Neocortical layers I and II of the hedgehog (Erinaceus europaeus). I. Intrinsic organization.
Valverde, F; Facal-Valverde, M V
1986-01-01
The intrinsic organization and interlaminar connections in neocortical layers I and II have been studied in adult hedgehogs (Erinaceus europaeus) using the Golgi method. Layer I contains a dense plexus of horizontal fibers, the terminal dendritic bouquets of pyramidal cells of layer II and of underlying layers, and varieties of intrinsic neurons. Four main types of cells were found in layer I. Small horizontal cells represent most probably persisting foetal horizontal cells described for other mammals. Large horizontal cells, tufted cells, and spinous horizontal cells were also found in this layer. Layer II contains primitive pyramidal cells representing the most outstanding feature of the neocortex of the hedgehog. Most pyramidal cells in layer II have two, three or more apical dendrites, richly covered by spines predominating over the basal dendrites. These cells resemble pyramidal cells found in the piriform cortex, hippocampus and other olfactory areas. It is suggested that the presence of these neurons reflects the retention of a primitive character in neocortical evolution. Cells with intrinsic axons were found among pyramidal cells in layer II. These have smooth dendrites penetrating layer I and local axons forming extremely complex terminal arborizations around the bodies and proximal dendritic portions of pyramidal cells. They most probably effect numerous axo-somatic contacts resembling basket cells. The similarity of some axonal terminals with the chandelier type of axonal arborization is discussed. Other varieties of cells located in deep cortical layers and having ascending axons for layers I and II were also studied. It is concluded that the two first neocortical layers represent a level of important integration in this primitive mammal.
Gatome, Catherine W; Slomianka, Lutz; Mwangi, Dieter K; Lipp, Hans-Peter; Amrein, Irmgard
2010-05-01
This study describes the organisation of the entorhinal cortex of the Megachiroptera, straw-coloured fruit bat and Wahlberg's epauletted fruit bat. Using Nissl and Timm stains, parvalbumin and SMI-32 immunohistochemistry, we identified five fields within the medial (MEA) and lateral (LEA) entorhinal areas. MEA fields E(CL) and E(C) are characterised by a poor differentiation between layers II and III, a distinct layer IV and broad, stratified layers V and VI. LEA fields E(I), E(R) and E(L) are distinguished by cell clusters in layer II, a clear differentiation between layers II and III, a wide columnar layer III and a broad sublayer Va. Clustering in LEA layer II was more typical of the straw-coloured fruit bat. Timm-staining was most intense in layers Ib and II across all fields and layer III of field E(R). Parvalbumin-like staining varied along a medio-lateral gradient with highest immunoreactivity in layers II and III of MEA and more lateral fields of LEA. Sparse SMI-32-like immunoreactivity was seen only in Wahlberg's epauletted fruit bat. Of the neurons in MEA layer II, ovoid stellate cells account for approximately 38%, polygonal stellate cells for approximately 8%, pyramidal cells for approximately 18%, oblique pyramidal cells for approximately 6% and other neurons of variable morphology for approximately 29%. Differences between bats and other species in cellular make-up and cytoarchitecture of layer II may relate to their three-dimensional habitat. Cytoarchitecture of layer V in conjunction with high encephalisation and structural changes in the hippocampus suggest similarities in efferent hippocampal --> entorhinal --> cortical interactions between fruit bats and primates.
Lingenhöhl, K; Finch, D M
1991-01-01
We used in vivo intracellular labeling with horseradish peroxidase in order to study the soma-dendritic morphology and axonal projections of rat entorhinal neurons. The cells responded to hippocampal stimulation with inhibitory postsynaptic potentials, and thus likely received direct or indirect hippocampal input. All cells (n = 24) showed extensive dendritic domains that extended in some cases for more than 1 mm. The dendrites of layer II neurons were largely restricted to layers I and II or layers I-III, while the dendrites of deeper cells could extend through all cortical layers. Computed 3D rotations showed that the basilar dendrites of deep pyramids extended roughly parallel to the cortical layering, and that they were mostly confined to the layer containing the soma and layers immediately adjacent. Total dendritic lengths averaged 9.8 mm +/- 3.8 (SD), and ranged from 5 mm to more than 18 mm. Axonal processes could be visualized in 21 cells. Most of these showed axonal branching within the entorhinal cortex, sometimes extensive. Efferent axonal domains were reconstructed in detail in 3 layer II stellate cells. All 3 projected axons across the subicular complex to the dentate gyrus. One of these cells showed an extensive net-like axonal domain that also projected to several other structures, including the hippocampus proper, subicular complex, and the amygdalo-piriform transition area. The axons of layer III and IV cells projected to the angular bundle, where they continued in a rostral direction. In contrast to the layer II, III and IV cells, no efferent axonal branches leaving the entorhinal cortex could be visualized in 5 layer V neurons. The data indicate that entorhinal neurons can integrate input from a considerable volume of entorhinal cortex by virtue of their extensive dendritic domains, and provide a further basis for specifying the layers in which cells receive synaptic input. The extensive axonal branching pattern seen in most of the cells would support divergent propagation of their activity.
Lu, Jian-ping; Zhang, Xiao-hui; Yu, Xiao-yun
2006-01-01
The structural change of the oviduct of freshwater shrimp (Macrobrachium nipponense) during spawning was examined by electron microscopy. The oviduct wall structural characteristics seem to be influenced significantly by the spawning process. Before the parturition and ovulation, two types of epithelial cells (types I and II) are found in the epithelium. The free surfaces of type I and type II cells have very dense long microvilli. Under the type I and type II cells, are a relatively thick layer of secreting material and a layer of mostly dead cells. After ovulation, two other types of epithelial cells (types III and IV) are found in the oviduct wall epithelium. The free surface of type III cells only has short microvilli scattered on the surface. The thick layer with secreting material and the dead cell layer disappeared at this stage. In some type III cells, the leaking out of cytoplasm from broken cell membrane led to the death of these type III cells. The transformation of all four types of epithelial cells was in the order: IV→I→II→III. PMID:16365928
Method of manufacturing semiconductor having group II-group VI compounds doped with nitrogen
Compaan, Alvin D.; Price, Kent J.; Ma, Xianda; Makhratchev, Konstantin
2005-02-08
A method of making a semiconductor comprises depositing a group II-group VI compound onto a substrate in the presence of nitrogen using sputtering to produce a nitrogen-doped semiconductor. This method can be used for making a photovoltaic cell using sputtering to apply a back contact layer of group II-group VI compound to a substrate in the presence of nitrogen, the back coating layer being doped with nitrogen. A semiconductor comprising a group II-group VI compound doped with nitrogen, and a photovoltaic cell comprising a substrate on which is deposited a layer of a group II-group VI compound doped with nitrogen, are also included.
Interconnections of the visual cortex with the frontal cortex in the rat.
Sukekawa, K
1988-01-01
Horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP) and autoradiography of tritiated leucine were used to trace the cortical origins and terminations of the connections between the visual and frontal cortices in the rat. Ipsilateral reciprocal connections between each subdivision of the visual cortex (areas 17, 18a and 18b) and the posterior half of the medial part of the frontal agranular cortex (PAGm), and their laminar organizations were confirmed. These connections did not appear to have a significant topographic organization. Although in areas 17 and 18b terminals or cells of origin in this fiber system were confined to the anterior half of these cortices, in area 18a they were observed spanning the anteroposterior extent of this cortex, with in part a column like organization. No evidence could be found for the participation of both the posterior parts of areas 17 and 18b and the anterior half of this frontal agranular cortex in these connections. Fibers from each subdivision of the visual cortex to the PAGm terminated predominantly in the lower part of layer I and in layer II. In area 17, this occipito-frontal projection was found to arise from the scattered pyramidal cells in layer V and more prominently from pyramidal cells in layer V of area 17/18a border. In area 18a, the fibers projecting to the PAGm originated mainly from pyramidal cells primarily in layer V and to a lesser extent in layers II, III and VI. Whereas in area 18b, this projection was found to arise mainly from pyramidal cells in layers II and III, to a lesser extent in layers V and VI, and less frequent in layer IV. On the other hand, the reciprocal projection to the visual cortex was found to originate largely from pyramidal cells in layers III and V of the PAGm. In areas 17 and 18a, these fibers terminated in layers I and VI, and in layers I, V and VI, respectively. Whereas in area 18b, they were distributed throughout all layers except layer II.
All-vapor processing of p-type tellurium-containing II-VI semiconductor and ohmic contacts thereof
McCandless, Brian E.
2001-06-26
An all dry method for producing solar cells is provided comprising first heat-annealing a II-VI semiconductor; enhancing the conductivity and grain size of the annealed layer; modifying the surface and depositing a tellurium layer onto the enhanced layer; and then depositing copper onto the tellurium layer so as to produce a copper tellurium compound on the layer.
Entorhinal Cortical Ocean Cells Encode Specific Contexts and Drive Context-Specific Fear Memory
Kitamura, Takashi; Sun, Chen; Martin, Jared; Kitch, Lacey J; Schnitzer, Mark J; Tonegawa, Susumu
2016-01-01
Summary Forming distinct representations and memories of multiple contexts and episodes is thought to be a crucial function of the hippocampal-entorhinal cortical network. The hippocampal dentate gyrus (DG) and CA3 are known to contribute to these functions but the role of the entorhinal cortex (EC) is poorly understood. Here, we show that Ocean cells, excitatory stellate neurons in the medial EC layer II projecting into DG and CA3, rapidly form a distinct representation of a novel context and drive context-specific activation of downstream CA3 cells as well as context-specific fear memory. In contrast, Island cells, excitatory pyramidal neurons in the medial EC layer II projecting into CA1, are indifferent to context-specific encoding or memory. On the other hand, Ocean cells are dispensable for temporal association learning, for which Island cells are crucial. Together, the two excitatory medial EC layer II inputs to the hippocampus have complementary roles in episodic memory. PMID:26402611
Elevated GRIA1 mRNA expression in Layer II/III and V pyramidal cells of the DLPFC in schizophrenia
O’Connor, J.A.; Hemby, S.E.
2012-01-01
The functional integrity of the dorsolateral prefrontal cortex (DLPFC) is altered in schizophrenia leading to profound deficits in working memory and cognition. Growing evidence indicates that dysregulation of glutamate signaling may be a significant contributor to the pathophysiology mediating these effects; however, the contribution of NMDA and AMPA receptors in the mediation of this deficit remains unclear. The equivocality of data regarding ionotropic glutamate receptor alterations of subunit expression in the DLPFC of schizophrenics is likely reflective of subtle alterations in the cellular and molecular composition of specific neuronal populations within the region. Given previous evidence of Layer II/III and V pyramidal cell alterations in schizophrenia and the significant influence of subunit composition on NMDA and AMPA receptor function, laser capture microdissection combined with quantitative PCR was used to examine the expression of AMPA (GRIA1-4) and NMDA (GRIN1, 2A and 2B) subunit mRNA levels in Layer II/III and Layer V pyramidal cells in the DLPFC. Comparisons were made between individuals diagnosed with schizophrenia, bipolar disorder, major depressive disorder and controls (n=15/group). All subunits were expressed at detectable levels in both cell populations for all diseases as well as for the control group. Interestingly, GRIA1 mRNA was significantly increased in both cell types in the schizophrenia group compare to controls, while similar trends were observed in major depressive disorder (Layers II/III and V) and bipolar disorder (Layer V). These data suggest that increased GRIA1 subunit expression may contribute to schizophrenia pathology. PMID:17942280
Characterization of β-FeSi II films as a novel solar cell semiconductor
NASA Astrophysics Data System (ADS)
Fukuzawa, Yasuhiro; Ootsuka, Teruhisa; Otogawa, Naotaka; Abe, Hironori; Nakayama, Yasuhiko; Makita, Yunosuke
2006-04-01
β-FeSi II is an attractive semiconductor owing to its extremely high optical absorption coefficient (α>10 5 cm -1), and is expected to be an ideal semiconductor as a thin film solar cell. For solar cell use, to prepare high quality β-FeSi II films holding a desired Fe/Si ratio, we chose two methods; one is a molecular beam epitaxy (MBE) method in which Fe and Si were evaporated by using normal Knudsen cells, and occasionally by e-gun for Si. Another one is the facing-target sputtering (FTS) method in which deposition of β-FeSi II films is made on Si substrate that is placed out of gas plasma cloud. In both methods to obtain β-FeSi II films with a tuned Fe/Si ratio, Fe/Si super lattice was fabricated by varying Fe and Si deposition thickness. Results showed significant in- and out-diffusion of host Fe and Si atoms at the interface of Si substrates into β-FeSi II layers. It was experimentally demonstrated that this diffusion can be suppressed by the formation of template layer between the epitaxial β-FeSi II layer and the substrate. The template layer was prepared by reactive deposition epitaxy (RDE) method. By fixing the Fe/Si ratio as precisely as possible at 1/2, systematic doping experiments of acceptor (Ga and B) and donor (As) impurities into β-FeSi II were carried out. Systematical changes of electron and hole carrier concentration in these samples along variation of incorporated impurities were observed through Hall effect measurements. Residual carrier concentrations can be ascribed to not only the remaining undesired impurities contained in source materials but also to a variety of point defects mainly produced by the uncontrolled stoichiometry. A preliminary structure of n-β-FeSi II/p-Si used as a solar cell indicated a conversion efficiency of 3.7%.
Production of Exocytic Vesicular Antigens by Primary Liver Cell Cultures
1990-05-08
cells should be plated over the basement membrane proteins, and for optimal results, a second layer of protein should be precipitated over the cells...culture as two layer (two gelatin coated nylon sheets stapled together) and single layer carriers seeded with cells (Table 2). From the performance results...summarized in table 2, it can be seen that double sheets of 2% gelatin: 6% glutaraldehyde (carrier II) made the best carriers. A double layer of
Characterization and isolation of immature neurons of the adult mouse piriform cortex.
Rubio, A; Belles, M; Belenguer, G; Vidueira, S; Fariñas, I; Nacher, J
2016-07-01
Physiological studies indicate that the piriform or primary olfactory cortex of adult mammals exhibits a high degree of synaptic plasticity. Interestingly, a subpopulation of cells in the layer II of the adult piriform cortex expresses neurodevelopmental markers, such as the polysialylated form of neural cell adhesion molecule (PSA-NCAM) or doublecortin (DCX). This study analyzes the nature, origin, and potential function of these poorly understood cells in mice. As previously described in rats, most of the PSA-NCAM expressing cells in layer II could be morphologically classified as tangled cells and only a small proportion of larger cells could be considered semilunar-pyramidal transitional neurons. Most were also immunoreactive for DCX, confirming their immature nature. In agreement with this, detection of PSA-NCAM combined with that of different cell lineage-specific antigens revealed that most PSA-NCAM positive cells did not co-express markers of glial cells or mature neurons. Their time of origin was evaluated by birthdating experiments with halogenated nucleosides performed at different developmental stages and in adulthood. We found that virtually all cells in this paleocortical region, including PSA-NCAM-positive cells, are born during fetal development. In addition, proliferation analyses in adult mice revealed that very few cells were cycling in layer II of the piriform cortex and that none of them was PSA-NCAM-positive. Moreover, we have established conditions to isolate and culture these immature neurons in the adult piriform cortex layer II. We find that although they can survive under certain conditions, they do not proliferate in vitro either. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 748-763, 2016. © 2015 Wiley Periodicals, Inc.
Tandem Solar Cells from Accessible Low Band-Gap Polymers Using an Efficient Interconnecting Layer.
Bag, Santanu; Patel, Romesh J; Bunha, Ajaykumar; Grand, Caroline; Berrigan, J Daniel; Dalton, Matthew J; Leever, Benjamin J; Reynolds, John R; Durstock, Michael F
2016-01-13
Tandem solar cell architectures are designed to improve device photoresponse by enabling the capture of wider range of solar spectrum as compared to single-junction device. However, the practical realization of this concept in bulk-heterojunction polymer systems requires the judicious design of a transparent interconnecting layer compatible with both polymers. Moreover, the polymers selected should be readily synthesized at large scale (>1 kg) and high performance. In this work, we demonstrate a novel tandem polymer solar cell that combines low band gap poly isoindigo [P(T3-iI)-2], which is easily synthesized in kilogram quantities, with a novel Cr/MoO3 interconnecting layer. Cr/MoO3 is shown to be greater than 80% transparent above 375 nm and an efficient interconnecting layer for P(T3-iI)-2 and PCDTBT, leading to 6% power conversion efficiencies under AM 1.5G illumination. These results serve to extend the range of interconnecting layer materials for tandem cell fabrication by establishing, for the first time, that a thin, evaporated layer of Cr/MoO3 can work as an effective interconnecting layer in a tandem polymer solar cells made with scalable photoactive materials.
Cholinergic neurons and fibres in the rat visual cortex.
Parnavelas, J G; Kelly, W; Franke, E; Eckenstein, F
1986-06-01
Choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme, was localized immunocytochemically in neurons and fibres in the rat visual cortex using a monoclonal antibody. ChAT-labelled cells were non-pyramidal neurons, primarily of the bipolar form, distributed in layers II through VI but concentrated in layers II & III. Their perikarya contained a large nucleus and a small amount of perinuclear cytoplasm. The somata and dendrites of all labelled cells received Gray's type I and type II synapses. ChAT-stained axons formed a dense and diffuse network throughout the visual cortex and particularly in layer V. Electron microscopy revealed that the great majority formed type II synaptic contacts with dendrites of various sizes, unlabelled non-pyramidal somata and, on a few occasions, with ChAT-labelled cells. However, a very small number of terminals appeared to form type I synaptic contacts. This study describes the morphological organization of the cholinergic system in the visual cortex, the function of which has been under extensive investigation.
2014-01-01
Background Glaucomatous optic neuropathy, a leading cause of blindness, can progress despite control of intraocular pressure - currently the main risk factor and target for treatment. Glaucoma progression shares mechanisms with neurodegenerative disease, including microglia activation. In the present model of ocular hypertension (OHT), we have recently described morphological signs of retinal microglia activation and MHC-II upregulation in both the untreated contralateral eyes and OHT eyes. By using immunostaining, we sought to analyze and quantify additional signs of microglia activation and differences depending on the retinal layer. Methods Two groups of adult Swiss mice were used: age-matched control (naïve, n = 12), and lasered (n = 12). In the lasered animals, both OHT eyes and contralateral eyes were analyzed. Retinal whole-mounts were immunostained with antibodies against Iba-1, MHC-II, CD68, CD86, and Ym1. The Iba-1+ cell number in the plexiform layers (PL) and the photoreceptor outer segment (OS), Iba-1+ arbor area in the PL, and area of the retina occupied by Iba-1+ cells in the nerve fiber layer-ganglion cell layer (NFL-GCL) were quantified. Results The main findings in contralateral eyes and OHT eyes were: i) ameboid microglia in the NFL-GCL and OS; ii) the retraction of processes in all retinal layers; iii) a higher level of branching in PL and in the OS; iv) soma displacement to the nearest cell layers in the PL and OS; v) the reorientation of processes in the OS; vi) MHC-II upregulation in all retinal layers; vii) increased CD68 immunostaining; and viii) CD86 immunolabeling in ameboid cells. In comparison with the control group, a significant increase in the microglial number in the PL, OS, and in the area occupied by Iba-1+ cells in the NFL-GCL, and significant reduction of the arbor area in the PL. In addition, rounded Iba-1+ CD86+ cells in the NFL-GCL, OS and Ym1+ cells, and rod-like microglia in the NFL-GCL were restricted to OHT eyes. Conclusions Several quantitative and qualitative signs of microglia activation are detected both in the contralateral and OHT eyes. Such activation extended beyond the GCL, involving all retinal layers. Differences between the two eyes could help to elucidate glaucoma pathophysiology. PMID:25064005
Yoshida, Motoharu; Jochems, Arthur; Hasselmo, Michael E
2013-01-01
Mechanisms underlying grid cell firing in the medial entorhinal cortex (MEC) still remain unknown. Computational modeling studies have suggested that cellular properties such as spike frequency adaptation and persistent firing might underlie the grid cell firing. Recent in vivo studies also suggest that cholinergic activation influences grid cell firing. Here we investigated the anatomical distribution of firing frequency adaptation, the medium spike after hyperpolarization potential (mAHP), subthreshold membrane potential oscillations, sag potential, input resistance and persistent firing, in MEC layer II principal cells using in vitro whole-cell patch clamp recordings in rats. Anatomical distributions of these properties were compared along both the dorso-ventral and medio-lateral axes, both with and without the cholinergic receptor agonist carbachol. We found that spike frequency adaptation is significantly stronger in ventral than in dorsal neurons both with and without carbachol. Spike frequency adaptation was significantly correlated with the duration of the mAHP, which also showed a gradient along the dorso-ventral axis. In carbachol, we found that about 50% of MEC layer II neurons show persistent firing which lasted more than 30 seconds. Persistent firing of MEC layer II neurons might contribute to grid cell firing by providing the excitatory drive. Dorso-ventral differences in spike frequency adaptation we report here are opposite from previous predictions by a computational model. We discuss an alternative mechanism as to how dorso-ventral differences in spike frequency adaptation could contribute to different scales of grid spacing.
Battery and fuel cell electrodes containing stainless steel charging additive
Zuckerbrod, David; Gibney, Ann
1984-01-01
An electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer comprises a hydrophilic composite which includes: (i) carbon particles; (ii) stainless steel particles; (iii) a nonwetting agent; and (iv) a catalyst, where at least one current collector contacts said composite.
Ferrante, Michele; Shay, Christopher F.; Tsuno, Yusuke; William Chapman, G.; Hasselmo, Michael E.
2017-01-01
Abstract Medial entorhinal cortex Layer-II stellate cells (mEC-LII-SCs) primarily interact via inhibitory interneurons. This suggests the presence of alternative mechanisms other than excitatory synaptic inputs for triggering action potentials (APs) in stellate cells during spatial navigation. Our intracellular recordings show that the hyperpolarization-activated cation current (Ih) allows post-inhibitory-rebound spikes (PIRS) in mEC-LII-SCs. In vivo, strong inhibitory-post-synaptic potentials immediately preceded most APs shortening their delay and enhancing excitability. In vitro experiments showed that inhibition initiated spikes more effectively than excitation and that more dorsal mEC-LII-SCs produced faster and more synchronous spikes. In contrast, PIRS in Layer-II/III pyramidal cells were harder to evoke, voltage-independent, and slower in dorsal mEC. In computational simulations, mEC-LII-SCs morphology and Ih homeostatically regulated the dorso-ventral differences in PIRS timing and most dendrites generated PIRS with a narrow range of stimulus amplitudes. These results suggest inhibitory inputs could mediate the emergence of grid cell firing in a neuronal network. PMID:26965902
Köhler, C; Wu, J Y; Chan-Palay, V
1985-01-01
The distribution of gamma-aminobutyric acid (GABA) containing nerve cells and terminals was studied at the light and electron microscopic levels in the retrohippocampal region of the rat by using anti-glutamic acid decarboxylase (GAD) and anti-GABA antibodies in immunocytochemistry. Large numbers of GAD and GABA stained cells were found in all retrohippocampal structures. At the ultrastructural level, the immunoreactivity against GABA and against the synthesizing enzyme GAD was localized to cytoplasmic structures, including loose clumps of rough endoplasmic reticulum, ribosomal arrays, outer mitochondrial surfaces and in axonal boutons. The GAD- and GABA-immunoreactive(-i) cells were found in all subfields of the retrohippocampal region (e.g., the subicular complex, the entorhinal area). Within the entorhinal area a slightly larger number of immunoreactive cells could be detected in layers II and III than in the other layers. In the subiculum, pre- and parasubiculum the GAD and GABA-i cells were present in relatively large numbers in all layers, except the molecular layer, which contained only a small number of GABA cells. Within the entorhinal area, GAD and GABA stained cells ranged in size from small (13 micron in diameter) to large (22 micron in diameter). A large number of different morphological classes of cells were found, except pyramidal and stellate cells. In the pre- and parasubiculum, on the other hand, the GABA cells were generally small to medium in size and morphologically more homogeneous than in the subiculum and entorhinal area. The entire retrohippocampal region was densely innervated by GABA preterminal processes, with little variation in the regional density of innervation. Within the entorhinal area, presubiculum and subiculum, a clear difference was found in the laminar pattern of innervation. In all three subfields the densest innervation was in layer II. In the entorhinal area both GAD- and GABA-i axons form palisades of fibers around the somata of neurons, which are tightly packed together in this layer. In the electron microscope both GAD-i and GABA-i were demonstrated in these axons. Axosomatic synaptic contacts were common between axons and the stellate neurons and other cells of this layer. Layers IV and VI appeared less dense in GAD-i terminals but appeared more densely innervated than layers III and V. The lamina dessicans was relatively poor in GAD-i. In the subiculum and presubiculum, as well as all other subfields of the hippocampal region, the innervation is dominated by axo-somatic innervation of layer II cells.(ABSTRACT TRUNCATED AT 400 WORDS)
Keratinocyte differentiation is regulated by the Rho and ROCK signaling pathway.
McMullan, Rachel; Lax, Siân; Robertson, Vicki H; Radford, David J; Broad, Simon; Watt, Fiona M; Rowles, Alison; Croft, Daniel R; Olson, Michael F; Hotchin, Neil A
2003-12-16
The epidermis comprises multiple layers of specialized epithelial cells called keratinocytes. As cells are lost from the outermost epidermal layers, they are replaced through terminal differentiation, in which keratinocytes of the basal layer cease proliferating, migrate upwards, and eventually reach the outermost cornified layers. Normal homeostasis of the epidermis requires that the balance between proliferation and differentiation be tightly regulated. The GTP binding protein RhoA plays a fundamental role in the regulation of the actin cytoskeleton and in the adhesion events that are critically important to normal tissue homeostasis. Two central mediators of the signals from RhoA are the ROCK serine/threonine kinases ROCK-I and ROCK-II. We have analyzed ROCK's role in the regulation of epidermal keratinocyte function by using a pharmacological inhibitor and expressing conditionally active or inactive forms of ROCK-II in primary human keratinocytes. We report that blocking ROCK function results in inhibition of keratinocyte terminal differentiation and an increase in cell proliferation. In contrast, activation of ROCK-II in keratinocytes results in cell cycle arrest and an increase in the expression of a number of genes associated with terminal differentiation. Thus, these results indicate that ROCK plays a critical role in regulating the balance between proliferation and differentiation in human keratinocytes.
NASA Astrophysics Data System (ADS)
Yu, Mei; Yuan, Zhiqin; Lu, Chao
2017-09-01
This work presented a facile and eco-friendly method for the determination of cobalt ions (Co(II)) in living cells based on layered double hydroxides (Mg-Al CO3-LDHs) enhanced chemiluminescence (CL) emission of a Co(II)-hydrogen peroxide-sodium hydroxide system. The enhanced CL emission was attributed to the large specific surface area of Mg-Al CO3-LDHs, which facilitates the generation of an excited-stated intermediate. The proposed method displayed high selectivity toward Co(II) over other metal ions. Under the optimal conditions, the increased CL intensity showed a linear response versus Co(II) concentration in the range of 5.0-1000 nM with a detection limit of 3.7 nM (S/N = 3). The relative standard deviation for nine repeated measurements of 100 nM Co(II) was 3.2%. Furthermore, the proposed method was successfully applied to detect Co(II) in living cell samples, and the results were agreed with those obtained by the standard ICP-MS method.
Interlaminar and lateral excitatory amino acid connections in the striate cortex of monkey.
Kisvarday, Z F; Cowey, A; Smith, A D; Somogyi, P
1989-02-01
The intrinsic excitatory amino acid pathways within the striate cortex of monkeys were studied by autoradiographic detection of retrogradely labeled somata following microinjections of D-3H-aspartate (D-3H-Asp) into different layers. The labeled amino acid was selectively accumulated by subpopulations of neurons and, to a small extent, by glial cells, the latter mainly in the supragranular layers. Immunocytochemical detection of neurons containing GABA showed that, apart from a few cells exclusively in layer I, GABAergic neurons do not accumulate D-3H-Asp. Several lines of evidence suggest that D-3H-Asp uptake occurred only at nerve terminals; thus, the pattern of perikaryal labeling allowed the delineation of interlaminar and lateral projections. Neurons in layer I probably project laterally, and layer I receives wide-ranging projections from layer IVB and layer V from cells up to 1300 microns laterally. Some neurons in layer II send a focused projection to lower layer VI. Some neurons in layers II/III project up to 1 mm laterally within their own layer, but relatively few neurons can be labeled in these projections. Similarly, in layers II/III few neurons can be retrogradely labeled from layers V and upper VI, and this projection is organized such that cells closer to the pia project deeper in layer V/VI. The connections of layer IVA could not be revealed separately because of the difficulty of confining injections to this thin sublamina. Neurons in layer IVB project up to 1300 microns within IVB itself. A small number of cells from IVB also project to layers III, IVC-alpha, V, and VI with much more restricted lateral spread. Neurons in upper IVC-alpha send axons to layer IVB with at least 600-800 microns lateral spread. Neurons in lower IVC-alpha/upper IVC-beta project to layer III with at least 300-500 microns lateral spread. The bottom 50-80 microns of layer IVC-beta contains neurons with a very focused projection, apparently exclusively to the layer III/IVA border region. Both layers IVC alpha and beta have rich connections within themselves, the beta sublayer having more restricted lateral connections. Some neurons in layer IVC-beta give a laterally restricted small input to layers IVC-alpha and IVB. Both IVC-alpha and -beta project to layers V and VI, and these projections are spread at least 400 microns laterally. Neurons in layer V project to all layers, but the projection to layers I-III and within layer V itself spread much further laterally than the projections to layers IV and VI.(ABSTRACT TRUNCATED AT 400 WORDS)
Armstrong, Caren; Wang, Jessica; Lee, Soo Yeun; Broderick, John; Bezaire, Marianne J; Lee, Sang-Hun; Soltesz, Ivan
2015-01-01
The medial entorhinal cortex layer II (MEClayerII) is a brain region critical for spatial navigation and memory, and it also demonstrates a number of changes in patients with, and animal models of, temporal lobe epilepsy (TLE). Prior studies of GABAergic microcircuitry in MEClayerII revealed that cholecystokinin-containing basket cells (CCKBCs) select their targets on the basis of the long-range projection pattern of the postsynaptic principal cell. Specifically, CCKBCs largely avoid reelin-containing principal cells that form the perforant path to the ipsilateral dentate gyrus and preferentially innervate non-perforant path forming calbindin-containing principal cells. We investigated whether parvalbumin containing basket cells (PVBCs), the other major perisomatic targeting GABAergic cell population, demonstrate similar postsynaptic target selectivity as well. In addition, we tested the hypothesis that the functional or anatomic arrangement of circuit selectivity is disrupted in MEClayerII in chronic TLE, using the repeated low-dose kainate model in rats. In control animals, we found that PVBCs innervated both principal cell populations, but also had significant selectivity for calbindin-containing principal cells in MEClayerII. However, the magnitude of this preference was smaller than for CCKBCs. In addition, axonal tracing and paired recordings showed that individual PVBCs were capable of contacting both calbindin and reelin-containing principal cells. In chronically epileptic animals, we found that the intrinsic properties of the two principal cell populations, the GABAergic perisomatic bouton numbers, and selectivity of the CCKBCs and PVBCs remained remarkably constant in MEClayerII. However, miniature IPSC frequency was decreased in epilepsy, and paired recordings revealed the presence of direct excitatory connections between principal cells in the MEClayerII in epilepsy, which is unusual in normal adult MEClayerII. Taken together, these findings advance our knowledge about the organization of perisomatic inhibition both in control and in epileptic animals. PMID:26663222
Armstrong, Caren; Wang, Jessica; Yeun Lee, Soo; Broderick, John; Bezaire, Marianne J; Lee, Sang-Hun; Soltesz, Ivan
2016-06-01
The medial entorhinal cortex layer II (MEClayerII ) is a brain region critical for spatial navigation and memory, and it also demonstrates a number of changes in patients with, and animal models of, temporal lobe epilepsy (TLE). Prior studies of GABAergic microcircuitry in MEClayerII revealed that cholecystokinin-containing basket cells (CCKBCs) select their targets on the basis of the long-range projection pattern of the postsynaptic principal cell. Specifically, CCKBCs largely avoid reelin-containing principal cells that form the perforant path to the ipsilateral dentate gyrus and preferentially innervate non-perforant path forming calbindin-containing principal cells. We investigated whether parvalbumin containing basket cells (PVBCs), the other major perisomatic targeting GABAergic cell population, demonstrate similar postsynaptic target selectivity as well. In addition, we tested the hypothesis that the functional or anatomic arrangement of circuit selectivity is disrupted in MEClayerII in chronic TLE, using the repeated low-dose kainate model in rats. In control animals, we found that PVBCs innervated both principal cell populations, but also had significant selectivity for calbindin-containing principal cells in MEClayerII . However, the magnitude of this preference was smaller than for CCKBCs. In addition, axonal tracing and paired recordings showed that individual PVBCs were capable of contacting both calbindin and reelin-containing principal cells. In chronically epileptic animals, we found that the intrinsic properties of the two principal cell populations, the GABAergic perisomatic bouton numbers, and selectivity of the CCKBCs and PVBCs remained remarkably constant in MEClayerII . However, miniature IPSC frequency was decreased in epilepsy, and paired recordings revealed the presence of direct excitatory connections between principal cells in the MEClayerII in epilepsy, which is unusual in normal adult MEClayerII . Taken together, these findings advance our knowledge about the organization of perisomatic inhibition both in control and in epileptic animals. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Dufrêne, Y F
2001-02-01
The application of atomic force microscopy (AFM) to probe the ultrastructure and physical properties of microbial cell surfaces is reviewed. The unique capabilities of AFM can be summarized as follows: imaging surface topography with (sub)nanometer lateral resolution; examining biological specimens under physiological conditions; measuring local properties and interaction forces. AFM is being used increasingly for: (i) visualizing the surface ultrastructure of microbial cell surface layers, including bacterial S-layers, purple membranes, porin OmpF crystals and fungal rodlet layers; (ii) monitoring conformational changes of individual membrane proteins; (iii) examining the morphology of bacterial biofilms, (iv) revealing the nanoscale structure of living microbial cells, including fungi, yeasts and bacteria, (v) mapping interaction forces at microbial surfaces, such as van der Waals and electrostatic forces, solvation forces, and steric/bridging forces; and (vi) probing the local mechanical properties of cell surface layers and of single cells.
Passivating Window/First Layer AR Coating for Space Solar Cells
NASA Technical Reports Server (NTRS)
Faur, Mircea; Faur, Maria; Bailey, S. G.; Flood, D. J.; Brinker, D. J.; Alterovitz, S. A.; Wheeler, D. R.; Matesscu, G.; Goradia, C.; Goradia, M.
2004-01-01
Chemically grown oxides, if well designed, offer excellent surface passivation of the emitter surface of space solar cells and can be used as effective passivating window/first layer AR coating. In this paper, we demonstrate the effectiveness of using a simple room temperature wet chemical technique to grow cost effective passivating layers on solar cell front surfaces after the front grid metallization step. These passivating layers can be grown both on planar and porous surfaces. Our results show that these oxide layers: (i) can effectively passivate the from the surface, (ii) can serve as an effective optical window/first layer AR coating, (iii) are chemically, thermally and UV stable, and (iv) have the potential of improving the BOL and especially the EOL efficiency of space solar cells. The potential of using this concept to simplify the III-V based space cell heterostructures while increasing their BOL and EOL efficiency is also discussed.
TenHave-Opbroek, A. A.; Hammond, W. G.; Benfield, J. R.; Teplitz, R. L.; Dijkman, J. H.
1993-01-01
The type II alveolar epithelial cell is one of two pluripotential stem cell phenotypes in normal mammalian lung morphogenesis; cells manifesting this phenotype have been found to constitute bronchioloalveolar regions of canine adenocarcinomas. We now studied type II cell expression in canine acinar adenocarcinomas and adenoid cystic (bronchial gland) carcinomas, using the same bronchogenic carcinoma model (subcutaneous bronchial autografts treated with 3-methylcholanthrene). Distinctive features of type II cells are the approximately cuboid cell shape, large and roundish nucleus, immunofluorescent staining of the cytoplasm for the surfactant protein SP-A, and presence of multilamellar bodies or their precursory forms. Cells with these type II cell characteristics were found in the basal epithelial layer of all tumor lesions and in upper layers as far as the lumen, singly or in clusters; they were also found in early invasive carcinomatous lesions but not in bronchial glands or bronchial epithelium before carcinogen exposure. Immunoblots of tumor homogenates showed reactive proteins within size classes of SP-A (28 to 36 kd) or its dimeric form (56 to 72 kd). These findings and those previously reported are consistent with the concept that chemical carcinogenesis in the adult bronchial epithelium may lead to type II cell carcinomas of varying glandular (acinar, adenoidcystic or bronchioloalveolar) growth patterns. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 PMID:8386445
Pazos, Manuel; Otten, Christian; Vollmer, Waldemar
2018-03-20
Peptidoglycan encases the bacterial cytoplasmic membrane to protect the cell from lysis due to the turgor. The final steps of peptidoglycan synthesis require a membrane-anchored substrate called lipid II, in which the peptidoglycan subunit is linked to the carrier lipid undecaprenol via a pyrophosphate moiety. Lipid II is the target of glycopeptide antibiotics and several antimicrobial peptides, and is degraded by 'attacking' enzymes involved in bacterial competition to induce lysis. Here we describe two protocols using thin-layer chromatography (TLC) and high pressure liquid chromatography (HPLC), respectively, to assay the digestion of lipid II by phosphatases such as Colicin M or the LXG toxin protein TelC from Streptococcus intermedius . The TLC method can also monitor the digestion of undecaprenyl (pyro)phosphate, whereas the HPLC method allows to separate the di-, mono- or unphosphorylated disaccharide pentapeptide products of lipid II.
Pazos, Manuel; Otten, Christian; Vollmer, Waldemar
2018-01-01
Peptidoglycan encases the bacterial cytoplasmic membrane to protect the cell from lysis due to the turgor. The final steps of peptidoglycan synthesis require a membrane-anchored substrate called lipid II, in which the peptidoglycan subunit is linked to the carrier lipid undecaprenol via a pyrophosphate moiety. Lipid II is the target of glycopeptide antibiotics and several antimicrobial peptides, and is degraded by ‘attacking’ enzymes involved in bacterial competition to induce lysis. Here we describe two protocols using thin-layer chromatography (TLC) and high pressure liquid chromatography (HPLC), respectively, to assay the digestion of lipid II by phosphatases such as Colicin M or the LXG toxin protein TelC from Streptococcus intermedius. The TLC method can also monitor the digestion of undecaprenyl (pyro)phosphate, whereas the HPLC method allows to separate the di-, mono- or unphosphorylated disaccharide pentapeptide products of lipid II. PMID:29651453
Differential distribution of annexins-I, -II, -IV, and -VI in synovium.
Goulding, N J; Dixey, J; Morand, E F; Dodds, R A; Wilkinson, L S; Pitsillides, A A; Edwards, J C
1995-01-01
OBJECTIVES--To examine the distribution of four annexins in non-inflamed rheumatoid arthritic and osteoarthritic synovial tissue. METHODS--Frozen sections were stained with monoclonal antibodies (MAb) specific for annexins-I, -II, -IV, and -VI, and for cell lineage related markers including CD68 and CD14 (macrophages), prolyl hydroxylase (fibroblasts), and CD3 (T cells). RESULTS--Each of the annexins was present in synovial tissues in significant amounts in the three groups studied. Annexin-I was predominantly found within the synovial lining layer and double labelling showed it to be present predominantly in cells of the macrophage lineage. In rheumatoid specimens there was increased staining within the lining layer, perivascularly and on macrophages within the tissue stroma. Annexin-II was present in a distribution similar to that of annexin-I, but with more prominent perivascular staining. Annexins-IV and -VI were seen chiefly in association with areas of lymphocyte infiltration in rheumatoid tissue, whereas annexins-I and -II were absent from these areas. Endothelial cells stained weakly positive for annexins-I and -II, and more strongly for -IV and -VI. CONCLUSIONS--This study demonstrates that annexins (particularly annexin-I, a putative mediator of the anti-inflammatory activities of glucocorticoids) are abundant in rheumatoid and non-rheumatoid synovial tissue, annexins-IV and -VI having a distribution distinct from that of -I and -II. Images PMID:7492225
Effect of Hedera helix on lung histopathology in chronic asthma.
Hocaoglu, Arzu Babayigit; Karaman, Ozkan; Erge, Duygu Olmez; Erbil, Guven; Yilmaz, Osman; Kivcak, Bijen; Bagriyanik, H Alper; Uzuner, Nevin
2012-12-01
Hedera helix is widely used to treat bronchial asthma for many years. However, effects of this herb on lung histopathology is still far from clear. We aimed to determine the effect of oral administration of Hedera helix on lung histopathology in a murine model of chronic asthma.BALB/c mice were divided into four groups; I (Placebo), II (Hedera helix), III (Dexamethasone) and IV (Control). All mice except controls were sensitized and challenged with ovalbumin. Then, mice in group I received saline, group II 100 mg/kg Hedera helix and group III 1 mg/kg dexamethasone via orogastic gavage once daily for one week. Airway histopathology was evaluated by using light and electron microscopy in all groups.Goblet cell numbers and thicknesses of basement membrane were found significantly lower in group II, but there was no statistically significant difference in terms of number of mast cells, thicknesses of epithelium and subepithelial smooth muscle layers between group I and II. When Hedera helix and dexamethasone groups were compared with each other, thickness of epithelium, subepithelial muscle layers, number of mast cells and goblet cells of group III were significantly ameliorated when compared with the group II. Although Hedera helix administration reduced only goblet cell counts and the thicknesses of basement membrane in the asthmatic airways, dexamethasone ameliorated all histopathologic parameters except thickness of basement membrane better than Hedera helix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavanagh, M.E.; Parnavelas, J.G.
1990-07-22
The postnatal development of neuropeptide Y (NPY)-immunoreactive neurons, previously labeled with (3H)thymidine on embryonic days E14-E21, has been studied in the rat occipital cortex. Immunohistochemistry combined with autoradiography showed evidence of a modified inside-out pattern of maturation. NPY-neurons are generated between E14 and E20 and are found in layers II-VI of the cortex and the subcortical white matter. NPY neurons from all these birthdates are overproduced at first, although cells generated at E16 produce the greatest excess, followed by E15 and E17. Some of these transient neurons are found in the wrong layer for their birthdates, and their elimination producesmore » a more correct alignment at maturity. However, most of the NPY neurons that survive are generated at E17, and these cells are found throughout layers II-VI with a preponderance in layer VI. This evidence is strongly suggestive of cell death rather than merely cessation of production of NPY.« less
Fan, Chunling; Zhang, Mengqi; Shang, Lei; Cynthia, Ngobe Akume; Li, Zhi; Yang, Zhenyu; Chen, Dan; Huang, Jufang; Xiong, Kun
2014-01-01
Previous studies have demonstrated that doublecortin-positive immature neurons exist predominantly in the superficial layer of the cerebral cortex of adult mammals such as guinea pigs, and these neurons exhibit very weak properties of self-proliferation during adulthood under physiological conditions. To verify whether environmental enrichment has an impact on the proliferation and maturation of these immature neurons in the prefrontal cortex of adult guinea pigs, healthy adult guinea pigs were subjected to short-term environmental enrichment. Animals were allowed to play with various cognitive and physical stimulating objects over a period of 2 weeks, twice per day, for 60 minutes each. Immunofluorescence staining results indicated that the number of doublecortin-positive cells in layer II of the prefrontal cortex was significantly increased after short-term environmental enrichment exposure. In addition, these doublecortin-positive cells co-expressed 5-bromo-2-deoxyuridine (a marker of cell proliferation), c-Fos (a marker of cell viability) and NeuN (a marker of mature neurons). Experimental findings showed that short-term environmental enrichment can induce proliferation, activation and maturation of doublecortin-positive cells in layer II of the prefrontal cortex of adult guinea pigs. PMID:25206818
Layer-specific input to distinct cell types in layer 6 of monkey primary visual cortex.
Briggs, F; Callaway, E M
2001-05-15
Layer 6 of monkey V1 contains a physiologically and anatomically diverse population of excitatory pyramidal neurons. Distinctive arborization patterns of axons and dendrites within the functionally specialized cortical layers define eight types of layer 6 pyramidal neurons and suggest unique information processing roles for each cell type. To address how input sources contribute to cellular function, we examined the laminar sources of functional excitatory input onto individual layer 6 pyramidal neurons using scanning laser photostimulation. We find that excitatory input sources correlate with cell type. Class I neurons with axonal arbors selectively targeting magnocellular (M) recipient layer 4Calpha receive input from M-dominated layer 4B, whereas class I neurons whose axonal arbors target parvocellular (P) recipient layer 4Cbeta receive input from P-dominated layer 2/3. Surprisingly, these neuronal types do not differ significantly in the inputs they receive directly from layers 4Calpha or 4Cbeta. Class II cells, which lack dense axonal arbors within layer 4C, receive excitatory input from layers targeted by their local axons. Specifically, type IIA cells project axons to and receive input from the deep but not superficial layers. Type IIB neurons project to and receive input from the deepest and most superficial, but not middle layers. Type IIC neurons arborize throughout the cortical layers and tend to receive inputs from all cortical layers. These observations have implications for the functional roles of different layer 6 cell types in visual information processing.
Effects of TiO2 electron blocking layer on photovoltaic performance of photo-electrochemical cell
NASA Astrophysics Data System (ADS)
Bin, Jae-Wook; Kim, Doo-Hwan; Sung, Youl-Moon; Park, Min-Woo
2014-06-01
Dye-sensitized solar cells (DSCs) have used transparent conductive Fluorine-doped SnO2 (FTO) glass/porous TiO2 layer attached using dye molecules/electrolytes (I-/I3-)/Platinium-coated FTO glass configuration. In this work, prior to the coating of nanoporous TiO2 layer on FTO glass, a dense layer of TiO2 film with a thickness of less than ∼100 nm was deposited directly onto the FTO as an electron blocking layer by radio frequency (RF) magnetron sputtering. Under 100 mW/cm2 illumination at AM 1.5, the energy conversion efficiency (η) of the prepared DSC with electron blocking layer of 80 nm thickness was 6.9% (Voc = 0.67 V, Jsc = 12.18 mA/cm2, ff = 0.63), which is increased by 1.3% compared to the typical cell without electron blocking layer.
Mixed ternary heterojunction solar cell
Chen, Wen S.; Stewart, John M.
1992-08-25
A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.
Zhang, Ting; Yao, Shaohua; Wang, Ping; Yin, Chaoran; Xiao, Chun; Qian, Meilin; Liu, Donghui; Zheng, Lemin; Meng, Wentong; Zhu, Hongyan; Liu, Jin; Xu, Hong; Mo, Xianming
2011-03-18
The high density lipoprotein (HDL) represents a class of lipid- and protein-containing particles and consists of two major apolipoproteins apoA-I and apoA-II. ApoA-II has been shown to be involved in the pathogenesis of insulin resistance, adiposity, diabetes, and metabolic syndrome. In embryo, apoa2 mRNAs are abundant in the liver, brain, lung, placenta, and in fish yolk syncytial layer (YSL), suggesting that apoa2 may perform a function during embryonic development. Here we find out that apoa2 modulates zebrafish embryonic development by regulating the organization of YSL. Disruption of apoa2 function in zebrafish caused chromosome fusing, which strongly blocked YSL nuclear division, inducing disorders in YSL organization and finally disturbing the embryonic epiboly. Purified native human apoA-II was able specifically to rescue the defects and induced nuclear division in zebrafish embryos and in human HeLa cells. The C terminus of apoA-II was required for the proper chromosome separation during nuclear division of YSL in zebrafish embryos and in human HeLa cells. Our data indicate that organization of YSL is required for blastoderm patterning and morphogenesis and suggest that apolipoprotein apoA-II is a novel factor of nuclear division in YSL involved in the regulation of early zebrafish embryonic morphogenesis and in mammalian cells for proliferation.
Zhang, Ting; Yao, Shaohua; Wang, Ping; Yin, Chaoran; Xiao, Chun; Qian, Meilin; Liu, Donghui; Zheng, Lemin; Meng, Wentong; Zhu, Hongyan; Liu, Jin; Xu, Hong; Mo, Xianming
2011-01-01
The high density lipoprotein (HDL) represents a class of lipid- and protein-containing particles and consists of two major apolipoproteins apoA-I and apoA-II. ApoA-II has been shown to be involved in the pathogenesis of insulin resistance, adiposity, diabetes, and metabolic syndrome. In embryo, apoa2 mRNAs are abundant in the liver, brain, lung, placenta, and in fish yolk syncytial layer (YSL), suggesting that apoa2 may perform a function during embryonic development. Here we find out that apoa2 modulates zebrafish embryonic development by regulating the organization of YSL. Disruption of apoa2 function in zebrafish caused chromosome fusing, which strongly blocked YSL nuclear division, inducing disorders in YSL organization and finally disturbing the embryonic epiboly. Purified native human apoA-II was able specifically to rescue the defects and induced nuclear division in zebrafish embryos and in human HeLa cells. The C terminus of apoA-II was required for the proper chromosome separation during nuclear division of YSL in zebrafish embryos and in human HeLa cells. Our data indicate that organization of YSL is required for blastoderm patterning and morphogenesis and suggest that apolipoprotein apoA-II is a novel factor of nuclear division in YSL involved in the regulation of early zebrafish embryonic morphogenesis and in mammalian cells for proliferation. PMID:21212265
Teaching resources. Movement of macromolecules in plant cells through plasmodesmata.
Jorgensen, Richard A; Lucas, William J
2006-02-21
Plasmodesmata are intercellular organelles in plants that allow the passage of molecules between plant cells. Movement through plasmodesmata may allow transcription factors expressed in one cell to move into adjacent cells, thereby regulating gene expression non-cell autonomously. The two animations illustrate (i) movement of a protein through an individual plasmodesma and (ii) an experiment to detect the movement of the transcription factor through plasmodesmata from the L1 layer of a plant meristem into the L2 and L3 layers. These two animations would be useful in teaching plant biology or plant development or a cell biology class discussing mechanisms of intercellular transport.
Cell structure and function in the visual cortex of the cat
Kelly, J. P.; Van Essen, D. C.
1974-01-01
1. The organization of the visual cortex was studied with a technique that allows one to determine the physiology and morphology of individual cells. Micro-electrodes filled with the fluorescent dye Procion yellow were used to record intracellularly from cells in area 17 of the cat. The visual receptive field of each neurone was classified as simple, complex, or hypercomplex, and the cell was then stained by the iontophoretic injection of dye. 2. Fifty neurones were successfully examined in this way, and their structural features were compared to the varieties of cell types seen in Golgi preparations of area 17. The majority of simple units were stellate cells, whereas the majority of complex and hypercomplex units were pyramidal cells. Several neurones belonged to less common morphological types, such as double bouquet cells. Simple cells were concentrated in layer IV, hypercomplex cells in layer II + III, and complex cells in layers II + III, V and VI. 3. Electrically inexcitable cells that had high resting potentials but no impulse activity were stained and identified as glial cells. Glial cells responded to visual stimuli with slow graded depolarizations, and many of them showed a preference for a stimulus orientation similar to the optimal orientation for adjacent neurones. 4. The results show that there is a clear, but not absolute correlation between the major structural and functional classes of cells in the visual cortex. This approach, linking the physiological properties of a single cell to a given morphological type, will help in furthering our understanding of the cerebral cortex. ImagesPlate 4Plate 1Plate 2Plate 3 PMID:4136579
Wonsawat, Wanida; Dungchai, Wijitar; Motomizu, Shoji; Chuanuwatanakul, Suchada; Chailapakul, Orawon
2012-01-01
A low-cost thin-layer electrochemical flow-through cell based on a carbon paste electrode (CPE), was constructed for the highly sensitive determination of cadmium(II) (Cd(2+)) and lead(II) (Pb(2+)) ions. The sensitivity of the proposed cell for Cd(2+) and Pb(2+) ion detection was improved by using the smallest channel height without the need for any complicated electrode modification. Under the optimum conditions, the detection limits of Cd(2+) and Pb(2+) ions (0.08 and 0.07 µg dm(-3), respectively) were 13.8- and 11.4-fold lower than that of a commercial flow cell (1.1 and 0.8 µg dm(-3), respectively). Moreover, the percentage recoveries of Cd(2+) and Pb(2+) for the in-house designed thin-layer flow cell were higher than those for the commercially available cell in all tested water samples, and within the acceptable range. The proposed flow cell is promising as an inexpensive and alternative one for the highly sensitive monitoring of heavy metal ions. 2012 © The Japan Society for Analytical Chemistry
Leguey, Ignacio; Bielza, Concha; Larrañaga, Pedro; Kastanauskaite, Asta; Rojo, Concepción; Benavides-Piccione, Ruth; DeFelipe, Javier
2016-09-01
The characterization of the structural design of cortical microcircuits is essential for understanding how they contribute to function in both health and disease. Since pyramidal neurons represent the most abundant neuronal type and their dendritic spines constitute the major postsynaptic elements of cortical excitatory synapses, our understanding of the synaptic organization of the neocortex largely depends on the available knowledge regarding the structure of pyramidal cells. Previous studies have identified several apparently common rules in dendritic geometry. We study the dendritic branching angles of pyramidal cells across layers to further shed light on the principles that determine the geometric shapes of these cells. We find that the dendritic branching angles of pyramidal cells from layers II-VI of the juvenile rat somatosensory cortex suggest common design principles, despite the particular morphological and functional features that are characteristic of pyramidal cells in each cortical layer. J. Comp. Neurol. 524:2567-2576, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Wahle, P; Meyer, G
1989-04-08
The early postnatal development of neurons containing vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine (PHI) has been analyzed in visual areas 17 and 18 of cats aged from postnatal day (P) 0 to adulthood. Neuronal types are established mainly by axonal criteria. Both peptides occur in the same neuronal types and display the same postnatal chronology of appearance. Several cell types are transient, which means that they are present in the cortex only for a limited period of development. According to their chronology of appearance the VIP/PHI-immunoreactive (ir) cell types are grouped into three neuronal populations. The first population comprises six cell types which appear early in postnatal life. The pseudohorsetail cells of layer I possess a vertically descending axon which initially gives rise to recurrent collaterals, then forms a bundle passing layers III to V, and finally, horizontal terminal fibers in layer VI. The neurons differentiate at P 4 and disappear by degeneration around P 30. The neurons with columnar dendritic fields of layers IV/V are characterized by a vertical arrangement of long dendrites ascending or descending parallel to each other, thus forming an up to 600 microns long dendritic column. Their axons always descend and terminate in broad fields in layer VI. The neurons appear at P 7 and are present until P 20. The multipolar neurons of layer VI occur in isolated positions and have broad axonal territories. The neurons differentiate at P 7 and persist into adulthood. Bitufted to multipolar neurons of layers II/III have axons descending as a single fiber to layer VI, where they terminate. The neurons appear at P 12 and persist into adulthood. The four cell types described above issue a vertically oriented fiber architecture in layers II-V and a horizontal terminal plexus in layer VI which is dense during the second, third and fourth week. Concurrent with the disappearance of the two transient types the number of descending axonal bundles and the density of the layer VI plexus is reduced, but the latter is maintained during adulthood by the two persisting cell types. Two further cell types belong to the first population: The transient bipolar cells of layers IV, V, and VI have long dendrites which extend through the entire cortical width. Their axons always descend, leave the gray matter, and apparently terminate in the upper white matter. The neurons differentiate concurrently with the pseudohorsetail cells at P 4, are very frequent during the following weeks, and eventually disappear at P 30.(ABSTRACT TRUNCATED AT 400 WORDS)
Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction
NASA Astrophysics Data System (ADS)
Gao, Shan; Sun, Zhongti; Liu, Wei; Jiao, Xingchen; Zu, Xiaolong; Hu, Qitao; Sun, Yongfu; Yao, Tao; Zhang, Wenhua; Wei, Shiqiang; Xie, Yi
2017-02-01
The role of oxygen vacancies in carbon dioxide electroreduction remains somewhat unclear. Here we construct a model of oxygen vacancies confined in atomic layer, taking the synthetic oxygen-deficient cobalt oxide single-unit-cell layers as an example. Density functional theory calculations demonstrate the main defect is the oxygen(II) vacancy, while X-ray absorption fine structure spectroscopy reveals their distinct oxygen vacancy concentrations. Proton transfer is theoretically/experimentally demonstrated to be a rate-limiting step, while energy calculations unveil that the presence of oxygen(II) vacancies lower the rate-limiting activation barrier from 0.51 to 0.40 eV via stabilizing the formate anion radical intermediate, confirmed by the lowered onset potential from 0.81 to 0.78 V and decreased Tafel slope from 48 to 37 mV dec-1. Hence, vacancy-rich cobalt oxide single-unit-cell layers exhibit current densities of 2.7 mA cm-2 with ca. 85% formate selectivity during 40-h tests. This work establishes a clear atomic-level correlation between oxygen vacancies and carbon dioxide electroreduction.
Bis[2-(hy-droxy-imino-meth-yl)phenolato]nickel(II): a second monoclinic polymorph.
Rusanova, Julia A; Buvaylo, Elena A; Rusanov, Eduard B
2011-01-15
The title compound, [Ni(C(7)H(6)NO(2))(2)], (I), is a second monoclinic polymorph of the compound, (II), reported by Srivastava et al. [Acta Cryst. (1967), 22, 922] and Mereiter [Private communication (2002) CCDC refcode NISALO01]. The bond lengths and angles are similar in both structures. The mol-ecule in both structures lies on a crystallographic inversion center and both have an inter-nal hydrogen bond. The title compound crystallizes in the space group P2(1)/c (Z = 2), whereas compound (II) is in the space group P2(1)/n (Z = 2) with a similar cell volume but different cell parameters. In both polymorphs, mol-ecules are arranged in the layers but in contrast to the previously published compound (II) where the dihedral angle between the layers is 86.3°, in the title polymorph the same dihedral angle is 29.4°. The structure of (I) is stabilized by strong intra-molecular O-H⋯O hydrogen bonding between the O-H group and the phenolate O atom.
Shastry, Tejas A; Balla, Itamar; Bergeron, Hadallia; Amsterdam, Samuel H; Marks, Tobin J; Hersam, Mark C
2016-11-22
Two-dimensional transition metal dichalcogenides (TMDCs) have recently attracted attention due to their superlative optical and electronic properties. In particular, their extraordinary optical absorption and semiconducting band gap have enabled demonstrations of photovoltaic response from heterostructures composed of TMDCs and other organic or inorganic materials. However, these early studies were limited to devices at the micrometer scale and/or failed to exploit the unique optical absorption properties of single-layer TMDCs. Here we present an experimental realization of a large-area type-II photovoltaic heterojunction using single-layer molybdenum disulfide (MoS 2 ) as the primary absorber, by coupling it to the organic π-donor polymer PTB7. This TMDC-polymer heterojunction exhibits photoluminescence intensity that is tunable as a function of the thickness of the polymer layer, ultimately enabling complete quenching of the TMDC photoluminescence. The strong optical absorption in the TMDC-polymer heterojunction produces an internal quantum efficiency exceeding 40% for an overall cell thickness of less than 20 nm, resulting in exceptional current density per absorbing thickness in comparison to other organic and inorganic solar cells. Furthermore, this work provides insight into the recombination processes in type-II TMDC-polymer heterojunctions and thus provides quantitative guidance to ongoing efforts to realize efficient TMDC-based solar cells.
Sonic Hedgehog Expression in Corticofugal Projection Neurons Directs Cortical Microcircuit Formation
Harwell, Corey C.; Parker, Philip R.L.; Gee, Steven M.; Okada, Ami; McConnell, Susan K.; Kreitzer, Anatol C.; Kriegstein, Arnold R.
2012-01-01
SUMMARY The precise connectivity of inputs and outputs is critical for cerebral cortex function; however, the cellular mechanisms that establish these connections are poorly understood. Here, we show that the secreted molecule Sonic Hedgehog (Shh) is involved in synapse formation of a specific cortical circuit. Shh is expressed in layer V corticofugal projection neurons and the Shh receptor, Brother of CDO (Boc), is expressed in local and callosal projection neurons of layer II/III that synapse onto the subcortical projection neurons. Layer V neurons of mice lacking functional Shh exhibit decreased synapses. Conversely, the loss of functional Boc leads to a reduction in the strength of synaptic connections onto layer Vb, but not layer II/III, pyramidal neurons. These results demonstrate that Shh is expressed in postsynaptic target cells while Boc is expressed in a complementary population of presynaptic input neurons, and they function to guide the formation of cortical microcircuitry. PMID:22445340
Rojo, Concepción; Leguey, Ignacio; Kastanauskaite, Asta; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier; Benavides-Piccione, Ruth
2016-06-01
Pyramidal cell structure varies between different cortical areas and species, indicating that the cortical circuits that these cells participate in are likely to be characterized by different functional capabilities. Structural differences between cortical layers have been traditionally reported using either the Golgi method or intracellular labeling, but the structure of pyramidal cells has not previously been systematically analyzed across all cortical layers at a particular age. In the present study, we investigated the dendritic architecture of complete basal arbors of pyramidal neurons in layers II, III, IV, Va, Vb, and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. We found that the characteristics of basal dendritic morphologies are statistically different in each cortical layer. The variations in size and branching pattern that exist between pyramidal cells of different cortical layers probably reflect the particular functional properties that are characteristic of the cortical circuit in which they participate. This new set of complete basal dendritic arbors of 3D-reconstructed pyramidal cell morphologies across each cortical layer will provide new insights into interlaminar information processing in the cerebral cortex. © The Author 2016. Published by Oxford University Press.
Tang, Li Juan; Chen, Xiao; Wen, Tian Yu; Yang, Shuang; Zhao, Jun Jie; Qiao, Hong Wei; Hou, Yu; Yang, Hua Gui
2018-02-26
A highly transparent NiO layer was prepared by a solution processing method with nickel(II) 2-ethylhexanoate in non-polar solvent and utilized as HTM in perovskite solar cells. Excellent optical transmittance and the matched energy level lead to the enhanced power conversion efficiency (PCE, 18.15 %) than that of conventional sol-gel-processed NiO-based device (12.98 %). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jamming dynamics of stretch-induced surfactant release by alveolar type II cells
Majumdar, Arnab; Arold, Stephen P.; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan
2012-01-01
Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes. PMID:22033531
Dementia of frontal lobe type and motor neuron disease. A Golgi study of the frontal cortex.
Ferrer, I; Roig, C; Espino, A; Peiro, G; Matias Guiu, X
1991-01-01
Neuropathological findings in a 38 year old patient with dementia of frontal lobe type and motor neuron disease included pyramidal tracts, myelin pallor and neuron loss, gliosis and chromatolysis in the hypoglossal nucleus, together with frontal atrophy, neuron loss, gliosis and spongiosis in the upper cortical layers of the frontal (and temporal) lobes. Most remaining pyramidal and non-pyramidal neurons (multipolar, bitufted and bipolar cells) in the upper layers (layers II and III) of the frontal cortex (area B) had reduced dendritic arbors, proximal dendritic varicosities and amputation of dendrites as revealed in optimally stained rapid Golgi sections. Pyramidal cells in these layers also showed depletion of dendritic spines. Neurons in the inner layers were preserved. Loss of receptive surfaces in neurons of the upper cortical layers in the frontal cortex are indicative of neuronal disconnection, and are "hidden" contributory morphological substrates for the development of dementia. Images PMID:1744652
Morita, Toshiyuki; Tsuchiya, Akiko; Sugimoto, Masazumi
2011-09-01
Re-epithelialization in skin wound healing is a process in which epidermal sheets grow and close the wound. Although the actin-myosin system is thought to have a pivotal role in re-epithelialization, its role is not clear. In fish skin, re-epithelialization occurs around 500 μm/h and is 50 times faster than in mammalian skin. We had previously reported that leading-edge cells of the epidermal outgrowth have both polarized large lamellipodia and "purse string"-like actin filament cables in the scale-skin culture system of medaka fish, Oryzias latipes (Cell Tissue Res, 2007). The actin purse-string (APS) is a supracellular contractile machinery in which adherens junctions (AJs) link intracellular myosin II-including actin cables between neighboring cells. In this study, we developed a modified "face-to-face" scale-skin culture system as an ex vivo model to study epidermal wound healing, and examined the role of the actin-myosin system in the rapid re-epithelialization using a myosin II ATPase inhibitor, blebbistatin. A low level of blebbistatin suppressed the formation of APS and induced the dissociation of keratocytes from the leading edge without attenuating the growth of the epidermal sheet or the migration rate of solitary keratocytes. AJs in the superficial layer showed no obvious changes elicited by blebbistatin. However, two epidermal sheets without APSs did not make a closure with each other, which was confirmed by inhibiting the connecting AJs between the superficial layers. These results suggest that myosin II activity is required for functional leading-edge cells and for epidermal closure.
Photogalvanic cells driven by electron transfer quenching of excited singlet states
NASA Astrophysics Data System (ADS)
Creed, D.; Fawcett, N. C.
Photoreduction of oxonine by iron(II) sulfate in dilute acid is produced by quenching of the excited signlet state (S1). No induced intersystem crossing to the tripolet (T1) is observed by nanosecond flash photolysis. The photoreduction of oxonine (S1) by iron(II) was used in a totally illuminated thin layer photogalvanic cell. Power conversion efficiencies are, however, very low. The fluorescence of oxonine and thiazine dyes such as thionine is quenched by acids. Oxonine fluorescence is also quenched by hydroquinone and catechol sulfonates and related compounds. Eleven new thiazine dyes were synthesized. A few photogalvanic experiments were carried out using high concentrations of the water miscible dye and iron(II) in a TI/TL cell. Ferrophos, an iron phosphorus alloy, can be substituted for platinum or gold as a cathode in photogalvanic cells.
Bifunctional air electrodes containing elemental iron powder charging additive
Liu, Chia-tsun; Demczyk, Brian G.; Gongaware, Paul R.
1982-01-01
A bifunctional air electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer essentially comprises a hydrophilic composite which includes: (i) carbon; (ii) elemental iron particles having a particle size of between about 25 microns and about 700 microns diameter; (iii) an oxygen evolution material; (iv) a nonwetting agent; and (v) a catalyst, where at least one current collector is formed into said composite.
Kundu, Joydip; Shim, Jin-Hyung; Jang, Jinah; Kim, Sung-Won; Cho, Dong-Woo
2015-11-01
Regenerative medicine is targeted to improve, restore or replace damaged tissues or organs using a combination of cells, materials and growth factors. Both tissue engineering and developmental biology currently deal with the process of tissue self-assembly and extracellular matrix (ECM) deposition. In this investigation, additive manufacturing (AM) with a multihead deposition system (MHDS) was used to fabricate three-dimensional (3D) cell-printed scaffolds using layer-by-layer (LBL) deposition of polycaprolactone (PCL) and chondrocyte cell-encapsulated alginate hydrogel. Appropriate cell dispensing conditions and optimum alginate concentrations for maintaining cell viability were determined. In vitro cell-based biochemical assays were performed to determine glycosaminoglycans (GAGs), DNA and total collagen contents from different PCL-alginate gel constructs. PCL-alginate gels containing transforming growth factor-β (TGFβ) showed higher ECM formation. The 3D cell-printed scaffolds of PCL-alginate gel were implanted in the dorsal subcutaneous spaces of female nude mice. Histochemical [Alcian blue and haematoxylin and eosin (H&E) staining] and immunohistochemical (type II collagen) analyses of the retrieved implants after 4 weeks revealed enhanced cartilage tissue and type II collagen fibril formation in the PCL-alginate gel (+TGFβ) hybrid scaffold. In conclusion, we present an innovative cell-printed scaffold for cartilage regeneration fabricated by an advanced bioprinting technology. Copyright © 2013 John Wiley & Sons, Ltd.
Harwell, Corey C; Parker, Philip R L; Gee, Steven M; Okada, Ami; McConnell, Susan K; Kreitzer, Anatol C; Kriegstein, Arnold R
2012-03-22
The precise connectivity of inputs and outputs is critical for cerebral cortex function; however, the cellular mechanisms that establish these connections are poorly understood. Here, we show that the secreted molecule Sonic Hedgehog (Shh) is involved in synapse formation of a specific cortical circuit. Shh is expressed in layer V corticofugal projection neurons and the Shh receptor, Brother of CDO (Boc), is expressed in local and callosal projection neurons of layer II/III that synapse onto the subcortical projection neurons. Layer V neurons of mice lacking functional Shh exhibit decreased synapses. Conversely, the loss of functional Boc leads to a reduction in the strength of synaptic connections onto layer Vb, but not layer II/III, pyramidal neurons. These results demonstrate that Shh is expressed in postsynaptic target cells while Boc is expressed in a complementary population of presynaptic input neurons, and they function to guide the formation of cortical microcircuitry. Copyright © 2012 Elsevier Inc. All rights reserved.
Conlee, J W; Shapiro, S M; Churn, S B
2000-04-01
The homozygous (jj) jaundiced Gunn rat model for hyperbilirubinemia displays pronounced cerebellar hypoplasia. To examine the cellular mechanisms involved in bilirubin toxicity, this study focused on the effect of hyperbilirubinemia on calcium/calmodulin-dependent kinase II (CaM kinase II). CaM kinase II is a neuronally enriched enzyme which performs several important functions. Immunohistochemical analysis of alternating serial sections were performed using monoclonal antibodies for the alpha and beta subunits of CaM kinase II. Measurements were made of the total numbers of stained cells in each of the deep cerebellar nuclei and of Purkinje and granule cell densities in cerebellar lobules II, VI, and IX. The beta subunit was present in Purkinje cells and deep cerebellar nuclei of both groups at all ages, but only granule cells which had migrated through the Purkinje cell layer showed staining for beta subunit; external granule cells were completely negative. Many Purkinje cells had degenerated in the older animals, and the percent of granule cells stained for beta subunit was significantly reduced. The alpha subunit was found exclusively in Purkinje cells, although its appearance was delayed in the jaundiced animals. Sulfadimethoxine was administered to some jj rats 24 h or 15 days prior to sacrifice to increase brain bilirubin concentration. Results showed that bilirubin exposure modulated both alpha and beta CaM kinase II subunit expression in selective neuronal populations, but sulfadimethoxine had no acute effect on enzyme immunoreactivity. Thus, developmental expression of the alpha and beta subunits of CaM kinase II was affected by chronic bilirubin exposure during early postnatal development of jaundiced Gunn rats.
Nakajima, N; Sato, H; Takahashi, K; Hasegawa, G; Mizuno, K; Hashimoto, S; Sato, Y; Terai, S
2017-03-01
Histopathology of muscularis externa in primary esophageal motility disorders has been characterized previously. We aimed to correlate the results of high-resolution manometry with those of histopathology. During peroral endoscopic myotomy, peroral esophageal muscle biopsy was performed in patients with primary esophageal motility disorders. Immunohistochemical staining for c-kit was performed to assess the interstitial cells of Cajal (ICCs). Hematoxylin Eosin and Azan-Mallory staining were used to detect muscle atrophy, inflammation, and fibrosis, respectively. Slides from 30 patients with the following motility disorders were analyzed: achalasia (type I: 14, type II: 5, type III: 3), one diffuse esophageal spasm (DES), two outflow obstruction (OO), four jackhammer esophagus (JE), and one nutcracker esophagus (NE). ICCs were preserved in high numbers in type III achalasia (n=9.4±1.2 cells/high power field [HPF]), compared to types I (n=3.7±0.3 cells/HPF) and II (n=3.5±1.0 cells/HPF). Moreover, severe fibrosis was only observed in type I achalasia and not in other types of achalasia, OO, or DES. Four of five patients with JE and NE had severe inflammation with eosinophilic infiltration of the esophageal muscle layer (73.8±50.3 eosinophils/HPF) with no epithelial eosinophils. One patient with JE showed a visceral myopathy pattern. Compared to types I and II, type III achalasia showed preserved ICCs, with variable data regarding DES and OO. In disorders considered as primary esophageal motility disorders, a disease category exists, which shows eosinophilic infiltration in the esophageal muscle layer with no eosinophils in the epithelium. © 2016 John Wiley & Sons Ltd.
Cadmium-free junction fabrication process for CuInSe.sub.2 thin film solar cells
Ramanathan, Kannan V.; Contreras, Miguel A.; Bhattacharya, Raghu N.; Keane, James; Noufi, Rommel
1999-01-01
The present invention provides an economical, simple, dry and controllable semiconductor layer junction forming process to make cadmium free high efficiency photovoltaic cells having a first layer comprised primarily of copper indium diselenide having a thin doped copper indium diselenide n-type region, generated by thermal diffusion with a group II(b) element such as zinc, and a halide, such as chlorine, and a second layer comprised of a conventional zinc oxide bilayer. A photovoltaic device according the present invention includes a first thin film layer of semiconductor material formed primarily from copper indium diselenide. Doping of the copper indium diselenide with zinc chloride is accomplished using either a zinc chloride solution or a solid zinc chloride material. Thermal diffusion of zinc chloride into the copper indium diselenide upper region creates the thin n-type copper indium diselenide surface. A second thin film layer of semiconductor material comprising zinc oxide is then applied in two layers. The first layer comprises a thin layer of high resistivity zinc oxide. The second relatively thick layer of zinc oxide is doped to exhibit low resistivity.
Characterization and use of crystalline bacterial cell surface layers
NASA Astrophysics Data System (ADS)
Sleytr, Uwe B.; Sára, Margit; Pum, Dietmar; Schuster, Bernhard
2001-10-01
Crystalline bacterial cell surface layers (S-layers) are one of the most common outermost cell envelope components of prokaryotic organisms (archaea and bacteria). S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. S-layers as the most abundant of prokaryotic cellular proteins are appealing model systems for studying the structure, synthesis, genetics, assembly and function of proteinaceous supramolecular structures. The wealth of information existing on the general principle of S-layers have revealed a broad application potential. The most relevant features exploited in applied S-layer research are: (i) pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes; (ii) functional groups on the surface and in the pores are aligned in well-defined positions and orientations and accessible for chemical modifications and binding functional molecules in very precise fashion; (iii) isolated S-layer subunits from a variety of organisms are capable of recrystallizing as closed monolayers onto solid supports (e.g., metals, polymers, silicon wafers) at the air-water interface, on lipid films or onto the surface of liposomes; (iv) functional domains can be incorporated in S-layer proteins by genetic engineering. Thus, S-layer technologies particularly provide new approaches for biotechnology, biomimetics, molecular nanotechnology, nanopatterning of surfaces and formation of ordered arrays of metal clusters or nanoparticles as required for nanoelectronics.
Wang, Limin; Zhao, Liang; Detamore, Michael S.
2013-01-01
Cell sources and tissue integration between cartilage and bone regions are critical to successful osteochondral regeneration. In this study, human umbilical cord mesenchymal stromal cells (hUCMSCs), derived from Wharton’s jelly, were introduced to the field of osteochondral tissue engineering and a new strategy for osteochondral integration was developed by sandwiching a layer of cells between chondrogenic and osteogenic constructs before suturing them together. Specifically, hUCMSCs were cultured in biodegradable poly-l-lactic acid scaffolds for 3 weeks in either chondrogenic or osteogenic medium to differentiate cells toward cartilage or bone lineages, respectively. A highly concentrated cell solution containing undifferentiated hUCMSCs was pasted onto the surface of the bone layer at week 3 and the two layers were then sutured together to form an osteochondral composite for another 3 week culture period. Chondrogenic and osteogenic differentiation was initiated during the first 3 weeks, as evidenced by the expression of type II collagen and runt-related transcription factor 2 genes, respectively, and continued with the increase of extracellular matrix during the last 3 weeks. Histological and immunohistochemical staining, such as for glycosaminoglycans, type I collagen and calcium, revealed better integration and transition of these matrices between two layers in the composite group containing sandwiched cells compared to other control composites. These results suggest that hUCMSCs may be a suitable cell source for osteochondral regeneration, and the strategy of sandwiching cells between two layers may facilitate scaffold and tissue integration. PMID:21953869
Macias, Maria I; Grande, Jesús; Moreno, Ana; Domínguez, Irene; Bornstein, Rafael; Flores, Ana I
2010-11-01
The objective of the study was to isolate and characterize a population of mesenchymal stem cells (MSCs) from human term placental membranes. We isolated an adherent cell population from extraembryonic membranes. Morphology, phenotype, growth characteristics, karyotype, and immunological and differentiation properties were analyzed. The isolated placental MSCs were from maternal origin and named as decidua-derived mesenchymal stem cells (DMSCs). DMSCs differentiated into derivatives of all germ layers. It is the first report about placental MSC differentiation into alveolar type II cells. Clonally expanded DMSCs differentiated into all embryonic layers, including pulmonary cells. DMSCs showed higher life span than placental cells from fetal origin and proliferated without genomic instability. The data suggest that DMSCs are true multipotent MSCs, distinguishing them from other placental MSCs. DMSCs could be safely used in the mother as a potential source of MSCs for pelvic floor dysfunctions and immunological diseases. Additionally, frozen DMSCs can be stored for both autologous and allogeneic tissue regeneration. Copyright © 2010 Mosby, Inc. All rights reserved.
Zhao, L; Li, Y Y; Li, C W; Chao, S S; Liu, J; Nam, H N; Dung, N T N; Shi, L; Wang, D Y
2017-06-01
Aberrant epithelial remodeling with the ectopic expression of p63 (basal cell markers) is an important pathologic phenomenon seen in chronically inflamed airway epithelium such as in nasal polyps (NPs). Biopsies were obtained from 55 NP patients and 18 healthy controls (inferior turbinate). Among NP patients, 15 were treated with oral and nasal steroids, so that two sets of NP biopsies were taken before and after the treatments. p63, Ki67, type IV β-tubulin, and cell cycle markers were investigated in these specimens. The number of p63 + cells is significantly higher in both hyperplastic (1.53-fold, P < 0.0001) and squamous metaplastic (2.02-fold, P < 0.0001) epithelium from NPs than from healthy controls. There are three types of proliferative basal cells (p63 + /Ki67 + ) which are in different phases of the cell cycle, such as G1 phase (type I cells), S to G2 phase (type II cells), and mitosis (type III cells). Of importance, some type I cells may arrest after proliferation although they may still be p63 + /Ki67 + . In healthy epithelium, the ratio of the type I and II cells is almost 50:50. However, less type II cells are found in hyperplastic epithelium (34.85%, P = 0.012) and in squamous metaplastic epithelium (30.77%, P = 0.02) together with the presence of type III cells (3.45%, P = 0.01). These findings were not changed after steroid treatments. An increase of poorly proliferated basal cells forming multiple layers, which may stain for basal cell markers but does not form a proper epidermal barrier, is an important histopathologic phenomenon in aberrant remodeled epithelium of NPs. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Oka, Y
1983-04-01
The local neuronal circuitry of goldfish olfactory bulb was analyzed in Golgi preparations combining light- and electron-microscopy, as well as in routinely prepared ultrastructural preparations. Mitral cells were identified with the light-microscope in Golgi-impregnated thick sections according to the following criteria: (1) cell bodies were distributed irregularly in a wide layer between 100 and 200 micrometer from the surface, (2) cell bodies were larger than other neurons (10-20 micrometer in diameter), and (3) the dendrites were directed toward the superficially-located olfactory nerve layer where they ended as highly branched glomerular tufts. These impregnated cells were examined by electron-microscopy in serial section. The results demonstrate synaptic organization in relation to the mitral cells. (1) Glomerular tufts received afferent input from primary olfactory axons which made Gray's Type I synaptic contacts. These dendrites also had reciprocal dendrodendritic synapses with dendrites of certain non-mitral cells. (2) Dendritic shafts of mitral cells made reciprocal dendritic synapses with dendrites of certain non-mitral cells. (3) Cell bodies and their initial axon segments had reciprocal synapses with certain dendrites but occurred infrequently. In reciprocal synapses, the direction of the Gray Type I (asymmetrical) is away from the mitral cell while those with Gray Type II synapses (symmetrical) are toward the mitral cell. Assuming that the type I synapse is excitatory and Type II is inhibitory, these findings explain the electrophysiological demonstration of self-inhibition discharge found in mitral cells.
Nanocrystal solar cells processed from solution
Alivisatos, A. Paul; Gur, Ilan; Milliron, Delia
2013-05-14
A photovoltaic device having a first electrode layer, a high resistivity transparent film disposed on the first electrode, a second electrode layer, and an inorganic photoactive layer disposed between the first and second electrode layers, wherein the inorganic photoactive layer is disposed in at least partial electrical contact with the high resistivity transparent film, and in at least partial electrical contact with the second electrode. The photoactive layer has a first inorganic material and a second inorganic material different from the first inorganic material, wherein the first and second inorganic materials exhibit a type II band offset energy profile, and wherein the photoactive layer has a first population of nanostructures of a first inorganic material and a second population of nanostructures of a second inorganic material.
Nile, Christopher J; de Vente, Jan; Gillespie, James I
2010-02-01
To use an isolated preparation of the guinea-pig bladder lamina propria (LP) to investigate the effects of adenosine tri-phosphate (ATP) and nitric oxide (NO) on the release of prostaglandin E(2) (PGE(2)). The bladders of female guinea-pigs (200-400 g) were isolated and opened to expose the urothelial surface. The LP was dissected free of the underlying detrusor muscle and cut into strips from the dome to base. Strips were then incubated in Krebs buffer at 37 degrees C. Each tissue piece was then exposed to the stable ATP analogue, BzATP, and a NO donor, diethylamine-NONOate (DEANO), and the effect on PGE(2) output into the supernatant determined using the Parameter(TM) PGE(2) enzyme immunoassay kit (R & D Systems, Abingdon, UK). Experiments were repeated in the presence of purinergic receptor and cyclooxygenase (COX) enzymes, COX I and COX II, antagonists. The cellular location of COX I, COX II and neuronal NO synthase (nNOS) within the bladder LP was also determined by immunohistochemistry. PGE(2) production was significantly increased by BzATP. Antagonist studies showed the purinergic stimulation involved both P(2)X and P(2)Y receptors. The BzATP response was inhibited by the COX inhibitor indomethacin (COX I >COX II) but not by DUP 697 (COX II >COX I). Thus, BzATP stimulation occurs because of COX I stimulation. NO had no effect on PGE(2) production over the initial 10 min of an exposure. However, PGE(2) output was increased 100 min after exposure to the NO donor. In the presence of NO, the BzATP stimulation was abolished. Immunohistochemistry was used to confirm the location of COX I to the basal and inner intermediate urothelial layers and to cells within the diffuse layer of LP interstitial cells. In addition, nNOS was also located in the basal urothelial layers whilst COX II was found in the interstitial cell layers. There is complex interaction between ATP and NO to modulate PGE(2) release from the bladder LP in the un-stretched preparation. Such interactions suggest a complex interrelationship of signals derived from this region of the bladder wall. The importance of these interactions in relation to the physiology of the LP remains to be determined.
Johnston, H S; McGadey, J; Payne, A P; Thompson, G G; Moore, M R
1987-01-01
The Harderian gland of the woodmouse (Apodemus sylvaticus) consists of tubules lined by a single layer of epithelial cells with a surrounding layer of myoepithelial cells. The epithelium contains two cell types, one with numerous small, clear, lipid vacuoles (Type I), the other with large electron-dense ones (Type II). Each type is further subdivided into cells where the smooth endoplasmic reticulum exhibits pronounced vacuolation (Ia and IIa). The lipid vacuoles frequently coalesce and are released by exocytosis. They possess a multilamellar cap; similar multilamellar whorls (without a vacuole) are also seen. Polytubular complexes are a feature of Type II cells; tubules are in continuity with the smooth endoplasmic reticulum. Peroxisomes are also present. Fenestrated capillaries occur frequently in the interstitium, and (where no myoepithelial cell intervenes) the basal surface of the gland epithelial cell is covered with microvilli. There is no morphologically distinct duct system within the gland. The extraglandular duct is lined by columnar epithelium except at the opening on to the nictitating membrane where there is stratified squamous epithelium, with melanocytes and nests of mucus-secreting cells. The porphyrin content of the gland is low and solid intraluminal deposits are not seen. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 PMID:3429316
Two isomeric lead(II) carboxylate-phosphonates: syntheses, crystal structures and characterizations
NASA Astrophysics Data System (ADS)
Lei, Chong; Mao, Jiang-Gao; Sun, Yan-Qiong
2004-07-01
Two isomeric layered lead(II) carboxylate-phosphonates of N-(phosphonomethyl)- N-methyl glycine ([MeN(CH 2CO 2H)(CH 2PO 3H 2)]=H 3L), namely, monoclinic Pb 3L 2·H 2O 1 and triclinic Pb 3L 2·H 2O 2, have been synthesized and structurally determined. Compound 1 synthesized by hydrothermal reaction at 150°C is monoclinic, space group C2/ c with a=19.9872(6), b=11.9333(1) and c=15.8399(4) Å, β=110.432(3)°, V=3540.3(1) Å 3, and Z=8. The structure of compound 1 features a <400> layer in which the lead(II) ions are bridged by both phosphonate and carboxylate groups. The lattice water molecules are located between the layers, forming hydrogen bonds with the non-coordinated carboxylate oxygen atoms. Compound 2 with a same empirical formula as compound 1 was synthesized by hydrothermal reaction at 170°C. It has a different layer structure from that of compound 1 due to the adoption of a different coordination mode for the ligand. It crystallizes in the triclinic system, space group P 1¯ with cell parameters of a=7.1370(6), b=11.522(1), c=11.950(1) Å, α=110.280(2), β=91.625(2), γ=95.614(2)°, V=915.3(1) Å 3 and Z=2. The structure of compound 2 features a <020> metal carboxylate-phosphonate double layer built from 1D lead(II) carboxylate chains interconnected with 1D lead(II) phosphonate double chains. XRD powder patterns of compounds 1 and 2 indicate that each compound exists as a single phase.
Ligament flow during drop-on-demand inkjet printing of bioink containing living cells
NASA Astrophysics Data System (ADS)
Zhang, Mengyun; Krishnamoorthy, Srikumar; Song, Hongtao; Zhang, Zhengyi; Xu, Changxue
2017-03-01
Organ printing utilizes tissue spheroids or filaments as building blocks to fabricate three-dimensional (3D) functional tissues and organs based on a layer-by-layer manufacturing mechanism. These fabricated tissues and organs are envisioned as alternatives to replace the damaged human tissues and organs, which is emerging as a promising solution to solve the organ donor shortage problem being faced all over the world. Inkjetting, one of the key technologies in organ printing, has been widely developed because of its moderate fabrication cost, good process controllability, and scale-up potentials. There are several key steps towards inkjet-based organ printing: generation of droplets from bioink, fabrication of 3D cellular structures, and post-printing tissue fusion and maturation. The droplet formation process is the first step, affecting the overall feasibility of the envisioned organ printing technology. This paper focuses on the ligament flow of the droplet formation process during inkjet printing of bioink containing living cells and its corresponding effect on post-printing cell viability and cell distribution. It is found that (1) two types of ligament flow are observed: at 30 V (Type I), the ligament flow has two different directions at the locations near the nozzle orifice and the forming droplet; at 60 V (Type II), the ligament flow directions are the same at both locations; (2) compared to Type II, fewer cells are ejected into the primary droplets in Type I, because some cells move back into the nozzle driven by the ligament flow in the positive z direction; and (3) cell viability in both Type I and Type II is around 90% without a significant difference. The resulting knowledge will benefit precise control of printing dynamics during inkjet printing of viscoelastic bioink for 3D biofabrication applications.
Zhang, Zhen; Zhang, Zhongming; Chen, Hong; Liu, Jin; Liu, Chang; Ni, Hong; Zhao, Changsong; Ali, Muhammad; Liu, Fan; Li, Lin
2015-01-01
In this manuscript, we report that a bacterial multicopper oxidase (MCO266) catalyzes Mn(II) oxidation on the cell surface, resulting in the surface deposition of Mn(III) and Mn(IV) oxides and the gradual formation of bulky oxide aggregates. These aggregates serve as nucleation centers for the formation of Mn oxide micronodules and Mn-rich sediments. A soil-borne Escherichia coli with high Mn(II)-oxidizing activity formed Mn(III)/Mn(IV) oxide deposit layers and aggregates under laboratory culture conditions. We engineered MCO266 onto the cell surfaces of both an activity-negative recipient and wild-type strains. The results confirmed that MCO266 governs Mn(II) oxidation and initiates the formation of deposits and aggregates. By contrast, a cell-free substrate, heat-killed strains, and intracellularly expressed or purified MCO266 failed to catalyze Mn(II) oxidation. However, purified MCO266 exhibited Mn(II)-oxidizing activity when combined with cell outer membrane component (COMC) fractions in vitro. We demonstrated that Mn(II) oxidation and aggregate formation occurred through an oxygen-dependent biotic transformation process that requires a certain minimum Mn(II) concentration. We propose an approximate electron transfer pathway in which MCO266 transfers only one electron to convert Mn(II) to Mn(III) and then cooperates with other COMC electron transporters to transfer the other electron required to oxidize Mn(III) to Mn(IV). PMID:26039669
Zhang, Zhen; Zhang, Zhongming; Chen, Hong; Liu, Jin; Liu, Chang; Ni, Hong; Zhao, Changsong; Ali, Muhammad; Liu, Fan; Li, Lin
2015-06-03
In this manuscript, we report that a bacterial multicopper oxidase (MCO266) catalyzes Mn(II) oxidation on the cell surface, resulting in the surface deposition of Mn(III) and Mn(IV) oxides and the gradual formation of bulky oxide aggregates. These aggregates serve as nucleation centers for the formation of Mn oxide micronodules and Mn-rich sediments. A soil-borne Escherichia coli with high Mn(II)-oxidizing activity formed Mn(III)/Mn(IV) oxide deposit layers and aggregates under laboratory culture conditions. We engineered MCO266 onto the cell surfaces of both an activity-negative recipient and wild-type strains. The results confirmed that MCO266 governs Mn(II) oxidation and initiates the formation of deposits and aggregates. By contrast, a cell-free substrate, heat-killed strains, and intracellularly expressed or purified MCO266 failed to catalyze Mn(II) oxidation. However, purified MCO266 exhibited Mn(II)-oxidizing activity when combined with cell outer membrane component (COMC) fractions in vitro. We demonstrated that Mn(II) oxidation and aggregate formation occurred through an oxygen-dependent biotic transformation process that requires a certain minimum Mn(II) concentration. We propose an approximate electron transfer pathway in which MCO266 transfers only one electron to convert Mn(II) to Mn(III) and then cooperates with other COMC electron transporters to transfer the other electron required to oxidize Mn(III) to Mn(IV).
Higgins, Michael L.; Daneo-Moore, Lolita
1972-01-01
The application of quantitative electron microscopy to thin sections of cells of Streptococcus faecalis specifically inhibited for deoxyribonucleic acid (DNA), ribonucleic acid, and protein synthesis shows that septal mesosomes (i) increase in size when protein synthesis is inhibited by at least 80% while DNA synthesis proceeds at no less than 50% of the control rate and (ii) decrease in size when DNA synthesis is inhibited 50% or more during the initial 10 min of treatment. This indicates that fluctuations in mesosome size are dependent on the extent of DNA synthesis. The fluctuations in mesosome areas observed on treatment do not correlate with the kinetics of glycerol incorporation per milliliter of a culture. However, when glycerol incorporation is placed on a per cell basis, a strong correlation is observed between increases in (i) the thickness of the electron-transparent layer of the cytoplasmic membrane and (ii) the amount of glycerol incorporated per cell. It seems that the electron-transparent membrane layer may thicken to accommodate changes in lipid content when protein and lipid synthesis are uncoupled. Images PMID:4110926
Methods for forming thin-film heterojunction solar cells from I-III-VI{sub 2}
Mickelsen, R.A.; Chen, W.S.
1985-08-13
An improved thin-film, large area solar cell, and methods for forming the same are disclosed, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI{sub 2} chalcopyrite ternary materials which is vacuum deposited in a thin ``composition-graded`` layer ranging from on the order of about 2.5 microns to about 5.0 microns ({approx_equal}2.5 {mu}m to {approx_equal}5.0 {mu}m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii) a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion occurs (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer. 16 figs.
Collective Behavior of Amoebae in Thin Films
NASA Astrophysics Data System (ADS)
Bae, Albert
2005-03-01
We have discovered new aspects of social behavior in Dictyostelium discoideum by culturing high density colonies in liquid media depleted of nutrients in confined geometries by using three different preparations: I. thin (15-40um thick) and II. ultrathin (<3um) films of liquid media with a mineral oil overlayer, and III. microfluidic chambers fabricated in PDMS (˜7um tall). We find greatly reduced, if not eliminated, cell on cell layering in the microfluidic system when compared to the wetting layer preparations. The ultrathin films reveal robust behavior of cells despite flattening that increased their areas by over an order of magnitude. We also observed that the earliest synchronized response of cells following the onset of starvation, a precursor to aggregation, was hastened by reducing the thickness of the aqueous culture layer. We were surprised to find that the threshold concentration for aggregation was raised by thin film confinement when compared to bulk behavior. Finally, both the ultra thin and microfluidic preparations reveal, with new clarity, vortex states of aggregation.
Griffin, M; Bhandari, R; Hamilton, G; Chan, Y C; Powell, J T
1993-06-01
During alveolar development and alveolar repair close contacts are established between fibroblasts and lung epithelial cells through gaps in the basement membrane. Using co-culture systems we have investigated whether these close contacts influence synthesis and secretion of the principal surfactant apoprotein (SP-A) by cultured rat lung alveolar type II cells and the synthesis and secretion of type I collagen by fibroblasts. The alveolar type II cells remained cuboidal and grew in colonies on fibroblast feeder layers and on Matrigel-coated cell culture inserts but were progressively more flattened on fixed fibroblast monolayers and plastic. Alveolar type II cells cultured on plastic released almost all their SP-A into the medium by 4 days. Alveolar type II cells cultured on viable fibroblasts or Matrigel-coated inserts above fibroblasts accumulated SP-A in the medium at a constant rate for the first 4 days, and probably recycle SP-A by endocytosis. The amount of mRNA for SP-A was very low after 4 days of culture of alveolar type II cells on plastic, Matrigel-coated inserts or fixed fibroblast monolayers: relatively, the amount of mRNA for SP-A was increased 4-fold after culture of alveolar type II cells on viable fibroblasts. Co-culture of alveolar type II cells with confluent human dermal fibroblasts stimulated by 2- to 3-fold the secretion of collagen type I into the culture medium, even after the fibroblasts' growth had been arrested with mitomycin C. Collagen secretion, by fibroblasts, also was stimulated 2-fold by conditioned medium from alveolar type II cells cultured on Matrigel. The amount of mRNA for type I collagen increased only modestly when fibroblasts were cultured in this conditioned medium. This stimulation of type I collagen secretion diminished as the conditioned medium was diluted out, but at high dilutions further stimulation occurred, indicating that a factor that inhibited collagen secretion also was being diluted out. The conditioned medium contained low levels of IGF-1 and the stimulation of type I collagen secretion was abolished when the conditioned medium was pre-incubated with antibodies to insulin-like growth factor 1 (IGF-1). There are important reciprocal interactions between alveolar type II cells and fibroblasts in co-culture. Direct contacts between alveolar type II cells and fibroblasts appear to have a trophic effect on cultured alveolar type II cells, increasing the levels of mRNA for SP-A. Rat lung alveolar type II cells appear to release a factor (possibly IGF-1) that stimulates type I collagen secretion by fibroblasts.
NASA Technical Reports Server (NTRS)
Sinharoy, Samar; Patton, Martin O.; Valko, Thomas M., Sr.; Weizer, Victor G.
2002-01-01
Theoretical calculations have shown that highest efficiency III-V multi-junction solar cells require alloy structures that cannot be grown on a lattice-matched substrate. Ever since the first demonstration of high efficiency metamorphic single junction 1.1 eV and 1.2 eV InGaAs solar cells by Essential Research Incorporated (ERI), interest has grown in the development of multi-junction cells of this type using graded buffer layer technology. ERI is currently developing a dual-junction 1.6 eV InGaP/1.1 eV InGaAs tandem cell (projected practical air-mass zero (AM0), one-sun efficiency of 28%, and 100-sun efficiency of 37.5%) under a Ballistic Missile Defense Command (BMDO) SBIR Phase II program. A second ongoing research effort at ERI involves the development of a 2.1 eV AlGaInP/1.6 eV InGaAsP/1.2 eV InGaAs triple-junction concentrator tandem cell (projected practical AM0 efficiency of 36.5% under 100 suns) under a SBIR Phase II program funded by the Air Force. We are in the process of optimizing the dual-junction cell performance. In case of the triple-junction cell, we have developed the bottom and the middle cell, and are in the process of developing the layer structures needed for the top cell. A progress report is presented in this paper.
Enhancement of carrier lifetimes in type-II quantum dot/quantum well hybrid structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couto, O. D. D., E-mail: odilon@ifi.unicamp.br; Almeida, P. T. de; Santos, G. E. dos
We investigate optical transitions and carrier dynamics in hybrid structures containing type-I GaAs/AlGaAs quantum wells (QWs) and type-II GaSb/AlGaAs quantum dots (QDs). We show that the optical recombination of photocreated electrons confined in the QWs with holes in the QDs and wetting layer can be modified according to the QW/QD spatial separation. In particular, for low spacer thicknesses, the QW optical emission can be suppressed due to the transference of holes from the QW to the GaSb layer, favoring the optical recombination of spatially separated carriers, which can be useful for optical memory and solar cell applications. Time-resolved photoluminescence (PL)more » measurements reveal non-exponential recombination dynamics. We demonstrate that the PL transients can only be quantitatively described by considering both linear and quadratic terms of the carrier density in the bimolecular recombination approximation for type-II semiconductor nanostructures. We extract long exciton lifetimes from 700 ns to 5 μs for QDs depending on the spacer layer thickness.« less
Layered Halide Double Perovskites Cs3+nM(II)nSb2X9+3n (M = Sn, Ge) for Photovoltaic Applications.
Tang, Gang; Xiao, Zewen; Hosono, Hideo; Kamiya, Toshio; Fang, Daining; Hong, Jiawang
2018-01-04
Over the past few years, the development of lead-free and stable perovskite absorbers with excellent performance has attracted extensive attention. Much effort has been devoted to screening and synthesizing this type of solar cell absorbers. Here, we present a general design strategy for designing the layered halide double perovskites Cs 3+n M(II) n Sb 2 X 9+3n (M = Sn, Ge) with desired photovoltaic-relevant properties by inserting [MX 6 ] octahedral layers, based on the principles of increased electronic dimensionality. Compared to Cs 3 Sb 2 I 9 , more suitable band gaps, smaller carrier effective masses, larger dielectric constants, lower exciton binding energies, and higher optical absorption can be achieved by inserting variable [SnI 6 ] or [GeI 6 ] octahedral layers into the [Sb 2 I 9 ] bilayers. Moreover, our results show that adjusting the thickness of inserted octahedral layers is an effective approach to tune the band gaps and carrier effective masses in a large range. Our work provides useful guidance for designing the promising layered antimony halide double perovskite absorbers for photovoltaic applications.
Hönigsperger, Christoph; Nigro, Maximiliano J.
2016-01-01
Key points Kv2 channels underlie delayed‐rectifier potassium currents in various neurons, although their physiological roles often remain elusive. Almost nothing is known about Kv2 channel functions in medial entorhinal cortex (mEC) neurons, which are involved in representing space, memory formation, epilepsy and dementia.Stellate cells in layer II of the mEC project to the hippocampus and are considered to be space‐representing grid cells. We used the new Kv2 blocker Guangxitoxin‐1E (GTx) to study Kv2 functions in these neurons.Voltage clamp recordings from mEC stellate cells in rat brain slices showed that GTx inhibited delayed‐rectifier K+ current but not transient A‐type current.In current clamp, GTx had multiple effects: (i) increasing excitability and bursting at moderate spike rates but reducing firing at high rates; (ii) enhancing after‐depolarizations; (iii) reducing the fast and medium after‐hyperpolarizations; (iv) broadening action potentials; and (v) reducing spike clustering.GTx is a useful tool for studying Kv2 channels and their functions in neurons. Abstract The medial entorhinal cortex (mEC) is strongly involved in spatial navigation, memory, dementia and epilepsy. Although potassium channels shape neuronal activity, their roles in mEC are largely unknown. We used the new Kv2 blocker Guangxitoxin‐1E (GTx; 10–100 nm) in rat brain slices to investigate Kv2 channel functions in mEC layer II stellate cells (SCs). These neurons project to the hippocampus and are considered to be grid cells representing space. Voltage clamp recordings from SCs nucleated patches showed that GTx inhibited a delayed rectifier K+ current activating beyond –30 mV but not transient A‐type current. In current clamp, GTx (i) had almost no effect on the first action potential but markedly slowed repolarization of late spikes during repetitive firing; (ii) enhanced the after‐depolarization (ADP); (iii) reduced fast and medium after‐hyperpolarizations (AHPs); (iv) strongly enhanced burst firing and increased excitability at moderate spike rates but reduced spiking at high rates; and (v) reduced spike clustering and rebound potentials. The changes in bursting and excitability were related to the altered ADPs and AHPs. Kv2 channels strongly shape the activity of mEC SCs by affecting spike repolarization, after‐potentials, excitability and spike patterns. GTx is a useful tool and may serve to further clarify Kv2 channel functions in neurons. We conclude that Kv2 channels in mEC SCs are important determinants of intrinsic properties that allow these neurons to produce spatial representation. The results of the present study may also be important for the accurate modelling of grid cells. PMID:27562026
Versatile ruthenium(II) dye towards blue-light emitter and dye-sensitizer for solar cells
NASA Astrophysics Data System (ADS)
Zanoni, Kassio P. S.; Amaral, Ronaldo C.; Murakami Iha, Neyde Y.; Abreu, Felipe D.; de Carvalho, Idalina M. M.
2018-06-01
A versatile Ru(II) complex bearing an anthracene moiety was synthesized in our search for suitable compounds towards efficient molecular devices. The new engineered dye, cis‑[Ru(dcbH2)(NCS)2(mbpy‑anth)] (dcbH2 = 2,2‧‑bipyridyl‑4,4‧‑dicarboxylic acid, mbpy‑anth = 4‑[N‑(2‑anthryl)carbamoyl]‑4‧‑methyl‑2,2‧‑bipyridine), exhibits a blueish emission in a vibronically structured spectrum ascribed to the fluorescence of a 1LCAnth (ligand centered) excited state in the anthracene and has a potential to be exploited in the fields of smart lighting and displays. This complex was also employed in dye-sensitized solar cells with fairly efficient solar energy conversion with the use of self-assembled TiO2 compact layers beneath the TiO2 mesoporous film to prevent meso‑TiO2/dye back reactions. Further photoelectrochemical investigations through incident photon-to-current efficiency and electrochemical impedance spectra showed that the all-nano-TiO2 compact layer acts as contact layers that increase the electron harvesting in the external circuit, enhancing efficiencies up to 50%.
Versatile ruthenium(II) dye towards blue-light emitter and dye-sensitizer for solar cells.
Zanoni, Kassio P S; Amaral, Ronaldo C; Murakami Iha, Neyde Y; Abreu, Felipe D; de Carvalho, Idalina M M
2018-06-05
A versatile Ru(II) complex bearing an anthracene moiety was synthesized in our search for suitable compounds towards efficient molecular devices. The new engineered dye, cis‑[Ru(dcbH 2 )(NCS) 2 (mbpy‑anth)] (dcbH 2 =2,2'‑bipyridyl‑4,4'‑dicarboxylic acid, mbpy‑anth=4‑[N‑(2‑anthryl)carbamoyl]‑4'‑methyl‑2,2'‑bipyridine), exhibits a blueish emission in a vibronically structured spectrum ascribed to the fluorescence of a 1 LC Anth (ligand centered) excited state in the anthracene and has a potential to be exploited in the fields of smart lighting and displays. This complex was also employed in dye-sensitized solar cells with fairly efficient solar energy conversion with the use of self-assembled TiO 2 compact layers beneath the TiO 2 mesoporous film to prevent meso‑TiO 2 /dye back reactions. Further photoelectrochemical investigations through incident photon-to-current efficiency and electrochemical impedance spectra showed that the all-nano-TiO 2 compact layer acts as contact layers that increase the electron harvesting in the external circuit, enhancing efficiencies up to 50%. Copyright © 2018 Elsevier B.V. All rights reserved.
Srivastava, U C; Pathak, S V
2010-10-30
To study interlaminar phenotypic variations in the pyramidal neurons of parietal isocortex in bat (Cynopterus sphinx), Golgi and Nissl methods have been employed. The parietal isocortex is relatively thin in the bat as compared to prototheria with layer III, V and VI accounting for more than two—thirds of total cortical thickness. Thick cell free layer I and thinnest accentuated layer II are quite in connotation with other chiropterids. Poor demarcation of layer III/IV in the present study is also in connotation with primitive eutherian mammal (i.e. prototherian) and other chiropterids. Most of the pyramidal cells in the different layers of the parietal isocortex are of typical type as seen in other eutherians but differ significantly in terms of soma shape and size, extent of dendritic arbor, diameter of dendrites and spine density. Percentage of pyramidal neurons, diameter of apical dendrite and spine density on apical dendrite appear to follow an increasing trend from primitive to advanced mammals; but extent of dendrites are probably governed by the specific life patterns of these mammals. It is thus concluded that 'typical' pyramidal neurons in parietal isocortex are similar in therians but different from those in prototherians. It is possible that these cells might have arisen among early eutherians after divergence from prototherian stock.
TRH regulates action potential shape in cerebral cortex pyramidal neurons.
Rodríguez-Molina, Víctor; Patiño, Javier; Vargas, Yamili; Sánchez-Jaramillo, Edith; Joseph-Bravo, Patricia; Charli, Jean-Louis
2014-07-07
Thyrotropin releasing hormone (TRH) is a neuropeptide with a wide neural distribution and a variety of functions. It modulates neuronal electrophysiological properties, including resting membrane potential, as well as excitatory postsynaptic potential and spike frequencies. We explored, with whole-cell patch clamp, TRH effect on action potential shape in pyramidal neurons of the sensorimotor cortex. TRH reduced spike and after hyperpolarization amplitudes, and increased spike half-width. The effect varied with dose, time and cortical layer. In layer V, 0.5µM of TRH induced a small increase in spike half-width, while 1 and 5µM induced a strong but transient change in spike half-width, and amplitude; after hyperpolarization amplitude was modified at 5µM of TRH. Cortical layers III and VI neurons responded intensely to 0.5µM TRH; layer II neurons response was small. The effect of 1µM TRH on action potential shape in layer V neurons was blocked by G-protein inhibition. Inhibition of the activity of the TRH-degrading enzyme pyroglutamyl peptidase II (PPII) reproduced the effect of TRH, with enhanced spike half-width. Many cortical PPII mRNA+ cells were VGLUT1 mRNA+, and some GAD mRNA+. These data show that TRH regulates action potential shape in pyramidal cortical neurons, and are consistent with the hypothesis that PPII controls its action in this region. Copyright © 2014 Elsevier B.V. All rights reserved.
Reevaluation of the Beam and Radial Hypotheses of Parallel Fiber Action in the Cerebellar Cortex
Cramer, Samuel W.; Gao, Wangcai; Chen, Gang
2013-01-01
The role of parallel fibers (PFs) in cerebellar physiology remains controversial. Early studies inspired the “beam” hypothesis whereby granule cell (GC) activation results in PF-driven, postsynaptic excitation of beams of Purkinje cells (PCs). However, the “radial” hypothesis postulates that the ascending limb of the GC axon provides the dominant input to PCs and generates patch-like responses. Using optical imaging and single-cell recordings in the mouse cerebellar cortex in vivo, this study reexamines the beam versus radial controversy. Electrical stimulation of mossy fibers (MFs) as well as microinjection of NMDA in the granular layer generates beam-like responses with a centrally located patch-like response. Remarkably, ipsilateral forepaw stimulation evokes a beam-like response in Crus I. Discrete molecular layer lesions demonstrate that PFs contribute to the peripherally generated responses in Crus I. In contrast, vibrissal stimulation induces patch-like activation of Crus II and GABAA antagonists fail to convert this patch-like activity into a beam-like response, implying that molecular layer inhibition does not prevent beam-like responses. However, blocking excitatory amino acid transporters (EAATs) generates beam-like responses in Crus II. These beam-like responses are suppressed by focal inhibition of MF-GC synaptic transmission. Using EAAT4 reporter transgenic mice, we show that peripherally evoked patch-like responses in Crus II are aligned between parasagittal bands of EAAT4. This is the first study to demonstrate beam-like responses in the cerebellar cortex to peripheral, MF, and GC stimulation in vivo. Furthermore, the spatial pattern of the responses depends on extracellular glutamate and its local regulation by EAATs. PMID:23843513
Krieger, Patrik
2009-11-01
In spines on basal dendrites of layer 2/3 pyramidal neurons in somatosensory barrel cortex, calcium transients evoked by back-propagating action potentials (bAPs) were investigated (i) along the length of the basal dendrite, (ii) with postnatal development and (iii) with sensory deprivation during postnatal development. Layer 2/3 pyramidal neurons were investigated at three different ages. At all ages [postnatal day (P)8, P14, P21] the bAP-evoked calcium transient amplitude increased with distance from the soma with a peak at around 50 microm, followed by a gradual decline in amplitude. The effect of sensory deprivation on the bAP-evoked calcium was investigated using two different protocols. When all whiskers on one side of the rat snout were trimmed daily from P8 to P20-24 there was no difference in the bAP-evoked calcium transient between cells in the contralateral hemisphere, lacking sensory input from the whisker, and cells in the ipsilateral barrel cortex, with intact whisker activation. When, however, only the D-row whiskers on one side were trimmed the distribution of bAP-evoked calcium transients in spines was shifted towards larger amplitudes in cells located in the deprived D-column. In conclusion, (i) the bAP-evoked calcium transient gradient along the dendrite length is established at P8, (ii) the calcium transient increases in amplitude with age and (iii) this increase is enhanced in layer 2/3 pyramidal neurons located in a sensory-deprived barrel column that is bordered by non-deprived barrel columns.
Kouamo, J.; Dawaye, S.M.; Zoli, A.P.; Bah, G.S.
2014-01-01
An abattoir study was conducted to evaluate the ovarian potential of 201 local zebu cattle from Ngaoundere, Adamawa region (Cameroon) for in vitro embryo production (IVEP). The ovaries were excised, submerged in normal saline solution (0.9%) and transported to the laboratory for a detailed evaluation. Follicles on each ovary were counted, their diameters (Φ) measured and were grouped into 3 categories: small (Φ < 3 mm), medium (3 ≥ Φ ≤ 8 mm) and large (Φ > 8 mm). Each ovary was then sliced into a petri dish; the oocytes were recovered in Dulbecco’s phosphate buffered saline, examined under a stereoscope (x10) and graded into four groups based on the morphology of cumulus oophorus cells and cytoplasmic changes of the oocytes. Grade I (GI): oocytes with more than 4 layers of bunch of compact cumulus cells mass with evenly granulated cytoplasm; grade II (GII): oocyte with at least 2-4 layers of compact cumulus cell mass with evenly granulated cytoplasm; grade III (GIII): oocyte with at least one layer of compact cumulus cell mass with evenly granulated cytoplasm; grade IV (GIV): denuded oocyte with no cumulus cells or incomplete layer of cumulus cell or expanded cells and having dark or unevenly granulated cytoplasm. The effects of both ovarian (ovarian localization, corpus luteum, size and weight of ovary) and non-ovarian factors (breed, age, body condition score (BCS) and pregnancy status of cow) on the follicular population and oocyte recovery rate were determined. There were an average of 16.75±0.83 follicles per ovary. The small, medium and large follicles were 8.39±0.60, 8.14±0.43 and 0.21±0.02 respectively. Oocyte recovery was 10.97±0.43 per ovary (65%). Oocytes graded I, II, III and IV were 3.53±0.19 (32.21%), 2.72±0.15 (24.82%), 2.24±0.15 (20.43%) and 2.47±0.20 (22.54%) respectively. The oocyte quality index was 2.26. Younger non pregnant cows having BCS of 3 and large ovaries presented higher number of follicles and oocyte quality (P < 0.05) compared with other animals. Oocytes with quality (grade I and II) acceptable for IVEP constituted 57.15% of the harvest. This study indicated that factors such as age, pregnancy status, BCS and ovarian size must be taken into account to increase the potential of the ovary for IVEP. PMID:26623353
HIRANO, ARLENE A.; BRANDSTÄTTER, JOHANN H.; BRECHA, NICHOLAS C.
2010-01-01
The mechanism underlying transmitter release from retinal horizontal cells is poorly understood. We investigated the possibility of vesicular transmitter release from mammalian horizontal cells by examining the expression of synaptic proteins that participate in vesicular transmitter release at chemical synapses. Using immunocytochemistry, we evaluated the cellular and subcellular distribution of complexin I/II, syntaxin-1, and synapsin I in rabbit retina. Strong labeling for complexin I/II, proteins that regulate a late step in vesicular transmitter release, was found in both synaptic layers of the retina, and in somata of A- and B-type horizontal cells, of γ-aminobutyric acid (GABA)- and glycinergic amacrine cells, and of ganglion cells. Immunoelectron microscopy demonstrated the presence of complexin I/II in horizontal cell processes postsynaptic to rod and cone ribbon synapses. Syntaxin-1, a core protein of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) complex known to bind to complexin, and synapsin I, a synaptic vesicle-associated protein involved in the Ca2+-dependent recruitment of synaptic vesicles for transmitter release, were also present in the horizontal cells and their processes at photoreceptor synapses. Photoreceptors and bipolar cells did not express any of these proteins at their axon terminals. The presence of complexin I/II, syntaxin-1, and synapsin I in rabbit horizontal cell processes and tips suggests that a vesicular mechanism may underlie transmitter release from mammalian horizontal cells. PMID:15912504
Influence of the charge double layer on solid oxide fuel cell stack behavior
NASA Astrophysics Data System (ADS)
Whiston, Michael M.; Bilec, Melissa M.; Schaefer, Laura A.
2015-10-01
While the charge double layer effect has traditionally been characterized as a millisecond phenomenon, longer timescales may be possible under certain operating conditions. This study simulates the dynamic response of a previously developed solid oxide fuel cell (SOFC) stack model that incorporates the charge double layer via an equivalent circuit. The model is simulated under step load changes. Baseline conditions are first defined, followed by consideration of minor and major deviations from the baseline case. This study also investigates the behavior of the SOFC stack with a relatively large double layer capacitance value, as well as operation of the SOFC stack under proportional-integral (PI) control. Results indicate that the presence of the charge double layer influences the SOFC stack's settling time significantly under the following conditions: (i) activation and concentration polarizations are significantly increased, or (ii) a large value of the double layer capacitance is assumed. Under normal (baseline) operation, on the other hand, the charge double layer effect diminishes within milliseconds, as expected. It seems reasonable, then, to neglect the charge double layer under normal operation. However, careful consideration should be given to potential variations in operation or material properties that may give rise to longer electrochemical settling times.
NASA Astrophysics Data System (ADS)
Tan, Miao; Zhong, Sihua; Wang, Wenjie; Shen, Wenzhong
2017-08-01
We have investigated the influences of diverse physical parameters on the performances of a silicon homo-heterojunction (H-H) solar cell, which encompasses both homojunction and heterojunction, together with their underlying mechanisms by the aid of AFORS-HET simulation. It is found that the performances of H-H solar cell are less sensitive to (i) the work function of the transparent conductive oxide layer, (ii) the interfacial density of states at the front hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si) interface, (iii) the peak dangling bond defect densities within the p-type a-Si:H (p-a-Si:H) layer, and (iv) the doping concentration of the p-a-Si:H layer, when compared to that of the conventional heterojunction with intrinsic thin layer (HIT) counterparts. These advantages are due to the fact that the interfacial recombination and the recombination within the a-Si:H region are less affected by all the above parameters, which fundamentally benefit from the field-effect passivation of the homojunction. Therefore, the design of H-H structure can provide an opportunity to produce high-efficiency solar cells more stably.
2011-04-01
glass /ITO electrodes. These NiO layers are found to be advantageous in BHJ OPV applications due to favorable energy band levels, interface passivation, p...NiO films grown on glass /ITO electrodes. These NiO layers are found to be advantageous in BHJ OPV applications due to favorable energy band levels...carrier transport characteristics. II. EXPERIMENTAL SECTION Substrate Preparation. ITO-coated glass (11 Ω/0) was pur- chased from Delta Technologies
Continuous Attractor Network Model for Conjunctive Position-by-Velocity Tuning of Grid Cells
Si, Bailu; Romani, Sandro; Tsodyks, Misha
2014-01-01
The spatial responses of many of the cells recorded in layer II of rodent medial entorhinal cortex (MEC) show a triangular grid pattern, which appears to provide an accurate population code for animal spatial position. In layer III, V and VI of the rat MEC, grid cells are also selective to head-direction and are modulated by the speed of the animal. Several putative mechanisms of grid-like maps were proposed, including attractor network dynamics, interactions with theta oscillations or single-unit mechanisms such as firing rate adaptation. In this paper, we present a new attractor network model that accounts for the conjunctive position-by-velocity selectivity of grid cells. Our network model is able to perform robust path integration even when the recurrent connections are subject to random perturbations. PMID:24743341
Mickelsen, Reid A.; Chen, Wen S.
1983-01-01
Apparatus for forming thin-film, large area solar cells having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n-type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order of about 2.5 microns to about 5.0 microns (.congruent.2.5 .mu.m to .congruent.5.0 .mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the transient n-type material in the first semiconductor layer to evolve into p-type material, thereby defining a thin layer heterojunction device characterized by the absence of voids, vacancies and nodules which tend to reduce the energy conversion efficiency of the system.
Lanjakornsiripan, Darin; Pior, Baek-Jun; Kawaguchi, Daichi; Furutachi, Shohei; Tahara, Tomoaki; Katsuyama, Yu; Suzuki, Yutaka; Fukazawa, Yugo; Gotoh, Yukiko
2018-04-24
Non-pial neocortical astrocytes have historically been thought to comprise largely a nondiverse population of protoplasmic astrocytes. Here we show that astrocytes of the mouse somatosensory cortex manifest layer-specific morphological and molecular differences. Two- and three-dimensional observations revealed that astrocytes in the different layers possess distinct morphologies as reflected by differences in cell orientation, territorial volume, and arborization. The extent of ensheathment of synaptic clefts by astrocytes in layer II/III was greater than that by those in layer VI. Moreover, differences in gene expression were observed between upper-layer and deep-layer astrocytes. Importantly, layer-specific differences in astrocyte properties were abrogated in reeler and Dab1 conditional knockout mice, in which neuronal layers are disturbed, suggesting that neuronal layers are a prerequisite for the observed morphological and molecular differences of neocortical astrocytes. This study thus demonstrates the existence of layer-specific interactions between neurons and astrocytes, which may underlie their layer-specific functions.
Ion Transport by Pulmonary Epithelia
Hollenhorst, Monika I.; Richter, Katrin; Fronius, Martin
2011-01-01
The lung surface of air-breathing vertebrates is formed by a continuous epithelium that is covered by a fluid layer. In the airways, this epithelium is largely pseudostratified consisting of diverse cell types such as ciliated cells, goblet cells, and undifferentiated basal cells, whereas the alveolar epithelium consists of alveolar type I and alveolar type II cells. Regulation and maintenance of the volume and viscosity of the fluid layer covering the epithelium is one of the most important functions of the epithelial barrier that forms the outer surface area of the lungs. Therefore, the epithelial cells are equipped with a wide variety of ion transport proteins, among which Na+, Cl−, and K+ channels have been identified to play a role in the regulation of the fluid layer. Malfunctions of pulmonary epithelial ion transport processes and, thus, impairment of the liquid balance in our lungs is associated with severe diseases, such as cystic fibrosis and pulmonary oedema. Due to the important role of pulmonary epithelial ion transport processes for proper lung function, the present paper summarizes the recent findings about composition, function, and ion transport properties of the airway epithelium as well as of the alveolar epithelium. PMID:22131798
Xiao, Wenjin; Perry, Guillaume; Komori, Kikuo; Sakai, Yasuyuki
2015-11-01
To develop an in vitro liver tissue equivalent, hepatocytes should be cocultured with liver non-parenchymal cells to mimic the in vivo physiological microenvironments. In this work, we describe a physiologically-relevant liver tissue model by hierarchically organizing layers of primary rat hepatocytes and human liver sinusoidal endothelial cells (TMNK-1) on an oxygen-permeable polydimethylsiloxane (PDMS) membrane, which facilitates direct oxygenation by diffusion through the membrane. This in vivo-mimicking hierarchical coculture was obtained by simply proceeding the overlay of TMNK-1 cells on the hepatocyte layer re-formed on the collagen immobilized PDMS membranes. The comparison of hepatic functionalities was achieved between coculture and sandwich culture with Matrigel, in the presence and absence of direct oxygenation. A complete double-layered structure of functional liver cells with vertical contact between hepatocytes and TMNK-1 was successfully constructed in the coculture with direct oxygen supply and was well-maintained for 14 days. The hepatocytes in this hierarchical culture exhibited improved survival, functional bile canaliculi formation, cellular level polarization and maintenance of metabolic activities including Cyp1A1/2 activity and albumin production. By contrast, the two cell populations formed discontinuous monolayers on the same surfaces in the non-oxygen-permeable cultures. These results demonstrate that (i) the direct oxygenation through the PDMS membranes enables very simple formation of a hierarchical structure consisting of a hepatocyte layer and a layer of TMNK-1 and (ii) we may include other non-parenchymal cells in this format easily, which can be widely applicable to other epithelial organs.
Methods for forming thin-film heterojunction solar cells from I-III-VI.sub. 2
Mickelsen, Reid A.; Chen, Wen S.
1982-01-01
An improved thin-film, large area solar cell, and methods for forming the same, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order of about 2.5 microns to about 5.0 microns (.congruent.2.5.mu.m to .congruent.5.0.mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the transient n-type material in The Government has rights in this invention pursuant to Contract No. EG-77-C-01-4042, Subcontract No. XJ-9-8021-1 awarded by the U.S. Department of Energy.
Methods for forming thin-film heterojunction solar cells from I-III-VI.sub. 2
Mickelsen, Reid A [Bellevue, WA; Chen, Wen S [Seattle, WA
1985-08-13
An improved thin-film, large area solar cell, and methods for forming the same, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order ot about 2.5 microns to about 5.0 microns (.congruent.2.5 .mu.m to .congruent.5.0 .mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the The Government has rights in this invention pursuant to Contract No. EG-77-C-01-4042, Subcontract No. XJ-9-8021-1 awarded by the U.S. Department of Energy.
Trojan, J; Johnson, T R; Rudin, S D; Blossey, B K; Kelley, K M; Shevelev, A; Abdul-Karim, F W; Anthony, D D; Tykocinski, M L; Ilan, J
1994-01-01
Teratocarcinoma is a germ-line carcinoma giving rise to an embryoid tumor with structures derived from the three embryonic layers: mesoderm, endoderm, and ectoderm. Teratocarcinoma is widely used as an in vitro model system to study regulation of cell determination and differentiation during mammalian embryogenesis. Murine embryonic carcinoma (EC) PCC3 cells express insulin-like growth factor I(IGF-I) and its receptor, while all derivative tumor structures express IGF-I and IGF-II and their receptors. Therefore the system lends itself to dissect the role of these two growth factors during EC differentiation. With an episomal antisense strategy, we define a role for IGF-I in tumorigenicity and evasion of immune surveillance. Antisense IGF-I EC transfectants are shown to elicit a curative anti-tumor immune response with tumor regression at distal sites. In contrast, IGF-II is shown to drive determination and differentiation in EC cells. Since IGF-I and IGF-II bind to type I receptor and antisense sequence used for IGF-II cannot form duplex with endogenous IGF-I transcripts, it follows that this receptor is not involved in determination and differentiation. Images PMID:8016120
Huang, Aibin; Lei, Lei; Zhu, Jingting; Yu, Yu; Liu, Yan; Yang, Songwang; Bao, Shanhu; Cao, Xun; Jin, Ping
2017-01-25
The short circuit current density of perovskite solar cell (PSC) was boosted by modulating the dominated plane facets of TiO 2 electron transport layer (ETL). Under optimized condition, TiO 2 with dominant {001} facets showed (i) low incident light loss, (ii) highly smooth surface and excellent wettability for precursor solution, (iii) efficient electron extraction, and (iv) high conductivity in perovskite photovoltaic application. A current density of 24.19 mA cm -2 was achieved as a value near the maximum limit. The power conversion efficiency was improved to 17.25%, which was the record value of PSCs with DC magnetron sputtered carrier transport layer. What is more, the room-temperature process had a great significance for the cost reduction and flexible application of PSCs.
Gun, Ozgul; VanDerveer, Don; Emirdag-Eanes, Mehtap
2008-01-01
A new organic–inorganic two-dimensional hybrid compound, [CuMoO4(C2H8N2)], has been hydrothermally synthesized at 443 K. The unit cell contains layers composed of CuN2O4 octahedra and MoO4 tetrahedra. Corner-sharing MoO4 and CuN2O4 polyhedra form CuMoO4 bimetallic sites that are joined together through O atoms, forming an edge-sharing Cu2Mo2O4 chain along the c axis. The one-dimensional chains are further linked through bridging O atoms that join the Cu and Mo atoms into respective chains along the b axis, thus establishing layers in the bc plane. The ethylenediamine ligand is coordinated to the Cu atom through its two N atoms and is oriented perpendicularly to the two-dimensional –Cu—O—Mo– layers. The average distance between adjacent layers, as calculated by consideration of the closest and furthest distances between two layers, is 8.7 Å. The oxidation states of the Mo and Cu atoms of VI and II, respectively, were confirmed by bond-valence sum calculations. PMID:21200997
Advanced Antireflection Coatings for High-Performance Solar Energy Applications
NASA Technical Reports Server (NTRS)
Pan, Noren
2015-01-01
Phase II objectives: Develop and refine antireflection coatings incorporating lanthanum titanate as an intermediate refractive index material; Investigate wet/dry thermal oxidation of aluminum containing semiconductor compounds as a means of forming a more transparent window layer with equal or better optical properties than its unoxidized form; Develop a fabrication process that allows integration of the oxidized window layer and maintains the necessary electrical properties for contacting the solar cell; Conduct an experimental demonstration of the best candidates for improved antireflection coatings.
Markazi, Ashley D; Perez, Victor; Sifri, Mamduh; Shanmugasundaram, Revathi; Selvaraj, Ramesh K
2017-07-01
Three separate experiments were conducted to study the effects of whole yeast cell product supplementation in pullets and layer hens. Body weight gain, fecal and intestinal coccidial oocyst counts, cecal microflora species, cytokine mRNA amounts, and CD4+ and CD8+ T-cell populations in the cecal tonsils were analyzed following an experimental coccidial infection. In Experiment I, day-old Leghorn layer chicks were fed 3 experimental diets with 0, 0.1, or 0.2% whole yeast cell product (CitriStim®, ADM, Decatur, IL). At 21 d of age, birds were challenged with 1 × 105 live coccidial oocysts. Supplementation with whole yeast cell product decreased the fecal coccidial oocyst count at 7 (P = 0.05) and 8 (P < 0.01) d post-challenge. In Experiment II, 27-week old Leghorn layer hens were fed 3 experimental diets with 0, 0.05 or 0.1% whole yeast cell product and challenged with 1 × 105 live coccidial oocysts on d 25 of whole yeast cell product feeding. Supplementation with whole yeast cell product decreased the coccidial oocyst count in the intestinal content (P < 0.01) at 5, 13, and 38 d post-coccidial challenge. Supplementation with whole yeast cell product increased relative proportion of Lactobacillus (P < 0.01) in the cecal tonsils 13 d post-coccidial challenge. Supplementation with whole yeast cell product decreased CD8+ T cell percentages (P < 0.05) in the cecal tonsils at 5 d post-coccidial challenge. In Experiment III, 32-week-old Leghorn layer hens were fed 3 experimental diets with 0, 0.1, or 0.2% whole yeast cell product and challenged with 1 × 105 live coccidial oocysts on d 66 of whole yeast cell product feeding. At 5 d post-coccidial challenge, whole yeast cell product supplementation down-regulated (P = 0.01) IL-10 mRNA amount. It could be concluded that supplementing whole yeast cell product can help minimize coccidial infection in both growing pullets and layer chickens. © 2017 Poultry Science Association Inc.
NASA Astrophysics Data System (ADS)
Li, Y. S.; Zhao, T. S.; Liang, Z. X.
In preparing low-temperature fuel cell electrodes, a polymer binder is essential to bind discrete catalyst particles to form a porous catalyst layer that simultaneously facilitates the transfer of ions, electrons, and reactants/products. For two types of polymer binder, namely, an A3-an anion conducting ionomer and a PTFE-a neutral polymer, an investigation is made of the effect of the content of each binder in the anode catalyst layer on the performance of an alkaline direct ethanol fuel cell (DEFC) with an anion-exchange membrane and non-platinum (non-Pt) catalysts. Experiments are performed by feeding either ethanol (C 2H 5OH) solution or ethanol-potassium hydroxide (C 2H 5OH-KOH) solution. The experimental results for the case of feeding C 2H 5OH solution without added KOH indicate that the cell performance varies with the A3 ionomer content in the anode catalyst layer, and a content of 10 wt.% exhibits the best performance. When feeding C 2H 5OH-KOH solution, the results show that: (i) in the region of low current density, the best performance is achieved for a membrane electrode assembly without any binder in the anode catalyst layer; (ii) in the region of high current density, the performance is improved with incorporation of PTFE binder in the anode catalyst layer; (iii) the PTFE binder yields better performance than does the A3 binder.
Photocarrier extraction in GaAsSb/GaAsN type-II QW superlattice solar cells
NASA Astrophysics Data System (ADS)
Aeberhard, U.; Gonzalo, A.; Ulloa, J. M.
2018-05-01
Photocarrier transport and extraction in GaAsSb/GaAsN type-II quantum well superlattices are investigated by means of inelastic quantum transport calculations based on the non-equilibrium Green's function formalism. Evaluation of the local density of states and the spectral current flow enables the identification of different regimes for carrier localization, transport, and extraction as a function of configurational parameters. These include the number of periods, the thicknesses of the individual layers in one period, the built-in electric field, and the temperature of operation. The results for the carrier extraction efficiency are related to experimental data for different symmetric GaAsSb/GaAsN type-II quantum well superlattice solar cell devices and provide a qualitative explanation for the experimentally observed dependence of photovoltaic device performance on the period thickness.
Shi, Da-Chuan; Wang, Juan; Hu, Rui-Bo; Zhou, Gong-Ke; O'Neill, Malcolm A; Kong, Ying-Zhen
2017-06-01
The structure of a pectin network requires both calcium (Ca 2+ ) and boron (B). Ca 2+ is involved in crosslinking pectic polysaccharides and arbitrarily induces the formation of an "egg-box" structure among pectin molecules, while B crosslinks rhamnogalacturonan II (RG-II) side chain A apiosyl residues in primary cell walls to generate a borate-dimeric-rhamnogalacturonan II (dRG-II-B) complex through a boron-bridge bond, leading to the formation of a pectin network. Based on recent studies of dRG-II-B structures, a hypothesis has been proposed suggesting that Ca 2+ is a common component of the dRG-II-B complex. However, no in vivo evidence has addressed whether B affects the stability of Ca 2+ crosslinks. Here, we investigated the L-fucose-deficient dwarf mutant mur1, which was previously shown to require exogenous B treatment for phenotypic reversion. Imbibed Arabidopsis thaliana seeds release hydrated polysaccharides to form a halo of seed mucilage covering the seed surface, which consists of a water-soluble outer layer and an adherent inner layer. Our study of mur1 seed mucilage has revealed that the pectin in the outer layer of mucilage was relocated to the inner layer. Nevertheless, the mur1 inner mucilage was more vulnerable to rough shaking or ethylene diamine tetraacetic acid (EDTA) extraction than that of the wild type. Immunolabeling analysis suggested that dRG-II-B was severely decreased in mur1 inner mucilage. Moreover, non-methylesterified homogalacturonan (HG) exhibited obvious reassembly in the mur1 inner layer compared with the wild type, which may imply a possible connection between dRG-II-B deficiency and pectin network transformation in the seed mucilage. As expected, the concentration of B in the mur1 inner mucilage was reduced, whereas the distribution and concentration of Ca 2+ in the inner mucilage increased significantly, which could be the reason why pectin relocates from the outer mucilage to the inner mucilage. Consequently, the disruption of B bridges appears to result in the extreme sensitivity of the mur1 mucilage pectin complex to EDTA extraction, despite the reinforcement of the pectin network by excessive Ca 2+ . Therefore, we propose a hypothesis that B, in the form of dRG-II-B, works together with Ca 2+ to maintain pectin network crosslinks and ultimately the mucilage ultrastructure in seed mucilage. This work may serve to complement our current understanding of mucilage configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Degao; Sheridan, Matthew V.; Shan, Bing
2017-08-30
In a Dye Sensitized Photoelectrosynthesis Cell (DSPEC) the relative orientation of catalyst and chromophore play important roles. Here we introduce a new, robust, Atomic Layer Deposition (ALD) procedure for the preparation of assemblies on wide bandgap semiconductors. In the procedure, phosphonated metal complex precursors react with metal ion bridging to an external chromophore or catalyst to give assemblies bridged by Al(III), Sn(IV), Ti(IV), or Zr(IV) metal oxide units as bridges. The procedure has been extended to chromophore-catalyst assemblies for water oxidation catalysis. A SnO2 bridged assembly on SnO2/TiO2 core/shell electrodes undergoes water splitting with an incident photon conversion efficiency (IPCE)more » of 17.1% at 440 nm. Reduction of water at a Ni(II)-based catalyst on NiO films has been shown to give H2. Compared to conventional solution-based procedures, the ALD approach offers significant advantages in scope and flexibility for the preparation of stable surface structures.« less
Layer by Layer Three-dimensional Tissue Epitaxy by Cell-Laden Hydrogel Droplets
Moon, SangJun; Hasan, Syed K.; Song, Young S.; Xu, Feng; Keles, Hasan Onur; Manzur, Fahim; Mikkilineni, Sohan; Hong, Jong Wook; Nagatomi, Jiro; Haeggstrom, Edward; Khademhosseini, Ali
2010-01-01
The ability to bioengineer three-dimensional (3D) tissues is a potentially powerful approach to treat diverse diseases such as cancer, loss of tissue function, or organ failure. Traditional tissue engineering methods, however, face challenges in fabricating 3D tissue constructs that resemble the native tissue microvasculature and microarchitectures. We have developed a bioprinter that can be used to print 3D patches of smooth muscle cells (5 mm × 5 mm × 81 μm) encapsulated within collagen. Current inkjet printing systems suffer from loss of cell viability and clogging. To overcome these limitations, we developed a system that uses mechanical valves to print high viscosity hydrogel precursors containing cells. The bioprinting platform that we developed enables (i) printing of multilayered 3D cell-laden hydrogel structures (16.2 μm thick per layer) with controlled spatial resolution (proximal axis: 18.0 ± 7.0 μm and distal axis: 0.5 ± 4.9 μm), (ii) high-throughput droplet generation (1 s per layer, 160 droplets/s), (iii) cell seeding uniformity (26 ± 2 cells/mm2 at 1 million cells/mL, 122 ± 20 cells/mm2 at 5 million cells/mL, and 216 ± 38 cells/mm2 at 10 million cells/mL), and (iv) long-term viability in culture (>90%, 14 days). This platform to print 3D tissue constructs may be beneficial for regenerative medicine applications by enabling the fabrication of printed replacement tissues. PMID:19586367
Yang, Dayun; Lü, Xiaoying; Hong, Ying; Xi, Tingfei; Zhang, Deyuan
2013-07-01
To explore molecular mechanism of mediation of adsorbed proteins to cell adhesion and growth on biomaterials, this study examined endothelial cell adhesion, morphology and viability on bare and titanium nitride (TiN) coated nickel titanium (NiTi) alloys and chitosan film firstly, and then identified the type and amount of serum proteins adsorbed on the three surfaces by proteomic technology. Subsequently, the mediation role of the identified proteins to cell adhesion and growth was investigated with bioinformatics analyses, and further confirmed by a series of cellular and molecular biological experiments. Results showed that the type and amount of adsorbed serum proteins associated with cell adhesion and growth was obviously higher on the alloys than on the chitosan film, and these proteins mediated endothelial cell adhesion and growth on the alloys via four ways. First, proteins such as adiponectin in the adsorbed protein layer bound with cell surface receptors to generate signal transduction, which activated cell surface integrins through increasing intracellular calcium level. Another way, thrombospondin 1 in the adsorbed protein layer promoted TGF-β signaling pathway activation and enhanced integrins expression. The third, RGD sequence containing proteins such as fibronectin 1, vitronectin and thrombospondin 1 in the adsorbed protein layer bound with activated integrins to activate focal adhesion pathway, increased focal adhesion formation and actin cytoskeleton organization and mediated cell adhesion and spreading. In addition, the activated focal adhesion pathway promoted the expression of cell growth related genes and resulted in cell proliferation. The fourth route, coagulation factor II (F2) and fibronectin 1 in the adsorbed protein layer bound with cell surface F2 receptor and integrin, activated regulation of actin cytoskeleton pathway and regulated actin cytoskeleton organization. Copyright © 2013 Elsevier Ltd. All rights reserved.
Histopathology of motor cortex in an experimental focal ischemic stroke in mouse model.
de Oliveira, Juçara Loli; Crispin, Pedro di Tárique Barreto; Duarte, Elisa Cristiana Winkelmann; Marloch, Gilberto Domingos; Gargioni, Rogério; Trentin, Andréa Gonçalves; Alvarez-Silva, Marcio
2014-05-01
Experimental ischemia results in cortical brain lesion followed by ischemic stroke. In this study, focal cerebral ischemia was induced in mice by occlusion of the middle cerebral artery. We studied cortical layers I, II/III, V and VI in the caudal forelimb area (CFA) and medial agranular cortex (AGm) from control and C57BL/6 mice induced with ischemic stroke. Based on our analysis of CFA and AGm motor cortex, significant differences were observed in the numbers of neurons, astrocytes and microglia in the superficial II/III and deep V cortical layers. Cellular changes were more prominent in layer V of the CFA with nuclear pyknosis, chromatin fragmentation, necrosis and degeneration, as well as, morphological evidence of apoptosis, mainly in neurons. As result, the CFA was more severely impaired than the AGm in this focal cerebral ischemic model, as evidenced by the proliferation of astrocytes, potentially resulting in neuroinflammation by microglia-like cells. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jenkins, J. Logan; Kao, Chris C.; Cayce, Jonathan M.; Mahadevan-Jansen, Anita; Jansen, E. Duco
2017-02-01
Infrared neural modulation (INM) is a label-free method for eliciting neural activity with high spatial selectivity in mammalian models. While there has been an emphasis on INM research towards applications in the peripheral nervous system and the central nervous system (CNS), the biophysical mechanisms by which INM occurs remains largely unresolved. In the rat CNS, INM has been shown to elicit and inhibit neural activity, evoke calcium signals that are dependent on glutamate transients and astrocytes, and modulate inhibitory GABA currents. So far, in vivo experiments have been restricted to layers I and II of the rat cortex which consists mainly of astrocytes, inhibitory neurons, and dendrites from deeper excitatory neurons owing to strong absorption of light in these layers. Deeper cortical layers (III-VI) have vastly different cell type composition, consisting predominantly of excitatory neurons which can be targeted for therapies such as deep brain stimulation. The neural responses to infrared light of deeper cortical cells have not been well defined. Acute thalamocortical brain slices will allow us to analyze the effects of INS on various components of the cortex, including different cortical layers and cell populations. In this study, we present the use of photoablation with an erbium:YAG laser to reduce the thickness of the dead cell zone near the cutting surface of brain slices. This technique will allow for more optical energy to reach living cells, which should contribute the successful transduction of pulsed infrared light to neural activity. In the future, INM-induced neural responses will lead to a finer characterization of the parameter space for the neuromodulation of different cortical cell types and may contribute to understanding the cell populations that are important for allowing optical stimulation of neurons in the CNS.
NASA Astrophysics Data System (ADS)
Rotenstreich, Ygal; Tzameret, Adi; Kalish, Sapir E.; Belkin, Michael; Meir, Amilia; Treves, Avraham J.; Nagler, Arnon; Sher, Ifat
2015-03-01
Incurable retinal degenerations affect millions worldwide. Stem cell transplantation rescued visual functions in animal models of retinal degeneration. In those studies cells were transplanted in subretinal "blebs", limited number of cells could be injected and photoreceptor rescue was restricted to areas in proximity to the injection sites. We developed a minimally-invasive surgical platform for drug and cell delivery in a thin layer across the subretina and extravascular spaces of the choroid. The novel system is comprised of a syringe with a blunt-tipped needle and an adjustable separator. Human bone marrow mesenchymal stem cells (hBM-MSCs) were transplanted in eyes of RCS rats and NZW rabbits through a longitudinal triangular scleral incision. No immunosuppressants were used. Retinal function was determined by electroretinogram analysis and retinal structure was determined by histological analysis and OCT. Transplanted cells were identified as a thin layer across the subretina and extravascular spaces of the choroid. In RCS rats, cell transplantation delayed photoreceptor degeneration across the entire retina and significantly enhanced retinal functions. No retinal detachment or choroidal hemorrhages were observed in rabbits following transplantation. This novel platform opens a new avenue for drug and cell delivery, placing the transplanted cells in close proximity to the damaged RPE and retina as a thin layer, across the subretina and thereby slowing down cell death and photoreceptor degeneration, without retinal detachment or choroidal hemorrhage. This new transplantation system may increase the therapeutic effect of other cell-based therapies and therapeutic agents. This study is expected to directly lead to phase I/II clinical trials for autologous hBM-MSCs transplantation in retinal degeneration patients.
Solar cell circuit and method for manufacturing solar cells
NASA Technical Reports Server (NTRS)
Mardesich, Nick (Inventor)
2010-01-01
The invention is a novel manufacturing method for making multi-junction solar cell circuits that addresses current problems associated with such circuits by allowing the formation of integral diodes in the cells and allows for a large number of circuits to readily be placed on a single silicon wafer substrate. The standard Ge wafer used as the base for multi-junction solar cells is replaced with a thinner layer of Ge or a II-V semiconductor material on a silicon/silicon dioxide substrate. This allows high-voltage cells with multiple multi-junction circuits to be manufactured on a single wafer, resulting in less array assembly mass and simplified power management.
Topography of Protein Kinase C βII in Benign and Malignant Melanocytic Lesions.
Krasagakis, Konstanin; Tsentelierou, Eleftheria; Chlouverakis, Gregory; Stathopoulos, Efstathios N
2017-09-01
Protein kinase C βII promotes melanogenesis and affects proliferation of melanocytic cells but is frequently absent or decreased in melanoma cells in vitro. To investigate PKC-βII expression and spatial distribution within a lesion in various benign and malignant melanocytic proliferations. Expression of PKC-βII was semiquantitatively assessed in the various existing compartments (intraepidermal [not nested], junctional [nested], and dermal) of benign (n = 43) and malignant (n = 28) melanocytic lesions by immunohistochemistry. Melanocytes in the basal layer of normal skin or in lentigo simplex stained strongly for PKC-βII. Common nevi lacked completely PKC-βII. All other lesions expressed variably PKC-βII, with cutaneous melanoma metastases displaying the lowest rate of positivity (14%). In the topographical analysis within a lesion, PKC-βII expression was largely retained in the intraepidermal and junctional part of all other lesions (dysplastic nevus, lentigo maligna, and melanoma). Reduced expression of PKC-βII was found in the dermal component of benign and malignant lesions ( P = .041 vs intraepidermal). PKC-βII expression in the various compartments did not differ significantly between benign and malignant lesions. The current study revealed a significant correlation between PKC-βII expression and spatial localization of melanocytes, with the lowest expression found in the dermal compartment and the highest in the epidermal compartment.
Control of cerebellar granule cell output by sensory-evoked Golgi cell inhibition
Duguid, Ian; Branco, Tiago; Chadderton, Paul; Arlt, Charlotte; Powell, Kate; Häusser, Michael
2015-01-01
Classical feed-forward inhibition involves an excitation–inhibition sequence that enhances the temporal precision of neuronal responses by narrowing the window for synaptic integration. In the input layer of the cerebellum, feed-forward inhibition is thought to preserve the temporal fidelity of granule cell spikes during mossy fiber stimulation. Although this classical feed-forward inhibitory circuit has been demonstrated in vitro, the extent to which inhibition shapes granule cell sensory responses in vivo remains unresolved. Here we combined whole-cell patch-clamp recordings in vivo and dynamic clamp recordings in vitro to directly assess the impact of Golgi cell inhibition on sensory information transmission in the granule cell layer of the cerebellum. We show that the majority of granule cells in Crus II of the cerebrocerebellum receive sensory-evoked phasic and spillover inhibition prior to mossy fiber excitation. This preceding inhibition reduces granule cell excitability and sensory-evoked spike precision, but enhances sensory response reproducibility across the granule cell population. Our findings suggest that neighboring granule cells and Golgi cells can receive segregated and functionally distinct mossy fiber inputs, enabling Golgi cells to regulate the size and reproducibility of sensory responses. PMID:26432880
Tan, Guak-Kim; Dinnes, Donna L M; Butler, Lauren N; Cooper-White, Justin J
2010-08-01
Menisci are one of the most commonly injured parts of the knee with a limited healing potential. This study focuses on fabrication and characterization of biomimetic surfaces for meniscal tissue engineering. To achieve this, a combination of hyaluronic acid/chitosan (HA/CH) mutilayers with covalently immobilized major extracellular matrix (ECM) components of native meniscus, namely collagen I/II (COL.I/II) and chondroitin-6-sulfate (C6S) was employed. Adsorption of the biomolecules was monitored using a quartz crystal microbalance with dissipation (QCM-D) and fourier transform-surface plasmon resonance (FT-SPR). Immobilization of the biomolecules onto HA/CH mutilayers was achieved by sequential adsorption, with optimum binding at a molar ratio of 1.4:1 (COL.I/II: C6S). After adding COL.I/II, the layers became relatively more rigid and large aggregates were evident. The effects of the modified surfaces on cell proliferation, gene expression and proteoglycan production of rat meniscal cells were examined. Quantitative real-time reverse transcriptase polymerase chain reaction (RT-qPCR) analysis showed that primary meniscal cells dedifferentiated rapidly after one passage in monolayer culture. This process could be reversed by culturing the cells on C6S surfaces, as indicated by increases in both collagen II and aggrecan gene expression, as well as proteoglycan production. Cells with abundant lipid vacuoles were evident on all the surfaces over an extended culture period. The results demonstrate the feasibility of C6S surfaces to avoid the dedifferentiation that normally occurs during monolayer expansion of meniscal cells. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.
Correia, Clara R; Gil, Sara; Reis, Rui L; Mano, João F
2016-06-01
TGF-β3 is enzymatically immobilized by transglutaminase-2 action to poly(l-lactic acid) microparticles coated with collagen II. Microparticles are then encapsulated with stem cells inside liquified spherical compartments enfolded with a permselective shell through layer-by-layer adsorption. Magnetic nanoparticles are electrostatically bound to the multilayered shell, conferring magnetic-response ability. The goal of this study is to engineer a closed environment inside which encapsulated stem cells would undergo a self-regulated chondrogenesis. To test this hypothesis, capsules are cultured in chondrogenic differentiation medium without TGF-β3. Their biological outcome is compared with capsules encapsulating microparticles without TGF-β3 immobilization and cultured in normal chondrogenic differentiation medium containing soluble TGF-β3. Glycosaminoglycans quantification demosntrates that similar chondrogenesis levels are achieved. Moreover, collagen fibrils resembling the native extracellular matrix of cartilage can be observed. Importantly, the genetic evaluation of characteristic cartilage markers confirms the successful chondrogenesis, while hypertrophic markers are downregulated. In summary, the engineered capsules are able to provide a suitable and stable chondrogenesis environment for stem cells without the need of TGF-β3 supplementation. This kind of self-regulated capsules with softness, robustness, and magnetic responsive characteristics is expected to provide injectability and in situ fixation, which is of great advantage for minimal invasive strategies to regenerate cartilage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zygoura, Vasiliki; Baydoun, Lamis; Monnereau, Claire; Satué, Maria; Oellerich, Silke; Melles, Gerrit R J
2017-12-01
To evaluate the clinical significance of dark spots in the donor endothelial cell layer as observed with specular microscopy, in patients who underwent Descemet membrane endothelial keratoplasty (DMEK) for Fuchs endothelial dystrophy (FED). Specular microscopy images of 83 consecutive eyes up to 7 years after DMEK were retrospectively reviewed in a masked fashion for the presence of dark spots and morphologic changes in the endothelial cell layer and processed for endothelial cell density (ECD) measurements. A normal endothelial cell layer was found in 52/83 eyes (62.7%) (group 0). In the remaining 31/83 eyes, various dark discolorations with or without altered endothelial cell morphology were categorized into 4 groups. Dark spots were classified as artifacts in 10/83 (12.0%) eyes (group I) and as "superimposed" dots in 10/83 (12.0%) eyes (group II), that is, optical irregularities slightly anterior to a healthy endothelial cell layer. In 11/83 (13.3%) eyes, endothelial stress was characterized by dark grayish discolorations and/or nuclear activation (group III). Most of the latter eyes also had a significant ECD decrease; 3 of these eyes later developed secondary graft failure, of which one was preceded by allograft rejection. None of the eyes showed recurrent guttae typical for FED (group IV). Dark endothelial spots after DMEK for FED may not represent a recurrent disease, but tissue irregularities just anterior to the graft. However, if associated with changes in endothelial cell morphology, nuclear activation and/or ECD decrease, dark discolorations may reflect "cellular stress" heralding secondary graft failure or (subclinical) allograft rejection.
Chen, Z H; Yeung, S Y; Li, H; Qian, J C; Zhang, W J; Li, Y Y; Bello, I
2012-05-21
ZnO/Zn(1-x)Pb(x)Se core-shell nanowires (NWs) have been synthesized by a solution based surface ion transfer method at various temperatures. The energy dispersive spectroscopic (EDS) mapping of single NWs suggests that the Zn, Pb and Se atoms are uniformly distributed in their shell layers. The ternary Zn(1-x)Pb(x)Se layers with tunable bandgaps extend the band-edge of optical absorption from 450 nm to 700 nm contrasting with the binary ZnSe layers. The ultraviolet photoelectron spectroscopic (UPS) analysis reveals a transition from the type I to type II band alignment when the x fraction decreases from 0.66 to the value of 0.36 in the nanoshell layers. This quantitative investigation of electronic energy levels at ZnO and Zn(1-x)Pb(x)Se interfaces indicates that the proper type II band alignment is well suited for photovoltaic energy conversion. The photovoltaic cells comprising a ZnO/Zn(1-x)Pb(x)Se nano-heterojunction with the optimized Pb content are expected to be more efficient than the devices sensitized by binary ZnSe or PbSe.
The Effect of Single Pyramidal Neuron Firing Within Layer 2/3 and Layer 4 in Mouse V1.
Meyer, Jochen F; Golshani, Peyman; Smirnakis, Stelios M
2018-01-01
The influence of cortical cell spiking activity on nearby cells has been studied extensively in vitro . Less is known, however, about the impact of single cell firing on local cortical networks in vivo . In a pioneering study, Kwan and Dan (Kwan and Dan, 2012) reported that in mouse layer 2/3 (L2/3), under anesthesia , stimulating a single pyramidal cell recruits ~2.1% of neighboring units. Here we employ two-photon calcium imaging in layer 2/3 of mouse V1, in conjunction with single-cell patch clamp stimulation in layer 2/3 or layer 4, to probe, in both the awake and lightly anesthetized states , how (i) activating single L2/3 pyramidal neurons recruits neighboring units within L2/3 and from layer 4 (L4) to L2/3, and whether (ii) activating single pyramidal neurons changes population activity in local circuit. To do this, it was essential to develop an algorithm capable of quantifying how sensitive the calcium signal is at detecting effectively recruited units ("followers"). This algorithm allowed us to estimate the chance of detecting a follower as a function of the probability that an epoch of stimulation elicits one extra action potential (AP) in the follower cell. Using this approach, we found only a small fraction (<0.75%) of L2/3 cells to be significantly activated within a radius of ~200 μm from a stimulated neighboring L2/3 pyramidal cell. This fraction did not change significantly in the awake vs. the lightly anesthetized state, nor when stimulating L2/3 vs. underlying L4 pyramidal neurons. These numbers are in general agreement with, though lower than, the percentage of neighboring cells (2.1% pyramidal cells and interneurons combined) reported by Kwan and Dan to be activated upon stimulating single L2/3 pyramidal neurons under anesthesia (Kwan and Dan, 2012). Interestingly, despite the small number of individual units found to be reliably driven, we did observe a modest but significant elevation in aggregate population responses compared to sham stimulation. This underscores the distributed impact that single cell stimulation has on neighboring microcircuit responses, revealing only a small minority of relatively strongly connected partners. Patch-clamp stimulation in conjunction with 2-photon imaging shows that activating single layer-2/3 or layer-4 pyramidal neurons produces few (<1% of local units) reliable single-cell followers in L2/3 of mouse area V1, either under light anesthesia or in quiet wakefulness: instead, single cell stimulation was found to elevate aggregate population activity in a weak but highly distributed fashion.
Ueda, Yoshitomo; Misumi, Sachiyo; Suzuki, Mina; Ogawa, Shino; Nishigaki, Ruriko; Ishida, Akimasa; Jung, Cha-Gyun; Hida, Hideki
2018-01-01
We previously established neonatal white matter injury (WMI) model rat that is made by right common carotid artery dissection at postnatal day 3, followed by 6% hypoxia for 60 min. This model has fewer oligodendrocyte progenitor cells and reduced myelin basic protein (MBP) positive areas in the sensorimotor cortex, but shows no apparent neuronal loss. However, how motor deficits are induced in this model is unclear. To elucidate the relationship between myelination disturbance and concomitant motor deficits, we first performed motor function tests (gait analysis, grip test, horizontal ladder test) and then analyzed myelination patterns in the sensorimotor cortex using transmission electron microscopy (TEM) and Contactin associated protein 1 (Caspr) staining in the neonatal WMI rats in adulthood. Behavioral tests revealed imbalanced motor coordination in this model. Motor deficit scores were higher in the neonatal WMI model, while hindlimb ladder stepping scores and forelimb grasping force were comparable to controls. Prolonged forelimb swing times and decreased hindlimb paw angles on the injured side were revealed by gait analysis. TEM revealed no change in myelinated axon number and the area g-ratio in the layer II/III of the cortex. Electromyographical durations and latencies in the gluteus maximus in response to electrical stimulation of the brain area were unchanged in the model. Caspr staining revealed fewer positive dots in layers II/III of the WMI cortex, indicating fewer and/or longer myelin sheath. These data suggest that disorganization of oligodendrocyte development in layers II/III of the sensorimotor cortex relates to imbalanced motor coordination in the neonatal WMI model rat.
Huang, JuFang; Huang, Kai; Shang, Lei; Wang, Hui; Zhang, Mengqi; Fan, Chun-Ling; Chen, Dan; Yan, Xiaoxin; Xiong, Kun
2012-07-19
Chronic lead (Pb) poisoning remains an environmental risk especially for the pediatric population, and it may affect brain development. Immature neurons expressing doublecortin (DCX+) exist around cortical layer II in various mammals, including adult guinea pigs and humans. Using young adult guinea pigs as an experimental model, the present study explored if chronic Pb exposure affects cortical DCX + immature neurons and those around the subventricular and subgranular zones (SVZ, SGZ). Two month-old guinea pigs were treated with 0.2% lead acetate in drinking water for 2, 4 and 6 months. Blood Pb levels in these animals reached 10.27 ± 0.62, 16.25 ± 0.78 and 19.03 ± 0.86 μg/dL at the above time points, respectively, relative to ~3 μg/dL in vehicle controls. The density of DCX + neurons was significantly reduced around cortical layer II, SVZ and SGZ in Pb-treated animals surviving 4 and 6 months relative to controls. Bromodeoxyuridine (BrdU) pulse-chasing studies failed to find cellular colocalization of this DNA synthesis indicator in DCX + cells around layer II in Pb-treated and control animals. These cortical immature neurons were not found to coexist with active caspase-3 or Fluoro-Jade C labeling. Chronic Pb exposure can lead to significant reduction in the number of the immature neurons around cortical layer II and in the conventional neurogenic sites in young adult guinea pigs. No direct evidence could be identified to link the reduced cortical DCX expression with alteration in local neurogenesis or neuronal death.
Wiring Economy of Pyramidal Cells in the Juvenile Rat Somatosensory Cortex
Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier
2016-01-01
Ever since Cajal hypothesized that the structure of neurons is designed in such a way as to save space, time and matter, numerous researchers have analyzed wiring properties at different scales of brain organization. Here we test the hypothesis that individual pyramidal cells, the most abundant type of neuron in the cerebral cortex, optimize brain connectivity in terms of wiring length. In this study, we analyze the neuronal wiring of complete basal arborizations of pyramidal neurons in layer II, III, IV, Va, Vb and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. For each cell, we search for the optimal basal arborization and compare its length with the length of the real dendritic structure. Here the optimal arborization is defined as the arborization that has the shortest total wiring length provided that all neuron bifurcations are respected and the extent of the dendritic arborizations remain unchanged. We use graph theory and evolutionary computation techniques to search for the minimal wiring arborizations. Despite morphological differences between pyramidal neurons located in different cortical layers, we found that the neuronal wiring is near-optimal in all cases (the biggest difference between the shortest synthetic wiring found for a dendritic arborization and the length of its real wiring was less than 5%). We found, however, that the real neuronal wiring was significantly closer to the best solution found in layers II, III and IV. Our studies show that the wiring economy of cortical neurons is related not to the type of neurons or their morphological complexities but to general wiring economy principles. PMID:27832100
Wiring Economy of Pyramidal Cells in the Juvenile Rat Somatosensory Cortex.
Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier
2016-01-01
Ever since Cajal hypothesized that the structure of neurons is designed in such a way as to save space, time and matter, numerous researchers have analyzed wiring properties at different scales of brain organization. Here we test the hypothesis that individual pyramidal cells, the most abundant type of neuron in the cerebral cortex, optimize brain connectivity in terms of wiring length. In this study, we analyze the neuronal wiring of complete basal arborizations of pyramidal neurons in layer II, III, IV, Va, Vb and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. For each cell, we search for the optimal basal arborization and compare its length with the length of the real dendritic structure. Here the optimal arborization is defined as the arborization that has the shortest total wiring length provided that all neuron bifurcations are respected and the extent of the dendritic arborizations remain unchanged. We use graph theory and evolutionary computation techniques to search for the minimal wiring arborizations. Despite morphological differences between pyramidal neurons located in different cortical layers, we found that the neuronal wiring is near-optimal in all cases (the biggest difference between the shortest synthetic wiring found for a dendritic arborization and the length of its real wiring was less than 5%). We found, however, that the real neuronal wiring was significantly closer to the best solution found in layers II, III and IV. Our studies show that the wiring economy of cortical neurons is related not to the type of neurons or their morphological complexities but to general wiring economy principles.
Jakob, H; Beckmann, H
1994-01-01
A postmortem histological comparison of 5 selected cases of schizophrenia with 5 non-schizophrenic controls showed a circumscribed malformation of the entorhinal cortex. The cortical alterations consisted mainly of a lack or a change of the characteristic island formations in layer II pre-alpha. Further, there were atypical neurons in layers II and III showing a conspicuous decrease of volume, often a change of the shape. They lay either in clusters or in columnar formations. These cells were considered "young neurons". The changes varied considerably from case to case and sometimes extended to all entorhinal layers. In one case the extension of the changes is described by means of serial sections in steps which extend over the whole rostral entorhinal region. Here, the striking architectural changes were formed in an exactly circumscribed sector and did not extend to the rostral hippocampal formation. On the whole, the changes are regarded as local migrational disturbances that occur during the second trimester of brain development. Neuronal displacements like these could give rise to various aberrant connections within the limbic system and related structures (e.g. the central position of the entorhinal region in circuits such as the entorhino-hippocampal loop, entorhinol-insula and entorhino-orbitofrontal reciprocal connections). Whereas alterations of the genetic programming of cell migrations may be suspected, various environmental influences (e.g. viral infections during the months III-V of pregnancy) appear to play a significant role. The malformations may be a decisive vulnerability factor for the later manifestation of the illness.
Kjaerby, Celia; Broberg, Brian V; Kristiansen, Uffe; Dalby, Nils Ole
2014-09-01
A compromised γ-aminobutyric acid (GABA)ergic system is hypothesized to be part of the underlying pathophysiology of schizophrenia. N-methyl-D-aspartate (NMDA) receptor hypofunction during neurodevelopment is proposed to disrupt maturation of interneurons causing an impaired GABAergic transmission in adulthood. The present study examines prefrontal GABAergic transmission in adult rats administered with the NMDA receptor channel blocker, phencyclidine (PCP), for 3 days during the second postnatal week. Whole-cell patch-clamp recordings from pyramidal cells in PCP-treated rats showed a 22% reduction in the frequency of miniature inhibitory postsynaptic currents in layer II/III, but not in layer V pyramidal neurons of the prefrontal cortex. Furthermore, early postnatal PCP treatment caused insensitivity toward effects of the GABA transporter 1 (GAT-1) inhibitor, 1,2,5,6-tetrahydro-1-[2-[[(diphenyl-methylene)amino]oxy]ethyl]-3-pyridinecarboxylic acid, and also diminished currents passed by δ-subunit-containing GABAA receptors in layer II/III pyramidal neurons. The observed impairments in GABAergic function are compatible with the alteration of GABAergic markers as well as cognitive dysfunction observed in early postnatal PCP-treated rats and support the hypothesis that PCP administration during neurodevelopment affects the functionality of interneurons in later life. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Rezaei, Nasim; Isabella, Olindo; Vroon, Zeger; Zeman, Miro
2018-01-22
A 3-D optical modelling was calibrated to calculate the light absorption and the total reflection of fabricated CIGS solar cells. Absorption losses at molybdenum (Mo) / CIGS interface were explained in terms of plasmonic waves. To quench these losses, we assumed the insertion of a lossless dielectric spacer between Mo and CIGS, whose optical properties were varied. We show that such a spacer with low refractive index and proper thickness can significantly reduce absorption in Mo in the long wavelength regime and improve the device's rear reflectance, thus leading to enhanced light absorption in the CIGS layer. Therefore, we optimized a realistic two-layer MgF 2 / Al 2 O 3 dielectric spacer to exploit (i) the passivation properties of ultra-thin Al 2 O 3 on the CIGS side for potential high open-circuit voltage and (ii) the low refractive index of MgF 2 on the Mo side to reduce its optical losses. Combining our realistic spacer with optically-optimized point contacts increases the implied photocurrent density of a 750 nm-thick CIGS layer by 10% for the wavelengths between 700 and 1150 nm with respect to the reference cell. The elimination of plasmonic resonances in the new structure leads to a higher electric field magnitude at the bottom of CIGS layer and justifies the improved optical performance.
Mirahmadi, Fereshteh; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali; Bonakdar, Shahin
2013-12-01
Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber-hydrogel composite for GAG content and in two-layer electrospun fiber-hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering. © 2013.
Quantum Dot Sensitized Solar Cells Based on TiO2/AgInS2
NASA Astrophysics Data System (ADS)
Pawar, Sachin A.; Jeong, Jae Pil; Patil, Dipali S.; More, Vivek M.; Lee, Rochelle S.; Shin, Jae Cheol; Choi, Won Jun
2018-05-01
Quantum dot heterojunctions with type-II band alignment can efficiently separate photogenerated electron-hole pairs and, hence, are useful for solar cell studies. In this study, a quantum dot sensitized solar cell (QDSSC) made of TiO2/AgInS2 is achieved to boost the photoconversion efficiency for the TiO2-based system by varying the AgInS2 layer's thickness. The TiO2 nanorods array film is prepared by using a simple hydrothermal technique. The formation of a AgInS2 QD-sensitized TiO2-nanorod photoelectrode is carried out by successive ionic layer adsorption and reaction (SILAR) technique. The effect of the QD layer on the performance of the solar cell is studied by varying the SILAR cycles of the QD coating. The synthesized electrode materials are characterized by using X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy and solar cell performances. The results indicate that the nanocrystals have effectively covered the outer surfaces of the TiO2 nanorods. The interfacial structure of quantum dots (QDs)/TiO2 is also investigated, and the growth interface is verified. A careful comparison between TiO2/AgInS2 sensitized cells reveals that the trasfer of electrons and hole proceeds efficiently, the recombination is suppressed for the optimum thickness of the QD layer and light from the entire visible spectrum is utilised. Under AM 1.5G illumination, a high photocurrent of 1.36 mAcm-2 with an improved power conversion efficiency of 0.48% is obtained. The solar cell properties of our photoanodes suggest that the TiO2 nanorod array films co-sensitized by AgInS2 nanoclusters have potential applications in solar cells.
NASA Astrophysics Data System (ADS)
Nakajo, Arata; Wuillemin, Zacharie; Van herle, Jan; Favrat, Daniel
Structural stability issues in planar solid oxide fuel cells arise from the mismatch between the coefficients of thermal expansion of the components. The stress state at operating temperature is the superposition of several contributions, which differ depending on the component. First, the cells accumulate residual stresses due to the sintering phase during the manufacturing process. Further, the load applied during assembly of the stack to ensure electric contact and flatten the cells prevents a completely stress-free expansion of each component during the heat-up. Finally, thermal gradients cause additional stresses in operation. The temperature profile generated by a thermo-electrochemical model implemented in an equation-oriented process modelling tool (gPROMS) was imported into finite-element software (ABAQUS) to calculate the distribution of stress and contact pressure on all components of a standard solid oxide fuel cell repeat unit. The different layers of the cell in exception of the cathode, i.e. anode, electrolyte and compensating layer were considered in the analysis to account for the cell curvature. Both steady-state and dynamic simulations were performed, with an emphasis on the cycling of the electrical load. The study includes two different types of cell, operation under both thermal partial oxidation and internal steam-methane reforming and two different initial thicknesses of the air and fuel compressive sealing gaskets. The results generated by the models are presented in two papers: Part I focuses on cell cracking. In the present paper, Part II, the occurrences of loss of gas-tightness in the compressive gaskets and/or electrical contact in the gas diffusion layer were identified. In addition, the dependence on temperature of both coefficients of thermal expansion and Young's modulus of the metallic interconnect (MIC) were implemented in the finite-element model to compute the plastic deformation, while the possibilities of thermal buckling were analysed in a dedicated and separate model. The value of the minimum stable thickness of the MIC is large, even though significantly affected by the operating conditions. This phenomenon prevents any unconsidered decrease of the thickness to reduce the thermal inertia of the stack. Thermal gradients and the shape of the temperature profile during operation induce significant decreases of the contact pressure on the gaskets near the fuel manifold, at the inlet or outlet, depending on the flow configuration. On the contrary, the electrical contact was ensured independently of the operating point and history, even though plastic strain developed in the gas diffusion layer.
Irx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation
Yu, Wenjie; Li, Xiao; Eliason, Steven; Romero-Bustillos, Miguel; Ries, Ryan J.; Cao, Huojun; Amendt, Brad A.
2017-01-01
The Iroquois genes (Irx) appear to regulate fundamental processes that lead to cell proliferation, differentiation, and maturation during development. In this report, the Iroquois homeobox 1 (Irx1) transcription factor was functionally disrupted using a LacZ insert and LacZ expression demonstrated stage-specific expression during embryogenesis. Irx1 is highly expressed in the brain, lung, digits, kidney, testis and developing teeth. Irx1 null mice are neonatal lethal and this lethality it due to pulmonary immaturity. Irx1−/− mice show delayed lung maturation characterized by defective surfactant protein secretion and Irx1 marks a population of SP-C expressing alveolar type II cells. Irx1 is specifically expressed in the outer enamel epithelium (OEE), stellate reticulum (SR) and stratum intermedium (SI) layers of the developing tooth. Irx1 mediates dental epithelial cell differentiation in the lower incisors resulting in delayed growth of the lower incisors. Irx1 is specifically and temporally expressed during developmental stages and we have focused on lung and dental development in this report. Irx1+ cells are unique to the development of the incisor outer enamel epithelium, patterning of Lef-1+ and Sox2+ cells as well as a new marker for lung alveolar type II cells. Mechanistically, Irx1 regulates Foxj1 and Sox9 to control cell differentiation during development. PMID:28746823
Irx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation.
Yu, Wenjie; Li, Xiao; Eliason, Steven; Romero-Bustillos, Miguel; Ries, Ryan J; Cao, Huojun; Amendt, Brad A
2017-09-01
The Iroquois genes (Irx) appear to regulate fundamental processes that lead to cell proliferation, differentiation, and maturation during development. In this report, the Iroquois homeobox 1 (Irx1) transcription factor was functionally disrupted using a LacZ insert and LacZ expression demonstrated stage-specific expression during embryogenesis. Irx1 is highly expressed in the brain, lung, digits, kidney, testis and developing teeth. Irx1 null mice are neonatal lethal and this lethality it due to pulmonary immaturity. Irx1 -/- mice show delayed lung maturation characterized by defective surfactant protein secretion and Irx1 marks a population of SP-C expressing alveolar type II cells. Irx1 is specifically expressed in the outer enamel epithelium (OEE), stellate reticulum (SR) and stratum intermedium (SI) layers of the developing tooth. Irx1 mediates dental epithelial cell differentiation in the lower incisors resulting in delayed growth of the lower incisors. Irx1 is specifically and temporally expressed during developmental stages and we have focused on lung and dental development in this report. Irx1+ cells are unique to the development of the incisor outer enamel epithelium, patterning of Lef-1+ and Sox2+ cells as well as a new marker for lung alveolar type II cells. Mechanistically, Irx1 regulates Foxj1 and Sox9 to control cell differentiation during development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Bourzami, Riadh; Eyele-Mezui, Séraphin; Delahaye, Emilie; Drillon, Marc; Rabu, Pierre; Parizel, Nathalie; Choua, Sylvie; Turek, Philippe; Rogez, Guillaume
2014-01-21
A series of new hybrid multilayers has been synthesized by insertion-grafting of transition metal (Cu(II), Co(II), Ni(II), and Zn(II)) tetrasulfonato phthalocyanines between layers of Cu(II) and Co(II) simple hydroxides. The structural and spectroscopic investigations confirm the formation of new layered hybrid materials in which the phthalocyanines act as pillars between the inorganic layers. The magnetic investigations show that all copper hydroxide-based compounds behave similarly, presenting an overall antiferromagnetic behavior with no ordering down to 1.8 K. On the contrary, the cobalt hydroxide-based compounds present a ferrimagnetic ordering around 6 K, regardless of the nature of the metal phthalocyanine between the inorganic layers. The latter observation points to strictly dipolar interactions between the inorganic layers. The amplitude of the dipolar field has been evaluated from X-band and Q-band EPR spectroscopy investigation (Bdipolar ≈ 30 mT).
Scherz, Ruth; Shinder, Vera; Engelberg, David
2001-01-01
Recently we reported an unusual multicellular organization in yeast that we termed stalk-like structures. These structures are tall (0.5 to 3 cm long) and narrow (1 to 3 mm in diameter). They are formed in response to UV radiation of cultures spread on high agar concentrations. Here we present an anatomical analysis of the stalks. Microscopic inspection of cross sections taken from stalks revealed that stalks are composed of an inner core in which cells are dense and vital and a layer of cells (four to six rows) that surrounds the core. This outer layer is physically separated from the core and contains many dead cells. The outer layer may form a protective shell for the core cells. Through electron microscopy analysis we observed three types of cells within the stalk population: (i) cells containing many unusual vesicles, which might be undergoing some kind of cell death; (ii) cells containing spores (usually one or two spores only); and (iii) familiar rounded cells. We suggest that stalk cells are not only spatially organized but may undergo processes that induce a certain degree of cell specialization. We also show that high agar concentration alone, although not sufficient to induce stalk formation, induces dramatic changes in a colony's morphology. Most striking among the agar effects is the induction of growth into the agar, forming peg-like structures. Colonies grown on 4% agar or higher are reminiscent of stalks in some aspects. The agar concentration effects are mediated in part by the Ras pathway and are related to the invasive-growth phenomenon. PMID:11514526
Yaacobi-Gross, Nir; Garphunkin, Natalia; Solomeshch, Olga; Vaneski, Aleksandar; Susha, Andrei S; Rogach, Andrey L; Tessler, Nir
2012-04-24
We show that it is possible to combine several charge generation strategies in a single device structure, the performance of which benefits from all methods used. Exploiting the inherent type II heterojunction between layered structures of CdSe and CdTe colloidal quantum dots, we systematically study different ways of combining such nanocrystals of different size and surface chemistry and with different linking agents in a bilayer solar cell configuration. We demonstrate the beneficial use of two distinctly different sizes of NCs not only to improve the solar spectrum matching but also to reduce exciton binding energy, allowing their efficient dissociation at the interface. We further make use of the ligand-induced quantum-confined Stark effect in order to enhance charge generation and, hence, overall efficiency of nanocrystal-based solar cells.
Voxeur, Aline; Fry, Stephen C
2014-07-01
Boron (B) is essential for plant cell-wall structure and membrane functions. Compared with its role in cross-linking the pectic domain rhamnogalacturonan II (RG-II), little information is known about the biological role of B in membranes. Here, we investigated the involvement of glycosylinositol phosphorylceramides (GIPCs), major components of lipid rafts, in the membrane requirement for B. Using thin-layer chromatography and mass spectrometry, we first characterized GIPCs from Rosa cell culture. The major GIPC has one hexose residue, one hexuronic acid residue, inositol phosphate, and a ceramide moiety with a C18 trihydroxylated mono-unsaturated long-chain base and a C24 monohydroxylated saturated fatty acid. Disrupting B bridging (by B starvation in vivo or by treatment with cold dilute HCl or with excess borate in vitro) enhanced the GIPCs' extractability. As RG-II is the main B-binding site in plants, we investigated whether it could form a B-centred complex with GIPCs. Using high-voltage paper electrophoresis, we showed that addition of GIPCs decreased the electrophoretic mobility of radiolabelled RG-II, suggesting formation of a GIPC-B-RG-II complex. Last, using polyacrylamide gel electrophoresis, we showed that added GIPCs facilitate RG-II dimerization in vitro. We conclude that B plays a structural role in the plasma membrane. The disruption of membrane components by high borate may account for the phytotoxicity of excess B. Moreover, the in-vitro formation of a GIPC-B-RG-II complex gives the first molecular explanation of the wall-membrane attachment sites observed in vivo. Finally, our results suggest a role for GIPCs in the RG-II dimerization process. © 2014 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
Voxeur, Aline; Fry, Stephen C
2014-01-01
Boron (B) is essential for plant cell-wall structure and membrane functions. Compared with its role in cross-linking the pectic domain rhamnogalacturonan II (RG-II), little information is known about the biological role of B in membranes. Here, we investigated the involvement of glycosylinositol phosphorylceramides (GIPCs), major components of lipid rafts, in the membrane requirement for B. Using thin-layer chromatography and mass spectrometry, we first characterized GIPCs from Rosa cell culture. The major GIPC has one hexose residue, one hexuronic acid residue, inositol phosphate, and a ceramide moiety with a C18 trihydroxylated mono-unsaturated long-chain base and a C24 monohydroxylated saturated fatty acid. Disrupting B bridging (by B starvation in vivo or by treatment with cold dilute HCl or with excess borate in vitro) enhanced the GIPCs’ extractability. As RG-II is the main B-binding site in plants, we investigated whether it could form a B-centred complex with GIPCs. Using high-voltage paper electrophoresis, we showed that addition of GIPCs decreased the electrophoretic mobility of radiolabelled RG-II, suggesting formation of a GIPC–B–RG-II complex. Last, using polyacrylamide gel electrophoresis, we showed that added GIPCs facilitate RG-II dimerization in vitro. We conclude that B plays a structural role in the plasma membrane. The disruption of membrane components by high borate may account for the phytotoxicity of excess B. Moreover, the in-vitro formation of a GIPC–B–RG-II complex gives the first molecular explanation of the wall–membrane attachment sites observed in vivo. Finally, our results suggest a role for GIPCs in the RG-II dimerization process. PMID:24804932
Le Bé, Jean-Vincent; Silberberg, Gilad; Wang, Yun; Markram, Henry
2007-09-01
Neocortical pyramidal cells (PCs) project to various cortical and subcortical targets. In layer V, the population of thick tufted PCs (TTCs) projects to subcortical targets such as the tectum, brainstem, and spinal cord. Another population of layer V PCs projects via the corpus callosum to the contralateral neocortical hemisphere mediating information transfer between the hemispheres. This subpopulation (corticocallosally projecting cells [CCPs]) has been previously described in terms of their morphological properties, but less is known about their electrophysiological properties, and their synaptic connectivity is unknown. We studied the morphological, electrophysiological, and synaptic properties of CCPs by retrograde labeling with fluorescent microbeads in P13-P16 Wistar rats. CCPs were characterized by shorter, untufted apical dendrites, which reached only up to layers II/III, confirming previous reports. Synaptic connections between CCPs were different from those observed between TTCs, both in probability of occurrence and dynamic properties. We found that the CCP network is about 4 times less interconnected than the TTC network and the probability of release is 24% smaller, resulting in a more linear synaptic transmission. The study shows that layer V pyramidal neurons projecting to different targets form subnetworks with specialized connectivity profiles, in addition to the specialized morphological and electrophysiological intrinsic properties.
Pasán, Jorge; Sanchiz, Joaquín; Ruiz-Pérez, Catalina; Lloret, Francesc; Julve, Miguel
2005-10-31
Two new phenylmalonate-bridged copper(II) complexes with the formulas [Cu(4,4'-bpy)(Phmal)](n).2nH(2)O (1) and [Cu(2,4'-bpy)(Phmal)(H(2)O)](n)() (2) (Phmal = phenylmalonate dianion, 4,4'-bpy = 4,4'-bipyridine, 2,4'-bpy = 2,4'-bipyridine) have been synthesized and characterized by X-ray diffraction. Complex 1 crystallizes in monoclinic space group P2(1), Z = 4, with unit cell parameters of a = 9.0837(6) Angstroms, b = 9.3514(4) Angstroms, c = 11.0831(8) Angstroms, and beta = 107.807(6) degrees , whereas complex 2 crystallizes in orthorhombic space group C2cb, Z = 8, with unit cell parameters of a = 10.1579(7) Angstroms, b = 10.3640(8) Angstroms, and c = 33.313(4) Angstroms. The structures of 1 and 2 consist of layers of copper(II) ions with bridging bis-monodentate phenylmalonate (1 and 2) and 4,4'-bpy (1) ligands and terminal monodentate 2,4'-bpy (2) groups. Each layer in 1 contains rectangles with dimensions of 11.08 x 4.99 Angstroms(2), the edges being defined by the Phmal and 4,4'-bpy ligands. The intralayer copper-copper separations in 1 through the anti-syn equatorial-apical carboxylate-bridge and the 4,4'-bpy molecule are 4.9922(4) and 11.083(1) Angstroms, respectively. The anti-syn equatorial-equatorial carboxylate bridge links the copper(II) atoms in complex 2 within each layer with a mean copper-copper separation of 5.3709(8) Angstroms. The presence of 2,4'-bpy as a terminal ligand accounts for the large interlayer separation of 15.22 Angstroms. The copper(II) environment presents a static pseudo-Jahn-Teller disorder which has been studied by EPR and low-temperature X-ray diffraction. Magnetic susceptibility measurements of both compounds in the temperature range 2-290 K show the occurrence of weak antiferromagnetic [J = -0.59(1) cm(-1) (1)] and ferromagnetic [J = +0.77(1) cm(-1) (2)] interactions between the copper(II) ions. The conformation of the phenylmalonate-carboxylate bridge and other structural factors, such as the planarity of the exchange pathway in 1, account for the different nature of the magnetic interaction.
Single cell–resolution western blotting
Kang, Chi-Chih; Yamauchi, Kevin A; Vlassakis, Julea; Sinkala, Elly; Duncombe, Todd A; Herr, Amy E
2017-01-01
This protocol describes how to perform western blotting on individual cells to measure cell-to-cell variation in protein expression levels and protein state. like conventional western blotting, single-cell western blotting (scWB) is particularly useful for protein targets that lack selective antibodies (e.g., isoforms) and in cases in which background signal from intact cells is confounding. scWB is performed on a microdevice that comprises an array of microwells molded in a thin layer of a polyacrylamide gel (PAG). the gel layer functions as both a molecular sieving matrix during PAGE and a blotting scaffold during immunoprobing. scWB involves five main stages: (i) gravity settling of cells into microwells; (ii) chemical lysis of cells in each microwell; (iii) PAGE of each single-cell lysate; (iv) exposure of the gel to UV light to blot (immobilize) proteins to the gel matrix; and (v) in-gel immunoprobing of immobilized proteins. Multiplexing can be achieved by probing with antibody cocktails and using antibody stripping/reprobing techniques, enabling detection of 10+ proteins in each cell. We also describe microdevice fabrication for both uniform and pore-gradient microgels. to extend in-gel immunoprobing to gels of small pore size, we describe an optional gel de-cross-linking protocol for more effective introduction of antibodies into the gel layer. once the microdevice has been fabricated, the assay can be completed in 4–6 h by microfluidic novices and it generates high-selectivity, multiplexed data from single cells. the technique is relevant when direct measurement of proteins in single cells is needed, with applications spanning the fundamental biosciences to applied biomedicine. PMID:27466711
Haller, Thomas; Cerrada, Alejandro; Pfaller, Kristian; Braubach, Peter; Felder, Edward
2018-05-01
In alveolar type II (AT II) cells, pulmonary surfactant (PS) is synthetized, stored and exocytosed from lamellar bodies (LBs), specialized large secretory organelles. By applying polarization microscopy (PM), we confirm a specific optical anisotropy of LBs, which indicates a liquid-crystalline mesophase of the stored surfactant phospholipids (PL) and an unusual case of a radiation-symmetric, spherocrystalline organelle. Evidence is shown that the degree of anisotropy is dependent on the amount of lipid layers and their degree of hydration, but unaffected by acutely modulating vital cell parameters like intravesicular pH or cellular energy supply. In contrast, physiological factors that perturb this structure include osmotic cell volume changes and LB exocytosis. In addition, we found two pharmaceuticals, Amiodarone and Ambroxol, both of which severely affect the liquid-crystalline order. Our study shows that PM is an easy, very sensitive, but foremost non-invasive and label-free method able to collect important structural information of PS assembly in live AT II cells which otherwise would be accessible by destructive or labor intense techniques only. This may open new approaches to dynamically investigate LB biosynthesis - the incorporation, folding and packing of lipid membranes - or the initiation of pathological states that manifest in altered LB structures. Due to the observed drug effects, we further suggest that PM provides an appropriate way to study unspecific drug interactions with alveolar cells and even drug-membrane interactions in general. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Suarez, Ernesto; Chan, Pik-Yiu; Lingalugari, Murali; Ayers, John E.; Heller, Evan; Jain, Faquir
2013-11-01
This paper describes the use of II-VI lattice-matched gate insulators in quantum dot gate three-state and flash nonvolatile memory structures. Using silicon-on-insulator wafers we have fabricated GeO x -cladded Ge quantum dot (QD) floating gate nonvolatile memory field-effect transistor devices using ZnS-Zn0.95Mg0.05S-ZnS tunneling layers. The II-VI heteroepitaxial stack is nearly lattice-matched and is grown using metalorganic chemical vapor deposition on a silicon channel. This stack reduces the interface state density, improving threshold voltage variation, particularly in sub-22-nm devices. Simulations using self-consistent solutions of the Poisson and Schrödinger equations show the transfer of charge to the QD layers in three-state as well as nonvolatile memory cells.
Melton, E. D.; Schmidt, C.; Kappler, A.
2012-01-01
The distribution of neutrophilic microbial iron oxidation is mainly determined by local gradients of oxygen, light, nitrate and ferrous iron. In the anoxic top part of littoral freshwater lake sediment, nitrate-reducing and phototrophic Fe(II)-oxidizers compete for the same e− donor; reduced iron. It is not yet understood how these microbes co-exist in the sediment and what role they play in the Fe cycle. We show that both metabolic types of anaerobic Fe(II)-oxidizing microorganisms are present in the same sediment layer directly beneath the oxic-anoxic sediment interface. The photoferrotrophic most probable number counted 3.4·105 cells·g−1 and the autotrophic and mixotrophic nitrate-reducing Fe(II)-oxidizers totaled 1.8·104 and 4.5·104 cells·g−1 dry weight sediment, respectively. To distinguish between the two microbial Fe(II) oxidation processes and assess their individual contribution to the sedimentary Fe cycle, littoral lake sediment was incubated in microcosm experiments. Nitrate-reducing Fe(II)-oxidizing bacteria exhibited a higher maximum Fe(II) oxidation rate per cell, in both pure cultures and microcosms, than photoferrotrophs. In microcosms, photoferrotrophs instantly started oxidizing Fe(II), whilst nitrate-reducing Fe(II)-oxidizers showed a significant lag-phase during which they probably use organics as e− donor before initiating Fe(II) oxidation. This suggests that they will be outcompeted by phototrophic Fe(II)-oxidizers during optimal light conditions; as phototrophs deplete Fe(II) before nitrate-reducing Fe(II)-oxidizers start Fe(II) oxidation. Thus, the co-existence of the two anaerobic Fe(II)-oxidizers may be possible due to a niche space separation in time by the day-night cycle, where nitrate-reducing Fe(II)-oxidizers oxidize Fe(II) during darkness and phototrophs play a dominant role in Fe(II) oxidation during daylight. Furthermore, metabolic flexibility of Fe(II)-oxidizing microbes may play a paramount role in the conservation of the sedimentary Fe cycle. PMID:22666221
The world of epithelial sheets.
Honda, Hisao
2017-06-01
An epithelium is a layer of closely connected cells covering the body or lining a body cavity. In this review, several fundamental questions are addressed regarding the epithelium. (i) While an epithelium functions as barrier against the external environment, how is barrier function maintained during its construction? (ii) What determines the apical and basal sides of epithelial layer? (iii) Is there any relationship between the apical side of the epithelium and the apical membrane of an epithelial cell? (iv) Why are hepatocytes (liver cells) called epithelial, even though they differ completely from column-like shape of typical epithelial cells? Keeping these questions in mind, multiple shapes of epithelia were considered, extracting a few of their elemental processes, and constructing a virtual world of epithelia by combining them. Epithelial cells were also classified into several types based on the number of apical domains of each cell. In addition, an intracellular organelle was introduced within epithelial cells, the vacuolar apical compartment (VAC), which is produced within epithelial cells surrounded by external cell matrix (ECM). The VAC interacts with areas of cell-cell contact of the cell surface membrane and is converted to apical membrane. The properties of VACs enable us to answer the initial questions posed above. Finally, the genetic and molecular mechanisms of epithelial morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.
Distribution of protein kinase C isoforms in the cat retina.
Fyk-Kolodziej, Bozena; Cai, Wenhui; Pourcho, Roberta G
2002-01-01
Immunocytochemical localization was carried out for five isoforms of protein kinase C (PKC) in the cat retina. In common with other mammalian species, PKCalpha was found in rod bipolar cells. Staining was also seen in a small population of cone bipolar cells with axon terminals ramifying near the middle of the inner plexiform layer (IPL). PKCbetaI was localized to rod bipolar cells, one class of cone bipolar cell, and numerous amacrine and displaced amacrine cells. Staining for PKCbetaI was seen in three types of cone bipolar cells as well as in amacrine and ganglion cells. Immunoreactivity for both PKCepsilon and PKCzeta was found in rod bipolar cells; PKCepsilon was also seen in a population of cone bipolar cells and a few amacrine and ganglion cells whereas PKCzeta was found in all ganglion cells. Double-label immunofluorescence studies showed that dendrites of the two PKCbetaII-positive OFF-cone bipolar cells exhibit immmunoreactivity for the kainate-selective glutamate receptor GluR5. The third PKCbetaII cone bipolar is an ON-type cell and did not stain for GluR5. The retinal distribution of these isoforms of PKC is consistent with a role in modulation of various aspects of neurotransmission including synaptic vesicle release and regulation of receptor molecules.
Erwin; Etriwati; Gunanti; Handharyani, Ekowati; Noviana, Deni
2017-06-01
A good skin graft histopathology is followed by formation of hair follicle, sweat gland, sebaceous gland, blood vessel, lightly dense connective tissue, epidermis, and dermis layer. This research aimed to observe histopathology feature and cytokeratin AE1/AE3 expression on cat skin post skin grafting within a different period of time. Nine male Indonesian local cats aged 1-2 years old weighing 3-4 kg were separated into three groups. First surgery created defect wound of 2 cm × 2 cm in size to whole groups. The wounds were left alone for several days, differing in interval between each group, respectively: Group I (for 2 days), Group II (for 4 days), and Group III (for 6 days). The second surgery was done to each group which harvested skin of thoracic area and applied it on recipient wound bed. On day 24 th post skin graft was an examination of histopathology and cytokeratin AE1/AE3 immunohistochemistry. Group I donor skin's epidermis layer had not formed completely whereas epidermis of donor skin of Groups II and III had completely formed. In all group hair follicle, sweat gland, sebaceous gland, and neovascularization were found. The density of connective tissue in Group I was very solid than other groups. Cytokeratin AE1/AE3 expression was found on donor skin's epithelial cell in epidermis and dermis layer with very brown intensity for Group II, brown intensity for Group II, and lightly brown for Group I. Histopathological structure and cytokeratin AE1/AE3 expression post skin graft are better in Groups II and III compared to Group I.
2014-01-01
Background Type II focal cortical dysplasias (FCDs) are malformations of cortical development characterised by the disorganisation of the normal neocortical structure and the presence of dysmorphic neurons (DNs) and balloon cells (BCs). The pathogenesis of FCDs has not yet been clearly established, although a number of histopathological patterns and molecular findings suggest that they may be due to abnormal neuronal and glial proliferation and migration processes. In order to gain further insights into cortical layering disruption and investigate the origin of DNs and BCs, we used in situ RNA hybridisation of human surgical specimens with a neuropathologically definite diagnosis of Type IIa/b FCD and a panel of layer-specific genes (LSGs) whose expression covers all cortical layers. We also used anti-phospho-S6 ribosomal protein antibody to investigate mTOR pathway hyperactivation. Results LSGs were expressed in both normal and abnormal cells (BCs and DNs) but their distribution was different. Normal-looking neurons, which were visibly reduced in the core of the lesion, were apparently located in the appropriate cortical laminae thus indicating a partial laminar organisation. On the contrary, DNs and BCs, labelled with anti-phospho-S6 ribosomal protein antibody, were spread throughout the cortex without any apparent rule and showed a highly variable LSG expression pattern. Moreover, LSGs did not reveal any differences between Type IIa and IIb FCD. Conclusion These findings suggest the existence of hidden cortical lamination involving normal-looking neurons, which retain their ability to migrate correctly in the cortex, unlike DNs which, in addition to their morphological abnormalities and mTOR hyperactivation, show an altered migratory pattern. Taken together these data suggest that an external or environmental hit affecting selected precursor cells during the very early stages of cortical development may disrupt normal cortical development. PMID:24735483
Method of removing oxidized contaminants from water
Amonette, James E.; Fruchter, Jonathan S.; Gorby, Yuri A.; Cole, Charles R.; Cantrell, Kirk J.; Kaplan, Daniel I.
1998-01-01
The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II).
Method of removing oxidized contaminants from water
Amonette, J.E.; Fruchter, J.S.; Gorby, Y.A.; Cole, C.R.; Cantrell, K.J.; Kaplan, D.I.
1998-07-21
The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II). 8 figs.
Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development
NASA Technical Reports Server (NTRS)
Bradley, Marty K.; Droney, Christopher K.
2012-01-01
This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.
Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas.
Palomero-Gallagher, Nicola; Zilles, Karl
2017-08-12
Cortical layers have classically been identified by their distinctive and prevailing cell types and sizes, as well as the packing densities of cell bodies or myelinated fibers. The densities of multiple receptors for classical neurotransmitters also vary across the depth of the cortical ribbon, and thus determine the neurochemical properties of cyto- and myeloarchitectonic layers. However, a systematic comparison of the correlations between these histologically definable layers and the laminar distribution of transmitter receptors is currently lacking. We here analyze the densities of 17 different receptors of various transmitter systems in the layers of eight cytoarchitectonically identified, functionally (motor, sensory, multimodal) and hierarchically (primary and secondary sensory, association) distinct areas of the human cerebral cortex. Maxima of receptor densities are found in different layers when comparing different cortical regions, i.e. laminar receptor densities demonstrate differences in receptorarchitecture between isocortical areas, notably between motor and primary sensory cortices, specifically the primary visual and somatosensory cortices, as well as between allocortical and isocortical areas. Moreover, considerable differences are found between cytoarchitectonical and receptor architectonical laminar patterns. Whereas the borders of cyto- and myeloarchitectonic layers are well comparable, the laminar profiles of receptor densities rarely coincide with the histologically defined borders of layers. Instead, highest densities of most receptors are found where the synaptic density is maximal, i.e. in the supragranular layers, particularly in layers II-III. The entorhinal cortex as an example of the allocortex shows a peculiar laminar organization, which largely deviates from that of all the other cortical areas analyzed here. Copyright © 2017. Published by Elsevier Inc.
Xiao, S; Zhu, S; Ma, B; Xia, Z-F; Yang, J; Wang, G
2008-01-01
To improve the proliferative potential of human keratinocytes (HK) cultured on acellular dermal matrix (ADM), HK and mitomycin C-treated human fibroblasts (MMC-HF) were seeded onto ADM to form four types of composite skin: type I, HK were seeded onto the epidermal side of ADM; type II, both HK and MMC-HF were seeded onto the epidermal side; type III, MMC-HF were preseeded onto the dermal side of ADM, and then HK were seeded onto the epidermal side, and type IV, where MMC-HF were preseeded onto both sides, and then HK were seeded onto the epidermal side. Compared with type I and III, the proliferative potential of HK of type II and IV was significantly higher on day 3, 5, 7 and 9 in vitro. In type I and III, HK grew into one layer on day 7-9, while in type II and IV keratinocytes grew into a confluent monolayer by day 4-6. The adherence to ADM of HK in types II and IV was stronger than that in type I and III. The take rate of type II and IV composite skin was also significantly higher. In conclusion, when MMC-HF and HK were cocultured on the epidermal side of ADM, MMC-HF could serve as excellent feeder cells. Copyright 2007 S. Karger AG, Basel.
Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold.
Ye, Ken; Felimban, Raed; Traianedes, Kathy; Moulton, Simon E; Wallace, Gordon G; Chung, Johnson; Quigley, Anita; Choong, Peter F M; Myers, Damian E
2014-01-01
Infrapatellar fat pad adipose stem cells (IPFP-ASCs) have been shown to harbor chondrogenic potential. When combined with 3D polymeric structures, the stem cells provide a source of stem cells to engineer 3D tissues for cartilage repair. In this study, we have shown human IPFP-ASCs seeded onto 3D printed chitosan scaffolds can undergo chondrogenesis using TGFβ3 and BMP6. By week 4, a pearlescent, cartilage-like matrix had formed that penetrated the top layers of the chitosan scaffold forming a 'cap' on the scaffold. Chondrocytic morphology showed typical cells encased in extracellular matrix which stained positively with toluidine blue. Immunohistochemistry demonstrated positive staining for collagen type II and cartilage proteoglycans, as well as collagen type I. Real time PCR analysis showed up-regulation of collagen type II, aggrecan and SOX9 genes when IPFP-ASCs were stimulated by TGFβ3 and BMP6. Thus, IPFP-ASCs can successfully undergo chondrogenesis using TGFβ3 and BMP6 and the cartilage-like tissue that forms on the surface of 3D-printed chitosan scaffold may prove useful as an osteochondral graft.
Ding, ZuFeng; Fan, YuBo; Deng, XiaoYan
2009-11-01
Using different endothelial/smooth muscle cell co-culture modes to simulate the intimal structure of blood vessels, the water filtration rate and the infiltration/accumulation of LDL of the cultured cell layers were studied. The three cell culture modes of the study were: (i) The endothelial cell monolayer (EC/Phi); (ii) endothelial cells directly co-cultured on the smooth muscle cell monolayer (EC-SMC); (iii) endothelial cells and smooth muscle cells cultured on different sides of a Millicell-CM membrane (EC/SMC). It was found that under the same condition, the water filtration rate was the lowest for the EC/SMC mode and the highest for the EC/Phi mode, while the infiltration/accumulation of DiI-LDLs was the lowest in the EC/Phi mode and the highest in the EC-SMC mode. It was also found that DiI-LDL infiltration/accumulation in the cultured cell layers increased with the increasing water filtration rate. The results from the in vitro model study therefore suggest that the infiltration/accumulation of the lipids within the arterial wall is positively correlated with concentration polarization of atherogenic lipids, and the integrity of the endothelium plays an important role in the penetration and accumulation of atherogenic lipids in blood vessel walls.
Iguchi, I; Kamiyama, K; Ohashi, T; Wang, X; Imanishi, J
1996-11-01
To establish a new method for evaluation of contact lens materials, we studied the porcine endothelial cell injury caused by dynamic contact (rotatory rubbing) with three kinds of hard contact lenses (HCL). The HCLs used were 1) PMMA HCL, 2) oxygen-permeable HCL composed of a graft copolymer of dextran derivative and methylmethacrylate (MMA) (Suncon Mild II, 12 Dk), and 3) oxygen-permeable-HCL composed of a copolymer of a monomer containing silicone, a monomer containing fluorine, and MMA (RGPL-A, 216 Dk). Cell injury rates were significantly different among these HCLs (Suncon Mild II < PMMA < RGPL-A) although there were no differences in rotatory rubbing forces. The smoothness of HCL surface, the qualities of injured cell layers observed by scanning electron microscopy, and the water wettability of HCLs were not correlated with cell injury rate. These results suggest that physicochemical properties of materials other than rotatory rubbing force, smoothness, and water wettability were involved in the cell injury. Our evaluation method for biomaterials that injure the corneal endothelial cells by dynamic contact should be very useful for the development of biomaterials or medical devices, including HCLs and intracardiac and urethral catheters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Jessica S.; Schlenoff, Joseph B.; Keller, Thomas C.S., E-mail: tkeller@bio.fsu.edu
Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion andmore » migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as ‘leader’ cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as ‘follower’ cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all surfaces. Interestingly, cells throughout the interior region of the sheets on uncrosslinked PEMUs retained their actin and vinculin organization at adherens junctions after treatment with Blebbistatin. Like Blebbistatin, a Rho-kinase (ROCK) inhibitor, Y27632, promoted loss of cell-cell connections between edge cells, whereas a Rac1 inhibitor, NSC23766, primarily altered the lamellipodial protrusion in edge cells. Compliance gradient PAH-PEMUs promoted durotaxis of the cell sheets but not of individual keratocytes, demonstrating durotaxis, like plithotaxis, is an emergent property of cell sheet organization. - Highlights: • Fish scale cell sheets migrate on PAH-PAABp polyelectrolyte multilayers. • Sheets migrating on softer PEMUs periodically retract. • Sheets durotax on modulus gradients. • Myosin II inhibitors inhibit sheet integrity and migration.« less
Localization of P-type calcium channels in the central nervous system.
Hillman, D; Chen, S; Aung, T T; Cherksey, B; Sugimori, M; Llinás, R R
1991-01-01
The distribution of the P-type calcium channel in the mammalian central nervous system has been demonstrated immunohistochemically by using a polyclonal specific antibody. This antibody was generated after P-channel isolation via a fraction from funnel-web spider toxin (FTX) that blocks the voltage-gated P channels in cerebellar Purkinje cells. In the cerebellar cortex, immunolabeling to the antibody appeared throughout the molecular layer, while all the other regions were negative. Intensely labeled patches of reactivity were seen on Purkinje cell dendrites, especially at bifurcations; much weaker reactivity was present in the soma and stem segment. Electron microscopic localization revealed labeled patches of plasma membrane on the soma, main dendrites, spiny branchlets, and spines; portions of the smooth endoplasmic reticulum were also labeled. Strong labeling was present in the periglomerular cells of the olfactory bulb and scattered neurons in the deep layer of the entorhinal and pyriform cortices. Neurons in the brainstem, habenula, nucleus of the trapezoid body and inferior olive and along the floor of the fourth ventricle were also labeled intensely. Medium-intensity reactions were observed in layer II pyramidal cells of the frontal cortex, the CA1 cells of the hippocampus, the lateral nucleus of the substantia nigra, lateral reticular nucleus, and spinal fifth nucleus. Light labeling was seen in the neocortex, striatum, and in some brainstem neurons. Images PMID:1651493
Localization of P-type calcium channels in the central nervous system.
Hillman, D; Chen, S; Aung, T T; Cherksey, B; Sugimori, M; Llinás, R R
1991-08-15
The distribution of the P-type calcium channel in the mammalian central nervous system has been demonstrated immunohistochemically by using a polyclonal specific antibody. This antibody was generated after P-channel isolation via a fraction from funnel-web spider toxin (FTX) that blocks the voltage-gated P channels in cerebellar Purkinje cells. In the cerebellar cortex, immunolabeling to the antibody appeared throughout the molecular layer, while all the other regions were negative. Intensely labeled patches of reactivity were seen on Purkinje cell dendrites, especially at bifurcations; much weaker reactivity was present in the soma and stem segment. Electron microscopic localization revealed labeled patches of plasma membrane on the soma, main dendrites, spiny branchlets, and spines; portions of the smooth endoplasmic reticulum were also labeled. Strong labeling was present in the periglomerular cells of the olfactory bulb and scattered neurons in the deep layer of the entorhinal and pyriform cortices. Neurons in the brainstem, habenula, nucleus of the trapezoid body and inferior olive and along the floor of the fourth ventricle were also labeled intensely. Medium-intensity reactions were observed in layer II pyramidal cells of the frontal cortex, the CA1 cells of the hippocampus, the lateral nucleus of the substantia nigra, lateral reticular nucleus, and spinal fifth nucleus. Light labeling was seen in the neocortex, striatum, and in some brainstem neurons.
Lin, Hsin-Yi; Tsai, Wen-Chi; Chang, Shih-Hsing
2017-05-01
Researchers have made bi-layered scaffolds but mostly for osteochondral repairs. The anatomic structure of human cartilage has different zones and that each has varying matrix morphology and mechanical properties is often overlooked. Two bi-layered collagen-based composites were made to replicate the superficial and transitional zones of an articular cartilage. Aligned and random collagen-PVA nanofibers were electrospun onto a freeze-dried collagen sponge to make the aligned and random composites, respectively. The morphology, swelling ratio, degradation and tensile properties of the two composites were examined. Primary porcine chondrocytes were cultured on the composites for three weeks and their proliferation and secretion of glycosaminoglycan (GAG) and type II collagen were measured. The influences of the cell culture on the tensile properties of the composites were studied. The nanofiber layer remained adhered to the sponge after three weeks of cell culture. Both composites lost 30-35% of their total weight in a saline buffer after three weeks. The tensile strength and Young's modulus of both composites increased after three weeks of chondrocyte culture (p < 0.05). The aligned composite with extracellular matrix deposition had a Young's modulus (0.35 MPa) similar to that of articular cartilage reported in literature (0.36-0.8 MPa). The chondrocytes on both aligned and random composites proliferated and secreted similar amounts of GAG and type II collagen. They were seen embedded in lacunae after three weeks. The aligned composite may be more suitable for articular cartilage repair because of the higher tensile strength from the aligned nanofibers on the surface that can better resist wear.
A structural review of foliar glands in Passiflora L. (Passifloraceae)
da Costa Silva, Delmira; Flavia de Albuquerque Melo-de-Pinna, Gladys
2017-01-01
Extrafloral glands in Passifloraceae species have aroused the interest of many researchers because of their wide morphological diversity. The present work analyzed the foliar glands on 34 species of Passiflora from samples containing glands in the petiole and foliar blade fixed in 50% solution of formaldehyde-ethanol-acetic acid and stored in a 70% ethanol solution. For anatomical analyses, part of the material was embedded in Paraplast, longitudinally sectioned and double stained with safranin and astra blue. Scanning electron microscopy analysis was also carried out. To analyze the presence of sugars in the secretion of foliar glands, a glucose strip test was used. Based on the results of morphological, anatomical and glucose strip tests, the foliar secretory glands in Passiflora can be grouped into two categories: Type I glands, defined as nectaries, can be elevated or flattened, and can have a sugar content high enough to be detected by the glucose strip test analysis. Type II glands are elevated and did not show a positive reaction to the glucose strip test. From an anatomical viewpoint, glands characterized as extrafloral nectaries show a multistratified secretory epidermis, typically followed by two flat layers of nectariferous parenchyma with dense content. Internal to these layers, vascular bundles are immersed in the subsecretory parenchyma and terminate in phloem cells. On the other hand, type II glands show a single layer of elongated secretory epidermal cells. Internal to this single layer, parenchyma and vascular tissue with both phloem and xylem elements can be observed. The analyzed species show a wide diversity of gland shape and distribution, and the combined analysis of morphology, anatomy and preliminary tests for the presence of glucose in the exudate in different Passiflora subgenera suggests the occurrence of two categories of glands: nectaries and resin glands. PMID:29136029
The muscular expression of RAS in patients with achalasia.
Casselbrant, A; Kostic, S; Lönroth, H
2015-09-01
Angiotensin II (AngII) elicits smooth muscle contractions via activation of AngII type 1 receptor (AT1R) in the intestinal wall and in sphincter regions in several species. Achalasia is a rare swallowing disorder and is characterized by a loss of the wave-like contraction that forces food through the oesophagus and a failure of the lower oesophageal sphincter to relax during swallowing. The present study was undertaken to elucidate expression and distribution of a local renin-angiotensin system (RAS) in the muscular layer of distal normal human oesophagus as well as in patients with achalasia using western blot analysis, immunohistochemistry and polymerase chain reaction (PCR). AT1R, together with enzyme renin and cathepsin D expression were decreased in patients with achalasia. In contrast, the mast cells chymase, cathepsin G, neprilysin and the receptor for angiotensin 1-7 peptides, the MAS receptor, were increased in patients with achalasia. The results showed the existence of a local RAS in human oesophageal muscular layer. The enzymes responsible for AngII production are different and there has been a shift in receptor physiology from AT1R to MAS receptor in patients with achalasia. These changes in the RAS might play a significant role in the physiological motor control for patients with achalasia. © The Author(s) 2014.
Rhythms of glycerophospholipid synthesis in retinal inner nuclear layer cells.
Garbarino-Pico, Eduardo; Valdez, Diego J; Contín, María A; Pasquaré, Susana J; Castagnet, Paula I; Giusto, Norma M; Caputto, Beatriz L; Guido, Mario E
2005-09-01
The present study demonstrates that the biosynthesis of phospholipids in the inner nuclear layer cells of the chicken retina displays daily rhythms under constant illumination conditions. The vertebrate retina contains circadian oscillators and photoreceptors (PRCs) that temporally regulate its own physiology and synchronize the whole organism to the daily environmental changes. We have previously reported that chicken photoreceptors and retinal ganglion cells (RGCs) present significant daily variations in their phospholipid biosynthesis under constant illumination conditions. Herein, we demonstrate that cell preparations highly enriched in inner nuclear layer cells also exhibit a circadian-regulated phospholipid labeling after the in vivo administration of [(32)P]phosphate or [(3)H]glycerol both in animals maintained under constant darkness or light for at least 48h. In constant darkness, there was a significant incorporation of both precursors into phospholipids with the highest levels of labeling around midday and dusk. In constant light, the labeling of (32)P-phospholipids was also significantly higher during the day and early night whereas the incorporation of [(3)H]glycerol into phospholipids, that indicates de novo biosynthesis, was greater during the day but probably reflecting a higher precursor availability at those phases. We also measured the in vitro activity of phosphatidate phosphohydrolase and diacylglycerol lipase in preparations obtained from the dark condition. The two enzymes exhibited the highest activity levels late in the day. When we assessed the in vitro incorporation of [(14)C]oleate into different lysophospholipids from samples collected at different phases in constant darkness, reaction catalyzed by lysophospholipid acyltransferases II, labeling showed a complex pattern of daily activity. Taken together, these results demonstrate that the biosynthesis of phospholipids in cells of the chicken retinal inner nuclear layer exhibits a daily rhythmicity under constant illumination conditions, which is controlled by a circadian clock.
Layer-by-Layer Polyelectrolyte Encapsulation of Mycoplasma pneumoniae for Enhanced Raman Detection
Rivera-Betancourt, Omar E.; Sheppard, Edward S.; Krause, Duncan C.; Dluhy, Richard A.
2014-01-01
Mycoplasma pneumoniae is a major cause of respiratory disease in humans and accounts for as much as 20% of all community-acquired pneumonia. Existing mycoplasma diagnosis is primarily limited by the poor success rate at culturing the bacteria from clinical samples. There is a critical need to develop a new platform for mycoplasma detection that has high sensitivity, specificity, and expediency. Here we report the layer-by-layer (LBL) encapsulation of M. pneumoniae cells with Ag nanoparticles in a matrix of the polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS). We evaluated nanoparticle encapsulated mycoplasma cells as a platform for the differentiation of M. pneumoniae strains using surface enhanced Raman scattering (SERS) combined with multivariate statistical analysis. Three separate M. pneumoniae strains (M129, FH and II-3) were studied. Scanning electron microscopy and fluorescence imaging showed that the Ag nanoparticles were incorporated between the oppositely charged polyelectrolyte layers. SERS spectra showed that LBL encapsulation provides excellent spectral reproducibility. Multivariate statistical analysis of the Raman spectra differentiated the three M. pneumoniae strains with 97 – 100% specificity and sensitivity, and low (0.1 – 0.4) root mean square error. These results indicated that nanoparticle and polyelectrolyte encapsulation of M. pneumoniae is a potentially powerful platform for rapid and sensitive SERS-based bacterial identification. PMID:25017005
Anatomy of the bacitracin resistance network in Bacillus subtilis.
Radeck, Jara; Gebhard, Susanne; Orchard, Peter Shevlin; Kirchner, Marion; Bauer, Stephanie; Mascher, Thorsten; Fritz, Georg
2016-05-01
Protection against antimicrobial peptides (AMPs) often involves the parallel production of multiple, well-characterized resistance determinants. So far, little is known about how these resistance modules interact and how they jointly protect the cell. Here, we studied the interdependence between different layers of the envelope stress response of Bacillus subtilis when challenged with the lipid II cycle-inhibiting AMP bacitracin. The underlying regulatory network orchestrates the production of the ABC transporter BceAB, the UPP phosphatase BcrC and the phage-shock proteins LiaIH. Our systems-level analysis reveals a clear hierarchy, allowing us to discriminate between primary (BceAB) and secondary (BcrC and LiaIH) layers of bacitracin resistance. Deleting the primary layer provokes an enhanced induction of the secondary layer to partially compensate for this loss. This study reveals a direct role of LiaIH in bacitracin resistance, provides novel insights into the feedback regulation of the Lia system, and demonstrates a pivotal role of BcrC in maintaining cell wall homeostasis. The compensatory regulation within the bacitracin network can also explain how gene expression noise propagates between resistance layers. We suggest that this active redundancy in the bacitracin resistance network of B. subtilis is a general principle to be found in many bacterial antibiotic resistance networks. © 2016 John Wiley & Sons Ltd.
Atomic Structure of Interface States in Silicon Heterojunction Solar Cells
NASA Astrophysics Data System (ADS)
George, B. M.; Behrends, J.; Schnegg, A.; Schulze, T. F.; Fehr, M.; Korte, L.; Rech, B.; Lips, K.; Rohrmüller, M.; Rauls, E.; Schmidt, W. G.; Gerstmann, U.
2013-03-01
Combining orientation dependent electrically detected magnetic resonance and g tensor calculations based on density functional theory we assign microscopic structures to paramagnetic states involved in spin-dependent recombination at the interface of hydrogenated amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction solar cells. We find that (i) the interface exhibits microscopic roughness, (ii) the electronic structure of the interface defects is mainly determined by c-Si, (iii) we identify the microscopic origin of the conduction band tail state in the a-Si:H layer, and (iv) present a detailed recombination mechanism.
Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells
Sun, Chen; Kitamura, Takashi; Yamamoto, Jun; Martin, Jared; Pignatelli, Michele; Kitch, Lacey J.; Schnitzer, Mark J.; Tonegawa, Susumu
2015-01-01
Entorhinal–hippocampal circuits in the mammalian brain are crucial for an animal’s spatial and episodic experience, but the neural basis for different spatial computations remain unknown. Medial entorhinal cortex layer II contains pyramidal island and stellate ocean cells. Here, we performed cell type-specific Ca2+ imaging in freely exploring mice using cellular markers and a miniature head-mounted fluorescence microscope. We found that both oceans and islands contain grid cells in similar proportions, but island cell activity, including activity in a proportion of grid cells, is significantly more speed modulated than ocean cell activity. We speculate that this differential property reflects island cells’ and ocean cells’ contribution to different downstream functions: island cells may contribute more to spatial path integration, whereas ocean cells may facilitate contextual representation in downstream circuits. PMID:26170279
Traut, Walther; Endl, Elmar; Scholzen, Thomas; Gerdes, Johannes; Winking, Heinz
2002-09-01
We used immunolocalization in tissue sections and cytogenetic preparations of female and male gonads to study the distribution of the proliferation marker pKi-67 during meiotic cell cycles of the house mouse, Mus musculus. During male meiosis, pKi-67 was continuously present in nuclei of all stages from the spermatogonium through spermatocytes I and II up to the earliest spermatid stage (early round spermatids) when it appeared to fade out. It was not detected in later spermatid stages or sperm. During female meiosis, pKi-67 was present in prophase I oocytes of fetal ovaries. It was absent in oocytes from newborn mice and most oocytes of primordial follicles from adults. The Ki-67 protein reappeared in oocytes of growing follicles and was continuously present up to metaphase II. Thus, pKi-67 was present in all stages of cell growth and cell division while it was absent from resting oocytes and during the main stages of spermiocytogenesis. Progression through the meiotic cell cycle was associated with extensive intranuclear relocation of pKi-67. In the zygotene and pachytene stages, most of the pKi-67 colocalized with centromeric (centric and pericentric) heterochromatin and adjacent nucleoli; the heterochromatic XY body in male pachytene, however, was free of pKi-67. At early diplotene, pKi-67 was mainly associated with nucleoli. At late diplotene, diakinesis, metaphase I and metaphase II of meiosis, pKi-67 preferentially bound to the perichromosomal layer and was almost absent from the heterochromatic centromeric regions of the chromosomes. After the second division of male meiosis, the protein reappeared at the centromeric heterochromatin and an adjacent region in the earliest spermatid stage and then faded out. The general patterns of pKi-67 distribution were comparable to those in mitotic cell cycles. With respect to the timing, it is interesting to note that relocation from the nucleolus to the perichromosomal layer takes place at the G2/M-phase transition in the mitotic cell cycle but at late diplotene of prophase I in meiosis, suggesting physiological similarity of these stages.
Furutani, Rui
2008-09-01
The present investigation carried out Nissl, Klüver-Barrera, and Golgi studies of the cerebral cortex in three distinct genera of oceanic dolphins (Risso's dolphin, striped dolphin and bottlenose dolphin) to identify and classify cortical laminar and cytoarchitectonic structures in four distinct functional areas, including primary motor (M1), primary sensory (S1), primary visual (V1), and primary auditory (A1) cortices. The laminar and cytoarchitectonic organization of each of these cortical areas was similar among the three dolphin species. M1 was visualized as five-layer structure that included the molecular layer (layer I), external granular layer (layer II), external pyramidal layer (layer III), internal pyramidal layer (layer V), and fusiform layer (layer VI). The internal granular layer was absent. The cetacean sensory-related cortical areas S1, V1, and A1 were also found to have a five-layer organization comprising layers I, II, III, V and VI. In particular, A1 was characterized by the broadest layer I, layer II and developed band of pyramidal neurons in layers III (sublayers IIIa, IIIb and IIIc) and V. The patch organization consisting of the layer IIIb-pyramidal neurons was detected in the S1 and V1, but not in A1. The laminar patterns of V1 and S1 were similar, but the cytoarchitectonic structures of the two areas were different. V1 was characterized by a broader layer II than that of S1, and also contained the specialized pyramidal and multipolar stellate neurons in layers III and V.
Reducing interface recombination for Cu(In,Ga)Se 2 by atomic layer deposited buffer layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hultqvist, Adam; Li, Jian V.; Kuciauskas, Darius
2015-07-20
Partial CuInGaSe2 (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnOx buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystalline II-VImore » systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.« less
Xue, Fei; Ma, Yinghong; Chen, Y Eugene; Zhang, Jifeng; Lin, Tzu-An; Chen, Chien-Hong; Lin, Wei-Wen; Roach, Marsha; Ju, Jyh-Cherng; Yang, Lan; Du, Fuliang; Xu, Jie
2012-08-01
The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs.
PTEN Loss and Reactive Microenvironments in Prostate Cancer Progression
2011-07-01
obesity, and dyslipidemia in prostate disease, thin layer chromatography was performed on the mPrEPPARgKO and rescue cells to determine the fatty acid...review retrospective clinical studies that have drawn associations between BPH/LUTS and type II diabetes, inflammation and dyslipidemia . PPARg signaling...profile of findings including impaired glucose metabolism, obesity, altered fat dis- tribution, hypertension, dyslipidemia , markers of systemic inflam
NASA Astrophysics Data System (ADS)
Chevalier, S.; Ge, N.; Lee, J.; George, M. G.; Liu, H.; Shrestha, P.; Muirhead, D.; Lavielle, N.; Hatton, B. D.; Bazylak, A.
2017-06-01
This is the second paper in a two-part series in which we investigate the impact of the gas diffusion layer structure on the liquid water distribution in an operating polymer electrolyte membrane (PEM) fuel cell through the procedures of design, fabrication, and testing of novel hydrophobic electrospun gas diffusion layers (eGDLs). In this work, fibre diameters and alignment in eGDLs are precisely controlled, and concurrent synchrotron X-ray radiography and electrochemical impedance spectroscopy (EIS) are used to evaluate the influence of the controlled eGDL parameters on the liquid water distribution and on membrane liquid water content. For eGDLs with small fibre diameters (150-200 nm) and correspondingly smaller pore sizes, reduced liquid water accumulation under the flow field ribs is observed. However, more liquid water is pinned onto the eGDL - at the interface with flow field channels. Orienting fibre alignment perpendicular to the flow field channel direction leads to improved eGDL-catalyst layer contact and prevents rib-channel membrane deformation. On the other hand, eGDLs facilitate significant membrane dry-out, even under highly humidified operating conditions at high current densities.
NASA Astrophysics Data System (ADS)
Dahal, Lila Raj
Real time spectroscopic ellipsometry (RTSE), and ex-situ mapping spectroscopic ellipsometry (SE) are powerful characterization techniques capable of performance optimization and scale-up evaluation of thin film solar cells used in various photovoltaics technologies. These non-invasive optical probes employ multichannel spectral detection for high speed and provide high precision parameters that describe (i) thin film structure, such as layer thicknesses, and (ii) thin film optical properties, such as oscillator variables in analytical expressions for the complex dielectric function. These parameters are critical for evaluating the electronic performance of materials in thin film solar cells and also can be used as inputs for simulating their multilayer optical performance. In this Thesis, the component layers of thin film hydrogenated silicon (Si:H) solar cells in the n-i-p or substrate configuration on rigid and flexible substrate materials have been studied by RTSE and ex-situ mapping SE. Depositions were performed by magnetron sputtering for the metal and transparent conducting oxide contacts and by plasma enhanced chemical vapor deposition (PECVD) for the semiconductor doped contacts and intrinsic absorber layers. The motivations are first to optimize the thin film Si:H solar cell in n-i-p substrate configuration for single-junction small-area dot cells and ultimately to scale-up the optimized process to larger areas with minimum loss in device performance. Deposition phase diagrams for both i- and p -layers on 2" x 2" rigid borosilicate glass substrate were developed as functions of the hydrogen-to-silane flow ratio in PECVD. These phase diagrams were correlated with the performance parameters of the corresponding solar cells, fabricated in the Cr/Ag/ZnO/n/i/ p/ITO structure. In both cases, optimization was achieved when the layers were deposited in the protocrystalline phase. Identical solar cell structures were fabricated on 6" x 6" borosilicate glass with 256 cells followed by ex-situ mapping SE on each cell to achieve better statistics for solar cell optimization by correlating local structural parameters with solar cell parameters. Solar cells of similar structure were also fabricated on flexible polymer substrates in the roll-to-roll configuration. In this configuration as well, RTSE was demonstrated as an effective process monitoring and control tool for thin film photovoltaics.
Distribution of CaMKIIα expression in the brain in vivo, studied by CaMKIIα-GFP mice
Wang, Xinjun; Zhang, Chunzhao; Szábo, Gábor; Sun, Qian-Quan
2013-01-01
To facilitate the study of the CaMKIIα function in vivo, a CaMKIIα-GFP transgenic mouse line was generated. Here, our goal is to provide the first neuroanatomical characterization of GFP expression in the CNS of this line of mouse. Overall, CaMKIIα -GFP expression is strong and highly heterogeneous, with the dentate gyrus of the hippocampus as the most abundantly expressed region. In the hippocampus, around 70% of granule and pyramidal neurons expressed strong GFP. In the neocortex, presumed pyramidal neurons were GFP positive: around 32% of layer II/III and 35% of layer VI neurons expressed GFP, and a lower expression rate was found in other layers. In the thalamus and hypothalamus, strong GFP signals were detected in the neuropil. GFP-positive cells were also found in many other regions such as the spinal trigeminal nucleus, cerebellum and basal ganglia. We further compared the GFP expression with specific antibody staining for CaMKIIα and GABA. We found that GFP+ neurons were mostly positive for CaMKIIα-IR throughout the brain, with some exceptions throughout the brain, especially in the deeper layers of neocortex. GFP and GABA-IR marked distinct neuronal populations in most brain regions with the exception of granule cells in the olfactory bulb, purkinje cells in the cerebellar, and some layer I cells in neocortex. In conclusion, GFP expression in the CaMKIIα-GFP mice is similar to the endogenous expression of CaMKIIα protein, thus these mice can be used in in vivo and in vitro physiological studies in which visualization of CaMKIIα- neuronal populations is required. PMID:23632380
Mo/Si multilayers with enhanced TiO II- and RuO II-capping layers
NASA Astrophysics Data System (ADS)
Yulin, Sergiy; Benoit, Nicolas; Feigl, Torsten; Kaiser, Norbert; Fang, Ming; Chandhok, Manish
2008-03-01
The lifetime of Mo/Si multilayer-coated projection optics is one of the outstanding issues on the road of commercialization of extreme-ultraviolet lithography (EUVL). The application of Mo/Si multilayer optics in EUVL requires both sufficient radiation stability and also the highest possible normal-incidence reflectivity. A serious problem of conventional high-reflective Mo/Si multilayers capped by silicon is the considerable degradation of reflective properties due to carbonization and oxidation of the silicon surface layer under exposure by EUV radiation. In this study, we focus on titanium dioxide (TiO II) and ruthenium dioxide (RuO II) as promising capping layer materials for EUVL multilayer coatings. The multilayer designs as well as the deposition parameters of the Mo/Si systems with different capping layers were optimized in terms of maximum peak reflectivity at the wavelength of 13.5 nm and longterm stability under high-intensive irradiation. Optimized TiO II-capped Mo/Si multilayer mirrors with an initial reflectivity of 67.0% presented a reflectivity drop of 0.6% after an irradiation dose of 760 J/mm2. The reflectivity drop was explained by the partial oxidation of the silicon sub-layer. No reflectivity loss after similar irradiation dose was found for RuO II-capped Mo/Si multilayer mirrors having initial peak reflectivity of 66%. In this paper we present data on improved reflectivity of interface-engineered TiO II- and RuO II-capped Mo/Si multilayer mirrors due to the minimization of both interdiffusion processes inside the multilayer stack and absorption loss in the oxide layer. Reflectivities of 68.5% at the wavelength of 13.4 nm were achieved for both TiO II- and RuO II-capped Mo/Si multilayer mirrors.
Nakagawa, Julia M; Donkels, Catharina; Fauser, Susanne; Schulze-Bonhage, Andreas; Prinz, Marco; Zentner, Josef; Haas, Carola A
2017-04-01
Focal cortical dysplasia (FCD) is a major cause of pharmacoresistant focal epilepsy. Little is known about the pathomechanisms underlying the characteristic cytoarchitectural abnormalities associated with FCD. In the present study, a broad panel of markers identifying layer-specific neuron subpopulations was applied to characterize dyslamination and structural alterations in FCD with balloon cells (FCD 2b). Pan-neuronal neuronal nuclei (NeuN) and layer-specific protein expression (Reelin, Calbindin, Calretinin, SMI32 (nonphosphorylated neurofilament H), Parvalbumin, transducin-like enhancer protein 4 (TLE4), and Vimentin) was studied by immunohistochemistry on paraffin sections of FCD2b cases (n = 22) and was compared to two control groups with (n = 7) or without epilepsy (n = 4 postmortem cases). Total and layer-specific neuron densities were systematically quantified by cell counting considering age at surgery and brain region. We show that in FCD2b total neuron densities across all six cortical layers were not significantly different from controls. In addition, we present evidence that a basic laminar arrangement of layer-specific neuron subtypes was preserved despite the severe disturbance of cortical structure. SMI32-positive pyramidal neurons showed no significant difference in total numbers, but a reduction in layers III and V. The densities of supragranular Calbindin- and Calretinin-positive interneurons in layers II and III were not different from controls, whereas Parvalbumin-expressing interneurons, primarily located in layer IV, were significantly reduced in numbers when compared to control cases without epilepsy. In layer VI, the density of TLE4-positive projection neurons was significantly increased. Altogether, these data show that changes in cellular composition mainly affect deep cortical layers in FCD2b. The application of a broad panel of markers defining layer-specific neuronal subpopulations revealed that in FCD2b neuronal diversity and a basic laminar arrangement are maintained despite the severe disturbance of cytoarchitecture. Moreover, it showed that Parvalbumin-positive, inhibitory interneurons are highly vulnerable in contrast to other interneuron subtypes, possibly related to the epileptic condition. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Natural attenuation of aged tar-oil in soils: A case study from a former gas production site
NASA Astrophysics Data System (ADS)
Ivanov, Pavel; Eickhorst, Thilo; Wehrer, Markus; Georgiadis, Anna; Rennert, Thilo; Eusterhues, Karin; Totsche, Kai Uwe
2017-04-01
Contamination of soils with tar oil occurred on many industrial sites in Europe. The main source of such contamination has been former manufactured gas plants (MGP). As many of them were destroyed during the World War II or abandoned in the second half of the XXth century, the contamination is depleted in volatile and degradable hydrocarbons (HC) but enriched in the heavy oil fractions due to aging processes. We studied a small tar-oil spill in a former MGP reservoir basin. The tar-oil had a total petroleum hydrocarbon (TPH) content of 245 mg/g. At the margin of the spill, vegetation has started to overgrow and intensively root the tar-oil layer. This zone comprised the uppermost 5-7 cm of our profile and contained 28 mg/g of TPH (A-layer)- The layer below the root zone (7-15 cm) was the most contaminated, with 90 mg/g TPH (B-layer). The layer underneath (15-22 cm) had smaller concentrations of 16 mg/g TPH (C-layer). Further down in the profile (D-layer) we found only slightly higher TPH content than in the control samples (1,4 mg/g vs 0,6 mg/g). The polycyclic aromatic hydrocarbons analysis showed the same distribution throughout all layers with highest contents of the PAHs with 4-6 condensed aromatic rings. Direct cell count and extraction of microbial biomass showed that the highly contaminated soil layers A and B had 2-3 times more bacteria than the control soils. CARD-FISH analysis revealed that in samples from layers A and B Archaea were more abundant (12% opposing to 6-7% in control soil). Analysis of bacteria (tested for Alpha-, Beta-, Gamma- and Epsilonproteobacteria and Actinobacteria) showed the dominance of Alphaproteobacteria in the layer A and C both beneath and above the most contaminated layer B. The primers covered the whole microbial consortia in these two layers, leaving almost no unidentified cells. In the most contaminated layer B Alphaproteobacteria amounted only to 20% of the microbial consortium, and almost 40% of the cells remained unidentified, suggesting the presence of other microorganisms using high-molecular weight HC as carbon source. All contaminated layers were found to be enriched in total Fe and both dithionite-extractable and oxalate-extractable Fe. Besides, siderite crystals were identified using FTIR microscopy. The presence of secondary crystalline and poorly crystalline Fe(III)-oxides and secondary Fe(II)-carbonates in the same horizons suggests simultaneous occurrence of oxic and anoxic zones within the porous system of the contaminated layers. Although HC pollution is often considered to inhibit microbial activity in soil, in our study the layers with highest TPH-amounts were the most "alive". We assume that aging processes (the sum of volatilization, dissolution, microbial degradation, chemical oxidation, polymerization and migration) and eventually a long-term microbial adaption to the HC carbon source resulted in the development of a microbial consortium, capable of transforming high-molecular weight HC. Presumably, iron-compounds in the tar oil act as an electron acceptor and trigger HC degradation. However, to unravel natural attenuation processes and degradation pathways it seems mandatory to take into account the soil structure and spatial distribution of microbes.
Trevino-Villarreal, J. Humberto; Vera-Cabrera, Lucio; Valero-Guillén, Pedro L.
2012-01-01
Nocardia brasiliensis is a Gram-positive facultative intracellular bacterium frequently isolated from human actinomycetoma. However, the pathogenesis of this infection remains unknown. Here, we used a model of bacterial delipidation with benzine to investigate the role of N. brasiliensis cell wall-associated lipids in experimental actinomycetoma. Delipidation of N. brasiliensis with benzine resulted in complete abolition of actinomycetoma without affecting bacterial viability. Chemical analyses revealed that trehalose dimycolate and an unidentified hydrophobic compound were the principal compounds extracted from N. brasiliensis with benzine. By electron microscopy, the extracted lipids were found to be located in the outermost membrane layer of the N. brasiliensis cell wall. They also appeared to confer acid-fastness. In vitro, the extractable lipids from the N. brasiliensis cell wall induced the production of the proinflammatory cytokines interleukin-1β (IL-1β), IL-6, and CCL-2 in macrophages. The N. brasiliensis cell wall extractable lipids inhibited important macrophage microbicidal effects, such as tumor necrosis factor alpha (TNF-α) and nitric oxide (NO) production, phagocytosis, bacterial killing, and major histocompatibility complex class II (MHC-II) expression in response to gamma interferon (IFN-γ). In dendritic cells (DCs), N. brasiliensis cell wall-associated extractable lipids suppressed MHC-II, CD80, and CD40 expression while inducing tumor growth factor β (TGF-β) production. Immunization with delipidated N. brasiliensis induced partial protection preventing actinomycetoma. These findings suggest that N. brasiliensis cell wall-associated lipids are important for actinomycetoma development by inducing inflammation and modulating the responses of macrophages and DCs to N. brasiliensis. PMID:22851755
Furutani, Rui
2008-01-01
The present investigation carried out Nissl, Klüver-Barrera, and Golgi studies of the cerebral cortex in three distinct genera of oceanic dolphins (Risso's dolphin, striped dolphin and bottlenose dolphin) to identify and classify cortical laminar and cytoarchitectonic structures in four distinct functional areas, including primary motor (M1), primary sensory (S1), primary visual (V1), and primary auditory (A1) cortices. The laminar and cytoarchitectonic organization of each of these cortical areas was similar among the three dolphin species. M1 was visualized as five-layer structure that included the molecular layer (layer I), external granular layer (layer II), external pyramidal layer (layer III), internal pyramidal layer (layer V), and fusiform layer (layer VI). The internal granular layer was absent. The cetacean sensory-related cortical areas S1, V1, and A1 were also found to have a five-layer organization comprising layers I, II, III, V and VI. In particular, A1 was characterized by the broadest layer I, layer II and developed band of pyramidal neurons in layers III (sublayers IIIa, IIIb and IIIc) and V. The patch organization consisting of the layer IIIb-pyramidal neurons was detected in the S1 and V1, but not in A1. The laminar patterns of V1 and S1 were similar, but the cytoarchitectonic structures of the two areas were different. V1 was characterized by a broader layer II than that of S1, and also contained the specialized pyramidal and multipolar stellate neurons in layers III and V. PMID:18625031
Boehlen, Anne; Henneberger, Christian; Erchova, Irina
2013-01-01
The temporal lobe is well known for its oscillatory activity associated with exploration, navigation, and learning. Intrinsic membrane potential oscillations (MPOs) and resonance of stellate cells (SCs) in layer II of the entorhinal cortex are thought to contribute to network oscillations and thereby to the encoding of spatial information. Generation of both MPOs and resonance relies on the expression of specific voltage-dependent ion currents such as the hyperpolarization-activated cation current (IH), the persistent sodium current (INaP), and the noninactivating muscarine-modulated potassium current (IM). However, the differential contributions of these currents remain a matter of debate. We therefore examined how they modify neuronal excitability near threshold and generation of near-threshold MPOs and resonance in vitro. We found that resonance mainly relied on IH and was reduced by IH blockers and modulated by cAMP and an IM enhancer but that neither of the currents exhibited full control over MPOs in these cells. As previously reported, IH controlled a theta-frequency component of MPOs such that blockade of IH resulted in fewer regular oscillations that retained low-frequency components and high peak amplitude. However, pharmacological inhibition and augmentation of IM also affected MPO frequencies and amplitudes. In contrast to other cell types, inhibition of INaP did not result in suppression of MPOs but only in a moderation of their properties. We reproduced the experimentally observed effects in a single-compartment stochastic model of SCs, providing further insight into the interactions between different ionic conductances. PMID:23076110
Korehi, H; Blöthe, M; Sitnikova, M A; Dold, B; Schippers, A
2013-03-05
The marine shore sulfidic mine tailings dump at the Chañaral Bay in the Atacama Desert, northern Chile, is characterized by extreme acidity, high salinity, and high heavy metals concentrations. Due to pyrite oxidation, metals (especially copper) are mobilized under acidic conditions and transported toward the tailings surface and precipitate as secondary minerals (Dold, Environ. Sci. Technol. 2006, 40, 752-758.). Depth profiles of total cell counts in this almost organic-carbon free multiple extreme environment showed variable numbers with up to 10(8) cells g(-1) dry weight for 50 samples at four sites. Real-time PCR quantification and bacterial 16S rRNA gene diversity analysis via clone libraries revealed a dominance of Bacteria over Archaea and the frequent occurrence of the acidophilic iron(II)- and sulfur-oxidizing and iron(III)-reducing genera Acidithiobacillus, Alicyclobacillus, and Sulfobacillus. Acidophilic chemolithoautotrophic iron(II)-oxidizing bacteria were also frequently found via most-probable-number (MPN) cultivation. Halotolerant iron(II)-oxidizers in enrichment cultures were active at NaCl concentrations up to 1 M. Maximal microcalorimetrically determined pyrite oxidation rates coincided with maxima of the pyrite content, total cell counts, and MPN of iron(II)-oxidizers. These findings indicate that microbial pyrite oxidation and metal mobilization preferentially occur in distinct tailings layers at high salinity. Microorganisms for biomining with seawater salt concentrations obviously exist in nature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gil, D.M.; Osiry, H.; Pomiro, F.
The hydrogen bond and π-π stacking are two non-covalent interactions able to support cooperative magnetic ordering between paramagnetic centers. This contribution reports the crystal structure and related magnetic properties for VO[Fe(CN){sub 5}NO]·2H{sub 2}O, which has a layered structure. This solid crystallizes with an orthorhombic unit cell, in the Pna2{sub 1} space group, with cell parameters a=14.1804(2), b=10.4935(1), c=7.1722(8) Å and four molecules per unit cell (Z=4). Its crystal structure was solved and refined from powder X-ray diffraction data. Neighboring layers remain linked through a network of hydrogen bonds involving a water molecule coordinated to the axial position for the Vmore » atom and the unbridged axial NO and CN ligands. An uncoordinated water molecule is found forming a triple bridge between these last two ligands and the coordinated water molecule. The magnetic measurements, recorded down to 2 K, shows a ferromagnetic interaction between V atoms located at neighboring layers, with a Curie-Weiss constant of 3.14 K. Such ferromagnetic behavior was interpreted as resulting from a superexchange interaction through the network of strong OH····O{sub H2O}, OH····N{sub CN}, and OH····O{sub NO} hydrogen bonds that connects neighboring layers. The interaction within the layer must be of antiferromagnetic nature and it was detected close to 2 K. - Graphical abstract: Coordination environment for the metals in vanadyl (II) nitroprusside dihydrate. Display Omitted - Highlights: • Crystal structure of vanadyl nitroprusside dehydrate. • Network of hydrogen bonds. • Magnetic interactions through a network of hydrogen bonds. • Layered transition metal nitroprussides.« less
Determination of cell cycle phases in live B16 melanoma cells using IRMS.
Bedolla, Diana E; Kenig, Saša; Mitri, Elisa; Ferraris, Paolo; Marcello, Alessandro; Grenci, Gianluca; Vaccari, Lisa
2013-07-21
The knowledge of cell cycle phase distribution is of paramount importance for understanding cellular behaviour under normal and stressed growth conditions. This task is usually assessed using Flow Cytometry (FC) or immunohistochemistry. Here we report on the use of FTIR microspectroscopy in Microfluidic Devices (MD-IRMS) as an alternative technique for studying cell cycle distribution in live cells. Asynchronous, S- and G0-synchronized B16 mouse melanoma cells were studied by running parallel experiments based on MD-IRMS and FC using Propidium Iodide (PI) staining. MD-IRMS experiments have been done using silicon-modified BaF2 devices, where the thin silicon layer prevents BaF2 dissolution without affecting the transparency of the material and therefore enabling a better assessment of the Phosphate I (PhI) and II (PhII) bands. Hierarchical Cluster Analysis (HCA) of cellular microspectra in the 1300-1000 cm(-1) region pointed out a distribution of cells among clusters, which is in good agreement with FC results among G0/G1, S and G2/M phases. The differentiation is mostly driven by the intensity of PhI and PhII bands. In particular, PhI almost doubles from the G0/G1 to G2/M phase, in agreement with the trend followed by nucleic acids during cellular progression. MD-IRMS is then proposed as a powerful method for the in situ determination of the cell cycle stage of an individual cell, without any labelling or staining, which gives the advantage of possibly monitoring specific cellular responses to several types of stimuli by clearly separating the spectral signatures related to the cellular response from those of cells that are normally progressing.
Bifari, Francesco; Decimo, Ilaria; Pino, Annachiara; Llorens-Bobadilla, Enric; Zhao, Sheng; Lange, Christian; Panuccio, Gabriella; Boeckx, Bram; Thienpont, Bernard; Vinckier, Stefan; Wyns, Sabine; Bouché, Ann; Lambrechts, Diether; Giugliano, Michele; Dewerchin, Mieke; Martin-Villalba, Ana; Carmeliet, Peter
2017-03-02
Whether new neurons are added in the postnatal cerebral cortex is still debated. Here, we report that the meninges of perinatal mice contain a population of neurogenic progenitors formed during embryonic development that migrate to the caudal cortex and differentiate into Satb2 + neurons in cortical layers II-IV. The resulting neurons are electrically functional and integrated into local microcircuits. Single-cell RNA sequencing identified meningeal cells with distinct transcriptome signatures characteristic of (1) neurogenic radial glia-like cells (resembling neural stem cells in the SVZ), (2) neuronal cells, and (3) a cell type with an intermediate phenotype, possibly representing radial glia-like meningeal cells differentiating to neuronal cells. Thus, we have identified a pool of embryonically derived radial glia-like cells present in the meninges that migrate and differentiate into functional neurons in the neonatal cerebral cortex. Copyright © 2016 Elsevier Inc. All rights reserved.
Variegation in Arum italicum leaves. A structural-functional study.
La Rocca, Nicoletta; Rascio, Nicoletta; Pupillo, Paolo
2011-12-01
The presence of pale-green flecks on leaves (speckling) is a frequent character among herbaceous species from shady places and is usually due to local loosening of palisade tissue (air space type of variegation). In the winter-green Arum italicum L. (Araceae), dark-green areas of variegated leaf blades are ca. 400 μm thick with a chlorophyll content of 1080 mg m⁻² and a palisade parenchyma consisting of a double layer of oblong cells. Pale-green areas are 25% thinner, have 26% less chlorophyll and contain a single, loose layer of short palisade cells. Full-green leaves generally present only one compact layer of cylindrical palisade cells and the same pigment content as dark-green sectors, but the leaf blade is 13% thinner. A spongy parenchyma with extensive air space is present in all leaf types. Green cells of all tissues have normal chloroplasts. Assays of photosynthetic activities by chlorophyll fluorescence imaging and O₂ exchange measurements showed that variegated pale-green and dark-green sectors as well as full-green leaves have comparable photosynthetic activities on a leaf area basis at saturating illumination. However, full-green leaves require a higher saturating light with respect to variegated sectors, and pale-green sectors support relatively higher photosynthesis rates on a chlorophyll basis. We conclude that i) variegation in this species depends on number and organization of palisade cell layers and can be defined as a "variable palisade" type, and ii) the variegated habit has no limiting effects on the photosynthetic energy budget of A. italicum, consistent with the presence of variegated plants side by side to full-green ones in natural populations. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Nanoscale architecture of the Schizosaccharomyces pombe contractile ring.
McDonald, Nathan A; Lind, Abigail L; Smith, Sarah E; Li, Rong; Gould, Kathleen L
2017-09-15
The contractile ring is a complex molecular apparatus which physically divides many eukaryotic cells. Despite knowledge of its protein composition, the molecular architecture of the ring is not known. Here we have applied super-resolution microscopy and FRET to determine the nanoscale spatial organization of Schizosaccharomyces pombe contractile ring components relative to the plasma membrane. Similar to other membrane-tethered actin structures, we find proteins localize in specific layers relative to the membrane. The most membrane-proximal layer (0-80 nm) is composed of membrane-binding scaffolds, formin, and the tail of the essential myosin-II. An intermediate layer (80-160 nm) consists of a network of cytokinesis accessory proteins as well as multiple signaling components which influence cell division. Farthest from the membrane (160-350 nm) we find F-actin, the motor domains of myosins, and a major F-actin crosslinker. Circumferentially within the ring, multiple proteins proximal to the membrane form clusters of different sizes, while components farther from the membrane are uniformly distributed. This comprehensive organizational map provides a framework for understanding contractile ring function.
Nanoscale architecture of the Schizosaccharomyces pombe contractile ring
McDonald, Nathan A; Lind, Abigail L; Smith, Sarah E; Li, Rong
2017-01-01
The contractile ring is a complex molecular apparatus which physically divides many eukaryotic cells. Despite knowledge of its protein composition, the molecular architecture of the ring is not known. Here we have applied super-resolution microscopy and FRET to determine the nanoscale spatial organization of Schizosaccharomyces pombe contractile ring components relative to the plasma membrane. Similar to other membrane-tethered actin structures, we find proteins localize in specific layers relative to the membrane. The most membrane-proximal layer (0–80 nm) is composed of membrane-binding scaffolds, formin, and the tail of the essential myosin-II. An intermediate layer (80–160 nm) consists of a network of cytokinesis accessory proteins as well as multiple signaling components which influence cell division. Farthest from the membrane (160–350 nm) we find F-actin, the motor domains of myosins, and a major F-actin crosslinker. Circumferentially within the ring, multiple proteins proximal to the membrane form clusters of different sizes, while components farther from the membrane are uniformly distributed. This comprehensive organizational map provides a framework for understanding contractile ring function. PMID:28914606
Culture of human anulus fibrosus cells on polyamide nanofibers: extracellular matrix production.
Gruber, Helen E; Hoelscher, Gretchen; Ingram, Jane A; Hanley, Edward N
2009-01-01
Studies were approved by the authors' Human Subjects Institutional Review Board. Human anulus cells were tested for growth and extracellular matrix (ECM) production in vitro. To investigate cell attachment, cell proliferation, and ECM production of human intervertebral disc anulus cells seeded onto randomly oriented electrospun polyamide nanofibers. Because nanofibrillar matrices have the potential to promote microenvironments, which may mimic in vivo conditions and resemble connective tissue, their utilization opens new avenues for cell-based tissue engineering applications for disc cells. Anulus cells were isolated from 4 cervical spine surgical disc specimens, expanded, and seeded into either routine plastic culture (control) or a nanofiber surface of randomly oriented electrospun polyamide nanofibers (Ultra-Web-coated culture dish, Corning) with a positive charge or without a charge. Cells were cultured for 9 days, digital images captured, cells harvested, embedded in paraffin, and examined for production of extracellular matrix (ECM). Additional anulus cultures were tested to quantitatively assess total proteoglycan production and cell proliferation under control or nanofiber cultures. Cells attached well and exhibited cell extensions within the nanofiber layers; cells on the charged nanofiber surface deposited greater amounts of chondroitin sulfate than of type II collagen than cells cultured on the uncharged nanofiber surface. Results showed that culture of anulus cells on nanofibers was permissive for secretion and assembly of type II collagen and chondroitin sulfate. Significantly greater total proteoglycan formation was present after culture on the nanofiber with added charge conditions {control, 0.6116 microg/mL +/- 0.186 [4] [mean +/- sem(n)] vs. 1.201 +/- 0.2509 [4], P < 0.05}. Cell proliferation, however, did not differ among treatment groups. Culture of anulus cells on nanofibers was found to be permissive for secretion and assembly of type II collagen and chondroitin sulfate, and culture on nanofibers with added charge significantly increased total proteoglycan production. These novel findings point to the need for further examination of nanofibrillar 3D culture of anulus cells for tissue engineering applications.
Growth cycle of Helicobacter pylori in gastric mucous layer.
Nakazawa, Teruko
2002-12-01
Helicobacter pylori bacterium is characterized by its strong urease activity. Our studies on the role of H. pylori urease revealed; (i) it is essential for colonization, (ii) exogenous urea is required for acid resistance, (iii) the bacteria have the ability to move toward urea and sodium bicarbonate, (iv) urea hydrolysis accelerates chemotactic locomotion, and (v) decay of urease mRNA to accomplish the active center is pH-regulated; i.e., the mRNA is stabilized and destabilized under acidic and neutral conditions, respectively. Based on the above results, I propose the growth cycle of H. pylori in gastric mucous layer. H. pylori bacteria proliferate on the epithelial cell surface by utilizing nutrients derived from degraded cells. Proliferated bacteria leave the cell surface to pH-variable region where they encounter strong acid. Urease is activated with simultaneous opening of UreI channel so that urea is hydrolyzed to neutralize acid. Chemotaxis of H. pylori toward urea and sodium bicarbonate that are abundant on the cell surface is accelerated by urea hydrolysis so that the bacteria go back to the cell surface for the next round of proliferation. This growth cycle may allow the bacteria to infect persistently in the stomach.
NASA Astrophysics Data System (ADS)
Strom, C. S.; Bennema, P.
1997-03-01
This work (Part II) explores the relation between units and morphology. It shows the equivalence in behaviour between the attachment energies and the results of Monte Carlo growth kinetics simulations. The energetically optimal combination of the F slices in 1 1 0, 0 1 1 and 1 1 1 in a monomolecular interpretation leads to unsatisfactory agreement with experimentally observed morphology. In a tetrameric (or octameric) interpretation, the unit cell must be subdivided self-consistently in terms of stable molecular clusters. Thus, the presence or absence of the 1 1 1 form functions as a direct experimental criterion for distinguishing between monomolecular growth layers, and tetrameric (or octameric) growth layers of the same composition, but subjected to the condition of combinatorial compatibility, as the F slices combine to produce the growth habit. When that condition is taken into account, the tetrameric (or octameric) theoretical morphology in the broken bond model is in good agreement with experiment over a wide range. Subjectmatter for future study is summarized.
Smith, Joseph P; Smith, Frank C; Ottaway, Joshua; Krull-Davatzes, Alexandra E; Simonson, Bruce M; Glass, Billy P; Booksh, Karl S
2017-08-01
The high-pressure, α-PbO 2 -structured polymorph of titanium dioxide (TiO 2 -II) was recently identified in micrometer-sized grains recovered from four Neoarchean spherule layers deposited between ∼2.65 and ∼2.54 billion years ago. Several lines of evidence support the interpretation that these layers represent distal impact ejecta layers. The presence of shock-induced TiO 2 -II provides physical evidence to further support an impact origin for these spherule layers. Detailed characterization of the distribution of TiO 2 -II in these grains may be useful for correlating the layers, estimating the paleodistances of the layers from their source craters, and providing insight into the formation of the TiO 2 -II. Here we report the investigation of TiO 2 -II-bearing grains from these four spherule layers using multivariate curve resolution-alternating least squares (MCR-ALS) applied to Raman microspectroscopic mapping. Raman spectra provide evidence of grains consisting primarily of rutile (TiO 2 ) and TiO 2 -II, as shown by Raman bands at 174 cm -1 (TiO 2 -II), 426 cm -1 (TiO 2 -II), 443 cm -1 (rutile), and 610 cm -1 (rutile). Principal component analysis (PCA) yielded a predominantly three-phase system comprised of rutile, TiO 2 -II, and substrate-adhesive epoxy. Scanning electron microscopy (SEM) suggests heterogeneous grains containing polydispersed micrometer- and submicrometer-sized particles. Multivariate curve resolution-alternating least squares applied to the Raman microspectroscopic mapping yielded up to five distinct chemical components: three phases of TiO 2 (rutile, TiO 2 -II, and anatase), quartz (SiO 2 ), and substrate-adhesive epoxy. Spectral profiles and spatially resolved chemical maps of the pure chemical components were generated using MCR-ALS applied to the Raman microspectroscopic maps. The spatial resolution of the Raman microspectroscopic maps was enhanced in comparable, cost-effective analysis times by limiting spectral resolution and optimizing spectral acquisition parameters. Using the resolved spectra of TiO 2 -II generated from MCR-ALS analysis, a Raman spectrum for pure TiO 2 -II was estimated to further facilitate its identification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, D., E-mail: iamzd@hpu.edu.cn; Zhang, R. H.; Li, F. F.
2016-12-15
A new Pb{sup II}−edta{sup 4–} coordination polymer, Pb{sub 2}(edta)(H{sub 2}O){sub 0.76} (edta{sup 4–} = ethylenediaminetetraacetate) was synthesized under hydrothermal condition. Single crystal X-ray analysis reveals that it represents a novel two-dimensional (2D) Pb{sup 2+}–edta{sup 4–} layer structure with a (4,8{sup 2})-topology. Each edta{sup 4–} ligand employs its four carboxylate O and two N atoms to chelate one Pb{sup II} atom (hexa-coordinated) and connects five Pb{sup II} atoms (ennea-coordinated) via its four carboxylate groups to form 2D layer framework. Adjacent layers are packed into the overall structure through vander Waals interactions.
Iodine/iodide-free dye-sensitized solar cells.
Yanagida, Shozo; Yu, Youhai; Manseki, Kazuhiro
2009-11-17
Dye-sensitized solar cells (DSSCs) are built from nanocrystalline anatase TiO(2) with a 101 crystal face (nc-TiO(2)) onto which a dye is absorbed, ruthenium complex sensitizers, fluid I(-)/I(3)(-) redox couples with electrolytes, and a Pt-coated counter electrode. DSSCs have now reached efficiencies as high as 11%, and G24 Innovation (Cardiff, U.K.) is currently manufacturing them for commercial use. These devices offer several distinct advantages. On the basis of the electron lifetime and diffusion coefficient in the nc-TiO(2) layer, DSSCs maintain a diffusion length on the order of several micrometers when the dyed-nc-TiO(2) porous layer is covered by redox electrolytes of lithium and/or imidazolium iodide and their polyiodide salts. The fluid iodide/iodine (I(-)/I(3)(-)) redox electrolytes can infiltrate deep inside the intertwined nc-TiO(2) layers, promoting the mobility of the nc-TiO(2) layers and serving as a hole-transport material of DSSCs. As a result, these materials eventually give a respectable photovoltaic performance. On the other hand, fluid I(-)/I(3)(-) redox shuttles have certain disadvantages: reduced performance control and long-term stability and incompatibility with some metallic component materials. The I(-)/I(3)(-) redox shuttle shows a significant loss in short circuit current density and a slight loss in open circuit voltage, particularly in highly viscous electrolyte-based DSSC systems. Iodine can also act as an oxidizing agent, corroding metals, such as the grid metal Ag and the Pt mediator on the cathode, especially in the presence of water and oxygen. In addition, the electrolytes (I(-)/I(3)(-)) can absorb visible light (lambda = approximately 430 nm), leading to photocurrent loss in the DSSC. Therefore, the introduction of iodide/iodine-free electrolytes or hole-transport materials (HTMs) could lead to cost-effective alternatives to TiO(2) DSSCs. In this Account, we discuss the iodide/iodine-free redox couple as a substitute for the fluid I(-)/I(3)(-) redox shuttle. We also review the adaptation of solid-state HTMs to the iodide/iodine-free solid-state DSSCs with an emphasis on their pore filling and charge mobility in devices and the relationship of those values to the performance of the resulting iodide/iodine-free DSSCs. We demonstrate how the structures of the sensitizing dye molecules and additives of lithium or imidazolium salts influence device performance. In addition, the self-organizing molecular interaction for electronic contact of HTMs to dye molecules plays an important role in unidirectional charge diffusion at interfaces. The poly(3,4-ethylenedioxythiophene) (PEDOT)-based DSSCs, which we obtain through photoelectrochemical polymerization (PEP) using 3-alkylthiophen-bearing ruthenium dye, HRS-1, and bis-EDOT, demonstrates the importance of nonbonding interface contact (e.g., pi-pi-stacking) for the successful inclusion of HTMs.
Guimond, Marie-Odile; Battista, Marie-Claude; Nikjouitavabi, Fatemeh; Carmel, Maude; Barres, Véronique; Doueik, Alexandre A; Fazli, Ladan; Gleave, Martin; Sabbagh, Robert; Gallo-Payet, Nicole
2013-07-01
Evidence shows that angiotensin II type 1 receptor (AT1R) blockers may be associated with improved outcome in prostate cancer patients. It has been proposed that part of this effect could be due to angiotensin II type 2 receptor (AT2R) activation, the only active angiotensin II receptor in this situation. This study aimed to characterize the localization and expression of AT2R in prostate tissues and to assess its role on cell morphology and number in prostatic epithelial cells in primary culture. AT2R and its AT2R-interacting protein (ATIP) expression were assessed on non-tumoral and tumoral human prostate using tissue microarray immunohistochemistry, binding assay, and Western blotting. AT2R effect on cell number was measured in primary cultures of epithelial cells from non-tumoral human prostate. AT2R was localized at the level of the acinar epithelial layer and its expression decreased in cancers with a Gleason score 6 or higher. In contrast, ATIP expression increased with cancer progression. Treatment of primary cell cultures from non-tumoral prostate tissues with C21/M024, a selective AT2R agonist, alone or in co-incubation with losartan, an AT1R antagonist, significantly decreased cell number compared to untreated cells. AT2R and ATIP are present in non-tumoral human prostate tissues and differentially regulated according to Gleason score. The decrease in non-tumoral prostate cell number upon selective AT2R stimulation suggests that AT2R may have a protective role against prostate cancer development. Treatment with a selective AT2R agonist could represent a new approach for prostate cancer prevention or for patients on active surveillance. Copyright © 2013 Wiley Periodicals, Inc.
Isasi, Rosario M; Knoppers, Bartha M
2006-10-01
This report provides a comparative analysis of the regulation of embryonic stem cells and cloning research in 50 countries. The development of international stem cell consortia involving the exchange of materials, data and knowledge presumes 'policy know-how' on the varying positions and governing regulations of the various partners; knowledge is essential for the feasibility of such international collaborative projects. Across the spectrum of restrictive-to-liberal policies, requirements regarding the justification for or the setting of substantive limits on (i) embryo use and/or (ii) destruction in research are often present. These goals justify the regulation, the control and even the prohibition of embryonic stem cell and cloning research. Moreover, irrespective of whether a country adopts a restrictive or a liberal approach, there is significant symmetry in both the substantive and the procedural requirements. Procedural safeguards provide another layer of protection and control over the research. In reality, such safeguards may have a greater systemic impact than the substantive requirements. They can be subdivided into three broad categories: (i) safeguards relating to the stage of embryonic development, (ii) safeguards relating to the donors of blastocysts, gametes, embryos and somatic cells and (iii) requirements for research governance.
Bipolar H II regions produced by cloud-cloud collisions
NASA Astrophysics Data System (ADS)
Whitworth, Anthony; Lomax, Oliver; Balfour, Scott; Mège, Pierre; Zavagno, Annie; Deharveng, Lise
2018-05-01
We suggest that bipolar H II regions may be the aftermath of collisions between clouds. Such a collision will produce a shock-compressed layer, and a star cluster can then condense out of the dense gas near the center of the layer. If the clouds are sufficiently massive, the star cluster is likely to contain at least one massive star, which emits ionizing radiation, and excites an H II region, which then expands, sweeping up the surrounding neutral gas. Once most of the matter in the clouds has accreted onto the layer, expansion of the H II region meets little resistance in directions perpendicular to the midplane of the layer, and so it expands rapidly to produce two lobes of ionized gas, one on each side of the layer. Conversely, in directions parallel to the midplane of the layer, expansion of the H II region stalls due to the ram pressure of the gas that continues to fall towards the star cluster from the outer parts of the layer; a ring of dense neutral gas builds up around the waist of the bipolar H II region, and may spawn a second generation of star formation. We present a dimensionless model for the flow of ionized gas in a bipolar H II region created according to the above scenario, and predict the characteristics of the resulting free-free continuum and recombination-line emission. This dimensionless model can be scaled to the physical parameters of any particular system. Our intention is that these predictions will be useful in testing the scenario outlined above, and thereby providing indirect support for the role of cloud-cloud collisions in triggering star formation.
NASA Astrophysics Data System (ADS)
Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Baran, Sümeyra Seniha; Asgin, Mansur; Gur, Emre; Kocak, Yusuf
2018-01-01
Developing efficient and cost-effective photoanode plays a vital role determining the photocurrent and photovoltage in dye-sensitized solar cells (DSSCs). Here, we demonstrate DSSCs that achieve relatively high power conversion efficiencies (PCEs) by using one-dimensional (1D) zinc oxide (ZnO) nanowires and copper (II) oxide (CuO) nanorods hybrid nanostructures. CuO nanorod-based thin films were prepared by hydrothermal method and used as a blocking layer on top of the ZnO nanowires' layer. The use of 1D ZnO nanowire/CuO nanorod hybrid nanostructures led to an exceptionally high photovoltaic performance of DSSCs with a remarkably high open-circuit voltage (0.764 V), short current density (14.76 mA/cm2 under AM1.5G conditions), and relatively high solar to power conversion efficiency (6.18%) . The enhancement of the solar to power conversion efficiency can be explained in terms of the lag effect of the interfacial recombination dynamics of CuO nanorod-blocking layer on ZnO nanowires. This work shows more economically feasible method to bring down the cost of the nano-hybrid cells and promises for the growth of other important materials to further enhance the solar to power conversion efficiency.
Keratins Are Altered in Intestinal Disease-Related Stress Responses.
Helenius, Terhi O; Antman, Cecilia A; Asghar, Muhammad Nadeem; Nyström, Joel H; Toivola, Diana M
2016-09-10
Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery.
Klein-Szanto, A. J.; Nettesheim, P.; Pine, A.; Martin, D.
1981-01-01
Dark epithelial basal cells were found in both carcinogen-induced and non-carcinogen-induced squamous metaplasias of the tracheal epithelium. Formaldehyde-induced squamous metaplasias exhibited 4% dark cells in the basal layer. Metaplasias induced by vitamin A deficiency and those induced by dimethylbenz(alpha)anthracene (DMBA) without atypia showed 18--20% basal dark cells. DMBA-induced metaplasias with moderate to severe atypia exhibited 50% basal dark cells. The labeling index of basal cells in metaplastic epithelia, regardless of the inducing agent, was 16--18%, ie, the same as that of the normal esophageal stratified squamous epithelium. The percentage of labeled dark basal cells per total dark cell population was approximately 19% in the non-carcinogen-induced metaplasias and in the DMBA-induced metaplasias without atypia. In the atypical metaplasias induced by DMA this percentage increased to 26. On the basis of ultrastructural observations, five types of dark epithelial cells could be distinguished in the metaplastic epithelia: Type I (ovoid or fusiform dark cell with abundant cytoplasmic filaments, desmosomes, and free ribosomes--dark keratinocyte type); Type II (ovoid or spherical small cell with scant cytoplasm with few organelles--basal respiratory type); Type III (irregular or ovoid, few cytoplasmic filaments and organelles and desmosomes, extremely abundant free ribosomes--dedifferentiated type); Type IV (fusiform or ovoid, large mitochondria, prominent ergastoplasm, secretion droplets--mucous cell type); and type V (irregular shape, organelle remnants, vacuoles, pyknotic nuclei--involutional-cell type). Type I was the predominant cell type in formaldehyde-induced metaplasias and was also commonly seen in DMBA-induced metaplasias without atypia. Type II predominated in metaplasias induced by vitamin A deficiency. Type III was seen in DMBA-induced metaplasias and was the predominant cell type in the atypical epithelial alterations. Type IV cells occurred only in the latter, and Type V cells were occasionally seen in formaldehyde- as well as in DMBA-induced atypical metaplasias. Each type of squamous metaplasia could thus be recognized by a determined numerical distribution of dark cells in the basal layer and a specific pattern of distribution of the ultrastructurally defined dark cell categories. Images Figure 3 Figure 4 Figure 5 Figure 1 Figure 2 Figure 6 Figure 7 PMID:6786102
NASA Astrophysics Data System (ADS)
Qian, Chong-Xin; Deng, Zun-Yi; Yang, Kang; Feng, Jiangshan; Wang, Ming-Zi; Yang, Zhou; Liu, Shengzhong Frank; Feng, Hong-Jian
2018-02-01
Interface engineering has become a vital method in accelerating the development of perovskite solar cells in the past few years. To investigate the effect of different contacted surfaces of a light absorber with an electron transporting layer, TiO2, we synthesize CsPbBr3/TiO2 thin films with two different interfaces (CsBr/TiO2 and PbBr2/TiO2). Both interfacial heterostructures exhibit enhanced visible light absorption, and the CsBr/TiO2 thin film presents higher absorption than the PbBr2/TiO2 interface, which is attributed to the formation of interface states and the decreased interface bandgap. Furthermore, compared with the PbBr2/TiO2 interface, CsBr/TiO2 solar devices present larger output short circuit current and shorter photoluminescence decay time, which indicates that the CsBr contacting layer with TiO2 can better extract and separate the photo-induced carriers. The first-principles calculations confirm that, due to the existence of staggered gap (type II) offset junction and the interface states, the CsBr/TiO2 interface can more effectively separate the photo-induced carriers and thus drive the electron transfer from the CsPbBr3 perovskite layer to the TiO2 layer. These results may be beneficial to exploit the potential application of all-inorganic perovskite CsPbBr3-based solar cells through the interface engineering route.
Obermaier, Michael; Bandarenka, Aliaksandr S; Lohri-Tymozhynsky, Cyrill
2018-03-21
Electrochemical impedance spectroscopy (EIS) is an indispensable tool for non-destructive operando characterization of Polymer Electrolyte Fuel Cells (PEFCs). However, in order to interpret the PEFC's impedance response and understand the phenomena revealed by EIS, numerous semi-empirical or purely empirical models are used. In this work, a relatively simple model for PEFC cathode catalyst layers in absence of oxygen has been developed, where all the equivalent circuit parameters have an entire physical meaning. It is based on: (i) experimental quantification of the catalyst layer pore radii, (ii) application of De Levie's analytical formula to calculate the response of a single pore, (iii) approximating the ionomer distribution within every pore, (iv) accounting for the specific adsorption of sulfonate groups and (v) accounting for a small H 2 crossover through ~15 μm ionomer membranes. The derived model has effectively only 6 independent fitting parameters and each of them has clear physical meaning. It was used to investigate the cathode catalyst layer and the double layer capacitance at the interface between the ionomer/membrane and Pt-electrocatalyst. The model has demonstrated excellent results in fitting and interpretation of the impedance data under different relative humidities. A simple script enabling fitting of impedance data is provided as supporting information.
Ichida, J M; Rosa, M G; Casagrande, V A
2000-01-31
It has been proposed that flying foxes and echolocating bats evolved independently from early mammalian ancestors in such a way that flying foxes form one of the suborders most closely related to primates. A major piece of evidence offered in support of a flying fox-primate link is the highly developed visual system of flying foxes, which is theorized to be primate-like in several different ways. Because the calcium-binding proteins parvalbumin (PV) and calbindin (CB) show distinct and consistent distributions in the primate visual system, the distribution of these same proteins was examined in the flying fox (Pteropus poliocephalus) visual system. Standard immunocytochemical techniques reveal that PV labeling within the lateral geniculate nucleus (LGN) of the flying fox is sparse, with clearly labeled cells located only within layer 1, adjacent to the optic tract. CB labeling in the LGN is profuse, with cells labeled in all layers throughout the nucleus. Double labeling reveals that all PV+ cells also contain CB, and that these cells are among the largest in the LGN. In primary visual cortex (V1) PV and CB label different classes of non-pyramidal neurons. PV+ cells are found in all cortical layers, although labeled cells are found only rarely in layer I. CB+ cells are found primarily in layers II and III. The density of PV+ neuropil correlates with the density of cytochrome oxidase staining; however, no CO+ or PV+ or CB+ patches or blobs are found in V1. These results show that the distribution of calcium-binding proteins in the flying fox LGN is unlike that found in primates, in which antibodies for PV and CB label specific separate populations of relay cells that exist in different layers. Indeed, the pattern of calcium-binding protein distribution in the flying fox LGN is different from that reported in any other terrestrial mammal. Within V1 no PV+ patches, CO blobs, or patchy distribution of CB+ neuropil that might reveal interblobs characteristic of primate V1 are found; however, PV and CB are found in separate populations of non-pyramidal neurons. The types of V1 cells labeled with antibodies to PV and CB in all mammals examined including the flying fox suggest that the similarities in the cellular distribution of these proteins in cortex reflect the fact that this feature is common to all mammals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marfa-Riera, V.; Gollin, D.; Mohnen, D.
An optimized tobacco thin-cell-layer (TCL) bioassay was used to study the induction of flowers by plant oligosaccharins. Endopolygalacturonase (EPG)-released fragments of suspension-cultured sycamore cell walls induced flowers on TCLs grown on a medium containing 1.5 {mu}M IBA and 0.9 {mu}M kinetin. The EPG-released fragments were primarily composed of the polysaccharides rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II), and {alpha}-1,4-linked oligogalacturonides. The {alpha}-1,4-linked oligogalacturonides, subsequently purified from the EPG-released sycamore cell wall fragment mixture, induced flowers on TCLs. Purified RG-I and RG-II did not induce flowers. Oligosaccharide fragments, generated by partial acid hydrolysis of citrus pectin, were also capable of inducing flowersmore » on the TCLs. The active components in the pectin fragment mixture were {alpha}-1,4-linked oligogalacturonides. Oligogalacturonides with a degree of polymerization (DP) of 8-16, at concentrations of {approx} 0.1 {mu}M, induced flowers, while oligogalacturonides with a DP 2-7, even at higher concentrations, did not. Oligogalacturonides have previously been shown to induce the synthesis of phytoalexins, protease inhibitors, lignin, and ethylene in other plant systems. Thus, the ability of {alpha}-1,4-linked oligogalacturonides to induce flower formation in the tobacco TCLs represents a new biological activity of these oligosaccharins.« less
Preserved number of entorhinal cortex layer II neurons in aged macaque monkeys
NASA Technical Reports Server (NTRS)
Gazzaley, A. H.; Thakker, M. M.; Hof, P. R.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)
1997-01-01
The perforant path, which consists of the projection from the layer II neurons of the entorhinal cortex to the outer molecular layer of the dentate gyrus, is a critical circuit involved in learning and memory formation. Accordingly, disturbances in this circuit may contribute to age-related cognitive deficits. In a previous study, we demonstrated a decrease in N-methyl-D-aspartate receptor subunit 1 immunofluorescence intensity in the outer molecular layer of aged macaque monkeys. In this study, we used the optical fractionator, a stereological method, to determine if a loss of layer II neurons occurred in the same animals in which the N-methyl-D-aspartate receptor subunit 1 alteration was observed. Our results revealed no significant differences in the number of layer II neurons between juvenile, young adult, and aged macaque monkeys. These results suggest that the circuit-specific decrease in N-methyl-D-aspartate receptor subunit 1 reported previously occurs in the absence of structural compromise of the perforant path, and thus may be linked to an age-related change in the physiological properties of this circuit.
Redox Reactions between Mn(II) and Hexagonal Birnessite Change Its Layer Symmetry.
Zhao, Huaiyan; Zhu, Mengqiang; Li, Wei; Elzinga, Evert J; Villalobos, Mario; Liu, Fan; Zhang, Jing; Feng, Xionghan; Sparks, Donald L
2016-02-16
Birnessite, a phyllomanganate and the most common type of Mn oxide, affects the fate and transport of numerous contaminants and nutrients in nature. Birnessite exhibits hexagonal (HexLayBir) or orthogonal (OrthLayBir) layer symmetry. The two types of birnessite contain contrasting content of layer vacancies and Mn(III), and accordingly have different sorption and oxidation abilities. OrthLayBir can transform to HexLayBir, but it is still vaguely understood if and how the reverse transformation occurs. Here, we show that HexLayBir (e.g., δ-MnO2 and acid birnessite) transforms to OrthLayBir after reaction with aqueous Mn(II) at low Mn(II)/Mn (in HexLayBir) molar ratios (5-24%) and pH ≥ 8. The transformation is promoted by higher pH values, as well as smaller particle size, and/or greater stacking disorder of HexLayBir. The transformation is ascribed to Mn(III) formation via the comproportionation reaction between Mn(II) adsorbed on vacant sites and the surrounding layer Mn(IV), and the subsequent migration of the Mn(III) into the vacancies with an ordered distribution in the birnessite layers. This study indicates that aqueous Mn(II) and pH are critical environmental factors controlling birnessite layer structure and reactivity in the environment.
Haggag, Sawsan M S; Farag, A A M; Abdelrafea, Mohamed
2013-06-01
Zinc(II)-8-hydroxy-5-nitrosoquinolate, [Zn(II)-(HNOQ)2], was synthesized and assembled as a deposited thin film of nano-metal complex by a rapid, direct, simple and efficient procedure based on layer-by-layer chemical deposition technique. Stoichiometric identification and structural characterization of [Zn(II)-(HNOQ)2] were confirmed by electron impact mass spectrometry (EI-MS) and Fourier Transform infrared spectroscopy (FT-IR). Surface morphology was studied by using a scanning electron microscope imaging (SEM) and the particle size was found to be in the range of 23-49 nm. Thermal stability of [Zn(II)-(HNOQ)2] was studied and the thermal parameters were evaluated using thermal gravimetric analysis (TGA). The current density-voltage measurements showed that the current flow is dominated by a space charge limited and influenced by traps under high bias. The optical properties of [Zn(II)-(HNOQ)2] thin films were found to exhibit two direct allowed transitions at 2.4 and 1.0 eV, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Callosal connections of dorso-lateral premotor cortex.
Marconi, B; Genovesio, A; Giannetti, S; Molinari, M; Caminiti, R
2003-08-01
This study investigated the organization of the callosal connections of the two subdivisions of the monkey dorsal premotor cortex (PMd), dorso-rostral (F7) and dorso-caudal (F2). In one animal, Fast blue and Diamidino yellow were injected in F7 and F2, respectively; in a second animal, the pattern of injections was reversed. F7 and F2 receive a major callosal input from their homotopic counterpart. The heterotopic connections of F7 originate mainly from F2, with smaller contingent from pre-supplementary motor area (pre-SMA, F6), area 8 (frontal eye fields), and prefrontal cortex (area 46), while those of F2 originate from F7, with smaller contributions from ventral premotor areas (F5, F4), SMA-proper (F3), and primary motor cortex (M1). Callosal cells projecting homotopically are mostly located in layers II-III, those projecting heterotopically occupy layers II-III and V-VI. A spectral analysis was used to characterize the spatial fluctuations of the distribution of callosal neurons, in both F7 and F2, as well as in adjacent cortical areas. The results revealed two main periodic components. The first, in the domain of the low spatial frequencies, corresponds to periodicities of cell density with peak-to-peak distances of approximately 10 mm, and suggests an arrangement of callosal cells in the form of 5-mm wide bands. The second corresponds to periodicities of approximately 2 mm, and probably reflects a 1-mm columnar-like arrangement. Coherency and phase analyses showed that, although similar in their spatial arrangements, callosal cells projecting to dorsal premotor areas are segregated in the tangential cortical domain.
The relationship between vacuolation and initiation of PCD in rice (Oryza sativa) aleurone cells
NASA Astrophysics Data System (ADS)
Zheng, Yan; Zhang, Heting; Deng, Xiaojiang; Liu, Jing; Chen, Huiping
2017-01-01
Vacuole fusion is a necessary process for the establishment of a large central vacuole, which is the central location of various hydrolytic enzymes and other factors involved in death at the beginning of plant programmed cell death (PCD). In our report, the fusion of vacuoles has been presented in two ways: i) small vacuoles coalesce to form larger vacuoles through membrane fusion, and ii) larger vacuoles combine with small vacuoles when small vacuoles embed into larger vacuoles. Regardless of how fusion occurs, a large central vacuole is formed in rice (Oryza sativa) aleurone cells. Along with the development of vacuolation, the rupture of the large central vacuole leads to the loss of the intact plasma membrane and the degradation of the nucleus, resulting in cell death. Stabilizing or disrupting the structure of actin filaments (AFs) inhibits or promotes the fusion of vacuoles, which delays or induces PCD. In addition, the inhibitors of the vacuolar processing enzyme (VPE) and cathepsin B (CathB) block the occurrence of the large central vacuole and delay the progression of PCD in rice aleurone layers. Overall, our findings provide further evidence for the rupture of the large central vacuole triggering the PCD in aleruone layers.
Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann
2009-01-01
Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly’s halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support. PMID:20396612
Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann
2009-06-01
Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly's halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support.
Electron microscopic examination of uncultured soil-dwelling bacteria.
Amako, Kazunobu; Takade, Akemi; Taniai, Hiroaki; Yoshida, Shin-ichi
2008-05-01
Bacteria living in soil collected from a rice paddy in Fukuoka, Japan, were examined by electron microscopy using a freeze-substitution fixation method. Most of the observed bacteria could be categorized, based on the structure of the cell envelope and overall morphology, into one of five groups: (i) bacterial spore; (ii) Gram-positive type; (iii) Gram-negative type; (iv) Mycobacterium like; and (v) Archaea like. However, a few of the bacteria could not be readily categorized into one of these groups because they had unique cell wall structures, basically resembling those of Gram-negative bacteria, but with the layer corresponding to the peptidoglycan layer in Gram-negative bacteria being extremely thick, like that of the cortex of a bacterial spore. The characteristic morphological features found in many of these uncultured, soil-dwelling cells were the nucleoid being in a condensed state and the cytoplasm being shrunken. We were able to produce similar morphologies in vitro using a Salmonella sp. by culturing under low-temperature, low-nutrient conditions, similar to those found in some natural environments. These unusual morphologies are therefore hypothesized to be characteristic of bacteria in resting or dormant stages.
Steinmetz, Neven J; Aisenbrey, Elizabeth A; Westbrook, Kristofer K; Qi, H Jerry; Bryant, Stephanie J
2015-07-01
A bioinspired multi-layer hydrogel was developed for the encapsulation of human mesenchymal stem cells (hMSCs) as a platform for osteochondral tissue engineering. The spatial presentation of biochemical cues, via incorporation of extracellular matrix analogs, and mechanical cues, via both hydrogel crosslink density and externally applied mechanical loads, were characterized in each layer. A simple sequential photopolymerization method was employed to form stable poly(ethylene glycol)-based hydrogels with a soft cartilage-like layer of chondroitin sulfate and low RGD concentrations, a stiff bone-like layer with high RGD concentrations, and an intermediate interfacial layer. Under a compressive load, the variation in hydrogel stiffness within each layer produced high strains in the soft cartilage-like layer, low strains in the stiff bone-like layer, and moderate strains in the interfacial layer. When hMSC-laden hydrogels were cultured statically in osteochondral differentiation media, the local biochemical and matrix stiffness cues were not sufficient to spatially guide hMSC differentiation after 21 days. However dynamic mechanical stimulation led to differentially high expression of collagens with collagen II in the cartilage-like layer, collagen X in the interfacial layer and collagen I in the bone-like layer and mineral deposits localized to the bone layer. Overall, these findings point to external mechanical stimulation as a potent regulator of hMSC differentiation toward osteochondral cellular phenotypes. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Xue, Fei; Ma, Yinghong; Chen, Y. Eugene; Zhang, Jifeng; Lin, Tzu-An; Chen, Chien-Hong; Lin, Wei-Wen; Roach, Marsha; Ju, Jyh-Cherng; Yang, Lan; Du, Fuliang
2012-01-01
Abstract The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs. PMID:22775411
Use of separate ZnTe interface layers to form ohmic contacts to p-CdTe films
Gessert, T.A.
1999-06-01
A method of is disclosed improving electrical contact to a thin film of a p-type tellurium-containing II-VI semiconductor comprising: depositing a first undoped layer of ZnTe on a thin film of p-type tellurium containing II-VI semiconductor with material properties selected to limit the formation of potential barriers at the interface between the p-CdTe and the undoped layer, to a thickness sufficient to control diffusion of the metallic-doped ZnTe into the p-type tellurium-containing II-VI semiconductor, but thin enough to minimize affects of series resistance; depositing a second heavy doped p-type ZnTe layer to the first layer using an appropriate dopant; and depositing an appropriate metal onto the outer-most surface of the doped ZnTe layer for connecting an external electrical conductor to an ohmic contact. 11 figs.
Use of separate ZnTe interface layers to form OHMIC contacts to p-CdTe films
Gessert, Timothy A.
1999-01-01
A method of improving electrical contact to a thin film of a p-type tellurium-containing II-VI semiconductor comprising: depositing a first undoped layer of ZnTe on a thin film of p-type tellurium containing II-VI semiconductor with material properties selected to limit the formation of potential barriers at the interface between the p-CdTe and the undoped layer, to a thickness sufficient to control diffusion of the metallic-doped ZnTe into the p-type tellurim-containing II-VI semiconductor, but thin enough to minimize affects of series resistance; depositing a second heavy doped p-type ZnTe layer to the first layer using an appropriate dopant; and depositing an appropriate metal onto the outer-most surface of the doped ZnTe layer for connecting an external electrical conductor to an ohmic contact.
Paszti-Gere, Erzsebet; Barna, Reka Fanni; Kovago, Csaba; Szauder, Ipoly; Ujhelyi, Gabriella; Jakab, Csaba; Meggyesházi, Nóra; Szekacs, Andras
2015-04-01
The effect of oxidative stress on barrier integrity and localization of transmembrane serine proteinase 2 (TMPRSS2) were studied using porcine epithelial IPEC-J2 cells on membrane inserts. Increased paracellular permeability of FITC-dextran 4 kDa (fluorescence intensity 43,508 ± 2,391 versus 3,550 ± 759) and that of gentamicin (3.41 ± 0.06 % increase to controls) were measured parallel with the reduced transepithelial electrical resistance (23.3 ± 4.06 % decrease) of cell layers 6 h after 1 h 1 mM H2O2 treatment. The immunohistochemical localization of adherens junctional β-catenin was not affected by reactive oxygen species (ROS) up to 4 mM H2O2. Peroxide-triggered enhanced paracellular permeability of IPEC-J2 cell layer was accompanied by predominantly cytoplasmic occurrence of TMPRSS2 embedded in cell membrane under physiological conditions. These results support that ROS can influence paracellular gate opening via multifaceted mode of action without involvement of β-catenin redistribution in adherens junction. Altered distribution pattern of TMPRSS2 and relocalized transmembrane serine protease activity may contribute to weakening of epithelial barrier integrity under acute oxidative stress.
Removal of GaAs growth substrates from II-VI semiconductor heterostructures
NASA Astrophysics Data System (ADS)
Bieker, S.; Hartmann, P. R.; Kießling, T.; Rüth, M.; Schumacher, C.; Gould, C.; Ossau, W.; Molenkamp, L. W.
2014-04-01
We report on a process that enables the removal of II-VI semiconductor epilayers from their GaAs growth substrate and their subsequent transfer to arbitrary host environments. The technique combines mechanical lapping and layer selective chemical wet etching and is generally applicable to any II-VI layer stack. We demonstrate the non-invasiveness of the method by transferring an all-II-VI magnetic resonant tunneling diode. High resolution x-ray diffraction proves that the crystal integrity of the heterostructure is preserved. Transport characterization confirms that the functionality of the device is maintained and even improved, which is ascribed to completely elastic strain relaxation of the tunnel barrier layer.
Song, Hou-Pan; Li, Ru-Liu; Zhou, Chi; Cai, Xiong; Huang, Hui-Yong
2015-01-15
Atractylodes macrocephala Koidz (AMK), a valuable traditional Chinese herbal medicine, has been widely used in clinical practice for treating patients with disorders of the digestive system. AMK has shown noteworthy promoting effect on improving gastrointestinal function and immunity, which might represent a promising candidate for the treatment of intestinal mucosa injury. The aim of this study was to investigate the efficacy of AMK on intestinal mucosal restitution and the underlying mechanisms via intestinal epithelial (IEC-6) cell migration model. A cell migration model of IEC-6 cells was induced by a single-edge razor blade along the diameter of the cell layers in six-well polystyrene plates. After wounding, the cells were grown in control cultures and in cultures containing spermidine (5μM, SPD, reference drug), alpha-difluoromethylornithine (2.5mM, DFMO, polyamine inhibitor), AMK (50, 100, and 200mg/L), DFMO plus SPD and DFMO plus AMK for 12h. The polyamines content was detected by high-performance liquid chromatography (HPLC) with pre-column derivatization. The Rho mRNAs expression levels were assessed by Q-RT-PCR. The Rho and non-muscle myosin II proteins expression levels were analyzed by Western blot. The formation and distribution of non-muscle myosin II stress fibers were monitored with immunostaining techniques using specific antibodies and observed by confocal microscopy. Cell migration assay was carried out using inverted microscope and the Image-Pro Plus software. All of these indexes were used to evaluate the effectiveness of AMK. (1) Treatment with AMK caused significant increases in cellular polyamines content and Rho mRNAs and proteins expression levels, as compared to control group. Furthermore, AMK exposure increased non-muscle myosin II protein expression levels and formation of non-muscle myosin II stress fibers, and resulted in an acceleration of cell migration in IEC-6 cells. (2) Depletion of cellular polyamines by DFMO resulted in a decrease of cellular polyamines levels, Rho mRNAs and proteins expression, non-muscle myosin II protein formation and distribution, thereby inhibiting IEC-6 cell migration. AMK not only reversed the inhibitory effects of DFMO on the polyamines content, Rho mRNAs and proteins expression, non-muscle myosin II protein formation and distribution, but also restored cell migration to control levels. The results obtained from this study revealed that AMK significantly stimulates the migration of IEC-6 cells through a polyamine dependent mechanism, which could accelerate the healing of intestinal injury. These findings suggest the potential value of AMK in curing intestinal diseases characterized by injury and ineffective repair of the intestinal mucosa in clinical practice. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Nataatmadja, Maria; West, Jennifer; Prabowo, Sulistiana; West, Malcolm
2013-01-01
ABSTRACT Background The expression of transforming growth factor beta (TGF-β) and Smad3 regulates extracellular matrix homeostasis and inflammation in aortic aneurysms. The expression of Smad3 depends on signaling by angiotensin II (AngII) receptor pathways through TGF-β receptor–dependent and –independent pathways. Methods To determine the expression of AngII type 1 (AT1R) and type 2 receptors (AT2R), TGF-β, and Smad3 in thoracic aortic aneurysms, we performed immunohistochemistry testing on tissue and cultured cells derived from subjects with Marfan syndrome (MFS) and bicuspid aortic valve (BAV) malformation and from normal aortas of subjects who were organ donors. Results MFS and BAV aneurysm tissue showed enhanced accumulation of TGF-β and Smad3 in vascular smooth muscle cells (VSMCs) and in inflammatory cells in the subintimal layer and tunica media. The normal aortic wall exhibited minimal TGF-β and Smad3 staining. Cultured VSMCs from MFS and BAV samples showed nuclear Smad3 and strong cytoplasmic TGF-β expression in the cytoplasmic vesicles. In control cells, Smad3 was located mainly in the cytoplasm, and weak cytoplasmic TGF-β was distributed with a pattern similar to that of the aneurysm-derived cells. Compared to normal aorta cells, AT1R and AT2R expression was increased in both aneurysm types. Treatment of cultured VSMCs with the AT1R antagonist losartan caused both reduced TGF-β vesicle localization and nuclear expression of Smad3. Conclusions Increased TGF-β and Smad3 expression in aneurysm tissue and cultured VSMCs is consistent with aberrant TGF-β expression and the activation of Smad3 signaling. Losartan-mediated reduction in TGF-β expression and the cytoplasmic localization of Smad3 support a role for AT1R antagonism in the inhibition of aneurysm progression. PMID:23532685
Precise and economic FIB/SEM for CLEM: with 2 nm voxels through mitosis.
Luckner, Manja; Wanner, Gerhard
2018-05-23
A portfolio is presented documenting economic, high-resolution correlative focused ion beam scanning electron microscopy (FIB/SEM) in routine, comprising: (i) the use of custom-labeled slides and coverslips, (ii) embedding of cells in thin, or ultra-thin resin layers for correlative light and electron microscopy (CLEM) and (iii) the claim to reach the highest resolution possible with FIB/SEM in xyz. Regions of interest (ROIs) defined in light microscope (LM), can be relocated quickly and precisely in SEM. As proof of principle, HeLa cells were investigated in 3D context at all stages of the cell cycle, documenting ultrastructural changes during mitosis: nuclear envelope breakdown and reassembly, Golgi degradation and reconstitution and the formation of the midzone and midbody.
Zhou, Xiaoli; Heus, Thijs; Kollias, Pavlos
2017-06-06
Large-eddy simulations are used to study the influence of drizzle on stratocumulus organization, based on measurements made as part of the Second Dynamics and Chemistry of the Marine Stratocumulus field study-II. Cloud droplet number concentration ( N c) is prescribed and considered as the proxy for different aerosol loadings. Our study shows that the amount of cloudiness does not decrease linearly with precipitation rate. An N c threshold is observed below which the removal of cloud water via precipitation efficiently reduces cloud depth, allowing evaporation to become efficient and quickly remove the remaining thin clouds, facilitating a fast transition frommore » closed cells to open cells. Using Fourier analysis, stratocumulus length scales are found to increase with drizzle rates. Raindrop evaporation below 300 m lowers the cloud bases and amplifies moisture variances in the subcloud layer, while it does not alter the horizontal scales in the cloud layer, suggesting that moist cold pool dynamic forcings are not essential for mesoscale organization of stratocumulus. Furthermore, the cloud scales are greatly increased when the boundary layer is too deep to maintain well mixed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiaoli; Heus, Thijs; Kollias, Pavlos
Large-eddy simulations are used to study the influence of drizzle on stratocumulus organization, based on measurements made as part of the Second Dynamics and Chemistry of the Marine Stratocumulus field study-II. Cloud droplet number concentration ( N c) is prescribed and considered as the proxy for different aerosol loadings. Our study shows that the amount of cloudiness does not decrease linearly with precipitation rate. An N c threshold is observed below which the removal of cloud water via precipitation efficiently reduces cloud depth, allowing evaporation to become efficient and quickly remove the remaining thin clouds, facilitating a fast transition frommore » closed cells to open cells. Using Fourier analysis, stratocumulus length scales are found to increase with drizzle rates. Raindrop evaporation below 300 m lowers the cloud bases and amplifies moisture variances in the subcloud layer, while it does not alter the horizontal scales in the cloud layer, suggesting that moist cold pool dynamic forcings are not essential for mesoscale organization of stratocumulus. Furthermore, the cloud scales are greatly increased when the boundary layer is too deep to maintain well mixed.« less
Seo, Seon Hee; Jeong, Eun Ji; Han, Joong Tark; Kang, Hyon Chol; Cha, Seung I; Lee, Dong Yoon; Lee, Geon-Woong
2015-05-27
Electrocatalytic materials with a porous structure have been fabricated on glass substrates, via high-temperature fabrication, for application as alternatives to platinum in dye-sensitized solar cells (DSCs). Efficient, nonporous, nanometer-thick electrocatalytic layers based on graphene oxide (GO) nanosheets were prepared on plastic substrates using electrochemical control at low temperatures of ≤100 °C. Single-layer, oxygen-rich GO nanosheets prepared on indium tin oxide (ITO) substrates were electrochemically deoxygenated in acidic medium within a narrow scan range in order to obtain marginally reduced GO at minimum expense of the oxygen groups. The resulting electrochemically reduced GO (E-RGO) had a high density of residual alcohol groups with high electrocatalytic activity toward the positively charged cobalt-complex redox mediators used in DSCs. The ultrathin, alcohol-rich E-RGO layer on ITO-coated poly(ethylene terephthalate) was successfully applied as a lightweight, low-temperature counter electrode with an extremely high optical transmittance of ∼97.7% at 550 nm. A cobalt(II/III)-mediated DSC employing the highly transparent, alcohol-rich E-RGO electrode exhibited a photovoltaic power conversion efficiency of 5.07%. This is superior to that obtained with conventionally reduced GO using hydrazine (3.94%) and even similar to that obtained with platinum (5.10%). This is the first report of a highly transparent planar electrocatalytic layer based on carbonaceous materials fabricated on ITO plastics for application in DSCs.
Alibabaei, Leila; Sherman, Benjamin D.; Norris, Michael R.; ...
2015-04-27
A hybrid strategy for solar water splitting is exploited here based on a dye-sensitized photoelectrosynthesis cell (DSPEC) with a mesoporous SnO 2/TiO 2 core/shell nanostructured electrode derivatized with a surface-bound Ru(II) polypyridyl-based chromophore–catalyst assembly. The assembly, [(4,4’-(PO 3H 2) 2bpy) 2Ru(4-Mebpy-4’-bimpy)Ru(tpy)(OH 2)] 4+ ([RuaII-RubII-OH 2] 4+, combines both a light absorber and a water oxidation catalyst in a single molecule. It was attached to the TiO 2 shell by phosphonate-surface oxide binding. The oxide-bound assembly was further stabilized on the surface by atomic layer deposition (ALD) of either Al 2O 3 or TiO 2 overlayers. Illumination of the resulting fluorine-dopedmore » tin oxide (FTO)|SnO 2/TiO 2|-[Ru a II-Ru b II-OH 2] 4+(Al 2O 3 or TiO 2) photoanodes in photoelectrochemical cells with a Pt cathode and a small applied bias resulted in visible-light water splitting as shown by direct measurements of both evolved H 2 and O 2. The performance of the resulting DSPECs varies with shell thickness and the nature and extent of the oxide overlayer. Use of the SnO 2/TiO 2 core/shell compared with nanoITO/TiO 2 with the same assembly results in photocurrent enhancements of ~5. In conclusion, systematic variations in shell thickness and ALD overlayer lead to photocurrent densities as high as 1.97 mA/cm 2 with 445-nm, ~90-mW/cm 2 illumination in a phosphate buffer at pH 7.« less
Keratins Are Altered in Intestinal Disease-Related Stress Responses
Helenius, Terhi O.; Antman, Cecilia A.; Asghar, Muhammad Nadeem; Nyström, Joel H.; Toivola, Diana M.
2016-01-01
Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery. PMID:27626448
Gorshkova, Tatyana; Mokshina, Natalia; Chernova, Tatyana; Ibragimova, Nadezhda; Salnikov, Vadim; Mikshina, Polina; Tryfona, Theodora; Banasiak, Alicja; Immerzeel, Peter; Dupree, Paul; Mellerowicz, Ewa J.
2015-01-01
Contractile cell walls are found in various plant organs and tissues such as tendrils, contractile roots, and tension wood. The tension-generating mechanism is not known but is thought to involve special cell wall architecture. We previously postulated that tension could result from the entrapment of certain matrix polymers within cellulose microfibrils. As reported here, this hypothesis was corroborated by sequential extraction and analysis of cell wall polymers that are retained by cellulose microfibrils in tension wood and normal wood of hybrid aspen (Populus tremula × Populus tremuloides). β-(1→4)-Galactan and type II arabinogalactan were the main large matrix polymers retained by cellulose microfibrils that were specifically found in tension wood. Xyloglucan was detected mostly in oligomeric form in the alkali-labile fraction and was enriched in tension wood. β-(1→4)-Galactan and rhamnogalacturonan I backbone epitopes were localized in the gelatinous cell wall layer. Type II arabinogalactans retained by cellulose microfibrils had a higher content of (methyl)glucuronic acid and galactose in tension wood than in normal wood. Thus, β-(1→4)-galactan and a specialized form of type II arabinogalactan are trapped by cellulose microfibrils specifically in tension wood and, thus, are the main candidate polymers for the generation of tensional stresses by the entrapment mechanism. We also found high β-galactosidase activity accompanying tension wood differentiation and propose a testable hypothesis that such activity might regulate galactan entrapment and, thus, mechanical properties of cell walls in tension wood. PMID:26378099
Gorshkova, Tatyana; Mokshina, Natalia; Chernova, Tatyana; Ibragimova, Nadezhda; Salnikov, Vadim; Mikshina, Polina; Tryfona, Theodora; Banasiak, Alicja; Immerzeel, Peter; Dupree, Paul; Mellerowicz, Ewa J
2015-11-01
Contractile cell walls are found in various plant organs and tissues such as tendrils, contractile roots, and tension wood. The tension-generating mechanism is not known but is thought to involve special cell wall architecture. We previously postulated that tension could result from the entrapment of certain matrix polymers within cellulose microfibrils. As reported here, this hypothesis was corroborated by sequential extraction and analysis of cell wall polymers that are retained by cellulose microfibrils in tension wood and normal wood of hybrid aspen (Populus tremula × Populus tremuloides). β-(1→4)-Galactan and type II arabinogalactan were the main large matrix polymers retained by cellulose microfibrils that were specifically found in tension wood. Xyloglucan was detected mostly in oligomeric form in the alkali-labile fraction and was enriched in tension wood. β-(1→4)-Galactan and rhamnogalacturonan I backbone epitopes were localized in the gelatinous cell wall layer. Type II arabinogalactans retained by cellulose microfibrils had a higher content of (methyl)glucuronic acid and galactose in tension wood than in normal wood. Thus, β-(1→4)-galactan and a specialized form of type II arabinogalactan are trapped by cellulose microfibrils specifically in tension wood and, thus, are the main candidate polymers for the generation of tensional stresses by the entrapment mechanism. We also found high β-galactosidase activity accompanying tension wood differentiation and propose a testable hypothesis that such activity might regulate galactan entrapment and, thus, mechanical properties of cell walls in tension wood. © 2015 American Society of Plant Biologists. All Rights Reserved.
Pulpal responses to cavity preparation in aged rat molars.
Kawagishi, Eriko; Nakakura-Ohshima, Kuniko; Nomura, Shuichi; Ohshima, Hayato
2006-10-01
The dentin-pulp complex is capable of repair after tooth injuries including dental procedures. However, few data are available concerning aged changes in pulpal reactions to such injuries. The present study aimed to clarify the capability of defense in aged pulp by investigating the responses of odontoblasts and cells positive for class II major histocompatibility complex (MHC) to cavity preparation in aged rat molars (300-360 days) and by comparing the results with those in young adult rats (100 days). In untreated control teeth, immunoreactivity for intense heat-shock protein (HSP)-25 and nestin was found in odontoblasts, whereas class-II-MHC-positive cells were densely distributed in the periphery of the pulp. Cavity preparation caused two types of pulpal reactions based on the different extent of damage in the aged rats. In the case of severe damage, destruction of the odontoblast layer was conspicuous at the affected site. By 12 h after cavity preparation, numerous class-II-MHC-positive cells appeared along the pulp-dentin border but subsequently disappeared together with HSP-25-immunopositive cells, and finally newly differentiated odontoblast-like cells took the place of the degenerated odontoblasts and acquired immunoreactivity for HSP-25 and nestin by postoperative day 3. In the case of mild damage, no remarkable changes occurred in odontoblasts after operation, and some survived through the experimental stages. These findings indicate that aged pulp tissue still possesses a defense capacity, and that a variety of reactions can occur depending on the difference in the status of dentinal tubules and/or odontoblast processes in individuals.
Sun, Liguo; Li, Hongguo; Qu, Ling; Zhu, Rui; Fan, Xiangli; Xue, Yingsen; Xie, Zhenghong; Fan, Hongbin
2014-01-01
The lack of a fibrocartilage layer between graft and bone remains the leading cause of graft failure after anterior cruciate ligament (ACL) reconstruction. The objective of this study was to develop a gene-modified silk cable-reinforced chondroitin sulfate-hyaluronate acid-silk fibroin (CHS) hybrid scaffold for reconstructing the fibrocartilage layer. The scaffold was fabricated by lyophilizing the CHS mixture with braided silk cables. The scanning electronic microscopy (SEM) showed that microporous CHS sponges were formed around silk cables. Each end of scaffold was modified with lentiviral-mediated transforming growth factor-β3 (TGF-β3) gene. The cells on scaffold were transfected by bonded lentivirus. In vitro culture demonstrated that mesenchymal stem cells (MSCs) on scaffolds proliferated vigorously and produced abundant collagen. The transcription levels of cartilage-specific genes also increased with culture time. After 2 weeks, the MSCs were distributed uniformly throughout scaffold. Deposited collagen was also found to increase. The chondral differentiation of MSCs was verified by expressions of collagen II and TGF-β3 genes in mRNA and protein level. Histology also confirmed the production of cartilage extracellular matrix (ECM) components. The results demonstrated that gene-modified silk cable-reinforced CHS scaffold was capable of supporting cell proliferation and differentiation to reconstruct the cartilage layer of interface. PMID:25019087
Ostholm, T; Ekström, P; Ebbesson, S O
1990-09-01
Neurons displaying FMRFamide(Phe - Met - Arg - Phe - NH2)-like immunoreactivity have recently been implicated in neural plasticity in salmon. We now extend these findings by describing the extent of the FMRF-like immunoreactive (FMRF-IR) system in the brain, retina and olfactory system of sockeye salmon parr using the indirect peroxidase anti-peroxidase technique. FMRF-IR perikarya were found in the periventricular hypothalamus, mesencephalic laminar nucleus, nucleus nervi terminalis and retina (presumed amacrine cells), and along the olfactory nerves. FMRF-IR fibers were distributed throughout the brain with highest densities in the ventral area of the telencephalon, in the medial forebrain bundle, and at the borders between layers III/IV and IV/V in the optic tectum. High densities of immunoreactive fibers were also observed in the area around the torus semicircularis, in the medial hypothalamus, median raphe, ventromedial tegmentum, and central gray. In the retina, immunopositive fibers were localized to the inner plexiform layer, but several fiber elements were also found in the outer plexiform layer. The olfactory system displayed FMRF-IR fibers in the epithelium and along the olfactory nerves. These findings differ from those reported in other species as follows: (i) FMRF-IR cells in the retina have not previously been reported in teleosts; (ii) the presence of FMRF-IR fibers in the outer plexiform layer of the retina is a new finding for any species; (iii) the occurrence of immunopositive cells in the mesencephalic laminar nucleus has to our knowledge not been demonstrated previously.
Van Moerkercke, Alex; Galván-Ampudia, Carlos S; Verdonk, Julian C; Haring, Michel A; Schuurink, Robert C
2012-05-01
In which cells of the flower volatile biosynthesis takes place is unclear. In rose and snapdragon, some enzymes of the volatile phenylpropanoid/benzenoid pathway have been shown to be present in the epidermal cells of petals. It is therefore generally believed that the production of these compounds occurs in these cells. However, whether the entire pathway is active in these cells and whether it is exclusively active in these cells remains to be proven. Cell-specific transcription factors activating these genes will determine in which cells they are expressed. In petunia, the transcription factor EMISSION OF BENZENOIDS II (EOBII) activates the ODORANT1 (ODO1) promoter and the promoter of the biosynthetic gene isoeugenol synthase (IGS). The regulator ODO1 in turn activates the promoter of the shikimate gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Here the identification of a new target gene of ODO1, encoding an ABC transporter localized on the plasma membrane, PhABCG1, which is co-expressed with ODO1, is described. PhABCG1 expression is up-regulated in petals overexpressing ODO1 through activation of the PhABCG1 promoter. Interestingly, the ODO1, PhABCG1, and IGS promoters were active in petunia protoplasts originating from both epidermal and mesophyll cell layers of the petal, suggesting that the volatile phenylpropanoid/benzenoid pathway in petunia is active in these different cell types. Since volatile release occurs from epidermal cells, trafficking of (volatile) compounds between cell layers must be involved, but the exact function of PhABCG1 remains to be resolved.
Luo, Liu; Chung, Sheng-Heng; Manthiram, Arumugam
2016-10-11
In this study, a trifunctional separator fabricated by using a light-weight layer-by-layer multi-walled carbon nanotubes/polyethylene glycol (MWCNT/PEG) coating has been explored in lithium–sulfur (Li–S) batteries. The conductive MWCNT/PEG coating serves as (i) an upper current collector for accelerating the electron transport and benefiting the electrochemical reaction kinetics of the cell, (ii) a net-like filter for blocking and intercepting the migrating polysulfides through a synergistic effect including physical and chemical interactions, and (iii) a layered barrier for inhibiting the continuous diffusion and alleviating the volume change of the trapped active material by introducing a “buffer zone” in between the coated layers.more » The multi-layered MWCNT/PEG coating allows the use of the conventional pure sulfur cathode with a high sulfur content (78 wt%) and high sulfur loading (up to 6.5 mg cm -2) to achieve a high initial discharge capacity of 1206 mA h g -1 at C/5 rate, retaining a superior capacity of 630 mA h g -1 after 300 cycles. Lastly, the MWCNT/PEG-coated separator optimized by the facile layer-by-layer coating method provides a promising and feasible option for advanced Li–S batteries with high energy density.« less
Distribution of leucocyte subsets in the canine respiratory tract.
Peeters, D; Day, M J; Farnir, F; Moore, P; Clercx, C
2005-05-01
Histochemistry and immunohistochemistry were used to characterize leucocyte subsets in the respiratory tract of 15 outbred dogs (five aged <6 months and 10 aged >1 year) that had no evidence of respiratory disease. No organized nose- or bronchus-associated lymphoid tissue was observed in any of the sections examined. IgA(+) plasma cells predominated in nasal mucosa and in all parts of the bronchial tree, with fewer IgG(+) and IgM(+) plasma cells. The numbers of IgA(+) and IgM(+) cells were significantly greater in the nasal mucosa than in any other part of the respiratory mucosa. There were significantly fewer IgA(+), IgG(+) and IgM(+) cells in all parts of the respiratory tract in the puppies than in the adults. The number and distribution of mast cells and cells expressing MHC class II, L1 or CD1c were recorded. Mast cells were mainly found in the subepithelial lamina propria of nasal and bronchial mucosa and in the alveolar interstitium, and cells expressing IgE had a similar distribution. Mast cells were also present within muscle layers of the bronchial tree. The numbers of mast cells and MHC class II(+) cells were significantly greater in the nasal mucosa than in any other part of the respiratory mucosa. In the nose, carina and primary and secondary bronchus, there were significantly more mast cells and MHC class II(+) cells in puppies than in adult dogs, whereas the numbers of L1(+) cells and CD1c(+) cells in most sites were significantly greater in older dogs. There were significantly more CD3(+) and CD8(+) cells in the nasal mucosa than in any part of the bronchial mucosa. In most parts of the respiratory mucosa, CD4(+), CD8(+) and TCR alphabeta(+) cells were present in significantly greater numbers in adults than in puppies. All parts of the respiratory tract had similar numbers of mucosal CD4(+) and CD8(+) T lymphocytes. TCR gammadelta(+) cells were absent or sparse in all samples. These data, obtained from dogs without respiratory disease, will enable comparisons to be made with dogs suffering from infectious or inflammatory nasal, bronchial and pulmonary diseases.
Emergence of order in visual system development.
Shatz, C J
1996-01-01
Neural connections in the adult central nervous system are highly precise. In the visual system, retinal ganglion cells send their axons to target neurons in the lateral geniculate nucleus (LGN) in such a way that axons originating from the two eyes terminate in adjacent but nonoverlapping eye-specific layers. During development, however, inputs from the two eyes are intermixed, and the adult pattern emerges gradually as axons from the two eyes sort out to form the layers. Experiments indicate that the sorting-out process, even though it occurs in utero in higher mammals and always before vision, requires retinal ganglion cell signaling; blocking retinal ganglion cell action potentials with tetrodotoxin prevents the formation of the layers. These action potentials are endogenously generated by the ganglion cells, which fire spontaneously and synchronously with each other, generating "waves" of activity that travel across the retina. Calcium imaging of the retina shows that the ganglion cells undergo correlated calcium bursting to generate the waves and that amacrine cells also participate in the correlated activity patterns. Physiological recordings from LGN neurons in vitro indicate that the quasiperiodic activity generated by the retinal ganglion cells is transmitted across the synapse between ganglion cells to drive target LGN neurons. These observations suggest that (i) a neural circuit within the immature retina is responsible for generating specific spatiotemporal patterns of neural activity; (ii) spontaneous activity generated in the retina is propagated across central synapses; and (iii) even before the photoreceptors are present, nerve cell function is essential for correct wiring of the visual system during early development. Since spontaneously generated activity is known to be present elsewhere in the developing CNS, this process of activity-dependent wiring could be used throughout the nervous system to help refine early sets of neural connections into their highly precise adult patterns. Images Fig. 1 Fig. 4 PMID:8570602
Structure, stability, and thermomechanical properties of Ca-substituted Pr2NiO4 + δ
NASA Astrophysics Data System (ADS)
Pikalova, E. Yu.; Medvedev, D. A.; Khasanov, A. F.
2017-04-01
Ca-substituted layered nickelates with a general Pr2- x Ca x NiO4 + δ composition ( x = 0-0.7, Δ x = 0.1) were prepared in the present work and their structural and physic-chemical properties were investigated in order to select the most optimal materials, which can be used as cathodes for solid oxide fuel cells. With an increase in Ca content in Pr2- x Ca x NiO4 + δ the following tendencies were observed: (i) a decrease in the concentration of nonstoichiometric oxygen (δ), (ii) a decrease in the unit cell parameters and volume, (iii) stabilization of the tetragonal structure, (iv) a decrease of the thermal expansion coefficients, and (v) enchancement of thermodynamic stability and compatibility with selected oxygen- and proton-conducting electrolytes. The Pr1.9Ca0.1NiO4 + δ material, having highest δ value, departs from the general "properties-composition" dependences ascertained. This indicates that oxygen non-stoichiometry has determining influence on the functional properties of layered nickelates.
Localization of the peroxisome proliferator-activated receptor in the brain.
Kainu, T; Wikström, A C; Gustafsson, J A; Pelto-Huikko, M
1994-12-20
This paper describes the localization of the alpha-type peroxisome proliferator-activated receptor (PPAR alpha) in the rat brain using immunocytochemistry and in situ hybridization. Expression of PPAR alpha mRNA was highest in the granular cells of the cerebellar cortex and in the dentate gyrus, with a somewhat lower expression in areas CA1-CA4 of the hippocampus. PPAR alpha mRNA was also found in some neurones of the cerebral cortex (layers II-IV) and the molecular layer of the cerebellar cortex, and in the olfactory tubercle. Immunocytochemistry revealed nuclear PPAR alpha-immunoreactivity (-IR) in the same areas as seen with the in situ hybridization. Furthermore, PPAR alpha-IR was also localized in oligodendrocytes, whereas the other glial cell types appeared to lack PPAR alpha. These results suggest that peroxisome proliferators and chemicals acting similarly have effects on discrete populations of neurones. The presence of PPAR alpha in oligodendrocytes lends further support to the suggestion that peroxisomes are important in the assembly and degradation of myelin.
Erra-Pujada, M; Debeire, P; Duchiron, F; O'Donohue, M J
1999-05-01
The gene encoding a hyperthermostable type II pullulanase produced by Thermococcus hydrothermalis (Th-Apu) has been isolated. Analysis of a total of 5.2 kb of genomic DNA has revealed the presence of three open reading frames, one of which (apuA) encodes the pullulanase. This enzyme is composed of 1,339 amino acid residues and exhibits a multidomain structure. In addition to a typical N-terminal signal peptide, Th-Apu possesses a catalytic domain, a domain bearing S-layer homology-like motifs, a Thr-rich region, and a potential C-terminal transmembrane domain. The presence of these noncatalytic domains suggests that Th-Apu may be anchored to the cell surface and be O glycosylated.
Erra-Pujada, Marta; Debeire, Philippe; Duchiron, Francis; O’Donohue, Michael J.
1999-01-01
The gene encoding a hyperthermostable type II pullulanase produced by Thermococcus hydrothermalis (Th-Apu) has been isolated. Analysis of a total of 5.2 kb of genomic DNA has revealed the presence of three open reading frames, one of which (apuA) encodes the pullulanase. This enzyme is composed of 1,339 amino acid residues and exhibits a multidomain structure. In addition to a typical N-terminal signal peptide, Th-Apu possesses a catalytic domain, a domain bearing S-layer homology-like motifs, a Thr-rich region, and a potential C-terminal transmembrane domain. The presence of these noncatalytic domains suggests that Th-Apu may be anchored to the cell surface and be O glycosylated. PMID:10322035
Tunable graphene-based hyperbolic metamaterial operating in SCLU telecom bands.
Janaszek, Bartosz; Tyszka-Zawadzka, Anna; Szczepański, Paweł
2016-10-17
The tunability of graphene-based hyperbolic metamaterial structure operating in SCLU telecom bands is investigated. For the first time it has been shown that for the proper design of a graphene/dielectric multilayer stack, the HMM Type I, Epsilon-Near-Zero and Type II regimes are possible by changing the biasing potential. Numerical results reveal the effect of structure parameters such as the thickness of the dielectric layer as well as a number of graphene sheets in a unit cell (i.e., dielectric/graphene bilayer) on the tunability range and shape of the dispersion characteristics (i.e., Type I/ENZ/Type II) in SCLU telecom bands. This kind of materials could offer a technological platform for novel devices having various applications in optical communications technology.
Albro, Phillip W.; Huston, Charles K.
1964-01-01
Albro, Phillip W. (Ft. Detrick, Frederick, Md.), and Charles K. Huston. Lipids of Sarcina lutea. II. Hydrocarbon content of the lipid extracts. J. Bacteriol. 88:981–986. 1964.—The hydrocarbon fraction from Sarcina lutea lipid extracts was characterized by a combination of thin-layer and gas-liquid chromatography and infrared spectroscopy. A total of 37 components were observed by gas-liquid chromatography of this material. A breakdown of the components into classes indicated a composition consisting of 88.9% n-saturates, 1.2% monoenes, 2.1% dienes, 5.0% trienes, and 0.6% branched-saturates. Less than 0.1% of the hydrocarbon material was aromatic. No attempt was made in this study to relate the composition to either origin or function in the cell. PMID:14222808
Coble, Adam P; Cavaleri, Molly A
2017-10-01
A key trait used in canopy and ecosystem function modeling, leaf mass per area (LMA), is influenced by changes in both leaf thickness and leaf density (LMA = Thickness × Density). In tall trees, LMA is understood to increase with height through two primary mechanisms: (i) increasing palisade layer thickness (and thus leaf thickness) in response to light and/or (ii) reduced cell expansion and intercellular air space in response to hydrostatic constraints, leading to increased leaf density. Our objective was to investigate within-canopy gradients in leaf anatomical traits in order to understand environmental factors that influence leaf morphology in a sugar maple (Acer saccharum Marshall) forest canopy. We teased apart the effects of light and height on anatomical traits by sampling at exposed and closed canopies that had different light conditions at similar heights. As expected, palisade layer thickness responded strongly to cumulative light exposure. Mesophyll porosity, however, was weakly and negatively correlated with light and height (i.e., hydrostatic gradients). Reduced mesophyll porosity was not likely caused by limitations on cell expansion; in fact, epidermal cell width increased with height. Palisade layer thickness was better related to LMA, leaf density and leaf thickness than was mesophyll porosity. Vein diameter and fraction of vascular tissue also increased with height and LMA, density and thickness, revealing that greater investment in vascular and support tissue may be a third mechanism for increased LMA with height. Overall, decreasing mesophyll porosity with height was likely due to palisade cells expanding into the available air space and also greater investments in vascular and support tissue, rather than a reduction of cell expansion due to hydrostatic constraints. Our results provide evidence that light influences both palisade layer thickness and mesophyll porosity and indicate that hydrostatic gradients influence leaf vascular and support tissues in mature Acer saccharum trees. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Retinal and anterior eye compartments derive from a common progenitor pool in the avian optic cup
Venters, Sara J.; Cuenca, Paulina D.
2011-01-01
Purpose The optic cup is created through invagination of the optic vesicle. The morphogenetic rearrangement creates a double-layered cup, with a hinge (the Optic Cup Lip) where the epithelium bends back upon itself. Shortly after the optic cup forms, it is thought to be sub-divided into separate lineages: i) pigmented epithelium in the outer layer; ii) presumptive iris and ciliary body at the most anterior aspect of the inner layer; and iii) presumptive neural retina in the remainder of the inner layer. We test the native developmental potential of the anterior cup to determine if it normally contributes to the retina. Methods Vital dye and green fluorescent protein (GFP) expressing replication-incompetent retroviral vectors were used to label cells in the nascent optic cup and follow their direct progeny throughout development. Label was applied to either the optic cup lip (n=40), or to the domain just posterior to the lip (n=20). Retroviral labeling is a permanent lineage marker and enabled the analysis of advanced stages of development. Results Labeling within the optic cup gave rise to labeled progeny in the posterior optic cup that differentiated as neural retina (20 of 20). In contrast, labeling cells in the optic cup lip gave rise to progeny of labeled cells arrayed in a linear progression, from the lip into the neural retina (36 of 40). Label was retained in cells at the optic cup lip, regardless of age at examination. In older embryos, labeled progeny delaminated from the optic cup lip to differentiate as muscle of the pupillary margin. Conclusions The data show that the cells at the optic cup lip are a common progenitor population for pigmented epithelium, anterior eye tissues (ciliary body, iris, and pupillary muscle) and retinal neurons. The findings are supportive of an interpretation where the optic cup lip is a specialized niche containing a multipotent progenitor population. PMID:22219630
Tian, Xinlong; Adzic, Radoslav R.; Luo, Junming; ...
2016-02-10
Here, the main challenges to the commercial viability of polymer electrolyte membrane fuel cells are (i) the high cost associated with using large amounts of Pt in fuel cell cathodes to compensate for the sluggish kinetics of the oxygen reduction reaction, (ii) catalyst degradation, and (iii) carbon-support corrosion. To address these obstacles, our group has focused on robust, carbon-free transition metal nitride materials with low Pt content that exhibit tunable physical and catalytic properties. Here, we report on the high performance of a novel catalyst with low Pt content, prepared by placing several layers of Pt atoms on nanoparticles ofmore » titanium nickel binary nitride. For the ORR, the catalyst exhibited a more than 400% and 200% increase in mass activity and specific activity, respectively, compared with the commercial Pt/C catalyst. It also showed excellent stability/durability, experiencing only a slight performance loss after 10,000 potential cycles, while TEM results showed its structure had remained intact. The catalyst’s outstanding performance may have resulted from the ultrahigh dispersion of Pt (several atomic layers coated on the nitride nanoparticles), and the excellent stability/durability may have been due to the good stability of nitride and synergetic effects between ultrathin Pt layer and the robust TiNiN support.« less
NASA Astrophysics Data System (ADS)
Roy Chowdhury, Prabudhya; Vikram, Ajit; Phillips, Ryan K.; Hoorfar, Mina
2016-07-01
The gas diffusion layer (GDL) is a thin porous layer sandwiched between a bipolar plate (BPP) and a catalyst coated membrane in a fuel cell. Besides providing passage for water and gas transport from and to the catalyst layer, it is responsible for electron and heat transfer from and to the BPP. In this paper, a method has been developed to measure the GDL bulk thermal conductivity and the contact resistance at the GDL/BPP interface under inhomogeneous compression occurring in an actual fuel cell assembly. Toray carbon paper GDL TGP-H-060 was tested under a range of compression pressure of 0.34 to 1.71 MPa. The results showed that the thermal contact resistance decreases non-linearly (from 3.8 × 10-4 to 1.17 × 10-4 Km2 W-1) with increasing pressure due to increase in microscopic contact area between the GDL and BPP; while the effective bulk thermal conductivity increases (from 0.56 to 1.42 Wm-1 K-1) with increasing the compression pressure. The thermal contact resistance was found to be greater (by a factor of 1.6-2.8) than the effective bulk thermal resistance for all compression pressure ranges applied here. This measurement technique can be used to identify optimum GDL based on minimum bulk and contact resistances measured under inhomogeneous compression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Compaan, A. D.; Deng, X.; Bohn, R. G.
2003-10-01
This is the final report covering about 42 months of this subcontract for research on high-efficiency CdTe-based thin-film solar cells and on high-efficiency a-Si-based thin-film solar cells. Phases I and II have been extensively covered in two Annual Reports. For this Final Report, highlights of the first two Phases will be provided and then detail will be given on the last year and a half of Phase III. The effort on CdTe-based materials is led by Prof. Compaan and emphasizes the use of sputter deposition of the semiconductor layers in the fabrication of CdS/CdTe cells. The effort on high-efficiency a-Simore » materials is led by Prof. Deng and emphasizes plasma-enhanced chemical vapor deposition for cell fabrication with major efforts on triple-junction devices.« less
Analysis of the interaction of an electron beam with a solar cell. I. II
NASA Technical Reports Server (NTRS)
Von Roos, O.
1978-01-01
The short-circuit current generated by the electron beam of a scanning electron microscope when it impinges on the N-P junction of a solar cell is known to be dependent on the configuration used to investigate the cell's response, and the situation for one specific configuration is analyzed. This configuration is the case in which the highly collimated electron beam strikes the edge of a planar junction a variable distance away from the edge of the depletion layer. An earlier treatment is generalized to encompass the ohmic contact at the back surface. The analysis employing Fourier and Wiener-Hopf techniques shows that it is impractical to determine the bulk diffusion length of a solar cell by a SEM used in the studied configuration unless the ohmic contact is partially removed.
Thin film heterojunction photovoltaic cells and methods of making the same
Basol, Bulent M.; Tseng, Eric S.; Rod, Robert L.
1983-06-14
A method of fabricating a thin film heterojunction photovoltaic cell which comprises depositing a film of a near intrinsic or n-type semiconductor compound formed of at least one of the metal elements of Class II B of the Periodic Table of Elements and at least tellurium and then heating said film at a temperature between about 250.degree. C. and 500.degree. C. for a time sufficient to convert said film to a suitably low resistivity p-type semiconductor compound. Such film may be deposited initially on the surface of an n-type semiconductor substrate. Alternatively, there may be deposited on the converted film a layer of n-type semiconductor compound different from the film semiconductor compound. The resulting photovoltaic cell exhibits a substantially increased power output over similar cells not subjected to the method of the present invention.
[Alterations in tears aqueous layer during cytostatics treatment].
Wojciechowska, Katarzyna; Wieckowska-Szakiel, Marzena; Rózalska, Barbara; Jurowski, Piotr
2013-01-01
The aim of the study was to evaluate tears secretion, pH and lysozyme activity in tears aqueous layer during chemotherapy in lung, breast and bowel cancer. 36 patients were enrolled to the study. Depending on the type of cancer and type of chemotherapy patients were divided into three groups. Group I (12 patients) diagnosed with non-small-cell lung cancer treated with PE schema (cisplatin, etoposide), Group II (12 patients) with breast cancer treated with FAC schema (fluorouracil, doxorubicin, cyclophosphamide), Group III (12 patients) with bowel cancer treated with FU/LV schema (fluorouracil, leucovorin). In all the patients: Schirmer's I test, pH measurements and lysozyme test were performed. Patients were examined before chemotherapy, after 2nd, 4th, 6th cycle. In group I and II lowering of tears secretion (p < 0.001) was revealed. In group III there was higher tears secretion (p < 0.001). PH was lowered after 2nd chemotherapy course in group I and II. In further treatment pH value were in the same lower level as after the second course. In group III there was higher pH--more alkaline (p < 0.001) after 2nd cycle of treatment and it was on the same level to the end of the examination process. Lowering of lysozyme activity in the tears film in all groups (p < 0.001) was established. The higher alterations of the lysozyme activity were observed in group treated with FAC schema. Cytostatic treatment has major influence on tears aqueous layer causing alterations of tears secretions. PH alterations depending on type of chemotherapy was observed. Lowering of lysozyme activity in tears was observed. All the deteriorations aggravate with duration of chemotherapy. Alterations of tears film parameters during chemotherapy may influence upon eye surface homeostasis and infectious complication. tears aqueous layer, Schirmer's test, lysozyme activity, tears pH.
Uptake and transport of B12-conjugated nanoparticles in airway epithelium☆
Fowler, Robyn; Vllasaliu, Driton; Falcone, Franco H.; Garnett, Martin; Smith, Bryan; Horsley, Helen; Alexander, Cameron; Stolnik, Snow
2013-01-01
Non-invasive delivery of biotherapeutics, as an attractive alternative to injections, could potentially be achieved through the mucosal surfaces, utilizing nanoscale therapeutic carriers. However, nanoparticles do not readily cross the mucosal barriers, with the epithelium presenting a major barrier to their translocation. The transcytotic pathway of vitamin B12 has previously been shown to ‘ferry’ B12-decorated nanoparticles across intestinal epithelial (Caco-2) cells. However, such studies have not been reported for the airway epithelium. Furthermore, the presence in the airways of the cell machinery responsible for transepithelial trafficking of B12 is not widely reported. Using a combination of molecular biology and immunostaining techniques, our work demonstrates that the bronchial cell line, Calu-3, expresses the B12-intrinsic factor receptor, the transcobalamin II receptor and the transcobalamin II carrier protein. Importantly, the work showed that sub-200 nm model nanoparticles chemically conjugated to B12 were internalised and transported across the Calu-3 cell layers, with B12 conjugation not only enhancing cell uptake and transepithelial transport, but also influencing intracellular trafficking. Our work therefore demonstrates that the B12 endocytotic apparatus is not only present in this airway model, but also transports ligand-conjugated nanoparticles across polarised epithelial cells, indicating potential for B12-mediated delivery of nanoscale carriers of biotherapeutics across the airways. PMID:24008152
AN ADENYLYL CYCLASE SIGNALING PATHWAY PREDICTS DIRECT DOPAMINERGIC INPUT TO VESTIBULAR HAIR CELLS
DRESCHER, M. J.; CHO, W. J.; FOLBE, A. J.; SELVAKUMAR, D.; KEWSON, D. T.; ABU-HAMDAN, M. D.; OH, C. K.; RAMAKRISHNAN, N. A.; HATFIELD, J. S.; KHAN, K. M.; ANNE, S.; HARPOOL, E. C.; DRESCHER, D. G.
2010-01-01
Adenylyl cyclase signaling pathways have been identified in a model hair cell preparation from the trout saccule, for which the hair cell is the only intact cell type. The use of degenerate primers targeting cDNA sequence conserved across adenylyl cyclase (AC) isoforms, and RT-PCR, coupled with cloning of amplification products, indicated expression of AC9, AC7 and AC5/6, with cloning efficiencies of 11:5:2. AC9 and AC5/6 are inhibited by Ca2+, the former in conjunction with calcineurin, and message for calcineurin has also been identified in the trout saccular hair cell layer. AC7 is independent of Ca2+. Given the lack of detection of calcium/calmodulin-activated isoforms previously suggested to mediate adenylyl cyclase activation in the absence of Gαs in mammalian cochlear hair cells, the issue of hair-cell Gαs mRNA expression was re-examined in the teleost vestibular hair cell model. Two full-length coding sequences were obtained for Gαs/olf in the vestibular type II-like hair cells of the trout saccule. Two messages for Gαi have also been detected in the hair cell layer, one with homology to Gαi1 and the second with homology to Gαi3 of higher vertebrates. Both Gαs/olf protein and Gαi1/Gαi3 protein were immunolocalized to stereocilia and to the base of the hair cell, the latter consistent with sites of efferent input. While a signaling event coupling to Gαs/olf and Gαi1/Gαi3 in the stereocilia is currently unknown, signaling with Gαs/olf, Gαi3, and AC5/6 at the base of the hair cell would be consistent with transduction pathways activated by dopaminergic efferent input. mRNA for dopamine receptors D1A4 and five forms of dopamine D2 were found to be expressed in the teleost saccular hair cell layer, representing information on vestibular hair cell expression not directly available for higher vertebrates. Dopamine D1A receptor would couple to Gαolf and activation of AC5/6. Co-expression with dopamine D2 receptor, which itself couples to Gαi3 and AC5/6, will down-modulate levels of cAMP, thus fine-tuning and gradating the hair-cell response to dopamine D1A. As predicted by the trout saccular hair cell model, evidence has been obtained for the first time that hair cells of mammalian otolithic vestibular end organs (rat/mouse saccule/utricle) express dopamine D1A and D2L receptors, and each receptor co-localizes with AC5/6, with a marked presence of all three proteins in subcuticular regions of type I vestibular hair cells. A putative efferent, presynaptic source of dopamine was identified in tyrosine hydroxylase-positive nerve fibers which passed from underlying connective tissue to the sensory epithelia, ending on type I and type II vestibular hair cells and on afferent calyces. PMID:20883745
An adenylyl cyclase signaling pathway predicts direct dopaminergic input to vestibular hair cells.
Drescher, M J; Cho, W J; Folbe, A J; Selvakumar, D; Kewson, D T; Abu-Hamdan, M D; Oh, C K; Ramakrishnan, N A; Hatfield, J S; Khan, K M; Anne, S; Harpool, E C; Drescher, D G
2010-12-29
Adenylyl cyclase (AC) signaling pathways have been identified in a model hair cell preparation from the trout saccule, for which the hair cell is the only intact cell type. The use of degenerate primers targeting cDNA sequence conserved across AC isoforms, and reverse transcription-polymerase chain reaction (RT-PCR), coupled with cloning of amplification products, indicated expression of AC9, AC7 and AC5/6, with cloning efficiencies of 11:5:2. AC9 and AC5/6 are inhibited by Ca(2+), the former in conjunction with calcineurin, and message for calcineurin has also been identified in the trout saccular hair cell layer. AC7 is independent of Ca(2+). Given the lack of detection of calcium/calmodulin-activated isoforms previously suggested to mediate AC activation in the absence of Gαs in mammalian cochlear hair cells, the issue of hair-cell Gαs mRNA expression was re-examined in the teleost vestibular hair cell model. Two full-length coding sequences were obtained for Gαs/olf in the vestibular type II-like hair cells of the trout saccule. Two messages for Gαi have also been detected in the hair cell layer, one with homology to Gαi1 and the second with homology to Gαi3 of higher vertebrates. Both Gαs/olf protein and Gαi1/Gαi3 protein were immunolocalized to stereocilia and to the base of the hair cell, the latter consistent with sites of efferent input. Although a signaling event coupling to Gαs/olf and Gαi1/Gαi3 in the stereocilia is currently unknown, signaling with Gαs/olf, Gαi3, and AC5/6 at the base of the hair cell would be consistent with transduction pathways activated by dopaminergic efferent input. mRNA for dopamine receptors D1A4 and five forms of dopamine D2 were found to be expressed in the teleost saccular hair cell layer, representing information on vestibular hair cell expression not directly available for higher vertebrates. Dopamine D1A receptor would couple to Gαolf and activation of AC5/6. Co-expression with dopamine D2 receptor, which itself couples to Gαi3 and AC5/6, will down-modulate levels of cAMP, thus fine-tuning and gradating the hair-cell response to dopamine D1A. As predicted by the trout saccular hair cell model, evidence has been obtained for the first time that hair cells of mammalian otolithic vestibular end organs (rat/mouse saccule/utricle) express dopamine D1A and D2L receptors, and each receptor co-localizes with AC5/6, with a marked presence of all three proteins in subcuticular regions of type I vestibular hair cells. A putative efferent, presynaptic source of dopamine was identified in tyrosine hydroxylase-positive nerve fibers which passed from underlying connective tissue to the sensory epithelia, ending on type I and type II vestibular hair cells and on afferent calyces. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Stanis, Ronald J.; Lambert, Timothy N.
2016-12-06
An apparatus of an aspect includes a fuel cell catalyst layer. The fuel cell catalyst layer is operable to catalyze a reaction involving a fuel reactant. A fuel cell gas diffusion layer is coupled with the fuel cell catalyst layer. The fuel cell gas diffusion layer includes a porous electrically conductive material. The porous electrically conductive material is operable to allow the fuel reactant to transfer through the fuel cell gas diffusion layer to reach the fuel cell catalyst layer. The porous electrically conductive material is also operable to conduct electrons associated with the reaction through the fuel cell gas diffusion layer. An electrically conductive polymer material is coupled with the fuel cell gas diffusion layer. The electrically conductive polymer material is operable to limit transfer of the fuel reactant to the fuel cell catalyst layer.
Immunolocalization of tripeptidyl peptidase II, a cholecystokinin-inactivating enzyme, in rat brain.
Facchinetti, P; Rose, C; Rostaing, P; Triller, A; Schwartz, J C
1999-01-01
Tripeptidyl peptidase II (EC 3.4.14.10) is a serine peptidase apparently involved in the inactivation of cholecystokinin octapeptide [Rose C. et al. (1996) Nature 380, 403-409]. We have compared its distribution with that of cholecystokinin in rat brain, using a polyclonal antibody raised against a highly purified preparation for immunohistochemistry at the photon and electron microscope levels. Tripeptidyl peptidase II-like immunoreactivity was mostly detected in neurons, and also in ependymal cells and choroid plexuses, localizations consistent with a possible participation of the peptidase in the inactivation of cholecystokinin circulating in the cerebrospinal fluid. Immunoreactivity was mostly detected in cell bodies, large processes and, to a lesser extent, axons of various neuronal populations. Their localization, relative to that of cholecystokinin terminals, appears to define three distinct situations. The first corresponds to neurons with high immunoreactivity in areas containing cholecystokinin terminals, as in the cerebral cortex or hippocampal formation, where pyramidal cell bodies and processes surrounded by cholecystokinin axons were immunoreactive. A similar situation was encountered in many other areas, namely along the pathways through which cholecystokinin controls satiety, i.e. in sensory vagal neurons, the nucleus tractus solitarius and hypothalamic nuclei. The second situation corresponds to cholecystokinin neuronal populations containing tripeptidyl peptidase II-like immunoreactivity, as in neurons of the supraoptic or paraventricular nuclei, axons in the median eminence or nigral neurons. In both situations, localization of tripeptidyl peptidase II-like immunoreactivity is consistent with a role in cholecystokinin inactivation. The third situation corresponds to areas with mismatches, such as the cerebellum, a region devoid of cholecystokinin, but in which Purkinje cells displayed high tripeptidyl peptidase II-like immunoreactivity, possibly related to a role in the inactivation of neuropeptides other than cholecystokinin. Also, some areas with cholecystokinin terminals, e.g., the molecular layer of the cerebral cortex, were devoid of tripeptidyl peptidase II-like immunoreactivity, suggesting that processes other than cleavage by tripeptidyl peptidase II may be involved in cholecystokinin inactivation. Tripeptidyl peptidase II-like immunoreactivity was also detected at the ultrastructural level in the cerebral cortex and hypothalamus using either immunoperoxidase or silver-enhanced immunogold detection. It was mainly associated with the cytoplasm of neuronal somata and dendrites, often in the vicinity of reticulum cisternae, Golgi apparatus or vesicles, and with the inner side of the dendritic plasma membrane. Hence, whereas a fraction of tripeptidyl peptidase II-like immunoreactivity localization at the cellular level is consistent with its alleged function in cholecystokinin octapeptide inactivation, its association with the outside plasma membrane of neurons remains to be confirmed.
Sen, Rupam; Bhunia, Susmita; Mal, Dasarath; Koner, Subratanath; Miyashita, Yoshitaro; Okamoto, Ken-Ichi
2009-12-01
Layered metal carboxylates [M(malonato)(H(2)O)(2)](n) (M = Ni(II) and Mn(II)) that have a claylike structure have been synthesized hydrothermally and characterized. The interlayer separation in these layered carboxylates is comparable to that of the intercalation distance of the naturally occurring clay materials or layered double hydroxides (LDHs). In this study, we have demonstrated that, instead of intercalating the metal complex into layers of the clay or LDH, layered transition metal carboxylates, [M(malonato)(H(2)O)(2)](n), as such can be used as a recyclable heterogeneous catalyst in olefin epoxidation reaction. Metal carboxylates [M(malonato)(H(2)O)(2)](n) exhibit excellent catalytic performance in olefin epoxidation reaction.
Icardo, José M; Colvee, Elvira; Cerra, Maria C; Tota, Bruno
2002-12-01
Sturgeons constitute a family of living "fossil" fish whose heart is related to that of other ancient fish and the elasmobranches. We have undertaken a systematic study of the structure of the sturgeon heart aimed at unraveling the relationship between the heart structure and the adaptive evolutionary changes. In a related paper, data were presented on the conus valves and the subendocardium. Here, the structure of the conus myocardium, the subepicardial tissue, and the conus-aorta transition were studied by conventional light, transmission, and scanning electron microscopy. In addition, actin localization by fluorescent phalloidin was used. The conus myocardium is organized into bundles whose spatial organization changes along the conus length. The variable orientation of the myocardial cell bundles may be effective in emptying the conus lumen during contraction and in preventing reflux of blood. Myocardial cell bundles are separated by loose connective tissue that contains collagen and elastin fibers, vessels, and extremely flat cells separating the cell bundles and enclosing blood vessels and collagen fibers. The ultrastructure of the myocardial cells was found to be very similar to that of other fish groups, suggesting that it is largely conservative. The subepicardium is characterized by the presence of nodular structures that contain lympho-hemopoietic (thymus-like) tissue in the young sturgeons and a large number of lymphocytes after the sturgeons reach sexual maturity. This tissue is likely implicated in the establishment and maintenance of the immune responses. The intrapericardial ventral aorta shows a middle layer of circumferentially oriented cells and internal and external layers with cells oriented longitudinally. Elastin fibers completely surround each smooth muscle cell, and the spaces between the different layers are occupied by randomly arranged collagen bundles. The intrapericardial segment of the ventral aorta is a true transitional segment whose structural characteristics are different from those of both the conus subendocardium and the rest of the ventral aorta. Copyright 2002 Wiley-Liss, Inc.
The role of S(II) and Pb(II) in xanthate flotation of smithsonite: Surface properties and mechanism
NASA Astrophysics Data System (ADS)
Jia, Kai; Feng, Qiming; Zhang, Guofan; Ji, Wanying; Zhang, Wukai; Yang, Bingqian
2018-06-01
Smithsonite is a readily dissolvable carbonate mineral that is naturally hydrophilic, making recovery of this ore by flotation difficult. The flotation results showed that conditioning with only sodium sulfide (Na2S) did not successfully allow the smithsonite samples to float, whereas treatment with a combination of S(II), Pb(II) and xanthate (with Na2S as the sulfurizing reagent, lead ions (Pb(II)) as the activator, and xanthate as the collector) improved the flotation of smithsonite, achieving a mass recovery of 95.8%. A combination of analytical techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), in conjunction with depth profiling, was used to investigate the chemical nature of the sulfur and lead species on the smithsonite surface. For S(II)-conditioned smithsonite, a layer of ZnS formed on the smithsonite (ZnCO3) substrates; this newly formed ZnS coating was amorphous or poorly crystallized. For smithsonite samples conditioned with S(II) and Pb(II), the microstructures and the phase constituents, obtained by AFM and XRD analyses, confirmed the formation of the PbS species with a cubic galena structure on the surface. XPS depth profiling showed that the PbS layer was 18-nm thick, which corresponds to 30 PbS molecular layers. This study presents direct evidence that the coating of the activation product, PbS, on the smithsonite surface was similar to a relatively thick galena layer, which led to successful flotation.
Menzel, L P; Tondo, C; Stein, B; Bigger, C H
2015-04-01
The octocoral Swiftia exserta has been utilized extensively in our laboratory to study innate immune reactions in Cnidaria such as wound healing, auto- and allo-graft reactions, and for some classical "foreign body" phagocytosis experiments. All of these reactions occur in the coenenchyme of the animal, the colonial tissue surrounding the axial skeleton in which the polyps are embedded, and do not rely on nematocysts or directly involve the polyps. In order to better understand some of the cellular reactions occurring in the coenenchyme, the present study employed several cytochemical methods (periodic acid-Schiff reaction, Mallory's aniline blue collagen stain, and Gomori's trichrome stain) and correlated the observed structures with electron microscopy (both scanning and transmission). Eight types of cells were apparent in the coenenchyme of S. exserta, exclusive of gastrodermal tissue: (i) epithelial ectoderm cells, (ii) oblong granular cells, (iii) granular amoebocytes, (iv) morula-like cells, (v) mesogleal cells, (vi) sclerocytes, (vii) axial epithelial cells, and (viii) cnidocytes with mostly atrichous isorhiza nematocysts. Several novel organizational features are now apparent from transmission electron micrographs: the ectoderm consists of a single layer of flat epithelial cells, the cell types of the mesoglea extend from beneath the thin ectoderm throughout the mesogleal cell cords, the organization of the solenia gastroderm consists of a single layer of cells, and two nematocyst types have been found. A new interpretation of the cellular architecture of S. exserta, and more broadly, octocoral biology is now possible. Copyright © 2014 Elsevier GmbH. All rights reserved.
Menzel, L.P.; Tondo, C.; Stein, B.; Bigger, C.H.
2015-01-01
The octocoral Swiftia exserta has been utilized extensively in our laboratory to study innate immune reactions in Cnidaria such as wound healing, auto- and allo-graft reactions, and for some classical “foreign body” phagocytosis experiments. All of these reactions occur in the coenenchyme of the animal, the colonial tissue surrounding the axial skeleton in which the polyps are embedded, and do not rely on nematocysts or directly involve the polyps. In order to better understand some of the cellular reactions occurring in the coenenchyme, the present study employed several cytochemical methods (periodic acid–Schiff reaction, Mallory’s aniline blue collagen stain, and Gomori’s trichrome stain) and correlated the observed structures with electron microscopy (both scanning and transmission). Eight types of cells were apparent in the coenenchyme of S. exserta, exclusive of gastrodermal tissue: (i) epithelial ectoderm cells, (ii) oblong granular cells, (iii) granular amoebocytes, (iv) morula-like cells, (v) mesogleal cells, (vi) sclerocytes, (vii) axial epithelial cells, and (viii) cnidocytes with mostly atrichous isorhiza nematocysts. Several novel organizational features are now apparent from transmission electron micrographs: the ectoderm consists of a single layer of flat epithelial cells, the cell types of the mesoglea extend from beneath the thin ectoderm throughout the mesogleal cell cords, the organization of the solenia gastroderm consists of a single layer of cells, and two nematocyst types have been found. A new interpretation of the cellular architecture of S. exserta, and more broadly, octocoral biology is now possible. PMID:25596959
Heating mechanism(s) for transition layers in giants
NASA Technical Reports Server (NTRS)
Bohm-Vitense, Erika; Mena-Werth, Jose
1991-01-01
The emission-line fluxes of lines originating in the lower parts of the transition layers between stellar chromospheres and coronas are studied. Simon and Drake (1989) suspect different heating mechanisms for 'hot' and cool stars. Changes in the flux ratios for the C IV to C II emission lines support this suspicion. Large C IV/C II line flux ratios appear to be indicative of magnetically controlled heating. A correlation between excess continuum flux around 1950 A and C II emission-line fluxes are confirmed for the cooler giants (late F and cooler). Excess continuum flux correlates positively with large C IV/C II line flux ratio. The excess continuum flux corresponds to an increase in temperature by several hundred degrees in layers with a mean optical depth of about 0.03. For chromospherically active stars these layers experience a mechanical flux deposition of the order of 1 percent of the total radiative flux. This flux is tentatively identified as an MHD wave flux similar to Alfven waves.
Molecular dynamics growth modeling of InAs1-xSbx-based type-II superlattice
NASA Astrophysics Data System (ADS)
Ciani, Anthony J.; Grein, Christoph H.; Irick, Barry; Miao, Maosheng; Kioussis, Nicholas
2017-09-01
Type-II strained-layer superlattices (T2SL) based on InAs1-xSbx are a promising photovoltaic detector material technology for thermal imaging; however, Shockley-Read-Hall recombination and generation rates are still too high for thermal imagers based on InAs1-xSbx T2SL to reach their ideal performance. Molecular dynamics simulations using the Stillinger-Weber (SW) empirical potentials are a useful tool to study the growth of tetrahedral coordinated crystals and the nonequilibrium formation of defects within them, including the long-range effects of strain. SW potentials for the possible atomic interactions among {Ga, In, As, Sb} were developed by fitting to ab initio calculations of elastically distorted zinc blende and diamond unit cells. The SW potentials were tested against experimental observations of molecular beam epitaxial (MBE) growth and then used to simulate the MBE growth of InAs/InAs0.5Sb0.5 T2SL on GaSb substrates over a range of processes parameters. The simulations showed and helped to explain Sb cross-incorporation into the InAs T2SL layers, Sb segregation within the InAsSb layers, and identified medium-range defect clusters involving interstitials and their induction of interstitial-vacancy pairs. Defect formation was also found to be affected by growth temperature and flux stoichiometry.
Aguayo, Felipe I; Pacheco, Aníbal A; García-Rojo, Gonzalo J; Pizarro-Bauerle, Javier A; Doberti, Ana V; Tejos, Macarena; García-Pérez, María A; Rojas, Paulina S; Fiedler, Jenny L
2018-05-16
A single stress exposure facilitates memory formation through neuroplastic processes that reshape excitatory synapses in the hippocampus, probably requiring changes in extracellular matrix components. We tested the hypothesis that matrix metalloproteinase 9 (MMP-9), an enzyme that degrades components of extracellular matrix and synaptic proteins such as β-dystroglycan (β-DG 43 ), changes their activity and distribution in rat hippocampus during the acute stress response. After 2.5 h of restraint stress, we found (i) increased MMP-9 levels and potential activity in whole hippocampal extracts, accompanied by β-DG 43 cleavage, and (ii) a significant enhancement of MMP-9 immunoreactivity in dendritic fields such as stratum radiatum and the molecular layer of hippocampus. After 24 h of stress, we found that (i) MMP-9 net activity rises at somatic field, i.e., stratum pyramidale and granule cell layers, and also at synaptic field, mainly stratum radiatum and the molecular layer of hippocampus, and (ii) hippocampal synaptoneurosome fractions are enriched with MMP-9, without variation of its potential enzymatic activity, in accordance with the constant level of cleaved β-DG 43 . These findings indicate that stress triggers a peculiar timing response in the MMP-9 levels, net activity, and subcellular distribution in the hippocampus, suggesting its involvement in the processing of substrates during the stress response.
Human cartilage tissue fabrication using three-dimensional inkjet printing technology.
Cui, Xiaofeng; Gao, Guifang; Yonezawa, Tomo; Dai, Guohao
2014-06-10
Bioprinting, which is based on thermal inkjet printing, is one of the most attractive enabling technologies in the field of tissue engineering and regenerative medicine. With digital control cells, scaffolds, and growth factors can be precisely deposited to the desired two-dimensional (2D) and three-dimensional (3D) locations rapidly. Therefore, this technology is an ideal approach to fabricate tissues mimicking their native anatomic structures. In order to engineer cartilage with native zonal organization, extracellular matrix composition (ECM), and mechanical properties, we developed a bioprinting platform using a commercial inkjet printer with simultaneous photopolymerization capable for 3D cartilage tissue engineering. Human chondrocytes suspended in poly(ethylene glycol) diacrylate (PEGDA) were printed for 3D neocartilage construction via layer-by-layer assembly. The printed cells were fixed at their original deposited positions, supported by the surrounding scaffold in simultaneous photopolymerization. The mechanical properties of the printed tissue were similar to the native cartilage. Compared to conventional tissue fabrication, which requires longer UV exposure, the viability of the printed cells with simultaneous photopolymerization was significantly higher. Printed neocartilage demonstrated excellent glycosaminoglycan (GAG) and collagen type II production, which was consistent with gene expression. Therefore, this platform is ideal for accurate cell distribution and arrangement for anatomic tissue engineering.
Takeda, Takahiro; Uchihara, Toshiki; Arai, Nobutaka; Mizutani, Toshio; Iwata, Makoto
2009-01-01
The hippocampal involvement in amyotrophic lateral sclerosis (ALS) patients has been known for more than a decade, however, its relationship to clinical manifestations including memory deficits and topographical differentiation from Alzheimer disease (AD) remain unclear. In order to clarify the anatomopathological features in the hippocampus and their relevance to disease-specific memory deficits in ALS patients, topography and cytopathology of the hippocampal lesions along the perforant pathway were quantitatively and semiquantitatively surveyed in 14 ALS patients with extramotor involvement. These pathological findings were compared with clinical characteristics assessed from their clinical records. Cytoplasmic inclusions initially appear in the granular cells of the dentate gyrus (DG) and superficial small neurons of the transentorhinal cortex (TEC) with mild subicular degeneration (stage I: inclusion stage). Subsequent gliosis and neuronal loss of the TEC, concomitant with presynaptic degeneration of the outer molecular layer of the DG, suggests an extension of the degeneration through the perforant pathway (stage II: early perforant stage). In a more advanced stage, the presynaptic degeneration is more evident with moderate to severe neuronal loss in the TEC (stage III: advanced perforant stage). This advanced stage was associated with episodic memory deficits mimicking AD in some ALS patients. This ALS pathology initiated by cytoplasmic inclusions and neuronal loss in layer II-III of the TEC is different from neurofibrillary tangles of AD, dominant in layer II-III of the entorhinal cortex. Because this involvement of the TEC-molecular DG projection and subiculum is specific to ALS, it will provide a basis for clinical characterization of memory deficits of ALS, which could be distinct from those of AD.
Photovoltaic cell module and method of forming
Howell, Malinda; Juen, Donnie; Ketola, Barry; Tomalia, Mary Kay
2017-12-12
A photovoltaic cell module, a photovoltaic array including at least two modules, and a method of forming the module are provided. The module includes a first outermost layer and a photovoltaic cell disposed on the first outermost layer. The module also includes a second outermost layer disposed on the photovoltaic cell and sandwiching the photovoltaic cell between the second outermost layer and the first outermost layer. The method of forming the module includes the steps of disposing the photovoltaic cell on the first outermost layer, disposing a silicone composition on the photovoltaic cell, and compressing the first outermost layer, the photovoltaic cell, and the second layer to form the photovoltaic cell module.
Cellular and molecular basis for stress-induced depression.
Seo, J-S; Wei, J; Qin, L; Kim, Y; Yan, Z; Greengard, P
2017-10-01
Chronic stress has a crucial role in the development of psychiatric diseases, such as anxiety and depression. Dysfunction of the medial prefrontal cortex (mPFC) has been linked to the cognitive and emotional deficits induced by stress. However, little is known about the molecular and cellular determinants in mPFC for stress-associated mental disorders. Here we show that chronic restraint stress induces the selective loss of p11 (also known as annexin II light chain, S100A10), a multifunctional protein binding to 5-HT receptors, in layer II/III neurons of the prelimbic cortex (PrL), as well as depression-like behaviors, both of which are reversed by selective serotonin reuptake inhibitors (SSRIs) and the tricyclic class of antidepressant (TCA) agents. In layer II/III of the PrL, p11 is highly concentrated in dopamine D2 receptor-expressing (D2 + ) glutamatergic neurons. Viral expression of p11 in D2 + PrL neurons alleviates the depression-like behaviors exhibited by genetically manipulated mice with D2 + neuron-specific or global deletion of p11. In stressed animals, overexpression of p11 in D2 + PrL neurons rescues depression-like behaviors by restoring glutamatergic transmission. Our results have identified p11 as a key molecule in a specific cell type that regulates stress-induced depression, which provides a framework for the development of new strategies to treat stress-associated mental illnesses.
NASA Astrophysics Data System (ADS)
Chung, Ming-Hua; Chen, Chen-Ming; Hsieh, Tsung-Eong; Tang, Rong-Ming; Tsai, Yu Sheng; Chu, Wei-Ping; Liu, Mark O.; Juang, Fuh-Shyang
2009-04-01
Polymeric solar cells (PSCs) with a derivative of C60 [[6,6]-phenyl C61-butyric acid methyl ester (PCBM)], and 3-hexylthiophene (P3HT) as active layers have been fabricated. The PSC devices were also packaged with glass and novel UV glues to improve their lifetimes and power conversion efficiencies (PCEs). After encapsulation with UV glue I, II, and III, the PCEs of PSCs reached 4, 4.82, and 6%, respectively, and their half-lifetimes increased to 16-18, 26-28, and 90 h, respectively, while the PCEs and half-lifetimes of PSCs without encapsulation were 3.76% and 2.5 h, respectively.
Wu, Yun; Ma, Junyu; Woods, Parker S.; Chesarino, Nicholas M.; Liu, Chang; Lee, L. James; Nana-Sinkam, Serge P.; Davis, Ian C.
2015-01-01
Alveolar type II (ATII) respiratory epithelial cells are essential to normal lung function. They may be also central to the pathogenesis of diseases such as acute lung injury, pulmonary fibrosis, and pulmonary adenocarcinoma. Hence, ATII cells are important therapeutic targets. However, effective ATII cell-specific drug delivery in vivo requires carriers of an appropriate size, which can cross the hydrophobic alveolar surfactant film and polar aqueous layer overlying ATII cells, and be taken up without inducing ATII cell dysfunction, pulmonary inflammation, lung damage, or excessive systemic spread and side-effects. We have developed lipoplexes as a versatile nanoparticle carrier system for drug/RNA delivery. To optimize their pulmonary localization and ATII cell specificity, lipoplexes were conjugated to an antibody directed against the ATII cell-specific antigen surfactant protein-C (SP-C) then administered to C57BL/6 mice via the nares. Intranasally-administered, anti-SP-C-conjugated lipoplexes targeted mouse ATII cells with >70% specificity in vivo, were retained within ATII cells for at least 48 hours, and did not accumulate at significant levels in other lung cell types or viscera. 48 hours after treatment with anti-SP-C-conjugated lipoplexes containing the test microRNA miR-486, expression of mature miR-486 was approximately 4-fold higher in ATII cells than whole lung by qRT-PCR, and was undetectable in other viscera. Lipoplexes induced no weight loss, hypoxemia, lung dysfunction, pulmonary edema, or pulmonary inflammation over a 6-day period. These findings indicate that ATII cell-targeted lipoplexes exhibit all the desired characteristics of an effective drug delivery system for treatment of pulmonary diseases that result primarily from ATII cell dysfunction. PMID:25687308
Davis, James; Vaughan, D Huw; Stirling, David; Nei, Lembit; Compton, Richard G
2002-07-19
The exploitation of the Ni(III)/Ni(II) transition as a means of quantifying the concentration of nickel within industrial samples was assessed. The methodology relies upon the reagentless electrodeposition of Ni onto a glassy carbon electrode and the subsequent oxidative conversion of the metallic layer to Ni(III). The analytical signal is derived from a cathodic stripping protocol in which the reduction of the Ni(III) layer to Ni(II) is monitored through the use of square wave voltammetry. The procedure was refined through the introduction of an ultrasonic source which served to both enhance the deposition of nickel and to remove the nickel hydroxide layer that results from the measurement process. A well-defined stripping peak was observed at +0.7 V (vs. Agmid R:AgCl) with the response found to be linear over the range 50 nM to 1 muM (based on a 30 s deposition time). Other metal ions such as Cu(II), Mn(II), Cr(III), Pb(II), Cd(II), Zn(II), Fe(III) and Co(II) did not interfere with the response when present in hundred fold excess. The viability of the technique was evaluated through the determination of nickel within a commercial copper nickel alloy and validated through an independent comparison with a standard ICP-AES protocol.
Germ layer differentiation during early hindgut and cloaca formation in rabbit and pig embryos
Hassoun, Romia; Schwartz, Peter; Rath, Detlef; Viebahn, Christoph; Männer, Jörg
2010-01-01
Relative to recent advances in understanding molecular requirements for endoderm differentiation, the dynamics of germ layer morphology and the topographical distribution of molecular factors involved in endoderm formation at the caudal pole of the embryonic disc are still poorly defined. To discover common principles of mammalian germ layer development, pig and rabbit embryos at late gastrulation and early neurulation stages were analysed as species with a human-like embryonic disc morphology, using correlative light and electron microscopy. Close intercellular contact but no direct structural evidence of endoderm formation such as mesenchymal–epithelial transition between posterior primitive streak mesoderm and the emerging posterior endoderm were found. However, a two-step process closely related to posterior germ layer differentiation emerged for the formation of the cloacal membrane: (i) a continuous mesoderm layer and numerous patches of electron-dense flocculent extracellular matrix mark the prospective region of cloacal membrane formation; and (ii) mesoderm cells and all extracellular matrix including the basement membrane are lost locally and close intercellular contact between the endoderm and ectoderm is established. The latter process involves single cells at first and then gradually spreads to form a longitudinally oriented seam-like cloacal membrane. These gradual changes were found from gastrulation to early somite stages in the pig, whereas they were found from early somite to mid-somite stages in the rabbit; in both species cloacal membrane formation is complete prior to secondary neurulation. The results highlight the structural requirements for endoderm formation during development of the hindgut and suggest new mechanisms for the pathogenesis of common urogenital and anorectal malformations. PMID:20874819
NASA Astrophysics Data System (ADS)
Esposito, Daniel V.
2015-08-01
Solid-state junctions based on a metal-insulator-semiconductor (MIS) architecture are of great interest for a number of optoelectronic applications such as photovoltaics, photoelectrochemical cells, and photodetection. One major advantage of the MIS junction compared to the closely related metal-semiconductor junction, or Schottky junction, is that the thin insulating layer (1-3 nm thick) that separates the metal and semiconductor can significantly reduce the density of undesirable interfacial mid-gap states. The reduction in mid-gap states helps "un-pin" the junction, allowing for significantly higher built-in-voltages to be achieved. A second major advantage of the MIS junction is that the thin insulating layer can also protect the underlying semiconductor from corrosion in an electrochemical environment, making the MIS architecture well-suited for application in (photo)electrochemical applications. In this presentation, discontinuous Si-based MIS junctions immersed in electrolyte are explored for use as i.) photoelectrodes for solar-water splitting in photoelectrochemical cells (PECs) and ii.) position-sensitive photodetectors. The development and optimization of MIS photoelectrodes for both of these applications relies heavily on understanding how processing of the thin SiO2 layer impacts the properties of nano- and micro-scale MIS junctions, as well as the interactions of the insulating layer with the electrolyte. In this work, we systematically explore the effects of insulator thickness, synthesis method, and chemical treatment on the photoelectrochemical and electrochemical properties of these MIS devices. It is shown that electrolyte-induced inversion plays a critical role in determining the charge carrier dynamics within the MIS photoelectrodes for both applications.
Jayabalan, Prakash; Tan, Andrea R; Rahaman, Mohammed N; Bal, B Sonny; Hung, Clark T; Cook, James L
2011-10-01
Replacement of diseased areas of the joint with tissue-engineered osteochondral grafts has shown potential in the treatment of osteoarthritis. Bioactive glasses are candidates for the osseous analog of these grafts. (1) Does Bioactive Glass 13-93 (BG 13-93) as a subchondral substrate improve collagen and glycosaminoglycan production in a tissue-engineered cartilage layer? (2) Does BG 13-93 as a culture medium supplement increase the collagen and glycosaminoglycan production and improve the mechanical properties in a tissue-engineered cartilage layer? In Study 1, bioactive glass samples (n = 4) were attached to a chondrocyte-seeded agarose layer to form an osteochondral construct, cultured for 6 weeks, and compared to controls. In Study 2, bioactive glass samples (n = 5) were cocultured with cell-seeded agarose for 6 weeks. The cell-seeded agarose layer was exposed to BG 13-93 either continuously or for the first or last 2 weeks in culture or had no exposure. Osteochondral constructs with a BG 13-93 base had improved glycosaminoglycan deposition but less collagen II content. Agarose scaffolds that had a temporal exposure to BG 13-93 within the culture medium had improved mechanical and biochemical properties compared to continuous or no exposure. When used as a subchondral substrate, BG 13-93 did not improve biochemical properties compared to controls. However, as a culture medium supplement, BG 13-93 improved the biochemical and mechanical properties of a tissue-engineered cartilage layer. BG 13-93 may not be suitable in osteochondral constructs but could have potential as a medium supplement for neocartilage formation.
An atomic-force-microscopy study of the structure of surface layers of intact fibroblasts
NASA Astrophysics Data System (ADS)
Khalisov, M. M.; Ankudinov, A. V.; Penniyaynen, V. A.; Nyapshaev, I. A.; Kipenko, A. V.; Timoshchuk, K. I.; Podzorova, S. A.; Krylov, B. V.
2017-02-01
Intact embryonic fibroblasts on a collagen-treated substrate have been studied by atomic-force microscopy (AFM) using probes of two types: (i) standard probes with tip curvature radii of 2-10 nm and (ii) special probes with a calibrated 325-nm SiO2 ball radius at the tip apex. It is established that, irrespective of probe type, the average maximum fibroblast height is on a level of 1.7 μm and the average stiffness of the probe-cell contact amounts to 16.5 mN/m. The obtained AFM data reveal a peculiarity of the fibroblast structure, whereby its external layers move as a rigid shell relative to the interior and can be pressed inside to a depth dependent on the load only.
Cadmium zinc sulfide by solution growth
Chen, Wen S.
1992-05-12
A process for depositing thin layers of a II-VI compound cadmium zinc sulfide (CdZnS) by an aqueous solution growth technique with quality suitable for high efficiency photovoltaic or other devices which can benefit from the band edge shift resulting from the inclusion of Zn in the sulfide. A first solution comprising CdCl.sub.2 2.5H.sub.2 O, NH.sub.4 Cl, NH.sub.4 OH and ZnCl.sub.2, and a second solution comprising thiourea ((NH.sub.2).sub.2 CS) are combined and placed in a deposition cell, along with a substrate to form a thin i.e. 10 nm film of CdZnS on the substrate. This process can be sequentially repeated with to achieve deposition of independent multiple layers having different Zn concentrations.
Finkenstadt, Victoria L; Côté, Gregory L; Willett, J L
2011-06-01
Corrosion of metals is a serious and challenging problem faced worldwide by industry. Purified Leuconostoc mesenteroides exopolysaccharide (EPS) coatings, cast from aqueous solution, inhibited the corrosion of low-carbon steel as determined by electrochemical impedance spectroscopy (EIS). There were two different corrosion behaviors exhibited when EPS films from different strains were cast onto the steel. One EPS coating reacted immediately with the steel substrate to form an iron (III) oxide layer ("rust") during the drying process while another did not. The samples that did not flash corrode had higher corrosion inhibition and formed an iron (II) passivation layer during EIS testing that persisted after the cells were disassembled. Corrosion inhibition was strain-specific as polysaccharides with similar structure did not have the same corrosion potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Xue-Miao; Guo, Qian; Zhao, Jiong-Peng, E-mail: horryzhao@yahoo.com
A novel copper-azido coordination polymer, [Cu{sub 2}(N{sub 3}){sub 3}(L)]{sub n} (1, HL=pyrazine-2-carboxylic acid), has been synthesized by hydrothermal reaction with 'Non-innocent' reagent in the aqueous solution. In the reaction system, Cu{sup II} ions are avoided to reduce to Cu{sup I} ions due to the existence of Nd{sup III}. It is found that the complex is a 3D structure based on two double EO azido bridged trimmers and octahedron Cu{sup II} ions, in which the azide ligands take on EO and {mu}{sub 1,1,3} mode to form Cu{sup II}-azido 2D layers, furthermore L ligands pillar 2D layers into an infinite 3D frameworkmore » with the Schlaefli symbol of {l_brace}4;6{sup 2}{r_brace}4{l_brace}4{sup 2};6{sup 12};8{sup 10};10{sup 4}{r_brace}{l_brace}4{sup 2};6{sup 4}{r_brace}. Magnetic studies revealed that the interactions between the Cu{sup II} ions in the trimmer are ferromagnetic for the Cu-N-Cu angle nearly 98 Degree-Sign , while the interactions between the trimmer and octahedron Cu{sup II} ion are antiferromgantic and result in an antiferromagnetic state. - Graphical abstract: A 3D complex containing novel 2D Cu{sup II}-azido layers, [Cu{sub 2}(N{sub 3}){sub 3}(L)]{sub n} (HL=pyrazine-2-carboxylic acid), was synthesized by hydrothermal reaction and exhibit interesting structure and magnetic properties. Highlights: Black-Right-Pointing-Pointer 'Non-innocent' reagents plays a key role in the process of formation of this complex. Black-Right-Pointing-Pointer 2D layer is formed only by Cu{sup II} ions and azido ligands. Black-Right-Pointing-Pointer Pyrazine-2-carboxylate ligands reinforce 2D layers and pillar them into an infinite 3D framework. Black-Right-Pointing-Pointer Magnetic study indicates that alternating FM-AF coupling exists in the complex.« less
NASA Astrophysics Data System (ADS)
Shoji, Yasushi; Tamaki, Ryo; Okada, Yoshitaka
2017-06-01
We have investigated the performance of 10-layer stacked GaSb/GaAs quantum dot (QD) and quantum ring (QR) solar cells (SCs) having a type-II band alignment. For both SCs, the external quantum efficiency (EQE) increased in the longer wavelength region beyond GaAs bandedge wavelength of λ > 870 nm due to an additive contribution from GaSb/GaAs QD or QR layers inserted in the intrinsic region of p-i-n SC structure. The EQE of GaSb/GaAs QRSC was higher than that of QDSC at room temperature and the photoluminescence intensity from GaSb/GaAs QRs was stronger compared with GaSb/GaAs QDs. These results indicate that crystal quality of GaSb/GaAs QRs is superior to that of GaSb/GaAs QDs. Furthermore, a photocurrent production due to two-step photo-absorption via GaSb/GaAs QD states or QR states, ΔEQE was measured at low temperature and the ratio of two-step absorption to total carrier extraction defined as ΔEQE / (ΔEQE + EQE), was higher for GaSb/GaAs QRSC than that of QDSC. The ratio of GaSb/GaAs QRSC exceeds 80% over the wavelength region of λ = 950 - 1250 nm. This suggests that two-step absorption process is more dominant for carrier extraction from GaSb/GaAs QR structure.
NASA Astrophysics Data System (ADS)
Zanchetta, Giovanni; Giaccio, Biagio; Bini, Monica; Sarti, Lucia
2018-02-01
The Grotta del Cavallo contains one of the most important stratification of Mousterian, Uluzzian and Final Epigravettian tecnocomplexes; its chronology is of paramount importance for understanding the timing of the transition between Middle and Upper Palaeolithic in the Mediterranean region as well as the demise of the Neanderthal and the dispersal of the first anatomically modern humans through Europe. Within the stratigraphy of the cave three different volcanic ash layers occur (layer G, Fa and C-II). They are located in the middle section of the Mousterian (layer G), in between the Mousterian and Uluzzian layers (layer Fa) and on top of the Uluzzian horizons (layer C-II). The three tephra layers were chemically fingerprinted and correlated to well-known and precisely dated widespread Late Pleistocene tephra markers. Specifically, layer G, Fa and C-II were correlated to the X-6 (108.7 ± 0.9 ka), Y-6 (45.5 ± 1.0 ka) and Campanian Ignimbrite (39.85 ± 0.14 ka), respectively. These findings provide robust chronological points allowing to conclude that: (i) the Mousterian occupation of the cave took place after the fall of the sea level following the MIS 5e high-stand; (ii) the Mousterian-Uluzzian boundary can be dated to 45.5 ± 1.0 ka and climatostratigraphically firmly placed at the transition between the Greenland Interstadial 12 (GI12)-Greenland Stadial 12 (GS12); (iii) the Uluzzian lasted for at least five millennial spanning the GS12-GI9 period and ended at beginning of the Heinrich Event 4.
Van Moerkercke, Alex; Galván-Ampudia, Carlos S.; Verdonk, Julian C.; Haring, Michel A.; Schuurink, Robert C.
2012-01-01
In which cells of the flower volatile biosynthesis takes place is unclear. In rose and snapdragon, some enzymes of the volatile phenylpropanoid/benzenoid pathway have been shown to be present in the epidermal cells of petals. It is therefore generally believed that the production of these compounds occurs in these cells. However, whether the entire pathway is active in these cells and whether it is exclusively active in these cells remains to be proven. Cell-specific transcription factors activating these genes will determine in which cells they are expressed. In petunia, the transcription factor EMISSION OF BENZENOIDS II (EOBII) activates the ODORANT1 (ODO1) promoter and the promoter of the biosynthetic gene isoeugenol synthase (IGS). The regulator ODO1 in turn activates the promoter of the shikimate gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Here the identification of a new target gene of ODO1, encoding an ABC transporter localized on the plasma membrane, PhABCG1, which is co-expressed with ODO1, is described. PhABCG1 expression is up-regulated in petals overexpressing ODO1 through activation of the PhABCG1 promoter. Interestingly, the ODO1, PhABCG1, and IGS promoters were active in petunia protoplasts originating from both epidermal and mesophyll cell layers of the petal, suggesting that the volatile phenylpropanoid/benzenoid pathway in petunia is active in these different cell types. Since volatile release occurs from epidermal cells, trafficking of (volatile) compounds between cell layers must be involved, but the exact function of PhABCG1 remains to be resolved. PMID:22345641
Brené, S; Hall, H; Lindefors, N; Karlsson, P; Halldin, C; Sedvall, G
1995-07-01
Messenger RNAs for the D1 dopamine receptor and dopamine- and cyclic AMP-regulated phosphoprotein of relative mass 32,000 (DARPP-32) were examined by in situ hybridization in the cynomolgus monkey brain. The messenger RNA distribution was compared to the distribution of D1 dopamine receptors using [3H]SCH 23390 autoradiography. In the caudate nucleus and putamen, D1 dopamine receptor messenger RNA-positive cells were unevenly distributed. Clusters of cells with an approximately three-fold higher intensity of labeling, as compared to surrounding regions, were found. Some of these D1 dopamine receptor messenger RNA intensive cell clusters in the caudate nucleus appeared to some extent to be matched to regions of higher intensity of [3H]SCH 23390 binding. The distribution of cells expressing DARPP-32 messenger RNA in the caudate nucleus and putamen was found to be non-clustered. In neocortical regions, cells of different sizes expressing D1 dopamine receptor messenger RNA were present in layers II-VI. D1 dopamine receptor messenger RNA-positive cells were most abundant in layer V. Unexpectedly, no DARPP-32 messenger RNA signal was detected in neocortex. Chronic SCH 23390 administration did not change the relative levels of messenger RNAs for the D1 dopamine receptor and DARPP-32 or [3H]SCH 23390 binding as measured by quantitative image analysis. The clustered distribution of D1 dopamine receptor messenger RNA is in contrast to that of DARPP-32 messenger RNA. This suggests that D1 dopamine receptors may play a more significant role in regulating DARPP-32 function in patch regions as compared to matrix regions. D1 dopamine receptor messenger RNA-expressing cells could also be visualized in several layers of the primate neocortex, implying that dopamine acts through D1 dopamine receptors within functionally different neuronal circuits of the neocortex.
Hong, Chang Woo; Shin, Seung Wook; Suryawanshi, Mahesh P; Gang, Myeng Gil; Heo, Jaeyeong; Kim, Jin Hyeok
2017-10-25
Earth-abundant, copper-zinc-tin-sulfide (CZTS), kesterite, is an attractive absorber material for thin-film solar cells (TFSCs). However, the open-circuit voltage deficit (V oc -deficit) resulting from a high recombination rate at the buffer/absorber interface is one of the major challenges that must be overcome to improve the performance of kesterite-based TFSCs. In this paper, we demonstrate the relationship between device parameters and performances for chemically deposited CdS buffer/CZTS-based heterojunction TFSCs as a function of buffer layer thickness, which could change the CdS/CZTS interface conditions such as conduction band or valence band offsets, to gain deeper insight and understanding about the V oc -deficit behavior from a high recombination rate at the CdS buffer/kesterite interface. Experimental results show that device parameters and performances are strongly dependent on the CdS buffer thickness. We postulate two meaningful consequences: (i) Device parameters were improved up to a CdS buffer thickness of 70 nm, whereas they deteriorated at a thicker CdS buffer layer. The V oc -deficit in the solar cells improved up to a CdS buffer thickness of 92 nm and then deteriorated at a thicker CdS buffer layer. (ii) The minimum values of the device parameters were obtained at 70 nm CdS thickness in the CZTS TFSCs. Finally, the highest conversion efficiency of 8.77% (V oc : 494 mV, J sc : 34.54 mA/cm 2 , and FF: 51%) is obtained by applying a 70 nm thick CdS buffer to the Cu 2 ZnSn(S,Se) 4 absorber layer.
Gdula, Michal R.; Poterlowicz, Krzysztof; Mardaryev, Andrei N.; Sharov, Andrey A.; Peng, Y.; Fessing, Michael Y.; Botchkarev, Vladimir A.
2014-01-01
The nucleus of epidermal keratinocytes is a complex and highly compartmentalized organelle, whose structure is markedly changed during terminal differentiation and transition of the genome from a transcriptionally active state seen in the basal and spinous epidermal cells to a fully inactive state in the keratinized cells of the cornified layer. Here, using multi-color confocal microscopy, followed by computational image analysis and mathematical modelling, we demonstrate that in normal mouse foot-pad epidermis transition of keratinocytes from basal epidermal layer to the granular layer is accompanied by marked differences in nuclear architecture and micro-environment including: i) decrease of the nuclear volume, ii) decrease in expression of the markers of transcriptionally-active chromatin; iii) internalization and decrease in the number of nucleoli; iv) increase in the number of pericentromeric heterochromatic clusters; v) increase in the frequency of associations between pericentromeric clusters, chromosomal territory 3, and nucleoli. These data suggest a role for nucleoli and pericentromeric heterochromatin clusters as organizers of nuclear micro-environment required for proper execution of gene expression programs in differentiating keratinocytes and provide important background information for further analyses of alterations in the topological genome organization seen in pathological skin conditions including disorders of epidermal differentiation and epidermal tumors. PMID:23407401
Oxygen Displacement in Cuprates under Ionic Liquid Field-Effect Gating
Dubuis, Guy; Yacoby, Yizhak; Zhou, Hua; He, Xi; Bollinger, Anthony T.; Pavuna, Davor; Pindak, Ron; Božović, Ivan
2016-01-01
We studied structural changes in a 5 unit cell thick La1.96Sr0.04CuO4 film, epitaxially grown on a LaSrAlO4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film (ground) and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were: (i) there were no structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and equatorial oxygen atoms were displaced towards the surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of equatorial oxygen atoms. PMID:27578237
Ortolani, F; Tubaro, F; Petrelli, L; Gandaglia, A; Spina, M; Marchini, M
2002-01-01
Previously, reactions with copper phthalocyanines at 0.05 M critical electrolyte concentration were found to cause demineralization in calcifying porcine aortic valves after subdermal implantation in rat, as well as simultaneous visualization of peculiar phthalocyanine-positive layers around cells and cell-derived matrix vesicles. In the present investigation, an appraisal was made of the mechanism and specificity of reactions with Cuprolinic Blue by comparing quantitatively calcium release and copper retention by calcified aortic valves reacted with this phthalocyanine under different critical electrolyte concentration conditions, and the corresponding ultrastructural patterns. It was found that (i) decalcifying properties are inversely proportional to salt molarity; (ii) reactivity to Cuprolinic Blue is critical electrolyte concentration-dependent, since the greatest copper retention occurred in 0.05 M critical electrolyte concentration Cuprolinic Blue-reacted samples, the only ones that also exhibited phthalocyanine-positive layers; (iii) the appearance of phthalocyanine-positive layers depends on Cuprolinic Blue uptake, revealing pericellular clustering of calcium-binding, anionic molecules; and (iv) minor Cuprolinic Blue uptake occurs by residual proteoglycans which still remain in the extracellular matrix after 6-week-long subdermal implantation. The present results indicate that this method is appropriate for the study of mineralized tissues and illustrate peculiar tissue modifications occurring at least in the experimental conditions used here.
Orbitally limited pair-density-wave phase of multilayer superconductors
NASA Astrophysics Data System (ADS)
Möckli, David; Yanase, Youichi; Sigrist, Manfred
2018-04-01
We investigate the magnetic field dependence of an ideal superconducting vortex lattice in the parity-mixed pair-density-wave phase of multilayer superconductors within a circular cell Ginzburg-Landau approach. In multilayer systems, due to local inversion symmetry breaking, a Rashba spin-orbit coupling is induced at the outer layers. This combined with a perpendicular paramagnetic (Pauli) limiting magnetic field stabilizes a staggered layer dependent pair-density-wave phase in the superconducting singlet channel. The high-field pair-density-wave phase is separated from the low-field BCS phase by a first-order phase transition. The motivating guiding question in this paper is: What is the minimal necessary Maki parameter αM for the appearance of the pair-density-wave phase of a superconducting trilayer system? To address this problem we generalize the circular cell method for the regular flux-line lattice of a type-II superconductor to include paramagnetic depairing effects. Then, we apply the model to the trilayer system, where each of the layers are characterized by Ginzburg-Landau parameter κ0 and a Maki parameter αM. We find that when the spin-orbit Rashba interaction compares to the superconducting condensation energy, the orbitally limited pair-density-wave phase stabilizes for Maki parameters αM>10 .
Misra, Ashish; Feng, Zhonghui; Zhang, Jiasheng; Lou, Zhi-Yin; Greif, Daniel M
2017-09-12
The aorta is the largest artery in the body. The aortic wall is composed of an inner layer of endothelial cells, a middle layer of alternating elastic lamellae and smooth muscle cells (SMCs), and an outer layer of fibroblasts and extracellular matrix. In contrast to the widespread study of pathological models (e.g., atherosclerosis) in the adult aorta, much less is known about the embryonic and perinatal aorta. Here, we focus on SMCs and provide protocols for the analysis of the morphogenesis and pathogenesis of embryonic and perinatal aortic SMCs in normal development and disease. Specifically, the four protocols included are: i) in vivo embryonic fate mapping and clonal analysis; ii) explant embryonic aorta culture; iii) SMC isolation from the perinatal aorta; and iv) subcutaneous osmotic mini-pump placement in pregnant (or non-pregnant) mice. Thus, these approaches facilitate the investigation of the origin(s), fate, and clonal architecture of SMCs in the aorta in vivo. They allow for modulating embryonic aorta morphogenesis in utero by continuous exposure to pharmacological agents. In addition, isolated aortic tissue explants or aortic SMCs can be used to gain insights into the role of specific gene targets during fundamental processes such as muscularization, proliferation, and migration. These hypothesis-generating experiments on isolated SMCs and the explanted aorta can then be assessed in the in vivo context through pharmacological and genetic approaches.
Zakine, Gilbert; Mimoun, Maurice; Pham, Julien; Chaouat, Marc
2012-07-01
The scalp, an excellent donor site for thin skin grafts, presents a limited surface but is rich in keratinocyte stem cells. The purpose of this study was to double scalp harvesting in one procedure and to evaluate the capacity of the dermal layer to spontaneously reepithelialize from hair follicle stem cells. Two layers of 0.2-mm split-thickness skin graft, a dermoepidermal graft and a dermal graft, were harvested from scalp during the same procedure. Fifteen burn patients were included in this study. Healing of the scalp donor site and percentage of graft taken were evaluated. The Vancouver Scar Scale was used at 3 months and 1 year. Histologic studies were performed at day 0 and 3 months on grafts, and on the scalp at day 28. Nine patients were treated on the limbs with meshed dermal graft. Six were treated on the hands with unmeshed dermal graft. Graft take was good for both types of grafts. The mean time for scalp healing was 9.3 days. Histologic study confirmed that the second layer was a dermal graft with numerous annexes and that, at 3 months, the dermis had normal thickness but with rarer and smaller epidermal crests than dermal graft. The difference between the mean Vancouver Scar Scale score of dermal graft and dermoepidermal graft was not significant. The authors' study shows the efficacy of dermal graft from the scalp and good scalp healing. Therapeutic, II.
Constraints on the synchronization of entorhinal cortex stellate cells
NASA Astrophysics Data System (ADS)
Crotty, Patrick; Lasker, Eric; Cheng, Sen
2012-07-01
Synchronized oscillations of large numbers of central neurons are believed to be important for a wide variety of cognitive functions, including long-term memory recall and spatial navigation. It is therefore plausible that evolution has optimized the biophysical properties of central neurons in some way for synchronized oscillations to occur. Here, we use computational models to investigate the relationships between the presumably genetically determined parameters of stellate cells in layer II of the entorhinal cortex and the ability of coupled populations of these cells to synchronize their intrinsic oscillations: in particular, we calculate the time it takes circuits of two or three cells with initially randomly distributed phases to synchronize their oscillations to within one action potential width, and the metabolic energy they consume in doing so. For recurrent circuit topologies, we find that parameters giving low intrinsic firing frequencies close to those actually observed are strongly advantageous for both synchronization time and metabolic energy consumption.
Martins, Soraia; Yigit, Hatice; Bohndorf, Martina; Graffmann, Nina; Fiszl, Aurelian Robert; Wruck, Wasco; Sleegers, Kristel; Van Broeckhoven, Christine; Adjaye, James
2018-06-01
Human lymphoblast cells from a male diagnosed with Alzheimer's disease (AD) expressing the TREM2 p.R47H variant were used to generate integration-free induced pluripotent stem cells (iPSCs) by over-expressing episomal-based plasmids harbouring OCT4, SOX2, KLF4, LIN28, L-MYC and p53 shRNA. The derived iPSC line - AD-TREM2-3 was defined as pluripotent based on (i) expression of pluripotency-associated markers (ii) embryoid body-based differentiation into cell types representative of the three germ layers and (iii) the similarity between the transcriptome of the iPSC line and the human embryonic stem cell line H1 with a Pearson correlation of 0.940. Copyright © 2018. Published by Elsevier B.V.
Shi, Guo-Qing; Jiang, Guibin
2002-11-01
A sensitive dip-and-read test strip for the determination of mercury in aqueous samples based on the inhibition of urease reaction by the ion has been developed. The strip has a circular sensing zone that containing two layers: the top layer is a cellulose acetate membrane where urease is immobilized on it; the bottom layer is a pH indicator wafer that is impregnated with urea. The principle of the measurement is based on the disappearance of a yellow spot on the pH indicator wafer. The elapsing time until the disappearance of the spot which depends on the concentration of mercury(II) ion is measured with a stopwatch. Under the experimental conditions, as low as 0.2 ng/ml mercury can be observed with the detection range from 0.2 to 200 ng/ml in water. Organomercury compounds give essentially the same response as inorganic mercury. Heavy-metal ions such as Ag(I), Cu(II), Cd(II), Ni(II), Zn(II), and Pb(II) as well as other sample matrixes basically do not interfere with the mercury measurement.
Xiao, W; Wang, J N; Wang, J W; Huang, G J; Cheng, L; Jiang, L J; Wang, L G
2016-04-28
The quaternary compound semiconductor Cu2ZnSnS4 (CZTS) is a promising photovoltaic absorber material for thin-film solar cell applications. Density-functional theory calculations have been performed to investigate the structural and electronic properties of the CdS/CZTS heterointerfaces in CZTS-based cells. We find that CdS favors epitaxial growth on the Cu-Zn plane of CZTS along the direction of [100], which can eliminate the effects of the wrong bonds at the interfaces and enhance the energetic barrier for charge carrier recombination across the interfaces with an increased band gap. The band alignment is calculated for the epitaxial CZTS/CdS heterointerface by employing the HSE06 functional and the results show a type-II band alignment with VBO and CBO values of 0.95 eV and -0.05 eV, respectively. Also, the experimental phenomenon of Zn segregation at CdS/CZTS interfaces is corroborated. Zn segregation can enhance the stability of the heterointerfaces, but damage the solar cell performance by decreasing the band gap when the Zn concentration is sufficiently high. We show that besides the defects and undesired phases in CZTS, the heterointerfaces between the absorption layers (CZTS) and the buffer layer (CdS) can also be an important factor that affects the performance of CZTS cells. The present work provides a theoretical base for engineering the heterointerfaces and achieving better performance of CZTS-based solar cells.
Varga, Csaba; Tamas, Gabor; Barzo, Pal; Olah, Szabolcs; Somogyi, Peter
2015-01-01
Transcription factors contribute to the differentiation of cortical neurons, orchestrate specific interneuronal circuits, and define synaptic relationships. We have investigated neurons expressing chicken ovalbumin upstream promoter transcription factor II (COUP-TFII), which plays a role in the migration of GABAergic neurons. Whole-cell, patch-clamp recording in vitro combined with colocalization of molecular cell markers in the adult cortex differentiates distinct interneurons. The majority of strongly COUP-TFII-expressing neurons were in layers I–III. Most calretinin (CR) and/or cholecystokinin- (CCK) and/or reelin-positive interneurons were also COUP-TFII-positive. CR-, CCK-, or reelin-positive neurons formed 80%, 20%, or 17% of COUP-TFII-positive interneurons, respectively. About half of COUP-TFII-/CCK-positive interneurons were CR-positive, a quarter of them reelin-positive, but none expressed both. Interneurons positive for COUP-TFII fired irregular, accommodating and adapting trains of action potentials (APs) and innervated mostly small dendritic shafts and rarely spines or somata. Paired recording showed that a calretinin-/COUP-TFII-positive interneuron elicited inhibitory postsynaptic potentials (IPSPs) in a reciprocally connected pyramidal cell. Calbindin, somatostatin, or parvalbumin-immunoreactive interneurons and most pyramidal cells express no immunohistochemically detectable COUP-TFII. In layers V and VI, some pyramidal cells expressed a low level of COUP-TFII in the nucleus. In conclusion, COUP-TFII is expressed in a diverse subset of GABAergic interneurons predominantly innervating small dendritic shafts originating from both interneurons and pyramidal cells. PMID:25787832
Park, Sang-Hyug; Sim, Woo Young; Park, Sin Wook; Yang, Sang Sik; Choi, Byung Hyune; Park, So Ra; Park, Kwideok; Min, Byoung-Hyun
2006-11-01
In this study, we present a biological micro-electromechanical system and its application to the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (MSCs). Actuated by an electromagnetic force, the micro cell exciter was designed to deliver a cyclic compressive load (CCL) with various magnitudes. Two major parts in the system are an actuator and a cartridge-type chamber. The former has a permanent magnet and coil, and the latter is equipped with 7 sample dishes and 7 metal caps. Mixed with a 2.4% alginate solution, the alginate/MSC layers were positioned in the sample dishes; the caps contained chondrogenic defined medium without transforming growth factor-beta (TGF-beta). Once powered, the actuator coil-derived electromagnetic force pulled the metal caps down, compressing the samples. The cyclic load was given at 1-Hz frequency for 10 min twice a day. Samples in the dishes without a cap served as a control. The samples were analyzed at 3, 5, and 7 days after stimulation for cell viability, biochemical assays, histologic features, immunohistochemistry, and gene expression of the chondrogenic markers. Applied to the alginate/MSC layer, the CCL system enhanced the synthesis of cartilage-specific matrix proteins and the chondrogenic markers, such as aggrecan, type II collagen, and Sox9. We found that the micromechanically exerted CCL by the cell exciter was very effective in enhancing the chondrogenic differentiation of MSCs, even without using exogenous TGF-beta.
NASA Technical Reports Server (NTRS)
Boclair, J. W.; Braterman, P. S.
1999-01-01
Solutions containing di- and trivalent metal chlorides [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+; M(III) = Al3+, Fe3+] were titrated with NaOH to yield hydrotalcite-like layered double hydroxides (LDH), [[M(II)]1-x[M(III)]x(OH)2][Cl]x yH2O, by way of M(III) hydroxide/hydrous oxide intermediates. Analysis of the resultant titration curves yields nominal solubility constants for the LDH. The corresponding LDH stabilities are in the order Mg < Mn < Co approximately Ni < Zn for M(II) and Al < Fe for M(III). The stability of LDH relative to the separate metal hydroxides/hydrous oxides is discussed.
Solar cell modules with improved backskin and methods for forming same
Hanoka, Jack I.
1998-04-21
A laminated solar cell module with a backskin layer that reduces the materials and labor required during the manufacturing process. The solar cell module includes a rigid front support layer formed of light transmitting material having first and second surfaces. A transparent encapsulant layer has a first surface disposed adjacent the second surface of the front support layer. A plurality of interconnected solar cells have a first surface disposed adjacent a second surface of the transparent encapsulant layer. The backskin layer is formed of a thermoplastic olefin, which includes first ionomer, a second ionomer, glass fiber, and carbon black. A first surface of the backskin layer is disposed adjacent a second surface of the interconnected solar cells. The transparent encapsulant layer and the backskin layer, in combination, encapsulate the interconnected solar cells. An end portion of the backskin layer can be wrapped around the edge of the module for contacting the first surface of the front support layer to form an edge seal. A laminated solar cell module with a backskin layer that reduces the materials and labor required during the manufacturing process. The solar cell module includes a rigid front support layer formed of light transmitting material having first and second surfaces. A transparent encapsulant layer has a first surface disposed adjacent the second surface of the front support layer. A plurality of interconnected solar cells have a first surface disposed adjacent a second surface of the transparent encapsulant layer. The backskin layer is formed of a thermoplastic olefin, which includes first ionomer, a second ionomer, glass fiber, and carbon black. A first surface of the backskin layer is disposed adjacent a second surface of the interconnected solar cells. The transparent encapsulant layer and the backskin layer, in combination, encapsulate the interconnected solar cells. An end portion of the backskin layer can be wrapped around the edge of the module for contacting the first surface of the front support layer to form an edge seal.
Ding, Chao; Zhang, Yaohong; Liu, Feng; Nakazawa, Naoki; Huang, Qingxun; Hayase, Shuzi; Ogomi, Yuhei; Toyoda, Taro; Wang, Ruixiang; Shen, Qing
2017-09-22
Using spatial energy-level gradient engineering with quantum dots (QDs) of different sizes to increase the generated carrier collection at the junction of a QD heterojunction solar cell (QDHSC) is a hopeful route for improving the energy-conversion efficiency. However, the results of current related research have shown that a variable band-gap structure in a QDHSC will create an appreciable increase, not in the illumination current density, but rather in the fill factor. In addition, there are a lack of studies on the mechanism of the effect of these graded structures on the photovoltaic performance of QDHSCs. This study presents the development of air atmosphere solution-processed TiO 2 /PbS QDs/Au QDHSCs by engineering the energy-level alignment (ELA) of the active layer via the use of a sorted order of differently sized QD layers (four QD sizes). In comparison to the ungraded device (without the ELA), the optimized graded architecture (containing the ELA) solar cells exhibited a great increase (21.4%) in short-circuit current density (J sc ). As a result, a J sc value greater than 30 mA/cm 2 has been realized in planar, thinner absorption layer (∼300 nm) PbS QDHSCs, and the open-circuit voltage (V oc ) and power-conversion efficiency (PCE) were also improved. Through characterization by the light intensity dependences of the J sc and V oc and transient photovoltage decay, we find that (i) the ELA structure, serving as an electron-blocking layer, reduces the interfacial recombination at the PbS/anode interface, and (ii) the ELA structure can drive more carriers toward the desirable collection electrode, and the additional carriers can fill the trap states, reducing the trap-assisted recombination in the PbS QDHSCs. This work has clearly elucidated the mechanism of the recombination suppression in the graded QDHSCs and demonstrated the effects of ELA structure on the improvement of J sc . The charge recombination mechanisms characterized in this work would be able to shed light on further improvements of QDHSCs, which could even benefit other types of solar cells.
2017-09-28
Adult Grade III Lymphomatoid Granulomatosis; B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Small Lymphocytic Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia
Cellular mechanisms of cyclophosphamide-induced taste loss in mice
Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J.
2017-01-01
Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system’s capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake. PMID:28950008
Cellular mechanisms of cyclophosphamide-induced taste loss in mice.
Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J; Delay, Eugene R
2017-01-01
Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system's capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake.
A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet
Sakamoto, Ryota; Hoshiko, Ken; Liu, Qian; Yagi, Toshiki; Nagayama, Tatsuhiro; Kusaka, Shinpei; Tsuchiya, Mizuho; Kitagawa, Yasutaka; Wong, Wai-Yeung; Nishihara, Hiroshi
2015-01-01
Two-dimensional polymeric nanosheets have recently gained much attention, particularly top-down nanosheets such as graphene and metal chalcogenides originating from bulk-layered mother materials. Although molecule-based bottom-up nanosheets manufactured directly from molecular components can exhibit greater structural diversity than top-down nanosheets, the bottom-up nanosheets reported thus far lack useful functionalities. Here we show the design and synthesis of a bottom-up nanosheet featuring a photoactive bis(dipyrrinato)zinc(II) complex motif. A liquid/liquid interfacial synthesis between a three-way dipyrrin ligand and zinc(II) ions results in a multi-layer nanosheet, whereas an air/liquid interfacial reaction produces a single-layer or few-layer nanosheet with domain sizes of >10 μm on one side. The bis(dipyrrinato)zinc(II) metal complex nanosheet is easy to deposit on various substrates using the Langmuir–Schäfer process. The nanosheet deposited on a transparent SnO2 electrode functions as a photoanode in a photoelectric conversion system, and is thus the first photofunctional bottom-up nanosheet. PMID:25831973
Kadi, Adnan A; Amer, Sawsan M; Darwish, Hany W; Attwa, Mohamed W
2018-05-15
Masitinib (MST) is an orally administered drug that targets mast cells and macrophages, important cells for immunity, by inhibiting a limited number of tyrosine kinases. It is currently registered in Europe and USA for the treatment of mast cell tumors in dogs. AB Science announced that the European Medicines Agency has accepted a conditional marketing authorization application for MST to treat amyotrophic lateral sclerosis. In our work, we focused on studying in vivo metabolism of MST in Sprague-Dawley rats. Single oral dose of MST (33 mg kg -1 ) was given to Sprague-Dawley rats (kept in metabolic cages) using oral gavage. Urine was collected and filtered at 0, 6, 12, 18, 24, 48, 72 and 96 h from MST dosing. An equal amount of ACN was added to urine samples. Both organic and aqueous layers were injected into liquid chromatography-tandem mass spectrometry (LC-MS/MS) to detect in vivo phase I and phase II MST metabolites. The current work reports the identification and characterization of twenty in vivo phase I and four in vivo phase II metabolites of MST by LC-MS/MS. Phase I metabolic pathways were reduction, demethylation, hydroxylation, oxidative deamination, oxidation and N-oxide formation. Phase II metabolic pathways were the direct conjugation of MST, N-demethyl metabolites and oxidative metabolites with glucuronic acid. Part of MST dose was excreted unchanged in urine. The literature review showed no previous articles have been made on in vivo metabolism of MST or detailed structural identification of the formed in vivo phase I and phase II metabolites.
NASA Astrophysics Data System (ADS)
Yanovska, E. S.; Vretik, L. O.; Nikolaeva, O. A.; Polonska, Y.; Sternik, D.; Kichkiruk, O. Yu.
2017-03-01
Copolymer of 4-vinylpyridine with styrene was in situ immobilized on silica gel surface via the heterogeneous radical polymerization. Anchorage of the copolymer on the surface layer was confirmed by IR spectroscopy. The quantity of copolymer on the silica gel surface was evaluated as 25.73 wt.% by TG and DSC-MS analysis. "Islet" location of polymer layer on the silica surface was confirmed by the scanning electron microscopy. A high adsorption activity of silica gel with immobilized copolymer towards microquantitatives of Cu(II), Cd(II), Pb(II), Fe(III), and Ni(II) ions in steady state conditions as well as of Ni(II) ions in dynamic regime was found.
Yanovska, E S; Vretik, L O; Nikolaeva, O A; Polonska, Y; Sternik, D; Kichkiruk, O Yu
2017-12-01
Copolymer of 4-vinylpyridine with styrene was in situ immobilized on silica gel surface via the heterogeneous radical polymerization. Anchorage of the copolymer on the surface layer was confirmed by IR spectroscopy. The quantity of copolymer on the silica gel surface was evaluated as 25.73 wt.% by TG and DSC-MS analysis. "Islet" location of polymer layer on the silica surface was confirmed by the scanning electron microscopy. A high adsorption activity of silica gel with immobilized copolymer towards microquantitatives of Cu(II), Cd(II), Pb(II), Fe(III), and Ni(II) ions in steady state conditions as well as of Ni(II) ions in dynamic regime was found.
2015-11-25
Adult Non-Hodgkin Lymphoma; Adult Grade III Lymphomatoid Granulomatosis; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Waldenstrom Macroglobulinemia
NASA Astrophysics Data System (ADS)
Palomaki, Peter Karl Bunk
Solar energy may be the only renewable source of energy available to the human race that could provide the energy we require while at the same time minimizing negative impacts on the planet and population. These characteristics may be instrumental in diminishing the potential for societal conflict. In order for photovoltaic devices to succeed on a global scale, research and development must lead to reduced costs and/or increased efficiency. Dye-Sensitized Solar Cells (DSSCs) are one class of nextgeneration photovoltaic technologies with the potential to realize these goals. Herein, I describe efforts towards developing a new light harvesting array of chromophores assembled on oxide substrates using copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC or ‘click’ chemistry) that could prove useful in improving DSCC performance while maintaining low cost and simple fabrication. Specifically, molecular multilayers of porphyrin-based chromophores have been fabricated via sequential selflimiting CuAAC reactions to generate multilayered light harvesting films. Films of synthetic porphyrins, perylenes, and mixtures of the two are constructed in order to highlight the versatility of this molecular layer-by-layer (LbL) technique. Characterization in the form of electrochemical techniques, UV-Visible spectroscopy, infrared spectroscopy (IR), and water contact angle all indicate that the films are reacting as expected. Film thickness and morphology are investigated using X-ray reflectivity showing that film growth displays a high degree of linearity, while the roughness increases with thickness. Growth angles based on the porphyrin plane are estimated via a comparison of molecular models and experimentally determined thickness measurements. A more finite measurement of growth angle (and as a result the primary bonding mode) is determined by grazing angle IR spectroscopy. Blocking layer studies suggest that the films could be useful as a self-passivating layer in DSSCs to reduce recombination effects and improve DSSC device efficiency. Porphyrin light harvesting films assembled on ITO show a cathodic photocurrent when assembled in a DSSC device. Cobalt2+/3+ and I- /I3- redox mediators are commonly used in DSSCs as an electron shuttle. Experiments with cobalt2+/3+ redox mediators as well as I-/I3- provide an initial benchmark for the performance of unoptimized solar cells with multilayered porphyrin sensitizer films. Devices operating with I -/I3- show the largest photocurrents, but low open circuit potentials. Devices using cobalt2+/3+ result in lower photocurrents but greater operating potentials than I-/I 3-. For all redox mediators tested, photocurrent increases with the addition of porphyrin layers beyond a monolayer. However, photocurrent reaches a maximum value at a point greater than one layer, after which it decreases. This demonstrates that multilayered porphyrin light harvesting films can be beneficial to improving DSSC performance but optimal film thickness (number of layers) is dependent on the redox mediator. This facile and versatile technique for creating molecular multilayer films may have implications in light harvesting materials, sensors, and molecular electronics. It could be amenable to large scale roll-to-roll processing which would be advantageous for applications requiring large surface area depositions. In summary, these techniques allow for simple and rapid evaluation of numerous molecular components in light harvesting arrays that could lead to much needed breakthroughs in solar applications.
The point of no return: The poly(A)-associated elongation checkpoint.
Tellier, Michael; Ferrer-Vicens, Ivan; Murphy, Shona
2016-01-01
Cyclin-dependent kinases play critical roles in transcription by RNA polymerase II (pol II) and processing of the transcripts. For example, CDK9 regulates transcription of protein-coding genes, splicing, and 3' end formation of the transcripts. Accordingly, CDK9 inhibitors have a drastic effect on the production of mRNA in human cells. Recent analyses indicate that CDK9 regulates transcription at the early-elongation checkpoint of the vast majority of pol II-transcribed genes. Our recent discovery of an additional CDK9-regulated elongation checkpoint close to poly(A) sites adds a new layer to the control of transcription by this critical cellular kinase. This novel poly(A)-associated checkpoint has the potential to powerfully regulate gene expression just before a functional polyadenylated mRNA is produced: the point of no return. However, many questions remain to be answered before the role of this checkpoint becomes clear. Here we speculate on the possible biological significance of this novel mechanism of gene regulation and the players that may be involved.
Fuel cell system with interconnect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goettler, Richard; Liu, Zhien
The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.
Fuel cell system with interconnect
Goettler, Richard; Liu, Zhien
2015-08-11
The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.
Fuel cell system with interconnect
Goettler, Richard; Liu, Zhien
2015-03-10
The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.
Fuel cell system with interconnect
Liu, Zhien; Goettler, Richard
2015-09-29
The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.
Electrochemical cells and methods of manufacturing the same
Bazzarella, Ricardo; Slocum, Alexander H; Doherty, Tristan; Cross, III, James C
2015-11-03
Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus, the intermediate layer can serve as a current collector for the electrochemical cell.
Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro.
Cong, Shan; Cao, Guifang; Liu, Dongjun
2014-12-01
To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1-5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.
Photoionized Mixing Layer Models of the Diffuse Ionized Gas
NASA Astrophysics Data System (ADS)
Binette, Luc; Flores-Fajardo, Nahiely; Raga, Alejandro C.; Drissen, Laurent; Morisset, Christophe
2009-04-01
It is generally believed that O stars, confined near the galactic midplane, are somehow able to photoionize a significant fraction of what is termed the "diffuse ionized gas" (DIG) of spiral galaxies, which can extend up to 1-2 kpc above the galactic midplane. The heating of the DIG remains poorly understood, however, as simple photoionization models do not reproduce the observed line ratio correlations well or the DIG temperature. We present turbulent mixing layer (TML) models in which warm photoionized condensations are immersed in a hot supersonic wind. Turbulent dissipation and mixing generate an intermediate region where the gas is accelerated, heated, and mixed. The emission spectrum of such layers is compared with observations of Rand of the DIG in the edge-on spiral NGC 891. We generate two sequence of models that fit the line ratio correlations between [S II]/Hα, [O I]/Hα, [N II]/[S II], and [O III]/Hβ reasonably well. In one sequence of models, the hot wind velocity increases, while in the other, the ionization parameter and layer opacity increase. Despite the success of the mixing layer models, the overall efficiency in reprocessing the stellar UV is much too low, much less than 1%, which compels us to reject the TML model in its present form.
NASA Astrophysics Data System (ADS)
Hossain, Anowar; Mandal, Tripti; Mitra, Monojit; Manna, Prankrishna; Bauzá, Antonio; Frontera, Antonio; Seth, Saikat Kumar; Mukhopadhyay, Subrata
2017-12-01
A Co(II)-based coordination polymer with tetranuclear cobalt(II)-malonate cluster has been easily generated by aqueous medium self-assembly from Cobalt(II) chloride hexahydrate and malonic acid. The structure exhibits a non-interpenetrating, highly undulating two-dimensional (2D) bi-layer network with (4,4) topology. The crystal structure is composed of infinite interdigitated 2D metal-organic bi-layers which extended to an intricate 3D framework through the interbilayer hydrogen bonds. We have studied energetically by means of Density Functional Theory (DFT) calculations the H-bonding interactions that connect the 2D metal-organic bi-layers. The finite theoretical models have been used to compute conventional O‒H•••O and unconventional C‒H•••O interactions which plays a key role to build 3D architecture.
Ahn, Do Young; Lee, Deok Yeon; Shin, Chan Yong; Bui, Hoa Thi; Shrestha, Nabeen K; Giebeler, Lars; Noh, Yong-Young; Han, Sung-Hwan
2017-04-19
This work reports on designing of first successful MOF-sensitizer based solid-state photovoltaic device, perticularly with a meaningful output power conversion efficiency. In this study, an intrinsically conductive cobalt-based MOFs (Co-DAPV) formed by the coordination between Co (II) ions and a redox active di(3-diaminopropyl)-viologen (i.e., DAPV) ligand is investigated as sensitizer. Hall-effect measurement shows p-type conductivity of the Co-DAPV film with hole mobility of 0.017 cm 2 V -1 s -1 , suggesting its potential application as hole transporting sensitizer. Further, the energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of Co-DAPV are well-matched to be suitably employed for sensitizing TiO 2 . Thus, by layer-by-layer deposition of hole conducting MOF-sensitizer onto mesoporous TiO 2 film, a power conversion efficiency of as high as 2.1% is achieved, which exceeds the highest efficiency values of MOF-sensitized liquid-junction solar cells reported so far.
Dang, Xiangnan; Gu, Li; Qi, Jifa; Correa, Santiago; Zhang, Geran; Belcher, Angela M.; Hammond, Paula T.
2016-01-01
Fluorescence imaging in the second near-infrared window (NIR-II, 1,000–1,700 nm) features deep tissue penetration, reduced tissue scattering, and diminishing tissue autofluorescence. Here, NIR-II fluorescent probes, including down-conversion nanoparticles, quantum dots, single-walled carbon nanotubes, and organic dyes, are constructed into biocompatible nanoparticles using the layer-by-layer (LbL) platform due to its modular and versatile nature. The LbL platform has previously been demonstrated to enable incorporation of diagnostic agents, drugs, and nucleic acids such as siRNA while providing enhanced blood plasma half-life and tumor targeting. This work carries out head-to-head comparisons of currently available NIR-II probes with identical LbL coatings with regard to their biodistribution, pharmacokinetics, and toxicities. Overall, rare-earth-based down-conversion nanoparticles demonstrate optimal biological and optical performance and are evaluated as a diagnostic probe for high-grade serous ovarian cancer, typically diagnosed at late stage. Successful detection of orthotopic ovarian tumors is achieved by in vivo NIR-II imaging and confirmed by ex vivo microscopic imaging. Collectively, these results indicate that LbL-based NIR-II probes can serve as a promising theranostic platform to effectively and noninvasively monitor the progression and treatment of serous ovarian cancer. PMID:27114520
Xiao, Jie; Dowben, Peter A
2009-02-04
In combined photoemission and inverse photoemission spectroscopy studies, we observe changes in the metal phthalocyanine molecular orbital offsets with respect to the conducting gold substrate Fermi level, with the changing d-electron filling of the metal (II) (Co, Ni, Cu) phthalocyanines. The implication is that the interfacial dipole layer depends upon the choice of metal (Co, Ni, Cu) centers within the metal (II) phthalocyanines adsorbed on Au(111).
NASA Astrophysics Data System (ADS)
Lockyer, Nigel S.
1998-02-01
This paper reports on the CDF-II B physics goals and new detector systems presently being built for Run-II of the Tevatron collider in the year 2000. The B physics goals are focused towards observing and studying CP violation and B s flavor oscillations. Estimates of expected performance are reported. The new detector systems described are: the 5-layer 3-D silicon vertex detector, the intermedia silicon tracking layers, the central tracking drift chamber, muon system upgrades, and a proposed time-of-flight system.
Method of forming a package for MEMS-based fuel cell
Morse, Jeffrey D; Jankowski, Alan F
2013-05-21
A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.
Method of forming a package for mems-based fuel cell
Morse, Jeffrey D.; Jankowski, Alan F.
2004-11-23
A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMOS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.
NASA Technical Reports Server (NTRS)
Downes, Stephanie M.; Farneti, Riccardo; Uotila, Petteri; Griffies, Stephen M.; Marsland, Simon J.; Bailey, David; Behrens, Erik; Bentsen, Mats; Bi, Daohua; Biastoch, Arne;
2015-01-01
We characterise the representation of the Southern Ocean water mass structure and sea ice within a suite of 15 global ocean-ice models run with the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) protocol. The main focus is the representation of the present (1988-2007) mode and intermediate waters, thus framing an analysis of winter and summer mixed layer depths; temperature, salinity, and potential vorticity structure; and temporal variability of sea ice distributions. We also consider the interannual variability over the same 20 year period. Comparisons are made between models as well as to observation-based analyses where available. The CORE-II models exhibit several biases relative to Southern Ocean observations, including an underestimation of the model mean mixed layer depths of mode and intermediate water masses in March (associated with greater ocean surface heat gain), and an overestimation in September (associated with greater high latitude ocean heat loss and a more northward winter sea-ice extent). In addition, the models have cold and fresh/warm and salty water column biases centred near 50 deg S. Over the 1988-2007 period, the CORE-II models consistently simulate spatially variable trends in sea-ice concentration, surface freshwater fluxes, mixed layer depths, and 200-700 m ocean heat content. In particular, sea-ice coverage around most of the Antarctic continental shelf is reduced, leading to a cooling and freshening of the near surface waters. The shoaling of the mixed layer is associated with increased surface buoyancy gain, except in the Pacific where sea ice is also influential. The models are in disagreement, despite the common CORE-II atmospheric state, in their spatial pattern of the 20-year trends in the mixed layer depth and sea-ice.
2017-05-23
Adult Grade III Lymphomatoid Granulomatosis; B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia
NASA Astrophysics Data System (ADS)
Song, Jun-Ling; Mao, Jiang-Gao; Sun, Yan-Qiong; Zeng, Hui-Yi; Kremer, Reinhard K.; Clearfield, Abraham
2004-03-01
Hydrothermal reactions of N, N-bis(phosphonomethyl)aminoacetic acid (HO 2CCH 2N(CH 2PO 3H 2) 2) with metal(II) salts afforded two new metal carboxylate-phosphonates, namely, Pb 2[O 2CCH 2N(CH 2PO 3)(CH 2PO 3H)]·H 2O ( 1) and {NH 3CH 2CH 2NH 3}{Ni[O 2CCH 2N(CH 2PO 3H) 2](H 2O) 2} 2 ( 2). Among two unique lead(II) ions in the asymmetric unit of complex 1, one is five coordinated by five phosphonate oxygen atoms from 5 ligands, whereas the other one is five-coordinated by a tridentate chelating ligand (1 N and 2 phosphonate O atoms) and two phosphonate oxygen atoms from two other ligands. The carboxylate group of the ligand remains non-coordinated. The bridging of above two types of lead(II) ions through phosphonate groups resulted in a <002> double layer with the carboxylate group of the ligand as a pendant group. These double layers are further interlinked via hydrogen bonds between the carboxylate groups into a 3D network. The nickel(II) ion in complex 2 is octahedrally coordinated by a tetradentate chelating ligand (two phosphonate oxygen atoms, one nitrogen and one carboxylate oxygen atoms) and two aqua ligands. These {Ni[O 2CCH 2N(CH 2PO 3H) 2][H 2O] 2} - anions are further interlinked via hydrogen bonds between non-coordinated phosphonate oxygen atoms to form a <800> hydrogen bonded 2D layer. The 2H-protonated ethylenediamine cations are intercalated between two layers, forming hydrogen bonds with the non-coordinated carboxylate oxygen atoms. Results of magnetic measurements for complex 2 indicate that there is weak Curie-Weiss behavior with θ=-4.4 K indicating predominant antiferromagnetic interaction between the Ni(II) ions. Indication for magnetic low-dimension magnetism could not be detected.
Geomicrobiology of Fe-rich crusts in Lake Superior sediment
NASA Astrophysics Data System (ADS)
Dittrich, M.; Monreau, L.; Quazi, S.; Raoof, B.; Chesnyuk, A.; Katsev, S.; Fulthorpe, R.
2012-04-01
The limnological puzzles of Lake Superior are increasingly attracting scientists, and very little is known about the sediments and their associated microflora. The sediments are organic poor (less than 5%C) and the lake is deep oligotrophic, with water temperatures at the bottom around 3C. Previous studies reveal Fe-rich layers in the sediments at multiple loccations around the lake. The origin and mechanisms of formation of this layer remain unknown. In this study we investigated geochemical and microbiological processes that may lead to the formation of a two cm thick iron layer about 10 cm below the sediment surface. Sediment cores from two stations (EM, 230m water depth and ED, 310m water depth) in the East Basin were used. We monitored oxygen and pH depth profiles with microsensors, porewater and sediment solid matter were analyzed for nutrient and metal contents. Furthermore, phosphorus and iron sequantial extractions of sediment cores have been perfomed. The total cell count was determined using DAPI epifluoresence microscopy. DNA was extracted from the sediment samples and 16S ribosonal RNA amplicons were analyzed with denaturing gradient gel electrophoresis (DGGE). For a more in depth analysis, DNA samples from 8-10 cm and 10-12 cm were sent to the Research and Testing Lab (Texas) for pyrosequencing of 16S rRNA gene amplicons amplified using barcoded universal primers 27f-519r. The scanning electron microscope (SEM) images from the iron layer 10-12cm show filaments that were encrusted with spheres ca. 20 nm in diameter. SEM observations of thin sections also indicate the presence of very fine particles showing various morphologies. Analyses of the deposit material by SEM and energy dispersive X-ray spectroscopy (EDS) indicate that bacteria cells surfaces served as nucleation surfaces for Fe-oxide formation. EDS line-scans through bacterial cells covered with precipitates reveal phosphorus and carbon peaks at interface between cell surface and Fe-particles. The cluster analysis performed on the DGGE separation of ribosomal RNA gene fragments revealed that the two iron layers were not highly similar to each other. We obtained a total of 26,062 16S rRNA gene sequence reads from the two iron layers and the layers directly above them, which were clustered into operational taxonomic units sharing 80% similarity or more. 64-70% of these clusters could not be classified below the phylum level. While the 8-10 cm sediment layers were dominated (46.5% of reads) by relatives of Paenisporosarcina, the iron layers contained far fewer gram positive organisms, far more proteobacteria, and an a high proportion of Nitrospira species which show relatively high similarity to organisms found in an iron II rich seep.
Anaya-Hernández, A; Rodríguez-Castelán, J; Nicolás, L; Martínez-Gómez, M; Jiménez-Estrada, I; Castelán, F; Cuevas, E
2015-02-01
Oviductal regions show particular histological characteristics and functions. Tubal pathologies and hypothyroidism are related to primary and secondary infertility. The impact of hypothyroidism on the histological characteristics of oviductal regions has been scarcely studied. Our aim was to analyse the histological characteristics of oviductal regions in control and hypothyroid rabbits. Hypothyroidism was induced by oral administration of methimazole (MMI) for 30 days. For both groups, serum concentrations of thyroid and gonadal hormones were determined. Sections of oviductal regions were stained with the Masson's trichrome technique to analyse both epithelial and smooth muscle layers. The percentage of proliferative epithelial cells (anti-Ki67) in diverse oviductal regions was also quantified. Data were compared with Student t-test, Mann-Whitney U-test, or Fischer's test. In comparison with the control group, the hypothyroid group showed: (i) a low concentration of T3 and T4, but a high level of TSH; (ii) similar values of serum estradiol, progesterone and testosterone; (iii) a large size of ciliated cells in the ampulla (AMP), isthmus (IST) and utero-tubal junction (UTJ); (iv) a large size of secretory cells in the IST region; (v) a low percentage of proliferative secretory cells in the fimbria-infundibulum (FIM-INF) region; and (vi) a similar thickness of the smooth muscle layer and the cross-sectional area in the AMP and IST regions. Modifications in the size of the oviductal epithelium in hypothyroid rabbits could be related to changes in the cell metabolism that may impact on the reproductive functions achieved by oviduct. © 2014 Blackwell Verlag GmbH.
In Vivo Chondrogenesis in 3D Bioprinted Human Cell-laden Hydrogel Constructs
Möller, Thomas; Hägg, Daniel; Brantsing, Camilla; Rotter, Nicole; Apelgren, Peter; Lindahl, Anders; Kölby, Lars; Gatenholm, Paul
2017-01-01
Background: The three-dimensional (3D) bioprinting technology allows creation of 3D constructs in a layer-by-layer fashion utilizing biologically relevant materials such as biopolymers and cells. The aim of this study is to investigate the use of 3D bioprinting in a clinically relevant setting to evaluate the potential of this technique for in vivo chondrogenesis. Methods: Thirty-six nude mice (Balb-C, female) received a 5- × 5- × 1-mm piece of bioprinted cell-laden nanofibrillated cellulose/alginate construct in a subcutaneous pocket. Four groups of printed constructs were used: (1) human (male) nasal chondrocytes (hNCs), (2) human (female) bone marrow–derived mesenchymal stem cells (hBMSCs), (3) coculture of hNCs and hBMSCs in a 20/80 ratio, and (4) Cell-free scaffolds (blank). After 14, 30, and 60 days, the scaffolds were harvested for histological, immunohistochemical, and mechanical analysis. Results: The constructs had good mechanical properties and keep their structural integrity after 60 days of implantation. For both the hNC constructs and the cocultured constructs, a gradual increase of glycosaminoglycan production and hNC proliferation was observed. However, the cocultured group showed a more pronounced cell proliferation and enhanced deposition of human collagen II demonstrated by immunohistochemical analysis. Conclusions: In vivo chondrogenesis in a 3D bioprinted human cell-laden hydrogel construct has been demonstrated. The trophic role of the hBMSCs in stimulating hNC proliferation and matrix deposition in the coculture group suggests the potential of 3D bioprinting of human cartilage for future application in reconstructive surgery. PMID:28280669
In Vivo Chondrogenesis in 3D Bioprinted Human Cell-laden Hydrogel Constructs.
Möller, Thomas; Amoroso, Matteo; Hägg, Daniel; Brantsing, Camilla; Rotter, Nicole; Apelgren, Peter; Lindahl, Anders; Kölby, Lars; Gatenholm, Paul
2017-02-01
The three-dimensional (3D) bioprinting technology allows creation of 3D constructs in a layer-by-layer fashion utilizing biologically relevant materials such as biopolymers and cells. The aim of this study is to investigate the use of 3D bioprinting in a clinically relevant setting to evaluate the potential of this technique for in vivo chondrogenesis. Thirty-six nude mice (Balb-C, female) received a 5- × 5- × 1-mm piece of bioprinted cell-laden nanofibrillated cellulose/alginate construct in a subcutaneous pocket. Four groups of printed constructs were used: (1) human (male) nasal chondrocytes (hNCs), (2) human (female) bone marrow-derived mesenchymal stem cells (hBMSCs), (3) coculture of hNCs and hBMSCs in a 20/80 ratio, and (4) Cell-free scaffolds (blank). After 14, 30, and 60 days, the scaffolds were harvested for histological, immunohistochemical, and mechanical analysis. The constructs had good mechanical properties and keep their structural integrity after 60 days of implantation. For both the hNC constructs and the cocultured constructs, a gradual increase of glycosaminoglycan production and hNC proliferation was observed. However, the cocultured group showed a more pronounced cell proliferation and enhanced deposition of human collagen II demonstrated by immunohistochemical analysis. In vivo chondrogenesis in a 3D bioprinted human cell-laden hydrogel construct has been demonstrated. The trophic role of the hBMSCs in stimulating hNC proliferation and matrix deposition in the coculture group suggests the potential of 3D bioprinting of human cartilage for future application in reconstructive surgery.
Solare Cell Roof Tile And Method Of Forming Same
Hanoka, Jack I.; Real, Markus
1999-11-16
A solar cell roof tile includes a front support layer, a transparent encapsulant layer, a plurality of interconnected solar cells and a backskin layer. The front support layer is formed of light transmitting material and has first and second surfaces. The transparent encapsulant layer is disposed adjacent the second surface of the front support layer. The interconnected solar cells has a first surface disposed adjacent the transparent encapsulant layer. The backskin layer has a first surface disposed adjacent a second surface of the interconnected solar cells, wherein a portion of the backskin layer wraps around and contacts the first surface of the front support layer to form the border region. A portion of the border region has an extended width. The solar cell roof tile may have stand-offs disposed on the extended width border region for providing vertical spacing with respect to an adjacent solar cell roof tile.
Functional cell types in taste buds have distinct longevities.
Perea-Martinez, Isabel; Nagai, Takatoshi; Chaudhari, Nirupa
2013-01-01
Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8-12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2'-deoxyuridine (EdU) to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor) taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic) taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells.
Functional Cell Types in Taste Buds Have Distinct Longevities
Perea-Martinez, Isabel; Nagai, Takatoshi; Chaudhari, Nirupa
2013-01-01
Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8–12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2′-deoxyuridine (EdU) to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor) taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic) taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells. PMID:23320081
Electrochemical cells and methods of manufacturing the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazzarella, Ricardo; Slocum, Alexander H.; Doherty, Tristan
2016-07-26
Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus,more » the intermediate layer can serve as a current collector for the electrochemical cell.« less
Observations of an Intermediate Layer During the Coqui II Campaign
NASA Technical Reports Server (NTRS)
Bishop, R. L.; Earle, G. D.; Herrero, F. A.; Bateman, T. T.
2000-01-01
NASA sounding rocket 21.114, launched March 7, 1998, during the Coqui II campaign, provided neutral wind and plasma density measurements of a weak intermediate layer. The layer was centered near 140 km and had an approximate peak plasma density of 2200 cc. The measured winds were typically less than 40 m/s, in agreement with wind shear formation theory and coincident density observations. The data obtained during the flight allow us to explore the plasma density structure and wind field morphology of the intermediate layer. Coupled with simultaneous data from Arecibo Observatory, the upleg and downleg density profiles provide three spatially separated measurements that enable the first detailed investigation of the horizontal extent and variation of an intermediate layer.
NASA Astrophysics Data System (ADS)
Karatsolis, B.-Th.; Triantaphyllou, M. V.; Dimiza, M. D.; Malinverno, E.; Lagaria, A.; Mara, P.; Archontikis, O.; Psarra, S.
2017-10-01
This study aims to presents the species composition of living coccolithophore communities in the NE Aegean Sea, investigating their spatial and temporal variations along a north-south transect in the area receiving the inflowing surface Black Sea Water (BSW) over the deeper Levantine Water (LW) layer. Coccolithophores in the area were relatively diverse and a total of 95 species over 3 sampling periods studied were recognized using Scanning Electron Microscope (SEM) techniques. R-mode hierarchical cluster analysis distinguished two coccolithophore Groups (I, IIa, IIb, IIc) with different ecological preferences. Emiliania huxleyi was the most abundant species of Group I, whereas Syracosphaera spp., Rhabdosphaera spp. and holococcolithophores were prevailing in the highly diversified Group II assemblages. Biometric analysis conducted on E. huxleyi coccoliths from Aegean water column and Black Sea sediment trap samples, indicated that during autumn, NE Aegean specimens in samples under BSW influence were featured by unimodal distribution concerning the coccolith relative tube width, with values similar to those provided by the Black Sea specimens. In early spring, coccoliths in the stations with increased BSW influx displayed a bimodal pattern of relative tube width with smaller values found mostly in the surface layers, while the distribution became again unimodal and dominated by larger values within the deeper LW layers. In the summer period, the typical LW holococcolithophore species (Group II) presented low cell numbers in the surface layer (<20 m), which is their usual ecological niche in the Aegean Sea, compared to greater depths, therefore marking LW mass flowing beneath the less saline BSW surface lid. In contrast to Black Sea early summer bloom conditions, E. huxleyi was almost absent in the NE Aegean during the summer sampling period.
Parvovirus B19 VLP recognizes globoside in supported lipid bilayers.
Nasir, Waqas; Nilsson, Jonas; Olofsson, Sigvard; Bally, Marta; Rydell, Gustaf E
2014-05-01
Studies have suggested that the glycosphingolipid globoside (Gb4Cer) is a receptor for human parvovirus B19. Virus-like particles bind to Gb4Cer on thin-layer chromatograms, but a direct interaction between the virus and lipid membrane-associated Gb4Cer has been debated. Here, we characterized the binding of parvovirus B19 VP1/VP2 virus-like particles to glycosphingolipids (i) on thin-layer chromatograms (TLCs) and (ii) incorporated into supported lipid bilayers (SLBs) acting as cell-membrane mimics. The binding specificities of parvovirus B19 determined in the two systems were in good agreement; the VLP recognized both Gb4Cer and the Forssman glycosphingolipid on TLCs and in SLBs compatible with the role of Gb4Cer as a receptor for this virus. Copyright © 2014 Elsevier Inc. All rights reserved.
Application of Satellite SAR Imagery in Mapping the Active Layer of Arctic Permafrost
NASA Technical Reports Server (NTRS)
Zhang, Ting-Jun; Li, Shu-Sun
2003-01-01
The objective of this project is to map the spatial variation of the active layer over the arctic permafrost in terms of two parameters: (i) timing and duration of thaw period and (ii) differential frost heave and thaw settlement of the active layer. To achieve this goal, remote sensing, numerical modeling, and related field measurements are required. Tasks for the University of Colorado team are to: (i) determine the timing of snow disappearance in spring through changes in surface albedo (ii) simulate the freezing and thawing processes of the active layer and (iii) simulate the impact of snow cover on permafrost presence.
2018-03-02
Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia
Faster recovery of a diatom from UV damage under ocean acidification.
Wu, Yaping; Campbell, Douglas A; Gao, Kunshan
2014-11-01
Diatoms are the most important group of primary producers in marine ecosystems. As oceanic pH declines and increased stratification leads to the upper mixing layer becoming shallower, diatoms are interactively affected by both lower pH and higher average exposures to solar ultraviolet radiation. The photochemical yields of a model diatom, Phaeodactylum tricornutum, were inhibited by ultraviolet radiation under both growth and excess light levels, while the functional absorbance cross sections of the remaining photosystem II increased. Cells grown under ocean acidification (OA) were less affected during UV exposure. The recovery of PSII under low photosynthetically active radiation was much faster than in the dark, indicating that photosynthetic processes were essential for the full recovery of photosystem II. This light dependent recovery required de novo synthesized protein. Cells grown under ocean acidification recovered faster, possibly attributable to higher CO₂ availability for the Calvin cycle producing more resources for repair. The lower UV inhibition combined with higher recovery rate under ocean acidification could benefit species such as P.tricornutum, and change their competitiveness in the future ocean. Copyright © 2014 Elsevier B.V. All rights reserved.
Surfactants and the Mechanics of Respiration
NASA Astrophysics Data System (ADS)
Jbaily, Abdulrahman; Szeri, Andrew J.
2016-11-01
Alveoli are small sacs found at the end of terminal bronchioles in human lungs with a mean diameter of 200 μm. A thin layer of fluid (hypophase) coats the inner face of an alveolus and is in contact with the air in the lungs. The thickness of this layer varies among alveoli, but is in the range of 0.1 to 0.5 μm for many portions of the alveolar network. The interfacial tension σ at the air-hypophase interface tends to favor collapse of the alveolus, and resists its expansion during inhalation. Type II alveolar cells synthesize and secrete a mixture of phospholipids and proteins called pulmonary surfactant. These surfactant molecules adsorb to the interface causing σ of water at body temperature is 70 mN/m and falls to an equilibrium value of 25 mN/m when surfactants are present. Also, in a dynamic sense, it is known that σ is reduced to near 0 during exhalation when the surfactant film compresses. In this work, the authors develop a mechanical and transport model of the alveolus to study the effect of surfactants on various aspects of respiration. The model is composed of three principal parts: (i) air movement into and out of the alveolus; (ii) a balance of linear momentum across the two-layered membrane of the alveolus (hypophase and elastic wall); and (iii) a pulmonary surfactant transport problem in the hypophase. The goal is to evaluate the influence of pulmonary surfactant on respiratory mechanics.
Multijunction photovoltaic device and method of manufacture
Arya, Rejeewa R.; Catalano, Anthony W.; Bennett, Murray
1995-04-04
A multijunction photovoltaic device includes first, second, and third amorphous silicon p-i-n photovoltaic cells in a stacked arrangement. The intrinsic layers of the second and third cells are formed of a-SiGe alloys with differing ratios of Ge such that the bandgap of the intrinsic layers respectively decrease from the first uppermost cell to the third lowermost cell. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one of the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers.
Brentuximab Vedotin + Rituximab as Frontline Therapy for Pts w/ CD30+ and/or EBV+ Lymphomas
2015-04-28
Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Epstein-Barr Virus Infection; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia
2013-01-08
Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Waldenström Macroglobulinemia
Voltage-matched, monolithic, multi-band-gap devices
Wanlass, Mark W.; Mascarenhas, Angelo
2006-08-22
Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a sting of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.
Voltage-Matched, Monolithic, Multi-Band-Gap Devices
Wanlass, M. W.; Mascarenhas, A.
2006-08-22
Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a string of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.
Interaction of Vascular Smooth Muscle Cells Under Low Shear Stress
NASA Technical Reports Server (NTRS)
Seidel, Charles L.
1998-01-01
The blood vessel wall consists of three cellular layers, an outer adventitial, a middle medial and an inner intimal layer. When the blood vessel forms in the embryo it begins as a tube composed of a single cell type called endothelial cells. Over time, other cells are recruited from the surrounding tissue to form additional layers on the outer surface of the endothelial tube. The cells that are recruited are called mesenchymal cells. Mesenchymal cells are responsible for the production of connective tissue that holds the blood vessel together and for developing into vascular smooth muscle cells that are responsible for regulating the diameter of the vessel (1) and therefore, blood flow. In a fully developed blood vessel, the endothelial cells make- up the majority of cells in the intimal layer while the mesenchymal cells make-up the majority of cells in the medial and adventitial layers. Within the medial layer of a mature vessel, cells are organized into multiple circular layers of alternating bands of connective tissue and cells. The cell layer is composed of a mixture of mesenchymal cells that have not developed into smooth muscle cells and fully developed smooth muscle cells (2). The assembly and organization of complex tissues is directed in part by a signaling system composed of proteins on the cell surface called adhesion molecules. Adhesion molecules enable cells to recognize each other as well as the composition of the connective tissue in which they reside (3). It was hypothesized that the different cell types that compose the vascular wall possess different adhesion molecules that enable them to recognize each other and through this recognition system, form the complex layered organization of the vascular wall. In other words, the layered organization is an intrinsic property of the cells. If this hypothesis is correct then the different cells that make up the vessel wall, when mixed together, should organize themselves into a layered structure resembling an intact blood vessel. Experiments described below were designed to test this hypothesis.
Mascarell, L; Rak, S; Worm, M; Melac, M; Soulie, S; Lescaille, G; Lemoine, F; Jospin, F; Paul, S; Caplier, L; Hasséus, B; Björhn, C; Zeldin, R K; Baron-Bodo, V; Moingeon, P
2015-04-01
A detailed characterization of human oral immune cells is needed to better understand local mechanisms associated with allergen capture following oral exposure. Oral immune cells were characterized by immunohistology and immunofluorescence in biopsies obtained from three healthy individuals and 23 birch pollen-allergic patients with/without oral allergy syndrome (OAS), at baseline and after 5 months of sublingual allergen immunotherapy (AIT). Similar cell subsets (i.e., dendritic cells, mast cells, and T lymphocytes) were detected in oral tissues from healthy and birch pollen-allergic individuals. CD207+ Langerhans cells (LCs) and CD11c+ myeloid dendritic cells (DCs) were found in both the epithelium and the papillary layer of the Lamina propria (LP), whereas CD68+ macrophages, CD117+ mast cells, and CD4+ /CD8+ T cells were rather located in both the papillary and reticular layers of the LP. Patterns of oral immune cells were identical in patients with/without OAS, except lower numbers of CD207+ LCs found in oral tissues from patients with OAS, when compared to OAS- patients (P < 0.05). A 5-month sublingual AIT had a limited impact on oral immune cells, with only a significant increase in IgE+ cells in patients from the active group. Colocalization experiments confirmed that such IgE-expressing cells mostly encompass CD68+ macrophages located in the LP, and to a lesser extent CD207+ LCs in the epithelium. Two cell subsets contribute to antigen/allergen uptake in human oral tissues, including (i) CD207+ LCs possibly involved in the physiopathology of OAS and (ii) CD68+ macrophages likely critical in allergen capture via IgE-facilitated mechanisms during sublingual AIT. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
2017-09-29
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Waldenström Macroglobulinemia
2015-08-12
Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, Andrew J.; Temperton, Robert H.; Handrup, Karsten
2014-06-21
The interaction of the dye molecule N3 (cis-bis(isothiocyanato)bis(2,2-bipyridyl-4,4′-dicarbo-xylato) -ruthenium(II)) with the ultra-thin oxide layer on a AlNi(110) substrate, has been studied using synchrotron radiation based photoelectron spectroscopy, resonant photoemission spectroscopy, and near edge X-ray absorption fine structure spectroscopy. Calibrated X-ray absorption and valence band spectra of the monolayer and multilayer coverages reveal that charge transfer is possible from the molecule to the AlNi(110) substrate via tunnelling through the ultra-thin oxide layer and into the conduction band edge of the substrate. This charge transfer mechanism is possible from the LUMO+2 and 3 in the excited state but not from the LUMO,more » therefore enabling core-hole clock analysis, which gives an upper limit of 6.0 ± 2.5 fs for the transfer time. This indicates that ultra-thin oxide layers are a viable material for use in dye-sensitized solar cells, which may lead to reduced recombination effects and improved efficiencies of future devices.« less
Microporous polymeric 3D scaffolds templated by the layer-by-layer self-assembly.
Paulraj, Thomas; Feoktistova, Natalia; Velk, Natalia; Uhlig, Katja; Duschl, Claus; Volodkin, Dmitry
2014-08-01
Polymeric scaffolds serve as valuable supports for biological cells since they offer essential features for guiding cellular organization and tissue development. The main challenges for scaffold fabrication are i) to tune an internal structure and ii) to load bio-molecules such as growth factors and control their local concentration and distribution. Here, a new approach for the design of hollow polymeric scaffolds using porous CaCO3 particles (cores) as templates is presented. The cores packed into a microfluidic channel are coated with polymers employing the layer-by-layer (LbL) technique. Subsequent core elimination at mild conditions results in formation of the scaffold composed of interconnected hollow polymer microspheres. The size of the cores determines the feature dimensions and, as a consequence, governs cellular adhesion: for 3T3 fibroblasts an optimal microsphere size is 12 μm. By making use of the carrier properties of the porous CaCO3 cores, the microspheres are loaded with BSA as a model protein. The scaffolds developed here may also be well suited for the localized release of bio-molecules using external triggers such as IR-light. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Du, Yujuan
2017-01-01
Plant development is characterized by repeated initiation of meristems, regions of dividing cells that give rise to new organs. During lateral root (LR) formation, new LR meristems are specified to support the outgrowth of LRs along a new axis. The determination of the sequential events required to form this new growth axis has been hampered by redundant activities of key transcription factors. Here, we characterize the effects of three PLETHORA (PLT) transcription factors, PLT3, PLT5, and PLT7, during LR outgrowth. In plt3plt5plt7 triple mutants, the morphology of lateral root primordia (LRP), the auxin response gradient, and the expression of meristem/tissue identity markers are impaired from the “symmetry-breaking” periclinal cell divisions during the transition between stage I and stage II, wherein cells first acquire different identities in the proximodistal and radial axes. Particularly, PLT1, PLT2, and PLT4 genes that are typically expressed later than PLT3, PLT5, and PLT7 during LR outgrowth are not induced in the mutant primordia, rendering “PLT-null” LRP. Reintroduction of any PLT clade member in the mutant primordia completely restores layer identities at stage II and rescues mutant defects in meristem and tissue establishment. Therefore, all PLT genes can activate the formative cell divisions that lead to de novo meristem establishment and tissue patterning associated with a new growth axis. PMID:29078398
Lee, Ke-Jing; Chang, Yu-Chi; Lee, Cheng-Jung; Wang, Li-Wen; Wang, Yeong-Her
2017-12-09
A one-transistor and one-resistor (1T1R) architecture with a resistive random access memory (RRAM) cell connected to an organic thin-film transistor (OTFT) device is successfully demonstrated to avoid the cross-talk issues of only one RRAM cell. The OTFT device, which uses barium zirconate nickelate (BZN) as a dielectric layer, exhibits favorable electrical properties, such as a high field-effect mobility of 5 cm²/Vs, low threshold voltage of -1.1 V, and low leakage current of 10 -12 A, for a driver in the 1T1R operation scheme. The 1T1R architecture with a TiO₂-based RRAM cell connected with a BZN OTFT device indicates a low operation current (10 μA) and reliable data retention (over ten years). This favorable performance of the 1T1R device can be attributed to the additional barrier heights introduced by using Ni (II) acetylacetone as a substitute for acetylacetone, and the relatively low leakage current of a BZN dielectric layer. The proposed 1T1R device with low leakage current OTFT and excellent uniform resistance distribution of RRAM exhibits a good potential for use in practical low-power electronic applications.
Reactive Fe(II) layers in deep-sea sediments
NASA Astrophysics Data System (ADS)
König, Iris; Haeckel, Matthias; Drodt, Matthias; Suess, Erwin; Trautwein, Alfred X.
1999-05-01
The percentage of the structural Fe(II) in clay minerals that is readily oxidized to Fe(III) upon contact with atmospheric oxygen was determined across the downcore tan-green color change in Peru Basin sediments. This latent fraction of reactive Fe(II) was only found in the green strata, where it proved to be large enough to constitute a deep reaction layer with respect to the pore water O 2 and NO 3-. Large variations were detected in the proportion of the reactive Fe(II) concentration to the organic matter content along core profiles. Hence, the commonly observed tan-green color change in marine sediments marks the top of a reactive Fe(II) layer, which may represent the major barrier to the movement of oxidation fronts in pelagic subsurface sediments. This is also demonstrated by numerical model simulations. The findings imply that geochemical barriers to pore water oxidation fronts form diagenetically in the sea floor wherever the stage of iron reduction is reached, provided that the sediments contain a significant amount of structural iron in clay minerals.
Magistretti, Jacopo; Ragsdale, David S; Alonso, Angel
1999-01-01
Single Na+ channel activity was recorded in patch-clamp, cell-attached experiments performed on dendritic processes of acutely isolated principal neurones from rat entorhinal-cortex layer II. The distances of the recording sites from the soma ranged from ≈20 to ≈100 μm.Step depolarisations from holding potentials of −120 to −100 mV to test potentials of −60 to +10 mV elicited Na+ channel openings in all of the recorded patches (n= 16).In 10 patches, besides transient Na+ channel openings clustered within the first few milliseconds of the depolarising pulses, prolonged and/or late Na+ channel openings were also regularly observed. This ‘persistent’ Na+ channel activity produced net inward, persistent currents in ensemble-average traces, and remained stable over the entire duration of the experiments (≈9 to 30 min).Two of these patches contained <= 3 channels. In these cases, persistent Na+ channel openings could be attributed to the activity of one single channel.The voltage dependence of persistent-current amplitude in ensemble-average traces closely resembled that of whole-cell, persistent Na+ current expressed by the same neurones, and displayed the same characteristic low threshold of activation.Dendritic, persistent Na+ channel openings had relatively high single-channel conductance (≈20 pS), similar to what is observed for somatic, persistent Na+ channels.We conclude that a stable, persistent Na+ channel activity is expressed by proximal dendrites of entorhinal-cortex layer II principal neurones, and can contribute a significant low-threshold, persistent Na+ current to the dendritic processing of excitatory synaptic inputs. PMID:10601494
Automatic detection and quantitative analysis of cells in the mouse primary motor cortex
NASA Astrophysics Data System (ADS)
Meng, Yunlong; He, Yong; Wu, Jingpeng; Chen, Shangbin; Li, Anan; Gong, Hui
2014-09-01
Neuronal cells play very important role on metabolism regulation and mechanism control, so cell number is a fundamental determinant of brain function. Combined suitable cell-labeling approaches with recently proposed three-dimensional optical imaging techniques, whole mouse brain coronal sections can be acquired with 1-μm voxel resolution. We have developed a completely automatic pipeline to perform cell centroids detection, and provided three-dimensional quantitative information of cells in the primary motor cortex of C57BL/6 mouse. It involves four principal steps: i) preprocessing; ii) image binarization; iii) cell centroids extraction and contour segmentation; iv) laminar density estimation. Investigations on the presented method reveal promising detection accuracy in terms of recall and precision, with average recall rate 92.1% and average precision rate 86.2%. We also analyze laminar density distribution of cells from pial surface to corpus callosum from the output vectorizations of detected cell centroids in mouse primary motor cortex, and find significant cellular density distribution variations in different layers. This automatic cell centroids detection approach will be beneficial for fast cell-counting and accurate density estimation, as time-consuming and error-prone manual identification is avoided.
Nanjo, Yohei; Asatsuma, Satoru; Itoh, Kimiko; Hori, Hidetaka; Mitsui, Toshiaki; Fujisawa, Yukiko
2004-06-01
Hormonal regulation of expression of alpha-amylase II-4 that lacks the gibberellin-response cis-element (GARE) in the promoter region of the gene was studied in germinating rice (Oryza sativa L.) seeds. Temporal and spatial expression of alpha-amylase II-4 in the aleurone layer were essentially identical to those of alpha-amylase I-1 whose gene contains GARE, although these were distinguishable in the embryo tissues at the early stage of germination. The gibberellin-responsible expression of alpha-amylase II-4 was also similar to that of alpha-amylase I-1. However, the level of alpha-amylase II-4 mRNA was not increased by gibberellin, indicating that the transcriptional enhancement of alpha-amylase II-4 expression did not occur in the aleurone. Gibberellin stimulated the accumulation of 45Ca2+ into the intracellular secretory membrane system. In addition, several inhibitors for Ca2+ signaling, such as EGTA, neomycin, ruthenium red (RuR), and W-7 prevented the gibberellin-induced expression of alpha-amylase II-4 effectively. While the gibberellin-induced expression of alpha-amylase II-4 occurred normally in the aleurone layer of a rice dwarf mutant d1 which is defective in the alpha subunit of the heterotrimeric G protein. Based on these results, it was concluded that the posttranscriptional regulation of alpha-amylase II-4 expression by gibberellin operates in the aleurone layer of germinating rice seed, which is mediated by Ca2+ but not the G protein.
Generation of organized germ layers from a single mouse embryonic stem cell.
Poh, Yeh-Chuin; Chen, Junwei; Hong, Ying; Yi, Haiying; Zhang, Shuang; Chen, Junjian; Wu, Douglas C; Wang, Lili; Jia, Qiong; Singh, Rishi; Yao, Wenting; Tan, Youhua; Tajik, Arash; Tanaka, Tetsuya S; Wang, Ning
2014-05-30
Mammalian inner cell mass cells undergo lineage-specific differentiation into germ layers of endoderm, mesoderm and ectoderm during gastrulation. It has been a long-standing challenge in developmental biology to replicate these organized germ layer patterns in culture. Here we present a method of generating organized germ layers from a single mouse embryonic stem cell cultured in a soft fibrin matrix. Spatial organization of germ layers is regulated by cortical tension of the colony, matrix dimensionality and softness, and cell-cell adhesion. Remarkably, anchorage of the embryoid colony from the 3D matrix to collagen-1-coated 2D substrates of ~1 kPa results in self-organization of all three germ layers: ectoderm on the outside layer, mesoderm in the middle and endoderm at the centre of the colony, reminiscent of generalized gastrulating chordate embryos. These results suggest that mechanical forces via cell-matrix and cell-cell interactions are crucial in spatial organization of germ layers during mammalian gastrulation. This new in vitro method could be used to gain insights on the mechanisms responsible for the regulation of germ layer formation.
Ba2F2Fe(1.5)Se3: An Intergrowth Compound Containing Iron Selenide Layers.
Driss, Dalel; Janod, Etienne; Corraze, Benoit; Guillot-Deudon, Catherine; Cario, Laurent
2016-03-21
The iron selenide compound Ba2F2Fe(1.5)Se3 was synthesized by a high-temperature ceramic method. The single-crystal X-ray structure determination revealed a layered-like structure built on [Ba2F2](2+) layers of the fluorite type and iron selenide layers [Fe(1.5)Se3](2-). These [Fe1.5Se3](2-) layers contain iron in two valence states, namely, Fe(II+) and Fe(III+) located in octahedral and tetrahedral sites, respectively. Magnetic measurements are consistent with a high-spin state for Fe(II+) and an intermediate-spin state for Fe(III+). Moreover, susceptibility and resistivity measurements demonstrate that Ba2F2Fe(1.5)Se3 is an antiferromagnetic insulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazzarella, Ricardo; Slocum, Alexander H.; Doherty, Tristan
Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus,more » the intermediate layer can serve as a current collector for the electrochemical cell.« less
NASA Astrophysics Data System (ADS)
Balakrishnan, A.; Frei, M.; Kerzenmacher, S.; Reinecke, H.; Mueller, C.
2015-12-01
In this work we present the design and fabrication of the miniaturized PEM fuel cell combined microreactor system with hydrogen regulation mechanism and testing of prototype microreactor. The system consists of two components (i) fuel cell component and (ii) microreactor component. The fuel cell component represents the miniaturized PEM fuel cell system (combination of screen printed fuel cell assembly and an on-board hydrogen storage medium). Hydrogen production based on catalytic hydrolysis of chemical hydride takes place in the microreactor component. The self-regulated hydrogen mechanism based on the gaseous hydrogen produced from the catalytic hydrolysis of sodium borohydride (NaBH4) gets accumulated as bubbles at the vicinity of the hydrophobic coated hydrogen exhaust holes. When the built up hydrogen bubbles pressure exceeds the burst pressure at the hydrogen exhaust holes the bubble collapses. This collapse causes a surge of fresh NaBH4 solution onto the catalyst surface leading to the removal of the reaction by-products formed at the active sites of the catalyst. The catalyst used in the system is platinum deposited on a base substrate. Nickel foam, carbon porous medium (CPM) and ceramic plate were selected as candidates for base substrate for developing a robust catalyst surface. For the first time the platinum layer fabricated by pulsed electrodeposition and dealloying (EPDD) technique is used for hydrolysis of NaBH4. The major advantages of such platinum catalyst layers are its high surface area and their mechanical stability. Prototype microreactor system with self-regulated hydrogen mechanism is demonstrated.
Oxygen Displacement in Cuprates under IonicLiquid Field-Effect Gating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubuis, Guy; Yacoby, Yizhak; Zhou, Hua
We studied structural changes in a 5 unit cell thick La 1.96Sr 0.04CuO 4 film, epitaxially grown on a LaSrAlO 4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were:more » (i) there were no structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and planar oxygen atoms were displaced towards the sample surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of planar oxygen atoms.« less
Oxygen Displacement in Cuprates under IonicLiquid Field-Effect Gating
Dubuis, Guy; Yacoby, Yizhak; Zhou, Hua; ...
2016-08-15
We studied structural changes in a 5 unit cell thick La 1.96Sr 0.04CuO 4 film, epitaxially grown on a LaSrAlO 4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were:more » (i) there were no structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and planar oxygen atoms were displaced towards the sample surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of planar oxygen atoms.« less
Heterojunction solar cell with passivated emitter surface
Olson, Jerry M.; Kurtz, Sarah R.
1994-01-01
A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.
Heterojunction solar cell with passivated emitter surface
Olson, J.M.; Kurtz, S.R.
1994-05-31
A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.
López-Sánchez, Noelia; González-Fernández, Zaira; Niinobe, Michio; Yoshikawa, Kazuaki; Frade, José María
2007-07-18
In mammals, the type II melanoma antigen (Mage) protein family is constituted by at least 10 closely related members that are expressed in different tissues, including the nervous system. These proteins are believed to regulate cell cycle withdrawal, neuronal differentiation, and apoptosis. However, the analysis of their specific function has been complicated by functional redundancy. In accordance with previous studies in teleosts and Drosophila, we present evidence that only one mage gene exists in genomes from protists, fungi, plants, nematodes, insects, and nonmammalian vertebrates. We have identified the chicken mage gene and cloned the cDNA encoding the chick Mage protein (CMage). CMage shares close homology with the type II Mage protein family, and, as previously shown for the type II Mage proteins Necdin and Mage-G1, it can interact with the transcription factor E2F-1. CMage is expressed in specific regions of the developing nervous system including the retinal ganglion cell layer, the ventral horn of the spinal cord, and the dorsal root ganglia, coinciding with the expression of the neurotrophin receptor p75 (p75(NTR)) in these regions. We show that the intracellular domain of p75(NTR) can interact with both CMage and Necdin, thus preventing the binding of the latter proteins to the transcription factor E2F-1, and facilitating the proapoptotic activity of E2F-1 in N1E-115 differentiating neurons. The presence of a single mage gene in the chicken genome, together with the close functional resemblance between CMage and Necdin, makes this species ideal to further analyze signal transduction through type II Mage proteins.
NASA Astrophysics Data System (ADS)
Fan, Haifeng; Wen, Hanjie; Hu, Ruizhong; Zhao, Hui
2011-12-01
To understand the impact of Selenium (Se) into the biogeochemical cycle and implications for palaeo-redox environment, a sequential extraction method was utilized for samples including black shales, cherts, a Ni-Mo-Se sulfide layer, K-bentonite and phosphorite from Lower Cambrian Se-enriched strata in southern China. Seven species (water-soluble, phosphate exchangeable, base-soluble, acetic acid-soluble, sulfide/selenide associated, residual Se) and different oxidation states (selenate Se(VI), selenite Se(IV), organic Se, Se (0) and mineral Se(-II)) were determinated in this study. We found that the Ni-Mo-Se sulfide layer contained a significantly greater amount of Se(-II) associated with sulfides/selenides than those in host black shales and cherts. Furthermore, a positive correlation between the degree of sulfidation of iron (DOS) and the percentage of the sulfide/selenide-associated Se(-II) was observed for samples, which suggests the proportion of sulfide/selenide-associated Se(-II) could serve as a proxy for palaeo-redox conditions. In addition, the higher percentage of Se(IV) in K-bentonite and phosphorite was found and possibly attributed to the adsorption of Se by clay minerals, iron hydroxide surfaces and organic particles. Based on the negative correlations between the percentage of Se(IV) and that of Se(-II) in samples, we propose that the K-bentonite has been altered under the acid oxic conditions, and the most of black shale (and cherts) and the Ni-Mo-Se sulfide layer formed under the anoxic and euxinic environments, respectively. Concerning Se accumulation in the Ni-Mo-Se sulfide layer, the major mechanism can be described by (1) biotic and abiotic adsorption and further dissimilatory reduction from oxidized Se(VI) and Se(IV) to Se(-II), through elemental Se, (2) contribution of hydrothermal fluid with mineral Se(-II).
Thermophotovoltaic in-situ mirror cell
Campbell, Brian C.
1997-01-01
A photovoltaic cell used in a direct energy conversion generator for converting heat to electricity includes a reflective layer disposed within the cell between the active layers of the cell and the cell substrate. The reflective layer reflects photons of low energy back to a photon producing emitter for reabsorption by the emitter, or reflects photons with energy greater than the cell bandgap back to the cell active layers for conversion into electricity. The reflective layer can comprise a reflective metal such as gold while the substrate can comprise heavily doped silicon or a metal.
An approach for configuring space photovoltaic tandem arrays based on cell layer performance
NASA Technical Reports Server (NTRS)
Flora, C. S.; Dillard, P. A.
1991-01-01
Meeting solar array performance goals of 300 W/Kg requires use of solar cells with orbital efficiencies greater than 20 percent. Only multijunction cells and cell layers operating in tandem produce this required efficiency. An approach for defining solar array design concepts that use tandem cell layers involve the following: transforming cell layer performance at standard test conditions to on-orbit performance; optimizing circuit configuration with tandem cell layers; evaluating circuit sensitivity to cell current mismatch; developing array electrical design around selected circuit; and predicting array orbital performance including seasonal variations.
Activity-dependent self-regulation of viscous length scales in biological systems
NASA Astrophysics Data System (ADS)
Nandi, Saroj Kumar
2018-05-01
The cellular cortex, which is a highly viscous thin cytoplasmic layer just below the cell membrane, controls the cell's mechanical properties, which can be characterized by a hydrodynamic length scale ℓ . Cells actively regulate ℓ via the activity of force-generating molecules, such as myosin II. Here we develop a general theory for such systems through a coarse-grained hydrodynamic approach including activity in the static description of the system providing an experimentally accessible parameter and elucidate the detailed mechanism of how a living system can actively self-regulate its hydrodynamic length scale, controlling the rigidity of the system. Remarkably, we find that ℓ , as a function of activity, behaves universally and roughly inversely proportional to the activity of the system. Our theory rationalizes a number of experimental findings on diverse systems, and comparison of our theory with existing experimental data shows good agreement.
Bussotti, Filippo; Strasser, Reto J; Schaub, Marcus
2007-06-01
Visible ozone symptoms on leaves are expressions of physiological mechanisms to cope with oxidative stresses. Often, the symptoms consist of stippling, which corresponds to localized cell death (hypersensitive response, HR), separated from healthy cells by a layer of callose. The HR strategy tends to protect the healthy cells and in most cases the efficiency of chlorophyll to trap energy is not affected. In other cases, the efficiency of leaves to produce biomass declines and the plant loses its photosynthetic apparatus replacing it with a new, more efficient one. Another strategy consists of the production of pigments (anthocyanins), and leaves become reddish. In these cases, the most significant physiological manifestation consists of the enhanced dissipation of energy. These different behavior patterns are reflected in the initial events of photosynthetic activity, and can be monitored with techniques based on the direct fluorescence of chlorophyll a in photosystem II, applying the JIP-test.
NASA Technical Reports Server (NTRS)
Jordan, Jacqueline A.; Fraga, Denise N.; Gonda, Steve R.
2002-01-01
A three-dimensional (3-D), tissue-like model was developed for the genotoxic assessment of space environment. In previous experiments, we found that culturing mammalian cells in a NASA-designed bioreactor, using Cytodex-3 beads as a scaffold, generated 3-D multicellular spheroids. In an effort to generate scaffold-free spheroids, we developed a new 3-D tissue-like model by coculturing fibroblast and epithelial cell in a NASA bioreactor using macroporous Cultispher-S(TradeMark) microcarriers. Big Blue(Registered Trademark) Rat 2(Lambda) fibroblasts, genetically engineered to contain multiple copies (>60 copies/cell) of the Lac I target gene, were cocultured with radio-sensitive human epithelial cells, H184F5. Over an 8-day period, samples were periodically examined by microscopy and histology to confirm cell attachment, growth, and viability. Immunohistochemistry and western analysis were used to evaluate the expression of specific cytoskeletal and adhesion proteins. Key cell culture parameters (glucose, pH, and lactate concentrations) were monitored daily. Controls were two-dimensional mono layers of fibroblast or epithelial cells cultured in T-flasks. Analysis of 3-D spheroids from the bioreactor suggests fibroblast cells attached to and completely covered the bead surface and inner channels by day 3 in the bioreactor. Treatment of the 3-day spheroids with dispase II dissolved the Cultisphers(TradeMark) and produced multicellular, bead-less constructs. Immunohistochemistry confirmed the presence of vi.mentin, cytokeratin and E-cadherin in treated spheroids. Examination of the dispase II treated spheroids with transmission electron microscopy (TEM) also showed the presence of desmosomes. These results suggest that the controlled enzymatic degradation of an artificial matrix in the low shear environment of the NASA-designed bioreactor can produce 3-D tissue-like spheroids. 2
NASA Astrophysics Data System (ADS)
Llinas, Rodolfo R.; Grace, Anthony A.; Yarom, Yosef
1991-02-01
We report here the presence of fast subthreshold oscillatory potentials recorded in vitro from neurons within layer 4 of the guinea pig frontal cortex. Two types of oscillatory neurons were recorded: (i) One type exhibited subthreshold oscillations whose frequency increased with membrane depolarization and encompassed a range of 10-45 Hz. Action potentials in this type of neuron demonstrated clear after-hyperpolarizations. (ii) The second type of neuron was characterized by narrow-frequency oscillations near 35-50 Hz. These oscillations often outlasted the initiating depolarizing stimulus. No calcium component could be identified in their action potential. In both types of cell the subthreshold oscillations were tetrodotoxin-sensitive, indicating that the depolarizing phase of the oscillation was generated by a voltage-dependent sodium conductance. The initial depolarizing phase was followed by a potassium conductance responsible for the falling phase of the oscillatory wave. In both types of cell, the subthreshold oscillation could trigger spikes at the oscillatory frequency, if the membrane was sufficiently depolarized. Combining intracellular recordings with Lucifer yellow staining showed that the narrow-frequency oscillatory activity was produced by a sparsely spinous interneuron located in layer 4 of the cortex. This neuron has extensive local axonal collaterals that ramify in layers 3 and 4 such that they may contribute to the columnar synchronization of activity in the 40- to 50-Hz range. Cortical activity in this frequency range has been proposed as the basis for the "conjunctive properties" of central nervous system networks.
NASA Astrophysics Data System (ADS)
Shi, J. M.; Zhang, L. X.; Chang, Q.; Sun, Z.; Feng, J. C.; Ma, N.
2018-06-01
In order to improve the ZrC-SiC ceramic and TC4 brazed joint property, graded double-layered SiC particles (SiCp)-reinforced TC4-based composite structure (named as GLS for convenience) was designed to relieve the residual stress in the joint. The GLS was successfully fabricated on TC4 substrate by double-layered laser deposition technology before the brazing process. The investigation of the GLS shows that the volume fraction of SiCp in the two composite layers was graded (20 and 39 vol pct, respectively). Ti5Si3 and TiC phases formed in the GLS due to the reaction of SiCp and TC4. The laser power-II (the laser power for the second deposition layer) affected the microstructure of the GLS significantly. Increasing the laser power-II would promote the reaction between the SiCp and TC4. But the high laser power-II made the layer I remelt completely and the two layers became homogeneous rather than graded structure. In the ZrC-SiC and TC4 brazed joint, the CTE (coefficient of thermal expansion) was graded from the TC4 to the ZrC-SiC due to the GLS, and the strength of the joint with the GLS (91 MPa) was higher than that without the GLS (43 MPa).
Three-dimensional bioprinting of rat embryonic neural cells.
Lee, Wonhye; Pinckney, Jason; Lee, Vivian; Lee, Jong-Hwan; Fischer, Krisztina; Polio, Samuel; Park, Je-Kyun; Yoo, Seung-Schik
2009-05-27
We present a direct cell printing technique to pattern neural cells in a three-dimensional (3D) multilayered collagen gel. A layer of collagen precursor was printed to provide a scaffold for the cells, and the rat embryonic neurons and astrocytes were subsequently printed on the layer. A solution of sodium bicarbonate was applied to the cell containing collagen layer as nebulized aerosols, which allowed the gelation of the collagen. This process was repeated layer-by-layer to construct the 3D cell-hydrogel composites. Upon characterizing the relationship between printing resolutions and the growth of printed neural cells, single/multiple layers of neural cell-hydrogel composites were constructed and cultured. The on-demand capability to print neural cells in a multilayered hydrogel scaffold offers flexibility in generating artificial 3D neural tissue composites.
Preservation of Archaeal Surface Layer Structure During Mineralization
NASA Astrophysics Data System (ADS)
Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François
2016-05-01
Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer “ghosts” during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record.
Methods For Improving Polymeric Materials For Use In Solar Cell Applications
Hanoka, Jack I.
2003-07-01
A method of manufacturing a solar cell module includes the use of low cost polymeric materials with improved mechanical properties. A transparent encapsulant layer is placed adjacent a rear surface of a front support layer. Interconnected solar cells are positioned adjacent a rear surface of the transparent encapsulant layer to form a solar cell assembly. A backskin layer is placed adjacent a rear surface of the solar cell assembly. At least one of the transparent encapsulant layer and the backskin layer are predisposed to electron beam radiation.
Methods For Improving Polymeric Materials For Use In Solar Cell Applications
Hanoka, Jack I.
2001-11-20
A method of manufacturing a solar cell module includes the use of low cost polymeric materials with improved mechanical properties. A transparent encapsulant layer is placed adjacent a rear surface of a front support layer. Interconnected solar cells are positioned adjacent a rear surface of the transparent encapsulant layer to form a solar cell assembly. A backskin layer is placed adjacent a rear surface of the solar cell assembly. At least one of the transparent encapsulant layer and the backskin layer are predisposed to electron beam radiation.
2017-12-22
Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Langerhans Cell Histiocytosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Mast Cell Leukemia; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Myeloid/NK-cell Acute Leukemia; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Anemia; Refractory Multiple Myeloma; Secondary Acute Myeloid Leukemia; Secondary Myelofibrosis; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Waldenstrom Macroglobulinemia
Skeie, Jessica M; Aldrich, Benjamin T; Goldstein, Andrew S; Schmidt, Gregory A; Reed, Cynthia R; Greiner, Mark A
2018-01-01
The objective of this study was to characterize the proteome of the corneal endothelial cell layer and its basement membrane (Descemet membrane) in humans with various severities of type II diabetes mellitus compared to controls, and identify differentially expressed proteins across a range of diabetic disease severities that may influence corneal endothelial cell health. Endothelium-Descemet membrane complex tissues were peeled from transplant suitable donor corneas. Protein fractions were isolated from each sample and subjected to multidimensional liquid chromatography and tandem mass spectrometry. Peptide spectra were matched to the human proteome, assigned gene ontology, and grouped into protein signaling pathways unique to each of the disease states. We identified an average of 12,472 unique proteins in each of the endothelium-Descemet membrane complex tissue samples. There were 2,409 differentially expressed protein isoforms that included previously known risk factors for type II diabetes mellitus related to metabolic processes, oxidative stress, and inflammation. Gene ontology analysis demonstrated that diabetes progression has many protein footprints related to metabolic processes, binding, and catalysis. The most represented pathways involved in diabetes progression included mitochondrial dysfunction, cell-cell junction structure, and protein synthesis regulation. This proteomic dataset identifies novel corneal endothelial cell and Descemet membrane protein expression in various stages of diabetic disease. These findings give insight into the mechanisms involved in diabetes progression relevant to the corneal endothelium and its basement membrane, prioritize new pathways for therapeutic targeting, and provide insight into potential biomarkers for determining the health of this tissue.
SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Li; Weng, Wei; Sun, Zhi-Xin
Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, andmore » concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, Ling-Yun; Liu, Guang-Zhen, E-mail: gzliuly@126.com; Ma, Lu-Fang
A non-coplanar dicarboxylate ndca (H{sub 2}ndca=5-norbornene-2,3-dicarboxylic acid), combining with various dipyridyl-typed tectons, constructs six Cd(II)/Co(II) coordination polymers under hydrothermal conditions, namely [Co(ndca)(H{sub 2}O)]{sub n} (1), ([Co(ndca)(bpe)(H{sub 2}O)]·H{sub 2}O){sub n} (2), [Co(ndca)(bpa){sub 0.5}(H{sub 2}O)]{sub n} (3), [Cd(ndca)(bpe)(H{sub 2}O)]{sub n} (4), ([Cd(ndca)(bpa)(H{sub 2}O)]·0.5H{sub 2}O){sub n} (5), and ([Cd(ndca)(bpp) (H{sub 2}O)]·H{sub 2}O){sub n} (6) (bpe=1,2-di(4-pyridyl)ethylene, bpa=1,2-bi(4-pyridyl)ethane, and bpp=1,3-bis(4-pyridyl)propane). All these compounds contain various metal(II)–carboxylate motifs, including carboxylate binuclear (2, 4, 5), carboxylate chain (1, 6) and carboxylate layer (3), which are further extended by dipyridyl-typed coligands to afford a vast diversity of the structures with 2D pyknotic layers (1, 6), 2D open layermore » (5), 2D→3D interpenetrated networks (2,4), and 3D pillared-layer framework (3), respectively. In addition, fluorescent spectra of Cd(II) complexes and magnetic properties of Co(II) complexes are also given. - Graphical abstract: Six various cadmium(II)/cobalt(II)–organic frameworks were constructed by 5-norbornene-2,3-dicarboxylic acid and different bis(pyridine) rod-like tectons, and Cd (II) complexes exhibit blue–violet emissions, whereas Co (II) complexes show antiferromagnetic behaviours. Display Omitted.« less
Sparks, Daniel W.
2016-01-01
The superficial layers of the entorhinal cortex receive sensory and associational cortical inputs and provide the hippocampus with the majority of its cortical sensory input. The parasubiculum, which receives input from multiple hippocampal subfields, sends its single major output projection to layer II of the entorhinal cortex, suggesting that it may modulate processing of synaptic inputs to the entorhinal cortex. Indeed, stimulation of the parasubiculum can enhance entorhinal responses to synaptic input from the piriform cortex in vivo. Theta EEG activity contributes to spatial and mnemonic processes in this region, and the current study assessed how stimulation of the parasubiculum with either single pulses or short, five-pulse, theta-frequency trains may modulate synaptic responses in layer II entorhinal stellate neurons evoked by stimulation of layer I afferents in vitro. Parasubicular stimulation pulses or trains suppressed responses to layer I stimulation at intervals of 5 ms, and parasubicular stimulation trains facilitated layer I responses at a train-pulse interval of 25 ms. This suggests that firing of parasubicular neurons during theta activity may heterosynaptically enhance incoming sensory inputs to the entorhinal cortex. Bath application of the hyperpolarization-activated cation current (Ih) blocker ZD7288 enhanced the facilitation effect, suggesting that cholinergic inhibition of Ih may contribute. In addition, repetitive pairing of parasubicular trains and layer I stimulation induced a lasting depression of entorhinal responses to layer I stimulation. These findings provide evidence that theta activity in the parasubiculum may promote heterosynaptic modulation effects that may alter sensory processing in the entorhinal cortex. PMID:27146979
Vapor Grown Perovskite Solar Cells
NASA Astrophysics Data System (ADS)
Abdussamad Abbas, Hisham
Perovskite solar cells has been the fastest growing solar cell material till date with verified efficiencies of over 22%. Most groups in the world focuses their research on solution based devices that has residual solvent in the material bulk. This work focuses extensively on the fabrication and properties of vapor based perovskite devices that is devoid of solvents. The initial part of my work focuses on the detailed fabrication of high efficiency consistent sequential vapor NIP devices made using P3HT as P-type Type II heterojunction. The sequential vapor devices experiences device anomalies like voltage evolution and IV hysteresis owing to charge trapping in TiO2. Hence, sequential PIN devices were fabricated using doped Type-II heterojunctions that had no device anomalies. The sequential PIN devices has processing restriction, as organic Type-II heterojunction materials cannot withstand high processing temperature, hence limiting device efficiency. Thereby bringing the need of co-evaporation for fabricating high efficiency consistent PIN devices, the approach has no-restriction on substrates and offers stoichiometric control. A comprehensive description of the fabrication, Co-evaporator setup and how to build it is described. The results of Co-evaporated devices clearly show that grain size, stoichiometry and doped transport layers are all critical for eliminating device anomalies and in fabricating high efficiency devices. Finally, Formamidinium based perovskite were fabricated using sequential approach. A thermal degradation study was conducted on Methyl Ammonium Vs. Formamidinium based perovskite films, Formamidinium based perovskites were found to be more stable. Lastly, inorganic films such as CdS and Nickel oxide were developed in this work.
Effect of annealing time on optical and electrical properties of CdS thin films
NASA Astrophysics Data System (ADS)
Soliya, Vanshika; Tandel, Digisha; Patel, Chandani; Patel, Kinjal
2018-05-01
Cadmium sulphide (CdS) is semiconductor compound of II-VI group. Thin film of CdS widely used in the applications such as, a buffer layer in copper indium diselenide (CIS) hetrojunction based solar cells, transistors, photo detectors and light emitting diodes. Because of the ease of making like chemical bath deposition (CBD), screen printing and thermal evaporation. It is extensively used in the CIS based solar cells as a buffer layers. The buffer layers usually used for reducing the interface recombination of the photo generated carriers by means of improving the lattice mismatch between the layers. The optimum thickness and the optoelectronics properties of CdS thin films like, optical band gap, electrical resistivity, structure, and composition etc., are to be considering for its use as a buffer layer. In the present study the CdS thin film were grown by simple dip coating method. In this method we had prepared 0.1M Cadmium-thiourea precursor solution. Before the deposition process of CdS, glass substrate has been cleaned using Methanol, Acetone, Trichloroethylene and De-ionized (DI) water. After coating of precursor layer, it was heated at 200 °C for themolysis. Then after CdS films were annealed at 200 °C for different time and studied its influence on the optical transmission, band gap, XRD, raman and the electrical resistivity. As increasing the annealing time we had observed the average transmission of the films was reduce after the absorption edge. In addition to the blue shift of absorption edge was observed. The observed optimum band gap was around 2.50 eV. XRD and raman analysis confirms the cubuc phase of CdS. Hot probe method confirms the n-type conductivity of the CdS film. Hall probe data shows the resistivity of the films was in the order of 103 Ωcm. Observed data signifies its future use in the many optoelectronics devices.
Cousins, H M; Edwards, F R; Hickey, H; Hill, C E; Hirst, G D S
2003-01-01
Intracellular recordings were made from short segments of the muscular wall of the guinea-pig gastric antrum. Preparations were impaled using two independent microelectrodes, one positioned in the circular layer and the other either in the longitudinal layer, in the network of myenteric interstitial cells of Cajal (ICCmy) or in the circular layer. Cells in each layer displayed characteristic patterns of rhythmical activity, with the largest signals being generated by ICCmy. Current pulses injected into the circular muscle layer produced electrotonic potentials in each cell layer, indicating that the layers are electrically interconnected. The amplitudes of these electrotonic potentials were largest in the circular layer and smallest in the longitudinal layer. An analysis of electrical coupling between the three layers suggests that although the cells in each layer are well coupled to neighbouring cells, the coupling between either muscle layer and the network of ICCmy is relatively poor. The electrical connections between ICCmy and the circular layer did not rectify. In parallel immunohistochemical studies, the distribution of the connexins Cx40, Cx43 and Cx45 within the antral wall was determined. Only Cx43 was detected; it was widely distributed on ICCmy and throughout the circular smooth muscle layer, being concentrated around ICCIM, but was less abundant in the circular muscle layer immediately adjacent to ICCmy. Although the electrophysiological studies indicate that smooth muscle cells in the longitudinal muscle layer are electrically coupled to each other, none of the connexins examined were detected in this layer. PMID:12844505
Seawater Phosphorites of the Seamount, Southwestern Pacific
NASA Astrophysics Data System (ADS)
Yoo, C.; Moon, J.; Kim, J.; Kim, K.; Lee, K.
2002-12-01
Phosphatized carbonate rocks associated with ferromanganese crusts (Fe-Mn crust) were investigated for better understanding of diagenetic evolution of the seamount (one of the Margellan Seamount Trail), southwestern Pacific. Three stages of phosphatization are inferred on the basis of paragenetic relation with Fe-Mn crusts, which are divided into four layers by their textures; 1) layer 1, massive, columnar growth structures with some porosity, 2) layer 2, porous, digitate growth structures with brown Fe-oxide filling, 3) layer 3, digitate and ovoidal growth structures with carbonate sediments filling, 4) layer 4, massive, parallel to undulatory laminated textures. Early phosphatization (phosphorite I) occurred before the formation of the oldest layer 4 crust. Foraminiferal-nannofossil limestones and shallow-water bioclastic limestones, encrusted by layer 4 crusts, are replaced by phosphorite I. Strontium isotope ratios (0.70743 to 0.70766) indicate that this phosphorite is formed at Late Cretaceous (85.2 to 73.5 Ma). Oxygen isotope values (-0.6 to 0.1% PDB) and shale-normalized REE pattern suggest that phosphorite I was formed in normal seawater. Phosphorite I appears as subhedral to euhedral, prismatic hexagonal crystallites approximately less than 5 æm in length. The second phosphorite (phosphorite II) is formed during the cessation of layer 4 crusts. Foraminiferal-nannofossil limestones filling the fractures developed within layer 4 crust are phosphatized during this episode. Age of phospatization II is defined as Late Eocene to Early Oligocene (36.5 to 31.6 Ma) from strontium isotope ratios (0.70777 to 0.70793). Oxygen isotope values (-2.9 to 2.9% PDB) and shale-normalized REE pattern of phosphorite II also suggest normal seawater origin. Phosphorite II replaced carbonate grain appears as anhedral, submicron-sized crystallites, whereas euhedral, prismatic hexagonal crystallites are filling the open space. Global climatic transition from a nonglacial to glacial period during Late Eocene to Early Oligocene intensified oceanic circulation and upwelling in deep-sea environment. Under this circumstance, phosphorite II may have been formed by redistribution of dissolved phosphous, accumulated in deep-sea during stable condition, to shallow environment. The last phosphatization (phosphorite III) occurred during or after the formation of layer 3 crust. Foraminiferal-nannofossil limestones filling the porosity and interstices within digitate layer 3 crust are phosphatized during this stage. Strontium isotope ratios (0.70827 to 0.70882) suggest that phosphorite III is formed from Oligocene/Miocene boundary to Middle Miocene (23.6 to 13.1 Ma). Shale-normalized REE pattern indicates this phosphorite was formed in normal seawater. Exclusively low oxygen isotope values (-10.7 to -2.4% PDB) suggest phosphorous ions responsible to phosphorite III probably provided during diagenesis of surrounding layer 3 crust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yong-Liang; Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shang Luo University, Shang Luo 726000; Wu, Ya-Pan
2015-03-15
Two new interpenetrating Cu{sup II}/Ni{sup II} coordination polymers, based on a unsymmetrical bifunctional N/O-tectonic 3-(pyrid-4′-yl)-5-(4″-carbonylphenyl)-1,2,4-triazolyl (H{sub 2}pycz), ([Cu-(Hpycz){sub 2}]·2H{sub 2}O){sub n} (1) and ([Ni(Hpycz){sub 2}]·H{sub 2}O){sub n} (2), have been solvothermally synthesized and structure characterization. Single crystal X-ray analysis indicates that compound 1 shows 2-fold parallel interpenetrated 4{sup 4}-sql layers with the same handedness. The overall structure of 1 is achiral—in each layer of doubly interpenetrating nets, the two individual nets have the opposite handedness to the corresponding nets in the adjoining layers—while 2 features a rare 8-fold interpenetrating 6{sup 6}-dia network that belongs to class IIIa interpenetration. In addition,more » compounds 1 and 2 both show similar paramagnetic characteristic properties. - Graphical abstract: Two new Cu(II)/Ni(II) coordination polymers present 2D parallel 2-fold interpenetrated 4{sup 4}-sql layers and a rare 3D 8-fold interpenetrating 6{sup 6}-dia network. In addition, magnetic susceptibility measurements show similar paramagnetic characteristic for two complexes. - Highlights: • A new unsymmetrical bifunctional N/O-tectonic as 4-connected spacer. • A 2-fold parallel interpenetrated sql layer with the same handedness. • A rare 8-fold interpenetrating dia network (class IIIa)« less
NASA Astrophysics Data System (ADS)
Chadel, Meriem; Chadel, Asma; Moustafa Bouzaki, Mohammed; Aillerie, Michel; Benyoucef, Boumediene; Charles, Jean-Pierre
2017-11-01
Performances of ZnO/ZnS/CZTSSe polycrystalline thin film solar cells (Copper Zinc Tin Sulphur Selenium-solar cell) were simulated for different thicknesses of the absorber and ZnS buffer layers. Simulations were performed with SCAPS (Solar Cell Capacitance Simulator) software, starting with actual parameters available from industrial data for commercial cells processing. The influences of the thickness of the various layers in the structure of the solar cell and the gap profile of the CZTSSe absorber layer on the performance of the solar cell were studied in detail. Through considerations of recent works, we discuss possible routes to enhance the performance of CZTSSe solar cells towards a higher efficiency level. Thus, we found that for one specific thickness of the absorber layer, the efficiency of the CZTSSe solar cell can be increased when a ZnS layer replaces the usual CdS buffer layer. On the other hand, the efficiency of the solar cell can be also improved when the absorber layer presents a grad-gap. In this case, the maximum efficiency for the CZTSSe cell was found equal to 13.73%.
Henry, S; Dievart, A; Divol, F; Pauluzzi, G; Meynard, D; Swarup, R; Wu, S; Gallagher, K L; Périn, C
2017-05-01
The number of root cortex cell layers varies among plants, and many species have several cortical cell layers. We recently demonstrated that the two rice orthologs of the Arabidopsis SHR gene, OsSHR1 and OsSHR2, could complement the A. thaliana shr mutant. Moreover, OsSHR1 and OsSHR2 expression in A. thaliana roots induced the formation of extra root cortical cell layers. In this article, we demonstrate that the overexpression of AtSHR and OsSHR2 in rice roots leads to plants with wide and short roots that contain a high number of extra cortical cell layers. We hypothesize that SHR genes share a conserved function in the control of cortical cell layer division and the number of ground tissue cell layers in land plants. Copyright © 2017 Elsevier Inc. All rights reserved.
2015-10-13
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; B-cell Chronic Lymphocytic Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Intraocular Lymphoma; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Post-transplant Lymphoproliferative Disorder; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Ringed Sideroblasts; Refractory Chronic Lymphocytic Leukemia; Refractory Cytopenia With Multilineage Dysplasia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Central Nervous System Hodgkin Lymphoma; Secondary Central Nervous System Non-Hodgkin Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia
Invariant Chain Complexes and Clusters as Platforms for MIF Signaling
Lindner, Robert
2017-01-01
Invariant chain (Ii/CD74) has been identified as a surface receptor for migration inhibitory factor (MIF). Most cells that express Ii also synthesize major histocompatibility complex class II (MHC II) molecules, which depend on Ii as a chaperone and a targeting factor. The assembly of nonameric complexes consisting of one Ii trimer and three MHC II molecules (each of which is a heterodimer) has been regarded as a prerequisite for efficient delivery to the cell surface. Due to rapid endocytosis, however, only low levels of Ii-MHC II complexes are displayed on the cell surface of professional antigen presenting cells and very little free Ii trimers. The association of Ii and MHC II has been reported to block the interaction with MIF, thus questioning the role of surface Ii as a receptor for MIF on MHC II-expressing cells. Recent work offers a potential solution to this conundrum: Many Ii-complexes at the cell surface appear to be under-saturated with MHC II, leaving unoccupied Ii subunits as potential binding sites for MIF. Some of this work also sheds light on novel aspects of signal transduction by Ii-bound MIF in B-lymphocytes: membrane raft association of Ii-MHC II complexes enables MIF to target Ii-MHC II to antigen-clustered B-cell-receptors (BCR) and to foster BCR-driven signaling and intracellular trafficking. PMID:28208600
Layer-by-Layer Bioprinting of Stem Cells for Retinal Tissue Regeneration
2015-10-01
AWARD NUMBER: W81XWH-14-1-0522 TITLE: Layer-by-Layer Bioprinting of Stem Cells for Retinal Tissue Regeneration PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Layer-by-Layer Bioprinting of Stem Cells for Retinal Tissue Regeneration 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0522 5c...bioprinting process using stem cells for retinal tissue regeneration. The LBL nature of the bioprinting process matches nicely with the native
Preparation of dilute magnetic semiconductor films by metalorganic chemical vapor deposition
NASA Technical Reports Server (NTRS)
Nouhi, Akbar (Inventor); Stirn, Richard J. (Inventor)
1988-01-01
A method for preparation of a dilute magnetic semiconductor (DMS) film is provided, in which a Group II metal source, a Group VI metal source and a transition metal magnetic ion source are pyrolyzed in the reactor of a metalorganic chemical vapor deposition (MOCVD) system by contact with a heated substrate. As an example, the preparation of films of Cd(sub 1-x)Mn(sub x)Te, in which 0 is less than or equal to x less than or equal to 0.7, on suitable substrates (e.g., GaAs) is described. As a source of manganese, tricarbonyl (methylcyclopentadienyl) manganese (TCPMn) is employed. To prevent TCPMn condensation during its introduction into the reactor, the gas lines, valves and reactor tubes are heated. A thin-film solar cell of n-i-p structure, in which the i-type layer comprises a DMS, is also described; the i-type layer is suitably prepared by MOCVD.
Preparation of dilute magnetic semiconductor films by metalorganic chemical vapor deposition
NASA Technical Reports Server (NTRS)
Nouhi, Akbar (Inventor); Stirn, Richard J. (Inventor)
1990-01-01
A method for preparation of a dilute magnetic semiconductor (DMS) film is provided, wherein a Group II metal source, a Group VI metal source and a transition metal magnetic ion source are pyrolyzed in the reactor of a metalorganic chemical vapor deposition (MOCVD) system by contact with a heated substrate. As an example, the preparation of films of Cd.sub.1-x Mn.sub.x Te, wherein 0.ltoreq..times..ltoreq.0.7, on suitable substrates (e.g., GaAs) is described. As a source of manganese, tricarbonyl (methylcyclopentadienyl) maganese (TCPMn) is employed. To prevent TCPMn condensation during the introduction thereof int the reactor, the gas lines, valves and reactor tubes are heated. A thin-film solar cell of n-i-p structure, wherein the i-type layer comprises a DMS, is also described; the i-type layer is suitably prepared by MOCVD.
Investigation of Various Active Layers for Their Performance on Organic Solar Cells.
Huang, Pao-Hsun; Wang, Yeong-Her; Ke, Jhong-Ciao; Huang, Chien-Jung
2016-08-09
The theoretical mechanism of open-circuit voltages (V OC ) in OSCs based on various small molecule organic materials is studied. The structure under investigation is simple planar heterojunction (PHJ) by thermal vacuum evaporation deposition. The various wide band gaps of small molecule organic materials are used to enhance the power conversion efficiency (PCE). The donor materials used in the device include: Alpha-sexithiophene (α-6T), Copper(II) phthalocyanine (CuPc), boron subnaphthalocyanine chloride (SubNc) and boron Subphthalocyanine chloride (SubPc). It is combined with fullerene or SubPc acceptor material to obtain a comprehensive understanding of the charge transport behavior. It is found that the V OC of the device is largely limited by charge transport. This was associated with the space charge effects and hole accumulation. These results are attributed to the improvement of surface roughness and work function after molybdenum trioxide (MoO₃) is inserted as an anode buffer layer.
Colopy, Sara A.; Bjorling, Dale E.; Mulligan, William A.; Bushman, Wade
2014-01-01
Background Homeostatic maintenance and repair of the bladder urothelium has been attributed to proliferation of keratin 5-expressing basal cells (K5-BC) with subsequent differentiation into superficial cells. Recent evidence, however, suggests that the intermediate cell layer harbors a population of progenitor cells. We use label-retaining cell (LRC) methodology in conjunction with a clinically relevant model of uropathogenic Escherichia coli (UPEC)-induced injury to characterize urothelial ontogeny during development and in response to diffuse urothelial injury. Results In the developing urothelium, proliferating cells were dispersed throughout the K5-BC and intermediate cells layers, becoming progressively concentrated in the K5-BC layer with age. When 5-bromo-2-deoxyuridine (BrdU) was administered during urothelial development, LRCs in the adult were found within the K5-BC, intermediate, and superficial cell layers, the location dependent upon time of labeling. UPEC inoculation resulted in loss of the superficial cell layer followed by robust proliferation of K5-BCs and intermediate cells. LRCs within the K5-BC and intermediate cell layers proliferated in response to injury. Conclusions Urothelial development and regeneration following injury relies on proliferation of K5-BC and intermediate cells. The existence and proliferation of LRCs within both the K5-BC and intermediate cell layers suggests the presence of two populations of urothelial progenitor cells. PMID:24796293
Developmental patterning of sub-epidermal cells in the outer integument of Arabidopsis seeds
Fiume, Elisa; Coen, Olivier; Xu, Wenjia; Lepiniec, Loïc
2017-01-01
The seed, the reproductive unit of angiosperms, is generally protected by the seed coat. The seed coat is made of one or two integuments, each comprising two epidermal cells layers and, in some cases, extra sub-epidermal cell layers. The thickness of the seed-coat affects several aspects of seed biology such as dormancy, germination and mortality. In Arabidopsis, the inner integument displays one or two sub-epidermal cell layers that originate from periclinal cell divisions of the innermost epidermal cell layer. By contrast, the outer integument was considered to be two-cell layered. Here, we show that sub-epidermal chalazal cells grow in between the epidermal outer integument cell layers to create an incomplete three-cell layered outer integument. We found that the MADS box transcription factor TRANSPARENT TESTA 16 represses growth of the chalaza and formation of sub-epidermal outer integument cells. Finally, we demonstrate that sub-epidermal cells of the outer and inner integument respond differently to the repressive mechanism mediated by FERTILIZATION INDEPENDENT SEED Polycomb group proteins and to fertilization signals. Our data suggest that integument cell origin rather than sub-epidermal cell position underlies different responses to fertilization. PMID:29141031
Buljan, M; Radić, N; Sancho-Paramon, J; Janicki, V; Grenzer, J; Bogdanović-Radović, I; Siketić, Z; Ivanda, M; Utrobičić, A; Hübner, R; Weidauer, R; Valeš, V; Endres, J; Car, T; Jerčinović, M; Roško, J; Bernstorff, S; Holy, V
2015-02-13
We report on the formation of Ge/Si quantum dots with core/shell structure that are arranged in a three-dimensional body centered tetragonal quantum dot lattice in an amorphous alumina matrix. The material is prepared by magnetron sputtering deposition of Al2O3/Ge/Si multilayer. The inversion of Ge and Si in the deposition sequence results in the formation of thin Si/Ge layers instead of the dots. Both materials show an atomically sharp interface between the Ge and Si parts of the dots and layers. They have an amorphous internal structure that can be crystallized by an annealing treatment. The light absorption properties of these complex materials are significantly different compared to films that form quantum dot lattices of the pure Ge, Si or a solid solution of GeSi. They show a strong narrow absorption peak that characterizes a type II confinement in accordance with theoretical predictions. The prepared materials are promising for application in quantum dot solar cells.
Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits.
Kohara, Keigo; Pignatelli, Michele; Rivest, Alexander J; Jung, Hae-Yoon; Kitamura, Takashi; Suh, Junghyup; Frank, Dominic; Kajikawa, Koichiro; Mise, Nathan; Obata, Yuichi; Wickersham, Ian R; Tonegawa, Susumu
2014-02-01
The formation and recall of episodic memory requires precise information processing by the entorhinal-hippocampal network. For several decades, the trisynaptic circuit entorhinal cortex layer II (ECII)→dentate gyrus→CA3→CA1 and the monosynaptic circuit ECIII→CA1 have been considered the primary substrates of the network responsible for learning and memory. Circuits linked to another hippocampal region, CA2, have only recently come to light. Using highly cell type-specific transgenic mouse lines, optogenetics and patch-clamp recordings, we found that dentate gyrus cells, long believed to not project to CA2, send functional monosynaptic inputs to CA2 pyramidal cells through abundant longitudinal projections. CA2 innervated CA1 to complete an alternate trisynaptic circuit, but, unlike CA3, projected preferentially to the deep, rather than to the superficial, sublayer of CA1. Furthermore, contrary to existing knowledge, ECIII did not project to CA2. Our results allow a deeper understanding of the biology of learning and memory.
SASAKI, Motoki; AMANO, Yoko; HAYAKAWA, Daisuke; TSUBOTA, Toshio; ISHIKAWA, Hajime; MOGOE, Toshihiro; OHSUMI, Seiji; TETSUKA, Masafumi; MIYAMOTO, Akio; FUKUI, Yutaka; BUDIPITOJO, Teguh; KITAMURA, Nobuo
2012-01-01
Abstract There are few reports describing the structure and function of the whale placenta with the advance of pregnancy. In this study, therefore, the placenta and nonpregnant uterus of the Antarctic minke whale were observed morphologically and immunohistochemically. Placentas and nonpregnant uteri were collected from the 15th, 16th and 18th Japanese Whale Research Programme with Special Permit in the Antarctic (JARPA) and 1st JARPA II organized by the Institute of Cetacean Research in Tokyo, Japan. In the macro- and microscopic observations, the placenta of the Antarctic minke whale was a diffuse and epitheliochorial placenta. The chorion was interdigitated to the endometrium by primary, secondary and tertiary villi, which contained no specialized trophoblast cells such as binucleate cells, and the interdigitation became complicated with the progress of gestation. Furthermore, fetal and maternal blood vessels indented deeply into the trophoblast cells and endometrial epithelium respectively with fetal growth. The minke whale placenta showed a fold-like shape as opposed to a finger-like shape. In both nonpregnant and pregnant uteri, many uterine glands were distributed. The uterine glands in the superficial layer of the pregnant endometrium had a wide lumen and large epithelial cells as compared with those in the deep layer. On the other hand, in the nonpregnant endometrium, the uterine glands had a narrower lumen and smaller epithelial cells than in the pregnant endometrium. In immunohistochemical detection, immunoreactivity for P450scc was detected in most trophoblast cells, but not in nonpregnant uteri, suggesting that trophoblast epithelial cells synthesized and secreted the sex steroid hormones and/or their precursors to maintain the pregnancy in the Antarctic minke whale. PMID:23269486
Huang, Shih-Hao; Hsu, Yu-Hsuan; Wu, Chih-Wei; Wu, Chang-Jer
2012-01-01
A digital light modulation system that utilizes a modified commercial digital micromirror device (DMD) projector, which is equipped with a UV light-emitting diode as a light modulation source, has been developed to spatially direct excited light toward a microwell array device to detect the oxygen consumption rate (OCR) of single cells via phase-based phosphorescence lifetime detection. The microwell array device is composed of a combination of two components: an array of glass microwells containing Pt(II) octaethylporphine (PtOEP) as the oxygen-sensitive luminescent layer and a microfluidic module with pneumatically actuated glass lids set above the microwells to controllably seal the microwells of interest. By controlling the illumination pattern on the DMD, the modulated excitation light can be spatially projected to only excite the sealed microwell for cellular OCR measurements. The OCR of baby hamster kidney-21 fibroblast cells cultivated on the PtOEP layer within a sealed microwell has been successfully measured at 104 ± 2.96 amol s−1 cell−1. Repeatable and consistent measurements indicate that the oxygen measurements did not adversely affect the physiological state of the measured cells. The OCR of the cells exhibited a good linear relationship with the diameter of the microwells, ranging from 400 to 1000 μm and containing approximately 480 to 1200 cells within a microwell. In addition, the OCR variation of single cells in situ infected by Dengue virus with a different multiplicity of infection was also successfully measured in real-time. This proposed platform provides the potential for a wide range of biological applications in cell-based biosensing, toxicology, and drug discovery. PMID:24348889
NASA Astrophysics Data System (ADS)
Shrivastav, Anand Mohan; Gupta, Banshi D.
2018-01-01
We report the design, fabrication, and characterization of an optical fiber sensor based on the surface plasmon resonance (SPR) technique for the simultaneous determination of lead (Pb) and copper (Cu) metal ions in aqueous samples. Two cascade channels over a single optical fiber are fabricated by removing cladding from two well-separated regions of the fiber. SPR working as a transducing mechanism for the sensor is realized by coating thin films of copper and silver over unclad cores of channel I and channel II, respectively. Ion-imprinted nanoparticles for both ions are separately synthesized and coated over the metal-coated unclad cores of the fiber as the recognition layers for sensor fabrication. A first channel having layer of Pb(II) ion-imprinted nanoparticles detects Pb(II) ions and a second channel having layer of Cu(II) ion-imprinted nanoparticles are used for the detection of Cu(II) ions. Both channels are characterized using the wavelength interrogation method. The sensor operates in the range between 0 to 1000 μg/L and 0 to 1000 mg/L for Pb(II) and Cu(II) ions, respectively. These ranges cover water resources and the human body for these ions. The sensitivities of channel I and channel II are found to be 8.19×104 nm/(μg/L) and 4.07×105 nm/(mg/L) near the lowest concentration of Pb(II) and Cu(II) ions, respectively. The sensor can detect concentrations of Pb(II) and Cu(II) ions as low as 4.06 × 10-12 g/L and 8.18 × 10-10 g/L, respectively, which are the least among the reported values in the literature. Further, the probe is simple, cost effective, highly selective, and applicable for online monitoring and remote sensing.
Pieper, J S; van der Kraan, P M; Hafmans, T; Kamp, J; Buma, P; van Susante, J L C; van den Berg, W B; Veerkamp, J H; van Kuppevelt, T H
2002-08-01
The limited intrinsic repair capacity of articular cartilage has stimulated continuing efforts to develop tissue engineered analogues. Matrices composed of type II collagen and chondroitin sulfate (CS), the major constituents of hyaline cartilage, may create an appropriate environment for the generation of cartilage-like tissue. In this study, we prepared, characterized, and evaluated type 11 collagen matrices with and without CS. Type II collagen matrices were prepared using purified, pepsin-treated, type II collagen. Techniques applied to prepare type I collagen matrices were found unsuitable for type II collagen. Crosslinking of collagen and covalent attachment of CS was performed using 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide. Porous matrices were prepared by freezing and lyophilization, and their physico-chemical characteristics (degree of crosslinking, denaturing temperature, collagenase-resistance, amount of CS incorporated) established. Matrices were evaluated for their capacity to sustain chondrocyte proliferation and differentiation in vitro. After 7 d of culture, chondrocytes were mainly located at the periphery of the matrices. In contrast to type I collagen, type II collagen supported the distribution of cells throughout the matrix. After 14 d of culture, matrices were surfaced with a cartilagenous-like layer, and occasionally clusters of chondrocytes were present inside the matrix. Chondrocytes proliferated and differentiated as indicated by biochemical analyses, ultrastructural observations, and reverse transcriptase PCR for collagen types I, II and X. No major differences were observed with respect to the presence or absence of CS in the matrices.
Fibrochondrocyte Growth and Functionality on TiO2 Nanothin Films
Ronald, Sharon; Mills, David K.
2016-01-01
Disorders affecting the temporomandibular joint (TMJ) are a long-standing health concern. TMJ disorders (TMJD) are often associated with an internal disc derangement accompanied by a suite of symptoms including joint noises, jaw dysfunction, and severe pain. The severity of patient symptoms and their reoccurrence can be alleviated to some extent with conservative therapy; however, refractory cases often require surgery that has shown only limited success. Bioengineered scaffolds with cell supportive surfaces an d nanoarchitectures that mimic TMJ tissue structure may offer an alternative treatment modality. In this study, titanium dioxide (TiO2) nanothin films, fabricated by layer-by-layer assembly, were examined as means for creating such a scaffold. The viability and growth of TMJ discal fibrochondrocytes (FCs) were assessed through MTT and DNA assays and total protein content over a 14-day experimental period. ELISA was also used to measure expression of types I and II collagen, decorin and aggrecan. Quantitative analyses demonstrated that FCs synthesized characteristic discal matrix proteins, with an increased production of type I collagen and decorin as opposed to collagen type II and aggrecan. A stimulatory effect on discal FC proliferation and extracellular matrix (ECM) expression with thicker nanofilms was also observed. The cumulative results suggest that TiO2 nanofilms may have potential as a TMJ scaffolding material. PMID:27314395
Fibrochondrocyte Growth and Functionality on TiO₂ Nanothin Films.
Ronald, Sharon; Mills, David K
2016-06-14
Disorders affecting the temporomandibular joint (TMJ) are a long-standing health concern. TMJ disorders (TMJD) are often associated with an internal disc derangement accompanied by a suite of symptoms including joint noises, jaw dysfunction, and severe pain. The severity of patient symptoms and their reoccurrence can be alleviated to some extent with conservative therapy; however, refractory cases often require surgery that has shown only limited success. Bioengineered scaffolds with cell supportive surfaces an d nanoarchitectures that mimic TMJ tissue structure may offer an alternative treatment modality. In this study, titanium dioxide (TiO₂) nanothin films, fabricated by layer-by-layer assembly, were examined as means for creating such a scaffold. The viability and growth of TMJ discal fibrochondrocytes (FCs) were assessed through MTT and DNA assays and total protein content over a 14-day experimental period. ELISA was also used to measure expression of types I and II collagen, decorin and aggrecan. Quantitative analyses demonstrated that FCs synthesized characteristic discal matrix proteins, with an increased production of type I collagen and decorin as opposed to collagen type II and aggrecan. A stimulatory effect on discal FC proliferation and extracellular matrix (ECM) expression with thicker nanofilms was also observed. The cumulative results suggest that TiO₂ nanofilms may have potential as a TMJ scaffolding material.
Orientation of liquid crystalline blue phases on unidirectionally orienting surfaces
NASA Astrophysics Data System (ADS)
Takahashi, Misaki; Ohkawa, Takuma; Yoshida, Hiroyuki; Fukuda, Jun-ichi; Kikuchi, Hirostugu; Ozaki, Masanori
2018-03-01
Liquid crystalline cholesteric blue phases (BPs) continue to attract interest due to their fast response times and quasi-polarization-independent phase modulation capabilities. Various approaches have recently been proposed to control the crystal orientation of BPs on substrates; however, their basic orientation properties on standard, unidirectionally orienting alignment layers have not been investigated in detail. Through analysis of the azimuthal orientation of Kossel diagrams, we study the 3D crystal orientation of a BP material—with a phase sequence of cholesteric, BP I, and BP II—on unidirectionally orienting surfaces prepared using two methods: rubbing and photoalignment. BP II grown from the isotropic phase is sensitive to surface conditions, with different crystal planes orienting on the two substrates. On the other hand, strong thermal hysteresis is observed in BPs grown through a different liquid crystal phase, implying that the preceding structure determines the orientation. More specifically, the BP II-I transition is accompanied by a rotation of the crystal such that the crystal direction defined by certain low-value Miller indices transform into different directions, and within the allowed rotations, different azimuthal configurations are obtained in the same cell depending on the thermal process. Our findings demonstrate that, for the alignment control of BPs, the thermal process is as important as the properties of the alignment layer.
Olson, Jerry M.
1994-01-01
A high-efficiency single heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. The conversion effiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer.
2015-06-03
Hematopoietic/Lymphoid Cancer; Accelerated Phase Chronic Myelogenous Leukemia; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Aplastic Anemia; Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Cytomegalovirus Infection; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Isolated Plasmacytoma of Bone; Mast Cell Leukemia; Meningeal Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Primary Systemic Amyloidosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Secondary Myelofibrosis; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Waldenstrom Macroglobulinemia
Hybrid window layer for photovoltaic cells
Deng, Xunming
2010-02-23
A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.
Hybrid window layer for photovoltaic cells
Deng, Xunming [Syvania, OH; Liao, Xianbo [Toledo, OH; Du, Wenhui [Toledo, OH
2011-10-04
A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.
Hybrid window layer for photovoltaic cells
Deng, Xunming [Sylvania, OH; Liao, Xianbo [Toledo, OH; Du, Wenhui [Toledo, OH
2011-02-01
A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starcher, Autumn N.; Elzinga, Evert J.; Sparks, Donald L.
Previous research demonstrated the formation of single divalent metal (Co, Ni, and ZnAl) and mixed divalent metal (NiZnAl) layered double hydroxide (LDH) phases from reactions of the divalent metal with Al-bearing substrates and soils in both laboratory experiments and in the natural environment. Recently Fe(II)-Al-LDH phases have been found in laboratory batch reaction studies, and although they have yet to be found in the natural environment. Potential locations of Fe(II)-Al-LDH phases in nature include areas with suboxic and anoxic conditions. Because these areas can be environments of significant contaminant accumulation, it is important to understand the possible interactions and impactsmore » of contaminant elements on LDH phase formation. One such contaminant, Zn, can also form as an LDH and has been found to form as a mixed divalent layered hydroxide phase. To understand how Zn impacts the formation of Fe(II)-Al-LDH phase formation and kinetics, 3 mM or 0.8 mM Fe(II) and 0.8 mM Zn were batch reacted with either 10 g/L pyrophyllite or 7.5 g/L γ-Al2O3 for up to three months under anoxic conditions. Aqueous samples were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) and solid samples were analyzed with X-ray absorption spectroscopy (XAS). Shell-by-shell fits of Fe(II) and co-sorption samples with pyrophyllite show the formation of a mixed divalent metal (Fe(II)-Zn-Al) layered hydroxide phase, while Fe(II) and Zn co-sorption samples with γ-Al2O3 produce Fe(II)-Al-LDH phases and Zn in inner-sphere complexation with the γ-Al2O3. This study demonstrates the formation of a mixed divalent metal layered hydroxide and further iterates the importance of sorbent reactivity on LDH phase formation.« less
Increased voltage photovoltaic cell
NASA Technical Reports Server (NTRS)
Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)
1985-01-01
A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.
Solar cell with silicon oxynitride dielectric layer
Shepherd, Michael; Smith, David D
2015-04-28
Solar cells with silicon oxynitride dielectric layers and methods of forming silicon oxynitride dielectric layers for solar cell fabrication are described. For example, an emitter region of a solar cell includes a portion of a substrate having a back surface opposite a light receiving surface. A silicon oxynitride (SiO.sub.xN.sub.y, 0
Double-layered cell transfer technology for bone regeneration
Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo
2016-01-01
For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called “cell transfer technology”, enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration. PMID:27624174
[Manual and mechanic anastomosis. Comparison in oncologic surgery of the colon and rectum].
Piccolomini, A; Bruttini, S; Di Cosmo, L; Carli, A F; Guarnieri, A; Mariani, L; Carli, A
1990-03-15
Personal experience in the treatment of 60 cases of cancer of the large bowel with left hemicolon and rectal localisation is reported. 20 manual double layer anastomoses (group I), 20 single layer (group II) and with mechanical stapler (EEA stapler) (group III) were carried out in consecutive series. The results are reported in terms of early local and general complications: specifically 13 cases of anastomotic dehiscence of which 69.2% were observed in group I, 15.4% in group II and 15.4% in group III. Total postoperative mortality was 5%, average hospitalisation was as follows: 19 days group I, 14 days group II, 17 days group III. The value of single layer anastomoses, which is comparable to results with the stapler whose use is essential in cases of real manual technical difficulty, is stressed.
Structural alteration of hexagonal birnessite by aqueous Mn(II): Impacts on Ni(II) sorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefkowitz, Joshua P.; Elzinga, Evert J.
We studied the impacts of aqueous Mn(II) (1 mM) on the sorption of Ni(II) (200 μM) by hexagonal birnessite (0.1 g L- 1) at pH 6.5 and 7.5 with batch experiments and XRD, ATR-FTIR and Ni K-edge EXAFS analyses. In the absence of Mn(II)aq, sorbed Ni(II) was coordinated predominantly as triple corner-sharing complexes at layer vacancies at both pH values. Introduction of Mn(II)aq into Ni(II)-birnessite suspensions at pH 6.5 caused Ni(II) desorption and led to the formation of edge-sharing Ni(II) complexes. This was attributed to competitive displacement of Ni(II) from layer vacancies by either Mn(II) or by Mn(III) formed throughmore » interfacial Mn(II)-Mn(IV) comproportionation, and/or incorporation of Ni(II) into the birnessite lattice promoted by Mn(II)-catalyzed recrystallization of the sorbent. Similar to Mn(II)aq, the presence of HEPES or MES caused the formation of edge-sharing Ni(II) sorption complexes in Ni(II)-birnessite suspensions, which was attributed to partial reduction of the sorbent by the buffers. At pH 7.5, interaction with aqueous Mn(II) caused reductive transformation of birnessite into secondary feitknechtite that incorporated Ni(II), enhancing removal of Ni(II) from solution. These results demonstrate that reductive alteration of phyllomanganates may significantly affect the speciation and solubility of Ni(II) in anoxic and suboxic environments.« less
2017-04-17
Accelerated Phase Chronic Myelogenous Leukemia; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Aggressive NK-cell Leukemia; AIDS-related Diffuse Large Cell Lymphoma; AIDS-related Diffuse Mixed Cell Lymphoma; AIDS-related Diffuse Small Cleaved Cell Lymphoma; AIDS-related Immunoblastic Large Cell Lymphoma; AIDS-related Lymphoblastic Lymphoma; AIDS-related Peripheral/Systemic Lymphoma; AIDS-related Primary CNS Lymphoma; AIDS-related Small Noncleaved Cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; HIV Infection; HIV-associated Hodgkin Lymphoma; Intraocular Lymphoma; Isolated Plasmacytoma of Bone; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Meningeal Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Myeloid/NK-cell Acute Leukemia; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Central Nervous System Lymphoma; Primary Myelofibrosis; Primary Systemic Amyloidosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia
Highly doped layer for tunnel junctions in solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fetzer, Christopher M.
A highly doped layer for interconnecting tunnel junctions in multijunction solar cells is presented. The highly doped layer is a delta doped layer in one or both layers of a tunnel diode junction used to connect two or more p-on-n or n-on-p solar cells in a multijunction solar cell. A delta doped layer is made by interrupting the epitaxial growth of one of the layers of the tunnel diode, depositing a delta dopant at a concentration substantially greater than the concentration used in growing the layer of the tunnel diode, and then continuing to epitaxially grow the remaining tunnel diode.
Roda, Elisa; Coccini, Teresa; Acerbi, Davide; Castoldi, Anna; Bernocchi, Graziella; Manzo, Luigi
2008-05-01
The developing central nervous system (CNS) is a target of the environmental toxicant methylmercury (MeHg), and the cerebellum seems the most susceptible tissue in response to this neurotoxicant. The cholinergic system is essential for brain development, acting as a modulator of neuronal proliferation, migration and differentiation processes; its muscarinic receptors (MRs) play pivotal roles in regulating important basic physiologic functions. By immunohistochemistry, we investigated the effects of perinatal (GD7-PD21) MeHg (0.5 mg/kg bw/day in drinking water) administration on cerebellum of mature (PD36) and immature (PD21) rats, evaluating the: (i) M2- and M3-MR expression; (ii) presence of gliosis; (iii) cytoarchitecture alterations. Regarding to M2-MRs, we showed that: at PD21, MeHg-treated animals did not display any differences compared to controls, while, at PD36 there was a significant increase of M2-immunopositive Bergmann cells in the molecular layer (ML), suggesting a MeHg-related cytotoxic effect. Similarly to M2-MRs, at PD21 the M3-MRs were not affected by MeHg, while, at PD36 a lacking immunoreactivity of the granular layer (IGL) was observed after MeHg treatment. In MeHg-treated rats, at both developmental points, we showed reactive gliosis, e.g. a significant increase in Bergmann glia of the ML and astrocytes of the IGL, identified by their expression of glial fibrillar acidic protein. No MeHg-related effects on Purkinje cells were detected neither at weaning nor at puberty. These findings suggest: (i) a delayed MeHg exposure-related effect on M2- and M3-MRs, (ii) an overt MeHg-related cytotoxic effect on cerebellar oligodendroglia, e.g. reactive gliosis, (iii) a selective vulnerability of granule cells and Purkinje neurons to MeHg, with the latter that remain unharmed.
Heim, Kyle P.; Sullan, Ruby May A.; Crowley, Paula J.; El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Tang, Wenxing; Besingi, Richard; Dufrene, Yves F.; Brady, L. Jeannine
2015-01-01
P1 (antigen I/II) is a sucrose-independent adhesin of Streptococcus mutans whose functional architecture on the cell surface is not fully understood. S. mutans cells subjected to mechanical extraction were significantly diminished in adherence to immobilized salivary agglutinin but remained immunoreactive and were readily aggregated by fluid-phase salivary agglutinin. Bacterial adherence was restored by incubation of postextracted cells with P1 fragments that contain each of the two known adhesive domains. In contrast to untreated cells, glutaraldehyde-treated bacteria gained reactivity with anti-C-terminal monoclonal antibodies (mAbs), whereas epitopes recognized by mAbs against other portions of the molecule were masked. Surface plasmon resonance experiments demonstrated the ability of apical and C-terminal fragments of P1 to interact. Binding of several different anti-P1 mAbs to unfixed cells triggered release of a C-terminal fragment from the bacterial surface, suggesting a novel mechanism of action of certain adherence-inhibiting antibodies. We also used atomic force microscopy-based single molecule force spectroscopy with tips bearing various mAbs to elucidate the spatial organization and orientation of P1 on living bacteria. The similar rupture lengths detected using mAbs against the head and C-terminal regions, which are widely separated in the tertiary structure, suggest a higher order architecture in which these domains are in close proximity on the cell surface. Taken together, our results suggest a supramolecular organization in which additional P1 polypeptides, including the C-terminal segment originally identified as antigen II, associate with covalently attached P1 to form the functional adhesive layer. PMID:25666624
Heim, Kyle P; Sullan, Ruby May A; Crowley, Paula J; El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Tang, Wenxing; Besingi, Richard; Dufrene, Yves F; Brady, L Jeannine
2015-04-03
P1 (antigen I/II) is a sucrose-independent adhesin of Streptococcus mutans whose functional architecture on the cell surface is not fully understood. S. mutans cells subjected to mechanical extraction were significantly diminished in adherence to immobilized salivary agglutinin but remained immunoreactive and were readily aggregated by fluid-phase salivary agglutinin. Bacterial adherence was restored by incubation of postextracted cells with P1 fragments that contain each of the two known adhesive domains. In contrast to untreated cells, glutaraldehyde-treated bacteria gained reactivity with anti-C-terminal monoclonal antibodies (mAbs), whereas epitopes recognized by mAbs against other portions of the molecule were masked. Surface plasmon resonance experiments demonstrated the ability of apical and C-terminal fragments of P1 to interact. Binding of several different anti-P1 mAbs to unfixed cells triggered release of a C-terminal fragment from the bacterial surface, suggesting a novel mechanism of action of certain adherence-inhibiting antibodies. We also used atomic force microscopy-based single molecule force spectroscopy with tips bearing various mAbs to elucidate the spatial organization and orientation of P1 on living bacteria. The similar rupture lengths detected using mAbs against the head and C-terminal regions, which are widely separated in the tertiary structure, suggest a higher order architecture in which these domains are in close proximity on the cell surface. Taken together, our results suggest a supramolecular organization in which additional P1 polypeptides, including the C-terminal segment originally identified as antigen II, associate with covalently attached P1 to form the functional adhesive layer. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
2015-03-05
Hematopoietic/Lymphoid Cancer; Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Isolated Plasmacytoma of Bone; Juvenile Myelomonocytic Leukemia; Meningeal Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Disease, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma
Subasri, S; Kumar, Timiri Ajay; Sinha, Barij Nayan; Jayaprakash, Venkatesan; Viswanathan, Vijayan; Velmurugan, Devadasan
2017-02-01
The title compounds, C 16 H 15 N 5 OS, (I), and C 12 H 12 FN 5 OS, (II), are [(di-amino-pyrimidine)-sulfan-yl]acetamide derivatives. In (I), the pyrimidine ring is inclined to the naphthalene ring system by 55.5 (1)°, while in (II), the pyrimidine ring is inclined to the benzene ring by 58.93 (8)°. In (II), there is an intra-molecular N-H⋯N hydrogen bond and a short C-H⋯O contact. In the crystals of (I) and (II), mol-ecules are linked by pairs of N-H⋯N hydrogen bonds, forming inversion dimers with R 2 2 (8) ring motifs. In the crystal of (I), the dimers are linked by bifurcated N-H⋯(O,O) and C-H⋯O hydrogen bonds, forming layers parallel to (100). In the crystal of (II), the dimers are linked by N-H⋯O hydrogen bonds, also forming layers parallel to (100). The layers are linked by C-H⋯F hydrogen bonds, forming a three-dimensional architecture.
Olson, J.M.
1994-08-30
A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.
Abdellatif, Mona K; Fouad, Mohamed M
2018-03-01
To investigate the factors in migraine that have the highest significance on retinal and choroidal layers' thickness. Ninety patients with migraine and 40 age-matched healthy participants were enrolled in this observational, cross-sectional study. After full ophthalmological examination, spectral domain-optical coherence tomography was done for all patients measuring the thickness of ganglion cell layer and retinal nerve fiber layer. Enhanced depth imaging technique was used to measure the choroidal thickness. There was significant thinning in the superior and inferior ganglion cell layers, all retinal nerve fiber layer quadrants, and all choroidal quadrants (except for the central subfield) in migraineurs compared to controls. The duration of migraine was significantly correlated with ganglion cell layer, retinal nerve fiber layer, and all choroidal quadrants, while the severity of migraine was significantly correlated with ganglion cell layer and retinal nerve fiber layer only. Multiregression analysis showed that the duration of migraine is the most important determinant factor of the superior retinal nerve fiber layer quadrant (β = -0.375, p = 0.001) and in all the choroidal quadrants (β = -0.531, -0.692, -0.503, -0.461, -0.564, respectively, p < 0.001), while severity is the most important determinant factor of inferior, nasal, and temporal retinal nerve fiber layer quadrants (β = -0.256, -0.335, -0.308; p = 0.036, 0.005, 0.009, respectively) and the inferior ganglion cell layer hemisphere (β = -0.377 and p = 0.001). Ganglion cell layer, retinal nerve fiber layer, and choroidal thickness are significantly thinner in patients with migraine. The severity of migraine has more significant influence in the thinning of ganglion cell layer and retinal nerve fiber layer, while the duration of the disease affected the choroidal thickness more.
Fullerene surfactants and their use in polymer solar cells
Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi
2015-12-15
Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.
Shi, Zhigang; Zhang, Yueping; Meek, Johannes; Qiao, Jiantian; Han, Victor Z.
2018-01-01
The distal valvula cerebelli is the most prominent part of the mormyrid cerebellum. It is organized in ridges of ganglionic and molecular layers, oriented perpendicular to the granular layer. We have combined intracellular recording and labelling techniques to reveal the cellular morphology of the valvula ridges in slice preparations. We have also locally ejected tracer in slices and in intact animals to examine its input fibers. The palisade dendrites and fine axon arbors of Purkinje cells are oriented in the horizontal plane of the ridge. The dendrites of basal efferent cells and large central cells are confined to the molecular layer, but are not planer. Basal efferent cell axons are thick, and join the basal bundle leaving the cerebellum. Large central cell axons are also thick, and traverse long distances in the transverse plane, with local collaterals in the ganglionic layer. Vertical cells and small central cells also have thick axons with local collaterals. The dendrites of Golgi cells are confined to the molecular layer, but their axon arbors are either confined to the granular layer or proliferate in both the granular and ganglionic layers. Dendrites of deep stellate cells are distributed in the molecular layer, with fine axon arbors in the ganglionic layer. Granule cell axons enter the molecular layer as parallel fibers without bifurcating. Climbing fibers run in the horizontal plane and terminate exclusively in the ganglionic layer. Our results confirm and extend previous studies and suggest a new concept of the circuitry of the mormyrid valvula cerebelli. PMID:18537139
The point of no return: The poly(A)-associated elongation checkpoint
Tellier, Michael; Ferrer-Vicens, Ivan; Murphy, Shona
2016-01-01
abstract Cyclin-dependent kinases play critical roles in transcription by RNA polymerase II (pol II) and processing of the transcripts. For example, CDK9 regulates transcription of protein-coding genes, splicing, and 3′ end formation of the transcripts. Accordingly, CDK9 inhibitors have a drastic effect on the production of mRNA in human cells. Recent analyses indicate that CDK9 regulates transcription at the early-elongation checkpoint of the vast majority of pol II-transcribed genes. Our recent discovery of an additional CDK9-regulated elongation checkpoint close to poly(A) sites adds a new layer to the control of transcription by this critical cellular kinase. This novel poly(A)-associated checkpoint has the potential to powerfully regulate gene expression just before a functional polyadenylated mRNA is produced: the point of no return. However, many questions remain to be answered before the role of this checkpoint becomes clear. Here we speculate on the possible biological significance of this novel mechanism of gene regulation and the players that may be involved. PMID:26853452
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jincheng; Shi, Chengwu, E-mail: shicw506@foxmail.com; Chen, Junjun
2016-06-15
In this paper, the ultra-thin and high-quality WO{sub 3} compact layers were successfully prepared by spin-coating-pyrolysis method using the tungsten isopropoxide solution in isopropanol. The influence of WO{sub 3} and TiO{sub 2} compact layer thickness on the photovoltaic performance of planar perovskite solar cells was systematically compared, and the interface charge transfer and recombination in planar perovskite solar cells with TiO{sub 2} compact layer was analyzed by electrochemical impedance spectroscopy. The results revealed that the optimum thickness of WO{sub 3} and TiO{sub 2} compact layer was 15 nm and 60 nm. The planar perovskite solar cell with 15 nm WO{submore » 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. - Graphical abstract: The planar perovskite solar cell with 15 nm WO{sub 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. Display Omitted - Highlights: • Preparation of ultra-thin and high-quality WO{sub 3} compact layers. • Perovskite solar cell with 15 nm-thick WO{sub 3} compact layer achieved PCE of 10.14%. • Perovskite solar cell with 60 nm-thick TiO{sub 2} compact layer achieved PCE of 12.64%.« less
NASA Technical Reports Server (NTRS)
Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)
1995-01-01
The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of schizophrenics, the previously reported upregulation of muscimol binding sites and downregulation of benzodiazepine binding sites in the prefrontal and adjacent cingulate cortex of schizophrenics are possibly due to posttranscriptional modifications of mRNAs and their translated polypeptides.
Sato, Takashi; Watanabe, Mami; Hashimoto, Kei; Ota, Tomoko; Akimoto, Noriko; Imada, Keisuke; Nomizu, Motoyoshi; Ito, Akira
2012-01-01
EMMPRIN (extracellular matrix metalloproteinase inducer)/CD147, a membrane-bound glycoprotein with two extracellular loop domains (termed loops I and II), progresses tumor invasion and metastasis by increasing the production of matrix metalloproteinase (MMP) in peritumoral stoma cells. EMMPRIN has also been associated with the control of migration activity in some tumor cells, but little is known about how EMMPRIN regulates tumor cell migration. In the present study, EMMPRIN siRNA suppressed the gene expression and production of EMMPRIN in human uterine cervical carcinoma SKG-II cells. An in vitro scratch wound assay showed enhancement of migration of EMMPRIN-knockdown SKG-II cells. In addition, the SKG-II cell migration was augmented by adding an E. coli-expressed human EMMPRIN mutant with two extracellular loop domains (eEMP-I/II), which bound to the cell surface of SKG-II cells. However, eEMP-I/II suppressed the native EMMPRIN-mediated augmentation of proMMP-1/procollagenase-1 production in a co-culture of the SKG-II cells and human uterine cervical fibroblasts, indicating that the augmentation of SKG-II cell migration resulted from the interference of native EMMPRIN functions by eEMP-I/II on the cell surface. Furthermore, a systematic peptide screening method using nine synthetic EMMPRIN peptides coding the loop I and II domains (termed EM1-9) revealed that EM9 (170HIENLNMEADPGQYR184) facilitated SKG-II cell migration. Moreover, SKG-II cell migration was enhanced by administration of an antibody against EM9, but not EM1 which is a crucial site for the MMP inducible activity of EMMPRIN. Therefore, these results provide novel evidence that EMMPRIN on the cell surface limits the cell migration of human uterine cervical carcinoma cells through 170HIENLNMEADPGQYR184 in the loop II domain. Finally, these results should provide an increased understanding of the functions of EMMPRIN in malignant cervical carcinoma cells, and could contribute to the development of clinical strategies for cervical cancer therapy.
Zhou, Yong; Zha, Jie; Lin, Zhijuan; Fang, Zhihong; Zeng, Hanyan; Zhao, Jintao; Luo, Yiming; Li, Zhifeng; Xu, Bing
2018-01-15
Diffuse large B cell lymphoma (DLBCL) is a common B cell malignancy with approximately 30% of patients present relapsed or refractory disease after first-line therapy. Research of further treatment options is needed. Cytotoxic CD4 + T cells express cytolytic molecules and have potential antitumor function. Here, we showed that the CD19 + cells from DLBCL patients presented significantly reduced expression of MHC II molecules than those from healthy controls. Three years after the first-line treatment, patients that presented relapsed disease had significantly lower MHC II expression on their CD19 + cells than patients who did not show recurrence. Examining cytotoxic CD4 + T cells show that DLBCL patients presented significantly elevated frequencies of granzyme A-, granzyme B-, and/or perforin-expressing cytotoxic CD4 + T cells. Also, frequency of cytotoxic CD4 + T cells in DLBCL patients was positively correlated with the MHC II expression level. Subsequently, the cytotoxic potential of CD4 + T cells against autologous CD19 + cells was investigated. We found that the cytotoxic potential of CD4 + T cells was highest in MHC II-high, intermediate in MHC II-mid, and lowest in MHC II-low patients. The percentage of MHC II-expressing viable CD19 + cells presented a significant reduction after longer incubation with cytotoxic CD4 + T cells, suggesting that cytotoxic CD4 + T cells preferentially eliminated MHC II-expressing CD19 + cells. Blocking MHC II on CD19 + cells significantly reduced the cytolytic capacity of CD4 + T cells. Despite these discoveries, the frequency of cytotoxic CD4 + T cells did not predict the clinical outcome of DLBCL patients. Together, these results demonstrated that cytotoxic CD4 + T cells presented an MHC II-dependent cytotoxic potential against autologous CD19 + cells and could potentially represent a future treatment option for DLBCL. Copyright © 2017 Elsevier Inc. All rights reserved.
CdCl2 passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells
NASA Astrophysics Data System (ADS)
Swanson, Drew E.; Reich, Carey; Abbas, Ali; Shimpi, Tushar; Liu, Hanxiao; Ponce, Fernando A.; Walls, John M.; Zhang, Yong-Hang; Metzger, Wyatt K.; Sampath, W. S.; Holman, Zachary C.
2018-05-01
As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extending Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications.
Fluorescence diagnosis and photochemical treatment of diseased tissue using lasers: Part I.
Andersson-Engels, S; Johansson, J; Svanberg, S; Svanberg, K
1989-12-15
Lasers are useful in many applications in medicine and biology. Historically, most laser use has involved heat generated in the interaction of the laser beam with the tissue. Today, however, the spectroscopic aspects of this laser use are playing a more dominant role in a number of applications. In this two-part series, Sune Svanberg and co-workers present illustrations of emerging clinical applications from cooperative work performed by the Lund Institute of Technology and the Lund University Hospital. Part I includes a survey of laser techniques for atomic and molecular analyses of samples of medical interest, spectroscopic analysis of the laser-induced plasma obtained when a high-power pulsed laser beam interacts with tissue, and the use of tumor-seeking agents in combination with laser radiation to provide new possibilities for malignant tumor detection and treatment. Part II, which will appear in the January 1, 1990, issue, describes the use of laser-induced fluorescence for tumor and plaque diagnostics. Different lasers have been used, and research efforts increasingly are being focused on excimer lasers and lasers in the IR region for the ablation of atherosclerotic plaques, cell layer by cell layer.
2017-12-05
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies; Waldenström Macroglobulinemia
MHC class II expression in lung cancer.
He, Yayi; Rozeboom, Leslie; Rivard, Christopher J; Ellison, Kim; Dziadziuszko, Rafal; Yu, Hui; Zhou, Caicun; Hirsch, Fred R
2017-10-01
Immunotherapy is an exciting development in lung cancer research. In this study we described major histocompatibility complex (MHC) Class II protein expression in lung cancer cell lines and patient tissues. We studied MHC Class II (DP, DQ, DR) (CR3/43, Abcam) protein expression in 55 non-small cell lung cancer (NSCLC) cell lines, 42 small cell lung cancer (SCLC) cell lines and 278 lung cancer patient tissues by immunohistochemistry (IHC). Seven (12.7%) NSCLC cell lines were positive for MHC Class II. No SCLC cell lines were found to be MHC Class II positive. We assessed 139 lung cancer samples available in the Hirsch Lab for MHC Class II. There was no positive MHC Class II staining on SCLC tumor cells. MHC Class II expression on TILs in SCLC was significantly lower than that on TILs in NSCLC (P<0.001). MHC Class II was also assessed in an additional 139 NSCLC tumor tissues from Medical University of Gdansk, Poland. Patients with positive staining of MHC Class II on TILs had longer regression-free survival (RFS) and overall survival (OS) than those whose TILs were MHC Class II negative (2.980 years, 95% CI 1.628-4.332 vs. 1.050 years, 95% CI 0.556-1.554, P=0.028) (3.230 years, 95% CI 2.617-3.843 vs. 1.390 years, 95% CI 0.629-2.151, P=0.014). MHC Class II was expressed both in NSCLC cell lines and tissues. However, MHC Class II was not detected in SCLC cell lines or tissue tumor cells. MHC Class II expression was lower on SCLC TILs than on NSCLC TILs. Loss of expression of MHC Class II on SCLC tumor cells and reduced expression on SCLC TILs may be a means of escaping anti-cancer immunity. Higher MHC Class II expression on TILs was correlated with better prognosis in patients with NSCLC. Copyright © 2017. Published by Elsevier B.V.
Patterns of synchrony for feed-forward and auto-regulation feed-forward neural networks.
Aguiar, Manuela A D; Dias, Ana Paula S; Ferreira, Flora
2017-01-01
We consider feed-forward and auto-regulation feed-forward neural (weighted) coupled cell networks. In feed-forward neural networks, cells are arranged in layers such that the cells of the first layer have empty input set and cells of each other layer receive only inputs from cells of the previous layer. An auto-regulation feed-forward neural coupled cell network is a feed-forward neural network where additionally some cells of the first layer have auto-regulation, that is, they have a self-loop. Given a network structure, a robust pattern of synchrony is a space defined in terms of equalities of cell coordinates that is flow-invariant for any coupled cell system (with additive input structure) associated with the network. In this paper, we describe the robust patterns of synchrony for feed-forward and auto-regulation feed-forward neural networks. Regarding feed-forward neural networks, we show that only cells in the same layer can synchronize. On the other hand, in the presence of auto-regulation, we prove that cells in different layers can synchronize in a robust way and we give a characterization of the possible patterns of synchrony that can occur for auto-regulation feed-forward neural networks.
van Genuchten, Case M; Peña, Jasquelin
2016-08-10
Birnessite minerals (layer-type MnO2), which bear both internal (cation vacancies) and external (particle edges) metal sorption sites, are important sinks of contaminants in soils and sediments. Although the particle edges of birnessite minerals often dominate the total reactive surface area, especially in the case of nanoscale crystallites, the metal sorption reactivity of birnessite particle edges remains elusive. In this study, we investigated the sorption selectivity of birnessite particle edges by combining Cd(ii) and Pb(ii) adsorption isotherms at pH 5.5 with surface structural characterization by differential pair distribution function (d-PDF) analysis. We compared the sorption reactivity of δ-MnO2 to that of the nanomineral, 2-line ferrihydrite, which exhibits only external surface sites. Our results show that, whereas Cd(ii) and Pb(ii) both bind to birnessite layer vacancies, only Pb(ii) binds extensively to birnessite particle edges. For ferrihydrite, significant Pb(ii) adsorption to external sites was observed (roughly 20 mol%), whereas Cd(ii) sorption was negligible. These results are supported by bond valence calculations that show comparable degrees of saturation of oxygen atoms on birnessite and ferrihydrite particle edges. Therefore, we propose that the sorption selectivity of birnessite edges follows the same order of that reported previously for ferrihydrite: Ca(ii) < Cd(ii) < Ni(ii) < Zn(ii) < Cu(ii) < Pb(ii).
Multijunction photovoltaic device and fabrication method
Arya, Rajeewa R.; Catalano, Anthony W.
1993-09-21
A multijunction photovoltaic device includes first and second amorphous silicon PIN photovoltaic cells in a stacked arrangement. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one or the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers. The disclosed device is fabricated by a glow discharge process.
Boundary-layer exchange by bubble: A novel method for generating transient nanofluidic layers
NASA Astrophysics Data System (ADS)
Jennissen, Herbert P.
2005-10-01
Unstirred layers (i.e., Nernst boundary layers) occur on every dynamic solid-liquid interface, constituting a diffusion barrier, since the velocity of a moving liquid approaches zero at the surface (no slip). If a macromolecule-surface reaction rate is higher than the diffusion rate, the Nernst layer is solute depleted and the reaction rate becomes mass-transport limited. The thickness of a Nernst boundary layer (δN) generally lies between 5 and 50μm. In an evanescent wave rheometer, measuring fibrinogen adsorption to fused silica, we made the fundamental observation that an air bubble preceding the sample through the flow cell abolishes the mass-transport limitation of the Nernst diffusion layer. Instead exponential kinetics are found. Experimental and simulation studies strongly indicate that these results are due to the elimination of the Nernst diffusion layer and its replacement by a dynamic nanofluidic layer (δν) maximally 200-300nm thick. It is suggested that the air bubble leads to a transient boundary-layer separation into a novel nanoboundary layer on the surface and the bulk fluid velocity profile separated by a vortex sheet with an estimated lifetime of 30-60s. A bubble-induced boundary-layer exchange from the Nernst to the nanoboundary layer and back is obtained, giving sufficient time for the measurement of unbiased exponential surface kinetics. Noteworthy is that the nanolayer can exist at all and displays properties such as (i) a long persistence and resistance to dissipation by the bulk liquid (boundary-layer-exchange-hysteresis) and (ii) a lack of solute depletion in spite of boundary-layer separation. The boundary-layer-exchange by bubble (BLEB) method therefore appears ideal for enhancing the rates of all types of diffusion-limited macromolecular reactions on surfaces with contact angles between 0° and 90° and only appears limited by slippage due to nanobubbles or an air gap beneath the nanofluidic layer on very hydrophobic surfaces. The possibility of producing nanoboundary layers without any nanostructuring or nanomachining should also be useful for fundamental physical studies in nanofluidics.
USDA-ARS?s Scientific Manuscript database
In this presentation, new approaches for flame retardant textile by using supercritical carbon dioxide (scCO2) and layer-by-layer processing will be discussed. Due to its environmentally benign character, the scCO2 is considered in green chemistry as a substitute for organic solvents in chemical rea...
Documentation of angiotensin II receptors in glomerular epithelial cells
NASA Technical Reports Server (NTRS)
Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)
1998-01-01
Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial cells participate in angiotensin II-mediated control of the glomerular filtration barrier.
High-fat diet exposure from pre-pubertal age induces polycystic ovary syndrome (PCOS) in rats.
Patel, Roshni; Shah, Gaurang
2018-02-01
Polycystic ovary syndrome (PCOS) is associated with hyperandrogenism, oligo-anovulation, polycystic ovaries and metabolic syndrome. Many researchers reported that PCOS often starts with menarche in adolescents. Presently available animal model focuses on ovarian but not metabolic features of PCOS. Therefore, we hypothesized that high-fat diet feeding to pre-pubertal female rats results in both reproductive and metabolic features of PCOS. Pre-pubertal female rats were divided into two groups: group I received normal pellet diet and group II received high-fat diet (HFD). In the letrozole study, adult female rats were divided into two groups: group I received 1% carboxy methyl cellulose and group II received 1 mg/kg letrozole orally. Oral glucose tolerance test, lipid profile, fasting glucose, insulin, estrus cycle, hormonal profile, ovary weight, luteinizing hormone (LH) receptor and follicle-stimulating hormone receptor expression were measured. Polycystic ovarian morphology was assessed through histopathological changes of ovary. Feeding of HFD gradually increase glucose intolerance and fasting insulin levels. Triglyceride level was higher in HFD study while total cholesterol level was higher in the letrozole study. Alteration in testosterone and estrogen levels was observed in both studies. LH receptor expression was upregulated only in HFD study. Histopathological changes like increase cystic follicle, diminished granulosa cell layer and thickened theca cell layer were observed in letrozole as well as HFD study. High-fat diet initiated at pre-puberty age in rats produces both metabolic disturbances and ovarian changes similar to that observed clinically in PCOS patients. Letrozole on the other hand induces change in ovarian structure and function. © 2018 Society for Reproduction and Fertility.
Pozharskaya, Tatyana; Liang, Jonathan; Lane, Andrew P
2013-09-01
Olfactory loss is a debilitating symptom of chronic rhinosinusitis. To study the impact of inflammation on the olfactory system, the inducible olfactory inflammation (IOI) transgenic mouse was created in which inflammation can be turned on and off within the olfactory epithelium. In this study, the type II tumor necrosis factor (TNF) receptor (TNFR2) was knocked out, and the effect on the olfactory loss phenotype was assessed. IOI mice were bred to TNFR2 knockout mice to yield progeny IOI mice lacking the TNFR2 receptor (TNFR2(-/-) ). TNF-α expression was induced within the olfactory epithelium for 6 weeks to generate chronic inflammation. Olfactory function was assayed by electro-olfactogram (EOG), and olfactory tissue was processed for histology and immunohistochemical staining. Compared to IOI mice with wild-type TNFR2, IOI mice lacking the TNFR2 demonstrated similar levels of inflammatory infiltration and enlargement of the subepithelial layer. However, IOI-TNFR2(-/-) mice differed markedly in that the neuronal layer was largely preserved and active progenitor cell proliferation was present. Odorant responses were maintained in the IOI-TNFR2(-/-) mice, in contrast to IOI mice. TNFR2 is the minor receptor for TNF-α, but appears to play an important role in mediating TNF-induced disruption of the olfactory system. This finding suggests that neuronal death and inhibition of proliferation in CRS may be mediated by TNFR2 on olfactory neurons and progenitor cells. Further studies are needed to elucidate the subcellular pathways involved and develop novel therapies for treating olfactory loss in the setting of CRS. © 2013 ARS-AAOA, LLC.
Two polymorphs of safinamide, a selective and reversible inhibitor of monoamine oxidase B.
Ravikumar, Krishnan; Sridhar, Balasubramanian
2010-06-01
Two polymorphs of safinamide {systematic name: (2S)-2-[4-(3-fluorobenzyloxy)benzylamino]propionamide}, C(17)H(19)FN(2)O(2), a potent selective and reversible monoamine oxidase B (MAO-B) inhibitor, are described. Both forms are orthorhombic and regarded as conformational polymorphs due to the differences in the orientation of the 3-fluorobenzyloxy and propanamide groups. Both structures pack with layers in the ac plane. In polymorph (I), the layers have discrete wide and narrow regions which are complementary when located next to adjacent layers. In polymorph (II), the layer has long flanges protruding from each side, which interdigitate when packed with the adjacent layers. N-H...O hydrogen bonds are present in both structures, whereas N-H...F hydrogen bonding is seen in polymorph (I), while N-H...N hydrogen bonding is seen in polymorph (II).
2018-03-28
Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Thyroid Cancer; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage I Adenoid Cystic Carcinoma of the Oral Cavity; Stage I Basal Cell Carcinoma of the Lip; Stage I Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage I Follicular Thyroid Cancer; Stage I Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage I Lymphoepithelioma of the Nasopharynx; Stage I Lymphoepithelioma of the Oropharynx; Stage I Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage I Mucoepidermoid Carcinoma of the Oral Cavity; Stage I Papillary Thyroid Cancer; Stage I Salivary Gland Cancer; Stage I Squamous Cell Carcinoma of the Hypopharynx; Stage I Squamous Cell Carcinoma of the Larynx; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage I Squamous Cell Carcinoma of the Oropharynx; Stage I Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage I Verrucous Carcinoma of the Larynx; Stage I Verrucous Carcinoma of the Oral Cavity; Stage II Adenoid Cystic Carcinoma of the Oral Cavity; Stage II Basal Cell Carcinoma of the Lip; Stage II Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage II Follicular Thyroid Cancer; Stage II Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage II Lymphoepithelioma of the Nasopharynx; Stage II Lymphoepithelioma of the Oropharynx; Stage II Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage II Mucoepidermoid Carcinoma of the Oral Cavity; Stage II Papillary Thyroid Cancer; Stage II Salivary Gland Cancer; Stage II Squamous Cell Carcinoma of the Hypopharynx; Stage II Squamous Cell Carcinoma of the Larynx; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Squamous Cell Carcinoma of the Oropharynx; Stage II Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage II Verrucous Carcinoma of the Larynx; Stage II Verrucous Carcinoma of the Oral Cavity
Structural response of phyllomanganates to wet aging and aqueous Mn(II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinkle, Margaret A. G.; Flynn, Elaine D.; Catalano, Jeffrey G.
Naturally occurring Mn(IV/III) oxides are often formed through microbial Mn(II) oxidation, resulting in reactive phyllomanganates with varying Mn(IV), Mn(III), and vacancy contents. Residual aqueous Mn(II) may adsorb in the interlayer of phyllomanganates above vacancies in their octahedral sheets. The potential for interlayer Mn(II)-layer Mn(IV) comproportionation reactions and subsequent formation of structural Mn(III) suggests that aqueous Mn(II) may cause phyllomanganate structural changes that alters mineral reactivity or trace metal scavenging. Here we examine the effects of aging phyllomanganates with varying initial vacancy and Mn(III) content in the presence and absence of dissolved Mn(II) at pH 4 and 7. Three phyllomanganates weremore » studied: two exhibiting turbostratic layer stacking (δ-MnO2 with high vacancy content and hexagonal birnessite with both vacancies and Mn(III) substitutions) and one with rotationally ordered layer stacking (triclinic birnessite containing predominantly Mn(III) substitutions). Structural analyses suggest that during aging at pH 4, Mn(II) adsorbs above vacancies and promotes the formation of phyllomanganates with rotationally ordered sheets and mixed symmetries arranged into supercells, while structural Mn(III) undergoes disproportionation. These structural changes at pH 4 correlate with reduced Mn(II) uptake onto triclinic and hexagonal birnessite after 25 days relative to 48 h of reaction, indicating that phyllomanganate reactivity decreases upon aging with Mn(II), or that recrystallization processes involving Mn(II) uptake occur over 25 days. At pH 7, Mn(II) adsorbs and causes limited structural effects, primarily increasing sheet stacking in δ-MnO2. These results show that aging-induced structural changes in phyllomanganates are affected by aqueous Mn(II), pH, and initial solid-phase Mn(III) content. In conclusion, such restructuring likely alters manganese oxide reactions with other constituents in environmental and geologic systems, particularly trace metals and redox-active compounds.« less
Structural response of phyllomanganates to wet aging and aqueous Mn(II)
Hinkle, Margaret A. G.; Flynn, Elaine D.; Catalano, Jeffrey G.
2016-08-06
Naturally occurring Mn(IV/III) oxides are often formed through microbial Mn(II) oxidation, resulting in reactive phyllomanganates with varying Mn(IV), Mn(III), and vacancy contents. Residual aqueous Mn(II) may adsorb in the interlayer of phyllomanganates above vacancies in their octahedral sheets. The potential for interlayer Mn(II)-layer Mn(IV) comproportionation reactions and subsequent formation of structural Mn(III) suggests that aqueous Mn(II) may cause phyllomanganate structural changes that alters mineral reactivity or trace metal scavenging. Here we examine the effects of aging phyllomanganates with varying initial vacancy and Mn(III) content in the presence and absence of dissolved Mn(II) at pH 4 and 7. Three phyllomanganates weremore » studied: two exhibiting turbostratic layer stacking (δ-MnO2 with high vacancy content and hexagonal birnessite with both vacancies and Mn(III) substitutions) and one with rotationally ordered layer stacking (triclinic birnessite containing predominantly Mn(III) substitutions). Structural analyses suggest that during aging at pH 4, Mn(II) adsorbs above vacancies and promotes the formation of phyllomanganates with rotationally ordered sheets and mixed symmetries arranged into supercells, while structural Mn(III) undergoes disproportionation. These structural changes at pH 4 correlate with reduced Mn(II) uptake onto triclinic and hexagonal birnessite after 25 days relative to 48 h of reaction, indicating that phyllomanganate reactivity decreases upon aging with Mn(II), or that recrystallization processes involving Mn(II) uptake occur over 25 days. At pH 7, Mn(II) adsorbs and causes limited structural effects, primarily increasing sheet stacking in δ-MnO2. These results show that aging-induced structural changes in phyllomanganates are affected by aqueous Mn(II), pH, and initial solid-phase Mn(III) content. In conclusion, such restructuring likely alters manganese oxide reactions with other constituents in environmental and geologic systems, particularly trace metals and redox-active compounds.« less
Light-induced migration of retinal microglia into the subretinal space.
Ng, T F; Streilein, J W
2001-12-01
To explore the effects of light exposure and deprivation on the distribution and function of microglia in the subretinal space of mice. Using a monoclonal antibody, 5D4, that identifies resting, ramified microglia, the distribution and density of microglia in the retina, and the subretinal space were determined by confocal microscopy and by immunohistochemistry of cryopreserved sections of eyes of albino and pigmented mice exposed to diverse levels of light, ranging from complete darkness to intense brightness. Axotomized retinal ganglion cells were retrograde labeled by fluorescent tracer to determine whether the marker colocalizes to 5D4+ cells. Electron microscopy was used to evaluate microglia for evidence of phagocytosis. 5D4+ microglia in pigmented eyes were limited to the inner retinal layers, but in albino eyes 5D4+ cells were found in the outer retinal layers and subretinal space as well. The subretinal space of eyes of albino mice raised from birth in complete darkness contained few 5D4+ cells, but exposure to light caused the rapid accumulation of 5D4+ cells at this site. 5D4+ cell density in the subretinal space correlated directly with intensity of ambient light. Retrograde labeling of axotomized ganglion cells resulted in 5D4+ cells in the subretinal space that contained the retrograde label. Subretinal microglia contained phagocytized rod outer segment discs. On intense light exposure, 5D4+ cells adopted an active morphology, but failed to express class II major histocompatibility complex (MHC) molecules. Light exposure induced retinal microglia migration into the subretinal space in albino mice. Subretinal microglia appeared to augment through phagocytosis the capacity of pigment epithelium to take up the photoreceptor debris of light toxicity. The unexpected presence of these cells in the subretinal space raises questions concerning their potential contribution to immune privilege in this space and to the fate of retinal transplants.
Agte, Silke; Savvinov, Alexey; Karl, Anett; Zayas-Santiago, Astrid; Ulbricht, Elke; Makarov, Vladimir I; Reichenbach, Andreas; Bringmann, Andreas; Skatchkov, Serguei N
2018-05-16
In this study, we show the capability of Müller glial cells to transport light through the inverted retina of reptiles, specifically the retina of the spectacled caimans. Thus, confirming that Müller cells of lower vertebrates also improve retinal light transmission. Confocal imaging of freshly isolated retinal wholemounts, that preserved the refractive index landscape of the tissue, indicated that the retina of the spectacled caiman is adapted for vision under dim light conditions. For light transmission experiments, we used a setup with two axially aligned objectives imaging the retina from both sides to project the light onto the inner (vitreal) surface and to detect the transmitted light behind the retina at the receptor layer. Simultaneously, a confocal microscope obtained images of the Müller cells embedded within the vital tissue. Projections of light onto several representative Müller cell trunks within the inner plexiform layer, i.e. (i) trunks with a straight orientation, (ii) trunks which are formed by the inner processes and (iii) trunks which get split into inner processes, were associated with increases in the intensity of the transmitted light. Projections of light onto the periphery of the Müller cell endfeet resulted in a lower intensity of transmitted light. In this way, retinal glial (Müller) cells support dim light vision by improving the signal-to-noise ratio which increases the sensitivity to light. The field of illuminated photoreceptors mainly include rods reflecting the rod dominance of the of tissue. A subpopulation of Müller cells with downstreaming cone cells led to a high-intensity illumination of the cones, while the surrounding rods were illuminated by light of lower intensity. Therefore, Müller cells that lie in front of cones may adapt the intensity of the transmitted light to the different sensitivities of cones and rods, presumably allowing a simultaneous vision with both receptor types under dim light conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Paul, Laiby; Smolders, Erik
2015-01-01
The anaerobic biotransformation of trichloroethylene (TCE) can be affected by competing electron acceptors such as Fe (III). This study assessed the role of Fe (III) reduction on the bioenhanced dissolution of TCE dense non-aqueous phase liquid (DNAPL). Columns were set up as 1-D diffusion cells consisting of a lower DNAPL layer, a layer with an aquifer substratum and an upper water layer that is regularly refreshed. The substrata used were either inert sand or sand coated with 2-line ferrihydrite (HFO) or two environmental Fe (III) containing samples. The columns were inoculated with KB-1 and were repeatedly fed with formate. In none of the diffusion cells, vinyl chloride or ethene was detected while dissolved and extractable Fe (II) increased strongly during 60 d of incubation. The cis-DCE concentration peaked at 4.0 cm from the DNAPL (inert sand) while it was at 3.4 cm (sand+HFO), 1.7 cm and 2.5 cm (environmental samples). The TCE concentration gradients near the DNAPL indicate that the DNAPL dissolution rate was larger than that in an abiotic cell by factors 1.3 (inert sand), 1.0 (sand+HFO) and 2.2 (both environmental samples). This results show that high bioavailable Fe (III) in HFO reduces the TCE degradation by competitive Fe (III) reduction, yielding lower bioenhanced dissolution. However, Fe (III) reduction in environmental samples was not reducing TCE degradation and the dissolution factor was even larger than that of inert sand. It is speculated that physical factors, e.g. micro-niches in the environmental samples protect microorganisms from toxic concentrations of TCE. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gibberellin Induces Diploid Pollen Formation by Interfering with Meiotic Cytokinesis1[OPEN
De Storme, Nico
2017-01-01
The plant hormone gibberellic acid (GA) controls many physiological processes, including cell differentiation, cell elongation, seed germination, and response to abiotic stress. In this study, we report that exogenous treatment of flowering Arabidopsis (Arabidopsis thaliana) plants with GA specifically affects the process of male meiotic cytokinesis leading to meiotic restitution and the production of diploid (2n) pollen grains. Similar defects in meiotic cell division and reproductive ploidy stability occur in Arabidopsis plants depleted of RGA and GAI, two members of the DELLA family that function as suppressor of GA signaling. Cytological analysis of the double rga-24 gai-t6 mutant revealed that defects in male meiotic cytokinesis are not caused by alterations in meiosis I (MI or meiosis II (MII) chromosome dynamics, but instead result from aberrations in the spatial organization of the phragmoplast-like radial microtubule arrays (RMAs) at the end of meiosis II. In line with a role for GA in the genetic regulation of the male reproductive system, we additionally show that DELLA downstream targets MYB33 and MYB65 are redundantly required for functional RMA biosynthesis and male meiotic cytokinesis. By analyzing the expression of pRGA::GFP-RGA in the wild-type Landsberg erecta background, we demonstrate that the GFP-RGA protein is specifically expressed in the anther cell layers surrounding the meiocytes and microspores, suggesting that appropriate GA signaling in the somatic anther tissue is critical for male meiotic cell wall formation and thus plays an important role in consolidating the male gametophytic ploidy consistency. PMID:27621423
NASA Technical Reports Server (NTRS)
Wang, Pi-Huan; Minnis, Patrick; McCormick, M. Patrick; Kent, Geoffrey S.; Yue, Glenn K.; Young, David F.; Skeens, Kristi M.
1998-01-01
The tropical cloud data obtained by the satellite instrument of the Stratospheric Aerosol and Gas Experiment (SAGE) II from October 1984 to May 1991 have been used to study cloud vertical distribution, including thickness and multilayer structure, and to estimate cloud optical depth. The results indicate that the SAGE-II-observed clouds are generally optically thin clouds, corresponding to a range of optical depth between approximately 8 x 10(exp -4) and 3 x 10(exp -1) with a mean of about 0.035. Two-thirds are classified as subvisual cirrus and one-third thin cirrus. Clouds between 2- to 3-km thick occur most frequently. Approximately 30% of the SAGE II cloud measurements are isolated single-layer clouds, while 65% are high clouds contiguous with an underlying opaque cloud that terminates the SAGE II profile. Thin clouds above detached opaque clouds at altitudes greater than 6.5 km occur less often. Only about 3% of the SAGE II single-layer clouds are located above the tropopause, while 58% of the cloud layers never reach the tropopause. More than one-third of the clouds appear at the tropopause. This study also shows that clouds occur more frequently and extend higher above the tropopause over the western Pacific than than over the eastern Pacific, especially during northern winter. The uncertainty of the derived results due to the SAGE II sampling constraints, data processing, and cloud characteristics is discussed.
Metzger, Tzuriel S; Tel-Vered, Ran; Willner, Itamar
2016-03-23
Two configurations of molecularly imprinted bis-aniline-bridged Au nanoparticles (NPs) for the specific binding of the electron acceptor N,N'-dimethyl-4,4'-bipyridinium (MV(2+) ) and for the photosensitizer Zn(II)-protoporphyrin IX (Zn(II)-PP-IX) are assembled on electrodes, and the photoelectrochemical features of the two configurations are discussed. Configuration I includes the MV(2+) -imprinted Au NPs matrix as a base layer, on which the Zn(II)-PP-IX-imprinted Au NPs layer is deposited, while configuration II consists of a bilayer corresponding to the reversed imprinting order. Irradiation of the two electrodes in the presence of a benzoquinone/benzohydroquinone redox probe yields photocurrents of unique features: (i) Whereas configuration I yields an anodic photocurrent, the photocurrent generated by configuration II is cathodic. (ii) The photocurrents obtained upon irradiation of the imprinted electrodes are substantially higher as compared to the nonimprinted surfaces. The high photocurrents generated by the imprinted Au NPs-modified electrodes are attributed to the effective loading of the imprinted matrices with the MV(2+) and Zn(II)-PP-IX units and to the effective charge separation proceeding in the systems. The directional anodic/cathodic photocurrents are rationalized in terms of vectorial electron transfer processes dictated by the imprinting order and by the redox potentials of the photosensitizer/electron acceptor units associated with the imprinted sites in the two configurations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Desantis, Salvatore; Accogli, Gianluca; Zizza, Sara; Arrighi, Silvana
2013-09-01
The glycoprotein pattern was investigated by lectin histochemistry in the urothelium lining the urinary bladder of the donkey Equus asinus. Tissue sections were stained with a panel of twelve lectins, in combination with saponification and sialidase digestion (K-s). The urinary bladder urothelium has three distinct layers from the basal zone to the lumen consisting of basal, intermediate and superficial cells (umbrella cells). Cytoplasm of basal cells reacted with SNA, PNA, K-s-PNA, GSA I-B4 and Con A showing glycans ending with Neu5Acα2,6Gal/GalNAc, Neu5AcGalβ1,3GalNAc, αGal and with terminal/internal αMan. The cytoplasm of umbrella cells displayed an increase of Neu5AcGalβ1,3GalNAc and the appearance of Neu5AcGalβ1,3GalNAc, Neu5acα2,3Galβ1,4GlcNAc and Neu5AcGalNAc residues (MAL II, K-s-SBA and K-s-HPA staining). Scattered umbrella cells were characterized by glycans terminating with GalNAc binding DBA, SBA and HPA. The mucosa forms folds with a crypt-like appearance where the urothelium shows a different pattern of glycans. The bladder luminal surface stained with K-s-PNA, K-s-DBA, KOH-s-SBA, and K-s-HPA displaying a coating of sialoglycoproteins belonging to O-linked glycans (typical secretory moieties). These findings show that different glycosylation patterns exist along the donkey bladder urothelium, and different sub-populations of umbrella cells are present secreting the sialoglycans which constitute the protective gel layer lining the bladder. Copyright © 2013 Elsevier GmbH. All rights reserved.
Li, Zuo-Xi; Zhao, Jiong-Peng; Sañudo, E C; Ma, Hong; Pan, Zhong-Da; Zeng, Yong-Fei; Bu, Xian-He
2009-12-21
Sparked by the strategy of pillared-layer MOFs, three formate coordination polymers, {[Ni(2)(HCO(2))(3)(L)(2)](NO(3)).2H(2)O}(infinity) (1), {[Co(2)(HCO(2))(3)(L)(2)](HCO(2)).2H(2)O}(infinity) (2), and {[Cu(2)(HCO(2))(3)(L)(2)](HCO(2)).2H(2)O}(infinity) (3), have been synthesized by employing the rodlike ligand 4,4'-bis(imidazol-1-yl)biphenyl (L) as the pillar. Structural analysis indicates that the title complexes 1-3 are isostructural compounds, which possess metal-formate 2D layers perpendicularly pillared by the ligand L to afford a 3D open framework. This is an interesting example of a Kagome lattice based on the formate mediator. Moreover, the formate anion of this 2D Kagome layer exhibits various bridging modes: anti-anti, syn-anti, and 3.21 modes. Their magnetic measurements reveals that only complex 1 presents the spin canting phenomenon, while its isostructural Co(II) and Cu(II) complexes are simply paramagnets with antiferromagnetic coupling.
Fast process flow, on-wafer interconnection and singulation for MEPV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okandan, Murat; Nielson, Gregory N.; Cruz-Campa, Jose Luis
2017-01-31
A method including providing a substrate comprising a device layer on which a plurality of device cells are defined; depositing a first dielectric layer on the device layer and metal interconnect such that the deposited interconnect is electrically connected to at least two of the device cells; depositing a second dielectric layer over the interconnect; and exposing at least one contact point on the interconnect through the second dielectric layer. An apparatus including a substrate having defined thereon a device layer including a plurality of device cells; a first dielectric layer disposed directly on the device layer; a plurality ofmore » metal interconnects, each of which is electrically connected to at least two of the device cells; and a second dielectric layer disposed over the first dielectric layer and over the interconnects, wherein the second dielectric layer is patterned in a positive or negative planar spring pattern.« less
Fast process flow, on-wafer interconnection and singulation for MEPV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okandan, Murat; Nielson, Gregory N.; Cruz-Campa, Jose Luis
2017-08-29
A method including providing a substrate comprising a device layer on which a plurality of device cells are defined; depositing a first dielectric layer on the device layer and metal interconnect such that the deposited interconnect is electrically connected to at least two of the device cells; depositing a second dielectric layer over the interconnect; and exposing at least one contact point on the interconnect through the second dielectric layer. An apparatus including a substrate having defined thereon a device layer including a plurality of device cells; a first dielectric layer disposed directly on the device layer; a plurality ofmore » metal interconnects, each of which is electrically connected to at least two of the device cells; and a second dielectric layer disposed over the first dielectric layer and over the interconnects, wherein the second dielectric layer is patterned in a positive or negative planar spring pattern.« less
Back contact buffer layer for thin-film solar cells
Compaan, Alvin D.; Plotnikov, Victor V.
2014-09-09
A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.
Method of fabricating a back-contact solar cell and device thereof
Li, Bo; Smith, David; Cousins, Peter
2014-07-29
Methods of fabricating back-contact solar cells and devices thereof are described. A method of fabricating a back-contact solar cell includes forming an N-type dopant source layer and a P-type dopant source layer above a material layer disposed above a substrate. The N-type dopant source layer is spaced apart from the P-type dopant source layer. The N-type dopant source layer and the P-type dopant source layer are heated. Subsequently, a trench is formed in the material layer, between the N-type and P-type dopant source layers.
Method of fabricating a back-contact solar cell and device thereof
Li, Bo; Smith, David; Cousins, Peter
2016-08-02
Methods of fabricating back-contact solar cells and devices thereof are described. A method of fabricating a back-contact solar cell includes forming an N-type dopant source layer and a P-type dopant source layer above a material layer disposed above a substrate. The N-type dopant source layer is spaced apart from the P-type dopant source layer. The N-type dopant source layer and the P-type dopant source layer are heated. Subsequently, a trench is formed in the material layer, between the N-type and P-type dopant source layers.
Ganetespib Window of Opportunity Study in Head and Neck Cancers
2016-07-22
Stage I Hypopharyngeal Squamous Cell Carcinoma; Stage I Laryngeal Squamous Cell Carcinoma; Stage I Oral Cavity Squamous Cell Carcinoma; Stage I Oropharyngeal Squamous Cell Carcinoma; Stage II Hypopharyngeal Squamous Cell Carcinoma; Stage II Laryngeal Squamous Cell Carcinoma; Stage II Oral Cavity Squamous Cell Carcinoma; Stage II Oropharyngeal Squamous Cell Carcinoma; Stage III Hypopharyngeal Squamous Cell Carcinoma; Stage III Laryngeal Squamous Cell Carcinoma; Stage III Oral Cavity Squamous Cell Carcinoma; Stage III Oropharyngeal Squamous Cell Carcinoma; Stage IVA Hypopharyngeal Squamous Cell Carcinoma; Stage IVA Laryngeal Squamous Cell Carcinoma; Stage IVA Oral Cavity Squamous Cell Carcinoma; Stage IVA Oropharyngeal Squamous Cell Carcinoma
NASA Astrophysics Data System (ADS)
Itoh, Eiji; Goto, Yoshinori; Fukuda, Katsutoshi
2014-02-01
The contributions of ultrathin titania nanosheet (TN) crystallites were studied in both an inverted bulk-heterojunction (BHJ) cell in an indium-tin oxide (ITO)/titania nanosheet (TN)/poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methylester (PCBM) active layer/MoOx/Ag multilayered photovoltaic device and a conventional BHJ cell in ITO/MoOx/P3HT:PCBM active layer/TN/Al multilayered photovoltaic device. The insertion of only one or two layers of poly(diallyldimethylammonium chloride) (PDDA) and TN multilayered film prepared by the layer-by-layer deposition technique effectively decreased the leakage current and increased the open circuit voltage (VOC), fill factor (FF), and power conversion efficiency (η). The conventional cell sandwiched between a solution-processed, partially crystallized molybdenum oxide hole-extracting buffer layer and a TN electron extracting buffer layer showed comparable cell performance to a device sandwiched between vacuum-deposited molybdenum oxide and TN layers, whereas the inverted cell with solution-processed molybdenum oxide showed a poorer performance probably owing to the increment in the leakage current across the film. The abnormal S-shaped curves observed in the inverted BHJ cell above VOC disappeared with the use of a polyfluorene-based cationic semiconducting polymer as a substitute for an insulating PDDA film, resulting in the improved cell performance.
Lee, Ke-Jing; Chang, Yu-Chi; Lee, Cheng-Jung; Wang, Li-Wen; Wang, Yeong-Her
2017-01-01
A one-transistor and one-resistor (1T1R) architecture with a resistive random access memory (RRAM) cell connected to an organic thin-film transistor (OTFT) device is successfully demonstrated to avoid the cross-talk issues of only one RRAM cell. The OTFT device, which uses barium zirconate nickelate (BZN) as a dielectric layer, exhibits favorable electrical properties, such as a high field-effect mobility of 2.5 cm2/Vs, low threshold voltage of −2.8 V, and low leakage current of 10−12 A, for a driver in the 1T1R operation scheme. The 1T1R architecture with a TiO2-based RRAM cell connected with a BZN OTFT device indicates a low operation current (10 μA) and reliable data retention (over ten years). This favorable performance of the 1T1R device can be attributed to the additional barrier heights introduced by using Ni (II) acetylacetone as a substitute for acetylacetone, and the relatively low leakage current of a BZN dielectric layer. The proposed 1T1R device with low leakage current OTFT and excellent uniform resistance distribution of RRAM exhibits a good potential for use in practical low-power electronic applications. PMID:29232828
Belle II SVD ladder assembly procedure and electrical qualification
NASA Astrophysics Data System (ADS)
Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, Varghese; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaya, I.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.; Belle II SVD Collaboration
2016-07-01
The Belle II experiment at the SuperKEKB asymmetric e+e- collider in Japan will operate at a luminosity approximately 50 times larger than its predecessor (Belle). At its heart lies a six-layer vertex detector comprising two layers of pixelated silicon detectors (PXD) and four layers of double-sided silicon microstrip detectors (SVD). One of the key measurements for Belle II is time-dependent CP violation asymmetry, which hinges on a precise charged-track vertex determination. Towards this goal, a proper assembly of the SVD components with precise alignment ought to be performed and the geometrical tolerances should be checked to fall within the design limits. We present an overview of the assembly procedure that is being followed, which includes the precision gluing of the SVD module components, wire-bonding of the various electrical components, and precision three dimensional coordinate measurements of the jigs used in assembly as well as of the final SVD modules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishizuka, Toshiaki, E-mail: tishizu@ndmc.ac.jp; Goshima, Hazuki; Ozawa, Ayako
2012-03-30
Highlights: Black-Right-Pointing-Pointer Treatment with angiotensin II enhanced LIF-induced DNA synthesis of mouse iPS cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the DNA synthesis via induction of superoxide. Black-Right-Pointing-Pointer Treatment with angiotensin II significantly increased JAK/STAT3 phosphorylation. Black-Right-Pointing-Pointer Angiotensin II enhanced differentiation into mesodermal progenitor cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the differentiation via activation of p38 MAPK. -- Abstract: Previous studies suggest that angiotensin receptor stimulation may enhance not only proliferation but also differentiation of undifferentiated stem/progenitor cells. Therefore, in the present study, we determined the involvement of the angiotensin receptor in the proliferation and differentiation of mouse induced pluripotent stemmore » (iPS) cells. Stimulation with angiotensin II (Ang II) significantly increased DNA synthesis in mouse iPS cells cultured in a medium with leukemia inhibitory factor (LIF). Pretreatment of the cells with either candesartan (a selective Ang II type 1 receptor [AT{sub 1}R] antagonist) or Tempol (a cell-permeable superoxide scavenger) significantly inhibited Ang II-induced DNA synthesis. Treatment with Ang II significantly increased JAK/STAT3 phosphorylation. Pretreatment with candesartan significantly inhibited Ang II- induced JAK/STAT3 phosphorylation. In contrast, induction of mouse iPS cell differentiation into Flk-1-positive mesodermal progenitor cells was performed in type IV collagen (Col IV)- coated dishes in a differentiation medium without LIF. When Col IV-exposed iPS cells were treated with Ang II for 5 days, the expression of Flk-1 was significantly increased compared with that in the cells treated with the vehicle alone. Pretreatment of the cells with both candesartan and SB203580 (a p38 MAPK inhibitor) significantly inhibited the Ang II- induced increase in Flk-1 expression. Treatment with Ang II enhanced the phosphorylation of p38 MAPK in Col IV- exposed iPS cells. These results suggest that the stimulation of mouse iPS cells with AT{sub 1}R may enhance LIF-induced DNA synthesis, by augmenting the generation of superoxide and activating JAK/STAT3, and that AT{sub 1}R stimulation may enhance Col IV-induced differentiation into mesodermal progenitor cells via p38 MAPK activation.« less
Karl, Anett; Agte, Silke; Zayas-Santiago, Astrid; Makarov, Felix N; Rivera, Yomarie; Benedikt, Jan; Francke, Mike; Reichenbach, Andreas; Skatchkov, Serguei N; Bringmann, Andreas
2018-05-19
It has been shown that mammalian retinal glial (Müller) cells act as living optical fibers that guide the light through the retinal tissue to the photoreceptor cells (Agte et al., 2011; Franze et al., 2007). However, for nonmammalian species it is unclear whether Müller cells also improve the transretinal light transmission. Furthermore, for nonmammalian species there is a lack of ultrastructural data of the retinal cells, which, in general, delivers fundamental information of the retinal function, i.e. the vision of the species. A detailed study of the cellular ultrastructure provides a basic approach of the research. Thus, the aim of the present study was to investigate the retina of the spectacled caimans at electron and light microscopical levels to describe the structural features. For electron microscopy, we used a superfast microwave fixation procedure in order to achieve more precise ultrastructural information than common fixation techniques. As result, our detailed ultrastructural study of all retinal parts shows structural features which strongly indicate that the caiman retina is adapted to dim light and night vision. Various structural characteristics of Müller cells suppose that the Müller cell may increase the light intensity along the path of light through the neuroretina and, thus, increase the sensitivity of the scotopic vision of spectacled caimans. Müller cells traverse the whole thickness of the neuroretina and thus may guide the light from the inner retinal surface to the photoreceptor cell perikarya and the Müller cell microvilli between the photoreceptor segments. Thick Müller cell trunks/processes traverse the layers which contain light-scattering structures, i.e., nerve fibers and synapses. Large Müller cell somata run through the inner nuclear layer and contain flattened, elongated Müller cell nuclei which are arranged along the light path and, thus, may reduce the loss of the light intensity along the retinal light path. The oblique arrangement of many Müller cell trunks/processes in the inner plexiform layer and the large Müller cell somata in the inner nuclear layer may suggest that light guidance through Müller cells increases the visual sensitivity. Furthermore, an adaptation of the caiman retina to low light levels is strongly supported by detailed ultrastructural data of other retinal parts, e.g. by (i) the presence of a guanine-based retinal tapetum, (ii) the rod dominance of the retina, (iii) the presence of photoreceptor cell nuclei, which penetrate the outer limiting membrane, (iv) the relatively low densities of photoreceptor and neuronal cells which is compensated by (v) the presence of rods with long and thick outer segments, that may increase the probability of photon absorption. According to a cell number analysis, the central and temporal areas of the dorsal tapetal retina, which supports downward prey detection in darker water, are the sites of the highest diurnal contrast/color vision, i.e. cone vision and of the highest retinal light sensitivity, i.e. rod vision. Copyright © 2018 Elsevier Ltd. All rights reserved.
Inversion layer solar cell fabrication and evaluation
NASA Technical Reports Server (NTRS)
Call, R. L.
1972-01-01
Silicon solar cells with induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. This charged layer was supplied through three mechanisms: (1) supplying a positive potential to a transparent electrode separated from the silicon surface by a dielectric, (2) contaminating the oxide layer with positive ions, and (3) forming donor surface states that leave a positive charge on the surface. A movable semi-infinite shadow delineated the extent of sensitivity of the cell due to the inversion region. Measurements of the inversion layer cell response to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. Theory of the conductance of the inversion layer vs. strength of the inversion layer was compared with experiment and found to match. Theoretical determinations of junction depth and inversion layer strength were made as a function of the surface potential for the transparent electrode cell.
NASA Astrophysics Data System (ADS)
Chadel, Meriem; Moustafa Bouzaki, Mohammed; Chadel, Asma; Aillerie, Michel; Benyoucef, Boumediene
2017-07-01
The influence of the thickness of a Zinc Oxide (ZnO) transparent conductive oxide (TCO) layer on the performance of the CZTSSe solar cell is shown in detail. In a photovoltaic cell, the thickness of each layer largely influence the performance of the solar cell and optimization of each layer constitutes a complete work. Here, using the Solar Cell Capacitance Simulation (SCAPS) software, we present simulation results obtained in the analyze of the influence of the TCO layer thickness on the performance of a CZTSSe solar cell, starting from performance of a CZTSSe solar cell commercialized in 2014 with an initial efficiency equal to 12.6%. In simulation, the temperature was considered as a functioning parameter and the evolution of tthe performance of the cell for various thickness of the TCO layer when the external temperature changes is simulated and discussed. The best efficiency of the solar cell based in CZTSSe is obtained with a ZnO thickness equal to 50 nm and low temperature. Based on the considered marketed cell, we show a technological possible increase of the global efficiency achieving 13% by optimization of ZnO based TCO layer.
Cu(In,Ga)Se2 Solar Cells with Amorphous In2O3-Based Front Contact Layers.
Koida, Takashi; Ueno, Yuko; Nishinaga, Jiro; Higuchi, Hirohumi; Takahashi, Hideki; Iioka, Masayuki; Shibata, Hajime; Niki, Shigeru
2017-09-06
Amorphous (a-) In 2 O 3 -based front contact layers composed of transparent conducting oxide (TCO) and transparent oxide semiconductor (TOS) layers were proved to be effective in enhancing the short-circuit current density (J sc ) of Cu(In,Ga)Se 2 (CIGS) solar cells with a glass/Mo/CIGS/CdS/TOS/TCO structure, while maintaining high fill factor (FF) and open-circuit voltage (V oc ). An n-type a-In-Ga-Zn-O layer was introduced between the CdS and TCO layers. Unlike unintentionally doped ZnO broadly used as TOS layers in CIGS solar cells, the grain-boundary(GB)-free amorphous structure of the a-In-Ga-Zn-O layers allowed high electron mobility with superior control over the carrier density (N). High FF and V oc values were achieved in solar cells containing a-In-Ga-Zn-O layers with N values broadly ranging from 2 × 10 15 to 3 × 10 18 cm -3 . The decrease in FF and V oc produced by the electronic inhomogeneity of solar cells was mitigated by controlling the series resistance within the TOS layer of CIGS solar cells. In addition, a-In 2 O 3 :H and a-In-Zn-O layers exhibited higher electron mobilities than the ZnO:Al layers conventionally used as TCO layers in CIGS solar cells. The In 2 O 3 -based layers exhibited lower free carrier absorption while maintaining similar sheet resistance than ZnO:Al. The TCO and TOS materials and their combinations did not significantly change the V oc of the CIGS solar cells and the mini-modules.
Song, Guowei; Hu, Yaning; Liu, Yusheng; Jiang, Rui
2018-05-20
Layer-by-layer heparinization of therapeutic cells prior to transplantation is an effective way to inhibit the instant blood-mediated inflammatory reactions (IBMIRs), which are the major cause of early cell graft loss during post-transplantation. Here, a conjugate of heparin-binding peptide (HBP) and human serum albumin (HSA), HBP-HSA, was synthesized by using heterobifunctional crosslinker. After the first heparin layer was coated on human umbilical vein endothelial cells (HUVECs) by means of the HBP-polyethylene glycol-phospholipid conjugate, HBP-HSA and heparin were then applied to the cell surface sequentially to form multiple layers. The immobilization and retention of heparin were analyzed by confocal microscopy and flow cytometry, respectively, and the cytotoxity of HBP-HSA was further evaluated by cell viability assay. Results indicated that heparin was successfully introduced to the cell surface in a layer-by-layer way and retained for at least 24 h, while the cytotoxity of HBP-HSA was negligible at the working concentration. Accordingly, this conjugate provides a promising method for co-immobilization of heparin and HSA to the cell surface under physiological conditions with improved biocompatibility.
Novel approaches for fabrication of thin film layers for solid oxide electrolyte fuel cells
NASA Technical Reports Server (NTRS)
Murugesamoorthi, K. A.; Srinivasan, S.; Cocke, D. L.; Appleby, A. J.
1990-01-01
The main objectives of the SOFC (solid oxide fuel cell) project are to (1) identify viable and cost-effective techniques to prepare cell components for stable MSOFCs (monolithic SOFCs); (2) fabricate half and single cells; and (3) evaluate their performances. The approach used to fabricate stable MSOFCs is as follows: (1) the electrolyte layer is prepared in the form of a honeycomb structure by alloy oxidation and other cell components are deposited on it; (2) the electrolyte and anode layers are deposited on the cathode layer, which has a porous, honeycomb structure; and (3) the electrolyte and cathode layers are deposited on the anode layer. The current status of the project is reported.
Solar cell with back side contacts
Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J
2013-12-24
A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.
Multi-junction solar cell device
Friedman, Daniel J.; Geisz, John F.
2007-12-18
A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.
What Is the Evidence for Inter-laminar Integration in a Prefrontal Cortical Minicolumn?
Opris, Ioan; Chang, Stephano; Noga, Brian R
2017-01-01
The objective of this perspective article is to examine columnar inter-laminar integration during the executive control of behavior. The integration hypothesis posits that perceptual and behavioral signals are integrated within the prefrontal cortical inter-laminar microcircuits. Inter-laminar minicolumnar activity previously recorded from the dorsolateral prefrontal cortex (dlPFC) of nonhuman primates, trained in a visual delay match-to-sample (DMS) task, was re-assessed from an integrative perspective. Biomorphic multielectrode arrays (MEAs) played a unique role in the in vivo recording of columnar cell firing in the dlPFC layers 2/3 and 5/6. Several integrative aspects stem from these experiments: 1. Functional integration of perceptual and behavioral signals across cortical layers during executive control. The integrative effect of dlPFC minicolumns was shown by: (i) increased correlated firing on correct vs. error trials; (ii) decreased correlated firing when the number of non-matching images increased; and (iii) similar spatial firing preference across cortical-striatal cells during spatial-trials, and less on object-trials. 2. Causal relations to integration of cognitive signals by the minicolumnar turbo-engines. The inter-laminar integration between the perceptual and executive circuits was facilitated by stimulating the infra-granular layers with firing patterns obtained from supra-granular layers that enhanced spatial preference of percent correct performance on spatial trials. 3. Integration across hierarchical levels of the brain. The integration of intention signals (visual spatial, direction) with movement preparation (timing, velocity) in striatum and with the motor command and posture in midbrain is also discussed. These findings provide evidence for inter-laminar integration of executive control signals within brain's prefrontal cortical microcircuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Lihua; Wang, Wensheng; Xiao, Weidong
2012-08-10
Highlights: Black-Right-Pointing-Pointer Ang II-induced apoptosis in intestinal epithelial cell through AT2 receptor. Black-Right-Pointing-Pointer The apoptosis process involves in the Bax/Bcl-2 intrinsic pathway. Black-Right-Pointing-Pointer GATA-6 short hairpin RNA reduced Bax expression, but not Bcl-2. Black-Right-Pointing-Pointer GATA-6 may play a critical role in apoptosis in response to the Ang II challenge. -- Abstract: Angiotensin II (Ang II) has been shown to play an important role in cell apoptosis. However, the mechanisms of Ang-II-induced apoptosis in intestinal epithelial cells are not fully understood. GATA-6 is a zinc finger transcription factor expressed in the colorectal epithelium, which directs cell proliferation, differentiation and apoptosis. Inmore » the present study we investigated the underlying mechanism of which GATA-6 affects Ang-II induced apoptosis in intestinal epithelial cells. The in vitro intestinal epithelial cell apoptosis model was established by co-culturing Caco-2 cells with Ang II. Pretreatment with Angiotensin type 2 (AT2) receptor antagonist, PD123319, significantly reduced the expression of Bax and prevented the Caco-2 cells apoptosis induced by Ang II. In addition, Ang II up-regulated the expression of GATA-6. Interestingly, GATA-6 short hairpin RNA prevented Ang II-induced intestinal epithelial cells apoptosis and reduced the expression of Bax, but not Bcl-2. Taken together, the present study suggests that Angiotensin II promotes apoptosis in intestinal epithelial cells through GATA-6 and the Bax pathway in an AT2 receptor-dependent manner.« less
S-layers: principles and applications
Sleytr, Uwe B; Schuster, Bernhard; Egelseer, Eva-Maria; Pum, Dietmar
2014-01-01
Monomolecular arrays of protein or glycoprotein subunits forming surface layers (S-layers) are one of the most commonly observed prokaryotic cell envelope components. S-layers are generally the most abundantly expressed proteins, have been observed in species of nearly every taxonomical group of walled bacteria, and represent an almost universal feature of archaeal envelopes. The isoporous lattices completely covering the cell surface provide organisms with various selection advantages including functioning as protective coats, molecular sieves and ion traps, as structures involved in surface recognition and cell adhesion, and as antifouling layers. S-layers are also identified to contribute to virulence when present as a structural component of pathogens. In Archaea, most of which possess S-layers as exclusive wall component, they are involved in determining cell shape and cell division. Studies on structure, chemistry, genetics, assembly, function, and evolutionary relationship of S-layers revealed considerable application potential in (nano)biotechnology, biomimetics, biomedicine, and synthetic biology. PMID:24483139
Insausti, Ricardo; Muñoz-López, Mónica; Insausti, Ana M.; Artacho-Pérula, Emilio
2017-01-01
The cortical mantle is not homogeneous, so that three types of cortex can be distinguished: allocortex, periallocortex and isocortex. The main distinction among those three types is based on morphological differences, in particular the number of layers, overall organization, appearance, etc., as well as its connectivity. Additionally, in the phylogenetic scale, this classification is conserved among different mammals. The most primitive and simple cortex is the allocortex, which is characterized by the presence of three layers, with one cellular main layer; it is continued by the periallocortex, which presents six layers, although with enough differences in the layer pattern to separate three different fields: presubiculum (PrS), parasubiculum (PaS), and entorhinal cortex (EC). The closest part to the allocortex (represented by the subiculum) is the PrS, which shows outer (layers I–III) and inner (V–VI) principal layers (lamina principalis externa and lamina principalis interna), both separated by a cell poor band, parallel to the pial surface (layer IV or lamina dissecans). This layer organization is present throughout the anterior-posterior axis. The PaS continues the PrS, but its rostrocaudal extent is shorter than the PrS. The organization of the PaS shows the layer pattern more clearly than in the PrS. Up to six layers are recognizable in the PaS, with layer IV as lamina dissecans between superficial (layers I–III) and deep (V–VI) layers, as in the PrS. The EC presents even more clearly the layer pattern along both mediolateral and rostrocaudal extent. The layer pattern is a thick layer I, layer II in islands, layer III medium pyramids, layer IV as lamina dissecans (not present throughout the EC extent), layer V with dark and big pyramids and a multiform layer VI. The EC borders laterally the proisocortex (incomplete type of isocortex). Variations in the appearance of its layers justify the distinction of subfields in the EC, in particular in human and nonhuman primates. EC layers are not similar to those in the neocortex. The transition between the periallocortical EC and isocortex is not sharp, so that the proisocortex forms an intervening cortex, which fills the gap between the periallocortex and the isocortex. PMID:29046628
Insausti, Ricardo; Muñoz-López, Mónica; Insausti, Ana M; Artacho-Pérula, Emilio
2017-01-01
The cortical mantle is not homogeneous, so that three types of cortex can be distinguished: allocortex, periallocortex and isocortex. The main distinction among those three types is based on morphological differences, in particular the number of layers, overall organization, appearance, etc., as well as its connectivity. Additionally, in the phylogenetic scale, this classification is conserved among different mammals. The most primitive and simple cortex is the allocortex, which is characterized by the presence of three layers, with one cellular main layer; it is continued by the periallocortex, which presents six layers, although with enough differences in the layer pattern to separate three different fields: presubiculum (PrS), parasubiculum (PaS), and entorhinal cortex (EC). The closest part to the allocortex (represented by the subiculum) is the PrS, which shows outer (layers I-III) and inner (V-VI) principal layers ( lamina principalis externa and lamina principalis interna ), both separated by a cell poor band, parallel to the pial surface (layer IV or lamina dissecans ). This layer organization is present throughout the anterior-posterior axis. The PaS continues the PrS, but its rostrocaudal extent is shorter than the PrS. The organization of the PaS shows the layer pattern more clearly than in the PrS. Up to six layers are recognizable in the PaS, with layer IV as lamina dissecans between superficial (layers I-III) and deep (V-VI) layers, as in the PrS. The EC presents even more clearly the layer pattern along both mediolateral and rostrocaudal extent. The layer pattern is a thick layer I, layer II in islands, layer III medium pyramids, layer IV as lamina dissecans (not present throughout the EC extent), layer V with dark and big pyramids and a multiform layer VI. The EC borders laterally the proisocortex (incomplete type of isocortex). Variations in the appearance of its layers justify the distinction of subfields in the EC, in particular in human and nonhuman primates. EC layers are not similar to those in the neocortex. The transition between the periallocortical EC and isocortex is not sharp, so that the proisocortex forms an intervening cortex, which fills the gap between the periallocortex and the isocortex.
Shibata, S.; Sakamoto, Y.; Baba, O.; Qin, C.; Murakami, G.; Cho, B.H.
2013-01-01
Immunohistochemical localization of collagen types I, II, and X, aggrecan, versican, dentin matrix protein (DMP)-1, martix extracellular phosphoprotein (MEPE) were performed for Meckel’s cartilage, cranial base cartilage, and mandibular condylar cartilage in human midterm fetuses; staining patterns within the condylar cartilage were compared to those within other cartilaginous structures. Mandibular condylar cartilage contained aggrecan; it also had more type I collagen and a thicker hypertrophic cell layer than the other two types of cartilage; these three characteristics are similar to those of the secondary cartilage of rodents. MEPE immunoreactivity was first evident in the cartilage matrix of all types of cartilage in the human fetuses and in Meckel’s cartilage of mice and rats. MEPE immunoreactivity was enhanced in the deep layer of the hypertrophic cell layer and in the cartilaginous core of the bone trabeculae in the primary spongiosa. These results indicated that MEPE is a component of cartilage matrix and may be involved in cartilage mineralization. DMP-1 immunoreactivity first became evident in human bone lacunae walls and canaliculi; this pattern of expression was comparable to the pattern seen in rodents. In addition, chondroid bone was evident in the mandibular (glenoid) fossa of the temporal bone, and it had aggrecan, collagen types I and X, MEPE, and DMP-1 immunoreactivity; these findings indicated that chondroid bone in this region has phenotypic expression indicative of both hypertrophic chondrocytes and osteocytes. PMID:24441192
Chen, Hui; Gonzalez, Jorge L; Brennick, Jeoffry B; Liu, Miaoliang; Yan, Shaofeng
2010-09-01
Two major subtypes of vulvar squamous cell carcinomas (SCC) have been described. Basaloid and warty SCC are human papillomavirus-related and associated with classic vulvar intraepithelial neoplasia (VIN). Keratinizing SCC is associated with lichen sclerosus and differentiated VIN, but not with human papillomavirus. This study was undertaken to examine the expression patterns of ProEx C in vulvar SCC and its precursors. We analyzed 22 cases with normal vulvar epidermis, 13 cases of lichen sclerosus, 14 cases of condylomas, 23 cases of high-grade classic VIN, 6 cases of differentiated VIN, 3 cases of verrucous carcinomas, 10 cases of keratinizing SCC, and 8 cases of basaloid and warty SCC. ProEx C targets minichromosome maintenance protein and topoisomerase II alpha protein which are overexpressed in the cell nucleus during aberrant S-phase induction. Marked confluent ProEx C expression is present in high-grade classic VIN with nuclear staining extending into the middle and upper layers of the epidermis. Condylomas show parabasal nuclear immunoreactivity associated with scattered ProEx C-positive nuclei in the more differentiated suprabasilar layers. Invasive SCC shows variable staining patterns. In contrast, ProEx C staining is essentially limited to the basal and parabasal layers in normal epidermis, lichen sclerosus, differentiated VIN, and verrucous carcinoma. Overall, ProEx C is a useful proliferation marker for high-grade VIN analogous to the staining patterns reported in high-grade cervical intraepithelial neoplasia.
Belle II silicon vertex detector
NASA Astrophysics Data System (ADS)
Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Enami, K.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C. W.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.; Belle II SVD Collaboration
2016-09-01
The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector.
2018-02-08
Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndrome; Refractory Chronic Lymphocytic Leukemia; Refractory Plasma Cell Myeloma; Waldenstrom Macroglobulinemia; Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Lymphoma; Childhood Myelodysplastic Syndrome; Stage II Contiguous Adult Burkitt Lymphoma; Stage II Contiguous Adult Diffuse Large Cell Lymphoma; Stage II Contiguous Adult Diffuse Mixed Cell Lymphoma; Stage II Contiguous Adult Diffuse Small Cleaved Cell Lymphoma; Stage II Adult Contiguous Immunoblastic Lymphoma; Stage II Contiguous Adult Lymphoblastic Lymphoma; Stage II Grade 1 Contiguous Follicular Lymphoma; Stage II Grade 2 Contiguous Follicular Lymphoma; Stage II Grade 3 Contiguous Follicular Lymphoma; Stage II Contiguous Mantle Cell Lymphoma; Stage II Non-Contiguous Adult Burkitt Lymphoma; Stage II Non-Contiguous Adult Diffuse Large Cell Lymphoma; Stage II Non-Contiguous Adult Diffuse Mixed Cell Lymphoma; Stage II Non-Contiguous Adult Diffuse Small Cleaved Cell Lymphoma; Stage II Adult Non-Contiguous Immunoblastic Lymphoma; Stage II Non-Contiguous Adult Lymphoblastic Lymphoma; Stage II Grade 1 Non-Contiguous Follicular Lymphoma; Stage II Grade 2 Non-Contiguous Follicular Lymphoma; Stage II Grade 3 Non-Contiguous Follicular Lymphoma; Stage II Non-Contiguous Mantle Cell Lymphoma; Stage II Small Lymphocytic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Burkitt Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Recurrent Childhood Hodgkin Lymphoma; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Myelodysplastic Syndrome; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Immunoblastic Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Burkitt Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Burkitt Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Burkitt Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Burkitt Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma
Transient chondrogenic phase in the intramembranous pathway during normal skeletal development.
Nah, H D; Pacifici, M; Gerstenfeld, L C; Adams, S L; Kirsch, T
2000-03-01
Calvarial and facial bones form by intramembranous ossification, in which bone cells arise directly from mesenchyme without an intermediate cartilage anlage. However, a number of studies have reported the emergence of chondrocytes from in vitro calvarial cell or organ cultures and the expression of type II collagen, a cartilage-characteristic marker, in developing calvarial bones. Based on these findings we hypothesized that a covert chondrogenic phase may be an integral part of the normal intramembranous pathway. To test this hypothesis, we analyzed the temporal and spatial expression patterns of cartilage characteristic genes in normal membranous bones from chick embryos at various developmental stages (days 12, 15 and 19). Northern and RNAse protection analyses revealed that embryonic frontal bones expressed not only the type I collagen gene but also a subset of cartilage characteristic genes, types IIA and XI collagen and aggrecan, thus resembling a phenotype of prechondrogenic-condensing mesenchyme. The expression of cartilage-characteristic genes decreased with the progression of bone maturation. Immunohistochemical analyses of developing embryonic chick heads indicated that type II collagen and aggrecan were produced by alkaline phosphatase activity positive cells engaged in early stages of osteogenic differentiation, such as cells in preosteogenic-condensing mesenchyme, the cambium layer of periosteum, the advancing osteogenic front, and osteoid bone. Type IIB and X collagen messenger RNAs (mRNA), markers for mature chondrocytes, were also detected at low levels in calvarial bone but not until late embryonic stages (day 19), indicating that some calvarial cells may undergo overt chondrogenesis. On the basis of our findings, we propose that the normal intramembranous pathway in chicks includes a previously unrecognized transient chondrogenic phase similar to prechondrogenic mesenchyme, and that the cells in this phase retain chondrogenic potential that can be expressed in specific in vitro and in vivo microenvironments.
Nordhues, André; Schöttler, Mark Aurel; Unger, Ann-Katrin; Geimer, Stefan; Schönfelder, Stephanie; Schmollinger, Stefan; Rütgers, Mark; Finazzi, Giovanni; Soppa, Barbara; Sommer, Frederik; Mühlhaus, Timo; Roach, Thomas; Krieger-Liszkay, Anja; Lokstein, Heiko; Crespo, José Luis; Schroda, Michael
2012-01-01
The vesicle-inducing protein in plastids (VIPP1) was suggested to play a role in thylakoid membrane formation via membrane vesicles. As this functional assignment is under debate, we investigated the function of VIPP1 in Chlamydomonas reinhardtii. Using immunofluorescence, we localized VIPP1 to distinct spots within the chloroplast. In VIPP1-RNA interference/artificial microRNA cells, we consistently observed aberrant, prolamellar body-like structures at the origin of multiple thylakoid membrane layers, which appear to coincide with the immunofluorescent VIPP1 spots and suggest a defect in thylakoid membrane biogenesis. Accordingly, using quantitative shotgun proteomics, we found that unstressed vipp1 mutant cells accumulate 14 to 20% less photosystems, cytochrome b6f complex, and ATP synthase but 30% more light-harvesting complex II than control cells, while complex assembly, thylakoid membrane ultrastructure, and bulk lipid composition appeared unaltered. Photosystems in vipp1 mutants are sensitive to high light, which coincides with a lowered midpoint potential of the QA/QA− redox couple and increased thermosensitivity of photosystem II (PSII), suggesting structural defects in PSII. Moreover, swollen thylakoids, despite reduced membrane energization, in vipp1 mutants grown on ammonium suggest defects in the supermolecular organization of thylakoid membrane complexes. Overall, our data suggest a role of VIPP1 in the biogenesis/assembly of thylakoid membrane core complexes, most likely by supplying structural lipids. PMID:22307852
Strain-balanced type-II superlattices for efficient multi-junction solar cells.
Gonzalo, A; Utrilla, A D; Reyes, D F; Braza, V; Llorens, J M; Fuertes Marrón, D; Alén, B; Ben, T; González, D; Guzman, A; Hierro, A; Ulloa, J M
2017-06-21
Multi-junction solar cells made by assembling semiconductor materials with different bandgap energies have hold the record conversion efficiencies for many years and are currently approaching 50%. Theoretical efficiency limits make use of optimum designs with the right lattice constant-bandgap energy combination, which requires a 1.0-1.15 eV material lattice-matched to GaAs/Ge. Nevertheless, the lack of suitable semiconductor materials is hindering the achievement of the predicted efficiencies, since the only candidates were up to now complex quaternary and quinary alloys with inherent epitaxial growth problems that degrade carrier dynamics. Here we show how the use of strain-balanced GaAsSb/GaAsN superlattices might solve this problem. We demonstrate that the spatial separation of Sb and N atoms avoids the ubiquitous growth problems and improves crystal quality. Moreover, these new structures allow for additional control of the effective bandgap through the period thickness and provide a type-II band alignment with long carrier lifetimes. All this leads to a strong enhancement of the external quantum efficiency under photovoltaic conditions with respect to bulk layers of equivalent thickness. Our results show that GaAsSb/GaAsN superlattices with short periods are the ideal (pseudo)material to be integrated in new GaAs/Ge-based multi-junction solar cells that could approach the theoretical efficiency limit.
Sakai, Yusuke; Koike, Makiko; Hasegawa, Hideko; Yamanouchi, Kosho; Soyama, Akihiko; Takatsuki, Mitsuhisa; Kuroki, Tamotsu; Ohashi, Kazuo; Okano, Teruo; Eguchi, Susumu
2013-01-01
Cell sheet engineering is attracting attention from investigators in various fields, from basic research scientists to clinicians focused on regenerative medicine. However, hepatocytes have a limited proliferation potential in vitro, and it generally takes a several days to form a sheet morphology and multi-layered sheets. We herein report our rapid and efficient technique for generating multi-layered human hepatic cell (HepaRG® cell) sheets using pre-cultured fibroblast monolayers derived from human skin (TIG-118 cells) as a feeder layer on a temperature-responsive culture dish. Multi-layered TIG-118/HepaRG cell sheets with a thick morphology were harvested on day 4 of culturing HepaRG cells by forceful contraction of the TIG-118 cells, and the resulting sheet could be easily handled. In addition, the human albumin and alpha 1-antitrypsin synthesis activities of TIG-118/HepaRG cells were approximately 1.2 and 1.3 times higher than those of HepaRG cells, respectively. Therefore, this technique is considered to be a promising modality for rapidly fabricating multi-layered human hepatocyte sheets from cells with limited proliferation potential, and the engineered cell sheet could be used for cell transplantation with highly specific functions.
Sohrabi Akhkand, Saman; Amirizadeh, Naser; Nikougoftar, Mahin; Alizadeh, Javad; Zaker, Farhad; Sarveazad, Arash; Joghataei, Mohammad Taghi; Faramarzi, Mahmood
2016-08-01
Umbilical cord blood (UCB) is an important source of hematopoietic stem cells (HSCs). However, low number of HSCs in UCB has been an obstacle for adult hematopoietic stem cell transplantation. The expansion of HSCs in culture is one approach to overcome this problem. In this study, we investigated the expansion of UCB-HSCs by using human bone marrow mesenchymal stromal cells (MSCs) as feeder layer as well as inhibiting the TGF-β signaling pathway through reduction of TGF-βRII expression. CD34(+) cells were isolated from UCB and transfected by SiRNA targeting TGF-βRII mRNA. CD34(+) cells were expanded in four culture media with different conditions, including 1) expansion of CD34(+) cells in serum free medium containing growth factors, 2) expansion of cells transfected with SiRNA targeting TGF-βRII in medium containing growth factors, 3) expansion of cells in presence of growth factors and MSCs, 4) expansion of cells transfected with SiRNA targeting TGF-βRII on MSCs feeder layer in medium containing growth factors. These culture conditions were evaluated for the number of total nucleated cells (TNCs), CD34 surface marker as well as using CFU assay on 8th day after culture. The fold increase in CD34(+) cells, TNCs, and colony numbers (71.8±6.9, 93.2±10.2 and 128±10, respectively) was observed to be highest in fourth culture medium compared to other culture conditions. The difference between number of cells in four culture media in 8th day compared to unexpanded cells (0day) before expansion was statistically significant (P<0.05). The results showed that transfection of CD34(+) cells with SiRNA targeting TGF-βRII and their co-culture with MSCs could considerably increase the number of progenitors. Therefore, this method could be useful for UCB-HSCs expansion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Park, Hyung Wook; Kim, Hong-Lim; Park, Yong Soo; Kim, In-Beom
2018-02-01
The retina is a highly specialised part of the brain responsible for visual processing. It is well-laminated; three layers containing five different types of neurons are compartmentalised by two synaptic layers. Among the retinal layers, the inner nuclear layer (INL) is composed of horizontal, bipolar, and amacrine cell types. Bipolar cells form one sublayer in the distal half of the IPL, while amacrine cells form another sublayer in the proximal half, without any border-like structure. Here, we report that a plexiform layer-like structure exists temporarily in the border between the bipolar and amacrine sublayers in the INL in the rat retina during retinal development. This transient intermediate plexiform layer (TIPL) appeared at postnatal day (PD) 7 and then disappeared around PD 12. Most apoptotic cells in the INL were found near the TIPL. These results suggest that the TIPL may contribute to the formation of sublayers and the cell number limit in the INL.
Photovoltaic module and laminate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunea, Gabriela E.; Kim, Sung Dug; Kavulak, David F.J.
A photovoltaic module is disclosed. The photovoltaic module has a first side directed toward the sun during normal operation and a second, lower side. The photovoltaic module comprises a perimeter frame and a photovoltaic laminate at least partially enclosed by and supported by the perimeter frame. The photovoltaic laminate comprises a transparent cover layer positioned toward the first side of the photovoltaic module, an upper encapsulant layer beneath and adhering to the cover layer, a plurality of photovoltaic solar cells beneath the upper encapsulant layer, the photovoltaic solar cells electrically interconnected, a lower encapsulant layer beneath the plurality of photovoltaicmore » solar cells, the upper and lower encapsulant layers enclosing the plurality of photovoltaic solar cells, and a homogenous rear environmental protection layer, the rear environmental protection layer adhering to the lower encapsulant layer, the rear environmental protection layer exposed to the ambient environment on the second side of the photovoltaic module.« less
Efthymiou, George S.; Shuler, Michael L.
1989-08-29
An improved multilayer continuous biological membrane reactor and a process to eliminate diffusional limitations in membrane reactors in achieved by causing a convective flux of nutrient to move into and out of an immobilized biocatalyst cell layer. In a pressure cycled mode, by increasing and decreasing the pressure in the respective layers, the differential pressure between the gaseous layer and the nutrient layer is alternately changed from positive to negative. The intermittent change in pressure differential accelerates the transfer of nutrient from the nutrient layers to the biocatalyst cell layer, the transfer of product from the cell layer to the nutrient layer and the transfer of byproduct gas from the cell layer to the gaseous layer. Such intermittent cycling substantially eliminates mass transfer gradients in diffusion inhibited systems and greatly increases product yield and throughput in both inhibited and noninhibited systems.
Kristin, Forner; René, Holm; Boontida, Morakul; Buraphacheep, Junyaprasert Varaporn; Maximilian, Ackermann; Johanna, Mazur; Peter, Langguth
2017-04-01
In order to save time and resources in early drug development, in vitro methods that correctly predict the formulation effect on oral drug absorption are necessary. The aim of this study was to 1) evaluate various BCS class II drug formulations with in vitro methods and in vivo in order to 2) determine which in vitro method best correlates with the in vivo results. Clarithromycin served as model compound in formulations with different particle sizes and content of excipients. The performed in vitro experiments were dissolution and dissolution/permeation experiments across two types of membrane, Caco-2 cells and excised rat intestinal sheets. The in vivo study was performed in rats. The oral absorption was enhanced by downsizing drug particles and by increasing the excipient concentration. This correlated strongly with the flux across Caco-2 cells but not with the other in vitro experiments. The insufficient correlation with the dissolution experiments can be partly explained by excipient caused problems during the filtration step. The very poor correlation of the in vivo data with the flux across excised rat intestinal sheets might be due to an artificially enlarged mucus layer ex vivo. In conclusion, downsizing BCS class II drug particles and the addition of surfactants enhanced the in vivo absorption, which was best depicted by dissolution/permeation experiments across Caco-2 cells. This setup is proposed as best model to predict the in vivo formulation effect. Also, this is the first study to evaluate the impact of the nature of the permeation membrane in dissolution/permeation experiments. Copyright © 2017 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
In this presentation, new approaches for flame retardant textile by using supercritical carbon dioxide (scCO2) and layer-by-layer processing will be discussed. Due to its environmentally benign character, the scCO2 is considered in green chemistry as a substitute for organic solvents in chemical re...
Charvet, Christine J; Hof, Patrick R; Raghanti, Mary Ann; Van Der Kouwe, Andre J; Sherwood, Chet C; Takahashi, Emi
2017-04-01
The isocortex of primates is disproportionately expanded relative to many other mammals, yet little is known about what the expansion of the isocortex entails for differences in cellular composition and connectivity patterns in primates. Across the depth of the isocortex, neurons exhibit stereotypical patterns of projections. Upper-layer neurons (i.e., layers II-IV) project within and across cortical areas, whereas many lower-layer pyramidal neurons (i.e., layers V-VI) favor connections to subcortical regions. To identify evolutionary changes in connectivity patterns, we quantified upper (i.e., layers II-IV)- and lower (i.e., layers V-VI)-layer neuron numbers in primates and other mammals such as rodents and carnivores. We also used MR tractography based on high-angular resolution diffusion imaging and diffusion spectrum imaging to compare anterior-to-posterior corticocortical tracts between primates and other mammals. We found that primates possess disproportionately more upper-layer neurons as well as an expansion of anterior-to-posterior corticocortical tracts compared with other mammals. Taken together, these findings demonstrate that primates deviate from other mammals in exhibiting increased cross-cortical connectivity. J. Comp. Neurol. 525:1075-1093, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Determination of intracellular nitrate.
Romero, J M; Lara, C; Guerrero, M G
1989-01-01
A sensitive procedure has been developed for the determination of intracellular nitrate. The method includes: (i) preparation of cell lysates in 2 M-H3PO4 after separation of cells from the outer medium by rapid centrifugation through a layer of silicone oil, and (ii) subsequent nitrate analysis by ion-exchange h.p.l.c. with, as mobile phase, a solution containing 50 mM-H3PO4 and 2% (v/v) tetrahydrofuran, adjusted to pH 1.9 with NaOH. The determination of nitrate is subjected to interference by chloride and sulphate when present in the samples at high concentrations. Nitrite also interferes, but it is easily eliminated by treatment of the samples with sulphamic acid. The method has been successfully applied to the study of nitrate transport in the unicellular cyanobacterium Anacystis nidulans. PMID:2497740
Spaceflight induces changes in the synaptic circuitry of the postnatal developing neocortex
NASA Technical Reports Server (NTRS)
DeFelipe, J.; Arellano, J. I.; Merchan-Perez, A.; Gonzalez-Albo, M. C.; Walton, K.; Llinas, R.
2002-01-01
The establishment of the adult pattern of neocortical circuitry depends on various intrinsic and extrinsic factors, whose modification during development can lead to alterations in cortical organization and function. We report the effect of 16 days of spaceflight [Neurolab mission; from postnatal day 14 (P14) to P30] on the neocortical representation of the hindlimb synaptic circuitry in rats. As a result, we show, for the first time, that development in microgravity leads to changes in the number and morphology of cortical synapses in a laminar-specific manner. In the layers II/III and Va, the synaptic cross-sectional lengths were significantly larger in flight animals than in ground control animals. Flight animals also showed significantly lower synaptic densities in layers II/III, IV and Va. The greatest difference was found in layer II/III, where there was a difference of 344 million synapses per mm(3) (15.6% decrease). Furthermore, after a 4 month period of re-adaptation to terrestrial gravity, some changes disappeared (i.e. the alterations were transient), while conversely, some new differences also appeared. For example, significant differences in synaptic density in layers II/III and Va after re-adaptation were no longer observed, whereas in layer IV the density of synapses increased notably in flight animals (a difference of 185 million synapses per mm(3) or 13.4%). In addition, all the changes observed only affected asymmetrical synapses, which are known to be excitatory. These results indicates that terrestrial gravity is a necessary environmental parameter for normal cortical synaptogenesis. These findings are fundamental in planning future long-term spaceflights.
RADWAN, FAISAL F. Y.; ZHANG, LIXIA; HOSSAIN, AZIM; DOONAN, BENTLY P.; GOD, JASON; HAQUE, AZIZUL
2015-01-01
Malignant B-cells express measurable levels of HLA class II proteins, but often escape immune recognition by CD4+ T cells. Resveratrol (Resv) has been the focus of numerous investigations due to its potential chemopreventive and anti-cancer effects, but it has never been tested in the regulation of immune components in B-cell tumors. Here, we show for the first time that Resv treatment enhances HLA class II-mediated immune detection of B-cell lymphomas by altering immune components and class II presentation in tumor cells. Resv treatment induced an upregulation of both classical and non-classical HLA class II proteins (DR and DM) in B-lymphoma cells. Resv also altered endolysosomal cathepsins (Cat S, B and D) and a thiol reductase (GILT), increasing HLA class II-mediated antigen (Ag) processing in B-cell lymphomas and their subsequent recognition by CD4+ T cells. Mechanistic study demonstrated that Resv treatment activated the recycling class II pathway of Ag presentation through upregulation of Rab 4B protein expression in B-lymphoma cells. These findings suggest that HLA class II-mediated immune recognition of malignant B-cells can be improved by Resv treatment, thus encouraging its potential use in chemoimmunotherapy of B-cell lymphoma. PMID:21854084
Pellegrini, G; Ranno, R; Stracuzzi, G; Bondanza, S; Guerra, L; Zambruno, G; Micali, G; De Luca, M
1999-09-27
Cell therapy is an emerging therapeutic strategy aimed at replacing or repairing severely damaged tissues with cultured cells. Epidermal regeneration obtained with autologous cultured keratinocytes (cultured autografts) can be life-saving for patients suffering from massive full-thickness burns. However, the widespread use of cultured autografts has been hampered by poor clinical results that have been consistently reported by different burn units, even when cells were applied on properly prepared wound beds. This might arise from the depletion of epidermal stem cells (holoclones) in culture. Depletion of holoclones can occur because of (i) incorrect culture conditions, (ii) environmental damage of the exposed basal layer of cultured grafts, or (iii) use of new substrates or culture technologies not pretested for holoclone preservation. The aim of this study was to show that, if new keratinocyte culture technologies and/or "delivery systems" are proposed, a careful evaluation of epidermal stem cell preservation is essential for the clinical performance of this life-saving technology. Fibrin was chosen as a potential substrate for keratinocyte cultivation. Stem cells were monitored by clonal analysis using the culture system originally described by Rheinwald and Green as a reference. Massive full-thickness burns were treated with the composite allodermis/cultured autograft technique. We show that: (i) the relative percentage of holoclones, meroclones, and paraclones is maintained when keratinocytes are cultivated on fibrin, proving that fibrin does not induce clonal conversion and consequent loss of epidermal stem cells; (ii) the clonogenic ability, growth rate, and long-term proliferative potential are not affected by the new culture system; (iii) when fibrin-cultured autografts bearing stem cells are applied on massive full-thickness burns, the "take" of keratinocytes is high, reproducible, and permanent; and (iv) fibrin allows a significant reduction of the cost of cultured autografts and eliminates problems related to their handling and transportation. Our data demonstrate that: (i) cultured autografts bearing stem cells can indeed rapidly and permanently cover a large body surface; and (ii) fibrin is a suitable substrate for keratinocyte cultivation and transplantation. These data lend strength to the concept that the success of cell therapy at a clinical level requires cultivation and transplantation of stem cells. We therefore suggest that the proposal of a culture system aimed at the replacement of any severely damaged self-renewing tissue should be preceded by a careful evaluation of its stem cell population.
Collin, S P
1988-01-01
A light microscopy study of the retina of the shovel-nosed ray, Rhinobatos batillum (Rhinobatidae) has revealed a duplex retina with a rod to cone ratio between 4:1 and 6:1. The inner nuclear layer consists of three layers of large horizontal cells, tightly packed, stellate bipolar cells, and up to three substrata of amacrine cells. The collaterals of the many supporting Müller cells project from the inner to the outer limiting membrane and divide the retina into many subunits. The cells of the ganglion cell layer are distributed into two layers, although a large proportion of ganglion cells are also displaced into the inner plexiform and inner nuclear layers. Topographic analysis of the cells in the ganglion cell layer, inner plexiform and inner nuclear layers reveals a number of regional specializations or "areae centrales". Ganglion cells were retrogradely-labelled with cobalt-lysine from the optic nerve, and three sub-populations of neurons characterized on their soma size and position. Small (20-50 microns2), large (80-300 microns2) and giant (greater than 300 microns2) sub-populations of ganglion cells each revealed distinct retinal specializations with peak densities of 3 x 10(3), 1.25 x 10(3) and 1.57 x 10(3) cells per mm2, respectively. Topographical comparison between Nissl-stained and retrogradely-labelled ganglion cell populations have established that a maximum of 20% in the "area centralis", and 75% in unspecialized, peripheral regions of the retina are non-ganglion cells. Out of a total of 210,566 cells in the ganglion cell layer, 49% were found to be non-ganglion cells. Iso-density contour maps of amacrine and bipolar cell distributions also reveal some specializations. These cell concentrations lie in corresponding regions to areas of increased density in the large and giant ganglion cell populations, suggesting some functional association.
Structure of gels layers with cells
NASA Astrophysics Data System (ADS)
Pokusaev, B. G.; Karlov, S. P.; Vyazmin, A. V.; Nekrasov, D. A.; Zakharov, N. S.; Khramtsov, D. P.; Skladnev, D. A.; Tyupa, D. V.
2017-11-01
The structure of two-layer agarose gels containing yeast cells is investigated experimentally by spectrometry, to shed a light on the theoretical foundations for the development of bioreactors by the method of 3D bioprinting. Due to division, cells overcome the layer of the dispersion phase separating successively applied layers of the agarose gel. However a gel layer of 100 μm thick with a high concentration of silver nanoparticles completely excludes the infiltration of yeast cells through it. A special sort of agarose is suggested where the concentration of silver nanoparticles formed by cells from salt of silver can serve as an indicator of the state of the yeast cells in the volume of the gel.
Chu, Bing-Xin; Fan, Rui-Feng; Lin, Shu-Qian; Yang, Du-Bao; Wang, Zhen-Yong; Wang, Lin
2018-05-01
Autophagy and apoptosis are two different biological processes that determine cell fates. We previously reported that autophagy inhibition and apoptosis induction are involved in lead(II)-induced cytotoxicity in primary rat proximal tubular (rPT) cells, but the interplay between them remains to be elucidated. Firstly, data showed that lead(II)-induced elevation of LC3-II protein levels can be significantly modulated by 3-methyladenine or rapamycin; moreover, protein levels of Autophagy-related protein 5 (Atg5) and Beclin-1 were markedly up-regulated by lead(II) treatment, demonstrating that lead(II) could promote the autophagosomes formation in rPT cells. Next, we applied three pharmacological agents and genetic method targeting the early stage of autophagy to validate that enhancement of autophagosomes formation can inhibit lead(II)-induced apoptotic cell death in rPT cells. Simultaneously, lead(II) inhibited the autophagic degradation of rPT cells, while the addition of autophagic degradation inhibitor bafilomycin A1 aggravated lead(II)-induced apoptotic death in rPT cells. Collectively, this study provided us a good model to know about the dynamic process of lead(II)-induced autophagy in rPT cells, and the interplay between autophagy and apoptosis highlights a new sight into the mechanism of lead(II)-induced nephrotoxicity. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Zhen Tan, Rui; Lai, Tanny; Chiam, K.-H.
2017-08-01
A multilayered epithelium is made up of individual cells that are stratified in an orderly fashion, layer by layer. In such tissues, individual cells can adopt a wide range of shapes ranging from columnar to squamous. From histological images, we observe that, in flat epithelia such as the skin, the cells in the top layer are squamous while those in the middle and bottom layers are columnar, whereas in tubular epithelia, the cells in all layers are columnar. We develop a computational model to understand how individual cell shape is governed by the mechanical forces within multilayered flat and curved epithelia. We derive the energy function for an epithelial sheet of cells considering intercellular adhesive and intracellular contractile forces. We determine computationally the cell morphologies that minimize the energy function for a wide range of cellular parameters. Depending on the dominant adhesive and contractile forces, we find four dominant cell morphologies for the multilayered-layered flat sheet and three dominant cell morphologies for the two-layered curved sheet. We study the transitions between the dominant cell morphologies for the two-layered flat sheet and find both continuous and discontinuous transitions and also the presence of multistable states. Matching our computational results with histological images, we conclude that apical contractile forces from the actomyosin belt in the epithelial cells is the dominant force determining cell shape in multilayered epithelia. Our computational model can guide tissue engineers in designing artificial multilayered epithelia, in terms of figuring out the cellular parameters needed to achieve realistic epithelial morphologies.