Sample records for layer integral matrix

  1. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  2. Optimizing dentin bond durability: strategies to prevent hydrolytic degradation of the hybrid layer

    PubMed Central

    Tjäderhane, Leo; Nascimento, Fabio D.; Breschi, Lorenzo; Mazzoni, Annalisa; Tersariol, Ivarne L.S.; Geraldeli, Saulo; Tezvergil-Mutluay, Arzu; Carrilho, Marcela; Carvalho, Ricardo M.; Tay, Franklin R.; Pashley, David H.

    2014-01-01

    Objectives Endogenous dentin collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, are responsible for the time-related hydrolysis of collagen matrix of the hybrid layers. As the integrity of the collagen matrix is essential for the preservation of long-term dentin bond strength, inhibition or inactivation of endogenous dentin proteases is necessary for durable resin-bonded composite resin restorations. Methods Dentin contains collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, which are responsible for the hydrolytic degradation of collagen matrix in the bonded interface. Several tentative approaches to prevent enzyme function either directly or indirectly have been proposed in the literature. Results Chlorhexidine, a general inhibitor of both MMPs and cysteine cathepsins, applied before primer/adhesive application is the most tested method. In general, these experiments have shown that enzyme inhibition is a promising scheme to improve hybrid layer preservation and bond strength durability. Other enzyme inhibitors, e.g. enzyme-inhibiting monomers and antimicrobial compounds, may be considered promising alternatives that would allow more simple clinical application than chlorhexidine. Cross-linking collagen and/or dentin organic matrix-bound enzymes could render hybrid layer organic matrix resistant to degradation, and complete removal of water from the hybrid layer with ethanol wet bonding or biomimetic remineralization should eliminate hydrolysis of both collagen and resin components. Significance Identification of the enzymes responsible for the hydrolysis of hybrid layer collagen and understanding their function has prompted several innovative approaches to retain the hybrid layer integrity and strong dentin bonding. The ultimate goal, prevention of collagen matrix degradation with techniques and commercially available materials that are simple and effective in clinical settings may be achievable in several ways, and will likely become reality in the near future. PMID:23953737

  3. Frictionless Contact of Multilayered Composite Half Planes Containing Layers With Complex Eigenvalues

    NASA Technical Reports Server (NTRS)

    Zhang, Wang; Binienda, Wieslaw K.; Pindera, Marek-Jerzy

    1997-01-01

    A previously developed local-global stiffness matrix methodology for the response of a composite half plane, arbitrarily layered with isotropic, orthotropic or monoclinic plies, to indentation by a rigid parabolic punch is further extended to accommodate the presence of layers with complex eigenvalues (e.g., honeycomb or piezoelectric layers). First, a generalized plane deformation solution for the displacement field in an orthotropic layer or half plane characterized by complex eigenvalues is obtained using Fourier transforms. A local stiffness matrix in the transform domain is subsequently constructed for this class of layers and half planes, which is then assembled into a global stiffness matrix for the entire multilayered half plane by enforcing continuity conditions along the interfaces. Application of the mixed boundary condition on the top surface of the half plane indented by a rigid punch results in an integral equation for the unknown pressure in the contact region. The integral possesses a divergent kernel which is decomposed into Cauchy-type and regular parts using the asymptotic properties of the local stiffness matrix and a relationship between Fourier and finite Hilbert transform of the contact pressure. The solution of the resulting singular integral equation is obtained using a collocation technique based on the properties of orthogonal polynomials developed by Erdogan and Gupta. Examples are presented that illustrate the important influence of low transverse properties of layers with complex eigenvalues, such as those exhibited by honeycomb, on the load versus contact length response and contact pressure distributions for half planes containing typical composite materials.

  4. Boundary layer integral matrix procedure: Verification of models

    NASA Technical Reports Server (NTRS)

    Bonnett, W. S.; Evans, R. M.

    1977-01-01

    The three turbulent models currently available in the JANNAF version of the Aerotherm Boundary Layer Integral Matrix Procedure (BLIMP-J) code were studied. The BLIMP-J program is the standard prediction method for boundary layer effects in liquid rocket engine thrust chambers. Experimental data from flow fields with large edge-to-wall temperature ratios are compared to the predictions of the three turbulence models contained in BLIMP-J. In addition, test conditions necessary to generate additional data on a flat plate or in a nozzle are given. It is concluded that the Cebeci-Smith turbulence model be the recommended model for the prediction of boundary layer effects in liquid rocket engines. In addition, the effects of homogeneous chemical reaction kinetics were examined for a hydrogen/oxygen system. Results show that for most flows, kinetics are probably only significant for stoichiometric mixture ratios.

  5. Bilayered, non-cross-linked collagen matrix for regeneration of facial defects after skin cancer removal: a new perspective for biomaterial-based tissue reconstruction.

    PubMed

    Ghanaati, Shahram; Kovács, Adorján; Barbeck, Mike; Lorenz, Jonas; Teiler, Anna; Sadeghi, Nader; Kirkpatrick, Charles James; Sader, Robert

    2016-03-01

    Classically skin defects are covered by split thickness skin grafts or by means of local or regional skin flaps. In the presented case series for the first time a bilayered, non-crossed-linked collagen matrix has been used in an off-label fashion in order to reconstruct facial skin defects following different types of skin cancer resection. The material is of porcine origin and consists of a spongy and a compact layer. The ratio of the two layers is 1:3 in favour of the spongy layer. The aim of the study was to investigate the potential of this matrix for skin regeneration as an alternative to the standard techniques of skin grafts or flaps. Six patients between 39 and 83 years old were included in the study based on a therapeutic trial. The collagen matrix was used in seven defects involving the nose, eyelid, forehead- and posterior scalp regions, and ranging from 1,2 to 6 cm in diameter. Two different head and neck surgeons at two different institutions performed the operations. Each used a different technique in covering the wound following surgery, i.e. with and without a latex-based sheet under the pressure dressing. In three cases cylindrical biopsies were taken after 14 days. In all cases the biomaterial application was performed without any complication and no adverse effects were observed. Clinically, the collagen matrix contributed to a tension-free skin regeneration, independent of the wound dressing used. The newly regenerated skin showed strong similarity to the adjacent normal tissue both in quality and colour. Histological analysis indicated that the spongy layer replaced the defective connective tissue, by providing stepwise integration into the surrounding implantation bed, while the compact layer was infiltrated by mononuclear cells and contributed to its epithelialization by means of a "conductive"process from the surrounding epithelial cells. The clinical and histological data demonstrate that the collagen bilayered matrix used in this series contributes to a "Guided-Integrative-Regeneration-Process", which still needs to be further understood. The biomimetic nature of this material seems to contribute to physiological matrix remodelling, which probably involves other matricellular proteins essential for soft tissue regeneration. A deeper understanding of the mechanism, involved in the tissue integration of this material and its contribution to soft tissue regeneration based on the direct and indirect effect of matricellular proteins could open new therapeutic avenues for biomaterial-based soft tissue regeneration as an alternative to traditional flap-based plastic surgery.

  6. Optical trapping forces of a focused azimuthally polarized Bessel-Gaussian beam on a double-layered sphere

    NASA Astrophysics Data System (ADS)

    Wu, F. P.; Zhang, B.; Liu, Z. L.; Tang, Y.; Zhang, N.

    2017-12-01

    We calculate the trapping forces exerted by a highly focused Bessel-Gaussian beam on a double-layered sphere by means of vector diffraction integral, T-matrix method and Maxwell stress tensor integral. The Bessel-Gaussian beam is azimuthally polarized. Numerical results predicate that the double-layered sphere with air core can be stably trapped in three-dimensions. The trapping forces and efficiencies are dependent on the refraction index and size of the inner core. The trapping efficiency can be optimized by choosing the refraction indices of the inner core and outer layer. Our computational method can be easily modified for other laser beams and particles with arbitrary geometries and multilayers.

  7. Performance of ZnO based piezo-generators under controlled compression

    NASA Astrophysics Data System (ADS)

    Tao, Ran; Parmar, Mitesh; Ardila, Gustavo; Oliveira, Paulo; Marques, Daniel; Montès, Laurent; Mouis, Mireille

    2017-06-01

    This paper reports on the fabrication and characterization of ZnO based vertically integrated nanogenerator (VING) devices under controlled compression. The basic NG structure is a composite material integrating hydrothermally grown vertical piezoelectric zinc oxide (ZnO) nanowires (NWs) into a dielectric matrix (PMMA). A specific characterization set-up has been developed to control the applied compression and the perpendicularity of the applied force on the devices. The role of different fabrication parameters has been evaluated experimentally and compared with previously reported theoretical models, including the thickness of the top PMMA layer and the density of the NWs array in the matrix. Finally, the performance of the VING structure has been evaluated experimentally for different resistive loads obtaining a power density of 85 μW cm-3 considering only the active layer of the device. This has been compared to the performance of a commercial bulk layer of PZT (25 μW cm-3) under the same applied force of 5 N.

  8. Evaluation of the tissue reaction to a new bilayered collagen matrix in vivo and its translation to the clinic.

    PubMed

    Ghanaati, Shahram; Schlee, Markus; Webber, Matthew J; Willershausen, Ines; Barbeck, Mike; Balic, Ela; Görlach, Christoph; Stupp, Samuel I; Sader, Robert A; Kirkpatrick, C James

    2011-02-01

    This study evaluates a new collagen matrix that is designed with a bilayered structure in order to promote guided tissue regeneration and integration within the host tissue. This material induced a mild tissue reaction when assessed in a murine model and was well integrated within the host tissue, persisting in the implantation bed throughout the in vivo study. A more porous layer was rapidly infiltrated by host mesenchymal cells, while a layer designed to be a barrier allowed cell attachment and host tissue integration, but at the same time remained impermeable to invading cells for the first 30 days of the study. The tissue reaction was favorable, and unlike a typical foreign body response, did not include the presence of multinucleated giant cells, lymphocytes, or granulation tissue. In the context of translation, we show preliminary results from the clinical use of this biomaterial applied to soft tissue regeneration in the treatment of gingival tissue recession and exposed roots of human teeth. Such a condition would greatly benefit from guided tissue regeneration strategies. Our findings demonstrate that this material successfully promoted the ingrowth of gingival tissue and reversed gingival tissue recession. Of particular importance is the fact that the histological evidence from these human studies corroborates our findings in the murine model, with the barrier layer preventing unspecific tissue ingrowth, as the scaffold becomes infiltrated by mesenchymal cells from adjacent tissue into the porous layer. Also in the clinical situation no multinucleated giant cells, no granulation tissue and no evidence of a marked inflammatory response were observed. In conclusion, this bilayered matrix elicits a favorable tissue reaction, demonstrates potential as a barrier for preferential tissue ingrowth, and achieves a desirable therapeutic result when applied in humans for soft tissue regeneration.

  9. Mechanical intermixing of components in (CoMoNi)-based systems and the formation of (CoMoNi)/WC nanocomposite layers on Ti sheets under ball collisions

    NASA Astrophysics Data System (ADS)

    Romankov, S.; Park, Y. C.; Shchetinin, I. V.

    2017-11-01

    Cobalt (Co), molybdenum (Mo), and nickel (Ni) components were simultaneously introduced onto titanium (Ti) surfaces from a composed target using ball collisions. Tungsten carbide (WC) balls were selected for processing as the source of a cemented carbide reinforcement phase. During processing, ball collisions continuously introduced components from the target and the grinding media onto the Ti surface and induced mechanical intermixing of the elements, resulting in formation of a complex nanocomposite structure onto the Ti surface. The as-fabricated microstructure consisted of uniformly dispersed WC particles embedded within an integrated metallic matrix composed of an amorphous phase with nanocrystalline grains. The phase composition of the alloyed layers, atomic reactions, and the matrix grain sizes depended on the combination of components introduced onto the Ti surface during milling. The as-fabricated layer exhibited a very high hardness compared to industrial metallic alloys and tool steel materials. This approach could be used for the manufacture of both cemented carbides and amorphous matrix composite layers.

  10. Double layer mixed matrix membrane adsorbers improving capacity and safety hemodialysis

    NASA Astrophysics Data System (ADS)

    Saiful; Borneman, Z.; Wessling, M.

    2018-05-01

    Double layer mixed matrix membranes adsorbers have been developed for blood toxin removal by embedding activated carbon into cellulose acetate macroporous membranes. The membranes are prepared by phase inversion method via water vapor induced phase separation followed by an immersion precipitation step. Double layer MMM consisting of an active support and a separating layer. The active support layer consists of activated carbon particles embedded in macroporous cellulose acetate; the separating layer consists of particle free cellulose acetate. The double layer membrane possess an open and interconnected macroporous structure with a high loading of activated carbon available for blood toxins removal. The MMM AC has a swelling degree of 6.5 %, porosity of 53 % and clean water flux of 800 Lm-2h-1bar-1. The prepared membranes show a high dynamic Creatinine (Crt) removal during hemodilysis process. The Crt removal by adsorption contributes to amore than 83 % of the total removal. The double layer adsorptive membrane proves hemodialysis membrane can integrated with adsorption, in which blood toxins are removed in one step.

  11. Poling of PVDF matrix composites for integrated structural load sensing

    NASA Astrophysics Data System (ADS)

    Haghiashtiani, Ghazaleh; Greminger, Michael A.; Zhao, Ping

    2014-03-01

    The purpose of this study is to create and evaluate a smart composite structure that can be used for integrated load sensing and structural health monitoring. In this structure, PVDF films are used as the matrix material instead of epoxy resin or other thermoplastics. The reinforcements are two layers of carbon fiber with one layer of Kevlar separating them. Due to the electrical conductivity properties of carbon fiber and the dielectric effect of Kevlar, the structure acts as a capacitor. Furthermore, the piezoelectric properties of the PVDF matrix can be used to monitor the response of the structure under applied loads. In order to exploit the piezoelectric properties of PVDF, the PVDF material must be polarized to align the dipole moments of its crystalline structure. The optimal condition for poling the structure was found by performing a 23 factorial design of experiment (DoE). The factors that were studied in DoE were temperature, voltage, and duration of poling. Finally, the response of the poled structure was monitored by exposing the samples to an applied load.

  12. Pentacene-based organic thin film transistors, integrated circuits, and active matrix displays on polymeric substrates

    NASA Astrophysics Data System (ADS)

    Sheraw, Christopher Duncan

    2003-10-01

    Organic thin film transistors are attractive candidates for a variety of low cost, large area commercial electronics including smart cards, RF identification tags, and flat panel displays. Of particular interest are high performance organic thin film transistors (TFTs) that can be fabricated on flexible polymeric substrates allowing low-cost, lightweight, rugged electronics such as flexible active matrix displays. This thesis reports pentacene organic thin film transistors fabricated on flexible polymeric substrates with record performance, the fastest photolithographically patterned organic TFT integrated circuits on polymeric substrates reported to date, and the fabrication of the organic TFT backplanes used to build the first organic TFT-driven active matrix liquid crystal display (AMLCD), also the first AMLCD on a flexible substrate, ever reported. In addition, the first investigation of functionalized pentacene derivatives used as the active layer in organic thin film transistors is reported. A low temperature (<110°C) process technology was developed allowing the fabrication of high performance organic TFTs, integrated circuits, and large TFT arrays on flexible polymeric substrates. This process includes the development of a novel water-based photolithographic active layer patterning process using polyvinyl alcohol that allows the patterning of organic semiconductor materials for elimination of active layer leakage current without causing device degradation. The small molecule aromatic hydrocarbon pentacene was used as the active layer material to fabricate organic TFTs on the polymeric material polyethylene naphthalate with field-effect mobility as large as 2.1 cm2/V-s and on/off current ratio of 108. These are the best values reported for organic TFTs on polymeric substrates and comparable to organic TFTs on rigid substrates. Analog and digital integrated circuits were also fabricated on polymeric substrates using pentacene TFTs with propagation delay as low as 38 musec and clocked digital circuits that operated at 1.1 kHz. These are the fastest photolithographically patterned organic TFT circuits on polymeric substrates reported to date. Finally, 16 x 16 pentacene TFT pixel arrays were fabricated on polymeric substrates and integrated with polymer dispersed liquid crystal to build an AMLCD. The pixel arrays showed good optical response to changing data signals when standard quarter-VGA display waveforms were applied. This result marks the first organic TFT-driven active matrix liquid crystal display ever reported as well as the first active matrix liquid crystal display on a flexible polymeric substrate. Lastly, functionalized pentacene derivatives were used as the active layer in organic thin film transistor materials. Functional groups were added to the pentacene molecule to influence the molecular ordering so that the amount of pi-orbital overlap would be increased allowing the potential for improved field-effect mobility. The functionalization of these materials also improves solubility allowing for the possibility of solution-processed devices and increased oxidative stability. Organic thin film transistors were fabricated using five different functionalized pentacene active layers. Devices based on the pentacene derivative triisopropylsilyl pentacene were found to have the best performance with field-effect mobility as large as 0.4 cm 2/V-s.

  13. Electric and Magnetic Manipulation of Biological Systems

    NASA Astrophysics Data System (ADS)

    Lee, H.; Hunt, T. P.; Liu, Y.; Ham, D.; Westervelt, R. M.

    2005-06-01

    New types of biological cell manipulation systems, a micropost matrix, a microelectromagnet matrix, and a microcoil array, were developed. The micropost matrix consists of post-shaped electrodes embedded in an insulating layer. With a separate ac voltage applied to each electrode, the micropost matrix generates dielectrophoretic force to trap and move individual biological cells. The microelectromagnet matrix consists of two arrays of straight wires aligned perpendicular to each other, that are covered with insulating layers. By independently controlling the current in each wire, the microelectromagnet matrix creates versatile magnetic fields to manipulate individual biological cells attached to magnetic beads. The microcoil array is a set of coils implemented in a foundry using a standard silicon fabrication technology. Current sources to the coils, and control circuits are integrated on a single chip, making the device self-contained. Versatile manipulation of biological cells was demonstrated using these devices by generating optimized electric or magnetic field patterns. A single yeast cell was trapped and positioned with microscopic resolution, and multiple yeast cells were trapped and independently moved along the separate paths for cell-sorting.

  14. Microchamber arrays with an integrated long luminescence lifetime pH sensor.

    PubMed

    Poehler, Elisabeth; Pfeiffer, Simon A; Herm, Marc; Gaebler, Michael; Busse, Benedikt; Nagl, Stefan

    2016-04-01

    A pH probe with a microsecond luminescence lifetime was obtained via covalent coupling of 6-carboxynaphthofluorescein (CNF) moieties to ruthenium-tris-(1,10-phenanthroline)(2+). The probe was covalently attached to amino-modified poly-(2-hydroxyethyl)methacrylate (pHEMA) and showed a pH-dependent FRET with luminescence lifetimes of 681 to 1260 ns and a working range from ca. pH 6.5 to 9.0 with a pKa of 7.79 ± 0.14. The pH sensor matrix was integrated via spin coating as ca. 1- to 2-μm-thick layer into "CytoCapture" cell culture dishes of 6 mm in diameter. These contained a microcavity array of square-shaped regions of 40 μm length and width and 15 μm depth that was homogeneously coated with the pH sensor matrix. The sensor layer showed fast response times in both directions. A microscopic setup was developed that enabled imaging of the pH inside the microchamber arrays over many hours. As a proof of principle, we monitored the pH of Escherichia coli cell cultures grown in the microchamber arrays. The integrated sensor matrix allowed pH monitoring spatially resolved in every microchamber, and the differences in cell growth between individual chambers could be resolved and quantified.

  15. Composite treatment of ceramic tile armor

    DOEpatents

    Hansen, James G. R. [Oak Ridge, TN; Frame, Barbara J [Oak Ridge, TN

    2010-12-14

    An improved ceramic tile armor has a core of boron nitride and a polymer matrix composite (PMC) facing of carbon fibers fused directly to the impact face of the tile. A polyethylene fiber composite backing and spall cover are preferred. The carbon fiber layers are cured directly onto the tile, not adhered using a separate adhesive so that they are integral with the tile, not a separate layer.

  16. Composite treatment of ceramic tile armor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, James G. R.; Frame, Barbara J

    An improved ceramic tile armor has a core of boron nitride and a polymer matrix composite (PMC) facing of carbon fibers fused directly to the impact face of the tile. A polyethylene fiber composite backing and spall cover are preferred. The carbon fiber layers are cured directly onto the tile, not adhered using a separate adhesive so that they are integral with the tile, not a separate layer.

  17. Adhesive contact between a rigid spherical indenter and an elastic multi-layer coated substrate

    PubMed Central

    Stan, Gheorghe; Adams, George G.

    2016-01-01

    In this work the frictionless, adhesive contact between a rigid spherical indenter and an elastic multi-layer coated half-space was investigated by means of an integral transform formulation. The indented multi-layer coats were considered as made of isotropic layers that are perfectly bonded to each other and to an isotropic substrate. The adhesive interaction between indenter and contacting surface was treated as Maugis-type adhesion to provide general applicability within the entire range of adhesive interactions. By using a transfer matrix method, the stress-strain equations of the system were reduced to two coupled integral equations for the stress distribution under the indenter and the ratio between the adhesion radius and the contact radius, respectively. These resulting integral equations were solved through a numerical collocation technique, with solutions for the load dependencies of the contact radius and indentation depth for various values of the adhesion parameter and layer composition. The method developed here can be used to calculate the force-distance response of adhesive contacts on various inhomogeneous half-spaces that can be modeled as multi-layer coated half-spaces. PMID:27574338

  18. A hierarchical preconditioner for the electric field integral equation on unstructured meshes based on primal and dual Haar bases

    NASA Astrophysics Data System (ADS)

    Adrian, S. B.; Andriulli, F. P.; Eibert, T. F.

    2017-02-01

    A new hierarchical basis preconditioner for the electric field integral equation (EFIE) operator is introduced. In contrast to existing hierarchical basis preconditioners, it works on arbitrary meshes and preconditions both the vector and the scalar potential within the EFIE operator. This is obtained by taking into account that the vector and the scalar potential discretized with loop-star basis functions are related to the hypersingular and the single layer operator (i.e., the well known integral operators from acoustics). For the single layer operator discretized with piecewise constant functions, a hierarchical preconditioner can easily be constructed. Thus the strategy we propose in this work for preconditioning the EFIE is the transformation of the scalar and the vector potential into operators equivalent to the single layer operator and to its inverse. More specifically, when the scalar potential is discretized with star functions as source and testing functions, the resulting matrix is a single layer operator discretized with piecewise constant functions and multiplied left and right with two additional graph Laplacian matrices. By inverting these graph Laplacian matrices, the discretized single layer operator is obtained, which can be preconditioned with the hierarchical basis. Dually, when the vector potential is discretized with loop functions, the resulting matrix can be interpreted as a hypersingular operator discretized with piecewise linear functions. By leveraging on a scalar Calderón identity, we can interpret this operator as spectrally equivalent to the inverse single layer operator. Then we use a linear-in-complexity, closed-form inverse of the dual hierarchical basis to precondition the hypersingular operator. The numerical results show the effectiveness of the proposed preconditioner and the practical impact of theoretical developments in real case scenarios.

  19. An adhesive contact mechanics formulation based on atomistically induced surface traction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Houfu; Ren, Bo; Li, Shaofan, E-mail: shaofan@berkeley.edu

    2015-12-01

    In this work, we have developed a novel multiscale computational contact formulation based on the generalized Derjuguin approximation for continua that are characterized by atomistically enriched constitutive relations in order to study macroscopic interaction between arbitrarily shaped deformable continua. The proposed adhesive contact formulation makes use of the microscopic interaction forces between individual particles in the interacting bodies. In particular, the double-layer volume integral describing the contact interaction (energy, force vector, matrix) is converted into a double-layer surface integral through a mathematically consistent approach that employs the divergence theorem and a special partitioning technique. The proposed contact model is formulatedmore » in the nonlinear continuum mechanics framework and implemented using the standard finite element method. With no large penalty constant, the stiffness matrix of the system will in general be well-conditioned, which is of great significance for quasi-static analysis. Three numerical examples are presented to illustrate the capability of the proposed method. Results indicate that with the same mesh configuration, the finite element computation based on the surface integral approach is faster and more accurate than the volume integral based approach. In addition, the proposed approach is energy preserving even in a very long dynamic simulation.« less

  20. Membranes having aligned 1-D nanoparticles in a matrix layer for improved fluid separation

    DOEpatents

    Revanur, Ravindra; Lulevich, Valentin; Roh, Il Juhn; Klare, Jennifer E.; Kim, Sangil; Noy, Aleksandr; Bakajin, Olgica

    2015-12-22

    Membranes for fluid separation are disclosed. These membranes have a matrix layer sandwiched between an active layer and a porous support layer. The matrix layer includes 1-D nanoparticles that are vertically aligned in a porous polymer matrix, and which substantially extend through the matrix layer. The active layer provides species-specific transport, while the support layer provides mechanical support. A matrix layer of this type has favorable surface morphology for forming the active layer. Furthermore, the pores that form in the matrix layer tend to be smaller and more evenly distributed as a result of the presence of aligned 1-D nanoparticles. Improved performance of separation membranes of this type is attributed to these effects.

  1. 3 V omni-directionally stretchable one-body supercapacitors based on a single ion-gel matrix and carbon nanotubes.

    PubMed

    Kim, Wonbin; Kim, Woong

    2016-06-03

    Stretchable supercapacitors often have laminated structures consisting of electrode, electrolyte, and supporting layers. Since the layers are likely to be composed of different materials, delamination is a major cause of failure upon stretching. In this study, we demonstrate delamination-free stretchable supercapacitors where all the component layers are prepared with a single matrix, which is composed of a polymer, poly(vinylidene fluoride-hexafluoropropylene) and an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Since the ionic liquid in the composite plays a role as both an electrolyte and a plasticizer, this composite can be used as an electrolyte and a supporting layer in the stretchable supercapacitor. The electrode layer can be fabricated by incorporating carbon nanotubes in the common matrix. Then, all the layers can be seamlessly fused into one body by dissolving the surface of the composite with acetone, which evaporates after the integration, leaving no borders between the layers. This one-body stretchable supercapacitor not only has high durability against repetitive stretches but also is stretchable in all directions. This feature clearly distinguishes them from conventional stretchable supercapacitors fabricated using buckled structures, which are stretchable only in one or two directions. Moreover, this supercapacitor has high cell voltage (∼3 V) owing to the ionic liquid-based gel electrolytes. Our demonstration of isotropically stretchable high-durability supercapacitors may have a great implication in the development of stretchable energy storage devices for real applications.

  2. Release from or through a wax matrix system. IV. Generalized expression of the release process for a reservoir device tablet.

    PubMed

    Yonezawa, Yorinobu; Ishida, Sumio; Suzuki, Shinobu; Sunada, Hisakazu

    2002-09-01

    Generalization of the release process through the wax matrix layer was examined by use of a reservoir device tablet. The wax matrix layer of the reservoir device tablet was prepared from a physical mixture of lactose and hydrogenated castor oil to simplify the release properties. Release through the wax matrix layer showed zero-order kinetics in a steady state after a given lag time, and could be divided into two stages. The first stage was the formation process of water channel by dissolving the soluble component in the wax matrix layer. The lag time obtained by applying the square root law equation was well connected with the amount of the matrix layer and mixed weight ratio of components in this layer. The second stage was the zero-order release process of drug in the reservoir through the wax matrix layer, because the effective surface area was fixed. The release rate constants were connected with thickness of the matrix layer and permeability coefficient, and the permeability coefficients were connected with the diffusion coefficient of drug and porosity. Hence the release rate constant could be connected with the amount of matrix layer and the mixed weight ratio of components in the matrix layer. It was therefore suggested that the release process could be generalized using the amount of matrix layer and the mixed weight ratio of components in the matrix layer.

  3. Fabrication, polarization, and characterization of PVDF matrix composites for integrated structural load sensing

    NASA Astrophysics Data System (ADS)

    Haghiashtiani, Ghazaleh; Greminger, Michael A.

    2015-04-01

    The focus of this work is to evaluate a new carbon fiber reinforced composite structure with integrated sensing capabilities. In this composite structure, the typical matrix material used for carbon fiber reinforced composites is replaced with the thermoplastic polyvinylidene difluoride (PVDF). Since PVDF has piezoelectric properties, it enables the structure to be used for integrated load sensing. In addition, the electrical conductivity property of the carbon fabric is harnessed to form the electrodes of the integrated sensor. In order to prevent the carbon fiber electrodes from shorting to each other, a thin Kevlar fabric layer is placed between the two carbon fiber electrode layers as a dielectric. The optimal polarization parameters were determined using a design of experiments approach. Once polarized, the samples were then used in compression and tensile tests to determine the effective d33 and d31 piezoelectric coefficients. The degree of polarization of the PVDF material was determined by relating the effective d33 coefficient of the composite to the achieved d33 of the PVDF component of the composite using a closed form expression. Using this approach, it was shown that optimal polarization of the composite material results in a PVDF component d33 of 3.2 pC N-1. Moreover, the Young’s modulus of the composite structure has been characterized.

  4. Quantization of an electromagnetic field in two-dimensional photonic structures based on the scattering matrix formalism ( S-quantization)

    NASA Astrophysics Data System (ADS)

    Ivanov, K. A.; Nikolaev, V. V.; Gubaydullin, A. R.; Kaliteevski, M. A.

    2017-10-01

    Based on the scattering matrix formalism, we have developed a method of quantization of an electromagnetic field in two-dimensional photonic nanostructures ( S-quantization in the two-dimensional case). In this method, the fields at the boundaries of the quantization box are expanded into a Fourier series and are related with each other by the scattering matrix of the system, which is the product of matrices describing the propagation of plane waves in empty regions of the quantization box and the scattering matrix of the photonic structure (or an arbitrary inhomogeneity). The quantization condition (similarly to the onedimensional case) is formulated as follows: the eigenvalues of the scattering matrix are equal to unity, which corresponds to the fact that the set of waves that are incident on the structure (components of the expansion into the Fourier series) is equal to the set of waves that travel away from the structure (outgoing waves). The coefficients of the matrix of scattering through the inhomogeneous structure have been calculated using the following procedure: the structure is divided into parallel layers such that the permittivity in each layer varies only along the axis that is perpendicular to the layers. Using the Fourier transform, the Maxwell equations have been written in the form of a matrix that relates the Fourier components of the electric field at the boundaries of neighboring layers. The product of these matrices is the transfer matrix in the basis of the Fourier components of the electric field. Represented in a block form, it is composed by matrices that contain the reflection and transmission coefficients for the Fourier components of the field, which, in turn, constitute the scattering matrix. The developed method considerably simplifies the calculation scheme for the analysis of the behavior of the electromagnetic field in structures with a two-dimensional inhomogeneity. In addition, this method makes it possible to obviate difficulties that arise in the analysis of the Purcell effect because of the divergence of the integral describing the effective volume of the mode in open systems.

  5. [Preparation of acellular matrix from antler cartilage and its biological compatibility].

    PubMed

    Fu, Jing; Zhang, Wei; Zhang, Aiwu; Ma, Lijuan; Chu, Wenhui; Li, Chunyi

    2017-06-01

    To study the feasibility of acellular matrix materials prepared from deer antler cartilage and its biological compatibility so as to search for a new member of the extracellular matrix family for cartilage regeneration. The deer antler mesenchymal (M) layer tissue was harvested and treated through decellular process to prepare M layer acellular matrix; histologic observation and detection of M layer acellular matrix DNA content were carried out. The antler stem cells [antlerogenic periosteum (AP) cells] at 2nd passage were labelled by fluorescent stains and by PKH26. Subsequently, the M layer acellular matrix and the AP cells at 2nd passage were co-cultured for 7 days; then the samples were transplanted into nude mice to study the tissue compatibility of M layer acellular matrix in the living animals. HE and DAPI staining confirmed that the M layer acellular matrix did not contain nucleus; the DNA content of the M layer acellular matrix was (19.367±5.254) ng/mg, which was significantly lower than that of the normal M layer tissue [(3 805.500±519.119) ng/mg]( t =12.630, P =0.000). In vitro co-culture experiments showed that AP cells could adhere to or even embedded in the M layer acellular matrix. Nude mice transplantation experiments showed that the introduced AP cells could proliferate and induce angiogenesis in the M layer acellular matrix. The deer antler cartilage acellular matrix is successfully prepared. The M layer acellular matrix is suitable for adhesion and proliferation of AP cells in vitro and in vivo , and it has the function of stimulating angiogenesis. This model for deer antler cartilage acellular matrix can be applied in cartilage tissue engineering in the future.

  6. Optimizing dentin bond durability: control of collagen degradation by matrix metalloproteinases and cysteine cathepsins

    PubMed Central

    Tjäderhane, Leo; Nascimento, Fabio D.; Breschi, Lorenzo; Mazzoni, Annalisa; Tersariol, Ivarne L.S.; Geraldeli, Saulo; Tezvergil-Mutluay, Arzu; Carrilho, Marcela R.; Carvalho, Ricardo M.; Tay, Franklin R.; Pashley, David H.

    2012-01-01

    Objectives Contemporary adhesives lose their bond strength to dentin regardless of the bonding system used. This loss relates to the hydrolysis of collagen matrix of the hybrid layers. The preservation of the collagen matrix integrity is a key issue in the attempts to improve the dentin bonding durability. Methods Dentin contains collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, which are responsible for the hydrolytic degradation of collagen matrix in the bonded interface. Results The identities, roles and function of collagenolytic enzymes in mineralized dentin has been gathered only within last 15 years, but they have already been demonstrated to have an important role in dental hard tissue pathologies, including the degradation of the hybrid layer. Identifying responsible enzymes facilitates the development of new, more efficient methods to improve the stability of dentin-adhesive bond and durability of bond strength. Significance Understanding the nature and role of proteolytic degradation of dentin-adhesive interfaces has improved immensely and has practically grown to a scientific field of its own within only 10 years, holding excellent promise that stable resin-dentin bonds will be routinely available in a daily clinical setting already in a near future. PMID:22901826

  7. Acoustic 3D modeling by the method of integral equations

    NASA Astrophysics Data System (ADS)

    Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.

    2018-02-01

    This paper presents a parallel algorithm for frequency-domain acoustic modeling by the method of integral equations (IE). The algorithm is applied to seismic simulation. The IE method reduces the size of the problem but leads to a dense system matrix. A tolerable memory consumption and numerical complexity were achieved by applying an iterative solver, accompanied by an effective matrix-vector multiplication operation, based on the fast Fourier transform (FFT). We demonstrate that, the IE system matrix is better conditioned than that of the finite-difference (FD) method, and discuss its relation to a specially preconditioned FD matrix. We considered several methods of matrix-vector multiplication for the free-space and layered host models. The developed algorithm and computer code were benchmarked against the FD time-domain solution. It was demonstrated that, the method could accurately calculate the seismic field for the models with sharp material boundaries and a point source and receiver located close to the free surface. We used OpenMP to speed up the matrix-vector multiplication, while MPI was used to speed up the solution of the system equations, and also for parallelizing across multiple sources. The practical examples and efficiency tests are presented as well.

  8. Lightweight armor system and process for producing the same

    DOEpatents

    Chu, Henry S.; Bruck, H. Alan; Strempek, Gary C.; Varacalle, Jr., Dominic J.

    2004-01-20

    A lightweight armor system may comprise a substrate having a graded metal matrix composite layer formed thereon by thermal spray deposition. The graded metal matrix composite layer comprises an increasing volume fraction of ceramic particles imbedded in a decreasing volume fraction of a metal matrix as a function of a thickness of the graded metal matrix composite layer. A ceramic impact layer is affixed to the graded metal matrix composite layer.

  9. Analysis of photonic band gap in novel piezoelectric photonic crystal

    NASA Astrophysics Data System (ADS)

    Malar Kodi, A.; Doni Pon, V.; Joseph Wilson, K. S.

    2018-03-01

    The transmission properties of one-dimensional novel photonic crystal having silver-doped novel piezoelectric superlattice and air as the two constituent layers have been investigated by means of transfer matrix method. By changing the appropriate thickness of the layers and filling factor of nanocomposite system, the variation in the photonic band gap can be studied. It is found that the photonic band gap increases with the filling factor of the metal nanocomposite and with the thickness of the layer. These structures possess unique characteristics enabling one to operate as optical waveguides, selective filters, optical switches, integrated piezoelectric microactuators, etc.

  10. Ultra-low-energy ion-beam synthesis of nanometer-separated Si nanoparticles and Ag nanocrystals 2D layers

    NASA Astrophysics Data System (ADS)

    Carrada, M.; Haj Salem, A.; Pecassou, B.; Paillard, V.; Ben Assayag, G.

    2018-03-01

    2D networks of Si and Ag nanocrystals have been fabricated in the same SiO2 matrix by Ultra-Low-Energy Ion-Beam-Synthesis. Our synthesis scheme differs from a simple sequential ion implantation and its key point is the control of the matrix integrity through an appropriate intermediate thermal annealing. Si nanocrystal layer is synthesised first due to high thermal budget required for nucleation, while the second Ag nanocrystal plane is formed during a subsequent implantation due to the high diffusivity of Ag in silica. The aim of this work is to show how it is possible to overcome the limitation related to ion mixing and implantation damage to obtain double layers of Si-NCs and Ag-NCs with controlled characteristics. For this, we take advantage of annealing under slight oxidizing ambient to control the oxidation of Si-NCs and the Si excess in the matrix. The nanocrystal characteristics and in particular their position and size can be adjusted thanks to a compromise between the implantation energy, the implanted dose for both Si and Ag ions and the intermediate annealing conditions (atmosphere, temperature and duration).

  11. Integrating seawater desalination and wastewater reclamation forward osmosis process using thin-film composite mixed matrix membrane with functionalized carbon nanotube blended polyethersulfone support layer.

    PubMed

    Choi, Hyeon-Gyu; Son, Moon; Choi, Heechul

    2017-10-01

    Thin-film composite mixed matrix membrane (TFC MMM) with functionalized carbon nanotube (fCNT) blended in polyethersulfone (PES) support layer was synthesized via interfacial polymerization and phase inversion. This membrane was firstly tested in lab-scale integrating seawater desalination and wastewater reclamation forward osmosis (FO) process. Water flux of TFC MMM was increased by 72% compared to that of TFC membrane due to enhanced hydrophilicity. Although TFC MMM showed lower water flux than TFC commercial membrane, enhanced reverse salt flux selectivity (RSFS) of TFC MMM was observed compared to TFC membrane (15% higher) and TFC commercial membrane (4% higher), representing membrane permselectivity. Under effluent organic matter (EfOM) fouling test, 16% less normalized flux decline of TFC MMM was observed compared to TFC membrane. There was 8% less decline of TFC MMM compared to TFC commercial membrane due to fCNT effect on repulsive foulant-membrane interaction enhancement, caused by negatively charged membrane surface. After 10 min physical cleaning, TFC MMM displayed higher recovered normalized flux than TFC membrane (6%) and TFC commercial membrane (4%); this was also supported by visualized characterization of fouling layer. This study presents application of TFC MMM to integrated seawater desalination and wastewater reclamation FO process for the first time. It can be concluded that EfOM fouling of TFC MMM was suppressed due to repulsive foulant-membrane interaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. OOMM--Object-Oriented Matrix Modelling: an instrument for the integration of the Brasilia Regional Health Information System.

    PubMed

    Cammarota, M; Huppes, V; Gaia, S; Degoulet, P

    1998-01-01

    The development of Health Information Systems is widely determined by the establishment of the underlying information models. An Object-Oriented Matrix Model (OOMM) is described which target is to facilitate the integration of the overall health system. The model is based on information modules named micro-databases that are structured in a three-dimensional network: planning, health structures and information systems. The modelling tool has been developed as a layer on top of a relational database system. A visual browser facilitates the development and maintenance of the information model. The modelling approach has been applied to the Brasilia University Hospital since 1991. The extension of the modelling approach to the Brasilia regional health system is considered.

  13. Reaction formulation for radiation and scattering from plates, corner reflectors and dielectric-coated cylinders

    NASA Technical Reports Server (NTRS)

    Wang, N. N.

    1974-01-01

    The reaction concept is employed to formulate an integral equation for radiation and scattering from plates, corner reflectors, and dielectric-coated conducting cylinders. The surface-current density on the conducting surface is expanded with subsectional bases. The dielectric layer is modeled with polarization currents radiating in free space. Maxwell's equation and the boundary conditions are employed to express the polarization-current distribution in terms of the surface-current density on the conducting surface. By enforcing reaction tests with an array of electric test sources, the moment method is employed to reduce the integral equation to a matrix equation. Inversion of the matrix equation yields the current distribution, and the scattered field is then obtained by integrating the current distribution. The theory, computer program and numerical results are presented for radiation and scattering from plates, corner reflectors, and dielectric-coated conducting cylinders.

  14. Integrated Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Dye, Scott

    2009-01-01

    Integrated multilayer insulation (IMLI) is being developed as an improved alternative to conventional multilayer insulation (MLI), which is more than 50 years old. A typical conventional MLI blanket comprises between 10 and 120 metallized polymer films separated by polyester nets. MLI is the best thermal- insulation material for use in a vacuum, and is the insulation material of choice for spacecraft and cryogenic systems. However, conventional MLI has several disadvantages: It is difficult or impossible to maintain the desired value of gap distance between the film layers (and consequently, it is difficult or impossible to ensure consistent performance), and fabrication and installation are labor-intensive and difficult. The development of IMLI is intended to overcome these disadvantages to some extent and to offer some additional advantages over conventional MLI. The main difference between IMLI and conventional MLI lies in the method of maintaining the gaps between the film layers. In IMLI, the film layers are separated by what its developers call a micro-molded discrete matrix, which can be loosely characterized as consisting of arrays of highly engineered, small, lightweight, polymer (typically, thermoplastic) frames attached to, and placed between, the film layers. The term "micro-molded" refers to both the smallness of the frames and the fact that they are fabricated in a process that forms precise small features, described below, that are essential to attainment of the desired properties. The term "discrete" refers to the nature of the matrix as consisting of separate frames, in contradistinction to a unitary frame spanning entire volume of an insulation blanket.

  15. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges.

    PubMed

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-31

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  16. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges

    NASA Astrophysics Data System (ADS)

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-01

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ~3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  17. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges

    PubMed Central

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-01-01

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics. PMID:28361867

  18. Additive Manufacturing of Silicon Carbide-Based Ceramic Matrix Composites: Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Halbig, Michael C.; Grady, Joseph E.

    2016-01-01

    Advanced SiC-based ceramic matrix composites offer significant contributions toward reducing fuel burn and emissions by enabling high overall pressure ratio (OPR) of gas turbine engines and reducing or eliminating cooling air in the hot-section components, such as shrouds, combustor liners, vanes, and blades. Additive manufacturing (AM), which allows high value, custom designed parts layer by layer, has been demonstrated for metals and polymer matrix composites. However, there has been limited activity on additive manufacturing of ceramic matrix composites (CMCs). In this presentation, laminated object manufacturing (LOM), binder jet process, and 3-D printing approaches for developing ceramic composite materials are presented. For the laminated object manufacturing (LOM), fiber prepreg laminates were cut into shape with a laser and stacked to form the desired part followed by high temperature heat treatments. For the binder jet, processing optimization was pursued through silicon carbide powder blending, infiltration with and without SiC nano powder loading, and integration of fibers into the powder bed. Scanning electron microscopy was conducted along with XRD, TGA, and mechanical testing. Various technical challenges and opportunities for additive manufacturing of ceramics and CMCs will be presented.

  19. Cathodic Polarization Coats Titanium Based Implant Materials with Enamel Matrix Derivate (EMD)

    PubMed Central

    Frank, Matthias J.; Walter, Martin S.; Rubert, Marina; Thiede, Bernd; Monjo, Marta; Reseland, Janne E.; Haugen, Håvard J.; Lyngstadaas, Ståle Petter

    2014-01-01

    The idea of a bioactive surface coating that enhances bone healing and bone growth is a strong focus of on-going research for bone implant materials. Enamel matrix derivate (EMD) is well documented to support bone regeneration and activates growth of mesenchymal tissues. Thus, it is a prime candidate for coating of existing implant surfaces. The aim of this study was to show that cathodic polarization can be used for coating commercially available implant surfaces with an immobilized but functional and bio-available surface layer of EMD. After coating, XPS revealed EMD-related bindings on the surface while SIMS showed incorporation of EMD into the surface. The hydride layer of the original surface could be activated for coating in an integrated one-step process that did not require any pre-treatment of the surface. SEM images showed nano-spheres and nano-rods on coated surfaces that were EMD-related. Moreover, the surface roughness remained unchanged after coating, as it was shown by optical profilometry. The mass peaks observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) analysis confirmed the integrity of EMD after coating. Assessment of the bioavailability suggested that the modified surfaces were active for osteoblast like MC3M3-E1 cells in showing enhanced Coll-1 gene expression and ALP activity. PMID:28788564

  20. Damage and failure modelling of hybrid three-dimensional textile composites: a mesh objective multi-scale approach

    PubMed Central

    Patel, Deepak K.

    2016-01-01

    This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391–1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre–matrix concentric cylinder model is extended to fibre and (N−1) matrix layers, keeping the volume fraction constant, and hence is called the NCYL model where the matrix damage can be captured locally within each discrete layer of the matrix volume. The influence of matrix microdamage at the subscale causes progressive degradation of fibre tow stiffness and matrix stiffness at the macroscale. The global RUC stiffness matrix remains positive definite, until the strain softening response resulting from different failure modes (such as fibre tow breakage, tow splitting in the transverse direction due to matrix cracking inside tow and surrounding matrix tensile failure outside of fibre tows) are initiated. At this stage, the macroscopic post-peak softening response is modelled using the mesh objective smeared crack approach (Rots et al. 1985 HERON 30, 1–48; Heinrich and Waas 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23–26 April 2012. AIAA 2012-1537). Manufacturing-induced geometric imperfections are included in the simulation, where the FE mesh of the unit cell is generated directly from micro-computed tomography (MCT) real data using a code Simpleware. Results from multi-scale analysis for both an idealized perfect geometry and one that includes geometric imperfections are compared with experimental results (Pankow et al. 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23–26 April 2012. AIAA 2012-1572). This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242294

  1. Damage and failure modelling of hybrid three-dimensional textile composites: a mesh objective multi-scale approach.

    PubMed

    Patel, Deepak K; Waas, Anthony M

    2016-07-13

    This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391-1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre-matrix concentric cylinder model is extended to fibre and (N-1) matrix layers, keeping the volume fraction constant, and hence is called the NCYL model where the matrix damage can be captured locally within each discrete layer of the matrix volume. The influence of matrix microdamage at the subscale causes progressive degradation of fibre tow stiffness and matrix stiffness at the macroscale. The global RUC stiffness matrix remains positive definite, until the strain softening response resulting from different failure modes (such as fibre tow breakage, tow splitting in the transverse direction due to matrix cracking inside tow and surrounding matrix tensile failure outside of fibre tows) are initiated. At this stage, the macroscopic post-peak softening response is modelled using the mesh objective smeared crack approach (Rots et al. 1985 HERON 30, 1-48; Heinrich and Waas 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1537). Manufacturing-induced geometric imperfections are included in the simulation, where the FE mesh of the unit cell is generated directly from micro-computed tomography (MCT) real data using a code Simpleware Results from multi-scale analysis for both an idealized perfect geometry and one that includes geometric imperfections are compared with experimental results (Pankow et al. 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1572). This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).

  2. Evaluation of Vertical Integrated Nanogenerator Performances in Flexion

    NASA Astrophysics Data System (ADS)

    Tao, R.; Hinchet, R.; Ardila, G.; Mouis, M.

    2013-12-01

    Piezoelectric nanowires have attracted great interest as new building blocks of mechanical energy harvesting systems. This paper presents the design improvements of mechanical energy harvesters integrating vertical ZnO piezoelectric nanowires onto a Silicon or plastic membrane. We have calculated the energy generation and conversion performance of ZnO nanowires based vertical integrated nanogenerators in flexion mode. We show that in flexion mode ZnO nanowires are superior to bulk ZnO layer. Both mechanical and electrical effects of matrix materials on the potential generation and energy conversion are discussed, in the aim of guiding further improvement of nanogenerator performance.

  3. Flame-Resistant Composite Materials For Structural Members

    NASA Technical Reports Server (NTRS)

    Spears, Richard K.

    1995-01-01

    Matrix-fiber composite materials developed for structural members occasionally exposed to hot, corrosive gases. Integral ceramic fabric surface layer essential for resistance to flames and chemicals. Endures high temperature, impedes flame from penetrating to interior, inhibits diffusion of oxygen to interior where it degrades matrix resin, resists attack by chemicals, helps resist erosion, and provides additional strength. In original intended application, composite members replace steel structural members of rocket-launching structures that deteriorate under combined influences of atmosphere, spilled propellants, and rocket exhaust. Composites also attractive for other applications in which corrosion- and fire-resistant structural members needed.

  4. A novel anti-frictional multiphase layer produced by plasma nitriding of PVD titanium coated ZL205A aluminum alloy

    NASA Astrophysics Data System (ADS)

    Lu, C.; Yao, J. W.; Wang, Y. X.; Zhu, Y. D.; Guo, J. H.; Wang, Y.; Fu, H. Y.; Chen, Z. B.; Yan, M. F.

    2018-02-01

    The heat treatment (consisting of solid solution and aging), is integrated with the nitriding process of titanium coated ZL205A aluminum alloy to improve the surface and matrix mechanical properties simultaneously. Two-step duplex treatment is adopted to prepare the gradient multiphase layer on a magnesium-free ZL205A aluminum-copper based alloy. Firstly, pure titanium film is deposited on the aluminum alloy substrate using magnetron sputtering. Secondly, the Ti-coated specimen is nitrided at the solid solution temperature of the substrate alloying elements in a gas mixture of N2 and H2 and aged at 175 °C. The microstructure evolution, microhardness as well as the wear resistance of obtained multiphase layers are investigated by means of scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), microhardness tester and pin-on-disc tribometer. The multiphase layer, dominated by TiN0.3 or Al3Ti, is prepared with significantly increased layer depth after duplex treatment. The surface hardness of multiphase layer is remarkably improved from 23.7HV to 457HV. The core matrix hardness is also increased to 65HV after aging. The wear rate of the multiphase layer decreases about 55.22% and 49.28% in comparison with the aged and Ti coated specimens, respectively. The predominant wear mechanism for the multiphase layer is abrasive and oxidation, but severe adhesive wear for the aged and Ti coated specimens.

  5. Human umbilical cord mesenchymal stromal cells in a sandwich approach for osteochondral tissue engineering

    PubMed Central

    Wang, Limin; Zhao, Liang; Detamore, Michael S.

    2013-01-01

    Cell sources and tissue integration between cartilage and bone regions are critical to successful osteochondral regeneration. In this study, human umbilical cord mesenchymal stromal cells (hUCMSCs), derived from Wharton’s jelly, were introduced to the field of osteochondral tissue engineering and a new strategy for osteochondral integration was developed by sandwiching a layer of cells between chondrogenic and osteogenic constructs before suturing them together. Specifically, hUCMSCs were cultured in biodegradable poly-l-lactic acid scaffolds for 3 weeks in either chondrogenic or osteogenic medium to differentiate cells toward cartilage or bone lineages, respectively. A highly concentrated cell solution containing undifferentiated hUCMSCs was pasted onto the surface of the bone layer at week 3 and the two layers were then sutured together to form an osteochondral composite for another 3 week culture period. Chondrogenic and osteogenic differentiation was initiated during the first 3 weeks, as evidenced by the expression of type II collagen and runt-related transcription factor 2 genes, respectively, and continued with the increase of extracellular matrix during the last 3 weeks. Histological and immunohistochemical staining, such as for glycosaminoglycans, type I collagen and calcium, revealed better integration and transition of these matrices between two layers in the composite group containing sandwiched cells compared to other control composites. These results suggest that hUCMSCs may be a suitable cell source for osteochondral regeneration, and the strategy of sandwiching cells between two layers may facilitate scaffold and tissue integration. PMID:21953869

  6. Air cathode structure manufacture

    DOEpatents

    Momyer, William R.; Littauer, Ernest L.

    1985-01-01

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  7. Crystal structure of an orthomyxovirus matrix protein reveals mechanisms for self-polymerization and membrane association.

    PubMed

    Zhang, Wenting; Zheng, Wenjie; Toh, Yukimatsu; Betancourt-Solis, Miguel A; Tu, Jiagang; Fan, Yanlin; Vakharia, Vikram N; Liu, Jun; McNew, James A; Jin, Meilin; Tao, Yizhi J

    2017-08-08

    Many enveloped viruses encode a matrix protein. In the influenza A virus, the matrix protein M1 polymerizes into a rigid protein layer underneath the viral envelope to help enforce the shape and structural integrity of intact viruses. The influenza virus M1 is also known to mediate virus budding as well as the nuclear export of the viral nucleocapsids and their subsequent packaging into nascent viral particles. Despite extensive studies on the influenza A virus M1 (FLUA-M1), only crystal structures of its N-terminal domain are available. Here we report the crystal structure of the full-length M1 from another orthomyxovirus that infects fish, the infectious salmon anemia virus (ISAV). The structure of ISAV-M1 assumes the shape of an elbow, with its N domain closely resembling that of the FLUA-M1. The C domain, which is connected to the N domain through a flexible linker, is made of four α-helices packed as a tight bundle. In the crystal, ISAV-M1 monomers form infinite 2D arrays with a network of interactions involving both the N and C domains. Results from liposome flotation assays indicated that ISAV-M1 binds membrane via electrostatic interactions that are primarily mediated by a positively charged surface loop from the N domain. Cryoelectron tomography reconstruction of intact ISA virions identified a matrix protein layer adjacent to the inner leaflet of the viral membrane. The physical dimensions of the virion-associated matrix layer are consistent with the 2D ISAV-M1 crystal lattice, suggesting that the crystal lattice is a valid model for studying M1-M1, M1-membrane, and M1-RNP interactions in the virion.

  8. ICAN: Integrated composites analyzer

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1984-01-01

    The ICAN computer program performs all the essential aspects of mechanics/analysis/design of multilayered fiber composites. Modular, open-ended and user friendly, the program can handle a variety of composite systems having one type of fiber and one matrix as constituents as well as intraply and interply hybrid composite systems. It can also simulate isotropic layers by considering a primary composite system with negligible fiber volume content. This feature is specifically useful in modeling thin interply matrix layers. Hygrothermal conditions and various combinations of in-plane and bending loads can also be considered. Usage of this code is illustrated with a sample input and the generated output. Some key features of output are stress concentration factors around a circular hole, locations of probable delamination, a summary of the laminate failure stress analysis, free edge stresses, microstresses and ply stress/strain influence coefficients. These features make ICAN a powerful, cost-effective tool to analyze/design fiber composite structures and components.

  9. The effect of mechano-chemical treatment on structural properties of the drawn TiNi-based alloy wire

    NASA Astrophysics Data System (ADS)

    Anikeev, Sergey; Hodorenko, Valentina; Gunther, Victor; Chekalkin, Timofey; Kang, Ji-hoon; Kang, Seung-baik

    2018-01-01

    The rapid development of biomedical materials with the advanced functional characteristics is a challenging task because of the growing demands for better material properties in-clinically employed. Modern medical devices that can be implanted into humans have evolved steadily by replacing TiNi-based alloys for titanium and stainless steel. In this study, the effect of the mechano-chemical treatment on structural properties of the matrix and surface layer of the drawn TiNi-based alloy wire was assessed. A range of samples have been prepared using different drawing and etching procedures. It is clear from the results obtained that the fabricated samples show a composite structure comprising the complex matrix and textured oxycarbonitride spitted surface layer. The suggested method of surface treatment is a concept to increase the surface roughness for the enhanced bio-performance and better in vivo integration.

  10. Interim user's manual for boundary layer integral matrix procedure, version J

    NASA Technical Reports Server (NTRS)

    Evans, R. M.; Morse, H. L.

    1974-01-01

    A computer program for analyzing two dimensional and axisymmetric nozzle performance with a variety of wall boundary conditions is described. The program has been developed for application to rocket nozzle problems. Several aids to usage of the program and two auxiliary subroutines are provided. Some features of the output are described and three sample cases are included.

  11. Element sensitive reconstruction of nanostructured surfaces with finite elements and grazing incidence soft X-ray fluorescence.

    PubMed

    Soltwisch, Victor; Hönicke, Philipp; Kayser, Yves; Eilbracht, Janis; Probst, Jürgen; Scholze, Frank; Beckhoff, Burkhard

    2018-03-29

    The geometry of a Si3N4 lamellar grating was investigated experimentally with reference-free grazing-incidence X-ray fluorescence analysis. While simple layered systems are usually treated with the matrix formalism to determine the X-ray standing-wave field, this approach fails for laterally structured surfaces. Maxwell solvers based on finite elements are often used to model electrical field strengths for any 2D or 3D structures in the optical spectral range. We show that this approach can also be applied in the field of X-rays. The electrical field distribution obtained with the Maxwell solver can subsequently be used to calculate the fluorescence intensities in full analogy to the X-ray standing-wave field obtained by the matrix formalism. Only the effective 1D integration for the layer system has to be replaced by a 2D integration of the finite elements, taking into account the local excitation conditions. We will show that this approach is capable of reconstructing the geometric line shape of a structured surface with high elemental sensitivity. This combination of GIXRF and finite-element simulations paves the way for a versatile characterization of nanoscale-structured surfaces.

  12. Application of the Refined Integral Method in the mathematical modeling of drug delivery from one-layer torus-shaped devices.

    PubMed

    Helbling, Ignacio M; Ibarra, Juan C D; Luna, Julio A

    2012-02-28

    A mathematical modeling of controlled release of drug from one-layer torus-shaped devices is presented. Analytical solutions based on Refined Integral Method (RIM) are derived. The validity and utility of the model are ascertained by comparison of the simulation results with matrix-type vaginal rings experimental release data reported in the literature. For the comparisons, the pair-wise procedure is used to measure quantitatively the fit of the theoretical predictions to the experimental data. A good agreement between the model prediction and the experimental data is observed. A comparison with a previously reported model is also presented. More accurate results are achieved for small A/C(s) ratios. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Reduction of thermal stresses in continuous fiber reinforced metal matrix composites with interface layers

    NASA Technical Reports Server (NTRS)

    Jansson, S.; Leckie, F. A.

    1990-01-01

    The potential of using an interface layer to reduce thermal stresses in the matrix of composites with a mismatch in coefficients of thermal expansion of fiber and matrix was investigated. It was found that compliant layers, with properties of readily available materials, do not have the potential to reduce thermal stresses significantly. However, interface layers with high coefficient of thermal expansion can compensate for the mismatch and reduce thermal stresses in the matrix significantly.

  14. Effects of fiber and interfacial layer architectures on the thermoplastic response of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Freed, Alan D.; Arnold, Steven M.

    1992-01-01

    Examined here is the effect of fiber and interfacial layer morphologies on thermal fields in metal matrix composites (MMCs). A micromechanics model based on an arbitrarily layered concentric cylinder configuration is used to calculate thermal stress fields in MMCs subjected to spatially uniform temperature changes. The fiber is modelled as a layered material with isotropic or orthotropic elastic layers, whereas the surrounding matrix, including interfacial layers, is treated as a strain-hardening, elastoplastic, von Mises solid with temperature-dependent parameters. The solution to the boundary-value problem of an arbitrarily layered concentric cylinder under the prescribed thermal loading is obtained using the local/global stiffness matrix formulation originally developed for stress analysis of multilayered elastic media. Examples are provided that illustrate how the morphology of the SCS6 silicon carbide fiber and the use of multiple compliant layers at the fiber/matrix interface affect the evolution of residual stresses in SiC/Ti composites during fabrication cool-down.

  15. Micromechanical analysis on anisotropy of structured magneto-rheological elastomer

    NASA Astrophysics Data System (ADS)

    Li, R.; Zhang, Z.; Chen, S. W.; Wang, X. J.

    2015-07-01

    This paper investigates the equivalent elastic modulus of structured magneto-rheological elastomer (MRE) in the absence of magnetic field. We assume that both matrix and ferromagnetic particles are linear elastic materials, and ferromagnetic particles are embedded in matrix with layer-like structure. The structured composite could be divided into matrix layer and reinforced layer, in which the reinforced layer is composed of matrix and the homogenously distributed ferromagnetic particles in matrix. The equivalent elastic modulus of reinforced layer is analysed by the Mori-Tanaka method. Finite Element Method (FEM) is also carried out to illustrate the relationship between the elastic modulus and the volume fraction of ferromagnetic particles. The results show that the anisotropy of elastic modulus becomes noticeable, as the volume fraction of particles increases.

  16. Metal matrix coated fiber composites and the methods of manufacturing such composites

    DOEpatents

    Weeks, Jr., Joseph K.; Gensse, Chantal

    1993-01-01

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials.

  17. Metal matrix coated fiber composites and the methods of manufacturing such composites

    DOEpatents

    Weeks, J.K. Jr.; Gensse, C.

    1993-09-14

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.

  18. Ultrasonic assessment of bonding integrity in foam-based hybrid composite materials

    NASA Astrophysics Data System (ADS)

    Chen, M. Y.; Ko, R. T.; Hoppe, W. C.; Blackshire, J. L.

    2013-01-01

    Ultrasonic assessment of the bonding integrity between a composite layer and a foam substrate in foam-based hybrid composite materials was explored. The challenges of this task are: (1) the foam has air-like acoustic impedance and (2) contact surface wave generation on polymer matrix composites (PMC) is not conventional. To meet these challenges, a novel wedge made of a low velocity material was developed. The results showed that the bonding condition in these composites can be identified by monitoring the amplitude of the ultrasonic signals received.

  19. Integrated photonics using colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Menon, Vinod M.; Husaini, Saima; Okoye, Nicky; Valappil, Nikesh V.

    2009-11-01

    Integrated photonic devices were realized using colloidal quantum dot composites such as flexible microcavity laser, microdisk emitters and integrated active-passive waveguides. The microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. Planar photonic devices consisting of vertically coupled microring resonators, microdisk emitters, active-passive integrated waveguide structures and coupled active microdisk resonators were realized using soft lithography, photo-lithography, and electron beam lithography, respectively. The gain medium in all these devices was a composite consisting of quantum dots embedded in SU8 matrix. Finally, the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements was determined. In addition to their specific functionalities, these novel device demonstrations and their development present a low-cost alternative to the traditional photonic device fabrication techniques.

  20. Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes

    PubMed Central

    Rodgers, Faye H.

    2017-01-01

    Manipulation of the mosquito gut microbiota can lay the foundations for novel methods for disease transmission control. Mosquito blood feeding triggers a significant, transient increase of the gut microbiota, but little is known about the mechanisms by which the mosquito controls this bacterial growth whilst limiting inflammation of the gut epithelium. Here, we investigate the gut epithelial response to the changing microbiota load upon blood feeding in the malaria vector Anopheles coluzzii. We show that the synthesis and integrity of the peritrophic matrix, which physically separates the gut epithelium from its luminal contents, is microbiota dependent. We reveal that the peritrophic matrix limits the growth and persistence of Enterobacteriaceae within the gut, whilst preventing seeding of a systemic infection. Our results demonstrate that the peritrophic matrix is a key regulator of mosquito gut homeostasis and establish functional analogies between this and the mucus layers of the mammalian gastrointestinal tract. PMID:28545061

  1. Bilayered nanofibrous 3D hierarchy as skin rudiment by emulsion electrospinning for burn wound management.

    PubMed

    Pal, Pallabi; Dadhich, Prabhash; Srivas, Pavan Kumar; Das, Bodhisatwa; Maulik, Dhrubajyoti; Dhara, Santanu

    2017-08-22

    Mimicking skin extracellular matrix hierarchy, the present work aims to develop a bilayer skin graft comprising a porous cotton-wool-like 3D layer with membranous structure of PCL-chitosan nanofibers. Emulsion electrospinning with differential stirring periods of PCL-chitosan emulsion results in development of a bilayer 3D structure with varied morphology. The electrospun membrane has fiber diameter ∼274 nm and pore size ∼1.16 μm while fluffy 3D layer has fiber diameter ∼1.62 μm and pore size ∼62 μm. The 3D layer was further coated with collagen I isolated from Cirrhinus cirrhosus fish scales to improve biofunctionality. Surface coating with collagen I resulted in bundling the fibers together, thereby increasing their average diameter to 2.80 μm and decreasing pore size to ∼45 μm. The architecture and composition of the scaffold promotes efficient cellular activity where interconnected porosity with ECM resembling collagen I coating assists cellular adhesion, infiltration, and proliferation from initial days of fibroblast seeding, while keratinocytes migrate on the surface only without infiltrating in the membranous nanofiber layer. Anatomy of the scaffold arising due to variation in pore size distribution at different layers thereby facilitates compartmentalization and prevents initial cellular transmigration. The scaffold also assists in extracellular matrix protein synthesis and keratinocyte stratification in vitro. Further, the scaffold effectively integrates and attaches with third-degree burn wound margins created in rat models and accelerates healing in comparison to standard Tegaderm dressing™. The bilayer scaffold is thus a promising, readily available, cost-effective, off-the-shelf matrix as a skin substitute.

  2. Relevance of fiber integrated gelatin-nanohydroxyapatite composite scaffold for bone tissue regeneration

    NASA Astrophysics Data System (ADS)

    Halima Shamaz, Bibi; Anitha, A.; Vijayamohan, Manju; Kuttappan, Shruthy; Nair, Shantikumar; Nair, Manitha B.

    2015-10-01

    Porous nanohydroxyapatite (nanoHA) is a promising bone substitute, but it is brittle, which limits its utility for load bearing applications. To address this issue, herein, biodegradable electrospun microfibrous sheets of poly(L-lactic acid)-(PLLA)-polyvinyl alcohol (PVA) were incorporated into a gelatin-nanoHA matrix which was investigated for its mechanical properties, the physical integration of the fibers with the matrix, cell infiltration, osteogenic differentiation and bone regeneration. The inclusion of sacrificial fibers like PVA along with PLLA and leaching resulted in improved cellular infiltration towards the center of the scaffold. Furthermore, the treatment of PLLA fibers with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide enhanced their hydrophilicity, ensuring firm anchorage between the fibers and the gelatin-HA matrix. The incorporation of PLLA microfibers within the gelatin-nanoHA matrix reduced the brittleness of the scaffolds, the effect being proportional to the number of layers of fibrous sheets in the matrix. The proliferation and osteogenic differentiation of human adipose-derived mesenchymal stem cells was augmented on the fibrous scaffolds in comparison to those scaffolds devoid of fibers. Finally, the scaffold could promote cell infiltration, together with bone regeneration, upon implantation in a rabbit femoral cortical defect within 4 weeks. The bone regeneration potential was significantly higher when compared to commercially available HA (Surgiwear™). Thus, this biomimetic, porous, 3D composite scaffold could be offered as a promising candidate for bone regeneration in orthopedics.

  3. Hybrid Composite Cryogenic Tank Structure

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas

    2011-01-01

    A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic temperatures, and will not crack or produce leaks. The outer layer serves as more of a high-performance structural unit for the inner layer, and can handle external environments.

  4. Elasto-plastic analysis of interface layers for fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Doghri, I.; Leckie, F. A.

    1991-01-01

    The mismatch in coefficients of thermal expansion (CTE) of fiber and matrix in metal matrix composites reinforced with ceramic fibers induces high thermal stresses in the matrix. Elasto-plastic analyses - with different degrees of simplification and modelization - show that an interface layer with a sufficiently high CTE can reduce the tensile hoop stress in the matrix substantially.

  5. Infra-red and vibration tests of hybrid ablative/ceramic matrix technological breadboards for earth re-entry thermal protection systems

    NASA Astrophysics Data System (ADS)

    Barcena, Jorge; Garmendia, Iñaki; Triantou, Kostoula; Mergia, Konstatina; Perez, Beatriz; Florez, Sonia; Pinaud, Gregory; Bouilly, Jean-Marc; Fischer, Wolfgang P. P.

    2017-05-01

    A new thermal protection system for atmospheric earth re-entry is proposed. This concept combines the advantages of both reusable and ablative materials to establish a new hybrid concept with advanced capabilities. The solution consists of the design and the integration of a dual shield resulting on the overlapping of an external thin ablative layer with a Ceramic Matrix Composite (CMC) thermo-structural core. This low density ablative material covers the relatively small heat peak encountered during re-entry the CMC is not able to bear. On the other hand the big advantage of the CMC based TPS is of great benefit which can deal with the high integral heat for the bigger time period of the re-entry. To verify the solution a whole testing plan is envisaged, which as part of it includes thermal shock test by infra-red heating (heating flux up to 1 MW/m2) and vibration test under launcher conditions (Volna and Ariane 5). Sub-scale tile samples (100×100 mm2) representative of the whole system (dual ablator/ceramic layers, insulation, stand-offs) are specifically designed, assembled and tested (including the integration of thermocouples). Both the thermal and the vibration test are analysed numerically by simulation tools using Finite Element Models. The experimental results are in good agreement with the expected calculated parameters and moreover the solution is qualified according to the specified requirements.

  6. Bi-layered nanocomposite bandages for controlling microbial infections and overproduction of matrix metalloproteinase activity.

    PubMed

    Anjana, J; Mohandas, Annapoorna; Seethalakshmy, S; Suresh, Maneesha K; Menon, Riju; Biswas, Raja; Jayakumar, R

    2018-04-15

    Chronic diabetic wounds is characterised by increased microbial contamination and overproduction of matrix metalloproteases that would degrade the extracellular matrix. A bi-layer bandage was developed, that promotes the inhibition of microbial infections and matrix metalloprotease (MMPs) activity. Bi-layer bandage containing benzalkonium chloride loaded gelatin nanoparticles (BZK GNPs) in chitosan-Hyaluronic acid (HA) as a bottom layer and sodium alendronate containing chitosan as top layer was developed. We hypothesized that the chitosan-gelatin top layer with sodium alendronate could inhibit the MMPs activity, whereas the chitosan-HA bottom layer with BZK GNPs (240±66nm) would enable the elimination of microbes. The porosity, swelling and degradation nature of the prepared Bi-layered bandage was studied. The bottom layer could degrade within 4days whereas the top layer remained upto 7days. The antimicrobial activity of the BZK NPs loaded bandage was determined using normal and clinical strains. Gelatin zymography shows that the proteolytic activity of MMP was inhibited by the bandage. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Preparation and in vitro evaluation of guar gum based triple-layer matrix tablet of diclofenac sodium

    PubMed Central

    Chavda, H.V.; Patel, M.S.; Patel, C.N.

    2012-01-01

    The objective of the present study was to design an oral controlled drug delivery system for sparingly soluble diclofenac sodium (DCL) using guar gum as triple-layer matrix tablets. Matrix tablet granules containing 30% (D1), 40% (D2) or 50% (D3) of guar gum were prepared by the conventional wet granulation technique. Matrix tablets of diclofenac sodium were prepared by compressing three layers one by one. Centre layer of sandwich like structure was incorporated with matrix granules containing DCL which was covered on either side by guar gum granule layers containing either 70, 80 or 87% of guar gum as release retardant layers. The tablets were evaluated for hardness, thickness, drug content, and drug release studies. To ascertain the kinetics of drug release, the dissolution profiles were fitted to various mathematical models. The in vitro drug release from proposed system was best explained by the Hopfenberg model indicating that the release of drug from tablets displayed heterogeneous erosion. D3G3, containing 87% of guar gum in guar gum layers and 50% of guar gum in DCL matrix granule layer was found to provide the release rate for prolonged period of time. The results clearly indicate that guar gum could be a potential hydrophilic carrier in the development of oral controlled drug delivery systems. PMID:23181081

  8. Platform technology for scalable assembly of instantaneously functional mosaic tissues

    PubMed Central

    Zhang, Boyang; Montgomery, Miles; Davenport-Huyer, Locke; Korolj, Anastasia; Radisic, Milica

    2015-01-01

    Engineering mature tissues requires a guided assembly of cells into organized three-dimensional (3D) structures with multiple cell types. Guidance is usually achieved by microtopographical scaffold cues or by cell-gel compaction. The assembly of individual units into functional 3D tissues is often time-consuming, relying on cell ingrowth and matrix remodeling, whereas disassembly requires an invasive method that includes either matrix dissolution or mechanical cutting. We invented Tissue-Velcro, a bio-scaffold with a microfabricated hook and loop system. The assembly of Tissue-Velcro preserved the guided cell alignment realized by the topographical features in the 2D scaffold mesh and allowed for the instant establishment of coculture conditions by spatially defined stacking of cardiac cell layers or through endothelial cell coating. The assembled cardiac 3D tissue constructs were immediately functional as measured by their ability to contract in response to electrical field stimulation. Facile, on-demand tissue disassembly was demonstrated while preserving the structure, physical integrity, and beating function of individual layers. PMID:26601234

  9. Efficient propagation-inside-layer expansion algorithm for solving the scattering from three-dimensional nested homogeneous dielectric bodies with arbitrary shape.

    PubMed

    Bellez, Sami; Bourlier, Christophe; Kubické, Gildas

    2015-03-01

    This paper deals with the evaluation of electromagnetic scattering from a three-dimensional structure consisting of two nested homogeneous dielectric bodies with arbitrary shape. The scattering problem is formulated in terms of a set of Poggio-Miller-Chang-Harrington-Wu integral equations that are afterwards converted into a system of linear equations (impedance matrix equation) by applying the Galerkin method of moments (MoM) with Rao-Wilton-Glisson basis functions. The MoM matrix equation is then solved by deploying the iterative propagation-inside-layer expansion (PILE) method in order to obtain the unknown surface current densities, which are thereafter used to handle the radar cross-section (RCS) patterns. Some numerical results for various structures including canonical geometries are presented and compared with those of the FEKO software in order to validate the PILE-based approach as well as to show its efficiency to analyze the full-polarized RCS patterns.

  10. Investigation of the in-plane and out-of-plane electrical properties of metallic nanoparticles in dielectric matrix thin films elaborated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Thomas, D.; Puyoo, E.; Le Berre, M.; Militaru, L.; Koneti, S.; Malchère, A.; Epicier, T.; Roiban, L.; Albertini, D.; Sabac, A.; Calmon, F.

    2017-11-01

    Pt nanoparticles in a Al2O3 dielectric matrix thin films are elaborated by means of atomic layer deposition. These nanostructured thin films are integrated in vertical and planar test structures in order to assess both their in-plane and out-of-plane electrical properties. A shadow edge evaporation process is used to develop planar devices with electrode separation distances in the range of 30 nm. Both vertical and planar test structures show a Poole-Frenkel conduction mechanism. Low trap energy levels (<0.1 eV) are identified for the two test structures which indicates that the Pt islands themselves are not acting as traps in the PF mechanism. Furthermore, a more than three order of magnitude current density difference is observed between the two geometries. This electrical anisotropy is attributed to a large electron mobility difference in the in-plane and out-of-plane directions which can be related to different trap distributions in both directions.

  11. Biocide squirting from an elastomeric tri-layer film.

    PubMed

    Sonntag, Philippe; Hoerner, Pierre; Cheymol, André; Argy, Gilles; Riess, Gérard; Reiter, Günter

    2004-05-01

    Protective layers typically act in a passive way by simply separating two sides. Protection is only efficient as long as the layers are intact. If a high level of protection has to be achieved by thin layers, complementary measures need to be in place to ensure safety, even after breakage of the layer-an important issue in medical applications. Here, we present a novel approach for integrating a biocide liquid into a protective film (about 300-500 microm thick), which guarantees that a sufficient amount of biocide is rapidly released when the film is punctured. The film is composed of a middle layer, containing the liquid in droplet-like compartments, sandwiched between two elastomeric boundary layers. When the film is punctured, the liquid squirts out of the middle layer. A theoretical model was used to determine the size and density of droplets that are necessary to ensure a sufficient quantity of biocide is expelled from an adequately elastic matrix to provide protection at the site of damage. We demonstrate the utility of this approach for the fabrication of surgical gloves.

  12. Magnetic nanofiber composite materials and devices using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xing; Zhou, Ziyao

    2017-04-11

    A nonreciprocal device is described. It includes a housing, a waveguide layer and at least one layer of magnetic nanofiber composite. The magnetic nanofiber composite layer is made up of a polymer base layer, a dielectric matrix comprising magnetic nanofibers. The nanofibers have a high aspect ratio and wherein said dielectric matrix is embedded in the polymer base layer.

  13. Generation of organized germ layers from a single mouse embryonic stem cell.

    PubMed

    Poh, Yeh-Chuin; Chen, Junwei; Hong, Ying; Yi, Haiying; Zhang, Shuang; Chen, Junjian; Wu, Douglas C; Wang, Lili; Jia, Qiong; Singh, Rishi; Yao, Wenting; Tan, Youhua; Tajik, Arash; Tanaka, Tetsuya S; Wang, Ning

    2014-05-30

    Mammalian inner cell mass cells undergo lineage-specific differentiation into germ layers of endoderm, mesoderm and ectoderm during gastrulation. It has been a long-standing challenge in developmental biology to replicate these organized germ layer patterns in culture. Here we present a method of generating organized germ layers from a single mouse embryonic stem cell cultured in a soft fibrin matrix. Spatial organization of germ layers is regulated by cortical tension of the colony, matrix dimensionality and softness, and cell-cell adhesion. Remarkably, anchorage of the embryoid colony from the 3D matrix to collagen-1-coated 2D substrates of ~1 kPa results in self-organization of all three germ layers: ectoderm on the outside layer, mesoderm in the middle and endoderm at the centre of the colony, reminiscent of generalized gastrulating chordate embryos. These results suggest that mechanical forces via cell-matrix and cell-cell interactions are crucial in spatial organization of germ layers during mammalian gastrulation. This new in vitro method could be used to gain insights on the mechanisms responsible for the regulation of germ layer formation.

  14. Enhanced nutrient transport improves the depth-dependent properties of tri-layered engineered cartilage constructs with zonal co-culture of chondrocytes and MSCs.

    PubMed

    Kim, Minwook; Farrell, Megan J; Steinberg, David R; Burdick, Jason A; Mauck, Robert L

    2017-08-01

    Biomimetic design in cartilage tissue engineering is a challenge given the complexity of the native tissue. While numerous studies have generated constructs with near-native bulk properties, recapitulating the depth-dependent features of native tissue remains a challenge. Furthermore, limitations in nutrient transport and matrix accumulation in engineered constructs hinders maturation within the central core of large constructs. To overcome these limitations, we fabricated tri-layered constructs that recapitulate the depth-dependent cellular organization and functional properties of native tissue using zonally derived chondrocytes co-cultured with MSCs. We also introduced porous hollow fibers (HFs) and HFs/cotton threads to enhance nutrient transport. Our results showed that tri-layered constructs with depth-dependent organization and properties could be fabricated. The addition of HFs or HFs/threads improved matrix accumulation in the central core region. With HF/threads, the local modulus in the deep region of tri-layered constructs nearly matched that of native tissue, though the properties in the central regions remained lower. These constructs reproduced the zonal organization and depth-dependent properties of native tissue, and demonstrate that a layer-by-layer fabrication scheme holds promise for the biomimetic repair of focal cartilage defects. Articular cartilage is a highly organized tissue driven by zonal heterogeneity of cells, extracellular matrix proteins and fibril orientations, resulting in depth-dependent mechanical properties. Therefore, the recapitulation of the functional properties of native cartilage in a tissue engineered construct requires such a biomimetic design of the morphological organization, and this has remained a challenge in cartilage tissue engineering. This study demonstrates that a layer-by-layer fabrication scheme, including co-cultures of zone-specific articular CHs and MSCs, can reproduce the depth-dependent characteristics and mechanical properties of native cartilage while minimizing the need for large numbers of chondrocytes. In addition, introduction of a porous hollow fiber (combined with a cotton thread) enhanced nutrient transport and depth-dependent properties of the tri-layered construct. Such a tri-layered construct may provide critical advantages for focal cartilage repair. These constructs hold promise for restoring native tissue structure and function, and may be beneficial in terms of zone-to-zone integration with adjacent host tissue and providing more appropriate strain transfer after implantation. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Aerodynamic heating on AFE due to nonequilibrium flow with variable entropy at boundary layer edge

    NASA Technical Reports Server (NTRS)

    Ting, P. C.; Rochelle, W. C.; Bouslog, S. A.; Tam, L. T.; Scott, C. D.; Curry, D. M.

    1991-01-01

    A method of predicting the aerobrake aerothermodynamic environment on the NASA Aeroassist Flight Experiment (AFE) vehicle is described. Results of a three dimensional inviscid nonequilibrium solution are used as input to an axisymmetric nonequilibrium boundary layer program to predict AFE convective heating rates. Inviscid flow field properties are obtained from the Euler option of the Viscous Reacting Flow (VRFLO) code at the boundary layer edge. Heating rates on the AFE surface are generated with the Boundary Layer Integral Matrix Procedure (BLIMP) code for a partially catalytic surface composed of Reusable Surface Insulation (RSI) times. The 1864 kg AFE will fly an aerobraking trajectory, simulating return from geosynchronous Earth orbit, with a 75 km perigee and a 10 km/sec entry velocity. Results of this analysis will provide principal investigators and thermal analysts with aeroheating environments to perform experiment and thermal protection system design.

  16. Boundary layer simulator improvement

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Schmitz, Craig P.; Nouri, Joseph A.

    1989-01-01

    Boundary Layer Integral Matrix Procedure (BLIMPJ) has been identified by the propulsion community as the rigorous boundary layer program in connection with the existing JANNAF reference programs. The improvements made to BLIMPJ and described herein have potential applications in the design of the future Orbit Transfer Vehicle engines. The turbulence model is validated to include the effects of wall roughness and a way is devised to treat multiple smooth-rough surfaces. A prediction of relaminarization regions is examined as is the combined effects of wall cooling and surface roughness on relaminarization. A turbulence model to represent the effects of constant condensed phase loading is given. A procedure is described for thrust decrement calculation in thick boundary layers by coupling the T-D Kinetics Program and BLIMPJ and a way is provided for thrust loss optimization. Potential experimental studies in rocket nozzles are identified along with the required instrumentation to provide accurate measurements in support of the presented new analytical models.

  17. Expansion of the peri-implant attached gingiva with a three-dimensional collagen matrix in head and neck cancer patients-results from a prospective clinical and histological study.

    PubMed

    Lorenz, Jonas; Blume, Maximilian; Barbeck, Mike; Teiler, Anna; Kirkpatrick, C James; Sader, Robert A; Ghanaati, Shahram

    2017-05-01

    Attached peri-implant gingiva has proven to have an influence on the long-term stability of dental implants. In patients with head and neck cancer, a functional peri-implant gingiva is even more of critical importance. The aim of the presented prospective study was to investigate a three-dimensional xenogeneic collagen matrix for augmentation around dental implants in patients with former head and neck cancer. Eight patients presenting with insufficient peri-implant gingiva underwent vestibuloplasty on 51 implants using a xenogeneic collagen matrix. The clinical performance and the shrinking tendency of the matrix were analyzed in a cohort study. Furthermore, eight biopsies from the augmented regions were examined histologically to determine the biomaterial-related tissue reaction. Initially after vestibuloplasty, a mean width of attached gingiva of 4.4 ± 0.94 mm could be achieved. At clinical follow up investigation 6 months after vestibuloplasty, a mean width of 3.9 ± 0.65 mm attached peri-implant gingiva with a mean shrinking tendency of 14 % could be detected. Histological analysis of the biopsies revealed a well integrated collagen22 matrix covered with epithelium. Within the compact layer, mononuclear cells were observed only, while the spongious layer was infiltrated with a cell-rich connective tissue. Within its limits, the presented study revealed that the investigated collagen matrix is suitable to enlarge the peri-implant attached gingiva in head and neck cancer patients without adverse reactions or a multinucleated giant cell-triggered tissue reaction. The application of the investigated three-dimensional collagen matrix in vestibuloplasty achieved a sufficient amount of peri-implant attached gingiva in head and neck cancer patients. The favorable tissue reaction and the low shrinking tendency make the collagen matrix a promising alternative to autologous tissue grafts.

  18. Fault geometry and mechanics of marly carbonate multilayers: An integrated field and laboratory study from the Northern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Giorgetti, C.; Collettini, C.; Scuderi, M. M.; Barchi, M. R.; Tesei, T.

    2016-12-01

    Sealing layers are often represented by sedimentary sequences characterized by alternating strong and weak lithologies. When involved in faulting processes, these mechanically heterogeneous multilayers develop complex fault geometries. Here we investigate fault initiation and evolution within a mechanical multilayer by integrating field observations and rock deformation experiments. Faults initiate with a staircase trajectory that partially reflects the mechanical properties of the involved lithologies, as suggested by our deformation experiments. However, some faults initiating at low angles in calcite-rich layers (θi = 5°-20°) and at high angles in clay-rich layers (θi = 45°-86°) indicate the important role of structural inheritance at the onset of faulting. With increasing displacement, faults develop well-organized fault cores characterized by a marly, foliated matrix embedding fragments of limestone. The angles of fault reactivation, which concentrate between 30° and 60°, are consistent with the low friction coefficient measured during our experiments on marls (μs = 0.39), indicating that clay minerals exert a main control on fault mechanics. Moreover, our integrated analysis suggests that fracturing and faulting are the main mechanisms allowing fluid circulation within the low-permeability multilayer, and that its sealing integrity can be compromised only by the activity of larger faults cutting across its entire thickness.

  19. The corrosion behavior of CVI SiC matrix in SiCf/SiC composites under molten fluoride salt environment

    NASA Astrophysics Data System (ADS)

    Wang, Hongda; Feng, Qian; Wang, Zhen; Zhou, Haijun; Kan, Yanmei; Hu, Jianbao; Dong, Shaoming

    2017-04-01

    High temperature corrosion behavior and microstructural evolution of designed chemical-vapor-infiltrated SiC matrix in SiC fiber reinforced SiC ceramic matrix composites in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt at 800 °C for various corrosion time was studied. Worse damage was observed as extending the exposure time, with the mass loss ratio increasing from 0.716 wt. % for 50 h to 5.914 wt. % for 500 h. The mass loss rate showed a trend of first decrease and then increase with the extended corrosion exposure. Compared with the near-stoichiometric SiC matrix layers, the O-contained boundaries between deposited matrix layers and the designed Si-rich SiC matrix layers were much less corrosion resistant and preferentially corroded. Liner relationship between the mass loss ratio and the corrosion time obtained from 50 h to 300 h indicated that the corrosion action was reaction-control process. Further corrosion would lead to matrix layer exfoliation and higher mass loss ratio.

  20. Process development for waveguide chemical sensors with integrated polymeric sensitive layers

    NASA Astrophysics Data System (ADS)

    Amberkar, Raghu; Gao, Zhan; Park, Jongwon; Henthorn, David B.; Kim, Chang-Soo

    2008-02-01

    Due to the proper optical property and flexibility in the process development, an epoxy-based, high-aspect ratio photoresist SU-8 is now attracting attention in optical sensing applications. Manipulation of the surface properties of SU-8 waveguides is critical to attach functional films such as chemically-sensitive layers. We describe a new integration process to immobilize fluorescence molecules on SU-8 waveguide surface for application to intensity-based optical chemical sensors. We use two polymers for this application. Spin-on, hydrophobic, photopatternable silicone is a convenient material to contain fluorophore molecules and to pattern a photolithographically defined thin layer on the surface of SU-8. We use fumed silica powders as an additive to uniformly disperse the fluorophores in the silicone precursor. In general, additional processes are not critically required to promote the adhesion between the SU-8 and silicone. The other material is polyethylene glycol diacrylate (PEGDA). Recently we demonstrated a novel photografting method to modify the surface of SU-8 using a surface bound initiator to control its wettability. The activated surface is then coated with a monomer precursor solution. Polymerization follows when the sample is exposed to UV irradiation, resulting in a grafted PEGDA layer incorporating fluorophores within the hydrogel matrix. Since this method is based the UV-based photografting reaction, it is possible to grow off photolithographically defined hydrogel patterns on the waveguide structures. The resulting films will be viable integrated components in optical bioanalytical sensors. This is a promising technique for integrated chemical sensors both for planar type waveguide and vertical type waveguide chemical sensors.

  1. The symmetries of the system matrix and propagator matrix for anisotropic media and of the system matrix forperiodically layered media

    NASA Astrophysics Data System (ADS)

    Xu, Guo-Ming; Ni, Si-Dao

    1998-11-01

    The `auxiliary' symmetry properties of the system matrix (symmetry with respect to the trailing diagonal) for a general anisotropic dissipative medium and the special form for a monoclinic medium are revealed by rearranging the motion-stress vector. The propagator matrix of a single-layer general anisotropic dissipative medium is also shown to have auxiliary symmetry. For the multilayered case, a relatively simple matrix method is utilized to obtain the inverse of the propagator matrix. Further, Woodhouse's inverse of the propagator matrix for a transversely isotropic medium is extended in a clearer form to handle the monoclinic symmetric medium. The properties of a periodic layer system are studied through its system matrix Aly , which is computed from the propagator matrix P. The matrix Aly is then compared with Aeq , the system matrix for the long-wavelength equivalent medium of the periodic isotropic layers. Then we can find how the periodic layered medium departs from its long-wavelength equivalent medium when the wavelength decreases. In our numerical example, the results show that, when λ/D decreases to 6-8, the components of the two matrices will depart from each other. The component ratio of these two matrices increases to its maximum (more than 15 in our numerical test) when λ/D is reduced to 2.3, and then oscillates with λ/D when it is further reduced. The eigenvalues of the system matrix Aly show that the velocities of P and S waves decrease when λ/D is reduced from 6-8 and reach their minimum values when λ/D is reduced to 2.3 and then oscillate afterwards. We compute the time shifts between the peaks of the transmitted waves and the incident waves. The resulting velocity curves show a similar variation to those computed from the eigenvalues of the system matrix Aly , but on a smaller scale. This can be explained by the spectrum width of the incident waves.

  2. Fuel cell with electrolyte feed system

    DOEpatents

    Feigenbaum, Haim

    1984-01-01

    A fuel cell having a pair of electrodes at the sites of electrochemical reactions of hydrogen and oxygen and a phosphoric acid electrolyte provided with an electrolyte supporting structure in the form of a laminated matrix assembly disposed between the electrodes. The matrix assembly is formed of a central layer disposed between two outer layers, each being permeable to the flow of the electrolyte. The central layer is provided with relatively large pores while the outer layers are provided with relatively small pores. An external reservoir supplies electrolyte via a feed means to the central layer to compensate for changes in electrolyte volume in the matrix assembly during the operation of fuel cell.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Liwang, E-mail: liwang.liu@hotmail.com; Meng, Lei; Wang, Ling

    The temperature dependence of the fluorescence spectrum of CdSe−ZnS core–shell quantum dots embedded in a polystyrene matrix is characterized between 30 °C and 60 °C. The spectrally integrated photoluminescence intensity is found to linearly decrease with −1.3%/ °C. This feature is exploited in a dual coating-substrate-configuration, consisting of a layer of this nanocomposite material, acting as a temperature sensor with optical readout, on top of an optically absorbing and opaque layer, acting as a photothermal excitation source, and covering a substrate material or structure of interest. From the frequency dependence of the optically detected photothermal signal in the frequency range between 5 Hz andmore » 150 Hz, different thermal parameters of the constituent layers are determined. The fitted values of thermal properties of the different layers, determined in different scenarios in terms of the used a priori information about the layers, are found to be internally consistent, and consistent with literature values.« less

  4. Reflective article having a sacrificial cathodic layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabagambe, Benjamin; Buchanan, Michael J.; Scott, Matthew S.

    The present invention relates to reflective articles, such as solar mirrors, that include a sacrificial cathodic layer. The reflective article, more particularly includes a substrate, such as glass, having a multi-layered coating thereon that includes a lead-free sacrificial cathodic layer. The sacrificial cathodic layer includes at least one transition metal, such as a particulate transition metal, which can be in the form of flakes (e.g., zinc flakes). The sacrificial cathodic layer can include an inorganic matrix formed from one or more organo-titanates. Alternatively, the sacrificial cathodic layer can include an organic polymer matrix (e.g., a crosslinked organic polymer matrix formedmore » from an organic polymer and an aminoplast crosslinking agent). The reflective article also includes an outer organic polymer coating, that can be electrodeposited over the sacrificial cathodic layer.« less

  5. A matrix dependent/algebraic multigrid approach for extruded meshes with applications to ice sheet modeling

    DOE PAGES

    Tuminaro, Raymond S.; Perego, Mauro; Tezaur, Irina Kalashnikova; ...

    2016-10-06

    A multigrid method is proposed that combines ideas from matrix dependent multigrid for structured grids and algebraic multigrid for unstructured grids. It targets problems where a three-dimensional mesh can be viewed as an extrusion of a two-dimensional, unstructured mesh in a third dimension. Our motivation comes from the modeling of thin structures via finite elements and, more specifically, the modeling of ice sheets. Extruded meshes are relatively common for thin structures and often give rise to anisotropic problems when the thin direction mesh spacing is much smaller than the broad direction mesh spacing. Within our approach, the first few multigridmore » hierarchy levels are obtained by applying matrix dependent multigrid to semicoarsen in a structured thin direction fashion. After sufficient structured coarsening, the resulting mesh contains only a single layer corresponding to a two-dimensional, unstructured mesh. Algebraic multigrid can then be employed in a standard manner to create further coarse levels, as the anisotropic phenomena is no longer present in the single layer problem. The overall approach remains fully algebraic, with the minor exception that some additional information is needed to determine the extruded direction. Furthermore, this facilitates integration of the solver with a variety of different extruded mesh applications.« less

  6. [Tissue engineering of urinary bladder using acellular matrix].

    PubMed

    Glybochko, P V; Olefir, Yu V; Alyaev, Yu G; Butnaru, D V; Bezrukov, E A; Chaplenko, A A; Zharikova, T M

    2017-04-01

    Tissue engineering has become a new promising strategy for repairing damaged organs of the urinary system, including the bladder. The basic idea of tissue engineering is to integrate cellular technology and advanced bio-compatible materials to replace or repair tissues and organs. of the study is the objective reflection of the current trends and advances in tissue engineering of the bladder using acellular matrix through a systematic search of preclinical and clinical studies of interest. Relevant studies, including those on methods of tissue engineering of urinary bladder, was retrieved from multiple databases, including Scopus, Web of Science, PubMed, Embase. The reference lists of the retrieved review articles were analyzed for the presence of the missing relevant publications. In addition, a manual search for registered clinical trials was conducted in clinicaltrials.gov. Following the above search strategy, a total of 77 eligible studies were selected for further analysis. Studies differed in the types of animal models, supporting structures, cells and growth factors. Among those, studies using cell-free matrix were selected for a more detailed analysis. Partial restoration of urothelium layer was observed in most studies where acellular grafts were used for cystoplasty, but no the growth of the muscle layer was observed. This is the main reason why cellular structures are more commonly used in clinical practice.

  7. Process of producing a ceramic matrix composite article and article formed thereby

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corman, Gregory Scot; McGuigan, Henry Charles; Brun, Milivoj Konstantin

    A CMC article and process for producing the article to have a layer on its surface that protects a reinforcement material within the article from damage. The method entails providing a body containing a ceramic reinforcement material in a matrix material that contains a precursor of a ceramic matrix material. A fraction of the reinforcement material is present and possibly exposed at a surface of the body. The body surface is then provided with a surface layer formed of a slurry containing a particulate material but lacking the reinforcement material of the body. The body and surface layer are heatedmore » to form the article by converting the precursor within the body to form the ceramic matrix material in which the reinforcement material is contained, and by converting the surface layer to form the protective layer that covers any fraction of the reinforcement material exposed at the body surface.« less

  8. Process of producing a ceramic matrix composite article and article formed thereby

    DOEpatents

    Corman, Gregory Scot [Ballston Lake, NY; McGuigan, Henry Charles [Duanesburg, NY; Brun, Milivoj Konstantin [Ballston Lake, NY

    2011-10-25

    A CMC article and process for producing the article to have a layer on its surface that protects a reinforcement material within the article from damage. The method entails providing a body containing a ceramic reinforcement material in a matrix material that contains a precursor of a ceramic matrix material. A fraction of the reinforcement material is present and possibly exposed at a surface of the body. The body surface is then provided with a surface layer formed of a slurry containing a particulate material but lacking the reinforcement material of the body. The body and surface layer are heated to form the article by converting the precursor within the body to form the ceramic matrix material in which the reinforcement material is contained, and by converting the surface layer to form the protective layer that covers any fraction of the reinforcement material exposed at the body surface.

  9. Gas Permeable Chemochromic Compositions for Hydrogen Sensing

    NASA Technical Reports Server (NTRS)

    Mohajeri, Nahid (Inventor); Muradov, Nazim (Inventor); Tabatabaie-Raissi, Ali (Inventor); Bokerman, Gary (Inventor)

    2013-01-01

    A (H2) sensor composition includes a gas permeable matrix material intermixed and encapsulating at least one chemochromic pigment. The chemochromic pigment produces a detectable change in color of the overall sensor composition in the presence of H2 gas. The matrix material provides high H2 permeability, which permits fast permeation of H2 gas. In one embodiment, the chemochromic pigment comprises PdO/TiO2. The sensor can be embodied as a two layer structure with the gas permeable matrix material intermixed with the chemochromic pigment in one layer and a second layer which provides a support or overcoat layer.

  10. Direct deposit laminate nanocomposites with enhanced propellent properties.

    PubMed

    Li, Xiangyu; Guerieri, Philip; Zhou, Wenbo; Huang, Chuan; Zachariah, Michael R

    2015-05-06

    One of the challenges in the use of energetic nanoparticles within a polymer matrix for propellant applications is obtaining high particle loading (high energy density) while maintaining mechanical integrity and reactivity. In this study, we explore a new strategy that utilizes laminate structures. Here, a laminate of alternating layers of aluminum nanoparticle (Al-NPs)/copper oxide nanoparticle (CuO-NPs) thermites in a polyvinylidene fluoride (PVDF) reactive binder, with a spacer layer of PVDF was fabricated by a electrospray layer-by-layer deposition method. The deposited layers containing up to 60 wt % Al-NPs/CuO-NPs thermite are found to be uniform and mechanically flexible. Both the reactive and mechanical properties of laminate significantly outperformed the single-layer structure with the same material composition. These results suggest that deploying a multilayer laminate structure enables the incorporation of high loadings of energetic materials and, in some cases, enhances the reactive properties over the corresponding homogeneous structure. These results imply that an additive manufacturing approach may yield significant advantages in developing a tailored architecture for advanced propulsion systems.

  11. pH-controlled drug loading and release from biodegradable microcapsules.

    PubMed

    Zhao, Qinghe; Li, Bingyun

    2008-12-01

    Microcapsules made of biopolymers are of both scientific and technological interest and have many potential applications in medicine, including their use as controlled drug delivery devices. The present study makes use of the electrostatic interaction between polycations and polyanions to form a multilayered microcapsule shell and also to control the loading and release of charged drug molecules inside the microcapsule. Micron-sized calcium carbonate (CaCO3) particles were synthesized and integrated with chondroitin sulfate (CS) through a reaction between sodium carbonate and calcium nitrate tetrahydrate solutions suspended with CS macromolecules. Oppositely charged biopolymers were alternately deposited onto the synthesized particles using electrostatic layer-by-layer self-assembly, and glutaraldehyde was introduced to cross-link the multilayered shell structure. Microcapsules integrated with CS inside the multilayered shells were obtained after decomposition of the CaCO3 templates. The integration of a matrix (i.e., CS) permitted the subsequent selective control of drug loading and release. The CS-integrated microcapsules were loaded with a model drug, bovine serum albumin labeled with fluorescein isothiocyanate (FITC-BSA), and it was shown that pH was an effective means of controlling the loading and release of FITC-BSA. Such CS-integrated microcapsules may be used for controlled localized drug delivery as biodegradable devices, which have advantages in reducing systemic side effects and increasing drug efficacy.

  12. Vibration control of multiferroic fibrous composite plates using active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Kattimani, S. C.; Ray, M. C.

    2018-06-01

    Geometrically nonlinear vibration control of fiber reinforced magneto-electro-elastic or multiferroic fibrous composite plates using active constrained layer damping treatment has been investigated. The piezoelectric (BaTiO3) fibers are embedded in the magnetostrictive (CoFe2O4) matrix forming magneto-electro-elastic or multiferroic smart composite. A three-dimensional finite element model of such fiber reinforced magneto-electro-elastic plates integrated with the active constrained layer damping patches is developed. Influence of electro-elastic, magneto-elastic and electromagnetic coupled fields on the vibration has been studied. The Golla-Hughes-McTavish method in time domain is employed for modeling a constrained viscoelastic layer of the active constrained layer damping treatment. The von Kármán type nonlinear strain-displacement relations are incorporated for developing a three-dimensional finite element model. Effect of fiber volume fraction, fiber orientation and boundary conditions on the control of geometrically nonlinear vibration of the fiber reinforced magneto-electro-elastic plates is investigated. The performance of the active constrained layer damping treatment due to the variation of piezoelectric fiber orientation angle in the 1-3 Piezoelectric constraining layer of the active constrained layer damping treatment has also been emphasized.

  13. A thin porous substrate using bonded particles for reverse-emulsion electrophoretic displays

    NASA Astrophysics Data System (ADS)

    Ahumada, M.; Bryning, M.; Cromer, R.; Hartono, M.; Lee, S. J.

    2012-03-01

    A thin porous layer of bonded ceramic microparticles has been developed to provide structural integrity and a stationary matrix for use in reflective-mode reverse-emulsion electrophoretic displays (REED), based on self-assembled nanodroplets dispersed in a non-polar liquid. REED ink uses low-cost materials and manufacturing processes, yet is capable of video speed and low voltage operation below 10 V. Porous layers of titanium dioxide (TiO2) are prepared as thin as 10 microns by fluidizing the particles in a water-based slurry with polymeric adhesive. The slurry is distributed between glass shear plates, one of which serves as the substrate for the working device. Particle morphology is examined using scanning electron microscopy and layer uniformity is characterized by opacity measurements using a throughbeam fiber optic sensor. Performance of the bonded matrix with REED ink is compared to baseline performance of a paste mixture, comprised of the same ink and unbonded TiO2 particles. Results show that at 25% volume fraction, the bonded substrate improves image bistability and is better able to maintain both light and dark intensity after extensive switching. The same bonded substrate also improves image bistability when power is disconnected, even compared to a paste with 40% volume fraction of TiO2.

  14. Magnetic resonance imaging and image analysis for assessment of HPMC matrix tablets structural evolution in USP Apparatus 4.

    PubMed

    Kulinowski, Piotr; Dorożyński, Przemysław; Młynarczyk, Anna; Węglarz, Władysław P

    2011-05-01

    The purpose of the study was to present a methodology for the processing of Magnetic Resonance Imaging (MRI) data for the quantification of the dosage form matrix evolution during drug dissolution. The results of the study were verified by comparison with other approaches presented in literature. A commercially available, HPMC-based quetiapine fumarate tablet was studied with a 4.7T MR system. Imaging was performed inside an MRI probe-head coupled with a flow-through cell for 12 h in circulating water. The images were segmented into three regions using threshold-based segmentation algorithms due to trimodal structure of the image intensity histograms. Temporal evolution of dry glassy, swollen glassy and gel regions was monitored. The characteristic features were observed: initial high expansion rate of the swollen glassy and gel layers due to initial water uptake, dry glassy core disappearance and maximum area of swollen glassy region at 4 h, and subsequent gel layer thickness increase at the expense of swollen glassy layer. The temporal evolution of an HPMC-based tablet by means of noninvasive MRI integrated with USP Apparatus 4 was found to be consistent with both the theoretical model based on polymer disentanglement concentration and experimental VIS/FTIR studies.

  15. Green's function of multi-layered poroelastic half-space for models of ground vibration due to railway traffic

    NASA Astrophysics Data System (ADS)

    Wang, Futong; Tao, Xiaxin; Xie, Lili; Raj, Siddharthan

    2017-04-01

    This study proposes a Green's function, an essential representation of water-saturated ground under moving excitation, to simulate ground borne vibration from trains. First, general solutions to the governing equations of poroelastic medium are derived by means of integral transform. Secondly, the transmission and reflection matrix approach is used to formulate the relationship between displacement and stress of the stratified ground, which results in the matrix of the Green's function. Then the Green's function is combined into a train-track-ground model, and is verified by typical examples and a field test. Additional simulations show that the computed ground vibration attenuates faster in the immediate vicinity of the track than in the surrounding area. The wavelength of wheel-rail unevenness has a notable effect on computed displacement and pore pressure. The variation of vibration intensity with the depth of ground is significantly influenced by the layering of the strata soil. When the train speed is equal to the velocity of the Rayleigh wave, the Mach cone appears in the simulated wave field. The proposed Green's function is an appropriate representation for a layered ground with shallow ground water table, and will be helpful to understand the dynamic responses of the ground to complicated moving excitation.

  16. Analysis of the release process of phenylpropanolamine hydrochloride from ethylcellulose matrix granules V. Release properties of ethylcellulose layered matrix granules.

    PubMed

    Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu

    2008-04-01

    In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the release properties. In previous papers, a combination of the square-root time law and cube-root law equations was confirmed to be a useful equation for qualitative treatment. It was also confirmed that the combination equation could analyze the release properties of layered granules as well as matrix granules. The drug release property from layered granules is different from that of matrix granules. A time lag occurs before release, and the entire release property of layered granules was analyzed using the combination of the square-root time law and cube-root law equations. It is considered that the analysis method is very useful and efficient for both matrix and layered granules. Comparing the granulation methods, it is easier to control the manufacturing process by tumbling granulation (method B) than by tumbling-fluidized bed granulation (method C). Ethylcellulose (EC) layered granulation by a fluidized bed granulator might be convenient for the preparation of controlled release dosage forms as compared with a tumbling granulator, because the layered granules prepared by the fluidized bed granulator can granulate and dry at the same time. The time required for drying by the fluidized bed granulator is shorter than that by the tumbling granulator, so the fluidized bed granulator is convenient for preparation of granules in handling and shorter processing time than the tumbling granulator. It was also suggested that the EC layered granules prepared by the fluidized bed granulator were suitable for a controlled release system as well as the EC matrix granules.

  17. Acoustical characterization and parameter optimization of polymeric noise control materials

    NASA Astrophysics Data System (ADS)

    Homsi, Emile N.

    2003-10-01

    The sound transmission loss (STL) characteristics of polymer-based materials are considered. Analytical models that predict, characterize and optimize the STL of polymeric materials, with respect to physical parameters that affect performance, are developed for single layer panel configuration and adapted for layered panel construction with homogenous core. An optimum set of material parameters is selected and translated into practical applications for validation. Sound attenuating thermoplastic materials designed to be used as barrier systems in the automotive and consumer industries have certain acoustical characteristics that vary in function of the stiffness and density of the selected material. The validity and applicability of existing theory is explored, and since STL is influenced by factors such as the surface mass density of the panel's material, a method is modified to improve STL performance and optimize load-bearing attributes. An experimentally derived function is applied to the model for better correlation. In-phase and out-of-phase motion of top and bottom layers are considered. It was found that the layered construction of the co-injection type would exhibit fused planes at the interface and move in-phase. The model for the single layer case is adapted to the layered case where it would behave as a single panel. Primary physical parameters that affect STL are identified and manipulated. Theoretical analysis is linked to the resin's matrix attribute. High STL material with representative characteristics is evaluated versus standard resins. It was found that high STL could be achieved by altering materials' matrix and by integrating design solution in the low frequency range. A suggested numerical approach is described for STL evaluation of simple and complex geometries. In practice, validation on actual vehicle systems proved the adequacy of the acoustical characterization process.

  18. Multi-scale damage modelling in a ceramic matrix composite using a finite-element microstructure meshfree methodology

    PubMed Central

    2016-01-01

    The problem of multi-scale modelling of damage development in a SiC ceramic fibre-reinforced SiC matrix ceramic composite tube is addressed, with the objective of demonstrating the ability of the finite-element microstructure meshfree (FEMME) model to introduce important aspects of the microstructure into a larger scale model of the component. These are particularly the location, orientation and geometry of significant porosity and the load-carrying capability and quasi-brittle failure behaviour of the fibre tows. The FEMME model uses finite-element and cellular automata layers, connected by a meshfree layer, to efficiently couple the damage in the microstructure with the strain field at the component level. Comparison is made with experimental observations of damage development in an axially loaded composite tube, studied by X-ray computed tomography and digital volume correlation. Recommendations are made for further development of the model to achieve greater fidelity to the microstructure. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242308

  19. Immunohistochemical evidence of rapid extracellular matrix remodeling after iron-particle irradiation of mouse mammary gland

    NASA Technical Reports Server (NTRS)

    Ehrhart, E. J.; Gillette, E. L.; Barcellos-Hoff, M. H.; Chaterjee, A. (Principal Investigator)

    1996-01-01

    High-LET radiation has unique physical and biological properties compared to sparsely ionizing radiation. Recent studies demonstrate that sparsely ionizing radiation rapidly alters the pattern of extracellular matrix expression in several tissues, but little is known about the effect of heavy-ion radiation. This study investigates densely ionizing radiation-induced changes in extracellular matrix localization in the mammary glands of adult female BALB/c mice after whole-body irradiation with 0.8 Gy 600 MeV iron particles. The basement membrane and interstitial extracellular matrix proteins of the mammary gland stroma were mapped with respect to time postirradiation using immunofluorescence. Collagen III was induced in the adipose stroma within 1 day, continued to increase through day 9 and was resolved by day 14. Immunoreactive tenascin was induced in the epithelium by day 1, was evident at the epithelial-stromal interface by day 5-9 and persisted as a condensed layer beneath the basement membrane through day 14. These findings parallel similar changes induced by gamma irradiation but demonstrate different onset and chronicity. In contrast, the integrity of epithelial basement membrane, which was unaffected by sparsely ionizing radiation, was disrupted by iron-particle irradiation. Laminin immunoreactivity was mildly irregular at 1 h postirradiation and showed discontinuities and thickening from days 1 to 9. Continuity was restored by day 14. Thus high-LET radiation, like sparsely ionizing radiation, induces rapid-remodeling of the stromal extracellular matrix but also appears to alter the integrity of the epithelial basement membrane, which is an important regulator of epithelial cell proliferation and differentiation.

  20. Parametric studies to determine the effect of compliant layers on metal matrix composite systems

    NASA Technical Reports Server (NTRS)

    Caruso, J. J.; Chamis, C. C.; Brown, H. C.

    1990-01-01

    Computational simulation studies are conducted to identify compliant layers to reduce matrix stresses which result from the coefficient of thermal expansion mismatch and the large temperature range over which the current metal matrix composites will be used. The present study includes variations of compliant layers and their properties to determine their influence on unidirectional composite and constituent response. Two simulation methods are used for these studies. The first approach is based on a three-dimensional linear finite element analysis of a 9 fiber unidirectional composite system. The second approach is a micromechanics based nonlinear computer code developed to determine the behavior of metal matrix composite system for thermal and mechanical loads. The results show that an effective compliant layer for the SCS 6 (SiC)/Ti-24Al-11Nb (Ti3Al + Nb) and SCS 6 (SiC)/Ti-15V-3Cr-3Sn-3Al (Ti-15-3) composite systems should have modulus 15 percent that of the matrix and a coefficient of thermal expansion of the compliant layer roughly equal to that of the composite system without the CL. The matrix stress in the longitudinal and the transverse tangent (loop) direction are tensile for the Ti3Al + Nb and Ti-15-3 composite systems upon cool down from fabrication. The fiber longitudinal stress is compressive from fabrication cool down. Addition of a recommended compliant layer will result in a reduction in the composite modulus.

  1. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro.

    PubMed

    Blair, Harry C; Larrouture, Quitterie C; Li, Yanan; Lin, Hang; Beer-Stoltz, Donna; Liu, Li; Tuan, Rocky S; Robinson, Lisa J; Schlesinger, Paul H; Nelson, Deborah J

    2017-06-01

    We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and density of osteoblasts and by endogenous and exogenous inhibitors.

  2. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro

    PubMed Central

    Larrouture, Quitterie C.; Li, Yanan; Lin, Hang; Beer-Stoltz, Donna; Liu, Li; Tuan, Rocky S.; Robinson, Lisa J.; Schlesinger, Paul H.; Nelson, Deborah J.

    2017-01-01

    We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and density of osteoblasts and by endogenous and exogenous inhibitors. PMID:27846781

  3. Analyte-Size-Dependent Ionization and Quantification of Monosaccharides in Human Plasma Using Cation-Exchanged Smectite Layers.

    PubMed

    Ding, Yuqi; Kawakita, Kento; Xu, Jiawei; Akiyama, Kazuhiko; Fujino, Tatsuya

    2015-08-04

    Smectite, a synthetic inorganic polymer with a saponite structure, was subjected to matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Typical organic matrix molecules 2,4,6-trihydroxyacetophenone (THAP) and 2,5-dihydroxybenzoic acid (DHBA) were intercalated into the layer spacing of cation-exchanged smectite, and the complex was used as a new matrix for laser desorption/ionization mass spectrometry. Because of layer spacing limitations, only a small analyte that could enter the layer and bind to THAP or DHBA could be ionized. This was confirmed by examining different analyte/matrix preparation methods and by measuring saccharides with different molecular sizes. Because of the homogeneous distribution of THAP molecules in the smectite layer spacing, high reproducibility of the analyte peak intensity was achieved. By using isotope-labeled (13)C6-d-glucose as the internal standard, quantitative analysis of monosaccharides in pretreated human plasma sample was performed, and the value of 8.6 ± 0.3 μg/mg was estimated.

  4. Superconducting coil and method of stress management in a superconducting coil

    DOEpatents

    McIntyre, Peter M.; Shen, Weijun; Diaczenko, Nick; Gross, Dan A.

    1999-01-01

    A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).

  5. 3D printing of tissue-simulating phantoms for calibration of biomedical optical devices

    NASA Astrophysics Data System (ADS)

    Zhao, Zuhua; Zhou, Ximing; Shen, Shuwei; Liu, Guangli; Yuan, Li; Meng, Yuquan; Lv, Xiang; Shao, Pengfei; Dong, Erbao; Xu, Ronald X.

    2016-10-01

    Clinical utility of many biomedical optical devices is limited by the lack of effective and traceable calibration methods. Optical phantoms that simulate biological tissues used for optical device calibration have been explored. However, these phantoms can hardly simulate both structural and optical properties of multi-layered biological tissue. To address this limitation, we develop a 3D printing production line that integrates spin coating, light-cured 3D printing and Fused Deposition Modeling (FDM) for freeform fabrication of optical phantoms with mechanical and optical heterogeneities. With the gel wax Polydimethylsiloxane (PDMS), and colorless light-curable ink as matrix materials, titanium dioxide (TiO2) powder as the scattering ingredient, graphite powder and black carbon as the absorption ingredient, a multilayer phantom with high-precision is fabricated. The absorption and scattering coefficients of each layer are measured by a double integrating sphere system. The results demonstrate that the system has the potential to fabricate reliable tissue-simulating phantoms to calibrate optical imaging devices.

  6. Multi-functional layered structure having structural and radiation shielding attributes

    NASA Technical Reports Server (NTRS)

    Kaul, Raj K. (Inventor); Barghouty, Abdulnasser Fakhri (Inventor); Penn, Benjamin G. (Inventor); Hulcher, Anthony Bruce (Inventor)

    2010-01-01

    A cosmic and solar radiation shielding structure that also has structural attributes is comprised of three layers. The first layer is 30-42 percent by volume of ultra-high molecular weight (UHMW) polyethylene fibers, 18-30 percent by volume of graphite fibers, and a remaining percent by volume of an epoxy resin matrix. The second layer is approximately 68 percent by volume of UHMW polyethylene fibers and a remaining percent by volume of a polyethylene matrix. The third layer is a ceramic material.

  7. Performance of μ-RWELL detector vs resistivity of the resistive stage

    NASA Astrophysics Data System (ADS)

    Bencivenni, G.; De Oliveira, R.; Felici, G.; Gatta, M.; Morello, G.; Ochi, A.; Lener, M. Poli; Tskhadadze, E.

    2018-04-01

    The μ-RWELL is a compact spark-protected single amplification stage Micro-Pattern-Gaseous-Detector (MPGD). The detector amplification stage is realized with a polyimide structure, micro-patterned with a dense matrix of blind-holes, integrated into the readout structure. The anode is formed by a thin Diamond Like Carbon (DLC) resistive layer separated by an insulating glue layer from the readout strips. The introduction of the resistive layer strongly suppressing the transition from streamer to spark gives the possibility to achieve large gains (> 104), without significantly affecting the capability to be efficiently operated in high particle fluxes. In this work we present the results of a systematic study of the μ-RWELL performance as a function of the DLC resistivity. The tests have been performed either with collimated 5.9 keV X-rays or with pion and muon beams at the SPS Secondary Beamline H4 and H8 at CERN.

  8. Hybrid transfer-matrix FDTD method for layered periodic structures.

    PubMed

    Deinega, Alexei; Belousov, Sergei; Valuev, Ilya

    2009-03-15

    A hybrid transfer-matrix finite-difference time-domain (FDTD) method is proposed for modeling the optical properties of finite-width planar periodic structures. This method can also be applied for calculation of the photonic bands in infinite photonic crystals. We describe the procedure of evaluating the transfer-matrix elements by a special numerical FDTD simulation. The accuracy of the new method is tested by comparing computed transmission spectra of a 32-layered photonic crystal composed of spherical or ellipsoidal scatterers with the results of direct FDTD and layer-multiple-scattering calculations.

  9. Development, implementation, and test results on integrated optics switching matrix

    NASA Technical Reports Server (NTRS)

    Rutz, E.

    1982-01-01

    A small integrated optics switching matrix, which was developed, implemented, and tested, indicates high performance. The matrix serves as a model for the design of larger switching matrices. The larger integrated optics switching matrix should form the integral part of a switching center with high data rate throughput of up to 300 megabits per second. The switching matrix technique can accomplish the design goals of low crosstalk and low distortion. About 50 illustrations help explain and depict the many phases of the integrated optics switching matrix. Many equations used to explain and calculate the experimental data are also included.

  10. Effect of TiN coating on microstructure of Tif/Al composite.

    PubMed

    Xiu, Z Y; Chen, G Q; Wang, M; Hussain, Murid

    2013-02-01

    In the present work, Ti fibre reinforced Al matrix composites (Ti(f)/Al) were fabricated by pressure infiltration method. In order to suppress the severe Ti-Al reaction and reduce the formation of brittle TiAl(3) phase, a TiN layer was coated on Ti fibres by an arc ion plating method before composite preparation. A thin TiN layer was coated on the Ti fibre surface, and the maximum and minimum thickness values of layer were about 3.5 and 1μm, respectively. Prefer orientation of TiN on (111) and (200) was found by XRD analysis. A thin and uniform TiAl(3) layer was observed in Ti(f)/Al composite. However, after coated with TiN layer, no significant reaction layer was found in (Ti(f)+TiN)/Al composite. Segregation of Mg element was found in Ti(f)/Al composite, and the presence of TiN layer showed little effect on this behaviour. Due to the large CTE difference between Ti fibre and Al matrix, high density dislocations were observed in the Al matrix. Meanwhile, fine dispersed Mg(2)Al(3) phases were also found in Al matrix. Ti fibre is mainly composed of α- and β-Ti. Small discontinuous needle-like TiAl(3) phases were detected at TiN/Al interface, which implies that the presence of TiN layer between the Ti fibre and Al matrix could effectively hinder the formation of TiAl(3) phases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. An Investigation on the Use of a Laser Ablation Treatment on Metallic Surfaces and the Influence of Temperature on Fracture Toughness of Hybrid Co-Cured Metal-PMC Interfaces

    NASA Technical Reports Server (NTRS)

    Connell, John; Palmieri, Frank; Truong, Hieu; Ochoa, Ozden; Lagoudas, Dimitris

    2015-01-01

    Hybrid composite laminates that contain alternating layers of titanium alloys and carbon fabric reinforced polyimide matrix composites (PMC) are excellent candidates for light-weight, high-temperature structural materials for high-speed aerospace vehicles. The delamination resistance of the hybrid titanium-PMC interface is of crucial consideration for structural integrity during service. Here, we report the first investigations on the use of laser ablation in combination with sol-gel treatment technique on Ti/NiTi foil surfaces in co-cured hybrid polyimide matrix composite laminates. Mode-I and mode-II fracture toughness of the hybrid Ti/NiTi-PMC interface as a function of temperature were determined via experimental testing and finite element analysis.

  12. Surface engineering of low enriched uranium-molybdenum

    NASA Astrophysics Data System (ADS)

    Leenaers, A.; Van den Berghe, S.; Detavernier, C.

    2013-09-01

    Recent attempts to qualify the LEU(Mo) dispersion plate fuel with Si addition to the Al matrix up to high power and burn-up have not yet been successful due to unacceptable fuel plate swelling at a local burn-up above 60% 235U. The root cause of the failures is clearly related directly to the formation of the U(Mo)-Al(Si) interaction layer. Excessive formation of these layers around the fuel kernels severely weakens the local mechanical integrity and eventually leads to pillowing of the plate. In 2008, SCK·CEN has launched the SELENIUM U(Mo) dispersion fuel development project in an attempt to find an alternative way to reduce the interaction between U(Mo) fuel kernels and the Al matrix to a significantly low level: by applying a coating on the U(Mo) kernels. Two fuel plates containing 8gU/cc U(Mo) coated with respectively 600 nm Si and 1000 nm ZrN in a pure Al matrix were manufactured. These plates were irradiated in the BR2 reactor up to a maximum heat flux of 470 W/cm2 until a maximum local burn-up of approximately 70% 235U (˜50% plate average) was reached. Awaiting the PIE results, the advantages of applying a coating are discussed in this paper through annealing experiments and TRIM (the Transport of Ions in Matter) calculations.

  13. Supercomputer description of human lung morphology for imaging analysis.

    PubMed

    Martonen, T B; Hwang, D; Guan, X; Fleming, J S

    1998-04-01

    A supercomputer code that describes the three-dimensional branching structure of the human lung has been developed. The algorithm was written for the Cray C94. In our simulations, the human lung was divided into a matrix containing discrete volumes (voxels) so as to be compatible with analyses of SPECT images. The matrix has 3840 voxels. The matrix can be segmented into transverse, sagittal and coronal layers analogous to human subject examinations. The compositions of individual voxels were identified by the type and respective number of airways present. The code provides a mapping of the spatial positions of the almost 17 million airways in human lungs and unambiguously assigns each airway to a voxel. Thus, the clinician and research scientist in the medical arena have a powerful new tool to be used in imaging analyses. The code was designed to be integrated into diverse applications, including the interpretation of SPECT images, the design of inhalation exposure experiments and the targeted delivery of inhaled pharmacologic drugs.

  14. Elastic/plastic analyses of advanced composites investigating the use of the compliant layer concept in reducing residual stresses resulting from processing

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Arya, Vinod K.; Melis, Matthew E.

    1990-01-01

    High residual stresses within intermetallic and metal matrix composite systems can develop upon cooling from the processing temperature to room temperature due to the coefficient of thermal expansion (CTE) mismatch between the fiber and matrix. As a result, within certain composite systems, radial, circumferential, and/or longitudinal cracks have been observed to form at the fiber-matrix interface. The compliant layer concept (insertion of a compensating interface material between the fiber and matrix) was proposed to reduce or eliminate the residual stress buildup during cooling and thus minimize cracking. The viability of the proposed compliant layer concept is investigated both elastically and elastoplastically. A detailed parametric study was conducted using a unit cell model consisting of three concentric cylinders to determine the required character (i.e., thickness and material properties) of the compliant layer as well as its applicability. The unknown compliant layer mechanical properties were expressed as ratios of the corresponding temperature dependent Ti-24Al-11Nb (a/o) matrix properties. The fiber properties taken were those corresponding to SCS-6 (SiC). Results indicate that the compliant layer can be used to reduce, if not eliminate, radial and circumferential residual stresses within the fiber and matrix and therefore also reduce or eliminate the radial cracking. However, with this decrease in in-plane stresses, one obtains an increase in longitudinal stress, thus potentially initiating longitudinal cracking. Guidelines are given for the selection of a specific compliant material, given a perfectly bonded system.

  15. Some features of the fabrication of multilayer fiber composites by explosive welding

    NASA Technical Reports Server (NTRS)

    Kotov, V. A.; Mikhaylov, A. N.; Cabelka, D.

    1985-01-01

    The fabrication of multilayer fiber composites by explosive welding is characterized by intense plastic deformation of the matrix material as it fills the spaces between fibers and by high velocity of the collision between matrix layers due to acceleration in the channels between fibers. The plastic deformation of the matrix layers and fiber-matrix friction provide mechanical and thermal activation of the contact surfaces, which contributes to the formation of a bond. An important feature of the process is that the fiber-matrix adhesion strength can be varied over a wide range by varying the parameters of impulsive loading.

  16. One Solution of the Forward Problem of DC Resistivity Well Logging by the Method of Volume Integral Equations with Allowance for Induced Polarization

    NASA Astrophysics Data System (ADS)

    Kevorkyants, S. S.

    2018-03-01

    For theoretically studying the intensity of the influence exerted by the polarization of the rocks on the results of direct current (DC) well logging, a solution is suggested for the direct inner problem of the DC electric logging in the polarizable model of plane-layered medium containing a heterogeneity by the example of the three-layer model of the hosting medium. Initially, the solution is presented in the form of a traditional vector volume-integral equation of the second kind (IE2) for the electric current density vector. The vector IE2 is solved by the modified iteration-dissipation method. By the transformations, the initial IE2 is reduced to the equation with the contraction integral operator for an axisymmetric model of electrical well-logging of the three-layer polarizable medium intersected by an infinitely long circular cylinder. The latter simulates the borehole with a zone of penetration where the sought vector consists of the radial J r and J z axial (relative to the cylinder's axis) components. The decomposition of the obtained vector IE2 into scalar components and the discretization in the coordinates r and z lead to a heterogeneous system of linear algebraic equations with a block matrix of the coefficients representing 2x2 matrices whose elements are the triple integrals of the mixed derivatives of the second-order Green's function with respect to the parameters r, z, r', and z'. With the use of the analytical transformations and standard integrals, the integrals over the areas of the partition cells and azimuthal coordinate are reduced to single integrals (with respect to the variable t = cos ϕ on the interval [-1, 1]) calculated by the Gauss method for numerical integration. For estimating the effective coefficient of polarization of the complex medium, it is suggested to use the Siegel-Komarov formula.

  17. A review of the matrix-exponential formalism in radiative transfer

    NASA Astrophysics Data System (ADS)

    Efremenko, Dmitry S.; Molina García, Víctor; Gimeno García, Sebastián; Doicu, Adrian

    2017-07-01

    This paper outlines the matrix exponential description of radiative transfer. The eigendecomposition method which serves as a basis for computing the matrix exponential and for representing the solution in a discrete ordinate setting is considered. The mathematical equivalence of the discrete ordinate method, the matrix operator method, and the matrix Riccati equations method is proved rigorously by means of the matrix exponential formalism. For optically thin layers, approximate solution methods relying on the Padé and Taylor series approximations to the matrix exponential, as well as on the matrix Riccati equations, are presented. For optically thick layers, the asymptotic theory with higher-order corrections is derived, and parameterizations of the asymptotic functions and constants for a water-cloud model with a Gamma size distribution are obtained.

  18. Microstructure and mechanical behavior of Zr substrates coated with FeCrAl and Mo by cold-spraying

    NASA Astrophysics Data System (ADS)

    Park, Dong Jun; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2018-06-01

    FeCrAl and Mo layers were cold-sprayed onto a Zr surface, with the Mo layer introduced between the FeCrAl coating and the Zr matrix preventing high-temperature interdiffusion. Microstructural characterization of the first-deposited Mo layer and the Zr matrix immediately below the Mo/Zr interface was performed using transmission electron microscopy, and near-interface elemental distributions were obtained using energy-dispersive X-ray spectroscopy. The deformation of the coated Mo powder induced the formation of microbands and mechanically interlocked nanoscale structures. The mechanical behavior of Zr with a coating layer was compared with those characteristic of conventional Zr samples. The coated sample showed smaller strength reduction in the test conducted at elevated temperature. The hardness and fracture morphology of the Zr matrix near the interface region were investigated to determine the effect of impacting Mo particles on the matrix microstructure. The enhanced hardness and cleavage fracture morphology of the Zr matrix immediately below the Mo/Zr interface indicated the occurrence of localized deformation owing to Mo particle impact.

  19. pH-controlled drug loading and release from biodegradable microcapsules

    PubMed Central

    Zhao, Qinghe; Li, Bingyun

    2013-01-01

    Microcapsules made of biopolymers are of both scientific and technological interest and have many potential applications in medicine including their use as controlled drug delivery devices. The present study employs the electrostatic interaction between polycations and polyanions to form a multilayered microcapsule shell and also to control the loading and release of charged drug molecules inside the microcapsule. Micron-sized CaCO3 particles were synthesized and integrated with chondroitin sulfate (CS) through a reaction between Na2CO3 and Ca(NO3)2 solutions suspended with CS macromolecules. Oppositely-charged biopolymers were alternately deposited onto the synthesized particles using electrostatic layer-by-layer self-assembly, and glutaraldehyde was introduced to crosslink the multilayered shell structure. Microcapsules integrated with CS inside the multilayered shells were obtained after decomposition of the CaCO3 templates. The integration of a matrix, i.e. CS, enabled the subsequent selective control of drug loading and release. The CS integrated microcapsules were loaded with a model drug, i.e. bovine serum albumin labeled with fluorescein isothiocyanate (FITC-BSA), and it was shown that pH was an effective means of controlling the loading and release of FITC-BSA. Such CS integrated microcapsules may be used for controlled localized drug delivery as biodegradable devices, which have advantages in reducing systemic side effects and increasing drug efficacy. PMID:18657478

  20. Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration.

    PubMed

    Lee, Yi-Hsuan; Wu, Hsi-Chin; Yeh, Chia-Wei; Kuan, Chen-Hsiang; Liao, Han-Tsung; Hsu, Horng-Chaung; Tsai, Jui-Che; Sun, Jui-Sheng; Wang, Tzu-Wei

    2017-11-01

    The development of osteochondral tissue engineering is an important issue for the treatment of traumatic injury or aging associated joint disease. However, the different compositions and mechanical properties of cartilage and subchondral bone show the complexity of this tissue interface, making it challenging for the design and fabrication of osteochondral graft substitute. In this study, a bilayer scaffold is developed to promote the regeneration of osteochondral tissue within a single integrated construct. It has the capacity to serve as a gene delivery platform to promote transfection of human mesenchymal stem cells (hMSCs) and the functional osteochondral tissues formation. For the subchondral bone layer, the bone matrix with organic (type I collagen, Col) and inorganic (hydroxyapatite, Hap) composite scaffold has been developed through mineralization of hydroxyapatite nanocrystals oriented growth on collagen fibrils. We also prepare multi-shell nanoparticles in different layers with a calcium phosphate core and DNA/calcium phosphate shells conjugated with polyethyleneimine to act as non-viral vectors for delivery of plasmid DNA encoding BMP2 and TGF-β3, respectively. Microbial transglutaminase is used as a cross-linking agent to crosslink the bilayer scaffold. The ability of this scaffold to act as a gene-activated matrix is demonstrated with successful transfection efficiency. The results show that the sustained release of plasmids from gene-activated matrix can promote prolonged transgene expression and stimulate hMSCs differentiation into osteogenic and chondrogenic lineages by spatial and temporal control within the bilayer composite scaffold. This improved delivery method may enhance the functionalized composite graft to accelerate healing process for osteochondral tissue regeneration. In this study, a gene-activated matrix (GAM) to promote the growth of both cartilage and subchondral bone within a single integrated construct is developed. It has the capacity to promote transfection of human mesenchymal stem cells (hMSCs) and the functional osteochondral tissues formation. The results show that the sustained release of plasmids including TGF-beta and BMP-2 from GAM could promote prolonged transgene expression and stimulate hMSCs differentiation into the osteogenic and chondrogenic lineages by spatial control manner. This improved delivery method should enhance the functionalized composite graft to accelerate healing process in vitro and in vivo for osteochondral tissue regeneration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Integrated Power Source Grant

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Traditional spacecraft power systems incorporate a solar array energy source, an energy storage element (battery), and battery charge control and bus voltage regulation electronics to provide continuous electrical power for spacecraft systems and instruments. Dedicated power conditioning components provide limited fault isolation between systems and instruments, while a centralized power-switching unit provides spacecraft load control. Battery undervoltage conditions are detected by the spacecraft processor, which removes fault conditions and non-critical loads before permanent battery damage can occur. Cost effective operation of a micro-sat constellation requires a fault tolerant spacecraft architecture that minimizes on-orbit operational costs by permitting autonomous reconfiguration in response to unexpected fault conditions. A new micro-sat power system architecture that enhances spacecraft fault tolerance and improves power system survivability by continuously managing the battery charge and discharge processes on a cell-by-cell basis has been developed. This architecture is based on the Integrated Power Source (US patent 5644207), which integrates dual junction solar cells, Lithium Ion battery cells, and processor based charge control electronics into a structural panel that can be deployed or used to form a portion of the outer shell of a micro-spacecraft. The first generation Integrated Power Source is configured as a one inch thick panel in which prismatic Lithium Ion battery cells are arranged in a 3x7 matrix (26VDC) and a 3x1 matrix (3.7VDC) to provide the required output voltages and load currents. A multi-layer structure holds the battery cells, as well as the thermal insulators that are necessary to protect the Lithium Ion battery cells from the extreme temperatures of the solar cell layer. Independent thermal radiators, located on the back of the panel, are dedicated to the solar cell array, the electronics, and the battery cell array. In deployed panel applications, these radiators maintain the battery cells in an appropriate operational temperature range.

  2. Design and in vivo evaluation of a patch system based on thiolated polymers.

    PubMed

    Hoyer, Herbert; Greindl, Melanie; Bernkop-Schnürch, Andreas

    2009-02-01

    A new oral patch delivery system has been designed to increase the overall oral bioavailability of drugs within the gastrointestinal tract. The patch system consists of four layered films: a mucoadhesive matrix layer, a water insoluble backing layer, a middle layer and an enteric surface layer. The separation layer between the two matrix layers contained lactose, starch and confectioners' sugar. The matrix layer, exhibiting a diameter of 2.5 mm and a weight of 5 mg, comprised Polycarbophil-cysteine conjugate (49%), fluoresceine isothiocyanate-dextran (26%), glutathione (5%), and mannitol (20%). A standard tablet formulation consisting of the same matrix served as control. Entire fluoresceine isothiocyanate-dextran (FD(4)) was released from the delivery system within 2 h. For in vivo studies patch systems were administered orally to male Sprague-Dawley rats. Maximum FD(4) concentration in blood of the patch system was 46.1 +/- 8.9 ng/mL and was reached 3 h after administration. In contrast c(max) of control tablets displayed 50.5 +/- 14.9 ng/mL after 2 h and the absorption of FD(4) after administration in oral solution was negligible. The absolute bioavailability of orally administered patch systems and control tablets was 0.54% and 0.32% respectively. Results of this study indicate that a prolonged and higher oral bioavailability of FD(4) is obtained with patches than with tablets.

  3. Investigation of a broadband coherent perfect absorber in a multi-layer structure by using the transfer matrix method

    NASA Astrophysics Data System (ADS)

    Na, Jihoon; Noh, Heeso

    2018-01-01

    We investigated a multi-layer structure for a broadband coherent perfect absorber (CPA). The transfer matrix method (TMM) is useful for analyzing the optical properties of structures and optimizing multi-layer structures. The broadband CPA strongly depends on the phase of the light traveling in one direction and the light reflected within the structure. The TMM simulation shows that the absorption bandwidth is increased by 95% in a multi-layer CPA compared to that in a single-layer CPA.

  4. Photonic emitters and circuits based on colloidal quantum dot composites

    NASA Astrophysics Data System (ADS)

    Menon, Vinod M.; Husaini, Saima; Valappil, Nikesh; Luberto, Matthew

    2009-02-01

    We discuss our work on light emitters and photonic circuits realized using colloidal quantum dot composites. Specifically we will report our recent work on flexible microcavity laser, microdisk emitters and integrated active - passive waveguides. The entire microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. The microdisk emitters and the integrated waveguide structures were realized using soft lithography and photo-lithography, respectively and were fabricated using a composite consisting of quantum dots embedded in SU8 matrix. Finally, we will discuss the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements. In addition to their specific functionalities, these novel device demonstrations and their development present a low cost alternative to the traditional photonic device fabrication techniques.

  5. Electromagnetic scattering of large structures in layered earths using integral equations

    NASA Astrophysics Data System (ADS)

    Xiong, Zonghou; Tripp, Alan C.

    1995-07-01

    An electromagnetic scattering algorithm for large conductivity structures in stratified media has been developed and is based on the method of system iteration and spatial symmetry reduction using volume electric integral equations. The method of system iteration divides a structure into many substructures and solves the resulting matrix equation using a block iterative method. The block submatrices usually need to be stored on disk in order to save computer core memory. However, this requires a large disk for large structures. If the body is discretized into equal-size cells it is possible to use the spatial symmetry relations of the Green's functions to regenerate the scattering impedance matrix in each iteration, thus avoiding expensive disk storage. Numerical tests show that the system iteration converges much faster than the conventional point-wise Gauss-Seidel iterative method. The numbers of cells do not significantly affect the rate of convergency. Thus the algorithm effectively reduces the solution of the scattering problem to an order of O(N2), instead of O(N3) as with direct solvers.

  6. Enamel organic matrix: potential structural role in enamel and relationship to residual basement membrane constituents at the dentin enamel junction

    PubMed Central

    McGuire, Jacob D.; Walker, Mary P.; Dusevich, Vladimir; Wang, Yong; Gorski, Jeff P.

    2015-01-01

    Although mature enamel is predominantly composed of mineral, a previously uncharacterized organic matrix layer remains in the post-eruptive tissue that begins at the dentin enamel junction and extends 200–300 µm towards the outer tooth surface. Identification of the composition of this layer has been hampered by its insolubility; however, we have developed a single step method to isolate the organic enamel matrix relatively intact. After dissociative dissolution of the matrix with SDS and urea, initial characterization by Western blotting and gel zymography indicates the presence of type IV and type VII basement membrane collagens and active matrix metalloproteinase-20. When combined with data from transgenic knockout mice and from human mutations, these data suggest that the enamel organic matrix (EOM) and dentin enamel junction may have a structural and functional relationship with basement membranes, e.g. skin. To clarify this relationship, we hypothesize a “foundation” model which proposes that components of the EOM form a support structure that stabilizes the crystalline enamel layer, and bonds it to the underlying dentin along the dentin enamel junction. Since we have also co-localized an active matrix metalloproteinase to this layer, our hypothesis suggests that, under pathologic conditions, MMP-mediated degradation of the EOM could destabilize the enamel–dentin interface. PMID:25158177

  7. Thermomechanical Performance of C and SiC Multilayer, Fiber-Reinforced, CVI SiC Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Singh, Mrityunjay

    2004-01-01

    Hybrid fiber approaches have been attempted in the past to alloy desirable properties of different fiber-types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the CrSiC and SiCrSiC composite systems. SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven Sic fiber (Hi-NicalonTM) layers were fabricated using the standard CVI process. Delamination occurred to some extent due to thermal mismatch for all of the composites. However, for the composites with a more uniform stacking sequence, minimal delamination occurred, enabling tensile properties to be determined at room temperature and elevated temperatures (stress-rupture in air). Composites were seal-coated with a CVI SiC layer as well as a proprietary C-B-Si (CBS) layer. Definite improvement in rupture behavior was observed in air for composites with increasing SiC fiber content and a CBS layer. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites.

  8. Giant magneto-optical Kerr rotation, quality factor and figure of merit in cobalt-ferrite magnetic nanoparticles doped in silica matrix as the only defect layer embedded in magnetophotonic crystals

    NASA Astrophysics Data System (ADS)

    Zamani, Mehdi; Hocini, Abdesselam

    2018-03-01

    In this work, we report on the theoretical study of one-dimensional magnetophotonic crystals (MPC) comprising of periodic dielectric structure Si/SiO and of silica matrix doped with cobalt-ferrite (CoFe2O4) magnetic nanoparticles as the only magnetic defect layer. Such structure can be prepared by sol-gel dip coating method that controls the thickness of each layer with nanometer level, hence, can overcome the problem of integration of the magneto-optical (MO) devices. We have studied the influence of the volume fraction (concentration of magnetic nanoparticles VF%) on the optical (reflectance, transmittance and absorption) and MO (Kerr rotation) responses in reflection-type one-dimensional MPCs. During investigation of the influence of magnetic nanoparticle's concentration, we found that giant Kerr rotations (even ≈135° for VF = 39%) can be obtained accompanied by large reflectance and low amounts for transmittance and absorption. We report on the demonstration of large MO quality factor and figure of merit in cobalt-ferrite magnetic nanoparticles in the infrared regime. Given the large Kerr rotation, high reflectance accompanied by low absorption and nearly zero transmittance of the 1D MPC containing cobalt-ferrite magnetic nanoparticles, large MO Q factor and figure of merit are obtained.

  9. Matrix formalism of electromagnetic wave propagation through multiple layers in the near-field region: application to the flat panel display.

    PubMed

    Lee, C Y; Lee, D E; Hong, Y K; Shim, J H; Jeong, C K; Joo, J; Zang, D S; Shim, M G; Lee, J J; Cha, J K; Yang, H G

    2003-04-01

    We have developed an electromagnetic (EM) wave propagation theory through a single layer and multiple layers in the near-field and far-field regions, and have constructed a matrix formalism in terms of the boundary conditions of the EM waves. From the shielding efficiency (SE) against EM radiation in the near-field region calculated by using the matrix formalism, we propose that the effect of multiple layers yields enhanced shielding capability compared to a single layer with the same total thickness in conducting layers as the multiple layers. We compare the intensities of an EM wave propagating through glass coated with conducting indium tin oxide (ITO) on one side and on both sides, applying it to the electromagnetic interference (EMI) shielding filter in a flat panel display such as a plasma display panel (PDP). From the measured intensities of EMI noise generated by a PDP loaded with ITO coated glass samples, the two-side coated glass shows a lower intensity of EMI noise compared to the one-side coated glass. The result confirms the enhancement of the SE due to the effect of multiple layers, as expected in the matrix formalism of EM wave propagation in the near-field region. In the far-field region, the two-side coated glass with ITO in multiple layers has a higher SE than the one-side coated glass with ITO, when the total thickness of ITO in both cases is the same.

  10. Matrix Game Methodology - Support to V2010 Olympic Marine Security Planners

    DTIC Science & Technology

    2011-02-01

    OMOC was called the Integrated Safety /Security Matrix Game – Marine III, and was held 16-17 June 2009. This was the most extensive and complex of...Protection Matrix Game Marine Two .................................................. 12 3.3 Integrated Safety /Security Matrix Game – Marine III...Integrated Safety /Security Matrix Game – Marine III Scenarios........................... 53 ISSMG Marine III – Team Groupings

  11. Manipulation of biological cells using a microelectromagnet matrix

    NASA Astrophysics Data System (ADS)

    Lee, H.; Purdon, A. M.; Westervelt, R. M.

    2004-08-01

    Noninvasive manipulation of biological cells inside a microfluidic channel was demonstrated using a microelectromagnet matrix. The matrix consists of two layers of straight Au wires, aligned perpendicular to each other, that are covered by insulating layers. By adjusting the current in each independent wire, the microelectromagnet matrix can create versatile magnetic field patterns to control the motion of individual cells in fluid. Single or multiple yeast cells attached to magnetic beads were trapped, continuously moved and rotated, and a viable cell was separated from nonviable cells for cell sorting.

  12. Toward active-matrix lab-on-a-chip: programmable electrofluidic control enabled by arrayed oxide thin film transistors.

    PubMed

    Noh, Joo Hyon; Noh, Jiyong; Kreit, Eric; Heikenfeld, Jason; Rack, Philip D

    2012-01-21

    Agile micro- and nano-fluidic control is critical to numerous life science and chemical science synthesis as well as kinetic and thermodynamic studies. To this end, we have demonstrated the use of thin film transistor arrays as an active matrix addressing method to control an electrofluidic array. Because the active matrix method minimizes the number of control lines necessary (m + n lines for the m×n element array), the active matrix addressing method integrated with an electrofluidic platform can be a significant breakthrough for complex electrofluidic arrays (increased size or resolution) with enhanced function, agility and programmability. An amorphous indium gallium zinc oxide (a-IGZO) semiconductor active layer is used because of its high mobility of 1-15 cm(2) V(-1) s(-1), low-temperature processing and transparency for potential spectroscopy and imaging. Several electrofluidic functionalities are demonstrated using a simple 2 × 5 electrode array connected to a 2 × 5 IGZO thin film transistor array with the semiconductor channel width of 50 μm and mobility of 6.3 cm(2) V(-1) s(-1). Additionally, using the TFT device characteristics, active matrix addressing schemes are discussed as the geometry of the electrode array can be tailored to act as a storage capacitor element. Finally, requisite material and device parameters are discussed in context with a VGA scale active matrix addressed electrofluidic platform.

  13. Effect of Ply Orientation and Crack Location on SIFs in Finite Multilayers with Aligned Cracks

    NASA Astrophysics Data System (ADS)

    Chen, Linfeng; Pindera, Marek-Jerzy

    2008-02-01

    An exact elasticity solution is presented for arbitrarily laminated finite multilayers in a state of generalized plane deformation under horizontally pinned end constraints that are weakened by aligned cracks. Based on half-range Fourier series and the local/global stiffness matrix approach, the mixed boundary-value problem is reduced to Cauchy-type singular integral equations in the unknown displacement discontinuities. Solution to these equations is obtained using the approach developed by Erdogan and co-workers. Numerical results quantify the thus-far undocumented geometric and material effects on Mode I, II and III stress intensity factors in composite multilayers with interacting cracks under uniform vertical displacement. These effects include finite dimensions, crack location, material anisotropy due to a unidirectional fiber-reinforced layer/s orientation, and orientational grading.

  14. Carbon nanotube-based structural health monitoring for fiber reinforced composite materials

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Liu, Kan; Mardirossian, Aris; Heider, Dirk; Thostenson, Erik

    2017-04-01

    In fiber reinforced composite materials, the modes of damage accumulation, ranging from microlevel to macro-level (matrix cracks development, fiber breakage, fiber-matrix de-bonding, delamination, etc.), are complex and hard to be detected through conventional non-destructive evaluation methods. Therefore, in order to assure the outstanding structural performance and high durability of the composites, there has been an urgent need for the design and fabrication smart composites with self-damage sensing capabilities. In recent years, the macroscopic forms of carbon nanotube materials have been maturely investigated, which provides the opportunity for structural health monitoring based on the carbon nanotubes that are integrated in the inter-laminar areas of advanced fiber composites. Here in this research, advanced fiber composites embedded with laminated carbon nanotube layers are manufactured for damage detection due to the relevant spatial electrical property changes once damage occurs. The mechanical-electrical coupling response is recorded and analyzed during impact test. The design and manufacturing of integrating the carbon nanotubes intensely affect the detecting sensitivity and repeatability of the integrated multifunctional sensors. The ultimate goal of the reported work is to develop a novel structural health monitoring method with the capability of reporting information on the damage state in a real-time way.

  15. Polarization independent asymmetric light absorption in plasmonic nanostructure

    NASA Astrophysics Data System (ADS)

    Franco Rêgo, Davi; Rodriguez-Esquerre, Vitaly Felix

    2017-08-01

    The directional dependency of the optical coefficients, such as absorbance and reflectance, of a periodic hole plasmonic structure is numerically simulated and investigated. The tridimensional structure, which is composed of a metallic thin layer on a semiconductor matrix, is polarization independent and exhibits wide angle tolerance. It is found that the optical coefficients of the simulated structure have strong dependency to the radii of the holes due to cavity modes resonance and surface plasmon resonance. Simulations were carried out using gold and silver, varying the holes radii ranging from 40 to 70nm, as well as its depth, from 30 to 60nm of the metallic thin layer and from 100 to 200nm of the semiconductor matrix. A maximum contrast ratio of a unit was obtained. The resonant modes excited in the structure and excitation of surface plasmon polaritons in the metallic side illumination favors absorption, which explains the asymmetric behavior. We also investigate the structure's fabrication sensitivity by randomizing the generation of center of the holes in a supercell. These findings are significant for a diverse range of applications, ranging from optical integrated circuits to solar and thermovoltaics energy harvesting.

  16. Homogeneous Matrix Deposition on Dried Agar for MALDI Imaging Mass Spectrometry of Microbial Cultures

    NASA Astrophysics Data System (ADS)

    Hoffmann, Thomas; Dorrestein, Pieter C.

    2015-11-01

    Matrix deposition on agar-based microbial colonies for MALDI imaging mass spectrometry is often complicated by the complex media on which microbes are grown. This Application Note demonstrates how consecutive short spray pulses of a matrix solution can form an evenly closed matrix layer on dried agar. Compared with sieving dry matrix onto wet agar, this method supports analyte cocrystallization, which results in significantly more signals, higher signal-to-noise ratios, and improved ionization efficiency. The even matrix layer improves spot-to-spot precision of measured m/z values when using TOF mass spectrometers. With this technique, we established reproducible imaging mass spectrometry of myxobacterial cultures on nutrient-rich cultivation media, which was not possible with the sieving technique.

  17. Beam-tracing model for predicting sound fields in rooms with multilayer bounding surfaces

    NASA Astrophysics Data System (ADS)

    Wareing, Andrew; Hodgson, Murray

    2005-10-01

    This paper presents the development of a wave-based room-prediction model for predicting steady-state sound fields in empty rooms with specularly reflecting, multilayer surfaces. A triangular beam-tracing model with phase, and a transfer-matrix approach to model the surfaces, were involved. Room surfaces were modeled as multilayers of fluid, solid, or porous materials. Biot theory was used in the transfer-matrix formulation of the porous layer. The new model consisted of the transfer-matrix model integrated into the beam-tracing algorithm. The transfer-matrix model was validated by comparing predictions with those by theory, and with experiment. The test surfaces were a glass plate, double drywall panels, double steel panels, a carpeted floor, and a suspended-acoustical ceiling. The beam-tracing model was validated in the cases of three idealized room configurations-a small office, a corridor, and a small industrial workroom-with simple boundary conditions. The number of beams, the reflection order, and the frequency resolution required to obtain accurate results were investigated. Beam-tracing predictions were compared with those by a method-of-images model with phase. The model will be used to study sound fields in rooms with local- or extended-reaction multilayer surfaces.

  18. What can asymmetry tell us? Investigation of asymmetric versus symmetric pinch and swell structures in nature and simulation

    NASA Astrophysics Data System (ADS)

    Gardner, Robyn; Piazolo, Sandra; Daczko, Nathan

    2015-04-01

    Pinch and swell structures occur from microscopic to landscape scales where a more competent layer in a weaker matrix is deformed by pure shear, often in rifting environments. The Anita Shear Zone (ASZ) in Fiordland, New Zealand has an example of landscape scale (1 km width) asymmetric pinch and swell structures developed in ultramafic rocks. Field work suggests that the asymmetry is a result of variations in the surrounding 'matrix' flow properties as the ultramafic band is surrounded to the east by an orthogneiss (Milford Orthogneiss) and to the west by a paragneiss (Thurso Paragneiss). In addition, there is a narrow and a much wider shear zone between the ultramafics and the orthogneiss and paragneiss, respectively. Detailed EBSD analysis of samples from a traverse across the pinch and swell structure indicate the ultramafics in the shear zone on the orthogneiss side have larger grain size than the ultramafics in the shear zone on the paragneiss side. Ultramafic samples from the highly strained paragneiss and orthogneiss shear zones show dislocation creep behaviour, and, on the paragneiss side, also significant deformation by grain boundary sliding. To test if asymmetry of pinch and swell structures can be used to derive the rheological properties of not only the pinch and swell lithologies, but also of the matrix, numerical simulations were performed. Numerical modelling of pure shear (extension) was undertaken with (I) initially three layers and then (II) five layers by adding soft high strain zones on both sides of the rheological hard layer. The matrix was given first symmetric, then asymmetric viscosity. Matrix viscosity was found to impact the formation of pinch and swell structures with the weaker layer causing increased tortuosity of the competent layer edge due to increased local differential stress. Results highlight that local, rheologically soft layers and the relative viscosity of matrix both impact significantly the shape and symmetry of developing pinch and swell structures.

  19. Tissue engineering: construction of a multicellular 3D scaffold for the delivery of layered cell sheets.

    PubMed

    Turner, William S; Sandhu, Nabjot; McCloskey, Kara E

    2014-10-03

    Many tissues, such as the adult human hearts, are unable to adequately regenerate after damage.(2,3) Strategies in tissue engineering propose innovations to assist the body in recovery and repair. For example, TE approaches may be able to attenuate heart remodeling after myocardial infarction (MI) and possibly increase total heart function to a near normal pre-MI level.(4) As with any functional tissue, successful regeneration of cardiac tissue involves the proper delivery of multiple cell types with environmental cues favoring integration and survival of the implanted cell/tissue graft. Engineered tissues should address multiple parameters including: soluble signals, cell-to-cell interactions, and matrix materials evaluated as delivery vehicles, their effects on cell survival, material strength, and facilitation of cell-to-tissue organization. Studies employing the direct injection of graft cells only ignore these essential elements.(2,5,6) A tissue design combining these ingredients has yet to be developed. Here, we present an example of integrated designs using layering of patterned cell sheets with two distinct types of biological-derived materials containing the target organ cell type and endothelial cells for enhancing new vessels formation in the "tissue". Although these studies focus on the generation of heart-like tissue, this tissue design can be applied to many organs other than heart with minimal design and material changes, and is meant to be an off-the-shelf product for regenerative therapies. The protocol contains five detailed steps. A temperature sensitive Poly(N-isopropylacrylamide) (pNIPAAM) is used to coat tissue culture dishes. Then, tissue specific cells are cultured on the surface of the coated plates/micropattern surfaces to form cell sheets with strong lateral adhesions. Thirdly, a base matrix is created for the tissue by combining porous matrix with neovascular permissive hydrogels and endothelial cells. Finally, the cell sheets are lifted from the pNIPAAM coated dishes and transferred to the base element, making the complete construct.

  20. Modeling of trim panels in the energy finite element analysis

    NASA Astrophysics Data System (ADS)

    Moravaeji, Seyed-Javid

    Modeling a trim panel is divided into finding the power exchange through two different paths: (i) the connection of the outer and inner panels (ii) through the layers directly. The vibrational power exchanged through the mounts is modeled as the connection of two parallel plates connected via a beam. Wave matrices representing plates and beams are derived separately; then a matrix method is proposed to solve for the wave amplitudes and hence the vibrational power exchange between the plates accordingly. A closed form formula for the case of connection of two identical plates is derived. For the power transmission loss directly through the layers, first transfer matrices representing layers made of different materials is considered. New matrices for a porous layer are derived. A method of finding the layered structure transfer matrix is proposed. It is concluded that in general a single isotropic layer cannot replace a structure accurately. Finally, on the basis of an equivalent transfer matrix, an optimization process for is proposed to replace the panel by a suitable set of layers.

  1. Isotropic matrix elements of the collision integral for the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Ender, I. A.; Bakaleinikov, L. A.; Flegontova, E. Yu.; Gerasimenko, A. B.

    2017-09-01

    We have proposed an algorithm for constructing matrix elements of the collision integral for the nonlinear Boltzmann equation isotropic in velocities. These matrix elements have been used to start the recurrent procedure for calculating matrix elements of the velocity-nonisotropic collision integral described in our previous publication. In addition, isotropic matrix elements are of independent interest for calculating isotropic relaxation in a number of physical kinetics problems. It has been shown that the coefficients of expansion of isotropic matrix elements in Ω integrals are connected by the recurrent relations that make it possible to construct the procedure of their sequential determination.

  2. Matrix method for two-dimensional waveguide mode solution

    NASA Astrophysics Data System (ADS)

    Sun, Baoguang; Cai, Congzhong; Venkatesh, Balajee Seshasayee

    2018-05-01

    In this paper, we show that the transfer matrix theory of multilayer optics can be used to solve the modes of any two-dimensional (2D) waveguide for their effective indices and field distributions. A 2D waveguide, even composed of numerous layers, is essentially a multilayer stack and the transmission through the stack can be analysed using the transfer matrix theory. The result is a transfer matrix with four complex value elements, namely A, B, C and D. The effective index of a guided mode satisfies two conditions: (1) evanescent waves exist simultaneously in the first (cladding) layer and last (substrate) layer, and (2) the complex element D vanishes. For a given mode, the field distribution in the waveguide is the result of a 'folded' plane wave. In each layer, there is only propagation and absorption; at each boundary, only reflection and refraction occur, which can be calculated according to the Fresnel equations. As examples, we show that this method can be used to solve modes supported by the multilayer step-index dielectric waveguide, slot waveguide, gradient-index waveguide and various plasmonic waveguides. The results indicate the transfer matrix method is effective for 2D waveguide mode solution in general.

  3. Architecture of the organic matrix in the sternal CaCO3 deposits of Porcellio scaber (Crustacea, Isopoda).

    PubMed

    Fabritius, Helge; Walther, Paul; Ziegler, Andreas

    2005-05-01

    Before the molt terrestrial isopods resorb calcium from the posterior cuticle and store it in large deposits within the first four anterior sternites. In Porcellio scaber the deposits consist of three structurally distinct layers consisting of amorphous CaCO3 (ACC) and an organic matrix that consists of concentric and radial elements. It is thought that the organic matrix plays a role in the structural organization of deposits and in the stabilization of ACC, which is unstable in vitro. In this paper, we present a thorough analysis of the ultrastructure of the organic matrix in the CaCO3 deposits using high-resolution field-emission scanning electron microscopy. The spherules and the homogeneous layer contain an elaborate organic matrix with similar structural organization consisting of concentric reticules and radial strands. The decalcification experiments reveal an inhomogeneous solubility of ACC within the spherules probably caused by variations in the stabilizing properties of matrix components. The transition between the three layers can be explained by changes in the number of spherule nucleation sites.

  4. Correlative characterization of primary Al{sub 3}(Sc,Zr) phase in an Al–Zn–Mg based alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.H., E-mail: jie-hua.li@hotmail.com; Wiessner, M.; Albu, M.

    2015-04-15

    Three-dimensional electron backscatter diffraction, focused ion beam, transmission electron microscopy and energy filtered transmission electron microscopy were employed to investigate the structural information of primary Al{sub 3}(Sc,Zr) phase, i.e. size, shape, element distribution and orientation relationship with the α-Al matrix. It was found that (i) most primary Al{sub 3}(Sc,Zr) phases have a cubic three-dimensional morphology, with a size of about 6–10 μm, (ii) most primary Al{sub 3}(Sc,Zr) phases are located within the α-Al matrix, and exhibit a cube to cube orientation relationship with the α-Al matrix, and (iii) a layer by layer growth was observed within primary Al{sub 3}(Sc,Zr) phases.more » Al, Cu, Si and Fe are enriched in the α-Al matrix between the layers of cellular eutectic Al{sub 3}(Sc,Zr) phase, while Sc, Ti and Zr are enriched in small Al{sub 3}(Sc,Zr) phases. A peritectic reaction and subsequent eutectic reaction between Al{sub 3}Sc and Al was proposed to interpret the observed layer by layer growth. This paper demonstrates that the presence of impurities (Fe, Si, Cu, Ti) in the diffusion field surrounding the growing Al{sub 3}(Sc,Zr) particle enhances the heterogeneous nucleation of Al{sub 3}(Sc,Zr) phases. - Highlights: • Most fine cubic primary Al{sub 3}(Sc,Zr) phases were observed within the α-Al matrix. • A layer by layer growth within primary Al{sub 3}(Sc,Zr) phase was observed. • A peritectic and subsequent eutectic reaction between Al{sub 3}Sc and Al was proposed. • Impurities in diffusion fields enhance heterogeneous nucleation of Al{sub 3}(Sc,Zr)« less

  5. Tensile Properties and Microstructural Characterization of Hi-Nicalon SiC/RBSN Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1998-01-01

    The room temperature physical and mechanical properties of silicon carbide fiber-reinforced reaction-bonded silicon nitride matrix composites (SiC/RBSN) were measured, and the composite microstructure was analyzed. The composites consist of nearly 24 vol% of aligned Hi-Nicalon SiC fiber yarns in a approx. 30 vol% porous silicon nitride matrix. The fiber yarns were coated by chemical vapor deposition with a 0.8 mm layer of boron nitride (BN) followed by a 0.2 mm layer of SiC. In the as-fabricated condition, both 1-D and 2-D composites exhibited high strength and graceful failure, and showed improved properties w en compared with unreinforced matrix of comparable density. No indication of reaction between the SiC fiber and BN coating was noticed, but the outer SiC layer reacted locally with the nitridation enhancing additive in the RBSN matrix. A comparison is made between the predicted and measured values of matrix cracking strength.

  6. Tensile Properties and Microstructural Characterization of Hi-Nicalon SiC/RBSN Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1998-01-01

    The room temperature physical and mechanical properties of silicon carbide fiber-reinforced reaction-bonded silicon nitride matrix composites (SiC/RBSN) were measured, and the composite microstructure was analyzed. The composites consist of nearly 24 vol% of aligned Hi-Nicalon SiC fiber yarns in a approx. 30 vo1% porous silicon nitride matrix. The fiber yarns were coated by chemical vapor deposition with a 0.8 micron layer of boron nitride (BN) followed by a 0.2 micron layer of SiC. In the as-fabricated condition, both 1-D and 2-D composites exhibited high strength and graceful failure, and showed improved properties when compared with unreinforced matrix of comparable density. No indication of reaction between the SiC fiber and BN coating was noticed, but the outer SiC layer reacted locally with the nitridation enhancing additive in the RBSN matrix. A comparison is made between the predicted and measured values of matrix cracking strength.

  7. Concurrent tailoring of fabrication process and interphase layer to reduce residual stresses in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, C. C.; Morel, M.

    1991-01-01

    A methodology is presented to reduce the residual matrix stresses in continuous fiber metal matrix composites (MMC) by optimizing the fabrication process and interphase layer characteristics. The response of the fabricated MMC was simulated based on nonlinear micromechanics. Application cases include fabrication tailoring, interphase tailoring, and concurrent fabrication-interphase optimization. Two composite systems, silicon carbide/titanium and graphite/copper, are considered. Results illustrate the merits of each approach, indicate that concurrent fabrication/interphase optimization produces significant reductions in the matrix residual stresses and demonstrate the strong coupling between fabrication and interphase tailoring.

  8. Neural network pattern recognition of thermal-signature spectra for chemical defense

    NASA Astrophysics Data System (ADS)

    Carrieri, Arthur H.; Lim, Pascal I.

    1995-05-01

    We treat infrared patterns of absorption or emission by nerve and blister agent compounds (and simulants of this chemical group) as features for the training of neural networks to detect the compounds' liquid layers on the ground or their vapor plumes during evaporation by external heating. Training of a four-layer network architecture is composed of a backward-error-propagation algorithm and a gradient-descent paradigm. We conduct testing by feed-forwarding preprocessed spectra through the network in a scaled format consistent with the structure of the training-data-set representation. The best-performance weight matrix (spectral filter) evolved from final network training and testing with software simulation trials is electronically transferred to a set of eight artificial intelligence integrated circuits (ICs') in specific modular form (splitting of weight matrices). This form makes full use of all input-output IC nodes. This neural network computer serves an important real-time detection function when it is integrated into pre-and postprocessing data-handling units of a tactical prototype thermoluminescence sensor now under development at the Edgewood Research, Development, and Engineering Center.

  9. Homogeneous matrix deposition on dried agar for MALDI imaging mass spectrometry of microbial cultures.

    PubMed

    Hoffmann, Thomas; Dorrestein, Pieter C

    2015-11-01

    Matrix deposition on agar-based microbial colonies for MALDI imaging mass spectrometry is often complicated by the complex media on which microbes are grown. This Application Note demonstrates how consecutive short spray pulses of a matrix solution can form an evenly closed matrix layer on dried agar. Compared with sieving dry matrix onto wet agar, this method supports analyte cocrystallization, which results in significantly more signals, higher signal-to-noise ratios, and improved ionization efficiency. The even matrix layer improves spot-to-spot precision of measured m/z values when using TOF mass spectrometers. With this technique, we established reproducible imaging mass spectrometry of myxobacterial cultures on nutrient-rich cultivation media, which was not possible with the sieving technique. Graphical Abstract ᅟ.

  10. Angiogenic Type I Collagen Extracellular Matrix Integrated with Recombinant Bacteriophages Displaying Vascular Endothelial Growth Factors.

    PubMed

    Yoon, Junghyo; Korkmaz Zirpel, Nuriye; Park, Hyun-Ji; Han, Sewoon; Hwang, Kyung Hoon; Shin, Jisoo; Cho, Seung-Woo; Nam, Chang-Hoon; Chung, Seok

    2016-01-21

    Here, a growth-factor-integrated natural extracellular matrix of type I collagen is presented that induces angiogenesis. The developed matrix adapts type I collagen nanofibers integrated with synthetic colloidal particles of recombinant bacteriophages that display vascular endothelial growth factor (VEGF). The integration is achieved during or after gelation of the type I collagen and the matrix enables spatial delivery of VEGF into a desired region. Endothelial cells that contact the VEGF are found to invade into the matrix to form tube-like structures both in vitro and in vivo, proving the angiogenic potential of the matrix. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Echinococcus granulosus equinus: variation in the germinal layer of murine hydatids and evidence of autophagy.

    PubMed

    Richards, K S; Arme, C; Bridges, J F

    1984-08-01

    The germinal layer of sterile 9-month-old murine peritoneal cysts of Echinococcus granulosus equinus shows interrelated variation in depth, tissue integrity, metabolic reserves and the number of autophagic lamellar bodies present. These features are similar in large and medium-sized cysts from the same host, whether occurring singly or within cyst masses. Deep germinal layers (greater than 16 micron) are lipid- and glycogen-rich and possess numerous autophagic vacuoles with 6 nm period lamellar stacks asymmetrically disposed peripherally; shallow layers (less than 12 micron), with indications of degeneration, have depleted metabolic reserves and fewer lamellar bodies. These bodies are formed by smooth endoplasmic reticulum encirclement of small glycogen masses followed by further sequestration, and eventually definition of glycogen particles may be lost. Autophagy of mitochondria and cytoplasmic vesicles also occurs. The presence of lysosomal enzymes within the layer suggests autolysosomal compartmentalization of excess substrate and effete material. Mucopolysaccharide bodies, containing material similar to that exocytosed to form the laminated layer matrix, occur and are formed from fusion and autophagy of Golgi-derived vesicles. These bodies may also develop peripheral 6 nm period lamellar stacks, but of limited depth. Mucopolysaccharide bodies are the dominant feature of the germinal layer of very small cyst-mass cysts in which laminated layer production is considered to be arrested. They thus represent a repository for the unreleased mucopolysaccharide material.

  12. Fluid-driven Fractures and Backflow in a Multilayered Elastic Matrix

    NASA Astrophysics Data System (ADS)

    Smiddy, Samuel; Lai, Ching-Yao; Stone, Howard

    2016-11-01

    We study the dynamics when pressurized fluid is injected at a constant flow rate into a multi-layered elastic matrix. In particular, we report experiments of such crack propagation as a function of orientation and distance from the contact of the layers. Subsequently we study the shape and propagation of the fluid along the contact of layers as well as volume of fluid remaining in the matrix once the injection pressure is released and "flowback" occurs. The experiments presented here may mimic the interaction between hydraulic fractures and pre-existing fractures and the dynamics of flowback in hydraulic fracturing. Study made possible by the Andlinger Center for Energy and the Environment and the Fred Fox Fund.

  13. A model to predict thermal conductivity of irradiated U-Mo dispersion fuel

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Huber, Tanja K.; Casella, Andrew M.

    2016-05-01

    Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world's remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on assisting with the development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layer formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions.

  14. In vitro growth of flat aragonite crystals between the layers of the insoluble organic matrix of the abalone Haliotis laevigata

    NASA Astrophysics Data System (ADS)

    Gries, Katharina I.; Heinemann, Fabian; Rosenauer, Andreas; Fritz, Monika

    2012-11-01

    Nacre of abalone shells consists of aragonite platelets and organic material, the so-called organic matrix. During the growth process of the shell the aragonite platelets grow into a scaffold formed by the organic matrix. In this work we tried to mimic this growth process by placing a piece of the insoluble organic matrix (which is a part of the organic matrix) of the abalone Haliotis laevigata in a crystallization device which was flowed through by CaCl2 and NaHCO3 solutions. Using this setup amongst others flat aragonite crystals grow on the insoluble organic matrix. When investigating these crystals in a transmission electron microscope it is possible to recognize similarities to the structure of nacre, like the formation of mineral bridges and growth between layers of the insoluble organic matrix. These similarities are presented in this paper.

  15. Periodontal ligament stem/progenitor cells with protein-releasing scaffolds for cementum formation and integration on dentin surface.

    PubMed

    Cho, Hankyu; Tarafder, Solaiman; Fogge, Michael; Kao, Kristy; Lee, Chang H

    2016-11-01

    Purpose/Aim: Cementogenesis is a critical step in periodontal tissue regeneration given the essential role of cementum in anchoring teeth to the alveolar bone. This study is designed to achieve integrated cementum formation on the root surfaces of human teeth using growth factor-releasing scaffolds with periodontal ligament stem/progenitor cells (PDLSCs). Human PDLSCs were sorted by CD146 expression, and characterized using CFU-F assay and induced multi-lineage differentiation. Polycaprolactone scaffolds were fabricated using 3D printing, embedded with poly(lactic-co-glycolic acids) (PLGA) microspheres encapsulating connective tissue growth factor (CTGF), bone morphogenetic protein-2 (BMP-2), or bone morphogenetic protein-7 (BMP-7). After removing cementum on human tooth roots, PDLSC-seeded scaffolds were placed on the exposed dentin surface. After 6-week culture with cementogenic/osteogenic medium, cementum formation and integration were evaluated by histomorphometric analysis, immunofluorescence, and qRT-PCR. Periodontal ligament (PDL) cells sorted by CD146 and single-cell clones show a superior clonogenecity and multipotency as compared with heterogeneous populations. After 6 weeks, all the growth factor-delivered groups showed resurfacing of dentin with a newly formed cementum-like layer as compared with control. BMP-2 and BMP-7 showed de novo formation of tissue layers significantly thicker than all the other groups, whereas CTGF and BMP-7 resulted in significantly improved integration on the dentin surface. The de novo mineralized tissue layer seen in BMP-7-treated samples expressed cementum matrix protein 1 (CEMP1). Consistently, BMP-7 showed a significant increase in CEMP1 mRNA expression. Our findings represent important progress in stem cell-based cementum regeneration as an essential part of periodontium regeneration.

  16. Direct Integration of Dynamic Emissive Displays into Knitted Fabric Structures

    NASA Astrophysics Data System (ADS)

    Bellingham, Alyssa

    Smart textiles are revolutionizing the textile industry by combining technology into fabric to give clothing new abilities including communication, transformation, and energy conduction. The advent of electroluminescent fibers, which emit light in response to an applied electric field, has opened the door for fabric-integrated emissive displays in textiles. This thesis focuses on the development of a flexible and scalable emissive fabric display with individually addressable pixels disposed within a fabric matrix. The pixels are formed in areas where a fiber supporting the dielectric and phosphor layers of an electroluminescent structure contacts a conductive surface. This conductive surface can be an external conductive fiber, yarn or wire, or a translucent conductive material layer deposited at set points along the electroluminescent fibers. Different contacting methods are introduced and the different ways the EL yarns can be incorporated into the knitted fabric are discussed. EL fibers were fabricated using a single yarn coating system with a custom, adjustable 3D printed slot die coater for even distribution of material onto the supporting fiber substrates. These fibers are mechanically characterized inside of and outside of a knitted fabric matrix to determine their potential for various applications, including wearables. A 4-pixel dynamic emissive display prototype is fabricated and characterized. This is the first demonstration of an all-knit emissive display with individually controllable pixels. The prototype is composed of a grid of fibers supporting the dielectric and phosphor layers of an electroluminescent (EL) device structure, called EL fibers, and conductive fibers acting as the top electrode. This grid is integrated into a biaxial weft knit structure where the EL fibers make up the rows and conductive fibers make up the columns of the reinforcement yarns inside the supporting weft knit. The pixels exist as individual segments of electroluminescence that occur where the conductive fibers contact the EL fibers. A passive matrix addressing scheme was used to apply a voltage to each pixel individually, creating a display capable of dynamically communicating information. Optical measurements of the intensity and color of emitted light were used to quantify the performance of the display and compare it to state-of-the-art display technologies. The charge-voltage (Q-V) electrical characterization technique is used to gain information about the ACPEL fiber device operation, and mechanical tests were performed to determine the effect everyday wear and tear would have on the performance of the display. The presented textile display structure and method of producing fibers with individual sections of electroluminescence addresses the shortcomings in existing textile display technology and provides a route to directly integrated communicative textiles for applications ranging from biomedical research and monitoring to fashion. An extensive discussion of the materials and methods of production needed to scale this textile display technology and incorporate it into wearable applications is presented.

  17. IDENTIFICATION OF A PROTEIN-CONTAINING ENAMEL MATRIX LAYER WHICH BRIDGES WITH THE DENTIN-ENAMEL JUNCTION OF ADULT HUMAN TEETH1

    PubMed Central

    Dusevich, Vladimir; Xu, Changqi; Wang, Yong; Walker, Mary P.; Gorski, Jeff P.

    2012-01-01

    Objective To investigate the ultrastructure and chemical composition of the dentin-enamel junction and adjacent enamel of minimally processed third molar tooth sections. Design Undecalcified human third molar erupted teeth were sectioned and etched with 4% EDTA or 37% phosphoric acid prior to visualization by scanning electron microscopy. Confocal Raman spectroscopy was carried out at 50 μm and more than 400 μm away from the dentin-enamel junction before and after mild etching. Results A novel organic protein-containing enamel matrix layer was identified for the first time using scanning electron microscopy of etched bucco-lingual sections of crowns. This layer resembles a three-dimensional fibrous meshwork that is visually distinct from enamel “tufts”. Previous studies have generally used harsher solvent conditions which likely removed this layer and precluded its prior characterization. The shape of the organic enamel layer generally reflected that of sheath regions of enamel rods and extended from the dentin-enamel junction about 100–400 μm into the cuspal enamel. This layer exhibited a Raman C—H stretching peak at ~2931 cm−1 characteristic of proteins and this signal correlated directly with the presence and location of the matrix layer as identified by scanning electron microscopy. Conclusions The enamel protein layer was most prominent close to the dentin-enamel junction and was largely absent in cuspal enamel >400 μm away from the dentin enamel junction. We hypothesize that this protein containing matrix layer could provide an important biomechanical linkage between the enamel and the dentin-enamel junction and by extension, with the dentin, of the adult tooth. PMID:22609172

  18. Fire blocking systems for aircraft seat cushions

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A. (Inventor)

    1984-01-01

    A configuration and method for reducing the flammability of bodies of organic materials that thermally decompose to give flammable gases comprises covering the body with a flexible matrix that catalytically cracks the flammable gases to less flammable species. Optionally, the matrix is covered with a gas impermeable outer layer. In a preferred embodiment, the invention takes the form of an aircraft seat in which the body is a poly(urethane) seat cushion, the matrix is an aramid fabric or felt and the outer layer is an aluminum film.

  19. AC electrical breakdown phenomena of epoxy/layered silicate nanocomposite in needle-plate electrodes.

    PubMed

    Park, Jae-Jun; Lee, Jae-Young

    2013-05-01

    Epoxy/layered silicate nanocomposite for the insulation of heavy electric equipments were prepared by dispersing 1 wt% of a layered silicate into an epoxy matrix with a homogenizing mixer and then AC electrical treeing and breakdown tests were carried out. Wide-angle X-ray diffraction (WAXD) analysis and transmission electron microscopy (TEM) observation showed that nano-sized monolayers were exfoliated from a multilayered silicate in the epoxy matrix. When the nano-sized silicate layers were incorporated into the epoxy matrix, the breakdown rate in needle-plate electrode geometry was 10.6 times lowered than that of the neat epoxy resin under the applied electrical field of 520.9 kV/mm at 30 degrees C, and electrical tree propagated with much more branches in the epoxy/layered silicate nanocomposite. These results showed that well-dispersed nano-sized silicate layers retarded the electrical tree growth rate. The effects of applied voltage and ambient temperature on the tree initiation, growth, and breakdown rate were also studied, and it was found that the breakdown rate was largely increased, as the applied voltage and ambient temperature increased.

  20. Solute transport in a single fracture involving an arbitrary length decay chain with rock matrix comprising different geological layers.

    PubMed

    Mahmoudzadeh, Batoul; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2014-08-01

    A model is developed to describe solute transport and retention in fractured rocks. It accounts for advection along the fracture, molecular diffusion from the fracture to the rock matrix composed of several geological layers, adsorption on the fracture surface, adsorption in the rock matrix layers and radioactive decay-chains. The analytical solution, obtained for the Laplace-transformed concentration at the outlet of the flowing channel, can conveniently be transformed back to the time domain by the use of the de Hoog algorithm. This allows one to readily include it into a fracture network model or a channel network model to predict nuclide transport through channels in heterogeneous fractured media consisting of an arbitrary number of rock units with piecewise constant properties. More importantly, the simulations made in this study recommend that it is necessary to account for decay-chains and also rock matrix comprising at least two different geological layers, if justified, in safety and performance assessment of the repositories for spent nuclear fuel. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Irradiation behavior of the interaction product of U-Mo fuel particle dispersion in an Al matrix

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Hofman, G. L.

    2012-06-01

    Irradiation performance of U-Mo fuel particles dispersed in Al matrix is stable in terms of fuel swelling and is suitable for the conversion of research and test reactors from highly enriched uranium (HEU) to low enriched uranium (LEU). However, tests of the fuel at high temperatures and high burnups revealed obstacles caused by the interaction layers forming between the fuel particle and matrix. In some cases, fission gas filled pores grow and interconnect in the interdiffusion layer resulting in fuel plate failure. Postirradiation observations are made to examine the behavior of the interdiffusion layers. The interdiffusion layers show a fluid-like behavior characteristic of amorphous materials. In the amorphous interdiffusion layers, fission gas diffusivity is high and the material viscosity is low so that the fission gas pores readily form and grow. Based on the observations, a pore formation mechanism is proposed and potential remedies to suppress the pore growth are also introduced.

  2. Carbon isotope composition of ambient CO2 and recycling: a matrix simulation model

    USGS Publications Warehouse

    da Silveira Lobo Sternberg, Leonel; DeAngelis, Donald L.

    2002-01-01

    The relationship between isotopic composition and concentration of ambient CO2 in a canopy and its associated convective boundary layer was modeled. The model divides the canopy and convective boundary layer into several layers. Photosynthesis, respiration, and exchange between each layer can be simulated by matrix equations. This simulation can be used to calculate recycling; defined here as the amount of respired CO2 re-fixed by photosynthesis relative to the total amount of respired CO2. At steady state the matrix equations can be solved for the canopy and convective boundary layer CO2 concentration and isotopic profile, which can be used to calculate a theoretical recycling index according to a previously developed equation. There is complete agreement between simulated and theoretical recycling indices for different exchange scenarios. Recycling indices from a simulation of gas exchange between a heterogeneous vegetation canopy and the troposphere also agreed with a more generalized form of the theoretical recycling equation developed here.

  3. Composites with improved fiber-resin interfacial adhesion

    NASA Technical Reports Server (NTRS)

    Cizmecioglu, Muzaffer (Inventor)

    1989-01-01

    The adhesion of fiber reinforcement such as high modulus graphite to a matrix resin such as polycarbonate is greatly enhanced by applying a very thin layer, suitably from 50 Angstroms to below 1000 Angstroms, to the surface of the fiber such as by immersing the fiber in a dilute solution of the matrix resin in a volatile solvent followed by draining to remove excess solution and air drying to remove the solvent. The thin layer wets the fiber surface. The very dilute solution of matrix resin is able to impregnate multifilament fibers and the solution evenly flows onto the surface of the fibers. A thin uniform layer is formed on the surface of the fiber after removal of the solvent. The matrix resin coated fiber is completely wetted by the matrix resin during formation of the composite. Increased adhesion of the resin to the fibers is observed at fracture. At least 65 percent of the surface of the graphite fiber is covered with polycarbonate resin at fracture whereas uncoated fibers have very little matrix resin adhering to their surfaces at fracture and epoxy sized graphite fibers exhibit only slightly higher coverage with matrix resin at fracture. Flexural modulus of the composite containing matrix resin coated fibers is increased by 50 percent and flexural strength by 37 percent as compared to composites made with unsized fibers.

  4. A Novel Matrix Protein Hic31 from the Prismatic Layer of Hyriopsis Cumingii Displays a Collagen-Like Structure.

    PubMed

    Liu, Xiaojun; Zeng, Shimei; Dong, Shaojian; Jin, Can; Li, Jiale

    2015-01-01

    In this study, we clone and characterize a novel matrix protein, hic31, from the mantle of Hyriopsis cumingii. The amino acid composition of hic31 consists of a high proportion of Glycine residues (26.67%). Tissue expression detection by RT-PCR indicates that hic31 is expressed specifically at the mantle edge. In situ hybridization results reveals strong signals from the dorsal epithelial cells of the outer fold at the mantle edge, and weak signals from inner epithelial cells of the same fold, indicating that hic31 is a prismatic-layer matrix protein. Although BLASTP results identify no shared homology with other shell-matrix proteins or any other known proteins, the hic31 tertiary structure is similar to that of collagen I, alpha 1 and alpha 2. It has been well proved that collagen forms the basic organic frameworks in way of collagen fibrils and minerals present within or outside of these fibrils. Therefore, hic31 might be a framework-matrix protein involved in the prismatic-layer biomineralization. Besides, the gene expression of hic31 increase in the early stages of pearl sac development, indicating that hic31 may play important roles in biomineralization of the pearl prismatic layer.

  5. Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor.

    PubMed

    Choi, Minwoo; Park, Yong Ju; Sharma, Bhupendra K; Bae, Sa-Rang; Kim, Soo Young; Ahn, Jong-Hyun

    2018-04-01

    Atomically thin molybdenum disulfide (MoS 2 ) has been extensively investigated in semiconductor electronics but has not been applied in a backplane circuitry of organic light-emitting diode (OLED) display. Its applicability as an active drive element is hampered by the large contact resistance at the metal/MoS 2 interface, which hinders the transport of carriers at the dielectric surface, which in turn considerably deteriorates the mobility. Modified switching device architecture is proposed for efficiently exploiting the high- k dielectric Al 2 O 3 layer, which, when integrated in an active matrix, can drive the ultrathin OLED display even in dynamic folding states. The proposed architecture exhibits 28 times increase in mobility compared to a normal back-gated thin-film transistor, and its potential as a wearable display attached to a human wrist is demonstrated.

  6. Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor

    PubMed Central

    Park, Yong Ju

    2018-01-01

    Atomically thin molybdenum disulfide (MoS2) has been extensively investigated in semiconductor electronics but has not been applied in a backplane circuitry of organic light-emitting diode (OLED) display. Its applicability as an active drive element is hampered by the large contact resistance at the metal/MoS2 interface, which hinders the transport of carriers at the dielectric surface, which in turn considerably deteriorates the mobility. Modified switching device architecture is proposed for efficiently exploiting the high-k dielectric Al2O3 layer, which, when integrated in an active matrix, can drive the ultrathin OLED display even in dynamic folding states. The proposed architecture exhibits 28 times increase in mobility compared to a normal back-gated thin-film transistor, and its potential as a wearable display attached to a human wrist is demonstrated. PMID:29713686

  7. Patchwork structure-function analysis of the Sendai virus matrix protein.

    PubMed

    Mottet-Osman, Geneviève; Miazza, Vincent; Vidalain, Pierre-Olivier; Roux, Laurent

    2014-09-01

    Paramyxoviruses contain a bi-lipidic envelope decorated by two transmembrane glycoproteins and carpeted on the inner surface with a layer of matrix proteins (M), thought to bridge the glycoproteins with the viral nucleocapsids. To characterize M structure-function features, a set of M domains were mutated or deleted. The genes encoding these modified M were incorporated into recombinant Sendai viruses and expressed as supplemental proteins. Using a method of integrated suppression complementation system (ISCS), the functions of these M mutants were analyzed in the context of the infection. Cellular membrane association, localization at the cell periphery, nucleocapsid binding, cellular protein interactions and promotion of viral particle formation were characterized in relation with the mutations. At the end, lack of nucleocapsid binding go together with lack of cell surface localization and both features definitely correlate with loss of M global function estimated by viral particle production. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Preparation and characterization of polymer layer systems for validation of 3D Micro X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Schaumann, Ina; Malzer, Wolfgang; Mantouvalou, Ioanna; Lühl, Lars; Kanngießer, Birgit; Dargel, Rainer; Giese, Ulrich; Vogt, Carla

    2009-04-01

    For the validation of the quantification of the newly-developed method of 3D Micro X-ray fluorescence spectroscopy (3D Micro-XRF) samples with a low average Z matrix and minor high Z elements are best suited. In a light matrix the interferences by matrix effects are minimized so that organic polymers are appropriate as basis for analytes which are more easily detected by X-ray fluorescence spectroscopy. Polymer layer systems were assembled from single layers of ethylene-propylene-diene rubber (EPDM) filled with changing concentrations of silica and zinc oxide as inorganic additives. Layer thicknesses were in the range of 30-150 μm. Before the analysis with 3D Micro-XRF all layers have been characterized by scanning micro-XRF with regard to filler dispersion, by infrared microscopy and light microscopy in order to determine the layer thicknesses and by ICP-OES to verify the concentration of the X-ray sensitive elements in the layers. With the results obtained for stacked polymer systems the validity of the analytical quantification model for the determination of stratified materials by 3D Micro-XRF could be demonstrated.

  9. Finite element analysis of stress transfer mechanism from matrix to the fiber in SWCN reinforced nanocomposites

    NASA Astrophysics Data System (ADS)

    Günay, E.

    2017-02-01

    This study defined as micromechanical finite element (FE) approach examining the stress transfer mechanism in single-walled carbon nanotube (SWCN) reinforced composites. In the modeling, 3D unit-cell method was evaluated. Carbon nanotube reinforced composites were modeled as three layers which comprises CNT, interface and matrix material. Firstly; matrix, fiber and interfacial materials all together considered as three layered cylindrical nanocomposite. Secondly, the cylindrical matrix material was assumed to be isotropic and also considered as a continuous medium. Then, fiber material was represented with zigzag type SWCNs. Finally, SWCN was combined with the elastic medium by using springs with different constants. In the FE modeling of SWCN reinforced composite model springs were modeled by using ANSYS spring damper element COMBIN14. The developed interfacial van der Waals interaction effects between the continuous matrix layer and the carbon nanotube fiber layer were simulated by applying these various spring stiffness values. In this study, the layered composite cylindrical FE model was presented as the equivalent mechanical properties of SWCN structures in terms of Young's modulus. The obtained results and literature values were presented and discussed. Figures, 16, 17, and 18 of the original article PDF file, as supplied to AIP Publishing, were affected by a PDF-processing error. Consequently, a solid diamond symbol appeared instead of a Greek tau on the y axis labels for these three figures. This article was updated on 17 March 2017 to correct the PDF-processing error, with the scientific content remaining unchanged.

  10. MOFwich: Sandwiched Metal-Organic Framework-Containing Mixed Matrix Composites for Chemical Warfare Agent Removal.

    PubMed

    Peterson, Gregory W; Lu, Annie X; Hall, Morgan G; Browe, Matthew A; Tovar, Trenton; Epps, Thomas H

    2018-02-28

    This work describes a new strategy for fabricating mixed matrix composites containing layered metal-organic framework (MOF)/polymer films as functional barriers for chemical warfare agent protection. Through the use of mechanically robust polymers as the top and bottom encasing layers, a high-MOF-loading, high-performance-core layer can be sandwiched within. We term this multifunctional composite "MOFwich". We found that the use of elastomeric encasing layers enabled core layer reformation after breakage, an important feature for composites and membranes alike. The incorporation of MOFs into the core layer led to enhanced removal of chemical warfare agents while simultaneously promoting moisture vapor transport through the composite, showcasing the promise of these composites for protection applications.

  11. Optimization of dielectric matrix for ZnO nanowire based nanogenerators

    NASA Astrophysics Data System (ADS)

    Kannan, Santhosh; Parmar, Mitesh; Tao, Ran; Ardila, Gustavo; Mouis, Mireille

    2016-11-01

    This paper reports the role of selection of suitable dielectric layer in nanogenerator (NG) structure and its influence on the output performance. The basic NG structure is a composite material integrating hydrothermally grown vertical piezoelectric zinc oxide (ZnO) nanowires (NWs) into a dielectric matrix. To accomplish this study, three materials - poly methyl methacrylate (PMMA), silicon nitride (Si3N4) and aluminium oxide (Al2O3) are selected, processed and used as matrix dielectric in NGs. Scanning electron microscopy (SEM) analysis shows the well-aligned NWs with a diameter of 200±50 nm and length of 3.5±0.3 μm. This was followed by dielectric material deposition as a matrix material. After fabricating NG devices, the output generated voltage under manual and automatic bending were recorded, observed and analyzed for the selection of the best dielectric material to obtain an optimum output. The maximum peak-to-peak open-circuit voltage output for PMMA, Si3N4 and Al2O3 under manual bending was recorded as approximately 880 mV, 1.2 V and 2.1 V respectively. These preliminary results confirm the predicted effect of using more rigid dielectrics as matrix material for the NGs. The generated voltage is increased by about 70% using Si3N4 or Al2O3, instead of a less rigid material as PMMA.

  12. A Nanosensor for TNT Detection Based on Molecularly Imprinted Polymers and Surface Enhanced Raman Scattering

    PubMed Central

    Holthoff, Ellen L.; Stratis-Cullum, Dimitra N.; Hankus, Mikella E.

    2011-01-01

    We report on a new sensor strategy that integrates molecularly imprinted polymers (MIPs) with surface enhanced Raman scattering (SERS). The sensor was developed to detect the explosive, 2,4,6-trinitrotoluene (TNT). Micron thick films of sol gel-derived xerogels were deposited on a SERS-active surface as the sensing layer. Xerogels were molecularly imprinted for TNT using non-covalent interactions with the polymer matrix. Binding of the TNT within the polymer matrix results in unique SERS bands, which allow for detection and identification of the molecule in the MIP. This MIP-SERS sensor exhibits an apparent dissociation constant of (2.3 ± 0.3) × 10−5 M for TNT and a 3 μM detection limit. The response to TNT is reversible and the sensor is stable for at least 6 months. Key challenges, including developing a MIP formulation that is stable and integrated with the SERS substrate, and ensuring the MIP does not mask the spectral features of the target analyte through SERS polymer background, were successfully met. The results also suggest the MIP-SERS protocol can be extended to other target analytes of interest. PMID:22163761

  13. Systematic study on dynamic atomic layer epitaxy of InN on/in +c-GaN matrix and fabrication of fine-structure InN/GaN quantum wells: Role of high growth temperature

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akihiko; Kusakabe, Kazuhide; Hashimoto, Naoki; Hwang, Eun-Sook; Imai, Daichi; Itoi, Takaomi

    2016-12-01

    The growth kinetics and properties of nominally 1-ML (monolayer)-thick InN wells on/in +c-GaN matrix fabricated using dynamic atomic layer epitaxy (D-ALEp) by plasma-assisted molecular beam epitaxy were systematically studied, with particular attention given to the effects of growth temperature. Attention was also given to how and where the ˜1-ML-thick InN layers were frozen or embedded on/in the +c-GaN matrix. The D-ALEp of InN on GaN was a two-stage process; in the 1st stage, an "In+N" bilayer/monolayer was formed on the GaN surface, while in the 2nd, this was capped by a GaN barrier layer. Each process was monitored in-situ using spectroscopic ellipsometry. The target growth temperature was above 620 °C and much higher than the upper critical epitaxy temperature of InN (˜500 °C). The "In+N" bilayer/monolayer tended to be an incommensurate phase, and the growth of InN layers was possible only when they were capped with a GaN layer. The InN layers could be coherently inserted into the GaN matrix under self-organizing and self-limiting epitaxy modes. The growth temperature was the most dominant growth parameter on both the growth process and the structure of the InN layers. Reflecting the inherent growth behavior of D-ALEp grown InN on/in +c-GaN at high growth temperature, the embedded InN layers in the GaN matrix were basically not full-ML in coverage, and the thickness of sheet-island-like InN layers was essentially either 1-ML or 2-ML. It was found that these InN layers tended to be frozen at the step edges on the GaN and around screw-type threading dislocations. The InN wells formed type-I band line-up heterostructures with GaN barriers, with exciton localization energies of about 300 and 500 meV at 15 K for the 1-ML and 2-ML InN wells, respectively.

  14. Analysis of the release process of phenylpropanolamine hydrochloride from ethylcellulose matrix granules IV.(1)) Evaluation of the controlled release properties for in vivo and in vitro release systems.

    PubMed

    Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu

    2007-11-01

    In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the release properties. The dissolution test is a very important and useful method for understanding and predicting drug-release properties. It was readily confirmed in the previous paper that the release process could be assessed quantitatively by a combination of the square-root time law and cube-root law equations for ethylcellulose (EC) matrix granules of phenylpropanolamine hydrochloride (PPA). In this paper EC layered granules were used in addition to EC matrix. The relationship between release property and the concentration of PPA in plasma after administration using beagle dogs were examined. Then it was confirmed that the correlativity for EC layered granules and EC matrix were similar each other. Therefore, it was considered that the dissolution test is useful for prediction of changes in concentration of PPA in the blood with time. And it was suggested that EC layered granules were suitable as a controlled release system as well as EC matrix.

  15. Generation of gas-phase ions from charged clusters: an important ionization step causing suppression of matrix and analyte ions in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Lou, Xianwen; van Dongen, Joost L J; Milroy, Lech-Gustav; Meijer, E W

    2016-12-30

    Ionization in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a very complicated process. It has been reported that quaternary ammonium salts show extremely strong matrix and analyte suppression effects which cannot satisfactorily be explained by charge transfer reactions. Further investigation of the reasons causing these effects can be useful to improve our understanding of the MALDI process. The dried-droplet and modified thin-layer methods were used as sample preparation methods. In the dried-droplet method, analytes were co-crystallized with matrix, whereas in the modified thin-layer method analytes were deposited on the surface of matrix crystals. Model compounds, tetrabutylammonium iodide ([N(Bu) 4 ]I), cesium iodide (CsI), trihexylamine (THA) and polyethylene glycol 600 (PEG 600), were selected as the test analytes given their ability to generate exclusively pre-formed ions, protonated ions and metal ion adducts respectively in MALDI. The strong matrix suppression effect (MSE) observed using the dried-droplet method might disappear using the modified thin-layer method, which suggests that the incorporation of analytes in matrix crystals contributes to the MSE. By depositing analytes on the matrix surface instead of incorporating in the matrix crystals, the competition for evaporation/ionization from charged matrix/analyte clusters could be weakened resulting in reduced MSE. Further supporting evidence for this inference was found by studying the analyte suppression effect using the same two sample deposition methods. By comparing differences between the mass spectra obtained via the two sample preparation methods, we present evidence suggesting that the generation of gas-phase ions from charged matrix/analyte clusters may induce significant suppression of matrix and analyte ions. The results suggest that the generation of gas-phase ions from charged matrix/analyte clusters is an important ionization step in MALDI-MS. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Structure for HTS composite conductors and the manufacture of same

    DOEpatents

    Cotton, J.D.; Riley, G.N. Jr.

    1999-06-01

    A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (1) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (2) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer. 10 figs.

  17. Structure for hts composite conductors and the manufacture of same

    DOEpatents

    Cotton, James D.; Riley, Jr., Gilbert Neal

    1999-01-01

    A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (i) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (ii) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer.

  18. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor); Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  19. Wavelet-based analysis of transient electromagnetic wave propagation in photonic crystals.

    PubMed

    Shifman, Yair; Leviatan, Yehuda

    2004-03-01

    Photonic crystals and optical bandgap structures, which facilitate high-precision control of electromagnetic-field propagation, are gaining ever-increasing attention in both scientific and commercial applications. One common photonic device is the distributed Bragg reflector (DBR), which exhibits high reflectivity at certain frequencies. Analysis of the transient interaction of an electromagnetic pulse with such a device can be formulated in terms of the time-domain volume integral equation and, in turn, solved numerically with the method of moments. Owing to the frequency-dependent reflectivity of such devices, the extent of field penetration into deep layers of the device will be different depending on the frequency content of the impinging pulse. We show how this phenomenon can be exploited to reduce the number of basis functions needed for the solution. To this end, we use spatiotemporal wavelet basis functions, which possess the multiresolution property in both spatial and temporal domains. To select the dominant functions in the solution, we use an iterative impedance matrix compression (IMC) procedure, which gradually constructs and solves a compressed version of the matrix equation until the desired degree of accuracy has been achieved. Results show that when the electromagnetic pulse is reflected, the transient IMC omits basis functions defined over the last layers of the DBR, as anticipated.

  20. Stochastic theory of photon flow in homogeneous and heterogeneous anisotropic biological and artificial material

    NASA Astrophysics Data System (ADS)

    Miller, Steven D.

    1995-05-01

    Standard Monte Carlo methods used in photon diffusion score absorbed photons or statistical weight deposited within voxels comprising a mesh. An alternative approach to a stochastic description is considered for rapid surface flux calculations and finite medias. Matrix elements are assigned to a spatial lattice whose function is to score vector intersections of scattered photons making transitions into either the forward or back solid angle half spaces. These complete matrix elements can be related to the directional fluxes within the lattice space. This model differentiates between ballistic, quasi-ballistic, and highly diffuse photon contributions, and effectively models the subsurface generation of a scattered light flux from a ballistic source. The connection between a path integral and diffusion is illustrated. Flux perturbations can be effectively illustrated for tissue-tumor-tissue and for 3 layer systems with strong absorption in one or more layers. For conditions where the diffusion theory has difficulties such as strong absorption, highly collimated sources, small finite volumes, and subsurface regions, the computation time of the algorithm is rapid with good accuracy and compliments other description of photon diffusion. The model has the potential to do computations relevant to photodynamic therapy (PDT) and analysis of laser beam interaction with tissues.

  1. Metal deposition by electroless plating on polydopamine functionalized micro- and nanoparticles.

    PubMed

    Mondin, Giovanni; Wisser, Florian M; Leifert, Annika; Mohamed-Noriega, Nasser; Grothe, Julia; Dörfler, Susanne; Kaskel, Stefan

    2013-12-01

    A novel approach for the fabrication of metal coated micro- and nanoparticles by functionalization with a thin polydopamine layer followed by electroless plating is reported. The particles are initially coated with polydopamine via self-polymerization. The resulting polydopamine coated particles have a surface rich in catechols and amino groups, resulting in a high affinity toward metal ions. Thus, they provide an effective platform for selective electroless metal deposition without further activation and sensitization steps. The combination of a polydopamine-based functionalization with electroless plating ensures a simple, scalable, and cost-effective metal coating strategy. Silver-plated tungsten carbide microparticles, copper-plated tungsten carbide microparticles, and copper-plated alumina nanoparticles were successfully fabricated, showing also the high versatility of the method, since the polymerization of dopamine leads to the formation of an adherent polydopamine layer on the surface of particles of any material and size. The metal coated particles produced with this process are particularly well suited for the production of metal matrix composites, since the metal coating increases the wettability of the particles by the metal, promoting their integration within the matrix. Such composite materials are used in a variety of applications including electrical contacts, components for the automotive industries, magnets, and electromagnetic interference shielding. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. [Penile augmentation using acellular dermal matrix].

    PubMed

    Zhang, Jin-ming; Cui, Yong-yan; Pan, Shu-juan; Liang, Wei-qiang; Chen, Xiao-xuan

    2004-11-01

    Penile enhancement was performed using acellular dermal matrix. Multiple layers of acellular dermal matrix were placed underneath the penile skin to enlarge its girth. Since March 2002, penile augmentation has been performed on 12 cases using acellular dermal matrix. Postoperatively all the patients had a 1.3-3.1 cm (2.6 cm in average) increase in penile girth in a flaccid state. The penis had normal appearance and feeling without contour deformities. All patients gained sexual ability 3 months after the operation. One had a delayed wound healing due to tight dressing, which was repaired with a scrotal skin flap. Penile enlargement by implantation of multiple layers of acellular dermal matrix was a safe and effective operation. This method can be performed in an outpatient ambulatory setting. The advantages of the acellular dermal matrix over the autogenous dermal fat grafts are elimination of donor site injury and scar and significant shortening of operation time.

  3. Ordered mixed-layer structures in the Mighei carbonaceous chondrite matrix

    NASA Technical Reports Server (NTRS)

    Mackinnon, I. D. R.

    1982-01-01

    High resolution transmission electron microscopy of the Mighei carbonaceous chondrite matrix has revealed the presence of a new mixed layer structure material. This mixed-layer material consists of an ordered arrangement of serpentine-type (S) and brucite-type (B) layers in the sequence SBBSBB. Electron diffraction and imaging techniques show that the basal periodicity is approximately 17 A. Discrete crystals of SBB-type material are typically curved, of small size (less than 1 micron) and show structural variations similar to the serpentine group minerals. Mixed-layer material also occurs in association with planar serpentine. Characteristics of SBB-type material are not consistent with known terrestrial mixed-layer clay minerals. Evidence for formation by a condensation event or by subsequent alteration of pre-existing material is not yet apparent.

  4. Method of forming fluorine-bearing diamond layer on substrates, including tool substrates

    DOEpatents

    Chang, R. P. H.; Grannen, Kevin J.

    2002-01-01

    A method of forming a fluorine-bearing diamond layer on non-diamond substrates, especially on tool substrates comprising a metal matrix and hard particles, such as tungsten carbide particles, in the metal matrix. The substrate and a fluorine-bearing plasma or other gas are then contacted under temperature and pressure conditions effective to nucleate fluorine-bearing diamond on the substrate. A tool insert substrate is treated prior to the diamond nucleation and growth operation by etching both the metal matrix and the hard particles using suitable etchants.

  5. Effect of mo Content on Microstructure and Properties of Laser Cladding Fe-BASED Alloy Coatings

    NASA Astrophysics Data System (ADS)

    Xiaoli, Ma; Kaiming, Wang; Hanguang, Fu; Jiang, Ju; Yongping, Lei; Dawei, Yi

    Mo alloying Fe-based coating was fabricated on the surface of Q235 steel by using 6 kW fiber laser. The effects of Mo additions on the microstructure, microhardness and wear resistance of the cladding layer were studied by means of optical microscopy (OM), scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS), Vickers hardness tester and M-200 ring block wear tester. Research results showed that the microstructure of Mo-free cladding layer mainly consisted of matrix and eutectic structure. The matrix was martensite and retained austenite. The eutectic structure mainly consisted of M2(B,C) and M7(C,B)3 type of eutectic borocarbides. With the increase of Mo content, there was no significant change in the matrix. However, the eutectic structure was transformed from M2(B,C)- and M7(C,B)3-type borocarbides into M2(B,C)-, M7(C,B)3- and M23(C,B)6-type borocarbides. When the content of Mo is 4.0wt.%, the Mo2C-type carbide appear on the matrix, and parts of the borocarbide networks are broken. The change of microhardness of the cladding layer was not obvious with the increase of Mo content. But the increase of Mo content increases the wear resistance of the cladding layer. The wear resistance of cladding layer with 4.0wt.% Mo is 2.4 times as much as the cladding layer which is Mo-free.

  6. Mueller matrix mapping of biological polycrystalline layers using reference wave

    NASA Astrophysics Data System (ADS)

    Dubolazov, A.; Ushenko, O. G.; Ushenko, Yu. O.; Pidkamin, L. Y.; Sidor, M. I.; Grytsyuk, M.; Prysyazhnyuk, P. V.

    2018-01-01

    The paper consists of two parts. The first part is devoted to the short theoretical basics of the method of differential Mueller-matrix description of properties of partially depolarizing layers. It was provided the experimentally measured maps of differential matrix of the 1st order of polycrystalline structure of the histological section of brain tissue. It was defined the statistical moments of the 1st-4th orders, which characterize the distribution of matrix elements. In the second part of the paper it was provided the data of statistic analysis of birefringence and dichroism of the histological sections of mice liver tissue (normal and with diabetes). It were defined the objective criteria of differential diagnostics of diabetes.

  7. Solar cells based on particulate structure of active layer: Investigation of light absorption by an ordered system of spherical submicron silicon particles

    NASA Astrophysics Data System (ADS)

    Miskevich, Alexander A.; Loiko, Valery A.

    2015-12-01

    Enhancement of the performance of photovoltaic cells through increasing light absorption due to optimization of an active layer is considered. The optimization consists in creation of particulate structure of active layer. The ordered monolayers and multilayers of submicron crystalline silicon (c-Si) spherical particles are examined. The quasicrystalline approximation (QCA) and the transfer matrix method (TMM) are used to calculate light absorption in the wavelength range from 0.28 μm to 1.12 μm. The integrated over the terrestial solar spectral irradiance "Global tilt" ASTM G173-03 absorption coefficient is calculated. In the wavelength range of small absorption index of c-Si (0.8-1.12 μm) the integral absorption coefficient of monolayer can be more than 20 times higher than the one of the plane-parallel plate of the equivalent volume of material. In the overall considered range (0.28-1.12 μm) the enhancement factor up to ~1.45 for individual monolayer is observed. Maximum value of the spectral absorption coefficient approaches unity for multilayers consisting of large amount of sparse monolayers of small particles. Multilayers with variable concentration and size of particles in the monolayer sequences are considered. Absorption increasing by such gradient multilayers as compared to the non-gradient ones is illustrated. The considered structures are promising for creation of high efficiency thin-film solar cells.

  8. Multi-layered sensor yarns for in situ monitoring of textile reinforced composites

    NASA Astrophysics Data System (ADS)

    Haentzsche, E.; Onggar, T.; Nocke, A.; Hund, R. D.; Cherif, Ch

    2017-10-01

    In this contribution, the characteristic of yarns that have intrinsically conductivity as well as such with coaxial conductive coatings acting as in situ strain sensors are described. The objective of the based research projects is the real-time in situ sensing of both global stresses acting on fibre reinforced plastic (FRP) components and the detection of resulted local microscopic damages due to creep, delamination and micro-cracks in the fibre-matrix interphase of glass fibre (GFRP) and carbon fibre (CFRP) composites. Sensor materials similar to the particular FRP and its mechanical behaviour have been chosen. In the first approach, GF- and aramid-based sensor yarns have been developed with multiple tailored silver layer coating system capable to distinguish multiple scaled damage mechanism due to these effects globally and locally. The second approach bases on the piezoresistive effect of CF rovings for their usage as in situ strain sensors. In the next step, suitable fibre and polymer film-based cleading have been tested and evaluated, granting sufficient electrical isolation to avoid shortcircuits between the conductive sensor layers itself or between the sensor and intrinsically conductive CFRP respectively. Initially, the sensor performance of global strain measurement, means the accumulated strain along the integration length of the sensor yarn, has been evaluated during tensile stressing of FRP with integrated suchlike functionalised sensor yarns.

  9. Triplex molecular layers with nonlinear nanomechanical response

    NASA Astrophysics Data System (ADS)

    Tsukruk, V. V.; Ahn, H.-S.; Kim, D.; Sidorenko, A.

    2002-06-01

    The molecular design of surface structures with built-in mechanisms for mechanical energy dissipation under nanomechanical deformation and compression resistance provided superior nanoscale wear stability. We designed robust, well-defined trilayer surface nanostructures chemically grafted to a silicon oxide surface with an effective composite modulus of about 1 GPa. The total thickness was within 20-30 nm and included an 8 nm rubber layer sandwiched between two hard layers. The rubber layer provides an effective mechanism for energy dissipation, facilitated by nonlinear, giant, reversible elastic deformations of the rubber matrix, restoring the initial status due to the presence of an effective nanodomain network and chemical grafting within the rubber matrix.

  10. The use of a combination of different MR methods to study swelling of hydrophilic xanthan matrix tablets at different pHs.

    PubMed

    Mikac, U; Sepe, A; Kristl, J; Baumgartner, I

    2012-01-01

    Modified-release matrix tablets have been extensively used by the pharmaceutical industry as one of the most successful oral drug-delivery systems. The key element in drug release from hydrophilic matrix tablets is the gel layer that regulates the penetration of water and controls drug dissolution and diffusion. Magnetic resonance imaging (MRI) is a powerful, non-invasive technique that can help improve our understanding of the gel layer formed on swellable, polymer-matrix tablets, as well as the layer's properties and its influence on the drug release. The aim was to investigate the effects of pH and ionic strength on swelling and to study the influence of structural changes in xanthan gel on drug release. For this purpose a combination of different MRI methods for accurate determination of penetration, swelling and erosion fronts was used. The position of the penetration and swelling fronts were the same, independently of the different xanthan gel structures formed under different conditions of pH and ionic strength. The position of the erosion front, on the other hand, is strongly dependent on pH and ionic strength, as reflected in different thicknesses of the gel layers.

  11. A T Matrix Method Based upon Scalar Basis Functions

    NASA Technical Reports Server (NTRS)

    Mackowski, D.W.; Kahnert, F. M.; Mishchenko, Michael I.

    2013-01-01

    A surface integral formulation is developed for the T matrix of a homogenous and isotropic particle of arbitrary shape, which employs scalar basis functions represented by the translation matrix elements of the vector spherical wave functions. The formulation begins with the volume integral equation for scattering by the particle, which is transformed so that the vector and dyadic components in the equation are replaced with associated dipole and multipole level scalar harmonic wave functions. The approach leads to a volume integral formulation for the T matrix, which can be extended, by use of Green's identities, to the surface integral formulation. The result is shown to be equivalent to the traditional surface integral formulas based on the VSWF basis.

  12. Analysis of the release process of phenylpropanolamine hydrochloride from ethylcellulose matrix granules.

    PubMed

    Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu

    2002-11-01

    The release properties of phenylpropanolamine hydrochloride (PPA) from ethylcellulose (EC, ethylcellulose 10 cps (EC#10) and/or 100 cps (EC#100)) matrix granules prepared by the extrusion granulation method were examined. The release process could be divided into two parts, and was well analyzed by applying square-root time law and cube root law equations, respectively. The validity of the treatments was confirmed by the fitness of the simulation curve with the measured curve. At the initial stage, PPA was released from the gel layer of swollen EC in the matrix granules. At the second stage, the drug existing below the gel layer dissolved, and was released through the gel layer. Also, the time and release ratio at the connection point of the simulation curves was examined to determine the validity of the analysis. Comparing the release properties of PPA from the two types of EC matrix granules, EC#100 showed more effective sustained release than EC#10. On the other hand, changes in the release property of the EC#10 matrix granule were relatively more clear than that of the EC#100 matrix granule. Thus, it was supposed that EC#10 is more available for controlled and sustained release formulations than EC#100.

  13. Interactions between core and matrix thalamocortical projections in human sleep spindle synchronization

    PubMed Central

    Bonjean, Maxime; Baker, Tanya; Bazhenov, Maxim; Cash, Sydney; Halgren, Eric; Sejnowski, Terrence

    2012-01-01

    Sleep spindles, which are bursts of 11–15 Hz that occur during non-REM sleep, are highly synchronous across the scalp when measured with EEG, but have low spatial coherence and exhibit low correlation with EEG signals when simultaneously measured with MEG spindles in humans. We developed a computational model to explore the hypothesis that the spatial coherence of the EEG spindle is a consequence of diffuse matrix projections of the thalamus to layer 1 compared to the focal projections of the core pathway to layer 4 recorded by the MEG. Increasing the fanout of thalamocortical connectivity in the matrix pathway while keeping the core pathway fixed led to increased synchrony of the spindle activity in the superficial cortical layers in the model. In agreement with cortical recordings, the latency for spindles to spread from the core to the matrix was independent of the thalamocortical fanout but highly dependent on the probability of connections between cortical areas. PMID:22496571

  14. Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2).

    PubMed

    Werner, Jérémie; Weng, Ching-Hsun; Walter, Arnaud; Fesquet, Luc; Seif, Johannes Peter; De Wolf, Stefaan; Niesen, Bjoern; Ballif, Christophe

    2016-01-07

    Monolithic perovskite/crystalline silicon tandem solar cells hold great promise for further performance improvement of well-established silicon photovoltaics; however, monolithic tandem integration is challenging, evidenced by the modest performances and small-area devices reported so far. Here we present first a low-temperature process for semitransparent perovskite solar cells, yielding efficiencies of up to 14.5%. Then, we implement this process to fabricate monolithic perovskite/silicon heterojunction tandem solar cells yielding efficiencies of up to 21.2 and 19.2% for cell areas of 0.17 and 1.22 cm(2), respectively. Both efficiencies are well above those of the involved subcells. These single-junction perovskite and tandem solar cells are hysteresis-free and demonstrate steady performance under maximum power point tracking for several minutes. Finally, we present the effects of varying the intermediate recombination layer and hole transport layer thicknesses on tandem cell photocurrent generation, experimentally and by transfer matrix simulations.

  15. Multiple-layered effective medium approximation approach to modeling environmental effects on alumina passivated highly porous silicon nanostructured thin films measured by in-situ Mueller matrix ellipsometry

    NASA Astrophysics Data System (ADS)

    Mock, Alyssa; Carlson, Timothy; VanDerslice, Jeremy; Mohrmann, Joel; Woollam, John A.; Schubert, Eva; Schubert, Mathias

    2017-11-01

    Optical changes in alumina passivated highly porous silicon slanted columnar thin films during controlled exposure to toluene vapor are reported. Electron-beam evaporation glancing angle deposition and subsequent atomic layer deposition are utilized to deposit alumina passivated nanostructured porous silicon thin films. In-situ Mueller matrix generalized spectroscopic ellipsometry in an environmental cell is then used to determine changes in optical properties of the nanostructured thin films by inspection of individual Mueller matrix elements, each of which exhibit sensitivity to adsorption. The use of a multiple-layered effective medium approximation model allows for accurate description of the inhomogeneous nature of toluene adsorption onto alumina passivated highly porous silicon slanted columnar thin films.

  16. In situ ceramic layer growth on coated fuel particles dispersed in a zirconium metal matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrani, Kurt A; Silva, G W Chinthaka M; Kiggans, Jim

    2013-01-01

    The extent and nature of the chemical interaction between the outermost coating layer of coated fuel particles embedded in zirconium metal during fabrication of metal matrix microencapsulated fuels was examined. Various particles with outermost coating layers of pyrocarbon, SiC, and ZrC have been investigated in this study. ZrC-Zr interaction was least substantial while PyC-Zr reaction can be exploited to produce a ZrC layer at the interface in an in situ manner. The thickness of the ZrC layer in the latter case can be controlled by adjusting the time and temperature during processing. The kinetics of ZrC layer growth is significantlymore » faster from what is predicted using literature carbon diffusivity data in ZrC. SiC-Zr interaction is more complex and results in formation of various chemical phases in a layered aggregate morphology at the interface.« less

  17. New poly(butylene succinate)/layered silicate nanocomposites: preparation and mechanical properties.

    PubMed

    Ray, Suprakas Sinha; Okamoto, Kazuaki; Maiti, Pralay; Okamoto, Masami

    2002-04-01

    New poly(butylene succinate) (PBS)/layered silicate nanocomposites have been successfully prepared by simple melt extrusion of PBS and octadecylammonium modified montmorillonite (C18-mmt) at 150 degrees C. The d-spacing of both C18-mmt and intercalated nanocomposites was investigated by wide-angle X-ray diffraction analysis. Bright-field transmission electron microscopic study showed several stacked silicate layers with random orientation in the PBS matrix. The intercalated nanocomposites exhibited remarkable improvement of mechanical properties in both solid and melt states as compared with that of PBS matrix without clay.

  18. Integrated mechanics for the passive damping of polymer-matrix composites and composite structures

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, Christos C.

    1991-01-01

    Some recent developments on integrated damping mechanics for unidirectional composites, laminates, and composite structures are reviewed. Simplified damping micromechanics relate the damping of on-axis and off-axis composites to constituent properties, fiber volume ratio, fiber orientation, temperature, and moisture. Laminate and structural damping mechanics for thin composites are summarized. Discrete layer damping mechanics for thick laminates, including the effects of interlaminar shear damping, are developed and semianalytical predictions of modal damping in thick simply supported specialty composite plates are presented. Applications show the advantages of the unified mechanics, and illustrate the effect of fiber volume ratio, fiber orientation, structural geometry, and temperature on the damping. Additional damping properties for composite plates of various laminations, aspect ratios, fiber content, and temperature illustrate the merits and ranges of applicability of each theory (thin or thick laminates).

  19. Fully integrated carbon nanotube composite thin film strain sensors on flexible substrates for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Burton, A. R.; Lynch, J. P.; Kurata, M.; Law, K. H.

    2017-09-01

    Multifunctional thin film materials have opened many opportunities for novel sensing strategies for structural health monitoring. While past work has established methods of optimizing multifunctional materials to exhibit sensing properties, comparatively less work has focused on their integration into fully functional sensing systems capable of being deployed in the field. This study focuses on the advancement of a scalable fabrication process for the integration of multifunctional thin films into a fully integrated sensing system. This is achieved through the development of an optimized fabrication process that can create a broad range of sensing systems using multifunctional materials. A layer-by-layer deposited multifunctional composite consisting of single walled carbon nanotubes (SWNT) in a polyvinyl alcohol and polysodium-4-styrene sulfonate matrix are incorporated with a lithography process to produce a fully integrated sensing system deposited on a flexible substrate. To illustrate the process, a strain sensing platform consisting of a patterned SWNT-composite thin film as a strain-sensitive element within an amplified Wheatstone bridge sensing circuit is presented. Strain sensing is selected because it presents many of the design and processing challenges that are core to patterning multifunctional thin film materials into sensing systems. Strain sensors fabricated on a flexible polyimide substrate are experimentally tested under cyclic loading using standard four-point bending coupons and a partial-scale steel frame assembly under lateral loading. The study reveals the material process is highly repeatable to produce fully integrated strain sensors with linearity and sensitivity exceeding 0.99 and 5 {{V}}/{ε }, respectively. The thin film strain sensors are robust and are capable of high strain measurements beyond 3000 μ {ε }.

  20. Multilayer solar cell waveguide structures containing metamaterials

    NASA Astrophysics Data System (ADS)

    Hamouche, Houria.; Shabat, Mohammed. M.; Schaadt, Daniel M.

    2017-01-01

    Multilayer antireflection coating structures made from silicon and metamaterials are designed and investigated using the Transfer Matrix Method (TMM). The Transfer Matrix Method is a very useful algorithm for the analysis of periodic structures. We investigate in this paper two anti-reflection coating structures for silicon solar cells with a metamaterial film layer. In the first structure, the metamaterial film layer is sandwiched between a semi-infinite glass cover layer and a semi-infinite silicon substrate layer. The second structure consists of a four layers, a pair of metamaterial-dielectric layer with opposite real part of refractive indices, is placed between the two semi-infinite cover and substrate. We have simulated the absorptivity property of the structures for adjustable thicknesses by using MAPLE software. The absorptivity of the structures achieves greater than 80% for incident electromagnetic wave of transverse magnetic (TM) polarization.

  1. Investigation of Selective Laser Melting Surface Alloyed Aluminium Metal Matrix Dispersive Reinforced Layers

    NASA Astrophysics Data System (ADS)

    Kamburov, V. V.; Dimitrova, R. B.; Kandeva, M. K.; Sofronov, Y. P.

    2018-01-01

    The aim of the paper is to investigate the improvement of mechanical properties and in particular wear resistance of laser surface alloyed dispersive reinforced thin layers produced by selective laser melting (SLM) technology. The wear resistance investigation of aluminium matrix composite layers in the conditions of dry friction surface with abrasive particles and nanoindentation tests were carried out. The process parameters (as scan speed) and their impact on the wear resistant layers have been evaluated. The alloyed layers containing metalized SiC particles were studied by Optical and Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray microanalysis (EDX). The obtained experimental results of the laser alloyed thin layers show significant development of their wear resistance and nanohardness due to the incorporated reinforced phase of electroless nickel coated SiC particles.

  2. Structure of Protein Layers in Polyelectrolyte Matrices Studied by Neutron Reflectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlovskaya, Veronika; Ankner, John Francis; O'Neill, Hugh Michael

    2011-01-01

    Polyelectrolyte multilayer films obtained by localized incorporation of Green Fluorescent Protein (GFP) within electrostatically assembled matrices of poly(styrene sulfonate)/poly(allylamine hydrochloride) (PSS/PAH) via spin-assisted layer-by-layer growth were discovered to be highly structured, with closely packed monomolecular layers of the protein within the bio-hybrid films. The structure of the films was evaluated in both vertical and lateral directions with neutron reflectometry, using deuterated GFP as a marker for neutron scattering contrast. Importantly, the GFP preserves its structural stability upon assembly as confirmed by circular dichroism (CD) and in situ attenuated total reflection Fourier Transform Infrared spectroscopy (ATR-FTIR). Atomic force microscopy was complimentedmore » with X-ray reflectometry to characterize the external roughness of the biohybrid films. Remarkably, films assembled with a single GFP layer confined at various distances from the substrate exhibit a strong localization of the GFP layer without intermixing into the LbL matrix. However, partial intermixing of the GFP layers with polymeric material is evidenced in multiple-GFP layer films with alternating protein-rich and protein-deficient regions. We hypothesize that the polymer-protein exchange observed in the multiple-GFP layer films suggests the existence of a critical protein concentration which can be accommodated by the multilayer matrix. Our results yield new insights into the mechanism of GFP interaction with a polyelectrolyte matrix and open opportunities for fabrication of bio-hybrid films with well-organized structure and controllable function, a crucial requirement for advanced sensing applications.« less

  3. Silver nanoparticles-incorporated Nb2O5 surface passivation layer for efficiency enhancement in dye-sensitized solar cells.

    PubMed

    Suresh, S; Unni, Gautam E; Satyanarayana, M; Sreekumaran Nair, A; Mahadevan Pillai, V P

    2018-08-15

    Guiding and capturing photons at the nanoscale by means of metal nanoparticles and interfacial engineering for preventing back-electron transfer are well documented techniques for performance enhancement in excitonic solar cells. Drifting from the conventional route, we propose a simple one-step process to integrate both metal nanoparticles and surface passivation layer in the porous photoanode matrix of a dye-sensitized solar cell. Silver nanoparticles and Nb 2 O 5 surface passivation layer are simultaneously deposited on the surface of a highly porous nanocrystalline TiO 2 photoanode, facilitating an absorption enhancement in the 465 nm and 570 nm wavelength region and a reduction in back-electron transfer in the fabricated dye-sensitized solar cells together. The TiO 2 photoanodes were prepared by spray pyrolysis deposition method from a colloidal solution of TiO 2 nanoparticles. An impressive 43% enhancement in device performance was accomplished in photoanodes having an Ag-incorporated Nb 2 O 5 passivation layer as against a cell without Ag nanoparticles. By introducing this idea, we were able to record two benefits - the metal nanoparticles function as the absorption enhancement agent, and the Nb 2 O 5 layer as surface passivation for TiO 2 nanoparticles and as an energy barrier layer for preventing back-electron transfer - in a single step. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Mechanisms of lamellar collagen formation in connective tissues.

    PubMed

    Ghazanfari, Samaneh; Khademhosseini, Ali; Smit, Theodoor H

    2016-08-01

    The objective of tissue engineering is to regenerate functional tissues. Engineering functional tissues requires an understanding of the mechanisms that guide the formation and evolution of structure in the extracellular matrix (ECM). In particular, the three-dimensional (3D) collagen fiber arrangement is important as it is the key structural determinant that provides mechanical integrity and biological function. In this review, we survey the current knowledge on collagen organization mechanisms that can be applied to create well-structured functional lamellar tissues and in particular intervertebral disc and cornea. Thus far, the mechanisms behind the formation of cross-aligned collagen fibers in the lamellar structures is not fully understood. We start with cell-induced collagen alignment and strain-stabilization behavior mechanisms which can explain a single anisotropically aligned collagen fiber layer. These mechanisms may explain why there is anisotropy in a single layer in the first place. However, they cannot explain why a consecutive collagen layer is laid down with an alternating alignment. Therefore, we explored another mechanism, called liquid crystal phasing. While dense concentrations of collagen show such behavior, there is little evidence that the conditions for liquid crystal phasing are actually met in vivo. Instead, lysyl aldehyde-derived collagen cross-links have been found essential for correct lamellar matrix deposition. Furthermore, we suggest that supra-cellular (tissue-level) shear stress may be instrumental in the alignment of collagen fibers. Understanding the potential mechanisms behind the lamellar collagen structure in connective tissues will lead to further improvement of the regeneration strategies of functional complex lamellar tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Graphite Nanoreinforcements for Aerospace Nanocomposites

    NASA Technical Reports Server (NTRS)

    Drzal, Lawrence T.

    2005-01-01

    New advances in the reinforcement of polymer matrix composite materials are critical for advancement of the aerospace industry. Reinforcements are required to have good mechanical and thermal properties, large aspect ratio, excellent adhesion to the matrix, and cost effectiveness. To fulfill the requirements, nanocomposites in which the matrix is filled with nanoscopic reinforcing phases having dimensions typically in the range of 1nm to 100 nm show considerably higher strength and modulus with far lower reinforcement content than their conventional counterparts. Graphite is a layered material whose layers have dimensions in the nanometer range and are held together by weak Van der Waals forces. Once these layers are exfoliated and dispersed in a polymer matrix as nano platelets, they have large aspect ratios. Graphite has an elastic modulus that is equal to the stiffest carbon fiber and 10-15 times that of other inorganic reinforcements, and it is also electrically and thermally conductive. If the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with excellent mechanical properties, superior thermal stability, and very good electrical and thermal properties at very low reinforcement loadings.

  6. Study on the Impact Resistance of Bionic Layered Composite of TiC-TiB2/Al from Al-Ti-B4C System

    PubMed Central

    Zhao, Qian; Liang, Yunhong; Zhang, Zhihui; Li, Xiujuan; Ren, Luquan

    2016-01-01

    Mechanical property and impact resistance mechanism of bionic layered composite was investigated. Due to light weight and high strength property, white clam shell was chosen as bionic model for design of bionic layered composite. The intercoupling model between hard layer and soft layer was identical to the layered microstructure and hardness tendency of the white clam shell, which connected the bionic design and fabrication. TiC-TiB2 reinforced Al matrix composites fabricated from Al-Ti-B4C system with 40 wt. %, 50 wt. % and 30 wt. % Al contents were treated as an outer layer, middle layer and inner layer in hard layers. Pure Al matrix was regarded as a soft layer. Compared with traditional homogenous Al-Ti-B4C composite, bionic layered composite exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The intercoupling effect of layered structure and combination model of hard and soft played a key role in high impact resistance of the bionic layered composite, proving the feasibility and practicability of the bionic model of a white clam shell. PMID:28773827

  7. Digital radiology using active matrix readout: amplified pixel detector array for fluoroscopy.

    PubMed

    Matsuura, N; Zhao, W; Huang, Z; Rowlands, J A

    1999-05-01

    Active matrix array technology has made possible the concept of flat panel imaging systems for radiography. In the conventional approach a thin-film circuit built on glass contains the necessary switching components (thin-film transistors or TFTs) to readout an image formed in either a phosphor or photoconductor layer. Extension of this concept to real time imaging--fluoroscopy--has had problems due to the very low noise required. A new design strategy for fluoroscopic active matrix flat panel detectors has therefore been investigated theoretically. In this approach, the active matrix has integrated thin-film amplifiers and readout electronics at each pixel and is called the amplified pixel detector array (APDA). Each amplified pixel consists of three thin-film transistors: an amplifier, a readout, and a reset TFT. The performance of the APDA approach compared to the conventional active matrix was investigated for two semiconductors commonly used to construct active matrix arrays--hydrogenated amorphous silicon and polycrystalline silicon. The results showed that with amplification close to the pixel, the noise from the external charge preamplifiers becomes insignificant. The thermal and flicker noise of the readout and the amplifying TFTs at the pixel become the dominant sources of noise. The magnitude of these noise sources is strongly dependent on the TFT geometry and its fabrication process. Both of these could be optimized to make the APDA active matrix operate at lower noise levels than is possible with the conventional approach. However, the APDA cannot be made to operate ideally (i.e., have noise limited only by the amount of radiation used) at the lowest exposure rate required in medical fluoroscopy.

  8. TEM study of {beta} Prime precipitate interaction mechanisms with dislocations and {beta} Prime interfaces with the aluminium matrix in Al-Mg-Si alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teichmann, Katharina; Marioara, Calin D.; Andersen, Sigmund J.

    The interaction mechanisms between dislocations and semi-coherent, needle-shaped {beta} Prime precipitates in Al-Mg-Si alloys have been studied by High Resolution Transmission Electron Microscopy (HRTEM). Dislocation loops appearing as broad contrast rings around the precipitate cross-sections were identified in the Al matrix. A size dependency of the interaction mechanism was observed; the precipitates were sheared when the longest dimension of their cross-section was shorter than approximately 15 nm, and looped otherwise. A more narrow ring located between the Al matrix and bulk {beta} Prime indicates the presence of a transition interface layer. Together with the bulk {beta} Prime structure, this wasmore » further investigated by High Angle Annular Dark Field Scanning TEM (HAADF-STEM). In the bulk {beta} Prime a higher intensity could be correlated with a third of the Si-columns, as predicted from the published structure. The transition layer incorporates Si columns in the same arrangement as in bulk {beta} Prime , although it is structurally distinct from it. The Z-contrast information and arrangement of these Si-columns demonstrate that they are an extension of the Si-network known to structurally connect all the precipitate phases in the Al-Mg-Si(-Cu) system. The width of the interface layer was estimated to about 1 nm. - Highlights: Black-Right-Pointing-Pointer {beta} Prime is found to be looped at sizes larger than 15 nm (cross section diameter). Black-Right-Pointing-Pointer {beta} Prime is found to be sheared at sizes smaller than 15 nm (cross section diameter). Black-Right-Pointing-Pointer The recently determined crystal structure of {beta} Prime is confirmed by HAADF-STEM. Black-Right-Pointing-Pointer Between {beta} Prime and the Al-matrix a transition layer of about 1 nm is existent. Black-Right-Pointing-Pointer The {beta} Prime /matrix layer is structurally distinct from bulk {beta} Prime and the aluminium matrix.« less

  9. Optimization of residual stresses in MMC's through the variation of interfacial layer architectures and processing parameters

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Salzar, Robert S.

    1996-01-01

    The objective of this work was the development of efficient, user-friendly computer codes for optimizing fabrication-induced residual stresses in metal matrix composites through the use of homogeneous and heterogeneous interfacial layer architectures and processing parameter variation. To satisfy this objective, three major computer codes have been developed and delivered to the NASA-Lewis Research Center, namely MCCM, OPTCOMP, and OPTCOMP2. MCCM is a general research-oriented code for investigating the effects of microstructural details, such as layered morphology of SCS-6 SiC fibers and multiple homogeneous interfacial layers, on the inelastic response of unidirectional metal matrix composites under axisymmetric thermomechanical loading. OPTCOMP and OPTCOMP2 combine the major analysis module resident in MCCM with a commercially-available optimization algorithm and are driven by user-friendly interfaces which facilitate input data construction and program execution. OPTCOMP enables the user to identify those dimensions, geometric arrangements and thermoelastoplastic properties of homogeneous interfacial layers that minimize thermal residual stresses for the specified set of constraints. OPTCOMP2 provides additional flexibility in the residual stress optimization through variation of the processing parameters (time, temperature, external pressure and axial load) as well as the microstructure of the interfacial region which is treated as a heterogeneous two-phase composite. Overviews of the capabilities of these codes are provided together with a summary of results that addresses the effects of various microstructural details of the fiber, interfacial layers and matrix region on the optimization of fabrication-induced residual stresses in metal matrix composites.

  10. Effects of irradiation on the microstructure of U-7Mo dispersion fuel with Al-2Si matrix

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Jue, Jan-Fong; Robinson, Adam B.; Medvedev, Pavel; Gan, Jian; Miller, Brandon D.; Wachs, Daniel M.; Moore, Glenn A.; Clark, Curtis R.; Meyer, Mitchell K.; Ross Finlay, M.

    2012-06-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt.% Si added to the matrix, fuel plates were tested to moderate burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fission rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, and high fission rate) was performed in the RERTR-9A, RERTR-9B, and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth during irradiation of the fuel/matrix interaction (FMI) layer created during fabrication; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation, more Si diffuses from the matrix to the FMI layer/matrix interface; and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.

  11. Nanocrystal-polymer nanocomposite electrochromic device

    DOEpatents

    Milliron, Delia; Runnerstrom, Evan; Helms, Brett; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2015-12-08

    Described is an electrochromic nanocomposite film comprising a solid matrix of an oxide based material, the solid matrix comprising a plurality of transparent conducting oxide (TCO) nanostructures dispersed in the solid matrix and a lithium salt dispersed in the solid matrix. Also described is a near infrared nanostructured electrochromic device having a functional layer comprising the electrochromic nanocomposite film.

  12. Microstructures and properties of ceramic particle-reinforced metal matrix composite layers produced by laser cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Qingmao; He, Jingjiang; Liu, Wenjin; Zhong, Minlin

    2005-01-01

    Different weight ratio of titanium, zirconium, WC and Fe-based alloy powders were mixed, and cladded onto a medium carbon steel substrate using a 3kW continuous wave CO2 laser, aiming at producing Ceramic particles- reinforced metal matrix composites (MMCs) layers. The microstructures of the layers are typical hypoeutectic, and the major phases are Ni3Si2, TiSi2, Fe3C, FeNi, MC, Fe7Mo3, Fe3B, γ(residual austenite) and M(martensite). The microstructure morphologies of MMCs layers are dendrites/cells. The MC-type reinforcements are in situ synthesis Carbides which main compositions consist of transition elements Zr, Ti, W. The MC-type particles distributed within dendrite and interdendritic regions with different volume fractions for single and overlapping clad layers. The MMCs layers are dense and free of cracks with a good metallurgical bonding between the layer and substrate. The addition ratio of WC in the mixtures has the remarkable effect on the microhardness of clad layers.

  13. Analytical model of radiation-induced precipitation at the surface of dilute binary alloy

    NASA Astrophysics Data System (ADS)

    Pechenkin, V. A.; Stepanov, I. A.; Konobeev, Yu. V.

    2002-12-01

    Growth of precipitate layer at the foil surface of an undersaturated binary alloy under uniform irradiation is treated analytically. Analytical expressions for the layer growth rate, layer thickness limit and final component concentrations in the matrix are derived for coherent and incoherent precipitate-matrix interfaces. It is shown that the high temperature limit of radiation-induced precipitation is the same for both types of interfaces, whereas layer thickness limits are different. A parabolic law of the layer growth predicted for both types of interfaces is in agreement with experimental data on γ '-phase precipitation at the surface of Ni-Si dilute alloys under ion irradiation. Effect of sputtering on the precipitation rate and on the low temperature limit of precipitation under ion irradiation is discussed.

  14. Fabricating Composite-Material Structures Containing SMA Ribbons

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Cano, Roberto J.; Lach, Cynthia L.

    2003-01-01

    An improved method of designing and fabricating laminated composite-material (matrix/fiber) structures containing embedded shape-memory-alloy (SMA) actuators has been devised. Structures made by this method have repeatable, predictable properties, and fabrication processes can readily be automated. Such structures, denoted as shape-memory-alloy hybrid composite (SMAHC) structures, have been investigated for their potential to satisfy requirements to control the shapes or thermoelastic responses of themselves or of other structures into which they might be incorporated, or to control noise and vibrations. Much of the prior work on SMAHC structures has involved the use SMA wires embedded within matrices or within sleeves through parent structures. The disadvantages of using SMA wires as the embedded actuators include (1) complexity of fabrication procedures because of the relatively large numbers of actuators usually needed; (2) sensitivity to actuator/ matrix interface flaws because voids can be of significant size, relative to wires; (3) relatively high rates of breakage of actuators during curing of matrix materials because of sensitivity to stress concentrations at mechanical restraints; and (4) difficulty of achieving desirable overall volume fractions of SMA wires when trying to optimize the integration of the wires by placing them in selected layers only.

  15. Emission mechanisms in stabilized iron-passivated porous silicon: Temperature and laser power dependences

    NASA Astrophysics Data System (ADS)

    Rahmani, M.; Moadhen, A.; Mabrouk Kamkoum, A.; Zaïbi, M.-A.; Chtourou, R.; Haji, L.; Oueslati, M.

    2012-02-01

    Photoluminescence (PL) measurements of porous silicon (PS) and iron-porous silicon nanocomposites (PS/Fe) with stable optical properties versus temperature and laser power density have been investigated. The presence of iron in PS matrix is confirmed by Raman spectroscopy. The PL intensity of PS and PS/Fe increases at low temperature, the evolution of integrated PL intensity follows the modified Arrhenius model. The incorporation of iron in PS matrix reduces the activation energy traducing the existence of shallow levels related to iron atoms. Also, the temperature dependence of the porous silicon PL peak position follows a linear evolution at high temperature and a quadratic one at low temperature. Such evolution is due to the thermal carriers' redistribution and an energy transfer. Similarly, we have compared the laser power dependence of the PL in PS and PS/Fe layers. The results prove that the recombination process in PS is realised through the lower energy traps localised in the electronic gap. However, the observed emission in PS/Fe is essentially due to direct transitions. So, we can conclude that the presence of iron in PS matrix induces a strong modification of the PL mechanisms.

  16. Composite sizing and ply orientation for stiffness requirements using a large finite element structural model

    NASA Technical Reports Server (NTRS)

    Radovcich, N. A.; Gentile, D. P.

    1989-01-01

    A NASTRAN bulk dataset preprocessor was developed to facilitate the integration of filamentary composite laminate properties into composite structural resizing for stiffness requirements. The NASCOMP system generates delta stiffness and delta mass matrices for input to the flutter derivative program. The flutter baseline analysis, derivative calculations, and stiffness and mass matrix updates are controlled by engineer defined processes under an operating system called CBUS. A multi-layered design variable grid system permits high fidelity resizing without excessive computer cost. The NASCOMP system uses ply layup drawings for basic input. The aeroelastic resizing for stiffness capability was used during an actual design exercise.

  17. Multiple Concentric Cylinder Model (MCCM) user's guide

    NASA Technical Reports Server (NTRS)

    Williams, Todd O.; Pindera, Marek-Jerzy

    1994-01-01

    A user's guide for the computer program mccm.f is presented. The program is based on a recently developed solution methodology for the inelastic response of an arbitrarily layered, concentric cylinder assemblage under thermomechanical loading which is used to model the axisymmetric behavior of unidirectional metal matrix composites in the presence of various microstructural details. These details include the layered morphology of certain types of ceramic fibers, as well as multiple fiber/matrix interfacial layers recently proposed as a means of reducing fabrication-induced, and in-service, residual stress. The computer code allows efficient characterization and evaluation of new fibers and/or new coating systems on existing fibers with a minimum of effort, taking into account inelastic and temperature-dependent properties and different morphologies of the fiber and the interfacial region. It also facilitates efficient design of engineered interfaces for unidirectional metal matrix composites.

  18. Ubiquitylation Functions in the Calcium Carbonate Biomineralization in the Extracellular Matrix

    PubMed Central

    Fang, Dong; Pan, Cong; Lin, Huijuan; Lin, Ya; Xu, Guangrui; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

    2012-01-01

    Mollusks shell formation is mediated by matrix proteins and many of these proteins have been identified and characterized. However, the mechanisms of protein control remain unknown. Here, we report the ubiquitylation of matrix proteins in the prismatic layer of the pearl oyster, Pinctada fucata. The presence of ubiquitylated proteins in the prismatic layer of the shell was detected with a combination of western blot and immunogold assays. The coupled ubiquitins were separated and identified by Edman degradation and liquid chromatography/mass spectrometry (LC/MS). Antibody injection in vivo resulted in large amounts of calcium carbonate randomly accumulating on the surface of the nacreous layer. These ubiquitylated proteins could bind to specific faces of calcite and aragonite, which are the two main mineral components of the shell. In the in vitro calcium carbonate crystallization assay, they could reduce the rate of calcium carbonate precipitation and induce the calcite formation. Furthermore, when the attached ubiquitins were removed, the functions of the EDTA-soluble matrix of the prismatic layer were changed. Their potency to inhibit precipitation of calcium carbonate was decreased and their influence on the morphology of calcium carbonate crystals was changed. Taken together, ubiquitylation is involved in shell formation. Although the ubiquitylation is supposed to be involved in every aspect of biophysical processes, our work connected the biomineralization-related proteins and the ubiquitylation mechanism in the extracellular matrix for the first time. This would promote our understanding of the shell biomineralization and the ubiquitylation processes. PMID:22558208

  19. Production of LEU Fully Ceramic Microencapsulated Fuel for Irradiation Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrani, Kurt A; Kiggans Jr, James O; McMurray, Jake W

    2016-01-01

    Fully Ceramic Microencapsulated (FCM) fuel consists of tristructural isotropic (TRISO) fuel particles embedded inside a SiC matrix. This fuel inherently possesses multiple barriers to fission product release, namely the various coating layers in the TRISO fuel particle as well as the dense SiC matrix that hosts these particles. This coupled with the excellent oxidation resistance of the SiC matrix and the SiC coating layer in the TRISO particle designate this concept as an accident tolerant fuel (ATF). The FCM fuel takes advantage of uranium nitride kernels instead of oxide or oxide-carbide kernels used in high temperature gas reactors to enhancemore » heavy metal loading in the highly moderated LWRs. Production of these kernels with appropriate density, coating layer development to produce UN TRISO particles, and consolidation of these particles inside a SiC matrix have been codified thanks to significant R&D supported by US DOE Fuel Cycle R&D program. Also, surrogate FCM pellets (pellets with zirconia instead of uranium-bearing kernels) have been neutron irradiated and the stability of the matrix and coating layer under LWR irradiation conditions have been established. Currently the focus is on production of LEU (7.3% U-235 enrichment) FCM pellets to be utilized for irradiation testing. The irradiation is planned at INL s Advanced Test Reactor (ATR). This is a critical step in development of this fuel concept to establish the ability of this fuel to retain fission products under prototypical irradiation conditions.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jr., Jie Jerry; Sista, Srinivas Prasad; Shi, Xiaolei

    Optoelectronic devices with enhanced internal outcoupling include a substrate, an anode, a cathode, an electroluminescent layer, and an electron transporting layer comprising inorganic nanoparticles dispersed in an organic matrix.

  1. Metallic and nonmetallic shine in luster: An elastic ion backscattering study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradell, T.; Climent-Font, A.; Molera, J.

    2007-05-15

    Luster is a metal glass nanocomposite layer first produced in the Middle East in early Islamic times (9th AD) made of metal copper or silver nanoparticles embedded in a silica-based glassy matrix. These nanoparticles are produced by ion exchange between Cu{sup +} and Ag{sup +} and alkaline ions from the glassy matrix and further growth in a reducing atmosphere. The most striking property of luster is its capability of reflecting light like a continuous metal layer and it was unexpectedly found to be linked to one single production parameter: the presence of lead in the glassy matrix composition. The purposemore » of this article is to describe the characteristics and differences of the nanoparticle layers developed on lead rich and lead free glasses. Copper luster layers obtained using the ancient recipes and methods are analyzed by means of elastic ion backscattering spectroscopy associated with other analytical techniques. The depth profile of the different elements is determined, showing that the luster layer formed in lead rich glasses is 5-6 times thinner and 3-4 times Cu richer. Therefore, the metal nanoparticles are more densely packed in the layer and this fact is related to its higher reflectivity. It is shown that lead influences the structure of the metal nanoparticle layer through the change of the precipitation kinetics.« less

  2. Juxtaposed Integration Matrix: A Crisis Communication Tool

    DTIC Science & Technology

    2005-05-19

    Integration Matrix: A Crisis Communication Tool 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR (S) 5d. PROJECT NUMBER 5e...for their patience and understanding when Daddy had to do schoolwork. The views expressed in this article are those of the author and do not reflect...62 APPENDIX A JUXTAPOSED INTEGRATION MATRIX TRAINING GUIDE ............................64 B QUESTIONNAIRE WORKSHEET

  3. Modelling the backscatter from spherical cavities in a solid matrix: Can an effective medium layer model mimic the scattering response?

    NASA Astrophysics Data System (ADS)

    Pinfield, Valerie J.; Challis, Richard E.

    2011-01-01

    Industrial applications are increasingly turning to modern composite layered materials to satisfy strength requirements whilst reducing component weight. An important group of such materials are fibre/resin composites in which long fibres are laid down in layers in a resin matrix. Whilst delamination flaws, where layers separate from each other, are detectable using traditional ultrasonic techniques, the presence of porosity in any particular layer is harder to detect. The reflected signal from a layered material can already be modelled successfully by using the acoustic impedance of the layers and summing reflections from layer boundaries. However, it is not yet known how to incorporate porosity into such a model. The aim of the work reported here was to model the backscatter from randomly distributed spherical cavities within one layer, and to establish whether an effective medium, with a derived acoustic impedance, could reproduce the characteristics of that scattering. Since effective medium models are much more readily implemented in simulations of multi-layer structures than scattering per se, it was felt desirable to simplify the scattering response into an effective medium representation. A model was constructed in which spherical cavities were placed randomly in a solid continuous matrix and the system backscattering response was calculated. The scattering from the cavities was determined by using the Rayleigh partial-wave method, and taking the received signal at the transducer to be equivalent to the far field limit. It was concluded that even at relatively low porosity levels, the received signal was still "layer-like" and an effective medium model was a good approximation for the scattering behaviour.

  4. Effect of viscosity of a thermoplastic prepreg and matrix upon winding of rings

    NASA Astrophysics Data System (ADS)

    Stavrov, V. P.; Markov, A. V.; Zhernovskii, A. V.; Friedrich, K. F.

    2000-05-01

    The problem of compression of a unidirectional layer and shear of a polymer interlayer during winding of rings is considered. The equations determining the dependence of the layer thickness and stresses on the parameters entering into the power flow law for a prepreg and polymer matrix and on the basic parameters of the winding process—the initial tension of the prepreg, its placement rate, and the radius of a mandrel—are derived. The ring thickness measurements obtained at various temperatures and initial tension forces of plies confirm the adequacy of the model offered. It is found that the viscous properties of the prepreg and matrix upon winding affect the relative change in the layer thickness to a greater extent than the stresses in these layers. With increase in temperature and tension force upon winding, the effect of viscous deformations of the prepreg and matrix increases. A decrease in viscosity and an increase in the tension force of the tape lead to a higher strength of the ring in tension and interlaminar shear; however, the growing percolation of the polymer melt leads to a greater inhomogeneity of the structure of the composite in the ring and to a lower reinforcing effect of the factors mentioned.

  5. Numerical modelling of transdermal delivery from matrix systems: parametric study and experimental validation with silicone matrices.

    PubMed

    Snorradóttir, Bergthóra S; Jónsdóttir, Fjóla; Sigurdsson, Sven Th; Másson, Már

    2014-08-01

    A model is presented for transdermal drug delivery from single-layered silicone matrix systems. The work is based on our previous results that, in particular, extend the well-known Higuchi model. Recently, we have introduced a numerical transient model describing matrix systems where the drug dissolution can be non-instantaneous. Furthermore, our model can describe complex interactions within a multi-layered matrix and the matrix to skin boundary. The power of the modelling approach presented here is further illustrated by allowing the possibility of a donor solution. The model is validated by a comparison with experimental data, as well as validating the parameter values against each other, using various configurations with donor solution, silicone matrix and skin. Our results show that the model is a good approximation to real multi-layered delivery systems. The model offers the ability of comparing drug release for ibuprofen and diclofenac, which cannot be analysed by the Higuchi model because the dissolution in the latter case turns out to be limited. The experiments and numerical model outlined in this study could also be adjusted to more general formulations, which enhances the utility of the numerical model as a design tool for the development of drug-loaded matrices for trans-membrane and transdermal delivery. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Fuel cell having electrolyte

    DOEpatents

    Wright, Maynard K.

    1989-01-01

    A fuel cell having an electrolyte control volume includes a pair of porous opposed electrodes. A maxtrix is positioned between the pair of electrodes for containing an electrolyte. A first layer of backing paper is positioned adjacent to one of the electrodes. A portion of the paper is substantially previous to the acceptance of the electrolyte so as to absorb electrolyte when there is an excess in the matrix and to desorb electrolyte when there is a shortage in the matrix. A second layer of backing paper is positioned adjacent to the first layer of paper and is substantially impervious to the acceptance of electrolyte.

  7. Mechanical model of suture joints with fibrous connective layer

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, Kateryna; Liu, Lei; Tsukrov, Igor; Li, Yaning

    2018-02-01

    A composite model for suture joints with a connective layer of aligned fibers embedded in soft matrix is proposed. Based on the principle of complementary virtual work, composite cylinder assemblage (CCA) approach and generalized self-consistent micro-mechanical models, a hierarchical homogenization methodology is developed to systematically quantify the synergistic effects of suture morphology and fiber orientation on the overall mechanical properties of sutures. Suture joints with regular triangular wave-form serve as an example material system to apply this methodology. Both theoretical and finite element mechanical models are developed and compared to evaluate the overall normal stiffness of sutures as a function of wavy morphology of sutures, fiber orientation, fiber volume fraction, and the mechanical properties of fibers and matrix in the interfacial layer. It is found that generally due to the anisotropy-induced coupling effects between tensile and shear deformation, the effective normal stiffness of sutures is highly dependent on the fiber orientation in the connective layer. Also, the effective shear modulus of the connective layer and the stiffness ratio between the fiber and matrix significantly influence the effects of fiber orientation. In addition, optimal fiber orientations are found to maximize the stiffness of suture joints.

  8. Layer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor.

    PubMed

    Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong

    2015-09-18

    A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs- GOD)₄/Au biosensor exhibited a good linear range of 0.01-8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance.

  9. The influence of matrix composition and reinforcement type on the properties of polysialate composites

    NASA Astrophysics Data System (ADS)

    Hammell, James A.

    There is a critical need for the development of materials for eliminating fire as a cause of death in aircraft accidents. Currently available composites that use organic matrices not only deteriorate at temperatures above 300°C but also emit toxic fumes. The results presented in this dissertation focus on the development of an inorganic matrix that does not burn or emit toxic fumes. The matrix, known as polysialate, can withstand temperatures in excess of 1000°C. The matrix behaves like a ceramic, but does not need high curing temperatures, so it can be processed like many common organic matrices. The major parameters evaluated in this dissertation are: (i) Influence of reinforcement type, (ii) Matrix formulation for both wet-dry durability and high temperature resistance, (iii) Influence of processing variables such as moisture reduction and storage, (iv) Tensile strain capacity of modified matrices and matrices reinforced with ceramic microfibers and discrete carbon fibers, and (v) analytical modeling of mechanical properties. For the reinforcement type; carbon, glass, and stainless steel wire fabrics were investigated. Carbon fabrics with 1, 3, 12, and 50k tows were used. A matrix chemical formulation that can withstand wetting and drying was developed. This formulation was tested at high temperatures to ascertain its stability above 400°C. On the topic of processing, shelf life of prepregged fabric layers and efficient moisture removal methods were studied. An analytical model based on layered reinforcement was developed for analyzing flexural specimens. It is shown that the new inorganic matrix can withstand wetting and drying, and also high temperature. The layered reinforcement concept provides accurate prediction of strength and stiffness for composites reinforced with 1k and 3k tows. The prepregged fabric layers can be stored for 14 days at -15°C without losing strength.

  10. An Efficient Spectral Method for Ordinary Differential Equations with Rational Function Coefficients

    NASA Technical Reports Server (NTRS)

    Coutsias, Evangelos A.; Torres, David; Hagstrom, Thomas

    1994-01-01

    We present some relations that allow the efficient approximate inversion of linear differential operators with rational function coefficients. We employ expansions in terms of a large class of orthogonal polynomial families, including all the classical orthogonal polynomials. These families obey a simple three-term recurrence relation for differentiation, which implies that on an appropriately restricted domain the differentiation operator has a unique banded inverse. The inverse is an integration operator for the family, and it is simply the tridiagonal coefficient matrix for the recurrence. Since in these families convolution operators (i.e. matrix representations of multiplication by a function) are banded for polynomials, we are able to obtain a banded representation for linear differential operators with rational coefficients. This leads to a method of solution of initial or boundary value problems that, besides having an operation count that scales linearly with the order of truncation N, is computationally well conditioned. Among the applications considered is the use of rational maps for the resolution of sharp interior layers.

  11. Differential 3D Mueller-matrix mapping of optically anisotropic depolarizing biological layers

    NASA Astrophysics Data System (ADS)

    Ushenko, O. G.; Grytsyuk, M.; Ushenko, V. O.; Bodnar, G. B.; Vanchulyak, O.; Meglinskiy, I.

    2018-01-01

    The paper consists of two parts. The first part is devoted to the short theoretical basics of the method of differential Mueller-matrix description of properties of partially depolarizing layers. It was provided the experimentally measured maps of differential matrix of the 2nd order of polycrystalline structure of the histological section of rectum wall tissue. It was defined the values of statistical moments of the1st-4th orders, which characterize the distribution of matrix elements. In the second part of the paper it was provided the data of statistic analysis of birefringence and dichroism of the histological sections of connecting component of vagina wall tissue (normal and with prolapse). It were defined the objective criteria of differential diagnostics of pathologies of vagina wall.

  12. Fabrication and Characterization of Plasma-Sprayed Carbon-Fiber-Reinforced Aluminum Composites

    NASA Astrophysics Data System (ADS)

    Xiong, Jiang-tao; Zhang, Hao; Peng, Yu; Li, Jing-long; Zhang, Fu-sheng

    2018-04-01

    Carbon fiber ( C f)/Al specimens were fabricated by plasma-spraying aluminum powder on unidirectional carbon fiber bundles (CFBs) layer by layer, followed by a densification heat treatment process. The microstructure and chemical composition of the C f/Al composites were examined by scanning electron microscopy and energy-dispersive spectrometry. The CFBs were completely enveloped by aluminum matrix, and the peripheral regions of the CFBs were wetted by aluminum. In the wetted region, no significant Al4C3 reaction layer was found at the interface between the carbon fibers and aluminum matrix. The mechanical properties of the C f/Al specimens were evaluated. When the carbon fiber volume fraction (CFVF) was 9.2%, the ultimate tensile strength (UTS) of the C f/Al composites reached 138.3 MPa with elongation of 4.7%, 2.2 times the UTS of the Al matrix (i.e., 63 MPa). This strength ratio (between the UTS of C f/Al and the Al matrix) is higher than for most C f/Al composites fabricated by the commonly used method of liquid-based processing at the same CFVF level.

  13. A Perron-Frobenius theory for block matrices associated to a multiplex network

    NASA Astrophysics Data System (ADS)

    Romance, Miguel; Solá, Luis; Flores, Julio; García, Esther; García del Amo, Alejandro; Criado, Regino

    2015-03-01

    The uniqueness of the Perron vector of a nonnegative block matrix associated to a multiplex network is discussed. The conclusions come from the relationships between the irreducibility of some nonnegative block matrix associated to a multiplex network and the irreducibility of the corresponding matrices to each layer as well as the irreducibility of the adjacency matrix of the projection network. In addition the computation of that Perron vector in terms of the Perron vectors of the blocks is also addressed. Finally we present the precise relations that allow to express the Perron eigenvector of the multiplex network in terms of the Perron eigenvectors of its layers.

  14. Method of manufacturing a matrix for the detection of mismatches

    DOEpatents

    Ershov, Gennady Moiseevich; Mirzabekov, Andrei Darievich

    1998-01-01

    This method for preparing micromatrices consists in applying a specially-patterned intermediate layer of laser-absorbing substance on a solid support. The configuration of the sublayer fully corresponds to the topology of the manufactured matrix. The intermediate layer is further covered by a continuous layer of gel , the gel and the material of the support being transparent towards laser radiation. The gel layer is irradiated by a laser beam for a time needed to evaporate simultaneously the gel in the places immediately above the laser-absorbing sublayer and the sublayer itself. Oligonucleotides from a chosen set are then attached to the formed gel `cells`, one oligonucleotide to each cell. This method is intended for use in biotechnology, specifically for deciphering the nucleotide sequence of DNA.

  15. Mechanical Adaptability of the MMP-Responsive Film Improves the Functionality of Endothelial Cell Monolayer.

    PubMed

    Hu, Mi; Chang, Hao; Zhang, He; Wang, Jing; Lei, Wen-Xi; Li, Bo-Chao; Ren, Ke-Feng; Ji, Jian

    2017-07-01

    Extracellular matrix and cells are inherent in coordinating and adapting to each other during all physiological and pathological processes. Synthetic materials, however, show rarely reciprocal and spatiotemporal responses to cells, and lacking self-adapting properties as well. Here, a mechanical adaptability based on the matrix metalloproteinase (MMPs) sensitive polyelectrolyte film is reported. Poly-lysine (PLL) and methacrylated hyaluronic acid (HA-MA) nanolayers are employed to build the thin film through the layer-by-layer assembly, and it is further crosslinked using MMP sensitive peptides, which endows the films with changeable mechanical properties in response to MMPs. It is demonstrated that stiffness of the (PLL/HA-MA) films increases with the crosslinking, and then decreases in response to a treatment of enzyme. Consequently, the crosslinked (PLL/HA-MA) films reveal effective growth of endothelial cells (ECs), leading to fast formation of EC monolayer. Importantly, significantly improved endothelial function of the EC monolayer, which is characterized by integrity, biomolecules release, expression of function related gene, and antithrombotic properties, is achieved along with the decrosslinking of the film because of EC-secreted MMPs. These results suggest that mechanical adaptability of substrate in Young's modulus plays a significant role in endothelial progression, which shows great application potential in tissue engineering, regenerative medicine, and organ-on-a-chip. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Identification and Characterization of the Lysine-Rich Matrix Protein Family in Pinctada fucata: Indicative of Roles in Shell Formation.

    PubMed

    Liang, Jian; Xie, Jun; Gao, Jing; Xu, Chao-Qun; Yan, Yi; Jia, Gan-Chu; Xiang, Liang; Xie, Li-Ping; Zhang, Rong-Qing

    2016-12-01

    Mantle can secret matrix proteins playing key roles in regulating the process of shell formation. The genes encoding lysine-rich matrix proteins (KRMPs) are one of the most highly expressed matrix genes in pearl oysters. However, the expression pattern of KRMPs is limited and the functions of them still remain unknown. In this study, we isolated and identified six new members of lysine-rich matrix proteins, rich in lysine, glycine and tyrosine, and all of them are basic matrix proteins. Combined with four members of the KRMPs previously reported, all these proteins can be divided into three subclasses according to the results of phylogenetic analyses: KRMP1-3 belong to subclass KPI, KRMP4-5 belong to KPII, and KRMP6-10 belong to KPIII. Three subcategories of lysine-rich matrix proteins are highly expressed in the D-phase, the larvae and adult mantle. Lysine-rich matrix proteins are involved in the shell repairing process and associated with the formation of the shell and pearl. What's more, they can cause abnormal shell growth after RNA interference. In detail, KPI subgroup was critical for the beginning formation of the prismatic layer; both KPII and KPIII subgroups participated in the formation of prismatic layer and nacreous layer. Compared with different temperatures and salinity stimulation treatments, the influence of changes in pH on KRMPs gene expression was the greatest. Recombinant KRMP7 significantly inhibited CaCO 3 precipitation, changed the morphology of calcite, and inhibited the growth of aragonite in vitro. Our results are beneficial to understand the functions of the KRMP genes during shell formation.

  17. A model to predict thermal conductivity of irradiated U–Mo dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkes, Douglas E.; Huber, Tanja K.; Casella, Andrew M.

    The Office of Materials Management and Minimization Reactor Conversion Program continues to develop existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. The program is focused on assisting with the development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layermore » formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions.« less

  18. Potential role of surface wettability on the long-term stability of dentin bonds after surface biomodification

    PubMed Central

    Leme, Ariene A.; Vidal, Cristina M. P.; Hassan, Lina Saleh; Bedran-Russo, Ana K.

    2015-01-01

    Degradation of the adhesive interface contributes to the failure of resin composite restorations. The hydrophilicity of the dentin matrix during and after bonding procedures may result in an adhesive interface that is more prone to degradation over time. This study assessed the effect of chemical modification of dentin matrix on the wettability and the long-term reduced modulus of elasticity (Er) of the adhesive interfaces. Human molars were divided into groups according to the priming solutions: distilled water (control), 6.5% Proanthocyanidin-rich grape seed extract (PACs), 5.75% 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/1.4% n-hydroxysuccinimide (EDC/NHS) and 5% Glutaraldehyde (GA). The water-surface contact angle was verified before and after chemical modification of the dentin matrix. The demineralized dentin surface was treated with the priming solutions and restored with One Step Plus (OS) and Single Bond Plus (SB) and resin composite. The Er of the adhesive, hybrid layer and underlying dentin was evaluated after 24 h and 30 months in artificial saliva. The dentin hydrophilicity significantly decreased after application of the priming solutions. Aging significantly decreased the Er in the hybrid layer and underlying dentin of control groups. The Er of GA groups remained stable over time at the hybrid layer and underlying dentin. Significant higher Er was observed for PACs and EDC/NHS groups at the hybrid layer after 24 h. The decreased hydrophilicity of the modified dentin matrix likely influence the immediate mechanical properties of the hybrid layer. Dentin biomodification prevented substantial aging at the hybrid layer and underlying dentin after 30 months storage. PMID:25869721

  19. Solid-perforated panel layout optimization by topology optimization based on unified transfer matrix.

    PubMed

    Kim, Yoon Jae; Kim, Yoon Young

    2010-10-01

    This paper presents a numerical method for the optimization of the sequencing of solid panels, perforated panels and air gaps and their respective thickness for maximizing sound transmission loss and/or absorption. For the optimization, a method based on the topology optimization formulation is proposed. It is difficult to employ only the commonly-used material interpolation technique because the involved layers exhibit fundamentally different acoustic behavior. Thus, an optimization method formulation using a so-called unified transfer matrix is newly proposed. The key idea is to form elements of the transfer matrix such that interpolated elements by the layer design variables can be those of air, perforated and solid panel layers. The problem related to the interpolation is addressed and bench mark-type problems such as sound transmission or absorption maximization problems are solved to check the efficiency of the developed method.

  20. Analysis of the release process of phenylpropanolamine hydrochloride from ethylcellulose matrix granules II. effects of the binder solution on the release process.

    PubMed

    Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu

    2004-03-01

    The release properties of phenylpropanolamine hydrochloride (PPA) from ethylcellulose (EC) matrix granules prepared by an extrusion granulation method were examined. The release process could be divided into two parts; the first and second stages were analyzed by applying square-root time law and cube-root law equations, respectively. The validity of the treatments was confirmed by the fitness of a simulation curve with the measured curve. In the first stage, PPA was released from the gel layer of swollen EC in the matrix granules. In the second stage, the drug existing below the gel layer dissolved and was released through the gel layer. The effect of the binder solution on the release from EC matrix granules was also examined. The binder solutions were prepared from various EC and ethanol (EtOH) concentrations. The media changed from a good solvent to a poor solvent with decreasing EtOH concentration. The matrix structure changed from loose to compact with increasing EC concentration. The preferable EtOH concentration region was observed when the release process was easily predictable. The time and release ratio at the connection point of the simulation curves were also examined to determine the validity of the analysis.

  1. Microstructural study of brass matrix internal tin multifilamentary Nb3Sn superconductors

    NASA Astrophysics Data System (ADS)

    Banno, Nobuya; Miyamoto, Yasuo; Tachikawa, Kyoji

    2018-03-01

    Zn addition to the Cu matrix in internal-tin-processed Nb3Sn superconductors is attractive in terms of the growth kinetics of the Nb3Sn layers. Sn activity is enhanced in the Cu-Zn (brass) matrix, which accelerates Nb3Sn layer formation. Here, we prepared multifilamentary wires using a brass matrix with a Nb core diameter of less than 10 μm and investigated the potential for further Jc improvement through microstructural and microchemical studies. Ti was added into the Sn cores in the precursor wire. Microchemical analysis showed that Ti accumulates between subelements consisting of Nb cores, which blocks Sn diffusion through this region when the spacing between the subelements in the precursor wire is a few microns. The average grain size was found to be about 230 nm through image analysis. To date, matrix Jc values of 1470 and 640 A/mm-2 have been obtained at 12 and 16 T, respectively. The area fraction of Nb cores in the filamentary region of the precursor wire was about 36.3%. There was still some unreacted Nb core area after heat treatment. Insufficient Ti diffusion into the Nb3Sn layers was identified in the outer subelements. These findings suggest that there is still room for improvement in Jc.

  2. Two-dimensional integrating matrices on rectangular grids. [solving differential equations associated with rotating structures

    NASA Technical Reports Server (NTRS)

    Lakin, W. D.

    1981-01-01

    The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.

  3. 76 FR 2243 - List of Approved Spent Fuel Storage Casks: NUHOMS ® HD System Revision 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... the requirements of reconstituted fuel assemblies; add requirements to qualify metal matrix composite... requirements to qualify metal matrix composite neutron absorbers with integral aluminum cladding; clarify the... requirements to qualify metal matrix composite neutron absorbers with integral aluminum cladding; clarify the...

  4. Formulation and Evaluation of Fixed-Dose Combination of Bilayer Gastroretentive Matrix Tablet Containing Atorvastatin as Fast-Release and Atenolol as Sustained-Release

    PubMed Central

    Dey, Sanjay; Chattopadhyay, Sankha; Mazumder, Bhaskar

    2014-01-01

    The objective of the present study was to develop bilayer tablets of atorvastatin and atenolol that are characterized by initial fast-release of atorvastatin in the stomach and comply with the release requirements of sustained-release of atenolol. An amorphous, solvent evaporation inclusion complex of atorvastatin with β-cyclodextrin, present in 1 : 3 (drug/cyclodextrin) molar ratio, was employed in the fast-release layer to enhance the dissolution of atorvastatin. Xanthan gum and guar gum were integrated in the sustained-release layer. Bilayer tablets composed of sustained-release layer (10% w/w of xanthan gum and guar gum) and fast-release layer [1 : 3 (drug/cyclodextrin)] showed the desired release profile. The atorvastatin contained in the fast-release layer showed an initial fast-release of more than 60% of its drug content within 2 h, followed by sustained release of the atenolol for a period of 12 h. The pharmacokinetic study illustrated that the fast absorption and increased oral bioavailability of atorvastatin as well as therapeutic concentration of atenolol in blood were made available through adoption of formulation strategy of bilayer tablets. It can be concluded that the bilayer tablets of atorvastatin and atenolol can be successfully employed for the treatment of hypertension and hypercholesterolemia together through oral administration of single tablet. PMID:24527446

  5. Aluminium surface treatment with ceramic phases using diode laser

    NASA Astrophysics Data System (ADS)

    Labisz, K.; Tański, T.; Brytan, Z.; Pakieła, W.; Wiśniowski, M.

    2016-07-01

    Ceramic particles powder feeding into surface layer of engineering metal alloy is a well-known and widely used technique. New approach into the topic is to obtain finely distributed nano-sized particles involved in the aluminium matrix using the traditional laser technology. In this paper are presented results of microstructure investigation of cast aluminium-silicon-copper alloys surface layer after heat treatment and alloying with ceramic carbides of WC and ZrO2 using high-power diode laser. The surface layer was specially prepared for the reason of reducing the reflectivity, which is the main problem in the up-to-date metal matrix composites production. With scanning electron microscopy, it was possible to determine the deformation process and distribution of WC and ZrO2 ceramic powder phase. Structure of the surface after laser treatment changes, revealing three zones—remelting zone, heat-affected zone and transition zone placed over the Al substrate. The structural changes of ceramic powder, its distribution and morphology as well as microstructure of the matrix material influence on functional properties, especially wear resistance and hardness of the achieved layer, were investigated.

  6. Optimization of Residual Stresses in MMC's Using Compensating/Compliant Interfacial Layers. Part 2: OPTCOMP User's Guide

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Salzar, Robert S.; Williams, Todd O.

    1994-01-01

    A user's guide for the computer program OPTCOMP is presented in this report. This program provides a capability to optimize the fabrication or service-induced residual stresses in uni-directional metal matrix composites subjected to combined thermo-mechanical axisymmetric loading using compensating or compliant layers at the fiber/matrix interface. The user specifies the architecture and the initial material parameters of the interfacial region, which can be either elastic or elastoplastic, and defines the design variables, together with the objective function, the associated constraints and the loading history through a user-friendly data input interface. The optimization procedure is based on an efficient solution methodology for the elastoplastic response of an arbitrarily layered multiple concentric cylinder model that is coupled to the commercial optimization package DOT. The solution methodology for the arbitrarily layered cylinder is based on the local-global stiffness matrix formulation and Mendelson's iterative technique of successive elastic solutions developed for elastoplastic boundary-value problems. The optimization algorithm employed in DOT is based on the method of feasible directions.

  7. Tribological Properties of AlSi12-Al₂O₃ Interpenetrating Composite Layers in Comparison with Unreinforced Matrix Alloy.

    PubMed

    Dolata, Anna Janina

    2017-09-06

    Alumina-Aluminum composites with interpenetrating network structures are a new class of advanced materials with potentially better properties than composites reinforced by particles or fibers. Local casting reinforcement was proposed to take into account problems with the machinability of this type of materials and the shaping of the finished products. The centrifugal infiltration process fabricated composite castings in the form of locally reinforced shafts. The main objective of the research presented in this work was to compare the tribological properties (friction coefficient, wear resistance) of AlSi12/Al₂O₃ interpenetrating composite layers with unreinforced AlSi12 matrix areas. Profilometric tests enabled both quantitative and qualitative analyses of the wear trace that formed on investigated surfaces. It has been shown that interpenetrating composite layers are characterized by lower and more stable coefficients of friction (μ), as well as higher wear resistance than unreinforced matrix areas. At the present stage, the study confirmed that the tribological properties of the composite layers depend on the spatial structure of the ceramic reinforcement, and primarily the volume and size of alumina foam cells.

  8. Formation of multicomponent matrix metal oxide films in anodic alumina matrixes by chemical deposition

    NASA Astrophysics Data System (ADS)

    Gorokh, G. G.; Zakhlebayeva, A. I.; Metla, A. I.; Zhilinskiy, V. V.; Murashkevich, A. N.; Bogomazova, N. V.

    2017-11-01

    The metal oxide films of SnxZnyOz and SnxMoyOz systems deposited onto anodic alumina matrixes by chemical and ion layering from an aqueous solutions were characterized by scanning electron microscopy, Raman spectroscopy, electron probe X-ray microanalysis and IR spectroscopy. The obtained matrix films had reproducible composition and structure and possessed certain morphological characteristics and properties.

  9. The Cauchy Two-Matrix Model, C-Toda Lattice and CKP Hierarchy

    NASA Astrophysics Data System (ADS)

    Li, Chunxia; Li, Shi-Hao

    2018-06-01

    This paper mainly talks about the Cauchy two-matrix model and its corresponding integrable hierarchy with the help of orthogonal polynomial theory and Toda-type equations. Starting from the symmetric reduction in Cauchy biorthogonal polynomials, we derive the Toda equation of CKP type (or the C-Toda lattice) as well as its Lax pair by introducing time flows. Then, matrix integral solutions to the C-Toda lattice are extended to give solutions to the CKP hierarchy which reveals the time-dependent partition function of the Cauchy two-matrix model is nothing but the τ -function of the CKP hierarchy. At last, the connection between the Cauchy two-matrix model and Bures ensemble is established from the point of view of integrable systems.

  10. Gene evolution and functions of extracellular matrix proteins in teeth

    PubMed Central

    Yoshizaki, Keigo; Yamada, Yoshihiko

    2013-01-01

    The extracellular matrix (ECM) not only provides physical support for tissues, but it is also critical for tissue development, homeostasis and disease. Over 300 ECM molecules have been defined as comprising the “core matrisome” in mammals through the analysis of whole genome sequences. During tooth development, the structure and functions of the ECM dynamically change. In the early stages, basement membranes (BMs) separate two cell layers of the dental epithelium and the mesenchyme. Later in the differentiation stages, the BM layer is replaced with the enamel matrix and the dentin matrix, which are secreted by ameloblasts and odontoblasts, respectively. The enamel matrix genes and the dentin matrix genes are each clustered in two closed regions located on human chromosome 4 (mouse chromosome 5), except for the gene coded for amelogenin, the major enamel matrix protein, which is located on the sex chromosomes. These genes for enamel and dentin matrix proteins are derived from a common ancestral gene, but as a result of evolution, they diverged in terms of their specific functions. These matrix proteins play important roles in cell adhesion, polarity, and differentiation and mineralization of enamel and dentin matrices. Mutations of these genes cause diseases such as odontogenesis imperfect (OI) and amelogenesis imperfect (AI). In this review, we discuss the recently defined terms matrisome and matrixome for ECMs, as well as focus on genes and functions of enamel and dentin matrix proteins. PMID:23539364

  11. Solid Freeform Fabrication of Composite-Material Objects

    NASA Technical Reports Server (NTRS)

    Wang, C. Jeff; Yang, Jason; Jang, Bor Z.

    2005-01-01

    Composite solid freeform fabrication (C-SFF) or composite layer manufacturing (CLM) is an automated process in which an advanced composite material (a matrix reinforced with continuous fibers) is formed into a freestanding, possibly complex, three-dimensional object. In CLM, there is no need for molds, dies, or other expensive tooling, and there is usually no need for machining to ensure that the object is formed to the desired net size and shape. CLM is a variant of extrusion-type rapid prototyping, in which a model or prototype of a solid object is built up by controlled extrusion of a polymeric or other material through an orifice that is translated to form patterned layers. The second layer is deposited on top of the first layer, the third layer is deposited on top of the second layer, and so forth, until the stack of layers reaches the desired final thickness and shape. The elements of CLM include (1) preparing a matrix resin in a form in which it will solidify subsequently, (2) mixing the fibers and matrix material to form a continuous pre-impregnated tow (also called "towpreg"), and (3) dispensing the pre-impregnated tow from a nozzle onto a base while moving the nozzle to form the dispensed material into a patterned layer of controlled thickness. When the material deposited into a given layer has solidified, the material for the next layer is deposited and patterned similarly, and so forth, until the desired overall object has been built up as a stack of patterned layers. Preferably, the deposition apparatus is controlled by a computer-aided design (CAD) system. The basic CLM concept can be adapted to the fabrication of parts from a variety of matrix materials. It is conceivable that a CLM apparatus could be placed at a remote location on Earth or in outer space where (1) spare parts are expected to be needed but (2) it would be uneconomical or impractical to store a full inventory of spare parts. A wide variety of towpregs could be prepared and stored on spools until needed. Long-shelf-life towpreg materials suitable for such use could include thermoplastic-coated carbon fibers and metal-coated SiC fibers. When a spare part was needed, the part could be fabricated by CLM under control by a CAD data file; thus, the part could be built automatically, at the scene, within hours or minutes.

  12. Structural health monitoring of inflatable structures for MMOD impacts

    NASA Astrophysics Data System (ADS)

    Anees, Muhammad; Gbaguidi, Audrey; Kim, Daewon; Namilae, Sirish

    2017-04-01

    Inflatable structures for space habitat are highly prone to damage caused by micrometeoroid and orbital debris impacts. Although the structures are effectively shielded against these impacts through multiple layers of impact resistant materials, there is a necessity for a health monitoring system to monitor the structural integrity and damage state within the structures. Assessment of damage is critical for the safety of personnel in the space habitat, as well as predicting the repair needs and the remaining useful life of the habitat. In this paper, we propose a unique impact detection and health monitoring system based on hybrid nanocomposite sensors. The sensors are composed of two fillers, carbon nanotubes and coarse graphene platelets with an epoxy matrix material. The electrical conductivity of these flexible nanocomposite sensors is highly sensitive to strains as well as presence of any holes and damage in the structure. The sensitivity of the sensors to the presence of 3mm holes due to an event of impact is evaluated using four point probe electrical resistivity measurements. An array of these sensors when sandwiched between soft good layers in a space habitat can act as a damage detection layer for inflatable structures. An algorithm is developed to determine the event of impact, its severity and location on the sensing layer for active health monitoring.

  13. In-plane time-harmonic elastic wave motion and resonance phenomena in a layered phononic crystal with periodic cracks.

    PubMed

    Golub, Mikhail V; Zhang, Chuanzeng

    2015-01-01

    This paper presents an elastodynamic analysis of two-dimensional time-harmonic elastic wave propagation in periodically multilayered elastic composites, which are also frequently referred to as one-dimensional phononic crystals, with a periodic array of strip-like interior or interface cracks. The transfer matrix method and the boundary integral equation method in conjunction with the Bloch-Floquet theorem are applied to compute the elastic wave fields in the layered periodic composites. The effects of the crack size, spacing, and location, as well as the incidence angle and the type of incident elastic waves on the wave propagation characteristics in the composite structure are investigated in details. In particular, the band-gaps, the localization and the resonances of elastic waves are revealed by numerical examples. In order to understand better the wave propagation phenomena in layered phononic crystals with distributed cracks, the energy flow vector of Umov and the corresponding energy streamlines are visualized and analyzed. The numerical results demonstrate that large energy vortices obstruct elastic wave propagation in layered phononic crystals at resonance frequencies. They occur before the cracks reflecting most of the energy transmitted by the incoming wave and disappear when the problem parameters are shifted from the resonant ones.

  14. Self-Healing Laminate System

    NASA Technical Reports Server (NTRS)

    Keller, Michael W. (Inventor); White, Scott R. (Inventor); Beiermann, Brett A. (Inventor); Sottos, Nancy R. (Inventor)

    2016-01-01

    A laminate material may include a first flexible layer, and a self-healing composite layer in contact with the first flexible layer. The composite layer includes an elastomer matrix, a plurality of first capsules including a polymerizer, and a corresponding activator for the polymerizer. The laminate material may self-heal when subjected to a puncture or a tear.

  15. Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus embryonic spicules

    NASA Technical Reports Server (NTRS)

    Killian, C. E.; Wilt, F. H.

    1996-01-01

    In the present study, we enumerate and characterize the proteins that comprise the integral spicule matrix of the Strongylocentrotus purpuratus embryo. Two-dimensional gel electrophoresis of [35S]methionine radiolabeled spicule matrix proteins reveals that there are 12 strongly radiolabeled spicule matrix proteins and approximately three dozen less strongly radiolabeled spicule matrix proteins. The majority of the proteins have acidic isoelectric points; however, there are several spicule matrix proteins that have more alkaline isoelectric points. Western blotting analysis indicates that SM50 is the spicule matrix protein with the most alkaline isoelectric point. In addition, two distinct SM30 proteins are identified in embryonic spicules, and they have apparent molecular masses of approximately 43 and 46 kDa. Comparisons between embryonic spicule matrix proteins and adult spine integral matrix proteins suggest that the embryonic 43-kDa SM30 protein is an embryonic isoform of SM30. An adult 49-kDa spine matrix protein is also identified as a possible adult isoform of SM30. Analysis of the SM30 amino acid sequences indicates that a portion of SM30 proteins is very similar to the carbohydrate recognition domain of C-type lectin proteins.

  16. Characterization of Novel Thin-Films and Structures for Integrated Circuit and Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao

    Thin films have been widely used in various applications. This research focuses on the characterization of novel thin films in the integrated circuits and photovoltaic techniques. The ion implanted layer in silicon can be treated as ion implanted thin film, which plays an essential role in the integrated circuits fabrication. Novel rapid annealing methods, i.e. microwave annealing and laser annealing, are conducted to activate ion dopants and repair the damages, and then are compared with the conventional rapid thermal annealing (RTA). In terms of As+ and P+ implanted Si, the electrical and structural characterization confirms that the microwave and laser annealing can achieve more efficient dopant activation and recrystallization than conventional RTA. The efficient dopant activation in microwave annealing is attributed to ion hopping under microwave field, while the liquid phase growth in laser annealing provides its efficient dopant activation. The characterization of dopants diffusion shows no visible diffusion after microwave annealing, some extent of end range of diffusion after RTA, and significant dopant diffusion after laser annealing. For photovoltaic applications, an indium-free novel three-layer thin-film structure (transparent composited electrode (TCE)) is demonstrated as a promising transparent conductive electrode for solar cells. The characterization of TCE mainly focuses on its optical and electrical properties. Transfer matrix method for optical transmittance calculation is validated and proved to be a desirable method for predicting transmittance of TCE containing continuous metal layer, and can estimate the trend of transmittance as the layer thickness changes. TiO2/Ag/TiO2 (TAgT) electrode for organic solar cells (OSCs) is then designed using numerical simulation and shows much higher Haacke figure of merit than indium tin oxide (ITO). In addition, TAgT based OSC shows better performance than ITO based OSC when compatible hole transfer layer is employed. The electrical and structural characterization of hole transfer layers (HTLs) in OSCs reveals MoO3 is the compatible HTL for TAgT anode. In the end, the reactive ink printed Ag film for solar cell contact application is studied by characterizing its electromigration lifetime. A percolative model is proposed and validated for predicting the resistivity and lifetime of printed Ag thin films containing porous structure.

  17. Numerical Model of Multiple Scattering and Emission from Layering Snowpack for Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Liang, Z.

    2002-12-01

    The vector radiative transfer (VRT) equation is an integral-deferential equation to describe multiple scattering, absorption and transmission of four Stokes parameters in random scatter media. From the integral formal solution of VRT equation, the lower order solutions, such as the first-order scattering for a layer medium or the second order scattering for a half space, can be obtained. The lower order solutions are usually good at low frequency when high-order scattering is negligible. It won't be feasible to continue iteration for obtaining high order scattering solution because too many folds integration would be involved. In the space-borne microwave remote sensing, for example, the DMSP (Defense Meterological Satellite Program) SSM/I (Special Sensor Microwave/Imager) employed seven channels of 19, 22, 37 and 85GHz. Multiple scattering from the terrain surfaces such as snowpack cannot be neglected at these channels. The discrete ordinate and eigen-analysis method has been studied to take into account for multiple scattering and applied to remote sensing of atmospheric precipitation, snowpack etc. Snowpack was modeled as a layer of dense spherical particles, and the VRT for a layer of uniformly dense spherical particles has been numerically studied by the discrete ordinate method. However, due to surface melting and refrozen crusts, the snowpack undergoes stratifying to form inhomegeneous profiles of the ice grain size, fractional volume and physical temperature etc. It becomes necessary to study multiple scattering and emission from stratified snowpack of dense ice grains. But, the discrete ordinate and eigen-analysis method cannot be simply applied to multi-layers model, because numerically solving a set of multi-equations of VRT is difficult. Stratifying the inhomogeneous media into multi-slabs and employing the first order Mueller matrix of each thin slab, this paper developed an iterative method to derive high orders scattering solutions of whole scatter media. High order scattering and emission from inhomogeneous stratifying media of dense spherical particles are numerically obtained. The brightness temperature at low frequency such as 5.3 GHz without high order scattering and at SSM/I channels with high order scattering are obtained. This approach is also compared with the conventional discrete ordinate method for an uniform layer model. Numerical simulation for inhomogeneous snowpack is also compared with the measurements of microwave remote sensing.

  18. Birefringence measurement of retinal nerve fiber layer using polarization-sensitive spectral domain optical coherence tomography with Jones matrix based analysis

    NASA Astrophysics Data System (ADS)

    Yamanari, Masahiro; Miura, Masahiro; Makita, Shuichi; Yatagai, Toyohiko; Yasuno, Yoshiaki

    2007-02-01

    Birefringence of retinal nerve fiber layer is measured by polarization-sensitive spectral domain optical coherence tomography using the B-scan-oriented polarization modulation method. Birefringence of the optical fiber and the cornea is compensated by Jones matrix based analysis. Three-dimensional phase retardation map around the optic nerve head and en-face phase retardation map of the retinal nerve fiber layer are shown. Unlike scanning laser polarimetry, our system can measure the phase retardation quantitatively without using bow-tie pattern of the birefringence in the macular region, which enables diagnosis of glaucoma even if the patients have macular disease.

  19. Coagulation of linear carbon molecules into nanoparticles: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yasutaka; Wakabayashi, Tomonari

    2004-04-01

    Using molecular dynamics (MD) simulations, the coagulation of carbon chain molecules that occurs on the subliming surface of a carbon-containing rare-gas matrix is investigated. Intermolecular connections with dangling bonds enhance the sublimation of the matrix and that results in the emission of a layer of nested carbon chains into vacuum at a velocity about 100 m/s. The following conversion from carbon sp- to more stable sp 2-type bonds heats up the carbon material above 3000 K. During this process, the nested carbon layer self-anneals via a graphitic mono-layer into a conjunct array of particles with a dimension about 10 nm.

  20. Metal/fiber laminate and fabrication using a porous metal/fiber preform

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J. (Inventor); Alexa, Joel A. (Inventor); Jensen, Brian J. (Inventor); Cano, Roberto J. (Inventor); Weiser, Erik S. (Inventor)

    2011-01-01

    A metal/fiber laminate has a plurality of adjacent layers. Each layer is porous and includes an arrangement of fibers. At least one of the layers has its fibers coated with a metal. A polymer matrix permeates each such arrangement.

  1. Metal/fiber laminate and fabrication using a porous metal/fiber preform

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J. (Inventor); Alexa, Joel A. (Inventor); Jensen, Brian J. (Inventor); Cano, Roberto J. (Inventor); Weiser, Erik S. (Inventor)

    2010-01-01

    A metal/fiber laminate has a plurality of adjacent layers. Each layer is porous and includes an arrangement of fibers. At least one of the layers has its fibers coated with a metal. A polymer matrix permeates each such arrangement.

  2. Closed-form integrator for the quaternion (euler angle) kinematics equations

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A. (Inventor)

    2000-01-01

    The invention is embodied in a method of integrating kinematics equations for updating a set of vehicle attitude angles of a vehicle using 3-dimensional angular velocities of the vehicle, which includes computing an integrating factor matrix from quantities corresponding to the 3-dimensional angular velocities, computing a total integrated angular rate from the quantities corresponding to a 3-dimensional angular velocities, computing a state transition matrix as a sum of (a) a first complementary function of the total integrated angular rate and (b) the integrating factor matrix multiplied by a second complementary function of the total integrated angular rate, and updating the set of vehicle attitude angles using the state transition matrix. Preferably, the method further includes computing a quanternion vector from the quantities corresponding to the 3-dimensional angular velocities, in which case the updating of the set of vehicle attitude angles using the state transition matrix is carried out by (a) updating the quanternion vector by multiplying the quanternion vector by the state transition matrix to produce an updated quanternion vector and (b) computing an updated set of vehicle attitude angles from the updated quanternion vector. The first and second trigonometric functions are complementary, such as a sine and a cosine. The quantities corresponding to the 3-dimensional angular velocities include respective averages of the 3-dimensional angular velocities over plural time frames. The updating of the quanternion vector preserves the norm of the vector, whereby the updated set of vehicle attitude angles are virtually error-free.

  3. Application of the matrix exponential kernel

    NASA Technical Reports Server (NTRS)

    Rohach, A. F.

    1972-01-01

    A point matrix kernel for radiation transport, developed by the transmission matrix method, has been used to develop buildup factors and energy spectra through slab layers of different materials for a point isotropic source. Combinations of lead-water slabs were chosen for examples because of the extreme differences in shielding properties of these two materials.

  4. Multifunctional layered magnetic composites

    PubMed Central

    Siglreitmeier, Maria; Wu, Baohu; Kollmann, Tina; Neubauer, Martin; Nagy, Gergely; Schwahn, Dietmar; Pipich, Vitaliy; Faivre, Damien; Zahn, Dirk; Fery, Andreas

    2015-01-01

    Summary A fabrication method of a multifunctional hybrid material is achieved by using the insoluble organic nacre matrix of the Haliotis laevigata shell infiltrated with gelatin as a confined reaction environment. Inside this organic scaffold magnetite nanoparticles (MNPs) are synthesized. The amount of MNPs can be controlled through the synthesis protocol therefore mineral loadings starting from 15 wt % up to 65 wt % can be realized. The demineralized organic nacre matrix is characterized by small-angle and very-small-angle neutron scattering (SANS and VSANS) showing an unchanged organic matrix structure after demineralization compared to the original mineralized nacre reference. Light microscopy and confocal laser scanning microscopy studies of stained samples show the presence of insoluble proteins at the chitin surface but not between the chitin layers. Successful and homogeneous gelatin infiltration in between the chitin layers can be shown. The hybrid material is characterized by TEM and shows a layered structure filled with MNPs with a size of around 10 nm. Magnetic analysis of the material demonstrates superparamagnetic behavior as characteristic for the particle size. Simulation studies show the potential of collagen and chitin to act as nucleators, where there is a slight preference of chitin over collagen as a nucleator for magnetite. Colloidal-probe AFM measurements demonstrate that introduction of a ferrogel into the chitin matrix leads to a certain increase in the stiffness of the composite material. PMID:25671158

  5. Developing and evaluating Quilts for the depiction of large layered graphs.

    PubMed

    Bae, Juhee; Watson, Ben

    2011-12-01

    Traditional layered graph depictions such as flow charts are in wide use. Yet as graphs grow more complex, these depictions can become difficult to understand. Quilts are matrix-based depictions for layered graphs designed to address this problem. In this research, we first improve Quilts by developing three design alternatives, and then compare the best of these alternatives to better-known node-link and matrix depictions. A primary weakness in Quilts is their depiction of skip links, links that do not simply connect to a succeeding layer. Therefore in our first study, we compare Quilts using color-only, text-only, and mixed (color and text) skip link depictions, finding that path finding with the color-only depiction is significantly slower and less accurate, and that in certain cases, the mixed depiction offers an advantage over the text-only depiction. In our second study, we compare Quilts using the mixed depiction to node-link diagrams and centered matrices. Overall results show that users can find paths through graphs significantly faster with Quilts (46.6 secs) than with node-link (58.3 secs) or matrix (71.2 secs) diagrams. This speed advantage is still greater in large graphs (e.g. in 200 node graphs, 55.4 secs vs. 71.1 secs for node-link and 84.2 secs for matrix depictions). © 2011 IEEE

  6. An interdiffusional model for prediction of the interaction layer growth in the system uranium molybdenum/aluminum

    NASA Astrophysics Data System (ADS)

    Soba, A.; Denis, A.

    2007-03-01

    The codes PLACA and DPLACA, elaborated in this working group, simulate the behavior of a plate-type fuel containing in its core a foil of monolithic or dispersed fissile material, respectively, under normal operation conditions of a research reactor. Dispersion fuels usually consist of ceramic particles of a uranium compound in a high thermal conductivity matrix. The use of particles of a U-Mo alloy in a matrix of Al requires especially devoted subroutines able to simulate the growth of the interaction layer that develops between the particles and the matrix. A model is presented in this work that gives account of these particular phenomena. It is based on the assumption that diffusion of U and Al through the layer is the rate-determining step. Two moving interfaces separate the growing reaction layer from the original phases. The kinetics of these boundaries are solved as Stefan problems. In order to test the model and the associated code, some previous, simpler problems corresponding to similar systems for which analytical solutions or experimental data are known were simulated. Experiments performed with planar U-Mo/Al diffusion couples are reported in the literature, which purpose is to obtain information on the system parameters. These experiments were simulated with PLACA. Results of experiments performed with U-Mo particles disperse in Al either without or with irradiation, published in the open literature were simulated with DPLACA. A satisfactory prediction of the whole reaction layer thickness and of the individual fractions corresponding to alloy and matrix consumption was obtained.

  7. Posttranslational Amelogenin Processing and Changes in Matrix Assembly during Enamel Development

    PubMed Central

    Pandya, Mirali; Lin, Tiffani; Li, Leo; Allen, Michael J.; Jin, Tianquan; Luan, Xianghong; Diekwisch, Thomas G. H.

    2017-01-01

    The extracellular tooth enamel matrix is a unique, protein-rich environment that provides the structural basis for the growth of long and parallel oriented enamel crystals. Here we have conducted a series of in vivo and in vitro studies to characterize the changes in matrix shape and organization that take place during the transition from ameloblast intravesicular matrices to extracellular subunit compartments and pericrystalline sheath proteins, and correlated these changes with stages of amelogenin matrix protein posttranslational processing. Our transmission electron microscopic studies revealed a 2.5-fold difference in matrix subunit compartment dimensions between secretory vesicle and extracellular enamel protein matrix as well as conformational changes in matrix structure between vesicles, stippled materials, and pericrystalline matrix. Enamel crystal growth in organ culture demonstrated granular mineral deposits associated with the enamel matrix framework, dot-like mineral deposits along elongating initial enamel crystallites, and dramatic changes in enamel matrix configuration following the onset of enamel crystal formation. Atomic force micrographs provided evidence for the presence of both linear and hexagonal/ring-shaped full-length recombinant amelogenin protein assemblies on mica surfaces, while nickel-staining of the N-terminal amelogenin N92 His-tag revealed 20 nm diameter oval and globular amelogenin assemblies in N92 amelogenin matrices. Western blot analysis comparing loosely bound and mineral-associated protein fractions of developing porcine enamel organs, superficial and deep enamel layers demonstrated (i) a single, full-length amelogenin band in the enamel organ followed by 3 kDa cleavage upon entry into the enamel layer, (ii) a close association of 8–16 kDa C-terminal amelogenin cleavage products with the growing enamel apatite crystal surface, and (iii) a remaining pool of N-terminal amelogenin fragments loosely retained between the crystalline phases of the deep enamel layer. Together, our data establish a temporo-spatial correlation between amelogenin protein processing and the changes in enamel matrix configuration that take place during the transition from intracellular vesicle compartments to extracellular matrix assemblies and the formation of protein coats along elongating apatite crystal surfaces. In conclusion, our study suggests that enzymatic cleavage of the amelogenin enamel matrix protein plays a key role in the patterning of the organic matrix framework as it affects enamel apatite crystal growth and habit. PMID:29089900

  8. Posttranslational Amelogenin Processing and Changes in Matrix Assembly during Enamel Development.

    PubMed

    Pandya, Mirali; Lin, Tiffani; Li, Leo; Allen, Michael J; Jin, Tianquan; Luan, Xianghong; Diekwisch, Thomas G H

    2017-01-01

    The extracellular tooth enamel matrix is a unique, protein-rich environment that provides the structural basis for the growth of long and parallel oriented enamel crystals. Here we have conducted a series of in vivo and in vitro studies to characterize the changes in matrix shape and organization that take place during the transition from ameloblast intravesicular matrices to extracellular subunit compartments and pericrystalline sheath proteins, and correlated these changes with stages of amelogenin matrix protein posttranslational processing. Our transmission electron microscopic studies revealed a 2.5-fold difference in matrix subunit compartment dimensions between secretory vesicle and extracellular enamel protein matrix as well as conformational changes in matrix structure between vesicles, stippled materials, and pericrystalline matrix. Enamel crystal growth in organ culture demonstrated granular mineral deposits associated with the enamel matrix framework, dot-like mineral deposits along elongating initial enamel crystallites, and dramatic changes in enamel matrix configuration following the onset of enamel crystal formation. Atomic force micrographs provided evidence for the presence of both linear and hexagonal/ring-shaped full-length recombinant amelogenin protein assemblies on mica surfaces, while nickel-staining of the N-terminal amelogenin N92 His-tag revealed 20 nm diameter oval and globular amelogenin assemblies in N92 amelogenin matrices. Western blot analysis comparing loosely bound and mineral-associated protein fractions of developing porcine enamel organs, superficial and deep enamel layers demonstrated (i) a single, full-length amelogenin band in the enamel organ followed by 3 kDa cleavage upon entry into the enamel layer, (ii) a close association of 8-16 kDa C-terminal amelogenin cleavage products with the growing enamel apatite crystal surface, and (iii) a remaining pool of N-terminal amelogenin fragments loosely retained between the crystalline phases of the deep enamel layer. Together, our data establish a temporo-spatial correlation between amelogenin protein processing and the changes in enamel matrix configuration that take place during the transition from intracellular vesicle compartments to extracellular matrix assemblies and the formation of protein coats along elongating apatite crystal surfaces. In conclusion, our study suggests that enzymatic cleavage of the amelogenin enamel matrix protein plays a key role in the patterning of the organic matrix framework as it affects enamel apatite crystal growth and habit.

  9. Large-N and Bethe Ansatz

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    We describe an integrable model, related to the Gaudin magnet, and its relation to the matrix model of Brézin, Itzykson, Parisi and Zuber. Relation is based on Bethe ansatz for the integrable model and its interpretation using orthogonal polynomials and saddle point approximation. Large-N limit of the matrix model corresponds to the thermodynamic limit of the integrable system. In this limit (functional) Bethe ansatz is the same as the generating function for correlators of the matrix models.

  10. Effects of the incorporation of ε-aminocaproic acid/chitosan particles to fibrin on cementoblast differentiation and cementum regeneration.

    PubMed

    Park, Chan Ho; Oh, Joung-Hwan; Jung, Hong-Moon; Choi, Yoonnyoung; Rahman, Saeed Ur; Kim, Sungtae; Kim, Tae-Il; Shin, Hong-In; Lee, Yun-Sil; Yu, Frank H; Baek, Jeong-Hwa; Ryoo, Hyun-Mo; Woo, Kyung Mi

    2017-10-01

    Cementum formation on the exposed tooth-root surface is a critical process in periodontal regeneration. Although various therapeutic approaches have been developed, regeneration of integrated and functional periodontal complexes is still wanting. Here, we found that the OCCM30 cementoblasts cultured on fibrin matrix express substantial levels of matrix proteinases, leading to the degradation of fibrin and the apoptosis of OCCM30 cells, which was reversed upon treatment with a proteinase inhibitor, ε-aminocaproic acid (ACA). Based on these findings, ACA-releasing chitosan particles (ACP) were fabricated and ACP-incorporated fibrin (fibrin-ACP) promoted the differentiation of cementoblasts in vitro, as confirmed by bio-mineralization and expressions of molecules associated with mineralization. In a periodontal defect model of beagle dogs, fibrin-ACP resulted in substantial cementum formation on the exposed root dentin in vivo, compared to fibrin-only and enamel matrix derivative (EMD) which is used clinically for periodontal regeneration. Remarkably, the fibrin-ACP developed structural integrations of the cementum-periodontal ligament-bone complex by the Sharpey's fiber insertion. In addition, fibrin-ACP promoted alveolar bone regeneration through increased bone volume of tooth roof-of-furcation defects and root coverage. Therefore, fibrin-ACP can promote cementogenesis and osteogenesis by controlling biodegradability of fibrin, implicating the feasibility of its therapeutic use to improve periodontal regeneration. Cementum, the mineralized layer on root dentin surfaces, functions to anchor fibrous connective tissues on tooth-root surfaces with the collagenous Sharpey's fibers integration, of which are essential for periodontal functioning restoration in the complex. Through the cementum-responsible fiber insertions on tooth-root surfaces, PDLs transmit various mechanical responses to periodontal complexes against masticatory/occlusal stimulations to support teeth. In this study, periodontal tissue regeneration was enhanced by use of modified fibrin biomaterial which significantly promoted cementogenesis within the periodontal complex with structural integration by collagenous Sharpey's fiber insertions in vivo by controlling fibrin degradation and consequent cementoblast apoptosis. Furthermore, the modified fibrin could improve repair and regeneration of tooth roof-of-furcation defects, which has spatial curvatures and geometrical difficulties and hardly regenerates periodontal tissues. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Method of forming a ceramic matrix composite and a ceramic matrix component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Diego, Peter; Zhang, James

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  12. Non-Abelian integrable hierarchies: matrix biorthogonal polynomials and perturbations

    NASA Astrophysics Data System (ADS)

    Ariznabarreta, Gerardo; García-Ardila, Juan C.; Mañas, Manuel; Marcellán, Francisco

    2018-05-01

    In this paper, Geronimus–Uvarov perturbations for matrix orthogonal polynomials on the real line are studied and then applied to the analysis of non-Abelian integrable hierarchies. The orthogonality is understood in full generality, i.e. in terms of a nondegenerate continuous sesquilinear form, determined by a quasidefinite matrix of bivariate generalized functions with a well-defined support. We derive Christoffel-type formulas that give the perturbed matrix biorthogonal polynomials and their norms in terms of the original ones. The keystone for this finding is the Gauss–Borel factorization of the Gram matrix. Geronimus–Uvarov transformations are considered in the context of the 2D non-Abelian Toda lattice and noncommutative KP hierarchies. The interplay between transformations and integrable flows is discussed. Miwa shifts, τ-ratio matrix functions and Sato formulas are given. Bilinear identities, involving Geronimus–Uvarov transformations, first for the Baker functions, then secondly for the biorthogonal polynomials and its second kind functions, and finally for the τ-ratio matrix functions, are found.

  13. Nanocomposites for ultra high density information storage, devices including the same, and methods of making the same

    DOEpatents

    Goyal, Amit; Shin, Junsoo

    2014-04-01

    A nanocomposite article that includes a single-crystal or single-crystal-like substrate and heteroepitaxial, phase-separated layer supported by a surface of the substrate and a method of making the same are described. The heteroepitaxial layer can include a continuous, non-magnetic, crystalline, matrix phase, and an ordered, magnetic magnetic phase disposed within the matrix phase. The ordered magnetic phase can include a plurality of self-assembled crystalline nanostructures of a magnetic material. The phase-separated layer and the single crystal substrate can be separated by a buffer layer. An electronic storage device that includes a read-write head and a nanocomposite article with a data storage density of 0.75 Tb/in.sup.2 is also described.

  14. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, S.P.; Chamberlin, R.

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  15. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  16. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, S.P.; Chamberlin, R.

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  17. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  18. Toric Calabi-Yau threefolds as quantum integrable systems. R-matrix and RTT relations

    NASA Astrophysics Data System (ADS)

    Awata, Hidetoshi; Kanno, Hiroaki; Mironov, Andrei; Morozov, Alexei; Morozov, Andrey; Ohkubo, Yusuke; Zenkevich, Yegor

    2016-10-01

    R-matrix is explicitly constructed for simplest representations of the Ding-Iohara-Miki algebra. Calculation is straightforward and significantly simpler than the one through the universal R-matrix used for a similar calculation in the Yangian case by A. Smirnov but less general. We investigate the interplay between the R-matrix structure and the structure of DIM algebra intertwiners, i.e. of refined topological vertices and show that the R-matrix is diagonalized by the action of the spectral duality belonging to the SL(2, ℤ) group of DIM algebra automorphisms. We also construct the T-operators satisfying the RTT relations with the R-matrix from refined amplitudes on resolved conifold. We thus show that topological string theories on the toric Calabi-Yau threefolds can be naturally interpreted as lattice integrable models. Integrals of motion for these systems are related to q-deformation of the reflection matrices of the Liouville/Toda theories.

  19. Are calcifying matrix vesicles in atherosclerotic lesions of cellular origin?

    PubMed

    Bobryshev, Yuri V; Killingsworth, Murray C; Huynh, Thuan G; Lord, Reginald S A; Grabs, Anthony J; Valenzuela, Stella M

    2007-03-01

    Over recent years, the role of matrix vesicles in the initial stages of arterial calcification has been recognized. Matrix calcifying vesicles have been isolated from atherosclerotic arteries and the biochemical composition of calcified vesicles has been studied. No studies have yet been carried out to examine the fine structure of matrix vesicles in order to visualize the features of the consequent stages of their calcification in arteries. In the present work, a high resolution ultrastructural analysis has been employed and the study revealed that matrix vesicles in human atherosclerotic lesions are heterogeneous with two main types which we classified. Type I calcified vesicles were presented by vesicles surrounded by two electron-dense layers and these vesicles were found to be resistant to the calcification process in atherosclerotic lesions in situ. Type II matrix vesicles were presented by vesicles surrounded by several electron-dense layers and these vesicles were found to represent calcifying vesicles in atherosclerotic lesions. To test the hypothesis that calcification of matrix vesicles surrounded by multilayer sheets may occur simply as a physicochemical process, independently from the cell regulation, we produced multilamellar liposomes and induced their calcification in vitro in a manner similar to that occurring in matrix vesicles in atherosclerotic lesions in situ.

  20. Thermotropic phase transitions in model membranes of the outer skin layer based on ceramide 6

    NASA Astrophysics Data System (ADS)

    Gruzinov, A. Yu.; Kiselev, M. A.; Ermakova, E. V.; Zabelin, A. V.

    2014-01-01

    The lipid intercellular matrix stratum corneum of the outer skin layer is a multilayer membrane consisting of a complex mixture of different lipids: ceramides, fatty acids, cholesterol, and its derivatives. The basis of the multilayer membrane is the lipid bilayer, i.e., a two-dimensional liquid crystal. Currently, it is known that the main way of substance penetration through the skin is the lipid matrix. The complexity of the actual biological system does not allow reliable direct study of its properties; therefore, system modeling is often used. Phase transitions in the lipid system whose composition simulates the native lipid matrix are studied by the X-ray synchrotron radiation diffraction method.

  1. Layer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor

    PubMed Central

    Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong

    2015-01-01

    A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs-GOD)4/Au biosensor exhibited a good linear range of 0.01–8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance. PMID:28347080

  2. Quantitative evaluation of polymer concentration profile during swelling of hydrophilic matrix tablets using 1H NMR and MRI methods.

    PubMed

    Baumgartner, Sasa; Lahajnar, Gojmir; Sepe, Ana; Kristl, Julijana

    2005-02-01

    Many pharmaceutical tablets are based on hydrophilic polymers, which, after exposure to water, form a gel layer around the tablet that limits the dissolution and diffusion of the drug and provides a mechanism for controlled drug release. Our aim was to determine the thickness of the swollen gel layer of matrix tablets and to develop a method for calculating the polymer concentration profile across the gel layer. MR imaging has been used to investigate the in situ swelling behaviour of cellulose ether matrix tablets and NMR spectroscopy experiments were performed on homogeneous hydrogels with known polymer concentration. The MRI results show that the thickest gel layer was observed for hydroxyethylcellulose tablets, followed by definitely thinner but almost equal gel layer for hydroxypropylcellulose and hydroxypropylmethylcellulose of both molecular weights. The water proton NMR relaxation parameters were combined with the MRI data to obtain a quantitative description of the swelling process on the basis of the concentrations and mobilities of water and polymer as functions of time and distance. The different concentration profiles observed after the same swelling time are the consequence of the different polymer characteristics. The procedure developed here could be used as a general method for calculating polymer concentration profiles on other similar polymeric systems.

  3. Optimization of Residual Stresses in MMC's through Process Parameter Control and the use of Heterogeneous Compensating/Compliant Interfacial Layers. OPTCOMP2 User's Guide

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Salzar, Robert S.

    1996-01-01

    A user's guide for the computer program OPTCOMP2 is presented in this report. This program provides a capability to optimize the fabrication or service-induced residual stresses in unidirectional metal matrix composites subjected to combined thermomechanical axisymmetric loading by altering the processing history, as well as through the microstructural design of interfacial fiber coatings. The user specifies the initial architecture of the composite and the load history, with the constituent materials being elastic, plastic, viscoplastic, or as defined by the 'user-defined' constitutive model, in addition to the objective function and constraints, through a user-friendly data input interface. The optimization procedure is based on an efficient solution methodology for the inelastic response of a fiber/interface layer(s)/matrix concentric cylinder model where the interface layers can be either homogeneous or heterogeneous. The response of heterogeneous layers is modeled using Aboudi's three-dimensional method of cells micromechanics model. The commercial optimization package DOT is used for the nonlinear optimization problem. The solution methodology for the arbitrarily layered cylinder is based on the local-global stiffness matrix formulation and Mendelson's iterative technique of successive elastic solutions developed for elastoplastic boundary-value problems. The optimization algorithm employed in DOT is based on the method of feasible directions.

  4. Graphene-copper composite with micro-layered grains and ultrahigh strength

    PubMed Central

    Wang, Lidong; Yang, Ziyue; Cui, Ye; Wei, Bing; Xu, Shichong; Sheng, Jie; Wang, Miao; Zhu, Yunpeng; Fei, Weidong

    2017-01-01

    Graphene with ultrahigh intrinsic strength and excellent thermal physical properties has the potential to be used as the reinforcement of many kinds of composites. Here, we show that very high tensile strength can be obtained in the copper matrix composite reinforced by reduced graphene oxide (RGO) when micro-layered structure is achieved. RGO-Cu powder with micro-layered structure is fabricated from the reduction of the micro-layered graphene oxide (GO) and Cu(OH)2 composite sheets, and RGO-Cu composites are sintered by spark plasma sintering process. The tensile strength of the 5 vol.% RGO-Cu composite is as high as 608 MPa, which is more than three times higher than that of the Cu matrix. The apparent strengthening efficiency of RGO in the 2.5 vol.% RGO-Cu composite is as high as 110, even higher than that of carbon nanotube, multilayer graphene, carbon nano fiber and RGO in the copper matrix composites produced by conventional MLM method. The excellent tensile and compressive strengths, high hardness and good electrical conductivity are obtained simultaneously in the RGO-Cu composites. The results shown in the present study provide an effective method to design graphene based composites with layered structure and high performance. PMID:28169306

  5. Enhanced Corrosion Resistance of PVD-CrN Coatings by ALD Sealing Layers

    NASA Astrophysics Data System (ADS)

    Wan; Zhang, Teng Fei; Ding, Ji Cheng; Kim, Chang-Min; Park, So-Won; Yang, Yang; Kim, Kwang-Ho; Kwon, Se-Hun

    2017-04-01

    Multilayered hard coatings with a CrN matrix and an Al2O3, TiO2, or nanolaminate-Al2O3/TiO2 sealing layer were designed by a hybrid deposition process combined with physical vapor deposition (PVD) and atomic layer deposition (ALD). The strategy was to utilize ALD thin films as pinhole-free barriers to seal the intrinsic defects to protect the CrN matrix. The influences of the different sealing layers added in the coatings on the microstructure, surface roughness, and corrosion behaviors were investigated. The results indicated that the sealing layer added by ALD significantly decreased the average grain size and improved the corrosion resistance of the CrN coatings. The insertion of the nanolaminate-Al2O3/TiO2 sealing layers resulted in a further increase in corrosion resistance, which was attributed to the synergistic effect of Al2O3 and TiO2, both acting as excellent passivation barriers to the diffusion of corrosive substances.

  6. Influence of superconductor film composition on adhesion strength of coated conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesgin, Ibrahim; Khatri, Narayan; Liu, Yuhao

    The effect of high temperature superconductor (HTS) film composition on the adhesion strength of rare- earth barium copper oxide coated conductors (CCs) has been studied. It has been found that the mechanical integrity of the superconductor layer is very susceptible to the defects especially those along the ab plane, probably due to the weak interfaces between the defects and the matrix. Gd and Y in the standard composition were substituted with Sm and the number of in-plane defects was drastically reduced. Consequently, a four-fold increase in adhesion or peeling strength in Sm-based CCs was achieved compared to the standard GdYBCOmore » samples.« less

  7. Micromorphology of two prehistoric ritual burials from Yemen, and considerations on methodological aspects of sampling the burial matrix - work in progress

    NASA Astrophysics Data System (ADS)

    Usai, Maria-Raimonda; Brothwell, Don; Buckley, Stephen; Ai-Thour, Kalid; Canti, Matthew

    2010-05-01

    Introduction In the central area of Yemen, two burial sites placed high in the crevices of vertical cliff face of Cretaceous sandstone (Tawilah Group) provided evidence of human remains and yielded burial soils. Radiocarbon dating indicated c.2500-2900 years BP for the burials. In other local comparable sites the deep horizontal crevices yielded Bronze Age human remains, in exceptional state of preservation Questions: What was the nature of the burial matrix? Are other human influences superimposed on the soils derived from it? Is it simply decomposed crevice rock, scraped together at the time of burial, or the result of a more complex burial practice? Such questions are also relevant to a variety of other burials of different periods and world regions. Methods Seven matrix samples from Cliff Burials (A) Talan (Layers 4,10,12,14,18,20 and 22, from top to bottom) and (B) Shiban Kawkaban (Layer 1 and 9) were analysed with micromorphology, supplemented by SEM microprobe, X-ray diffraction, gas chromatography/mass spectrometry. Results Cliff Burial Site Talan. The presence of cholesterol was confirmed in the lower sample. The second layer contained darker earth with fibrous plant material. A hard calcareous upper capping contrasted with the other levels of matrix, and it displayed a highly birefingent material with a significant component of uric acid. The other levels had variable organic content and plant inclusions, and possibly pollen. In Layer 10, aromatic acids indicative of balsam and sugar markers suggested plant gum. Cholesterol was the major sterol in Layers 10 and 22, but whilst in Layer 10 its oxidation products were present and cholestanol was abundant as normally in soils, it was only a minor component of Layer 22 where, rather, a significant amount of coprostanol indicated faecal input, and cholesterol oxidation products were absent. Cliff Burial Site Shiban Kawkaban. Although no stratification was visible to the naked eye, variation was observed at a micromorphological level. Layer 1 included mineral, bone, plant and soil-like fragments, with leaf and woody tissue, including vascular parts and seeds. Layer 9 included plant tissue, hair, seeds and some fly puparia. Comments Layering of the burial matrix in the Yemeni burials was unexpected and the burial matrix in one case was very clearly not the result of natural soil forming processes within the rock crevice. In Burial Site A the hard upper capping contained uric acid-rich deposits embedding organic tissue. This sample could possibly represent an intentional ‘plaster layer' including plant, hair and seed fragments. The abundant cholesterol confirms an animal/human origin within the matrix of Layers 10 and 22, and the stanol and bile acid distributions unequivocally confirm a human origin, despite the lack of any physical human remains. Microprobe analysis indicated that the hard cup of Burial 1 contained K, Si, Al, Cu, Mg, S, Fe and Na with amounts fluctuating relatively to depth. No special significance can be placed on the differences. This study calls attention to a neglected aspect of burial archaeology: grave infillings can no longer be assumed to be simply the return of material removed for the burial, but may be influenced by other factors. Through micromorphology, decomposed wood, shroud or other textiles or skins and hair can be detected and, if local rituals influenced the way materials were returned into the grave, then this also deserves investigation. A new ERC-funded project (Title: "Interred with their bones", acronym: "InterArChive") tackles these issues (please see separate poster). Acknowledgments We thank Allan Hall, Brendan Keely, Trevor Dransfield, Andrea Vacca and Cagliari University

  8. Effects of Irradiation on the Microstructure of U-7Mo Dispersion Fuel with Al-2Si Matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Adam B. Robinson

    2012-06-01

    The Reduced Enrichment for Research and Test Reactor program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt% Si added to the matrix, fuel plates were tested to medium burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fissionmore » rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, high fission rate) was performed in the RERTR-9A, RERTR-9B and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth of the fuel/matrix interaction layer (FMI), which was present in the samples to some degree after fabrication, during irradiation; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation more Si diffuses from the matrix to the FMI layer/matrix interface, and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.« less

  9. Improved BN Coatings on SiC Fibers in SiC Matrices

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Bhatt, Ramakrishna; Yun, Hee-Mann; DiCarlo, James A.

    2004-01-01

    Modifications of BN-based coatings that are used as interfacial layers between the fibers and matrices of SiCfiber/SiC-matrix composite materials have been investigated to improve the thermomechanical properties of these materials. Such interfacial coating layers, which are also known as interphases (not to be confused with interphase in the biological sense), contribute to strength and fracture toughness of a fiber/matrix composite material by providing for limited amounts of fiber/matrix debonding and sliding to absorb some of the energy that would otherwise contribute to the propagation of cracks. Heretofore, the debonding and sliding have been of a type called inside debonding because they have taken place predominantly on the inside surfaces of the BN layers that is, at the interfaces between the SiC fibers and the interphases. The modifications cause the debonding and sliding to include more of a type, called outside debonding, that takes place at the outside surfaces of the BN layers that is, at the interfaces between the interphases and the matrix (see figure). One of the expected advantages of outside debonding is that unlike in inside debonding, the interphases would remain on the crack-bridging fibers. The interphases thus remaining should afford additional protection against oxidation at high temperature and should delay undesired fiber/fiber fusion and embrittlement of the composite material. A secondary benefit of outside debonding is that the interphase/matrix interfaces could be made more compliant than are the fiber/interphase interfaces, which necessarily incorporate the roughness of the SiC fibers. By properly engineering BN interphase layers to favor outside debonding, it should be possible, not only to delay embrittlement at intermediate temperatures, but also to reduce the effective interfacial shear strength and increase the failure strain and toughness of the composite material. Two techniques have been proposed and partially experimentally verified as candidate means to promote outside debonding in state-of-the-art SiC/SiC composites.

  10. Matrix polyelectrolyte capsules based on polysaccharide/MnCO₃ hybrid microparticle templates.

    PubMed

    Wei, Qingrong; Ai, Hua; Gu, Zhongwei

    2011-06-15

    An efficient strategy for biomacromolecule encapsulation based on spontaneous deposition into polysaccharide matrix-containing capsules is introduced in this study. First, hybrid microparticles composed of manganese carbonate and ionic polysaccharides including sodium hyaluronate (HA), sodium alginate (SA) and dextran sulfate sodium (DS) with narrow size distribution were synthesized to provide monodisperse templates. Incorporation of polysaccharide into the hybrid templates was successful as verified by thermogravimetric analysis (TGA) and confocal laser scanning microscopy (CLSM). Matrix polyelectrolyte microcapsules were fabricated through layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolytes (PEs) onto the hybrid particles, followed by removal of the inorganic part of the cores, leaving polysaccharide matrix inside the capsules. The loading and release properties of the matrix microcapsules were investigated using myoglobin as a model biomacromolecule. Compared to matrix-free capsules, the matrix capsules had a much higher loading capacity up to four times; the driving force is mostly due to electrostatic interactions between myoglobin and the polysaccharide matrix. From our observations, for the same kind of polysaccharide, a higher amount of polysaccharide inside the capsules usually led to better loading capacity. The release behavior of the loaded myoglobin could be readily controlled by altering the environmental pH. These matrix microcapsules may be used as efficient delivery systems for various charged water-soluble macromolecules with applications in biomedical fields. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Regulation and function of endothelial glycocalyx layer in vascular diseases.

    PubMed

    Sieve, Irina; Münster-Kühnel, Anja K; Hilfiker-Kleiner, Denise

    2018-01-01

    In the vascular system, the endothelial surface layer (ESL) as the inner surface of blood vessels affects mechanotransduction, vascular permeability, rheology, thrombogenesis, and leukocyte adhesion. It creates barriers between endothelial cells and blood and neighbouring cells. The glycocalyx, composed of glycoconjugates and proteoglycans, is an integral component of the ESL and a key element in inter- and intracellular communication and tissue homeostasis. In pathophysiological conditions (atherosclerosis, infection, ischemia/reperfusion injury, diabetes, trauma and acute lung injury) glycocalyx-degrading factors, i.e. reactive oxygen and nitrogen species, matrix metalloproteinases, heparanase and sialidases, damage the ESL, thereby impairing endothelial functions. This leads to increased capillary permeability, leucocyte-endothelium interactions, thrombosis and vascular inflammation, the latter further driving glycocalyx destruction. The present review highlights current knowledge on the vasculoprotective role of the ESL, with specific emphasis on its remodelling in inflammatory vascular diseases and discusses its potential as a novel therapeutic target to treat vascular pathologies. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effective slip identities for viscous flow over arbitrary patterned surfaces

    NASA Astrophysics Data System (ADS)

    Kamrin, Ken; Six, Pierre

    2012-11-01

    For a variety of applications, most recently microfluidics, the ability to control fluid motions using surface texturing has been an area of ongoing interest. In this talk, we will develop several identities relating to the construction of effective slip boundary conditions for patterned surfaces. The effective slip measures the apparent slip of a fluid layer flowing over a patterned surface when viewing the flow far from the surface. In specific, shear flows of tall fluid layers over periodic surfaces (surfaces perturbed from a planar no-slip boundary by height and/or hydrophobicity fluctuations) are governed by an effective slip matrix that relates the vector of far-field shear stress (applied to the top of the fluid layer) to the effective slip velocity vector that emerges from the flow. Of particular note, we will demonstrate several general rules that describe the effective slip matrix: (1) that the effective slip matrix is always symmetric, (2) that the effective slip over any hydrophobically striped surface implies a family of related results for slip over other striped surfaces, and (3) that when height or hydrophobicity fluctuations are small, the slip matrix can be approximated directly using a simple formula derived from the surface pattern.

  13. Fast mean and variance computation of the diffuse sound transmission through finite-sized thick and layered wall and floor systems

    NASA Astrophysics Data System (ADS)

    Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.

    2018-05-01

    A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.

  14. Silicone metalization

    DOEpatents

    Maghribi, Mariam N [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Hamilton, Julie [Tracy, CA

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  15. Silicone metalization

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  16. Magnetic separator having a multilayer matrix, method and apparatus

    DOEpatents

    Kelland, David R.

    1980-01-01

    A magnetic separator having multiple staggered layers of porous magnetic material positioned to intercept a fluid stream carrying magnetic particles and so placed that a bypass of each layer is effected as the pores of the layer become filled with material extracted from the fluid stream.

  17. Nanosized thin SnO₂ layers doped with Te and TeO₂ as room temperature humidity sensors.

    PubMed

    Georgieva, Biliana; Podolesheva, Irena; Spasov, Georgy; Pirov, Jordan

    2014-05-21

    In this paper the humidity sensing properties of layers prepared by a new method for obtaining doped tin oxide are studied. Different techniques-SEM, EDS in SEM, TEM, SAED, AES and electrical measurements-are used for detailed characterization of the thin layers. The as-deposited layers are amorphous with great specific area and low density. They are built up of a fine grained matrix, consisting of Sn- and Te-oxides, and a nanosized dispersed phase of Te, Sn and/or SnTe. The chemical composition of both the matrix and the nanosized particles depends on the ratio R(Sn/Te) and the evaporation conditions. It is shown that as-deposited layers with R(Sn/Te) ranging from 0.4 to 0.9 exhibit excellent characteristics as humidity sensors operating at room temperature-very high sensitivity, good selectivity, fast response and short recovery period. Ageing tests have shown that the layers possess good long-term stability. Results obtained regarding the type of the water adsorption on the layers' surface help better understand the relation between preparation conditions, structure, composition and humidity sensing properties.

  18. Grazer responses to variable macroalgal resource conditions facilitate habitat structuring

    PubMed Central

    Perissinotto, Renzo; Bird, Matthew S.; Pelletier, Noémie

    2018-01-01

    Consumer responses to altered resource conditions can vary depending on dietary preference, resource characteristics and secondary resource features such as shelter. These can have cascading effects, especially if the consumed resource impacts on overall ecological functioning. In this study, we assessed the dietary composition of grazer communities following seasonal changes in the characteristics of their staple food-source (macroalgae). This was conducted in the living stromatolite pools growing along the coast of South Africa. Stable isotope mixing models suggested that following macroalgal bleaching in summer, metazoan consumers shifted their diet from predominantly macroalgae to a generalist composition. This has important implications for the integrity of the stromatolite matrix and its layered deposition. Where previously in winter stromatolite microalgae comprised a minor component of metazoan consumer diets, in summer, following a change in the resource conditions of macroalgae, microalgae featured more prominently in grazer diets. This seasonal grazing pressure on stromatolite-related resources probably promotes the pattern of annual layering observed in the stromatolite accretion. It also demonstrates a mechanism whereby grazer dietary shifts following a change in their preferred food resource can affect the ecosystem structure of their environment, specifically the stromatolite layering process which responds to microalgal growth or grazing conditions. PMID:29410845

  19. Design of bone-integrating organic-inorganic composite suitable for bone repair.

    PubMed

    Miyazaki, Toshiki

    2013-01-01

    Several ceramics exhibit specific biological affinity, i.e. direct bone integration, when implanted in bony defects. They are called bioactive ceramics and utilized as important bone substitutes. However, there is limitation on clinical application, because of their inappropriate mechanical properties such as high Young's modulus and low fracture toughness. Novel bioactive materials exhibiting high machinability and flexibility have been desired in medical fields. Mixing bioactive ceramic powders and organic polymers have developed various organic-inorganic composites. Their mechanical property and bioactivity are mainly governed by the ceramics content. It is known that bioactive ceramics integrate with the bone through bone-like hydroxyapatite layer formed on their surfaces by chemical reaction with body fluid. This is triggered by a catalytic effect of various functional groups. On the basis of these facts, novel bioactive organic-inorganic nanocomposites have been developed. In these composites, inorganic components effective for triggering the hydroxyapatite nucleation are dispersed in polymer matrix at molecular level. Concept of the organic-inorganic composite is also applicable for providing polymethyl methacrylate (PMMA) bone cement with the bioactivity.

  20. High density associative memory

    NASA Technical Reports Server (NTRS)

    Moopenn, Alexander W. (Inventor); Thakoor, Anilkumar P. (Inventor); Daud, Taher (Inventor); Lambe, John J. (Inventor)

    1989-01-01

    A multi-layered, thin-film, digital memory having associative recall. There is a first memory matrix and a second memory matrix. Each memory matrix comprises, a first layer comprising a plurality of electrically separated row conductors; a second layer comprising a plurality of electrically separated column conductors intersecting but electrically separated from the row conductors; and, a plurality of resistance elements electrically connected between the row condutors and the column conductors at respective intersections of the row conductors and the column conductors, each resistance element comprising, in series, a first resistor of sufficiently high ohmage to conduct a sensible element current therethrough with virtually no heat-generating power consumption when a low voltage as employed in thin-film applications is applied thereacross and a second resistor of sufficiently high ohmage to conduct no sensible current therethrough when a low voltage as employed in thin-film applications is applied thereacross, the second resistor having the quality of breaking down to create a short therethrough upon the application of a breakdown level voltage across the first and second resistors.

  1. Direct Preparation of Few Layer Graphene Epoxy Nanocomposites from Untreated Flake Graphite.

    PubMed

    Throckmorton, James; Palmese, Giuseppe

    2015-07-15

    The natural availability of flake graphite and the exceptional properties of graphene and graphene-polymer composites create a demand for simple, cost-effective, and scalable methods for top-down graphite exfoliation. This work presents a novel method of few layer graphite nanocomposite preparation directly from untreated flake graphite using a room temperature ionic liquid and laminar shear processing regimen. The ionic liquid serves both as a solvent and initiator for epoxy polymerization and is incorporated chemically into the matrix. This nanocomposite shows low electrical percolation (0.005 v/v) and low thickness (1-3 layers) graphite/graphene flakes by TEM. Additionally, the effect of processing conditions by rheometry and comparison with solvent-free conditions reveal the interactions between processing and matrix properties and provide insight into the theory of the chemical and physical exfoliation of graphite crystals and the resulting polymer matrix dispersion. An interaction model that correlates the interlayer shear physics of graphite flakes and processing parameters is proposed and tested.

  2. Effect of hydrophobic inclusions on polymer swelling kinetics studied by magnetic resonance imaging.

    PubMed

    Gajdošová, Michaela; Pěček, Daniel; Sarvašová, Nina; Grof, Zdeněk; Štěpánek, František

    2016-03-16

    The rate of drug release from polymer matrix-based sustained release formulations is often controlled by the thickness of a gel layer that forms upon contact with dissolution medium. The effect of formulation parameters on the kinetics of elementary rate processes that contribute to gel layer formation, such as water ingress, polymer swelling and erosion, is therefore of interest. In the present work, gel layer formation has been investigated by magnetic resonance imaging (MRI), which is a non-destructive method allowing direct visualization of effective water concentration inside the tablet and its surrounding. Using formulations with Levetiracetam as the active ingredient, HPMC as a hydrophilic matrix former and carnauba wax (CW) as a hydrophobic component in the matrix system, the effect of different ratios of these two ingredients on the kinetics of gel formation (MRI) and drug release (USP 4 like dissolution test) has been investigated and interpreted using a mathematical model. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Tribological Properties of AlSi12-Al2O3 Interpenetrating Composite Layers in Comparison with Unreinforced Matrix Alloy

    PubMed Central

    Dolata, Anna Janina

    2017-01-01

    Alumina–Aluminum composites with interpenetrating network structures are a new class of advanced materials with potentially better properties than composites reinforced by particles or fibers. Local casting reinforcement was proposed to take into account problems with the machinability of this type of materials and the shaping of the finished products. The centrifugal infiltration process fabricated composite castings in the form of locally reinforced shafts. The main objective of the research presented in this work was to compare the tribological properties (friction coefficient, wear resistance) of AlSi12/Al2O3 interpenetrating composite layers with unreinforced AlSi12 matrix areas. Profilometric tests enabled both quantitative and qualitative analyses of the wear trace that formed on investigated surfaces. It has been shown that interpenetrating composite layers are characterized by lower and more stable coefficients of friction (μ), as well as higher wear resistance than unreinforced matrix areas. At the present stage, the study confirmed that the tribological properties of the composite layers depend on the spatial structure of the ceramic reinforcement, and primarily the volume and size of alumina foam cells. PMID:28878162

  4. BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms.

    PubMed

    Kobayashi, Kazuo; Iwano, Megumi

    2012-07-01

    Biofilms are surface-associated bacterial aggregates, in which bacteria are enveloped by polymeric substances known as the biofilm matrix. Bacillus subtilis biofilms display persistent resistance to liquid wetting and gas penetration, which probably explains the broad-spectrum resistance of the bacteria in these biofilms to antimicrobial agents. In this study, BslA (formerly YuaB) was identified as a major contributor to the surface repellency of B. subtilis biofilms. Disruption of bslA resulted in the loss of surface repellency and altered the biofilm surface microstructure. BslA localized to the biofilm matrix in an exopolysaccharide-dependent manner. Purified BslA exhibited amphiphilic properties and formed polymers in response to increases in the area of the air-water interface in vitro. Genetic and biochemical analyses showed that the self-polymerization activity of BslA was essential for its ability to localize to the biofilm matrix. Confocal laser scanning microscopy showed that BslA formed a layer on the biofilm surface. Taken together, we propose that BslA, standing for biofilm-surface layer protein, is responsible for the hydrophobic layer on the surface of biofilms. © 2012 Blackwell Publishing Ltd.

  5. Simulation of bipolar charge transport in nanocomposite polymer films

    NASA Astrophysics Data System (ADS)

    Lean, Meng H.; Chu, Wei-Ping L.

    2015-03-01

    This paper describes 3D particle-in-cell simulation of bipolar charge injection and transport through nanocomposite film comprised of ferroelectric ceramic nanofillers in an amorphous polymer matrix. The classical electrical double layer (EDL) model for a monopolar core is extended (eEDL) to represent the nanofiller by replacing it with a dipolar core. Charge injection at the electrodes assumes metal-polymer Schottky emission at low to moderate fields and Fowler-Nordheim tunneling at high fields. Injected particles migrate via field-dependent Poole-Frenkel mobility and recombine with Monte Carlo selection. The simulation algorithm uses a boundary integral equation method for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit assuring robust and rapid convergence. The model is capable of simulating a wide dynamic range spanning leakage current to pre-breakdown. Simulation results for BaTiO3 nanofiller in amorphous polymer matrix indicate that charge transport behavior depend on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and therefore lowest level of charge trapping in the interaction zone. Charge recombination is also highest, at the cost of reduced leakage conduction charge. The eEDL model predicts the meandering pathways of charge particle trajectories.

  6. Frontally eluted components procedure with thin layer chromatography as a mode of sample preparation for high performance liquid chromatography quantitation of acetaminophen in biological matrix.

    PubMed

    Klimek-Turek, A; Sikora, M; Rybicki, M; Dzido, T H

    2016-03-04

    A new concept of using thin-layer chromatography to sample preparation for the quantitative determination of solute/s followed by instrumental techniques is presented Thin-layer chromatography (TLC) is used to completely separate acetaminophen and its internal standard from other components (matrix) and to form a single spot/zone containing them at the solvent front position (after the final stage of the thin-layer chromatogram development). The location of the analytes and internal standard in the solvent front zone allows their easy extraction followed by quantitation by HPLC. The exctraction procedure of the solute/s and internal standard can proceed from whole solute frontal zone or its part without lowering in accuracy of quantitative analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Exciton emission of quasi-2D InGaN in GaN matrix grown by molecular beam epitaxy

    PubMed Central

    Ma, Dingyu; Rong, Xin; Zheng, Xiantong; Wang, Weiying; Wang, Ping; Schulz, Tobias; Albrecht, Martin; Metzner, Sebastian; Müller, Mathias; August, Olga; Bertram, Frank; Christen, Jürgen; Jin, Peng; Li, Mo; Zhang, Jian; Yang, Xuelin; Xu, Fujun; Qin, Zhixin; Ge, Weikun; Shen, Bo; Wang, Xinqiang

    2017-01-01

    We investigate the emission from confined excitons in the structure of a single-monolayer-thick quasi-two-dimensional (quasi-2D) InxGa1−xN layer inserted in GaN matrix. This quasi-2D InGaN layer was successfully achieved by molecular beam epitaxy (MBE), and an excellent in-plane uniformity in this layer was confirmed by cathodoluminescence mapping study. The carrier dynamics have also been investigated by time-resolved and excitation-power-dependent photoluminescence, proving that the recombination occurs via confined excitons within the ultrathin quasi-2D InGaN layer even at high temperature up to ~220 K due to the enhanced exciton binding energy. This work indicates that such structure affords an interesting opportunity for developing high-performance photonic devices. PMID:28417975

  8. Light propagation in phosphor-filled matrices for photovoltaic PL down-shifting

    NASA Astrophysics Data System (ADS)

    Solodovnyk, Anastasiia; Lipovšek, Benjamin; Forberich, Karen; Stern, Edda; Batentschuk, Miroslaw; Topič, Marko; Brabec, Christoph J.

    2014-09-01

    Efficient transparent light converters have received lately a growing interest from optical device industries (LEDs, PV, etc.). While organic luminescent dyes were tested in PV light-converting application, such restrictions as small Stokes shifts, short lifetimes, and relatively high costs must yet be overcome. Alternatively, use of phosphors in transparent matrix materials would mean a major breakthrough for this technology, as phosphors exhibit long-term stability and are widely available. For the fabrication of phosphor-filled layers tailored specifically for the desired application, it is of great importance to gain deep understanding of light propagation through the layers, including the detailed optical interplay between the phosphor particles and the matrix material. Our measurements show that absorption and luminescent behavior of the phosphors and especially the scattering of light by the phosphor particles play an important role. In this contribution we have investigated refractive index difference between transparent binder and phosphors. Commercially available highly luminescent UV and near-UV absorbing μm-sized powder is chosen for the fabrication of phosphor-filled layers with varied refractive index of transparent polymer matrix, and well-defined particle size distributions. Solution-processed thick layers on glass substrates are optically analyzed and compared with simulation results acquired from CROWM, a combined wave optics/ray optics home-built software. The results demonstrate the inter-dependence of the layer parameters, prove the importance of careful optimization steps required for fabrication of efficient light converting layers, and, thus, show a path into the future of this promising approach.

  9. Magnetic resonance microscopy for assessment of morphological changes in hydrating hydroxypropylmethylcellulose matrix tablets in situ-is it possible to detect phenomena related to drug dissolution within the hydrated matrices?

    PubMed

    Kulinowski, Piotr; Młynarczyk, Anna; Jasiński, Krzysztof; Talik, Przemysław; Gruwel, Marco L H; Tomanek, Bogusław; Węglarz, Władysław P; Dorożyński, Przemysław

    2014-09-01

    So far, the hydrated part of the HPMC matrix has commonly been denoted as a "gel" or "pseudogel" layer. No MRI-based results have been published regarding observation of internal phenomena related to drug dissolution inside swelling polymeric matrices during hydration. The purpose of the study was to detect such phenomena. Multiparametric, spatially and temporally resolved T2 MR relaxometry, in situ, was applied to study formation of the hydration progress in HPMC matrix tablets loaded with L-dopa and ketoprofen using a 11.7 T MRI system. Two spin-echo based pulse sequences were used, one of them specifically designed to study short T2 signals. Two components in the T2 decay envelope were estimated and spatial distributions of their parameters, i.e. amplitudes and T2 values, were obtained. Based on the data, different region formation patterns (i.e. multilayer structure) were registered depending on drug presence and solubility. Inside the matrix with incorporated sparingly soluble drug a specific layer formation due to drug dissolution was detected, whereas a matrix with very slightly soluble drug does not form distinct external "gel-like" layer. We have introduced a new paradigm in the characterization of hydrating matrices using (1)H MRI methods. It reflects molecular mobility and concentration of water inside the hydrated matrix. For the first time, drug dissolution related phenomena, i.e. particular front and region formation, were observed by MRI methods.

  10. FRCM and FRP composites for the repair of damaged PC girders.

    DOT National Transportation Integrated Search

    2015-01-01

    Fabric-reinforced-cementitious-matrix (FRCM) and fiber-reinforced polymer (FRP) composites have : emerged as novel strengthening technologies. FRCM is a composite material consisting of a sequence of : one or more layers of cement-based matrix reinfo...

  11. Azimuthally invariant Mueller-matrix mapping of optically anisotropic layers of biological networks of blood plasma in the diagnosis of liver disease

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Sakhnovskiy, M. Y.; Pavlyukovich, O.; Pavlyukovich, N.; Novakovskaya, O.; Gorsky, M. P.

    2016-09-01

    The model of Mueller-matrix description of mechanisms of optical anisotropy that typical for polycrystalline layers of the histological sections of biological tissues and fluids - optical activity, birefringence, as well as linear and circular dichroism - is suggested. Within the statistical analysis distributions quantities of linear and circular birefringence and dichroism the objective criteria of differentiation of myocardium histological sections (determining the cause of death); films of blood plasma (liver pathology); peritoneal fluid (endometriosis of tissues of women reproductive sphere); urine (kidney disease) were determined. From the point of view of probative medicine the operational characteristics (sensitivity, specificity and accuracy) of the method of Mueller-matrix reconstruction of optical anisotropy parameters were found.

  12. Automated solid-phase extraction of phenolic acids using layered double hydroxide-alumina-polymer disks.

    PubMed

    Ghani, Milad; Palomino Cabello, Carlos; Saraji, Mohammad; Manuel Estela, Jose; Cerdà, Víctor; Turnes Palomino, Gemma; Maya, Fernando

    2018-01-26

    The application of layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks for solid-phase extraction is reported for the first time. Al 2 O 3 is embedded in a polymer matrix followed by an in situ metal-exchange process to obtain a layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disk with excellent flow-through properties. The extraction performance of the prepared disks is evaluated as a proof of concept for the automated extraction using sequential injection analysis of organic acids (p-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid) following an anion-exchange mechanism. After the solid-phase extraction, phenolic acids were quantified by reversed-phase high-performance liquid chromatography with diode-array detection using a core-shell silica-C18 stationary phase and isocratic elution (acetonitrile/0.5% acetic acid in pure water, 5:95, v/v). High sensitivity and reproducibility were obtained with limits of detection in the range of 0.12-0.25 μg/L (sample volume, 4 mL), and relative standard deviations between 2.9 and 3.4% (10 μg/L, n = 6). Enrichment factors of 34-39 were obtained. Layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks had an average lifetime of 50 extractions. Analyte recoveries ranged from 93 to 96% for grape juice and nonalcoholic beer samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Quorum-Quenching and Matrix-Degrading Enzymes in Multilayer Coatings Synergistically Prevent Bacterial Biofilm Formation on Urinary Catheters.

    PubMed

    Ivanova, Kristina; Fernandes, Margarida M; Francesko, Antonio; Mendoza, Ernest; Guezguez, Jamil; Burnet, Michael; Tzanov, Tzanko

    2015-12-16

    Bacteria often colonize in-dwelling medical devices and grow as complex biofilm communities of cells embedded in a self-produced extracellular polymeric matrix, which increases their resistance to antibiotics and the host immune system. During biofilm growth, bacterial cells cooperate through specific quorum-sensing (QS) signals. Taking advantage of this mechanism of biofilm formation, we hypothesized that interrupting the communication among bacteria and simultaneously degrading the extracellular matrix would inhibit biofilm growth. To this end, coatings composed of the enzymes acylase and α-amylase, able to degrade bacterial QS molecules and polysaccharides, respectively, were built on silicone urinary catheters using a layer-by-layer deposition technique. Multilayer coatings of either acylase or amylase alone suppressed the biofilm formation of corresponding Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. Further assembly of both enzymes in hybrid nanocoatings resulted in stronger biofilm inhibition as a function of acylase or amylase position in the layers. Hybrid coatings, with the QS-signal-degrading acylase as outermost layer, demonstrated 30% higher antibiofilm efficiency against medically relevant Gram-negative bacteria compared to that of the other assemblies. These nanocoatings significantly reduced the occurrence of single-species (P. aeruginosa) and mixed-species (P. aeruginosa and Escherichia coli) biofilms on silicone catheters under both static and dynamic conditions. Moreover, in an in vivo animal model, the quorum quenching and matrix degrading enzyme assemblies delayed the biofilm growth up to 7 days.

  14. Thalamocortical and intracortical laminar connectivity determines sleep spindle properties.

    PubMed

    Krishnan, Giri P; Rosen, Burke Q; Chen, Jen-Yung; Muller, Lyle; Sejnowski, Terrence J; Cash, Sydney S; Halgren, Eric; Bazhenov, Maxim

    2018-06-27

    Sleep spindles are brief oscillatory events during non-rapid eye movement (NREM) sleep. Spindle density and synchronization properties are different in MEG versus EEG recordings in humans and also vary with learning performance, suggesting spindle involvement in memory consolidation. Here, using computational models, we identified network mechanisms that may explain differences in spindle properties across cortical structures. First, we report that differences in spindle occurrence between MEG and EEG data may arise from the contrasting properties of the core and matrix thalamocortical systems. The matrix system, projecting superficially, has wider thalamocortical fanout compared to the core system, which projects to middle layers, and requires the recruitment of a larger population of neurons to initiate a spindle. This property was sufficient to explain lower spindle density and higher spatial synchrony of spindles in the superficial cortical layers, as observed in the EEG signal. In contrast, spindles in the core system occurred more frequently but less synchronously, as observed in the MEG recordings. Furthermore, consistent with human recordings, in the model, spindles occurred independently in the core system but the matrix system spindles commonly co-occurred with core spindles. We also found that the intracortical excitatory connections from layer III/IV to layer V promote spindle propagation from the core to the matrix system, leading to widespread spindle activity. Our study predicts that plasticity of intra- and inter-cortical connectivity can potentially be a mechanism for increased spindle density as has been observed during learning.

  15. Systematic study on dynamic atomic layer epitaxy of InN on/in +c-GaN matrix and fabrication of fine-structure InN/GaN quantum wells: Impact of excess In-atoms at high growth temperature

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akihiko; Kusakabe, Kazuhide; Hashimoto, Naoki; Imai, Daichi; Hwang, Eun-Sook

    2016-12-01

    The growth kinetics of nominally one-monolayer (˜1-ML)-thick InN wells on/in the +c-GaN matrix fabricated using dynamic atomic layer epitaxy (D-ALEp) by plasma-assisted molecular beam epitaxy were systematically studied, with particular attention given to the impacts of excess In atoms and/or In droplets at a high growth temperature of 650 °C. Even at a constant growth temperature of 650 °C, the thickness of the sheet-island-like InN-well layers could be controlled/varied from 1-ML to 2-ML owing to the effect of excess In atoms and/or In droplets accumulated during growth. The possible growth mechanism is discussed based on the ring-shaped bright cathodoluminescence emissions introduced along the circumference of the In droplets during growth. The effective thermal stability of N atoms below the bilayer adsorbed In atoms was increased by the presence of In droplets, resulting in the freezing of 2-ML-thick InN wells into the GaN matrix. It therefore became possible to study the difference between the emission properties of 1-ML and 2-ML-thick InN wells/GaN matrix quantum wells (QWs) having similar GaN matrix crystallinity grown at the same temperature. InN/GaN QW-samples grown under widely different In + N* supply conditions characteristically separated into two groups with distinctive emission-peak wavelengths originating from 1-ML and 2-ML-thick InN wells embedded in the GaN matrix. Reflecting the growth mechanism inherent to the D-ALEp of InN on/in the +c-GaN matrix at high temperature, either 1-ML or 2-ML-thick "binary" InN well layers tended to be frozen into the GaN matrix rather InGaN random ternary-alloys. Both the structural quality and uniformity of the 1-ML InN well sample were better than those of the 2-ML InN well sample, essentially owing to the quite thin critical thickness of around 1-ML arising from the large lattice mismatch of InN and GaN.

  16. Adsorption of copolymers at polymer/air and polymer/solid interfaces

    NASA Astrophysics Data System (ADS)

    Oslanec, Robert

    Using mainly low-energy forward recoil spectrometry (LE-FRES) and neutron reflectivity (NR), copolymer behavior at polymer/air and polymer/solid interfaces is investigated. For a miscible blend of poly(styrene-ran-acrylonitrile) copolymers, the volume fraction profile of the copolymer with lower acrylonitrile content is flat near the surface in contrast to mean field predictions. Including copolymer polydispersity into a self consistent mean field (SCMF) model does not account for this profile shape. LE-FRES and NR is also used to study poly(deuterated styrene-block-methyl-methacrylate) (dPS-b-PMMA) adsorption from a polymer matrix to a silicon oxide substrate. The interfacial excess, zsp*, layer thickness, L, and layer-matrix width, w, depend strongly on the number of matrix segments, P, for P 2N, the matrix chains are repelled from the adsorbed layer and the layer characteristics become independent of P. An SCMF model of block copolymer adsorption is developed. SCMF predictions are in qualitative agreement with the experimental behavior of zsp*, L, and w as a function of P. Using this model, the interaction energy of the MMA block with the oxide substrate is found to be -8ksb{B}T. In a subsequent experiment, the matrix/dPS interaction is made increasingly unfavorable by increasing the 4-bromostyrene mole fraction, x, in a poly(styrene-ran-4-bromostyrene) (PBrsbxS) matrix. Whereas experiments show that zsp* slightly decreases as x increases, the SCMF model predicts that zsp* should increase as the matrix becomes more unfavorable. Upon including a small matrix attraction for the substrate, the SCMF model shows that zsp* decreases with x because of competition between PBrsbxS and dPS-b-PMMA for adsorbing sites. In thin film dewetting experiments on silicon oxide, the addition of dPS-b-PMMA to PS coatings acts to slow hole growth and prevent holes from impinging. Dewetting studies show that longer dPS-b-PMMA chains are more effective stabilizing agents than shorter ones and that 3 volume percent dPS-b-PMMA is the optimum additive concentration for this system. For a dPS-b-PMMA:PS blend, atomic force microscopy of the hole floor reveals mounds of residual polymer and a modulated contact line where the rim meets the substrate.

  17. Integrable Floquet dynamics, generalized exclusion processes and "fused" matrix ansatz

    NASA Astrophysics Data System (ADS)

    Vanicat, Matthieu

    2018-04-01

    We present a general method for constructing integrable stochastic processes, with two-step discrete time Floquet dynamics, from the transfer matrix formalism. The models can be interpreted as a discrete time parallel update. The method can be applied for both periodic and open boundary conditions. We also show how the stationary distribution can be built as a matrix product state. As an illustration we construct parallel discrete time dynamics associated with the R-matrix of the SSEP and of the ASEP, and provide the associated stationary distributions in a matrix product form. We use this general framework to introduce new integrable generalized exclusion processes, where a fixed number of particles is allowed on each lattice site in opposition to the (single particle) exclusion process models. They are constructed using the fusion procedure of R-matrices (and K-matrices for open boundary conditions) for the SSEP and ASEP. We develop a new method, that we named "fused" matrix ansatz, to build explicitly the stationary distribution in a matrix product form. We use this algebraic structure to compute physical observables such as the correlation functions and the mean particle current.

  18. A Chebyshev matrix method for spatial modes of the Orr-Sommerfeld equation

    NASA Technical Reports Server (NTRS)

    Danabasoglu, G.; Biringen, S.

    1989-01-01

    The Chebyshev matrix collocation method is applied to obtain the spatial modes of the Orr-Sommerfeld equation for Poiseuille flow and the Blausius boundary layer. The problem is linearized by the companion matrix technique for semi-infinite domain using a mapping transformation. The method can be easily adapted to problems with different boundary conditions requiring different transformations.

  19. Fuel cell with electrolyte matrix assembly

    DOEpatents

    Kaufman, Arthur; Pudick, Sheldon; Wang, Chiu L.

    1988-01-01

    This invention is directed to a fuel cell employing a substantially immobilized electrolyte imbedded therein and having a laminated matrix assembly disposed between the electrodes of the cell for holding and distributing the electrolyte. The matrix assembly comprises a non-conducting fibrous material such as silicon carbide whiskers having a relatively large void-fraction and a layer of material having a relatively small void-fraction.

  20. Structured Matrix Completion with Applications to Genomic Data Integration.

    PubMed

    Cai, Tianxi; Cai, T Tony; Zhang, Anru

    2016-01-01

    Matrix completion has attracted significant recent attention in many fields including statistics, applied mathematics and electrical engineering. Current literature on matrix completion focuses primarily on independent sampling models under which the individual observed entries are sampled independently. Motivated by applications in genomic data integration, we propose a new framework of structured matrix completion (SMC) to treat structured missingness by design. Specifically, our proposed method aims at efficient matrix recovery when a subset of the rows and columns of an approximately low-rank matrix are observed. We provide theoretical justification for the proposed SMC method and derive lower bound for the estimation errors, which together establish the optimal rate of recovery over certain classes of approximately low-rank matrices. Simulation studies show that the method performs well in finite sample under a variety of configurations. The method is applied to integrate several ovarian cancer genomic studies with different extent of genomic measurements, which enables us to construct more accurate prediction rules for ovarian cancer survival.

  1. Reflection and transmission for layered composite materials

    NASA Technical Reports Server (NTRS)

    Graglia, Roberto D.; Uslenghi, Piergiorgio L. E.

    1991-01-01

    A layered planar structure consisting of different bianisotropic materials separated by jump-immittance sheets is considered. Reflection and transmission coefficients are determined via a chain-matrix algorithm. Applications are important for radomes and radar-absorbing materials.

  2. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering.

    PubMed

    Steinmetz, Neven J; Aisenbrey, Elizabeth A; Westbrook, Kristofer K; Qi, H Jerry; Bryant, Stephanie J

    2015-07-01

    A bioinspired multi-layer hydrogel was developed for the encapsulation of human mesenchymal stem cells (hMSCs) as a platform for osteochondral tissue engineering. The spatial presentation of biochemical cues, via incorporation of extracellular matrix analogs, and mechanical cues, via both hydrogel crosslink density and externally applied mechanical loads, were characterized in each layer. A simple sequential photopolymerization method was employed to form stable poly(ethylene glycol)-based hydrogels with a soft cartilage-like layer of chondroitin sulfate and low RGD concentrations, a stiff bone-like layer with high RGD concentrations, and an intermediate interfacial layer. Under a compressive load, the variation in hydrogel stiffness within each layer produced high strains in the soft cartilage-like layer, low strains in the stiff bone-like layer, and moderate strains in the interfacial layer. When hMSC-laden hydrogels were cultured statically in osteochondral differentiation media, the local biochemical and matrix stiffness cues were not sufficient to spatially guide hMSC differentiation after 21 days. However dynamic mechanical stimulation led to differentially high expression of collagens with collagen II in the cartilage-like layer, collagen X in the interfacial layer and collagen I in the bone-like layer and mineral deposits localized to the bone layer. Overall, these findings point to external mechanical stimulation as a potent regulator of hMSC differentiation toward osteochondral cellular phenotypes. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. The Belle II DEPFET pixel detector

    NASA Astrophysics Data System (ADS)

    Moser, Hans-Günther; DEPFET Collaboration

    2016-09-01

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55-60) μm in the first layer and between 50 μm×(70-85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the 'internal gate' modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X0). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO2 system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  4. Improvement of operation voltage and efficiency in inverted blue phosphorescent organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hao; Huang, Hao Siang; Su, Yu-De; Liang, Yi-Hu; Chang, Yu-Shuo; Chiu, Chuan-Hao; Chang, Hsin-Hua

    2013-09-01

    Inverted organic light-emitting diodes (IOLEDs) have drawn considerable attention for use in active-matrix OLED (AMOLED) displays because of their easy integration with n-channel metal-oxide-based thin film transistors (TFTs). The most crucial issue for IOLEDs is the poor electron injection caused by the bottom cathode. According to previous reports, the turn-on voltages of FIrpic-based IOLEDs are within a range from 4 to 8 V. In this study, we focus on developing bottom-emission IOLEDs with low operating voltages through the use of adequate-charge injection materials. We successfully demonstrate a turn-on voltage as low as 3.7 V for blue phosphorescent IOLEDs. The effective electron injection layers (EIL) were constructed by combining an ultrathin aluminum layer, an alkali metal oxide layer and an organic layer doped with alkali metal oxide, allowing for the effective adjustment of the carrier balance in IOLEDs. The peak efficiencies of the IOLEDs reached 15.6%, 31.8 cd/A and 23.4 lm/W. An external nanocomposite scattering layer was used to further improve light extraction efficiency. The IOLEDs equipped with the SiO2 nanocomposite scattering layer respectively provided performance improvements of 1.3 and 1.5 times that of pristine blue phosphorescent IOLEDs at practical luminance levels of 100 cd/m2 and 1000 cd/m2. Through sophisticated EIL and external light-extraction structures, we obtained blue phosphorescent IOLEDs with satisfactory efficiency and low operation voltages, thereby demonstrating the great potential of nanocomposite film for application in IOLEDs.

  5. A microwave backscattering model for precipitation

    NASA Astrophysics Data System (ADS)

    Ermis, Seda

    A geophysical microwave backscattering model for space borne and ground-based remote sensing of precipitation is developed and used to analyze backscattering measurements from rain and snow type precipitation. Vector Radiative Transfer (VRT) equations for a multilayered inhomogeneous medium are applied to the precipitation region for calculation of backscattered intensity. Numerical solution of the VRT equation for multiple layers is provided by the matrix doubling method to take into account close range interactions between particles. In previous studies, the VRT model was used to calculate backscattering from a rain column on a sea surface. In the model, Mie scattering theory for closely spaced scatterers was used to determine the phase matrix for each sublayer characterized by a set of parameters. The scatterers i.e. rain drops within the sublayers were modelled as spheres with complex permittivities. The rain layer was bounded by rough boundaries; the interface between the cloud and the rain column as well as the interface between the sea surface and the rain were all analyzed by using the integral equation model (IEM). Therefore, the phase matrix for the entire rain column was generated by the combination of surface and volume scattering. Besides Mie scattering, in this study, we use T-matrix approach to examine the effect of the shape to the backscattered intensities since larger raindrops are most likely oblique in shape. Analyses show that the effect of obliquity of raindrops to the backscattered wave is related with size of the scatterers and operated frequency. For the ground-based measurement system, the VRT model is applied to simulate the precipitation column on horizontal direction. Therefore, the backscattered reflectivities for each unit range of volume are calculated from the backscattering radar cross sections by considering radar range and effective illuminated area of the radar beam. The volume scattering phase matrices for each range interval are calculated by Mie scattering theory. VRT equations are solved by matrix doubling method to compute phase matrix for entire radar beam. Model results are validated with measured data by X-band dual polarization Phase Tilt Weather Radar (PTWR) for snow, rain, wet hail type precipitation. The geophysical parameters given the best fit with measured reflectivities are used in previous models i.e. Rayleigh Approximation and Mie scattering and compared with the VRT model. Results show that reflectivities calculated by VRT models are differed up to 10 dB from the Rayleigh approximation model and up to 5 dB from the Mie Scattering theory due to both multiple scattering and attenuation losses for the rain rates as high as 80 mm/h.

  6. Dermis, acellular dermal matrix, and fibroblasts from different layers of pig skin exhibit different profibrotic characteristics: evidence from in vivo study

    PubMed Central

    Zuo, Yanhai; Lu, Shuliang

    2017-01-01

    To explore the profibrotic characteristics of the autografted dermis, acellular dermal matrix, and dermal fibroblasts from superficial/deep layers of pig skin, 93 wounds were established on the dorsa of 7 pigs. 72 wounds autografted with the superficial/deep dermis and acellular dermal matrix served as the superficial/deep dermis and acellular dermal matrix group, respectively, and were sampled at 2, 4, and 8 weeks post-wounding. 21 wounds autografted with/without superficial/deep dermal fibroblasts served as the superficial/deep dermal fibroblast group and the control group, respectively, and were sampled at 2 weeks post-wounding. The hematoxylin and eosin staining showed that the wounded skin thicknesses in the deep dermis group (superficial acellular dermal matrix group) were significantly greater than those in the superficial dermis group (deep acellular dermal matrix group) at each time point, the thickness of the cutting plane in the deep dermal fibroblast group was significantly greater than that in the superficial dermal fibroblast group and the control group. The western blots showed that the α-smooth muscle actin expression in the deep dermis group (superficial acellular dermal matrix group) was significantly greater than that in the superficial dermis group (deep acellular dermal matrix group) at each time point. In summary, the deep dermis and dermal fibroblasts exhibited more profibrotic characteristics than the superficial ones, on the contrary, the deep acellular dermal matrix exhibited less profibrotic characteristics than the superficial one. PMID:28423561

  7. Hybrid Cryogenic Tank Construction and Method of Manufacture Therefor

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2011-01-01

    A lightweight, high-pressure cryogenic tank construction includes an inner layer comprising a matrix of fiber and resin suitable for cryogenic use. An outer layer in intimate contact with the inner layer provides support of the inner layer, and is made of resin composite. The tank is made by placing a fiber preform on a mandrel and infusing the preform with the resin. The infused preform is then encapsulated within the outer layer.

  8. In situ analysis of the organic framework in the prismatic layer of mollusc shell.

    PubMed

    Tong, Hua; Hu, Jiming; Ma, Wentao; Zhong, Guirong; Yao, Songnian; Cao, Nianxing

    2002-06-01

    A novel in situ analytic approach was constructed by means of ion sputtering, decalcification and deprotein techniques combining with scanning electron microscopy (SEM) and transmission electron microscope (TEM) ultrastructural analysis. The method was employed to determine the spatial distribution of the organic framework outside and the inner crystal and organic/inorganic interface spatial geometrical relationship in the prismatic layer of cristaris plicate (leach). The results show that there is a substructure of organic matrix in the intracrystalline region. The prismatic layer forms according to strict hierarchical configuration of regular pattern. Each unit of organic template of prismatic layer can uniquely determine the column crystal growth direction, spatial orientation and size. Cavity templates are responsible for supporting. limiting size and shape and determining the crystal growth spatial orientation, while the intracrystal organic matrix is responsible for providing nucleation point and inducing the nucleation process of calcite. The stereo hierarchical fabrication of prismatic layer was elucidated for the first time.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Yang; Li, Weizhen; Wang, Baoyu

    Carbon nanotubes (CNTs) functionalized by a nanothin poly(dopamine) (PDA) layer were produced by a one-pot, nondestructive approach, with direct polymerization of dopamine on the CNT surface. The thickness of the PDA layer can be well-controlled by the reaction time and the proportion of dopamine, and this thickness is found to be the key factor in controlling the dispersion of CNTs and the extent of the interfacial interactions between the CNT@PDA and epoxy resin. SEM results indicated that the dispersion of CNTs in epoxy was improved significantly by coating a nanothin PDA layer onto the CNT surface. In agreeme nt withmore » this finding, the CNTs functionalized with the thinnest PDA layer provided the best mechanical and thermal properties. This result confirmed that a thinner PDA layer could provide optimized interfacial interactions between the CNT@PDA and epoxy matrix and weaken the self-agglomeration of CNTs, which led to an improved effective stress and heat transfer between the CNTs and the polymer matrix.« less

  10. Artificial dispersion via high-order homogenization: magnetoelectric coupling and magnetism from dielectric layers

    PubMed Central

    Liu, Yan; Guenneau, Sébastien; Gralak, Boris

    2013-01-01

    We investigate a high-order homogenization (HOH) algorithm for periodic multi-layered stacks. The mathematical tool of choice is a transfer matrix method. Expressions for effective permeability, permittivity and magnetoelectric coupling are explored by frequency power expansions. On the physical side, this HOH uncovers a magnetoelectric coupling effect (odd-order approximation) and artificial magnetism (even-order approximation) in moderate contrast photonic crystals. Comparing the effective parameters' expressions of a stack with three layers against that of a stack with two layers, we note that the magnetoelectric coupling effect vanishes while the artificial magnetism can still be achieved in a centre-symmetric periodic structure. Furthermore, we numerically check the effective parameters through the dispersion law and transmission property of a stack with two dielectric layers against that of an effective bianisotropic medium: they are in good agreement throughout the low-frequency (acoustic) band until the first stop band, where the analyticity of the logarithm function of the transfer matrix () breaks down. PMID:24101891

  11. Beyond the single-file fluid limit using transfer matrix method: Exact results for confined parallel hard squares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurin, Péter; Varga, Szabolcs

    2015-06-14

    We extend the transfer matrix method of one-dimensional hard core fluids placed between confining walls for that case where the particles can pass each other and at most two layers can form. We derive an eigenvalue equation for a quasi-one-dimensional system of hard squares confined between two parallel walls, where the pore width is between σ and 3σ (σ is the side length of the square). The exact equation of state and the nearest neighbor distribution functions show three different structures: a fluid phase with one layer, a fluid phase with two layers, and a solid-like structure where the fluidmore » layers are strongly correlated. The structural transition between differently ordered fluids develops continuously with increasing density, i.e., no thermodynamic phase transition occurs. The high density structure of the system consists of clusters with two layers which are broken with particles staying in the middle of the pore.« less

  12. Optimisation of readout performance of phase-change probe memory in terms of capping layer and probe tip

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wright, C. David; Aziz, Mustafa. M.; Yang, Ci Hui; Yang, Guo Wei

    2014-11-01

    The capping layer and the probe tip that serve as the protective layer and the recording tool, respectively, for phase-change probe memory play an important role on the writing performance of phase-change probe memory, thus receiving considerable attention. On the other hand, their influence on the readout performance of phasechange probe memory has rarely been reported before. A three-dimensional parametric study based on the Laplace equation was therefore conducted to investigate the effect of the capping layer and the probe tip on the resulting reading contrast for the two cases of reading a crystalline bit from an amorphous matrix and reading an amorphous bit from a crystalline matrix. The results indicated that a capping layer with a thickness of 2 nm and an electrical conductivity of 50 Ω-1m-1 is able to provide an appropriate reading contrast for both the cases, while satisfying the previous writing requirement, particularly with the assistance of a platinum silicide probe tip.

  13. Tribology of Polymer Matrix Composites (PMCs) Fabricated by Additive Manufacturing (AM)

    NASA Technical Reports Server (NTRS)

    Gupta, S.; Dunnigan, R.; Salem, A.; Kuentz, L.; Halbig, M. C.; Singh, M.

    2016-01-01

    The integral process of depositing thin layers of material, one after another, until the designed component is created is collectively referred to as Additive Manufacturing (AM). Fused deposition process (FDP) is a type of AM where feedstock is extruded into filaments which then are deposited by 3D printing, and the solidification occurs during cooling of the melt. Currently, complex structures are being fabricated by commercial and open source desktop 3D printers. Recently, metal powder containing composite filaments based on polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) have emerged, which could be utilized for multifunctional applications. For further deployment in the field, especially for aerospace and ground-based applications, it is critical to understand the tribological behavior of 3D printed materials. In this presentation, we will report the tribological behavior of different polymer matrix composites fabricated by fused deposition process. These results will be compared with the base polymer systems. During this study, the tribological behavior of all the samples will be evaluated with tab-on-disc method and compared for different metallic powder reinforcements.

  14. Parallel numerical modeling of hybrid-dimensional compositional non-isothermal Darcy flows in fractured porous media

    NASA Astrophysics Data System (ADS)

    Xing, F.; Masson, R.; Lopez, S.

    2017-09-01

    This paper introduces a new discrete fracture model accounting for non-isothermal compositional multiphase Darcy flows and complex networks of fractures with intersecting, immersed and non-immersed fractures. The so called hybrid-dimensional model using a 2D model in the fractures coupled with a 3D model in the matrix is first derived rigorously starting from the equi-dimensional matrix fracture model. Then, it is discretized using a fully implicit time integration combined with the Vertex Approximate Gradient (VAG) finite volume scheme which is adapted to polyhedral meshes and anisotropic heterogeneous media. The fully coupled systems are assembled and solved in parallel using the Single Program Multiple Data (SPMD) paradigm with one layer of ghost cells. This strategy allows for a local assembly of the discrete systems. An efficient preconditioner is implemented to solve the linear systems at each time step and each Newton type iteration of the simulation. The numerical efficiency of our approach is assessed on different meshes, fracture networks, and physical settings in terms of parallel scalability, nonlinear convergence and linear convergence.

  15. A spatial decision support system (SDSS) for sustainable tourism planning in Cameron Highlands, Malaysia

    NASA Astrophysics Data System (ADS)

    Aminu, M.; Matori, A. N.; Yusof, K. W.

    2014-02-01

    The study describes a methodological approach based on an integrated use of Geographic Information System (GIS) and Analytic Network Process (ANP) of Multi Criteria Evaluation (MCE) to determine nature conservation and tourism development priorities among the highland areas. A set of criteria and indicators were defined to evaluate the highlands biodiversity conservation and tourism development. Pair wise comparison technique was used in order to support solution of a decision problem by evaluating possible alternatives from different perspectives. After the weights have been derived from the pairwise comparison technique, the next step was to compute the unweighted supermatrix, weighted supermatrix and the limit matrix. The limit matrix was normalized to obtain the priorities and the results transferred into GIS environment. Elements evaluated and ranked were represented by criterion maps. Map layers reflecting the opinion of different experts involved were summed using the weighted overlay approach of GIS. Subsequently sustainable tourism development scenarios were generated. The generation of scenarios highlighted the critical issues of the decision problem because it allows one to gradually narrow down a problem.

  16. Epoxy resin reinforced with nanothin polydopamine-coated carbon nanotubes: a study of the interfacial polymer layer thickness

    DOE PAGES

    Ling, Yang; Li, Weizhen; Wang, Baoyu; ...

    2016-03-29

    Carbon nanotubes (CNTs) functionalized by a nanothin poly(dopamine) (PDA) layer were produced by a one-pot, nondestructive approach, with direct polymerization of dopamine on the CNT surface. The thickness of the PDA layer can be well-controlled by the reaction time and the proportion of dopamine, and this thickness is found to be the key factor in controlling the dispersion of CNTs and the extent of the interfacial interactions between the CNT@PDA and epoxy resin. SEM results indicated that the dispersion of CNTs in epoxy was improved significantly by coating a nanothin PDA layer onto the CNT surface. In agreeme nt withmore » this finding, the CNTs functionalized with the thinnest PDA layer provided the best mechanical and thermal properties. This result confirmed that a thinner PDA layer could provide optimized interfacial interactions between the CNT@PDA and epoxy matrix and weaken the self-agglomeration of CNTs, which led to an improved effective stress and heat transfer between the CNTs and the polymer matrix.« less

  17. A deformation-formulated micromechanics model of the effective Young's modulus and strength of laminated composites containing local ply curvature

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Harris, Charles E.

    1990-01-01

    A mathematical model based on the Euler-Bermoulli beam theory is proposed for predicting the effective Young's moduli of piecewise isotropic composite laminates with local ply curvatures in the main load-carrying layers. Strains in corrugated layers, in-phase layers, and out-of-phase layers are predicted for various geometries and material configurations by assuming matrix layers as elastic foundations of different spring constants. The effective Young's moduli measured from corrugated aluminum specimens and aluminum/epoxy specimens with in-phase and out-of-phase wavy patterns coincide very well with the model predictions. Moire fringe analysis of an in-phase specimen and an out-of-phase specimen are also presented, confirming the main assumption of the model related to the elastic constraint due to the matrix layers. The present model is also compared with the experimental results and other models, including the microbuckling models, published in the literature. The results of the present study show that even a very small-scale local ply curvature produces a noticeable effect on the mechanical constitutive behavior of a laminated composite.

  18. Interior radiances in optically deep absorbing media. I - Exact solutions for one-dimensional model.

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Plass, G. N.

    1973-01-01

    An exact analytic solution to the one-dimensional scattering problem with arbitrary single scattering albedo and arbitrary surface albedo is presented. Expressions are given for the emergent flux from a homogeneous layer, the internal flux within the layer, and the radiative heating. A comparison of these results with the values calculated from the matrix operator theory indicates an exceedingly high accuracy. A detailed study is made of the error in the matrix operator results and its dependence on the accuracy of the starting value.

  19. EMUstack: An open source route to insightful electromagnetic computation via the Bloch mode scattering matrix method

    NASA Astrophysics Data System (ADS)

    Sturmberg, Björn C. P.; Dossou, Kokou B.; Lawrence, Felix J.; Poulton, Christopher G.; McPhedran, Ross C.; Martijn de Sterke, C.; Botten, Lindsay C.

    2016-05-01

    We describe EMUstack, an open-source implementation of the Scattering Matrix Method (SMM) for solving field problems in layered media. The fields inside nanostructured layers are described in terms of Bloch modes that are found using the Finite Element Method (FEM). Direct access to these modes allows the physical intuition of thin film optics to be extended to complex structures. The combination of the SMM and the FEM makes EMUstack ideally suited for studying lossy, high-index contrast structures, which challenge conventional SMMs.

  20. Mechanical behavior of several hybrid ceramic-matrix-composite laminates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cutler, W.A.; Zok, F.W.; Lange, F.F.

    Several different hybrid laminated composites comprised of alternating layers of dense ceramic sheets (either SiC or Si{sub 3}N{sub 4}) and fiber-reinforced ceramic-matrix-composite (CMC) layers (Nicalon fibers with either glass or glass-ceramic matrices) have been fabricated and characterized. The effects of the reinforcement architecture (unidirectional vs cross-ply) and the relative volume fractions of the phases on the tensile and flexural properties have been examined. Comparisons have been made with the properties of the constituent layers. Rudimentary models have been developed to describe the onset of cracking and for the minimum volume fraction of CMC required to develop multiple cracks and thusmore » obtain a high failure strain.« less

  1. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as a tool for fast identification of protein binders in color layers of paintings.

    PubMed

    Hynek, Radovan; Kuckova, Stepanka; Hradilova, Janka; Kodicek, Milan

    2004-01-01

    Identification of materials in color layers of paintings is necessary for correct decisions concerning restoration procedures as well as proving the authenticity of the painting. The proteins are usually important components of the painting layers. In this paper it has been demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) can be used for fast and reliable identification of proteins in color layers even in old, highly aged matrices. The digestion can be easily performed directly on silica wafers which are routinely used for infrared analysis. The amount of material necessary for such an analysis is extremely small. Peptide mass mapping using digestion with trypsin followed by MALDI-TOFMS and identification of the protein was successfully used for determination of the binder from a painting of the 19th century. Copyright 2004 John Wiley & Sons, Ltd.

  2. Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.

    PubMed

    Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J

    1996-06-01

    For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.

  3. Multi-kinetics and site-specific release of gabapentin and flurbiprofen from oral fixed-dose combination: in vitro release and in vivo food effect.

    PubMed

    Sonvico, Fabio; Conti, Chiara; Colombo, Gaia; Buttini, Francesca; Colombo, Paolo; Bettini, Ruggero; Barchielli, Marco; Leoni, Barbara; Loprete, Luca; Rossi, Alessandra

    2017-09-28

    In this work, a fixed-dose combination of gabapentin and flurbiprofen formulated as multilayer tablets has been designed, developed and studied in vitro and in vivo. The aim was to construct a single dosage form of the two drugs, able to perform a therapeutic program involving three release kinetics and two delivery sites, i.e., immediate release of gabapentin, intra-gastric prolonged release of gabapentin and intestinal (delayed) release of flurbiprofen. An oblong three-layer tablet was manufactured having as top layer a floating hydrophilic polymeric matrix for gastric release of gabapentin, as middle layer a disintegrating formulation for immediate release of a gabapentin loading dose and as bottom layer, an uncoated hydrophilic polymeric matrix, swellable but insoluble in gastric fluids, for delayed and prolonged release of flurbiprofen in intestinal environment. The formulations were studied in vitro and in vivo in healthy volunteers. The in vitro release rate assessment confirmed the programmed delivery design. A significant higher bioavailability of gabapentin administered 30min after meal, compared to fasting conditions or to dose administration 10min before meal, argued in favor of the gastro-retention of gabapentin prolonged release layer. The two drugs were delivered at different anatomical sites, since the food presence prolonged the gastric absorption of gabapentin from the floating layer and delayed the flurbiprofen absorption. The attainment of a successful delayed release of flurbiprofen was realized by a matrix based on a polymers' combination. The combined use of three hydrophilic polymers with different pH sensitivity provided the dosage form layer containing flurbiprofen with gastro-resistant characteristics without the use of film coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Nanosized Thin SnO2 Layers Doped with Te and TeO2 as Room Temperature Humidity Sensors

    PubMed Central

    Georgieva, Biliana; Podolesheva, Irena; Spasov, Georgy; Pirov, Jordan

    2014-01-01

    In this paper the humidity sensing properties of layers prepared by a new method for obtaining doped tin oxide are studied. Different techniques—SEM, EDS in SEM, TEM, SAED, AES and electrical measurements—are used for detailed characterization of the thin layers. The as-deposited layers are amorphous with great specific area and low density. They are built up of a fine grained matrix, consisting of Sn- and Te-oxides, and a nanosized dispersed phase of Te, Sn and/or SnTe. The chemical composition of both the matrix and the nanosized particles depends on the ratio RSn/Te and the evaporation conditions. It is shown that as-deposited layers with RSn/Te ranging from 0.4 to 0.9 exhibit excellent characteristics as humidity sensors operating at room temperature—very high sensitivity, good selectivity, fast response and short recovery period. Ageing tests have shown that the layers possess good long-term stability. Results obtained regarding the type of the water adsorption on the layers' surface help better understand the relation between preparation conditions, structure, composition and humidity sensing properties. PMID:24854359

  5. Magneto-optical mode conversion in a hybrid glass waveguide made by sol-gel and ion-exchange techniques

    NASA Astrophysics Data System (ADS)

    Royer, François; Amata, Hadi; Parsy, François; Jamon, Damien; Ghibaudo, Elise; Broquin, Jean-Emmanuel; Neveu, Sophie

    2012-01-01

    The integration of magneto-optical materials with classical technologies being still a difficult problem, this study explores the possibility to realize a mode converter based on a hybrid structure. A composite magneto-optical layer made of a silica/zirconia matrix doped by magnetic nanoparticles is coated on the top face of ion-exchanged glass waveguides. Optical characterizations that have been carried out demonstrated the efficiency of these hybrid structures in terms of lateral confinement. Furthermore, TE to TM mode conversion has been observed when a longitudinal magnetic field is applied to the device. The amount of this conversion is analysed taking into account the magneto-optical confinement and the modal birefringence of the structure.

  6. [Bioimpedance means of skin condition monitoring during therapeutic and cosmetic procedures].

    PubMed

    Alekseenko, V A; Kus'min, A A; Filist, S A

    2008-01-01

    Engineering and technological problems of bioimpedance skin surface mapping are considered. A typical design of a device based on a PIC 16F microcontroller is suggested. It includes a keyboard, LCD indicator, probing current generator with programmed frequency tuning, and units for probing current monitoring and bioimpedance measurement. The electrode matrix of the device is constructed using nanotechnology. A microcontroller-controlled multiplexor provides scanning of interelectrode impedance, which makes it possible to obtain the impedance image of the skin surface under the electrode matrix. The microcontroller controls the probing signal generator frequency and allows layer-by-layer images of skin under the electrode matrix to be obtained. This makes it possible to use reconstruction tomography methods for analysis and monitoring of the skin condition during therapeutic and cosmetic procedures.

  7. Layer-oriented multigrid wavefront reconstruction algorithms for multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.

    2003-02-01

    Multi-conjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of AO degrees of freedom. In this paper, we develop an iterative sparse matrix implementation of minimum variance wavefront reconstruction for telescope diameters up to 32m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method, using a multigrid preconditioner incorporating a layer-oriented (block) symmetric Gauss-Seidel iterative smoothing operator. We present open-loop numerical simulation results to illustrate algorithm convergence.

  8. Proposed framework for thermomechanical life modeling of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Lerch, Bradley A.; Saltsman, James F.

    1993-01-01

    The framework of a mechanics of materials model is proposed for thermomechanical fatigue (TMF) life prediction of unidirectional, continuous-fiber metal matrix composites (MMC's). Axially loaded MMC test samples are analyzed as structural components whose fatigue lives are governed by local stress-strain conditions resulting from combined interactions of the matrix, interfacial layer, and fiber constituents. The metallic matrix is identified as the vehicle for tracking fatigue crack initiation and propagation. The proposed framework has three major elements. First, TMF flow and failure characteristics of in situ matrix material are approximated from tests of unreinforced matrix material, and matrix TMF life prediction equations are numerically calibrated. The macrocrack initiation fatigue life of the matrix material is divided into microcrack initiation and microcrack propagation phases. Second, the influencing factors created by the presence of fibers and interfaces are analyzed, characterized, and documented in equation form. Some of the influences act on the microcrack initiation portion of the matrix fatigue life, others on the microcrack propagation life, while some affect both. Influencing factors include coefficient of thermal expansion mismatch strains, residual (mean) stresses, multiaxial stress states, off-axis fibers, internal stress concentrations, multiple initiation sites, nonuniform fiber spacing, fiber debonding, interfacial layers and cracking, fractured fibers, fiber deflections of crack fronts, fiber bridging of matrix cracks, and internal oxidation along internal interfaces. Equations exist for some, but not all, of the currently identified influencing factors. The third element is the inclusion of overriding influences such as maximum tensile strain limits of brittle fibers that could cause local fractures and ensuing catastrophic failure of surrounding matrix material. Some experimental data exist for assessing the plausibility of the proposed framework.

  9. The XTT Cell Proliferation Assay Applied to Cell Layers Embedded in Three-Dimensional Matrix

    PubMed Central

    Huyck, Lynn; Ampe, Christophe

    2012-01-01

    Abstract Cell proliferation, a main target in cancer therapy, is influenced by the surrounding three-dimensional (3D) extracellular matrix (ECM). In vitro drug screening is, thus, optimally performed under conditions in which cells are grown (embedded or trapped) in dense 3D matrices, as these most closely mimic the adhesive and mechanical properties of natural ECM. Measuring cell proliferation under these conditions is, however, technically more challenging compared with two-dimensional (2D) culture and other “3D culture conditions,” such as growth on top of a matrix (pseudo-3D) or in spongy scaffolds with large pore sizes. Consequently, such measurements are only slowly applied on a wider scale. To advance this, we report on the equal quality (dynamic range, background, linearity) of measuring the proliferation of cell layers embedded in dense 3D matrices (collagen, Matrigel) compared with cells in 2D culture using the easy (one-step) and in 2D well-validated, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT)-assay. The comparison stresses the differences in proliferation kinetics and drug sensitivity of matrix-embedded cells versus 2D culture. Using the specific cell-layer-embedded 3D matrix setup, quantitative measurements of cell proliferation and cell invasion are shown to be possible in similar assay conditions, and cytostatic, cytotoxic, and anti-invasive drug effects can thus be reliably determined and compared in physiologically relevant settings. This approach in the 3D matrix holds promise for improving early-stage, high-throughput drug screening, targeting either highly invasive or highly proliferative subpopulations of cancers or both. PMID:22574651

  10. An Experimental Study on Slurry Erosion Resistance of Single and Multilayered Deposits of Ni-WC Produced by Laser-Based Powder Deposition Process

    NASA Astrophysics Data System (ADS)

    Balu, Prabu; Hamid, Syed; Kovacevic, Radovan

    2013-11-01

    Single and multilayered deposits containing different mass fractions of tungsten carbide (WC) in nickel (Ni)-matrix (NT-20, NT-60, NT-80) are deposited on a AISI 4140 steel substrate using a laser-based powder deposition process. The transverse cross section of the coupons reveals that the higher the mass fraction of WC in Ni-matrix leads to a more uniform distribution through Ni-matrix. The slurry erosion resistance of the fabricated coupons is tested at three different impingement angles using an abrasive water jet cutting machine, which is quantified based on the erosion rate. The top layer of a multilayered deposit (i.e., NT-60 in a two-layer NT-60 over NT-20 deposit) exhibits better erosion resistance at all three tested impingement angles when compared to a single-layer (NT-60) deposit. A definite increase in the erosion resistance is noted with an addition of nano-size WC particles. The relationship between the different mass fractions of reinforcement (WC) in the deposited composite material (Ni-WC) and their corresponding matrix (Ni) hardness on the erosion rate is studied. The eroded surface is analyzed in the light of a three-dimensional (3-D) profilometer and a scanning electron microscope (SEM). The results show that a volume fraction of approximately 62% of WC with a Ni-matrix hardness of 540 HV resulting in the gouging out of WC from the Ni-matrix by the action of slurry. It is concluded that the slurry erosion resistance of the AISI 4140 steel can be significantly enhanced by introducing single and multilayered deposits of Ni-WC composite material fabricated by the laser-based powder deposition process.

  11. Ultrastructural analysis of bone nodules formed in vitro by isolated fetal rat calvaria cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhargava, U.; Bar-Lev, M.; Bellows, C.G.

    When cells enzymatically digested from 21 d fetal rat calvaria are grown in ascorbic acid and Na beta-glycerophosphate, they form discrete three-dimensional nodular structures with the histological and immunohistochemical appearance of woven bone. The present investigation was undertaken to verify that bone-like features were identifiable at the ultrastructural level. The nodules formed on top of a fibroblast-like multilayer of cells. The upper surface of the nodules was lined by a continuous layer of cuboidal osteoblastic cells often seen to be joined by adherens junctions. Numerous microvilli, membrane protrusions, and coated pits could be seen on the upper surface of thesemore » cells, their cytoplasm contained prominent RER and Golgi membranes, and processes extended from their lower surfaces into a dense, highly organized collagenous matrix. Some osteocyte-like cells were completely embedded within this matrix; they also displayed RER and prominent processes which extended through the matrix and often made both adherens and gap junctional contacts with the processes of other cells. The fibroblastic cells not participating in nodule formation were surrounded by a less dense collagenous matrix and, in contrast to the matrix of the nodules, it did not mineralize. An unmineralized osteoid-like layer was seen directly below the cuboidal top layer of cells. A mineralization front was detectable below this in which small, discrete structures resembling matrix vesicles and feathery mineral crystals were evident and frequently associated with the collagen fibrils. More heavily mineralized areas were seen further into the nodule. Electron microprobe and electron and X-ray diffraction analysis confirmed the mineral to be hydroxyapatite.« less

  12. Recurrent procedure for constructing nonisotropic matrix elements of the collision integral of the nonlinear Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Ender, I. A.; Bakaleinikov, L. A.; Flegontova, E. Yu.; Gerasimenko, A. B.

    2017-08-01

    We have proposed an algorithm for the sequential construction of nonisotropic matrix elements of the collision integral, which are required to solve the nonlinear Boltzmann equation using the moments method. The starting elements of the matrix are isotropic and assumed to be known. The algorithm can be used for an arbitrary law of interactions for any ratio of the masses of colliding particles.

  13. A precise integration method for solving coupled vehicle-track dynamics with nonlinear wheel-rail contact

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Gao, Q.; Tan, S. J.; Zhong, W. X.

    2012-10-01

    A new method is proposed as a solution for the large-scale coupled vehicle-track dynamic model with nonlinear wheel-rail contact. The vehicle is simplified as a multi-rigid-body model, and the track is treated as a three-layer beam model. In the track model, the rail is assumed to be an Euler-Bernoulli beam supported by discrete sleepers. The vehicle model and the track model are coupled using Hertzian nonlinear contact theory, and the contact forces of the vehicle subsystem and the track subsystem are approximated by the Lagrange interpolation polynomial. The response of the large-scale coupled vehicle-track model is calculated using the precise integration method. A more efficient algorithm based on the periodic property of the track is applied to calculate the exponential matrix and certain matrices related to the solution of the track subsystem. Numerical examples demonstrate the computational accuracy and efficiency of the proposed method.

  14. Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.

    2003-09-01

    Multiconjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wave-front control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10-2 Hz, i.e., 4-5 orders of magnitude lower than the typical 103 Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.

  15. Effect of Nano-TiC Dispersed Particles and Electro-Codeposition Parameters on Morphology and Structure of Hybrid Ni/TiC Nanocomposite Layers.

    PubMed

    Benea, Lidia; Celis, Jean-Pierre

    2016-04-06

    This research work describes the effect of dispersed titanium carbide (TiC) nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM). The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX). X-ray diffractometer (XRD) has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers.

  16. Formulation of bi-layer matrix tablets of tramadol hydrochloride: Comparison of rate retarding ability of the incorporated hydrophilic polymers.

    PubMed

    Arif, Hasanul; Al-Masum, Abdullah; Sharmin, Florida; Reza, Selim; Sm Islam, Sm Ashraful

    2015-05-01

    Bi-layer tablets of tramadol hydrochloride were prepared by direct compression technique. Each tablet contains an instant release layer with a sustained release layer. The instant release layer was found to release the initial dose immediately within minutes. The instant release layer was combined with sustained release matrix made of varying quantity of Methocel K4M, Methocel K15MCR and Carbomer 974P. Bi-layer tablets were evaluated for various physical tests including weight variation, thickness and diameter, hardness and percent friability. Drug release from bi-layer tablet was studied in acidic medium and buffer medium for two and six hours respectively. Sustained release of tramadol hydrochloride was observed with a controlled fashion that was characteristic to the type and extent of polymer used. % Drug release from eight-hour dissolution study was fitted with several kinetic models. Mean dissolution time (MDT) and fractional dissolution values (T25%, T50% and T80%) were also calculated as well, to compare the retarding ability of the polymers. Methocel K15MCR was found to be the most effective in rate retardation of freely water-soluble tramadol hydrochloride compared to Methocel K4M and Capbomer 974P, when incorporated at equal ratio in the formulation.

  17. Near-lossless multichannel EEG compression based on matrix and tensor decompositions.

    PubMed

    Dauwels, Justin; Srinivasan, K; Reddy, M Ramasubba; Cichocki, Andrzej

    2013-05-01

    A novel near-lossless compression algorithm for multichannel electroencephalogram (MC-EEG) is proposed based on matrix/tensor decomposition models. MC-EEG is represented in suitable multiway (multidimensional) forms to efficiently exploit temporal and spatial correlations simultaneously. Several matrix/tensor decomposition models are analyzed in view of efficient decorrelation of the multiway forms of MC-EEG. A compression algorithm is built based on the principle of “lossy plus residual coding,” consisting of a matrix/tensor decomposition-based coder in the lossy layer followed by arithmetic coding in the residual layer. This approach guarantees a specifiable maximum absolute error between original and reconstructed signals. The compression algorithm is applied to three different scalp EEG datasets and an intracranial EEG dataset, each with different sampling rate and resolution. The proposed algorithm achieves attractive compression ratios compared to compressing individual channels separately. For similar compression ratios, the proposed algorithm achieves nearly fivefold lower average error compared to a similar wavelet-based volumetric MC-EEG compression algorithm.

  18. Ultem((R))/ZIF-8 mixed matrix hollow fiber membranes for CO2/N-2 separations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Y; Johnson, JR; Karvan, O

    2012-05-15

    Organic-inorganic hybrid (mixed matrix) membranes can potentially extend the separation performance of traditional polymeric materials while maintaining processing convenience. Although many dense films studies have been reported, there have been few reported cases of these materials being successfully extended to asymmetric hollow fibers. In this work we report the first successful production of mixed matrix asymmetric hollow fiber membranes containing metal-organic-framework (MOF) ZIF-8 fillers. Specifically, we have incorporated ZIF-8 into a polyetherimide (Ultem((R)) 1000) matrix and produced dual-layer asymmetric hollow fiber membranes via the dry jet-wet quench method. The outer separating layer of these composite fibers contains 13 wt% (17more » vol%) of ZIF-8 filler. These membranes have been tested over a range of temperatures and pressures for a variety of gas pairs. An increase in separation performance for the CO2/N-2 gas pairs was observed for both pure gas and mixed gas feeds. (C) 2012 Elsevier B.V. All rights reserved.« less

  19. Data Entities and Information System Matrix for Integrated Agriculture Information System (IAIS)

    NASA Astrophysics Data System (ADS)

    Budi Santoso, Halim; Delima, Rosa

    2018-03-01

    Integrated Agriculture Information System is a system that is developed to process data, information, and knowledge in Agriculture sector. Integrated Agriculture Information System brings valuable information for farmers: (1) Fertilizer price; (2) Agriculture technique and practise; (3) Pest management; (4) Cultivation; (5) Irrigation; (6) Post harvest processing; (7) Innovation in agriculture processing. Integrated Agriculture Information System contains 9 subsystems. To bring an integrated information to the user and stakeholder, it needs an integrated database approach. Thus, researchers describes data entity and its matrix relate to subsystem in Integrated Agriculture Information System (IAIS). As a result, there are 47 data entities as entities in single and integrated database.

  20. A hybrid method for transient wave propagation in a multilayered solid

    NASA Astrophysics Data System (ADS)

    Tian, Jiayong; Xie, Zhoumin

    2009-08-01

    We present a hybrid method for the evaluation of transient elastic-wave propagation in a multilayered solid, integrating reverberation matrix method with the theory of generalized rays. Adopting reverberation matrix formulation, Laplace-Fourier domain solutions of elastic waves in the multilayered solid are expanded into the sum of a series of generalized-ray group integrals. Each generalized-ray group integral containing Kth power of reverberation matrix R represents the set of K-times reflections and refractions of source waves arriving at receivers in the multilayered solid, which was computed by fast inverse Laplace transform (FILT) and fast Fourier transform (FFT) algorithms. However, the calculation burden and low precision of FILT-FFT algorithm limit the application of reverberation matrix method. In this paper, we expand each of generalized-ray group integrals into the sum of a series of generalized-ray integrals, each of which is accurately evaluated by Cagniard-De Hoop method in the theory of generalized ray. The numerical examples demonstrate that the proposed method makes it possible to calculate the early-time transient response in the complex multilayered-solid configuration efficiently.

  1. Investigations on the Impact of Material-Integrated Sensors with the Help of FEM-Based Modeling

    PubMed Central

    Dumstorff, Gerrit; Lang, Walter

    2015-01-01

    We present investigations on the impact of material-integrated sensors with the help of finite element-based modeling. A sensor (inlay) integrated with a material (matrix) is always a foreign body in the material, which can lead to a “wound effect”, that is degradation of the macroscopic behavior of a material. By analyzing the inlay's impact on the material in terms of mechanical load, heat conduction, stress during integration and other impacts of integration, this wound effect is analyzed. For the mechanical load, we found out that the inlay has to be at least as stretchable and bendable as the matrix. If there is a high thermal load during integration, the coefficients of the thermal expansion of the inlay have to be matched to the matrix. In the case of a high thermal load during operation, the inlay has to be as thin as possible or its thermal conductivity has to be adapted to the thermal conductivity of the matrix. To have a general view of things, the results are dimensionless and independent of the geometry. In each section, the results are illustrated by examples. Based on all of the results, we present our idea for the fabrication of future material-integrated sensors. PMID:25621607

  2. An investigation on the mechanism of sublimed DHB matrix on molecular ion yields in SIMS imaging of brain tissue.

    PubMed

    Dowlatshahi Pour, Masoumeh; Malmberg, Per; Ewing, Andrew

    2016-05-01

    We have characterized the use of sublimation to deposit matrix-assisted laser desorption/ionization (MALDI) matrices in secondary ion mass spectrometry (SIMS) analysis, i.e. matrix-enhanced SIMS (ME-SIMS), a common surface modification method to enhance sensitivity for larger molecules and to increase the production of intact molecular ions. We use sublimation to apply a thin layer of a conventional MALDI matrix, 2,5-dihydroxybenzoic acid (DHB), onto rat brain cerebellum tissue to show how this technique can be used to enhance molecular yields in SIMS while still retaining a lateral resolution around 2 μm and also to investigate the mechanism of this enhancement. The results here illustrate that cholesterol, which is a dominant lipid species in the brain, is decreased on the tissue surface after deposition of matrix, particularly in white matter. The decrease of cholesterol is followed by an increased ion yield of several other lipid species. Depth profiling of the sublimed rat brain reveals that the lipid species are de facto extracted by the DHB matrix and concentrated in the top most layers of the sublimed matrix. This extraction/concentration of lipids directly leads to an increase of higher mass lipid ion yield. It is also possible that the decrease of cholesterol decreases the potential suppression of ion yield caused by cholesterol migration to the tissue surface. This result provides us with significant insights into the possible mechanisms involved when using sublimation to deposit this matrix in ME-SIMS.

  3. Multiple scattered radiation emerging from Rayleigh and continental haze layers. I - Radiance, polarization, and neutral points

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Plass, G. N.; Hitzfelder, S. J.

    1976-01-01

    The matrix operator method was used to calculate the polarization of radiation scattered on layers of various optical thicknesses, with results compared for Rayleigh scattering and for scattering from a continental haze. In both cases, there are neutral points arising from the zeros of the polarization of single scattered photons at scattering angles of zero and 180 degrees. The angular position of these Rayleigh-like neutral points (RNP) in the sky shows appreciable variation with the optical thickness of the scattering layer for a Rayleigh phase matrix, but only a small variation for haze L phase matrix. Another type of neutral point exists for non-Rayleigh phase functions that is associated with the zeros of the polarization for single scattering which occurs between the end points of the curve. A comparison of radiances calculated from the complete theory of radiative transfer using Stokes vectors with those obtained from the scalar theory shows that differences of the order of 23% may be obtained for Rayleigh scattering, while the largest difference found for a haze L phase function was of the order of 0.1%.

  4. Microstructural Evolution of AerMet100 Steel Coating on 300M Steel Fabricated by Laser Cladding Technique

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Li, Jia; Cheng, Xu; Wang, Huaming

    2018-02-01

    In this paper, the process of coating AerMet100 steel on forged 300M steel with laser cladding was investigated, with a thorough analysis of the chemical composition, microstructure, and hardness of the substrate and the cladding layer as well as the transition zone. Results show that the composition and microhardness of the cladding layer are macroscopically homogenous with the uniformly distributed bainite and a small amount of retained austenite in martensite matrix. The transition zone, which spans approximately 100 μm, yields a gradual change of composition from the cladding layer to 300M steel matrix. The heat-affected zone (HAZ) can be divided into three zones: the sufficiently quenched zone (SQZ), the insufficiently quenched zone (IQZ), and the high tempered zone (HTZ). The SQZ consists of martensitic matrix and bainite, as for the IQZ and the HTZ the microstructures are martensite + tempered martensite and tempered martensite + ferrite, respectively. These complicated microstructures in the HAZ are caused by different peak heating temperatures and heterogeneous microstructures of the as-received 300M steel.

  5. Asymmetric temporal integration of layer 4 and layer 2/3 inputs in visual cortex.

    PubMed

    Hang, Giao B; Dan, Yang

    2011-01-01

    Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.

  6. Kinetic development of biofilm on NF membranes at the Méry-sur-Oise plant, France.

    PubMed

    Houari, Ahmed; Seyer, Damien; Kecili, Karima; Heim, Véronique; Martino, Patrick Di

    2013-01-01

    The kinetic formation of biofilms developing on nanofiltration (NF) membranes was studied for 2 years in the water production unit of Méry-sur-Oise, France. New membranes were set up in a pilot train integrated to the plant and autopsied after operation for 7, 80, 475 and 717 days. The biofouling layer was studied by confocal laser scanning microscope after 4',6-diamidino-2-phenyindole dihydrochloride and lectin staining, and by attenuated total reflectance-Fourier transform infrared spectroscopy and rheology experiments. Three stages of biofilm growth were discriminated: (1) the presence of sessile microcolonies embedded in an exopolymeric matrix (after filtration for seven days); (2) membrane coverage expansion through microcolony development and biofilm growth in three dimensions (up to 80 days filtration); and (3) biofilm maturation by densification (after filtration for 80-717 days). Biofilm maturation resulted in total coverage of the membrane surface and matrix residue diversification, development of the polysaccharide network, and the strengthening of matrix cohesion through viscosity and elasticity increases. The wettability and permeability of the fouled NF membranes decreased quickly and continuously throughout the biofilm development process. The longitudinal pressure drop (LPD) increased only after the biofilm reached a quantitative threshold. The decline in membrane permeability may be the result of contributions from many fouling mechanisms but the LPD was more substantially influenced by biofilm development.

  7. Faces of matrix models

    NASA Astrophysics Data System (ADS)

    Morozov, A.

    2012-08-01

    Partition functions of eigenvalue matrix models possess a number of very different descriptions: as matrix integrals, as solutions to linear and nonlinear equations, as τ-functions of integrable hierarchies and as special-geometry prepotentials, as result of the action of W-operators and of various recursions on elementary input data, as gluing of certain elementary building blocks. All this explains the central role of such matrix models in modern mathematical physics: they provide the basic "special functions" to express the answers and relations between them, and they serve as a dream model of what one should try to achieve in any other field.

  8. Addressable test matrix for measuring analog transfer characteristics of test elements used for integrated process control and device evaluation

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor)

    1988-01-01

    A set of addressable test structures, each of which uses addressing schemes to access individual elements of the structure in a matrix, is used to test the quality of a wafer before integrated circuits produced thereon are diced, packaged and subjected to final testing. The electrical characteristic of each element is checked and compared to the electrical characteristic of all other like elements in the matrix. The effectiveness of the addressable test matrix is in readily analyzing the electrical characteristics of the test elements and in providing diagnostic information.

  9. Regeneration of the oesophageal muscle layer from oesophagus acellular matrix scaffold using adipose-derived stem cells.

    PubMed

    Wang, Fang; Maeda, Yasuko; Zachar, Vladimir; Ansari, Tahera; Emmersen, Jeppe

    2018-06-14

    This study explored the feasibility of constructing a tissue engineered muscle layer in the oesophagus using oesophageal acellular matrix (OAM) scaffolds and human aortic smooth muscle cells (hASMCs) or human adipose-derived stem cells (hASCs). The second objective was to investigate the effect of hypoxic preconditioning of seeding cells on cell viability and migration depth. Our results demonstrated that hASMCs and hASCs could attach and adhere to the decellularized OAM scaffold and survive and proliferate for at least 7 days depending on the growth conditions. This indicates adipose-derived stem cells (ASCs) have the potential to substitute for smooth muscle cells (SMCs) in the construction of tissue engineered oesophageal muscle layers. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Microstructure of as-fabricated UMo/Al(Si) plates prepared with ground and atomized powder

    NASA Astrophysics Data System (ADS)

    Jungwirth, R.; Palancher, H.; Bonnin, A.; Bertrand-Drira, C.; Borca, C.; Honkimäki, V.; Jarousse, C.; Stepnik, B.; Park, S.-H.; Iltis, X.; Schmahl, W. W.; Petry, W.

    2013-07-01

    UMo-Al based fuel plates prepared with ground U8wt%Mo, ground U8wt%MoX (X = 1 wt%Pt, 1 wt%Ti, 1.5 wt%Nb or 3 wt%Nb) and atomized U7wt%Mo have been examined. The first finding is that that during the fuel plate production the metastable γ-UMo phases partly decomposed into two different γ-UMo phases, U2Mo and α'-U in ground powder or α″-U in atomized powder. Alloying small amounts of a third element to the UMo had no measurable effect on the stability of the γ-UMo phase. Second, the addition of some Si inside the Al matrix and the presence of oxide layers in ground and atomized samples is studied. In the case with at least 2 wt%Si inside the matrix a Silicon rich layer (SiRL) forms at the interface between the UMo and the Al during the fuel plate production. The SiRL forms more easily when an Al-Si alloy matrix - which is characterized by Si precipitates with a diameter ⩽1 μm - is used than when an Al-Si mixed powder matrix - which is characterized by Si particles with some μm diameter - is used. The presence of an oxide layer on the surface of the UMo particles hinders the formation of the SiRL. Addition of some Si into the Al matrix [7-11]. Application of a protective barrier at the UMo/Al interface by oxidizing the UMo powder [7,12]. Increase of the Mo content or use of UMo alloys with ternary element addition X (e.g. X = Nb, Ti, Pt) to stabilize the γ-UMo with respect to α-U or to control the UMo-Al interaction layer kinetics [9,12-24]. Use of ground UMo powder instead of atomized UMo powder [10,25] The points 1-3 are to limit the formation of the undesired UMo/Al layer. Especially the addition of Si into the matrix has been suggested [3,7,8,10,11,26,27]. It has been often mentioned that Silicon is efficient in reducing the Uranium-Aluminum diffusion kinetics since Si shows a higher chemical affinity to U than Al to U. Si suppresses the formation of brittle UAl4 which causes a huge swelling during the irradiation. Furthermore it enhances the formation of more stable UAl3 within the diffusion layer [14]. In addition, Si will not notably influence the reactor neutronics due to its low absorption cross section for thermal neutrons of σabs = 0.24 barn. Aluminum has σabs = 0.23 barn.Williams [28], Bierlein [29], Green [30] and de Luca [31] showed the first time in the 1950s that alloying Aluminum with some Silicon reduces the Uranium-Aluminum diffusion kinetics in can-type fuel elements. However, up to now uncertainties remained about the most promising Si concentration and the involved mechanisms.Ground powder - possibility 4 - introduces a high density of defects like dislocations, oxide layers and impurities into UMo grains. Fuel prepared with this kind of powder exhibits a larger porosity. It may also be combined with an AlSi matrix. As a consequence, the degree of swelling due to high-burn up is reduced compared to fuel with atomized powder [5,6,25].This study focuses on the metallurgical characterization of as-fabricated samples prepared with ground UMo and UMoX (X = Ti, Nb, Pt) powders and atomized UMo powder. The influence of some Si into the Al matrix and the presence of oxide layers on the UMo is discussed. Details of the differences of samples with ground UMo from atomized UMo will be discussed.The examined samples originate from non-irradiated spare fuel plates from the IRIS-TUM irradiation campaign [5,6]. The samples containing ground UMoX powders and atomized UMo powders with Si addition into the matrix have been produced for this study [32]. Powder mixing: The UMo powder is mixed with Al powder. Compact production: UMo-Al powder is poured into a mould and undergoes compaction under large force. Plate-processing: An AlFeNi frame is placed on an AlFeNi plate and the UMo-Al compact is placed into the frame. Afterwards it is covered with a second AlFeNi plate. This assembly is hot-rolled to reduce the total thickness to 1.4 mm. Subsequently, a blister test (1-2 h at 400-450 °C) ensures that the fuelplate is sealed. After this step, the UMo particles are tightly covered with Al as shown in Fig. 1. To access the meat layer, small samples have been cut from the fuel plates. The AlFeNi cladding has been removed using abrasive paper and diamond polishing paste. Cross sections were prepared from each sample and examined using SEM/EDX and XRD. Laboratory scale XRD Laboratory sealed-tube XRD on a STOE-STADIP diffractometer equipped with an incident beam focusing monochromator and used in reflection geometry with respect to the sample. MoK-α radiation has been used. Details on the systems used can be found in [39]. mu;-XRD using micro-focused synchrotron radiation at the Swiss Light Source μ-XAS beamline (PSI, Switzerland). At SLS, the beam size was 3 × 3 μm2, the energy was 19.7 keV. Further details on the experimental procedure can be found in [40]. Only very small sample volumes are probed with this technique, therefore the results may not be representative for the whole miniplate. The standard deviation of the lattice parameters obtained with this method is ±0.01 Å in case not different given. High-energy XRD (HE-XRD) in transmission mode using synchrotron radiation at the "High Energy Diffraction and Scattering Beamline ID15B" of ESRF. An X-ray energy of 87 keV has been used, the beam size was 0.3 × 0.3 mm2. Details on the experimental procedure are presented in [41,42]. It was possible to determine the average mass fractions of the phases present inside the sample using this technique. The standard deviation of the lattice parameters obtained with this method is ±0.001 Å in case not different given. laser granulometry to determine the size distribution of the particles, XRD for phase identification. Granulometry measurements showed that a significant amount of very fine particles of a few μm to 10 μm size are present in the first class of powder.In both cases, laboratory XRD analyses evidenced only two phases: γ-UMo and UO2. In contrast to observations on the final fuel plates, there are no signs of α-U. Comparing XRD data of atomized UMo powder (taken form the IRIS4 experiment) and ground UMo powder with almost the same Mo content, the peaks are broader in XRD patterns of ground UMo and there is a higher background [44]. This points that the lattice structure of the UMo inside the ground powder is strongly disordered during the grinding process.Complementary investigations were performed in these ground UMo powder samples using HE-XRD. The obtained data can therefore directly be compared to those measured on pre-oxidized atomized UMo powders [45] and IRIS-TUM fuel plates [41]. For both powder samples the γ-UMo lattice constant has been estimated to 3.433 ± 0.002 Å which corresponds to about 7.2 wt% for Mo in the alloy according to Dwight's law [46]. The existence of two UMo phases inside these ground particles (as in atomized case) could not be investigated because of the huge peak broadening (presence of micro distortions). Whatever the sample granulometry, the analysis of the HE-XRD data showed a non-negligible nitride contamination in ground powders (see Fig. 2). Two uranium nitride phases are indeed found in these samples: UN and U2N3+x[47]. Note that the presence of UN has also been found in the as-fabricated plates. These results confirm the high reactivity of UMo with both Oxygen and Nitrogen in the grinding conditions. As a comparison for temperatures in the 200-250 °C range, it seems that UNx phases are more difficult to grow: they were not present in outer layers obtained by heat treatment under air on atomized particles [45]. Finally it can be seen in Table 3 that the weight fractions of UO2 and U2N3+x phases are lower in the sample with larger UMo particles. This suggests the existence of an oxide, nitride outer shell around UMo ground particle with thickness that does not strongly evolve with particle size. This constant outer shell thickness has also been found in pre-oxidized atomized powders [45].The UMoX powder used for the samples MAFIA-I-18 - MAFIA-I-21 has not been investigated prior to plate fabrication. However, since the grinding process is essentially the same as for the pure UMo powder, similar characteristics are assumed. Thin oxide layers with a thickness ⩽1 μm on some of the particles that were not intentionally oxidized. Although the UMo powder was stored and handled under an inert atmosphere over the whole production process, some residual oxygen has reacted with the UMo. Already this thin oxide layers exhibits cracks (Fig. 5). Thicker oxide layers with a thickness up to 5 μm on the UMo particles that were oxidized purposely. This kind of oxide layer is very brittle and shows large cracks (Fig. 6). The oxidized UMo particles tend to detach with the matrix as gaps between the UMo particles and the oxide layer could be observed (Fig. 6). This is most obvious at spots where a UMo particle has been pulled out during polishing. A part of the oxide layer remained inside the resulting hole (Fig. 7). Atomized UMo powder 2 wt%Si in Al matrix, alloyed AlSi 2 wt%Si in Al matrix, mixed AlSi 5 wt%Si in Al matrix, mixed AlSi 7 wt%Si in Al matrix, mixed AlSi Ground UMo powder 2 wt%Si in Al matrix, alloyed AlSi The influence of an oxide layer around the UMo particles on the formation of the SiRL during fuel plate production is further discussed. The growth of a Si rich layer surrounding the UMo particles in the 2 wt%Si alloyed powder (oxidized UMo), as well as the 5 wt% and 7 wt%Si mixed powder (non-oxidized UMo) during production of the miniplates. The presence of Si precipitates in the Al-matrix (large precipitates in case of mixture, small si particles in alloy). No oxide layer: If no oxide layer is present around the UMo particles a homogeneous SiRL grows at the interface UMo-Al (Fig. 15a). Brittle oxide layer: An oxide layer is present around the UMo particles, the SiRL grows always between the UMo particle and the oxide layer (Fig. 15b). In this case the the SiRL is thin and not homogeneous. As presumed by Ripert et al. [7] it is essential that the oxide layer reveals cracks perpendicular the UMo particle surface to make path for the Si diffusion. Dense oxide layer: In case of a thin (≈1 μm) but compact oxide layer no SiRL is formed even at high Si concentrations inside the matrix (Fig. 15c). The observed effects are pronounced when the thickness of the oxide layer is increased, as shown in Fig. 16: UMo particles covered with a thicker oxide layer (>1 μm) inside an Aluminum matrix with 5 wt%Si (mixed Al-Si powder). The oxide layer is dense at the left side of the particle, no Si can be found there (Fig. 16a). In contrast, the brittle and cracked oxide layer on the right side made path for a Si diffusion but the SiRL is thinner than in the sites where the UMo particle is not covered with an oxide layer. EDX maps at different positions of the sample showed that in general no SiRL forms around UMo particles covered by oxide layers with a thickness greater than 1 μm (Fig. 16b). This behavior is identical for the samples with 5 wt%Si and 7 wt%Si added to the Aluminum matrix (mixed Al-Si powder). Obviously the presence of a (dense) oxide layer hampers the formation of a SiRL. different UXSiY phases with strongly overlapping peaks can be found in the SiRL, these phases are characterized by small sizes of the crystallites (a few tens of nanometers) and/or cell parameter gradients. Two different crystallographic phases have been usually identified: U(Al,Si)3 displaying a small lattice parameter of a0 = 4.16 Å. This indicates that about 40% of the Al lattice sites are occupied by Si atoms. The second phase is isostructural to U3Si54 with a different lattice parameter [59-61]. Although the U-Si-Al phase diagram contains a variety of phases, none of the phases reported in literature [62] could be used to fully refine the measured diagram. Therefore, three different hypotheses are suggested to explain the occurence of this unknown phase: The observed compound consists of two phases: Conventional U3Si5 and USi2, as has been suggested by the authors before [58]. However, only one literature source (Brown et al.) describing the occurrence of USi2 below 450 °C could be found [63,64]. Furthermore, it has not been possible to reproduce the experiments described by Brown et al. Therefore, this hypothesis remains doubtful [59]. The observed phase may be a new unknown phase. For example, a cubic phase with lattice constant a0 = 3.96 Å can be used to refine the observed peaks. This hypothesis can neither be confirmed nor refused based on the existing data. The observed phase can be a U3Si5 variant containing Mo and/or Al atoms. This hypothesis is supported by the authors. Hence in the following sections this structure will be denoted as U3Si5. No traces of SiRL phases are found inside the sample with 2 wt%Si mixed-powder matrix (MAFIA-I-3), all the Si remained inside the matrix. A SiRL is present inside the samples with 2.1 wt%Si alloyed powder matrix (MAFIA-I-4) and 5 wt%Si (MAFIA-I-5) and 7 wt%Si (MAFIA-I-7) mixed powder matrix. However, between 76% and 96% of the Si remained inside the matrix in form of precipitates or Si particles. The SiRL is formed readily when the Si is present inside the matrix in form of precipitates (i.e. Al-Si alloy matrix, MAFIA-I-4 and IRIS-TUM 8502) compared to particles (i.e. Al-Si mixed powder matrix, MAFIA-I-3, MAFIA-I-5 and MAFIA-I-7). This behavior can best be observed on the sample prepared with ground powder and with 2.1 wt%Si alloyed powder matrix (IRIS-TUM-8502): The matrix contains no Si, only SiRL phases are found. Since the sample with 5 wt%Si mixed powder matrix (MAFIA-I-5) has the lowest SiRL fraction but by far the highest UO2 content, it is concluded that the presence of UO2 around the UMo kernels tends to hamper the formation of a SiRL. UMo/Al samples prepared with ground powder contain irregularly shaped UMo kernels. They are in general oxidized and also contain oxide stringers. These samples have a high porosity content of around 8 vol%. In contrast, UMo/Al samples prepared with atomized powder contain spherical UMo kernels. Only the surface of the UMo kernels is oxidized in some cases. Thick oxide layers must be grown intentionally while thinner layers are the result of oxidation during the whole process. The oxide layer is in general brittle and exhibits cracks. The Uranium-oxide content of all examined samples (atomized and ground) varies between 2 and 13 wt%. gamma;-UMo present in the fresh UMo powder destabilizes to transform to an α-U-like phase, U2Mo, and two γ-UMo phases with different Mo content during the fuel plate production. For ground powder, α-U content varies in 28-38 wt%, for atomized powder in 11-14 wt%. The degree of γ-phase destabilization is therefore higher for ground powder. Ternary addition of Nb, Ti or Pt to the UMo did not impact the extent of decomposition. The γ-phase decomposition in the atomized and ground powder does not follow the expected in the U8wt%Mo TTT diagram between 400 and 450 °C [41]. According to Repas et al. [65], the route is γ-UMoa → γ-UMob + α-U → γ-UMoc+α-U + U2Mo . γ-UMoa,b,c differ in the Mo content where γ-UMoa has the lowest and γ-UMoc has the highest Mo content. We observe a new route of decomposition of ground powder into two different γ-UMo phases. One of them has approximately the original Mo content and the other has a higher Mo content. Further U2Mo and a phase with deformed lattice parameters compared to pure α-U have been observed. The latter is known as α' in literature.For atomized powder, also two different γ-UMo phases and traces of U2Mo have been found. However, a different α-U like phase has been identified: α″ [41,53-55].Repas et al. used as cast samples that have been examined with conventional XRD and different metallographic methods [65]. The difference to our data can be explained by the superior resolution of the here used HE-XRD diffraction. Most probably, conventional lab X-ray sourcces could not resolve fine differences in the lattice parameters of α-U and may not enable to separate two γ-UMo phase. To overcome this uncertainty it is highly desirable to examine the TTT diagram of UMo with high resolution. When Si is added into the matrix - by using alloyed Al-Si powder as a matrix or blending Al and Si powder - in general a SiRL is formed at the interface between the UMo and the Al matrix. An exception can be found in MAFIA-I-3 in which the overall Si content was to low to form a SiRL. The SiRL consists of U(Al,Si)3 and U3Si5. The SiRL forms less readily in case of mixed Al-Si than in case of alloyed Al-Si powder. In the latter case (MAFIA-I-4), a Si depleted zone has been observed around the UMo particles. For ground powder in combination with an Al-Si alloyed matrix, the entire Si from the matrix has reacted with the UMo forming SiRL phases. The presence of a dense oxide layer around the UMo kernels can prevent the formation of a SiRL. However, as soon as the oxide layer is cracked a SiRL forms between the UMo and the oxide layer. A dense oxide layer isolates the UMo from the Si inside the matrix and occurring cracks make path for the diffusion of Si towards the UMo. U3Si 5 is also called USi2-x or USi1.66 in literature.

  11. On the asymptotic states and the quantum S matrix of the η-deformed AdS 5 × S 5 superstring

    DOE PAGES

    Engelund, Oluf Tang; Roiban, Radu

    2015-03-31

    We investigate the worldsheet S matrix of string theory in η-deformed AdS 5 × S 5. By computing the six-point tree-level S matrix we explicitly show that there is no particle production at this level, as required by the classical integrability of the theory. At one and two loops we show that integrability requires that the classical two-particle states be redefined in a non-local and η-dependent way. This is a significant departure from the undeformed theory which is probably related to the quantum group symmetry of the worldsheet theory. We use generalized unitarity to carry out the loop calculations andmore » identify a set of integrals that allow us to give a two-loop Feynman integral representation of the logarithmic terms of the two-loop S matrix. We finally also discuss aspects of the calculation of the two-loop rational terms.« less

  12. An efficient numerical method for the solution of the problem of elasticity for 3D-homogeneous elastic medium with cracks and inclusions

    NASA Astrophysics Data System (ADS)

    Kanaun, S.; Markov, A.

    2017-06-01

    An efficient numerical method for solution of static problems of elasticity for an infinite homogeneous medium containing inhomogeneities (cracks and inclusions) is developed. Finite number of heterogeneous inclusions and planar parallel cracks of arbitrary shapes is considered. The problem is reduced to a system of surface integral equations for crack opening vectors and volume integral equations for stress tensors inside the inclusions. For the numerical solution of these equations, a class of Gaussian approximating functions is used. The method based on these functions is mesh free. For such functions, the elements of the matrix of the discretized system are combinations of explicit analytical functions and five standard 1D-integrals that can be tabulated. Thus, the numerical integration is excluded from the construction of the matrix of the discretized problem. For regular node grids, the matrix of the discretized system has Toeplitz's properties, and Fast Fourier Transform technique can be used for calculation matrix-vector products of such matrices.

  13. Ethanol Wet-bonding Challenges Current Anti-degradation Strategy

    PubMed Central

    Sadek, F.T.; Braga, R.R.; Muench, A.; Liu, Y.; Pashley, D.H.; Tay, F.R.

    2010-01-01

    The long-term effectiveness of chlorhexidine as a matrix metalloproteinase (MMP) inhibitor may be compromised when water is incompletely removed during dentin bonding. This study challenged this anti-bond degradation strategy by testing the null hypothesis that wet-bonding with water or ethanol has no effect on the effectiveness of chlorhexidine in preventing hybrid layer degradation over an 18-month period. Acid-etched dentin was bonded under pulpal pressure simulation with Scotchbond MP and Single Bond 2, with water wet-bonding or with a hydrophobic adhesive with ethanol wet-bonding, with or without pre-treatment with chlorhexidine diacetate (CHD). Resin-dentin beams were prepared for bond strength and TEM evaluation after 24 hrs and after aging in artificial saliva for 9 and 18 mos. Bonds made to ethanol-saturated dentin did not change over time with preservation of hybrid layer integrity. Bonds made to CHD pre-treated acid-etched dentin with commercial adhesives with water wet-bonding were preserved after 9 mos but not after 18 mos, with severe hybrid layer degradation. The results led to rejection of the null hypothesis and highlight the concept of biomimetic water replacement from the collagen intrafibrillar compartments as the ultimate goal in extending the longevity of resin-dentin bonds. PMID:20940353

  14. Progressive matrix cracking in off-axis plies of a general symmetric laminate

    NASA Technical Reports Server (NTRS)

    Thomas, David J.; Wetherhold, Robert C.

    1993-01-01

    A generalized shear-lag model is derived to determine the average through-the-thickness stress state present in a layer undergoing transverse matrix cracking, by extending the method of Lee and Daniels (1991) to a general symmetric multilayered system. The model is capable of considering cracking in layers of arbitrary orientation, states of general in-plane applied loading, and laminates with a general symmetric stacking sequence. The model is included in a computer program designed for probabilistic laminate analysis, and the results are compared to those determined with the ply drop-off technique.

  15. Polyluminol/hydrogel composites as new electrochemiluminescent-active sensing layers.

    PubMed

    Leca-Bouvier, Béatrice D; Sassolas, Audrey; Blum, Loïc J

    2014-09-01

    This paper reports on electrochemiluminescent sensors and biosensors based on polyluminol/hydrogel composite sensing layers using chemical or biological membranes as hydrogel matrices. In this work, luminol is electropolymerized under near-neutral conditions onto screen-printed electrode (SPE)-supported hydrogel films. The working electrode coated with a hydrogel film is soaked in a solution containing monomeric luminol units, allowing the monomeric luminol units to diffuse inside the porous matrix to the electrode surface where they are electropolymerized by cyclic voltammetry (CV). Sensors and enzymatic biosensors for H2O2 and choline detection, respectively, have been developed, using choline oxidase (ChOD) as a model enzyme. In this case, hydrogel is used both as the enzymatic immobilization matrix and as a template for the electrosynthesis of polyluminol. The enzyme was immobilized by entrapment in the gel matrix during its formation before electropolymerization of the monomer. Several parameters have been optimized in terms of polymerization conditions, enzyme loading, and average pore size. Using calcium alginate or tetramethoxysilane (TMOS)-based silica as porous matrix, H2O2 and choline detection are reported down to micromolar concentrations with three orders of magnitude wide dynamic ranges starting from 4 × 10(-7) M. Polyluminol/hydrogel composites appear as suitable electrochemiluminescence (ECL)-active sensing layers for the design of new reagentless and disposable easy-to-use optical sensors and biosensors, using conventional TMOS-based silica gel or the more original and easier to handle calcium alginate, reported here for the first time in such a configuration, as the biocompatible hydrogel matrix.

  16. PMR-15/Layered Silicate Nanocomposites For Improved Thermal Stability And Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi; Scheiman, Daniel; Faile, Michael; Papadopoulos, Demetrios; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Montmorillonite clay was organically modified by co-exchange of an aromatic diamine and a primary alkyl amine. The clay was dispersed into a PMR (Polymerization of Monomer Reactants)-15 matrix and the glass transition temperature and thermal oxidative stability of the resulting nanocomposites were evaluated. PMR-15/ silicate nanocomposites were also investigated as a matrix material for carbon fabric reinforced composites. Dispersion of the organically modified silicate into the PMR-15 matrix enhanced the thermal oxidative stability, the flexural strength, flexural modulus, and interlaminar shear strength of the polymer matrix composite.

  17. Making molecular balloons in laser-induced explosive boiling of polymer solutions.

    PubMed

    Leveugle, Elodie; Sellinger, Aaron; Fitz-Gerald, James M; Zhigilei, Leonid V

    2007-05-25

    The effect of the dynamic molecular rearrangements leading to compositional segregation is revealed in coarse-grained molecular dynamics simulations of short pulse laser interaction with a polymer solution in a volatile matrix. An internal release of matrix vapor at the onset of the explosive boiling of the overheated liquid is capable of pushing polymer molecules to the outskirts of a transient bubble, forming a polymer-rich surface layer enclosing the volatile matrix material. The results explain unexpected "deflated balloon" structures observed in films deposited by the matrix-assisted pulsed laser evaporation technique.

  18. Taxel-addressable matrix of vertical nanowire piezotronic transistors

    DOEpatents

    Wang, Zhong Lin; Wu, Wenzhuo; Wen, Xiaonan

    2015-05-05

    A tactile sensing matrix includes a substrate, a first plurality of elongated electrode structures, a plurality of vertically aligned piezoelectric members, an insulating layer infused into the piezoelectric members and a second plurality of elongated electrode structures. The first plurality of elongated electrode structures is disposed on the substrate along a first orientation. The vertically aligned piezoelectric members is disposed on the first plurality of elongated electrode structures and form a matrix having columns of piezoelectric members disposed along the first orientation and rows of piezoelectric members disposed along a second orientation that is transverse to the first orientation. The second plurality of elongated electrode structures is disposed on the insulating layer along the second orientation. The elongated electrode structures form a Schottky contact with the piezoelectric members. When pressure is applied to the piezoelectric members, current flow therethrough is modulated.

  19. Simultaneous remote measurement of CO2 concentration, humidity and temperature with a matrix of optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Wysokiński, Karol; Filipowicz, Marta; Stańczyk, Tomasz; Lipiński, Stanisław; Napierała, Marek; Murawski, Michał; Nasiłowski, Tomasz

    2017-10-01

    A matrix of optical fiber sensors eligible for remote measurements is reported in this paper. The aim of work was to monitor the air quality with a device, which does not need any electricity on site of the measurement. The matrix consists of several sensors detecting carbon dioxide concentration, relative humidity and temperature. Sensors utilize active optical materials, which change their color when exposed to varied conditions. All the sensors are powered with standard light emitting diodes. Light is transmitted by an optical fiber from the light source and then it reaches the active layer which changes its color, when the conditions change. This results in a change of attenuation of light passing through the active layer. Modified light is then transmitted by another optical fiber to the detector, where simple photoresistor is used. It is powered by a stabilized DC power supply and the current is measured. Since no expensive elements are needed to manufacture such a matrix of sensors, its price may be competitive to the price of the devices already available on the market, while the matrix also exhibits other valuable properties.

  20. Active Flow Control on a Boundary-Layer-Ingesting Inlet

    NASA Technical Reports Server (NTRS)

    Gorton, Susan Althoff; Owens, Lewis R.; Jenkins, Luther N.; Allan, Brian G.; Schuster, Ernest P.

    2004-01-01

    Boundary layer ingestion (BLI) is explored as means to improve overall system performance for Blended Wing Body configuration. The benefits of BLI for vehicle system performance benefit are assessed with a process derived from first principles suitable for highly-integrated propulsion systems. This performance evaluation process provides framework within which to assess the benefits of an integrated BLI inlet and lays the groundwork for higher-fidelity systems studies. The results of the system study show that BLI provides a significant improvement in vehicle performance if the inlet distortion can be controlled, thus encouraging the pursuit of active flow control (AFC) as a BLI enabling technology. The effectiveness of active flow control in reducing engine inlet distortion was assessed using a 6% scale model of a 30% BLI offset, diffusing inlet. The experiment was conducted in the NASA Langley Basic Aerodynamics Research Tunnel with a model inlet designed specifically for this type of testing. High mass flow pulsing actuators provided the active flow control. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion was determined by 120 total pressure measurements located at the aerodynamic interface plane. The test matrix was limited to a maximum freestream Mach number of 0.15 with scaled mass flows through the inlet for that condition. The data show that the pulsed actuation can reduce distortion from 29% to 4.6% as measured by the circumferential distortion descriptor DC60 using less than 1% of inlet mass flow. Closed loop control of the actuation was also demonstrated using a sidewall surface static pressure as the response sensor.

  1. Stress-sensitive tissue regeneration in viscoelastic biomaterials subjected to modulated tensile strain.

    PubMed

    Belfiore, Laurence A; Floren, Michael L; Paulino, Alexandre T; Belfiore, Carol J

    2011-09-01

    This research contribution addresses the mechanochemistry of intra-tissue mass transfer for nutrients, oxygen, growth factors, and other essential ingredients that anchorage-dependent cells require for successful proliferation on biocompatible surfaces. The unsteady state reaction-diffusion equation (i.e., modified diffusion equation) is solved according to the von Kármán-Pohlhausen integral method of boundary layer analysis when nutrient consumption and tissue regeneration are stimulated by harmonically imposed stress. The mass balance with diffusion and stress-sensitive kinetics represents a rare example where the Damköhler and Deborah numbers appear together in an effort to simulate the development of mass transfer boundary layers in porous viscoelastic biomaterials. The Boltzmann superposition integral is employed to calculate time-dependent strain in terms of the real and imaginary components of dynamic compliance for viscoelastic solids that transmit harmonic excitation to anchorage-dependent cells. Rates of nutrient consumption under stress-free conditions are described by third-order kinetics which include local mass densities of nutrients, oxygen, and attached cells that maintain dynamic equilibrium with active protein sites in the porous matrix. Thinner nutrient mass transfer boundary layers are stabilized at shorter dimensionless diffusion times when the stress-free intra-tissue Damköhler number increases above its initial-condition-sensitive critical value. The critical stress-sensitive intra-tissue Damköhler number, above which it is necessary to consider the effect of harmonic strain on nutrient consumption and tissue regeneration, is proportional to the Deborah number and corresponds to a larger fraction of the stress-free intra-tissue Damköhler number in rigid biomaterials. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Synthesis and luminescent properties of CaCO3:Eu3+@SiO2 phosphors with core-shell structure

    NASA Astrophysics Data System (ADS)

    Liu, Min; Kang, Ming; Chen, Kexu; Mou, Yongren; Sun, Rong

    2018-03-01

    Integrating the processes of preparation of CaCO3:Eu3+ and its surface-coating, core-shell structured CaCO3:Eu3+@SiO2 phosphors with red emission were synthesized by the carbonation method and surface precipitation procedure using sodium silicate as silica source. The phase structure, thermal stability, morphology and luminescent property of the as-synthesized samples were characterized by X-ray diffraction, Fourier transform infrared spectrum, thermal analysis, field-emission scanning electron microscopy, transmission electron microscope and photoluminescence spectra. The experimental results show that Eu3+ ions as the luminescence center are divided into two types: one is at the surface of the CaCO3 and the other inhabits the site of Ca2+. For CaCO3:Eu3+@SiO2 phosphors, the SiO2 layers are continuously coated on the surface of CaCO3:Eu3+ and show a typical core-shell structure. After coated with SiO2 layer, the luminous intensity and the compatibility with the rubber matrix increase greatly. Additionally, the luminous intensity increases with the increasing of Eu3+ ions concentration in CaCO3 core and concentration quenching occurs when Eu3+ ions concentration exceeds 7.0 mol%, while it is 5.0 mol% for CaCO3:Eu3+ phosphors. Therefore, preparation of CaCO3:Eu3+@SiO2 phosphors can not only simplify the experimental process through integrating the preparation of CaCO3:Eu3+ and SiO2 layer, but also effectively increase the luminous intensities of CaCO3:Eu3+ phosphors. The as-obtained phosphors may have potential applications in the fields of optical materials and functional polymer composite materials, such as plastics and rubbers.

  3. Laser treatment of female stress urinary incontinence: optical, thermal, and tissue damage simulations

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Chang, Chun-Hung; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.

    2016-02-01

    Treatment of female stress urinary incontinence (SUI) by laser thermal remodeling of subsurface tissues is studied. Light transport, heat transfer, and thermal damage simulations were performed for transvaginal and transurethral methods. Monte Carlo (MC) provided absorbed photon distributions in tissue layers (vaginal wall, endopelvic fascia, urethral wall). Optical properties (n,μa,μs,g) were assigned to each tissue at λ=1064 nm. A 5-mm-diameter laser beam and power of 5 W for 15 s was used, based on previous experiments. MC output was converted into absorbed energy, serving as input for ANSYS finite element heat transfer simulations of tissue temperatures over time. Convective heat transfer was simulated with contact cooling probe set at 0 °C. Thermal properties (κ,c,ρ) were assigned to each tissue layer. MATLAB code was used for Arrhenius integral thermal damage calculations. A temperature matrix was constructed from ANSYS output, and finite sum was incorporated to approximate Arrhenius integral calculations. Tissue damage properties (Ea,A) were used to compute Arrhenius sums. For the transvaginal approach, 37% of energy was absorbed in endopelvic fascia layer with 0.8% deposited beyond it. Peak temperature was 71°C, treatment zone was 0.8-mm-diameter, and almost all of 2.7-mm-thick vaginal wall was preserved. For transurethral approach, 18% energy was absorbed in endopelvic fascia with 0.3% deposited beyond it. Peak temperature was 80°C, treatment zone was 2.0-mm-diameter, and only 0.6 mm of 2.4-mm-thick urethral wall was preserved. A transvaginal approach is more feasible than transurethral approach for laser treatment of SUI.

  4. Rhodopsin-lipid interactions studied by NMR.

    PubMed

    Soubias, Olivier; Gawrisch, Klaus

    2013-01-01

    The biophysical properties of the lipid matrix are known to influence function of integral membrane proteins. We report on a sample preparation method for reconstitution of membrane proteins which uses porous anodic aluminum oxide (AAO) filters with 200-nm-wide pores of high density. The substrate permits formation of tubular, single membranes that line the inner surface of pores. One square centimeter of filter with a thickness of 60μm yields on the order of 500cm(2) of solid-supported single bilayer surface, sufficient for NMR studies. The tubular bilayers are free of detergent, fully hydrated, and accessible for ligands from one side of the membrane. The use of AAO filters greatly improves reproducibility of the reconstitution process such that the influence of protein on lipid order parameters can be studied with high resolution. As an example, results for the G protein-coupled receptor of class A, bovine rhodopsin, are shown. By (2)H NMR order parameter measurements, it is detected that rhodopsin insertion elastically deforms membranes near the protein. Furthermore, by (1)H saturation-transfer NMR under conditions of magic angle spinning, we demonstrate detection of preferences in interactions of rhodopsin with particular lipid species. It is assumed that function of integral membrane proteins depends on both protein-induced elastic deformations of the lipid matrix and preferences for interaction of the protein with particular lipid species in the first layer of lipids surrounding the protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Development of GENOA Progressive Failure Parallel Processing Software Systems

    NASA Technical Reports Server (NTRS)

    Abdi, Frank; Minnetyan, Levon

    1999-01-01

    A capability consisting of software development and experimental techniques has been developed and is described. The capability is integrated into GENOA-PFA to model polymer matrix composite (PMC) structures. The capability considers the physics and mechanics of composite materials and structure by integration of a hierarchical multilevel macro-scale (lamina, laminate, and structure) and micro scale (fiber, matrix, and interface) simulation analyses. The modeling involves (1) ply layering methodology utilizing FEM elements with through-the-thickness representation, (2) simulation of effects of material defects and conditions (e.g., voids, fiber waviness, and residual stress) on global static and cyclic fatigue strengths, (3) including material nonlinearities (by updating properties periodically) and geometrical nonlinearities (by Lagrangian updating), (4) simulating crack initiation. and growth to failure under static, cyclic, creep, and impact loads. (5) progressive fracture analysis to determine durability and damage tolerance. (6) identifying the percent contribution of various possible composite failure modes involved in critical damage events. and (7) determining sensitivities of failure modes to design parameters (e.g., fiber volume fraction, ply thickness, fiber orientation. and adhesive-bond thickness). GENOA-PFA progressive failure analysis is now ready for use to investigate the effects on structural responses to PMC material degradation from damage induced by static, cyclic (fatigue). creep, and impact loading in 2D/3D PMC structures subjected to hygrothermal environments. Its use will significantly facilitate targeting design parameter changes that will be most effective in reducing the probability of a given failure mode occurring.

  6. Influence of Calcium in Extracellular DNA Mediated Bacterial Aggregation and Biofilm Formation

    PubMed Central

    Koop, Leena; Wong, Yie Kuan; Ahmed, Safia; Siddiqui, Khawar Sohail; Manefield, Mike

    2014-01-01

    Calcium (Ca2+) has an important structural role in guaranteeing the integrity of the outer lipopolysaccharide layer and cell walls of bacterial cells. Extracellular DNA (eDNA) being part of the slimy matrix produced by bacteria promotes biofilm formation through enhanced structural integrity of the matrix. Here, the concurrent role of Ca2+ and eDNA in mediating bacterial aggregation and biofilm formation was studied for the first time using a variety of bacterial strains and the thermodynamics of DNA to Ca2+ binding. It was found that the eDNA concentrations under both planktonic and biofilm growth conditions were different among bacterial strains. Whilst Ca2+ had no influence on eDNA release, presence of eDNA by itself favours bacterial aggregation via attractive acid-base interactions in addition, its binding with Ca2+ at biologically relevant concentrations was shown further increase in bacterial aggregation via cationic bridging. Negative Gibbs free energy (ΔG) values in iTC data confirmed that the interaction between DNA and Ca2+ is thermodynamically favourable and that the binding process is spontaneous and exothermic owing to its highly negative enthalpy. Removal of eDNA through DNase I treatment revealed that Ca2+ alone did not enhance cell aggregation and biofilm formation. This discovery signifies the importance of eDNA and concludes that existence of eDNA on bacterial cell surfaces is a key facilitator in binding of Ca2+ to eDNA thereby mediating bacterial aggregation and biofilm formation. PMID:24651318

  7. A CMOS pixel sensor prototype for the outer layers of linear collider vertex detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Morel, F.; Hu-Guo, C.; Himmi, A.; Dorokhov, A.; Hu, Y.

    2015-01-01

    The International Linear Collider (ILC) expresses a stringent requirement for high precision vertex detectors (VXD). CMOS pixel sensors (CPS) have been considered as an option for the VXD of the International Large Detector (ILD), one of the detector concepts proposed for the ILC. MIMOSA-31 developed at IPHC-Strasbourg is the first CPS integrated with 4-bit column-level ADC for the outer layers of the VXD, adapted to an original concept minimizing the power consumption. It is composed of a matrix of 64 rows and 48 columns. The pixel concept combines in-pixel amplification with a correlated double sampling (CDS) operation in order to reduce the temporal noise and fixed pattern noise (FPN). At the bottom of the pixel array, each column is terminated with a self-triggered analog-to-digital converter (ADC). The ADC design was optimized for power saving at a sampling frequency of 6.25 MS/s. The prototype chip is fabricated in a 0.35 μm CMOS technology. This paper presents the details of the prototype chip and its test results.

  8. Hyperspectral remote sensing and GIS techniques application for the evaluation and monitoring of interactions between natural risks and industrial hazards

    NASA Astrophysics Data System (ADS)

    Marino, Alessandra; Ludovisi, Giancarlo; Moccaldi, Antonio; Damiani, Fiorenzo

    2001-02-01

    The aim of this paper is to outline the potential of imaging spectroscopy and GIS techniques as tool for the management of data rich environments, as complex fluvial areas, exposed to geological, geomorphological, and hydrogeological risks. The area of study, the Pescara River Basin is characterized by the presence of important industrial sites and by the occurrence of floods, landslides and seismic events. Data were collected, during a specific flight, using an hyperspectral MIVIS sensor. Images have been processed in order to obtain updated and accurate land-cover and land-use maps that have been inserted in a specific GIS database and integrated with further information like lithology, geological structure, geomorphology, hydrogeological features, productive plants location and characters. The processing of data layers was performed, using a dedicated software, through typical GIS operators like indexing, recording, matrix analysis, proximity analysis. The interactions between natural risks, industrial installations, agricultural areas, water resources and urban settlements have been analyzed. This allowed the creation and processing of thematic layers like vulnerability, risk and impact maps.

  9. Using Layer-by-Layer Coating and Nanocomposite Technologies to Improve the Barrier Properties of Polymeric Materials

    NASA Astrophysics Data System (ADS)

    Soltani, Iman

    Means for improving barrier properties of polymers against gases, particularly for promoting their applications as packaging materials, are divided into surface coating and embedding nanoparticles in the bulk of the polymeric membranes. In this research, we mainly investigated improvement in barrier properties of polymers against oxygen and carbon dioxide, through layer-by-layer (LBL) coating and bulk nanocomposite methods. Initially, we studied the morphology of layer-by-layer assemblies comprising alternating layers of polyelectrolyte (PE) and natural montmorillonite (MMT) platelets, where polyethyleneterephthalate ionomer was used as our proposed alternative PE, to be compared with already examined polyethyleneimine. For both investigated PEs, while microscopic images showed the formation of tortuous networks of galleries between subsequent layers of oriented clay platelets parallel to the substrate surface, x-ray diffractometry (XRD) traces pointed to the intercalation of PE layers between clay platelets. As a confirmation of forming tortuous networks between oriented and high aspect ratio clay platelets to increase the path length of diffusing gas species dramatically, LBL-coated polystyrene-based membranes demonstrated pronounced decreases in permeability of oxygen and carbon dioxide (e.g. about the scale of 500 times decrease in permeability, with only five cycles of bilayer deposition). Before LBL deposition, the surface of the hydrophobic polymeric substrate was pretreated with oxygen plasma to improve its interaction with the coating. In the next study, previously LBL-coated samples were melt pressed in a cyclic manner to embed and to crush the coating inside the polystyrene-based matrix, aiming the exfoliated polymer-clay nanocomposites. The morphological investigations by transmission electron microscopy (TEM) revealed the tortuous internal structure of crushed LBL assemblies' portions, mainly comprising swollen intercalated stacks of clay, as well as flocculated exfoliated tactoids of a few clay platelets, down to about 2nm thickness. Moreover, XRD traces confirmed this increase in intercalation and exfoliation of clay platelets. Following ahead, dynamic mechanical thermal analysis (DMA) revealed significant increases in the storage and loss moduli values for our PNCs over those of pristine polystyrenebased matrix, hypothesizing the occurrence of substantial interactions between clay and the polymeric matrix, induced by intervening effect of PE interlayers. Also, permeation experiments showed noticeable improvement in gas barrier properties of processed PNCs. Considering the low content of clay particles and their limited level of global dispersions throughout the matrix, it may theorize the significant efficiency of high aspect ratio and tortuous LBL assemblies portions, oriented (induced by cycling pressing into thin films) perpendicular to the permeants' path routes. Thus, it might act almost as scavenging hubs against transport of diffusing gases. Finally, using PVAc, as the matrix, with this novel two-step approach of preparing PNCs, showed relatively higher clay content, when prepared with similar coating conditions. Also, DMA and permeation experiments pointed to significant improvements in mechanical and gas barrier properties of the PNCs, prepared by only 25 times melt pressing steps. Additionally, XRD traces postulated occurrence of noticeable irregularities in the interdistance of clay platelets. So, it is conjectured that semi-hydrophilic PVAc matrix promotes stronger interactions with clay particles, compared with those of polystyrene-based PNCs. However, moderate global dispersion of clay throughout the matrix points to the insufficient efficiency of repetitive melt pressing procedure to apply intensive enough stresses on samples, in order to overcome internal cohesion in LBL assemblies, which established initial intercalation and exfoliation in the otherwise aggregately clustered natural clay platelets. In addition, it is postulated that possibly occurring slight thermal degradations induce adverse results on the dispersion level and aforementioned properties of PNCs, processed over extended times.

  10. Wave propagation in magneto-electro-elastic multilayered plates with nonlocal effect

    NASA Astrophysics Data System (ADS)

    Chen, Jiangyi; Guo, Junhong; Pan, Ernian

    2017-07-01

    In this paper, analytical solutions for propagation of time-harmonic waves in three-dimensional, transversely isotropic, magnetoelectroelastic and multilayered plates with nonlocal effect are derived. We first convert the time-harmonic wave problem into a linear eigenvalue system, from which we obtain the general solutions of the extended displacements and stresses. The solutions are then employed to derive the propagator matrix which connects the field variables at the upper and lower interfaces of each layer. Making use of the continuity conditions of the physical quantities across the interface, the global propagator relation is assembled by propagating the solutions in each layer from the bottom to the top of the layered plate. From the global propagator matrix, the dispersion equation is obtained by imposing the traction-free boundary conditions on both the top and bottom surfaces of the layered plate. Dispersion curves and mode shapes in layered plates made of piezoelectric BaTiO3 and magnetostrictive CoFe2O4 materials are presented to show the influence of the nonlocal parameter, stacking sequence, as well as the orientation of incident wave on the time-harmonic field response.

  11. Fast time- and frequency-domain finite-element methods for electromagnetic analysis

    NASA Astrophysics Data System (ADS)

    Lee, Woochan

    Fast electromagnetic analysis in time and frequency domain is of critical importance to the design of integrated circuits (IC) and other advanced engineering products and systems. Many IC structures constitute a very large scale problem in modeling and simulation, the size of which also continuously grows with the advancement of the processing technology. This results in numerical problems beyond the reach of existing most powerful computational resources. Different from many other engineering problems, the structure of most ICs is special in the sense that its geometry is of Manhattan type and its dielectrics are layered. Hence, it is important to develop structure-aware algorithms that take advantage of the structure specialties to speed up the computation. In addition, among existing time-domain methods, explicit methods can avoid solving a matrix equation. However, their time step is traditionally restricted by the space step for ensuring the stability of a time-domain simulation. Therefore, making explicit time-domain methods unconditionally stable is important to accelerate the computation. In addition to time-domain methods, frequency-domain methods have suffered from an indefinite system that makes an iterative solution difficult to converge fast. The first contribution of this work is a fast time-domain finite-element algorithm for the analysis and design of very large-scale on-chip circuits. The structure specialty of on-chip circuits such as Manhattan geometry and layered permittivity is preserved in the proposed algorithm. As a result, the large-scale matrix solution encountered in the 3-D circuit analysis is turned into a simple scaling of the solution of a small 1-D matrix, which can be obtained in linear (optimal) complexity with negligible cost. Furthermore, the time step size is not sacrificed, and the total number of time steps to be simulated is also significantly reduced, thus achieving a total cost reduction in CPU time. The second contribution is a new method for making an explicit time-domain finite-element method (TDFEM) unconditionally stable for general electromagnetic analysis. In this method, for a given time step, we find the unstable modes that are the root cause of instability, and deduct them directly from the system matrix resulting from a TDFEM based analysis. As a result, an explicit TDFEM simulation is made stable for an arbitrarily large time step irrespective of the space step. The third contribution is a new method for full-wave applications from low to very high frequencies in a TDFEM based on matrix exponential. In this method, we directly deduct the eigenmodes having large eigenvalues from the system matrix, thus achieving a significantly increased time step in the matrix exponential based TDFEM. The fourth contribution is a new method for transforming the indefinite system matrix of a frequency-domain FEM to a symmetric positive definite one. We deduct non-positive definite component directly from the system matrix resulting from a frequency-domain FEM-based analysis. The resulting new representation of the finite-element operator ensures an iterative solution to converge in a small number of iterations. We then add back the non-positive definite component to synthesize the original solution with negligible cost.

  12. Reconstruction of living bilayer human skin equivalent utilizing human fibrin as a scaffold.

    PubMed

    Mazlyzam, A L; Aminuddin, B S; Fuzina, N H; Norhayati, M M; Fauziah, O; Isa, M R; Saim, L; Ruszymah, B H I

    2007-05-01

    Our aim of this study was to develop a new methodology for constructing a bilayer human skin equivalent to create a more clinical compliance skin graft composite for the treatment of various skin defects. We utilized human plasma derived fibrin as the scaffold for the development of a living bilayer human skin equivalent: fibrin-fibroblast and fibrin-keratinocyte (B-FF/FK SE). Skin cells from six consented patients were culture-expanded to passage 1. For B-FF/FK SE formation, human fibroblasts were embedded in human fibrin matrix and subsequently another layer of human keratinocytes in human fibrin matrix was stacked on top. The B-FF/FK SE was then transplanted to athymic mice model for 4 weeks to evaluate its regeneration and clinical performance. The in vivo B-FF/FK SE has similar properties as native human skin by histological analysis and expression of basal Keratin 14 gene in the epidermal layer and Collagen type I gene in the dermal layer. Electron microscopy analysis of in vivo B-FF/FK SE showed well-formed and continuous epidermal-dermal junction. We have successfully developed a technique to engineer living bilayer human skin equivalent using human fibrin matrix. The utilization of culture-expanded human skin cells and fibrin matrix from human blood will allow a fully autologous human skin equivalent construction.

  13. Matrix Metalloproteinase 9 Displays a Particular Time Response to Acute Stress: Variation in Its Levels and Activity Distribution in Rat Hippocampus.

    PubMed

    Aguayo, Felipe I; Pacheco, Aníbal A; García-Rojo, Gonzalo J; Pizarro-Bauerle, Javier A; Doberti, Ana V; Tejos, Macarena; García-Pérez, María A; Rojas, Paulina S; Fiedler, Jenny L

    2018-05-16

    A single stress exposure facilitates memory formation through neuroplastic processes that reshape excitatory synapses in the hippocampus, probably requiring changes in extracellular matrix components. We tested the hypothesis that matrix metalloproteinase 9 (MMP-9), an enzyme that degrades components of extracellular matrix and synaptic proteins such as β-dystroglycan (β-DG 43 ), changes their activity and distribution in rat hippocampus during the acute stress response. After 2.5 h of restraint stress, we found (i) increased MMP-9 levels and potential activity in whole hippocampal extracts, accompanied by β-DG 43 cleavage, and (ii) a significant enhancement of MMP-9 immunoreactivity in dendritic fields such as stratum radiatum and the molecular layer of hippocampus. After 24 h of stress, we found that (i) MMP-9 net activity rises at somatic field, i.e., stratum pyramidale and granule cell layers, and also at synaptic field, mainly stratum radiatum and the molecular layer of hippocampus, and (ii) hippocampal synaptoneurosome fractions are enriched with MMP-9, without variation of its potential enzymatic activity, in accordance with the constant level of cleaved β-DG 43 . These findings indicate that stress triggers a peculiar timing response in the MMP-9 levels, net activity, and subcellular distribution in the hippocampus, suggesting its involvement in the processing of substrates during the stress response.

  14. Poly(ethylene glycol) layered silicate nanocomposites for retarded drug release prepared by hot-melt extrusion.

    PubMed

    Campbell, Kayleen; Craig, Duncan Q M; McNally, Tony

    2008-11-03

    Composites of paracetamol loaded poly(ethylene glycol) (PEG) with a naturally derived and partially synthetic layered silicate (nanoclay) were prepared using hot-melt extrusion. The extent of dispersion and distribution of the paracetamol and nanoclay in the PEG matrix was examined using a combination of field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and wide-angle X-ray diffraction (WAXD). The paracetamol polymorph was shown to be well dispersed in the PEG matrix and the nanocomposite to have a predominately intercalated and partially exfoliated morphology. The form 1 monoclinic polymorph of the paracetamol was unaltered after the melt mixing process. The crystalline behaviour of the PEG on addition of both paracetamol and nanoclay was investigated using differential scanning calorimetry (DSC) and polarised hot-stage optical microscopy. The crystalline content of PEG decreased by up to 20% when both drug and nanoclay were melt blended with PEG, but the average PEG spherulite size increased by a factor of 4. The time taken for 100% release of paracetamol from the PEG matrix and corresponding diffusion coefficients were significantly retarded on addition of low loadings of both naturally occurring and partially synthetic nanoclays. The dispersed layered silicate platelets encase the paracetamol molecules, retarding diffusion and altering the dissolution behaviour of the drug molecule in the PEG matrix.

  15. Pore radius fine tuning of a silica matrix (MCM-41) based on the synthesis of alumina nanolayers with different thicknesses by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemtsova, Elena G., E-mail: ezimtsova@yandex.ru; Arbenin, Andrei Yu.; Plotnikov, Alexander F.

    2015-03-15

    The authors investigated a new approach to modify the surface of the mesoporous silica matrix MCM-41. This approach is based on manipulating the chemical composition of the porous surface layer and also on fine tuning the pore radius by applying the atomic layer deposition (ALD) technique. The synthesis of alumina nanolayers was performed on the planar and the porous matrix (MCM-41) by the ALD technique using aluminum tri-sec-butoxide and water as precursors. The authors show that one cycle on silicon, using aluminum tri-sec-butoxide and water as precursors, results in a 1–1.2 Å increase in alumina nanolayer thickness. This is comparable tomore » the increase in thickness per cycle for other precursors such as trimethylaluminum and aluminum chloride. The authors show that the synthesis of an Al{sub 2}O{sub 3} nanolayer on the pore surface of the mesoporous silica matrix MCM-41 by the ALD technique results in a regular change in the porous structure of the samples. The specific porosity (ml/g) of the MCM-41 was 0.95 and that of MCM-41 after 5 ALD cycles was 0.39. The pore diameter (nm) of MCM-41 was 3.3 and that of MCM-41 after 5 ALD cycles was 2.3.« less

  16. Dynamic atomic layer epitaxy of InN on/in +c-GaN matrix: Effect of “In+N” coverage and capping timing by GaN layer on effective InN thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, Akihiko, E-mail: yoshi@faculty.chiba-u.jp; Graduate School of Engineering, Kogakuin University, Hachioji, Tokyo 192-0015; Kusakabe, Kazuhide

    2016-01-11

    The growth front in the self-organizing and self-limiting epitaxy of ∼1 monolayer (ML)-thick InN wells on/in +c-GaN matrix by molecular beam epitaxy (MBE) has been studied in detail, with special attention given to the behavior and role of the N atoms. The growth temperatures of interest are above 600 °C, far higher than the typical upper critical temperature of 500 °C in MBE. It was confirmed that 2 ML-thick InN wells can be frozen/inserted in GaN matrix at 620 °C, but it was found that N atoms at the growth front tend to selectively re-evaporate more quickly than In atoms at temperatures highermore » than 650 °C. As a result, the effective thickness of inserted InN wells in the GaN matrix at 660–670 °C were basically 1 ML or sub-ML, even though they were capped by a GaN barrier at the time of 2 ML “In+N” coverage. Furthermore, it was found that the N atoms located below In atoms in the dynamic atomic layer epitaxy growth front had remarkably weaker bonding to the +c-GaN surface.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Bohang; Li, Wangda; Yan, Pengfei

    A facile synthesis method was developed to prepare xLi 2MnO 3·(1-x)LiNi 0.7Co 0.15Mn 0.15O 2 (x = 0, 0.03, 0.07, 0.10, 0.20, and 0.30 as molar ratio) cathode materials, combining the advantages of high specific capacity from Ni-rich layered phase and surface chemical stability from Li-rich layered phase. X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM) and electrochemical charge/discharge performance confirm the formation of a Li-rich layered phase with C2/m symmetry. Most importantly, high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) reveals a spatial relationship that Li-rich nano-domain islands are integrated into a conventional Ni-rich layered matrix (Rmore » $$\\bar{3}$$m). This is the first time that Li-rich phase has been directly observed inside a particle at the nano-scale, when the overall composition of layered compounds (Li 1+δNi xMn yM 1-x-y-δO 2, M refers to transition metal elements) is Ni-rich (x > 0.5) rather than Mn-rich (y > 0.5). Remarkably, xLi 2MnO 3·(1-x)LiNi 0.7Co 0.15Mn 0.15O 2 cathode with optimized x value shows superior electrochemical performance at C/3, i.e., 170 mA h g -1 with 90.3 % of capacity retention after 400 cycles at 25 °C and 164 mA h g -1 with 81.3 % capacity retention after 200 cycles at 55 °C.« less

  18. Integration of Stem Cell to Chondrocyte-Derived Cartilage Matrix in Healthy and Osteoarthritic States in the Presence of Hydroxyapatite Nanoparticles.

    PubMed

    Dua, Rupak; Comella, Kristin; Butler, Ryan; Castellanos, Glenda; Brazille, Bryn; Claude, Andrew; Agarwal, Arvind; Liao, Jun; Ramaswamy, Sharan

    2016-01-01

    We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs) to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA) nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels) were integrated with human bone marrow stem cell (HBMSC)-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol) diacrylate (PEGDA) hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05) when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05) when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in engineered to native cartilage integration and cellular processes.

  19. Integrated optic vector-matrix multiplier

    DOEpatents

    Watts, Michael R [Albuquerque, NM

    2011-09-27

    A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.

  20. The partition function of the Bures ensemble as the τ-function of BKP and DKP hierarchies: continuous and discrete

    NASA Astrophysics Data System (ADS)

    Hu, Xing-Biao; Li, Shi-Hao

    2017-07-01

    The relationship between matrix integrals and integrable systems was revealed more than 20 years ago. As is known, matrix integrals over a Gaussian ensemble used in random matrix theory could act as the τ-function of several hierarchies of integrable systems. In this article, we will show that the time-dependent partition function of the Bures ensemble, whose measure has many interesting geometric properties, could act as the τ-function of BKP and DKP hierarchies. In addition, if discrete time variables are introduced, then this partition function could act as the τ-function of discrete BKP and DKP hierarchies. In particular, there are some links between the partition function of the Bures ensemble and Toda-type equations.

  1. Method of forming through substrate vias (TSVs) and singulating and releasing die having the TSVs from a mechanical support substrate

    DOEpatents

    Okandan, Murat; Nielson, Gregory N

    2014-12-09

    Accessing a workpiece object in semiconductor processing is disclosed. The workpiece object includes a mechanical support substrate, a release layer over the mechanical support substrate, and an integrated circuit substrate coupled over the release layer. The integrated circuit substrate includes a device layer having semiconductor devices. The method also includes etching through-substrate via (TSV) openings through the integrated circuit substrate that have buried ends at or within the release layer including using the release layer as an etch stop. TSVs are formed by introducing one or more conductive materials into the TSV openings. A die singulation trench is etched at least substantially through the integrated circuit substrate around a perimeter of an integrated circuit die. The integrated circuit die is at least substantially released from the mechanical support substrate.

  2. Enhancing interacting residue prediction with integrated contact matrix prediction in protein-protein interaction.

    PubMed

    Du, Tianchuan; Liao, Li; Wu, Cathy H

    2016-12-01

    Identifying the residues in a protein that are involved in protein-protein interaction and identifying the contact matrix for a pair of interacting proteins are two computational tasks at different levels of an in-depth analysis of protein-protein interaction. Various methods for solving these two problems have been reported in the literature. However, the interacting residue prediction and contact matrix prediction were handled by and large independently in those existing methods, though intuitively good prediction of interacting residues will help with predicting the contact matrix. In this work, we developed a novel protein interacting residue prediction system, contact matrix-interaction profile hidden Markov model (CM-ipHMM), with the integration of contact matrix prediction and the ipHMM interaction residue prediction. We propose to leverage what is learned from the contact matrix prediction and utilize the predicted contact matrix as "feedback" to enhance the interaction residue prediction. The CM-ipHMM model showed significant improvement over the previous method that uses the ipHMM for predicting interaction residues only. It indicates that the downstream contact matrix prediction could help the interaction site prediction.

  3. Structural characteristics of cohesive flow deposits, and a sedimentological approach on their flow mechanisms.

    NASA Astrophysics Data System (ADS)

    Tripsanas, E. K.; Bryant, W. R.; Prior, D. B.

    2003-04-01

    A large number of Jumbo Piston cores (up to 20 m long), acquired from the continental slope and rise of the Northwest Gulf of Mexico (Bryant Canyon area and eastern Sigsbee Escarpment), have recovered various mass-transport deposits. The main cause of slope instabilities over these areas is oversteepening of the slopes due to the seaward mobilization of the underlying allochthonous salt masses. Cohesive flow deposits were the most common recoveries in the sediment cores. Four types of cohesive flow deposits have been recognized: a) fluid debris flow, b) mud flow, c) mud-matrix dominated debris flow, and d) clast-dominated debris flow deposits. The first type is characterized by its relatively small thickness (less than 1 m), a mud matrix with small (less than 0.5 cm) and soft mud-clasts, and a faint layering. The mud-clasts reveal a normal grading and become more abundant towards the base of each layer. That reveals that their deposition resulted by several successive surges/pulses, developed in the main flow, than the sudden “freezing” of the whole flow. The main difference between mud flow and mud-matrix dominated debris flow deposits is the presence of small to large mud-clasts in the later. Both deposits consist of a chaotic mud-matrix, and a basal shear laminated zone, where the strongest shearing of the flow was exhibited. Convolute laminations, fault-like surfaces, thrust faults, and microfaults are interpreted as occurring during the “freezing” of the flows and/or by adjustments of the rested deposits. Clast-dominated debris flow deposits consist of three zones: a) an upper plug-zone, characterized by large interlocked clasts, b) a mid-zone, of higher reworked, inversely graded clasts, floating in a mud-matrix, and c) a lower shear laminated zone. The structure of the last three cohesive flow deposits indicate that they represent deposition of typical Bingham flows, consisting of an upper plug-zone in which the yield stress is not exceeded and an underlain shearing zone, where the shear stress exceeded the yield strength of the sediments. Mud-matrix, and clast-dominated debris flow deposits are the pervasive ones. Intensely sheared thin layers (5- to 20 cm) with sharp bases, displayed as successive layers at the base of mud/debris flow deposits, or as isolated depositional units interbedded in hemipelagic sediments, are as interesting, as enigmatic. They are interpreted as basal self-lubricating layers, of having high shear stress and pore pressures, over which the mud/debris flows were able to travel for very long distances.

  4. Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics.

    PubMed

    Gilles, Luc; Ellerbroek, Brent L; Vogel, Curtis R

    2003-09-10

    Multiconjugate adaptive optics (MCAO) systems with 10(4)-10(5) degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 10(4) actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10(-2) Hz, i.e., 4-5 orders of magnitude lower than the typical 10(3) Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.

  5. Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study.

    PubMed

    Shard, Alexander G; Havelund, Rasmus; Spencer, Steve J; Gilmore, Ian S; Alexander, Morgan R; Angerer, Tina B; Aoyagi, Satoka; Barnes, Jean-Paul; Benayad, Anass; Bernasik, Andrzej; Ceccone, Giacomo; Counsell, Jonathan D P; Deeks, Christopher; Fletcher, John S; Graham, Daniel J; Heuser, Christian; Lee, Tae Geol; Marie, Camille; Marzec, Mateusz M; Mishra, Gautam; Rading, Derk; Renault, Olivier; Scurr, David J; Shon, Hyun Kyong; Spampinato, Valentina; Tian, Hua; Wang, Fuyi; Winograd, Nicholas; Wu, Kui; Wucher, Andreas; Zhou, Yufan; Zhu, Zihua; Cristaudo, Vanina; Poleunis, Claude

    2015-08-20

    We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-l-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray photoelectron spectroscopy (XPS) or time-of-flight secondary ion mass spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided with the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants' data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally, we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.

  6. Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shard, A. G.; Havelund, Rasmus; Spencer, Steve J.

    We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-L-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray Photoelectron Spectroscopy (XPS) or Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided withmore » the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants’ data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.« less

  7. Integrated High Payoff Rocket Propulsion Technology (IHPRPT) SiC Recession Model

    NASA Technical Reports Server (NTRS)

    Opila, E. J.

    2009-01-01

    SiC stability and recession rates were modeled in hydrogen/oxygen combustion environments for the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program. The IHPRPT program is a government and industry program to improve U.S. rocket propulsion systems. Within this program SiC-based ceramic matrix composites are being considered for transpiration cooled injector faceplates or rocket engine thrust chamber liners. Material testing under conditions representative of these environments was conducted at the NASA Glenn Research Center, Cell 22. For the study described herein, SiC degradation was modeled under these Cell 22 test conditions for comparison to actual test results: molar mixture ratio, MR (O2:H2) = 6, material temperatures to 1700 C, combustion gas pressures between 0.34 and 2.10 atm, and gas velocities between 8,000 and 12,000 fps. Recession was calculated assuming rates were controlled by volatility of thermally grown silica limited by gas boundary layer transport. Assumptions for use of this model were explored, including the presence of silica on the SiC surface, laminar gas boundary layer limited volatility, and accuracy of thermochemical data for volatile Si-O-H species. Recession rates were calculated as a function of temperature. It was found that at 1700 C, the highest temperature considered, the calculated recession rates were negligible, about 200 m/h, relative to the expected lifetime of the material. Results compared favorably to testing observations. Other mechanisms contributing to SiC recession are briefly described including consumption of underlying carbon and pitting. A simple expression for liquid flow on the material surface was developed from a one-dimensional treatment of the Navier-Stokes Equation. This relationship is useful to determine under which conditions glassy coatings or thermally grown silica would flow on the material surface, removing protective layers by shear forces. The velocity of liquid flow was found to depend on the gas velocity, the viscosity of gas and liquid, as well as the thickness of the gas boundary layer and the liquid layer. Calculated flow rates of a borosilicate glass coating compared well to flow rates observed for this coating tested on a SiC panel in Cell 22.

  8. Plated lamination structures for integrated magnetic devices

    DOEpatents

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  9. Superconducting wires and methods of making thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xingchen; Sumption, Michael D.; Peng, Xuan

    Disclosed herein are superconducting wires. The superconducting wires can comprise a metallic matrix and at least one continuous subelement embedded in the matrix. Each subelement can comprise a non-superconducting core, a superconducting layer coaxially disposed around the non-superconducting core, and a barrier layer coaxially disposed around the superconducting layer. The superconducting layer can comprise a plurality of Nb.sub.3Sn grains stabilized by metal oxide particulates disposed therein. The Nb.sub.3Sn grains can have an average grain size of from 5 nm to 90 nm (for example, from 15 nm to 30 nm). The superconducting wire can have a high-field critical current densitymore » (J.sub.c) of at least 5,000 A/mm.sup.2 at a temperature of 4.2 K in a magnetic field of 12 T. Also described are superconducting wire precursors that can be heat treated to prepare superconducting wires, as well as methods of making superconducting wires.« less

  10. Effects of iron content in Ni-Cr-xFe alloys and immersion time on the oxide films formed in a simulated PWR water environment

    NASA Astrophysics Data System (ADS)

    Ru, Xiangkun; Lu, Zhanpeng; Chen, Junjie; Han, Guangdong; Zhang, Jinlong; Hu, Pengfei; Liang, Xue

    2017-12-01

    The iron content in Ni-Cr-xFe (x = 0-9 at.%) alloys strongly affected the properties of oxide films after 978 h of immersion in the simulated PWR primary water environment at 310 °C. Increasing the iron content in the alloys increased the amount of iron-bearing polyhedral spinel oxide particles in the outer oxide layer and increased the local oxidation penetrations into the alloy matrix from the chromium-rich inner oxide layer. The effects of iron content in the alloys on the oxide film properties after 500 h of immersion were less significant than those after 978 h. Iron content increased, and chromium content decreased, in the outer oxide layer with increasing iron content in the alloys. Increasing the immersion time facilitated the formation of the local oxidation penetrations along the matrix/film interface and the nickel-bearing spinel oxides in the outer oxide layer.

  11. Effect of Nano-TiC Dispersed Particles and Electro-Codeposition Parameters on Morphology and Structure of Hybrid Ni/TiC Nanocomposite Layers

    PubMed Central

    Benea, Lidia; Celis, Jean-Pierre

    2016-01-01

    This research work describes the effect of dispersed titanium carbide (TiC) nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM). The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX). X-ray diffractometer (XRD) has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers. PMID:28773395

  12. Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Morscher, Gregory N.

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (< 1 mm) structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  13. Improving the analyte ion signal in matrix-assisted laser desorption/ionization imaging mass spectrometry via electrospray deposition by enhancing incorporation of the analyte in the matrix.

    PubMed

    Malys, Brian J; Owens, Kevin G

    2017-05-15

    Matrix-assisted laser desorption/ionization (MALDI) is widely used as the ionization method in high-resolution chemical imaging studies that seek to visualize the distribution of analytes within sectioned biological tissues. This work extends the use of electrospray deposition (ESD) to apply matrix with an additional solvent spray to incorporate and homogenize analyte within the matrix overlayer. Analytes and matrix are sequentially and independently applied by ESD to create a sample from which spectra are collected, mimicking a MALDI imaging mass spectrometry (IMS) experiment. Subsequently, an incorporation spray consisting of methanol is applied by ESD to the sample and another set of spectra are collected. The spectra prior to and after the incorporation spray are compared to evaluate the improvement in the analyte signal. Prior to the incorporation spray, samples prepared using α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB) as the matrix showed low signal while the sample using sinapinic acid (SA) initially exhibited good signal. Following the incorporation spray, the sample using SA did not show an increase in signal; the sample using DHB showed moderate gain factors of 2-5 (full ablation spectra) and 12-336 (raster spectra), while CHCA samples saw large increases in signal, with gain factors of 14-172 (full ablation spectra) and 148-1139 (raster spectra). The use of an incorporation spray to apply solvent by ESD to a matrix layer already deposited by ESD provides an increase in signal by both promoting incorporation of the analyte within and homogenizing the distribution of the incorporated analyte throughout the matrix layer. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. A novel approach for blood purification: mixed-matrix membranes combining diffusion and adsorption in one step.

    PubMed

    Tijink, Marlon S L; Wester, Maarten; Sun, Junfen; Saris, Anno; Bolhuis-Versteeg, Lydia A M; Saiful, Saiful; Joles, Jaap A; Borneman, Zandrie; Wessling, Matthias; Stamatialis, Dimitris F

    2012-07-01

    Hemodialysis is a commonly used blood purification technique in patients requiring kidney replacement therapy. Sorbents could increase uremic retention solute removal efficiency but, because of poor biocompatibility, their use is often limited to the treatment of patients with acute poisoning. This paper proposes a novel membrane concept for combining diffusion and adsorption of uremic retention solutes in one step: the so-called mixed-matrix membrane (MMM). In this concept, adsorptive particles are incorporated in a macro-porous membrane layer whereas an extra particle-free membrane layer is introduced on the blood-contacting side of the membrane to improve hemocompatibility and prevent particle release. These dual-layer mixed-matrix membranes have high clean-water permeance and high creatinine adsorption from creatinine model solutions. In human plasma, the removal of creatinine and of the protein-bound solute para-aminohippuric acid (PAH) by single and dual-layer membranes is in agreement with the removal achieved by the activated carbon particles alone, showing that under these experimental conditions the accessibility of the particles in the MMM is excellent. This study proves that the combination of diffusion and adsorption in a single step is possible and paves the way for the development of more efficient blood purification devices, excellently combining the advantages of both techniques. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Formation of chocolate-tablet boudins: Results from scaled analogue models

    NASA Astrophysics Data System (ADS)

    Zulauf, J.; Zulauf, G.; Göttlich, J.; Peinl, M.

    2014-11-01

    We used power-law viscous plasticine as a rock analogue to simulate chocolate tablet boudinage of rocks undergoing dislocation creep. A competent plasticine layer, oriented perpendicular to the main shortening direction, Z, underwent two phases of plane strain in a weaker plasticine matrix, with the principal stretching axis, X, and the axis of no-change, Y, replacing each other from the first to the second phase. In each phase of plane strain, boudinage was controlled by an initial phase of viscous necking followed by extension fracture along the neck domain. Increase in the magnitude of finite strain (e) and decrease in layer thickness (Hi) result in a decrease in the boudin width (Wa) and an increase in the number of boudins (N). Given the viscosity ratio between layer and matrix (m) is higher than ca. 5, the number of boudins decreases and the boudin width increases with increasing values of m. An unexpected result of the present study is that in each experiment, the number of boudins was significantly higher during the second phase of plane strain. This difference should be related to additional drag of the matrix plasticine on the stiff layer in the neck domains formed during the first phase of boudinage. The aspect ratio of the second generation of boudins (Wd = Wa/Hi) is compatible with aspect ratios of natural boudins and with aspect ratios calculated using analytical solutions.

  16. Application of neural networks to prediction of advanced composite structures mechanical response and behavior

    NASA Technical Reports Server (NTRS)

    Cios, K. J.; Vary, A.; Berke, L.; Kautz, H. E.

    1992-01-01

    Two types of neural networks were used to evaluate acousto-ultrasonic (AU) data for material characterization and mechanical reponse prediction. The neural networks included a simple feedforward network (backpropagation) and a radial basis functions network. Comparisons of results in terms of accuracy and training time are given. Acousto-ultrasonic (AU) measurements were performed on a series of tensile specimens composed of eight laminated layers of continuous, SiC fiber reinforced Ti-15-3 matrix. The frequency spectrum was dominated by frequencies of longitudinal wave resonance through the thickness of the specimen at the sending transducer. The magnitude of the frequency spectrum of the AU signal was used for calculating a stress-wave factor based on integrating the spectral distribution function and used for comparison with neural networks results.

  17. Base Heating Sensitivity Study for a 4-Cluster Rocket Motor Configuration in Supersonic Freestream

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Canabal, Francisco; Tashakkor, Scott B.; Smith, Sheldon D.

    2011-01-01

    In support of launch vehicle base heating and pressure prediction efforts using the Loci-CHEM Navier-Stokes computational fluid dynamics solver, 35 numerical simulations of the NASA TND-1093 wind tunnel test have been modeled and analyzed. This test article is composed of four JP-4/LOX 500 lbf rocket motors exhausting into a Mach 2 - 3.5 wind tunnel at various ambient pressure conditions. These water-cooled motors are attached to a base plate of a standard missile forebody. We explore the base heating profiles for fully coupled finite-rate chemistry simulations, one-way coupled RAMP (Reacting And Multiphase Program using Method of Characteristics)-BLIMPJ (Boundary Layer Integral Matrix Program - Jet Version) derived solutions and variable and constant specific heat ratio frozen flow simulations. Variations in turbulence models, temperature boundary conditions and thermodynamic properties of the plume have been investigated at two ambient pressure conditions: 255 lb/sq ft (simulated low altitude) and 35 lb/sq ft (simulated high altitude). It is observed that the convective base heat flux and base temperature are most sensitive to the nozzle inner wall thermal boundary layer profile which is dependent on the wall temperature, boundary layer s specific energy and chemical reactions. Recovery shock dynamics and afterburning significantly influences convective base heating. Turbulence models and external nozzle wall thermal boundary layer profiles show less sensitivity to base heating characteristics. Base heating rates are validated for the highest fidelity solutions which show an agreement within +/-10% with respect to test data.

  18. Calibrating the interaction matrix for the LINC-NIRVANA high layer wavefront sensor.

    PubMed

    Zhang, Xianyu; Arcidiacono, Carmelo; Conrad, Albert R; Herbst, Thomas M; Gaessler, Wolfgang; Bertram, Thomas; Ragazzoni, Roberto; Schreiber, Laura; Diolaiti, Emiliano; Kuerster, Martin; Bizenberger, Peter; Meschke, Daniel; Rix, Hans-Walter; Rao, Changhui; Mohr, Lars; Briegel, Florian; Kittmann, Frank; Berwein, Juergen; Trowitzsch, Jan

    2012-03-26

    LINC-NIRVANA is a near-infrared Fizeau interferometric imager that will operate at the Large Binocular Telescope. In preparation for the commissioning of this instrument, we conducted experiments for calibrating the high-layer wavefront sensor of the layer-oriented multi-conjugate adaptive optics system. For calibrating the multi-pyramid wavefront sensor, four light sources were used to simulate guide stars. Using this setup, we developed the push-pull method for calibrating the interaction matrix. The benefits of this method over the traditional push-only method are quantified, and also the effects of varying the number of push-pull frames over which aberrations are averaged is reported. Finally, we discuss a method for measuring mis-conjugation between the deformable mirror and the wavefront sensor, and the proper positioning of the wavefront sensor detector with respect to the four pupil positions.

  19. Intercalation of anionic organic ultraviolet ray absorbers into layered zinc hydroxide nitrate.

    PubMed

    Cursino, Ana Cristina Trindade; Gardolinski, José Eduardo Ferreira da Costa; Wypych, Fernando

    2010-07-01

    Layered zinc hydroxide nitrate (ZHN) was synthesized and nitrate ions were topotactically exchanged with three different anionic species of commercial organic ultraviolet (UV) ray absorbers: 2-mercaptobenzoic acid, 2-aminobenzoic acid, and 4-aminobenzoic acid. The exchange reactions were confirmed by X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible (UV-Vis) spectroscopy, and thermal analysis (thermogravimetry, TGA, and differential thermal analysis, DTA). In all the anionic exchanged products, evidence of grafting of the organic species onto the inorganic matrix was obtained. In general, after intercalation/grafting, the UV absorption ability was improved in relation to the use of the parent organic material, showing that layered hydroxide salts (LHS) can be good alternative matrixes for the immobilization of organic species with UV-blocking properties in cosmetic products. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Surface morphological properties of Ag-Al2O3 nanocermet layers using dip-coating technique

    NASA Astrophysics Data System (ADS)

    Muhammad, Nor Adhila; Suhaimi, Siti Fatimah; Zubir, Zuhana Ahmad; Daud, Sahhidan

    2017-12-01

    Ag-Al2O3 nanocermet layer was deposited on Cu coated glass substrate using dip-coating technique. The aim of this study was to observe the surface morphology properties of Ag-Al2O3 nanocermet layers after annealing process at 350°C in H2. The surface morphology of Ag-Al2O3 nanocermet will be characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-Ray Diffractometer (XRD), respectively. The results show that nearly isolated Ag particles having a large and small size were present in the Al2O3 dielectric matrix after annealing process. The face centered cubic crystalline structure of Ag nanoparticles inclusion in the amorphous alumina dielectric matrix was confirmed using XRD pattern and supported by EDX spectra analysis.

  1. Non-uniformity calibration for MWIR polarization imagery obtained with integrated microgrid polarimeters

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Zheng; Shi, Ze-Lin; Feng, Bin; Hui, Bin; Zhao, Yao-Hong

    2016-03-01

    Integrating microgrid polarimeters on focal plane array (FPA) of an infrared detector causes non-uniformity of polarization response. In order to reduce the effect of polarization non-uniformity, this paper constructs an experimental setup for capturing raw flat-field images and proposes a procedure for acquiring non-uniform calibration (NUC) matrix and calibrating raw polarization images. The proposed procedure takes the incident radiation as a polarization vector and offers a calibration matrix for each pixel. Both our matrix calibration and two-point calibration are applied to our mid-wavelength infrared (MWIR) polarization imaging system with integrated microgrid polarimeters. Compared with two point calibration, our matrix calibration reduces non-uniformity by 30 40% under condition of flat-field data test with polarization. The ourdoor scene observation experiment indicates that our calibration can effectively reduce polarization non-uniformity and improve the image quality of our MWIR polarization imaging system.

  2. Propagation of SH waves in an infinite/semi-infinite piezoelectric/piezomagnetic periodically layered structure.

    PubMed

    Pang, Yu; Liu, Yu-Shan; Liu, Jin-Xi; Feng, Wen-Jie

    2016-04-01

    In this paper, SH bulk/surface waves propagating in the corresponding infinite/semi-infinite piezoelectric (PE)/piezomagnetic (PM) and PM/PE periodically layered composites are investigated by two methods, the stiffness matrix method and the transfer matrix method. For a semi-infinite PE/PM or PM/PE medium, the free surface is parallel to the layer interface. Both PE and PM materials are assumed to be transversely isotropic solids. Dispersion equations are derived by the stiffness/transfer matrix methods, respectively. The effects of electric-magnetic (ME) boundary conditions at the free surface and the layer thickness ratios on dispersion curves are considered in detail. Numerical examples show that the results calculated by the two methods are the same. The dispersion curves of SH surface waves are below the bulk bands or inside the frequency gaps. The ratio of the layer thickness has an important effect not only on the bulk bands but also on the dispersion curves of SH surface waves. Electric and magnetic boundary conditions, respectively, determine the dispersion curves of SH surface waves for the PE/PM and PM/PE semi-infinite structures. The band structures of SH bulk waves are consistent for the PE/PM and PM/PE structures, however, the dispersive behaviors of SH surface waves are indeed different for the two composites. The realization of the above-mentioned characteristics of SH waves will make it possible to design PE/PM acoustic wave devices with periodical structures and achieve the better performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A Novel Acidic Matrix Protein, PfN44, Stabilizes Magnesium Calcite to Inhibit the Crystallization of Aragonite*

    PubMed Central

    Pan, Cong; Fang, Dong; Xu, Guangrui; Liang, Jian; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

    2014-01-01

    Magnesium is widely used to control calcium carbonate deposition in the shell of pearl oysters. Matrix proteins in the shell are responsible for nucleation and growth of calcium carbonate crystals. However, there is no direct evidence supporting a connection between matrix proteins and magnesium. Here, we identified a novel acidic matrix protein named PfN44 that affected aragonite formation in the shell of the pearl oyster Pinctada fucata. Using immunogold labeling assays, we found PfN44 in both the nacreous and prismatic layers. In shell repair, PfN44 was repressed, whereas other matrix proteins were up-regulated. Disturbing the function of PfN44 by RNAi led to the deposition of porous nacreous tablets with overgrowth of crystals in the nacreous layer. By in vitro circular dichroism spectra and fluorescence quenching, we found that PfN44 bound to both calcium and magnesium with a stronger affinity for magnesium. During in vitro calcium carbonate crystallization and calcification of amorphous calcium carbonate, PfN44 regulated the magnesium content of crystalline carbonate polymorphs and stabilized magnesium calcite to inhibit aragonite deposition. Taken together, our results suggested that by stabilizing magnesium calcite to inhibit aragonite deposition, PfN44 participated in P. fucata shell formation. These observations extend our understanding of the connections between matrix proteins and magnesium. PMID:24302723

  4. Integral edge seals for phosphoric acid fuel cells

    DOEpatents

    Granata, Jr., Samuel J.; Woodle, Boyd M.; Dunyak, Thomas J.

    1992-01-01

    A phosphoric acid fuel cell having integral edge seals formed by an elastomer permeating an outer peripheral band contiguous with the outer peripheral edges of the cathode and anode assemblies and the matrix to form an integral edge seal which is reliable, easy to manufacture and has creep characteristics similar to the anode, cathode and matrix assemblies inboard of the seals to assure good electrical contact throughout the life of the fuel cell.

  5. Simulating Microfracture In Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Chamis, Christos C.; Gotsis, Pascal K.

    1994-01-01

    Computational procedures developed for simulating microfracture in metal-matrix/fiber composite materials under mechanical and/or thermal loads at ambient and high temperatures. Procedures evaluate microfracture behavior of composites, establish hierarchies and sequences of fracture modes, and examine influences of compliant layers and partial debonding on properties of composites and on initiation of microfractures in them.

  6. Solar system applications of Mie theory and of radiative transfer of polarized light

    NASA Technical Reports Server (NTRS)

    Whitehill, L. P.

    1972-01-01

    A theory of the multiple scattering of polarized light is discussed using the doubling method of van de Hulst. The concept of the Stokes parameters is derived and used to develop the form of the scattering phase matrix of a single particle. The diffuse reflection and transmission matrices of a single scattering plane parallel atmosphere are expressed as a function of the phase matrix, and the symmetry properties of these matrices are examined. Four matrices are required to describe scattering and transmission. The scattering matrix that results from the addition of two identical layers is derived. Using the doubling method, the scattering and transmission matrices of layers of arbitrary optical thickness can be derived. The doubling equations are then rewritten in terms of their Fourier components. Computation time is reduced since each Fourier component doubles independently. Computation time is also reduced through the use of symmetry properties.

  7. Solution of the Orr-Sommerfeld equation for the Blausius boundary-layer documentation of program ORRBL and a test case

    NASA Technical Reports Server (NTRS)

    Biringen, S.; Danabasoglu, G.

    1988-01-01

    A Chebyshev matrix collocation method is outlined for the solution of the Orr-Sommerfeld equation for the Blausius boundary layer. User information is provided for FORTRAN program ORRBL which solves the equation by the QR method.

  8. Interface control and mechanical property improvements in silicon carbide/titanium composites

    NASA Technical Reports Server (NTRS)

    Brewer, W. D.; Unnam, J.

    1982-01-01

    Several composite systems made of titanium matrix reinforced with silicon carbide fiber were investigated to obtain a better understanding of composite-degradation mechanisms and to develop techniques to minimize loss of mechanical properties during fabrication and in service. Emphasis was on interface control by fiber or matrix coatings. X-ray diffraction studies on planar samples showed that the formation of titanium silicides was greatly inhibited by the presence of aluminum or Ti3A1 layers at the fiber-matrix interface, with the Ti3A1 being more effective in reducing the reactions. Fiber studies showed that coating the fiber with a 1-micron-thick layer of aluminum improved the as-fabricated strength of a stoichiometric SiC fiber and reduced the fiber degradation during exposure to composite-fabrication conditions. Applying an interfacial barrier by coating the matrix foils instead of the fibers was found to be an effective method for improving composite strength. Reducing the fabrication temperature also resulted in significant improvements in composite strengths. Good-quality, well-consolidated composites were fabricated at temperatures well below those currently used for SiC-Ti composite fabrication.

  9. Multiresidue analysis of multiclass pesticides and polyaromatic hydrocarbons in fatty fish by gas chromatography tandem mass spectrometry and evaluation of matrix effect.

    PubMed

    Chatterjee, Niladri S; Utture, Sagar; Banerjee, Kaushik; Ahammed Shabeer, T P; Kamble, Narayan; Mathew, Suseela; Ashok Kumar, K

    2016-04-01

    This paper reports a selective and sensitive method for multiresidue determination of 119 chemical residues including pesticides and polyaromatic hydrocarbons (PAH) in high fatty fish matrix. The novel sample preparation method involved extraction of the target analytes from homogenized fish meat (5 g) in acetonitrile (15 mL, 1% acetic acid) after three-phase partitioning with hexane (2 mL) and the remaining aqueous layer. An aliquot (1.5 mL) of the acetonitrile layer was aspirated and subjected to two-stage dispersive solid phase extraction (dSPE) cleanup and the residues were finally estimated by gas chromatography mass spectrometry with selected reaction monitoring (GC-MS/MS). The co-eluted matrix components were identified on the basis of their accurate mass by GC with quadrupole time of flight MS. Addition of hexane during extraction and optimized dSPE cleanup significantly minimized the matrix effects. Recoveries at 10, 25 and 50 μg/kg were within 60-120% with associated precision, RSD<11%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Metal Matrix Composite Material by Direct Metal Deposition

    NASA Astrophysics Data System (ADS)

    Novichenko, D.; Marants, A.; Thivillon, L.; Bertrand, P. H.; Smurov, I.

    Direct Metal Deposition (DMD) is a laser cladding process for producing a protective coating on the surface of a metallic part or manufacturing layer-by-layer parts in a single-step process. The objective of this work is to demonstrate the possibility to create carbide-reinforced metal matrix composite objects. Powders of steel 16NCD13 with different volume contents of titanium carbide are tested. On the base of statistical analysis, a laser cladding processing map is constructed. Relationships between the different content of titanium carbide in a powder mixture and the material microstructure are found. Mechanism of formation of various precipitated titanium carbides is investigated.

  11. Ray tracing matrix approach for refractive index mismatch aberrations in confocal microscopy.

    PubMed

    Nastyshyn, S Yu; Bolesta, I M; Lychkovskyy, E; Vankevych, P I; Yakovlev, M Yu; Pansu, B; Nastishin, Yu A

    2017-03-20

    The 2×2 ray tracing matrix (RTM) method is employed for the description of optical aberrations caused by the refractive index mismatch (RIM) in fluorescent confocal polarization microscopy. We predict and experimentally confirm that due to the RIM a liquid crystal layer with highly non-uniform director distribution appears to be imaged as a layer with non-uniform thickness, which shows up in the roughness of the rear surface. For the off-axial focusing of the probing beam in a droplet dispersed in an immiscible liquid, we have developed an extended method still keeping the 2×2 dimensionality of the RTM.

  12. A weighted least squares approach to retrieve aerosol layer height over bright surfaces applied to GOME-2 measurements of the oxygen A band for forest fire cases over Europe

    NASA Astrophysics Data System (ADS)

    Nanda, Swadhin; Pepijn Veefkind, J.; de Graaf, Martin; Sneep, Maarten; Stammes, Piet; de Haan, Johan F.; Sanders, Abram F. J.; Apituley, Arnoud; Tuinder, Olaf; Levelt, Pieternel F.

    2018-06-01

    This paper presents a weighted least squares approach to retrieve aerosol layer height from top-of-atmosphere reflectance measurements in the oxygen A band (758-770 nm) over bright surfaces. A property of the measurement error covariance matrix is discussed, due to which photons travelling from the surface are given a higher preference over photons that scatter back from the aerosol layer. This is a potential source of biases in the estimation of aerosol properties over land, which can be mitigated by revisiting the design of the measurement error covariance matrix. The alternative proposed in this paper, which we call the dynamic scaling method, introduces a scene-dependent and wavelength-dependent modification in the measurement signal-to-noise ratio in order to influence this matrix. This method is generally applicable to other retrieval algorithms using weighted least squares. To test this method, synthetic experiments are done in addition to application to GOME-2A and GOME-2B measurements of the oxygen A band over the August 2010 Russian wildfires and the October 2017 Portugal wildfire plume over western Europe.

  13. An analytical/numerical correlation study of the multiple concentric cylinder model for the thermoplastic response of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Salzar, Robert S.; Williams, Todd O.

    1993-01-01

    The utility of a recently developed analytical micromechanics model for the response of metal matrix composites under thermal loading is illustrated by comparison with the results generated using the finite-element approach. The model is based on the concentric cylinder assemblage consisting of an arbitrary number of elastic or elastoplastic sublayers with isotropic or orthotropic, temperature-dependent properties. The elastoplastic boundary-value problem of an arbitrarily layered concentric cylinder is solved using the local/global stiffness matrix formulation (originally developed for elastic layered media) and Mendelson's iterative technique of successive elastic solutions. These features of the model facilitate efficient investigation of the effects of various microstructural details, such as functionally graded architectures of interfacial layers, on the evolution of residual stresses during cool down. The available closed-form expressions for the field variables can readily be incorporated into an optimization algorithm in order to efficiently identify optimal configurations of graded interfaces for given applications. Comparison of residual stress distributions after cool down generated using finite-element analysis and the present micromechanics model for four composite systems with substantially different temperature-dependent elastic, plastic, and thermal properties illustrates the efficacy of the developed analytical scheme.

  14. New release cell for NMR microimaging of tablets. Swelling and erosion of poly(ethylene oxide).

    PubMed

    Abrahmsén-Alami, Susanna; Körner, Anna; Nilsson, Ingvar; Larsson, Anette

    2007-09-05

    A small release cell, in the form of a rotating disc, has been constructed to fit into the MRI equipment. The present work show that both qualitative and quantitative information of the swelling and erosion behavior of hydrophilic extended release (ER) matrix tablets may be obtained using this release cell and non-invasive magnetic resonance imaging (MRI) studies at different time-points during matrix dissolution. The tablet size, core size and the gel layer thickness of ER matrix formulations based on poly(ethylene oxide) have been determined. The dimensional changes as a function of time were found to correspond well to observations made with texture analysis (TA) methodology. Most importantly, the results of the present study show that both the erosion (displacement of the gel-dissolution media interface) and the swelling (decrease of dry tablet core size) proceed with a faster rate in radial than in axial direction using the rotating disk set-up. This behavior was attributed to the higher shear forces experienced in the radial direction. The results also indicate that front synchronization (constant gel layer thickness) is associated with the formation of an almost constant polymer concentration profile through the gel layer at different time-points.

  15. Isolation and characterization of a novel acidic matrix protein hic22 from the nacreous layer of the freshwater mussel, Hyriopsis cumingii.

    PubMed

    Liu, X J; Jin, C; Wu, L M; Dong, S J; Zeng, S M; Li, J L

    2016-07-29

    Matrix proteins that either weakly acidic or unusually highly acidic have important roles in shell biomineralization. In this study, we have identified and characterized hic22, a weakly acidic matrix protein, from the nacreous layer of Hyriopsis cumingii. Total protein was extracted from the nacre using 5 M EDTA and hic22 was purified using a DEAE-sepharose column. The N-terminal amino acid sequence of hic22 was determined and the complete cDNA encoding hic22 was cloned and sequenced by rapid amplification of cDNA ends-polymerase chain reaction. Finally, the localization and distribution of hic22 was determined by in situ hybridization. Our results revealed that hic22 encodes a 22-kDa protein composed of 185 amino acids. Tissue expression analysis and in situ hybridization indicated that hic22 is expressed in the dorsal epithelial cells of the mantle pallial; moreover, significant expression levels of hic22 were observed after the early formation of the pearl sac (days 19-77), implying that hic22 may play an important role in biomineralization of the nacreous layer.

  16. Three-Dimensional Electromagnetic Scattering from Layered Media with Rough Interfaces for Subsurface Radar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Duan, Xueyang

    The objective of this dissertation is to develop forward scattering models for active microwave remote sensing of natural features represented by layered media with rough interfaces. In particular, soil profiles are considered, for which a model of electromagnetic scattering from multilayer rough surfaces with or without buried random media is constructed. Starting from a single rough surface, radar scattering is modeled using the stabilized extended boundary condition method (SEBCM). This method solves the long-standing instability issue of the classical EBCM, and gives three-dimensional full wave solutions over large ranges of surface roughnesses with higher computational efficiency than pure numerical solutions, e.g., method of moments (MoM). Based on this single surface solution, multilayer rough surface scattering is modeled using the scattering matrix approach and the model is used for a comprehensive sensitivity analysis of the total ground scattering as a function of layer separation, subsurface statistics, and sublayer dielectric properties. The buried inhomogeneities such as rocks and vegetation roots are considered for the first time in the forward scattering model. Radar scattering from buried random media is modeled by the aggregate transition matrix using either the recursive transition matrix approach for spherical or short-length cylindrical scatterers, or the generalized iterative extended boundary condition method we developed for long cylinders or root-like cylindrical clusters. These approaches take the field interactions among scatterers into account with high computational efficiency. The aggregate transition matrix is transformed to a scattering matrix for the full solution to the layered-medium problem. This step is based on the near-to-far field transformation of the numerical plane wave expansion of the spherical harmonics and the multipole expansion of plane waves. This transformation consolidates volume scattering from the buried random medium with the scattering from layered structure in general. Combined with scattering from multilayer rough surfaces, scattering contributions from subsurfaces and vegetation roots can be then simulated. Solutions of both the rough surface scattering and random media scattering are validated numerically, experimentally, or both. The experimental validations have been carried out using a laboratory-based transmit-receive system for scattering from random media and a new bistatic tower-mounted radar system for field-based surface scattering measurements.

  17. Integrability and conformal data of the dimer model

    NASA Astrophysics Data System (ADS)

    Morin-Duchesne, Alexi; Rasmussen, Jørgen; Ruelle, Philippe

    2016-04-01

    The central charge of the dimer model on the square lattice is still being debated in the literature. In this paper, we provide evidence supporting the consistency of a c=-2 description. Using Lieb’s transfer matrix and its description in terms of the Temperley-Lieb algebra {{TL}}n at β =0, we provide a new solution of the dimer model in terms of the model of critical dense polymers on a tilted lattice and offer an understanding of the lattice integrability of the dimer model. The dimer transfer matrix is analyzed in the scaling limit, and the result for {L}0-\\frac{c}{24} is expressed in terms of fermions. Higher Virasoro modes are likewise constructed as limits of elements of {{TL}}n and are found to yield a c=-2 realization of the Virasoro algebra, familiar from fermionic bc ghost systems. In this realization, the dimer Fock spaces are shown to decompose, as Virasoro modules, into direct sums of Feigin-Fuchs modules, themselves exhibiting reducible yet indecomposable structures. In the scaling limit, the eigenvalues of the lattice integrals of motion are found to agree exactly with those of the c=-2 conformal integrals of motion. Consistent with the expression for {L}0-\\frac{c}{24} obtained from the transfer matrix, we also construct higher Virasoro modes with c = 1 and find that the dimer Fock space is completely reducible under their action. However, the transfer matrix is found not to be a generating function for the c = 1 integrals of motion. Although this indicates that Lieb’s transfer matrix description is incompatible with the c = 1 interpretation, it does not rule out the existence of an alternative, c = 1 compatible, transfer matrix description of the dimer model.

  18. Interphase layer optimization for metal matrix composites with fabrication considerations

    NASA Technical Reports Server (NTRS)

    Morel, M.; Saravanos, D. A.; Chamis, C. C.

    1991-01-01

    A methodology is presented to reduce the final matrix microstresses for metal matrix composites by concurrently optimizing the interphase characteristics and fabrication process. Application cases include interphase tailoring with and without fabrication considerations for two material systems, graphite/copper and silicon carbide/titanium. Results indicate that concurrent interphase/fabrication optimization produces significant reductions in the matrix residual stresses and strong coupling between interphase and fabrication tailoring. The interphase coefficient of thermal expansion and the fabrication consolidation pressure are the most important design parameters and must be concurrently optimized to further reduce the microstresses to more desirable magnitudes.

  19. Electrically responsive microstructured polypyrrole-polyurethane composites for stimulated osteogenesis

    NASA Astrophysics Data System (ADS)

    Luculescu, Catalin Romeo; Acasandrei, Adriana Maria; Mustaciosu, Cosmin Catalin; Zamfirescu, Marian; Dinescu, Maria; Calin, Bogdan Stefanita; Popescu, Andrei; Chioibasu, Diana; Cristian, Dan; Paun, Irina Alexandra

    2018-03-01

    In this work, we demonstrate the efficiency of substrate-mediated electrical stimulation of micropatterned polypyrrole/polyurethane (PPy/PU) composites for enhancing the osteogenesis in osteoblast-like cells. The PPy/PU substrates were obtained by dispersing electrically conductive PPy nanograins within a mechanically resistant PU matrix. Spin-coated PPy/PU layers were micropatterned with predefined 3D geometries by ultrashort laser ablation. Then they were conformally coated by Matrix Assisted Pulsed Laser Evaporation, in order to restore their chemical and electrical integrity. The chemical structure of the laser-processed PPy/PU substrates was investigated by 2D and 3D mapping of the laser-processed areas, via Raman microspectroscopy. In vitro studies revealed that the micropatterned PPy/PU substrates facilitated the topological and electrical communication of the seeded osteoblasts. Specifically, we demonstrated the cells attachment on the predefined 3D micropatterns. More importantly, we found evidence about the cells mineralization inside the 3D micropatterns by investigating the calcium deposits by Energy-Dispersive X-Ray Spectroscopy (EDS) and Alizarin Red staining. We found that the substrate-mediated electrical stimulation of the PPy/PU substrates induced a twofold increase of the Ca deposits in the cultured cells.

  20. a Free and Open Source Tool to Assess the Accuracy of Land Cover Maps: Implementation and Application to Lombardy Region (italy)

    NASA Astrophysics Data System (ADS)

    Bratic, G.; Brovelli, M. A.; Molinari, M. E.

    2018-04-01

    The availability of thematic maps has significantly increased over the last few years. Validation of these maps is a key factor in assessing their suitability for different applications. The evaluation of the accuracy of classified data is carried out through a comparison with a reference dataset and the generation of a confusion matrix from which many quality indexes can be derived. In this work, an ad hoc free and open source Python tool was implemented to automatically compute all the matrix confusion-derived accuracy indexes proposed by literature. The tool was integrated into GRASS GIS environment and successfully applied to evaluate the quality of three high-resolution global datasets (GlobeLand30, Global Urban Footprint, Global Human Settlement Layer Built-Up Grid) in the Lombardy Region area (Italy). In addition to the most commonly used accuracy measures, e.g. overall accuracy and Kappa, the tool allowed to compute and investigate less known indexes such as the Ground Truth and the Classification Success Index. The promising tool will be further extended with spatial autocorrelation analysis functions and made available to researcher and user community.

  1. Thermal Dispersion Within a Porous Medium Near a Solid Wall

    NASA Technical Reports Server (NTRS)

    Simon, T.; McFadden, G.; Ibrahim, M.

    2006-01-01

    The regenerator is a key component to Stirling cycle machine efficiency. Typical regenerators are of sintered fine wires or layers of fine-wire screens. Such porous materials are contained within solid-waH casings. Thermal energy exchange between the regenerator and the casing is important to cycle performance for the matrix and casing would not have the same axial temperature profile in an actual machine. Exchange from one to the other may allow shunting of thermal energy, reducing cycle efficiency. In this paper, temperature profiles within the near-wall region of the matrix are measured and thermal energy transport, termed thermal dispersion, is inferred. The data show how the wall affects thermal transport. Transport normal to the mean flow direction is by conduction within the solid and fluid and by advective transport within the matrix. In the near-wall region, both may be interrupted from their normal in-core pattern. Solid conduction paths are broken and scales of advective transport are damped. An equation is presented which describes this change for a wire screen mesh. The near-wall layer typically acts as an insulating layer. This should be considered in design or analysis. Effective thermal conductivity within the core is uniform. In-core transverse thermal effective conductivity values are compared to direct and indirect measurements reported elsewhere and to 3D numerical simulation results, computed previously and reported elsewhere. The 3-D CFD model is composed of six cylinders in cross flow, staggered in arrangement to match the dimensions and porosity of the matrix used in the experiments. The commercial code FLUENT is used to obtain the flow and thermal fields. The thermal dispersion and effective thermal conductivities for the matrix are computed from the results.

  2. Formation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix.

    PubMed

    el-Ghannam, A; Ducheyne, P; Shapiro, I M

    1997-02-01

    The objective of the study was to examine the effect of alkali ion release, pH control and buffer capacity on the expression of the osteoblastic phenotype. In addition we determined the importance of modifications of the surface of porous bioactive glass (BG) on the activity of rat calvaria osteoblasts in vitro. We found that at a low tissue culture medium (TCM) volume to BG surface area (Vol/SA) ratio, the products of glass corrosion elevated the pH of the TCM to a value that adversely affected cellular activity; thus, the matrix synthesized by the cells was non-mineralized. On the other hand, when the Vol/SA was high and the buffer capacity of the medium was not exceeded, the cells generated a mineralized extracellular matrix. Addressing the second issue, we observed that modification of the composition of the BG surface markedly influenced osteoblast activity. BG that was coated with either a calcium phosphate-rich layer only or a serum protein layer changed the phenotypic characteristics of the osteoblasts. The presence of either of these surfaces lowered the alkaline phosphatase activity of the attached cells; this finding indicated that the osteoblast phenotype was not conserved. However, when the BG was coated with a bilayer of calcium phosphate and serum proteins, the alkaline phosphatase (AP) activity was elevated and the extracellular matrix contained characteristic bone markers. Our findings indicate that the calcium phosphate-rich layer promotes adsorption and concentration of proteins from the TCM, and it is utilized by the osteoblasts to form the mineralized extracellular matrix.

  3. Analysis of the progressive failure of brittle matrix composites

    NASA Technical Reports Server (NTRS)

    Thomas, David J.

    1995-01-01

    This report investigates two of the most common modes of localized failures, namely, periodic fiber-bridged matrix cracks and transverse matrix cracks. A modification of Daniels' bundle theory is combined with Weibull's weakest link theory to model the statistical distribution of the periodic matrix cracking strength for an individual layer. Results of the model predictions are compared with experimental data from the open literature. Extensions to the model are made to account for possible imperfections within the layer (i.e., nonuniform fiber lengths, irregular crack spacing, and degraded in-situ fiber properties), and the results of these studies are presented. A generalized shear-lag analysis is derived which is capable of modeling the development of transverse matrix cracks in material systems having a general multilayer configuration and under states of full in-plane load. A method for computing the effective elastic properties for the damaged layer at the global level is detailed based upon the solution for the effects of the damage at the local level. This methodology is general in nature and is therefore also applicable to (0(sub m)/90(sub n))(sub s) systems. The characteristic stress-strain response for more general cases is shown to be qualitatively correct (experimental data is not available for a quantitative evaluation), and the damage evolution is recorded in terms of the matrix crack density as a function of the applied strain. Probabilistic effects are introduced to account for the statistical nature of the material strengths, thus allowing cumulative distribution curves for the probability of failure to be generated for each of the example laminates. Additionally, Oh and Finney's classic work on fracture location in brittle materials is extended and combined with the shear-lag analysis. The result is an analytical form for predicting the probability density function for the location of the next transverse crack occurrence within a crack bounded region. The results of this study verified qualitatively the validity of assuming a uniform crack spacing (as was done in the shear-lag model).

  4. Nanocrystal doped matrixes

    DOEpatents

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  5. Nanocrystal structures

    DOEpatents

    Eisler, Hans J [Stoneham, MA; Sundar, Vikram C [Stoneham, MA; Walsh, Michael E [Everett, MA; Klimov, Victor I [Los Alamos, NM; Bawendi, Moungi G [Cambridge, MA; Smith, Henry I [Sudbury, MA

    2008-12-30

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II-VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  6. Nanocrystal structures

    DOEpatents

    Eisler, Hans J.; Sundar, Vikram C.; Walsh, Michael E.; Klimov, Victor I.; Bawendi, Moungi G.; Smith, Henry I.

    2006-12-19

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II–VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  7. Matrix De Rham Complex and Quantum A-infinity algebras

    NASA Astrophysics Data System (ADS)

    Barannikov, S.

    2014-04-01

    I establish the relation of the non-commutative BV-formalism with super-invariant matrix integration. In particular, the non-commutative BV-equation, defining the quantum A ∞-algebras, introduced in Barannikov (Modular operads and non-commutative Batalin-Vilkovisky geometry. IMRN, vol. 2007, rnm075. Max Planck Institute for Mathematics 2006-48, 2007), is represented via de Rham differential acting on the supermatrix spaces related with Bernstein-Leites simple associative algebras with odd trace q( N), and gl( N| N). I also show that the matrix Lagrangians from Barannikov (Noncommutative Batalin-Vilkovisky geometry and matrix integrals. Isaac Newton Institute for Mathematical Sciences, Cambridge University, 2006) are represented by equivariantly closed differential forms.

  8. Integrated, nonvolatile, high-speed analog random access memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor); Stadler, Henry L. (Inventor)

    1994-01-01

    This invention provides an integrated, non-volatile, high-speed random access memory. A magnetically switchable ferromagnetic or ferrimagnetic layer is sandwiched between an electrical conductor which provides the ability to magnetize the magnetically switchable layer and a magneto resistive or Hall effect material which allows sensing the magnetic field which emanates from the magnetization of the magnetically switchable layer. By using this integrated three-layer form, the writing process, which is controlled by the conductor, is separated from the storage medium in the magnetic layer and from the readback process which is controlled by the magnetoresistive layer. A circuit for implementing the memory in CMOS or the like is disclosed.

  9. FOLDER: A numerical tool to simulate the development of structures in layered media

    NASA Astrophysics Data System (ADS)

    Adamuszek, Marta; Dabrowski, Marcin; Schmid, Daniel W.

    2015-04-01

    FOLDER is a numerical toolbox for modelling deformation in layered media during layer parallel shortening or extension in two dimensions. FOLDER builds on MILAMIN [1], a finite element method based mechanical solver, with a range of utilities included from the MUTILS package [2]. Numerical mesh is generated using the Triangle software [3]. The toolbox includes features that allow for: 1) designing complex structures such as multi-layer stacks, 2) accurately simulating large-strain deformation of linear and non-linear viscous materials, 3) post-processing of various physical fields such as velocity (total and perturbing), rate of deformation, finite strain, stress, deviatoric stress, pressure, apparent viscosity. FOLDER is designed to ensure maximum flexibility to configure model geometry, define material parameters, specify range of numerical parameters in simulations and choose the plotting options. FOLDER is an open source MATLAB application and comes with a user friendly graphical interface. The toolbox additionally comprises an educational application that illustrates various analytical solutions of growth rates calculated for the cases of folding and necking of a single layer with interfaces perturbed with a single sinusoidal waveform. We further derive two novel analytical expressions for the growth rate in the cases of folding and necking of a linear viscous layer embedded in a linear viscous medium of a finite thickness. We use FOLDER to test the accuracy of single-layer folding simulations using various 1) spatial and temporal resolutions, 2) time integration schemes, and 3) iterative algorithms for non-linear materials. The accuracy of the numerical results is quantified by: 1) comparing them to analytical solution, if available, or 2) running convergence tests. As a result, we provide a map of the most optimal choice of grid size, time step, and number of iterations to keep the results of the numerical simulations below a given error for a given time integration scheme. We also demonstrate that Euler and Leapfrog time integration schemes are not recommended for any practical use. Finally, the capabilities of the toolbox are illustrated based on two examples: 1) shortening of a synthetic multi-layer sequence and 2) extension of a folded quartz vein embedded in phyllite from Sprague Upper Reservoir (example discussed by Sherwin and Chapple [4]). The latter example demonstrates that FOLDER can be successfully used for reverse modelling and mechanical restoration. [1] Dabrowski, M., Krotkiewski, M., and Schmid, D. W., 2008, MILAMIN: MATLAB-based finite element method solver for large problems. Geochemistry Geophysics Geosystems, vol. 9. [2] Krotkiewski, M. and Dabrowski M., 2010 Parallel symmetric sparse matrix-vector product on scalar multi-core cpus. Parallel Computing, 36(4):181-198 [3] Shewchuk, J. R., 1996, Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator, In: Applied Computational Geometry: Towards Geometric Engineering'' (Ming C. Lin and Dinesh Manocha, editors), Vol. 1148 of Lecture Notes in Computer Science, pp. 203-222, Springer-Verlag, Berlin [4] Sherwin, J.A., Chapple, W.M., 1968. Wavelengths of single layer folds - a Comparison between theory and Observation. American Journal of Science 266 (3), p. 167-179

  10. Synthese et caracterisation structurale d'epicouches heterogeenes semiconductrices/ ferromagnetiques: le cas d'agregats de MnP encastres dans une matrice de GaP

    NASA Astrophysics Data System (ADS)

    Lambert-Milot, Samuel

    The general objective of this work is to bring a better understanding of the growth mechanism and the influence of the growth parameters on the microstructure of the heterogeneous magnetic semiconductors layers. Toward this end, we have undertaken a detailed study on the structural characteristics of the GaP:MnP ferromagnetic semiconductor thin films grown by metal organic vapour phase epitaxy (MOVPE). We have focused our effort on three specific objectives: (1) to demonstrate the growth of epitaxial heterogeneous GaP:MnP layers; (2) to establish the influence of the growth parameters on the microstructure of the matrix and nanoclusters; (3) to obtain a detailed structural characterisation of the texture of the clusters as a function of the growth parameters. We have successfully grown epitaxial heterogeneous GaP:MnP layers without structural defects on GaP substrates at 650°C. The layers contain a uniform ensemble of 15-50 nm quasi-spherical MnP nanoclusters within a dislocation-free GaP epilayer matrix that is fully coherent with the substrate. The clusters occupy 3 to 8% of the total volume of the layer, controlled by the flow of the Mn precursor in the vapor phase. We showed that the growth temperature strongly affect the microstructure of the GaP matrix. At 700°C the surface roughness increases and we have observed 100 nm wide cavities in the GaP matrix. The layers grown at 600°C contain a large density of pile-up defects along GaP{111} facets. To explain these defects we propose the following mechanism: (1) the nucleation of clusters on the GaP growth surface change the morphology of the surrounding matrix; (2) these morphological changes increase the surface roughness and lead to the formation of GaP{111} facets; (3) at 600°C, the probability of the Ga and P atoms to find an epitaxial site on GaP{111} facets is reduced and leads to the formation of pile-up defects. The detailed microstructural characterization of the GaP:MnP layers have shown that the volume fraction and the dimension of the MnP clusters can be controlled by adjusting the Mn precursor flow rate and the growth temperature, respectively: (1) the volume fraction of the clusters increases with the Mn precursor flow rate; (2) its average dimension increases with the growth temperature. Our work reveals that 80-90% of the clusters were orthorhombic-MnP and 10-20% were hexagonal Mn2P in layer grown at 650°C on GaP(001) substrates. The formation of Mn2P clusters can be reduced by decreasing the growth temperature and can be avoided by growing on GaP(011) substrates. Our 3D reciprocal space maps measurements have enabled, for the first time, a precise description of the texture of the clusters as a function of the growth temperature, the layer thickness and the substrate orientation. Our results reveal that the orthorhombic MnP nanoclusters are highly textured and distributed in six crystallographic orientation families. They principally grow on GaP(001) and GaP{111} facets with a small fraction of cluster nucleating on higher-index GaP{hhl} facets. Most of epitaxial alignments share a similar component: the MnP(001) plane (c-axis plane) is parallel to the GaP{110} plane family. Along with the diffraction signals indicating specific epitaxial relationships with the substrate, we report the presence of axiotaxial ordering between a certain fraction of the MnP clusters and the GaP matrix. The texture characterization as a function of the growth parameters revealed that the MnP texture results from a complex growth process, with combined effects of the GaP matrix morphology, the lattice mismatch at the cluster/matrix interface, and the bonding configuration of the GaP seed planes. We propose a qualitative growth model that explains the order of appearance of the various cluster families and the evolution of the proportion of clusters in the different orientations with increasing film thickness. Finally, we have compared the crystallographic orientation of the MnP clusters determined from 3D reciprocal space mapping with those obtained from magnetic measurements. The agreement between the two sets of results confirms that the effective magnetic properties of the heterogeneous layer can be tuned by controlling the texture of the ferromagnetic nanoclusters. (Abstract shortened by UMI.).

  11. Effect of Layer Thickness in Selective Laser Melting on Microstructure of Al/5 wt.%Fe2O3 Powder Consolidated Parts

    PubMed Central

    Hao, Liang

    2014-01-01

    In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM) to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75 μm layer thickness, and 50 μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance) were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe) oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process. PMID:24526879

  12. Effects of Complex Structured Anodic Oxide Dielectric Layer Grown in Pore Matrix for Aluminum Capacitor.

    PubMed

    Shin, Jin-Ha; Yun, Sook Young; Lee, Chang Hyoung; Park, Hwa-Sun; Suh, Su-Jeong

    2015-11-01

    Anodization of aluminum is generally divided up into two types of anodic aluminum oxide structures depending on electrolyte type. In this study, an anodization process was carried out in two steps to obtain high dielectric strength and break down voltage. In the first step, evaporated high purity Al on Si wafer was anodized in oxalic acidic aqueous solution at various times at a constant temperature of 5 degrees C. In the second step, citric acidic aqueous solution was used to obtain a thickly grown sub-barrier layer. During the second anodization process, the anodizing potential of various ranges was applied at room temperature. An increased thickness of the sub-barrier layer in the porous matrix was obtained according to the increment of the applied anodizing potential. The microstructures and the growth of the sub-barrier layer were then observed with an increasing anodizing potential of 40 to 300 V by using a scanning electron microscope (SEM). An impedance analyzer was used to observe the change of electrical properties, including the capacitance, dissipation factor, impedance, and equivalent series resistance (ESR) depending on the thickness increase of the sub-barrier layer. In addition, the breakdown voltage was measured. The results revealed that dielectric strength was improved with the increase of sub-barrier layer thickness.

  13. An Immunohistochemical Study of Matrix Proteins in the Craniofacial Cartilage in Midterm Human Fetuses

    PubMed Central

    Shibata, S.; Sakamoto, Y.; Baba, O.; Qin, C.; Murakami, G.; Cho, B.H.

    2013-01-01

    Immunohistochemical localization of collagen types I, II, and X, aggrecan, versican, dentin matrix protein (DMP)-1, martix extracellular phosphoprotein (MEPE) were performed for Meckel’s cartilage, cranial base cartilage, and mandibular condylar cartilage in human midterm fetuses; staining patterns within the condylar cartilage were compared to those within other cartilaginous structures. Mandibular condylar cartilage contained aggrecan; it also had more type I collagen and a thicker hypertrophic cell layer than the other two types of cartilage; these three characteristics are similar to those of the secondary cartilage of rodents. MEPE immunoreactivity was first evident in the cartilage matrix of all types of cartilage in the human fetuses and in Meckel’s cartilage of mice and rats. MEPE immunoreactivity was enhanced in the deep layer of the hypertrophic cell layer and in the cartilaginous core of the bone trabeculae in the primary spongiosa. These results indicated that MEPE is a component of cartilage matrix and may be involved in cartilage mineralization. DMP-1 immunoreactivity first became evident in human bone lacunae walls and canaliculi; this pattern of expression was comparable to the pattern seen in rodents. In addition, chondroid bone was evident in the mandibular (glenoid) fossa of the temporal bone, and it had aggrecan, collagen types I and X, MEPE, and DMP-1 immunoreactivity; these findings indicated that chondroid bone in this region has phenotypic expression indicative of both hypertrophic chondrocytes and osteocytes. PMID:24441192

  14. Transfer matrix method for four-flux radiative transfer.

    PubMed

    Slovick, Brian; Flom, Zachary; Zipp, Lucas; Krishnamurthy, Srini

    2017-07-20

    We develop a transfer matrix method for four-flux radiative transfer, which is ideally suited for studying transport through multiple scattering layers. The model predicts the specular and diffuse reflection and transmission of multilayer composite films, including interface reflections, for diffuse or collimated incidence. For spherical particles in the diffusion approximation, we derive closed-form expressions for the matrix coefficients and show remarkable agreement with numerical Monte Carlo simulations for a range of absorption values and film thicknesses, and for an example multilayer slab.

  15. Pulsed-Current Electrochemical Codeposition and Heat Treatment of Ti-Dispersed Ni-Matrix Layers

    NASA Astrophysics Data System (ADS)

    Janetaisong, Pathompong; Boonyongmaneerat, Yuttanant; Techapiesancharoenkij, Ratchatee

    2016-08-01

    An electrochemical deposition is a fast and cost-efficient process to produce film or coating. In this research, Ni-Ti electrodeposition is developed by codepositing a Ti-dispersed Ni-matrix layer from a Ni-plating solution suspended with Ti particles. To enhance the coating uniformity and control the atomic composition, the pulsed current was applied to codeposit Ni-Ti layers with varying pulse duty cycles (10 to 100 pct) and frequencies (10 to 100 Hz). The microstructures and compositions of the codeposited layers were analyzed by scanning electron microscopy, X-ray diffraction, and X-ray fluorescent techniques. The pulsed current significantly improved the quality of the Ni-Ti layer as compared to a direct current. The Ni-Ti layers could be electroplated with a controlled composition within 48 to 51 at. pct of Ti. The optimal pulse duty cycle and frequency are 50 pct and 10 Hz, respectively. The standalone Ni-49Ti layers were removed from copper substrates by selective etching method and subsequently heat-treated under Ar-fed atmosphere at 1423 K (1150 °C) for 5 hours. The phase and microstructures of the post-annealed samples exhibit different Ni-Ti intermetallic compounds, including NiTi, Ni3Ti, and NiTi2. Yet, the contamination of TiN and TiO2 was also present in the post-annealed samples.

  16. Carbon nanotube-embedded advanced aerospace composites for early-stage damage sensing

    NASA Astrophysics Data System (ADS)

    Nataraj, Latha; Coatney, Michael; Cain, Jason; Hall, Asha

    2018-03-01

    Fiber reinforced polymer (FRP) composites featuring outstanding fatigue performance, high specific stiffness and strength, and low density have evolved as critical structural materials in aerospace applications. Microscale damage such as fiber breakage, matrix cracking, and delamination could occur in layered composites compromising structural integrity, emphasizing the critical need to monitor structural health. Early damage detection would lead to enhanced reliability, lifetime, and performance while minimizing maintenance time, leading to enormous scientific and technical interest in realizing physically stable, quick responding, and cost effective strain sensing materials, devices, and techniques with high sensitivity over a broad range of the practical strain spectrum. Today's most commonly used strain sensing techniques are metal foil strain gauges and optical fiber sensors. Metal foil gauges offer high stability and cost-effectiveness but can only be surface-mounted and have a low gauge factor. Optical fibers require expensive instrumentation, are mostly insensitive to cracks parallel to the fiber orientation and may lead to crack initiation as the diameter is larger than that of the reinforcement fibers. Carbon nanotubes (CNTs) have attracted much attention due to high aspect ratio and superior electrical, thermal, and mechanical properties. CNTs embedded in layered composites have improved performance. A variety of CNT architectures and configurations have shown improved piezoresistive behavior and stability for sensing applications. However, scaling up and commercialization remain serious challenges. The current study investigates a simple, cost effective and repeatable technique for highly sensitive, stable, linear and repeatable strain sensing for damage detection by integrating CNT laminates into composites.

  17. Highly efficient fully transparent inverted OLEDs

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Winkler, T.; Hamwi, S.; Schmale, S.; Kröger, M.; Görrn, P.; Johannes, H.-H.; Riedl, T.; Lang, E.; Becker, D.; Dobbertin, T.; Kowalsky, W.

    2007-09-01

    One of the unique selling propositions of OLEDs is their potential to realize highly transparent devices over the visible spectrum. This is because organic semiconductors provide a large Stokes-Shift and low intrinsic absorption losses. Hence, new areas of applications for displays and ambient lighting become accessible, for instance, the integration of OLEDs into the windshield or the ceiling of automobiles. The main challenge in the realization of fully transparent devices is the deposition of the top electrode. ITO is commonly used as transparent bottom anode in a conventional OLED. To obtain uniform light emission over the entire viewing angle and a low series resistance, a TCO such as ITO is desirable as top contact as well. However, sputter deposition of ITO on top of organic layers causes damage induced by high energetic particles and UV radiation. We have found an efficient process to protect the organic layers against the ITO rf magnetron deposition process of ITO for an inverted OLED (IOLED). The inverted structure allows the integration of OLEDs in more powerful n-channel transistors used in active matrix backplanes. Employing the green electrophosphorescent material Ir(ppy) 3 lead to IOLED with a current efficiency of 50 cd/A and power efficiency of 24 lm/W at 100 cd/m2. The average transmittance exceeds 80 % in the visible region. The on-set voltage for light emission is lower than 3 V. In addition, by vertical stacking we achieved a very high current efficiency of more than 70 cd/A for transparent IOLED.

  18. A study on wear resistance and microcrack of the Ti 3Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy

    NASA Astrophysics Data System (ADS)

    Li, Jianing; Chen, Chuanzhong; Squartini, Tiziano; He, Qingshan

    2010-12-01

    Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti 3Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti 3Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti 3Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti 3Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.

  19. Solar cells having integral collector grids

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1978-01-01

    A heterojunction or Schottky barrier photovoltaic device is described, comprising a conductive base metal layer. A back surface field region was formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device. A metal alloy grid network was included. An insulating layer prevented electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer.

  20. Pressure vessel with improved impact resistance and method of making the same

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor); Patterson, James E. (Inventor); Olson, Michael A. (Inventor)

    2010-01-01

    A composite overwrapped pressure vessel is provided which includes a composite overwrapping material including fibers disposed in a resin matrix. At least first and second kinds of fibers are used. These fibers typically have characteristics of high strength and high toughness to provide impact resistance with increased pressure handling capability and low weight. The fibers are applied to form a pressure vessel using wrapping or winding techniques with winding angles varied for specific performance characteristics. The fibers of different kinds are dispersed in a single layer of winding or wound in distinct separate layers. Layers of fabric comprised of such fibers are interspersed between windings for added strength or impact resistance. The weight percentages of the high toughness and high strength materials are varied to provide specified impact resistance characteristics. The resin matrix is formed with prepregnated fibers or through wet winding. The vessels are formed with or without liners.

  1. An empirical model for polarized and cross-polarized scattering from a vegetation layer

    NASA Technical Reports Server (NTRS)

    Liu, H. L.; Fung, A. K.

    1988-01-01

    An empirical model for scattering from a vegetation layer above an irregular ground surface is developed in terms of the first-order solution for like-polarized scattering and the second-order solution for cross-polarized scattering. The effects of multiple scattering within the layer and at the surface-volume boundary are compensated by using a correction factor based on the matrix doubling method. The major feature of this model is that all parameters in the model are physical parameters of the vegetation medium. There are no regression parameters. Comparisons of this empirical model with theoretical matrix-doubling method and radar measurements indicate good agreements in polarization, angular trends, and k sub a up to 4, where k is the wave number and a is the disk radius. The computational time is shortened by a factor of 8, relative to the theoretical model calculation.

  2. System of polarization correlometry of polycrystalline layers of urine in the differentiation stage of diabetes

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. O.; Pashkovskaya, N. V.; Marchuk, Y. F.; Dubolazov, O. V.; Savich, V. O.

    2015-08-01

    The work consists of investigation results of diagnostic efficiency of a new azimuthally stable Muellermatrix method of analysis of laser autofluorescence coordinate distributions of biological liquid layers. A new model of generalized optical anisotropy of biological tissues protein networks is proposed in order to define the processes of laser autofluorescence. The influence of complex mechanisms of both phase anisotropy (linear birefringence and optical activity) and linear (circular) dichroism is taken into account. The interconnections between the azimuthally stable Mueller-matrix elements characterizing laser autofluorescence and different mechanisms of optical anisotropy are determined. The statistic analysis of coordinate distributions of such Mueller-matrix rotation invariants is proposed. Thereupon the quantitative criteria (statistic moments of the 1st to the 4th order) of differentiation of human urine polycrystalline layers for the sake of diagnosing and differentiating cholelithiasis with underlying chronic cholecystitis (group 1) and diabetes mellitus of degree II (group 2) are estimated.

  3. Transmittance properties of one dimensional ternary nanocomposite photonic crystals

    NASA Astrophysics Data System (ADS)

    Elsayed, Hussein A.

    2018-03-01

    In the present work, we have theoretically investigated the transmittance characteristics of one dimensional ternary photonic crystals that containing a nanocomposite layer. The nanocomposite layer was designed from metallic nanoparticles of (Ag) in a transparent matrix of a dielectric material (MgF2). The numerical results are obtained based on the theoretical modeling of the characteristic matrix method and Maxwell-Garnett model. The investigated results demonstrate the significant effect of the volume fraction of the nanoparticles on the effective permittivity of the nanocomposite material as well as the transmission characteristics of our design. Moreover, the roles played by other parameters such as the thickness of the nanocomposite layer, the permittivity of the host dielectric material and the spherical radius of the nanoparticles are included her. The proposed structure could be promising for many applications such as THz optical filters, reflectors and optical switches.

  4. Kinetic-energy matrix elements for atomic Hylleraas-CI wave functions.

    PubMed

    Harris, Frank E

    2016-05-28

    Hylleraas-CI is a superposition-of-configurations method in which each configuration is constructed from a Slater-type orbital (STO) product to which is appended (linearly) at most one interelectron distance rij. Computations of the kinetic energy for atoms by this method have been difficult due to the lack of formulas expressing these matrix elements for general angular momentum in terms of overlap and potential-energy integrals. It is shown here that a strategic application of angular-momentum theory, including the use of vector spherical harmonics, enables the reduction of all atomic kinetic-energy integrals to overlap and potential-energy matrix elements. The new formulas are validated by showing that they yield correct results for a large number of integrals published by other investigators.

  5. Diagnostic efficiency of Mueller-matrix polarization reconstruction system of the phase structure of liver tissue

    NASA Astrophysics Data System (ADS)

    Zabolotna, Natalia I.; Pavlov, Sergii V.; Radchenko, Kostiantyn O.; Stasenko, Vladyslav A.; Wójcik, Waldemar; Kussambayeva, Nazym

    2015-12-01

    The application field of using the Mueller-matrix polarizing reconstruction system of phase structure of biological layer for optical-anisotropic parameters differentiation of histological sections of healthy and rat's liver with hepatitis were investigated. Comparison of system informativity with known systems on indexes of sensitivity, specificity and balanced accuracy were performed.

  6. Zeolite-imidazolate framework (ZIF-8) membrane synthesis on a mixed-matrix substrate.

    PubMed

    Barankova, Eva; Pradeep, Neelakanda; Peinemann, Klaus-Viktor

    2013-10-21

    A thin, dense, compact and hydrogen selective ZIF-8 membrane was synthesized on a polymer/metal oxide mixed-matrix support by a secondary seeding method. The new concept of incorporating ZnO particles into the support and PDMS coating of the ZIF-8 layer is introduced to improve the preparation of ZIF-polymer composite membranes.

  7. Developing Learning Tool of Control System Engineering Using Matrix Laboratory Software Oriented on Industrial Needs

    NASA Astrophysics Data System (ADS)

    Isnur Haryudo, Subuh; Imam Agung, Achmad; Firmansyah, Rifqi

    2018-04-01

    The purpose of this research is to develop learning media of control technique using Matrix Laboratory software with industry requirement approach. Learning media serves as a tool for creating a better and effective teaching and learning situation because it can accelerate the learning process in order to enhance the quality of learning. Control Techniques using Matrix Laboratory software can enlarge the interest and attention of students, with real experience and can grow independent attitude. This research design refers to the use of research and development (R & D) methods that have been modified by multi-disciplinary team-based researchers. This research used Computer based learning method consisting of computer and Matrix Laboratory software which was integrated with props. Matrix Laboratory has the ability to visualize the theory and analysis of the Control System which is an integration of computing, visualization and programming which is easy to use. The result of this instructional media development is to use mathematical equations using Matrix Laboratory software on control system application with DC motor plant and PID (Proportional-Integral-Derivative). Considering that manufacturing in the field of Distributed Control systems (DCSs), Programmable Controllers (PLCs), and Microcontrollers (MCUs) use PID systems in production processes are widely used in industry.

  8. Study on the Algorithm of Judgment Matrix in Analytic Hierarchy Process

    NASA Astrophysics Data System (ADS)

    Lu, Zhiyong; Qin, Futong; Jin, Yican

    2017-10-01

    A new algorithm is proposed for the non-consistent judgment matrix in AHP. A primary judgment matrix is generated firstly through pre-ordering the targeted factor set, and a compared matrix is built through the top integral function. Then a relative error matrix is created by comparing the compared matrix with the primary judgment matrix which is regulated under the control of the relative error matrix and the dissimilar degree of the matrix step by step. Lastly, the targeted judgment matrix is generated to satisfy the requirement of consistence and the least dissimilar degree. The feasibility and validity of the proposed method are verified by simulation results.

  9. Self-healing polymers and composites based on thermal activation

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Bolanos, Ed; Wudl, Fred; Hahn, Thomas; Kwok, Nathan

    2007-04-01

    Structural polymer composites are susceptible to premature failure in the form of microcracks in the matrix. Although benign initially when they form, these matrix cracks tend to coalesce and lead in service to critical damage modes such as ply delamination. The matrix cracks are difficult to detect and almost impossible to repair because they form inside the composite laminate. Therefore, polymers with self-healing capability would provide a promising potential to minimize maintenance costs while extending the service lifetime of composite structures. In this paper we report on a group of polymers and their composites which exhibit mendable property upon heating. The failure and healing mechanisms of the polymers involve Diels-Alder (DA) and retro-Diels-Alder (RDA) reactions on the polymer back-bone chain, which are thermally reversible reactions requiring no catalyst. The polymers exhibited good healing property in bulk form. Composite panels were prepared by sandwiching the monomers between carbon fiber fabric layers and cured in autoclave. Microcracks were induced on the resin-rich surface of composite with Instron machine at room temperature by holding at 1% strain for 1 min. The healing ability of the composite was also demonstrated by the disappearance of microcracks after heating. In addition to the self-healing ability, the polymers and composites also exhibited shape memory property. These unique properties may provide the material multi-functional applications. Resistance heating of traditional composites and its applicability in self-healing composites is also studied to lay groundwork for a fully integrated self-healing composite.

  10. Eu-doped ZnO-HfO2 hybrid nanocrystal-embedded low-loss glass-ceramic waveguides

    NASA Astrophysics Data System (ADS)

    Ghosh, Subhabrata; N, Shivakiran Bhaktha B.

    2016-03-01

    We report on the sol-gel fabrication, using a dip-coating technique, of low-loss Eu-doped 70SiO2 -(30-x) HfO2-xZnO (x = 2, 5, 7 and 10 mol%) ternary glass-ceramic planar waveguides. Transmission electron microscopy and grazing incident x-ray diffraction experiments confirm the controlled growth of hybrid nanocrystals with an average size of 3 nm-25 nm, composed of ZnO encapsulated by a thin layer of nanocrystalline HfO2, with an increase of ZnO concentration from x = 2 mol% to 10 mol% in the SiO2-HfO2 composite matrix. The effect of crystallization on the local environment of Eu ions, doped in the ZnO-HfO2 hybrid nanocrystal-embedded glass-ceramic matrix, is studied using photoluminescence spectra, wherein an intense mixed-valence state (divalent as well as trivalent) emission of Eu ions is observed. The existence of Eu2+ and Eu3+ in the SiO2-HfO2-ZnO ternary matrix is confirmed by x-ray photoelectron spectroscopy. Importantly, the Eu{}2+,3+-doped ternary waveguides exhibit low propagation losses (0.3 ± 0.2 dB cm-1 at 632.8 nm) and optical transparency in the visible region of the electromagnetic spectrum, which makes ZnO-HfO2 nanocrystal-embedded SiO2-HfO2-ZnO waveguides a viable candidate for the development of on-chip, active, integrated optical devices.

  11. Injectable MMP-sensitive alginate hydrogels as hMSC delivery systems.

    PubMed

    Fonseca, Keila B; Gomes, David B; Lee, Kangwon; Santos, Susana G; Sousa, Aureliana; Silva, Eduardo A; Mooney, David J; Granja, Pedro L; Barrias, Cristina C

    2014-01-13

    Hydrogels with the potential to provide minimally invasive cell delivery represent a powerful tool for tissue-regeneration therapies. In this context, entrapped cells should be able to escape the matrix becoming more available to actively participate in the healing process. Here, we analyzed the performance of proteolytically degradable alginate hydrogels as vehicles for human mesenchymal stem cells (hMSC) transplantation. Alginate was modified with the matrix metalloproteinase (MMP)-sensitive peptide Pro-Val-Gly-Leu-Iso-Gly (PVGLIG), which did not promote dendritic cell maturation in vitro, neither free nor conjugated to alginate chains, indicating low immunogenicity. hMSC were entrapped within MMP-sensitive and MMP-insensitive alginate hydrogels, both containing cell-adhesion RGD peptides. Softer (2 wt % alginate) and stiffer (4 wt % alginate) matrices were tested. When embedded in a Matrigel layer, hMSC-laden MMP-sensitive alginate hydrogels promoted more extensive outward cell migration and invasion into the tissue mimic. In vivo, after 4 weeks of subcutaneous implantation in a xenograft mouse model, hMSC-laden MMP-sensitive alginate hydrogels showed higher degradation and host tissue invasion than their MMP-insensitive equivalents. In both cases, softer matrices degraded faster than stiffer ones. The transplanted hMSC were able to produce their own collagenous extracellular matrix, and were located not only inside the hydrogels, but also outside, integrated in the host tissue. In summary, injectable MMP-sensitive alginate hydrogels can act as localized depots of cells and confer protection to transplanted cells while facilitating tissue regeneration.

  12. Examination of the Abscission-Associated Transcriptomes for Soybean, Tomato, and Arabidopsis Highlights the Conserved Biosynthesis of an Extensible Extracellular Matrix and Boundary Layer.

    PubMed

    Kim, Joonyup; Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Yang, Ronghui; Meir, Shimon; Tucker, Mark L

    2015-01-01

    Abscission zone (AZ) development and the progression of abscission (detachment of plant organs) have been roughly separated into four stages: first, AZ differentiation; second, competence to respond to abscission signals; third, activation of abscission; and fourth, formation of a protective layer and post-abscission trans-differentiation. Stage three, activation of abscission, is when changes in the cell wall and extracellular matrix occur to support successful organ separation. Most abscission research has focused on gene expression for enzymes that disassemble the cell wall within the AZ and changes in phytohormones and other signaling events that regulate their expression. Here, transcriptome data for soybean, tomato and Arabidopsis were examined and compared with a focus not only on genes associated with disassembly of the cell wall but also on gene expression linked to the biosynthesis of a new extracellular matrix. AZ-specific up-regulation of genes associated with cell wall disassembly including cellulases (beta-1,4-endoglucanases, CELs), polygalacturonases (PGs), and expansins (EXPs) were much as expected; however, curiously, changes in expression of xyloglucan endotransglucosylase/hydrolases (XTHs) were not AZ-specific in soybean. Unexpectedly, we identified an early increase in the expression of genes underlying the synthesis of a waxy-like cuticle. Based on the expression data, we propose that the early up-regulation of an abundance of small pathogenesis-related (PR) genes is more closely linked to structural changes in the extracellular matrix of separating cells than an enzymatic role in pathogen resistance. Furthermore, these observations led us to propose that, in addition to cell wall loosening enzymes, abscission requires (or is enhanced by) biosynthesis and secretion of small proteins (15-25 kDa) and waxes that form an extensible extracellular matrix and boundary layer on the surface of separating cells. The synthesis of the boundary layer precedes what is typically associated with the post-abscission synthesis of a protective scar over the fracture plane. This modification in the abscission model is discussed in regard to how it influences our interpretation of the role of multiple abscission signals.

  13. Enhancement of the Mechanical Properties of Basalt Fiber-Wood-Plastic Composites via Maleic Anhydride Grafted High-Density Polyethylene (MAPE) Addition.

    PubMed

    Chen, Jinxiang; Wang, Yong; Gu, Chenglong; Liu, Jianxun; Liu, Yufu; Li, Min; Lu, Yun

    2013-06-18

    This study investigated the mechanisms, using microscopy and strength testing approaches, by which the addition of maleic anhydride grafted high-density polyethylene (MAPE) enhances the mechanical properties of basalt fiber-wood-plastic composites (BF-WPCs). The maximum values of the specific tensile and flexural strengths are achieved at a MAPE content of 5%-8%. The elongation increases rapidly at first and then continues slowly. The nearly complete integration of the wood fiber with the high-density polyethylene upon MAPE addition to WPC is examined, and two models of interfacial behavior are proposed. We examined the physical significance of both interfacial models and their ability to accurately describe the effects of MAPE addition. The mechanism of formation of the Model I interface and the integrated matrix is outlined based on the chemical reactions that may occur between the various components as a result of hydrogen bond formation or based on the principle of compatibility, resulting from similar polarity. The Model I fracture occurred on the outer surface of the interfacial layer, visually demonstrating the compatibilization effect of MAPE addition.

  14. Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afach, S.; Fertl, M.; Franke, B., E-mail: beatrice.franke@psi.ch, E-mail: bernhard.lauss@psi.ch

    The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5 m × 2.5 m × 3 m, disturbances of the magnetic field are attenuated by factors of 5–50 at a bandwidth from 10{sup −3} Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the neutron electric dipole moment measurement.more » These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils.« less

  15. Recent advances and product enhancements in reflective cholesteric displays

    NASA Astrophysics Data System (ADS)

    Khan, Asad; Schneider, Tod; Miller, Nick; Marhefka, Duane; Ernst, Todd; Nicholson, Forrest; Doane, Joseph W.

    2005-04-01

    Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays on a low-cost, high resolution passive matrix. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. We discuss recent advances in cholesteric display technology at Kent Displays such as progress towards single layer black and white displays, standard products, lower cost display modules, and various interface options for cholesteric display applications. It will be shown that inclusion of radio frequency (rf) control options and serial peripheral interface (spi) can greatly enhance the cholesteric display module market penetration by enabling quick integration into end devices. Finally, some discussion will be on the progress of the development of flexible reflective cholesteric displays. These flexible displays can dramatically change industrial design methods by enabling curved surfaces with displays integrated in them. Additional discussion in the paper will include applications of various display modes including signs, hand held instrumentation, and the electronic book and reader.

  16. Understanding the effect of an in situ generated and integrated spinel phase on a layered Li-rich cathode material using a non-stoichiometric strategy.

    PubMed

    Zhang, Jicheng; Gao, Rui; Sun, Limei; Li, Zhengyao; Zhang, Heng; Hu, Zhongbo; Liu, Xiangfeng

    2016-09-14

    Recently, spinel-layered integrated Li-rich cathode materials have attracted great interest due to the large enhancement of their electrochemical performances. However, the modification mechanism and the effect of the integrated spinel phase on Li-rich layered cathode materials are still not very clear. Herein, we have successfully synthesized the spinel-layered integrated Li-rich cathode material using a facile non-stoichiometric strategy (NS-LNCMO). The rate capability (84 mA h g -1 vs. 28 mA h g -1 , 10 C), cycling stability (92.4% vs. 80.5%, 0.2 C), low temperature electrochemical capability (96.5 mA h g -1 vs. 59 mA h g -1 , -20 °C), initial coulomb efficiency (92% vs. 79%) and voltage fading (2.77 V vs. 3.02 V, 200 cycles@1 C) of spinel-layered integrated Li-rich cathode materials have been significantly improved compared with a pure Li-rich phase cathode. Some new insights into the effect of the integrated spinel phase on a layered Li-rich cathode have been proposed through a comparison of the structure evolution of the integrated and Li-rich only materials before and after cycling. The Li-ion diffusion coefficient of NS-LNCMO has been enlarged by about 3 times and almost does not change even after 100 cycles indicating an enhanced structure stability. The integration of the spinel phase not only enhances the structure stability of the layered Li-rich phase during charging-discharging but also expands the interslab spacing of the Li-ion diffusion layer, and elongates TM-O covalent bond lengths, which lowers the activation barrier of Li + -transportation, and alleviates the structure strain during the cycling procedure.

  17. Data layer integration for the national map of the united states

    USGS Publications Warehouse

    Usery, E.L.; Finn, M.P.; Starbuck, M.

    2009-01-01

    The integration of geographic data layers in multiple raster and vector formats, from many different organizations and at a variety of resolutions and scales, is a significant problem for The National Map of the United States being developed by the U.S. Geological Survey. Our research has examined data integration from a layer-based approach for five of The National Map data layers: digital orthoimages, elevation, land cover, hydrography, and transportation. An empirical approach has included visual assessment by a set of respondents with statistical analysis to establish the meaning of various types of integration. A separate theoretical approach with established hypotheses tested against actual data sets has resulted in an automated procedure for integration of specific layers and is being tested. The empirical analysis has established resolution bounds on meanings of integration with raster datasets and distance bounds for vector data. The theoretical approach has used a combination of theories on cartographic transformation and generalization, such as T??pfer's radical law, and additional research concerning optimum viewing scales for digital images to establish a set of guiding principles for integrating data of different resolutions.

  18. Capacitance-based damage detection sensing for aerospace structural composites

    NASA Astrophysics Data System (ADS)

    Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.

    2014-04-01

    Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (< 0.1 mm), but their detection capabilities is limited by defect locations and orientations and require massive inspection devices. System health monitoring (SHM) methods are often paired with NDE technologies to signal out sensed damage, but their data collection and analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket fairings for example. The sensors can also be operating in space and harsh environment such as high temperature and vacuum.

  19. Freeze Casting for Assembling Bioinspired Structural Materials.

    PubMed

    Cheng, Qunfeng; Huang, Chuanjin; Tomsia, Antoni P

    2017-12-01

    Nature is very successful in designing strong and tough, lightweight materials. Examples include seashells, bone, teeth, fish scales, wood, bamboo, silk, and many others. A distinctive feature of all these materials is that their properties are far superior to those of their constituent phases. Many of these natural materials are lamellar or layered in nature. With its "brick and mortar" structure, nacre is an example of a layered material that exhibits extraordinary physical properties. Finding inspiration in living organisms to create bioinspired materials is the subject of intensive research. Several processing techniques have been proposed to design materials mimicking natural materials, such as layer-by-layer deposition, self-assembly, electrophoretic deposition, hydrogel casting, doctor blading, and many others. Freeze casting, also known as ice-templating, is a technique that has received considerable attention in recent years to produce bioinspired bulk materials. Here, recent advances in the freeze-casting technique are reviewed for fabricating lamellar scaffolds by assembling different dimensional building blocks, including nanoparticles, polymer chains, nanofibers, and nanosheets. These lamellar scaffolds are often infiltrated by a second phase, typically a soft polymer matrix, a hard ceramic matrix, or a metal matrix. The unique architecture of the resultant bioinspired structural materials displays excellent mechanical properties. The challenges of the current research in using the freeze-casting technique to create materials large enough to be useful are also discussed, and the technique's promise for fabricating high-performance nacre-inspired structural materials in the future is reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Biomimetic synthesis of sericin and silica hybrid colloidosomes for stimuli-responsive anti-cancer drug delivery systems.

    PubMed

    Yang, Ying; Cai, Yurong; Sun, Ning; Li, Ruijing; Li, Wenhua; Kundu, Subhas C; Kong, Xiangdong; Yao, Juming

    2017-03-01

    Colloidosomes are becoming popular due to their significant flexibility with respect to microcapsule functionality. This study reports a facile approach for synthesizing silica colloidosomes by using sericin microcapsule as the matrix in an environment-friendly method. The silica colloid arrangement on the sericin microcapsules are orchestrated by altering the reaction parameters. Doxorubicin (DOX), used as a hydrophilic anti-cancer drug model, is encapsulated into the colloidosomes in a mild aqueous solution and becomes stimuli-responsive to different external environments, including pH values, protease, and ionic strength are also observed. Colloidosomes with sub-monolayers, close-packed monolayers, and close-packed multi-layered SiO 2 colloid shells can be fabricated under the optimized reaction conditions. A flexible DOX release from colloidosomes can be obtained via modulating the SiO 2 colloid layer arrangement and thickness. The close-packed and multi-layered SiO 2 colloid shells can best protect the colloidosomes and delay the rapid cargo release. MG-63 cells are killed when doxorubicin is released from the microcapsules due to degradation in the microenvironment of cancer cells. The drug release period is prolonged as SiO 2 shell thickness and integrity increase. This work suggests that the hybrid colloidosomes can be effective in a bioactive molecule delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Design and analysis of InN - In0.25Ga0.75N single quantum well laser for short distance communication wavelength

    NASA Astrophysics Data System (ADS)

    Polash, Md. Mobarak Hossain; Alam, M. Shah; Biswas, Saumya

    2018-03-01

    A single quantum well semiconductor laser based on wurtzite-nitride is designed and analyzed for short distance communication wavelength (at around 1300 nm). The laser structure has 12 Å well layer of InN, 15 Å barrier layer of In0.25Ga0.75N, and 54 Å separate confinement heterostructure layer of GaN. To calculate the electronic characteristics of the structure, a self-consistent method is used where Hamiltonian with effective mass approximation is solved for conduction band while six-bands Hamiltonian matrix with k · p formalism including the polarization effect, valence-band mixing effect, and strain effect is solved for valence band. The interband optical transition elements, optical gain, differential gain, radiative current density, spontaneous emission rate, and threshold characteristics have been calculated. The wave function overlap integral is found to be 45.93% for TE-polarized structure. Also, the spontaneous emission rate is found to be 6.57 × 1027 s - 1 cm - 3 eV - 1 at 1288.21 nm with the carrier density of 5 × 1019 cm - 3. Furthermore, the radiative current density and the radiative recombination rate are found to be 121.92 A cm - 2 and 6.35 × 1027 s - 1 cm - 3, respectively, while the TE-polarized optical gain of the structure is 3872.1 cm - 1 at 1301.7 nm.

  2. Characterization of the dynamics of surface stabilized ferroelectric liquid crystal under electric field by full optical snapshot matrix Mueller polarimeter

    NASA Astrophysics Data System (ADS)

    Silva, Vinicius N. H.; Babilotte, Philippe; Rivet, Sylvain; Dubreuil, Mathieu; Le Jeune, Bernard; Dupont, Laurent

    2012-12-01

    We investigated the layer dynamics of a conventional surface-stabilized ferroelectric liquid crystal (SSFLC) using a full-optical snapshot Mueller matrix polarimeter (SMMP) based on wavelength polarization coding. Time-resolved polarimetric measurements were performed with different SSFLC samples, and a strong correlation between the polarimetric parameters and the SSFLC under electric field at different exposure times was found. It has been shown that the SMMP polarimeter is able to determine the evolution of the trajectory of the liquid crystal director between the two addressed states, the reversible motion of the smectic layer while switching, as well as the irreversible transition from chevron to bookshelf texture.

  3. Cascaded VLSI Chips Help Neural Network To Learn

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Daud, Taher; Thakoor, Anilkumar P.

    1993-01-01

    Cascading provides 12-bit resolution needed for learning. Using conventional silicon chip fabrication technology of VLSI, fully connected architecture consisting of 32 wide-range, variable gain, sigmoidal neurons along one diagonal and 7-bit resolution, electrically programmable, synaptic 32 x 31 weight matrix implemented on neuron-synapse chip. To increase weight nominally from 7 to 13 bits, synapses on chip individually cascaded with respective synapses on another 32 x 32 matrix chip with 7-bit resolution synapses only (without neurons). Cascade correlation algorithm varies number of layers effectively connected into network; adds hidden layers one at a time during learning process in such way as to optimize overall number of neurons and complexity and configuration of network.

  4. Semi-analytical Karhunen-Loeve representation of irregular waves based on the prolate spheroidal wave functions

    NASA Astrophysics Data System (ADS)

    Lee, Gibbeum; Cho, Yeunwoo

    2018-01-01

    A new semi-analytical approach is presented to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of direct numerical approach to this matrix eigenvalue problem, which may suffer from the computational inaccuracy for big data, a pair of integral and differential equations are considered, which are related to the so-called prolate spheroidal wave functions (PSWF). First, the PSWF is expressed as a summation of a small number of the analytical Legendre functions. After substituting them into the PSWF differential equation, a much smaller size matrix eigenvalue problem is obtained than the direct numerical K-L matrix eigenvalue problem. By solving this with a minimal numerical effort, the PSWF and the associated eigenvalue of the PSWF differential equation are obtained. Then, the eigenvalue of the PSWF integral equation is analytically expressed by the functional values of the PSWF and the eigenvalues obtained in the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data such as ordinary irregular waves. It is found that, with the same accuracy, the required memory size of the present method is smaller than that of the direct numerical K-L representation and the computation time of the present method is shorter than that of the semi-analytical method based on the sinusoidal functions.

  5. Characterization and N-terminal sequencing of a calcium binding protein from the calcareous concretion organic matrix of the terrestrial crustacean Orchestia cavimana.

    PubMed

    Luquet, G; Testenière, O; Graf, F

    1996-04-16

    We extracted proteins from the organic matrix of calcareous concretions, which represents the calcium storage form in a terrestrial crustacean. Electrophoretic analyses of water-soluble organic-matrix proteinaceous components revealed 11 polypeptides, 6 of which are probably glycosylated. Among the unglycosylated proteins, we characterized a 23 kDa polypeptide, with an isoelectric point of 5.5, which is able to bind calcium. Its N-terminal sequence is rich in acidic amino acids (essentially aspartic acid). All these characteristics suggest its involvement in the calcium precipitation process within the successive layers of the organic matrix.

  6. Development and in vitro evaluation of expandable gastroretentive dosage forms based on compressed collagen sponges.

    PubMed

    Gröning, R; Cloer, C; Müller, R S

    2006-07-01

    The objective of this study was to develop and evaluate new collagen gastroretentive dosage forms (GRDFs) which expand in the stomach after contact with gastric fluids. The GRDFs should remain in the stomach for a prolonged period of time due to their size. The dosage forms were prepared from collagen sponges. The sponges were manufactured by freeze-drying a riboflavin-containing collagen solution. A computer controlled material supply was constructed to transport precompressed collagen into a tablet machine. A second type of tablet was manufactured by combining compressed collagen sponges with hydrophilic matrix layers of hydroxypropylmethylcellulose. Matrix layers containing captopril or aciclovir were developed. In vitro experiments were performed with both types of dosage forms. The collagen tablets expand within a few minutes after contact with artificial gastric juice and form a drug delivery system with a size of 8 mm x 18 mm x 60 mm. Riboflavin is released over 16 h. If two layer tablets are used, the release of aciclovir or captopril can be controlled by the composition of the sustained release layer.

  7. Localized entrapment of green fluorescent protein within nanostructured polymer films

    NASA Astrophysics Data System (ADS)

    Ankner, John; Kozlovskaya, Veronika; O'Neill, Hugh; Zhang, Qiu; Kharlampieva, Eugenia

    2012-02-01

    Protein entrapment within ultrathin polymer films is of interest for applications in biosensing, drug delivery, and bioconversion, but controlling protein distribution within the films is difficult. We report on nanostructured protein/polyelectrolyte (PE) materials obtained through incorporation of green fluorescent protein (GFP) within poly(styrene sulfonate)/poly(allylamine hydrochloride) multilayer films assembled via the spin-assisted layer-by-layer method. By using deuterated GFP as a marker for neutron scattering contrast we have inferred the architecture of the films in both normal and lateral directions. We find that films assembled with a single GFP layer exhibit a strong localization of the GFP without intermixing into the PE matrix. The GFP volume fraction approaches the monolayer density of close-packed randomly oriented GFP molecules. However, intermixing of the GFP with the PE matrix occurs in multiple-GFP layer films. Our results yield new insight into the organization of immobilized proteins within polyelectrolyte matrices and open opportunities for fabrication of protein-containing films with well-organized structure and controllable function, a crucial requirement for advanced sensing applications.

  8. MAPLE prepared heterostructures with oligoazomethine: Fullerene derivative mixed layer for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Stanculescu, A.; Rasoga, O.; Socol, M.; Vacareanu, L.; Grigoras, M.; Socol, G.; Stanculescu, F.; Breazu, C.; Matei, E.; Preda, N.; Girtan, M.

    2017-09-01

    Mixed layers of azomethine oligomers containing 2,5-diamino-3,4-dicyanothiophene as central unit and triphenylamine (LV5) or carbazol (LV4) at both ends as donor and fullerene derivative, [6,6]-phenyl-C61 butyric acid butyl ester ([C60]PCB-C4) as acceptor, have been prepared by Matrix Assisted Pulsed Laser Evaporation (MAPLE) on glass/ITO and Si substrates. The effect of weight ratio between donor and acceptor (1:1; 1:2) and solvent type (chloroform, dimethylsulphoxide) on the optical (UV-vis transmission/absorption, photoluminescence) and morphological properties of LV4 (LV5): [C60]PCB-C4 mixed layers has been evidenced. Dark and under illumination I-V characteristics of the heterostructures realized with these mixed layers sandwiched between ITO and Al electrodes have revealed a solar cell behavior for the heterostructures prepared with both LV4 and LV5 using chloroform as matrix solvent. The solar cell structure realized with oligomer LV5, glass/ITO/LV5: [C60]PCB-C4 (1:1) has shown the best parameters.

  9. Robust Formation and Maintenance of Continuous Stratified Cortical Neuroepithelium by Laminin-Containing Matrix in Mouse ES Cell Culture

    PubMed Central

    Nasu, Makoto; Takata, Nozomu; Danjo, Teruko; Sakaguchi, Hideya; Kadoshima, Taisuke; Futaki, Sugiko; Sekiguchi, Kiyotoshi; Eiraku, Mototsugu; Sasai, Yoshiki

    2012-01-01

    In the mammalian cortex, the dorsal telencephalon exhibits a characteristic stratified structure. We previously reported that three-dimensional (3D) culture of mouse ES cells (mESCs) can efficiently generate cortical neuroepithelium (NE) and layer-specific cortical neurons. However, the cortical NE generated in this mESC culture was structurally unstable and broke into small neural rosettes by culture day 7, suggesting that some factors for reinforcing the structural integrity were missing. Here we report substantial supporting effects of the extracellular matrix (ECM) protein laminin on the continuous formation of properly polarized cortical NE in floating aggregate culture of mESCs. The addition of purified laminin and entactin (a laminin-associated protein), even at low concentrations, stabilized the formation of continuous cortical NE as well as the maintenance of basement membrane and prevented rosette formation. Treatment with the neutralizing ß1-integrin antibody impaired the continuous NE formation. The stabilized cortical NE exhibited typical interkinetic nuclear migration of cortical progenitors, as seen in the embryonic cortex. The laminin-treated cortical NE maintained a continuous structure even on culture days 12 and 15, and contained ventricular, basal-progenitor, cortical-plate and Cajal-Retzius cell layers. The cortical NE in this culture was flanked by cortical hem-like tissue. Furthermore, when Shh was added, ventral telencephalic structures such as lateral ganglionic eminence–like tissue formed in the region adjacent to the cortical NE. Thus, our results indicate that laminin-entactin ECM promotes the formation of structurally stable telencephalic tissues in 3D ESC culture, and supports the morphogenetic recapitulation of cortical development. PMID:23300850

  10. The compensatory G88R change is essential in restoring the normal functions of influenza A/WSN/33 virus matrix protein 1 with a disrupted nuclear localization signal.

    PubMed

    Xie, Hang; Lin, Zhengshi; Mosier, Philip D; Desai, Umesh R; Gao, Yamei

    2013-01-01

    G88R emerged as a compensatory mutation in matrix protein 1 (M1) of influenza virus A/WSN/33 when its nuclear localization signal (NLS) was disrupted by R101S and R105S substitutions. The resultant M1 triple mutant M(NLS-88R) regained replication efficiency in vitro while remaining attenuated in vivo with the potential of being a live vaccine candidate. To understand why G88R was favored by the virus as a compensatory change for the NLS loss and resultant replication deficiency, three more M1 triple mutants with an alternative G88K, G88V, or G88E change in addition to R101S and R105S substitutions in the NLS were generated. Unlike the other M1 triple mutants, M(NLS-88R) replicated more efficiently in vitro and in vivo. The G88R compensatory mutation not only restored normal functions of M1 in the presence of a disrupted NLS but also resulted in a strong association of M1 with viral ribonucleoprotein. Under a transmission electron microscope, only the M1 layer of the M(NLS-88R) virion exhibited discontinuous fingerprint-like patterns with average thicknesses close to that of wild-type A/WSN/33. Computational modeling suggested that the compensatory G88R change could reestablish the integrity of the M1 layer through new salt bridges between adjacent M1 subunits when the original interactions were interrupted by simultaneous R101S and R105S replacements in the NLS. Our results suggested that restoring the normal functions of M1 was crucial for efficient virus replication.

  11. Osteophyte formation and matrix mineralization in a TMJ osteoarthritis mouse model are associated with ectopic hedgehog signaling

    PubMed Central

    Bechtold, Till E.; Saunders, Cheri; Decker, Rebekah S.; Um, Hyo-Bin; Cottingham, Naiga; Salhab, Imad; Kurio, Naito; Billings, Paul C.; Pacifici, Maurizio; Nah, Hyun-Duck; Koyama, Eiki

    2016-01-01

    The temporomandibular joint (TMJ) is a diarthrodial joint that relies on lubricants for frictionless movement and long-term function. It remains unclear what temporal and causal relationships may exist between compromised lubrication and onset and progression of TMJ disease. Here we report that Proteoglycan 4 (Prg4)-null TMJs exhibit irreversible osteoarthritis-like changes over time and are linked to formation of ectopic mineralized tissues and osteophytes in articular disc, mandibular condyle and glenoid fossa. In the presumptive layer of mutant glenoid fossa’s articulating surface, numerous chondrogenic cells and/or chondrocytes emerged ectopically within the type I collagen-expressing cell population, underwent endochondral bone formation accompanied by enhanced Ihh expression, became entrapped into temporal bone mineralized matrix, and thereby elicited excessive chondroid bone formation. As the osteophytes grew, the roof of the glenoid fossa/eminence became significantly thicker and flatter, resulting in loss of its characteristic concave shape for accommodation of condyle and disc. Concurrently, the condyles became flatter and larger and exhibited ectopic bone along their neck, likely supporting the enlarged condylar heads. Articular discs lost their concave configuration, and ectopic cartilage developed and articulated with osteophytes. In glenoid fossa cells in culture, hedgehog signaling stimulated chondrocyte maturation and mineralization including alkaline phosphatase, while treatment with hedgehog inhibitor HhAntag prevented such maturation process. In sum, our data indicate that Prg4 is needed for TMJ integrity and long-term postnatal function. In its absence, progenitor cells near presumptive articular layer and disc undergo ectopic chondrogenesis and generate ectopic cartilage, possibly driven by aberrant activation of Hh signaling. The data suggest also that the Prg4-null mice represent a useful model to study TMJ osteoarthritis-like degeneration and clarify its pathogenesis. PMID:26945615

  12. Diode/magnetic tunnel junction cell for fully scalable matrix-based biochip

    NASA Astrophysics Data System (ADS)

    Cardoso, F. A.; Ferreira, H. A.; Conde, J. P.; Chu, V.; Freitas, P. P.; Vidal, D.; Germano, J.; Sousa, L.; Piedade, M. S.; Costa, B. A.; Lemos, J. M.

    2006-04-01

    Magnetoresistive biochips have been recently introduced for the detection of biomolecular recognition. In this work, the detection site incorporates a thin-film diode in series with a magnetic tunnel junction (MTJ), leading to a matrix-based biochip that can be easily scaled up to screen large numbers of different target analytes. The fabricated 16×16 cell matrix integrates hydrogenated amorphous silicon (a-Si:H) diodes with aluminum oxide barrier MTJ. Each detection site also includes a U-shaped current line for magnetically assisted target concentration at probe sites. The biochip is being integrated in a portable, credit card size electronics control platform. Detection of 250 nm diameter magnetic nanoparticles by one of the matrix cells is demonstrated.

  13. Analysis of metal-matrix composite structures. I - Micromechanics constitutive theory. II - Laminate analyses

    NASA Technical Reports Server (NTRS)

    Arenburg, R. T.; Reddy, J. N.

    1991-01-01

    The micromechanical constitutive theory is used to examine the nonlinear behavior of continuous-fiber-reinforced metal-matrix composite structures. Effective lamina constitutive relations based on the Abouli micromechanics theory are presented. The inelastic matrix behavior is modeled by the unified viscoplasticity theory of Bodner and Partom. The laminate constitutive relations are incorporated into a first-order deformation plate theory. The resulting boundary value problem is solved by utilizing the finite element method. Attention is also given to computational aspects of the numerical solution, including the temporal integration of the inelastic strains and the spatial integration of bending moments. Numerical results the nonlinear response of metal matrix composites subjected to extensional and bending loads are presented.

  14. Scalar one-point functions and matrix product states of AdS/dCFT

    NASA Astrophysics Data System (ADS)

    de Leeuw, Marius; Kristjansen, Charlotte; Linardopoulos, Georgios

    2018-06-01

    We determine in a closed form all scalar one-point functions of the defect CFT dual to the D3-D5 probe brane system with k units of flux which amounts to calculating the overlap between a Bethe eigenstate of the integrable SO(6) spin chain and a certain matrix product state of bond dimension k. In particular, we show that the matrix product state is annihilated by all the parity odd charges of the spin chain which has recently been suggested as the criterion for such a state to correspond to an integrable initial state. Finally, we discuss the properties of the analogous matrix product state for the SO(5) symmetric D3-D7 probe brane set-up.

  15. An improved semi-implicit method for structural dynamics analysis

    NASA Technical Reports Server (NTRS)

    Park, K. C.

    1982-01-01

    A semi-implicit algorithm is presented for direct time integration of the structural dynamics equations. The algorithm avoids the factoring of the implicit difference solution matrix and mitigates the unacceptable accuracy losses which plagued previous semi-implicit algorithms. This substantial accuracy improvement is achieved by augmenting the solution matrix with two simple diagonal matrices of the order of the integration truncation error.

  16. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors

    PubMed Central

    Marrs, Michael A.; Raupp, Gregory B.

    2016-01-01

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm2 and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate. PMID:27472329

  17. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors.

    PubMed

    Marrs, Michael A; Raupp, Gregory B

    2016-07-26

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm² and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate.

  18. Off surface matrix based on-chip electrochemical biosensor platform for protein biomarker detection in undiluted serum.

    PubMed

    Arya, Sunil K; Kongsuphol, Patthara; Park, Mi Kyoung

    2017-06-15

    The manuscript describes a concept of using off surface matrix modified with capturing biomolecule for on-chip electrochemical biosensing. 3D matrix made by laser engraving of polymethyl methacrylate (PMMA) sheet as off surface matrix was integrated in very close vicinity of the electrode surface. Laser engraving and holes in PMMA along with spacing from surface provide fluidic channel and incubation chamber. Covalent binding of capturing biomolecule (anti-TNF-α antibody) on off-surface matrix was achieved via azide group activity of 4-fluoro-3-nitro-azidobenzene (FNAB), which act as cross-linker and further covalently binds to anti-TNF-α antibody via thermal reaction. Anti-TNF-α/FNAB/PMMA matrix was then integrated over comb structured gold electrode array based sensor chip. Separate surface modification followed by integration of sensor helped to prevent the sensor chip surface from fouling during functionalization. Nonspecific binding was prevented using starting block T20 (PBS). Results for estimating protein biomarker (TNF-α) in undiluted serum using Anti-TNF-α/FNAB/PMMA/Au reveal that system can detect TNF-α in 100pg/ml to 100ng/ml range with high sensitivity of 119nA/(ng/ml), with negligible interference from serum proteins and other cytokines. Thus, use of off surface matrix may provide the opportunity to electrochemically sense biomarkers sensitively to ng/ml range with negligible nonspecific binding and false signal in undiluted serum. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Detection of Frictional Heating on Faults Using Raman Spectra of Carbonaceous Material

    NASA Astrophysics Data System (ADS)

    Ito, K.; Ujiie, K.; Kagi, H.

    2017-12-01

    Raman spectra of carbonaceous material (RSCM) have been used as geothermometer in sedimentary and metamorphic rocks. However, it remains poorly understood whether RSCM are useful for detecting past frictional heating on faults. To detect increased heating during seismic slip, we examine the thrust fault in the Jurassic accretionary complex, central Japan. The thrust fault zone includes 10 cm-thick cataclasite and a few mm-thick dark layer. The cataclasite is characterized by fragments of black and gray chert in the black carbonaceous mudstone matrix. The dark layer is marked by intensely cracked gray chert fragments in the dark matrix of carbonaceous mudstone composition, which bounds the fractured gray chert above from the cataclasite below. The RSCM are analyzed for carbonaceous material in the cataclasite, dark layer, and host rock <10 mm from cataclasite and dark layer boundaries. The result indicates that there is no increased carbonization in the cataclasite. In contrast, the dark layer and part of host rocks <2 mm from the dark layer boundaries show prominent increase in carbonization. The absent of increased carbonization in the cataclasite could be attributed to insufficient frictional heating associated with distributed shear and/or faulting at low slip rates. The dark layer exhibits the appearance of fault and injection veins, and the dark layer boundaries are irregularly embayed or intensely cracked; these features have been characteristically observed in pseudotachylytes. Therefore, the increased carbonization in the dark layer is likely resulted from increased heating during earthquake faulting. The intensely cracked fragments in the dark layer and cracked wall rocks may reflect thermal fracturing in chert, which is caused by heat conduction from the molten zone. We suggest that RSCM are useful for the detection of increased heating on faults, particularly when the temperature is high enough for frictional melting and thermal fracturing.

  20. Direct Solve of Electrically Large Integral Equations for Problem Sizes to 1M Unknowns

    NASA Technical Reports Server (NTRS)

    Shaeffer, John

    2008-01-01

    Matrix methods for solving integral equations via direct solve LU factorization are presently limited to weeks to months of very expensive supercomputer time for problems sizes of several hundred thousand unknowns. This report presents matrix LU factor solutions for electromagnetic scattering problems for problem sizes to one million unknowns with thousands of right hand sides that run in mere days on PC level hardware. This EM solution is accomplished by utilizing the numerical low rank nature of spatially blocked unknowns using the Adaptive Cross Approximation for compressing the rank deficient blocks of the system Z matrix, the L and U factors, the right hand side forcing function and the final current solution. This compressed matrix solution is applied to a frequency domain EM solution of Maxwell's equations using standard Method of Moments approach. Compressed matrix storage and operations count leads to orders of magnitude reduction in memory and run time.

Top