seasons.

  20. Analysis of grating doublets for achromatic beam-splitting

    PubMed Central

    Pacheco, Shaun; Milster, Tom; Liang, Rongguang

    2015-01-01

    Achromatic beam-splitting grating doublets are designed for both continuous phase and binary phase gratings. By analyzing the sensitivity to lateral shifts between the two grating layers, it is shown that continuous-profile grating doublets are extremely difficult to fabricate. Achromatic grating doublets that have profiles with a constant first spatial derivative are significantly more resistant to lateral shifts between grating layers, where one design case showed a 17 times improvement in performance. Therefore, binary phase, multi-level phase, and blazed grating doublets perform significantly better than continuous phase grating doublets in the presence of a lateral shift between two grating layers. By studying the sensitivity to fabrication errors in the height of both grating layers, one grating layer height can be adjusted to maintain excellent performance over a large wavelength range if the other grating layer is fabricated incorrectly. It is shown in one design case that the performance of an achromatic Dammann grating doublet can be improved by a factor of 215 if the heights of the grating layers are chosen to minimize the performance change in the presence of fabrication errors. PMID:26368261

  1. Pulse-height defect due to electron interaction in dead layers of Ge/Li/ gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Larsen, R. N.; Strauss, M. G.

    1969-01-01

    Study shows the pulse-height degradation of gamma ray spectra in germanium/lithium detectors to be due to electron interaction in the dead layers that exist in all semiconductor detectors. A pulse shape discrimination technique identifies and eliminates these defective pulses.

  2. Vertical leaf mass per area gradient of mature sugar maple reflects both height-driven increases in vascular tissue and light-driven increases in palisade layer thickness.

    PubMed

    Coble, Adam P; Cavaleri, Molly A

    2017-10-01

    A key trait used in canopy and ecosystem function modeling, leaf mass per area (LMA), is influenced by changes in both leaf thickness and leaf density (LMA = Thickness × Density). In tall trees, LMA is understood to increase with height through two primary mechanisms: (i) increasing palisade layer thickness (and thus leaf thickness) in response to light and/or (ii) reduced cell expansion and intercellular air space in response to hydrostatic constraints, leading to increased leaf density. Our objective was to investigate within-canopy gradients in leaf anatomical traits in order to understand environmental factors that influence leaf morphology in a sugar maple (Acer saccharum Marshall) forest canopy. We teased apart the effects of light and height on anatomical traits by sampling at exposed and closed canopies that had different light conditions at similar heights. As expected, palisade layer thickness responded strongly to cumulative light exposure. Mesophyll porosity, however, was weakly and negatively correlated with light and height (i.e., hydrostatic gradients). Reduced mesophyll porosity was not likely caused by limitations on cell expansion; in fact, epidermal cell width increased with height. Palisade layer thickness was better related to LMA, leaf density and leaf thickness than was mesophyll porosity. Vein diameter and fraction of vascular tissue also increased with height and LMA, density and thickness, revealing that greater investment in vascular and support tissue may be a third mechanism for increased LMA with height. Overall, decreasing mesophyll porosity with height was likely due to palisade cells expanding into the available air space and also greater investments in vascular and support tissue, rather than a reduction of cell expansion due to hydrostatic constraints. Our results provide evidence that light influences both palisade layer thickness and mesophyll porosity and indicate that hydrostatic gradients influence leaf vascular and support tissues in mature Acer saccharum trees. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Using Four-Layer Sculpted Rib Cartilage Framework to Increase Transverse Height of the Reconstructive Ear in One Operative Stage for Microtia Patients.

    PubMed

    Wan, Rui; Pang, Xingyuan; Ren, Jun

    2018-02-01

    This case study improves an operative method of ear reconstruction for microtia patients by using a four-layer rib cartilage framework to increase transverse height of the reconstructive ear to a natural level in one operative stage. The procedures of ear reconstruction were conducted from February 2014 to May 2016. The ear framework used in the procedures was fabricated from autologous rib cartilage into a four-layer spliced sculpture. Totally 23 patients with unilateral microtia were willing to be enrolled in this study. After the operation, 23 patients achieved 2.3-2.8 cm transverse height of reconstructed ears, which was basically the same as the normal side. Both patients and their families felt satisfied with the results. Follow-up was performed at 6-16 months after the procedures. Only one case showed significantly lowered transverse height of the reconstructed ear, compared to the normal one. It was due to the sleeping position of the patient (10-year-old boy), which put the reconstructed ear under pressure and reduced the transverse height of the ear. The method of four-layer sculpted autologous rib cartilage ear reconstruction has good clinical effect. It can provide a reconstructed ear that reaches normal transverse height and avoids a third operation to increase the transverse height by rib cartilage transplantation. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  4. BOREAS AFM-6 Boundary Layer Height Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) site. This data set provides boundary layer height information over the site. The data were collected from 21 May 1994 to 20 Sep 1994 and are stored in tabular ASCII files. The boundary layer height data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  5. Measurements of aerosol layer height and vertical profiles by lidar over Jinhua City

    NASA Astrophysics Data System (ADS)

    Yu, Siqi; Liu, Dong; Wang, Zhenzhu; Xu, Jiwei; Tian, Xiaomin; Wu, Decheng; Xie, Chenbo; Wang, Yingjian

    2018-03-01

    The vertical distribution of the aerosol layers is depicted by using the lidar data in Jinhua city from 2013 to 2014. The lidar installed in Jinhua is a dual-wavelength Mie polarization Raman lidar. Aerosol layers are searched through gradient method. At the same time, HYSPLIT model is used to tracing the aerosol trajectories. The results show that different heights of aerosol layers have different transportation route. By a case study, the lidar data on December 30, 2013 and May 1, 2014 reveal several vertical aerosol layers. According to the 24-hour backward trajectory of HYSPLIT model, different aerosol layers comes from different places, and this may relate to the winter monsoon in China.

  6. Study of Semi-Span Model Testing Techniques

    NASA Technical Reports Server (NTRS)

    Gatlin, Gregory M.; McGhee, Robert J.

    1996-01-01

    An investigation has been conducted in the NASA Langley 14- by 22-Foot Subsonic Tunnel in order to further the development of semi-span testing capabilities. A twin engine, energy efficient transport (EET) model with a four-element wing in a takeoff configuration was used for this investigation. Initially a full span configuration was tested and force and moment data, wing and fuselage surface pressure data, and fuselage boundary layer measurements were obtained as a baseline data set. The semi-span configurations were then mounted on the wind tunnel floor, and the effects of fuselage standoff height and shape as well as the effects of the tunnel floor boundary layer height were investigated. The effectiveness of tangential blowing at the standoff/floor juncture as an active boundary-layer control technique was also studied. Results indicate that the semi-span configuration was more sensitive to variations in standoff height than to variations in floor boundary layer height. A standoff height equivalent to 30 percent of the fuselage radius resulted in better correlation with full span data than no standoff or the larger standoff configurations investigated. Undercut standoff leading edges or the use of tangential blowing in the standoff/ floor juncture improved correlation of semi-span data with full span data in the region of maximum lift coefficient.

  7. Fermi level de-pinning of aluminium contacts to n-type germanium using thin atomic layer deposited layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gajula, D. R., E-mail: dgajula01@qub.ac.uk; Baine, P.; Armstrong, B. M.

    Fermi-level pinning of aluminium on n-type germanium (n-Ge) was reduced by insertion of a thin interfacial dielectric by atomic layer deposition. The barrier height for aluminium contacts on n-Ge was reduced from 0.7 eV to a value of 0.28 eV for a thin Al{sub 2}O{sub 3} interfacial layer (∼2.8 nm). For diodes with an Al{sub 2}O{sub 3} interfacial layer, the contact resistance started to increase for layer thicknesses above 2.8 nm. For diodes with a HfO{sub 2} interfacial layer, the barrier height was also reduced but the contact resistance increased dramatically for layer thicknesses above 1.5 nm.

  8. The Martian atmospheric planetary boundary layer stability, fluxes, spectra, and similarity

    NASA Technical Reports Server (NTRS)

    Tillman, James E.

    1994-01-01

    This is the first analysis of the high frequency data from the Viking lander and spectra of wind, in the Martian atmospheric surface layer, along with the diurnal variation of the height of the mixed surface layer, are calculated for the first time for Mars. Heat and momentum fluxes, stability, and z(sub O) are estimated for early spring, from a surface temperature model and from Viking Lander 2 temperatures and winds at 44 deg N, using Monin-Obukhov similarity theory. The afternoon maximum height of the mixed layer for these seasons and conditions is estimated to lie between 3.6 and 9.2 km. Estimations of this height is of primary importance to all models of the boundary layer and Martian General Circulation Models (GCM's). Model spectra for two measuring heights and three surface roughnesses are calculated using the depth of the mixed layer, and the surface layer parameters and flow distortion by the lander is also taken into account. These experiments indicate that z(sub O), probably lies between 1.0 and 3.0 cm, and most likely is closer to 1.0 cm. The spectra are adjusted to simulate aliasing and high frequency rolloff, the latter caused both by the sensor response and the large Kolmogorov length on Mars. Since the spectral models depend on the surface parameters, including the estimated surface temperature, their agreement with the calculated spectra indicates that the surface layer estimates are self consistent. This agreement is especially noteworthy in that the inertial subrange is virtually absent in the Martian atmosphere at this height, due to the large Kolmogorov length scale. These analyses extend the range of applicability of terrestrial results and demonstrate that it is possible to estimate the effects of severe aliasing of wind measurements, to produce a models which agree well with the measured spectra. The results show that similarity theory developed for Earth applies to Mars, and that the spectral models are universal.

  9. Characteristics of nocturnal coastal boundary layer in Ahtopol based on averaged SODAR profiles

    NASA Astrophysics Data System (ADS)

    Barantiev, Damyan; Batchvarova, Ekaterina; Novitzky, Mikhail

    2014-05-01

    The ground-based remote sensing instruments allow studying the wind regime and the turbulent characteristics of the atmosphere with height, achieving new knowledge and solving practical problems, such as air quality assessments, mesoscale models evaluation with high resolution data, characterization of the exchange processes between the surface and the atmosphere, the climate comfort conditions and the risk for extreme events, etc. Very important parameter in such studies is the height of the atmospheric boundary layer. Acoustic remote sensing data of the coastal atmospheric boundary layer were explored based on over 4-years continuous measurements at the meteorological observatory of Ahtopol (Bulgarian Southern Black Sea Coast) under Bulgarian - Russian scientific agreement. Profiles of 12 parameters from a mid-range acoustic sounding instrument type SCINTEC MFAS are derived and averaged up to about 600 m according filtering based on wind direction (land or sea type of night fowls). From the whole investigated period of 1454 days with 10-minute resolution SODAR data 2296 profiles represented night marine air masses and 1975 profiles represented the night flow from land during the months May to September. Graphics of averaged profiles of 12 SODAR output parameters with different availability of data in height are analyzed for both cases. A marine boundary-layer height of about 300 m is identified in the profiles of standard deviation of vertical wind speed (σw), Turbulent Kinetic Energy (TKE) and eddy dissipation rate (EDR). A nocturnal boundary-layer height of about 420 m was identified from the profiles of the same parameters under flows from land condition. In addition, the Buoyancy Production (BP= σw3/z) profiles were calculated from the standard deviation of the vertical wind speed and the height z above ground.

  10. Observational Characteristics of the Tropopause Inversion Layer derived from CHAMP/GRACE Radio Occultations and MOZAIC Aircraft Data

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Cammas, J.; Heise, S.; Wickert, J.; Haser, A.

    2010-12-01

    In this study we discuss characteristics of the northern hemisphere (NH) midlatitude (40°N-60°N) tropopause inversion layer (TIL) based on two datasets. First, temperature measurements from GPS radio occultation data (CHAMP and GRACE) for the time interval 2001-2009 are used to exhibit seasonal properties of the TIL bottom height defined here as the height of the squared buoyancy frequency minimum N2 below the thermal tropopause, the TIL maximum height as the height of the N2 maximum above the tropopause and the TIL top height as the height of the temperature maximum above the tropopause. Mean values of the TIL bottom, TIL maximum and TIL top heights relative to the thermal tropopause for the NH midlatitudes are (-2.08±0.35) km, (0.52±0.10) km and (2.10±0.23) km, respectively. A seasonal cycle of the TIL bottom and TIL top height is observed with values closer to the thermal tropopause during summer. Secondly, high-resolution temperature and trace gas profile measurements onboard commercial aircrafts (MOZAIC program) from 2001-2008 for the NH midlatitude (40°N-60°N) region are used to characterize the TIL as a mixing layer around the tropopause. Mean TIL bottom, TIL maximum and TIL top heights based on the MOZAIC temperature (N2) measurements confirm the results from the GPS data, even though most of the MOZAIC profiles used here are available under cyclonic situations. Further, we demonstrate that the mixing ratio gradients of ozone (O3) and carbon monoxide (CO) are suitable parameters for characterizing the TIL structure. Using O3-CO correlations we also show that on average the highest mixing occurs in a layer less than 1 km above the thermal tropopause, i.e., within the TIL.

  11. Characterization of the planetary boundary layer height and structure by Raman lidar: comparison of different approaches

    NASA Astrophysics Data System (ADS)

    Summa, D.; Di Girolamo, P.; Stelitano, D.; Cacciani, M.

    2013-12-01

    The planetary boundary layer (PBL) includes the portion of the atmosphere which is directly influenced by the presence of the earth's surface. Aerosol particles trapped within the PBL can be used as tracers to study the boundary-layer vertical structure and time variability. As a result of this, elastic backscatter signals collected by lidar systems can be used to determine the height and the internal structure of the PBL. The present analysis considers three different methods to estimate the PBL height. The first method is based on the determination of the first-order derivative of the logarithm of the range-corrected elastic lidar signals. Estimates of the PBL height for specific case studies obtained through this approach are compared with simultaneous estimates from the potential temperature profiles measured by radiosondes launched simultaneously to lidar operation. Additional estimates of the boundary layer height are based on the determination of the first-order derivative of the range-corrected rotational Raman lidar signals. This latter approach results to be successfully applicable also in the afternoon-evening decaying phase of the PBL, when the effectiveness of the approach based on the elastic lidar signals may be compromised or altered by the presence of the residual layer. Results from these different approaches are compared and discussed in the paper, with a specific focus on selected case studies collected by the University of Basilicata Raman lidar system BASIL during the Convective and Orographically-induced Precipitation Study (COPS).

  12. Characterization of the planetary boundary layer height and structure by Raman lidar: comparison of different approaches

    NASA Astrophysics Data System (ADS)

    Summa, D.; Di Girolamo, P.; Stelitano, D.; Cacciani, M.

    2013-06-01

    The Planetary Boundary Layer (PBL) includes the portion of the atmosphere which is directly influenced by the presence of the Earth's surface. Aerosol particles trapped within the PBL can be used as tracers to study the boundary-layer vertical structure and time variability. As a result of this, elastic backscatter signals collected by lidar systems can be used to determine the height and the internal structure of the PBL. The present analysis considers three different methods to estimate the PBL height. A first method is based on the determination of the first order derivative of the logarithm of the range-corrected elastic lidar signals. Estimates of the PBL height for specific case studies obtained from this approach are compared with simultaneous estimates from the potential temperature profiles measured by radiosondes launched simultaneously to lidar operation. Additional estimates of the boundary layer height are based on the determination of the first order derivative of the range-corrected rotational Raman lidar signals. This latter approach results to be successfully applicable also in the afternoon-evening decaying phase of the PBL, when the effectiveness of the approach based on the elastic lidar signals may be compromised or altered by the presence of the residual layer. Results from these different approaches are compared and discussed in the paper, with a specific focus on selected case studies collected by the University of Basilicata Raman lidar system BASIL during the Convective and Orographically-induced Precipitation Study (COPS).

  13. Systems and methods that generate height map models for efficient three dimensional reconstruction from depth information

    DOEpatents

    Frahm, Jan-Michael; Pollefeys, Marc Andre Leon; Gallup, David Robert

    2015-12-08

    Methods of generating a three dimensional representation of an object in a reference plane from a depth map including distances from a reference point to pixels in an image of the object taken from a reference point. Weights are assigned to respective voxels in a three dimensional grid along rays extending from the reference point through the pixels in the image based on the distances in the depth map from the reference point to the respective pixels, and a height map including an array of height values in the reference plane is formed based on the assigned weights. An n-layer height map may be constructed by generating a probabilistic occupancy grid for the voxels and forming an n-dimensional height map comprising an array of layer height values in the reference plane based on the probabilistic occupancy grid.

  14. Moment expansion for ionospheric range error

    NASA Technical Reports Server (NTRS)

    Mallinckrodt, A.; Reich, R.; Parker, H.; Berbert, J.

    1972-01-01

    On a plane earth, the ionospheric or tropospheric range error depends only on the total refractivity content or zeroth moment of the refracting layer and the elevation angle. On a spherical earth, however, the dependence is more complex; so for more accurate results it has been necessary to resort to complex ray-tracing calculations. A simple, high-accuracy alternative to the ray-tracing calculation is presented. By appropriate expansion of the angular dependence in the ray-tracing integral in a power series in height, an expression is obtained for the range error in terms of a simple function of elevation angle, E, at the expansion height and of the mth moment of the refractivity, N, distribution about the expansion height. The rapidity of convergence is heavily dependent on the choice of expansion height. For expansion heights in the neighborhood of the centroid of the layer (300-490 km), the expansion to N = 2 (three terms) gives results accurate to about 0.4% at E = 10 deg. As an analytic tool, the expansion affords some insight on the influence of layer shape on range errors in special problems.

  15. Estimating the atmospheric boundary layer height over sloped, forested terrain from surface spectral analysis during BEARPEX

    NASA Astrophysics Data System (ADS)

    Choi, W.; Faloona, I. C.; McKay, M.; Goldstein, A. H.; Baker, B.

    2011-07-01

    The atmospheric boundary layer (ABL) height (zi) over complex, forested terrain is estimated based on the power spectra and the integral length scale of cross-stream winds obtained from a three-axis sonic anemometer during the two summers of the BEARPEX (Biosphere Effects on Aerosol and Photochemistry) Experiment. The zi values estimated with this technique show very good agreement with observations obtained from balloon tether sondes (2007) and rawinsondes (2009) under unstable conditions (z/L < 0) at the coniferous forest in the California Sierra Nevada. On the other hand, the low frequency behavior of the streamwise upslope winds did not exhibit significant variations and was therefore not useful in predicting boundary layer height. The behavior of the nocturnal boundary layer height (h) with respect to the power spectra of the v-wind component and temperature under stable conditions (z/L > 0) is also presented. The nocturnal boundary layer height is found to be fairly well predicted by a recent interpolation formula proposed by Zilitinkevich et al. (2007), although it was observed to only vary from 60-80 m during the 2009 experiment in which it was measured. Finally, significant directional wind shear was observed during both day and night soundings. The winds were found to be consistently backing from the prevailing west-southwesterlies within the ABL (the anabatic cross-valley circulation) to southerlies in a layer ~1-2 km thick just above the ABL before veering to the prevailing westerlies further aloft. This shear pattern is shown to be consistent with the forcing of a thermal wind driven by the regional temperature gradient directed east-southeast in the lower troposphere.

  16. Assessment of Mixed-Layer Height Estimation from Single-wavelength Ceilometer Profiles

    PubMed Central

    Knepp, Travis N.; Szykman, James J.; Long, Russell; Duvall, Rachelle M.; Krug, Jonathan; Beaver, Melinda; Cavender, Kevin; Kronmiller, Keith; Wheeler, Michael; Delgado, Ruben; Hoff, Raymond; Berkoff, Timothy; Olson, Erik; Clark, Richard; Wolfe, Daniel; Van Gilst, David; Neil, Doreen

    2018-01-01

    Differing boundary/mixed-layer height measurement methods were assessed in moderately-polluted and clean environments, with a focus on the Vaisala CL51 ceilometer. This intercomparison was performed as part of ongoing measurements at the Chemistry And Physics of the Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, Virginia and during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign that took place in and around Denver, Colorado. We analyzed CL51 data that were collected via two different methods (BLView software, which applied correction factors, and simple terminal emulation logging) to determine the impact of data collection methodology. Further, we evaluated the STRucture of the ATmosphere (STRAT) algorithm as an open-source alternative to BLView (note that the current work presents an evaluation of the BLView and STRAT algorithms and does not intend to act as a validation of either). Filtering criteria were defined according to the change in mixed-layer height (MLH) distributions for each instrument and algorithm and were applied throughout the analysis to remove high-frequency fluctuations from the MLH retrievals. Of primary interest was determining how the different data-collection methodologies and algorithms compare to each other and to radiosonde-derived boundary-layer heights when deployed as part of a larger instrument network. We determined that data-collection methodology is not as important as the processing algorithm and that much of the algorithm differences might be driven by impacts of local meteorology and precipitation events that pose algorithm difficulties. The results of this study show that a common processing algorithm is necessary for LIght Detection And Ranging (LIDAR)-based MLH intercomparisons, and ceilometer-network operation and that sonde-derived boundary layer heights are higher (10–15% at mid-day) than LIDAR-derived mixed-layer heights. We show that averaging the retrieved MLH to 1-hour resolution (an appropriate time scale for a priori data model initialization) significantly improved correlation between differing instruments and differing algorithms. PMID:29682087

  17. Influence of AZO stair-like transparent layers on GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liou, Syuan-Hao; Tsai, Jung-Hui; Liu, Wen-Chau; Lin, Pao-Sheng; Chen, Yu-Chi

    2017-10-01

    The GaN-based light-emitting diodes (LEDs) with various height ratios of aluminum-doped zinc oxide (AZO) stair-like transparent layers are fabricated and comparatively investigated. The characteristics of the LEDs with conventional plane AZO transparent layer (device A) and AZO stair-like transparent layers having height ratios of 1:1:1 (device B), 1.5:1:0.5 (device C), and 0.5:1:1.5 (device D) are compared. Attributed that the lower resistance is formed in the thinner AZO film of the stair-like structure, the current crowding effect is improved for extending the whole current-spreading area. Experimentally, the forward turn-on voltages of the LEDs are reduced from 3.68 V to 3.42 V as the plane AZO transparent layer is processed to form the stair-like transparent layers with height ratio of 1:1:1. In addition, the light luminous flux, output power, external quantum efficiency, and wall-plug efficiency of the device B are enhanced by 30.5, 12.1, 22.2, and 20.7%, respectively, as compared to the traditional device with plane AZO transparent layer.

  18. Forward-facing steps induced transition in a subsonic boundary layer

    NASA Astrophysics Data System (ADS)

    Zh, Hui; Fu, Song

    2017-10-01

    A forward-facing step (FFS) immersed in a subsonic boundary layer is studied through a high-order flux reconstruction (FR) method to highlight the flow transition induced by the step. The step height is a third of the local boundary-layer thickness. The Reynolds number based on the step height is 720. Inlet disturbances are introduced giving rise to streamwise vortices upstream of the step. It is observed that these small-scale streamwise structures interact with the step and hairpin vortices are quickly developed after the step leading to flow transition in the boundary layer.

  19. Utilization of O4 slant column density to derive aerosol layer height from a space-borne UV-visible hyperspectral sensor: sensitivity and case study

    NASA Astrophysics Data System (ADS)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-02-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 1040 molecules2 cm-5, to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 % of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  20. Utilization of O4 Slant Column Density to Derive Aerosol Layer Height from a Space-Borne UV-Visible Hyperspectral Sensor: Sensitivity and Case Study

    NASA Technical Reports Server (NTRS)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-01-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(sup 40) molecules (sup 2) per centimeters(sup -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nanometers, the O4 absorption band at 477 nanometers is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nanometers is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 meters for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 percent of retrieved aerosol effective heights are within the error range of 1 kilometer compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  1. Utilization of O4 Slant Column Density to Derive Aerosol Layer Height from a Spaceborne UV-Visible Hyperspectral Sensor: Sensitivity and Case Study

    NASA Technical Reports Server (NTRS)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-01-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the Differential Optical Absorption Spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(exp 40) sq molecules cm(exp -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80% of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  2. Estimating Planetary Boundary Layer Heights from NOAA Profiler Network Wind Profiler Data

    NASA Technical Reports Server (NTRS)

    Molod, Andrea M.; Salmun, H.; Dempsey, M

    2015-01-01

    An algorithm was developed to estimate planetary boundary layer (PBL) heights from hourly archived wind profiler data from the NOAA Profiler Network (NPN) sites located throughout the central United States. Unlike previous studies, the present algorithm has been applied to a long record of publicly available wind profiler signal backscatter data. Under clear conditions, summertime averaged hourly time series of PBL heights compare well with Richardson-number based estimates at the few NPN stations with hourly temperature measurements. Comparisons with clear sky reanalysis based estimates show that the wind profiler PBL heights are lower by approximately 250-500 m. The geographical distribution of daily maximum PBL heights corresponds well with the expected distribution based on patterns of surface temperature and soil moisture. Wind profiler PBL heights were also estimated under mostly cloudy conditions, and are generally higher than both the Richardson number based and reanalysis PBL heights, resulting in a smaller clear-cloudy condition difference. The algorithm presented here was shown to provide a reliable summertime climatology of daytime hourly PBL heights throughout the central United States.

  3. Physical modeling of the atmospheric boundary layer in the UNH Flow Physics Facility

    NASA Astrophysics Data System (ADS)

    Taylor-Power, Gregory; Gilooly, Stephanie; Wosnik, Martin; Klewicki, Joe; Turner, John

    2016-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W =6.0m, H =2.7m, L =72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL) using upstream roughness arrays. The American Society for Civil Engineers defines standards for simulating ABLs for different terrain types, from open sea to dense city areas (ASCE 49-12). The standards require the boundary layer to match a power law shape, roughness height, and power spectral density criteria. Each boundary layer type has a corresponding power law exponent and roughness height. The exponent and roughness height both increase with increasing roughness. A suburban boundary layer was chosen for simulation and a roughness element fetch was created. Several fetch lengths were experimented with and the resulting boundary layers were measured and compared to standards in ASCE 49-12: Wind Tunnel Testing for Buildings and Other Structures. Pitot tube and hot wire anemometers were used to measure average and fluctuating flow characteristics. Velocity profiles, turbulence intensity and velocity spectra were found to compare favorably.

  4. PathfinderTURB: an automatic boundary layer algorithm. Development, validation and application to study the impact on in situ measurements at the Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Poltera, Yann; Martucci, Giovanni; Collaud Coen, Martine; Hervo, Maxime; Emmenegger, Lukas; Henne, Stephan; Brunner, Dominik; Haefele, Alexander

    2017-08-01

    We present the development of the PathfinderTURB algorithm for the analysis of ceilometer backscatter data and the real-time detection of the vertical structure of the planetary boundary layer. Two aerosol layer heights are retrieved by PathfinderTURB: the convective boundary layer (CBL) and the continuous aerosol layer (CAL). PathfinderTURB combines the strengths of gradient- and variance-based methods and addresses the layer attribution problem by adopting a geodesic approach. The algorithm has been applied to 1 year of data measured by two ceilometers of type CHM15k, one operated at the Aerological Observatory of Payerne (491 m a.s.l.) on the Swiss plateau and one at the Kleine Scheidegg (2061 m a.s.l.) in the Swiss Alps. The retrieval of the CBL has been validated at Payerne using two reference methods: (1) manual detections of the CBL height performed by human experts using the ceilometer backscatter data; (2) values of CBL heights calculated using the Richardson's method from co-located radio sounding data. We found average biases as small as 27 m (53 m) with respect to reference method 1 (method 2). Based on the excellent agreement between the two reference methods, PathfinderTURB has been applied to the ceilometer data at the mountainous site of the Kleine Scheidegg for the period September 2014 to November 2015. At this site, the CHM15k is operated in a tilted configuration at 71° zenith angle to probe the atmosphere next to the Sphinx Observatory (3580 m a.s.l.) on the Jungfraujoch (JFJ). The analysis of the retrieved layers led to the following results: the CAL reaches the JFJ 41 % of the time in summer and 21 % of the time in winter for a total of 97 days during the two seasons. The season-averaged daily cycles show that the CBL height reaches the JFJ only during short periods (4 % of the time), but on 20 individual days in summer and never during winter. During summer in particular, the CBL and the CAL modify the air sampled in situ at JFJ, resulting in an unequivocal dependence of the measured absorption coefficient on the height of both layers. This highlights the relevance of retrieving the height of CAL and CBL automatically at the JFJ.

  5. Analysis of vertical distributions and effective flight layers of insects: three-dimensional simulation of flying insects and catch at trap heights

    USDA-ARS?s Scientific Manuscript database

    The mean height and standard deviation (SD) of flight is calculated for over 100 insect species from their catches on trap heights reported in the literature. The iterative equations for calculating mean height and SD are presented. The mean flight height for 95% of the studies varied from 0.17 to 5...

  6. Mid-latitude empirical model of the height distribution of atomic oxygen in the MLT region for different solar and geophysical conditions

    NASA Astrophysics Data System (ADS)

    Semenov, A.; Shefov, N.; Fadel, Kh.

    The model of altitude distributions of atomic oxygen in the region of the mesopause and lower thermosphere (MLT) is constructed on the basis of empirical models of variations of the intensities, temperatures and altitudes of maximum of the layers of the emissions of atomic oxygen at 557.7 nm, hydroxyl and Atmospheric system of molecular oxygen. An altitude concentration distribution of neutral components is determined on the basis of systematization of the long-term data of temperature of the middle atmosphere from rocket, nightglow and ionospheric measurements at heights of 30-110 km in middle latitudes. They include dependence on a season, solar activity and a long-term trend. Examples of results of calculation for different months of year for conditions of the lower and higher solar activity are presented. With increasing of solar activity, the height of a layer of a maximum of atomic oxygen becomes lower, and the thickness of the layer increases. There is a high correlation between characteristics of a layer of atomic oxygen and a maximum of temperature at heights of the mesopause and lower thermosphere. This work is supported by grant of ISTC No. 2274.

  7. Features of the amplitude-height-frequency characteristics of midlatitude sporadic-E layer

    NASA Astrophysics Data System (ADS)

    Yusupov, Kamil; Akchurin, Adel

    2012-07-01

    At early investigation of an ionosphere the vertical pulse sounding was without separation magnetoionic components and such conditions allowed to observe interferential beatings or polarized fading over frequencies where traces of various magnetoionic component was crossing (overlapping). The beatings in F layer traces are often observed and their origin easily are explain by an interference o - and x-mode whereas in sporadic-E layer traces even observability of beatings of o- and x-modes is in doubt. Absence of experimental evidences of beatings is explain that measurements did not manage to be performed over the necessary time moment because of randomness and a rarity of occurrence high-intensity sporadic-E layers (without properties of scattering on small scale irregularities) and because of high labour input at recording and processing of amplitude-frequency characteristics. The direct observation of interferential beatings became problematic when ionosondes with separations of magnetoionic components appeared. Moreover because of relative vicinity of gyro and background plasma frequencies and also the steep electron profile gradient the beatings in sporadic-E traces should occur between two o-modes because in typical diurnal low-intensity sporadic-E layers (foEs<5MHz) x-mode will be strongly absorbed and the steep gradient on the bottom of sporadic-E layer will strengthen magnetoionic coupling (between o- and x-modes) and lead occurrence of so-called z-mode. The z-mode (extraordinary mode with ordinary polarization) reflected in higher height again takes the form of ordinary mode after passage of height of reflection of ordinary mode and interferes with ordinary mode. However our observations show that beating in sporadic-E traces mostly occur because of interference about o- and x-modes. For detailed research of interference conditions the approximation of width of interference fringes (distance between consecutive minima in interference pattern) as a function of sounding frequency was performed. This information can be also applied to determination of parameters of the height electron profile used in IRI model. For exact profile restoration it is necessary to use all information from ionogram. Besides the specified approximation of width of interference fringes it is necessary to determine also frequency dependences of the virtual height of reflection of sporadic-E layers for o- and x-modes accurate within 300 m. First of all it concerns to cusp in the beginning of sporadic-E traces. For approximation of this dependence the modernized model of a parabolic layer for o- and x-modes with various half-thickness of layer has been used. Comparison with experimental data gives half-thickness are approximately equal 5 and 25 km accordingly. All three approximations of interference fringe widths and of reflection heights will be used for determination of height electron density profile with improved precision below maximum of sporadic-E layer.

  8. Pulse width and height modulation for multi-level resistance in bi-layer TaOx based RRAM

    NASA Astrophysics Data System (ADS)

    Alamgir, Zahiruddin; Beckmann, Karsten; Holt, Joshua; Cady, Nathaniel C.

    2017-08-01

    Mutli-level switching in resistive memory devices enables a wide range of computational paradigms, including neuromorphic and cognitive computing. To this end, we have developed a bi-layer tantalum oxide based resistive random access memory device using Hf as the oxygen exchange layer. Multiple, discrete resistance levels were achieved by modulating the RESET pulse width and height, ranging from 2 kΩ to several MΩ. For a fixed pulse height, OFF state resistance was found to increase gradually with the increase in the pulse width, whereas for a fixed pulse width, the increase in the pulse height resulted in drastic changes in resistance. Resistive switching in these devices transitioned from Schottky emission in the OFF state to tunneling based conduction in the ON state, based on I-V curve fitting and temperature dependent current measurements. These devices also demonstrated endurance of more than 108 cycles with a satisfactory Roff/Ron ratio and retention greater than 104 s.

  9. Reduction of FeO contents in sinter under high bed operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, K.; Hazama, K.; Hoshikuma, Y.

    1996-12-31

    High-bed operation (bed height more than 700 mm) is currently being carried out at the Kure No. 1 sintering plant. Before initiating this high-bed operation, the authors conducted sinter pot tests at various bed heights to investigate the effect of bed height on sintering. The following results were obtained from these pot tests: Heightening of the sinter bed increased yield at the upper layer, but at the lower layer, the yield reached a maximum value at a certain bed height. From observation of the sinter cakes, the reduction in yield is attributed to uneven burn caused by surplus heat atmore » the lower layers. Therefore, when high-bed operation is carried out, reduction of the burning energy (reduction of the FeO content in the sinter) is required. This high-bed operation with lower FeO content has enabled the company to reduce fuel consumption and SiO{sub 2} content, while maintaining high yield and high sinter quality.« less

  10. Observational characteristics of the tropopause inversion layer derived from CHAMP/GRACE radio occultations and MOZAIC aircraft data

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Cammas, J.-P.; Smit, H. G. J.; Heise, S.; Wickert, J.; Haser, A.

    2010-12-01

    In this study we discuss characteristics of the Northern Hemisphere (NH) midlatitude (40°N-60°N) tropopause inversion layer (TIL) based on two data sets. First, temperature measurements from GPS radio occultation data (CHAMP and GRACE) for the time interval 2001-2009 are used to exhibit seasonal properties of the TIL bottom height defined here as the height of the squared buoyancy frequency minimum N2 below the thermal tropopause, the TIL maximum height as the height of the N2 maximum above the tropopause, and the TIL top height as the height of the temperature maximum above the tropopause. Mean values of the TIL bottom, TIL maximum, and TIL top heights relative to the thermal tropopause for the NH midlatitudes are (-2.08 ± 0.35) km, (0.52 ± 0.10) km and (2.10 ± 0.23) km, respectively. A seasonal cycle of the TIL bottom and TIL top height is observed with values closer to the thermal tropopause during summer. Secondly, high-resolution temperature and trace gas profile measurements on board commercial aircrafts (Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program) from 2001-2008 for the NH midlatitude (40°N-60°N) region are used to characterize the TIL as a mixing layer around the tropopause. Mean TIL bottom, TIL maximum, and TIL top heights based on the MOZAIC temperature (N2) measurements confirm the results from the GPS data, even though most of the MOZAIC profiles used here are available under cyclonic situations. Further, we demonstrate that the mixing ratio gradients of ozone (O3) and carbon monoxide (CO) are suitable parameters for characterizing the TIL structure.

  11. Remote sensing of the ionospheric F layer by use of O I 6300-A and O I 1356-A observations

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Reed, E. I.; Meier, R. R.; Opal, C. B.; Hicks, G. T.

    1975-01-01

    The possibility of using airglow techniques for estimating the electron density and height of the F layer is studied on the basis of a simple relationship between the height of the F2 peak and the column emission rates of the O I 6300 A and O I 1356 A lines. The feasibility of this approach is confirmed by a numerical calculation of F2 peak heights and electron densities from simultaneous measurements of O I 6300 A and O I 1356 A obtained with earth-facing photometers carried by the Ogo 4 satellite. Good agreement is established with the F2 peak heights estimates from top-side and bottom-side ionospheric sounding.

  12. Retrieving Smoke Aerosol Height from DSCOVR/EPIC

    NASA Astrophysics Data System (ADS)

    Xu, X.; Wang, J.; Wang, Y.

    2017-12-01

    Unlike industrial pollutant particles that are often confined within the planetary boundary layer, smoke from forest and agriculture fires can inject massive carbonaceous aerosols into the upper troposphere due to the intense pyro-convection. Sensitivity of weather and climate to absorbing carbonaceous aerosols is regulated by the altitude of those aerosol layers. However, aerosol height information remains limited from passive satellite sensors. Here we present an algorithm to estimate smoke aerosol height from radiances in the oxygen A and B bands measured by the Earth Polychromatic Imaging Camera (EPIC) from the Deep Space Climate Observatory (DSCOVR). With a suit of case studies and validation efforts, we demonstrate that smoke aerosol height can be well retrieved over both ocean and land surfaces multiple times daily.

  13. The Effect of Backward-Facing Step Height on Instability Growth and Breakdown in Swept Wing Boundary-Layer Transition

    NASA Technical Reports Server (NTRS)

    Eppink, Jenna L.; Wlezien, Richard W.; King, Rudolph A.; Choudhari, Meelan

    2015-01-01

    A low-speed experiment was performed on a swept at plate model with an imposed pressure gradient to determine the effect of a backward-facing step on transition in a stationary-cross flow dominated flow. Detailed hot-wire boundary-layer measurements were performed for three backward-facing step heights of approximately 36, 45, and 49% of the boundary-layer thickness at the step. These step heights correspond to a subcritical, nearly-critical, and critical case. Three leading-edge roughness configurations were tested to determine the effect of stationary-cross flow amplitude on transition. The step caused a local increase in amplitude of the stationary cross flow for the two larger step height cases, but farther downstream the amplitude decreased and remained below the baseline amplitude. The smallest step caused a slight local decrease in amplitude of the primary stationary cross flow mode, but the amplitude collapsed back to the baseline case far downstream of the step. The effect of the step on the amplitude of the primary cross flow mode increased with step height, however, the stationary cross flow amplitudes remained low and thus, stationary cross flow was not solely responsible for transition. Unsteady disturbances were present downstream of the step for all three step heights, and the amplitudes increased with increasing step height. The only exception is that the lower frequency (traveling crossflow-like) disturbance was not present in the lowest step height case. Positive and negative spikes in instantaneous velocity began to occur for the two larger step height cases and then grew in number and amplitude downstream of reattachment, eventually leading to transition. The number and amplitude of spikes varied depending on the step height and cross flow amplitude. Despite the low amplitude of the disturbances in the intermediate step height case, breakdown began to occur intermittently and the flow underwent a long transition region.

  14. Estimating the atmospheric boundary layer height over sloped, forested terrain from surface spectral analysis during BEARPEX

    NASA Astrophysics Data System (ADS)

    Choi, W.; Faloona, I. C.; McKay, M.; Goldstein, A. H.; Baker, B.

    2010-11-01

    In this study the atmospheric boundary layer (ABL) height (zi) over complex, forested terrain is estimated based on the power spectra and the integral length scale of horizontal winds obtained from a three-axis sonic anemometer during the BEARPEX (Biosphere Effects on Aerosol and Photochemistry) Experiment. The zi values estimated with this technique showed very good agreement with observations obtained from balloon tether sonde (2007) and rawinsonde (2009) measurements under unstable conditions (z/L < 0) at the coniferous forest in the California Sierra Nevada. The behavior of the nocturnal boundary layer height (h) and power spectra of lateral winds and temperature under stable conditions (z/L > 0) is also presented. The nocturnal boundary layer height is found to be fairly well predicted by a recent interpolation formula proposed by Zilitinkevich et al. (2007), although it was observed to only vary from 60-80 m during the experiment. Finally, significant directional wind shear was observed during both day and night with winds backing from the prevailing west-southwesterlies in the ABL (anabatic cross-valley circulation) to consistent southerlies in a layer ~1 km thick just above the ABL before veering to the prevailing westerlies further aloft. We show that this is consistent with the forcing of a thermal wind driven by the regional temperature gradient directed due east in the lower troposphere.

  15. Wind-Tunnel Simulation of Weakly and Moderately Stable Atmospheric Boundary Layers

    NASA Astrophysics Data System (ADS)

    Hancock, Philip E.; Hayden, Paul

    2018-07-01

    The simulation of horizontally homogeneous boundary layers that have characteristics of weakly and moderately stable atmospheric flow is investigated, where the well-established wind engineering practice of using `flow generators' to provide a deep boundary layer is employed. Primary attention is given to the flow above the surface layer, in the absence of an overlying inversion, as assessed from first- and second-order moments of velocity and temperature. A uniform inlet temperature profile ahead of a deep layer, allowing initially neutral flow, results in the upper part of the boundary layer remaining neutral. A non-uniform inlet temperature profile is required but needs careful specification if odd characteristics are to be avoided, attributed to long-lasting effects inherent of stability, and to a reduced level of turbulent mixing. The first part of the wind-tunnel floor must not be cooled if turbulence quantities are to vary smoothly with height. Closely horizontally homogeneous flow is demonstrated, where profiles are comparable or closely comparable with atmospheric data in terms of local similarity and functions of normalized height. The ratio of boundary-layer height to surface Obukhov length, and the surface heat flux, are functions of the bulk Richardson number, independent of horizontal homogeneity. Surface heat flux rises to a maximum and then decreases.

  16. Wind-Tunnel Simulation of Weakly and Moderately Stable Atmospheric Boundary Layers

    NASA Astrophysics Data System (ADS)

    Hancock, Philip E.; Hayden, Paul

    2018-02-01

    The simulation of horizontally homogeneous boundary layers that have characteristics of weakly and moderately stable atmospheric flow is investigated, where the well-established wind engineering practice of using `flow generators' to provide a deep boundary layer is employed. Primary attention is given to the flow above the surface layer, in the absence of an overlying inversion, as assessed from first- and second-order moments of velocity and temperature. A uniform inlet temperature profile ahead of a deep layer, allowing initially neutral flow, results in the upper part of the boundary layer remaining neutral. A non-uniform inlet temperature profile is required but needs careful specification if odd characteristics are to be avoided, attributed to long-lasting effects inherent of stability, and to a reduced level of turbulent mixing. The first part of the wind-tunnel floor must not be cooled if turbulence quantities are to vary smoothly with height. Closely horizontally homogeneous flow is demonstrated, where profiles are comparable or closely comparable with atmospheric data in terms of local similarity and functions of normalized height. The ratio of boundary-layer height to surface Obukhov length, and the surface heat flux, are functions of the bulk Richardson number, independent of horizontal homogeneity. Surface heat flux rises to a maximum and then decreases.

  17. Mesoscopic Length Scale Controls the Rheology of Dense Suspensions

    NASA Astrophysics Data System (ADS)

    Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric

    2010-09-01

    From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.

  18. Mesoscopic length scale controls the rheology of dense suspensions.

    PubMed

    Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric

    2010-09-03

    From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.

  19. Utilization of O4 slant column density to derive aerosol layer height from a spaceborne UV-visible hyperspectral sensor: sensitivity and case study

    NASA Astrophysics Data System (ADS)

    Park, S. S.; Kim, J.; Lee, H.; Torres, O.; Lee, K.-M.; Lee, S. D.

    2015-03-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using simulated radiances by a radiative transfer model, Linearized Discrete Ordinate Radiative Transfer (LIDORT), and Differential Optical Absorption Spectroscopy (DOAS) technique. The sensitivities of the O4 SCDs to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4 SCD at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 414 m (16.5%), 564 m (22.4%), and 1343 m (52.5%) for absorbing, dust, and non-absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution type. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). The retrieved aerosol effective heights are lower by approximately 300 m (27 %) compared to those obtained from the ground-based LIDAR measurements.

  20. Atmospheric Boundary Layer of a pasture site in Amazônia

    NASA Astrophysics Data System (ADS)

    Trindade de Araújo Tiburtino Neves, Theomar; Fisch, Gilberto; Raasch, Siegfried

    2013-04-01

    A great effort has been made by the community of micrometeorology and planetary boundary layer for a better description of the properties of the Atmospheric Boundary Layer (ABL), such as its height, thermodynamics characteristics and its time evolution. This work aims to give a review of the main characteristics of Atmospheric Boundary Layer over a pasture site in Amazonia. The measurements dataset was carried out from 3 different LBA field campaigns: RBLE 3 (during the dry season from 1993), RaCCI (during the dry-to-wet transition season from 2002) and WetAMC (during the wet season from 1999), collected with tethered balloon, radiosondes and eddy correlation method in a pasture site in the southwestern Amazonia. Different techniques and instruments were used to estimate the ABĹs properties. During the daytime, it was possible to observe that there is an abrupt growth of the Convective Boundary Layer (CBL) between 08 and 11 LT, with a stationary pattern between 14 and 17 LT. The maximum heights at late afternoon were around 1600 m during the dry season, whilst the wet season it only reached 1000 m. This is due to the lower surface turbulent sensible heat flux as the soil is wetter and the partition of energy is completely different between wet to the dry season. For the transition period (RaCCI 2002), it was possible to analyze and compare several estimates from different instruments and methods. It showed that the parcel method overestimates the heights of all measurements (mainly at 14 LT) due to the high incidence of solar radiation and superadiabatic gradients. The profile and Richardson number methods gave results very similar to estimate the height of the CBL. The onset of the Nocturnal Boundary Layer (NBL) occurs before the sunset (18 LT) and its height is reasonable stable during the night (typical values around 180-250 m). An alternative method (Vmax) which used the height of the maximum windspeed derived from a SODAR instrument during RaCCI 2002 was proposed and it showed to be satisfactory comparing with the others methods. Besides that, it has the advantage to have measurements each 30 min.

  1. The Tall Wind project - exploring the wind profile and boundary-layer height in the atmosphere's first kilometer over flat terrain.

    NASA Astrophysics Data System (ADS)

    Gryning, S. E.; Batchvarova, E.; Pena, A.; Mikkelsen, T.; Brümmer, B.; Emeis, S.; Gulstad, L.; Lee, N.

    2010-09-01

    Predicting the wind at typical heights of present and future wind turbines is a considerable scientific challenge. Presently applied models are accurate within the surface layer. New measurements and instrument synergies are necessary as basis for developing new wind models and understanding the physical processes that form the wind profile in order to describe the wind profile above it. Analysis of the wind and turbulence profiles from a meteorological mast at heights up to 160 meters and wind lidars up to 300 meters at the National test station at Høvsøre, Denmark, shows deviations of the wind profile above 80 meters the from the profile used so far near the surface. It also reveals the importance of the boundary-layer height as a physical parameter for the description of the wind profile. In the Tall Wind project, mast and lidar measurements of wind and fluxes will be combined with monitoring of the boundary-layer height by use of an aerosol lidar. At the main project monitoring sites (Høvsøre in Denmark and Hamburg in Germany) long term monitoring programmes on tall masts (160 and 300 meters) already exists and will be intensified. As part of the project the wind profile will be measured up to 1000 meters by a wind lidar (windcube) and the boundary-layer height by an aerosol lidar. The new data sets can be used for theoretical developments and evaluation of meso-scale meteorological models. The project is an international collaboration between academia (Risoe-DTU, HU and KIT) and industry (Vestas and DONG), funded by the Danish Research Agency, the Strategic Research Council (Sagsnr. 2104-08-0025). In the paper the set-up of the Tall Wind project will be described and some first results and experience will be presented.

  2. An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS

    NASA Astrophysics Data System (ADS)

    Sessions, W. R.; Fuelberg, H. E.; Kahn, R. A.; Winker, D. M.

    2010-11-01

    The Weather Research and Forecasting Model (WRF) is considered a "next generation" mesoscale meteorology model. The inclusion of a chemistry module (WRF-Chem) allows transport simulations of chemical and aerosol species such as those observed during NASA's Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) in 2008. The ARCTAS summer deployment phase during June and July coincided with large boreal wildfires in Saskatchewan and Eastern Russia. One of the most important aspects of simulating wildfire plume transport is the height at which emissions are injected. WRF-Chem contains an integrated one-dimensional plume rise model to determine the appropriate injection layer. The plume rise model accounts for thermal buoyancy associated with fires and the local atmospheric stability. This study compares results from the plume model against those of two more traditional injection methods: Injecting within the planetary boundary layer, and in a layer 3-5 km above ground level. Fire locations are satellite derived from the GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA) and the MODIS thermal hotspot detection. Two methods for preprocessing these fire data are compared: The prep_chem_sources method included with WRF-Chem, and the Naval Research Laboratory's Fire Locating and Monitoring of Burning Emissions (FLAMBE). Results from the simulations are compared with satellite-derived products from the AIRS, MISR and CALIOP sensors. Results show that the FLAMBE pre-processor produces more realistic injection heights than does prep_chem_sources. The plume rise model using FLAMBE provides the best agreement with satellite-observed injection heights. Conversely, when the planetary boundary layer or the 3-5 km AGL layer were filled with emissions, the resulting injection heights exhibit less agreement with observed plume heights. Results indicate that differences in injection heights produce different transport pathways. These differences are especially pronounced in areas of strong vertical wind shear and when the integration period is long.

  3. An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS

    NASA Astrophysics Data System (ADS)

    Sessions, W. R.; Fuelberg, H. E.; Kahn, R. A.; Winker, D. M.

    2011-06-01

    The Weather Research and Forecasting Model (WRF) is considered a "next generation" mesoscale meteorology model. The inclusion of a chemistry module (WRF-Chem) allows transport simulations of chemical and aerosol species such as those observed during NASA's Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) in 2008. The ARCTAS summer deployment phase during June and July coincided with large boreal wildfires in Saskatchewan and Eastern Russia. One of the most important aspects of simulating wildfire plume transport is the height at which emissions are injected. WRF-Chem contains an integrated one-dimensional plume rise model to determine the appropriate injection layer. The plume rise model accounts for thermal buoyancy associated with fires and local atmospheric stability. This paper describes a case study of a 10 day period during the Spring phase of ARCTAS. It compares results from the plume model against those of two more traditional injection methods: Injecting within the planetary boundary layer, and in a layer 3-5 km above ground level. Fire locations are satellite derived from the GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA) and the MODIS thermal hotspot detection. Two methods for preprocessing these fire data are compared: The prep_chem_sources method included with WRF-Chem, and the Naval Research Laboratory's Fire Locating and Monitoring of Burning Emissions (FLAMBE). Results from the simulations are compared with satellite-derived products from the AIRS, MISR and CALIOP sensors. When FLAMBE provides input to the 1-D plume rise model, the resulting injection heights exhibit the best agreement with satellite-observed injection heights. The FLAMBE-derived heights are more realistic than those utilizing prep_chem_sources. Conversely, when the planetary boundary layer or the 3-5 km a.g.l. layer were filled with emissions, the resulting injection heights exhibit less agreement with observed plume heights. Results indicate that differences in injection heights produce different transport pathways. These differences are especially pronounced in area of strong vertical wind shear and when the integration period is long.

  4. Automatic remote sensing detection of the convective boundary layer structure over flat and complex terrain using the novel PathfinderTURB algorithm

    NASA Astrophysics Data System (ADS)

    Poltera, Yann; Martucci, Giovanni; Hervo, Maxime; Haefele, Alexander; Emmenegger, Lukas; Brunner, Dominik; Henne, stephan

    2016-04-01

    We have developed, applied and validated a novel algorithm called PathfinderTURB for the automatic and real-time detection of the vertical structure of the planetary boundary layer. The algorithm has been applied to a year of data measured by the automatic LIDAR CHM15K at two sites in Switzerland: the rural site of Payerne (MeteoSwiss station, 491 m, asl), and the alpine site of Kleine Scheidegg (KSE, 2061 m, asl). PathfinderTURB is a gradient-based layer detection algorithm, which in addition makes use of the atmospheric variability to detect the turbulent transition zone that separates two low-turbulence regions, one characterized by homogeneous mixing (convective layer) and one above characterized by free tropospheric conditions. The PathfinderTURB retrieval of the vertical structure of the Local (5-10 km, horizontal scale) Convective Boundary Layer (LCBL) has been validated at Payerne using two established reference methods. The first reference consists of four independent human-expert manual detections of the LCBL height over the year 2014. The second reference consists of the values of LCBL height calculated using the bulk Richardson number method based on co-located radio sounding data for the same year 2014. Based on the excellent agreement with the two reference methods at Payerne, we decided to apply PathfinderTURB to the complex-terrain conditions at KSE during 2014. The LCBL height retrievals are obtained by tilting the CHM15K at an angle of 19 degrees with respect to the horizontal and aiming directly at the Sphinx Observatory (3580 m, asl) on the Jungfraujoch. This setup of the CHM15K and the processing of the data done by the PathfinderTURB allows to disentangle the long-transport from the local origin of gases and particles measured by the in-situ instrumentation at the Sphinx Observatory. The KSE measurements showed that the relation amongst the LCBL height, the aerosol layers above the LCBL top and the gas + particle concentration is all but trivial. Retrieving the structure of the LCBL along the line of sight connecting KSE to the Sphinx Observatory allows to monitor when the LCBL top reaches the altitude of the in-situ instrumentation at the Sphinx and to relate the measured gas + particle concentration with the locally-produced aerosols. On the other hand, when the LCBL top is lower than the Sphinx altitude, the measured concentration of gas + particle at the Sphinx is either due to long transport of aerosols (>100 km) or to the residual aerosol layer reaching the Sphinx's height or to non-local (> 5 km and <100 km) CBL aerosols advected at the Sphinx's height. Except when the aerosol layer is decoupled from the LCBL underneath, for all the other cases the CHM15K sees the probed layer as a continuous (not necessarily well-mixed) aerosol layer starting at the KSE surface. The depth of this continuous layer has been retrieved by the PathfinderTURB and related with the black carbon absorption coefficient measured at Sphinx. The result of the comparison shows clearly that the depth of the layer is well correlated with the absorption coefficient measured at the Sphinx. This is an important result that allows not only to retrieve real-time CBL heights in an automatic and trustworthy way, but also to adapt the retrievals to complex-terrain and complex-atmospheric conditions with customized tilted instrument settings.

  5. Tunable Emission Wavelength Stacked InAs/GaAs Quantum Dots by Chemical Beam Epitaxy for Optical Coherence Tomography

    PubMed Central

    Ilahi, Bouraoui; Zribi, Jihene; Guillotte, Maxime; Arès, Richard; Aimez, Vincent; Morris, Denis

    2016-01-01

    We report on Chemical Beam Epitaxy (CBE) growth of wavelength tunable InAs/GaAs quantum dots (QD) based superluminescent diode’s active layer suitable for Optical Coherence Tomography (OCT). The In-flush technique has been employed to fabricate QD with controllable heights, from 5 nm down to 2 nm, allowing a tunable emission band over 160 nm. The emission wavelength blueshift has been ensured by reducing both dots’ height and composition. A structure containing four vertically stacked height-engineered QDs have been fabricated, showing a room temperature broad emission band centered at 1.1 µm. The buried QD layers remain insensitive to the In-flush process of the subsequent layers, testifying the reliability of the process for broadband light sources required for high axial resolution OCT imaging. PMID:28773633

  6. Observations of the atmospheric boundary layer height over Abu Dhabi, United Arab Emirates: Investigating boundary layer climatology in arid regions

    NASA Astrophysics Data System (ADS)

    Marzooqi, Mohamed Al; Basha, Ghouse; Ouarda, Taha B. M. J.; Armstrong, Peter; Molini, Annalisa

    2014-05-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature in the boundary layer over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main features however, desert ABLs present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as the transport of dust and pollutants, and turbulent fluxes of momentum, heat and water vapor in hyper-arid regions. In this study, we analyze a continuous record of observations of the atmospheric boundary layer (ABL) height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4oN, 54.6o E, Abu Dhabi, United Arab Emirates), starting March 2013. We compare different methods for the estimation of the ABL height from Ceilometer data such as, classic variance-, gradient-, log gradient- and second derivation-methods as well as recently developed techniques such as the Bayesian Method and Wavelet covariance transform. Our goal is to select the most suited technique for describing the climatology of the ABL in desert environments. Comparison of our results with radiosonde observations collected at the nearby airport of Abu Dhabi indicate that the WCT and the Bayesian method are the most suitable tools to accurately identify the ABL height in all weather conditions. These two methods are used for the definition of diurnal and seasonal climatologies of the boundary layer conditional to different atmospheric stability classes.

  7. Remote Sensing of Cloud Top Heights Using the Research Scanning Polarimeter

    NASA Technical Reports Server (NTRS)

    Sinclair, Kenneth; van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John; Wasilewski, Andrzej

    2015-01-01

    Clouds cover roughly two thirds of the globe and act as an important regulator of Earth's radiation budget. Of these, multilayered clouds occur about half of the time and are predominantly two-layered. Changes in cloud top height (CTH) have been predicted by models to have a globally averaged positive feedback, however observational changes in CTH have shown uncertain results. Additional CTH observations are necessary to better and quantify the effect. Improved CTH observations will also allow for improved sub-grid parameterizations in large-scale models and accurate CTH information is important when studying variations in freezing point and cloud microphysics. NASA's airborne Research Scanning Polarimeter (RSP) is able to measure cloud top height using a novel multi-angular contrast approach. RSP scans along the aircraft track and obtains measurements at 152 viewing angles at any aircraft location. The approach presented here aggregates measurements from multiple scans to a single location at cloud altitude using a correlation function designed to identify the location-distinct features in each scan. During NASAs SEAC4RS air campaign, the RSP was mounted on the ER-2 aircraft along with the Cloud Physics Lidar (CPL), which made simultaneous measurements of CTH. The RSPs unique method of determining CTH is presented. The capabilities of using single and combinations of channels within the approach are investigated. A detailed comparison of RSP retrieved CTHs with those of CPL reveal the accuracy of the approach. Results indicate a strong ability for the RSP to accurately identify cloud heights. Interestingly, the analysis reveals an ability for the approach to identify multiple cloud layers in a single scene and estimate the CTH of each layer. Capabilities and limitations of identifying single and multiple cloud layers heights are explored. Special focus is given to sources of error in the method including optically thin clouds, physically thick clouds, multi-layered clouds as well as cloud phase. When determining multi-layered CTHs, limits on the upper clouds opacity are assessed.

  8. Structure and seasonal variations of the nocturnal mesospheric K layer at Arecibo

    NASA Astrophysics Data System (ADS)

    Yue, Xianchang; Friedman, Jonathan S.; Wu, Xiongbin; Zhou, Qihou H.

    2017-07-01

    We present the seasonal variations of the nocturnal mesospheric potassium (K) layer at Arecibo, Puerto Rico (18.35°N, 66.75°W) from 160 nights of K Doppler lidar observations between December 2003 and January 2010, during which the solar activity is mostly low. The background temperature is also measured simultaneously by the lidar and shows a strong semiannual oscillation with maxima occurring during equinoxes at all altitudes. The annual mean K density profile is approximately Gaussian with a peak altitude of 91.7 km. The K column abundance and the centroid height have strong semiannual variations, with maxima at the solstices. Both parameters are negatively correlated to the mean background temperature with a correlation coefficient < -0.5. The root-mean-square (RMS) width has a distinct annual oscillation with the largest width occurring in May. The seasonal variation of the centroid height is similar to that of the Fe layer at the same site. The seasonal temperature variation indicates significant enhanced wave-induced downward transport for both species during spring and autumn. This explains the metal layer centroid height and column abundance variations at Arecibo and provides a general mechanism to account for the seasonal variations in the centroid height of all metal species measured at low-latitude and midlatitude sites.

  9. Aerosol layer height from synergistic use of VIIRS and OMPS

    NASA Astrophysics Data System (ADS)

    Lee, J.; Hsu, N. Y. C.; Sayer, A. M.; Kim, W.; Seftor, C. J.

    2017-12-01

    This study presents an Aerosol Single-scattering albedo and Height Estimation (ASHE) algorithm, which retrieves the height of UV-absorbing aerosols by synergistically using the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Ozone Mapping and Profiler Suite (OMPS). ASHE provides height information over a much broader area than ground-based or spaceborne lidar measurements by benefitting from the wide swaths of the two instruments used. As determination of single-scattering albedo (SSA) of the aerosol layer is the most critical part for the performance and coverage of ASHE, here we demonstrate three different strategies to constrain the SSA. First, ASHE is able to retrieve the SSA of UV-absorbing aerosols when Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) provides vertical profiles of the aerosol layer of interest. Second, Aerosol Robotic Network (AERONET) inversions can directly constrain the SSA of the aerosol layer when collocated with VIIRS or OMPS. Last, a SSA climatology from ASHE, AERONET, or other data sources can be used for large-scale, aged aerosol events, for which climatological SSA is well-known, at the cost of a slight decrease in retrieval accuracy. The same algorithm can be applied to measurements of similar type, such as those made by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI), for a long-term, consistent data record.

  10. Evaluation of helicity generation in the tropical storm Gonu

    NASA Astrophysics Data System (ADS)

    Farahani, Majid M.; Khansalari, Sakineh; Azadi, Majid

    2017-06-01

    Helicity is a valuable dynamical concept for the study of rotating flows. Consequently helicity flux, indicative of the source or sink of helicity, owns comparable importance. In this study, while reviewing the existing methods, a mathematical relation between helicity and helicity-flux is introduced, discussed and examined. The computed values of helicity and helicity fluxes in an actual case, using the classical and this proposed method are compared. The down-stream helicity flux including sources and sinks of helicity is considered for the tropical storm Gonu that occurred over the coasts of Oman and Iran on June 2-7, 2007. Results show that the buoyancy, through the upper troposphere down to a height within boundary layer, is the main source in producing helicity, and surface friction from earth surface up to a height within boundary layer, is the main dissipating element of helicity. The dominance of buoyancy forcing over the dissipative friction forcing results in generation of vortex or enhancement of it after bouncing the land. Furthermore, the increase (decrease) of helicity results in an increase (decrease) in the height of the level in which maximum helicity flux occurs. It is suggested that the maximum helicity flux occurs at the top of the turbulent boundary layer, so that the height of boundary layer could be obtained.

  11. MISR Stereo-heights of Grassland Fire Smoke Plumes in Australia

    NASA Astrophysics Data System (ADS)

    Mims, S. R.; Kahn, R. A.; Moroney, C. M.; Gaitley, B. J.; Nelson, D. L.; Garay, M. J.

    2008-12-01

    Plume heights from wildfires are used in climate modeling to predict and understand trends in aerosol transport. This study examines whether smoke from grassland fires in the desert region of Western and central Australia ever rises above the relatively stable atmospheric boundary layer and accumulates in higher layers of relative atmospheric stability. Several methods for deriving plume heights from the Multi-angle Imaging SpectroRadiometer (MISR) instrument are examined for fire events during the summer 2000 and 2002 burning seasons. Using MISR's multi-angle stereo-imagery from its three near-nadir-viewing cameras, an automatic algorithm routinely derives the stereo-heights above the geoid of the level-of-maximum-contrast for the entire global data set, which often correspond to the heights of clouds and aerosol plumes. Most of the fires that occur in the cases studied here are small, diffuse, and difficult to detect. To increase the signal from these thin hazes, the MISR enhanced stereo product that computes stereo heights from the most steeply viewing MISR cameras is used. For some cases, a third approach to retrieving plume heights from MISR stereo imaging observations, the MISR Interactive Explorer (MINX) tool, is employed to help differentiate between smoke and cloud. To provide context and to search for correlative factors, stereo-heights are combined with data providing fire strength from the Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, atmospheric structure from the NCEP/NCAR Reanalysis Project, surface cover from the Australia National Vegetation Information System, and forward and backward trajectories from the NOAA HYSPLIT model. Although most smoke plumes concentrate in the near-surface boundary layer, as expected, some appear to rise higher. These findings suggest that a closer examination of grassland fire energetics may be warranted.

  12. Remote Sensing of Multiple Cloud Layer Heights Using Multi-Angular Measurements

    NASA Technical Reports Server (NTRS)

    Sinclair, Kenneth; Van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John; Wasilewski, Andrzej; Mcgill, Matthew

    2017-01-01

    Cloud top height (CTH) affects the radiative properties of clouds. Improved CTH observations will allow for improved parameterizations in large-scale models and accurate information on CTH is also important when studying variations in freezing point and cloud microphysics. NASAs airborne Research Scanning Polarimeter (RSP) is able to measure cloud top height using a novel multi-angular contrast approach. For the determination of CTH, a set of consecutive nadir reflectances is selected and the cross-correlations between this set and co-located sets at other viewing angles are calculated for a range of assumed cloud top heights, yielding a correlation profile. Under the assumption that cloud reflectances are isotropic, local peaks in the correlation profile indicate cloud layers. This technique can be applied to every RSP footprint and we demonstrate that detection of multiple peaks in the correlation profile allow retrieval of heights of multiple cloud layers within single RSP footprints. This paper provides an in-depth description of the architecture and performance of the RSPs CTH retrieval technique using data obtained during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC(exp. 4)RS) campaign. RSP retrieved cloud heights are evaluated using collocated data from the Cloud Physics Lidar (CPL). The method's accuracy associated with the magnitude of correlation, optical thickness, cloud thickness and cloud height are explored. The technique is applied to measurements at a wavelength of 670 nm and 1880 nm and their combination. The 1880-nm band is virtually insensitive to the lower troposphere due to strong water vapor absorption.

  13. Vertical structure of atmospheric boundary layer over Ranchi during the summer monsoon season

    NASA Astrophysics Data System (ADS)

    Chandra, Sagarika; Srivastava, Nishi; Kumar, Manoj

    2018-04-01

    Thermodynamic structure and variability in the atmospheric boundary layer have been investigated with the help of balloon-borne GPS radiosonde over a monsoon trough station Ranchi (Lat. 23°45'N, Long. 85°43'E, India) during the summer monsoon season (June-September) for a period of 2011-2013. Virtual potential temperature gradient method is used for the determination of mixed layer height (MLH). The MLH has been found to vary in the range of 1000-1300 m during the onset, 600-900 m during the active and 1400-1750 m during the break phase of monsoon over this region. Inter-annual variations noticed in MLH could be associated with inter-annual variability in convection and rainfall prevailing over the region. Along with the MLH, the cloud layer heights are also derived from the thermodynamic profiles for the onset, active and break phases of monsoon. Cloud layer height varied a lot during different phases of the monsoon. For the determination of boundary-layer convection, thermodynamic parameter difference (δθ = θ es- θ e) between saturated equivalent potential temperature (θ es ) and equivalent potential temperature (θ e) is used. It is a good indicator of convection and indicates the intense and suppressed convection during different phases of monsoon.

  14. Mixed Layer Heights Derived from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Scarino, Amy J.; Burton, Sharon P.; Ferrare, Rich A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.; Rogers, Raymond R.; Cook, Anthony L.; Harper, David B.; Fast, Jerome; hide

    2012-01-01

    The NASA airborne High Spectral Resolution Lidar (HSRL) has been deployed on board the NASA Langley Research Center's B200 aircraft to several locations in North America from 2006 to 2012 to aid in characterizing aerosol properties for over fourteen field missions. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) during 349 science flights, many in coordination with other participating research aircraft, satellites, and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as properties and variability of the Mixing Layer (ML) height. We describe the use of the HSRL data collected during these missions for computing ML heights and show how the HSRL data can be used to determine the fraction of aerosol optical thickness within and above the ML, which is important for air quality assessments. We describe the spatial and temporal variations in ML heights found in the diverse locations associated with these experiments. We also describe how the ML heights derived from HSRL have been used to help assess simulations of Planetary Boundary Layer (PBL) derived using various models, including the Weather Research and Forecasting Chemistry (WRF-Chem), NASA GEOS-5 model, and the ECMWF/MACC models.

  15. Quantifying the relationship between PM2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog-haze mixed events in Beijing

    NASA Astrophysics Data System (ADS)

    Luan, Tian; Guo, Xueliang; Guo, Lijun; Zhang, Tianhang

    2018-01-01

    Air quality and visibility are strongly influenced by aerosol loading, which is driven by meteorological conditions. The quantification of their relationships is critical to understanding the physical and chemical processes and forecasting of the polluted events. We investigated and quantified the relationship between PM2.5 (particulate matter with aerodynamic diameter is 2.5 µm and less) mass concentration, visibility and planetary boundary layer (PBL) height in this study based on the data obtained from four long-lasting haze events and seven fog-haze mixed events from January 2014 to March 2015 in Beijing. The statistical results show that there was a negative exponential function between the visibility and the PM2.5 mass concentration for both haze and fog-haze mixed events (with the same R2 of 0.80). However, the fog-haze events caused a more obvious decrease of visibility than that for haze events due to the formation of fog droplets that could induce higher light extinction. The PM2.5 concentration had an inversely linear correlation with PBL height for haze events and a negative exponential correlation for fog-haze mixed events, indicating that the PM2.5 concentration is more sensitive to PBL height in fog-haze mixed events. The visibility had positively linear correlation with the PBL height with an R2 of 0.35 in haze events and positive exponential correlation with an R2 of 0.56 in fog-haze mixed events. We also investigated the physical mechanism responsible for these relationships between visibility, PM2.5 concentration and PBL height through typical haze and fog-haze mixed event and found that a double inversion layer formed in both typical events and played critical roles in maintaining and enhancing the long-lasting polluted events. The variations of the double inversion layers were closely associated with the processes of long-wave radiation cooling in the nighttime and short-wave solar radiation reduction in the daytime. The upper-level stable inversion layer was formed by the persistent warm and humid southwestern airflow, while the low-level inversion layer was initially produced by the surface long-wave radiation cooling in the nighttime and maintained by the reduction of surface solar radiation in the daytime. The obvious descending process of the upper-level inversion layer induced by the radiation process could be responsible for the enhancement of the low-level inversion layer and the lowering PBL height, as well as high aerosol loading for these polluted events. The reduction of surface solar radiation in the daytime could be around 35 % for the haze event and 94 % for the fog-haze mixed event. Therefore, the formation and subsequent descending processes of the upper-level inversion layer should be an important factor in maintaining and strengthening the long-lasting severe polluted events, which has not been revealed in previous publications. The interactions and feedbacks between PM2.5 concentration and PBL height linked by radiation process caused a more significant and long-lasting deterioration of air quality and visibility in fog-haze mixed events. The interactions and feedbacks of all processes were particularly strong when the PM2.5 mass concentration was larger than 150-200 µg m-3.

  16. Cloud Height Estimation with a Single Digital Camera and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Carretas, Filipe; Janeiro, Fernando M.

    2014-05-01

    Clouds influence the local weather, the global climate and are an important parameter in the weather prediction models. Clouds are also an essential component of airplane safety when visual flight rules (VFR) are enforced, such as in most small aerodromes where it is not economically viable to install instruments for assisted flying. Therefore it is important to develop low cost and robust systems that can be easily deployed in the field, enabling large scale acquisition of cloud parameters. Recently, the authors developed a low-cost system for the measurement of cloud base height using stereo-vision and digital photography. However, due to the stereo nature of the system, some challenges were presented. In particular, the relative camera orientation requires calibration and the two cameras need to be synchronized so that the photos from both cameras are acquired simultaneously. In this work we present a new system that estimates the cloud height between 1000 and 5000 meters. This prototype is composed by one digital camera controlled by a Raspberry Pi and is installed at Centro de Geofísica de Évora (CGE) in Évora, Portugal. The camera is periodically triggered to acquire images of the overhead sky and the photos are downloaded to the Raspberry Pi which forwards them to a central computer that processes the images and estimates the cloud height in real time. To estimate the cloud height using just one image requires a computer model that is able to learn from previous experiences and execute pattern recognition. The model proposed in this work is an Artificial Neural Network (ANN) that was previously trained with cloud features at different heights. The chosen Artificial Neural Network is a three-layer network, with six parameters in the input layer, 12 neurons in the hidden intermediate layer, and an output layer with only one output. The six input parameters are the average intensity values and the intensity standard deviation of each RGB channel. The output parameter in the output layer is the cloud height estimated by the ANN. The training procedure was performed, using the back-propagation method, in a set of 260 different clouds with heights in the range [1000, 5000] m. The training of the ANN has resulted in a correlation ratio of 0.74. This trained ANN can therefore be used to estimate the cloud height. The previously described system can also measure the wind speed and direction at cloud height by measuring the displacement, in pixels, of a cloud feature between consecutively acquired photos. Also, the geographical north direction can be estimated using this setup through sequential night images with high exposure times. A further advantage of this single camera system is that no camera calibration or synchronization is needed. This significantly reduces the cost and complexity of field deployment of cloud height measurement systems based on digital photography.

  17. Real-time reconstruction of topside ionosphere scale height from coordinated GPS-TEC and ionosonde observations

    NASA Astrophysics Data System (ADS)

    Gulyaeva, Tamara; Poustovalova, Ljubov

    The International Reference Ionosphere model extended to the plasmasphere, IRI-Plas, has been recently updated for assimilation of total electron content, TEC, derived from observations with Global Navigation Satellite System, GNSS. The ionosonde products of the F2 layer peak density (NmF2) and height (hmF2) ensure true electron density maximum at the F2 peak. The daily solar and magnetic indices used by IRI-Plas code are compiled in data files including the 3-hour ap and kp magnetic index from 1958 onward, 12-monthly smoothed sunspot number R12 and Global Electron Content GEC12, daily solar radio flux F10.7 and daily sunspot number Ri. The 3-h ap-index is available in Real Time, RT, mode from GFZ, Potsdam, Germany, daily update of F10.7 is provided by Space Weather Canada service, and daily estimated international sunspot number Ri is provided by Solar Influences Data Analysis Center, SIDC, Belgium. For IRI-Plas-RT operation in regime of the daily update and prediction of the F2 layer peak parameters, the proxy kp and ap forecast for 3 to 24 hours ahead based on data for preceding 12 hours is applied online at http://www.izmiran.ru/services/iweather/. The topside electron density profile of IRI-Plas code is expressed with complementary half-peak density anchor height above hmF2 which corresponds to transition O+/H+ height. The present investigation is focused on reconstruction of topside ionosphere scale height using vertical total electron content (TEC) data derived from the Global Positioning System GPS observations and the ionosonde derived F2 layer peak parameters from 25 observatories ingested into IRI-Plas model. GPS-TEC and ionosonde measurements at solar maximum (September, 2002, and October, 2003) for quiet, positively disturbed, and negatively disturbed days of the month are used to obtain the topside scale height, Htop, representing the range of altitudes from hmF2 to the height where NmF2 decay by e times occurs. Mapping of the F2 layer peak parameters and TEC allows interpolate these parameters at coordinated grid sites from independent GPS receivers and ionosondes data. Exponential scale height Htop exceeds scale height HT of the α-Chapman layer by 3 times - the latter refers to a narrow altitude range from hmF2 to the height of 1.2 times decay of NmF2. While typical quiet daytime value of the topside scale height is around 200 km, it can be enhanced by 2-3 times during the negative phase of the ionospheric storm as it is captured by IRI-Plas-RT model ingesting the F2 peak and TEC data. This study is supported by the joint grant of RFBR 13-02-91370-CT_a and TUBITAK 112E568.

  18. Inventory of File naefs_geavg.t12z.pgrb2a_anvf06

    Science.gov Websites

    Records: 19 Number Level/Layer Parameter Forecast Valid Description 001 1000 mb HGT 6 hour fcst Geopotential Height [gpm] ens-mean 002 700 mb HGT 6 hour fcst Geopotential Height [gpm] ens-mean 003 500 mb HGT 6 hour fcst Geopotential Height [gpm] ens-mean 004 250 mb HGT 6 hour fcst Geopotential Height [gpm

  19. Monsoon dependent ecosystems: Implications of the vertical distribution of soil moisture on land surface-atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Sanchez-Mejia, Zulia M.

    Uncertainty of predicted change in precipitation frequency and intensity motivates the scientific community to better understand, quantify, and model the possible outcome of dryland ecosystems. In pulse dependent ecosystems (i.e. monsoon driven) soil moisture is tightly linked to atmospheric processes. Here, I analyze three overarching questions; Q1) How does soil moisture presence or absence in a shallow or deep layer influence the surface energy budget and planetary boundary layer characteristics?, Q2) What is the role of vegetation on ecosystem albedo in the presence or absence of deep soil moisture?, Q3) Can we develop empirical relationships between soil moisture and the planetary boundary layer height to help evaluate the role of future precipitation changes in land surface atmosphere interactions? . To address these questions I use a conceptual framework based on the presence or absence of soil moisture in a shallow or deep layer. I define these layers by using root profiles and establish soil moisture thresholds for each layer using four years of observations from the Santa Rita Creosote Ameriflux site. Soil moisture drydown curves were used to establish the shallow layer threshold in the shallow layer, while NEE (Net Ecosystem Exchange of carbon dioxide) was used to define the deep soil moisture threshold. Four cases were generated using these thresholds: Case 1, dry shallow layer and dry deep layer; Case 2, wet shallow layer and dry deep layer; Case 3, wet shallow layer and wet deep layer, and Case 4 dry shallow and wet deep layer. Using this framework, I related data from the Ameriflux site SRC (Santa Rita Creosote) from 2008 to 2012 and from atmospheric soundings from the nearby Tucson Airport; conducted field campaigns during 2011 and 2012 to measure albedo from individual bare and canopy patches that were then evaluated in a grid to estimate the influence of deep moisture on albedo via vegetation cover change; and evaluated the potential of using a two-layer bucket model and empirical relationships to evaluate the link between deep soil moisture and the planetary boundary layer height under changing precipitation regime. My results indicate that (1) the presence or absence of water in two layers plays a role in surface energy dynamics, (2) soil moisture presence in the deep layer is linked with decreased ecosystem albedo and planetary boundary layer height, (3) deep moisture sustains vegetation greenness and decreases albedo, and (4) empirical relationships are useful in modeling planetary boundary layer height from dryland ecosystems. Based on these results we argue that deep soil moisture plays an important role in land surface-atmosphere interactions.

  20. Clouds above the Martin Limb: Viking observations

    NASA Technical Reports Server (NTRS)

    Martin, L. J.; Baum, W. A.; Wasserman, L. H.; Kreidl, T. J.

    1984-01-01

    Whenever Viking Orbiter images included the limb of Mars, they recorded one or more layers of clouds above the limb. The height above the limb and the brightness (reflectivity) of these clouds were determined in a selected group of these images. Normalized individual brightness profiles of three separate traverses across the limb of each image are shown. The most notable finding is that some of these clouds can be very high. Many reach heights of over 60 km, and several are over 70 km above the limb. Statistically, the reflectivity of the clouds increases with phase angle. Reflectivity and height both appear to vary with season, but the selected images spanned only one Martian year, so the role of seasons cannot be isolated. Limb clouds in red-filter images tend to be brighter than violet-filter images, but both season and phase appear to be more dominant factors. Due to the limited sample available, the possible influences of latitude and longitude are less clear. The layering of these clouds ranges from a single layer to five or more layers. Reflectivity gradients range from smooth and gentle to steep and irregular.

  1. Developments in the Aerosol Layer Height Retrieval Algorithm for the Copernicus Sentinel-4/UVN Instrument

    NASA Astrophysics Data System (ADS)

    Nanda, Swadhin; Sanders, Abram; Veefkind, Pepijn

    2016-04-01

    The Sentinel-4 mission is a part of the European Commission's Copernicus programme, the goal of which is to provide geo-information to manage environmental assets, and to observe, understand and mitigate the effects of the changing climate. The Sentinel-4/UVN instrument design is motivated by the need to monitor trace gas concentrations and aerosols in the atmosphere from a geostationary orbit. The on-board instrument is a high resolution UV-VIS-NIR (UVN) spectrometer system that provides hourly radiance measurements over Europe and northern Africa with a spatial sampling of 8 km. The main application area of Sentinel-4/UVN is air quality. One of the data products that is being developed for Sentinel-4/UVN is the Aerosol Layer Height (ALH). The goal is to determine the height of aerosol plumes with a resolution of better than 0.5 - 1 km. The ALH product thus targets aerosol layers in the free troposphere, such as desert dust, volcanic ash and biomass during plumes. KNMI is assigned with the development of the Aerosol Layer Height (ALH) algorithm. Its heritage is the ALH algorithm developed by Sanders and De Haan (ATBD, 2016) for the TROPOMI instrument on board the Sentinel-5 Precursor mission that is to be launched in June or July 2016 (tentative date). The retrieval algorithm designed so far for the aerosol height product is based on the absorption characteristics of the oxygen-A band (759-770 nm). The algorithm has heritage to the ALH algorithm developed for TROPOMI on the Sentinel 5 precursor satellite. New aspects for Sentinel-4/UVN include the higher resolution (0.116 nm compared to 0.4 for TROPOMI) and hourly observation from the geostationary orbit. The algorithm uses optimal estimation to obtain a spectral fit of the reflectance across absorption band, while assuming a single uniform layer with fixed width to represent the aerosol vertical distribution. The state vector includes amongst other elements the height of this layer and its aerosol optical thickness. We will present the development work around the ALH retrieval algorithm in the framework of the Sentinel-4/UVN instrument. The main challenges are highlighted and retrieval simulation results are provided. Also, an outlook towards application of the S4 bread board algorithm to Sentinel-5 Precursor data later this year will be discussed.

  2. A model for capillary rise in micro-tube restrained by a sticky layer

    NASA Astrophysics Data System (ADS)

    Shen, Anqi; Xu, Yun; Liu, Yikun; Cai, Bo; Liang, Shuang; Wang, Fengjiao

    2018-06-01

    Fluid transport in a microscopic capillary under the effects of a sticky layer was theoretically investigated. A model based on the classical Lucas-Washburn (LW) model is proposed for the meniscus rise with the sticky layer present. The sticky layer consists of two parts: a fixed (located at the wall) and a movable part (located on the inside of the capillary), affecting the micro-capillary flow in different ways. Within our model, the movable layer is defined by the capillary radius and pressure gradient. From the model it follows that the fixed sticky layer leads to a decrease of capillary radius, while the movable sticky layer increases flow resistance. The movable layer thickness varies with the pressure gradient, which in turn varies with the rising of the meniscus. The results of our theoretical calculation also prove that the capillary radius has a greater effect on the meniscus height, rather than the additional resistance caused by the movable layer. Moreover, the fixed sticky layer, which affects the capillary radius, has a greater influence than the movable sticky layer. We conclude that the sticky layer causes a lower imbibition height than the LW model predicts.

  3. Laboratory simulations of the atmospheric mixed-layer in flow over complex topography

    EPA Science Inventory

    A laboratory study of the influence of complex terrain on the interface between a well-mixed boundary layer and an elevated stratified layer was conducted in the towing-tank facility of the U.S. Environmental Protection Agency. The height of the mixed layer in the daytime boundar...

  4. Vertical profiles of selected mean and turbulent characteristics of the boundary layer within and above a large banana screenhouse

    NASA Astrophysics Data System (ADS)

    Tanny, Josef; Lukyanov, Victor; Neiman, Michael; Cohen, Shabtai; Teitel, Meir

    2017-04-01

    The area of agricultural crops covered by screens is constantly increasing worldwide. While irrigation requirements for open canopies are well documented, corresponding information for covered crops is scarce. Therefore much effort in recent years has focused on measuring and modeling evapotranspiration of screen-covered crops. One model that can be utilized for such estimations is the mixing length model. As a first step towards future application of this model, selected mean and turbulent properties of the boundary layer above and below a shading screen were measured and analyzed. Experiments were carried out in a large banana plantation, covered by a light-weight horizontal shading screen deployed 5.5 m high. During the measurement period, plant height increased from 2.5 to 4.1 m. A 3D ultrasonic anemometer and temperature and humidity sensors were mounted on a lifting tower with a manual crank that could measure between 2.8 and 10.2 m height, i.e., both below and above the screen. In each profile, the sensors measured at different heights during consecutive time intervals of about 15 min each. Vertical profiles were measured around noon when external meteorological conditions were relatively stable. An additional stationary tower installed within the screenhouse about 20 m to the north of the lifting tower, continuously measured corresponding reference values at 4.5 m height. Footprint analysis shows that out of the 62 measured time intervals, only in 4 cases the 90% flux contribution originated from outside the screenhouse. Both horizontal air velocity, Uh, and normalized horizontal air velocity increased with height. Air temperature generally decreased with height, indicating that the boundary layer was statically unstable. Specific humidity decreased with height, as is typical for a well irrigated crop. Friction velocity, u∗, was higher above than below the screen, illustrating the role of the screen as a momentum sink. The mean ratio between friction velocity below and above the screen was 0.55. Vertical profiles of the surface drag coefficientCd = (u∗/U h)2 showed a consistent decease of √Cd-with height, mainly above the screen. This result is expected since, with a constant flux layer, the surface drag is bound to decrease with height. The energy spectrum of each velocity component, both below and above the screen, was calculated separately and their sum, the 3D spectrum (Tennekes and Lumely, 1972), was plotted as a function of frequency. Slopes of linear fits to the spectra ranged between -1.42 and -1.68, with a mean value of -1.59±0.04. These slopes are close to -5/3 (-1.67), the value typical of the inertial subrange in steady state turbulent boundary layers (Stull, 1988).

  5. Sensitivity of turbine-height wind speeds to parameters in planetary boundary-layer and surface-layer schemes in the weather research and forecasting model

    DOE PAGES

    Yang, Ben; Qian, Yun; Berg, Larry K.; ...

    2016-07-21

    We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. Themore » parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. Lastly, the relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.« less

  6. The Budget of Turbulent Kinetic Energy in the Urban Roughness Sublayer

    NASA Astrophysics Data System (ADS)

    Christen, Andreas; Rotach, Mathias W.; Vogt, Roland

    2009-05-01

    Full-scale observations from two urban sites in Basel, Switzerland were analysed to identify the magnitude of different processes that create, relocate, and dissipate turbulent kinetic energy (TKE) in the urban atmosphere. Two towers equipped with a profile of six ultrasonic anemometers each sampled the flow in the urban roughness sublayer, i.e. from street canyon base up to roughly 2.5 times the mean building height. This observational study suggests a conceptual division of the urban roughness sublayer into three layers: (1) the layer above the highest roofs, where local buoyancy production and local shear production of TKE are counterbalanced by local viscous dissipation rate and scaled turbulence statistics are close to to surface-layer values; (2) the layer around mean building height with a distinct inflexional mean wind profile, a strong shear and wake production of TKE, a more efficient turbulent exchange of momentum, and a notable export of TKE by transport processes; (3) the lower street canyon with imported TKE by transport processes and negligible local production. Averaged integral velocity variances vary significantly with height in the urban roughness sublayer and reflect the driving processes that create or relocate TKE at a particular height. The observed profiles of the terms of the TKE budget and the velocity variances show many similarities to observations within and above vegetation canopies.

  7. Sensitivity of turbine-height wind speeds to parameters in planetary boundary-layer and surface-layer schemes in the weather research and forecasting model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ben; Qian, Yun; Berg, Larry K.

    We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. Themore » parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. Lastly, the relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.« less

  8. Application and Limitations of GPS Radio Occultation (GPS-RO) Data for Atmospheric Boundary Layer Height Detection over the Arctic.

    NASA Astrophysics Data System (ADS)

    Ganeshan, M.; Wu, D. L.

    2014-12-01

    Due to recent changes in the Arctic environment, it is important to monitor the atmospheric boundary layer (ABL) properties over the Arctic Ocean, especially to explore the variability in ABL clouds (such as sensitivity and feedback to sea ice loss). For example, radiosonde and satellite observations of the Arctic ABL height (and low-cloud cover) have recently suggested a positive response to sea ice loss during October that may not occur during the melt season (June-September). Owing to its high vertical and spatiotemporal resolution, an independent ABL height detection algorithm using GPS Radio Occultation (GPS-RO) refractivity in the Arctic is explored. Similar GPS-RO algorithms developed previously typically define the level of the most negative moisture gradient as the ABL height. This definition is favorable for subtropical oceans where a stratocumulus-topped ABL is often capped by a layer of sharp moisture lapse rate (coincident with the temperature inversion). The Arctic Ocean is also characterized by stratocumulus cloud cover, however, the specific humidity does not frequently decrease in the ABL capping inversion. The use of GPS-RO refractivity for ABL height retrieval therefore becomes more complex. During winter months (December-February), when the total precipitable water in the troposphere is a minimum, a fairly straightforward algorithm for ABL height retrieval is developed. The applicability and limitations of this method for other seasons (Spring, Summer, Fall) is determined. The seasonal, interannual and spatial variability in the GPS-derived ABL height over the Arctic Ocean, as well as its relation to the underlying surface (ice vs. water), is investigated. The GPS-RO profiles are also explored for the evidence of low-level moisture transport in the cold Arctic environment.

  9. Chemical analysis of aerosol in the Venusian cloud layer by reaction gas chromatography on board the Vega landers

    NASA Technical Reports Server (NTRS)

    Gelman, B. G.; Drozdov, Y. V.; Melnikov, V. V.; Rotin, V. A.; Khokhlov, V. N.; Bondarev, V. B.; Dolnikov, G. G.; Dyachkov, A. V.; Nenarokov, D. F.; Mukhin, L. M.

    1986-01-01

    The experiment on sulfuric acid aerosol determination in the Venusian cloud layer on board the Vega landers is described. An average content of sulfuric acid of approximately 1 mg/cu m was found for the samples taken from the atmosphere at heights from 63 to 48 km and analyzed with the SIGMA-3 chromatograph. Sulfur dioxide (SO2) was revealed in the gaseous sample at the height of 48 km. From the experimental results and blank run measurements, a suggestion is made that the Venusian cloud layer aerosol consists of more complicated particles than the sulfuric acid water solution does.

  10. Simulating Carbon cycle and phenology in complex forests using a multi-layer process based ecosystem model; evaluation and use of 3D-CMCC-Forest Ecosystem Model in a deciduous and an evergreen neighboring forests, within the area of Brasschaat (Be)

    NASA Astrophysics Data System (ADS)

    Marconi, S.; Collalti, A.; Santini, M.; Valentini, R.

    2013-12-01

    3D-CMCC-Forest Ecosystem Model is a process based model formerly developed for complex forest ecosystems to estimate growth, water and carbon cycles, phenology and competition processes on a daily/monthly time scale. The Model integrates some characteristics of the functional-structural tree models with the robustness of the light use efficiency approach. It treats different heights, ages and species as discrete classes, in competition for light (vertical structure) and space (horizontal structure). The present work evaluates the results of the recently developed daily version of 3D-CMCC-FEM for two neighboring different even aged and mono specific study cases. The former is a heterogeneous Pedunculate oak forest (Quercus robur L. ), the latter a more homogeneous Scot pine forest (Pinus sylvestris L.). The multi-layer approach has been evaluated against a series of simplified versions to determine whether the improved model complexity in canopy structure definition increases its predictive ability. Results show that a more complex structure (three height layers) should be preferable to simulate heterogeneous scenarios (Pedunculate oak stand), where heights distribution within the canopy justify the distinction in dominant, dominated and sub-dominated layers. On the contrary, it seems that using a multi-layer approach for more homogeneous stands (Scot pine stand) may be disadvantageous. Forcing the structure of an homogeneous stand to a multi-layer approach may in fact increase sources of uncertainty. On the other hand forcing complex forests to a mono layer simplified model, may cause an increase in mortality and a reduction in average DBH and Height. Compared with measured CO2 flux data, model results show good ability in estimating carbon sequestration trends, on both a monthly/seasonal and daily time scales. Moreover the model simulates quite well leaf phenology and the combined effects of the two different forest stands on CO2 fluxes.

  11. Negative post sunset height rise of F layer: Causes and implications

    NASA Astrophysics Data System (ADS)

    Joshi, Lalit Mohan; Patra, Amit

    Post sunset height rise (PSHR) of the F layer is a manifestation of the pre reversal enhancement (PRE) of zonal electric field in the equatorial and low latitude ionosphere. Ionosonde observations, made during the equinox period from Sriharikota (13.7 degree North, 80.1 degree East, 6.7 degree North magnetic latitude), a low latitude station in India, have been utilized to study the PSHR of the F layer. Normally, the height of the F layer increases during the early post sunset period (positive PSHR) whose magnitude has a direct bearing on the equatorial spread F (ESF). However, observations revealed that on a few nights (about 3% nights) the height of the F layer descended in the early post sunset period itself, indicating the absence of PRE of zonal field. Such events have been termed as negative PSHR events. Such events never preceded ESF. Detailed investigations revealed that the negative PSHR events were accompanied by an enhancement of low latitude sporadic E (Es) activity with increase in the Es blanketing (fbEs) and top (ftEs) frequencies, during the post sunset period. Numerical simulations have been carried out to evaluate the effectiveness of the westward Pedersen and Hall conductivity gradients that exists in the low latitude E region during the evening hours, in causing the PRE of zonal field and the PSHR of the F layer. Model simulation reveals that the dominant cause of PRE of zonal field is the divergence of Hall current in the low latitude E region. When the zonal conductivity gradient of the low latitude E region was assumed to be either zero or slightly eastward, owing to the intensification of Es, model computation resulted in the negative PSHR of the F layer. Thus, the observational and computational results highlight the important role of the low latitude Es in the PRE of the zonal electric field.

  12. Cloud layer thicknesses from a combination of surface and upper-air observations

    NASA Technical Reports Server (NTRS)

    Poore, Kirk D.; Wang, Junhong; Rossow, William B.

    1995-01-01

    Cloud layer thicknesses are derived from base and top altitudes by combining 14 years (1975-1988) of surface and upper-air observations at 63 sites in the Northern Hemisphere. Rawinsonde observations are employed to determine the locations of cloud-layer top and base by testing for dewpoint temperature depressions below some threshold value. Surface observations serve as quality checks on the rawinsonde-determined cloud properties and provide cloud amount and cloud-type information. The dataset provides layer-cloud amount, cloud type, high, middle, or low height classes, cloud-top heights, base heights and layer thicknesses, covering a range of latitudes from 0 deg to 80 deg N. All data comes from land sites: 34 are located in continental interiors, 14 are near coasts, and 15 are on islands. The uncertainties in the derived cloud properties are discussed. For clouds classified by low-, mid-, and high-top altitudes, there are strong latitudinal and seasonal variations in the layer thickness only for high clouds. High-cloud layer thickness increases with latitude and exhibits different seasonal variations in different latitude zones: in summer, high-cloud layer thickness is a maximum in the Tropics but a minimum at high latitudes. For clouds classified into three types by base altitude or into six standard morphological types, latitudinal and seasonal variations in layer thickness are very small. The thickness of the clear surface layer decreases with latitude and reaches a summer minimum in the Tropics and summer maximum at higher latitudes over land, but does not vary much over the ocean. Tropical clouds occur in three base-altitude groups and the layer thickness of each group increases linearly with top altitude. Extratropical clouds exhibit two groups, one with layer thickness proportional to their cloud-top altitude and one with small (less than or equal to 1000 m) layer thickness independent of cloud-top altitude.

  13. Temperature dependent current-voltage characteristics of Au/n-Si Schottky barrier diodes and the effect of transition metal oxides as an interface layer

    NASA Astrophysics Data System (ADS)

    Mahato, Somnath; Puigdollers, Joaquim

    2018-02-01

    Temperature dependent current-voltage (I‒V) characteristics of Au/n-type silicon (n-Si) Schottky barrier diodes have been investigated. Three transition metal oxides (TMO) are used as an interface layer between gold and silicon. The basic Schottky diode parameters such as ideality factor (n), barrier height (ϕb 0) and series resistance (Rs) are calculated and successfully explained by the thermionic emission (TE) theory. It has been found that ideality factor decreased and barrier height increased with increased of temperature. The conventional Richardson plot of ln(I0/T2) vs. 1000/T is determined the activation energy (Ea) and Richardson constant (A*). Whereas value of 'A*' is much smaller than the known theoretical value of n-type Si. The temperature dependent I-V characteristics obtained the mean value of barrier height (ϕb 0 bar) and standard deviation (σs) from the linear plot of ϕap vs. 1000/T. From the modified Richardson plot of ln(I0/T2) ˗ (qσ)2/2(kT)2 vs. 1000/T gives Richardson constant and homogeneous barrier height of Schottky diodes. Main observation in this present work is the barrier height and ideality factor shows a considerable change but the series resistance value exhibits negligible change due to TMO as an interface layer.

  14. Transition in a Supersonic Boundary-Layer Due to Roughness and Acoustic Disturbances

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2003-01-01

    The transition process induced by the interaction of an isolated roughness with acoustic disturbances in the free stream is numerically investigated for a boundary layer over a flat plate with a blunted leading edge at a free stream Mach number of 3.5. The roughness is assumed to be of Gaussian shape and the acoustic disturbances are introduced as boundary condition at the outer field. The governing equations are solved using the 5'h-rder accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third- order total-variation-diminishing (TVD) Runge- Kutta scheme for time integration. The steady field induced by the two and three-dimensional roughness is also computed. The flow field induced by two-dimensional roughness exhibits different characteristics depending on the roughness heights. At small roughness heights the flow passes smoothly over the roughness, at moderate heights the flow separates downstream of the roughness and at larger roughness heights the flow separates upstream and downstream of the roughness. Computations also show that disturbances inside the boundary layer is due to the direct interaction of the acoustic waves and isolated roughness plays a minor role in generating instability waves.

  15. MIE Lidar proposed for the German Space Shuttle Mission D2

    NASA Technical Reports Server (NTRS)

    Renger, W.; Endemann, M.; Quenzel, H.; Werner, C.

    1986-01-01

    Firm plans for a second German Spacelab mission (D2-mission), originally scheduled for late 1988 is basically a zero-g mission, but will also include earth observation experiments. On board the D2-facility will allow performance of a number of different measurements with the goal to obtain performance data (cloud top heights, height of the planetary boundary layer, optical thickness, and cloud base height of thin and medium thick clouds, ice/water phase discriminatin for clouds, tropopause height, tropaspheric height, tropospheric aerosols, and stratospheric aerosols.

  16. The influence of the atmospheric boundary layer on nocturnal layers of noctuids and other moths migrating over southern Britain.

    PubMed

    Wood, Curtis R; Chapman, Jason W; Reynolds, Donald R; Barlow, Janet F; Smith, Alan D; Woiwod, Ian P

    2006-03-01

    Insects migrating at high altitude over southern Britain have been continuously monitored by automatically operating, vertical-looking radars over a period of several years. During some occasions in the summer months, the migrants were observed to form well-defined layer concentrations, typically at heights of 200-400 m, in the stable night-time atmosphere. Under these conditions, insects are likely to have control over their vertical movements and are selecting flight heights that are favourable for long-range migration. We therefore investigated the factors influencing the formation of these insect layers by comparing radar measurements of the vertical distribution of insect density with meteorological profiles generated by the UK Meteorological Office's (UKMO) Unified Model (UM). Radar-derived measurements of mass and displacement speed, along with data from Rothamsted Insect Survey light traps, provided information on the identity of the migrants. We present here three case studies where noctuid and pyralid moths contributed substantially to the observed layers. The major meteorological factors influencing the layer concentrations appeared to be: (a) the altitude of the warmest air, (b) heights corresponding to temperature preferences or thresholds for sustained migration and (c) on nights when air temperatures are relatively high, wind-speed maxima associated with the nocturnal jet. Back-trajectories indicated that layer duration may have been determined by the distance to the coast. Overall, the unique combination of meteorological data from the UM and insect data from entomological radar described here show considerable promise for systematic studies of high-altitude insect layering.

  17. All-sky photogrammetry techniques to georeference a cloud field

    NASA Astrophysics Data System (ADS)

    Crispel, Pierre; Roberts, Gregory

    2018-01-01

    In this study, we present a novel method of identifying and geolocalizing cloud field elements from a portable all-sky camera stereo network based on the ground and oriented towards zenith. The methodology is mainly based on stereophotogrammetry which is a 3-D reconstruction technique based on triangulation from corresponding stereo pixels in rectified images. In cases where clouds are horizontally separated, identifying individual positions is performed with segmentation techniques based on hue filtering and contour detection algorithms. Macroscopic cloud field characteristics such as cloud layer base heights and velocity fields are also deduced. In addition, the methodology is fitted to the context of measurement campaigns which impose simplicity of implementation, auto-calibration, and portability. Camera internal geometry models are achieved a priori in the laboratory and validated to ensure a certain accuracy in the peripheral parts of the all-sky image. Then, stereophotogrammetry with dense 3-D reconstruction is applied with cameras spaced 150 m apart for two validation cases. The first validation case is carried out with cumulus clouds having a cloud base height at 1500 m a.g.l. The second validation case is carried out with two cloud layers: a cumulus fractus layer with a base height at 1000 m a.g.l. and an altocumulus stratiformis layer with a base height of 2300 m a.g.l. Velocity fields at cloud base are computed by tracking image rectangular patterns through successive shots. The height uncertainty is estimated by comparison with a Vaisala CL31 ceilometer located on the site. The uncertainty on the horizontal coordinates and on the velocity field are theoretically quantified by using the experimental uncertainties of the cloud base height and camera orientation. In the first cumulus case, segmentation of the image is performed to identify individuals clouds in the cloud field and determine the horizontal positions of the cloud centers.

  18. Nonlinear Excitation of Inviscid Stationary Vortex in a Boundary-Layer Flow

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Duck, Peter W.

    1996-01-01

    We examine the excitation of inviscid stationary crossflow instabilities near an isolated surface hump (or indentation) underneath a three-dimensional boundary layer. As the hump height (or indentation depth) is increased from zero, the receptivity process becomes nonlinear even before the stability characteristics of the boundary layer are modified to a significant extent. This behavior contrasts sharply with earlier findings on the excitation of the lower branch Tollmien-Schlichting modes and is attributed to the inviscid nature of the crossflow modes, which leads to a decoupling between the regions of receptivity and stability. As a result of this decoupling, similarity transformations exist that allow the nonlinear receptivity of a general three-dimensional boundary layer to be studied with a set of canonical solutions to the viscous sublayer equations. The parametric study suggests that the receptivity is likely to become nonlinear even before the hump height becomes large enough for flow reversal to occur in the canonical solution. We also find that the receptivity to surface humps increases more rapidly as the hump height increases than is predicted by linear theory. On the other hand, receptivity near surface indentations is generally smaller in comparison with the linear approximation. Extension of the work to crossflow receptivity in compressible boundary layers and to Gortler vortex excitation is also discussed.

  19. Effects of Elongation on Stochastic Layer and Magnetic Footprint in Divertor Tokamaks

    NASA Astrophysics Data System (ADS)

    Wadi, Hasina; Jones, Morgin; Ali, Halima; Punjabi, Alkesh

    2007-11-01

    An area-preserving map is constructed to calculate effects of elongation on the stochastic layer and magnetic footprint in divertor tokamaks. The generating function for the map is S(x,y) = -(1/2)α^2y^2 (1-y^2/2a^2)+(1/2)β^2x^2. Method of maps developed by Punjabi and Boozer [1,2] is used to construct the map and to calculate the stochastic layer and the magnetic footprints. The poloidal magnetic flux inside the ideal separatrix and the safety factor profile are held constant, and elongation is varied by (1) varying the width of separatrix surface in the midplane keeping the height fixed, and (2) varying the height keeping the width of separatrix surface fixed. As the width is increased, the stochastic layer and the footprint become narrower. As the height is increased, the width of stochastic layer and the footprint become narrower. Detailed results of this study will be presented. This work is supported by US DOE OFES DE-FG02-01ER54624 and DE-FG02-04ER54793. [1] A. Punjabi, A. Verma, and A. Boozer, Phys Rev Lett, 69, 3322-3325 (1992). [2] A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys Lett A 364 140--145 (2007).

  20. Feasibility study of a layer-oriented wavefront sensor for solar telescopes.

    PubMed

    Marino, Jose; Wöger, Friedrich

    2014-02-01

    Solar multiconjugate adaptive optics systems rely on several wavefront sensors, which measure the incoming turbulent phase along several field directions to produce a tomographic reconstruction of the turbulent phase. In this paper, we explore an alternative wavefront sensing approach that attempts to directly measure the turbulent phase present at a particular height in the atmosphere: a layer-oriented cross-correlating Shack-Hartmann wavefront sensor (SHWFS). In an experiment at the Dunn Solar Telescope, we built a prototype layer-oriented cross-correlating SHWFS system conjugated to two separate atmospheric heights. We present the data obtained in the observations and complement these with ray-tracing computations to achieve a better understanding of the instrument's performance and limitations. The results obtained in this study strongly indicate that a layer-oriented cross-correlating SHWFS is not a practical design to measure the wavefront at a high layer in the atmosphere.

  1. Interfacial elastic relaxation during the ejection of bi-layered tablets.

    PubMed

    Anuar, M S; Briscoe, B J

    2010-03-15

    The predilection of a bi-layered tablet to fail in the interface region after its initial formation in the compaction process reduces its practicality as a choice for controlled release solid drug delivery system. Hence, a fundamental appreciation of the governing mechanism that causes the weakening of the interfacial bonds within the bi-layered tablet is crucial in order to improve the overall bi-layered tablet mechanical integrity. This work has shown that the occurrence of the elastic relaxation in the interface region during the ejection stage of the compaction process decreases with the increase in the bi-layered tablet interface strength. This is believed to be due to the increase in the plastic bonding in the interface region. The tablet diametrical elastic relaxation affects the tablet height elastic relaxation, where the impediment of the tablet height expansion is observed when the interface region experiences a diametrical expansion. 2009 Elsevier B.V. All rights reserved.

  2. Identification of atmospheric boundary layer thickness using doppler radar datas and WRF - ARW model in Merauke

    NASA Astrophysics Data System (ADS)

    Putri, R. J. A.; Setyawan, T.

    2017-01-01

    In the synoptic scale, one of the important meteorological parameter is the atmospheric boundary layer. Aside from being a supporter of the parameters in weather and climate models, knowing the thickness of the layer of the atmosphere can help identify aerosols and the strength of the vertical mixing of pollutants in it. The vertical wind profile data from C-band Doppler radar Mopah-Merauke which is operated by BMKG through Mopah-Merauke Meteorological Station can be used to identify the peak of Atmospheric Boundaryu Layer (ABL). ABL peak marked by increasing wind shear over the layer blending. Samples in January 2015 as a representative in the wet and in July 2015 as the representation of a dry month, shows that ABL heights using WRF models show that in July (sunny weather) ABL height values higher than in January (cloudy)

  3. Temperature-dependent layer breathing modes in two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Maity, Indrajit; Maiti, Prabal K.; Jain, Manish

    2018-04-01

    Relative out-of-plane displacements of the constituent layers of two-dimensional materials give rise to unique low-frequency breathing modes. By computing the height-height correlation functions from molecular dynamics simulations, we show that the layer breathing modes (LBMs) can be mapped consistently to vibrations of a simple linear chain model. Our calculated thickness dependence of LBM frequencies for few-layer (FL) graphene and molybdenum disulfide (MoS2) are in excellent agreement with available experiments. Our results show a redshift of LBM frequency with an increase in temperature, which is a direct consequence of anharmonicities present in the interlayer interaction. We also predict the thickness and temperature dependence of LBM frequencies for FL hexagonal boron nitride. Our Rapid Communication provides a simple and efficient way to probe the interlayer interaction for layered materials and their heterostructures with the inclusion of anharmonic effects.

  4. Planetary Boundary Layer Dynamics over Reno, Nevada in Summer

    NASA Astrophysics Data System (ADS)

    Liming, A.; Sumlin, B.; Loria Salazar, S. M.; Holmes, H.; Arnott, W. P.

    2014-12-01

    Quantifying the height of the planetary boundary layer (PBL) is important to understand the transport behavior, mixing, and surface concentrations of air pollutants. In Reno, NV, located in complex, mountainous terrain with high desert climate, the daytime boundary layer can rise to an estimated 3km or more on a summer day due to surface heating and convection. The nocturnal boundary layer, conversely, tends to be much lower and highly stable due to radiative cooling from the surface at night and downslope flow of cool air from nearby mountains. With limited availability of radiosonde data, current estimates of the PBL height at any given time or location are potentially over or underestimated. To better quantify the height and characterize the PBL physics, we developed portable, lightweight sensors that measure CO2 concentrations, temperature, pressure, and humidity every 5 seconds. Four of these sensors are used on a tethered balloon system to monitor CO2 concentrations from the surface up to 300m. We will combine this data with Radio Acoustic Sounding System (RASS) data that measures vertical profiles of wind speed, temperature, and humidity from 40m to 400m. This experiment will characterize the diurnal evolution of CO2 concentrations at multiple heights in the PBL, provide insight into PBL physics during stability transition periods at sunrise and sunset, and estimate the nighttime PBL depth during August in Reno. Further, we expect to gain a better understanding of the impact of mixing volume changes (i.e., PBL height) on air quality and pollution concentrations in Reno. The custom portable sensor design will also be presented. It is expected that these instruments can be used for indoor or outdoor air quality studies, where lightness, small size, and battery operation can be of benefit.

  5. Development and Application of Decision Aid for Tactical Control of Battlefield Operations: Bibliographic Sort of the Decision Aiding Literature

    DTIC Science & Technology

    1973-12-01

    THEORY GAML THE’RY GROUP PROb SQL= U tIC PMLTRIC3b 63 C.LARKSON G a DEC MAK IN SMALL GROUPS A SIM STUDY bLHt SCI 6t0 13 2081 bRUNER J b STUDIES IN...MAK IN SMALL GROUPS A SIN STUDY : BLH 5(1 6d 13 2861 DODSON j 0 AS SIN RES FACILITYz SIN SYS DGN FOR TE AkCRL 111 PRI9I4• FLEEING R ASKS PROC.CONFLICTING...POU315IC HF. 66 MAR 7-1 SHURL ( H NNUAtCENTER FOR COMP BASED BEH STUDIES UCLA SEMIA NTIS-AD 731059 713 CLARKSON b DEC MAK IN SMALL GROUPS A SIM STUDY

  6. On Displacement Height, from Classical to Practical Formulation: Stress, Turbulent Transport and Vorticity Considerations

    NASA Astrophysics Data System (ADS)

    Sogachev, Andrey; Kelly, Mark

    2016-03-01

    Displacement height ( d) is an important parameter in the simple modelling of wind speed and vertical fluxes above vegetative canopies, such as forests. Here we show that, aside from implicit definition through a (displaced) logarithmic profile, accepted formulations for d do not consistently predict flow properties above a forest. Turbulent transport can affect the displacement height, and is an integral part of what is called the roughness sublayer. We develop a more general approach for estimation of d, through production of turbulent kinetic energy and turbulent transport, and show how previous stress-based formulations for displacement height can be seen as simplified cases of a more general definition including turbulent transport. Further, we also give a simplified and practical form for d that is in agreement with the general approach, exploiting the concept of vortex thickness scale from mixing-layer theory. We assess the new and previous displacement height formulations by using flow statistics derived from the atmospheric boundary-layer Reynolds-averaged Navier-Stokes model SCADIS as well as from wind-tunnel observations, for different vegetation types and flow regimes in neutral conditions. The new formulations tend to produce smaller d than stress-based forms, falling closer to the classic logarithmically-defined displacement height. The new, more generally defined, displacement height appears to be more compatible with profiles of components of the turbulent kinetic energy budget, accounting for the combined effects of turbulent transport and shear production. The Coriolis force also plays a role, introducing wind-speed dependence into the behaviour of the roughness sublayer; this affects the turbulent transport, shear production, stress, and wind speed, as well as the displacement height, depending on the character of the forest. We further show how our practical (`mixing-layer') form for d matches the new turbulence-based relation, as well as correspondence to previous (stress-based) formulations.

  7. Modeling large wind farms in conventionally neutral atmospheric boundary layers under varying initial conditions

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2014-05-01

    Atmospheric boundary layers (ABL) are frequently capped by an inversion layer limiting the entrainment rate and boundary layer growth. Commonly used analytical models state that the entrainment rate is inversely proportional to the inversion strength. The height of the inversion turns out to be a second important parameter. Conventionally neutral atmospheric boundary layers (CNBL) are ABLs with zero surface heat flux developing against a stratified free atmosphere. In this regime the inversion-filling process is merely driven by the downward heat flux at the inversion base. As a result, CNBLs are strongly dependent on the heating history of the boundary layer and strong inversions will fail to erode during the course of the day. In case of large wind farms, the power output of the farm inside a CNBL will depend on the height and strength of the inversion above the boundary layer. On the other hand, increased turbulence levels induced by wind farms may partially undermine the rigid lid effect of the capping inversion, enhance vertical entrainment of air into the farm, and increase boundary layer growth. A suite of large eddy simulations (LES) is performed to investigate the effect of the capping inversion on the conventionally neutral atmospheric boundary layer and on the wind farm performance under varying initial conditions. For these simulations our in-house pseudo-spectral LES code SP-Wind is used. The wind turbines are modelled using a non-rotating actuator disk method. In the absence of wind farms, we find that a decrease in inversion strength corresponds to a decrease in the geostrophic angle and an increase in entrainment rate and geostrophic drag. Placing the initial inversion base at higher altitudes further reduces the effect of the capping inversion on the boundary layer. The inversion can be fully neglected once it is situated above the equilibrium height that a truly neutral boundary layer would attain under the same external conditions such as geostrophic wind speed and surface roughness. Wind farm simulations show the expected increase in boundary layer height and growth rate with respect to the case without wind farms. Raising the initial strength of the capping inversion in these simulations dampens the turbulent growth of the boundary layer above the farm, decreasing the farms energy extraction. The authors acknowledge support from the European Research Council (FP7-Ideas, grant no. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Government.

  8. Correlation of film morphology and defect content with the charge-carrier transport in thin-film transistors based on ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polster, S.; Jank, M. P. M.; Frey, L.

    2016-01-14

    The correlation of defect content and film morphology with the charge-carrier transport in field-effect devices based on zinc oxide nanoparticles was investigated. Changes in the defect content and the morphology were realized by annealing and sintering of the nanoparticle thin films. Temperature-dependent electrical measurements reveal that the carrier transport is thermally activated for both the unsintered and sintered thin films. Reduced energetic barrier heights between the particles have been determined after sintering. Additionally, the energetic barrier heights between the particles can be reduced by increasing the drain-to-source voltage and the gate-to-source voltage. The changes in the barrier height are discussedmore » with respect to information obtained by scanning electron microscopy and photoluminescence measurements. It is found that a reduction of surface states and a lower roughness at the interface between the particle layer and the gate dielectric lead to lower barrier heights. Both surface termination and layer morphology at the interface affect the barrier height and thus are the main criteria for mobility improvement and device optimization.« less

  9. Current Status of Aerosol Retrievals from TOMS

    NASA Technical Reports Server (NTRS)

    Torres, O.; Herman, J. R.; Bhartia, P. K.; Ginoux, P.

    1999-01-01

    Properties of atmospheric aerosols over all land and water surfaces are retrieved from TOMS measurements of backscattered radiances. The TOMS technique, uses observations at two wavelengths. In the near ultraviolet (330-380 nm) range, where the effects of gaseous absorption are negligible. The retrieved properties are optical depth and a measure of aerosol absorptivity, generally expressed as single scattering albedo. The main sources of error of the TOMS aerosol products are sub-pixel cloud contamination and uncertainty on the height above the surface of UV-absorbing aerosol layers. The first error source is related to the large footprint (50 x 50 km at nadir) of the sensor, and the lack of detection capability of sub-pixel size clouds. The uncertainty associated with the height of the absorbing aerosol layers, on the other hand, is related to the pressure dependence of the molecular scattering process, which is the basis of the near-UV method of absorbing aerosol detection. The detection of non-absorbing aerosols is not sensitive to aerosol layer height. We will report on the ongoing work to overcome both of these difficulties. Coincident measurements of high spatial resolution thermal infrared radiances are used to address the cloud contamination issue. Mostly clear scenes for aerosol retrieval are selected by examining the spatial homogeneity of the IR radiance measurements within a TOMS pixel. The approach to reduce the uncertainty associated with the height of the aerosol layer by making use of a chemical transport model will also be discussed.

  10. Observation of layered antiferromagnetism in self-assembled parallel NiSi nanowire arrays on Si(110) by spin-polarized scanning tunneling spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Hong, Ie-Hong; Hsu, Hsin-Zan

    2018-03-01

    The layered antiferromagnetism of parallel nanowire (NW) arrays self-assembled on Si(110) have been observed at room temperature by direct imaging of both the topographies and magnetic domains using spin-polarized scanning tunneling microscopy/spectroscopy (SP-STM/STS). The topographic STM images reveal that the self-assembled unidirectional and parallel NiSi NWs grow into the Si(110) substrate along the [\\bar{1}10] direction (i.e. the endotaxial growth) and exhibit multiple-layer growth. The spatially-resolved SP-STS maps show that these parallel NiSi NWs of different heights produce two opposite magnetic domains, depending on the heights of either even or odd layers in the layer stack of the NiSi NWs. This layer-wise antiferromagnetic structure can be attributed to an antiferromagnetic interlayer exchange coupling between the adjacent layers in the multiple-layer NiSi NW with a B2 (CsCl-type) crystal structure. Such an endotaxial heterostructure of parallel magnetic NiSi NW arrays with a layered antiferromagnetic ordering in Si(110) provides a new and important perspective for the development of novel Si-based spintronic nanodevices.

  11. Artificial plasma cusp generated by upper hybrid instabilities in HF heating experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold

    2013-05-01

    High Frequency Active Auroral Research Program digisonde was operated in a fast mode to record ionospheric modifications by the HF heating wave. With the O mode heater of 3.2 MHz turned on for 2 min, significant virtual height spread was observed in the heater off ionograms, acquired beginning the moment the heater turned off. Moreover, there is a noticeable bump in the virtual height spread of the ionogram trace that appears next to the plasma frequency (~ 2.88 MHz) of the upper hybrid resonance layer of the HF heating wave. The enhanced spread and the bump disappear in the subsequent heater off ionograms recorded 1 min later. The height distribution of the ionosphere in the spread situation indicates that both electron density and temperature increases exceed 10% over a large altitude region (> 30 km) from below to above the upper hybrid resonance layer. This "mini cusp" (bump) is similar to the cusp occurring in daytime ionograms at the F1-F2 layer transition, indicating that there is a small ledge in the density profile reminiscent of F1-F2 layer transitions. Two parametric processes exciting upper hybrid waves as the sidebands by the HF heating waves are studied. Field-aligned purely growing mode and lower hybrid wave are the respective decay modes. The excited upper hybrid and lower hybrid waves introduce the anomalous electron heating which results in the ionization enhancement and localized density ledge. The large-scale density irregularities formed in the heat flow, together with the density irregularities formed through the parametric instability, give rise to the enhanced virtual height spread. The results of upper hybrid instability analysis are also applied to explain the descending feature in the development of the artificial ionization layers observed in electron cyclotron harmonic resonance heating experiments.

  12. Cirrus Cloud Retrieval Using Infrared Sounding Data: Multilevel Cloud Errors.

    NASA Astrophysics Data System (ADS)

    Baum, Bryan A.; Wielicki, Bruce A.

    1994-01-01

    In this study we perform an error analysis for cloud-top pressure retrieval using the High-Resolution Infrared Radiometric Sounder (HIRS/2) 15-µm CO2 channels for the two-layer case of transmissive cirrus overlying an overcast, opaque stratiform cloud. This analysis includes standard deviation and bias error due to instrument noise and the presence of two cloud layers, the lower of which is opaque. Instantaneous cloud pressure retrieval errors are determined for a range of cloud amounts (0.1 1.0) and cloud-top pressures (850250 mb). Large cloud-top pressure retrieval errors are found to occur when a lower opaque layer is present underneath an upper transmissive cloud layer in the satellite field of view (FOV). Errors tend to increase with decreasing upper-cloud elective cloud amount and with decreasing cloud height (increasing pressure). Errors in retrieved upper-cloud pressure result in corresponding errors in derived effective cloud amount. For the case in which a HIRS FOV has two distinct cloud layers, the difference between the retrieved and actual cloud-top pressure is positive in all casts, meaning that the retrieved upper-cloud height is lower than the actual upper-cloud height. In addition, errors in retrieved cloud pressure are found to depend upon the lapse rate between the low-level cloud top and the surface. We examined which sounder channel combinations would minimize the total errors in derived cirrus cloud height caused by instrument noise and by the presence of a lower-level cloud. We find that while the sounding channels that peak between 700 and 1000 mb minimize random errors, the sounding channels that peak at 300—500 mb minimize bias errors. For a cloud climatology, the bias errors are most critical.

  13. Boundary Layer Control for Hypersonic Airbreathing Vehicles

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Nowak, Robert J.; Horvath, Thomas J.

    2004-01-01

    Active and passive methods for tripping hypersonic boundary layers have been examined in NASA Langley Research Center wind tunnels using a Hyper-X model. This investigation assessed several concepts for forcing transition, including passive discrete roughness elements and active mass addition (or blowing), in the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air Tunnels. Heat transfer distributions obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the Hyper-X nominal Mach 7 flight test-point of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For passive roughness, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The passive roughness study resulted in a swept ramp configuration, scaled to be roughly 0.6 of the calculated boundary layer thickness, being selected for the Mach 7 flight vehicle. For the active blowing study, the manifold pressure was systematically varied (while monitoring the mass flow) for each configuration to determine the jet penetration height, with schlieren, and transition movement, with the phosphor system, for comparison to the passive results. All the blowing concepts tested, which included various rows of sonic orifices (holes), two- and three-dimensional slots, and random porosity, provided transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model surface static pressure, which is adequate to ensure sonic jets. The present results indicate that the jet penetration height for blowing was roughly half the height required with passive roughness elements for an equivalent amount of transition movement.

  14. Large Eddy Simulations of a Bottom Boundary Layer Under a Shallow Geostrophic Front

    NASA Astrophysics Data System (ADS)

    Bateman, S. P.; Simeonov, J.; Calantoni, J.

    2017-12-01

    The unstratified surf zone and the stratified shelf waters are often separated by dynamic fronts that can strongly impact the character of the Ekman bottom boundary layer. Here, we use large eddy simulations to study the turbulent bottom boundary layer associated with a geostrophic current on a stratified shelf of uniform depth. The simulations are initialized with a spatially uniform vertical shear that is in geostrophic balance with a pressure gradient due to a linear horizontal temperature variation. Superposed on the temperature front is a stable vertical temperature gradient. As turbulence develops near the bottom, the turbulence-induced mixing gradually erodes the initial uniform temperature stratification and a well-mixed layer grows in height until the turbulence becomes fully developed. The simulations provide the spatial distribution of the turbulent dissipation and the Reynolds stresses in the fully developed boundary layer. We vary the initial linear stratification and investigate its effect on the height of the bottom boundary layer and the turbulence statistics. The results are compared to previous models and simulations of stratified bottom Ekman layers.

  15. Dual polarization micropulse lidar observations of the diurnal evolution of atmospheric boundary layer over a tropical coastal station

    NASA Astrophysics Data System (ADS)

    Rajeev, K.; Mishra, Manoj K.; Sunilkumar, S. V.; Sijikumar, S.

    2016-05-01

    High-resolution dual polarized micropulse lidar (MPL) observations have been used to investigate the diurnal evolution of atmospheric boundary layer (ABL) during winter (2008-2011) over Thiruvananthapuram (8.5°N, 77°E), a tropical coastal station located at southwest Peninsular India, adjoining the Arabian Sea. The lidar observations are compared with the boundary layer characteristics derived from concurrent balloon-borne radiosonde observations. This study shows that the mixed layer height over this coastal station generally increases from <300 m in the morning to 1500 m by the afternoon. Growth rate of the mixed layer height is rapid ( 350 m/hr) during 09-11 IST and slows down with time to <150 m/hr during 11-14 IST and <90 m/hr during 14-16 IST. Thermal internal boundary layer during the afternoon, caused by sea breeze circulation, extends up to 500 m altitude and is characterized by highly spherical aerosols, while a distinctly non-spherical aerosol layer appear above this altitude, in the return flow arising from the landmass.

  16. Modeling the effect of dune sorting on the river long profile

    NASA Astrophysics Data System (ADS)

    Blom, A.

    2012-12-01

    River dunes, which occur in low slope sand bed and sand-gravel bed rivers, generally show a downward coarsening pattern due to grain flows down their avalanche lee faces. These grain flows cause coarse particles to preferentially deposit at lower elevations of the lee face, while fines show a preference for its upper elevations. Before considering the effect of this dune sorting mechanism on the river long profile, let us first have a look at some general trends along the river profile. Tributaries increasing the river's water discharge in streamwise direction also cause a streamwise increase in flow depth. As under subcritical conditions mean dune height generally increases with increasing flow depth, the dune height shows a streamwise increase, as well. This means that also the standard deviation of bedform height increases in streamwise direction, as in earlier work it was found that the standard deviation of bedform height linearly increases with an increasing mean value of bedform height. As a result of this streamwise increase in standard deviation of dune height, the above-mentioned dune sorting then results in a loss of coarse particles to the lower elevations of the bed that are less and even rarely exposed to the flow. This loss of coarse particles to lower elevations thus increases the rate of fining in streamwise direction. As finer material is more easily transported downstream than coarser material, a smaller bed slope is required to transport the same amount of sediment downstream. This means that dune sorting adds to river profile concavity, compared to the combined effect of abrasion, selective transport and tributaries. A Hirano-type mass conservation model is presented that deals with dune sorting. The model includes two active layers: a bedform layer representing the sediment in the bedforms and a coarse layer representing the coarse and less mobile sediment underneath migrating bedforms. The exposure of the coarse layer is governed by the rate of sediment supply from upstream. By definition the sum of the exposure of both layers equals unity. The model accounts for vertical sediment fluxes due to grain flows down the bedform lee face and the formation of a less mobile coarse layer. The model with its vertical sediment fluxes is validated against earlier flume experiments. It deals well with the transition between a plane bed and a bedform-dominated bed. Applying the model to field scale confirms that dune sorting increases river profile concavity.

  17. Air Modeling - Observational Meteorological Data

    EPA Pesticide Factsheets

    Observed meteorological data for use in air quality modeling consist of physical parameters that are measured directly by instrumentation, and include temperature, dew point, wind direction, wind speed, cloud cover, cloud layer(s), ceiling height,

  18. Thin layer drying of cassava starch using continuous vibrated fluidized bed dryer

    NASA Astrophysics Data System (ADS)

    Suherman, Trisnaningtyas, Rona

    2015-12-01

    This paper present the experimental work and thin layer modelling of cassava starch drying in continuous vibrated fluidized bed dryer. The experimental data was used to validate nine thin layer models of drying curve. Cassava starch with 0.21 initial moisture content was dried in different air drying temperature (50°C, 55°C, 60°C, 65°C, 70°C), different weir height in bed (0 and 1 cm), and different solid feed flow (10 and 30 gr.minute-1). The result showed air dryer temperature has a significant effect on drying curve, while the weir height and solid flow rate are slightly. Based on value of R2, χ2, and RMSE, Page Model is the most accurate simulation for thin layer drying model of cassava starch.

  19. Turbulent Flow Over Large Roughness Elements: Effect of Frontal and Plan Solidity on Turbulence Statistics and Structure

    NASA Astrophysics Data System (ADS)

    Placidi, M.; Ganapathisubramani, B.

    2018-04-01

    Wind-tunnel experiments were carried out on fully-rough boundary layers with large roughness (δ /h ≈ 10, where h is the height of the roughness elements and δ is the boundary-layer thickness). Twelve different surface conditions were created by using LEGO™ bricks of uniform height. Six cases are tested for a fixed plan solidity (λ _P) with variations in frontal density (λ _F), while the other six cases have varying λ _P for fixed λ _F. Particle image velocimetry and floating-element drag-balance measurements were performed. The current results complement those contained in Placidi and Ganapathisubramani (J Fluid Mech 782:541-566, 2015), extending the previous analysis to the turbulence statistics and spatial structure. Results indicate that mean velocity profiles in defect form agree with Townsend's similarity hypothesis with varying λ _F, however, the agreement is worse for cases with varying λ _P. The streamwise and wall-normal turbulent stresses, as well as the Reynolds shear stresses, show a lack of similarity across most examined cases. This suggests that the critical height of the roughness for which outer-layer similarity holds depends not only on the height of the roughness, but also on the local wall morphology. A new criterion based on shelter solidity, defined as the sheltered plan area per unit wall-parallel area, which is similar to the `effective shelter area' in Raupach and Shaw (Boundary-Layer Meteorol 22:79-90, 1982), is found to capture the departure of the turbulence statistics from outer-layer similarity. Despite this lack of similarity reported in the turbulence statistics, proper orthogonal decomposition analysis, as well as two-point spatial correlations, show that some form of universal flow structure is present, as all cases exhibit virtually identical proper orthogonal decomposition mode shapes and correlation fields. Finally, reduced models based on proper orthogonal decomposition reveal that the small scales of the turbulence play a significant role in assessing outer-layer similarity.

  20. An Examination of the Effect of Boundary Layer Ingestion on Turboelectric Distributed Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Felder, James L.; Kim, Huyn Dae; Brown, Gerald V.; Chu, Julio

    2011-01-01

    A Turboelectric Distributed Propulsion (TeDP) system differs from other propulsion systems by the use of electrical power to transmit power from the turbine to the fan. Electrical power can be efficiently transmitted over longer distances and with complex topologies. Also the use of power inverters allows the generator and motors speeds to be independent of one another. This decoupling allows the aircraft designer to place the core engines and the fans in locations most advantageous for each. The result can be very different installation environments for the different devices. Thus the installation effects on this system can be quite different than conventional turbofans where the fan and core both see the same installed environments. This paper examines a propulsion system consisting of two superconducting generators, each driven by a turboshaft engine located so that their inlets ingest freestream air, superconducting electrical transmission lines, and an array of superconducting motor driven fan positioned across the upper/rear fuselage area of a hybrid wing body aircraft in a continuous nacelle that ingests all of the upper fuselage boundary layer. The effect of ingesting the boundary layer on the design of the system with a range of design pressure ratios is examined. Also the impact of ingesting the boundary layer on off-design performance is examined. The results show that when examining different design fan pressure ratios it is important to recalculate of the boundary layer mass-average Pt and MN up the height for each inlet height during convergence of the design point for each fan design pressure ratio examined. Correct estimation of off-design performance is dependent on the height of the column of air measured from the aircraft surface immediately prior to any external diffusion that will flow through the fan propulsors. The mass-averaged Pt and MN calculated for this column of air determine the Pt and MN seen by the propulsor inlet. Since the height of this column will change as the amount of air passing through the fans change as the propulsion system is throttled, and since the mass-average Pt and MN varies by height, this capture height must be recalculated as the airflow through the propulsor is varied as the off-design performance point is converged.

  1. Application of Lidar remote sensing to the estimation of forest canopy and stand structure

    NASA Astrophysics Data System (ADS)

    Lefsky, Michael Andrew

    A new remote sensing instrument, SLICER (Scanning Lidar Imager of Canopies by Echo Recovery), has been applied to the problem of remote sensing the canopy and stand structure of two groups of deciduous forests, Tulip Poplar-Oak stands in the vicinity of Annapolis, MD. and bottomland hardwood stands near Williamston, NC. The ability of the SLICER instrument to remotely sense the vertical distribution of canopy structure (Canopy Height Profile), bulk canopy transmittance, and several indices of canopy height has been successfully validated using twelve stands with coincident field and SLICER estimates of canopy structure. Principal components analysis has been applied to canopy height profiles from both field sites, and three significant factors were identified, each closely related to the amount of foliage in a recognizable layer of the forest, either understory, midstory, or overstory. The distribution of canopy structure to these layers is significantly correlated with the size and number of stems supporting them. The same layered structure was shown to apply to both field and SLICER remotely sensed canopy height profiles, and to apply to SLICER remotely sensed canopy profiles from both the bottomland hardwood stands in the coastal plain of North Carolina, and to mesic Tulip-Poplars stands in the upland coastal plain of Maryland. Linear regressions have demonstrated that canopy and stand structure are correlated to both a statistically significant and useful degree. Stand age and stem density is more highly correlated to stand height, while stand basal area and aboveground biomass are more closely related to a new measure of canopy structure, the quadratic mean canopy height. A geometric model of canopy structure has been shown to explain the differing relationships between canopy structure and stand basal area for stands of Eastern Deciduous Forest and Douglas Fir Forest.

  2. Convective boundary layer heights over mountainous terrain - A review of concepts -

    NASA Astrophysics Data System (ADS)

    De Wekker, Stephan; Kossmann, Meinolf

    2015-12-01

    Mountainous terrain exerts an important influence on the Earth's atmosphere and affects atmospheric transport and mixing at a wide range of temporal and spatial scales. The vertical scale of this transport and mixing is determined by the height of the atmospheric boundary layer, which is therefore an important parameter in air pollution studies, weather forecasting, climate modeling, and many other applications. It is recognized that the spatio-temporal structure of the daytime convective boundary layer (CBL) height is strongly modified and more complex in hilly and mountainous terrain compared to flat terrain. While the CBL over flat terrain is mostly dominated by turbulent convection, advection from multi-scale thermally driven flows plays an important role for the CBL evolution over mountainous terrain. However, detailed observations of the CBL structure and understanding of the underlying processes are still limited. Characteristics of CBL heights in mountainous terrain are reviewed for dry, convective conditions. CBLs in valleys and basins, where hazardous accumulation of pollutants is of particular concern, are relatively well-understood compared to CBLs over slopes, ridges, or mountain peaks. Interests in the initiation of shallow and deep convection, and of budgets and long-range transport of air pollutants and trace gases, have triggered some recent studies on terrain induced exchange processes between the CBL and the overlying atmosphere. These studies have helped to gain more insight into CBL structure over complex mountainous terrain, but also show that the universal definition of CBL height over mountains remains an unresolved issue. The review summarizes the progress that has been made in documenting and understanding spatio-temporal behavior of CBL heights in mountainous terrain and concludes with a discussion of open research questions and opportunities for future research.

  3. Cloud and boundary layer structure over San Nicolas Island during FIRE

    NASA Technical Reports Server (NTRS)

    Albrecht, Bruce A.; Fairall, Christopher W.; Syrett, William J.; Schubert, Wayne H.; Snider, Jack B.

    1990-01-01

    The temporal evolution of the structure of the marine boundary layer and of the associated low-level clouds observed in the vicinity of the San Nicolas Island (SNI) is defined from data collected during the First ISCCP Regional Experiment (FIRE) Marine Stratocumulus Intense Field Observations (IFO) (July 1 to 19). Surface, radiosonde, and remote-sensing measurements are used for this analysis. Sounding from the Island and from the ship Point Sur, which was located approximately 100 km northwest of SNI, are used to define variations in the thermodynamic structure of the lower-troposphere on time scales of 12 hours and longer. Time-height sections of potential temperature and equivalent potential temperature clearly define large-scale variations in the height and the strength of the inversion and periods where the conditions for cloud-top entrainment instability (CTEI) are met. Well defined variations in the height and the strength of the inversion were associated with a Cataline Eddy that was present at various times during the experiment and with the passage of the remnants of a tropical cyclone on July 18. The large-scale variations in the mean thermodynamic structure at SNI correlate well with those observed from the Point Sur. Cloud characteristics are defined for 19 days of the experiment using data from a microwave radiometer, a cloud ceilometer, a sodar, and longwave and shortwave radiometers. The depth of the cloud layer is estimated by defining inversion heights from the sodar reflectivity and cloud-base heights from a laser ceilometer. The integrated liquid water obtained from NOAA's microwave radiometer is compared with the adiabatic liquid water content that is calculated by lifting a parcel adiabatically from cloud base. In addition, the cloud structure is characterized by the variability in cloud-base height and in the integrated liquid water.

  4. Flight-measured pressure characteristics of aft-facing steps in high Reynolds number flow at Mach numbers of 2.20, 2.50, and 2.80 and comparison with other data

    NASA Technical Reports Server (NTRS)

    Powers, S. G.

    1978-01-01

    The YF-12 airplane was studied to determine the pressure characteristics associated with an aft-facing step in high Reynolds number flow for nominal Mach numbers of 2.20, 2.50, and 2.80. Base pressure coefficients were obtained for three step heights. The surface static pressures ahead of and behind the step were measured for the no-step condition and for each of the step heights. A boundary layer rake was used to determine the local boundary layer conditions. The Reynolds number based on the length of flow ahead of the step was approximately 10 to the 8th power and the ratios of momentum thickness to step height ranged from 0.2 to 1.0. Base pressure coefficients were compared with other available data at similar Mach numbers and at ratios of momentum thickness to step height near 1.0. In addition, the data were compared with base pressure coefficients calculated by a semiempirical prediction method. The base pressure ratios are shown to be a function of Reynolds number based on momentum thickness. Profiles of the surface pressures ahead of and behind the step and the local boundary layer conditions are also presented.

  5. Observations of stratospheric aerosols associated with the El Chichon eruption

    NASA Technical Reports Server (NTRS)

    Thomas, L.; Vaughan, G.; Jenkins, D. B.; Wareing, D.; Farrington, M.

    1986-01-01

    Lidar observations of aerosols were carried out at Aberystwyth between Nov. 1982 and Dec. 1985 using a frequency doubled and frequency tripled Nd/Yag laser and a receiver incorporating a 1 m diameter in a Newtonian telescope configuration. In analyses of the experimental data attention is paid to the magnitude of the coefficient relating extinction and backscatter, the choice being related to the possible presence of aerosols in the upper troposphere and the atmospheric densities employed in the normalisation procedure. The aerosol loading showed marked day to day changes in early months and an overall decay was apparent only after April 1983, this decay being consistent with an e sup -1 time of about 7 months. The general decay was accompanied by a lowering of the layer but layers of aerosols were shown intermittently at heights above the main layer in winter months. The height variations of photon counts corrected for range, or of aerosol backscatter ratio, showed clear signatures of the tropopause. A strong correlation was found between the heights of the tropopause identified from the lidar measurements and from radiosonde-borne temperature measurements. A notable feature of the observations is the appearance of very sharp height gradients of backscatter ratio which seem to be produced by differential advection.

  6. Estimating the planetary boundary layer height from radiosonde and doppler lidar measurements in the city of São Paulo - Brazil

    NASA Astrophysics Data System (ADS)

    Marques, Márcia T. A.; Moreira, Gregori de A.; Pinero, Maciel; Oliveira, Amauri P.; Landulfo, Eduardo

    2018-04-01

    This study aims to compare the planetary boundary layer height (PBLH) values estimated by radiosonde data through the bulk Richardson number (BRN) method and by Doppler lidar measurements through the Carrier to Noise Ratio (CNR) method, which corresponds to the maximum of the variance of CNR profile. The measurement campaign was carried during the summer of 2015/2016 in the city of São Paulo. Despite the conceptual difference between these methods, the results show great agreement between them.

  7. Improvements to the OMI Near-uv Aerosol Algorithm Using A-train CALIOP and AIRS Observations

    NASA Technical Reports Server (NTRS)

    Torres, O.; Ahn, C.; Zhong, C.

    2014-01-01

    The height of desert dust and carbonaceous aerosols layers and, to a lesser extent, the difficulty in assessing the predominant size mode of these absorbing aerosol types, are sources of uncertainty in the retrieval of aerosol properties from near UV satellite observations. The availability of independent, near-simultaneous measurements of aerosol layer height, and aerosol-type related parameters derived from observations by other A-train sensors, makes possible the direct use of these parameters as input to the OMI (Ozone Monitoring Instrument) near UV retrieval algorithm. A monthly climatology of aerosol layer height derived from observations by the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) sensor, and real-time AIRS (Atmospheric Infrared Sounder) CO observations are used in an upgraded version of the OMI near UV aerosol algorithm. AIRS CO measurements are used as a reliable tracer of carbonaceous aerosols, which allows the identification of smoke layers in areas and times of the year where the dust-smoke differentiation is difficult in the near-UV. The use of CO measurements also enables the identification of elevated levels of boundary layer pollution undetectable by near UV observations alone. In this paper we discuss the combined use of OMI, CALIOP and AIRS observations for the characterization of aerosol properties, and show a significant improvement in OMI aerosol retrieval capabilities.

  8. Inventory of File nam.t00z.smartpr00.tm00.grib2

    Science.gov Websites

    layer WDIR analysis Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND analysis Wind Speed [m/s] 017 planetary boundary layer RH analysis Relative Humidity [%] 018 planetary boundary layer DIST analysis Geometric Height [m] 019 surface 4LFTX analysis Best (4 layer) Lifted Index [K

  9. Inventory of File nam.t00z.smartak00.tm00.grib2

    Science.gov Websites

    layer WDIR analysis Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND analysis Wind Speed [m/s] 017 planetary boundary layer RH analysis Relative Humidity [%] 018 planetary boundary layer DIST analysis Geometric Height [m] 019 surface 4LFTX analysis Best (4 layer) Lifted Index [K

  10. Inventory of File gfs.t06z.smartguam00.tm00.grib2

    Science.gov Websites

    boundary layer WDIR analysis Wind Direction (from which blowing) [degtrue] 013 planetary boundary layer WIND analysis Wind Speed [m/s] 014 planetary boundary layer RH analysis Relative Humidity [%] 015 planetary boundary layer DIST analysis Geometric Height [m] 016 surface 4LFTX analysis Best (4 layer) Lifted

  11. Inventory of File nam.t00z.smarthi00.tm00.grib2

    Science.gov Websites

    layer WDIR analysis Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND analysis Wind Speed [m/s] 017 planetary boundary layer RH analysis Relative Humidity [%] 018 planetary boundary layer DIST analysis Geometric Height [m] 019 surface 4LFTX analysis Best (4 layer) Lifted Index [K

  12. Airborne Lidar measurements of aerosols, mixed layer heights, and ozone during the 1980 PEPE/NEROS summer field experiment

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Shipley, S. T.; Butler, C. F.; Ismail, S.

    1985-01-01

    A detailed summary of the NASA Ultraviolet Differential Absorption Lidar (UV DIAL) data archive obtained during the EPA Persistent Elevated Pollution Episode/Northeast Regional Oxidant Study (PEPE/NEROS) Summer Field Experiment Program (July through August 1980) is presented. The UV dial data set consists of remote measurements of mixed layer heights, aerosol backscatter cross sections, and sequential ozone profiles taken during 14 long-range flights onboard the NASA Wallops Flight Center Electra aircraft. These data are presented in graphic and tabular form, and they have been submitted to the PEPE/NEROS data archive on digital magnetic tape. The derivation of mixing heights and ozone profiles from UV Dial signals is discussed, and detailed intercomparisons with measurements obtained by in situ sensors are presented.

  13. The Vertical Error Characteristics of GOES-derived Winds: Description and Impact on Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Rao, P. Anil; Velden, Christopher S.; Braun, Scott A.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Errors in the height assignment of some satellite-derived winds exist because the satellites sense radiation emitted from a finite layer of the atmosphere rather than a specific level. Potential problems in data assimilation may arise because the motion of a measured layer is often represented by a single-level value. In this research, cloud and water vapor motion winds that are derived from the Geostationary Operational Environmental Satellites (GOES winds) are compared to collocated rawinsonde observations (RAOBs). An important aspect of this work is that in addition to comparisons at each assigned height, the GOES winds are compared to the entire profile of the collocated RAOB data to determine the vertical error characteristics of the GOES winds. The impact of these results on numerical weather prediction is then investigated. The comparisons at individual vector height assignments indicate that the error of the GOES winds range from approx. 3 to 10 m/s and generally increase with height. However, if taken as a percentage of the total wind speed, accuracy is better at upper levels. As expected, comparisons with the entire profile of the collocated RAOBs indicate that clear-air water vapor winds represent deeper layers than do either infrared or water vapor cloud-tracked winds. This is because in cloud-free regions the signal from water vapor features may result from emittance over a thicker layer. To further investigate characteristics of the clear-air water vapor winds, they are stratified into two categories that are dependent on the depth of the layer represented by the vector. It is found that if the vertical gradient of moisture is smooth and uniform from near the height assignment upwards, the clear-air water vapor wind tends to represent a relatively deep layer. The information from the comparisons is then used in numerical model simulations of two separate events to determine the forecast impacts. Four simulations are performed for each case: 1) A control simulation that assimilates no satellite wind data, 2) assimilation of all GOES winds according to their assigned single level height, 3) assimilation of all GOES winds spread over multiple levels, and 4) assimilation of all GOES winds spread over multiple levels, but with variations in the vertical influence of clear-air water vapor winds based on the moisture profile in the model. In the first case, a strong mid-latitude cyclone is present and the use of the satellite data results in improved storm tracks during the initial approx. 36 h forecast period. This is because the satellite data improves the analysis of the environment into which the storm progresses. Statistics for mean wind vector and height differences show that, with the exception of the height field at later times in the first case, the use of GOES winds improves the simulation with time. The simulation results suggest that it is beneficial to spread the GOES wind information over multiple levels, particularly when the moisture profile is used to define the vertical influence.

  14. A unified view of convective transports by stratocumulus clouds, shallow cumulus clouds, and deep convection

    NASA Technical Reports Server (NTRS)

    Randall, David A.

    1990-01-01

    A bulk planetary boundary layer (PBL) model was developed with a simple internal vertical structure and a simple second-order closure, designed for use as a PBL parameterization in a large-scale model. The model allows the mean fields to vary with height within the PBL, and so must address the vertical profiles of the turbulent fluxes, going beyond the usual mixed-layer assumption that the fluxes of conservative variables are linear with height. This is accomplished using the same convective mass flux approach that has also been used in cumulus parameterizations. The purpose is to show that such a mass flux model can include, in a single framework, the compensating subsidence concept, downgradient mixing, and well-mixed layers.

  15. Lidar observations of vertically organized convection in the planetary boundary layer over the ocean

    NASA Technical Reports Server (NTRS)

    Melfi, S. H.; Spinhirne, J. D.; Chou, S.-H.; Palm, S. P.

    1985-01-01

    Observations of a convective planetary boundary layer (PBL) were made with an airborne, downward-looking lidar system over the Atlantic Ocean during a cold air outbreak. The lidar data revealed well-organized, regularly spaced cellular convection with dominant spacial scales between two and four times the height of the boundary layer. It is demonstrated that the lidar can accurately measure the structure of the PBL with high vertical and horizontal resolution. Parameters important for PBL modeling such as entrainment zone thickness, entrainment rate, PBL height and relative heat flux can be inferred from the lidar data. It is suggested that wind shear at the PBL top may influence both entrainment and convective cell size.

  16. Direct numerical simulation of a compressible boundary-layer flow past an isolated three-dimensional hump in a high-speed subsonic regime

    NASA Astrophysics Data System (ADS)

    De Grazia, D.; Moxey, D.; Sherwin, S. J.; Kravtsova, M. A.; Ruban, A. I.

    2018-02-01

    In this paper we study the boundary-layer separation produced in a high-speed subsonic boundary layer by a small wall roughness. Specifically, we present a direct numerical simulation (DNS) of a two-dimensional boundary-layer flow over a flat plate encountering a three-dimensional Gaussian-shaped hump. This work was motivated by the lack of DNS data of boundary-layer flows past roughness elements in a similar regime which is typical of civil aviation. The Mach and Reynolds numbers are chosen to be relevant for aeronautical applications when considering small imperfections at the leading edge of wings. We analyze different heights of the hump: The smaller heights result in a weakly nonlinear regime, while the larger result in a fully nonlinear regime with an increasing laminar separation bubble arising downstream of the roughness element and the formation of a pair of streamwise counterrotating vortices which appear to support themselves.

  17. High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces

    NASA Astrophysics Data System (ADS)

    Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min

    2007-11-01

    This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, B.; Lu, S. X.; Li, C. H.

    In an atrium measured 120 m by 180 m by 36.5 m high, fire tests were conducted under 'natural filling' and 'mechanical exhaust' conditions by hot smoke test method. The fire size was 8 MW released by an ethanol pool of 3.6 m in diameter. The distribution of vertical temperature profiles above the fire source and the gas layer temperatures were measured. From these measurements, it was shown that the fans successfully exhausted hot smoke to control descending of hot smoke layer and temperature rising rate. The hot smoke layer can be maintained at about 30 m which was almostmore » 2 times of hot layer height in 'natural filling' condition. The temperature risings in both conditions were too low to cause thermal damage to the structure, only 18.6 K and 12 K. The centerline temperature above the fire source and the height of hot smoke layer were calculated using the plume models. The calculated results agreed well with the conclusions obtained from the experiment results.« less

  19. Airborne LIDAR Measurements of Aerosol and Ozone Above the Alberta Oil Sands Region

    NASA Astrophysics Data System (ADS)

    Aggarwal, M.; Whiteway, J. A.; Seabrook, J.; Gray, L. H.

    2014-12-01

    Lidar measurements of ozone and aerosol were conducted from a Twin Otter aircraft above the oil sands region of northern Alberta. The field campaign was carried out with a total of five flights out of Fort McMurray, Alberta during the period between August 22 and August 26, 2013. Significant amounts of aerosol were observed within the boundary layer, up to a height of 1.6 km, but the ozone concentration remained at or below background levels. On August 24th the lidar observed a separated layer of aerosol above the boundary layer, at a height of 1.8 km, in which the ozone mixing ratio increased to 70 ppbv. Backward trajectory calculations revealed that the air containing this separated aerosol layer had passed over an area of forest fires. Directly below the layer of forest fire smoke, in the pollution from the oil sands industry, the measured ozone mixing ratio was lower than the background levels (≤35 ppbv).

  20. Comparison between reflectivity statistics at heights of 3 and 6 km and rain rate statistics at ground level

    NASA Technical Reports Server (NTRS)

    Crane, R. K.

    1975-01-01

    An experiment was conducted to study the relations between the empirical distribution functions of reflectivity at specified locations above the surface and the corresponding functions at the surface. A bistatic radar system was used to measure continuously the scattering cross section per unit volume at heights of 3 and 6 km. A frequency of 3.7 GHz was used in the tests. It was found that the distribution functions for reflectivity may significantly change with height at heights below the level of the melting layer.

  1. Novel lidar algorithms for atmospheric slantrange visibility, planetary boundary layer height, meteorogical phenomena and atmospheric layering measurements

    NASA Astrophysics Data System (ADS)

    Pantazis, Alexandros; Papayannis, Alexandros; Georgoussis, Georgios

    2018-04-01

    In this paper we present a development of novel algorithms and techniques implemented within the Laser Remote Sensing Laboratory (LRSL) of the National Technical University of Athens (NTUA), in collaboration with Raymetrics S.A., in order to incorporate them into a 3-Dimensional (3D) lidar. The lidar is transmitting at 355 nm in the eye safe region and the measurements then are transposed to the visual range at 550 nm, according to the World Meteorological Organization (WMO) and the International Civil Aviation Organization (ICAO) rules of daytime visibility. These algorithms are able to provide horizontal, slant and vertical visibility for tower aircraft controllers, meteorologists, but also from pilot's point of view. Other algorithms are also provided for detection of atmospheric layering in any given direction and vertical angle, along with the detection of the Planetary Boundary Layer Height (PBLH).

  2. The pillars of land plants: new insights into stem development.

    PubMed

    Serrano-Mislata, Antonio; Sablowski, Robert

    2018-05-12

    In spite of its central importance in evolution, plant architecture and crop improvement, stem development remains poorly understood relative to other plant organs. Here, we summarise current knowledge of stem ontogenesis and its regulation, including insights from new image analysis and biophysical approaches. The stem initiates in the rib zone (RZ) of the shoot apical meristem, under transcriptional control by DELLA and BLH proteins. Links have emerged between these regulators and cell proliferation, patterning and oriented growth in the RZ. During subsequent internode elongation, cell wall properties and mechanics have been analysed in detail, revealing pectin modification as a prominent control point. Recent work has also highlighted signalling to coordinate growth of stem tissues with different mechanical properties. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Black Walnut Growth Better on Deep, Well-Drained BottomLand Soils

    Treesearch

    Craig K. Losche

    1973-01-01

    Site requirements of 25-year-old plantation-grown black walnut on floodplains in southern Illinois were studied. Depth to a gravel layer was the only soil factor that significantly influenced height growth. There was a relationship between internal soil drainage and height growth.

  4. Characteristics of haze and the atmospheric boundary layer height during the periods with different category of haze over Suzhou observed by Micro-Pulse Lidar

    NASA Astrophysics Data System (ADS)

    Huijuan, L.

    2015-12-01

    Based on the observed hourly meterological data, atmospheric composition data, and the Micro-Pulse Lidar (MPL) detecting data over Suzhou during 2010 to 2014, this study concentrates on revealing the characteristics of haze weather and the atmospheric boundary layer height during the periods with different category of haze over Suzhou. The main results are shown as follows: The haze frequency over Suzhou is 30.9% with the frequency of 18% for the slight haze, 7.8% for the light haze, 3.1% for the moderate haze and 2.0% for the heavy haze. The haze frequency shows an obvious diurnal variation with a peak (valley) value at the local solar time around 08:00~09:00 am (14:00~16:00pm).The haze happens much more frequent in nighttime than in daytime. The atmospheric boundary layer height (ABLH) associated with haze also shows a clear diurnal variation. The mean ABLH over Suzhou during the period of haze is more (less) than 1000m (500m) in daytime (nighttime). Meanwhile, the ABLH during the period of haze is higher in summer than in winter. In addition, the mean ABLH during the period without (with) haze is around 700m (500m) in winter. The diurnal variation of the ABLH during the period of moderate to heavy haze in winter ranges from 350m to 500m, which is less than the winter mean ABLH by 50~150m. KEY WORDS: Micro-Pulse Lidar; haze frequency; moderate and heavy haze;atmospheric boundary layer height

  5. Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ben; Qian, Yun; Berg, Larry K.

    We evaluate the sensitivity of simulated turbine-height winds to 26 parameters applied in a planetary boundary layer (PBL) scheme and a surface layer scheme of the Weather Research and Forecasting (WRF) model over an area of complex terrain during the Columbia Basin Wind Energy Study. An efficient sampling algorithm and a generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of modeled turbine-height winds. The results indicate that most of the variability in the ensemble simulations is contributed by parameters related to the dissipation of the turbulence kinetic energy (TKE), Prandtl number, turbulencemore » length scales, surface roughness, and the von Kármán constant. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability. The parameter associated with the TKE dissipation rate is found to be the most important one, and a larger dissipation rate can produce larger hub-height winds. A larger Prandtl number results in weaker nighttime winds. Increasing surface roughness reduces the frequencies of both extremely weak and strong winds, implying a reduction in the variability of the wind speed. All of the above parameters can significantly affect the vertical profiles of wind speed, the altitude of the low-level jet and the magnitude of the wind shear strength. The wind direction is found to be modulated by the same subset of influential parameters. Remainder of abstract is in attachment.« less

  6. Evaluation of retrieval methods of daytime convective boundary layer height based on lidar data

    NASA Astrophysics Data System (ADS)

    Li, Hong; Yang, Yi; Hu, Xiao-Ming; Huang, Zhongwei; Wang, Guoyin; Zhang, Beidou; Zhang, Tiejun

    2017-04-01

    The atmospheric boundary layer height is a basic parameter in describing the structure of the lower atmosphere. Because of their high temporal resolution, ground-based lidar data are widely used to determine the daytime convective boundary layer height (CBLH), but the currently available retrieval methods have their advantages and drawbacks. In this paper, four methods of retrieving the CBLH (i.e., the gradient method, the idealized backscatter method, and two forms of the wavelet covariance transform method) from lidar normalized relative backscatter are evaluated, using two artificial cases (an idealized profile and a case similar to real profile), to test their stability and accuracy. The results show that the gradient method is suitable for high signal-to-noise ratio conditions. The idealized backscatter method is less sensitive to the first estimate of the CBLH; however, it is computationally expensive. The results obtained from the two forms of the wavelet covariance transform method are influenced by the selection of the initial input value of the wavelet amplitude. Further sensitivity analysis using real profiles under different orders of magnitude of background counts show that when different initial input values are set, the idealized backscatter method always obtains consistent CBLH. For two wavelet methods, the different CBLH are always obtained with the increase in the wavelet amplitude when noise is significant. Finally, the CBLHs as measured by three lidar-based methods are evaluated by as measured from L-band soundings. The boundary layer heights from two instruments coincide with ±200 m in most situations.

  7. Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition.

    PubMed

    Liang, Junsheng; Li, Pengfei; Wang, Dazhi; Fang, Xu; Ding, Jiahong; Wu, Junxiong; Tang, Chang

    2016-01-19

    Dense and crack-free barium titanate (BaTiO₃, BTO) thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet) deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film.

  8. Observations of marine decoupled boundary layer during the ICOS campaign at the GAW Mace Head station, Ireland.

    NASA Astrophysics Data System (ADS)

    Milroy, Conor; Martucci, Giovanni; O'Dowd, Colin

    2010-05-01

    The planetary boundary layer (PBL) top height detections have been retrieved by two ceilometers (Vaisala CL31 and Jenoptik CHM15K) and a microwave radiometer (RPG-HATPRO) based at the Mace Head Research station, Ireland, from the 8th to the 28th of June 2009 during the ICOS Mace Head campaign. Characteristic of this region, with warm waters, the marine boundary layer is typically 2-layered with a surface mixed layer (SML) and a decoupled residual or convective layer (DRCL), above which is the free troposphere (Kunz et al. 2002). The PBL data have been analyzed using a newly developed Temporal Height-Tracking (THT) algorithm (Martucci et al., 2010) for automatic detection of the independent SML and DRCL tops. Daily and weekly averages of the PBL data have been performed to smooth out the short term variability and assess the dependence of the PBL depth on different air masses advected over the Mace Head station. Moreover, a qualitative comparison between the ceilometer and radiometer PBL top detected values has been done to assess their consistency.

  9. Wind Tunnel Experiments to Study Chaparral Crown Fires.

    PubMed

    Cobian-Iñiguez, Jeanette; Aminfar, AmirHessam; Chong, Joey; Burke, Gloria; Zuniga, Albertina; Weise, David R; Princevac, Marko

    2017-11-14

    The present protocol presents a laboratory technique designed to study chaparral crown fire ignition and spread. Experiments were conducted in a low velocity fire wind tunnel where two distinct layers of fuel were constructed to represent surface and crown fuels in chaparral. Chamise, a common chaparral shrub, comprised the live crown layer. The dead fuel surface layer was constructed with excelsior (shredded wood). We developed a methodology to measure mass loss, temperature, and flame height for both fuel layers. Thermocouples placed in each layer estimated temperature. A video camera captured the visible flame. Post-processing of digital imagery yielded flame characteristics including height and flame tilt. A custom crown mass loss instrument developed in-house measured the evolution of the mass of the crown layer during the burn. Mass loss and temperature trends obtained using the technique matched theory and other empirical studies. In this study, we present detailed experimental procedures and information about the instrumentation used. The representative results for the fuel mass loss rate and temperature filed within the fuel bed are also included and discussed.

  10. Inventory of File nam.t00z.smartconus00.tm00.grib2

    Science.gov Websites

    (Eta model reduction) [Pa] 014 planetary boundary layer WDIR analysis Wind Direction (from which blowing) [degtrue] 015 planetary boundary layer WIND analysis Wind Speed [m/s] 016 planetary boundary layer RH analysis Relative Humidity [%] 017 planetary boundary layer DIST analysis Geometric Height [m

  11. Vorticity and Vertical Motions Diagnosed from Satellite Deep-Layer Temperatures. Revised

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Lapenta, William M.; Robertson, Franklin R.

    1994-01-01

    Spatial fields of satellite-measured deep-layer temperatures are examined in the context of quasigeostrophic theory. It is found that midtropospheric geostrophic vorticity and quasigeostrophic vertical motions can be diagnosed from microwave temperature measurements of only two deep layers. The lower- ( 1000-400 hPa) and upper- (400-50 hPa) layer temperatures are estimated from limb-corrected TIROS-N Microwave Sounding Units (MSU) channel 2 and 3 data, spatial fields of which can be used to estimate the midtropospheric thermal wind and geostrophic vorticity fields. Together with Trenberth's simplification of the quasigeostrophic omega equation, these two quantities can be then used to estimate the geostrophic vorticity advection by the thermal wind, which is related to the quasigeostrophic vertical velocity in the midtroposphere. Critical to the technique is the observation that geostrophic vorticity fields calculated from the channel 3 temperature features are very similar to those calculated from traditional, 'bottom-up' integrated height fields from radiosonde data. This suggests a lack of cyclone-scale height features near the top of the channel 3 weighting function, making the channel 3 cyclone-scale 'thickness' features approximately the same as height features near the bottom of the weighting function. Thus, the MSU data provide observational validation of the LID (level of insignificant dynamics) assumption of Hirshberg and Fritsch.

  12. Investigating the interaction between positions and signals of height-channel loudspeakers in reproducing immersive 3d sound

    NASA Astrophysics Data System (ADS)

    Karampourniotis, Antonios

    Since transmission capacities have significantly increased over the past few years, researchers are now able to transmit a larger amount of data, namely multichannel audio content, in the consumer applications. What has not been investigated in a systematic way yet is how to deliver the multichannel content. Specifically, researchers' attention is focused on the quest of a standardized immersive reproduction format that incorporates height loudspeakers coupled with the new high-resolution and three-dimensional (3D) media content for a comprehensive 3D experience. To better understand and utilize the immersive audio reproduction, this research focused on the (1) interaction between the positioning of height loudspeakers and the signals fed to the loudspeakers, (2) investigation of the perceptual characteristics associated with the height ambiences, and (3) the influence of inverse filtering on perceived sound quality for the realistic 3D sound reproduction. The experiment utilized the existence of two layers of loudspeakers: horizontal layer following the ITU-R BS.775 five-channel loudspeaker configuration and height layer locating a total of twelve loudspeakers at the azimuth of +/-30°, +/-50°, +/-70°, +/-90°, +/-110° and +/-130° and elevation of 30°. Eight configurations were formed, each of which selected four height-loudspeakers from twelve. In the subjective evaluation, listeners compared, ranked and described the eight randomly presented configurations of 4-channel height ambiences. The stimuli for the experiment were four nine-channel (5 channels for the horizontal and 4 for the height loudspeakers) multichannel music. Moreover, an approach of Finite Impulse Response (FIR) inverse filtering was attempted, in order to remove the particular room's acoustic influence. Another set of trained professionals was informally asked to use descriptors to characterize the newly presented multichannel music with height ambiences rendered with inverse filtering. The experimental results indicate the significance of the positioning of the loudspeakers with respect to the signals being fed to those loudspeakers in delivering a 3D sound field. Furthermore, it has been revealed that the perceptual characteristics that listeners linked for multichannel music with height ambiences include envelopment, elevatedness and fullness. Last but not least, after applying the inverse filtering the subjective preference was not affected significantly. This allows for the author to believe that, in fact, the room's influence with respect to the subjective evaluation is not as important as the appropriate loudspeaker-positioning for the multichannel-reproduced music with height ambiences.

  13. Absolute calibration of the Jenoptik CHM15k-x ceilometer and its applicability for quantitative aerosol monitoring

    NASA Astrophysics Data System (ADS)

    Geiß, Alexander; Wiegner, Matthias

    2014-05-01

    The knowledge of the spatiotemporal distribution of atmospheric aerosols and its optical characterization is essential for the understanding of the radiation budget, air quality, and climate. For this purpose, lidar is an excellent system as it is an active remote sensing technique. As multi-wavelength research lidars with depolarization channels are quite complex and cost-expensive, increasing attention is paid to so-called ceilometers. They are simple one-wavelength backscatter lidars with low pulse energy for eye-safe operation. As maintenance costs are low and continuous and unattended measurements can be performed, they are suitable for long-term aerosol monitoring in a network. However, the signal-to-noise ratio is low, and the signals are not calibrated. The only optical property that can be derived from a ceilometer is the particle backscatter coefficient, but even this quantity requires a calibration of the signals. With four years of measurements from a Jenoptik ceilometer CHM15k-x, we developed two methods for an absolute calibration on this system. This advantage of our approach is that only a few days with favorable meteorological conditions are required where Rayleigh-calibration and comparison with our research lidar is possible to estimate the lidar constant. This method enables us to derive the particle backscatter coefficient at 1064 nm, and we retrieved for the first time profiles in near real-time within an accuracy of 10 %. If an appropriate lidar ratio is assumed the aerosol optical depth of e.g. the mixing layer can be determined with an accuracy depending on the accuracy of the lidar ratio estimate. Even for 'simple' applications, e.g. assessment of the mixing layer height, cloud detection, detection of elevated aerosol layers, the particle backscatter coefficient has significant advantages over the measured (uncalibrated) attenuated backscatter. The possibility of continuous operation under nearly any meteorological condition with temporal resolution in the order of 30 seconds makes it also possible to apply time-height-tracking methods for detecting mixing layer heights. The combination of methods for edge detection (e.g. wavelet covariance transform, gradient method, variance method) and edge tracking techniques is used to increase the reliability of the layer detection and attribution. Thus, a feature mask of aerosols and clouds can be derived. Four years of measurements constitute an excellent basis for a climatology including a homogeneous time series of mixing layer heights, aerosol layers and cloud base heights of the troposphere. With a low overlap region of 180 m of the Jenoptik CHM15k-x even very narrow mixing layers, typical for winter conditions, can be considered.

  14. An Online 3D Database System for Endangered Architectural and Archaeological Heritage in the South-Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Abate, D.; Avgousti, A.; Faka, M.; Hermon, S.; Bakirtzis, N.; Christofi, P.

    2017-10-01

    This study compares performance of aerial image based point clouds (IPCs) and light detection and ranging (LiDAR) based point clouds in detection of thinnings and clear cuts in forests. IPCs are an appealing method to update forest resource data, because of their accuracy in forest height estimation and cost-efficiency of aerial image acquisition. We predicted forest changes over a period of three years by creating difference layers that displayed the difference in height or volume between the initial and subsequent time points. Both IPCs and LiDAR data were used in this process. The IPCs were constructed with the Semi-Global Matching (SGM) algorithm. Difference layers were constructed by calculating differences in fitted height or volume models or in canopy height models (CHMs) from both time points. The LiDAR-derived digital terrain model (DTM) was used to scale heights to above ground level. The study area was classified in logistic regression into the categories ClearCut, Thinning or NoChange with the values from the difference layers. We compared the predicted changes with the true changes verified in the field, and obtained at best a classification accuracy for clear cuts 93.1 % with IPCs and 91.7 % with LiDAR data. However, a classification accuracy for thinnings was only 8.0 % with IPCs. With LiDAR data 41.4 % of thinnings were detected. In conclusion, the LiDAR data proved to be more accurate method to predict the minor changes in forests than IPCs, but both methods are useful in detection of major changes.

  15. A Sensitivity Analysis of the Nocturnal Boundary-Layer Properties to Atmospheric Emissivity Formulations

    NASA Astrophysics Data System (ADS)

    Siqueira, Mario B.; Katul, Gabriel G.

    2010-02-01

    A one-dimensional model for the mean potential temperature within the nocturnal boundary layer (NBL) was used to assess the sensitivity of three NBL properties (height, thermal stratification strength, and near-surface cooling) to three widely used atmospheric emissivity formulations. The calculations revealed that the NBL height is robust to the choice of the emissivity function, though this is not the case for NBL Richardson number and near-surface cooling rate. Rather than endorse one formulation, our analysis highlights the importance of atmospheric emissivity in modelling the radiative properties of the NBL especially for clear-sky conditions.

  16. Comparison of mixed layer heights from airborne high spectral resolution lidar, ground-based measurements, and the WRF-Chem model during CalNex and CARES

    NASA Astrophysics Data System (ADS)

    Scarino, A. J.; Obland, M. D.; Fast, J. D.; Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Berg, L. K.; Lefer, B.; Haman, C.; Hair, J. W.; Rogers, R. R.; Butler, C.; Cook, A. L.; Harper, D. B.

    2013-05-01

    The California Research at the Nexus of Air Quality and Climate Change (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES) field campaigns during May and June 2010 provided a data set appropriate for studying characteristics of the planetary boundary layer (PBL). The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) was deployed to California onboard the NASA LaRC B-200 aircraft to aid in characterizing aerosol properties during these two field campaigns. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 31 flights, many in coordination with other research aircraft and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as the depth and variability of the daytime mixed layer (ML), which is a subset within the PBL. This work illustrates the temporal and spatial variability of the ML in the vicinity of Los Angeles and Sacramento, CA. ML heights derived from HSRL measurements are compared to PBL heights derived from radiosonde profiles, ML heights measured from ceilometers, and simulated PBL heights from the Weather Research and Forecasting Chemistry (WRF-Chem) community model. Comparisons between the HSRL ML heights and the radiosonde profiles in Sacramento result in a correlation coefficient value (R) of 0.93 (root-mean-square (RMS) difference of 157 m and bias difference (HSRL - radiosonde) of 57 m). HSRL ML heights compare well with those from the ceilometer in the LA Basin with an R of 0.89 (RMS difference of 108 m and bias difference (HSRL - Ceilometer) of -9.7 m) for distances of up to 30 km between the B-200 flight track and the ceilometer site. Simulated PBL heights from WRF-Chem were compared with those obtained from all flights for each campaign, producing an R of 0.58 (RMS difference of 604 m and a bias difference (WRF-Chem - HSRL) of -157 m) for CalNex and 0.59 (RMS difference of 689 m and a bias difference (WRF-Chem - HSRL) of 220 m) for CARES. Aerosol backscatter simulations are also available from WRF-Chem and are compared to those from HSRL to examine differences among the methods used to derive ML heights.

  17. Impact of rockfalls on protection measures: an experimental approach

    NASA Astrophysics Data System (ADS)

    Yuan, J.; Li, Y.; Huang, R.; Pei, X.

    2015-01-01

    The determination of rockfall impact force is crucial in designing the protection measures. In the present study, laboratory tests are carried out by taking the weight and shape of the falling rock fragments, drop height, incident angle, platform on the slideway and cushion layer on the protection measures as factors to investigate their influences on the impact force. The test results indicate that the impact force is positively exponential to the weight of rockfall and the instantaneous impact velocity of the rockfall approaching the protection measures. The impact velocity is found to be dominated not only by the drop height but also by the shape of rockfall as well as the length of the platform on the slideway. A great drop height and/or a short platform produce a fast impact velocity. Spherical rockfalls experience a reater impact velocity than cubic and cylindrical ones. A layer of cushion on the protection measures may reduce the impact force to a greater extent. The reduction effects are dominated by the cushion material and the thickness of the cushion layer. The thicker the cushion layer, the greater the reduction effect and the less the impact force. The stiffer the buffer material, the less the buffering effect and the greater the impact force. The present study indicates that the current standard in China for designing protection measures may overestimate the impact force by taking no consideration for the rockfall shape, platform and cushion layer.

  18. Microfluidic channel fabrication method

    DOEpatents

    Arnold, Don W.; Schoeniger, Joseph S.; Cardinale, Gregory F.

    2001-01-01

    A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.

  19. Capacitance-voltage characterization of Al/Al2O3/PVA-PbSe MIS diode

    NASA Astrophysics Data System (ADS)

    Gawri, Isha; Sharma, Mamta; Jindal, Silky; Singh, Harpreet; Tripathi, S. K.

    2018-05-01

    The present paper reports the capacitance-voltage characterization of Al/Al2O3/PVA-PbSe MIS diode using chemical bath deposition method. Here anodic alumina layer prepared using electrolytic deposition method on Al substrate is used as insulating material. Using the capacitance-voltage variation at a fixed frequency, the different parameters such as Depletion layer width, Barrier height, Built-in voltage and Carrier concentration has been calculated at room temperature as well as at temperature range from 123 K to 323 K. With the increase in temperature the barrier height and depletion layer width follow a decreasing trend. Therefore, the capacitance-voltage characterization at different temperatures characterization provides strong evidence that the properties of MIS diode are primarily affected by diode parameters.

  20. Correlations between In Situ Conductivity and Uniform-Height Epitaxial Morphology in Pb / Si ( 1 1 1 ) ₋ ( 7 × 7 )

    DOE PAGES

    Jałochowski, M.; Zdyb, R.; Tringides, M. C.

    2016-02-23

    The growth of Pb on Si(111)-7x7 at temperatures from 72 K to 201 K has been investigated using in situ electrical resistivity measurements and Scanning Tunneling Microscopy (STM). For temperatures T>140 K the specific resistivity ρ(θ) vs coverage θ shows an unusual "hump", instead of the expected monotonic decrease with θ. This novel result correlates well with the formation of uniform height 8-layer Pb islands and the superdiffusive motion of the wetting layer, despite the low temperatures. A model of the film resistivity as two resistors in series, the amorphous wetting layer and the crystalline islands, explains quantitatively the resistivitymore » dependence on θ.« less

  1. 46 CFR 164.009-15 - Test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... material, is less than 47 mm, the specimens prepared consist of layers of the sample. (3) If the sample is a composite material and has a height that is not 50 ±3mm, the layers of the specimen prepared are proportional in thickness to the layers of the sample. (4) The top and bottom faces of each specimen prepared...

  2. Development and applications of the LANDFIRE forest structure layers

    Treesearch

    Chris Toney; Birgit Peterson; Don Long; Russ Parsons; Greg Cohn

    2012-01-01

    The LANDFIRE program is developing 2010 maps of vegetation and wildland fuel attributes for the United States at 30-meter resolution. Currently available vegetation layers include ca. 2001 and 2008 forest canopy cover and canopy height derived from Landsat and Forest Inventory and Analysis (FIA) plot measurements. The LANDFIRE canopy cover layer for the conterminous...

  3. Investigation of sacrificial layer and building block for layered nanofabrication (LNF)

    NASA Astrophysics Data System (ADS)

    Shih, Ting-Yu

    Layered Nanoscale Fabrication (LNF) is a "bottom-up" procedure that uses multiple layers to build 3-dimensional nanoscale structures. Here, in this dissertation, several candidates for sacrificial layers were explored, The thermal stability of gold nanoparticles and simple patterns are also reported. In order to obtain information on layer thickness and film quality; the samples were characterized using atomic force microscopy (AFM) and ellipsometry. Octadecyltrichlorosilane (OTS) was first investigated for use as a sacrificial layer and we studied filth growth by targeted self-replication of silane multilayers with and without the presence of thiolated gold nanoparticles on silicon oxide substrates. The particles adhered to the substrate during layer grafting. The film grew selectively on the substrate, without covering the particles. AFM was used to investigate the growth mechanism and the process of embedding the nanoparticles. OTS multilayer films up to 9 layers were grown in a linear, bilayer-by bilayer mode, free of islands and defects. We also report on studies of monolayer and multilayer formation of Methyl-11-dimethylmonochlorosilyl-undecanoate films. Flat multilayers up to 3-layers thick were grown. AFM was used to measure the height of an observable "edge" of the multilayer film and this provides and independent determination of the MOSUD layer height of 1.5 nm: However, the particles detached from the surface when we attempted to grow multilayer. One strategy of linking the particles to form 2D arrays, thermal activation in ambient air, was investigated. The morphological properties of flaked nanoparticles and structures on silicon oxide substrates before and after heating were characterized by using AFM. For widely separated 5 nm gold nanoparticles height decreased over 50% at 600 °C. Further heating to 630 °C caused most particles to completely disappear, with small amount of particle residue left on the surface. Particles positioned near to other particles first formed a neck-like structure at 570 °C and then deformed into one wide particle with tail-shape residue at 650 °C. Clusters of Au nanoparticles rearranged and became one large collide with particles residues left on the surface at 630 °C.

  4. The Parameterization of PBL height with Helicity and preliminary Application in Tropical Cyclone Prediction

    NASA Astrophysics Data System (ADS)

    Ma, Leiming

    2015-04-01

    Planetary Boundary Layer (PBL) plays an important role in transferring the energy and moisture from ocean to tropical cyclone (TC). Thus, the accuracy of PBL parameterization determines the performance of numerical model on TC prediction to a large extent. Among various components of PBL parameterization, the definition on the height of PBL is the first should be concerned, which determines the vertical scale of PBL and the associated processes of turbulence in different scales. However, up to now, there is lacked consensus on how to define the height of PBL in the TC research community. The PBL heights represented by current numerical models usually exhibits significant difference with TC observation (e.g., Zhang et al., 2011; Storm et al., 2008), leading to the rapid growth of error in TC prediction. In an effort to narrow the gap between PBL parameterization and reality, this study presents a new parameterization scheme for the definition of PBL height. Instead of using traditional definition for PBL height with Richardson number, which has been verified not appropriate for the strongly sheared structure of TC PBL in recent observation studies, the new scheme employs a dynamical definition based on the conception of helicity. In this sense the spiral structures associated with inflow layer and rolls are expected to be represented in PBL parameterization. By defining the PBL height at each grid point, the new scheme also avoids to assume the symmetric inflow layer that is usually implemented in observational studies. The new scheme is applied to the Yonsei University (YSU) scheme in the Weather Research and Forecasting (WRF) model of US National Center for Atmospheric Research (NCAR) and verified with numerical experiments on TC Morakot (2009), which brought torrential rainfall and disaster to Taiwan and China mainland during landfall. The Morakot case is selected in this study to examine the performance of the new scheme in representing various structures of PBL over land and ocean. The results of simulations show that, in addition to enhancing the PBL height in the situation of intensive convection, the new scheme also significantly reduces the PBL height and 2m-temperature over land during the night time, a well-known problem for YSU scheme according to previous studies. The activity of PBL processes are modulated due to the improved PBL height, which ultimately leads to the improvement of prediction on TC Morakot. Key Words: PBL; Parameterization; Numerical Prediction; Tropical Cyclone Acknowledgements. This study was jointly supported by the Chinese National 973 Project (No. 2013CB430300, and No. 2009CB421500) and grant from the National Natural Science Foundation (No. 41475059). References Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks Jr., 2011: On the characteristic height scales of the hurricane boundary layer, Mon. Weather Rev., 139, 2523-2535. Storm B., J. Dudhia, S. Basu, et al., 2008: Evaluation of the Weather Research and Forecasting Model on forecasting Low-level Jets: Implications for Wind Energy. Wind Energ., DOI: 10.1002/we.

  5. Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign

    NASA Astrophysics Data System (ADS)

    Lee, S.-H.; Kim, S.-W.; Angevine, W. M.; Bianco, L.; McKeen, S. A.; Senff, C. J.; Trainer, M.; Tucker, S. C.; Zamora, R. J.

    2010-10-01

    The impact of urban surface parameterizations in the WRF (Weather Research and Forecasting) model on the simulation of local meteorological fields is investigated. The Noah land surface model (LSM), a modified LSM, and a single-layer urban canopy model (UCM) have been compared, focusing on urban patches. The model simulations were performed for 6 days from 12 August to 17 August during the Texas Air Quality Study 2006 field campaign. Analysis was focused on the Houston-Galveston metropolitan area. The model simulated temperature, wind, and atmospheric boundary layer (ABL) height were compared with observations from surface meteorological stations (Continuous Ambient Monitoring Stations, CAMS), wind profilers, the NOAA Twin Otter aircraft, and the NOAA Research Vessel Ronald H. Brown. The UCM simulation showed better results in the comparison of ABL height and surface temperature than the LSM simulations, whereas the original LSM overestimated both the surface temperature and ABL height significantly in urban areas. The modified LSM, which activates hydrological processes associated with urban vegetation mainly through transpiration, slightly reduced warm and high biases in surface temperature and ABL height. A comparison of surface energy balance fluxes in an urban area indicated the UCM reproduces a realistic partitioning of sensible heat and latent heat fluxes, consequently improving the simulation of urban boundary layer. However, the LSMs have a higher Bowen ratio than the observation due to significant suppression of latent heat flux. The comparison results suggest that the subgrid heterogeneity by urban vegetation and urban morphological characteristics should be taken into account along with the associated physical parameterizations for accurate simulation of urban boundary layer if the region of interest has a large fraction of vegetation within the urban patch. Model showed significant discrepancies in the specific meteorological conditions when nocturnal low-level jets exist and a thermal internal boundary layer over water forms.

  6. Understanding the Effects of a High Surface Area Nanostructured Indium Tin Oxide Electrode on Organic Solar Cell Performance.

    PubMed

    Cao, Bing; He, Xiaoming; Sorge, Jason B; Lalany, Abeed; Ahadi, Kaveh; Afshar, Amir; Olsen, Brian C; Hauger, Tate C; Mobarok, Md Hosnay; Li, Peng; Cadien, Kenneth C; Brett, Michael J; Luber, Erik J; Buriak, Jillian M

    2017-11-08

    Organic solar cells (OSCs) are a complex assembly of disparate materials, each with a precise function within the device. Typically, the electrodes are flat, and the device is fabricated through a layering approach of the interfacial layers and photoactive materials. This work explores the integration of high surface area transparent electrodes to investigate the possible role(s) a three-dimensional electrode could take within an OSC, with a BHJ composed of a donor-acceptor combination with a high degree of electron and hole mobility mismatch. Nanotree indium tin oxide (ITO) electrodes were prepared via glancing angle deposition, structures that were previously demonstrated to be single-crystalline. A thin layer of zinc oxide was deposited on the ITO nanotrees via atomic layer deposition, followed by a self-assembled monolayer of C 60 -based molecules that was bound to the zinc oxide surface through a carboxylic acid group. Infiltration of these functionalized ITO nanotrees with the photoactive layer, the bulk heterojunction comprising PC 71 BM and a high hole mobility low band gap polymer (PDPPTT-T-TT), led to families of devices that were analyzed for the effect of nanotree height. When the height was varied from 0 to 50, 75, 100, and 120 nm, statistically significant differences in device performance were noted with the maximum device efficiencies observed with a nanotree height of 75 nm. From analysis of these results, it was found that the intrinsic mobility mismatch between the donor and acceptor phases could be compensated for when the electron collection length was reduced relative to the hole collection length, resulting in more balanced charge extraction and reduced recombination, leading to improved efficiencies. However, as the ITO nanotrees increased in height and branching, the decrease in electron collection length was offset by an increase in hole collection length and potential deleterious electric field redistribution effects, resulting in decreased efficiency.

  7. Space-Time Urban Air Pollution Forecasts

    NASA Astrophysics Data System (ADS)

    Russo, A.; Trigo, R. M.; Soares, A.

    2012-04-01

    Air pollution, like other natural phenomena, may be considered a space-time process. However, the simultaneous integration of time and space is not an easy task to perform, due to the existence of different uncertainties levels and data characteristics. In this work we propose a hybrid method that combines geostatistical and neural models to analyze PM10 time series recorded in the urban area of Lisbon (Portugal) for the 2002-2006 period and to produce forecasts. Geostatistical models have been widely used to characterize air pollution in urban areas, where the pollutant sources are considered diffuse, and also to industrial areas with localized emission sources. It should be stressed however that most geostatistical models correspond basically to an interpolation methodology (estimation, simulation) of a set of variables in a spatial or space-time domain. The temporal prediction of a pollutant usually requires knowledge of the main trends and complex patterns of physical dispersion phenomenon. To deal with low resolution problems and to enhance reliability of predictions, an approach based on neural network short term predictions in the monitoring stations which behave as a local conditioner to a fine grid stochastic simulation model is presented here. After the pollutant concentration is predicted for a given time period at the monitoring stations, we can use the local conditional distributions of observed values, given the predicted value for that period, to perform the spatial simulations for the entire area and consequently evaluate the spatial uncertainty of pollutant concentration. To attain this objective, we propose the use of direct sequential simulations with local distributions. With this approach one succeed to predict the space-time distribution of pollutant concentration that accounts for the time prediction uncertainty (reflecting the neural networks efficiency at each local monitoring station) and the spatial uncertainty as revealed by the spatial variograms. The dataset used consists of PM10 concentrations recorded hourly by 12 monitoring stations within the Lisbon's area, for the period 2002-2006. In addition, meteorological data recorded at 3 monitoring stations and boundary layer height (BLH) daily values from the ECMWF (European Centre for Medium Weather Forecast), ERA Interim, were also used. Based on the large-scale standard pressure fields from the ERA40/ECMWF, prevailing circulation patterns at regional scale where determined and used on the construction of the models. After the daily forecasts were produced, the difference between the average maps based on real observations and predicted values were determined and the model's performance was assessed. Based on the analysis of the results, we conclude that the proposed approach shows to be a very promising alternative for urban air quality characterization because of its good results and simplicity of application.

  8. Customized three-dimensional printed optical phantoms with user defined absorption and scattering

    NASA Astrophysics Data System (ADS)

    Pannem, Sanjana; Sweer, Jordan; Diep, Phuong; Lo, Justine; Snyder, Michael; Stueber, Gabriella; Zhao, Yanyu; Tabassum, Syeda; Istfan, Raeef; Wu, Junjie; Erramilli, Shyamsunder; Roblyer, Darren M.

    2016-03-01

    The use of reliable tissue-simulating phantoms spans multiple applications in spectroscopic imaging including device calibration and testing of new imaging procedures. Three-dimensional (3D) printing allows for the possibility of optical phantoms with arbitrary geometries and spatially varying optical properties. We recently demonstrated the ability to 3D print tissue-simulating phantoms with customized absorption (μa) and reduced scattering (μs`) by incorporating nigrosin, an absorbing dye, and titanium dioxide (TiO2), a scattering agent, to acrylonitrile butadiene styrene (ABS) during filament extrusion. A physiologically relevant range of μa and μs` was demonstrated with high repeatability. We expand our prior work here by evaluating the effect of two important 3D-printing parameters, percent infill and layer height, on both μa and μs`. 2 cm3 cubes were printed with percent infill ranging from 10% to 100% and layer height ranging from 0.15 to 0.40 mm. The range in μa and μs` was 27.3% and 19.5% respectively for different percent infills at 471 nm. For varying layer height, the range in μa and μs` was 27.8% and 15.4% respectively at 471 nm. These results indicate that percent infill and layer height substantially alter optical properties and should be carefully controlled during phantom fabrication. Through the use of inexpensive hobby-level printers, the fabrication of optical phantoms may advance the complexity and availability of fully customizable phantoms over multiple spatial scales. This technique exhibits a wider range of adaptability than other common methods of fabricating optical phantoms and may lead to improved instrument characterization and calibration.

  9. Error sources in the retrieval of aerosol information over bright surfaces from satellite measurements in the oxygen A band

    NASA Astrophysics Data System (ADS)

    Nanda, Swadhin; de Graaf, Martin; Sneep, Maarten; de Haan, Johan F.; Stammes, Piet; Sanders, Abram F. J.; Tuinder, Olaf; Pepijn Veefkind, J.; Levelt, Pieternel F.

    2018-01-01

    Retrieving aerosol optical thickness and aerosol layer height over a bright surface from measured top-of-atmosphere reflectance spectrum in the oxygen A band is known to be challenging, often resulting in large errors. In certain atmospheric conditions and viewing geometries, a loss of sensitivity to aerosol optical thickness has been reported in the literature. This loss of sensitivity has been attributed to a phenomenon known as critical surface albedo regime, which is a range of surface albedos for which the top-of-atmosphere reflectance has minimal sensitivity to aerosol optical thickness. This paper extends the concept of critical surface albedo for aerosol layer height retrievals in the oxygen A band, and discusses its implications. The underlying physics are introduced by analysing the top-of-atmosphere reflectance spectrum as a sum of atmospheric path contribution and surface contribution, obtained using a radiative transfer model. Furthermore, error analysis of an aerosol layer height retrieval algorithm is conducted over dark and bright surfaces to show the dependence on surface reflectance. The analysis shows that the derivative with respect to aerosol layer height of the atmospheric path contribution to the top-of-atmosphere reflectance is opposite in sign to that of the surface contribution - an increase in surface brightness results in a decrease in information content. In the case of aerosol optical thickness, these derivatives are anti-correlated, leading to large retrieval errors in high surface albedo regimes. The consequence of this anti-correlation is demonstrated with measured spectra in the oxygen A band from the GOME-2 instrument on board the Metop-A satellite over the 2010 Russian wildfires incident.

  10. Radiative Effects of African Dust and Smoke Observed from CERES and CALIOP Data

    NASA Technical Reports Server (NTRS)

    Yorks, John E.; McGill, Matt; Rodier, Sharon; Vaughan, Mark; Xu, Yongxiang; Hlavka, Dennis

    2009-01-01

    Cloud and aerosol effects have a significant impact on the atmospheric radiation budget in the Tropical Atlantic because of the spatial and temporal extent of desert dust and smoke from biomass burning in the atmosphere. The influences of African dust and smoke aerosols on cloud radiative properties over the Tropical Atlantic Ocean were analyzed for the month of July for three years (2006-2008) using collocated data collected by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Clouds and the Earth s Radiant Energy System (CERES) instruments on the CALIPSO and Aqua satellites. Aerosol layer height and type can be more accurately determined using CALIOP data, through parameters such as cloud and aerosol layer height, optical depth and depolarization ratio, than data from atmospheric imagers used in previous cloud-aerosol interaction studies. On average, clouds below 5 km had a daytime instantaneous shortwave (SW) radiative flux of 270.2 +/- 16.9 W/sq m and thin cirrus clouds had a SW radiative flux of 208.0 +/- 12.7 W/sq m. When dust aerosols interacted with clouds below 5 km, as determined from CALIPSO, the SW radiative flux decreased to 205.4 +/- 13.0 W/sq m. Similarly, smoke aerosols decreased the SW radiative flux of low clouds to a value of 240.0 +/- 16.6 W/sq m. These decreases in SW radiative flux were likely attributed to the aerosol layer height and changes in cloud microphysics. CALIOP lidar observations, which more accurately identify aerosol layer height than passive instruments, appear essential for better understanding of cloud-aerosol interactions, a major uncertainty in predicting the climate system.

  11. Determination of smoke plume and layer heights using scanning lidar data

    Treesearch

    Vladimir A. Kovalev; Alexander Petkov; Cyle Wold; Shawn Urbanski; Wei Min Hao

    2009-01-01

    The methodology of using mobile scanning lidar data for investigation of smoke plume rise and high-resolution smoke dispersion is considered. The methodology is based on the lidar-signal transformation proposed recently [Appl. Opt. 48, 2559 (2009)]. In this study, similar methodology is used to create the atmospheric heterogeneity height indicator (HHI...

  12. Electrode Plate For An Eletrlchemical Cell And Having A Metal Foam Type Support, And A Method Of Obtaining Such An Electrode

    DOEpatents

    Verhoog, Roelof; Precigout, Claude; Stewart, Donald

    1996-05-21

    The electrode plate includes an active portion that is pasted with active material, and a plate head that is made up of three layers of compressed metal foam comprising: a non-pasted portion of height G of the support of the electrode plate; and two strips of non-pasted metal foam of height R on either side of the non-pasted portion of height G of the support and also extending for an overlap height h.sub.2 over the pasted portion of the support. The plate head includes a zone of reduced thickness including a portion that is maximally compressed, and a transitional portion between said maximally compressed portion and the remainder of the electrode which is of thickness e.sub.2. A portion of said plate head forms a connection tab. The method of obtaining the electrode consists in simultaneously rolling all three layers of metal foam in the plate head, and then in cutting matter away from the plates so as to obtain respective connection tabs.

  13. Geomagnetic Storm Effects at F1 Layer Altitudes in Various Periods of Solar Activity (Irkutsk Station)

    NASA Astrophysics Data System (ADS)

    Kushnarenko, G. P.; Yakovleva, O. E.; Kuznetsova, G. M.

    2018-03-01

    The influence of geomagnetic disturbances on electron density Ne at F1 layer altitudes in different conditions of solar activity during the autumnal and vernal seasons of 2003-2015, according to the data from the Irkutsk digital ionospheric station (52° N, 104° E) is examined. Variations of Ne at heights of 150-190 km during the periods of twenty medium-scale and strong geomagnetic storms have been analyzed. At these specified heights, a vernal-autumn asymmetry of geomagnetic storm effects is discovered in all periods of solar activity of 2003-2015: a considerable Ne decrease at a height of 190 km and a weaker effect at lower levels during the autumnal storms. During vernal storms, no significant Ne decrease as compared with quiet conditions was registered over the entire analyzed interval of 150-190 km.

  14. Computation of turbulent flow in a thin liquid layer of fluid involving a hydraulic jump

    NASA Technical Reports Server (NTRS)

    Rahman, M. M.; Faghri, A.; Hankey, W. L.

    1991-01-01

    Numerically computed flow fields and free surface height distributions are presented for the flow of a thin layer of liquid adjacent to a solid horizontal surface that encounters a hydraulic jump. Two kinds of flow configurations are considered: two-dimensional plane flow and axisymmetric radial flow. The computations used a boundary-fitted moving grid method with a k-epsilon model for the closure of turbulence. The free surface height was determined by an optimization procedure which minimized the error in the pressure distribution on the free surface. It was also checked against an approximate procedure involving integration of the governing equations and use of the MacCormack predictor-corrector method. The computed film height also compared reasonably well with previous experiments. A region of recirculating flow was found to be present adjacent to the solid boundary near the location of the jump, which was caused by a rapid deceleration of the flow.

  15. Online Chapmann Layer Calculator for Simulating the Ionosphere with Undergraduate and Graduate Students

    NASA Astrophysics Data System (ADS)

    Gross, N. A.; Withers, P.; Sojka, J. J.

    2014-12-01

    The Chapman Layer Model is a "textbook" model of the ionosphere (for example, "Theory of Planetary Atmospheres" by Chamberlain and Hunten, Academic Press (1978)). The model use fundamental assumptions about the neutral atmosphere, the flux of ionizing radiation, and the recombination rate to calculation the ionization rate, and ion/electron density for a single species atmosphere. We have developed a "Chapman Layer Calculator" application that is deployed on the web using Java. It allows the user to see how various parameters control ion density, peak height, and profile of the ionospheric layer. Users can adjust parameters relevant to thermosphere scale height (temperature, gravitational acceleration, molecular weight, neutral atmosphere density) and to Extreme Ultraviolet solar flux (reference EUV, distance from the Sun, and solar Zenith Angle) and then see how the layer changes. This allows the user to simulate the ionosphere on other planets, by adjusting to the appropriate parameters. This simulation has been used as an exploratory activity for the NASA/LWS - Heliophysics Summer School 2014 and has an accompanying activity guide.

  16. Experiments on Hypersonic Roughness Induced Transition by Means of Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Schrijer, F. F. J.; Scarano, F.; van Oudheusden, B. W.; Bannink, W. J.

    2005-02-01

    Roughness induced boundary layer transition is experimentally investigated in the hypersonic flow regime at M = 9. The primary interest is the possible effect of stepwise geometry imperfections (2D isolated roughness) on (boundary layer) transition which may be caused on the EXPERT vehicle by the difference in thermal expansion due to the different materials used in the vehicle-nose construction. Also 3D isolated and 3D distributed roughness configurations were studied. Quantitative Infra-Red Thermography (QIRT) is used as primary diagnostic technique to measure the surface convective heat transfer and to detect boundary layer laminar-to-turbulent transition. The investigation shows that for a given height of the roughness element, the boundary layer is least sensitive to a step-like disturbance, whereas distributed 3D roughness was found to be effective in triggering transition. The experimental results have been compared to existing hypersonic transition correlations (PANT and Shuttle). Finally a transition criterion is evaluated which is based on the critical roughness height Reynolds number. Usage of this criterion enables a straightforward extrapolation to flight. Key words: hypersonic flow, boundary layer transition.

  17. Dryline on 22 May 2002 During IHOP: Convective Scale Measurements at the Profiling Site

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Flamant, Cyrille; Miller, David; Evans, Keith; Fabry, Federic; DiGirolamo, Paolo; Whiteman, David; Geerts, Bart; Weckwerth, Tammy; Brown, William

    2004-01-01

    A unique set of measurements of wind, water vapor mixing ratio and boundary layer height variability was observed during the first MOP dryline mission of 22 May 2002. Water vapor mixing ratio from the Scanning Raman Lidar (SRL), high-resolution profiles of aerosol backscatter from the HARLIE and wind profiles from the GLOW are combined with the vertical velocity derived from the NCAR/ISS/MAPR and the high-resolution FMCW radar to reveal the convective variability of the cumulus cloud-topped boundary layer. A combined analysis of the in-situ and remote sensing data from aircraft, radiosonde, lidars, and radars reveals moisture variability within boundary layer updraft and downdraft regions as well as characterizes the boundary layer height variability in the dry and moist sides of the dryline. The profiler site measurements will be tied to aircraft data to reveal the relative intensity and location of these updrafts to the dry line. This study provides unprecedented high temporal and spatial resolution measurements of wind, moisture and backscatter within a dryline and the associated convective boundary layer.

  18. Estimation of the marine boundary layer height over the central North Pacific using GPS radio occultation

    NASA Astrophysics Data System (ADS)

    Winning, Thomas E.; Chen, Yi-Leng; Xie, Feiqin

    2017-01-01

    Global positioning system radio occultation (GPS RO) refractivity data obtained from the first Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) for the years 2007 to 2012 were used to estimate an overall climatology for the height of the marine boundary layer (MBL) over the central North Pacific Ocean including the Hawaiian Island region (10°N-45°N; 125°W-175°W). The trade wind days are identified based on the six-year National Centers for Environmental Prediction (NCEP) global analysis for the same period. About 87% of the RO soundings in summer (June-July-August, JJA) and 47% in winter (December-January-February, DJF) are under trade wind conditions. The MBL height climatology under trade wind conditions is derived and compared to the overall climatology. In general, MBL heights are lowest adjacent to the southern coast of California and gradually increase to the south and west. During the summer (JJA) when the northeasterly trade winds are the dominant surface flow, the median MBL height decreases from 2.0 km over Kauai to 1.9 km over the Big Island with an approximate 2 km maximum that progresses from southwest to northeast throughout the year. If the surface flow is restricted to trade winds only, the maximum MBL heights are located over the same areas, but they increase to a median height of 1.8 km during DJF and 2.1 km during JJA. For the first time, the GPS RO technique allows the depiction of the spatial variations of the MBL height climatology over the central North Pacific.

  19. Herbaceious layer and soil response to experimental acidification in a central Appalachian hardwood forest

    Treesearch

    Frank S. Gilliam; Nicole L. Turrill; Staci D. Aulick; Dan K. Evans; Mary Beth Adams

    1994-01-01

    The herbaceous layer (vascular plants ≤1 m in height) is an important component of forest ecosystems and a potentially sensitive vegetation stratum in response to acid deposition. This study tested several hypotheses concerning soil and herbaceous layer response to experimental acidification at the Fernow Experimental Forest in north-central West Virginia. Fifteen...

  20. Inventory of File gfs.t06z.smartguam24.tm00.grib2

    Science.gov Websites

    boundary layer WDIR 24 hour fcst Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND 24 hour fcst Wind Speed [m/s] 017 planetary boundary layer RH 24 hour fcst Relative Humidity [%] 018 planetary boundary layer DIST 24 hour fcst Geometric Height [m] 019 surface 4LFTX 24 hour fcst

  1. A fast wind-farm boundary-layer model to investigate gravity wave effects and upstream flow deceleration

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2017-11-01

    Wind farm design and control often relies on fast analytical wake models to predict turbine wake interactions and associated power losses. Essential input to these models are the inflow velocity and turbulent intensity at hub height, which come from prior measurement campaigns or wind-atlas data. Recent LES studies showed that in some situations large wind farms excite atmospheric gravity waves, which in turn affect the upstream wind conditions. In the current study, we develop a fast boundary-layer model that computes the excitation of gravity waves and the perturbation of the boundary-layer flow in response to an applied force. The core of the model is constituted by height-averaged, linearised Navier-Stokes equations for the inner and outer layer, and the effect of atmospheric gravity waves (excited by the boundary-layer displacement) is included via the pressure gradient. Coupling with analytical wake models allows us to study wind-farm wakes and upstream flow deceleration in various atmospheric conditions. Comparison with wind-farm LES results shows excellent agreement in terms of pressure and boundary-layer displacement levels. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  2. Improved Modeling of Surface Layer Parameters in a AGCM Using Refined Vertical Resolution in the Surface Layer

    NASA Astrophysics Data System (ADS)

    Shin, H. H.; Zhao, M.; Ming, Y.; Chen, X.; Lin, S. J.

    2017-12-01

    Surface layer (SL) parameters in atmospheric models - such as 2-m air temperature (T2), 10-m wind speed (U10), and surface turbulent fluxes - are computed by applying the Monin-Obukhov Similarity Theory (MOST) to the lowest model level height (LMH) in the models. The underlying assumption is that LMH is within surface layer height (SLH), but most AGCMs hardly meet the condition in stable boundary layers (SBLs) over land. To assess the errors in modeled SL parameters caused by this, offline computations of the MOST are performed with different LMHs from 1 to 100 m, for an idealized SBL case with prescribed surface parameters (surface temperature, roughness length and Obukhov length), and vertical profiles of temperature and winds. The results show that when LMH is higher than SLH, T2 and U10 are underestimated by O(1 K) and O(1 m/s), respectively, and the biases increase as LMH increases. Based on this, the refined vertical resolution with an additional layer in the SL is applied to the GFDL AGCM, and it reduces the systematic cold biases in T2 and the systematic underestimation of U10.

  3. Simulations of thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model

    NASA Astrophysics Data System (ADS)

    Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg

    2017-11-01

    Operating a liquid-metal battery produces Ohmic losses in the electrolyte layer that separates both metal electrodes. As a consequence, temperature gradients establish which potentially cause thermal convection since density and interfacial tension depend on the local temperature. In our numerical investigations, we considered three plane, immiscible layers governed by the Navier-Stokes-Boussinesq equations held at a constant temperature of 500°C at the bottom and top. A homogeneous current is applied that leads to a preferential heating of the mid electrolyte layer. We chose a typical material combination of Li separated by LiCl-KCl (a molten salt) from Pb-Bi for which we analyzed the linear stability of pure thermal conduction and performed three-dimensional direct-numerical simulations by a pseudospectral method probing different: electrolyte layer heights, overall heights, and current densities. Four instability mechanisms are identified, which are partly coupled to each other: buoyant convection in the upper electrode, buoyant convection in the molten salt layer, and Marangoni convection at both interfaces between molten salt and electrode. The global turbulent heat transfer follows scaling predictions for internally heated buoyant convection. Financial support by the Deutsche Forschungsgemeinschaft under Grant No. KO 5515/1-1 is gratefully acknowledged.

  4. Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition

    PubMed Central

    Liang, Junsheng; Li, Pengfei; Wang, Dazhi; Fang, Xu; Ding, Jiahong; Wu, Junxiong; Tang, Chang

    2016-01-01

    Dense and crack-free barium titanate (BaTiO3, BTO) thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet) deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film. PMID:28787860

  5. Relationship between boundary layer heights and growth rates with ground-level ozone in Houston, Texas

    NASA Astrophysics Data System (ADS)

    Haman, C. L.; Couzo, E.; Flynn, J. H.; Vizuete, W.; Heffron, B.; Lefer, B. L.

    2014-05-01

    Measurements and predictions of ambient ozone (O3), planetary boundary layer (PBL) height, the surface energy budget, wind speed, and other meteorological parameters were made near downtown Houston, Texas, and were used to investigate meteorological controls on elevated levels of ground-level O3. Days during the study period (1 April 2009 to 31 December 2010 for measurements and 15 April 2009 to 17 October 2009 for modeled) were classified into low (LO3) and high ozone (HO3) days. The majority of observed high HO3 days occurred in a postfrontal environment. Observations showed there is not a significant difference in daily maximum PBL heights on HO3 and LO3 days. Modeling results showed large differences between maximum PBL heights on HO3 and LO3 days. Nighttime and early morning observed and modeled PBL heights are consistently lower on HO3 days than on LO3 days. The observed spring LO3 days had the most rapid early morning PBL growth (~350 m h-1) while the fall HO3 group had the slowest (~200 m h-1). The predicted maximum average hourly morning PBL growth rates were greater on HO3 (624 m h-1) days than LO3 days (361 m h-1). Observed turbulent mixing parameters were up to 2-3 times weaker on HO3 days, which indicate large-scale subsidence associated with high-pressure systems (leading to clear skies and weak winds) substantially suppresses mixing. Lower surface layer ventilation coefficients were present in the morning on HO3 days in the spring and fall, which promotes the accumulation of O3 precursors near the surface.

  6. Deep Convective Cloud Top Heights and Their Thermodynamic Control During CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Sherwood, Steven C.; Minnis, Patrick; McGill, Matthew

    2004-01-01

    Infrared (11 micron) radiances from GOES-8 and local radiosonde profiles, collected during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) in July 2002, are used to assess the vertical distribution of Florida-area deep convective cloud top height and test predictions as to its variation based on parcel theory. The highest infrared tops (Z(sub 11)) reached approximately to the cold point, though there is at least a 1-km uncertainty due to unknown cloud-environment temperature differences. Since lidar shows that visible 'tops' are 1 km or more above Z(sub 11), visible cloud tops frequently penetrated the lapse-rate tropopause (approx. 15 km). Further, since lofted ice content may be present up to approx. 1 km above the visible tops, lofting of moisture through the mean cold point (15.4 km) was probably common. Morning clouds, and those near Key West, rarely penetrated the tropopause. Non-entraining parcel theory (i.e., CAPE) does not successfully explain either of these results, but can explain some of the day-to-day variations in cloud top height over the peninsula. Further, moisture variations above the boundary layer account for most of the day-today variability not explained by CAPE, especially over the oceans. In all locations, a 20% increase in mean mixing ratio between 750 and 500 hPa was associated with about 1 km deeper maximum cloud penetration relative to the neutral level. These results suggest that parcel theory may be useful for predicting changes in cumulus cloud height over time, but that parcel entrainment must be taken into account even for the tallest clouds. Accordingly, relative humidity above the boundary layer may exert some control on the height of the tropical troposphere.

  7. Importance of Thickness in Human Cardiomyocyte Network for Effective Electrophysiological Stimulation Using On-Chip Extracellular Microelectrodes

    NASA Astrophysics Data System (ADS)

    Hamada, Tomoyo; Nomura, Fumimasa; Kaneko, Tomoyuki; Yasuda, Kenji

    2012-06-01

    We have developed a three-dimensionally controlled in vitro human cardiomyocyte network assay for the measurements of drug-induced conductivity changes and the appearance of fatal arrhythmia such as ventricular tachycardia/fibrillation for more precise in vitro predictive cardiotoxicity. To construct an artificial conductance propagation model of a human cardiomyocyte network, first, we examined the cell concentration dependence of the cell network heights and found the existence of a height limit of cell networks, which was double-layer height, whereas the cardiomyocytes were effectively and homogeneously cultivated within the microchamber maintaining their spatial distribution constant and their electrophysiological conductance and propagation were successfully recorded using a microelectrode array set on the bottom of the microchamber. The pacing ability of a cardiomyocyte's electrophysiological response has been evaluated using microelectrode extracellular stimulation, and the stimulation for pacing also successfully regulated the beating frequencies of two-layered cardiomyocyte networks, whereas monolayered cardiomyocyte networks were hardly stimulated by the external electrodes using the two-layered cardiomyocyte stimulation condition. The stability of the lined-up shape of human cardiomyocytes within the rectangularly arranged agarose microchambers was limited for a two-layered cardiomyocyte network because their stronger force generation shrunk those cells after peeling off the substrate. The results indicate the importance of fabrication technology of thickness control of cellular networks for effective extracellular stimulation and the potential concerning thick cardiomyocyte networks for long-term cultivation.

  8. Status of the Topside Vary-Chap Ionospheric Model

    NASA Astrophysics Data System (ADS)

    Reinisch, Bodo; Nsumei, Patrick; Huang, Xueqin; Bilitza, Dieter

    Status of the Topside Vary-Chap Ionospheric Model The general alpha-Chapman function for a multi-constituent gas which includes a continuously varying scale height and was therefore dubbed the Vary-Chap function, can present the topside electron density profiles in analytical form. The Vary-Chap profile is defined by the scale height function H(h) and the height and density of the F2 layer peak. By expressing 80,000 ISIS-2 measured topside density profiles as Vary-Chap functions we derived 80,000 scale height functions, which form the basis for the topside density profile modeling. The normalized scale height profiles Hn = H(h)/Hm were grouped according to season, MLAT, and MLT for each 50 km height bin from 200 km to 1400 km, and the median, lower, and upper quartiles for each bin were calculated. Hm is the scale height at the F2 layer peak. The resulting Hn functions are modeled in terms of hyperbolic tangent functions using 5 parameters that are determined by multivariate least squares, including the transition height hT where the scale height gradient has a maximum. These normalized scale height functions, representing the model of the topside electron density profiles from hmF2 to 1,400 km altitude, are independent of hmF2 and NmF2 and can therefore be directly used for the topside Ne profile in IRI. Similarly, this model can extend measured bottomside profiles to the topside, replacing the simple alpha-Chapman function with constant scale height that is currently used for construction of the topside profile in the Digisondes / ARTIST of the Global Ionospheric Radio Observatory (GIRO). It turns out that Hm(top) calculated from the topside profiles is generally several times larger than Hm(bot) derived from the bottomside profiles. This follows necessarily from the difference in the definition of the scale height functions for the topside and bottomside profiles. The diurnal variations of the ratio Hm(top) / Hm(bot) has been determined for different latitudes which makes it now possible to specify the topside profile for any given bottomside profile.

  9. The Impact of the Afternoon Planetary Boundary-Layer Height on the Diurnal Cycle of CO and CO2 Mixing Ratios at a Low-Altitude Mountaintop

    NASA Astrophysics Data System (ADS)

    Lee, Temple R.; De Wekker, Stephan F. J.; Pal, Sandip

    2018-02-01

    Mountaintop trace-gas mixing ratios are often assumed to represent free atmospheric values, but are affected by valley planetary boundary-layer (PBL) air at certain times. We hypothesize that the afternoon valley-PBL height relative to the ridgetop is important in the diurnal cycle of mountaintop trace-gas mixing ratios. To investigate this, we use, (1) 4-years (1 January 2009-31 December 2012) of CO and CO2 mixing-ratio measurements and supporting meteorological observations from Pinnacles (38.61°N , 78.35°W , 1017 m a.s.l.), which is a monitoring site in the Appalachian Mountains, (2) regional O3 mixing-ratio measurements, and (3) PBL heights determined from a nearby sounding station. Results reveal that the amplitudes of the diurnal cycles of CO and CO2 mixing ratios vary as a function of the daytime maximum valley-PBL height relative to the ridgetop. The mean diurnal cycle for the subset of days when the afternoon valley-PBL height is at least 400 m below the ridgetop shows a daytime CO mixing-ratio increase, implying the transport of PBL air from the valley to the mountaintop. During the daytime, on days when the PBL heights exceed the mountaintop, PBL dilution and entrainment cause CO mixing ratios to decrease. This decrease in CO mixing ratio, especially on days when PBL heights are at least 400 m above the ridgetop, suggests that measurements from these days can be used as with afternoon measurements from flat terrain in applications requiring regionally-representative measurements.

  10. Boundary Layer Characterization during Perdigão Field Campaign 2017

    NASA Astrophysics Data System (ADS)

    Leo, L. S.; Salvadore, J. J.; Belo-Pereira, M.; Menke, R.; Gomes, S.; Krishnamurthy, R.; Brown, W. O. J.; Creegan, E.; Klein, P. M.; Wildmann, N.; Oncley, S.; Fernando, J.; Mann, J.

    2017-12-01

    The depth and structure of the atmospheric boundary layer (ABL) significantly impact the performances of wind farms located in complex terrain environments, since low-level jets and other flow structures in the proximity of hills and mountains determine the weather extremes, such as shear layer instabilities, lee/internal wave breaking, etc. which in turn profoundly modify the turbulence profile at wind turbine relevant heights.A suite of instruments was deployed covering a double-ridge in central Portugal near the town of Perdigão in 2016-2017, and they are used here to characterize the ABL structure over complex terrain during the Intensive Observational Period (IOP, May 1- June 15, 2017) of the research field program dubbed "Perdigão". Firstly, the methodology adopted in this work to estimate the BL height will be discussed; secondly, an overview of the BL depth and characteristics during Perdigão-IOP campaign will be provided, with emphasis on case studies of interest for both the wind-power and boundary-layer communities.

  11. Modeling of weld bead geometry for rapid manufacturing by robotic GMAW

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Xiong, Jun; Chen, Hui; Chen, Yong

    2015-03-01

    Weld-based rapid prototyping (RP) has shown great promises for fabricating 3D complex parts. During the layered deposition of forming metallic parts with robotic gas metal arc welding, the geometry of a single weld bead has an important influence on surface finish quality, layer thickness and dimensional accuracy of the deposited layer. In order to obtain accurate, predictable and controllable bead geometry, it is essential to understand the relationships between the process variables with the bead geometry (bead width, bead height and ratio of bead width to bead height). This paper highlights an experimental study carried out to develop mathematical models to predict deposited bead geometry through the quadratic general rotary unitized design. The adequacy and significance of the models were verified via the analysis of variance. Complicated cause-effect relationships between the process parameters and the bead geometry were revealed. Results show that the developed models can be applied to predict the desired bead geometry with great accuracy in layered deposition with accordance to the slicing process of RP.

  12. Multi-Instrument Observations of Prolonged Stratified Wind Layers at Iqaluit, Nunavut

    NASA Astrophysics Data System (ADS)

    Mariani, Zen; Dehghan, Armin; Gascon, Gabrielle; Joe, Paul; Hudak, David; Strawbridge, Kevin; Corriveau, Julien

    2018-02-01

    Data collected between October 2015 and May 2016 at Environment and Climate Change Canada's Iqaluit research site (64°N, 69°W) have revealed a high frequency (40% of all days for which observations were available) of stratified wind layer events that occur from near the surface up to about 7.2 km above sea level. These stratified wind layers are clearly visible as wind shifts (90 to 180°) with height in range-height indicator scans from the Doppler lidar and Ka-band radar and in wind direction profiles from the Doppler lidar and radiosonde. During these events, the vertical structure of the flow appears to be a stack of 4 to 10 layers ranging in vertical width from 0.1 to 4.4 km. The stratification events that were observed occurred predominantly (81%) during light precipitation and lasted up to 27.5 h. The integrated measurement platforms at Iqaluit permitted continuous observations of the evolution of stratification events in different meteorological conditions.

  13. On the Development of Models for Height Profiles of the Wind Speed in the Atmospheric Surface Layer

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. G.; Ganaga, S. V.; Kudryashov, Yu. I.; Nikolaev, V. V.

    2018-03-01

    The reliability of the known models of a height profile of the wind speed V( h) in the atmospheric boundary layer (ABL) and near-surface layer (NSL) is analyzed using the data of long-term ABL measurements accumulated in Russia in the state network of meteorological and aerological stations and the data of multilevel measurements at mast wind-measuring complexes. A new multilayer semiempirical model of V( h) is proposed which is based on aerodynamic and physical representations of the ABL vertical structure and relies on the hypothesis that wind-speed profiles providing the minimum wind friction on the ground and satisfying the conditions of profile smoothness are feasible in the ABL. This model ensures the best agreement with the data of meteorological, aerological, and mast wind measurements.

  14. Boundary Layer Depth In Coastal Regions

    NASA Astrophysics Data System (ADS)

    Porson, A.; Schayes, G.

    The results of earlier studies performed about sea breezes simulations have shown that this is a relevant feature of the Planetary Boundary Layer that still requires effort to be diagnosed properly by atmospheric models. Based on the observations made during the ESCOMPTE campaign, over the Mediterranean Sea, different CBL and SBL height estimation processes have been tested with a meso-scale model, TVM. The aim was to compare the critical points of the BL height determination computed using turbulent kinetic energy profile with some other standard evaluations. Moreover, these results have been analysed with different mixing length formulation. The sensitivity of formulation is also analysed with a simple coastal configuration.

  15. Hydraulic Fracture Growth in a Layered Formation based on Fracturing Experiments and Discrete Element Modeling

    NASA Astrophysics Data System (ADS)

    Yushi, Zou; Xinfang, Ma; Tong, Zhou; Ning, Li; Ming, Chen; Sihai, Li; Yinuo, Zhang; Han, Li

    2017-09-01

    Hydraulic fracture (HF) height containment tends to occur in layered formations, and it significantly influences the entire HF geometry or the stimulated reservoir volume. This study aims to explore the influence of preexisting bedding planes (BPs) on the HF height growth in layered formations. Laboratory fracturing experiments were performed to confirm the occurrence of HF height containment in natural shale that contains multiple weak and high-permeability BPs under triaxial stresses. Numerical simulations were then conducted to further illustrate the manner in which vertical stress, BP permeability, BP density(or spacing), pump rate, and fluid viscosity control HF height growth using a 3D discrete element method-based fracturing model. In this model, the rock matrix was considered transversely isotropic and multiple BPs can be explicitly represented. Experimental and numerical results show that the vertically growing HF tends to be limited by multi-high-permeability BPs, even under higher vertical stress. When the vertically growing HF intersects with the multi-high-permeability BPs, the injection pressure will be sharply reduced. If a low pumping rate or a low-viscosity fluid is used, the excess fracturing fluid leak-off into the BPs obviously decreases the rate of pressure build up, which will then limit the growth of HF. Otherwise, a higher pumping rate and/or a higher viscosity will reduce the leak-off time and fluid volume, but increase the injection pressure to drive the HF to grow and to penetrate through the BPs.

  16. The effects of spatial inhomogeneities on flow through the endothelial surface layer.

    PubMed

    Leiderman, Karin M; Miller, Laura A; Fogelson, Aaron L

    2008-05-21

    Flow through the endothelial surface layer (the glycocalyx and adsorbed plasma proteins) plays an important but poorly understood role in cell signaling through a process known as mechanotransduction. Characterizing the flow rates and shear stresses throughout this layer is critical for understanding how flow-induced ionic currents, deformations of transmembrane proteins, and the convection of extracellular molecules signal biochemical events within the cell, including cytoskeletal rearrangements, gene activation, and the release of vasodilators. Previous mathematical models of flow through the endothelial surface layer are based upon the assumptions that the layer is of constant hydraulic permeability and constant height. These models also assume that the layer is continuous across the endothelium and that the layer extends into only a small portion of the vessel lumen. Results of these models predict that fluid shear stress is dissipated through the surface layer and is thus negligible near endothelial cell membranes. In this paper, such assumptions are removed, and the resultant flow rates and shear stresses through the layer are described. The endothelial surface layer is modeled as clumps of a Brinkman medium immersed in a Newtonian fluid. The width and spacing of each clump, hydraulic permeability, and fraction of the vessel lumen occupied by the layer are varied. The two-dimensional Navier-Stokes equations with an additional Brinkman resistance term are solved using a projection method. Several fluid shear stress transitions in which the stress at the membrane shifts from low to high values are described. These transitions could be significant to cell signaling since the endothelial surface layer is likely dynamic in its composition, density, and height.

  17. Raman lidar/AERI PBL Height Product

    DOE Data Explorer

    Ferrare, Richard

    2012-12-14

    Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

  18. IMPROVEMENTS RELATING TO NUCLEAR REACTOR CORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, F.R.

    1963-03-01

    A nuclear reactor core composed of a number of stacked horizontal layers is described. Each layer is made up of elements of moderator material of equal height and of generally hexagonal cross-section. Each element has holes containing nuclear fuel and separate ones for coolant. (C.E.S.)

  19. EVOLUTION OF THE NOCTURNAL INVERSION LAYER AT AN URBAN AND NONURBAN LOCATION

    EPA Science Inventory

    The evolutionary cycle of the nocturnal radiation inversion layer from formation until dissipation under fair weather conditions was investigated by time-series analyses of observations of inversion base and top heights, and inversion strength at an urban and a nonurban site in S...

  20. INDIRECT ESTIMATION OF CONVECTIVE BOUNDARY LAYER STRUCTURE FOR USE IN ROUTINE DISPERSION MODELS

    EPA Science Inventory

    Dispersion models of the convectively driven atmospheric boundary layer (ABL) often require as input meteorological parameters that are not routinely measured. These parameters usually include (but are not limited to) the surface heat and momentum fluxes, the height of the cappin...

  1. Case study of inclined sporadic E layers in the Earth's ionosphere observed by CHAMP/GPS radio occultations: Coupling between the tilted plasma layers and internal waves

    NASA Astrophysics Data System (ADS)

    Gubenko, Vladimir N.; Pavelyev, A. G.; Kirillovich, I. A.; Liou, Y.-A.

    2018-04-01

    We have used the radio occultation (RO) satellite data CHAMP/GPS (Challenging Minisatellite Payload/Global Positioning System) for studying the ionosphere of the Earth. A method for deriving the parameters of ionospheric structures is based upon an analysis of the RO signal variations in the phase path and intensity. This method allows one to estimate the spatial displacement of a plasma layer with respect to the ray perigee, and to determine the layer inclination and height correction values. In this paper, we focus on the case study of inclined sporadic E (Es) layers in the high-latitude ionosphere based on available CHAMP RO data. Assuming that the internal gravity waves (IGWs) with the phase-fronts parallel to the ionization layer surfaces are responsible for the tilt angles of sporadic plasma layers, we have developed a new technique for determining the parameters of IGWs linked with the inclined Es structures. A small-scale internal wave may be modulating initially horizontal Es layer in height and causing a direction of the plasma density gradient to be rotated and aligned with that of the wave propagation vector k. The results of determination of the intrinsic wave frequency and period, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase speeds, and other characteristics of IGWs under study are presented and discussed.

  2. Pathfinder: applying graph theory to consistent tracking of daytime mixed layer height with backscatter lidar

    NASA Astrophysics Data System (ADS)

    de Bruine, Marco; Apituley, Arnoud; Donovan, David Patrick; Klein Baltink, Hendrik; Jorrit de Haij, Marijn

    2017-05-01

    The height of the atmospheric boundary layer or mixing layer is an important parameter for understanding the dynamics of the atmosphere and the dispersion of trace gases and air pollution. The height of the mixing layer (MLH) can be retrieved, among other methods, from lidar or ceilometer backscatter data. These instruments use the vertical backscatter lidar signal to infer MLHL, which is feasible because the main sources of aerosols are situated at the surface and vertical gradients are expected to go from the aerosol loaded mixing layer close to the ground to the cleaner free atmosphere above. Various lidar/ceilometer algorithms are currently applied, but accounting for MLH temporal development is not always well taken care of. As a result, MLHL retrievals may jump between different atmospheric layers, rather than reliably track true MLH development over time. This hampers the usefulness of MLHL time series, e.g. for process studies, model validation/verification and climatology. Here, we introduce a new method pathfinder, which applies graph theory to simultaneously evaluate time frames that are consistent with scales of MLH dynamics, leading to coherent tracking of MLH. Starting from a grid of gradients in the backscatter profiles, MLH development is followed using Dijkstra's shortest path algorithm (Dijkstra, 1959). Locations of strong gradients are connected under the condition that subsequent points on the path are limited to a restricted vertical range. The search is further guided by rules based on the presence of clouds and residual layers. After being applied to backscatter lidar data from Cabauw, excellent agreement is found with wind profiler retrievals for a 12-day period in 2008 (R2 = 0.90) and visual judgment of lidar data during a full year in 2010 (R2 = 0.96). These values compare favourably to other MLHL methods applied to the same lidar data set and corroborate more consistent MLH tracking by pathfinder.

  3. Comparison of Mixed Layer Heights from Airborne High Spectral Resolution Lidar, Ground-based Measurements, and the WRP-Chem Model during CalNex and CARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarino, Amy Jo; Obland, Michael; Fast, Jerome D.

    2014-06-05

    The California Research at the Nexus of Air Quality and Climate Change (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES) field campaigns during May and June 2010 provided a data set appropriate for studying characteristics of the planetary boundary layer (PBL). The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) was deployed to California onboard the NASA LaRC B-200 aircraft to aid incharacterizing aerosol properties during these two field campaigns. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 31 flights, many in coordination with othermore » research aircraft and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as the depth and variability of the daytime mixed layer (ML), which is a subset within the PBL. This work illustrates the temporal and spatial variability of the ML in the vicinity of Los Angeles and Sacramento, CA. ML heights derived from HSRL measurements are compared to PBL heights derived from radiosonde profiles, ML heights measured from ceilometers, and simulated PBL heights from the Weather Research and Forecasting Chemistry (WRF-Chem) community model. Comparisons between the HSRL ML heights and the radiosonde profiles in Sacramento result in a correlation coefficient value (R) of 0.93 (root7 mean-square (RMS) difference of 157 m and bias difference (HSRL radiosonde) of 5 m). HSRL ML heights compare well with those from the ceilometer in the LA Basin with an R of 0.89 (RMS difference of 108 m and bias difference (HSRL Ceilometer) of -9.7 m) for distances of up to 30 km between the B-200 flight track and the ceilometer site. Simulated PBL heights from WRF-Chem were compared with those obtained from all flights for each campaign, producing an R of 0.58 (RMS difference of 604 m and a bias difference (WRF-Chem HSRL) of -157 m) for CalNex and 0.59 (RMS difference of 689 m and a bias difference (WRF-Chem HSRL) of 220 m) for CARES. Aerosol backscatter simulations are also available from WRF15 Chem and are compared to those from HSRL to examine differences among the methods used to derive ML heights.« less

  4. Caprine blastocyst formation following intracytoplasmic sperm injection and defined culture.

    PubMed

    Keskintepe, L; Morton, P C; Smith, S E; Tucker, M J; Simplicio, A A; Brackett, B G

    1997-08-01

    Experiments were undertaken to develop intracytoplasmic sperm injection (ICSI) to produce caprine embryos out of the normal breeding season. Oocytes were obtained from 2-6 mm ovarian follicles at slaughter. Selected oocytes with two to four layers of cumulus cells were incubated in 1 ml of H-TCM199 supplemented with 10 micrograms each of oFSH and bLH (NHPP, NIDDK, NICHD, USDA) and 20% fetal bovine serum (FBS) in a thermos (38.5 degrees C) for 4.5 h during transportation. Then, oocytes were transferred into 75 microliters of freshly prepared maturation medium under paraffin oil and a mixture of 5% O2, 5% CO2 and 90% N2. Approximately 26 h after recovery oocytes were denuded by incubation with hyaluronidase (100 IU/ml) and pipetting and held at 38.5 degrees C for 90 min. Spermatozoa frozen in egg yolk extender were thawed in a 37 degrees C water bath for 15 s. Motile fractions were selected by swim-up, then incubated for 90 min in TALP with 10 micrograms heparin/ml. Each oocyte was positioned with its first polar body at 6 or 12 o'clock by a holding pipette. Sperm (1 microliter) were added to 10 microliters medium containing 10% polyvinylpyrrolidone. A sperm cell was aspirated into a pipette, and then injected head-first into the cytoplasm of an oocyte maintained in H-TCM199 + 20% FBS at 37 degrees C. Injected oocytes were transferred to HM and, after 90 min, cultured in 50 microliters of BSA-free synthetic oviduct fluid plus polyvinyl alcohol, citrate and non-essential amino acids. Results demonstrate that caprine blastocysts can be produced outside the breeding season by the use of frozen-thawed semen and injection of sperm cells with broken tails into ova followed by culture in defined medium.

  5. Approximate analytical solution to diurnal atmospheric boundary-layer growth under well-watered conditions

    USDA-ARS?s Scientific Manuscript database

    The system of governing equations of a simplified slab model of the uniformly-mixed, purely convective, diurnal atmospheric boundary layer (ABL) is shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed i...

  6. SPATIAL VARIATION OF THE EVOLUTION AND STRUCTURE OF THE URBAN BOUNDARY LAYER

    EPA Science Inventory

    The spatial variation of the nocturnal urban boundary layer structure and the time variation of the mixing height, the nocturnal inversion top and strength after sunrise are presented for urban sites located upwind, downwind, and near the center of the heat island and for upwind ...

  7. Nonlinear interaction of an intense radio wave with ionospheric D/E layer plasma

    NASA Astrophysics Data System (ADS)

    Sodha, Mahendra Singh; Agarwal, Sujeet Kumar

    2018-05-01

    This paper considers the nonlinear interaction of an intense electromagnetic wave with the D/E layer plasma in the ionosphere. A simultaneous solution of the electromagnetic wave equation and the equations describing the kinetics of D/E layer plasma is obtained; the phenomenon of ohmic heating of electrons by the electric field of the wave causes enhanced collision frequency and ionization of neutral species. Electron temperature dependent recombination of electrons with ions, electron attachment to O 2 molecules, and detachment of electrons from O2 - ions has also been taken into account. The dependence of the plasma parameters on the square of the electric vector of the wave E0 2 has been evaluated for three ionospheric heights (viz., 90, 100, and 110 km) corresponding to the mid-latitude mid-day ionosphere and discussed; these results are used to investigate the horizontal propagation of an intense radio wave at these heights.

  8. Experimental study of flow reattachment in a single-sided sudden expansion

    NASA Technical Reports Server (NTRS)

    Westphal, R. V.; Johnston, J. P.; Eaton, J. K.

    1984-01-01

    The reattachment of a fully turbulent, two dimensional, separated shear layer downstream of a single-sided sudden expansion in a planar duct flow was examined experimentally. The importance of changing the structure of the separated shear layer on the reattachment process itself was examined. For all cases, the Reynolds number based on step height was greater than 20,000, the expansion ratio was 5/3, and the inlet boundary layer was less than one-half step height in thickness. A crucially important phase was the development of a pulsed wall probe for measurement of skin friction in the reattachment region, thus providing an unambiguous definition of the reattachment length. Quantitative features of reattachment - including streamwise development of the mean and fluctuating velocity field, pressure rise, and skin friction - were found to be similar for all cases studied when scaled by the reattachment length. A definition of the reattachment zone is proposed.

  9. Variations in Transport Derived from Satellite Altimeter Data over the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Molinelli, Eugene; Lambert, Richard B., Jr.

    1981-01-01

    Variations in total change of sea surface height (delta h) across the Gulf Stream are observed using Seasat radar altimeter data. The sea surface height is related to transport within the stream by a two layer model. Variations in delta h are compared with previously observed changes in transport found to increase with distance downstream. No such increase is apparent since the satellite transports show no significant dependence on distance. Though most discrepancies are less than 50 percent, a few cases differ by about 100 percent and more. Several possible reasons for these discrepancies are advanced, including geoid error, but only two oceanographic contributions to the variability are examined, namely, limitations in the two layer model and meanders in the current. It is concluded that some of the discrepancies could be explained as changes in the density structure not accounted for by the two layer model.

  10. Morphology of Two-Phase Layers with Large Bubbles

    NASA Astrophysics Data System (ADS)

    Vékony, Klára; Kiss, László I.

    2010-10-01

    The understanding of formation and movement of bubbles nucleated during aluminum reduction is essential for a good control of the electrolysis process. In our experiments, we filmed and studied the formation of a bubble layer under the anode in a real-size air-water electrolysis cell model. The maximum height of the bubbles was found to be up to 2 cm because of the presence of the so-called Fortin bubbles. Also, the mean height of the bubble layer was found to be much higher than published previously. The Fortin bubbles were investigated more closely, and their shape was found to be induced by a gravity wave formed at the gas-liquid interface. In addition, large bubbles were always observed to break up into smaller parts right before escaping from under the anode. This breakup and escape led to a large momentum transfer in the bath.

  11. Aerosol and Cloud Observations and Data Products by the GLAS Polar Orbiting Lidar Instrument

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.; Welton, E. J.

    2005-01-01

    The Geoscience Laser Altimeter System (GLAS) launched in 2003 is the first polar orbiting satellite lidar. The instrument was designed for high performance observations of the distribution and optical scattering cross sections of clouds and aerosol. The backscatter lidar operates at two wavelengths, 532 and 1064 nm. Both receiver channels meet and exceed their design goals, and beginning with a two month period through October and November 2003, an excellent global lidar data set now exists. The data products for atmospheric observations include the calibrated, attenuated backscatter cross section for cloud and aerosol; height detection for multiple cloud layers; planetary boundary layer height; cirrus and aerosol optical depth and the height distribution of aerosol and cloud scattering cross section profiles. The data sets are now in open release through the NASA data distribution system. The initial results on global statistics for cloud and aerosol distribution has been produced and in some cases compared to other satellite observations. The sensitivity of the cloud measurements is such that the 70% global cloud coverage result should be the most accurate to date. Results on the global distribution of aerosol are the first that produce the true height distribution for model inter-comparison.

  12. Stereo Particle Image Velocimetry Measurements of Transition Downstream of a Forward-Facing Step in a Swept-Wing Boundary Layer

    NASA Technical Reports Server (NTRS)

    Eppink, Jenna L.

    2017-01-01

    Stereo particle image velocimetry measurements were performed downstream of a forward-facing step in a stationary-crossflow dominated flow. Three different step heights were studied with the same leading-edge roughness configuration to determine the effect of the step on the evolution of the stationary-crossflow. Above the critical step height, which is approximately 68% of the boundary-layer thickness at the step, the step caused a significant increase in the growth of the stationary crossflow. For the largest step height studied (68%), premature transition occurred shortly downstream of the step. The stationary crossflow amplitude only reached approximately 7% of U(sub e) in this case, which suggests that transition does not occur via the high-frequency secondary instabilities typically associated with stationary crossflow transition. The next largest step of 60% delta still caused a significant impact on the growth of the stationary crossflow downstream of the step, but the amplitude eventually returned to that of the baseline case, and the transition front remained the same. The smallest step height (56%) only caused a small increase in the stationary crossflow amplitude and no change in the transition front. A final case was studied in which the roughness on the leading edge of the model was enhanced for the lowest step height case to determine the impact of the stationary crossflow amplitude on transition. The stationary crossflow amplitude was increased by approximately four times, which resulted in premature transition for this step height. However, some notable differences were observed in the behavior of the stationary crossflow mode, which indicate that the interaction mechanism which results in the increased growth of the stationary crossflow downstream of the step may be different in this case compared to the larger step heights.

  13. Excitonic fine-structure splitting in telecom-wavelength InAs/GaAs quantum dots: Statistical distribution and height-dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldmann, Elias, E-mail: goldmann@itp.uni-bremen.de; Barthel, Stefan; Florian, Matthias

    The variation of the excitonic fine-structure splitting is studied for semiconductor quantum dots under the influence of a strain-reducing layer, utilized to shift the emission wavelength of the excitonic transition into the telecom-wavelength regime of 1.3–1.5 μm. By means of a sp{sup 3}s{sup *}-tight-binding model and configuration interaction, we calculate wavelength shifts and fine-structure splittings for various quantum dot geometries. We find the splittings remaining small and even decreasing with strain-reducing layer composition for quantum dots with large height. Combined with an observed increased emission efficiency, the applicability for generation of entanglement photons is persistent.

  14. Determining Aerosol Plume Height from Two GEO Imagers: Lessons from MISR and GOES

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.

    2012-01-01

    Aerosol plume height is a key parameter to determine impacts of particulate matters generated from biomass burning, wind-blowing dust, and volcano eruption. Retrieving cloud top height from stereo imageries from two GOES (Geostationary Operational Environmental Satellites) have been demonstrated since 1970's and the principle should work for aerosol plumes if they are optically thick. The stereo technique has also been used by MISR (Multiangle Imaging SpectroRadiometer) since 2000 that has nine look angles along track to provide aerosol height measurements. Knowing the height of volcano aerosol layers is as important as tracking the ash plume flow for aviation safety. Lack of knowledge about ash plume height during the 2010 Eyja'rjallajokull eruption resulted in the largest air-traffic shutdown in Europe since World War II. We will discuss potential applications of Asian GEO satellites to make stereo measurements for dust and volcano plumes.

  15. Study of space charge layer in silver bromide microcrystals by means of ultraviolet photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Tani, Tadaaki; Inami, Yoshiyasu

    2000-09-01

    Ultraviolet photoelectron spectroscopy has been successfully used to measure the heights of the tops of the valence bands of the surfaces of AgBr layers on Ag substrates for the verification of the space charge layer model. According to this model, the positive space charge layer (composed of negative charges with excess negative kink sites on the surface and corresponding positive charges with interstitial silver ions in the interior) is formed in silver halides, causing the difference in the electronic energy levels between their surface and interior. The depression of the positive space charge layer of AgBr caused by such adsorbates as photographic stabilizers and antifoggants was estimated from the decrease in the ionic conductivity of cubic AgBr microcrystals by the adsorbates. It was confirmed by the decrease in the heights of the tops of the valence bands of the surfaces of AgBr layers caused by the adsorbates in the presence of thin gelatin membranes on their surfaces. This result provided the explanation for the fact that the adsorbates increased the number of the microcrystals which formed latent image centers on the surface and decreased the number of the microcrystals, which formed latent image centers in the interior.

  16. Computational study of the vortex path variation with the VG height

    NASA Astrophysics Data System (ADS)

    Fernández-Gámiz, U.; Zamorano, G.; Zulueta, E.

    2014-06-01

    An extensive range of conventional, vane-type, passive vortex generators (VGs) are in use for successful applications of flow separation control. In most cases, the VG height is designed with the same thickness as the local boundary layer at the VG position. However, in some applications, these conventional VGs may produce excess residual drag. The so-called low-profile VGs can reduce the parasitic drag associated to this kind of passive control devices. As suggested by many authors, low-profile VGs can provide enough momentum transfer over a region several times their own height for effective flow-separation control with much lower drag. The main objective of this work is to study the variation of the path and the development of the primary vortex generated by a rectangular VG mounted on a flat plate with five different device heights h = δ, h1 = 0.8δ, h2 = 0.6δ, h3 = 0.4δ and h4 = 0.25m, where 5 is the local boundary layer thickness. For this purpose, computational simulations have been carried out at Reynolds number Re = 1350 based on the height of the conventional VG h = 0.25m with the angle of attack of the vane to the oncoming flow β = 18.5°. The results show that the VG scaling significantly affects the vortex trajectory and the peak vorticity generated by the primary vortex.

  17. Step-height standards based on the rapid formation of monolayer steps on the surface of layered crystals

    NASA Astrophysics Data System (ADS)

    Komonov, A. I.; Prinz, V. Ya.; Seleznev, V. A.; Kokh, K. A.; Shlegel, V. N.

    2017-07-01

    Metrology is essential for nanotechnology, especially for structures and devices with feature sizes going down to nm. Scanning probe microscopes (SPMs) permits measurement of nanometer- and subnanometer-scale objects. Accuracy of size measurements performed using SPMs is largely defined by the accuracy of used calibration measures. In the present publication, we demonstrate that height standards of monolayer step (∼1 and ∼0.6 nm) can be easily prepared by cleaving Bi2Se3 and ZnWO4 layered single crystals. It was shown that the conducting surface of Bi2Se3 crystals offers height standard appropriate for calibrating STMs and for testing conductive SPM probes. Our AFM study of the morphology of freshly cleaved (0001) Bi2Se3 surfaces proved that such surfaces remained atomically smooth during a period of at least half a year. The (010) surfaces of ZnWO4 crystals remained atomically smooth during one day, but already two days later an additional nanorelief of amplitude ∼0.3 nm appeared on those surfaces. This relief, however, did not further grow in height, and it did not hamper the calibration. Simplicity and the possibility of rapid fabrication of the step-height standards, as well as their high stability, make these standards available for a great, permanently growing number of users involved in 3D printing activities.

  18. Tailored Height Gradients in Vertical Nanowire Arrays via Mechanical and Electronic Modulation of Metal-Assisted Chemical Etching.

    PubMed

    Otte, M A; Solis-Tinoco, V; Prieto, P; Borrisé, X; Lechuga, L M; González, M U; Sepulveda, B

    2015-09-02

    In current top-down nanofabrication methodologies the design freedom is generally constrained to the two lateral dimensions, and is only limited by the resolution of the employed nanolithographic technique. However, nanostructure height, which relies on certain mask-dependent material deposition or etching techniques, is usually uniform, and on-chip variation of this parameter is difficult and generally limited to very simple patterns. Herein, a novel nanofabrication methodology is presented, which enables the generation of high aspect-ratio nanostructure arrays with height gradients in arbitrary directions by a single and fast etching process. Based on metal-assisted chemical etching using a catalytic gold layer perforated with nanoholes, it is demonstrated how nanostructure arrays with directional height gradients can be accurately tailored by: (i) the control of the mass transport through the nanohole array, (ii) the mechanical properties of the perforated metal layer, and (iii) the conductive coupling to the surrounding gold film to accelerate the local electrochemical etching process. The proposed technique, enabling 20-fold on-chip variation of nanostructure height in a spatial range of a few micrometers, offers a new tool for the creation of novel types of nano-assemblies and metamaterials with interesting technological applications in fields such as nanophotonics, nanophononics, microfluidics or biomechanics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Wake Instabilities Behind Discrete Roughness Elements in High Speed Boundary Layers

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Li, Fei; Chang, Chau-Lyan; Norris, Andrew; Edwards, Jack

    2013-01-01

    Computations are performed to study the flow past an isolated, spanwise symmetric roughness element in zero pressure gradient boundary layers at Mach 3.5 and 5.9, with an emphasis on roughness heights of less than 55 percent of the local boundary layer thickness. The Mach 5.9 cases include flow conditions that are relevant to both ground facility experiments and high altitude flight ("cold wall" case). Regardless of the Mach number, the mean flow distortion due to the roughness element is characterized by long-lived streamwise streaks in the roughness wake, which can support instability modes that did not exist in the absence of the roughness element. The higher Mach number cases reveal a variety of instability mode shapes with velocity fluctuations concentrated in different localized regions of high base flow shear. The high shear regions vary from the top of a mushroom shaped structure characterizing the centerline streak to regions that are concentrated on the sides of the mushroom. Unlike the Mach 3.5 case with nearly same values of scaled roughness height k/delta and roughness height Reynolds number Re(sub kk), the odd wake modes in both Mach 5.9 cases are significantly more unstable than the even modes of instability. Additional computations for a Mach 3.5 boundary layer indicate that the presence of a roughness element can also enhance the amplification of first mode instabilities incident from upstream. Interactions between multiple roughness elements aligned along the flow direction are also explored.

  20. Part height control of laser metal additive manufacturing process

    NASA Astrophysics Data System (ADS)

    Pan, Yu-Herng

    Laser Metal Deposition (LMD) has been used to not only make but also repair damaged parts in a layer-by-layer fashion. Parts made in this manner may produce less waste than those made through conventional machining processes. However, a common issue of LMD involves controlling the deposition's layer thickness. Accuracy is important, and as it increases, both the time required to produce the part and the material wasted during the material removal process (e.g., milling, lathe) decrease. The deposition rate is affected by multiple parameters, such as the powder feed rate, laser input power, axis feed rate, material type, and part design, the values of each of which may change during the LMD process. Using a mathematical model to build a generic equation that predicts the deposition's layer thickness is difficult due to these complex parameters. In this thesis, we propose a simple method that utilizes a single device. This device uses a pyrometer to monitor the current build height, thereby allowing the layer thickness to be controlled during the LMD process. This method also helps the LMD system to build parts even with complex parameters and to increase material efficiency.

  1. Observations of the Early Morning Boundary-Layer Transition with Small Remotely-Piloted Aircraft

    NASA Astrophysics Data System (ADS)

    Wildmann, Norman; Rau, Gerrit Anke; Bange, Jens

    2015-12-01

    A remotely-piloted aircraft (RPA), equipped with a high resolution thermodynamic sensor package, was used to investigate physical processes during the morning transition of the atmospheric boundary layer over land. Experiments were conducted at a test site in heterogeneous terrain in south-west Germany on 5 days from June to September 2013 in an evolving shallow convective boundary layer, which then developed into a well-mixed layer later in the day. A combination of vertical profiling and constant-altitude profiling (CAP) at 100 m height above ground level was chosen as the measuring strategy throughout the experiment. The combination of flight strategies allows the application of mixed-layer scaling using the boundary-layer height z_i, convective velocity scale w_* and convective temperature scale θ _*. The hypothesis that mixed-layer theory is valid during the whole transition was not confirmed for all parameters. A good agreement is found for temperature variances, especially in the upper half of the boundary layer, and the normalized heat-flux profile. The results were compared to a previous study with the helicopter-borne turbulence probe Helipod, and it was found that similar data quality can be achieved with the RPA. On all days, the CAP flight level was within the entrainment zone for a short time, and the horizontal variability of temperature and water vapour along the flight path is presented as an example of the inhomogeneity of layer interfaces in the boundary layer. The study serves as a case study of the possibilities and limitations with state-of-the-art RPA technology in micrometeorology.

  2. An Experimental Study of a Separated/Reattached Flow Behind a Backward-Facing Step. Re(sub h) = 37,000

    NASA Technical Reports Server (NTRS)

    Jovic, Srba

    1996-01-01

    An experimental study was carried out to investigate turbulent structure of a two-dimensional incompressible separating/reattaching boundary layer behind a backward-facing step. Hot-wire measurement technique was used to measure three Reynolds stresses and higher-order mean products of velocity fluctuations. The Reynolds number, Re(sub h), based on the step height, h, and the reference velocity, U(sub 0), was 37,000. The upstream oncoming flow was fully developed turbulent boundary layer with the Re(sub theta) = 3600. All turbulent properties, such as Reynolds stresses, increase dramatically downstream of the step within an internally developing mixing layer. Distributions of dimensionless mean velocity, turbulent quantities and antisymmetric distribution of triple velocity products in the separated free shear layer suggest that the shear layer above the recirculating region strongly resembles free-shear mixing layer structure. In the reattachment region close to the wall, turbulent diffusion term balances the rate of dissipation since advection and production terms appear to be negligibly small. Further downstream, production and dissipation begin to dominate other transport processes near the wall indicating the growth of an internal turbulent boundary layer. In the outer region, however, the flow still has a memory of the upstream disturbance even at the last measuring station of 51 step-heights. The data show that the structure of the inner layer recovers at a much faster rate than the outer layer structure. The inner layer structure resembles the near-wall structure of a plane zero pressure-gradient turbulent boundary layer (plane TBL) by 25h to 30h, while the outer layer structure takes presumably over 100h.

  3. New Perspectives on the Dynamical State of Extraplanar Diffuse Ionized Gas Layers

    NASA Astrophysics Data System (ADS)

    Boettcher, Erin; Zweibel, Ellen; Gallagher, John S.; Benjamin, Robert A.

    2018-01-01

    Gaseous, disk-halo interfaces are an important boundary in the baryon cycle in galaxies like the Milky Way, and their structure, support, and kinematics carry clues about the star formation feedback and accretion processes that produce them. Due to their unexpectedly large scale heights, which are often several times greater than their thermal scale heights, it is unclear whether they are in dynamical equilibrium, or are evidence of a galactic fountain, wind, or accretion flow. In the nearby, edge-on disk galaxies NGC 891 and NGC 5775, we test a dynamical equilibrium model of the extraplanar diffuse ionized gas (eDIG) layer by quantifying the thermal, turbulent, magnetic field, and cosmic ray pressure gradients using optical emission-line spectroscopy from the SparsePak IFU at the WIYN Observatory and the Robert Stobie Spectrograph on the Southern African Large Telescope and radio continuum observations from Continuum Halos in Nearby Galaxies - an EVLA Survey. The vertical pressure gradients are too shallow to produce the observed scale heights at the moderate galactocentric radii where the gas is believed to be found (R < 8 kpc). For the low-inclination galaxy M83, we develop a Markov Chain Monte Carlo method to decompose the [NII]λλ6548, 6583, Hα, and [SII]λλ6717, 6731 emission lines into multiple components, and identify eDIG emission based on its rotational velocity lag and elevated [NII]/Hα and [SII]/Hα line ratios. The median, line-of-sight velocity dispersion of the eDIG layer, σ = 96 km/s, greatly exceeds the horizontal velocity dispersions observed in edge-on eDIG layers (σ = 20 - 60 km/s), presenting the possibility that these layers have anisotropic random motions. The role of an anisotropic velocity dispersion in producing eDIG scale heights, as well as the absence of evidence for large-scale inflow or outflow, motivates further study of eDIG dynamics in face-on galaxies with a range of star formation rates. This work was supported by the NSF GRFP under Grant No. DGE-1256259.

  4. Blocking, descent and gravity waves: Observations and modelling of a MAP northerly föhn event

    NASA Astrophysics Data System (ADS)

    Jiang, Qingfang; Doyle, James D.; Smith, Ronald B.

    2005-01-01

    A northerly föhn event observed during the special observational period of the Mesoscale Alpine Programme is investigated based on observational analysis and numerical modelling. The focus of this study includes three dynamical processes associated with mountain perturbations and their interactions, namely, windward flow blocking, descent and warming on the lee side, and mountain waves. Observations indicate the presence of a deep weak-flow layer underneath a stable layer, associated with Alpine-scale blocking. Satellite imagery reveals a föhninduced cloud-free area to the south of the Alps, which is consistent with flow descent diagnosed from radiosondes and constant-volume balloons. Moderate-amplitude stationary waves were observed by research aircraft over the major Alpine peaks. Satellite images and balloon data indicate the presence of stationary trapped-wave patterns located to the north of the Alpine massif.Satisfactory agreement is found between observations and a real-data COAMPS simulation nested to 1 km resolution. COAMPS indicates the presence of trapped waves associated with a sharp decrease of Scorer parameter above a stable layer in the mid-troposphere. Underneath the stable layer, moist low-level flow is blocked to the north of the Alps. The warm air in the stable layer descends in the lee and recovers its altitude over a relatively short horizontal distance through a hydraulic jump.Blocking reduces the effective mountain and hence significantly reduces mountain drag. A simple empirical formula for estimation of the effective mountain height, he, is derived based on numerical simulations. The formula states he/hc = (h/hc), where h is the real mountain height and hc is the critical mountain height to have flow stagnation.

  5. Estimation of stable boundary-layer height using variance processing of backscatter lidar data

    NASA Astrophysics Data System (ADS)

    Saeed, Umar; Rocadenbosch, Francesc

    2017-04-01

    Stable boundary layer (SBL) is one of the most complex and less understood topics in atmospheric science. The type and height of the SBL is an important parameter for several applications such as understanding the formation of haze fog, and accuracy of chemical and pollutant dispersion models, etc. [1]. This work addresses nocturnal Stable Boundary-Layer Height (SBLH) estimation by using variance processing and attenuated backscatter lidar measurements, its principles and limitations. It is shown that temporal and spatial variance profiles of the attenuated backscatter signal are related to the stratification of aerosols in the SBL. A minimum variance SBLH estimator using local minima in the variance profiles of backscatter lidar signals is introduced. The method is validated using data from HD(CP)2 Observational Prototype Experiment (HOPE) campaign at Jülich, Germany [2], under different atmospheric conditions. This work has received funding from the European Union Seventh Framework Programme, FP7 People, ITN Marie Curie Actions Programme (2012-2016) in the frame of ITaRS project (GA 289923), H2020 programme under ACTRIS-2 project (GA 654109), the Spanish Ministry of Economy and Competitiveness - European Regional Development Funds under TEC2015-63832-P project, and from the Generalitat de Catalunya (Grup de Recerca Consolidat) 2014-SGR-583. [1] R. B. Stull, An Introduction to Boundary Layer Meteorology, chapter 12, Stable Boundary Layer, pp. 499-543, Springer, Netherlands, 1988. [2] U. Löhnert, J. H. Schween, C. Acquistapace, K. Ebell, M. Maahn, M. Barrera-Verdejo, A. Hirsikko, B. Bohn, A. Knaps, E. O'Connor, C. Simmer, A. Wahner, and S. Crewell, "JOYCE: Jülich Observatory for Cloud Evolution," Bull. Amer. Meteor. Soc., vol. 96, no. 7, pp. 1157-1174, 2015.

  6. The structure of the stably stratified internal boundary layer in offshore flow over the sea

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Ryan, B. F.

    1989-04-01

    Observations obtained mainly from a research aircraft are presented of the mean and turbulent structure of the stably stratified internal boundary layer (IBL) over the sea formed by warm air advection from land to sea. The potential temperature and humidity fields reveal the vertical extent of the IBL, for fetches out to several hundred of kilometres, geostrophic winds of 20 25 m s-1, and potential temperature differences between undisturbed continental air and the sea surface of 7 to 17 K. The dependence of IBL depth on these external parameters is discussed in the context of the numerical results of Garratt (1987), and some discrepancies are noted. Wind observations show the development of a low-level wind maximum (wind component normal to the coast) and rotation of the wind to smaller cross-isobar flow angles. Potential temperature (θ) profiles within the IBL reveal quite a different structure to that found in the nocturnal boundary layer (NBL) over land. Over the sea, θ profiles have large positive curvature with vertical gradients increasing monotonically with height; this reflects the dominance of turbulent cooling within the layer. The behaviour is consistent with known behaviour in the NBL over land where curvature becomes negative (vertical gradients of θ decreasing with height) as radiative cooling becomes dominant. Turbulent properties are discussed in terms of non-dimensional quantities, normalised by the surface friction velocity, as functions of normalised height using the IBL depth. Vertical profiles of these and the normalised wavelength of the spectral maximum agree well with known results for the stable boundary layer over land (Caughey et al., 1979).

  7. Numerical Simulation of Transport Phenomena for a Double-Layer Laser Powder Deposition of Single-Crystal Superalloy

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoyang; Qi, Huan

    2014-04-01

    A turbine blade made of single-crystal superalloys has been commonly used in gas turbine and aero engines. As an effective repair technology, laser powder deposition has been implemented to restore the worn turbine blade tips with a near-net shape capability and highly controllable solidified microstructure. Successful blade repair technology for single-crystal alloys requires a continuous epitaxial grain growth in the same direction of the crystalline orientation of the substrate material to the newly deposited layers. This work presents a three-dimensional numerical model to simulate the transport phenomena for a multilayer coaxial laser powder deposition process. Nickel-based single-crystal superalloy Rene N5 powder is deposited on a directional solidified substrate made of nickel-based directional-solidified alloy GTD 111 to verify the simulation results. The effects of processing parameters including laser power, scanning speed, and powder feeding rate on the resultant temperature field, fluid velocity field, molten pool geometric sizes, and the successive layer remelting ratios are studied. Numerical simulation results show that the maximum temperature of molten pool increases over layers due to the reduced heat dissipation capacity of the deposited geometry, which results in an increased molten pool size and fluid flow velocity at the successive deposited layer. The deposited bead geometry agrees well between the simulation and the experimental results. A large part of the first deposition layer, up to 85 pct of bead height, can be remelted during the deposition of the second layer. The increase of scanning speed decreases the ratio of G/ V (temperature gradient/solidification velocity), leading to an increased height ratio of the misoriented grain near the top surface of the previous deposited layer. It is shown that the processing parameters used in the simulation and experiment can produce a remelting ratio R larger than the misoriented grain height ratio S, which enables remelting of all the misoriented grains and guarantees a continuous growth of the substrate directional-solidified crystalline orientation during the multilayer deposition of single-crystal alloys.

  8. A new facility for studying shock-wave passage over dust layers

    NASA Astrophysics Data System (ADS)

    Chowdhury, A. Y.; Marks, B. D.; Johnston, H. Greg; Mannan, M. Sam; Petersen, E. L.

    2016-03-01

    Dust explosion hazards in areas where coal and other flammable materials are found have caused unnecessary loss of life and halted business operations in some instances. The elimination of secondary dust explosion hazards, i.e., reducing dust dispersion, can be characterized in shock tubes to understand shock-dust interactions. For this reason, a new shock-tube test section was developed and integrated into an existing shock-tube facility. The test section has large windows to allow for the use of the shadowgraph technique to track dust-layer growth behind a passing normal shock wave, and it is designed to handle an initial pressure of 1 atm with an incident shock wave Mach number as high as 2 to mimic real-world conditions. The test section features an easily removable dust pan with inserts to allow for adjustment of the dust-layer thickness. The design also allows for changing the experimental variables such as initial pressure, shock Mach number (Ms), dust-layer thickness, and the characteristics of the dust itself. The characterization experiments presented herein demonstrate the advantages of the authors' test techniques toward providing new physical insights over a wider range of data than what have been available heretofore in the literature. Limestone dust with a layer thickness of 3.2 mm was subjected to Ms = 1.23, 1.32, and 1.6 shock waves, and dust-layer rise height was mapped with respect to time after shock passage. Dust particles subjected to a Ms = 1.6 shock wave rose more rapidly and to a greater height with respect to shock wave propagation than particles subjected to Ms = 1.23 and 1.32 shock waves. Although these results are in general agreement with the literature, the new data also highlight physical trends for dust-layer growth that have not been recorded previously, to the best of the authors' knowledge. For example, the dust-layer height rises linearly until a certain time where the growth rate is dramatically reduced, and in this second regime there is clear evidence of surface vertical structures at the dust-air interface.

  9. Typical tropospheric aerosol backscatter profiles for Southern Ireland: The Cork Raman lidar

    NASA Astrophysics Data System (ADS)

    McAuliffe, Michael A. P.; Ruth, Albert A.

    2013-02-01

    A Raman lidar instrument (UCLID) was established at the University College Cork as part of the European lidar network EARLINET. Raman backscatter coefficients, extinction coefficients and lidar ratios were measured within the period 28/08/2010 and 24/04/2011. Typical atmospheric scenarios over Southern Ireland in terms of the aerosol load in the planetary boundary layer are outlined. The lidar ratios found are typical for marine atmospheric condition (lidar ratio ca. 20-25 sr). The height of the planetary boundary layer is below 1000 m and therefore low in comparison to heights found at other lidar sites in Europe. On the 21st of April a large aerosol load was detected, which was assigned to a Saharan dust event based on HYSPLIT trajectories and DREAM forecasts along with the lidar ratio (70 sr) for the period concerned. The dust was found at two heights, pure dust at 2.5 km and dust mixing with pollution from 0.7 to 1.8 km with a lidar ratio of 40-50 sr.

  10. Clear-air radar observations of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Ince, Turker

    2001-10-01

    This dissertation presents the design and operation of a high-resolution frequency-modulated continuous-wave (FM- CW) radar system to study the structure and dynamics of clear-air turbulence in the atmospheric boundary layer (ABL). This sensitive radar can image the vertical structure of the ABL with both high spatial and temporal resolutions, and provide both qualitative information about the morphology of clear-air structures and quantitative information on the intensity of fluctuations in refractive-index of air. The principles of operation and the hardware and data acquisition characteristics of the radar are described in the dissertation. In October 1999, the radar participated in the Cooperative Atmosphere-Surface Exchange Study (CASES'99) Experiment to characterize the temporal structure and evolution of the boundary-layer features in both convective and stable conditions. The observed structures include clear-air convection, boundary layer evolution, gravity waves, Kelvin-Helmholtz instabilities, stably stratified layers, and clear-air turbulence. Many of the S-band radar images also show high- reflectivity returns from Rayleigh scatterers such as insects. An adaptive median filtering technique based on local statistics has, therefore, been developed to discriminate between Bragg and Rayleigh scattering in clear-air radar observations. The filter is tested on radar observations of clear air convection with comparison to two commonly used image processing techniques. The dissertation also examines the statistical mean of the radar-measured C2n for clear-air convection, and compares it with the theoretical predictions. The study also shows that the inversion height, local thickness of the inversion layer, and the height of the elevated atmospheric layers can be estimated from the radar reflectivity measurements. In addition, comparisons to the radiosonde-based height estimates are made. To examine the temporal and spatial structure of C2n , the dissertation presents two case studies with the measurements of remote (the FM-CW radar and Doppler lidar) and in-situ (research aircraft, kite, and radiosonde) sensors from the stable nighttime boundary layer. It also presents a unique observation of evolution of the convective and nocturnal boundary layers by the S-band radar, and provides description of the observed boundary layer characteristics with the aid of in-situ measurements by the 55m instrumented tower and radiosonde.

  11. Development of strain gages for use to 1311 K (1900 F)

    NASA Technical Reports Server (NTRS)

    Lemcoe, M. M.

    1974-01-01

    A high temperature electric resistance strain gage system was developed and evaluated to 1366 K (2000 F) for periods of at least one hour. Wire fabricated from a special high temperature strain gage alloy (BCL-3), was used to fabricate the gages. Various joining techniques (NASA butt welding, pulse arc, plasma needle arc, and dc parallel gap welding) were investigated for joining gage filaments to each other, gage filaments to lead-tab ribbons, and lead-tab ribbons to lead wires. The effectiveness of a clad-wire concept as a means of minimizing apparent strain of BCL-3 strain gages was investigated by sputtering platinum coatings of varying thicknesses on wire samples and establishing the optimum coating thickness--in terms of minimum resistivity changes with temperature. Finally, the moisture-proofing effectiveness of barrier coatings subjected to elevated temperatures was studied, and one commercial barrier coating (BLH Barrier H Waterproofing) was evaluated.

  12. Vortex Interactions from a Finite Span Cylinder with a Laminar Boundary Layer for Varied Parameters

    NASA Astrophysics Data System (ADS)

    Gildersleeve, Samantha; Amitay, Michael

    2017-11-01

    Flow structures around a stationary, wall-mounted, finite-span cylindrical pin were investigated experimentally over a flat plate to explore the effects of varied aspect ratio and pin mean height with respect to the local boundary layer. Nine static pin configurations were tested where the pin's mean height to the local boundary layer thickness were 0.5, 1, and 1.5 for a range of aspect ratios between 0.125 and 1.125. The freestream velocity was fixed at 11 m/s, corresponding to ReD 2800, 5600, and 8400, respectively. Three-dimensional flowfields were reconstructed and analyzed from SPIV measurements where data were collected along cross-stream planes in the wake of the pin. This study focuses on three dominant vortical patterns associated with a finite span cylinder: the arch-type vortex horseshoe vortex, and the tip vortices Results indicate that both the aspect ratio and mean height play an important role in the behavior and interactions of these vortex structures which alter the wake characteristics significantly. Understanding the mechanisms by which the vortical structures may be strengthened while reducing adverse local pressure drag are key for developing more efficient means of passive and/or active flow control through finite span cylindrical pins and will be discussed in further detail. NDSEG Fellowship for Samantha Gildersleeve.

  13. Investigation of Vortical Flow Patterns in the Near Field of a Dynamic Low-Aspect-Ratio Cylinder

    NASA Astrophysics Data System (ADS)

    Gildersleeve, Samantha; Amitay, Michael

    2016-11-01

    The flowfield and associated flow structures of a low-aspect-ratio cylindrical pin were investigated experimentally in the near-field as the pin underwent wall-normal periodic oscillations. Under dynamic conditions, the pin is driven at the natural wake shedding frequency with an amplitude of 33% of its mean height. Additionally, a static pin was also tested at various mean heights of 0.5, 1.0, and 1.5 times the local boundary layer thickness to explore the effect of the mean height on the flowfield. Three-dimensional flowfields were reconstructed and analyzed from SPIV measurements where data were collected along streamwise planes for several spanwise locations under static and dynamic conditions. The study focuses on the incoming boundary layer as it interacts with the pin, as well as two main vortical formations: the arch-type vortex and the horseshoe vortex. Under dynamic conditions, the upstream boundary layer is thinner, relative to the baseline, and the downwash in the wake increases, resulting in a reduced wake deficit. These results indicate enhanced strength of the aforementioned vortical flow patterns under dynamic conditions. The flow structures in the near-field of the static/dynamic cylinder will be discussed in further detail. Supported by The Boeing Company.

  14. Numerical analysis of finite Debye-length effects in induced-charge electro-osmosis.

    PubMed

    Gregersen, Misha Marie; Andersen, Mathias Baekbo; Soni, Gaurav; Meinhart, Carl; Bruus, Henrik

    2009-06-01

    For a microchamber filled with a binary electrolyte and containing a flat unbiased center electrode at one wall, we employ three numerical models to study the strength of the resulting induced-charge electro-osmotic (ICEO) flow rolls: (i) a full nonlinear continuum model resolving the double layer, (ii) a linear slip-velocity model not resolving the double layer and without tangential charge transport inside this layer, and (iii) a nonlinear slip-velocity model extending the linear model by including the tangential charge transport inside the double layer. We show that, compared to the full model, the slip-velocity models significantly overestimate the ICEO flow. This provides a partial explanation of the quantitative discrepancy between observed and calculated ICEO velocities reported in the literature. The discrepancy increases significantly for increasing Debye length relative to the electrode size, i.e., for nanofluidic systems. However, even for electrode dimensions in the micrometer range, the discrepancies in velocity due to the finite Debye length can be more than 10% for an electrode of zero height and more than 100% for electrode heights comparable to the Debye length.

  15. Eigenmode resonance in a two-layer stratification

    NASA Astrophysics Data System (ADS)

    Kanda, Isao; Linden, P. F.

    2002-06-01

    In this paper, we study the velocity field at the density interface of a two-layer stratification system when the flow is forced at the mid-depth of the lower layer by the source sink forcing method. It is known that, in a sufficiently strong linear stratification, the source sink forcing in certain configurations produces a single-vortex pattern which corresponds to the lowest eigenmode of the Helmholtz equation (Kanda & Linden 2001). Two types of forcing configuration are used for the two-layer experiments: one that leads to a steady single-vortex pattern in a linear stratification, and one that results in an unsteady irregular state. Strong single-vortex patterns appear intermittently for the former configurations despite the absence of stratification at the forcing height. When the single-vortex pattern occurs at the density interface, a similar flow field extends down to the forcing height. The behaviour is explained as the coupling of the resonant eigenmode at the interface with the horizontal component of the forcing jets. The results show that stratification can organise a flow, even though it is forced by an apparently random three-dimensional forcing.

  16. Aerothermodynamic Characteristics of Boundary Layer Transition and Trip Effectiveness of the HIFiRE Flight 5 Vehicle

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.; Rufer, Shann J.; Kimmel, Roger; Adamczak, David

    2009-01-01

    An experimental wind tunnel test was conducted in the NASA Langley Research Center s 20-Inch Mach 6 Tunnel in support of the Hypersonic International Flight Research Experimentation Program. The information in this report is focused on the Flight 5 configuration, one in a series of flight experiments. This report documents experimental measurements made over a range of Reynolds numbers and angles of attack on several scaled ceramic heat transfer models of the Flight 5 vehicle. The heat transfer rate was measured using global phosphor thermography and the resulting images and heat transfer rate distributions were used to infer the state of the boundary layer on the windside, leeside and side surfaces. Boundary layer trips were used to force the boundary layer turbulent, and a study was conducted to determine the effectiveness of the trips with various heights. The experimental data highlighted in this test report were used determine the allowable roughness height for both the windside and side surfaces of the vehicle as well as provide for future tunnel-to-tunnel comparisons.

  17. Three Dimensional Plenoptic PIV Measurements of a Turbulent Boundary Layer Overlying a Hemispherical Roughness Element

    NASA Astrophysics Data System (ADS)

    Johnson, Kyle; Thurow, Brian; Kim, Taehoon; Blois, Gianluca; Christensen, Kenneth

    2016-11-01

    Three-dimensional, three-component (3D-3C) measurements were made using a plenoptic camera on the flow around a roughness element immersed in a turbulent boundary layer. A refractive index matched approach allowed whole-field optical access from a single camera to a measurement volume that includes transparent solid geometries. In particular, this experiment measures the flow over a single hemispherical roughness element made of acrylic and immersed in a working fluid consisting of Sodium Iodide solution. Our results demonstrate that plenoptic particle image velocimetry (PIV) is a viable technique to obtaining statistically-significant volumetric velocity measurements even in a complex separated flow. The boundary layer to roughness height-ratio of the flow was 4.97 and the Reynolds number (based on roughness height) was 4.57×103. Our measurements reveal key flow features such as spiraling legs of the shear layer, a recirculation region, and shed arch vortices. Proper orthogonal decomposition (POD) analysis was applied to the instantaneous velocity and vorticity data to extract these features. Supported by the National Science Foundation Grant No. 1235726.

  18. Possible Short-Term Precursors of Strong Crustal Earthquakes in Japan based on Data from the Ground Stations of Vertical Ionospheric Sounding

    NASA Astrophysics Data System (ADS)

    Korsunova, L. P.; Khegai, V. V.

    2018-01-01

    We have studied changes in the ionosphere prior to strong crustal earthquakes with magnitudes of M ≥ 6.5 based on the data from the ground-based stations of vertical ionospheric sounding Kokobunji, Akita, and Wakkanai for the period 1968-2004. The data are analyzed based on hourly measurements of the virtual height and frequency parameters of the sporadic E layer and critical frequency of the regular F2 layer over the course of three days prior to the earthquakes. In the studied intervals of time before all earthquakes, anomalous changes were discovered both in the frequency parameters of the Es and F2 ionospheric layers and in the virtual height of the sporadic E layer; the changes were observed on the same day at stations spaced apart by several hundred kilometers. A high degree of correlation is found between the lead-time of these ionospheric anomalies preceding the seismic impact and the magnitude of the subsequent earthquakes. It is concluded that such ionospheric disturbances can be short-term ionospheric precursors of earthquakes.

  19. Can the physical properties associated with uncertainties in the NASA MODIS AOD retrievals in the western U.S. be determined?

    NASA Astrophysics Data System (ADS)

    Loria Salazar, S. M.; Holmes, H.; Panorska, A. K.; Arnott, W. P.; Barnard, J.

    2016-12-01

    Previous investigations have used satellite remote sensing to estimate surface air pollution concentrations. While most of these studies rely on models developed for the dark-vegetated eastern U.S., they are being used in the semi-arid western U.S without modifications. These models are not robust in the western U.S. due to: 1. Irregular topography that leads to complicated boundary layer physics, 2. Pollutant mixtures, 3. Heterogeneous vertical profile of aerosol concentrations, and 4. High surface reflectance. Here, results from Nevada and California demonstrate poor AOD correlation between AERONET MODIS retrievals. Smoke from wildfires strengthened the aerosol signal, but the MODIS versus AERONET AOD correlation did not improve significantly during fire events [r2 0.17 (non-fire), r2 0.2 (fire)]. Furthermore, aerosol from fires increased the normalized mean bias (NMB) of MODIS retrievals of AOD[NMB 82% (non-fire), NMB 146% (fire)]. Additional results of this investigation found that aerosol plumes confined with the boundary layer improves MODIS AOD retrievals. However, when this condition is not met (i.e., 70% of the time downwind of mountains regions) MODIS AOD has a poor correlation and high bias with respect to AERONET AOD. Fire injection height, complicated boundary layer mixing, and entrainment disperse smoke plumes into the free atmosphere. Therefore, smoke plumes exacerbate the complex aerosol transport typical in the western U.S. and the non-linear relationship between surface pollutant concentrations and conditions aloft. This work uses stochastic methods, including regression to investigate the influence of each of these physical behaviors on the MODIS, AERONET AOD discrepancy using surrogates for each physical phenomenon, e.g., surface albedo for surface reflectance, boundary layer height and elevation for complex mixing, aerosol optical height for vertical aerosol concentrations, and fire radiative power for smoke plume injection height.

  20. Mixed sand and gravel beaches: accurate measurement of active layer depth and sediment transport volumes using PIT tagged tracer pebbles

    NASA Astrophysics Data System (ADS)

    Holland, A.; Moses, C.; Sear, D. A.; Cope, S.

    2016-12-01

    As sediments containing significant gravel portions are increasingly used for beach replenishment projects globally, the total number of beaches classified as `mixed sand and gravel' (MSG) increases. Calculations for required replenishment sediment volumes usually assume a uniform layer of sediment transport across and along the beach, but research into active layer (AL) depth has shown variations both across shore and according to sediment size distribution. This study addresses the need for more accurate calculations of sediment transport volumes on MSG beaches by using more precise measurements of AL depth and width, and virtual velocity of tracer pebbles. Variations in AL depth were measured along three main profile lines (from MHWS to MLWN) at Eastoke, Hayling Island (Hampshire, UK). Passive Integrated Transponder (PIT) tagged pebbles were deployed in columns, and their new locations repeatedly surveyed with RFID technology. These data were combined with daily dGPS beach profiles and sediment sampling for detailed analysis of the influence of beach morphodynamics on sediment transport volumes. Data were collected over two consecutive winter seasons: 2014-15 (relatively calm, average wave height <1 m) and 2015-16 (prolonged periods of moderate storminess, wave heights of 1-2 m). The active layer was, on average, 22% of wave height where beach slope (tanβ) is 0.1, with variations noted according to slope angle, sediment distribution, and beach groundwater level. High groundwater levels and a change in sediment proportions in the sandy lower foreshore reduced the AL to 10% of wave height in this area. The disparity in AL depth across the beach profile indicates that traditional models are not accurately representing bulk sediment transport on MSG beaches. It is anticipated that by improving model inputs, beach managers will be better able to predict necessary volumes and sediment grain size proportions of replenishment material for effective management of MSG beaches.

  1. Reversible uptake of water on NaCl nanoparticles at relative humidity below deliquescence point observed by noncontact environmental atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Bruzewicz, Derek A.; Checco, Antonio; Ocko, Benjamin M.; Lewis, Ernie R.; McGraw, Robert L.; Schwartz, Stephen E.

    2011-01-01

    The behavior of NaCl nanoparticles as a function of relative humidity (RH) has been characterized using non-contact environmental atomic force microscopy (e-AFM) to measure the heights of particles deposited on a prepared hydrophobic surface. Cubic NaCl nanoparticles with sides of 35 and 80 nm were found to take up water reversibly with increasing RH well below the bulk deliquescence relative humidity (DRH) of 75% at 23° C, and to form a liquid-like surface layer of thickness 2 to 5 nm, with measurable uptake ( >2 nm increase in particle height) beginning at 70% RH. The maximum thickness of the layer increased with increasing RH and increasing particle size over the range studied. The liquid-like behavior of the layer was indicated by a reversible rounding at the upper surface of the particles, fit to a parabolic cross-section, where the ratio of particle height to maximum radius of curvature increases from zero (flat top) at 68% RH to 0.7 ± 0.3 at 74% RH. These observations, which are consistent with a reorganization of mass on the solid NaCl nanocrystal at RH below the DRH, suggest that the deliquescence of NaCl nanoparticles is more complex than an abrupt first-order phase transition. The height measurements are consistent with a phenomenological model that assumes favorable contributions to the free energy of formation of a liquid layer on solid NaCl due both to van der Waals interactions, which depend partly upon the Hamaker constant, A_{{film}}, of the interaction between the thin liquid film and the solid NaCl, and to a longer-range electrostatic interaction over a characteristic length of persistence, ξ; the best fit to the data corresponded to A_{{film}} = 1 kT and ξ = 2.33 nm.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanc, E.; Mercandalli, B.; Houngninou, E.

    The authors describe results from a vertically oriented HF radar operated in the Ivory Coast, which studied irregularities in the E and F regions of the equatorial ionosphere. The authors report on irregularity observations at heights consistent with the equatorial electrojet, and at heights above the electrojet, and into the F1 layer. They observe irregularities into the F region in this work. The radar operated in the frequency range from 1 to 8 MHz.

  3. Determination of the smoke-plume heights with scanning lidar using alternative functions for establishing the atmospheric heterogeneity locations

    Treesearch

    Vladimir A. Kovalev; Alexander Petkov; Cyle Wold; Wei Min Hao

    2010-01-01

    Data-processing techniques for the scanning lidar data are considered that allow determining the upper and lower boundaries of the smoke plume or smoke layering in the vicinity of wildfires. The task is fulfilled by utilizing the Atmospheric Heterogeneity Height Indicator (AHHI). The AHHI is a histogram, which shows a number of heterogeneity events defined by scanning...

  4. The Use of MERRA-2 Near Surface Meteorology to Understand the Behavior of Planetary Boundary Layer heights Derived from Wind Profiler Data Over the US Great Plains

    NASA Astrophysics Data System (ADS)

    Molod, A.; Salmun, H.; Collow, A.

    2017-12-01

    The atmospheric general circulation model (GCM) that underlies the MERRA-2 reanalysis includesa suite of physical parameterizations that describe the processes that occur in theplanetary boundary layer (PBL). The data assimilation system assures that the atmosphericstate variables used as input to these parameterizations are constrained to the bestfit to all of the available observations. Many studies, however, have shown that the GCM-based estimates of MERRA-2 PBL heights are biased high, and so are not reliable forapplication related to constituent transport or the carbon cycle.A new 20-year record of PBL heights was derived from Wind Profiler (WP) backscatter data measuredat a wide network of stations throughout the US Great Plains and has been validated against independent estimates. The behavior of these PBL heights shows geographical and temporalvariations that are difficult to attribute to particular physical processes withoutadditional information that are not part of the observational record.In the present study, we use information on physical processes from MERRA-2 to understand the behavior of the WP derived PBL heights. The behavior of the annual cycle of both MERRA-2 and WP PBL heights shows three classes of behavior: (i) canonical, where the annual cyclefollows the annual cycle of the sun, (ii) delayed, where the PBL height reaches its annual maximum after the annual maximum of the solar insolation, and (iii) double maxima, wherethe PBL height begins to rise with the solar insolation but falls sometimes during the the summer and then rises again. Although the magnitude of these types of variations isdescribed by the WP PBL record, the explanation for these behaviors and the relationshipto local precipitation, temperature, hydrology and sensible and latent heat fluxes is articulated using information from MERRA-2.

  5. Implementation of spaceborne lidar-retrieved canopy height in the WRF model

    NASA Astrophysics Data System (ADS)

    Lee, Junhong; Hong, Jinkyu

    2016-06-01

    Canopy height is closely related to biomass and aerodynamic properties, which regulate turbulent transfer of energy and mass at the soil-vegetation-atmosphere continuum. However, this key information has been prescribed as a constant value in a fixed plant functional type in atmospheric models. This paper is the first to report impacts of using realistic forest canopy height, retrieved from spaceborne lidar, on regional climate simulation by using the canopy height data in the Weather Research and Forecasting (WRF) model's land surface model. Numerical simulations were conducted over the Amazon Basin during summer season. Over this region, the lidar-retrieved canopy heights were higher than the default values used in the WRF, which are dependent only on plant functional type. By modifying roughness length and zero-plane displacement height, the change of canopy height resulted in changes in surface energy balance by regulating aerodynamic conductances and vertical temperature gradient, thus modifying the lifting condensation level and equivalent potential temperature in the atmospheric boundary layer. Our analysis also showed that the WRF model better reproduced the observed precipitation when lidar-retrieved canopy height was used over the Amazon Basin.

  6. Simultaneous growth of self-patterned carbon nanotube forests with dual height scales

    NASA Astrophysics Data System (ADS)

    Sam, Ebru Devrim; Kucukayan-Dogu, Gokce; Baykal, Beril; Dalkilic, Zeynep; Rana, Kuldeep; Bengu, Erman

    2012-05-01

    In this study, we report on a unique, one-step fabrication technique enabling the simultaneous synthesis of vertically aligned multi-walled carbon nanotubes (VA-MWCNTs) with dual height scales through alcohol catalyzed chemical vapor deposition (ACCVD). Regions of VA-MWCNTs with different heights were well separated from each other leading to a self-patterning on the surface. We devised a unique layer-by-layer process for application of catalyst and inhibitor precursors on oxidized Si (100) surfaces before the ACCVD step to achieve a hierarchical arrangement. Patterning could be controlled by adjusting the molarity and application sequence of precursors. Contact angle measurements on these self-patterned surfaces indicated that manipulation of these hierarchical arrays resulted in a wide range of hydrophobic behavior changing from that of a sticky rose petal to a lotus leaf.In this study, we report on a unique, one-step fabrication technique enabling the simultaneous synthesis of vertically aligned multi-walled carbon nanotubes (VA-MWCNTs) with dual height scales through alcohol catalyzed chemical vapor deposition (ACCVD). Regions of VA-MWCNTs with different heights were well separated from each other leading to a self-patterning on the surface. We devised a unique layer-by-layer process for application of catalyst and inhibitor precursors on oxidized Si (100) surfaces before the ACCVD step to achieve a hierarchical arrangement. Patterning could be controlled by adjusting the molarity and application sequence of precursors. Contact angle measurements on these self-patterned surfaces indicated that manipulation of these hierarchical arrays resulted in a wide range of hydrophobic behavior changing from that of a sticky rose petal to a lotus leaf. Electronic supplementary information (ESI) available: Fig. S1; AFM image of the Co-O layer which was first dried at 40 °C and then oxidized at 200 °C. Fig. S2; graph relative to the area of CNT islands for different catalyst configurations. Fig. S3; representative XPS spectra of (a) Si 2p, (b) Al 2p, (c) Fe 2p and (d) Co 2p for a reduced Al/Fe/Al/Co (20/20/20/20) catalyst film (grey line in all figures shows the peak backgrounds and orange line shows the curve fitted). Contact angle movies, Video S1 and Video S2, of Al/Fe/Al/Co samples 40/20/20/20 and 20/40/20/20, respectively. See DOI: 10.1039/c2nr30258f

  7. Interface coupling and growth rate measurements in multilayer Rayleigh-Taylor instabilities

    NASA Astrophysics Data System (ADS)

    Adkins, Raymond; Shelton, Emily M.; Renoult, Marie-Charlotte; Carles, Pierre; Rosenblatt, Charles

    2017-06-01

    Magnetic levitation was used to measure the growth rate Σ vs wave vector k of a Rayleigh-Taylor instability in a three-layer fluid system, a crucial step in the elucidation of interface coupling in finite-layer instabilities. For a three-layer (low-high-low density) system, the unstable mode growth rate decreases as both the height h of the middle layer and k are reduced, consistent with an interface coupling ∝e-k h . The ratios of the three-layer to the established two-layer growth rates are in good agreement with those of classic linear stability theory, which has long resisted verification in that configuration.

  8. Surface structure of MgO underlayer with Ti diffusion for (002) oriented L10 FePt-based heat assisted magnetic recording media

    NASA Astrophysics Data System (ADS)

    Hinata, Sintaro; Jo, Shin; Saito, Shin

    2018-05-01

    Surface morphology of the MgO layer and magnetic properties of FePt-C layer deposited on the MgO were investigated for the FePt-based heat assisted magnetic recording media. Stacking structure of the underlayer for the FePt-C layer was MgO (0-5 nm)/Cr80Mn20 (0-30 nm)/Cr50Ti50 (0-50 nm)/glass sub.. Surface observation result for the MgO film by using an atomic force microscope revealed the existence of nodules with a height of about 2 nm and a network-like convex structure with a height difference of about sub nm (boundary wall, BW) on the MgO crystal grain boundary. Density of the nodules largely depends on the surface roughness of the CrTi layer, RaCrTi and it is suppressed from 10 to 2/0.5 μm2 by reducing RaCrTi from 420 to 260 pm. Height of the BW depends on thickness of the MgO layer, tMgO and it can be suppressed by reducing tMgO to less than 4 nm. From the cross-sectional energy dispersive x-ray mapping, it is clarified that the BW is formed by atomic diffusion of Ti atoms from CrTi layer due to the substrate heating process, and a compound consists of Mg, Ti and O atoms. This BW can be used as a template to magnetically isolate the FePt column in the FePt-based granular film, such as FePt-SiO2, if the size of the BW is reduced to less than 10 nm. M-H loop of the FePt-C granular film deposited on the underlayer showed that the nodule and BW induce oxidation of the FePt grains, and reduction of intergranular exchange coupling.

  9. Ultrahigh vertical resolution radar measurements in the lower stratosphere at Arecibo

    NASA Technical Reports Server (NTRS)

    Ierkic, H. M.; Perillat, P.; Woodman, R. F.

    1990-01-01

    The paper reports on heretofore unprecedented observations of the turbulent layers in the lower stratosphere using the Arecibo 2380-MHz radar. Spectral profiles with about 20 m height and 15 s time resolutions at altitudes in the range 16-19 km are used to parametrize relevant characteristics of the turbulence, namely, vertical widths, distributions, lifetimes, and cutoffs height. These measurements validate previous deconvolved estimates and are free from contaminating factors like shear or beam broadening and partial reflections. Some theoretical predictions are verified, in particular those relating to the height of cutoff and the outer scale of the turbulence.

  10. An algorithm to estimate PBL heights from wind profiler data

    NASA Astrophysics Data System (ADS)

    Molod, A.; Salmun, H.

    2016-12-01

    An algorithm was developed to estimate planetary boundary layer (PBL) heights from hourlyarchived wind profiler data from the NOAA Profiler Network (NPN) sites located throughoutthe central United States from the period 1992-2012. The long period of record allows ananalysis of climatological mean PBL heights as well as some estimates of year to yearvariability. Under clear conditions, summertime averaged hourly time series of PBL heightscompare well with Richardson-number based estimates at the few NPN stations with hourlytemperature measurements. Comparisons with clear sky MERRA estimates show that the windprofiler (WP) and the Richardson number based PBL heights are lower by approximately 250-500 m.The geographical distribution of daily maximum WP PBL heights corresponds well with theexpected distribution based on patterns of surface temperature and soil moisture. Windprofiler PBL heights were also estimated under mostly cloudy conditions, but the WP estimatesshow a smaller clear-cloudy condition difference than either of the other two PBL height estimates.The algorithm presented here is shown to provide a reliable summer, fall and springclimatology of daytime hourly PBL heights throughout the central United States. The reliabilityof the algorithm has prompted its use to obtain hourly PBL heights from other archived windprofiler data located throughout the world.

  11. Self-organizing sensing and actuation for automatic control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, George Shu-Xing

    A Self-Organizing Process Control Architecture is introduced with a Sensing Layer, Control Layer, Actuation Layer, Process Layer, as well as Self-Organizing Sensors (SOS) and Self-Organizing Actuators (SOA). A Self-Organizing Sensor for a process variable with one or multiple input variables is disclosed. An artificial neural network (ANN) based dynamic modeling mechanism as part of the Self-Organizing Sensor is described. As a case example, a Self-Organizing Soft-Sensor for CFB Boiler Bed Height is presented. Also provided is a method to develop a Self-Organizing Sensor.

  12. Ultraviolet Radiative Transfer Modeling of Nearby Galaxies with Extraplanar Dusts

    NASA Astrophysics Data System (ADS)

    Shinn, Jong-Ho; Seon, Kwang-Il

    2015-12-01

    In order to examine their relation to the host galaxy, the extraplanar dusts of six nearby galaxies are modeled, employing a three-dimensional Monte Carlo radiative transfer code. The targets are from the highly inclined galaxies that show dust-scattered ultraviolet halos, and the archival Galaxy Evolution Explorer FUV band images were fitted with the model. The observed images are generally well-reproduced by two dust layers and one light source layer, whose vertical and radial distributions have exponential profiles. We obtained several important physical parameters, such as star formation rate (SFRUV), face-on optical depth, and scale-heights. Three galaxies (NGC 891, NGC 3628, and UGC 11794) show clear evidence for the existence of an extraplanar dust layer. However, it is found that the remaining three targets (IC 5249, NGC 24, and NGC 4173) do not necessarily need a thick dust disk to model the ultraviolet (UV) halo, because its contribution is too small and the UV halo may be caused by the wing part of the GALEX point spread function. This indicates that the galaxy samples reported to have UV halos may be contaminated by galaxies with negligible extraplanar (halo) dust. The galaxies showing evidence of an extraplanar dust layer fall within a narrow range on the scatter plots between physical parameters such as SFRUV and extraplanar dust mass. Several mechanisms that could possibly produce the extraplanar dust are discussed. We also found a hint that the extraplanar dust scale-height might not be much different from the polycyclic aromatic hydrocarbon emission characteristic height.

  13. Optimisation of Substrate Angles for Multi-material and Multi-functional Inkjet Printing.

    PubMed

    Vaithilingam, Jayasheelan; Saleh, Ehab; Wildman, Ricky D; Hague, Richard J M; Tuck, Christopher J

    2018-06-13

    Three dimensional inkjet printing of multiple materials for electronics applications are challenging due to the limited material availability, inconsistencies in layer thickness between dissimilar materials and the need to expose the printed tracks of metal nanoparticles to temperature above 100 °C for sintering. It is envisaged that instead of printing a dielectric and a conductive material on the same plane, by printing conductive tracks on an angled dielectric surface, the required number of silver layers and consequently, the exposure of the polymer to high temperature and the build time of the component can be significantly reduced. Conductive tracks printed with a fixed print height (FH) showed significantly better resolution for all angles than the fixed slope (FS) sample where the print height varied to maintain the slope length. The electrical resistance of the tracks remained under 10Ω up to 60° for FH; whereas for the FS samples, the resistance remained under 10Ω for samples up to 45°. Thus by fixing the print height to 4 mm, precise tracks with low resistance can be printed at substrate angles up to 60°. By adopting this approach, the build height "Z" can be quickly attained with less exposure of the polymer to high temperature.

  14. Analysis of Doppler Lidar Data Acquired During the Pentagon Shield Field Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newsom, Rob K.

    2011-04-14

    Observations from two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the overall boundary-layer structure, and identify the dominant flow characteristics during the entire two-week field campaign. Convective boundary layer (CBL) heights and cloud base heights (CBH) are estimated from an analysis of the lidar signal-to-noise-ratio (SNR), and mean wind profiles are computed using a modified velocity-azimuth-display (VAD) algorithm. Three-dimensional wind field retrievals are computed from coordinated overlapping volume scans, and the results are analyzed by visualizing the flow in horizontal and vertical cross sections. The VAD winds showmore » that southerly flows dominate during the two-week field campaign. Low-level jets (LLJ) were evident on all but two of the nights during the field campaign. The LLJs tended to form a couple hours after sunset and reach maximum strength between 03 and 07 UTC. The surface friction velocities show distinct local maxima during four nights when strong LLJs formed. Estimates of the convective boundary layer height and residual layer height are obtained through an analysis of the vertical gradient of the lidar signal-to-noise-ratio (SNR). Strong minimum in the SNR gradient often develops just above the surface after sunrise. This minimum is associated with the developing CBL, and increases rapidly during the early portion of the daytime period. On several days, this minimum continues to increase until about sunset. Secondary minima in the SNR gradient were also observed at higher altitudes, and are believed to be remnants of the CBL height from previous days, i.e. the residual layer height. The dual-Doppler analysis technique used in this study makes use of hourly averaged radial velocity data to produce three-dimensional grids of the horizontal velocity components, and the horizontal velocity variance. Visualization of horizontal and vertical cross sections of the dual-Doppler wind retrievals often indicated a jet-like flow feature over the Potomac River under southerly flow conditions. This linear flow feature is roughly aligned with the Potomac River corridor to the south of the confluence with the Anatostia River, and is most apparent at low levels (i.e. below ~150 m MSL). It is believed that this flow arises due to reduced drag over the water surface and when the large scale flow aligns with the Potomac River corridor. A so-called area-constrained VAD analysis generally confirmed the observations from the dual-Doppler analysis. When the large scale flow is southerly, wind speeds over the Potomac River are consistently larger than the at a site just to the west of the river for altitudes less than 100 m MSL. Above this level, the trend is somewhat less obvious. The data suggest that the depth of the wind speed maximum may be reduced by strong directional shear aloft.« less

  15. Experimental research of solid waste drying in the process of thermal processing

    NASA Astrophysics Data System (ADS)

    Bukhmirov, V. V.; Kolibaba, O. B.; Gabitov, R. N.

    2015-10-01

    The convective drying process of municipal solid waste layer as a polydispersed multicomponent porous structure is studied. On the base of the experimental data criterial equations for calculating heat transfer and mass transfer processes in the layer, depending on the humidity of the material, the speed of the drying agent and the layer height are obtained. These solutions are used in the thermal design of reactors for the thermal processing of multicomponent organic waste.

  16. Boundary layer relaminarization device

    NASA Technical Reports Server (NTRS)

    Creel, Theodore R. (Inventor)

    1992-01-01

    Relamination of a boundary layer formed in supersonic flow over the leading edge of a swept airfoil is accomplished by means of at least one band, especially a quadrangular band, and most preferably a square band. Each band conforms to the leading edge and the upper and lower surfaces of the airfoil as an integral part thereof and extends perpendicularly from the leading edge. Each band has a height of about two times the thickness of the maximum expected boundary layer.

  17. Electrodynamic properties and height of atmospheric convective boundary layer

    NASA Astrophysics Data System (ADS)

    Anisimov, S. V.; Galichenko, S. V.; Mareev, E. A.

    2017-09-01

    We consider the relations between the mixed layer height and atmospheric electric parameters affected by convective mixing. Vertical turbulent transport of radon, its progeny and electrically charged particles is described under Lagrangian stochastic framework, which is the next step to develop a consistent model for the formation of electrical conditions in the atmospheric boundary layer. Using the data from detailed and complex measurements of vertical profiles of the temperature and turbulence statistics as input, we calculated non-stationary vertical profiles of radon and its daughter products concentrations, atmospheric electric conductivity and intensity of electric field in the convective boundary layer from the morning transition through early afternoon quasi-stationary conditions. These profiles demonstrate substantial variability due to the changing turbulent regime in the evolving boundary layer. We obtained quantitative estimates of the atmospheric electric field variability range essentially related to the sunrise and convection development. It is shown that the local change in the electrical conductivity is the only factor that can change the intensity of electric field at the earth's surface more than twice during the transition from night to day. The established relations between electric and turbulent parameters of the boundary layer indicate that the effect of sunrise is more pronounced in the case when development of convection is accompanied by an increase in aerosol concentration and, hence, a decrease in local conductivity.

  18. Fire induced reproductive mechanisms of a Symphoricarpos (Caprifoliaceae) shrub after dormant season burning.

    PubMed

    Scasta, John Derek; Engle, David M; Harr, Ryan N; Debinski, Diane M

    2014-12-01

    Symphoricarpos, a genus of the Caprifoliaceae family, consists of about 15 species of clonal deciduous shrubs in North America and 1 species endemic to China. In North American tallgrass prairie, Symphoricarpos orbiculatus (buckbrush) is the dominant shrub often forming large colonies via sexual and asexual reproductive mechanisms. Symphoricarpos shrubs, in particular S. orbiculatus, use a unique sexual reproductive mechanism known as layering where vertical stems droop and the tips root upon contact with the soil. Because of conflicting societal values of S. orbiculatus for conservation and agriculture and the current attempt to restore historical fire regimes, there is a need for basic research on the biological response of S. orbiculatus to anthropogenic burning regimes. From 2007 through 2013 we applied prescribed fires in the late dormant season on grazed pastures in the Grand River Grasslands of Iowa. From 2011 to 2013, we measured how S. orbiculatus basal resprouting and layering stems were affected by patchy fires on grazed pastures, complete pasture fires on grazed pastures or fire exclusion without grazing for more than three years. We measured ramet height, ramet canopy diameter, stems per ramet, ramets per 100 m 2 , and probability of new layering stems 120 days after fire. Height in burned plots was lower than unburned plots but S. orbiculatus reached ~ 84% of pre-burn height 120 days after fire. Stems per ramet were 2x greater in the most recently burned plots due to basal re-sprouting. Canopy diameter and density of ramets was not affected by time since fire, but burned pastures had marginally lower densities than plots excluded from fire (P = 0.07). Fire triggered new layering stems and no new layering stems were found in plots excluded from fire. The mechanisms of both basal sprouting and aerial layering after fire suggest S. orbiculatus is tolerant to dormant season fires. Furthermore, dormant season fires, regardless if they were patchy fires or complete pasture fires, did not result in mortality of S. orbiculatus. Dormant season fires can reduce S. orbiculatus structural dominance and maintain lower ramet densities but also trigger basal resprouting and layering.

  19. Temperature and Relative Humidity Vertical Profiles within Planetary Boundary Layer in Winter Urban Airshed

    NASA Astrophysics Data System (ADS)

    Bendl, Jan; Hovorka, Jan

    2017-12-01

    The planetary boundary layer is a dynamic system with turbulent flow where horizontal and vertical air mixing depends mainly on the weather conditions and geomorphology. Normally, air temperature from the Earth surface decreases with height but inversion situation may occur, mainly during winter. Pollutant dispersion is poor during inversions so air pollutant concentration can quickly rise, especially in urban closed valleys. Air pollution was evaluated by WHO as a human carcinogen (mostly by polycyclic aromatic hydrocarbons) and health effects are obvious. Knowledge about inversion layer height is important for estimation of the pollution impact and it can give us also information about the air pollution sources. Temperature and relative humidity vertical profiles complement ground measurements. Ground measurements were conducted to characterize comprehensively urban airshed in Svermov, residential district of the city of Kladno, about 30 km NW of Prague, from the 2nd Feb. to the 3rd of March 2016. The Svermov is an air pollution hot-spot for long time benzo[a]pyrene (B[a]P) limit exceedances, reaching the highest B[a]P annual concentration in Bohemia - west part of the Czech Republic. Since the Svermov sits in a shallow valley, frequent vertical temperature inversion in winter and low emission heights of pollution sources prevent pollutant dispersal off the valley. Such orography is common to numerous small settlements in the Czech Republic. Ground measurements at the sports field in the Svermov were complemented by temperature and humidity vertical profiles acquired by a Vaisala radiosonde positioned at tethered He-filled balloon. Total number of 53 series of vertical profiles up to the height of 300 m was conducted. Meteorology parameters were acquired with 4 Hz frequency. The measurements confirmed frequent early-morning and night formation of temperature inversion within boundary layer up to the height of 50 m. This rather shallow inversion had significant influence on air quality due to inversion cap over the valley. Nevertheless, formation of an inversion showed strong diurnal variability. For example, on the 18th Feb. early morning shallow inversion quickly disappeared within less than 2 hours. According to this study tethered balloon measurements has proved to be a good tool for completion comprehensive ground air quality measurements.

  20. Measurements of thermal updraft intensity over complex terrain using American white pelicans and a simple boundary-layer forecast model

    USGS Publications Warehouse

    Shannon, H.D.; Young, G.S.; Yates, M.; Fuller, Mark R.; Seegar, W.

    2003-01-01

    An examination of boundary-layer meteorological and avian aerodynamic theories suggests that soaring birds can be used to measure the magnitude of vertical air motions within the boundary layer. These theories are applied to obtain mixed-layer normalized thermal updraft intensity over both flat and complex terrain from the climb rates of soaring American white pelicans and from diagnostic boundary-layer model-produced estimates of the boundary-layer depth zi and the convective velocity scale w*. Comparison of the flatland data with the profiles of normalized updraft velocity obtained from previous studies reveals that the pelican-derived measurements of thermal updraft intensity are in close agreement with those obtained using traditional research aircraft and large eddy simulation (LES) in the height range of 0.2 to 0.8 zi. Given the success of this method, the profiles of thermal vertical velocity over the flatland and the nearby mountains are compared. This comparison shows that these profiles are statistically indistinguishable over this height range, indicating that the profile for thermal updraft intensity varies little over this sample of complex terrain. These observations support the findings of a recent LES study that explored the turbulent structure of the boundary layer using a range of terrain specifications. For terrain similar in scale to that encountered in this study, results of the LES suggest that the terrain caused less than an 11% variation in the standard deviation of vertical velocity.

  1. Isotype InGaN/GaN heterobarrier diodes by ammonia molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fireman, Micha N.; Browne, David A.; Speck, James S.

    The design of isotype InGaN/GaN heterobarrier diode structures grown by ammonia molecular beam epitaxy is presented. On the (0001) Ga-polar plane, a structure consisting of a surface n{sup +} GaN contact layer, followed by a thin InGaN layer, followed by a thick unintentionally doped (UID) GaN layer, and atop a buried n{sup +} GaN contact layer induces a large conduction band barrier via a depleted UID GaN layer. Suppression of reverse and subthreshold current in such isotype barrier devices under applied bias depends on the quality of this composite layer polarization. Sample series were grown under fixed InGaN growth conditionsmore » that varied either the UID GaN NH{sub 3} flow rate or the UID GaN thickness, and under fixed UID GaN growth conditions that varied InGaN growth conditions. Decreases in subthreshold current and reverse bias current were measured for thicker UID GaN layers and increasing InGaN growth rates. Temperature-dependent analysis indicated that although extracted barrier heights were lower than those predicted by 1D Schrödinger Poisson simulations (0.9 eV–1.4 eV for In compositions from 10% to 15%), optimized growth conditions increased the extracted barrier height from ∼11% to nearly 85% of the simulated values. Potential subthreshold mechanisms are discussed, along with those growth factors which might affect their prevalence.« less

  2. Evaluation of Flush-Mounted, S-Duct Inlets with Large Amounts of Boundary Layer Ingestion

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Morehouse, Melissa B.

    2003-01-01

    A new high Reynolds number test capability for boundary layer ingesting inlets has been developed for the NASA Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel. Using this new capability, an experimental investigation of four S-duct inlet configurations with large amounts of boundary layer ingestion (nominal boundary layer thickness of about 40% of inlet height) was conducted at realistic operating conditions (high subsonic Mach numbers and full-scale Reynolds numbers). The objectives of this investigation were to 1) provide a database for CFD tool validation on boundary layer ingesting inlets operating at realistic conditions and 2) provide a baseline inlet for future inlet flow-control studies. Tests were conducted at Mach numbers from 0.25 to 0.83, Reynolds numbers (based on duct exit diameter) from 5.1 million to a full-scale value of 13.9 million, and inlet mass-flow ratios from 0.39 to 1.58 depending on Mach number. Results of this investigation indicate that inlet pressure recovery generally decreased and inlet distortion generally increased with increasing Mach number. Except at low Mach numbers, increasing inlet mass-flow increased pressure recovery and increased distortion. Increasing the amount of boundary layer ingestion (by decreasing inlet throat height) or ingesting a boundary layer with a distorted (adverse) profile decreased pressure recovery and increased distortion. Finally, increasing Reynolds number had almost no effect on inlet distortion but increased inlet recovery by about one-half percent at a Mach number near cruise.

  3. Study on dynamic deformation synchronized measurement technology of double-layer liquid surfaces

    NASA Astrophysics Data System (ADS)

    Tang, Huiying; Dong, Huimin; Liu, Zhanwei

    2017-11-01

    Accurate measurement of the dynamic deformation of double-layer liquid surfaces plays an important role in many fields, such as fluid mechanics, biomechanics, petrochemical industry and aerospace engineering. It is difficult to measure dynamic deformation of double-layer liquid surfaces synchronously for traditional methods. In this paper, a novel and effective method for full-field static and dynamic deformation measurement of double-layer liquid surfaces has been developed, that is wavefront distortion of double-wavelength transmission light with geometric phase analysis (GPA) method. Double wavelength lattice patterns used here are produced by two techniques, one is by double wavelength laser, and the other is by liquid crystal display (LCD). The techniques combine the characteristics such as high transparency, low reflectivity and fluidity of liquid. Two color lattice patterns produced by laser and LCD were adjusted at a certain angle through the tested double-layer liquid surfaces simultaneously. On the basis of the refractive indexes difference of two transmitted lights, the double-layer liquid surfaces were decoupled with GPA method. Combined with the derived relationship between phase variation of transmission-lattice patterns and out-of plane heights of two surfaces, as well as considering the height curves of the liquid level, the double-layer liquid surfaces can be reconstructed successfully. Compared with the traditional measurement method, the developed method not only has the common advantages of the optical measurement methods, such as high-precision, full-field and non-contact, but also simple, low cost and easy to set up.

  4. Boundary Layer Height and Buoyancy Determine the Horizontal Scale of Convective Self-Aggregation

    DOE PAGES

    Yang, Da

    2018-01-24

    Organized rainstorms and their associated overturning circulations can self-emerge over an ocean surface with uniform temperature in cloud-resolving simulations. This phenomenon is referred to as convective self-aggregation. Convective self-aggregation is argued to be an important building block for tropical weather systems and may help regulate tropical atmospheric humidity and thereby tropical climate stability. Here the author presents a boundary layer theory for the horizontal scale λ of 2D (x, z) convective self-aggregation by considering both the momentum and energy constraints for steady circulations. This theory suggests that λ scales with the product of the boundary layer height h and themore » square root of the amplitude of density variation between aggregated moist and dry regions in the boundary layer, and that this density variation mainly arises from the moisture variation due to the virtual effect of water vapor. Furthermore, this theory predicts the following: 1) the order of magnitude of λ is ~2000 km, 2) the aspect ratio of the boundary layer λ/h increases with surface warming, and 3) λ decreases when the virtual effect of water vapor is disabled. These predictions are confirmed using a sui te of cloud-resolving simulations spanning a wide range of climates.« less

  5. Boundary Layer Height and Buoyancy Determine the Horizontal Scale of Convective Self-Aggregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Da

    Organized rainstorms and their associated overturning circulations can self-emerge over an ocean surface with uniform temperature in cloud-resolving simulations. This phenomenon is referred to as convective self-aggregation. Convective self-aggregation is argued to be an important building block for tropical weather systems and may help regulate tropical atmospheric humidity and thereby tropical climate stability. Here the author presents a boundary layer theory for the horizontal scale λ of 2D (x, z) convective self-aggregation by considering both the momentum and energy constraints for steady circulations. This theory suggests that λ scales with the product of the boundary layer height h and themore » square root of the amplitude of density variation between aggregated moist and dry regions in the boundary layer, and that this density variation mainly arises from the moisture variation due to the virtual effect of water vapor. Furthermore, this theory predicts the following: 1) the order of magnitude of λ is ~2000 km, 2) the aspect ratio of the boundary layer λ/h increases with surface warming, and 3) λ decreases when the virtual effect of water vapor is disabled. These predictions are confirmed using a sui te of cloud-resolving simulations spanning a wide range of climates.« less

  6. Direct single-layered fabrication of 3D concavo convex patterns in nano-stereolithography

    NASA Astrophysics Data System (ADS)

    Lim, T. W.; Park, S. H.; Yang, D. Y.; Kong, H. J.; Lee, K. S.

    2006-09-01

    A nano-surfacing process (NSP) is proposed to directly fabricate three-dimensional (3D) concavo convex-shaped microstructures such as micro-lens arrays using two-photon polymerization (TPP), a promising technique for fabricating arbitrary 3D highly functional micro-devices. In TPP, commonly utilized methods for fabricating complex 3D microstructures to date are based on a layer-by-layer accumulating technique employing two-dimensional sliced data derived from 3D computer-aided design data. As such, this approach requires much time and effort for precise fabrication. In this work, a novel single-layer exposure method is proposed in order to improve the fabricating efficiency for 3D concavo convex-shaped microstructures. In the NSP, 3D microstructures are divided into 13 sub-regions horizontally with consideration of the heights. Those sub-regions are then expressed as 13 characteristic colors, after which a multi-voxel matrix (MVM) is composed with the characteristic colors. Voxels with various heights and diameters are generated to construct 3D structures using a MVM scanning method. Some 3D concavo convex-shaped microstructures were fabricated to estimate the usefulness of the NSP, and the results show that it readily enables the fabrication of single-layered 3D microstructures.

  7. Laminar-Turbulent Transition Behind Discrete Roughness Elements in a High-Speed Boundary Layer

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Li, Fei; Wu, Minwei; Chang, Chau-Lyan; Edwards, Jack R., Jr.; Kegerise, Michael; King, Rudolph

    2010-01-01

    Computations are performed to study the flow past an isolated roughness element in a Mach 3.5, laminar, flat plate boundary layer. To determine the effects of the roughness element on the location of laminar-turbulent transition inside the boundary layer, the instability characteristics of the stationary wake behind the roughness element are investigated over a range of roughness heights. The wake flow adjacent to the spanwise plane of symmetry is characterized by a narrow region of increased boundary layer thickness. Beyond the near wake region, the centerline streak is surrounded by a pair of high-speed streaks with reduced boundary layer thickness and a secondary, outer pair of lower-speed streaks. Similar to the spanwise periodic pattern of streaks behind an array of regularly spaced roughness elements, the above wake structure persists over large distances and can sustain strong enough convective instabilities to cause an earlier onset of transition when the roughness height is sufficiently large. Time accurate computations are performed to clarify additional issues such as the role of the nearfield of the roughness element during the generation of streak instabilities, as well as to reveal selected details of their nonlinear evolution. Effects of roughness element shape on the streak amplitudes and the interactions between multiple roughness elements aligned along the flow direction are also investigated.

  8. Integrating disparate lidar data at the national scale to assess the relationships between height above ground, land cover and ecoregions

    USGS Publications Warehouse

    Stoker, Jason M.; Cochrane, Mark A.; Roy, David P.

    2013-01-01

    With the acquisition of lidar data for over 30 percent of the US, it is now possible to assess the three-dimensional distribution of features at the national scale. This paper integrates over 350 billion lidar points from 28 disparate datasets into a national-scale database and evaluates if height above ground is an important variable in the context of other nationalscale layers, such as the US Geological Survey National Land Cover Database and the US Environmental Protection Agency ecoregions maps. While the results were not homoscedastic and the available data did not allow for a complete height census in any of the classes, it does appear that where lidar data were used, there were detectable differences in heights among many of these national classification schemes. This study supports the hypothesis that there were real, detectable differences in heights in certain national-scale classification schemes, despite height not being a variable used in any of the classification routines.

  9. Magnetoacoustic Wave Energy from Numerical Simulations of an Observed Sunspot Umbra

    NASA Astrophysics Data System (ADS)

    Felipe, T.; Khomenko, E.; Collados, M.

    2011-07-01

    We aim at reproducing the height dependence of sunspot wave signatures obtained from spectropolarimetric observations through three-dimensional MHD numerical simulations. A magnetostatic sunspot model based on the properties of the observed sunspot is constructed and perturbed at the photosphere, introducing the fluctuations measured with the Si I λ10827 line. The results of the simulations are compared with the oscillations observed simultaneously at different heights from the He I λ10830 line, the Ca II H core, and the Fe I blends in the wings of the Ca II H line. The simulations show a remarkable agreement with the observations. They reproduce the velocity maps and power spectra at the formation heights of the observed lines, as well as the phase and amplification spectra between several pairs of lines. We find that the stronger shocks at the chromosphere are accompanied with a delay between the observed signal and the simulated one at the corresponding height, indicating that shocks shift the formation height of the chromospheric lines to higher layers. Since the simulated wave propagation matches very well the properties of the observed one, we are able to use the numerical calculations to quantify the energy contribution of the magnetoacoustic waves to the chromospheric heating in sunspots. Our findings indicate that the energy supplied by these waves is too low to balance the chromospheric radiative losses. The energy contained at the formation height of the lowermost Si I λ10827 line in the form of slow magnetoacoustic waves is already insufficient to heat the higher layers, and the acoustic energy which reaches the chromosphere is around 3-9 times lower than the required amount of energy. The contribution of the magnetic energy is even lower.

  10. Vortex Generators in a Two-Dimensional, External-Compression Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.

    2016-01-01

    Vortex generators within a two-dimensional, external-compression supersonic inlet for Mach 1.6 were investigated to determine their ability to increase total pressure recovery, reduce total pressure distortion, and improve the boundary layer. The vortex generators studied included vanes and ramps. The geometric factors of the vortex generators studied included height, length, spacing, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated through the computational solution of the steady-state Reynolds-averaged Navier-Stokes equations on multi-block, structured grids. The vortex generators were simulated by either gridding the geometry of the vortex generators or modeling the vortices generated by the vortex generators. The inlet performance was characterized by the inlet total pressure recovery, total pressure distortion, and incompressible shape factor of the boundary-layer at the engine face. The results suggested that downstream vanes reduced the distortion and improved the boundary layer. The height of the vortex generators had the greatest effect of the geometric factors.

  11. The innovative concept of three-dimensional hybrid receptor modeling

    NASA Astrophysics Data System (ADS)

    Stojić, A.; Stanišić Stojić, S.

    2017-09-01

    The aim of this study was to improve the current understanding of air pollution transport processes at regional and long-range scale. For this purpose, three-dimensional (3D) potential source contribution function and concentration weighted trajectory models, as well as new hybrid receptor model, concentration weighted boundary layer (CWBL), which uses a two-dimensional grid and a planetary boundary layer height as a frame of reference, are presented. The refined approach to hybrid receptor modeling has two advantages. At first, it considers whether each trajectory endpoint meets the inclusion criteria based on planetary boundary layer height, which is expected to provide a more realistic representation of the spatial distribution of emission sources and pollutant transport pathways. Secondly, it includes pollutant time series preprocessing to make hybrid receptor models more applicable for suburban and urban locations. The 3D hybrid receptor models presented herein are designed to identify altitude distribution of potential sources, whereas CWBL can be used for analyzing the vertical distribution of pollutant concentrations along the transport pathway.

  12. Thermal analysis of a multi-layer microchannel heat sink for cooling concentrator photovoltaic (CPV) cells

    NASA Astrophysics Data System (ADS)

    Siyabi, Idris Al; Shanks, Katie; Mallick, Tapas; Sundaram, Senthilarasu

    2017-09-01

    Concentrator Photovoltaic (CPV) technology is increasingly being considered as an alternative option for solar electricity generation. However, increasing the light concentration ratio could decrease the system output power due to the increase in the temperature of the cells. The performance of a multi-layer microchannel heat sink configuration was evaluated using numerical analysis. In this analysis, three dimensional incompressible laminar steady flow model was solved numerically. An electrical and thermal solar cell model was coupled for solar cell temperature and efficiency calculations. Thermal resistance, solar cell temperature and pumping power were used for the system efficiency evaluation. An increase in the number of microchannel layers exhibited the best overall performance in terms of the thermal resistance, solar cell temperature uniformity and pressure drop. The channel height and width has no effect on the solar cell maximum temperature. However, increasing channel height leads to a reduction in the pressure drop and hence less fluid pumping power.

  13. Total Lightning Observations within Electrified Snowfall using Polarimetric Radar, LMA, and NLDN Measurements

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Lawerence D.; Brunning, Eric C.; Blakeslee, Richard

    2013-01-01

    Four electrified snowfall cases are examined using total lightning measurements from lightning mapping arrays (LMAs), and the National Lightning Detection Network (NLDN) from Huntsville, AL and Washington D.C. In each of these events, electrical activity was in conjunction with heavy snowfall rates, sometimes exceeding 5-8 cm hr-1. A combination of LMA, and NLDN data also indicate that many of these flashes initiated from tall communications towers and traveled over large horizontal distances. During events near Huntsville, AL, the Advanced Radar for Meteorological and Operational Research (ARMOR) C-band polarimetric radar was collecting range height indicators (RHIs) through regions of heavy snowfall. The combination of ARMOR polarimetric radar and VHF LMA observations suggested contiguous layer changes in height between sloping aggregate-dominated layers and horizontally-oriented crystals. These layers may have provided ideal conditions for the development of extensive regions of charge and resultant horizontal propagation of the lightning flashes over large distances.

  14. Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave

    NASA Technical Reports Server (NTRS)

    Starr, David O'C.; Korb, C. L.; Schwemmer, Geary K.; Weng, Chi Y.

    1992-01-01

    Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale gravity wave. A pressure-perturbation amplitude of 3.5 mb was measured within the lowest 1.6 km of the atmosphere over a 52-km flight line. Corresponding vertical displacements of 250-500 m were inferred from lidar-observed displacement of aerosol layers. Accounting for probable wave orientation, a horizontal wavelength of about 40 km was estimated. Satellite observations reveal wave structure of a comparable scale in concurrent cirrus cloud fields over an extended area. Smaller-scale waves were also observed. Local meteorological soundings are analyzed to confirm the existence of a suitable wave duct. Potential wave-generation mechanisms are examined and discussed. The large pressure-perturbation wave is attributed to rapid amplification or possible wave breaking of a gravity wave as it propagated offshore and interacted with a very stable marine boundary layer capped by a strong shear layer.

  15. Aerosol lidar observations of atmospheric mixing in Los Angeles: Climatology and implications for greenhouse gas observations

    NASA Astrophysics Data System (ADS)

    Ware, John; Kort, Eric A.; DeCola, Phil; Duren, Riley

    2016-08-01

    Atmospheric observations of greenhouse gases provide essential information on sources and sinks of these key atmospheric constituents. To quantify fluxes from atmospheric observations, representation of transport—especially vertical mixing—is a necessity and often a source of error. We report on remotely sensed profiles of vertical aerosol distribution taken over a 2 year period in Pasadena, California. Using an automated analysis system, we estimate daytime mixing layer depth, achieving high confidence in the afternoon maximum on 51% of days with profiles from a Sigma Space Mini Micropulse LiDAR (MiniMPL) and on 36% of days with a Vaisala CL51 ceilometer. We note that considering ceilometer data on a logarithmic scale, a standard method, introduces, an offset in mixing height retrievals. The mean afternoon maximum mixing height is 770 m Above Ground Level in summer and 670 m in winter, with significant day-to-day variance (within season σ = 220m≈30%). Taking advantage of the MiniMPL's portability, we demonstrate the feasibility of measuring the detailed horizontal structure of the mixing layer by automobile. We compare our observations to planetary boundary layer (PBL) heights from sonde launches, North American regional reanalysis (NARR), and a custom Weather Research and Forecasting (WRF) model developed for greenhouse gas (GHG) monitoring in Los Angeles. NARR and WRF PBL heights at Pasadena are both systematically higher than measured, NARR by 2.5 times; these biases will cause proportional errors in GHG flux estimates using modeled transport. We discuss how sustained lidar observations can be used to reduce flux inversion error by selecting suitable analysis periods, calibrating models, or characterizing bias for correction in post processing.

  16. Aerosol lidar observations of atmospheric mixing in Los Angeles: Climatology and implications for greenhouse gas observations.

    PubMed

    Ware, John; Kort, Eric A; DeCola, Phil; Duren, Riley

    2016-08-27

    Atmospheric observations of greenhouse gases provide essential information on sources and sinks of these key atmospheric constituents. To quantify fluxes from atmospheric observations, representation of transport-especially vertical mixing-is a necessity and often a source of error. We report on remotely sensed profiles of vertical aerosol distribution taken over a 2 year period in Pasadena, California. Using an automated analysis system, we estimate daytime mixing layer depth, achieving high confidence in the afternoon maximum on 51% of days with profiles from a Sigma Space Mini Micropulse LiDAR (MiniMPL) and on 36% of days with a Vaisala CL51 ceilometer. We note that considering ceilometer data on a logarithmic scale, a standard method, introduces, an offset in mixing height retrievals. The mean afternoon maximum mixing height is 770 m Above Ground Level in summer and 670 m in winter, with significant day-to-day variance (within season σ = 220m≈30%). Taking advantage of the MiniMPL's portability, we demonstrate the feasibility of measuring the detailed horizontal structure of the mixing layer by automobile. We compare our observations to planetary boundary layer (PBL) heights from sonde launches, North American regional reanalysis (NARR), and a custom Weather Research and Forecasting (WRF) model developed for greenhouse gas (GHG) monitoring in Los Angeles. NARR and WRF PBL heights at Pasadena are both systematically higher than measured, NARR by 2.5 times; these biases will cause proportional errors in GHG flux estimates using modeled transport. We discuss how sustained lidar observations can be used to reduce flux inversion error by selecting suitable analysis periods, calibrating models, or characterizing bias for correction in post processing.

  17. Vertically resolved characteristics of air pollution during two severe winter haze episodes in urban Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, Qingqing; Sun, Yele; Xu, Weiqi; Du, Wei; Zhou, Libo; Tang, Guiqian; Chen, Chen; Cheng, Xueling; Zhao, Xiujuan; Ji, Dongsheng; Han, Tingting; Wang, Zhe; Li, Jie; Wang, Zifa

    2018-02-01

    We conducted the first real-time continuous vertical measurements of particle extinction (bext), gaseous NO2, and black carbon (BC) from ground level to 260 m during two severe winter haze episodes at an urban site in Beijing, China. Our results illustrated four distinct types of vertical profiles: (1) uniform vertical distributions (37 % of the time) with vertical differences less than 5 %, (2) higher values at lower altitudes (29 %), (3) higher values at higher altitudes (16 %), and (4) significant decreases at the heights of ˜ 100-150 m (14 %). Further analysis demonstrated that vertical convection as indicated by mixing layer height, temperature inversion, and local emissions are three major factors affecting the changes in vertical profiles. Particularly, the formation of type 4 was strongly associated with the stratified layer that was formed due to the interactions of different air masses and temperature inversions. Aerosol composition was substantially different below and above the transition heights with ˜ 20-30 % higher contributions of local sources (e.g., biomass burning and cooking) at lower altitudes. A more detailed evolution of vertical profiles and their relationship with the changes in source emissions, mixing layer height, and aerosol chemistry was illustrated by a case study. BC showed overall similar vertical profiles as those of bext (R2 = 0.92 and 0.69 in November and January, respectively). While NO2 was correlated with bext for most of the time, the vertical profiles of bext / NO2 varied differently for different profiles, indicating the impact of chemical transformation on vertical profiles. Our results also showed that more comprehensive vertical measurements (e.g., more aerosol and gaseous species) at higher altitudes in the megacities are needed for a better understanding of the formation mechanisms and evolution of severe haze episodes in China.

  18. Cloud Coverage and Height Distribution from the GLAS Polar Orbiting Lidar: Comparison to Passive Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Spinhime, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.

    2004-01-01

    The Geoscience Laser Altimeter System (GLAS) began full on orbit operations in September 2003. A main application of the two-wavelength GLAS lidar is highly accurate detection and profiling of global cloud cover. Initial analysis indicates that cloud and aerosol layers are consistently detected on a global basis to cross-sections down to 10(exp -6) per meter. Images of the lidar data dramatically and accurately show the vertical structure of cloud and aerosol to the limit of signal attenuation. The GLAS lidar has made the most accurate measurement of global cloud coverage and height to date. In addition to the calibrated lidar signal, GLAS data products include multi level boundaries and optical depth of all transmissive layers. Processing includes a multi-variable separation of cloud and aerosol layers. An initial application of the data results is to compare monthly cloud means from several months of GLAS observations in 2003 to existing cloud climatologies from other satellite measurement. In some cases direct comparison to passive cloud retrievals is possible. A limitation of the lidar measurements is nadir only sampling. However monthly means exhibit reasonably good global statistics and coverage results, at other than polar regions, compare well with other measurements but show significant differences in height distribution. For polar regions where passive cloud retrievals are problematic and where orbit track density is greatest, the GLAS results are particularly an advance in cloud cover information. Direct comparison to MODIS retrievals show a better than 90% agreement in cloud detection for daytime, but less than 60% at night. Height retrievals are in much less agreement. GLAS is a part of the NASA EOS project and data products are thus openly available to the science community (see http://glo.gsfc.nasa.gov).

  19. Ionospheric scale height from the refraction of satellite signals.

    NASA Technical Reports Server (NTRS)

    Heron, M. L.; Titheridge, J. E.

    1972-01-01

    Accurate observations of the elevation angle of arrival of 20 MHz signals from the polar orbiting satellite Beacon-B for a 20 month period have provided transmission ionograms which may be reduced to give Hp the scale height at the peak of the ionosphere. Noon seasonal averages of Hp are 1.35 (in winter) to 1.55 (in summer) times greater than the scale height obtained from bottom-side ionograms. A comparison of scale height at the peak with routine measurements of total content and peak electron density indicates that the O+/H+ transition level is above 1000 km during the day but comes down to about 630 km on winter nights. A predawn peak in the overall scale height is caused by a lowering of the layer to a region of increased recombination and is magnified in winter by low O+/H+ transition levels.

  20. Evaluation of Flush-Mounted, S-Duct Inlets With Large Amounts of Boundary Layer Ingestion

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Morehouse, Melissa B.

    2003-01-01

    A new high Reynolds number test capability for boundary layer ingesting inlets has been developed for the NASA Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel. Using this new capability, an experimental investigation of four S-duct inlet configurations with large amounts of boundary layer ingestion (nominal boundary layer thickness of about 40% of inlet height) was conducted at realistic operating conditions (high subsonic Mach numbers and full-scale Reynolds numbers). The objectives of this investigation were to 1) develop a new high Reynolds number, boundary-layer ingesting inlet test capability, 2) evaluate the performance of several boundary layer ingesting S-duct inlets, 3) provide a database for CFD tool validation, and 4) provide a baseline inlet for future inlet flow-control studies. Tests were conducted at Mach numbers from 0.25 to 0.83, Reynolds numbers (based on duct exit diameter) from 5.1 million to a fullscale value of 13.9 million, and inlet mass-flow ratios from 0.39 to 1.58 depending on Mach number. Results of this investigation indicate that inlet pressure recovery generally decreased and inlet distortion generally increased with increasing Mach number. Except at low Mach numbers, increasing inlet mass-flow increased pressure recovery and increased distortion. Increasing the amount of boundary layer ingestion (by decreasing inlet throat height and increasing inlet throat width) or ingesting a boundary layer with a distorted profile decreased pressure recovery and increased distortion. Finally, increasing Reynolds number had almost no effect on inlet distortion but increased inlet recovery by about one-half percent at a Mach number near cruise.

  1. Impact of implementation of spaceborne lidar-retrieved canopy height in the WRF model

    NASA Astrophysics Data System (ADS)

    Lee, Junhong; Hong, Jinkyu

    2017-04-01

    Canopy height is closely related to biomass and aerodynamic properties, which regulate turbulent transfer of energy and mass at the soil-vegetation-atmosphere continuum. However, this key information has been prescribed as a constant value in a fixed plant functional type in atmospheric models. This presentation reports impacts of using realistic forest canopy height, retrieved from spaceborne LiDAR, on regional climate simulation in the Weather Research and Forecasting (WRF) model's land surface model. Numerical simulations were conducted over the Amazon Basin and East Asia during summer season. Over these regions, the LiDAR-retrieved canopy heights were higher than the default values used in the WRF,which are dependent only on plant functional type. By modifying roughness length and zero-plane displacement height, the change of canopy height resulted in changes in surface energy balance by regulating aerodynamic conductances and vertical temperature gradient, thus modifying the lifting condensation level and equivalent potential temperature in the atmospheric boundary layer. Our analysis also showed that the WRF model better reproduced the observed precipitation when LiDAR-retrieved canopy height was used over the Amazon Basin.

  2. Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest.

    PubMed

    Kenzo, Tanaka; Ichie, Tomoaki; Watanabe, Yoko; Yoneda, Reiji; Ninomiya, Ikuo; Koike, Takayoshi

    2006-07-01

    Variations in leaf photosynthetic, morphological and biochemical properties with increasing plant height from seedlings to emergent trees were investigated in five dipterocarp species in a Malaysian tropical rain forest. Canopy openness increased significantly with tree height. Photosynthetic properties, such as photosynthetic capacity at light saturation, light compensation point, maximum rate of carboxylation and maximum rate of photosynthetic electron transport, all increased significantly with tree height. Leaf morphological and biochemical traits, such as leaf mass per area, palisade layer thickness, nitrogen concentration per unit area, chlorophyll concentration per unit dry mass and chlorophyll to nitrogen ratio, also changed significantly with tree height. Leaf properties had simple and significant relationships with tree height, with few intra- and interspecies differences. Our results therefore suggest that the photosynthetic capacity of dipterocarp trees depends on tree height, and that the trees adapt to the light environment by adjusting their leaf morphological and biochemical properties. These results should aid in developing models that can accurately estimate carbon dioxide flux and biomass production in tropical rain forests.

  3. Thickness determination of few-layer hexagonal boron nitride films by scanning electron microscopy and Auger electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutter, P., E-mail: psutter@bnl.gov; Sutter, E.

    2014-09-01

    We assess scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) for thickness measurements on few-layer hexagonal boron nitride (h-BN), the layered dielectric of choice for integration with graphene and other two-dimensional materials. Observations on h-BN islands with large, atomically flat terraces show that the secondary electron intensity in SEM reflects monolayer height changes in films up to least 10 atomic layers thickness. From a quantitative analysis of AES data, the energy-dependent electron escape depth in h-BN films is deduced. The results show that AES is suitable for absolute thickness measurements of few-layer h-BN of 1 to 6 layers.

  4. Deriving Surface NO2 Mixing Ratios from DISCOVER-AQ ACAM Observations: A Method to Assess Surface NO2 Spatial Variability

    NASA Astrophysics Data System (ADS)

    Silverman, M. L.; Szykman, J.; Chen, G.; Crawford, J. H.; Janz, S. J.; Kowalewski, M. G.; Lamsal, L. N.; Long, R.

    2015-12-01

    Studies have shown that satellite NO2 columns are closely related to ground level NO2 concentrations, particularly over polluted areas. This provides a means to assess surface level NO2 spatial variability over a broader area than what can be monitored from ground stations. The characterization of surface level NO2 variability is important to understand air quality in urban areas, emissions, health impacts, photochemistry, and to evaluate the performance of chemical transport models. Using data from the NASA DISCOVER-AQ campaign in Baltimore/Washington we calculate NO2 mixing ratios from the Airborne Compact Atmospheric Mapper (ACAM), through four different methods to derive surface concentration from column measurements. High spectral resolution lidar (HSRL) mixed layer heights, vertical P3B profiles, and CMAQ vertical profiles are used to scale ACAM vertical column densities. The derived NO2 mixing ratios are compared to EPA ground measurements taken at Padonia and Edgewood. We find similar results from scaling with HSRL mixed layer heights and normalized P3B vertical profiles. The HSRL mixed layer heights are then used to scale ACAM vertical column densities across the DISCOVER-AQ flight pattern to assess spatial variability of NO2 over the area. This work will help define the measurement requirements for future satellite instruments.

  5. Assessment of observed fog/low-cloud trends in central Taiwan

    NASA Astrophysics Data System (ADS)

    Lai, Yen-Jen; Lin, Po-Hsiung

    2017-04-01

    Xitou region, as the epitome of mid-elevation cloud forest ecosystems in Taiwan, it possesses a rich diversity of flora and fauna. It is also a popular forest recreation area. Due to rapid development of the local tourist industry, where tourist numbers increased from 0.3 million/year in 2000 to 2 million/year in 2015, the microclimate has changed continually. Global warming and landscape changes would be also the most likely factors. This study reports findings of monitoring systems including 4 visibility observed sites at different altitude, a self-developed atmospheric profile observation system carried by unmanned aerial vehicle (UAV) and a high temporal cloud base height observation system by a ceilometer. Besides this, the cloud top height of MODIS cloud product is evaluated as well. The results indicated the foggy day ratio in 2015 was 24% lower than that in 2005 around the district of the nursery. The foggy day ratio raised along with the increase of altitude and the sharpest increasing range happened in the summer time. The UAV-observed results showed the top heights of the nighttime atmospheric boundary layer (ABL) usually happened under 1300m a.s.l. (250m above ground) and the top heights of daytime ABL rose to 1500m - 2100m a.s.l. Unfortunately, it was difficult to observe the inversion layer/ABL in summer due to the fly height limitation of UAV. The ceilometer-observed results indicated the highest foggy ratio happened around 17:00 (local standard time). The daytime cloudy based height ratio was higher than nighttime and the cloud based height was usually located during 1150m - 1750m a.s.l. which was under the top heights of ABL. In addition, the higher cloud-based-heights-happened ratios were found at 1200m - 1250m a.s.l. and 1350m - 1400m a.s.l.. These results indicated the cloud based height uplifted from ground to at least 150m above ground-level causing the foggy ratio decrease. The MODIS cloud product showed the top height of low cloud uplifted or even became clear sky along with the increase of Xitou tourist numbers. Both ceilometer and MODIS data suggested the low cloud was uplifting. In order to clarify the seasonal characters of cloud thickness, the validation of MODIS cloud top height by atmospheric profiles are on-going. Furthermore, an adapted land-atmospheric model (WRF model is now under testing) will be implemented in order to discover the major factors causing the decrease of foggy ratio and assess the impacts on cloud forest.

  6. Effect of Surface Waviness on Transition in Three-Dimensional Boundary-Layer Flow

    NASA Technical Reports Server (NTRS)

    Masad, Jamal A.

    1996-01-01

    The effect of a surface wave on transition in three-dimensional boundary-layer flow over an infinite swept wing was studied. The mean flow computed using interacting boundary-layer theory, and transition was predicted using linear stability theory coupled with the empirical eN method. It was found that decreasing the wave height, sweep angle, or freestream unit Reynolds number, and increasing the freestream Mach number or suction level all stabilized the flow and moved transition onset to downstream locations.

  7. Lidar measurements of wildfire smoke aerosols in the atmosphere above Sofia, Bulgaria

    NASA Astrophysics Data System (ADS)

    Peshev, Zahary Y.; Deleva, Atanaska D.; Dreischuh, Tanja N.; Stoyanov, Dimitar V.

    2016-01-01

    Presented are results of lidar measurements and characterization of wildfire caused smoke aerosols observed in the atmosphere above the city of Sofia, Bulgaria, related to two local wildfires raging in forest areas near the city. A lidar systems based on a frequency-doubled Nd:YAG laser operated at 532 nm and 1064 nm is used in the smoke aerosol observations. It belongs to the Sofia LIDAR Station (at Laser Radars Laboratory, Institute of Electronics, Bulgarian Academy of Sciences), being a part of the European Aerosol Lidar Network. Optical, dynamical, microphysical, and geometrical properties and parameters of the observed smoke aerosol particles and layers are displayed and analyzed, such as: range/height-resolved profiles of the aerosol backscatter coefficient; integral aerosol backscattering; sets of colormaps displaying time series of the height distribution of the aerosol density; topologic, geometric, and volumetric properties of the smoke aerosol layers; time-averaged height profiles of backscatter-related Ångström exponent (BAE). Obtained results of retrieving and profiling smoke aerosols are commented in their relations to available meteorological and air-mass-transport forecasting and modelling data.

  8. Urban boundary-layer height determination from lidar measurements over the paris area.

    PubMed

    Menut, L; Flamant, C; Pelon, J; Flamant, P H

    1999-02-20

    The Paris area is strongly urbanized and is exposed to atmospheric pollution events. To understand the chemical and physical processes that are taking place in this area it is necessary to describe correctly the atmospheric boundary-layer (ABL) dynamics and the ABL height evolution. During the winter of 1994-1995, within the framework of the Etude de la Couche Limite Atmosphérique en Agglomération Parisienne (ECLAP) experiment, the vertical structure of the ABL over Paris and its immediate suburbs was extensively documented by means of lidar measurements. We present methods suited for precise determination of the ABL structure's temporal evolution in a dynamic environment as complex as the Paris area. The purpose is to identify a method that can be used on a large set of lidar data. We compare commonly used methods that permit ABL height retrievals from backscatter lidar signals under different meteorological conditions. Incorrect tracking of the ABL depth's diurnal cycle caused by limitations in the methods is analyzed. The study uses four days of the ECLAP experiment characterized by different meteorological and synoptic conditions.

  9. Features of tropospheric and stratospheric dust.

    PubMed

    Elterman, L; Wexler, R; Chang, D T

    1969-05-01

    A series of 119 profiles obtained over New Mexico comprise aerosol attenuation coefficients vs altitude to about 35 km. These profiles show the existence of several features. A surface convective dust layer extending up to about 5 km is seasonally dependent. Also, a turbidity maximum exists below the tropopause. The altitude of an aerosol maximum in the lower stratosphere is located just below that of the minimum temperature. The colder the minimum temperature, the greater is the aerosol content of the layer. This relationship suggests that the 20-km dust layer is due to convection in tropical air and advection to higher latitudes. Computed averages of optical thickness show that abatement of stratospheric dust from the Mt. Agung eruption became evident in April 1964. Results based on seventy-nine profiles characterizing volcanic dust abatement indicate that above 26 km, the aerosol scale height averages 3.75 km. Extrapolating with this scale height, tabulations are developed for uv, visible, and ir attenuation to 50 km. Optical mixing ratios are used to examine the aerosol concentrations at various altitudes, including a layer at 26 km having an optical thickness 10(-3) for 0.55-micro wavelength.

  10. Photoswitchable Layer-by-Layer Coatings Based on Photochromic Polynorbornenes Bearing Spiropyran Side Groups.

    PubMed

    Campos, Paula P; Dunne, Aishling; Delaney, Colm; Moloney, Cara; Moulton, Simon E; Benito-Lopez, Fernando; Ferreira, Marystela; Diamond, Dermot; Florea, Larisa

    2018-04-10

    Herein, we present the synthesis of linear photochromic norbornene polymers bearing spiropyran side groups (poly(SP-R)) and their assembly into layer-by-layer (LbL) films on glass substrates when converted to poly(MC-R) under UV irradiation. The LbL films were composed of bilayers of poly(allylamine hydrochloride) (PAH) and poly(MC-R), forming (PAH/poly(MC-R)) n coatings. The merocyanine (MC) form presents a significant absorption band in the visible spectral region, which allowed tracking of the LbL deposition process by UV-vis spectroscopy, which showed a linear increase of the characteristic MC absorbance band with increasing number of bilayers. The thickness and morphology of the (PAH/poly(MC-R)) n films were characterized by ellipsometry and scanning electron microscopy, respectively, with a height of ∼27.5 nm for the first bilayer and an overall height of ∼165 nm for the (PAH/poly(MC-R)) 5 multilayer film. Prolonged white light irradiation (22 h) resulted in a gradual decrease of the MC band by 90.4 ± 2.9% relative to the baseline, indicating the potential application of these films as coatings for photocontrolled delivery systems.

  11. Inversion Build-Up and Cold-Air Outflow in a Small Alpine Sinkhole

    NASA Astrophysics Data System (ADS)

    Lehner, Manuela; Whiteman, C. David; Dorninger, Manfred

    2017-06-01

    Semi-idealized model simulations are made of the nocturnal cold-air pool development in the approximately 1-km wide and 100-200-m deep Grünloch basin, Austria. The simulations show qualitatively good agreement with vertical temperature and wind profiles and surface measurements collected during a meteorological field expedition. A two-layer stable atmosphere forms in the basin, with a very strong inversion in the lowest part, below the approximate height of the lowest gap in the surrounding orography. The upper part of the stable layer is less strongly stratified and extends to the approximate height of the second-lowest gap. The basin atmosphere cools most strongly during the first few hours of the night, after which temperatures decrease only slowly. An outflow of air forms through the lowest gap in the surrounding orography. The outflow connects with a weak inflow of air through a gap on the opposite sidewall, forming a vertically and horizontally confined jet over the basin. Basin cooling shows strong sensitivity to surface-layer characteristics, highlighting the large impact of variations in vegetation and soil cover on cold-air pool development, as well as the importance of surface-layer parametrization in numerical simulations of cold-air-pool development.

  12. Internal Stratigraphy of the Palisades Sill Olivine Zone: An Olivine Slurry Emplaced in a Hot Sill

    NASA Astrophysics Data System (ADS)

    Haddad, J. R.; Naslund, H. R.

    2017-12-01

    The Palisades Sill is a 300 m thick Jurassic-Triassic sill-like sheet formed from a quartz-normative tholeiitic magma. Three geochemical reversals within the sill are the result of magma chamber recharges. This study focuses on the reversal at 10 m height, widely considered to be the result of the emplacement of an olivine-rich slurry (Husch 1990, Gorring 1995). Major and trace elements were determined for 35 samples from the olivine layer and adjacent sill spanning 10 m of stratigraphic height. Samples were collected from outcrops near the Ross Dock Picnic Area in Fort Lee, NJ. Mineral compositions were determined for 21 thin sections using an electron microprobe (EMP). Bulk rock chemistry shows that the base of the olivine layer is between 2.5 and 3.25 m above the base of sampling. This is indicated by a marked reversal in Mg#, which jumped from 64.2 to 68.6; Al2O3, Co, Ni, Sc, Cs, Dy, and La also show clear reversals at the same interval. This is further collaborated by the formation of a ledge in the outcrop. Bulk chemistry and olivine composition show no systematic changes within the olivine layer. EMP analyses of augites reveals that below the 2.5 m height, crystals are typically strongly zoned, average rim Mg#= 67, core Mg#= 82. Above the 2.5 m layer, core Mg# are similar, but average rim Mg#=75. The plagioclase/augite ratio remains relatively constant through the olivine layer, but the ratio of olivine to plagioclase+augite is quite variable, suggesting that the olivine-slurry was emplaced as an inhomogeneous mixture of olivine + magma. Similar tholeiitic sills on Victoria Island, Canada, contain olivine-rich basal layers in which the olivine to plagioclase+augite ratio systematically increases, and the olivine composition becomes systematically more Fe-rich, from the base to the top of the layer. Comparisons between these otherwise similar basal olivine-rich layers, suggests that sills like the Palisades, which represents the injection of an olivine-rich slurry, can be distinguished from sills like the Victoria Island sills, which represent the initial emplacement of an olivine-phyric magma, followed by post-emplacement crystal settling.

  13. A Model for Interpreting High-Tower CO2 Concentration Records for the Surface Carbon Balance Information

    NASA Astrophysics Data System (ADS)

    Chen, B.; Chen, J. M.; Higuchi, K.; Chan, D.; Shashkov, A.

    2002-05-01

    Atmospheric CO2 concentration measurements have been made by scientists of Meteorological Service of Canada on a 40 m tower for the last 10 years at 15 minute intervals over a mostly intact boreal forest near Fraserdale (50N, 81W), Ontario, Canada. The long time records of CO2 as well as basic meteorological variables provide a unique opportunity to investigate any potential changes in the ecosystem in terms of carbon balance. A model is needed to decipher the carbon cycle signals from the diurnal and seasonal variation patterns in the CO2 record. For this purpose, the Boreal Ecosystem Productivity Simulator (BEPS) is expanded to include a one-dimensional CO2 vertical transfer model involving the interaction between plant canopies and the atmosphere in the surface layer and the diurnal dynamics of the mixed layer. An analytical solution of the scalar transfer equation within the surface layer is found using an assumption that the diurnal oscillation of CO2 concentration at a given height is sinusoidal, which is suitable for the investigation of the changes in diurnal variation pattern over the 10 year period. The complex interactions between the daily cycle of the atmosphere and vegetation CO2 exchange and the daily evolution of mixed layer entrainment of CO2 determines the CO2 variation pattern at a given height. The expanded BEPS can simulate within ñ2 ppm the hourly CO2 records at the 40 m measurement height. The annual totals of gross primary productivity (GPP), net primary productivity (NPP) and net ecosystem productivity (NEP), summed up from the hourly results, agree within 5% of previous estimates of BEPS at daily steps, indicating the internal consistency of the hourly model. The model is therefore ready for exploring changes in the CO2 record as affected by changes in the forest ecosystems upwind of the tower. Preliminary results indicate that the diurnal variation amplitude of CO2 has increased by 10-20% over the 10 years period, and this change can largely be attributed to enhanced growth of the forest. The uncertainties are large because the record is short relative to boreal carbon residence time. There is also a possibility of long-term changes in the mixed layer dynamics which affect the diurnal variation pattern at the measurement height.

  14. Vertical structure of aeolian turbulence in a boundary layer with sand transport

    NASA Astrophysics Data System (ADS)

    Lee, Zoe S.; Baas, Andreas C. W.

    2016-04-01

    Recently we have found that Reynolds shear stress shows a significant variability with measurement height (Lee and Baas, 2016), and so an alternative parameter for boundary layer turbulence may help to explain the relationship between wind forcing and sediment transport. We present data that were collected during a field study of boundary layer turbulence conducted on a North Atlantic beach. High-frequency (50 Hz) 3D wind velocity measurements were collected using ultrasonic anemometry at thirteen different measurement heights in a tight vertical array between 0.11 and 1.62 metres above the surface. Thanks to the high density installation of sensors a detailed analysis of the boundary layer flow can be conducted using methods more typically used in studies where data is only available from one or just a few measurement heights. We use quadrant analysis to explore the vertical structure of turbulence and track the changes in quadrant signatures with measurement elevation and over time. Results of quadrant analysis, at the 'raw' 50 Hz timescale, demonstrates the tendency for event clustering across all four quadrants, which implies that at-a-point quadrant events are part of larger-scale turbulent structures. Using an HSV colour model, applied to the quadrant analysis data and plotted in series, we create colour maps of turbulence, which can provide a clear visualisation of the clustering of event activity at each height and illustrate the shape of the larger coherent flow structures that are present within the boundary layer. By including a saturation component to the colour model, the most significant stress producing sections of the data are emphasised. This results in a 'banded' colour map, which relates to clustering of quadrant I (Outward Interaction) and quadrant IV (Sweep) activity, separate from clustering of quadrant II (Burst) and quadrant III (Inward Interaction). Both 'sweep-type' and 'burst-type' sequences are shown to have a diagonal structure originating from the top of the boundary layer, indicating a downwards direction of eddy motion. While directionality of turbulence cannot be definitively determined, our results indicate that the top-down turbulence model is a suitable explanation, further supported by the presence of 'incomplete' eddies which originate at higher elevations but fail to extend to the surface. This provides the first evidence in support of a top down turbulence model as observed in aeolian geomorphology, and we present preliminary findings on its relationship to sand transport activity. Lee, Z.S., Baas, A.C.W. (2016) Variable and conflicting shear stress estimates inside a boundary layer with sediment transport. Earth Surface Processes and Landforms; DOI: 10.1002/esp.3829

  15. Profile and Determinants of Retinal Optical Intensity in Normal Eyes with Spectral Domain Optical Coherence Tomography.

    PubMed

    Chen, Binyao; Gao, Enting; Chen, Haoyu; Yang, Jianling; Shi, Fei; Zheng, Ce; Zhu, Weifang; Xiang, Dehui; Chen, Xinjian; Zhang, Mingzhi

    2016-01-01

    To investigate the profile and determinants of retinal optical intensity in normal subjects using 3D spectral domain optical coherence tomography (SD OCT). A total of 231 eyes from 231 healthy subjects ranging in age from 18 to 80 years were included and underwent a 3D OCT scan. Forty-four eyes were randomly chosen to be scanned by two operators for reproducibility analysis. Distribution of optical intensity of each layer and regions specified by the Early Treatment of Diabetic Retinopathy Study (ETDRS) were investigated by analyzing the OCT raw data with our automatic graph-based algorithm. Univariate and multivariate analyses were performed between retinal optical intensity and sex, age, height, weight, spherical equivalent (SE), axial length, image quality, disc area and rim/disc area ratio (R/D area ratio). For optical intensity measurements, the intraclass correlation coefficient of each layer ranged from 0.815 to 0.941, indicating good reproducibility. Optical intensity was lowest in the central area of retinal nerve fiber layer, ganglion cell layer, inner plexiform layer, inner nuclear layer, outer plexiform layer and photoreceptor layer, except for the retinal pigment epithelium (RPE). Optical intensity was positively correlated with image quality in all retinal layers (0.553<β<0.851, p<0.01), and negatively correlated with age in most retinal layers (-0.362<β<-0.179, p<0.01), except for the RPE (β = 0.456, p<0.01), outer nuclear layer and photoreceptor layer (p>0.05). There was no relationship between retinal optical intensity and sex, height, weight, SE, axial length, disc area and R/D area ratio. There was a specific pattern of distribution of retinal optical intensity in different regions. The optical intensity was affected by image quality and age. Image quality can be used as a reference for normalization. The effect of age needs to be taken into consideration when using OCT for diagnosis.

  16. A Two-Layers Based Approach of an Enhanced-Map for Urban Positioning Support

    PubMed Central

    Piñana-Díaz, Carolina; Toledo-Moreo, Rafael; Toledo-Moreo, F. Javier; Skarmeta, Antonio

    2012-01-01

    This paper presents a two-layer based enhanced map that can support navigation in urban environments. One layer is dedicated to describe the drivable road with a special focus on the accurate description of its bounds. This feature can support positioning and advanced map-matching when compared with standard polyline-based maps. The other layer depicts building heights and locations, thus enabling the detection of non-line-of-sight signals coming from GPS satellites not in direct view. Both the concept and the methodology for creating these enhanced maps are shown in the paper. PMID:23202172

  17. Final Report for Project: Impacts of stratification and non-equilibrium winds and waves on hub-height winds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Edward G.

    This project used a combination of turbulence-resolving large-eddy simulations, single-column modeling (where turbulence is parameterized), and currently available observations to improve, assess, and develop a parameterization of the impact of non-equilibrium wave states and stratification on the buoy-observed winds to establish reliable wind data at the turbine hub-height level. Analysis of turbulence-resolving simulations and observations illuminates the non-linear coupling between the atmosphere and the undulating sea surface. This analysis guides modification of existing boundary layer parameterizations to include wave influences for upward extrapolation of surface-based observations through the turbine layer. Our surface roughness modifications account for the interaction between stratificationmore » and the effects of swell’s amplitude and wavelength as well as swell’s relative motion with respect to the mean wind direction. The single-column version of the open source Weather and Research Forecasting (WRF) model (Skamarock et al., 2008) serves as our platform to test our proposed planetary boundary layer parameterization modifications that account for wave effects on marine atmospheric boundary layer flows. WRF has been widely adopted for wind resource analysis and forecasting. The single column version is particularly suitable to development, analysis, and testing of new boundary layer parameterizations. We utilize WRF’s single-column version to verify and validate our proposed modifications to the Mellor-Yamada-Nakanishi-Niino (MYNN) boundary layer parameterization (Nakanishi and Niino, 2004). We explore the implications of our modifications for two-way coupling between WRF and wave models (e.g.,Wavewatch III). The newly implemented parameterization accounting for marine atmospheric boundary layer-wave coupling is then tested in three-dimensional WRF simulations at grid sizes near 1 km. These simulations identify the behavior of simulated winds at the wind plant scale. Overall project conclusions include; In the presence of fast-moving swell (significant wave height Hs = 6.4 m, and phase speed cp = 18 ms -1), the atmospheric boundary layer grows more rapidly when waves propagate opposite to the winds compared to when winds and waves are aligned. Pressure drag increases by nearly a factor of 2 relative to the turbulent stress for the extreme case where waves propagate at 180° compared to the pressure gradient forcing. Net wind speed reduces by nearly 15% at hub-height for the 180°-case compared to the 0°-case, and turbulence intensities increase by nearly a factor of 2. These impacts diminish with decreasing wave age; Stratification increases hub height wind speeds and increases the vertical shear of the mean wind across the rotor plane. Fortuitously, this stability-induced enhanced shear does not influence turbulence intensity at hub height, but does increase (decrease) turbulence intensity below (above) hub height. Increased stability also increases the wave-induced pressure stress by ~ 10%; Off the East Coast of the United States during Coupled Boundary Layers Air-Sea Transfer - Low Wind (CBLAST-Low), cases with short fetch include thin stable boundary layers with depths of only a few tens of meters. In the coastal zone, the relationship between the mean wind and the surface fiction velocity (u*(V )) is significantly related to wind direction for weak winds but is not systematically related to the air sea difference of virtual potential temperature, δθv; since waves generally propagate from the south at the Air-Sea Interaction Tower (ASIT) tower, these results suggest that under weak wind conditions waves likely influence surface stress more than stratification does; and Winds and waves are frequently misaligned in the coastal zone. Stability conditions persist for long duration. Over a four year period, the Forschungsplattformen in Nord- und Ostsee Nr. 1 (FINO1) tower (a site with long fetch) primarily experienced weakly-unstable conditions, while stability at the ASIT tower (with a larger influence of offshore winds) experiences a mix of both unstable and stable conditions, where the summer months are predominantly stable. Wind-wave misalignment likely explains the large scatter in observed non-dimensional surface roughness under swell-dominated conditions. Andreas et al.’s (2012) relationship between u* and the 10-m wind speed under predicts the increased u* produced by wave-induced pressure drag produced by misaligned winds and waves. Incorporating wave-state (speed and direction) influences in parameterizations improves predictive skill. In a broad sense, these results suggest that one needs information on winds, temperature, and wave state to upscale buoy measurements to hub-height and across the rotor plane. Our parameterization of wave-state influences on surface drag has been submitted for inclusion in the next publicly available release. In combination, our project elucidates the impacts of two important physical processes (non-equilibrium wind/waves and stratification) on the atmosphere within which offshore turbines operate. This knowledge should help guide and inform manufacturers making critical decisions surrounding design criteria of future turbines to be deployed in the coastal zone. Reductions in annually averaged hub height wind speed error using our new wave-state-aware surface layer parameterization are relatively modest. However since wind turbine power production depends on the wind speed cubed, the error in estimated power production is close to 5%; which is significant and can substantially impact wind resource assessment and decision making with regards to the viability of particular location for a wind plant location. For a single 30-hour forecast, significant reductions in wind speed prediction errors can yield substantially improved wind power forecast skill, thereby mitigating costs and/or increasing revenue through improved; forecasting for maintenance operations and planning; day-ahead forecasting for power trading and resource allocation; and short-term forecasting for dispatch and grid balancing.« less

  18. Estimating Forest Vertical Structure from Multialtitude, Fixed-Baseline Radar Interferometric and Polarimetric Data

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.; Law, Beverly E.; Siqueira, Paul R.

    2000-01-01

    Parameters describing the vertical structure of forests, for example tree height, height-to-base-of-live-crown, underlying topography, and leaf area density, bear on land-surface, biogeochemical, and climate modeling efforts. Single, fixed-baseline interferometric synthetic aperture radar (INSAR) normalized cross-correlations constitute two observations from which to estimate forest vertical structure parameters: Cross-correlation amplitude and phase. Multialtitude INSAR observations increase the effective number of baselines potentially enabling the estimation of a larger set of vertical-structure parameters. Polarimetry and polarimetric interferometry can further extend the observation set. This paper describes the first acquisition of multialtitude INSAR for the purpose of estimating the parameters describing a vegetated land surface. These data were collected over ponderosa pine in central Oregon near longitude and latitude -121 37 25 and 44 29 56. The JPL interferometric TOPSAR system was flown at the standard 8-km altitude, and also at 4-km and 2-km altitudes, in a race track. A reference line including the above coordinates was maintained at 35 deg for both the north-east heading and the return southwest heading, at all altitudes. In addition to the three altitudes for interferometry, one line was flown with full zero-baseline polarimetry at the 8-km altitude. A preliminary analysis of part of the data collected suggests that they are consistent with one of two physical models describing the vegetation: 1) a single-layer, randomly oriented forest volume with a very strong ground return or 2) a multilayered randomly oriented volume; a homogeneous, single-layer model with no ground return cannot account for the multialtitude correlation amplitudes. Below the inconsistency of the data with a single-layer model is followed by analysis scenarios which include either the ground or a layered structure. The ground returns suggested by this preliminary analysis seem too strong to be plausible, but parameters describing a two-layer compare reasonably well to a field-measured probability distribution of tree heights in the area.

  19. Oscillation of Surface PM2.5 Concentration Resulting from an Alternation of Easterly and Southerly Winds in Beijing: Mechanisms and Implications

    NASA Astrophysics Data System (ADS)

    Sun, Zhaobin; Zhang, Xiaoling; Zhao, Xiujuan; Xia, Xiangao; Miao, Shiguang; Li, Ziming; Cheng, Zhigang; Wen, Wei; Tang, Yixi

    2018-04-01

    We used simultaneous measurements of surface PM2.5 concentration and vertical profiles of aerosol concentration, temperature, and humidity, together with regional air quality model simulations, to study an episode of aerosol pollution in Beijing from 15 to 19 November 2016. The potential effects of easterly and southerly winds on the surface concentrations and vertical profiles of the PM2.5 pollution were investigated. Favorable easterly winds produced strong upward motion and were able to transport the PM2.5 pollution at the surface to the upper levels of the atmosphere. The amount of surface PM2.5 pollution transported by the easterly winds was determined by the strength and height of the upward motion produced by the easterly winds and the initial height of the upward wind. A greater amount of PM2.5 pollution was transported to upper levels of the atmosphere by upward winds with a lower initial height. The pollutants were diluted by easterly winds from clean ocean air masses. The inversion layer was destroyed by the easterly winds and the surface pollutants and warm air masses were then lifted to the upper levels of the atmosphere, where they re-established a multi-layer inversion. This region of inversion was strengthened by the southerly winds, increasing the severity of pollution. A vortex was produced by southerly winds that led to the convergence of air along the Taihang Mountains. Pollutants were transported from southern-central Hebei Province to Beijing in the boundary layer. Warm advection associated with the southerly winds intensified the inversion produced by the easterly winds and a more stable boundary layer was formed. The layer with high PM2.5 concentration became dee-per with persistent southerly winds of a certain depth. The polluted air masses then rose over the northern Taihang Mountains to the northern mountainous regions of Hebei Province.

  20. Hybrid finite-difference/lattice Boltzmann simulations of microchannel and nanochannel acoustic streaming driven by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Tan, Ming K.; Yeo, Leslie Y.

    2018-04-01

    A two-dimensional hybrid numerical method that allows full coupling of the elastic motion in a piezoelectric solid (modeled using a finite-difference time-domain technique) with the resultant compressional flow in a fluid (simulated using a lattice Boltzmann scheme) is developed to study the acoustic streaming that arises in both microchannels and nanochannels under surface acoustic wave (SAW) excitation. In addition to verifying the model through a comparison of the simulations with results from experimental and numerical studies of microchannel and nanochannel flows driven by both standing and traveling SAWs in the literature, we highlight salient features of the flow field that arise and discuss the underlying mechanisms responsible for the flow. In microchannels, boundary layer streaming is the dominant mechanism when the channel height is below the sound wavelength in the liquid, whereas Eckart streaming—arising as a consequence of the attenuation of the sound wave in the liquid—dominates in the form of periodic vortices for larger channel heights. The absence of Eckart streaming and the overlapping of boundary layers in nanochannels with heights below the boundary layer thickness, on the other hand, give rise to a time-averaged dynamic acoustic pressure that results in an inertial-dominant flow, which paradoxically possesses a parabolic-like velocity profile resembling pressure-driven laminar flow. In contrast, if the nanochannel were to be filled instead with air, the significantly lower fluid density leads to a considerable reduction in the dynamic acoustic pressure and hence inertial forcing such that boundary layer streaming once again dominates, asymptotically imposing a slip condition along the channel surface that results in a negative pluglike velocity profile.

  1. Terrestrial laser scanning for biomass assessment and tree reconstruction: improved processing efficiency

    NASA Astrophysics Data System (ADS)

    Alboabidallah, Ahmed; Martin, John; Lavender, Samantha; Abbott, Victor

    2017-09-01

    Terrestrial Laser Scanning (TLS) processing for biomass mapping involves large data volumes, and often includes relatively slow 3D object fitting steps that increase the processing time. This study aimed to test new features that can speed up the overall processing time. A new type of 3D voxel is used, where the horizontal layers are parallel to the Digital Terrain Model. This voxel type allows procedures to extract tree diameters using just one layer, but still gives direct tree-height estimations. Layer intersection is used to emphasize the trunks as upright standing objects, which are detected in the spatially segmented intersection of the breast-height voxels and then extended upwards and downwards. The diameters were calculated by fitting elliptical cylinders to the laser points in the detected trunk segments. Non-trunk segments, used in sub-tree- structures, were found using the parent-child relationships between successive layers. The branches were reconstructed by skeletonizing each sub-tree branch, and the biomass was distributed statistically amongst the weighted skeletons. The procedure was applied to nine plots within the UK. The average correlation coefficients between reconstructed and directly measured tree diameters, heights and branches were R2 = 0.92, 0.97 and 0.59 compared to 0.91, 0.95, and 0.63 when cylindrical fitting was used. The average time to apply the method reduced from 5hrs:18mins per plot, for the conventional methods, to 2hrs:24mins when the same hardware and software libraries were used with the 3D voxels. These results indicate that this 3D voxel method can produce, much more quickly, results of a similar accuracy that would improve efficiency if applied to projects with large volume TLS datasets.

  2. Zn2+ and Sr2+ Adsorption at the TiO2 (110)-Electrolyte Interface: Influence of Ionic Strength, Coverage, and Anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang,Z.; Fenter, P.; Cheng, L.

    2006-01-01

    The X-ray standing wave technique was used to probe the sensitivity of Zn{sup 2+} and Sr{sup 2+} ion adsorption to changes in both the adsorbed ion coverage and the background electrolyte species and concentrations at the rutile ({alpha}-TiO{sub 2}) (110)-aqueous interface. Measurements were made with various background electrolytes (NaCl, NaTr, RbCl, NaBr) at concentrations as high as 1 m. The results demonstrate that Zn{sub 2+} and Sr{sub 2+} reside primarily in the condensed layer and that the ion heights above the Ti-O surface plane are insensitive to ionic strength and the choice of background electrolyte (with <0.1 Angstroms changes overmore » the full compositional range). The lack of any specific anion coadsorption upon probing with Br{sup -}, coupled with the insensitivity of Zn{sup 2+} and Sr{sup 2+} cation heights to changes in the background electrolyte, implies that anions do not play a significant role in the adsorption of these divalent metal ions to the rutile (110) surface. Absolute ion coverage measurements for Zn{sup 2+} and Sr{sup 2+} show a maximum Stern-layer coverage of {approx}0.5 monolayer, with no significant variation in height as a function of Stern-layer coverage. These observations are discussed in the context of Gouy-Chapman-Stern models of the electrical double layer developed from macroscopic sorption and pH-titration studies of rutile powder suspensions. Direct comparison between these experimental observations and the MUltiSIte Complexation (MUSIC) model predictions of cation surface coverage as a function of ionic strength revealed good agreement between measured and predicted surface coverages with no adjustable parameters.« less

  3. Raman lidar characterization of PBL structure during COPS

    NASA Astrophysics Data System (ADS)

    Summa, D.; Di Girolamo, P.; Stelitano, D.; Di Iorio, T.

    2012-04-01

    The planetary boundary layer includes the portion of the atmosphere which is directly influenced by the presence of the Earth's surface. Aerosol particles trapped within the PBL can be used as tracers to study boundary-layer vertical structure and time variability. Aerosols can be dispersed out of the PBL during strong convection or temporary breaks of the capping temperature inversion. As a result of this, elastic backscatter signals collected by lidar systems can be used to determine the height and the internal structure of the PBL. Our analysis considers a method based on the first order derivative of the range-corrected elastic signal (RCS), which is a modified version of the method defined by Seibert et al. (2000) and Sicard et al. (2006). The analysis is focused on selected case studies collected by the Raman lidar system BASIL during the Convective and Orographically-induced Precipitation Study (COPS), held in Southern Germany and Eastern France in the period 01 June - 31 August 2007. Measurements were performed by the Raman lidar system BASIL, which was operational in Achern (Black Forest, Lat: 48.64 ° N, Long: 8.06 ° E, Elev.: 140 m). During COPS, BASIL collected more than 500 hours of measurements, distributed over 58 measurement days and 34 intensive observation periods (IOPs), covering both night-time and daytime and the transitions between the two. Therefore BASIL data during COPS represent a unique source of information for the study of the boundary layer structure and evolution. Potential temperature profiles obtained from the radiosonde data were used to get an additional estimate of the boundary layer height. Estimates of the PBL height and structure for specific case studies obtained from the lidar data and their comparison with estimates obtained from the radiosonde data will be illustrated and discussed at the Conference.

  4. Wave like signatures in aerosol optical depth and associated radiative impacts over the central Himalayan region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, K. K.; Phanikumar, D. V.; Kumar, K.  Niranjan

    2015-10-01

    In this study, we present a case study on 16 October 2011 to show the first observational evidence of the influence of short period gravity waves in aerosol transport during daytime over the central Himalayan region. The Doppler lidar data has been utilized to address the daytime boundary layer evolution and related aerosol dynamics over the site. Mixing layer height is estimated by wavelet covariance transform method and found to be ~ 0.7 km, AGL. Aerosol optical depth observations during daytime revealed an asymmetry showing clear enhancement during afternoon hours as compared to forenoon. Interestingly, Fourier and wavelet analysis ofmore » vertical velocity and attenuated backscatter showed similar 50-90 min short period gravity wave signatures during afternoon hours. Moreover, our observations showed that gravity waves are dominant within the boundary layer implying that the daytime boundary layer dynamics is playing a vital role in transporting the aerosols from surface to the top of the boundary layer. Similar modulations are also evident in surface parameters like temperature, relative humidity and wind speed indicating these waves are associated with the dynamical aspects over Himalayan region. Finally, time evolution of range-23 height indicator snapshots during daytime showed strong upward velocities especially during afternoon hours implying that convective processes through short period gravity waves plays a significant role in transporting aerosols from the nearby valley region to boundary layer top over the site. These observations also establish the importance of wave induced daytime convective boundary layer dynamics in the lower Himalayan region.« less

  5. Device characteristics of organic light-emitting diodes based on electronic structure of the Ba-doped Alq3 layer.

    PubMed

    Lim, Jong Tae; Kim, Kyung Nam; Yeom, Geun Young

    2009-12-01

    Organic light-emitting diodes (OLEDs) with a Ba-doped tris(8-quinolinolato)aluminum(III) (Alq3) layer were fabricated to reduce the barrier height for electron injection and to improve the electron conductivity. In the OLED consisting of glass/ITO/4,4',4"-tris[2-naphthylphenyl-1-phenylamino]triphenylamine (2-TNATA, 30 nm)/4,4'-bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl (NPB, 18 nm)/Alq3 (42 nm)/Ba-doped Alq3 (20 nm, x%: x = 0, 10, 25, and 50)/Al (100 nm), the device with the Alq3 layer doped with 10% Ba showed the highest light out-coupling characteristic. However, as the Ba dopant concentration was increased from 25% to 50%, this device characteristic was largely reduced. The characteristics of these devices were interpreted on the basis of the chemical reaction between Ba and Alq3 and the electron injection property by analyzing the electronic structure of the Ba-doped Alq3 layer. At a low Ba doping of 10%, mainly the Alq3 radical anion species was formed. In addition, the barrier height for electron injection in this layer was decreased to 0.6 eV, when compared to the pristine Alq3 layer. At a high Ba doping of 50%, the Alq3 molecules were severely decomposed. When the Ba dopant concentration was changed, the light-emitting characteristics of the devices were well coincided with the formation mechanism of Alq3 radical anion and Alq3 decomposition species.

  6. Post-midnight enhancements in low latitude F layer electron density: observations and simulations

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Le, Huijun; Chen, Yiding; Zhang, Yanyan; Wan, Weixing; Ning, Baiqi

    2014-05-01

    Observations from a Lowell DPS-4D ionosonde operated at Sanya (18.3º N, 109.6º E), a low latitude station in China, have been analysed to study the nighttime behavior of ionospheric F layer. Post-midnight enhancement events are frequently occurred in the year of 2012. Common features in these cases illustrate that, accompanying nighttime rises in peak electron density of F2-layer (NmF2), the height of F2-layer goes downward significantly and the ionogram-derived electron density height profiles become sharpener. Enhancement in electron density develops earlier and reaches peaks earlier at higher altitudes than at lower altitudes. Downward plasma drift detected under such events reveals the essential role of the westward electric field in forming the post-midnight enhancements in electron density of ionospheric F-layer at such low latitudes. The important role of westward electric field in formation of nighttime enhancement is supported by the simulated results from a model. Work has been published in Liu et al., A case study of post-midnight enhancement in F-layer electron density over Sanya of China, J. Geophys. Res. Space Physics, 2013, 118, 4640-4648, DOI:10.1002/jgra.50422. Acknowledgements: Ionosonde data are provided from BNOSE of IGGCAS. This research was supported by the projects of Chinese Academy of Sciences (KZZD-EW-01-3), National Key Basic Research Program of China (2012CB825604), and National Natural Science Foundation of China (41231065).

  7. The Empirical Canadian High Arctic Ionospheric Model (E-CHAIM): Bottomside Parameterization

    NASA Astrophysics Data System (ADS)

    Themens, D. R.; Jayachandran, P. T.

    2017-12-01

    It is well known that the International Reference Ionosphere (IRI) suffers reduced accuracy in its representation of monthly median ionospheric electron density at high latitudes. These inaccuracies are believed to stem, at least in part, from a historical lack of data from these regions. Now, roughly thirty and forty years after the development of the original URSI and CCIR foF2 maps, respectively, there exists a much larger dataset of high latitude observations of ionospheric electron density. These new measurements come in the form of new ionosonde deployments, such as those of the Canadian High Arctic Ionospheric Network, the CHAMP, GRACE, and COSMIC radio occultation missions, and the construction of the Poker Flat, Resolute, and EISCAT Incoherent Scatter Radar systems. These new datasets afford an opportunity to revise the IRI's representation of the high latitude ionosphere. Using a spherical cap harmonic expansion to represent horizontal and diurnal variability and a Fourier expansion in day of year to represent seasonal variations, we have developed a new model of the bottomside ionosphere's electron density for the high latitude ionosphere, above 50N geomagnetic latitude. For the peak heights of the E and F1 layers (hmE and hmF1, respectively), current standards use a constant value for hmE and either use a single-parameter model for hmF1 (IRI) or scale hmF1 with the F peak (NeQuick). For E-CHAIM, we have diverged from this convention to account for the greater variability seen in these characteristics at high latitudes, opting to use a full spherical harmonic model description for each of these characteristics. For the description of the bottomside vertical electron density profile, we present a single-layer model with altitude-varying scale height. The scale height function is taken as the sum three scale height layer functions anchored to the F2 peak, hmF1, and hmE. This parameterization successfully reproduces the structure of the various bottomside layers while ensuring that the resulting electron density profile is free of strong vertical gradient artifacts and is doubly differentiable.

  8. Understanding the Steric Height Long Term Variability at the Bermuda Atlantic Time-Series Study (BATS) Site with a Neutral Density Approach

    NASA Astrophysics Data System (ADS)

    Goncalves Neto, A.; Johnson, R. J.; Bates, N. R.

    2016-02-01

    Rising sea level is one of the main concerns for human life in a scenario with global atmosphere and ocean warming, which is of particular concern for oceanic islands. Bermuda, located in the center of the Sargasso Sea, provides an ideal location to investigate sea level rise since it has a long term tide gauge (1933-present) and is in close proximity to deep ocean time-series sites, namely, Hydrostation `S' (1954-present) and the Bermuda Atlantic Time-Series Study site (1988-present). In this study, we use the monthly CTD deep casts at BATS to compute the contribution of steric height (SH) to the local sea surface height (SSH) for the past 24 years. To determine the relative contribution from the various water masses we first define 8 layers (Surface Layer, Upper Thermocline, Subtropical Mode-Water, Lower Thermocline, Antarctic Intermediate Water, Labrador Sea Water, Iceland-Scotland Overflow Water, Denmark Strait Overflow Water) based on neutral density criteria for which SH is computed. Additionally, we calculate the thermosteric and halosteric components for each of the defined neutral density layers. Surprisingly, the results show that, despite a 3.3mm/yr sea level rise observed at the Bermuda tide gauge, the steric contribution to the SSH at BATS has decreased at a rate of -1.1mm/yr during the same period. The thermal component is found to account for the negative trend in the steric height (-4.4mm/yr), whereas the halosteric component (3.3mm/yr) partially compensates the thermal signal and can be explained by an overall cooling and freshening at the BATS site. Although the surface layer and the upper thermocline waters are warming, all the subtropical and polar water masses, which represent most of the local water column, are cooling and therefore drive the overall SH contribution to the local SSH. Hence, it suggests that the mass contribution to the local SSH plays an important role in the sea level rise, for which we investigate with GRACE data.

  9. Analysis of the weekly cycle in the atmosphere near Moscow

    NASA Astrophysics Data System (ADS)

    Gruzdev, A. N.

    2013-03-01

    Using the spectral method and the method of grouping by days of week, we analyzed the weekly cycles by standard air sounding data obtained at the Dolgoprudny station near Moscow and by the results of measurements of NO2 content in the stratosphere and the atmospheric boundary layer at the Zvenigorod Research Station of the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, in 1990-2010. We revealed weekly cycles of the NO2 content in the vertical column of the stratosphere, temperature, geopotential, meridional wind velocity in the troposphere and lower stratosphere, and the tropopause height in the warm half of the year (mid-April to mid-October). The weekly variations in temperature in the troposphere are positive in the first half of the week and negative in the second half, and the variations in temperature in the tropopause layer and in the lower stratosphere are opposite in sign to the tropospheric variations. The weekly cycle of the tropopause height is approximately in phase with the cycle of tropospheric temperature, and the weekly cycle of the NO2 content in the stratospheric column is opposite in phase to the cycle of the tropopause height. Weekly variations were also observed in the total ozone content over Moscow. This finding was confirmed by calculations based on regression relationships between the vertical distribution of ozone and tropopause height. Conceptual mechanisms of weekly cycles were proposed.

  10. Impact of the Diurnal Cycle of the Atmospheric Boundary Layer on Wind-Turbine Wakes: A Numerical Modelling Study

    NASA Astrophysics Data System (ADS)

    Englberger, Antonia; Dörnbrack, Andreas

    2018-03-01

    The wake characteristics of a wind turbine for different regimes occurring throughout the diurnal cycle are investigated systematically by means of large-eddy simulation. Idealized diurnal cycle simulations of the atmospheric boundary layer are performed with the geophysical flow solver EULAG over both homogeneous and heterogeneous terrain. Under homogeneous conditions, the diurnal cycle significantly affects the low-level wind shear and atmospheric turbulence. A strong vertical wind shear and veering with height occur in the nocturnal stable boundary layer and in the morning boundary layer, whereas atmospheric turbulence is much larger in the convective boundary layer and in the evening boundary layer. The increased shear under heterogeneous conditions changes these wind characteristics, counteracting the formation of the night-time Ekman spiral. The convective, stable, evening, and morning regimes of the atmospheric boundary layer over a homogeneous surface as well as the convective and stable regimes over a heterogeneous surface are used to study the flow in a wind-turbine wake. Synchronized turbulent inflow data from the idealized atmospheric boundary-layer simulations with periodic horizontal boundary conditions are applied to the wind-turbine simulations with open streamwise boundary conditions. The resulting wake is strongly influenced by the stability of the atmosphere. In both cases, the flow in the wake recovers more rapidly under convective conditions during the day than under stable conditions at night. The simulated wakes produced for the night-time situation completely differ between heterogeneous and homogeneous surface conditions. The wake characteristics of the transitional periods are influenced by the flow regime prior to the transition. Furthermore, there are different wake deflections over the height of the rotor, which reflect the incoming wind direction.

  11. PARKA II Experiment Utilizing SEA SPIDER. ONR Scientific Plan 2-69

    DTIC Science & Technology

    1969-06-26

    speed and wave height, and take a bathythermograph record to establish depth of surface layer . Log layer depth only with wind and wave data. Step 12...range acoustic propagation experiments designed to support the advanced development objectives of the Long Range Acoustic Propagation Project (LRAPP...environmental experiments conducted under the Long Range Acoustic Propagation Project (LR PP) for the purpose of, evaluating and improving

  12. Developing Tools for Ecological Forestry and Carbon Management in Longleaf Pine

    DTIC Science & Technology

    2016-08-01

    22 Table 5.2. Carbon concentrations of plants in the ground cover layer by growth form and carbon concentrations in longleaf...harvest. The stand is connected at the edges to form periodic boundary conditions (toroidal) ...............................................241...coarse root mass. Table 5.2. Carbon concentrations (%) of plants in the ground cover layer (< 1 m in height) by growth form and C

  13. Ground-layer plant community responses to even-age and uneven-age silvicultural treatments in Wisconsin northern hardwood forests

    Treesearch

    Cristel C. Kern; Brian J. Palik; Terry F. Strong

    2006-01-01

    We evaluated ground-layer plant diversity and community composition in northern hardwood forests among uncut controls and stands managed with even-age or uneven-age silvicultural systems. Even-age treatments included diameter-limit cuttings (20-cm diameter at 30-cm stem height) in 1952 and shelterwood removals in 1964. Uneven-age treatments included three intensities...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newsom, R. K.; Sivaraman, C.; Shippert, T. R.

    Wind speed and direction, together with pressure, temperature, and relative humidity, are the most fundamental atmospheric state parameters. Accurate measurement of these parameters is crucial for numerical weather prediction. Vertically resolved wind measurements in the atmospheric boundary layer are particularly important for modeling pollutant and aerosol transport. Raw data from a scanning coherent Doppler lidar system can be processed to generate accurate height-resolved measurements of wind speed and direction in the atmospheric boundary layer.

  15. Experimental investigation of wood combustion in a fixed bed with hot air.

    PubMed

    Markovic, Miladin; Bramer, Eddy A; Brem, Gerrit

    2014-01-01

    Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignition occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism. MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T>220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion. Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of the primary air speed, fuel moisture and inert content on the combustion characteristics (ignition rate, combustion rate, ignition front speed and temperature of the reaction zone) is evaluated. The upward combustion concept decouples the drying, devolatilization and burnout phase. In this way the moisture and inert content of the waste have almost no influence on the combustion process. In this paper an experimental comparison between conventional and reversed combustion is presented. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Mapping the understorey of deciduous woodland from leaf-on and leaf-off airborne LiDAR data: A case study in lowland Britain

    NASA Astrophysics Data System (ADS)

    Hill, R. A.; Broughton, R. K.

    This study examines the understorey information present in discrete-return LiDAR (Light Detection And Ranging) data acquired for temperate deciduous woodland in mid summer (leaf-on) and in early spring when the understorey had mostly leafed out, but the overstorey had only just begun budburst (referred to here as leaf-off). The woodland is ancient, semi-natural broadleaf and has a heterogeneous structure with a mostly closed canopy overstorey and a patchy understorey layer. In this study, the understorey was defined as suppressed trees and shrubs growing beneath an overstorey canopy. Forest mensuration data for the study site were examined to identify thresholds (taking the 95th percentile) for crown depth as a percentage of crown top height for the six overstorey tree species present. These data were used in association with a digital tree species map and leaf-on first return LiDAR data, to identify the possible depth of space available below the overstorey canopy in which an understorey layer could exist. The leaf-off last return LiDAR data were then examined to identify whether they contained information on where this space was occupied by suppressed trees or shrubs forming an understorey. Thus, understorey was mapped from the leaf-off last return data where the height was below the predicted crown depth. A height threshold of 1 m was applied to separate the ground vegetation layer from the understorey. The derived understorey model formed a discontinuous layer covering 46.4 ha (or 31% of the study site), with an average height of 2.64 m and a 77% correspondence with field data on the presence/absence of suppressed trees and shrubs (kappa 0.53). Because the first return data in leaf-on and leaf-off conditions were very similar (differing by an average of just 0.87 m), it was also possible to map the understorey layer using leaf-off data alone. The resultant understorey model covered 39.4 ha (or 26% of the study site), and had a 72% correspondence with field data on the presence/absence of suppressed trees and shrubs (kappa 0.45). This moderate reduction in the area of understorey mapped and associated accuracy came with a saving of half of all data acquisition and pre-processing costs. Whilst the understorey modelling presented here undoubtedly benefited from the specific timing of LiDAR data acquisition and from ancillary data available for the study site, the conclusions have resonance beyond this case study. Given that the understorey and overstorey canopies in lowland broadleaf woodland can merge into one another, the modelling of understorey information from discrete-return LiDAR data must consider overstorey canopy characteristics and laser penetration through the overstorey. It is not adequate in such circumstances to apply simple height thresholds to LiDAR height frequency distributions, as this is unlikely to distinguish whether a return has backscattered from the lower parts of the overstorey canopy or from near the surface of the understorey canopy.

  17. Critical Transitions in Thin Layer Turbulence

    NASA Astrophysics Data System (ADS)

    Benavides, Santiago; Alexakis, Alexandros

    2017-11-01

    We investigate a model of thin layer turbulence that follows the evolution of the two-dimensional motions u2 D (x , y) along the horizontal directions (x , y) coupled to a single Fourier mode along the vertical direction (z) of the form uq (x , y , z) = [vx (x , y) sin (qz) ,vy (x , y) sin (qz) ,vz (x , y) cos (qz) ] , reducing thus the system to two coupled, two-dimensional equations. Its reduced dimensionality allows a thorough investigation of the transition from a forward to an inverse cascade of energy as the thickness of the layer H = π / q is varied.Starting from a thick layer and reducing its thickness it is shown that two critical heights are met (i) one for which the forward unidirectional cascade (similar to three-dimensional turbulence) transitions to a bidirectional cascade transferring energy to both small and large scales and (ii) one for which the bidirectional cascade transitions to a unidirectional inverse cascade when the layer becomes very thin (similar to two-dimensional turbulence). The two critical heights are shown to have different properties close to criticality that we are able to analyze with numerical simulations for a wide range of Reynolds numbers and aspect ratios. This work was Granted access to the HPC resources of MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01).

  18. Effect of antimony incorporation on the density, shape, and luminescence of InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Chen, J. F.; Chiang, C. H.; Wu, Y. H.; Chang, L.; Chi, J. Y.

    2008-07-01

    This work investigates the surfactant effect on exposed and buried InAs quantum dots (QDs) by incorporating Sb into the QD layers with various Sb beam equivalent pressures (BEPs). Secondary ion mass spectroscopy shows the presence of Sb in the exposed and buried QD layers with the Sb intensity in the exposed layer substantially exceeding that in the buried layer. Incorporating Sb can reduce the density of the exposed QDs by more than two orders of magnitude. However, a high Sb BEP yields a surface morphology with a regular periodic structure of ellipsoid terraces. A good room-temperature photoluminescence (PL) at ˜1600 nm from the exposed QDs is observed, suggesting that the Sb incorporation probably improves the emission efficiency by reducing the surface recombination velocity at the surface of the exposed QDs. Increasing Sb BEP causes a blueshift of the emission from the exposed QDs due to a reduction in the dot height as suggested by atomic force microscopy. Increasing Sb BEP can also blueshift the ˜1300 nm emission from the buried QDs by decreasing the dot height. However, a high Sb BEP yields a quantum well-like PL feature formed by the clustering of the buried QDs into an undulated planar layer. These results indicate a marked Sb surfactant effect that can be used to control the density, shape, and luminescence of the exposed and buried QDs.

  19. Effect of nanodimensional polyethylenimine layer on surface potential barriers of hybrid structures based on silicon single crystal

    NASA Astrophysics Data System (ADS)

    Malyar, Ivan V.; Gorin, Dmitry A.; Stetsyura, Svetlana V.

    2013-01-01

    In this report we present the analysis of I-V curves for MIS-structures like silicon substrate / nanodimensional polyelectrolyte layer / metal probe (contact) which is promising for biosensors, microfluidic chips, different devices of molecular electronics, such as OLEDs, solar cells, where polyelectrolyte layers can be used to modify semiconductor surface. The research is directed to investigate the contact phenomena which influence the resulting signal of devices mentioned above. The comparison of I-V characteristics of such structures measured by scanning tunnel microscopy (contactless technique) and using contact areas deposited by thermal evaporation onto the organic layer (the contact one) was carried out. The photoassisted I-V measurements and complex analysis based on Simmons and Schottky models allow one to extract the potential barriers and to observe the changes of charge transport in MIS-structures under illumination and after polyelectrolyte adsorption. The direct correlation between the thickness of the deposited polyelectrolyte layer and both equilibrium tunnel barrier and Schottky barrier height was observed for hybrid structures with polyethylenimine. The possibility of control over the I-V curves of hybrid structure and the height of the potential barriers (for different charge transports) by illumination was confirmed. Based on experimental data and complex analysis the band diagrams were plotted which illustrate the changes of potential barriers for MIS-structures due to the polyelectrolyte adsorption and under the illumination.

  20. The Characterization of Atmospheric Boundary Layer Depth and Turbulence in a Mixed Rural and Urban Convective Environment

    NASA Astrophysics Data System (ADS)

    Hicks, Micheal M.

    A comprehensive analysis of surface-atmosphere flux exchanges over a mixed rural and urban convective environment is conducted at Howard University Beltsville, MD Research Campus. This heterogeneous site consists of rural, suburban and industrial surface covers to its south, east and west, within a 2 km radius of a flux sensor. The eddy covariance method is utilized to estimate surface-atmosphere flux exchanges of momentum, heat and moisture. The attributes of these surface flux exchanges are contrasted to those of classical homogeneous sites and assessed for accuracy, to evaluate the following: (I) their similarity to conventional convective boundary layer (CBL) processes and (II) their representativeness of the surrounding environment's turbulent properties. Both evaluations are performed as a function of upwind surface conditions. In particular, the flux estimates' obedience to spectrum power laws and similarity theory relationships is used for performing the first evaluation, and their ability to close the surface energy balance and accurately model CBL heights is used for the latter. An algorithm that estimates atmospheric boundary layer heights from observed lidar extinction backscatter was developed, tested and applied in this study. The derived lidar based CBL heights compared well with those derived from balloon borne soundings, with an overall Pearson correlation coefficient and standard deviation of 0.85 and 223 m, respectively. This algorithm assisted in the evaluation of the response of CBL processes to surface heterogeneity, by deriving high temporal CBL heights and using them as independent references of the surrounding area averaged sensible heat fluxes. This study found that the heterogeneous site under evaluation was rougher than classical homogeneous sites, with slower dissipation rates of turbulent kinetic energy. Flux measurements downwind of the industrial complexes exhibited enhanced efficiency in surface-atmosphere momentum, heat, and moisture transport relative to their similarity theory predictions. In addition, these enhanced heat flux estimates ingested into the CBL slab model overestimated observed CBL heights. More spatial flux observations are needed to better understand the role that the industrial complexes are playing in enhancing the efficiency of turbulent processes, which may have important implications on the role humans are assuming in regional climate change.

  1. Advances and Limitations of Atmospheric Boundary Layer Observations with GPS Occultation over Southeast Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Xie, F.; Wu, D. L.; Ao, C. O.; Mannucci, A. J.; Kursinski, E. R.

    2012-01-01

    The typical atmospheric boundary layer (ABL) over the southeast (SE) Pacific Ocean is featured with a strong temperature inversion and a sharp moisture gradient across the ABL top. The strong moisture and temperature gradients result in a sharp refractivity gradient that can be precisely detected by the Global Positioning System (GPS) radio occultation (RO) measurements. In this paper, the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) GPS RO soundings, radiosondes and the high-resolution ECMWF analysis over the SE Pacific are analyzed. COSMIC RO is able to detect a wide range of ABL height variations (1-2 kilometer) as observed from the radiosondes. However, the ECMWF analysis systematically underestimates the ABL heights. The sharp refractivity gradient at the ABL top frequently exceeds the critical refraction (e.g., -157 N-unit per kilometer) and becomes the so-called ducting condition, which results in a systematic RO refractivity bias (or called N-bias) inside the ABL. Simulation study based on radiosonde profiles reveals the magnitudes of the N-biases are vertical resolution dependent. The N-bias is also the primary cause of the systematically smaller refractivity gradient (rarely exceeding -110 N-unit per kilometer) at the ABL top from RO measurement. However, the N-bias seems not affect the ABL height detection. Instead, the very large RO bending angle and the sharp refractivity gradient due to ducting allow reliable detection of the ABL height from GPS RO. The seasonal mean climatology of ABL heights derived from a nine-month composite of COSMIC RO soundings over the SE Pacific reveals significant differences from the ECMWF analysis. Both show an increase of ABL height from the shallow stratocumulus near the coast to a much higher trade wind inversion further off the coast. However, COSMIC RO shows an overall deeper ABL and reveals different locations of the minimum and maximum ABL heights as compared to the ECMWF analysis. At low latitudes, despite the decreasing number of COSMIC RO soundings and the lower percentage of soundings that penetrate into the lowest 500-m above the mean-sea-level, there are small sampling errors in the mean ABL height climatology. The difference of ABL height climatology between COSMIC RO and ECMWF analysis over SE Pacific is significant and requires further studies.

  2. In situ curing of sliding SU-8 droplet over a microcontact printed pattern for tunable fabrication of a polydimethylsiloxane nanoslit.

    PubMed

    Kim, Chang-Beom; Chun, Honggu; Chung, JaeHun; Lee, Kwang Ho; Lee, Jeong Hoon; Song, Ki-Bong; Lee, Sang-Hoon

    2011-09-15

    A tunable process for polydimethylsiloxane (PDMS) nanoslit fabrication is developed for nanofluidic applications. A microcontact printing (μCP) of a laterally spreading self-assembled hexadecanethiol (HDT) layer, combined with in situ curing of a sliding SU-8 droplet, enables precise and independent tuning of a nanoslit-mold width and height using a single μCP master mold. The SU-8 nanoslit-mold is replicated using a hard-soft composite PDMS to prevent channel collapse at low (<0.2) aspect ratio (height over width). The fluidic characteristics as well as dimensions of nanoslits fabricated with various conditions are analyzed using a fluorescein sample and AFM images. Finally, concentration polarization-based sample preconcentration is successfully demonstrated at the nanoslit boundary where an electric double-layer is overlapped.

  3. Combined use of Satellite and Surface Observations to Infer the Imaginary Part of Refractive Index of Saharan Dust

    NASA Technical Reports Server (NTRS)

    Sinyuk, Alexander; Torres, Omar; Dubovik, Oleg; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    We present a method for retrieval of imaginary part of refractive index of desert dust aerosol in UV part of spectrum along with aerosol layer height above the ground. The method uses Total Ozone Mapping Spectrometer' (TOMS) measurements of the top of atmosphere radiances (331 nm, 360 nm) and aerosol optical depth provided by Aerosol Robotic Network (AERONET) (440 nm). Obtained values of imaginary part of refractive index retrieved for Saharan dust aerosol at 360 nm are significantly lower than previously reported values. The average retrieved values vary between 0.0054 and 0.0066 for different geographical locations. Our findings are in good agreement with the results of several recent investigations. The time variability of retrieved values for aerosol layer height is consistent with the predictions of dust transport model.

  4. Atomistic study of the graphene nanobubbles

    NASA Astrophysics Data System (ADS)

    Iakovlev, Evgeny; Zhilyaev, Petr; Akhatov, Iskander

    2017-11-01

    A two-dimensional (2D) heterostructures can be created using 2D crystals stacking method. Substance can be trapped between the layers which leads to formation of the surface nanobubbles. We study nanobubbles trapped between graphene layers with argon atoms inside using molecular dynamics approach. For bubbles with radius in range 7-34 nm the solid close-packed state of argon is found, although according to bulk argon phase diagram the fluid phase must be observed. The universal shape scaling (constant ratio of height to radius), which is found experimentally and proved by the theory of elasticity of membranes, is also observed in our atomistic simulations. An unusual pancake shape (extremely small height to radius ratio) is found for smallest nanobubble with radius 7 nm. The nanobubbles with similar shape were experimentally observed at the interface between water and hydrophobic surface.

  5. Drag characteristics of circular cylinders in a laminar boundary layer at supersonic free-stream velocities

    NASA Technical Reports Server (NTRS)

    Stallings, R. L., Jr.; Lamb, M.; Howell, D. T.

    1973-01-01

    Drag measurements were obtained with circular cylinders attached to a flat-plate surface with their longitudinal axes perpendicular to the plate surface. When more than one cylinder was tested, they were alined in a spanwise row perpendicular to the free-stream velocity vector. The drag measurements were obtained through a range of Mach numbers from 2.3 to 4.6, cylinder heights ranging from approximately 0.4 to 3 times the undisturbed laminar boundary-layer thickness, and cylinder height-to-diameter ratios of 1.0 and approximately 2. Included in the paper is a complete presentation in figure form of the experimental results and a discussion of the more significant findings. An attempt is made to select the most appropriate parameters for correlating the experimental results and, where possible, these results are compared with theoretical calculations.

  6. Textured micrometer scale templates as light managing fabrication platform for organic solar cells

    DOEpatents

    Chaudhary, Sumit; Ho, Kai-Ming; Park, Joong-Mok; Nalwa, Kanwar Singh; Leung, Wai Y.

    2016-07-26

    A three-dimensional, microscale-textured, grating-shaped organic solar cell geometry. The solar cells are fabricated on gratings to give them a three-dimensional texture that provides enhanced light absorption. Introduction of microscale texturing has a positive effect on the overall power conversion efficiency of the devices. This grating-based solar cell having a grating of pre-determined pitch and height has shown improved power-conversion efficiency over a conventional flat solar cell. The improvement in efficiency is accomplished by homogeneous coverage of the grating with uniform thickness of the active layer, which is attributed to a sufficiently high pitch and low height of the underlying gratings. Also the microscale texturing leads to suppressed reflection of incident light due to the efficient coupling of the incident light into modes that are guided in the active layer.

  7. The determination of ionospheric electron content and distribution from satellite observations. Part 2. Results of the analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garriott, O K

    1960-04-01

    The results of observations of the radio transmissions from Sputnik III (1958 δ 2) in an 8-month period are presented. The measurements of integrated electron density are made in two ways, described in part 1. The measurements reveal the diurnal variation of the total ionospheric electron content; and the ratio of the total content to the content of the lower ionosphere below the height of maximum density in the F layer is obtained. An estimate of the average electron-density profile above the F-layer peak is made possible by the slow variation in the height of the satellite due to rotationmore » of the perigee position. The gross effects of large magnetic storms on the electron content and distribution are found.« less

  8. REDUCTION OF THE MOMENTUM OF FALLING BODIES

    DOEpatents

    Kendall, J.W.; Morrison, I.H.

    1954-09-21

    A means for catching free falling bodies that may be damaged upon impact is given. Several layers of floating gas-filled rubber balls are contained within a partially compartmented tank of liquid. The compartment extends from beneath the surface of the liquid to that height necessary to contain the desired number of layers of the balls. The balls and the liquid itself break the force of the fall by absorbing the kinetic energy of falling body. The body may then be retrieved from the floor of the tank by a rake that extends from outside of the tank through the free surface area and underneath the compartment wall. This arrangement is particularly useful in collecting irradiated atomic fuel rods that are discharged from a reactor at considerable height without damaging the thin aluminum jacket of the rods.

  9. The Relative Roles of Passive Surface Forces and Active Ion Transport in the Modulation of Airway Surface Liquid Volume and Composition

    PubMed Central

    Tarran, Robert; Grubb, Barbara R.; Gatzy, John T.; Davis, C. William; Boucher, Richard C.

    2001-01-01

    Two hypotheses have been proposed recently that offer different views on the role of airway surface liquid (ASL) in lung defense. The “compositional” hypothesis predicts that ASL [NaCl] is kept low (<50 mM) by passive forces to permit antimicrobial factors to act as a chemical defense. The “volume” hypothesis predicts that ASL volume (height) is regulated isotonically by active ion transport to maintain efficient mechanical mucus clearance as the primary form of lung defense. To compare these hypotheses, we searched for roles for: (1) passive forces (surface tension, ciliary tip capillarity, Donnan, and nonionic osmolytes) in the regulation of ASL composition; and (2) active ion transport in ASL volume regulation. In primary human tracheobronchial cultures, we found no evidence that a low [NaCl] ASL could be produced by passive forces, or that nonionic osmolytes contributed substantially to ASL osmolality. Instead, we found that active ion transport regulated ASL volume (height), and that feedback existed between the ASL and airway epithelia to govern the rate of ion transport and volume absorption. The mucus layer acted as a “reservoir” to buffer periciliary liquid layer height (7 μm) at a level optimal for mucus transport by donating or accepting liquid to or from the periciliary liquid layer, respectively. These data favor the active ion transport/volume model hypothesis to describe ASL physiology. PMID:11479349

  10. Solar energy incident at the receiver of a solar tower plant, derived from remote sensing: Computation of both DNI and slant path transmittance

    NASA Astrophysics Data System (ADS)

    Elias, Thierry; Ramon, Didier; Garnero, Marie-Agnès; Dubus, Laurent; Bourdil, Charles

    2017-06-01

    By scattering and absorbing solar radiation, aerosols generate production losses in solar plants. Due to the specific design of solar tower plants, solar radiation is attenuated not only in the atmospheric column but also in the slant path between the heliostats and the receiver. Broadband attenuation by aerosols is estimated in both the column and the slant path for Ouarzazate, Morocco, using spectral measurements of aerosol optical thickness (AOT) collected by AERONET. The proportion of AOT below the tower's height is computed assuming a single uniform aerosol layer of height equal to the boundary layer height computed by ECMWF for the Operational Analysis. The monthly average of the broadband attenuation by aerosols in the slant path was 6.9±3.0% in August 2012 at Ouarzazate, for 1-km distance between the heliostat and the receiver. The slant path attenuation should be added to almost 40% attenuation along the atmospheric column, with aerosols in an approximate 4.7-km aerosol layer. Also, around 1.5% attenuation is caused by Rayleigh and water vapour in the slant path. The monochromatic-broadband extrapolation is validated by comparing computed and observed direct normal irradiance (DNI). DNI observed around noon varied from more than 1000 W/m2 to around 400 W/m2 at Ouarzazate in 2012 because of desert dust plumes transported from North African desert areas.

  11. Signature of 3-4 day planetary waves in the equatorial ionospheric F layer height and medium frequency radar winds over Tirunelveli (8.7oN)

    NASA Astrophysics Data System (ADS)

    Sundararaman, Sathishkumar

    Signature of 3-4 day planetary waves in the equatorial ionospheric F layer height and medium frequency radar winds over Tirunelveli (8.7oN) S. Sathishkumar1, R. Dhanya1, K. Emperumal1, D. Tiwari2, S. Gurubaran1 and A. Bhattacharyya2 1. Equatorial Geophysical Research Laboratory, Indian Institute of Geomagnetism, Tirunelveli, India 2. Indian Institute of Geomagnetism, Navi Mumbai, India Email: sathishmaths@gmail.com Abstract The equatorial atmosphere-ionosphere system has been studied theoretically and observationally in the past. In the equatorial atmosphere, oscillations with periods of 3-4 days are often observed in the medium frequency (MF) radar over Tirunelveli (8.7oN, 77.8oE, 1.34oN geomag. lat.). Earlier observations show the clear evidence that these waves can propagate from the stratosphere to ionosphere. A digital ionosonde has been providing useful information on several ionospheric parameters from the same site. Simultaneous observations of mesospheric winds using medium frequency radar and F-layer height (h'F) from ionosonde reveal that the 3-4 day wave was evident in both the component during the 01 June 2007 and 31 July 2007. The 3-4 day wave could have an important role in the day to day variability of the equatorial ionosphere evening uplift. Results from an extensive analysis that is being carried out in the direction of 3-4 day wave present in the ionosphere will be presented.

  12. Mixing-height measurement by lidar, particle counter, and rawinsonde in the Williamette Valley, Oregon

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Melfi, S. H.; Olsson, L. E.; Tuft, W. L.; Elliott, W. P.; Egami, R.

    1972-01-01

    The feasibility of using laser radar (lidar) to measure the spatial distribution of aerosols and water vapor in the earth's mixing or boundary layer is shown. From these data the important parameter of actual mixing height was determined, that is, the maximum height to which particulate pollutants actually mix. Data are shown for simultaneous lidar, rawinsonde, and aircraft-mounted condensation nuclei counter and temperature measurements. The synoptic meteorology is also presented. The Williamette Valley, Oregon, was chosen for the measurements because of its unique combination of meteorology, terrain, and pollutant source, along with an ongoing Oregon State University study of the natural ventilation of this valley.

  13. Evaluation of planetary boundary layer schemes in meso-scale simulations above the North and Baltic Sea

    NASA Astrophysics Data System (ADS)

    Wurps, Hauke; Tambke, Jens; Steinfeld, Gerald; von Bremen, Lueder

    2014-05-01

    The development and design of wind energy converters for offshore wind farms require profound knowledge of the wind profile in the lower atmosphere. Especially an accurate and reliable estimation of turbulence, shear and veer are necessary for the prediction of energy production and loads. Currently existing wind energy turbines in the North Sea have hub heights of around 90 m and upper tip heights around 150 m, which is already higher than the highest measurement masts (e.g. FINO1: 103 m). The next generation of wind turbines will clearly outrange these altitudes, so the interest is to examine the atmosphere's properties above the North Sea up to 300 m. Therefore, besides the Prandtl layer also the Ekman layer has to be taken into account, which implies that changes of the wind direction with height become more relevant. For this investigation we use the Weather Research and Forecasting Model (WRF), a meso-scale numerical weather prediction system. In this study we compare different planetary boundary layer (PBL) schemes (MYJ, MYNN, QNSE) with the same high quality input from ECMWF used as boundary conditions (ERA-Interim). It was found in previous studies that the quality of the boundary conditions is crucially important for the accuracy of comparisons between different PBL schemes. This is due to the fact that the major source of meso-scale simulation errors is introduced by the driving boundary conditions and not by the different schemes of the meso-scale model itself. Hence, small differences in results from different PBL schemes can be distorted arbitrarily by coarse input data. For instance, ERA-Interim data leads to meso-scale RMSE values of 1.4 m/s at 100 m height above sea surface with mean wind speeds around 10 m/s, whereas other Reanalysis products lead to RMSEs larger than 2 m/s. Second, we compare our simulations to operational NWP results from the COSMO model (run by the DWD). In addition to the wind profile, also the turbulent kinetic energy (TKE) and the atmosphere's thermal stability are important to estimate power production and loads. Especially the TKE is in the focus of our research since the Master Length Scale of the closure schemes depends on it. A third step is the validation of the results using wind measurements around the North Sea. Because the considered heights are much larger than available data from met masts, we use LiDAR observations (light detection and ranging) and prospectively UAVs (unmanned aerial vehicle).

  14. Ion composition during the formation of a midlatitude E sub S layer

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Goldberg, R. A.; Azcarraga, A.

    1973-01-01

    The positive ion composition within a midlatitude sporadic E layer has been measured with the aid of a rocket-borne ion mass spectrometer launched from El Arenosillo, Spain on July 3, 1972 at 0743 LMT. Ionograms taken before and during the rocket flight showed a developing sporadic E layer near 114 km. Rocket data showed peaks in electron density and metallic ions at this same height. Both the maximum and total content of the metals are observed to be greater on the downleg than the upleg measurement.

  15. Boundary layer evolution over the central Himalayas from radio wind profiler and model simulations

    NASA Astrophysics Data System (ADS)

    Singh, Narendra; Solanki, Raman; Ojha, Narendra; Janssen, Ruud H. H.; Pozzer, Andrea; Dhaka, Surendra K.

    2016-08-01

    We investigate the time evolution of the Local Boundary Layer (LBL) for the first time over a mountain ridge at Nainital (79.5° E, 29.4° N, 1958 m a.m.s.l.) in the central Himalayan region, using a radar wind profiler (RWP) during November 2011 to March 2012, as a part of the Ganges Valley Aerosol Experiment (GVAX). We restrict our analysis to clear-sunny days, resulting in a total of 78 days of observations. The standard criterion of the peak in the signal-to-noise ratio (S / N) profile was found to be inadequate in the characterization of mixed layer (ML) top at this site. Therefore, we implemented a criterion of S / N > 6 dB for the characterization of the ML and the resulting estimations are shown to be in agreement with radiosonde measurements over this site. The daytime average (05:00-10:00 UTC) observed boundary layer height ranges from 440 ± 197 m in November (late autumn) to 766 ± 317 m above ground level (a.g.l.) in March (early spring). The observations revealed a pronounced impact of mountain topography on the LBL dynamics during March, when strong winds (> 5.6 m s-1) lead to LBL heights of 650 m during nighttime. The measurements are further utilized to evaluate simulations from the Weather Research and Forecasting (WRF) model. WRF simulations captured the day-to-day variations up to an extent (r2 = 0.5), as well as the mean diurnal variations (within 1σ variability). The mean biases in the daytime average LBL height vary from -7 % (January) to +30 % (February) between model and observations, except during March (+76 %). Sensitivity simulations using a mixed layer model (MXL/MESSy) indicated that the springtime overestimation of LBL would lead to a minor uncertainty in simulated surface ozone concentrations. However, it would lead to a significant overestimation of the dilution of black carbon aerosols at this site. Our work fills a gap in observations of local boundary layer over this complex terrain in the Himalayas, and highlights the need for year-long simultaneous measurements of boundary layer dynamics and air quality to better understand the role of lower tropospheric dynamics in pollution transport.

  16. Mixing Heights and Three-Dimensional Ozone Structure Observed by Airborne Lidar During the 2006 Texas Air Quality Study

    NASA Astrophysics Data System (ADS)

    Hardesty, R. M.; Senff, C. J.; Alvarez, R. J.; Banta, R. M.; Sandberg, S. P.; Weickmann, A. M.; Darby, L. S.

    2007-12-01

    A new all solid state ozone lidar was deployed on a NOAA Twin Otter to study boundary layer ozone and aerosol, mostly around Houston, during the 2006 Texas Air Quality Study. The new instrument transmits high pulse-rate, low pulse-energy light at 3 wavelengths in the ultraviolet to obtain ozone profiles with 500 m horizontal resolution and 90 m vertical resolution. During the Texas field study, 20 research flights resulted in nearly 70 hours of ozone measurements during the period from August 1 to September 15. Science objectives included characterization of background ozone levels over rural areas near Houston and Dallas and variability and structure of the boundary layer over different surface types, including urban, wooded, and agricultural land surface areas as well as over Galveston Bay and the Gulf of Mexico. A histogram of all boundary layer ozone concentration measurements showed a bimodal distribution with modes at 45 ppb and 70 ppb. The lower mode correlated with southerly flow, when relatively clean air was transported onshore into the Houston area. Segmenting the observations during southerly flow by region, including the Gulf of Mexico, land within about 55 km from the coast, and further inland indicated that background levels increased by about 10 ppb as air was transported onshore. During the latter part of the experiment, as more pollution was imported into the Houston region, background levels rose to nearly 80 ppb in regions N of Houston. Two flights aimed at observing import of ozone into Texas from the east showed that ozone concentrations increased and boundary layer depths deepened upwind of Houston between September 4 and September 8. Background levels rose by more than 10 ppb over this period. In addition to ozone measurements, we also estimated boundary layer height based on maximum gradient in observed backscatter. The technique worked well when the layer topped by the strongest gradient extends down to the surface. Investigation of the correlation between ozone levels and mixing layer heights both within and external to the Houston urban plume showed a variety of relationships, depending on, e.g., wind direction and occurrence of a bay/gulf breeze. On a day-to-day basis, higher ozone levels were weakly correlated with deeper mixing levels - this was likely due to advection of the urban heat island downwind with the high-ozone urban plume.

  17. Separated and Recovering Turbulent Boundary Layer Flow Behind a Backward Facing Step For Different Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Jovic, Srba; Kutler, Paul F. (Technical Monitor)

    1994-01-01

    Experimental results for a two-dimensional separated turbulent boundary layer behind a backward facing step for five different Reynolds numbers are reported. Results are presented in the form of tables, graphs and a floppy disk for an easy access of the data. Reynolds number based on the step height was varied by changing the reference velocity upstream of the step, U(sub o), and the step height, h. Hot-wire measurement techniques were used to measure three Reynolds stresses and four triple-velocity correlations. In addition, surface pressure and skin friction coefficients were measured. All hot-wire measurements were acquired in a measuring domain which excluded recirculating flow region due to the directional insensitivity of hot-wires. The downstream extent of the domain from the step was 51 h for the largest and I 14h for the smallest step height. This significant downstream length permitted extensive study of the flow recovery. Prediction of perturbed flows and their recovery is particularly attractive for popular turbulence models since variations of turbulence length and time scales and flow interactions in different regions are generally inadequately predicted. The data indicate that the flow in the free shear layer region behaves like the plane mixing layer up to about 2/3 of the mean reattachment length when the flow interaction with the wall commences the flow recovery to that of an ordinary turbulent boundary layer structure. These changes of the flow do not occur abruptly with the change of boundary conditions. A reattachment region represents a transitional region where the flow undergoes the most dramatic adjustments to the new boundary conditions. Large eddies, created in the upstream free-shear layer region, are being torn, recirculated, reentrained back into the main stream interacting with the incoming flow structure. It is foreseeable that it is quite difficult to describe the physics of this region in a rational and quantitative manner other than statistical. Downstream of the reattachment point the flow recovers at different rates near the wall, in the newly developing internal boundary layer, and in the outer part of the flow. It appears that Reynolds stresses do not fully recover up to the longest recovery length of 114 h.

  18. Nonlinear instability and convection in a vertically vibrated granular bed

    NASA Astrophysics Data System (ADS)

    Shukla, Priyanka; Ansari, I. H.; van der Meer, D.; Lohse, Detlef; Alam, Meheboob

    2015-11-01

    The nonlinear instability of the density-inverted granular Leidenfrost state and the resulting convective motion in strongly shaken granular matter are analysed via a weakly nonlinear analysis. Under a quasi-steady ansatz, the base state temperature decreases with increasing height away from from the vibrating plate, but the density profile consists of three distinct regions: (i) a collisional dilute layer at the bottom, (ii) a levitated dense layer at some intermediate height and (iii) a ballistic dilute layer at the top of the granular bed. For the nonlinear stability analysis, the nonlinearities up-to cubic order in perturbation amplitude are retained, leading to the Landau equation. The genesis of granular convection is shown to be tied to a supercritical pitchfork bifurcation from the Leidenfrost state. Near the bifurcation point the equilibrium amplitude is found to follow a square-root scaling law, Ae √{ ▵} , with the distance ▵ from bifurcation point. The strength of convection is maximal at some intermediate value of the shaking strength, with weaker convection both at weaker and stronger shaking. Our theory predicts a novel floating-convection state at very strong shaking.

  19. Nanoscale pillar arrays for separations

    DOE PAGES

    Kirchner, Teresa; Strickhouser, Rachel; Hatab, Nahla; ...

    2015-04-01

    The work presented herein evaluates silicon nano-pillar arrays for use in planar chromatography. Electron beam lithography and metal thermal dewetting protocols were used to create nano-thin layer chromatography platforms. With these fabrication methods we are able to reduce the size of the characteristic features in a separation medium below that used in ultra-thin layer chromatography; i.e. pillar heights are 1-2μm and pillar diameters are typically in the 200- 400nm range. In addition to the intrinsic nanoscale aspects of the systems, it is shown they can be further functionalized with nanoporous layers and traditional stationary phases for chromatography; hence exhibit broad-rangingmore » lab-on-a-chip and point-of-care potential. Because of an inherent high permeability and very small effective mass transfer distance between pillars, chromatographic efficiency can be very high but is enhanced herein by stacking during development and focusing while drying, yielding plate heights in the nm range separated band volumes. Practical separations of fluorescent dyes, fluorescently derivatized amines, and anti-tumor drugs are illustrated.« less

  20. Ground level air convection produces frost damage patterns in turfgrass

    NASA Astrophysics Data System (ADS)

    Ackerson, Bruce J.; Beier, Richard A.; Martin, Dennis L.

    2015-11-01

    Frost injury patterns are commonly observed on the warm-season turfgrass species bermudagrass ( Cynodon species Rich.), zoysiagrass ( Zoysia species Willd.), and buffalograss [ Bouteloua dactyloides (Nutt.) J.T. Columbus] in cool-temperate and subtropical zones. Qualitative observations of these injury patterns are presented and discussed. A model for the formation of such patterns based on thermal instability and convection of air is presented. The characteristic length scale of the observed frost pattern injury requires a temperature profile that decreases with height from the soil to the turfgrass canopy surface followed by an increase in temperature with height above the turfgrass canopy. This is justified by extending the earth temperature theory to include a turf layer with atmosphere above it. Then the theory for a thermally unstable layer beneath a stable region by Ogura and Kondo is adapted to a turf layer to include different parameter values for pure air, as well as for turf, which is treated as a porous medium. The earlier porous medium model of Thompson and Daniels proposed to explain frost injury patterns is modified to give reasonable agreement with observed patterns.

  1. Ground level air convection produces frost damage patterns in turfgrass.

    PubMed

    Ackerson, Bruce J; Beier, Richard A; Martin, Dennis L

    2015-11-01

    Frost injury patterns are commonly observed on the warm-season turfgrass species bermudagrass (Cynodon species Rich.), zoysiagrass (Zoysia species Willd.), and buffalograss [Bouteloua dactyloides (Nutt.) J.T. Columbus] in cool-temperate and subtropical zones. Qualitative observations of these injury patterns are presented and discussed. A model for the formation of such patterns based on thermal instability and convection of air is presented. The characteristic length scale of the observed frost pattern injury requires a temperature profile that decreases with height from the soil to the turfgrass canopy surface followed by an increase in temperature with height above the turfgrass canopy. This is justified by extending the earth temperature theory to include a turf layer with atmosphere above it. Then the theory for a thermally unstable layer beneath a stable region by Ogura and Kondo is adapted to a turf layer to include different parameter values for pure air, as well as for turf, which is treated as a porous medium. The earlier porous medium model of Thompson and Daniels proposed to explain frost injury patterns is modified to give reasonable agreement with observed patterns.

  2. High aerosol load over the Pearl River Delta, China, observed with Raman lidar and Sun photometer

    NASA Astrophysics Data System (ADS)

    Ansmann, Albert; Engelmann, Ronny; Althausen, Dietrich; Wandinger, Ulla; Hu, Min; Zhang, Yuanghang; He, Qianshan

    2005-07-01

    Height-resolved data of the particle optical properties, the vertical extend of the haze layer, aerosol stratification, and the diurnal cycle of vertical mixing over the Pearl River Delta in southern China are presented. The observations were performed with Raman lidar and Sun photometer at Xinken (22.6°N, 113.6°E) near the south coast of China throughout October 2004. The lidar run almost full time on 21 days. Sun photometer data were taken on 23 days, from about 0800 to 1700 local time. The particle optical depth (at about 533-nm wavelength) ranged from 0.3-1.7 and was, on average, 0.92. Ångström exponents varied from 0.65-1.35 (for wavelengths 380 to 502 nm) and from 0.75-1.6 (for 502 to 1044 nm), mean values were 0.97 and 1.22. The haze-layer mean extinction-to-backscatter ratio ranged from 35-59 sr, and was, on average, 46.7 sr. The top of the haze layer reached to heights of 1.5-3 km in most cases.

  3. Interpreting Lidar Measurements to Better Estimate Surface PM2.S in Study Regions of DISCOVER-AQ

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Ferrare, Richard; Welton, Judd; Hostetler, Chris; Hair, John; Szykman, James; Al-Saadi, Jay; Tsai, Tzuchin

    2011-01-01

    The use of satellite AOD data to estimate surface PM2.5 has been broadly studied in various regions. Some showed good results while some showed relatively poor with the simple relationship between AOD and PM2.5. The key factor is the aerosol vertical distribution. Lidar extinction profiles provide insights into the aerosol mixing not only in the boundary layer but also quantifying residual aerosol abundance above boundary layer with e-folding scale height. The normalizing AOD by hazy layer height is proven better in correlating with PM2.5. In other words, extinction measurements near the surface can be a proxy for surface PM2.5. In this study, we will use NASA airborne HSRL (High Spectral Resolution Lidar) during SJV2007 (San Joaquin Valley, February 2007) and surface MPLNet (Micropulse Lidar Network) at GSFC between 2007 and 2010 to characterize the relationship for the DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality) field experiments; the first over Baltimore-Washington was conducted in July 2011.

  4. Vertical axis wind turbine wake in boundary layer flow in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Rolin, Vincent; Porté-Agel, Fernando

    2016-04-01

    A vertical axis wind turbine is placed in a boundary layer flow in a wind tunnel, and its wake is investigated. Measurements are performed using an x-wire to measure two components of velocity and turbulence statistics in the wake of the wind turbine. The study is performed at various heights and crosswind positions in order to investigate the full volume of the wake for a range of tip speed ratios. The velocity deficit and levels of turbulence in the wake are related to the performance of the turbine. The asymmetric incoming boundary layer flow causes the rate of recovery in the wake to change as a function of height. Higher shear between the wake and unperturbed flow occurs at the top edge of the wake, inducing stronger turbulence and mixing in this region. The difference in flow relative to the blades causes the velocity deficit and turbulence level to change as a function of crosswind position behind the rotor. The relative difference diminishes with increasing tip speed ratio. Therefore, the wake becomes more homogeneous as tip speed ratio increases.

  5. Numerical study on xenon positive column discharges of mercury-free lamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Jiting; He, Feng; Miao, Jinsong

    2007-02-15

    In this paper, the numerical study has been performed on the xenon positive column discharges of mercury-free fluorescent lamp. The plasma discharge characteristics are analyzed by numerical simulation based on two-dimensional fluid model. The effects of cell geometry, such as the dielectric layer, the electrode width, the electrode gap, and the cell height, and the filling gas including the pressure and the xenon percentage are investigated in terms of discharge current and discharge efficiency. The results show that a long transient positive column will form in the xenon lamp when applying ac sinusoidal power and the lamp can operate inmore » a large range of voltage and frequency. The front dielectric layer of the cell plays an important role in the xenon lamp while the back layer has little effect. The ratio of electrode gap to cell height should be large to achieve a long positive column xenon lamp and higher efficiency. Increase of pressure or xenon concentration results in an increase of discharge efficiency and voltage. The discussions will be helpful for the design of commercial xenon lamp cells.« less

  6. On the Time Scale of Nocturnal Boundary Layer Cooling in Valleys and Basins and over Plains

    NASA Astrophysics Data System (ADS)

    de Wekker, Stephan F. J.; Whiteman, C. David

    2006-06-01

    Sequences of vertical temperature soundings over flat plains and in a variety of valleys and basins of different sizes and shapes were used to determine cooling-time-scale characteristics in the nocturnal stable boundary layer under clear, undisturbed weather conditions. An exponential function predicts the cumulative boundary layer cooling well. The fitting parameter or time constant in the exponential function characterizes the cooling of the valley atmosphere and is equal to the time required for the cumulative cooling to attain 63.2% of its total nighttime value. The exponential fit finds time constants varying between 3 and 8 h. Calculated time constants are smallest in basins, are largest over plains, and are intermediate in valleys. Time constants were also calculated from air temperature measurements made at various heights on the sidewalls of a small basin. The variation with height of the time constant exhibited a characteristic parabolic shape in which the smallest time constants occurred near the basin floor and on the upper sidewalls of the basin where cooling was governed by cold-air drainage and radiative heat loss, respectively.

  7. [Analysis of pigments from Rhodotorula glutinis by Raman spectroscopy and thin layer chromatography].

    PubMed

    Yuan, Yu-feng; Tao, Zhan-hua; Wang, Xue; Li, Yong-qing; Liu, Jun-xian

    2012-03-01

    The pigments from Rhodotorula glutinis were separated by using thin layer chromatography, and the result showed that Rhodotorula glutinis cells could synthesize at least three kinds of pigments, which were beta-carotene, torulene, and torularhodin. The Raman spectra based on the three pigments were acquired, and original spectra were preprocessed by background elimination, baseline correction, and three-point-smoothing, then the averaged spectra from different pigments were investigated, and the result indicated that Raman shift which represents C-C bond was different, and the wave number of beta-carotene demonstrated the largest deviation, finally torulene and torularhodin in Rhodotorula glutinis had more content than beta-carotene. Quantitative analysis of Raman peak height ratio revealed that peak height ratio of pigments showed little difference, which could be used as parameters for further research on living cells, providing reference content of pigments. The above results suggest that Raman spectroscopy combined with thin layer chromatography can be applied to analyze pigments from Rhodotorula glutinis, provides abundant information about pigments, and serves as an effective method to study pigments.

  8. A Patchy Growth via Successive and Simultaneous Cambia: Key to Success of the Most Widespread Mangrove Species Avicennia marina?

    PubMed Central

    Schmitz, Nele; Robert, Elisabeth M. R.; Verheyden, Anouk; Kairo, James Gitundu; Beeckman, Hans; Koedam, Nico

    2008-01-01

    Background and Aims Secondary growth via successive cambia has been intriguing researchers for decades. Insight into the mechanism of growth layer formation is, however, limited to the cellular level. The present study aims to clarify secondary growth via successive cambia in the mangrove species Avicennia marina on a macroscopic level, addressing the formation of the growth layer network as a whole. In addition, previously suggested effects of salinity on growth layer formation were reconsidered. Methods A 1-year cambial marking experiment was performed on 80 trees from eight sites in two mangrove forests in Kenya. Environmental (soil water salinity and nutrients, soil texture, inundation frequency) and tree characteristics (diameter, height, leaf area index) were recorded for each site. Both groups of variables were analysed in relation to annual number of growth layers, annual radial increment and average growth layer width of stem discs. Key Results Between trees of the same site, the number of growth layers formed during the 1-year study period varied from only part of a growth layer up to four growth layers, and was highly correlated to the corresponding radial increment (0–5 mm year–1), even along the different sides of asymmetric stem discs. The radial increment was unrelated to salinity, but the growth layer width decreased with increasing salinity and decreasing tree height. Conclusions A patchy growth mechanism was proposed, with an optimal growth at distinct moments in time at different positions around the stem circumference. This strategy creates the opportunity to form several growth layers simultaneously, as observed in 14 % of the studied trees, which may optimize tree growth under favourable conditions. Strong evidence was provided for a mainly endogenous trigger controlling cambium differentiation, with an additional influence of current environmental conditions in a trade-off between hydraulic efficiency and mechanical stability. PMID:18006508

  9. Satellite-derived temperature data for monitoring water status in a floodplain forest of the Upper Sabine River, Texas

    USGS Publications Warehouse

    Lemon, Mary Grace T.; Allen, Scott T.; Edwards, Brandon L.; King, Sammy L.; Keim, Richard F.

    2016-01-01

    Decreased water availability due to hydrologic modifications, groundwater withdrawal, and climate change threaten bottomland hardwood (BLH) forest communities. We used satellite-derived (MODIS) land-surface temperature (LST) data to investigate spatial heterogeneity of canopy temperature (an indicator of plant-water status) in a floodplain forest of the upper Sabine River for 2008–2014. High LST pixels were generally further from the river and at higher topographic locations, indicating lower water-availability. Increasing rainfall-derived soil moisture corresponded with decreased heterogeneity of LST between pixels but there was weaker association between Sabine River stage and heterogeneity. Stronger dependence of LST convergence on rainfall rather than river flow suggests that some regions are less hydrologically connected to the river, and vegetation may rely on local precipitation and other contributions to the riparian aquifer to replenish soil moisture. Observed LST variations associated with hydrology encourage further investigation of the utility of this approach for monitoring forest stress, especially with considerations of climate change and continued river management.

  10. Code Description for Generation of Meteorological Height and Pressure Level and Layer Profiles

    DTIC Science & Technology

    2016-06-01

    defined by user input height or pressure levels. It can process input profiles from sensing systems such as radiosonde, lidar, or wind profiling radar...nearly the same way, but the split between wind and temperature/humidity (TH) special levels leads to some changes to one other routine. If changes are...top of the sounding, sometimes the moisture, the thermal, both thermal and moisture, and/or the wind data are missing. Missing data items in the

  11. NGEE Arctic Plant Traits: Shrub Transects, Kougarok Road Mile Marker 64, Seward Peninsula, Alaska, 2016

    DOE Data Explorer

    Verity Salmon; Colleen Iversen; Peter Thornton; Ma

    2017-03-01

    Transect data is from point center quarter surveys for shrub density performed in July 2016 at the Kougarok hill slope located at Kougarok Road, Mile Marker 64. For each sample point along the transects, moving averages for shrub density and shrub basal area are provided along with GPS coordinates, average shrub height and active layer depth. The individual height, basal area, and species of surveyed shrubs are also included. Data upload will be completed January 2017.

  12. Shingle system

    DOEpatents

    Dinwoodie, Thomas L [Piedmont, CA

    2008-02-12

    A barrier, such as a PV module, is secured to a base by a support to create a shingle assembly with a venting region defined between the barrier and base for temperature regulation. Water resistant junctions may be formed between the bases of adjacent shingle assemblies of an array of shingle assemblies. The base may include an insulation layer underlying a water barrier. The base may also include a waterproofing element; the width and height of the barrier may be shorter than the width and height of the waterproofing element.

  13. Correction of localized shape errors on optical surfaces by altering the localized density of surface or near-surface layers

    DOEpatents

    Taylor, John S.; Folta, James A.; Montcalm, Claude

    2005-01-18

    Figure errors are corrected on optical or other precision surfaces by changing the local density of material in a zone at or near the surface. Optical surface height is correlated with the localized density of the material within the same region. A change in the height of the optical surface can then be caused by a change in the localized density of the material at or near the surface.

  14. Estimating canopy bulk density and canopy base height for conifer stands in the interior Western United States using the Forest Vegetation Simulator Fire and Fuels Extension.

    Treesearch

    Seth Ex; Frederick Smith; Tara Keyser; Stephanie Rebain

    2017-01-01

    The Forest Vegetation Simulator Fire and Fuels Extension (FFE-FVS) is often used to estimate canopy bulk density (CBD) and canopy base height (CBH), which are key indicators of crown fire hazard for conifer stands in the Western United States. Estimated CBD from FFE-FVS is calculated as the maximum 4 m running mean bulk density of predefined 0.3 m thick canopy layers (...

  15. Ground Cloud Dispersion Measurements During the Titan IV Mission A-18 (23 October 1997) at Vandenberg Air Force Base

    DTIC Science & Technology

    1999-02-20

    958.88 BASE= 0.00 SECOND SELECTED LAYER HEIGHT- (METERS) TOP = 3008.96 BASE= 958.88 SIGMAR (AZ) AT THE SURFACE (DEGREES) 5.7504 SIGMER(EL) AT THE SURFACE... SIGMAR (AZ) AT THE SURFACE (DEGREES) 5.7504 SIGMER(EL) AT THE SURFACE (DEGREES) 1.0344 MET. WIND WIND LAYER WIND SPEED WIND DIRECTION SIGMA OF SIGMA OF NO

  16. Computational analysis of semi-span model test techniques

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II; Chokani, Ndaona

    1996-01-01

    A computational investigation was conducted to support the development of a semi-span model test capability in the NASA LaRC's National Transonic Facility. This capability is required for the testing of high-lift systems at flight Reynolds numbers. A three-dimensional Navier-Stokes solver was used to compute the low-speed flow over both a full-span configuration and a semi-span configuration. The computational results were found to be in good agreement with the experimental data. The computational results indicate that the stand-off height has a strong influence on the flow over a semi-span model. The semi-span model adequately replicates the aerodynamic characteristics of the full-span configuration when a small stand-off height, approximately twice the tunnel empty sidewall boundary layer displacement thickness, is used. Several active sidewall boundary layer control techniques were examined including: upstream blowing, local jet blowing, and sidewall suction. Both upstream tangential blowing, and sidewall suction were found to minimize the separation of the sidewall boundary layer ahead of the semi-span model. The required mass flow rates are found to be practicable for testing in the NTF. For the configuration examined, the active sidewall boundary layer control techniques were found to be necessary only near the maximum lift conditions.

  17. Molecular Dynamics Simulations of Poly(ethylene oxide) Grafted onto Silica Immersed in Melt of Homopolymers.

    PubMed

    Benková, Zuzana; Cordeiro, M Natália D S

    2015-09-22

    Tuning of surface properties plays an important role in applications ranging from material engineering to biomedicine/chemistry. The interactions of chains grafted to a solid support and exposed to a matrix of chemically identical chains represent an intriguing issue. In this work, the behavior of poly(ethylene oxide) (PEO) chains grafted irreversibly onto an amorphous silica and immersed in the matrix of free PEO chains of different polymerization degree is studied using molecular dynamics simulations. The density distributions of grafted and free PEO chains, the height of the grafted layer, overlap parameters, and orientation order parameters depend not only on the grafting density but also on the length of free chains which confirm the entropic nature of the interactions between the grafted and free chains. In order to achieve a complete expulsion of the free chains from the grafted layer, a grafting density as high as 3.5 nm(-2) is necessary. Free PEO chains of 9 monomers leave the grafted layer at lower grafting densities than the longer PEO chains of 18 monomers in contrast with the theoretical predictions. The height of the grafted layer evolves with the grafting density in the presence of free chains in qualitative agreement with the theoretical phase diagram.

  18. A solar escalator on Mars: Self-lifting of dust layers by radiative heating

    NASA Astrophysics Data System (ADS)

    Daerden, F.; Whiteway, J. A.; Neary, L.; Komguem, L.; Lemmon, M. T.; Heavens, N. G.; Cantor, B. A.; Hébrard, E.; Smith, M. D.

    2015-09-01

    Dust layers detected in the atmosphere of Mars by the light detection and ranging (LIDAR) instrument on the Phoenix Mars mission are explained using an atmospheric general circulation model. The layers were traced back to observed dust storm activity near the edge of the north polar ice cap where simulated surface winds exceeded the threshold for dust lifting by saltation. Heating of the atmospheric dust by solar radiation caused buoyant instability and mixing across the top of the planetary boundary layer (PBL). Differential advection by wind shear created detached dust layers above the PBL that ascended due to radiative heating and arrived at the Phoenix site at heights corresponding to the LIDAR observations. The self-lifting of the dust layers is similar to the "solar escalator" mechanism for aerosol layers in the Earth's stratosphere.

  19. Clean Air Slots Amid Atmospheric Pollution

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2002-01-01

    Layering in the Earth's atmosphere is most commonly seen where parts of the atmosphere resist the incursion of air parcels from above and below - for example, when there is an increase in temperature with height over a particular altitude range. Pollutants tend to accumulate underneath the resulting stable layers. which is why visibility often increases markedly above certain altitudes. Here we describe the occurrence of an opposite effect, in which stable layers generate a layer of remarkably clean air (we refer to these layers as clean-air 'slots') sandwiched between layers of polluted air. We have observed clean-air slots in various locations around the world, but they are particularly well defined and prevalent in southern Africa during the dry season August-September). This is because at this time in this region, stable layers are common and pollution from biomass burning is widespread.

  20. Influence of the foundation layer on the layer-by-layer assembly of poly-L-lysine and poly(styrenesulfonate) and its usage in the fabrication of 3D microscale features.

    PubMed

    Zhou, Dejian; Bruckbauer, Andreas; Batchelor, Matthew; Kang, Dae-Joon; Abell, Chris; Klenerman, David

    2004-10-12

    The layer-by-layer (LBL) assembly of a polypeptide, poly-L-lysine (PLL), with poly(styrenesulfonate) sodium salt (PSS) on flat template-stripped gold (TSG) surfaces precoated with a self-assembled monolayer of alkanethiols terminated with positive (pyridinium), negative (carboxylic acid), and neutral [hexa(ethylene glycol)] groups is investigated. Both the topography and the rate of film thickness growth are found to be strongly dependent on the initial surface foundation layer. LBL assembly of PLL and PSS on patterned TSG surfaces produced by micro contact printing leads to structurally distinct microscale features, including pillars, ridges, and wells, whose height can be controlled with nanometer precision. Copyright 2004 American Chemical Society

  1. Frequency and morphology of tropical tropopause layer cirrus from CALIPSO observations: Are isolated cirrus different from those connected to deep convection?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riihimaki, Laura D.; McFarlane, Sally A.

    2010-09-16

    Tropical Tropopause Layer cirrus (TTLC) profiles identified from CALIPSO LIDAR measurements are grouped into cloud objects and classified according to whether or not they are connected to deep convection. TTLC objects connected to deep convection are optically and physically thicker than isolated objects, consistent with what would be expected if connected objects were formed from convective detrainment and isolated objects formed in situ. In the tropics (±20 Latitude), 36% of TTLC profiles are classified as connected to deep convection, 43% as isolated, and the remaining 21% are part of lower, thicker cirrus clouds. Regions with higher occurence of deep convectionmore » also have higher occurrence of TTLC, and a greater percentage of those TTLC are connected to deep convection. Cloud top heights of both isolated and connected clouds are distributed similarly with respect to the height of the cold point tropopause. No difference in thickness or optical depth was found between TTLC above deep convection or above clear sky, though both cloud base and top heights are higher over deep convection than over clear sky.« less

  2. Investigation of the height dependency of optical turbulence in the surface layer over False Bay (South Africa)

    NASA Astrophysics Data System (ADS)

    Sprung, Detlev; van Eijk, Alexander M. J.; Günter, Willie; Griffith, Derek; Eisele, Christian; Sucher, Erik; Seiffer, Dirk; Stein, Karin

    2017-09-01

    Atmospheric turbulence impacts on the propagation of electro-optical radiation. Typical manifestations of optical turbulence are scintillation (intensity fluctuations), beam wander and (for laser systems) reduction of beam quality. For longer propagation channels, it is important to characterize the vertical and horizontal distribution (inhomogeneity) of the optical turbulence. In the framework of the First European South African Transmission ExpeRiment (FESTER) optical turbulence was measured between June 2015 and February 2016 over a 1.8 km over-water link over False Bay. The link ran from the Institute of Maritime Technology (IMT) at Simons Town to the lighthouse at Roman Rock Island. Three Boundary layer scintillometers (BLS900) allowed assessing the vertical distribution of optical turbulence at three different heights between 5 and 12 m above the water surface. The expected decrease with Cn2 with height is not always found. These results are analyzed in terms of the meteorological scenario, and a comparison is made with a fourth optical link providing optical turbulence data over a 8.69 km path from IMT to St. James, roughly perpendicular to the three 1.8 km paths.

  3. The effect of acoustically levitated objects on the dynamics of ultrasonic actuators

    NASA Astrophysics Data System (ADS)

    Ilssar, D.; Bucher, I.

    2017-03-01

    This paper presents a comprehensive model, coupling a piezoelectric actuator operating at ultrasonic frequencies to a near-field acoustically levitated object through a compressible thin layer of gas such that the combined dynamic response of the system can be predicted. The latter is derived by introducing a simplified model of the nonlinear squeezed layer of gas and a variational model of the solid structure and the piezoelectric elements. Since the harmonic forces applied by the entrapped fluid depend on the levitated object's height and vertical motion, the latter affects the impedance of the driving surface, affecting the natural frequencies, damping ratios, and amplification of the actuator. Thus, the developed model is helpful when devising a resonance tracking algorithm aimed to excite a near-field acoustic levitation based apparatus optimally. Validation of the suggested model was carried out using a focused experimental setup geared to eliminate the effects that were already verified in the past. In agreement with the model, the experimental results showed that the natural frequency and damping ratio of a designated mode decrease monotonically with the levitated object's average height, whereas the amplification of the mode increases with the levitation height.

  4. Edge-induced Schottky barrier modulation at metal contacts to exfoliated molybdenum disulfide flakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nouchi, Ryo, E-mail: r-nouchi@21c.osakafu-u.ac.jp

    2016-08-14

    Ultrathin two-dimensional semiconductors obtained from layered transition-metal dichalcogenides such as molybdenum disulfide (MoS{sub 2}) are promising for ultimately scaled transistors beyond Si. Although the shortening of the semiconductor channel is widely studied, the narrowing of the channel, which should also be important for scaling down the transistor, has been examined to a lesser degree thus far. In this study, the impact of narrowing on mechanically exfoliated MoS{sub 2} flakes was investigated according to the channel-width-dependent Schottky barrier heights at Cr/Au contacts. Narrower channels were found to possess a higher Schottky barrier height, which is ascribed to the edge-induced band bendingmore » in MoS{sub 2}. The higher barrier heights degrade the transistor performance as a higher electrode-contact resistance. Theoretical analyses based on Poisson's equation showed that the edge-induced effect can be alleviated by a high dopant impurity concentration, but this strategy should be limited to channel widths of roughly 0.7 μm because of the impurity-induced charge-carrier mobility degradation. Therefore, proper termination of the dangling bonds at the edges should be necessary for aggressive scaling with layered semiconductors.« less

  5. Saltstone SDU6 Modeling Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Si Y.; Hyun, Sinjae

    2013-01-10

    A new disposal unit, designated as Saltstone Disposal Unit 6 (SDU6), is being designed for support of site accelerated closure goals and salt waste projections identified in the new Liquid Waste System Plan. The unit is a cylindrical disposal cell of 375 ft in diameter and 43 ft in height, and it has a minimum 30 million gallons of capacity. SRNL was requested to evaluate the impact of an increased grout placement height on the flow patterns radially spread on the floor and to determine whether grout quality is impacted by the height. The primary goals of the work aremore » to develop the baseline Computational Fluid Dynamics (CFD) model and to perform the evaluations for the flow patterns of grout material in SDU6 as a function of elevation of grout discharge port and grout rheology. Two transient grout models have been developed by taking a three-dimensional multiphase CFD approach to estimate the domain size of the grout materials radially spread on the facility floor and to perform the sensitivity analysis with respect to the baseline design and operating conditions such as elevation height of the discharge port and fresh grout properties. For the CFD modeling calculations, air-grout Volume of Fluid (VOF) method combined with Bingham plastic and time-dependent grout models were used for examining the impact of fluid spread performance for the initial baseline configurations and to evaluate the impact of grout pouring height on grout quality. The grout quality was estimated in terms of the air volume fraction for the grout layer formed on the SDU6 floor, resulting in the change of grout density. The study results should be considered as preliminary scoping analyses since benchmarking analysis is not included in this task scope. Transient analyses with the Bingham plastic model were performed with the FLUENTTM code on the high performance parallel computing platform in SRNL. The analysis coupled with a transient grout aging model was performed by using ANSYS-CFX code in the parallel computing platform in Mercer University. Recommended operational guidance was developed assuming that local shear rates and flow patterns related to radial spread along the SDU floor can be used as a measure of grout performance and spatial dispersion affected by the grout height and viscosity. The 5 ft height baseline results show that when the 150 gpm grout flow with a 5 Pa yield stress and a 60 cp viscosity is poured down through a 3 inch discharge port, the grout is spread radially up to about 64 ft distance from the pouring center after 2 hours' pouring time. The air volume fraction of the grout layer is about 29% at 5 minutes' transient time, and it is reduced by about 9% in 2 hours' pouring time, resulting in the grout density consisting of about 80% grout and 20% air volume fractions. The sensitivity results show that when the discharge port is located at a higher position, a larger amount of air is trapped inside the layer formed below the discharge port at the early transient time of less than 30 minutes because of the higher impinging momentum of the grout flow on the floor, resulting in the formation of less smooth layer. The results clearly indicate that the radial spread for the 43 ft discharge port is about 10% faster than that of the 5 ft discharge port for the early transient period of 5 minutes. However, for the pouring time longer than half an hour, the discharge port height does not affect the radial distance spread on the disposal floor. When grout quality is related to grout volume fraction, the grout volume fraction for the 43 ft discharge port has lower volume fraction than the 5 ft discharge port for the transient period of the first 5 minutes. However, for the pouring time longer than half an hour, the discharge port height does not affect the grout volume fraction for the layer accumulated on the disposal floor. A modified Bingham plastic model coupled with time-dependent viscosity behavior was developed for conducting the initial scoping calculations to assess the impact of fluid residence time on radial spreading and basic flow patterns. The results for the transient viscosity model show that when grout material becomes more viscous, the thickness of the grout layer accumulated on the floor becomes higher, but the radial distance spread on the horizontal floor becomes smaller. The early transient results for the grout density with about 32% air volume fractions are in reasonable agreement with those of the idealized Bingham plastic model. It is recommended that the current models developed here be benchmarked against the experimental results for critical applications of the modeling results.« less

  6. The Damage To The Armour Layer Due To Extreme Waves

    NASA Astrophysics Data System (ADS)

    Oztunali Ozbahceci, Berguzar; Ergin, Aysen; Takayama, Tomotsuka

    2010-05-01

    The sea waves are not regular but random and chaotic. In order to understand this randomness, it is common to make individual wave analysis in time domain or spectral analysis in frequency domain. Characteristic wave heights like Hmax, H%2,H1-10, H1-3, Hmean are obtained through individual wave analysis in time domain. These characteristic wave heights are important because they are used in the design of different type of coastal structures. It is common to use significant wave height, H1-3,for the design of rubble mound structures. Therefore, only spectrally derived or zero-crossing significant wave height is usually reported for the rubble mound breakwaters without any information on larger waves. However, even the values of H1-3are similar; some train of irregular waves may exhibit a large fluctuation of instantaneous wave energy, while another train may not show such a fluctuation (Goda, 1998). Moreover, freak or rogue wave, simply defined as the wave exceeding at least twice the significant wave height may also occur. Those larger waves were called as extreme waves in this study and the effect of extreme waves on the damage to the armour layer of rubble mound breakwaters was investigated by means of hydraulic model experiment. Rock armored rubble mound breakwater model with 1:1.5 slope was constructed in the wave channel of Hydraulics Laboratory of the Disaster Prevention Research Institute of Kyoto University, Japan. The model was consisted of a permeable core layer, a filter and armour layer with two stones thicknesses. Size of stones were same for both of the slopes as Dn50(armour)=0.034m, Dn50(filter)=0.021m and Dn50(core)=0.0148m for armour, filter and core layers, respectively. Time series which are approximately equal to 1000 waves, with similar significant wave height but different extreme wave height cases were generated. In order to generate necessary time series in the wave channel, they were firstly computed by numerically. For the numerical computation of wave time series, Deterministic Spectral Amplitude (DSA) model with FFT algorithm was used. It is possible to get thousands of time series which have different wave statistics in DSA model by setting up the target spectrum and using random numbers for phase angles (Tuah et.al. 1982). Multi-reflection in the wave channel was minimized by the absorption mode of wave generator. Incident wave energy spectrum was obtained by using the separation method introduced by Goda and Suzuki (1976). Three wave gauges in front of the model were used for the separation. Individual wave heights were determined by zero-up crossing method after obtaining incident wave train. After each test, damage of the breakwater was calculated. Van der Meer's (1988) definition of damage level, S, was used in the calculations as: S= Ae/Dn502 (1) where; Ae= Eroded area, Dn50: nominal diameter of armour stone In order to get eroded area, the profile of armour layer was measured by laser equipment through nine lines along the section. Results of the experiments indicate that the higher the extreme waves are, the more destructive the wave train is, even the data is scattered. The damage was also calculated by using Van der Meer's formulae (1988) and compared with the experimental results. The comparison shows that the damages are more than the expected results in the cases where at least one wave height in the train is higher than the twice of H1-3. In fact, the damage results calculated by Van der Meer's formulae form the lower boundary for the higher extreme wave cases. It is also found that the damage is highly correlated to the ratios of characteristic waves like H1-10/H1-3 or H1-20/H1-3. Therefore, the parameter αextreme covering the effect of all extreme waves is proposed. References Goda, Y. and Suzuki, Y. (1976) .' Estimation of Incident and Reflected Waves in Random wave experiments.' Proc. 15th. Int. Conf. Coastal Engg., Hawai,1976, pp.828-845. Goda Y. (1998), 'An Overview of Coastal Engineering With Emphasis On Random Wave Approach', Coastal Engineering Journal, vol.40, No:1, pp. 1-21, World Scientific Pub. and JSCE Tuah, H, Hudspeth, RT (1982).'Comparisons of Numerical Random Sea Simulations,' Jour. Waterway, Port, Coastal and Ocean Engineering, Vol. 108, pp 569-584. Van der Meer, J.W,(1988). Rock Slopes and gravel beaches under wave attack. Ph.D thesis, Netherland.

  7. Standing adult human phantoms based on 10th, 50th and 90th mass and height percentiles of male and female Caucasian populations

    NASA Astrophysics Data System (ADS)

    Cassola, V. F.; Milian, F. M.; Kramer, R.; de Oliveira Lira, C. A. B.; Khoury, H. J.

    2011-07-01

    Computational anthropomorphic human phantoms are useful tools developed for the calculation of absorbed or equivalent dose to radiosensitive organs and tissues of the human body. The problem is, however, that, strictly speaking, the results can be applied only to a person who has the same anatomy as the phantom, while for a person with different body mass and/or standing height the data could be wrong. In order to improve this situation for many areas in radiological protection, this study developed 18 anthropometric standing adult human phantoms, nine models per gender, as a function of the 10th, 50th and 90th mass and height percentiles of Caucasian populations. The anthropometric target parameters for body mass, standing height and other body measures were extracted from PeopleSize, a well-known software package used in the area of ergonomics. The phantoms were developed based on the assumption of a constant body-mass index for a given mass percentile and for different heights. For a given height, increase or decrease of body mass was considered to reflect mainly the change of subcutaneous adipose tissue mass, i.e. that organ masses were not changed. Organ mass scaling as a function of height was based on information extracted from autopsy data. The methods used here were compared with those used in other studies, anatomically as well as dosimetrically. For external exposure, the results show that equivalent dose decreases with increasing body mass for organs and tissues located below the subcutaneous adipose tissue layer, such as liver, colon, stomach, etc, while for organs located at the surface, such as breasts, testes and skin, the equivalent dose increases or remains constant with increasing body mass due to weak attenuation and more scatter radiation caused by the increasing adipose tissue mass. Changes of standing height have little influence on the equivalent dose to organs and tissues from external exposure. Specific absorbed fractions (SAFs) have also been calculated with the 18 anthropometric phantoms. The results show that SAFs decrease with increasing height and increase with increasing body mass. The calculated data suggest that changes of the body mass may have a significant effect on equivalent doses, primarily for external exposure to organs and tissue located below the adipose tissue layer, while for superficial organs, for changes of height and for internal exposures the effects on equivalent dose are small to moderate.

  8. Embedded cluster metal-polymeric micro interface and process for producing the same

    DOEpatents

    Menezes, Marlon E.; Birnbaum, Howard K.; Robertson, Ian M.

    2002-01-29

    A micro interface between a polymeric layer and a metal layer includes isolated clusters of metal partially embedded in the polymeric layer. The exposed portion of the clusters is smaller than embedded portions, so that a cross section, taken parallel to the interface, of an exposed portion of an individual cluster is smaller than a cross section, taken parallel to the interface, of an embedded portion of the individual cluster. At least half, but not all of the height of a preferred spherical cluster is embedded. The metal layer is completed by a continuous layer of metal bonded to the exposed portions of the discontinuous clusters. The micro interface is formed by heating a polymeric layer to a temperature, near its glass transition temperature, sufficient to allow penetration of the layer by metal clusters, after isolated clusters have been deposited on the layer at lower temperatures. The layer is recooled after embedding, and a continuous metal layer is deposited upon the polymeric layer to bond with the discontinuous metal clusters.

  9. Highly uniform residual layers for arrays of 3D nanoimprinted cavities in Fabry-Pérot-filter-array-based nanospectrometers

    NASA Astrophysics Data System (ADS)

    Memon, Imran; Shen, Yannan; Khan, Abdullah; Woidt, Carsten; Hillmer, Hartmut

    2016-04-01

    Miniaturized optical spectrometers can be implemented by an array of Fabry-Pérot (FP) filters. FP filters are composed of two highly reflecting parallel mirrors and a resonance cavity. Each filter transmits a small spectral band (filter line) depending on its individual cavity height. The optical nanospectrometer, a miniaturized FP-based spectrometer, implements 3D NanoImprint technology for the fabrication of multiple FP filter cavities in a single process step. However, it is challenging to avoid the dependency of residual layer (RL) thickness on the shape of the printed patterns in NanoImprint. Since in a nanospectrometer the filter cavities vary in height between neighboring FP filters and, thus, the volume of each cavity varies causing that the RL varies slightly or noticeably between different filters. This is one of the few disadvantages of NanoImprint using soft templates such as substrate conformal imprint lithography which is used in this paper. The advantages of large area soft templates can be revealed substantially if the problem of laterally inhomogeneous RLs can be avoided or reduced considerably. In the case of the nanospectrometer, non-uniform RLs lead to random variations in the designed cavity heights resulting in the shift of desired filter lines. To achieve highly uniform RLs, we report a volume-equalized template design with the lateral distribution of 64 different cavity heights into several units with each unit comprising four cavity heights. The average volume of each unit is kept constant to obtain uniform filling of imprint material per unit area. The imprint results, based on the volume-equalized template, demonstrate highly uniform RLs of 110 nm thickness.

  10. Impact of input data (in)accuracy on overestimation of visible area in digital viewshed models

    PubMed Central

    Klouček, Tomáš; Šímová, Petra

    2018-01-01

    Viewshed analysis is a GIS tool in standard use for more than two decades to perform numerous scientific and practical tasks. The reliability of the resulting viewshed model depends on the computational algorithm and the quality of the input digital surface model (DSM). Although many studies have dealt with improving viewshed algorithms, only a few studies have focused on the effect of the spatial accuracy of input data. Here, we compare simple binary viewshed models based on DSMs having varying levels of detail with viewshed models created using LiDAR DSM. The compared DSMs were calculated as the sums of digital terrain models (DTMs) and layers of forests and buildings with expertly assigned heights. Both elevation data and the visibility obstacle layers were prepared using digital vector maps differing in scale (1:5,000, 1:25,000, and 1:500,000) as well as using a combination of a LiDAR DTM with objects vectorized on an orthophotomap. All analyses were performed for 104 sample locations of 5 km2, covering areas from lowlands to mountains and including farmlands as well as afforested landscapes. We worked with two observer point heights, the first (1.8 m) simulating observation by a person standing on the ground and the second (80 m) as observation from high structures such as wind turbines, and with five estimates of forest heights (15, 20, 25, 30, and 35 m). At all height estimations, all of the vector-based DSMs used resulted in overestimations of visible areas considerably greater than those from the LiDAR DSM. In comparison to the effect from input data scale, the effect from object height estimation was shown to be secondary. PMID:29844982

  11. Impact of input data (in)accuracy on overestimation of visible area in digital viewshed models.

    PubMed

    Lagner, Ondřej; Klouček, Tomáš; Šímová, Petra

    2018-01-01

    Viewshed analysis is a GIS tool in standard use for more than two decades to perform numerous scientific and practical tasks. The reliability of the resulting viewshed model depends on the computational algorithm and the quality of the input digital surface model (DSM). Although many studies have dealt with improving viewshed algorithms, only a few studies have focused on the effect of the spatial accuracy of input data. Here, we compare simple binary viewshed models based on DSMs having varying levels of detail with viewshed models created using LiDAR DSM. The compared DSMs were calculated as the sums of digital terrain models (DTMs) and layers of forests and buildings with expertly assigned heights. Both elevation data and the visibility obstacle layers were prepared using digital vector maps differing in scale (1:5,000, 1:25,000, and 1:500,000) as well as using a combination of a LiDAR DTM with objects vectorized on an orthophotomap. All analyses were performed for 104 sample locations of 5 km 2 , covering areas from lowlands to mountains and including farmlands as well as afforested landscapes. We worked with two observer point heights, the first (1.8 m) simulating observation by a person standing on the ground and the second (80 m) as observation from high structures such as wind turbines, and with five estimates of forest heights (15, 20, 25, 30, and 35 m). At all height estimations, all of the vector-based DSMs used resulted in overestimations of visible areas considerably greater than those from the LiDAR DSM. In comparison to the effect from input data scale, the effect from object height estimation was shown to be secondary.

  12. Chemical transport models: the combined non-local diffusion and mixing schemes, and calculation of in-canopy resistance for dry deposition fluxes.

    PubMed

    Mihailovic, Dragutin T; Alapaty, Kiran; Podrascanin, Zorica

    2009-03-01

    Improving the parameterization of processes in the atmospheric boundary layer (ABL) and surface layer, in air quality and chemical transport models. To do so, an asymmetrical, convective, non-local scheme, with varying upward mixing rates is combined with the non-local, turbulent, kinetic energy scheme for vertical diffusion (COM). For designing it, a function depending on the dimensionless height to the power four in the ABL is suggested, which is empirically derived. Also, we suggested a new method for calculating the in-canopy resistance for dry deposition over a vegetated surface. The upward mixing rate forming the surface layer is parameterized using the sensible heat flux and the friction and convective velocities. Upward mixing rates varying with height are scaled with an amount of turbulent kinetic energy in layer, while the downward mixing rates are derived from mass conservation. The vertical eddy diffusivity is parameterized using the mean turbulent velocity scale that is obtained by the vertical integration within the ABL. In-canopy resistance is calculated by integration of inverse turbulent transfer coefficient inside the canopy from the effective ground roughness length to the canopy source height and, further, from its the canopy height. This combination of schemes provides a less rapid mass transport out of surface layer into other layers, during convective and non-convective periods, than other local and non-local schemes parameterizing mixing processes in the ABL. The suggested method for calculating the in-canopy resistance for calculating the dry deposition over a vegetated surface differs remarkably from the commonly used one, particularly over forest vegetation. In this paper, we studied the performance of a non-local, turbulent, kinetic energy scheme for vertical diffusion combined with a non-local, convective mixing scheme with varying upward mixing in the atmospheric boundary layer (COM) and its impact on the concentration of pollutants calculated with chemical and air-quality models. In addition, this scheme was also compared with a commonly used, local, eddy-diffusivity scheme. Simulated concentrations of NO2 by the COM scheme and new parameterization of the in-canopy resistance are closer to the observations when compared to those obtained from using the local eddy-diffusivity scheme. Concentrations calculated with the COM scheme and new parameterization of in-canopy resistance, are in general higher and closer to the observations than those obtained by the local, eddy-diffusivity scheme (on the order of 15-22%). To examine the performance of the scheme, simulated and measured concentrations of a pollutant (NO2) were compared for the years 1999 and 2002. The comparison was made for the entire domain used in simulations performed by the chemical European Monitoring and Evaluation Program Unified model (version UNI-ACID, rv2.0) where schemes were incorporated.

  13. Aeroheating Measurement of Apollo Shaped Capsule with Boundary Layer Trip in the Free-piston Shock Tunnel HIEST

    NASA Technical Reports Server (NTRS)

    Hideyuki, TANNO; Tomoyuki, KOMURO; Kazuo, SATO; Katsuhiro, ITOH; Lillard, Randolph P.; Olejniczak, Joseph

    2013-01-01

    An aeroheating measurement test campaign of an Apollo capsule model with laminar and turbulent boundary layer was performed in the free-piston shock tunnel HIEST at JAXA Kakuda Space Center. A 250mm-diameter 6.4%-scaled Apollo CM capsule model made of SUS-304 stainless steel was applied in this study. To measure heat flux distribution, the model was equipped with 88 miniature co-axial Chromel-Constantan thermocouples on the heat shield surface of the model. In order to promote boundary layer transition, a boundary layer trip insert with 13 "pizza-box" isolated roughness elements, which have 1.27mm square, were placed at 17mm below of the model geometric center. Three boundary layer trip inserts with roughness height of k=0.3mm, 0.6mm and 0.8mm were used to identify the appropriate height to induce transition. Heat flux records with or without roughness elements were obtained for model angles of attack 28º under stagnation enthalpy between H(sub 0)=3.5MJ/kg to 21MJ/kg and stagnation pressure between P(sub 0)=14MPa to 60MPa. Under the condition above, Reynolds number based on the model diameter was varied from 0.2 to 1.3 million. With roughness elements, boundary layer became fully turbulent less than H(sub 0)=9MJ/kg condition. However, boundary layer was still laminar over H(sub 0)=13MJ/kg condition even with the highest roughness elements. An additional experiment was also performed to correct unexpected heat flux augmentation observed over H(sub 0)=9MJ/kg condition.

  14. Urbanization Causes Increased Cloud Base Height and Decreased Fog in Coastal Southern California

    NASA Technical Reports Server (NTRS)

    Williams, A. Park; Schwartz, Rachel E.; Iacobellis, Sam; Seager, Richard; Cook, Benjamin I.; Still, Christopher J.; Husak, Gregory; Michaelsen, Joel

    2015-01-01

    Subtropical marine stratus clouds regulate coastal and global climate, but future trends in these clouds are uncertain. In coastal Southern California (CSCA), interannual variations in summer stratus cloud occurrence are spatially coherent across 24 airfields and dictated by positive relationships with stability above the marine boundary layer (MBL) and MBL height. Trends, however, have been spatially variable since records began in the mid-1900s due to differences in nighttime warming. Among CSCA airfields, differences in nighttime warming, but not daytime warming, are strongly and positively related to fraction of nearby urban cover, consistent with an urban heat island effect. Nighttime warming raises the near-surface dew point depression, which lifts the altitude of condensation and cloud base height, thereby reducing fog frequency. Continued urban warming, rising cloud base heights, and associated effects on energy and water balance would profoundly impact ecological and human systems in highly populated and ecologically diverse CSCA.

  15. Vertical velocity variance in the mixed layer from radar wind profilers

    USGS Publications Warehouse

    Eng, K.; Coulter, R.L.; Brutsaert, W.

    2003-01-01

    Vertical velocity variance data were derived from remotely sensed mixed layer turbulence measurements at the Atmospheric Boundary Layer Experiments (ABLE) facility in Butler County, Kansas. These measurements and associated data were provided by a collection of instruments that included two 915 MHz wind profilers, two radio acoustic sounding systems, and two eddy correlation devices. The data from these devices were available through the Atmospheric Boundary Layer Experiment (ABLE) database operated by Argonne National Laboratory. A signal processing procedure outlined by Angevine et al. was adapted and further built upon to derive vertical velocity variance, w_pm???2, from 915 MHz wind profiler measurements in the mixed layer. The proposed procedure consisted of the application of a height-dependent signal-to-noise ratio (SNR) filter, removal of outliers plus and minus two standard deviations about the mean on the spectral width squared, and removal of the effects of beam broadening and vertical shearing of horizontal winds. The scatter associated with w_pm???2 was mainly affected by the choice of SNR filter cutoff values. Several different sets of cutoff values were considered, and the optimal one was selected which reduced the overall scatter on w_pm???2 and yet retained a sufficient number of data points to average. A similarity relationship of w_pm???2 versus height was established for the mixed layer on the basis of the available data. A strong link between the SNR and growth/decay phases of turbulence was identified. Thus, the mid to late afternoon hours, when strong surface heating occurred, were observed to produce the highest quality signals.

  16. How important is getting the land surface energy exchange correct in WRF for wind energy forecasting?

    NASA Astrophysics Data System (ADS)

    Wharton, S.; Simpson, M.; Osuna, J. L.; Newman, J. F.; Biraud, S.

    2013-12-01

    Wind power forecasting is plagued with difficulties in accurately predicting the occurrence and intensity of atmospheric conditions at the heights spanned by industrial-scale turbines (~ 40 to 200 m above ground level). Better simulation of the relevant physics would enable operational practices such as integration of large fractions of wind power into power grids, scheduling maintenance on wind energy facilities, and deciding design criteria based on complex loads for next-generation turbines and siting. Accurately simulating the surface energy processes in numerical models may be critically important for wind energy forecasting as energy exchange at the surface strongly drives atmospheric mixing (i.e., stability) in the lower layers of the planetary boundary layer (PBL), which in turn largely determines wind shear and turbulence at heights found in the turbine rotor-disk. We hypothesize that simulating accurate a surface-atmosphere energy coupling should lead to more accurate predictions of wind speed and turbulence at heights within the turbine rotor-disk. Here, we tested 10 different land surface model configurations in the Weather Research and Forecasting (WRF) model including Noah, Noah-MP, SSiB, Pleim-Xiu, RUC, and others to evaluate (1) the accuracy of simulated surface energy fluxes to flux tower measurements, (2) the accuracy of forecasted wind speeds to observations at rotor-disk heights, and (3) the sensitivity of forecasting hub-height rotor disk wind speed to the choice of land surface model. WRF was run for four, two-week periods covering both summer and winter periods over the Southern Great Plains ARM site in Oklahoma. Continuous measurements of surface energy fluxes and lidar-based wind speed, direction and turbulence were also available. The SGP ARM site provided an ideal location for this evaluation as it centrally located in the wind-rich Great Plains and multi-MW wind farms are rapidly expanding in the area. We found significant differences in simulated wind speeds at rotor-disk heights from WRF which indicated, in part, the sensitivity of lower PBL winds to surface energy exchange. We also found significant differences in energy partitioning between sensible heat and latent energy depending on choice of land surface model. Overall, the most consistent, accurate model results were produced using Noah-MP. Noah-MP was most accurate at simulating energy fluxes and wind shear. Hub-height wind speed, however, was predicted with most accuracy with Pleim-Xiu. This suggests that simulating wind shear in the surface layer is consistent with accurately simulating surface energy exchange while the exact magnitudes of wind speed may be more strongly influenced by the PBL dynamics. As the nation is working towards a 20% wind energy goal by 2030, increasing the accuracy of wind forecasting at rotor-disk heights becomes more important considering that utilities require wind farms to estimate their power generation 24 to 36 hours ahead and face penalties for inaccuracies in those forecasts.

  17. On the Specification of Smoke Injection Heights for Aerosol Forecasting

    NASA Astrophysics Data System (ADS)

    da Silva, A.; Schaefer, C.; Randles, C. A.

    2014-12-01

    The proper forecasting of biomass burning (BB) aerosols in global or regional transport models requires not only the specification of emission rates with sufficient temporal resolution but also the injection layers of such emissions. While current near realtime biomass burning inventories such as GFAS, QFED, FINN, GBBEP and FLAMBE provide such emission rates, it is left for each modeling system to come up with its own scheme for distributing these emissions in the vertical. A number of operational aerosol forecasting models deposits BB emissions in the near surface model layers, relying on the model's parameterization of turbulent and convective transport to determine the vertical mass distribution of BB aerosols. Despite their simplicity such schemes have been relatively successful reproducing the vertical structure of BB aerosols, except for those large fires that produce enough buoyancy to puncture the PBL and deposit the smoke at higher layers. Plume Rise models such as the so-called 'Freitas model', parameterize this sub-grid buoyancy effect, but require the specification of fire size and heat fluxes, none of which is readily available in near real-time from current remotely-sensed products. In this talk we will introduce a bayesian algorithm for estimating file size and heat fluxes from MODIS brightness temperatures. For small to moderate fires the Freitas model driven by these heat flux estimates produces plume tops that are highly correlated with the GEOS-5 model estimate of PBL height. Comparison to MINX plume height estimates from MISR indicates moderate skill of this scheme predicting the injection height of large fires. As an alternative, we make use of OMPS UV aerosol index data in combination with estimates of Overshooting Convective Tops (from MODIS and Geo-stationary satellites) to detect PyCu events and specify the BB emission vertical mass distribution in such cases. We will present a discussion of case studies during the SEAC4RS field campaign in August-September 2013.

  18. Measurements of the near-surface flow over a hill

    NASA Astrophysics Data System (ADS)

    Vosper, S. B.; Mobbs, S. D.; Gardiner, B. A.

    2002-10-01

    The near-surface flow over a hill with moderate slope and height comparable with the boundary-layer depth is investigated through field measurements of the mean flow (at 2 m), surface pressure, and turbulent momentum flux divergence between 8 and 15 m. The measurements were made along an east-west transect across the hill Tighvein (height 458 m, approximate width 8 km) on the Isle of Arran, south-west Scotland, during two separate periods, each of around three-weeks duration. Radiosonde ascents are used to determine the variation of a Froude number, FL = U/NL, where U is the wind speed at the middle-layer height, hm, N is the mean Brunt-Väisälä frequency below this height and L is a hill length-scale. Measurements show that for moderately stratified flows (for which FL gap 0.25) a minimum in the hill-induced surface-pressure perturbation occurs across the summit and this is accompanied by a maximum in the near-surface wind speed. In the more strongly stratified case (FL lsim 0.25) the pressure field is more asymmetric and the lee-slope flow is generally stronger than on the windward slope. Such a flow pattern is qualitatively consistent with that predicted by stratified linear boundary-layer and gravity-wave theories. The near-surface momentum budget is analysed by evaluating the dominant terms in a Bernoulli equation suitable for turbulent flow. Measurements during periods of westerly flow are used to evaluate the dominant terms, and the equation is shown to hold to a reasonable approximation on the upwind slope of the hill and also on the downwind slope, away from the summit. Immediately downwind of the summit, however, the Bernoulli equation does not hold. Possible reasons for this, such as non-separated sheltering and flow separation, are discussed.

  19. Accurate core position control in polymer optical waveguides using the Mosquito method for three-dimensional optical wiring

    NASA Astrophysics Data System (ADS)

    Date, Kumi; Ishigure, Takaaki

    2017-02-01

    Polymer optical waveguides with graded-index (GI) circular cores are fabricated using the Mosquito method, in which the positions of parallel cores are accurately controlled. Such an accurate arrangement is of great importance for a high optical coupling efficiency with other optical components such as fiber ribbons. In the Mosquito method that we developed, a core monomer with a viscous liquid state is dispensed into another liquid state monomer for cladding via a syringe needle. Hence, the core positions are likely to shift during or after the dispensing process due to several factors. We investigate the factors, specifically affecting the core height. When the core and cladding monomers are selected appropriately, the effect of the gravity could be negligible, so the core height is maintained uniform, resulting in accurate core heights. The height variance is controlled in +/-2 micrometers for the 12 cores. Meanwhile, larger shift in the core height is observed when the needle-tip position is apart from the substrate surface. One of the possible reasons of the needle-tip height dependence is the asymmetric volume contraction during the monomer curing. We find a linear relationship between the original needle-tip height and the core-height observed. This relationship is implemented in the needle-scan program to stabilize the core height in different layers. Finally, the core heights are accurately controlled even if the cores are aligned on various heights. These results indicate that the Mosquito method enables to fabricate waveguides in which the cores are 3-dimensionally aligned with a high position accuracy.

  20. The Effect of Forward-Facing Steps on Stationary Crossflow Instability Growth and Breakdown

    NASA Technical Reports Server (NTRS)

    Eppink, Jenna L.

    2018-01-01

    The e?ect of a forward-facing step on stationary cross?ow transition was studied using standard stereo particle image velocimetry (PIV) and time-resolved PIV. Step heights ranging from 53 to 71% of the boundary-layer thickness were studied in detail. The steps above a critical step height of approximately 60% of the boundary-layer thickness had a signi?cant impact on the stationary cross?ow growth downstream of the step. For the critical cases, the stationary cross?ow amplitude grew suddenly downstream of the step, decayed for a short region, then grew again. The adverse pressure gradient upstream of the step resulted in a region of cross?ow reversal. A secondary set of vortices, rotating in the opposite direction to the primary vortices, developed underneath the uplifted primary vortices. The wall-normal velocity disturbance (V' ) created by these secondary vortices impacted the step, and is believed to feed into the strong vortex that developed downstream of the step. A large but very short negative cross?ow region formed for a short region downstream of the step due to a sharp inboard curvature of the streamlines near the wall. For the larger step height cases, a cross?ow-reversal region formed just downstream of the strong negative cross?ow region. This cross?ow reversal region is believed to play an important role in the growth of the stationary cross?ow vortices downstream of the step, and may be a good indication of the critical forward-facing step height.

  1. Modeling marine boundary-layer clouds with a two-layer model: A one-dimensional simulation

    NASA Technical Reports Server (NTRS)

    Wang, Shouping

    1993-01-01

    A two-layer model of the marine boundary layer is described. The model is used to simulate both stratocumulus and shallow cumulus clouds in downstream simulations. Over cold sea surfaces, the model predicts a relatively uniform structure in the boundary layer with 90%-100% cloud fraction. Over warm sea surfaces, the model predicts a relatively strong decoupled and conditionally unstable structure with a cloud fraction between 30% and 60%. A strong large-scale divergence considerably limits the height of the boundary layer and decreases relative humidity in the upper part of the cloud layer; thus, a low cloud fraction results. The efffects of drizzle on the boundary-layer structure and cloud fraction are also studied with downstream simulations. It is found that drizzle dries and stabilizes the cloud layer and tends to decouple the cloud from the subcloud layer. Consequently, solid stratocumulus clouds may break up and the cloud fraction may decrease because of drizzle.

  2. Topological characters in Fe (Te1 -xSex ) thin films

    NASA Astrophysics Data System (ADS)

    Wu, Xianxin; Qin, Shengshan; Liang, Yi; Fan, Heng; Hu, Jiangping

    2016-03-01

    We investigate topological properties in the Fe(Te,Se) thin films. We find that the single layer FeTe1 -xSex has nontrivial Z2 topological invariance which originates from the parity exchange at the Γ point of the Brillouin zone. The nontrivial topology is mainly controlled by the Te(Se) height. Adjusting the anion height, which can be realized as the function of lattice constants and x in FeTe1 -xSex , can drive a topological phase transition. In a bulk material, the two-dimensional Z2 topology invariance is extended to a strong three-dimensional one. In a thin film, we predict that the topological invariance oscillates with the number of layers. The results can also be applied to iron pnictides. Our research establishes FeTe1 -xSex as a unique system to integrate high-Tc superconductivity and topological properties in a single electronic structure.

  3. Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision

    NASA Astrophysics Data System (ADS)

    Xiong, Jun; Zhang, Guangjun

    2013-11-01

    Additive manufacturing based on gas metal arc welding is an advanced technique for depositing fully dense components with low cost. Despite this fact, techniques to achieve accurate control and automation of the process have not yet been perfectly developed. The online measurement of the deposited bead geometry is a key problem for reliable control. In this work a passive vision-sensing system, comprising two cameras and composite filtering techniques, was proposed for real-time detection of the bead height and width through deposition of thin walls. The nozzle to the top surface distance was monitored for eliminating accumulated height errors during the multi-layer deposition process. Various image processing algorithms were applied and discussed for extracting feature parameters. A calibration procedure was presented for the monitoring system. Validation experiments confirmed the effectiveness of the online measurement system for bead geometry in layered additive manufacturing.

  4. Microstructure of Turbulence in the Stably Stratified Boundary Layer

    NASA Astrophysics Data System (ADS)

    Sorbjan, Zbigniew; Balsley, Ben B.

    2008-11-01

    The microstructure of a stably stratified boundary layer, with a significant low-level nocturnal jet, is investigated based on observations from the CASES-99 campaign in Kansas, U.S.A. The reported, high-resolution vertical profiles of the temperature, wind speed, wind direction, pressure, and the turbulent dissipation rate, were collected under nocturnal conditions on October 14, 1999, using the CIRES Tethered Lifting System. Two methods for evaluating instantaneous (1-sec) background profiles are applied to the raw data. The background potential temperature is calculated using the “bubble sort” algorithm to produce a monotonically increasing potential temperature with increasing height. Other scalar quantities are smoothed using a running vertical average. The behaviour of background flow, buoyant overturns, turbulent fluctuations, and their respective histograms are presented. Ratios of the considered length scales and the Ozmidov scale are nearly constant with height, a fact that can be applied in practice for estimating instantaneous profiles of the dissipation rate.

  5. Wake Response to an Ocean-Feedback Mechanism: Madeira Island Case Study

    NASA Astrophysics Data System (ADS)

    Caldeira, Rui M. A.; Tomé, Ricardo

    2013-08-01

    We focus on an island wake episode that occurred in the Madeira Archipelago region of the north-east Atlantic at 32.5° N, 17° W. The Weather Research and Forecasting numerical model was used in a (one-way) downscaling mode, considering initial and boundary conditions from the European Centre for Medium-range Weather Forecasts system. The current literature emphasizes adiabatic effects on the dynamical aspects of atmospheric wakes. Changes in mountain height and consequently its relation to the atmospheric inversion layer should explain the shift in wake regimes, from a `strong-wake' to `weak-wake' scenario. Nevertheless, changes in sea-surface temperature variability in the lee of an island can induce similar regime shifts because of exposure to stronger solar radiation. Increase in evaporation contributes to the enhancement of convection and thus to the uplift of the stratified atmospheric layer above the critical height, with subsequent internal gravity wave activity.

  6. Effect of water layer at the SiO2/graphene interface on pentacene morphology.

    PubMed

    Chhikara, Manisha; Pavlica, Egon; Matković, Aleksandar; Gajić, Radoš; Bratina, Gvido

    2014-10-07

    Atomic force microscopy has been used to examine early stages of pentacene growth on exfoliated single-layer graphene transferred to SiO2 substrates. We have observed 2D growth with mean height of 1.5 ± 0.2 nm on as-transferred graphene. Three-dimensional islands of pentacene with an average height of 11 ± 2 nm were observed on graphene that was annealed at 350 °C prior to pentacene growth. Compellingly similar 3D morphology has been observed on graphene transferred onto SiO2 that was treated with hexamethyldisilazane prior to the transfer of graphene. On multilayer graphene we have observed 2D growth, regardless of the treatment of SiO2. We interpret this behavior of pentacene molecules in terms of the influence of the dipolar field that emerges from the water monolayer at the graphene/SiO2 interface on the surface energy of graphene.

  7. Observations of neutral circulation at mid-latitudes during the Equinox Transition Study

    NASA Technical Reports Server (NTRS)

    Buonsanto, M. J.; Salah, J. E.; Miller, K. L.; Oliver, W. L.; Burnside, R. G.; Richards, P. G.

    1988-01-01

    Measurements of ion drift velocity made by the Millstone Hill incoherent scatter radar have been used to calculate the meridional neutral wind velocity during the Sept. 17 to 24, 1984 period. Strong daytime southward neutral surges were observed during the magnetically disturbed days of September 19 and 23, in contrast to the small daytime winds obtained as expected during the magnetically quiet days. The surge on September 19 was also seen at Arecibo. In addition, two approaches have been used to calculate the meridional wind component from the radar-derived height of the F-layer electron density peak. Results confirm the wind surge, particularly when the strong electric fields measured during the disturbed days are included in the calculations. The two approaches for the F-layer peak wind calculations are applied to the radar-derived electron density peak height as a function of latitude to study the variation of the southward daytime surges with latitude.

  8. Variability of cirrus clouds in a convective outflow during the Hibiscus campaign

    NASA Astrophysics Data System (ADS)

    Fierli, F.; di Donfrancesco, G.; Cairo, F.; Marécal, V.; Zampieri, M.; Orlandi, E.; Durry, G.

    2008-08-01

    Light-weight microlidar and water vapour measurements were taken on-board a stratospheric balloon during the HIBISCUS 2004 campaign, held in Bauru, Brazil (49° W, 22° S). Cirrus clouds were observed throughout the flight between 12 and 15 km height with a high mesoscale variability in optical and microphysical properties. It was found that the cirrus clouds were composed of different layers characterized by marked differences in height, thickness and optical properties. Simultaneous water vapour observations show that the different layers are characterized by different values of the saturation with respect to ice. A mesoscale simulation and a trajectory analysis clearly revealed that the clouds had formed in the outflow of a large and persistent convective region and that the observed variability of the optical properties and of the cloud structure is likely linked to the different residence times of the convectively-processed air in the upper troposphere.

  9. Method for using acoustic sounder categories to determine atmospheric stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubert, J.F.

    1979-01-01

    Capabilities of the diffusion meteorologist have been expanded by the acoustic sounder, an economical tool for monitoring in real time the height of the mixed layer. The acoustic sounder continuously measures the rate of change in the height of the mixed layer which is an important parameter in calculating the transport and diffusion of radioactive and nonradioactive air pollutants. Continuous record of convective cells, gravity waves, inversions, and frontal systems permit analysis of the synoptic (analysis of stability in terms of simultaneous weather information) and complex (analysis of the stability of a single place by the relative frequencies of variousmore » stability types or groups of such types) stabilities of the local area. Sounder data obtained at the Savannah River Plant was compared on an hourly basis to data obtained at the WJBF-TV tower located approximately 20 km northwest of the acoustic sounder site.« less

  10. Helicopter rotor noise investigation during ice accretion

    NASA Astrophysics Data System (ADS)

    Cheng, Baofeng

    An investigation of helicopter rotor noise during ice accretion is conducted using experimental, theoretical, and numerical methods. This research is the acoustic part of a joint helicopter rotor icing physics, modeling, and detection project at The Pennsylvania State University Vertical Lift Research Center of Excellence (VLRCOE). The current research aims to provide acoustic insight and understanding of the rotor icing physics and investigate the feasibility of detecting rotor icing through noise measurements, especially at the early stage of ice accretion. All helicopter main rotor noise source mechanisms and their change during ice accretion are discussed. Changes of the thickness noise, steady loading noise, and especially the turbulent boundary layer - trailing edge (TBL-TE) noise due to ice accretion are identified and studied. The change of the discrete frequency noise (thickness noise and steady loading noise) due to ice accretion is calculated by using PSU-WOPWOP, an advanced rotorcraft acoustic prediction code. The change is noticeable, but too small to be used in icing detection. The small thickness noise change is due to the small volume of the accreted ice compared to that of the entire blade, although a large iced airfoil shape is used. For the loading noise calculation, two simplified methods are used to generate the loading on the rotor blades, which is the input for the loading noise calculation: 1) compact loading from blade element momentum theory, icing effects are considered by increasing the drag coefficient; and 2) pressure loading from the 2-D CFD simulation, icing effects are considered by using the iced airfoil shape. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand (AERTS) facility at The Pennsylvania State University, and The University of Maryland Acoustic Chamber (UMAC). In both facilities the measured high-frequency broadband noise increases significantly with increasing surface roughness heights, which indicates that it is feasible to quantify helicopter rotor ice-induced surface roughness through acoustic measurements. Comprehensive broadband noise measurements based on different accreted ice roughness at AERTS are then used to form the data base from which a correlation between the ice-induced surface roughness and the broadband noise level is developed. Two parameters, the arithmetic average roughness height, Ra, and the averaged roughness height, based on the integrated ice thickness at the blade tip, are introduced to describe the ice-induced surface roughness at the early stage of the ice accretion. The ice roughness measurements are correlated to the measured broadband noise level. Strong correlations (absolute mean deviations of 9.3% and 11.2% for correlation using Ra and the averaged roughness height respectively) between the ice roughness and the broadband noise level are obtained, which can be used as a tool to determine the accreted ice roughness in the AERTS facility through acoustic measurement. It might be possible to use a similar approach to develop an early ice accretion detection tool for helicopters, as well as to quantify the ice-induced roughness at the early stage of rotor ice accretion. Rotor broadband noise source identification is conducted and the broadband noise related to ice accretion is argued to be turbulent boundary layer - trailing edge (TBL-TE) noise. Theory suggests TBL-TE noise scales with Mach number to the fifth power, which is also observed in the experimental data. The trailing edge noise theories developed by Ffowcs Williams and Hall, and Howe both identify two important parameters: boundary layer thickness and turbulence intensity. Numerical studies of 2-D airfoils with different ice-induced surface roughness heights are conducted to investigate the extent that surface roughness impacts the boundary layer thickness and turbulence intensity (and ultimately the TBL-TE noise). The results show that boundary layer thickness and turbulence intensity at the trailing edge increase with the increased roughness height. Using Howe's trailing edge noise model, the increased sound pressure level (SPL) of the trailing edge noise due to the increased displacement thickness and normalized integrated turbulence intensity are 6.2 dB and 1.6 dB for large and small accreted ice roughness heights, respectively. The estimated increased SPL values agree well with the experimental results, which are 5.8 dB and 2.6 dB for large and small roughness height, respectively. Finally a detailed broadband noise spectral scaling for all measured broadband noise in both AERTS and UMAC facilities is conducted. The magnitude and the frequency spectrum of the measured broadband noise are scaled on characteristic velocity and length. The peak of the laminar boundary layer - vortex shedding (LBL-VS) noise coalesces well on the Strouhal scaling in those cases. For the measured broadband noise from a rotor with relatively large roughness heights, no contribution of the LBL-VS noise is observed. The velocity scaling shows that the TBL-TE noise, which is the dominant source mechanism, scales with Mach number to the fifth power based on the absolute frequency. The length scaling shows that the TBL-TE noise scales well on the absolute roughness height based on Howe's TE noise theory.

  11. Canopy-wake dynamics: the failure of the constant flux layer

    NASA Astrophysics Data System (ADS)

    Stefan, H. G.; Markfort, C. D.; Porte-Agel, F.

    2013-12-01

    The atmospheric boundary layer adjustment at the abrupt transition from a canopy (forest) to a flat surface (land or water) was investigated in a wind tunnel experiment. Detailed measurements examining the effect of canopy turbulence on flow separation, reduced surface shear stress and wake recovery are compared to data for the classical case of a solid backward-facing step. Results provide new insights into the data interpretation for flux estimation by eddy-covariance and flux gradient methods and for the assessment of surface boundary conditions in turbulence models of the atmospheric boundary layer in complex landscapes and over water bodies affected by canopy wakes. The wind tunnel results indicate that the wake of a forest canopy strongly affects surface momentum flux within a distance of 35 - 100 times the step or canopy height, and mean turbulence quantities require distances of at least 100 times the canopy height to adjust to the new surface. The near-surface mixing length in the wake exhibits characteristic length scales of canopy flows at the canopy edge, of the flow separation in the near wake and adjusts to surface layer scaling in the far wake. Components of the momentum budget are examined individually to determine the impact of the wake. The results demonstrate why a constant flux layer does not form until far downwind in the wake. An empirical model for surface shear stress distribution from a forest to a clearing or lake is proposed.

  12. Geometry characteristics modeling and process optimization in coaxial laser inside wire cladding

    NASA Astrophysics Data System (ADS)

    Shi, Jianjun; Zhu, Ping; Fu, Geyan; Shi, Shihong

    2018-05-01

    Coaxial laser inside wire cladding method is very promising as it has a very high efficiency and a consistent interaction between the laser and wire. In this paper, the energy and mass conservation law, and the regression algorithm are used together for establishing the mathematical models to study the relationship between the layer geometry characteristics (width, height and cross section area) and process parameters (laser power, scanning velocity and wire feeding speed). At the selected parameter ranges, the predicted values from the models are compared with the experimental measured results, and there is minor error existing, but they reflect the same regularity. From the models, it is seen the width of the cladding layer is proportional to both the laser power and wire feeding speed, while it firstly increases and then decreases with the increasing of the scanning velocity. The height of the cladding layer is proportional to the scanning velocity and feeding speed and inversely proportional to the laser power. The cross section area increases with the increasing of feeding speed and decreasing of scanning velocity. By using the mathematical models, the geometry characteristics of the cladding layer can be predicted by the known process parameters. Conversely, the process parameters can be calculated by the targeted geometry characteristics. The models are also suitable for multi-layer forming process. By using the optimized process parameters calculated from the models, a 45 mm-high thin-wall part is formed with smooth side surfaces.

  13. Effect of Embedded Pd Microstructures on the Flat-Band-Voltage Operation of Room Temperature ZnO-Based Liquid Petroleum Gas Sensors

    PubMed Central

    Ali, Ghusoon M.; Thompson, Cody V.; Jasim, Ali K.; Abdulbaqi, Isam M.; Moore, James C.

    2013-01-01

    Three methods were used to fabricate ZnO-based room temperature liquid petroleum gas (LPG) sensors having interdigitated metal-semiconductor-metal (MSM) structures. Specifically, devices with Pd Schottky contacts were fabricated with: (1) un-doped ZnO active layers; (2) Pd-doped ZnO active layers; and (3) un-doped ZnO layers on top of Pd microstructure arrays. All ZnO films were grown on p-type Si(111) substrates by the sol-gel method. For devices incorporating a microstructure array, Pd islands were first grown on the substrate by thermal evaporation using a 100 μm mesh shadow mask. We have estimated the sensitivity of the sensors for applied voltage from –5 to 5 V in air ambient, as well as with exposure to LPG in concentrations from 500 to 3,500 ppm at room temperature (300 K). The current-voltage characteristics were studied and parameters such as leakage current, barrier height, reach-through voltage, and flat-band voltage were extracted. We include contributions due to the barrier height dependence on the electric field and tunneling through the barrier for the studied MSM devices. The Pd-enhanced devices demonstrated a maximum gas response at flat-band voltages. The study also revealed that active layers consisting of Pd microstructure embedded ZnO films resulted in devices exhibiting greater gas-response as compared to those using Pd-doped ZnO thin films or un-doped active layers.

  14. Mound-Interface Kinetics in Dictyostelium Aggregation

    NASA Astrophysics Data System (ADS)

    Tutu, Hiroki

    2002-09-01

    The mound development of the cellular slime mold amoebae Dictyostelium discoideum is studied with an interface kinetic model for the height of cell layers. As a competitive role for the chemotaxis, we compare two types of curvature relaxations; the surface relaxation induced by cell-substrate affinity (model A), and that comes from a cell-cell adhesive effect (model B). It is found that both models are characterized by the growth law for the maximum mound height. Based on a self-similarity scaling hypothesis for the spatial structure of streaming pattern, we suggest a scaling law for the growth of mound-height hmax ˜ t1-1/α+β/α with α = 2 (4) for the model A (B) and a number 0 ≤ β < 1.

  15. Impact of Arctic sea-ice retreat on the recent change in cloud-base height during autumn

    NASA Astrophysics Data System (ADS)

    Sato, K.; Inoue, J.; Kodama, Y.; Overland, J. E.

    2012-12-01

    Cloud-base observations over the ice-free Chukchi and Beaufort Seas in autumn were conducted using a shipboard ceilometer and radiosondes during the 1999-2010 cruises of the Japanese R/V Mirai. To understand the recent change in cloud base height over the Arctic Ocean, these cloud-base height data were compared with the observation data under ice-covered situation during SHEBA (the Surface Heat Budget of the Arctic Ocean project in 1998). Our ice-free results showed a 30 % decrease (increase) in the frequency of low clouds with a ceiling below (above) 500 m. Temperature profiles revealed that the boundary layer was well developed over the ice-free ocean in the 2000s, whereas a stable layer dominated during the ice-covered period in 1998. The change in surface boundary conditions likely resulted in the difference in cloud-base height, although it had little impact on air temperatures in the mid- and upper troposphere. Data from the 2010 R/V Mirai cruise were investigated in detail in terms of air-sea temperature difference. This suggests that stratus cloud over the sea ice has been replaced as stratocumulus clouds with low cloud fraction due to the decrease in static stability induced by the sea-ice retreat. The relationship between cloud-base height and air-sea temperature difference (SST-Ts) was analyzed in detail using special section data during 2010 cruise data. Stratus clouds near the sea surface were predominant under a warm advection situation, whereas stratocumulus clouds with a cloud-free layer were significant under a cold advection situation. The threshold temperature difference between sea surface and air temperatures for distinguishing the dominant cloud types was 3 K. Anomalous upward turbulent heat fluxes associated with the sea-ice retreat have likely contributed to warming of the lower troposphere. Frequency distribution of the cloud-base height (km) detected by a ceilometer/lidar (black bars) and radiosondes (gray bars), and profiles of potential temperature (K) for (a) ice-free cases (R/V Mirai during September) and (b) ice-covered case (SHEBA during September 1998). (c) Vertical profiles of air temperature from 1000 hPa to 150 hPa (solid lines: observations north of 75°N, and dashed lines: the ERA-Interim reanalysis over 75-82.5°N, 150-170°W). Green, blue, and red lines denote profiles derived from observations by NP stations (the 1980s), SHEBA (1998), and the R/V Mirai (the 2000s), respectively. (d) Temperature trend calculated by the ERA-Interim reanalysis over the area.

  16. Electronic screening in stacked graphene flakes revealed by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Feng, Xiaofeng; Salmeron, Miquel

    2013-02-01

    Electronic doping and screening effects in stacked graphene flakes on Ru and Cu substrates have been observed using scanning tunneling microscopy (STM). The screening affects the apparent STM height of each flake in successive layers reflecting the density of states near the Fermi level and thus the doping level. It is revealed in this way that the strong doping of the first graphene layer on Ru(0001) is attenuated in the second one, and almost eliminated in the third and fourth layers. Similar effect is also observed in graphene flakes on Cu(111). In contrast, the strong doping effect is suppressed immediately by a water layer intercalated between the graphene and Ru.

  17. Theoretical investigation of maintaining the boundary layer of revolution laminar using suction slits in incompressible flow

    NASA Technical Reports Server (NTRS)

    Thiede, P.

    1978-01-01

    The transition of the laminar boundary layer into the turbulent state, which results in an increased drag, can be avoided by sucking of the boundary layer particles near the wall. The technically-interesting case of sucking the particles using individual slits is investigated for bodies of revolution in incompressible flow. The results of the variational calculations show that there is an optimum suction height, where the slot separations are maximum. Combined with favorable shaping of the body, it is possible to keep the boundary layer over bodies of revolution laminar at high Reynolds numbers using relatively few suction slits and small amounts of suction flow.

  18. Model of the vertical structure of the optical parameters of the Neptune atmosphere.

    NASA Astrophysics Data System (ADS)

    Morozhenko, A. V.

    Analyzes the wavelength dependence of the geometric albedo of Neptune's disk and estimates some parameters of the planet's atmosphere by the method based on the determination of deviations of the vertical structure of the cloud layer from the homogeneity condition. The ratio between the methane and gas scale heights is found to be about 0.4. For the upper atmosphere, components of methane, aerosol, the mean geometric radius of particles, the turbulent mixing coefficient are determined. Two solutions were found for deeper atmospheric layers. The first one suggests a rather dense cloud; in the second solution the lower cloud layer is an extension of the upper aerosol layer.

  19. Performance enhancement of pentacene-based organic thin-film transistors using 6,13-pentacenequinone as a carrier injection interlayer

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Lin, Wei-Chun; Chen, Hao-Wei

    2018-06-01

    This work demonstrates pentacene-based organic thin-film transistors (OTFTs) fabricated by inserting a 6,13-pentacenequinone (PQ) carrier injection layer between the source/drain (S/D) metal Au electrodes and pentacene channel layer. Compared to devices without a PQ layer, the performance characteristics including field-effect mobility, threshold voltage, and On/Off current ratio were significantly improved for the device with a 5-nm-thick PQ interlayer. These improvements are attributed to significant reduction of hole barrier height at the Au/pentacene channel interfaces. Therefore, it is believed that using PQ as the carrier injection layer is a good candidate to improve the pentacene-based OTFTs electrical performance.

  20. Experimental study of combustion in a turbulent free shear layer formed at a rearward facing step

    NASA Technical Reports Server (NTRS)

    Pitz, R. W.; Daily, J. W.

    1981-01-01

    A premixed propane-air flame is stabilized in a turbulent free shear layer formed at a rearward facing step. The mean and rms averages of the turbulent velocity flow field are determined by LDV for both reacting (equivalence ratio 0.57) and nonreacting flows (Reynolds number 15,000-37,000 based on step height). The effect of combustion is to shift the layer toward the recirculation zone and reduce the flame spread. For reacting flow, the growth rate is unchanged except very near the step. The probability density function of the velocity is bimodial near the origin of the reacting layer and single-peaked but often skewed elsewhere. Large-scale structures dominate the reacting shear layer. Measurements of their passing frequency from LDV are consistent with high-speed Schlieren movies of the reacting layer and indicate that the coalescence rate of the eddies in the shear layer is reduced by combustion.

  1. STM/STS Study of the Sb (111) Surface

    NASA Astrophysics Data System (ADS)

    Chekmazov, S. V.; Bozhko, S. I.; Smirnov, A. A.; Ionov, A. M.; Kapustin, A. A.

    An Sb crystal is a Peierls insulator. Formation of double layers in the Sb structure is due to the shift of atomic planes (111) next but one along the C3 axis. Atomic layers inside the double layer are connected by covalent bonds. The interaction between double layers is determined mainly by Van der Waals forces. The cleave of an Sb single crystal used to be via break of Van der Waals bonds. However, using scanning tunneling microscopy (STM) and spectroscopy (STS) we demonstrated that apart from islands equal in thickness to the double layer, steps of one atomic layer in height also exist on the cleaved Sb (111) surface. Formation of "unpaired" (111) planes on the surface leads to a local break of conditions of Peierls transition. STS experiment reveals higher local density of states (LDOS) measured for "unpaired" (111) planes in comparison with those for the double layer.

  2. Laser assisted bioprinting using a femtosecond laser with and without a gold transductive layer: a parametric study

    NASA Astrophysics Data System (ADS)

    Desrus, H.; Chassagne, B.; Catros, S.; Artiges, C.; Devillard, R.; Petit, S.; Deloison, F.; Fricain, J. C.; Guillemot, F.; Kling, R.

    2016-03-01

    Experimental results of femtosecond Laser Assisted Bioprinting (LAB) are reported on. Two set-up, used to print different model bioinks and keratinocytes cells line HaCaT, were studied: first one was using a femtosecond laser with low pulse energy and an absorbing gold layer, whereas the second one used high pulse energy enabling the removal of the absorbing layer. Printed drop diameter and resulting height of the bioink jet are then quantified as a function of the LAB parameters such as laser energy, focus spot location or numerical aperture.

  3. Synergy of stereo cloud top height and ORAC optimal estimation cloud retrieval: evaluation and application to AATSR

    NASA Astrophysics Data System (ADS)

    Fisher, Daniel; Poulsen, Caroline A.; Thomas, Gareth E.; Muller, Jan-Peter

    2016-03-01

    In this paper we evaluate the impact on the cloud parameter retrievals of the ORAC (Optimal Retrieval of Aerosol and Cloud) algorithm following the inclusion of stereo-derived cloud top heights as a priori information. This is performed in a mathematically rigorous way using the ORAC optimal estimation retrieval framework, which includes the facility to use such independent a priori information. Key to the use of a priori information is a characterisation of their associated uncertainty. This paper demonstrates the improvements that are possible using this approach and also considers their impact on the microphysical cloud parameters retrieved. The Along-Track Scanning Radiometer (AATSR) instrument has two views and three thermal channels, so it is well placed to demonstrate the synergy of the two techniques. The stereo retrieval is able to improve the accuracy of the retrieved cloud top height when compared to collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), particularly in the presence of boundary layer inversions and high clouds. The impact of the stereo a priori information on the microphysical cloud properties of cloud optical thickness (COT) and effective radius (RE) was evaluated and generally found to be very small for single-layer clouds conditions over open water (mean RE differences of 2.2 (±5.9) microns and mean COD differences of 0.5 (±1.8) for single-layer ice clouds over open water at elevations of above 9 km, which are most strongly affected by the inclusion of the a priori).

  4. Effect of centrifugal fractionation protocols on quality and recovery rate of equine sperm.

    PubMed

    Edmond, A J; Brinsko, S P; Love, C C; Blanchard, T L; Teague, S R; Varner, D D

    2012-03-15

    Centrifugal fractionation of semen is commonly done to improve quality of human semen in assisted-reproduction laboratories, allowing sperm separation based on their isopycnic points. Sperm with morphologic abnormalities are often more buoyant, promoting their retention above defined density media, with structurally normal sperm passing through the media following centrifugation. Three experiments were conducted to evaluate the effects of density-medium type, centrifuge-tube size, sperm number, and density-medium volume (column height) on stallion sperm quality and recovery rate in sperm pellets following centrifugation. In all three experiments, equine semen was initially centrifuged to increase sperm concentration. In Experiment 1, semen was layered over continuous or discontinuous gradients. For Experiment 2, semen was layered over three column heights of continuous gradients in 15- or 50-ml conical-bottom tubes. For Experiment 3, increasing sperm numbers were layered over continuous gradient in 15- or 50-ml conical-bottom tubes. Following centrifugation, sperm pellets were evaluated for sperm morphologic quality, motility, DNA integrity, and recovery rate. Centrifugal fractionation improved (P < 0.05) sperm morphology, motility, and DNA integrity, as compared to controls. The continuous gradient increased (P < 0.05) sperm recovery rate relative to the discontinuous gradient, whereas sperm processed in 15-ml tubes yielded higher velocity and higher recovery rates (P < 0.05 for each) than that processed in 50-ml tubes. Sperm recovery rate was not affected (P > 0.05) by column height of gradient. Increasing sperm number subjected to gradient centrifugation decreased (P < 0.05) sperm recovery rate when 15-ml tubes were used. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. The Evolution of Quasi-separatrix Layer in Two Solar Eruptive Events

    NASA Astrophysics Data System (ADS)

    Kang, K. F.; Yan, X. L.; Xu, Z.; Wu, N.; Lin, J.

    2017-05-01

    Quasi-separatrix layer, also called QSL, is a region where magnetic connectivity changes drastically and mostly well coincides with the location of flare ribbons in observations. The research on the relation between this topological structure and 3-dimensional magnetic reconnection, and solar flares has attracted more and more attention. In this paper, using the theory of QSL we investigate a C5.7 classical two-ribbon solar flare (event 1) which occurred at AR11384 on 2011 December 26 and an M6.5 solar flare (event 2) which occurred at AR12371 on 2015 June 22, respectively. Combining the multi-wavelength data of AIA (Atmospheric Imaging Assembly) and vector magnetogrames of HMI (Helioseismic and Magnetic Imager) onboard SDO (Solar Dynamics Observatory), we extrapolate the coronal magnetic field using the PF (Potential Field) model and NLFFF (Nonlinear Force Free Field) model, and calculate the evolution of the AR (Active Region) magnetic free energy first. Next, we calculate the slgQ maps of Q factor (magnetic squashing factor) at different heights away from solar photosphere with the extrapolation results of PF and NLFFF in order to decide the location of QSL. Then, we investigate the evolution relation between QSL at different heights away from solar photosphere and flaring brightening at the same layers. Finally, we study the multi-wavelength evolution features of the 2 flares. And, we calculate the observational slipping running speeds of event 2 in 304 Å and 335 Å, which are 4.6 km s-1 and 6.3 km s-1, respectively. We find that the location of QSL calculated in chromosphere and corona is in good agreement with the location of flare ribbons at the same height, and the QSL at different layers has almost the same evolutionary behavior in time with the flaring brightening of the corresponding layer, which highlights the role of QSL in the research of 3D magnetic reconnection and solar flare, and we suggest that the flare may be triggered by the QSL reconnection. We also suggest that QSL is very important for us to research the essential connection between 3D magnetic reconnection and 2D magnetic reconnection.

  6. Retrieval of Atmospheric Water Vapor Profiles from the Special Sensor Microwave TEMPERATURE-2

    NASA Astrophysics Data System (ADS)

    Al-Khalaf, Abdulrahman Khal

    1995-01-01

    Radiometric measurements from the Special Sensor Microwave/Temperature-2 (SSM/T-2) instrument are used to retrieve atmospheric water vapor profiles over ocean, land, coast, and ice/snow backgrounds. These measurements are used to retrieve vertical distribution of integrated water vapor (IWV) and total integrated water vapor (TIWV) using a physical algorithm. The algorithm infers the presence of cloud at a given height from super-saturation of the retrieved humidity at that height then the algorithm estimate the cloud liquid water content. Retrievals of IWV over five different layers are validated against available ground truth such as global radiosondes and ECMWF analyses. Over ocean, the retrieved total integrated water vapor (TIWV) and IWV close to the surface compare quite well, with those from radiosonde observations and the European Center for Medium Range Weather Forecasts (ECMWF) analyses. However, comparisons to radiosonde results are better than (ECMWF) analyses. TIWV root mean square (RMS) difference was 5.95 mm and TWV RMS difference for the lowest layer (SFC-850 mb) was 2.8 mm for radiosonde comparisons. Water vapor retrieval over land is less accurate than over ocean due to the low contrast between the surface and the atmosphere near the surface; therefore, land retrievals are more reliable at layers above 700 mb. However, TIWV and IWV at all layers compare appropriately with ground truth. Over coastal areas the agreement between retrieved water vapor profiles and ground truth is quite good for both TIWV and IWV for the five layers. The natural variability and large variations in the surface emissivity over ice and snow fields leads toward poor results. Clouds degrade retrievals over land and coast, improve the retrievals a little over ocean, and improve dramatically over snow/ice. Examples of retrieved relative humidity profiles were shown to illustrate the algorithm performance for the actual profile retrieval. The overall features of the retrieved profiles compared well with those from radiosonde data and ECMWF analyses. However, due to the limited number of channels, the retrieved profiles generally do not reproduce the fine details when a rapid change in relative humidity versus height was observed.

  7. Nighttime Convection, Temperature Inversions, and Diurnal Variations at Low Altitudes in the Martian Tropics

    NASA Astrophysics Data System (ADS)

    Hinson, D. P.; Haberle, R. M.; Spiga, A.; Tellmann, S.; Paetzold, M.; Asmar, S. W.; Haeusler, B.

    2014-07-01

    We are using radio occultation measurements and numerical simulations to explore the atmospheric structure and diurnal variations in the lowest few scale heights of the martian atmosphere, with emphasis on nighttime convective layers.

  8. Boundary Layer Transition Protuberance Tests at NASA JSC Arc-Jet Facility

    NASA Technical Reports Server (NTRS)

    Larin, M. E.; Marichalar, J. J.; Kinder, G. R.; Campbell, C. H.; Riccio, J. R.; Nquyen, T. Q.; DelPapa, S. V.; Pulsonetti, M. V.

    2009-01-01

    A series of arc-jet tests in support of the Shuttle Orbiter Boundary Layer Transition flight experiment was conducted in the Channel Nozzle of the NASA Johnson Space Center Atmospheric Reentry Materials and Structures Facility. The boundary layer trip was a protrusion of a certain height and geometry fabricated as part of a 6"x6" tile insert, a special test article made of the Boeing Rigid Insulation tile material and coated with the Reaction Cured Glass used for the bottom fuselage tiles of the Space Shuttle Orbiter. A total of five such tile inserts were manufactured: four with the 0.25-in. trip height, and one with the 0.35-in. trip height. The tile inserts were interchangeably installed in the center of the 24"x24" variable configuration tile array mounted in the 24"x24" test section of the channel nozzle. The objectives of the test series were to demonstrate that the boundary layer trip can safely withstand the Space Shuttle Orbiter flight-like re-entry environments and provide temperature data on the protrusion surface, surfaces of the nearby tiles upstream and downstream of the trip, as well as the bond line between the tiles and the structure. The targeted test environments were defined for the tip of the protrusion, away from the nominal surface of the tile array. The arc jet test conditions were approximated in order to produce the levels of the free stream total enthalpy at the protrusion height similar to those expected in flight. The test articles were instrumented with surface, sidewall and bond line thermocouples. Additionally, Tempilaq temperature-indicating paint was applied to the nominal tiles of the tile array in locations not interfering with the protrusion trip. Five different grades of paint were used that disintegrate at different temperatures between 1500 and 2000 deg F. The intent of using the paint was to gauge the RCG-coated tile surface temperature, as well as determine its usefulness for a flight experiment. This paper provides an overview of the channel nozzle arc jet, test articles and test conditions, as well as the results of the arc-jet tests including the measured temperature response of the test articles, their pre- and post-test surface scans, condition of the thermal paint, and continents on the protrusion tip heating achieved in tests compared to the computational fluid dynamics predictions.

  9. Characterizing the Effects of Convection on the Afternoon to Evening Boundary Layer Transition During Pecan 2015

    DTIC Science & Technology

    2016-12-01

    roughness that is an input variable. For the FP2 site in Kansas, we searched for the climatological surface roughness height used in the Navy’s...COAMPS model for the latitude and longitude of FP2 and in the month of June/July. The climatological roughness height was found to be 0.25m. This is the...mean surface roughness for an area of 1 km on the side near FP2 as the climatological data has a horizontal grid resolution of 1 km. This roughness

  10. Experimental investigation of wood combustion in a fixed bed with hot air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markovic, Miladin, E-mail: m.markovic@utwente.nl; Bramer, Eddy A.; Brem, Gerrit

    Highlights: • Upward combustion is a new combustion concept with ignition by hot primary air. • Upward combustion has three stages: short drying, rapid devolatilization and char combustion. • Variation of fuel moisture and inert content have little influence on the combustion. • Experimental comparison between conventional and upward combustion is presented. - Abstract: Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignitionmore » occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism. MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T > 220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion. Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1 m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of the primary air speed, fuel moisture and inert content on the combustion characteristics (ignition rate, combustion rate, ignition front speed and temperature of the reaction zone) is evaluated. The upward combustion concept decouples the drying, devolatilization and burnout phase. In this way the moisture and inert content of the waste have almost no influence on the combustion process. In this paper an experimental comparison between conventional and reversed combustion is presented.« less

  11. Parameterizing Urban Canopy Layer transport in an Lagrangian Particle Dispersion Model

    NASA Astrophysics Data System (ADS)

    Stöckl, Stefan; Rotach, Mathias W.

    2016-04-01

    The percentage of people living in urban areas is rising worldwide, crossed 50% in 2007 and is even higher in developed countries. High population density and numerous sources of air pollution in close proximity can lead to health issues. Therefore it is important to understand the nature of urban pollutant dispersion. In the last decades this field has experienced considerable progress, however the influence of large roughness elements is complex and has as of yet not been completely described. Hence, this work studied urban particle dispersion close to source and ground. It used an existing, steady state, three-dimensional Lagrangian particle dispersion model, which includes Roughness Sublayer parameterizations of turbulence and flow. The model is valid for convective and neutral to stable conditions and uses the kernel method for concentration calculation. As most Lagrangian models, its lower boundary is the zero-plane displacement, which means that roughly the lower two-thirds of the mean building height are not included in the model. This missing layer roughly coincides with the Urban Canopy Layer. An earlier work "traps" particles hitting the lower model boundary for a recirculation period, which is calculated under the assumption of a vortex in skimming flow, before "releasing" them again. The authors hypothesize that improving the lower boundary condition by including Urban Canopy Layer transport could improve model predictions. This was tested herein by not only trapping the particles, but also advecting them with a mean, parameterized flow in the Urban Canopy Layer. Now the model calculates the trapping period based on either recirculation due to vortex motion in skimming flow regimes or vertical velocity if no vortex forms, depending on incidence angle of the wind on a randomly chosen street canyon. The influence of this modification, as well as the model's sensitivity to parameterization constants, was investigated. To reach this goal, the model was initialized and compared with meteorological and SF6 tracer measurements from the Basel UrBan Boundary Layer Experiment (BUBBLE). The proposed modification does not improve the model's agreement with concentration observations, even though the trapping time shows promising agreement with measurements. Additionally, the modification's influence is smaller than those of different turbulence profiles, zero-plane displacement height and Roughness Sublayer height.

  12. Apparatus and Process for Controlled Nanomanufacturing Using Catalyst Retaining Structures

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien (Inventor)

    2013-01-01

    An apparatus and method for the controlled fabrication of nanostructures using catalyst retaining structures is disclosed. The apparatus includes one or more modified force microscopes having a nanotube attached to the tip portion of the microscopes. An electric current is passed from the nanotube to a catalyst layer of a substrate, thereby causing a localized chemical reaction to occur in a resist layer adjacent the catalyst layer. The region of the resist layer where the chemical reaction occurred is etched, thereby exposing a catalyst particle or particles in the catalyst layer surrounded by a wall of unetched resist material. Subsequent chemical vapor deposition causes growth of a nanostructure to occur upward through the wall of unetched resist material having controlled characteristics of height and diameter and, for parallel systems, number density.

  13. Boundary layer flow of air over water on a flat plate

    NASA Technical Reports Server (NTRS)

    Nelson, John; Alving, Amy E.; Joseph, Daniel D.

    1993-01-01

    A non-similar boundary layer theory for air blowing over a water layer on a flat plate is formulated and studied as a two-fluid problem in which the position of the interface is unknown. The problem is considered at large Reynolds number (based on x), away from the leading edge. A simple non-similar analytic solution of the problem is derived for which the interface height is proportional to x(sub 1/4) and the water and air flow satisfy the Blasius boundary layer equations, with a linear profile in the water and a Blasius profile in the air. Numerical studies of the initial value problem suggests that this asymptotic, non-similar air-water boundary layer solution is a global attractor for all initial conditions.

  14. Effect of Sub-Boundary Layer Vortex Generations on Incident Turbulence

    NASA Technical Reports Server (NTRS)

    Casper, J.; Lin, J. C.; Yao, C. S.

    2003-01-01

    Sub-boundary layer vortex generators were tested in a wind tunnel to assess their effect on the velocity field within the wake region of a turbulent boundary layer. Both mean flow quantities and turbulence statistics were measured. Although very small relative to the boundary layer thickness, these so-called micro vortex generators were found to have a measurable effect on the power spectra and integral length scales of the turbulence at a distance many times the height of the devices themselves. In addition, the potential acoustic impact of these devices is also discussed. Measured turbulence spectra are used as input to an acoustic formulation in a manner that compares predicted sound pressure levels that result from the incident boundary-layer turbulence, with and without the vortex generators in the flow.

  15. The determination of modified barrier heights in Ti/GaN nano-Schottky diodes at high temperature.

    PubMed

    Lee, Seung-Yong; Kim, Tae-Hong; Chol, Nam-Kyu; Seong, Han-Kyu; Choi, Heon-Jin; Ahn, Byung-Guk; Lee, Sang-Kwon

    2008-10-01

    We have investigated the size-effect of the nano-Schottky diodes on the electrical transport properties and the temperature-dependent current transport mechanism in a metal-semiconductor nanowire junction (a Ti/GaN nano-Schottky diode) using current-voltage characterization in the range of 300-423 K. We found that the modified mean Schottky barrier height (SBH) was approximately 0.7 eV with a standard deviation of approximately 0.14 V using a Gaussian distribution model of the barrier heights. The slightly high value of the modified mean SBH (approximately 0.11 eV) compared to the results from the thin-film based Ti/GaN Schottky diodes could be due to an additional oxide layer at the interface between the Ti and GaN nanowires. Moreover, we found that the abnormal behavior of the barrier heights and the ideality factors in a Ti/GaN nano-Schottky diode at a temperature below 423 K could be explained by a combination of the enhancement of the tunneling current and a model with a Gaussian distribution of the barrier heights.

  16. Dynamics of vegetation and soils of oak/saw palmetto scrub after fire: Observations from permanent transects

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.; Hinkle, G. Ross

    1991-01-01

    Ten permanent 15 m transects previously established in two oak/saw palmetto scrub stands burned in December 1986, while two transects remained unburned. Vegetation in the greater than 0.5 m and the less than 0.5 m layers on these transects was sampled at 6, 12, 18, 24, and 36 months postburn and determined structural features of the vegetation (height, percent bare ground, total cover). The vegetation data were analyzed from each sampling by height layer using detrended correspondence analysis ordination. Vegetation data for the greater than 0.5 m layer for the entire time sequence were combined and analyzed using detrended correspondence analysis ordination. Soils were sampled at 6, 12, 18, and 24 months postburn and analyzed for pH, conductivity, organic matter, exchangeable cations (Ca, Mg, K, Na), NO3-N, NH4-N, Al, available metals (Cu, Fe, Mn, Zn), and PO4-P. Shrub species recovered at different rates postfire with saw palmetto reestablishing cover greater than 0.5 m within one year, but the scrub oaks had not returned to preburn cover greater than 0.5 m in 3 years after the fire. These differences in growth rates resulted in dominance shifts after the fire with saw palmetto increasing relative to the scrub oaks. Overall changes in species richness were minor, although changes occurred in species richness by height layers due to different growth rates. Soils of well drained and poorly drained sites differed markedly. Soil responses to the fire appeared minor. Soil pH increased at 6 and 12 months postfire; calcium increased at 6 months postburn. Nitrate-nitrogen increased at 12 months postburn. Low values of conductivity, PO4-P, Mg, K, Na, and Fe at 12 months postburn may be related to heavy rainfall the preceding month. Seasonal variability in some soil parameters appeared to occur.

  17. Sensitivity analysis of WRF model PBL schemes in simulating boundary-layer variables in southern Italy: An experimental campaign

    NASA Astrophysics Data System (ADS)

    Avolio, E.; Federico, S.; Miglietta, M. M.; Lo Feudo, T.; Calidonna, C. R.; Sempreviva, A. M.

    2017-08-01

    The sensitivity of boundary layer variables to five (two non-local and three local) planetary boundary-layer (PBL) parameterization schemes, available in the Weather Research and Forecasting (WRF) mesoscale meteorological model, is evaluated in an experimental site in Calabria region (southern Italy), in an area characterized by a complex orography near the sea. Results of 1 km × 1 km grid spacing simulations are compared with the data collected during a measurement campaign in summer 2009, considering hourly model outputs. Measurements from several instruments are taken into account for the performance evaluation: near surface variables (2 m temperature and relative humidity, downward shortwave radiation, 10 m wind speed and direction) from a surface station and a meteorological mast; vertical wind profiles from Lidar and Sodar; also, the aerosol backscattering from a ceilometer to estimate the PBL height. Results covering the whole measurement campaign show a cold and moist bias near the surface, mostly during daytime, for all schemes, as well as an overestimation of the downward shortwave radiation and wind speed. Wind speed and direction are also verified at vertical levels above the surface, where the model uncertainties are, usually, smaller than at the surface. A general anticlockwise rotation of the simulated flow with height is found at all levels. The mixing height is overestimated by all schemes and a possible role of the simulated sensible heat fluxes for this mismatching is investigated. On a single-case basis, significantly better results are obtained when the atmospheric conditions near the measurement site are dominated by synoptic forcing rather than by local circulations. From this study, it follows that the two first order non-local schemes, ACM2 and YSU, are the schemes with the best performance in representing parameters near the surface and in the boundary layer during the analyzed campaign.

  18. Defining the Habitat of Pacific Tuna of the Eastern Tropical Pacific from Satellite Imagery, Climatologies, and a Global Circulation Model

    NASA Astrophysics Data System (ADS)

    Kiefer, D. A.; Hinton, M. G.; Armstrong, E. M.; Harrison, D. P.; Menemenlis, D.; Hu, C.

    2016-02-01

    With support from NASA's Ecological Forecasting program, we have developed a Tuna Stock Assessment Support System, which merges time series of satellite imagery, a global ocean circulation model, climatology from field surveys, and fisheries data on catch and effort. The purpose of this software is to extract information on the habitat of skipjack, bigeye, and yellowfin tuna in the Eastern Tropical Pacific. The support system is based upon a 50-year record of catch and effort from long-line and purse seine vessels provide by the Inter-American Tropical Tuna Commission. This database, which covers thousands of kilometers of ocean surface, provides monthly information at a 1 degree spatial resolution for the purse seine fleet and 5 degree resolution for the long line fishery. This data is then merged in time and space with satellite imagery of sea surface temperature, chlorophyll, and height, as well as NODC climatologies of oxygen concentration and temperature, and output from NASA's ECCO-2 global circulation model, which provides 3-dimensional simulations of water density, current velocity, mixed layer depth, and sea surface height. Our analyses have yielded a broad range of understanding of the habitat and dynamics both the fish and the fisherman. The purse seine ground, which targets younger tuna, is constrained to waters where the hypoxic layer is shallow. The longline fishery, which targets older tuna, is not constrained by the hypoxic layer and has a much larger distribution. We have characterized the preferences of each species to environmental variables including the depth of the hypoxic layer, the depth of the water column, as well as sea surface height, temperature, and chlorophyll concentration. Finally, the analyses have revealed information on local depletion by fishing, the size distribution of the schools of younger fish, and the impact of ENSO on fishing activities.

  19. The influence of a land-lake surface discontinuity on the convective boundary layer flow

    NASA Astrophysics Data System (ADS)

    Martinez, Daniel; Bange, Jens; Lang, Andreas

    2013-04-01

    The current work addresses the effects of surface discontinuities into the atmospheric boundary layer (ABL) with free convection using data collected during the STINHO 2002 and LITFASS 2003 experimental campaigns. These field experiments were performed during two consecutive summers in the area of Branderburg, Germany, over a heterogeneous area located around the Meteorological Observatory Lindenberg (MOL) of the German Weather Service (DWD). The terrain can be considered flat with areas of pine forests and agricultural fields, where lakes and villages are irregularly distributed to form a heterogeneous landscape representative of central Europe. Specific measurements collected by the helicopter-borne turbulence probe Helipod were selected to focus on the water-land surface transition over lake Scharnuetzel, a small-scale lake of 10 km x 2 km length scale. Four flights with a similar pattern were performed, with heights that range from 70 to 900 m above ground level (a.g.l.), in order to characterise the vertical extent of the surface discontinuity influence to the turbulent flow. The concepts of blending height and internal boundary layer (IBL) have been applied to the experimental data as a theoretical background. In general, the presence of the lake is reflected in the statistical second-order moments of the time series collected below 100 m a.g.l., specially for those time series related with the potential temperature. However, none of the parametrizations found in the literature related with the blending height or IBL seem to be appropriate for this special case, where a small-scale lake is the responsible of the surface heterogeneity. An analysis of the downstream propagation of the IBL depth shows that it depends on (i) the air stability downwind of the surface discontinuity and (ii) the wind speed in the surface layer. These preliminary results should be confirmed with the performance of new experiments.

  20. Characteristics of Boundary Layer Structure during a Persistent Haze Event in the Central Liaoning City Cluster, Northeast China

    NASA Astrophysics Data System (ADS)

    Li, Xiaolan; Wang, Yangfeng; Shen, Lidu; Zhang, Hongsheng; Zhao, Hujia; Zhang, Yunhai; Ma, Yanjun

    2018-04-01

    The characteristics of boundary layer structure during a persistent regional haze event over the central Liaoning city cluster of Northeast China from 16 to 21 December 2016 were investigated based on the measurements of particulate matter (PM) concentration and the meteorological data within the atmospheric boundary layer (ABL). During the observational period, the maximum hourly mean PM2.5 and PM10 concentrations in Shenyang, Anshan, Fushun, and Benxi ranged from 276 to 355 μg m-3 and from 378 to 442 μg m-3, respectively, and the lowest hourly mean atmospheric visibility (VIS) in different cities ranged from 0.14 to 0.64 km. The central Liaoning city cluster was located in the front of a slowly moving high pressure and was mainly controlled by southerly winds. Wind speed (WS) within the ABL (< 2 km) decreased significantly and WS at 10-m height mostly remained below 2 m s-1 during the hazy episodes, which was favorable for the accumulation of air pollutants. A potential temperature inversion layer existed throughout the entire ABL during the earlier hazy episode [from 0500 Local Time (LT) 18 December to 1100 LT 19 December], and then a potential temperature inversion layer developed with the bottom gradually decreased from 900 m to 300 m. Such a stable atmospheric stratification further weakened pollutant dispersion. The atmospheric boundary layer height (ABLH) estimated based on potential temperature profiles was mostly lower than 400 m and varied oppositely with PM2.5 in Shenyang. In summary, weak winds due to calm synoptic conditions, strong thermal inversion layer, and shallow atmospheric boundary layer contributed to the formation and development of this haze event. The backward trajectory analysis revealed the sources of air masses and explained the different characteristics of the haze episodes in the four cities.

  1. Ionospheric response to a recurrent magnetic storm during an event of High Speed Stream in October 2016.

    NASA Astrophysics Data System (ADS)

    Nicoli Candido, C. M.; Resende, L.; Becker-Guedes, F.; Batista, I. S.

    2017-12-01

    In this work we investigate the response of the low latitude ionosphere to recurrent geomagnetic activity caused by events of High speed streams (HSSs)/Corotating Interaction Regions (CIRs) during the low descending phase of solar activity in the solar cycle 24. Intense magnetic field regions called Corotating Interaction Regions or CIRs are created by the interaction of fast streams and slow streams ejected by long duration coronal holes in Sun. This interaction leads to an increase in the mean interplanetary magnetic field (IMF) which causes moderate and recurrent geomagnetic activity when interacts with the Earth's magnetosphere. The ionosphere can be affected by these phenomena by several ways, such as an increase (or decrease) of the plasma ionization, intensification of plasma instabilities during post-sunset/post-midnight hours and subsequent development of plasma irregularities/spread-F, as well as occurrence of plasma scintillation. Therefore, we investigate the low latitude ionospheric response during moderate geomagnetic storm associated to an event of High Speed Stream occurred during decreasing phase of solar activity in 2016. An additional ionization increasing is observed in Es layer during the main peak of the geomagnetic storm. We investigate two possible different mechanisms that caused these extras ionization: the role of prompt penetration of interplanetary electric field, IEFEy at equatorial region, and the energetic electrons precipitation on the E and F layers variations. Finally, we used data from Digisondes installed at equatorial region, São Luís, and at conjugate points in Brazilian latitudes, Boa Vista and Cachoeira Paulista. We analyzed the ionospheric parameters such as the critical frequency of F layer, foF2, the F layer peak height, hmF2, the F layer bottomside, h'F, the blanketing frequency of sporadic layer, fbEs, the virtual height of Es layer h'Es and the top frequency of the Es layer ftEs during this event.

  2. TaiWan Ionospheric Model (TWIM) prediction based on time series autoregressive analysis

    NASA Astrophysics Data System (ADS)

    Tsai, L. C.; Macalalad, Ernest P.; Liu, C. H.

    2014-10-01

    As described in a previous paper, a three-dimensional ionospheric electron density (Ne) model has been constructed from vertical Ne profiles retrieved from the FormoSat3/Constellation Observing System for Meteorology, Ionosphere, and Climate GPS radio occultation measurements and worldwide ionosonde foF2 and foE data and named the TaiWan Ionospheric Model (TWIM). The TWIM exhibits vertically fitted α-Chapman-type layers with distinct F2, F1, E, and D layers, and surface spherical harmonic approaches for the fitted layer parameters including peak density, peak density height, and scale height. To improve the TWIM into a real-time model, we have developed a time series autoregressive model to forecast short-term TWIM coefficients. The time series of TWIM coefficients are considered as realizations of stationary stochastic processes within a processing window of 30 days. These autocorrelation coefficients are used to derive the autoregressive parameters and then forecast the TWIM coefficients, based on the least squares method and Lagrange multiplier technique. The forecast root-mean-square relative TWIM coefficient errors are generally <30% for 1 day predictions. The forecast TWIM values of foE and foF2 values are also compared and evaluated using worldwide ionosonde data.

  3. Improved Work Function of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonic acid) and its Effect on Hybrid Silicon/Organic Heterojunction Solar Cells.

    PubMed

    Shen, Xiaojuan; Chen, Ling; Pan, Jianmei; Hu, Yue; Li, Songjun; Zhao, Jie

    2016-12-01

    Hybrid silicon/organic solar cells have been recently extensively investigated due to their simple structure and low-cost fabrication process. However, the efficiency of the solar cells is greatly limited by the barrier height as well as the carrier recombination at the silicon/organic interface. In this work, hydrochloroplatinic acid (H 2 PtCl 6 ) is employed into the poly(3,4-ethlenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) solution, and the work function (WF) of the PEDOT:PSS layer has been successfully improved. Based on the Pt-modified PEDOT:PSS layer, the efficiency of the silicon/PEDOT:PSS cell can be increased to 11.46%, corresponding to ~20% enhancement to the one without platinum (Pt) modification. Theoretical and experimental results show that, when increasing the WF of the PEDO:PSS layer, the barrier height between the silicon/PEDOT:PSS interface can be effectively enhanced. Meanwhile, the carrier recombination at the interface is significantly reduced. These results can contribute to better understanding of the interfacial mechanism of silicon/PEDOT:PSS interface, and further improving the device performance of silicon/organic solar cells.

  4. Improved Work Function of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonic acid) and its Effect on Hybrid Silicon/Organic Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Shen, Xiaojuan; Chen, Ling; Pan, Jianmei; Hu, Yue; Li, Songjun; Zhao, Jie

    2016-11-01

    Hybrid silicon/organic solar cells have been recently extensively investigated due to their simple structure and low-cost fabrication process. However, the efficiency of the solar cells is greatly limited by the barrier height as well as the carrier recombination at the silicon/organic interface. In this work, hydrochloroplatinic acid (H2PtCl6) is employed into the poly(3,4-ethlenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) solution, and the work function (WF) of the PEDOT:PSS layer has been successfully improved. Based on the Pt-modified PEDOT:PSS layer, the efficiency of the silicon/PEDOT:PSS cell can be increased to 11.46%, corresponding to 20% enhancement to the one without platinum (Pt) modification. Theoretical and experimental results show that, when increasing the WF of the PEDO:PSS layer, the barrier height between the silicon/PEDOT:PSS interface can be effectively enhanced. Meanwhile, the carrier recombination at the interface is significantly reduced. These results can contribute to better understanding of the interfacial mechanism of silicon/PEDOT:PSS interface, and further improving the device performance of silicon/organic solar cells.

  5. A weighted least squares approach to retrieve aerosol layer height over bright surfaces applied to GOME-2 measurements of the oxygen A band for forest fire cases over Europe

    NASA Astrophysics Data System (ADS)

    Nanda, Swadhin; Pepijn Veefkind, J.; de Graaf, Martin; Sneep, Maarten; Stammes, Piet; de Haan, Johan F.; Sanders, Abram F. J.; Apituley, Arnoud; Tuinder, Olaf; Levelt, Pieternel F.

    2018-06-01

    This paper presents a weighted least squares approach to retrieve aerosol layer height from top-of-atmosphere reflectance measurements in the oxygen A band (758-770 nm) over bright surfaces. A property of the measurement error covariance matrix is discussed, due to which photons travelling from the surface are given a higher preference over photons that scatter back from the aerosol layer. This is a potential source of biases in the estimation of aerosol properties over land, which can be mitigated by revisiting the design of the measurement error covariance matrix. The alternative proposed in this paper, which we call the dynamic scaling method, introduces a scene-dependent and wavelength-dependent modification in the measurement signal-to-noise ratio in order to influence this matrix. This method is generally applicable to other retrieval algorithms using weighted least squares. To test this method, synthetic experiments are done in addition to application to GOME-2A and GOME-2B measurements of the oxygen A band over the August 2010 Russian wildfires and the October 2017 Portugal wildfire plume over western Europe.

  6. Spin-Polarization in Quasi-Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Xie, Zheng-Wei; Li, Ling

    2017-05-01

    Spin polarization in ferromagnetic metal/insulator/spin-filter barrier/nonmagnetic metal, referred to as quasi-magnetic tunnel junctions, is studied within the free-electron model. Our results show that large positive or negative spin-polarization can be obtained at high bias in quasi-magnetic tunnel junctions, and within large bias variation regions, the degree of spin-polarization can be linearly tuned by bias. These linear variation regions of spin-polarization with bias are influenced by the barrier thicknesses, barrier heights and molecular fields in the spin-filter (SF) layer. Among them, the variations of thickness and heights of the insulating and SF barrier layers have influence on the value of spin-polarization and the linear variation regions of spin-polarization with bias. However, the variations of molecular field in the SF layer only have influence on the values of the spin-polarization and the influences on the linear variation regions of spin-polarization with bias are slight. Supported by the Key Natural Science Fund of Sichuan Province Education Department under Grant Nos 13ZA0149 and 16ZA0047, and the Construction Plan for Scientific Research Innovation Team of Universities in Sichuan Province under Grant No 12TD008.

  7. Formation and evolution of multimodal size distributions of InAs/GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Pohl, U. W.; Pötschke, K.; Schliwa, A.; Lifshits, M. B.; Shchukin, V. A.; Jesson, D. E.; Bimberg, D.

    2006-05-01

    Self-organized formation and evolution of quantum dot (QD) ensembles with a multimodal size distribution is reported. Such ensembles form after fast deposition near the critical thickness during a growth interruption (GRI) prior to cap layer growth and consist of pure InAs truncated pyramids with heights varying in steps of complete InAs monolayers, thereby creating well-distinguishable sub-ensembles. Ripening during GRI manifests itself by an increase of sub-ensembles of larger QDs at the expense of sub-ensembles of smaller ones, leaving the wetting layer unchanged. The dynamics of the multimodal QD size distribution is theoretically described using a kinetic approach. Starting from a broad distribution of flat QDs, a predominantly vertical growth is found due to strain-induced barriers for nucleation of a next atomic layer on different facets. QDs having initially a shorter base length attain a smaller height, accounting for the experimentally observed sub-ensemble structure. The evolution of the distribution is described by a master equation, which accounts for growth or dissolution of the QDs by mass exchange between the QDs and the adatom sea. The numerical solution is in good agreement with the measured dynamics.

  8. Faraday instability on patterned surfaces

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Rubinstein, Gregory; Jacobi, Ian; Stone, Howard

    2013-11-01

    We show how micro-scale surface patterning can be used to control the onset of the Faraday instability in thin liquid films. It is well known that when a liquid film on a planar substrate is subject to sufficient vibrational accelerations, the free surface destabilizes, exhibiting a family of non-linear standing waves. This instability remains a canonical problem in the study of spontaneous pattern formation, but also has practical uses. For example, the surface waves induced by the Faraday instability have been studied as a means of enhanced damping for mechanical vibrations (Genevaux et al. 2009). Also the streaming within the unstable layer has been used as a method for distributing heterogeneous cell cultures on growth medium (Takagi et al. 2002). In each of these applications, the roughness of the substrate significantly affects the unstable flow field. We consider the effect of patterned substrates on the onset and behavior of the Faraday instability over a range of pattern geometries and feature heights where the liquid layer is thicker than the pattern height. Also, we describe a physical model for the influence of patterned roughness on the destabilization of a liquid layer in order to improve the design of practical systems which exploit the Faraday instability.

  9. Effective slip identities for viscous flow over arbitrary patterned surfaces

    NASA Astrophysics Data System (ADS)

    Kamrin, Ken; Six, Pierre

    2012-11-01

    For a variety of applications, most recently microfluidics, the ability to control fluid motions using surface texturing has been an area of ongoing interest. In this talk, we will develop several identities relating to the construction of effective slip boundary conditions for patterned surfaces. The effective slip measures the apparent slip of a fluid layer flowing over a patterned surface when viewing the flow far from the surface. In specific, shear flows of tall fluid layers over periodic surfaces (surfaces perturbed from a planar no-slip boundary by height and/or hydrophobicity fluctuations) are governed by an effective slip matrix that relates the vector of far-field shear stress (applied to the top of the fluid layer) to the effective slip velocity vector that emerges from the flow. Of particular note, we will demonstrate several general rules that describe the effective slip matrix: (1) that the effective slip matrix is always symmetric, (2) that the effective slip over any hydrophobically striped surface implies a family of related results for slip over other striped surfaces, and (3) that when height or hydrophobicity fluctuations are small, the slip matrix can be approximated directly using a simple formula derived from the surface pattern.

  10. Effect of Organic Blocking Layer on the Energy Storage Characteristics of High-Permittivity Sol-Gel Thin Film Based on Neat 2-Cyanoethyltrimethoxysilane

    NASA Astrophysics Data System (ADS)

    Kim, Yunsang; Kathaperumal, Mohanalingam; Pan, Ming-Jen; Perry, Joseph

    2014-03-01

    Organic-inorganic hybrid sol-gel materials with polar groups that can undergo reorientational polarization provide a potential route to dielectric materials for energy storage. We have investigated the influence of nanoscale polymeric layer on dielectric and energy storage properties of 2-cyanoethyltrimethoxysilane (CNETMS) films. Two polymeric materials, fluoropolymer (CYTOP) and poly(p-phenylene oxide, PPO), are examined as potential materials to control charge injection from electrical contacts into CNETMS films by means of a potential barrier, whose width and height are defined by thickness and permittivity. Blocking layers ranging from 20 nm to 200 nm were deposited on CNETMS films by spin casting and subjected to thermal treatment. Polarization-electric field measurements show 30% increase in extractable energy density with PPO/CNETMS bilayers, relative to CNETMS alone, due to improved breakdown strength. Conduction current of the bilayers indicate that onset of charge conduction at high field is much delayed, which can be translated into effective suppression of charge injection and probability of breakdown events. The results will be discussed in regards to film morphology, field partitioning, width and height of potential barrier, charge trapping and loss of bilayers.

  11. Enhancing photoresponsivity using MoTe2-graphene vertical heterostructures

    NASA Astrophysics Data System (ADS)

    Kuiri, Manabendra; Chakraborty, Biswanath; Paul, Arup; Das, Subhadip; Sood, A. K.; Das, Anindya

    2016-02-01

    MoTe2 with a narrow band-gap of ˜1.1 eV is a promising candidate for optoelectronic applications, especially for the near-infrared photo detection. However, the photo responsivity of few layers MoTe2 is very small (<1 mA W-1). In this work, we show that a few layer MoTe2-graphene vertical heterostructures have a much larger photo responsivity of ˜20 mA W-1. The trans-conductance measurements with back gate voltage show on-off ratio of the vertical transistor to be ˜(0.5-1) × 105. The rectification nature of the source-drain current with the back gate voltage reveals the presence of a stronger Schottky barrier at the MoTe2-metal contact as compared to the MoTe2-graphene interface. In order to quantify the barrier height, it is essential to measure the work function of a few layers MoTe2, not known so far. We demonstrate a method to determine the work function by measuring the photo-response of the vertical transistor as a function of the Schottky barrier height at the MoTe2-graphene interface tuned by electrolytic top gating.

  12. Theoretical face pressure and drag characteristics of forward-facing steps in supersonic turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Patel, D. K.; Czarnecki, K. R.

    1975-01-01

    A theoretical investigation of the pressure distributions and drag characteristics was made for forward facing steps in turbulent flow at supersonic speeds. An approximate solution technique proposed by Uebelhack has been modified and extended to obtain a more consistent numerical procedure. A comparison of theoretical calculations with experimental data generally indicated good agreement over the experimentally available range of ratios of step height to boundary layer thickness from 7 to 0.05.

  13. Bumps and Ridges: Trabeculation Effects in Embryonic Heart Development

    NASA Astrophysics Data System (ADS)

    Battista, Nicholas; Lane, Andrea; Miller, Laura

    2014-11-01

    Trabeculae form in developing zebrafish hearts for Re on the order of 0.1; effects of trabeculae in this flow is not well understood. Dynamic processes, such as vortex formation, are important in the generation of shear at the endothelial surface layer and strains at the epithelial layer, which aid in proper morphology and functionality. In this study, CFD is used to quantify the effects of Re and idealized trabeculae height on the resulting flows.

  14. Single-photon-multi-layer-interference lithography for high-aspect-ratio and three-dimensional SU-8 micro-/nanostructures.

    PubMed

    Ghosh, Siddharth; Ananthasuresh, G K

    2016-01-04

    We report microstructures of SU-8 photo-sensitive polymer with high-aspect-ratio, which is defined as the ratio of height to in-plane feature size. The highest aspect ratio achieved in this work exceeds 250. A multi-layer and single-photon lithography approach is used in this work to expose SU-8 photoresist of thickness up to 100 μm. Here, multi-layer and time-lapsed writing is the key concept that enables nanometer localised controlled photo-induced polymerisation. We use a converging monochromatic laser beam of 405 nm wavelength with a controllable aperture. The reflection of the converging optics from the silicon substrate underneath is responsible for a trapezoidal edge profile of SU-8 microstructure. The reflection induced interfered point-spread-function and multi-layer-single-photon exposure helps to achieve sub-wavelength feature sizes. We obtained a 75 nm tip diameter on a pyramid shaped microstructure. The converging beam profile determines the number of multiple optical focal planes along the depth of field. These focal planes are scanned and exposed non-concurrently with varying energy dosage. It is notable that an un-automated height axis control is sufficient for this method. All of these contribute to realising super-high-aspect-ratio and 3D micro-/nanostructures using SU-8. Finally, we also address the critical problems of photoresist-based micro-/nanofabrication and their solutions.

  15. Detecting surface roughness effects on the atmospheric boundary layer via AIRSAR data: A field experiment in Death Valley, California

    NASA Technical Reports Server (NTRS)

    Blumberg, Dan G.; Greeley, Ronald

    1992-01-01

    The part of the troposphere influenced by the surface of the earth is termed the atmospheric boundary layer. Flow within this layer is influenced by the roughness of the surface; rougher surfaces induce more turbulence than smoother surfaces and, hence, higher atmospheric transfer rates across the surface. Roughness elements also shield erodible particles, thus decreasing the transport of windblown particles. Therefore, the aerodynamic roughness length (z(sub 0)) is an important parameter in aeolian and atmospheric boundary layer processes as it describes the aerodynamic properties of the underlying surface. z(sub 0) is assumed to be independent of wind velocity or height, and dependent only on the surface topography. It is determined using in situ measurements of the wind speed distribution as a function of height. For dry, unvegetated soils the intensity of the radar backscatter (sigma(sup 0)) is affected primarily by surface roughness at a scale comparable with the radar wavelength. Thus, both wind and radar respond to surface roughness variations on a scale of a few meters or less. Greeley showed the existence of a correlation between z(sub 0) and sigma(sup 0). This correlation was based on measurements over lava flows, alluvial fans, and playas in the southwest deserts of the United States. It is shown that the two parameters behave similarly also when there are small changes over a relatively homogeneous surface.

  16. LES on Plume Dispersion in the Convective Boundary Layer Capped by a Temperature Inversion

    NASA Astrophysics Data System (ADS)

    Nakayama, Hiromasa; Tamura, Tetsuro; Abe, Satoshi

    Large-eddy simulation (LES) is applied to the problem of plume dispersion in the spatially-developing convective boundary layer (CBL) capped by a temperature inversion. In order to generate inflow turbulence with buoyant forcing, we first, simulate the neutral boundary layer flow (NBL) in the driver region using Lund's method. At the same time, the temperature profile possessing the inversion part is imposed at the entrance of the driver region and the temperature field is calculated as a passive scalar. Next, the buoyancy effect is introduced into the flow field in the main region. We evaluate the applicability of the LES model for atmospheric dispersion in the CBL flow and compare the characteristics of plume dispersion in the CBL flow with those in the neutral boundary layer. The Richardson number based on the temperature increment across the inversion obtained by the present LES model is 22.4 and the capping effect of the temperature inversion can be captured qualitatively in the upper portion of the CBL. Characteristics of flow and temperature fields in the main portion of CBL flow are similar to those of previous experiments[1],[2] and observations[3]. Concerning dispersion behavior, we also find that mean concentrations decrease immediately above the inversion height and the peak values of r.m.s concentrations are located near the inversion height at larger distances from the point source.

  17. On the Method of Efficient Ice Cold Energy Storage Using a Heat Transfer of Direct Contact Phase Change and a Natural Circulation of a Working Medium in an Enclosure

    NASA Astrophysics Data System (ADS)

    Utaka, Yoshio; Saito, Akio; Nakata, Naoki

    The objectives of this report are to propose a new method of the high performance cold energy storage using ice as a phase change material and to clarify the heat transfer characteristics of the apparatus of ice cold energy storage based on the proposed principle. A working medium vapor layer a water layer and a working medium liquid layer stratified in this order from the top were kept in an enclosure composed of a condenser, an evaporator and a condensate receiver-and-return tube. The direct contact heat transfers between water or ice and a working medium in an enclosure were applied for realizing the high performance cold energy storage and release. In the storage and release processes, water changes the phase between the liquid and the solid, and the working medium cnanges between the vapor and the liquid with a natural circulation. Experimental apparatus was manufactured and R12 and R114 were selected as working media in the thermal energy storage enclosure. It was confirmed by the measurements that the efficient formation and melting of ice were achieved. Then, th e heat transfer characteristics were clarified for the effects of the initial water height, the initial height of woking medium liquid layer and the inlet coolant temperature.

  18. An Experimental Study of Roughness-Induced Instabilities in a Supersonic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Kegerise, Michael A.; King, Rudolph A.; Choudhari, Meelan; Li, Fei; Norris, Andrew

    2014-01-01

    Progress on an experimental study of laminar-to-turbulent transition induced by an isolated roughness element in a supersonic laminar boundary layer is reported in this paper. Here, the primary focus is on the effects of roughness planform shape on the instability and transition characteristics. Four different roughness planform shapes were considered (a diamond, a circle, a right triangle, and a 45 degree fence) and the height and width of each one was held fixed so that a consistent frontal area was presented to the oncoming boundary layer. The nominal roughness Reynolds number was 462 and the ratio of the roughness height to the boundary layer thickness was 0.48. Detailed flow- field surveys in the wake of each geometry were performed via hot-wire anemometry. High- and low-speed streaks were observed in the wake of each roughness geometry, and the modified mean flow associated with these streak structures was found to support a single dominant convective instability mode. For the symmetric planform shapes - the diamond and circular planforms - the instability characteristics (mode shapes, growth rates, and frequencies) were found to be similar. For the asymmetric planform shapes - the right-triangle and 45 degree fence planforms - the mode shapes were asymmetrically distributed about the roughness-wake centerline. The instability growth rates for the asymmetric planforms were lower than those for the symmetric planforms and therefore, transition onset was delayed relative to the symmetric planforms.

  19. Impact of Conifer Forest Litter on Microwave Emission at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; O'Neill, Peggy E.; Lang, Roger H.; Cosh, Michael H.; Joseph, Alicia T.; Jackson, Thomas J.

    2011-01-01

    This study reports on the utilization of microwave modeling, together with ground truth, and L-band (1.4-GHz) brightness temperatures to investigate the passive microwave characteristics of a conifer forest floor. The microwave data were acquired over a natural Virginia Pine forest in Maryland by a ground-based microwave active/passive instrument system in 2008/2009. Ground measurements of the tree biophysical parameters and forest floor characteristics were obtained during the field campaign. The test site consisted of medium-sized evergreen conifers with an average height of 12 m and average diameters at breast height of 12.6 cm. The site is a typical pine forest site in that there is a surface layer of loose debris/needles and an organic transition layer above the mineral soil. In an effort to characterize and model the impact of the surface litter layer, an experiment was conducted on a day with wet soil conditions, which involved removal of the surface litter layer from one half of the test site while keeping the other half undisturbed. The observations showed detectable decrease in emissivity for both polarizations after the surface litter layer was removed. A first-order radiative transfer model of the forest stands including the multilayer nature of the forest floor in conjunction with the ground truth data are used to compute forest emission. The model calculations reproduced the major features of the experimental data over the entire duration, which included the effects of surface litter and ground moisture content on overall emission. Both theory and experimental results confirm that the litter layer increases the observed canopy brightness temperature and obscure the soil emission.

  20. Variation in foliar respiration and wood CO2 efflux rates among species and canopy layers in a wet tropical forest.

    PubMed

    Asao, Shinichi; Bedoya-Arrieta, Ricardo; Ryan, Michael G

    2015-02-01

    As tropical forests respond to environmental change, autotrophic respiration may consume a greater proportion of carbon fixed in photosynthesis at the expense of growth, potentially turning the forests into a carbon source. Predicting such a response requires that we measure and place autotrophic respiration in a complete carbon budget, but extrapolating measurements of autotrophic respiration from chambers to ecosystem remains a challenge. High plant species diversity and complex canopy structure may cause respiration rates to vary and measurements that do not account for this complexity may introduce bias in extrapolation more detrimental than uncertainty. Using experimental plantations of four native tree species with two canopy layers, we examined whether species and canopy layers vary in foliar respiration and wood CO2 efflux and whether the variation relates to commonly used scalars of mass, nitrogen (N), photosynthetic capacity and wood size. Foliar respiration rate varied threefold between canopy layers, ∼0.74 μmol m(-2) s(-1) in the overstory and ∼0.25 μmol m(-2) s(-1) in the understory, but little among species. Leaf mass per area, N and photosynthetic capacity explained some of the variation, but height explained more. Chamber measurements of foliar respiration thus can be extrapolated to the canopy with rates and leaf area specific to each canopy layer or height class. If area-based rates are sampled across canopy layers, the area-based rate may be regressed against leaf mass per area to derive the slope (per mass rate) to extrapolate to the canopy using the total leaf mass. Wood CO2 efflux varied 1.0-1.6 μmol m(-2) s(-1) for overstory trees and 0.6-0.9 μmol m(-2) s(-1) for understory species. The variation in wood CO2 efflux rate was mostly related to wood size, and little to species, canopy layer or height. Mean wood CO2 efflux rate per surface area, derived by regressing CO2 efflux per mass against the ratio of surface area to mass, can be extrapolated to the stand using total wood surface area. The temperature response of foliar respiration was similar for three of the four species, and wood CO2 efflux was similar between wet and dry seasons. For these species and this forest, vertical sampling may yield more accurate estimates than would temporal sampling. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

Top