Feasibility study of a layer-oriented wavefront sensor for solar telescopes: comment.
Kellerer, Aglaé
2014-11-10
The future generation of telescopes will be equipped with multi-conjugate adaptive-optics (MCAO) systems in order to obtain high angular resolution over large fields of view. MCAO comes in two flavors: star- and layer-oriented. Existing solar MCAO systems rely exclusively on the star-oriented approach. Earlier we suggested a method to implement the layer-oriented approach, and in view of recent concerns by Marino and Wöger [Appl. Opt.53, 685 (2014)10.1364/AO.53.000685APOPAI1559-128X], we now explain the proposed scheme in further detail. We note that in any layer-oriented system one sensor is conjugated to the pupil and the others are conjugated to higher altitudes. For the latter, not all the sensing surface is illuminated by the entire field of view. The successful implementation of nighttime layer-oriented systems shows that the field reduction is no crucial limitation. In the solar approach the field reduction is directly noticeable because it causes vignetting of the Shack-Hartmann subaperture images. It can be accounted for by a suitable adjustment of the algorithms to calculate the local wavefront slopes. We discuss a further concern related to the optical layout of a layer-oriented solar system.
Comparison of different 3D wavefront sensing and reconstruction techniques for MCAO
NASA Astrophysics Data System (ADS)
Bello, Dolores; Vérinaud, Christophe; Conan, Jean-Marc; Fusco, Thierry; Carbillet, Marcel; Esposito, Simone
2003-02-01
The vertical distribution of the turbulence limits the field of view of classical adaptive optics due to the anisoplanatism. Multiconjugate adaptive optics (MCAO) uses several deformable mirrors conjugated to different layers in the atmosphere to overcome this effect. In the last few years, many studies and developments have been done regarding the analysis of the turbulence volume, and the choice of the wavefront reconstruction techniques.An extensive study of MCAO modelisation and performance estimation has been done at OAA and ONERA. The developed Monte Carlo codes allow to simulate and investigate many aspects: comparison of turbulence analysis strategies (tomography or layer oriented) and comparison of different reconstruction approaches. For instance in the layer oriented approach, the control for a given deformable mirror can be either deduced from the whole set of wavefront sensor measurements or only using the associated wavefront sensor. Numerical simulations are presented showing the advantages and disadvantages of these different options for several cases depending on the number, geometry and magnitude of the guide stars.
First laboratory results with the LINC-NIRVANA high layer wavefront sensor.
Zhang, Xianyu; Gaessler, Wolfgang; Conrad, Albert R; Bertram, Thomas; Arcidiacono, Carmelo; Herbst, Thomas M; Kuerster, Martin; Bizenberger, Peter; Meschke, Daniel; Rix, Hans-Walter; Rao, Changhui; Mohr, Lars; Briegel, Florian; Kittmann, Frank; Berwein, Juergen; Trowitzsch, Jan; Schreiber, Laura; Ragazzoni, Roberto; Diolaiti, Emiliano
2011-08-15
In the field of adaptive optics, multi-conjugate adaptive optics (MCAO) can greatly increase the size of the corrected field of view (FoV) and also extend sky coverage. By applying layer oriented MCAO (LO-MCAO) [4], together with multiple guide stars (up to 20) and pyramid wavefront sensors [7], LINC-NIRVANA (L-N for short) [1] will provide two AO-corrected beams to a Fizeau interferometer to achieve 10 milliarcsecond angular resolution on the Large Binocular Telescope. This paper presents first laboratory results of the AO performance achieved with the high layer wavefront sensor (HWS). This sensor, together with its associated deformable mirror (a Xinetics-349), is being operated in one of the L-N laboratories. AO reference stars, spread across a 2 arc-minute FoV and with aberrations resulting from turbulence introduced at specific layers in the atmosphere, are simulated in this lab environment. This is achieved with the Multi-Atmosphere Phase screen and Stars (MAPS) [2] unit. From the wavefront data, the approximate residual wavefront error after correction has been calculated for different turbulent layer altitudes and wind speeds. Using a somewhat undersampled CCD, the FWHM of stars in the nearly 2 arc-minute FoV has also been measured. These test results demonstrate that the high layer wavefront sensor of LINC-NIRVANA will be able to achieve uniform AO correction across a large FoV. © 2011 Optical Society of America
Multiple FoV MCAO on its way to the sky
NASA Astrophysics Data System (ADS)
Bergomi, Maria; Viotto, Valentina; Farinato, Jacopo; Marafatto, Luca; Radakrishnan, Kalyan; Ragazzoni, Roberto; Dima, Marco; Magrin, Demetrio; Arcidiacono, Carmelo; Diolaiti, Emiliano; Foppiani, Italo; Lombini, Matteo; Schreiber, Laura; Bertram, Thomas; Bizenberger, Peter; Conrad, Al; Herbst, Tom; Kittmann, Frank; Kopon, Derek; Meschke, Daniel; Zhang, Xianyu
2013-12-01
LINC-NIRVANA, an infrared camera working in a Fizeau interferometric layout, takes advantage of the Layer Oriented MCAO MFoV technique to correct a 2 arcmin FoV using only Natural Guide Stars (NGSs), exploiting the central 10 arcsec with a resolving power of a 23 meter telescope. For each arm of the LBT telescope 2 WaveFront Sensors (WFSs) optically conjugated, respectively at ground and high (7 km) layers, are used to search for NGSs. To avoid unnecessary waste of photons the two sensors look at different FoVs. The ground-layer one, essentially limited by practical conditions, searches for up to 12 NGSs in an annular 2-6 arcmin FoV, while the high-layer one, limited by the pupils superposition, looks for up to 8 NGSs in the central 2 arcmin FoV. The concept has left paper's realm to become glass and metal a few years ago. With the completion of the 2 high-layer WFSs by INAF-Bologna and, recently with the successful tests performed on the first ground-layer WFSs by INAF-Padova, further followed by the GWS Pathfinder experiment to test the ground layer correction at LBT, in collaboration with MPIA-Heidelberg, the concept is finally getting closer to its on-sky commissioning, foreseen in the next very few years. In this paper the basic concepts of MFoV MCAO will be revised, the current status of the system described and the near future toward final completion of the instrument depicted. Moreover a possible path for this concept toward an ELT will be traced.
Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics
NASA Astrophysics Data System (ADS)
Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.
2003-09-01
Multiconjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wave-front control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10-2 Hz, i.e., 4-5 orders of magnitude lower than the typical 103 Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.
Layer-oriented multigrid wavefront reconstruction algorithms for multi-conjugate adaptive optics
NASA Astrophysics Data System (ADS)
Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.
2003-02-01
Multi-conjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of AO degrees of freedom. In this paper, we develop an iterative sparse matrix implementation of minimum variance wavefront reconstruction for telescope diameters up to 32m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method, using a multigrid preconditioner incorporating a layer-oriented (block) symmetric Gauss-Seidel iterative smoothing operator. We present open-loop numerical simulation results to illustrate algorithm convergence.
Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics.
Gilles, Luc; Ellerbroek, Brent L; Vogel, Curtis R
2003-09-10
Multiconjugate adaptive optics (MCAO) systems with 10(4)-10(5) degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 10(4) actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10(-2) Hz, i.e., 4-5 orders of magnitude lower than the typical 10(3) Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.
Laboratory MCAO Test-Bed for Developing Wavefront Sensing Concepts.
Goncharov, A V; Dainty, J C; Esposito, S; Puglisi, A
2005-07-11
An experimental optical bench test-bed for developing new wavefront sensing concepts for Multi-Conjugate Adaptive Optics (MCAO) systems is described. The main objective is to resolve imaging problems associated with wavefront sensing of the atmospheric turbulence for future MCAO systems on Extremely Large Telescopes (ELTs). The test-bed incorporates five reference sources, two deformable mirrors (DMs) and atmospheric phase screens to simulate a scaled version of a 10-m adaptive telescope operating at the K band. A recently proposed compact tomographic wavefront sensor is employed for star-oriented DMs control in the MCAO system. The MCAO test-bed is used to verify the feasibility of the wavefront sensing concept utilizing a field lenslet array for multi-pupil imaging on a single detector. First experimental results of MCAO correction with the proposed tomographic wavefront sensor are presented and compared to the theoretical prediction based on the characteristics of the phase screens, actuator density of the DMs and the guide star configuration.
Zhang, Lanqiang; Guo, Youming; Rao, Changhui
2017-02-20
Multi-conjugate adaptive optics (MCAO) is the most promising technique currently developed to enlarge the corrected field of view of adaptive optics for astronomy. In this paper, we propose a new configuration of solar MCAO based on high order ground layer adaptive optics and low order high altitude correction, which result in a homogeneous correction effect in the whole field of view. An individual high order multiple direction Shack-Hartmann wavefront sensor is employed in the configuration to detect the ground layer turbulence for low altitude correction. Furthermore, the other low order multiple direction Shack-Hartmann wavefront sensor supplies the wavefront information caused by high layers' turbulence through atmospheric tomography for high altitude correction. Simulation results based on the system design at the 1-meter New Vacuum Solar Telescope show that the correction uniform of the new scheme is obviously improved compared to conventional solar MCAO configuration.
Preliminary result of the solar multi-conjugate adaptive optics for 1m new vacuum solar telescope
NASA Astrophysics Data System (ADS)
Zhang, Lanqiang; Kong, Lin; Bao, Hua; Zhu, Lei; Rao, Xuejun; Rao, Changhui
2016-07-01
Solar observation with high resolution in large field of view (FoV) is required for some solar active regions with the typical sizes of 1' to 3'. Conventional adaptive optics (AO) could not satisfy this demand because of the atmospheric anisoplanatism. Through compensating the turbulence in different heights, multi-conjugate adaptive optics (MCAO) has been proved to obtain a larger corrected FoV. A MCAO experimental system including a conventional 151-element AO system and a 37-element MCAO part is being developed. The MCAO part contains a 37-element deformable mirror conjugated into the 2km to 5km height and a multi-direction Shack-Hartmann wavefront sensor (MD-SHWFS) with 7×7 subaperture array and 60 arcsec FoV, the frame rate of the MD-SHWFS is up to 840Hz. Three-dimensional (3-D) wavefront sensing utilizing atmospheric tomography had been validated by solar observation. Based on these results, a ground layer adaptive optics (GLAO) experimental system including a 151-element deformable mirror and the MD-SHWFS has been built at the 1m New Vacuum Solar Telescope (NVST). In this paper, the MCAO experimental system will be introduced. The preliminary experimental results of three-dimensional wavefront sensing and GLAO on the NVST of Full-shine Lake Solar Observatory are presented.
Leithner, Christoph; Füchtemeier, Martina; Jorks, Devi; Mueller, Susanne; Dirnagl, Ulrich; Royl, Georg
2015-11-01
Despite standardization of experimental stroke models, final infarct sizes after middle cerebral artery occlusion (MCAO) vary considerably. This introduces uncertainties in the evaluation of drug effects on stroke. Magnetic resonance imaging may detect variability of surgically induced ischemia before treatment and thus improve treatment effect evaluation. MCAO of 45 and 90 minutes induced brain infarcts in 83 mice. During, and 3 and 6 hours after MCAO, we performed multiparametric magnetic resonance imaging. We evaluated time courses of cerebral blood flow, apparent diffusion coefficient (ADC), T1, T2, accuracy of infarct prediction strategies, and impact on statistical evaluation of experimental stroke studies. ADC decreased during MCAO but recovered completely on reperfusion after 45 and partially after 90-minute MCAO, followed by a secondary decline. ADC lesion volumes during MCAO or at 6 hours after MCAO largely determined final infarct volumes for 90 but not for 45 minutes MCAO. The majority of chance findings of final infarct volume differences in random group allocations of animals were associated with significant differences in early ADC lesion volumes for 90, but not for 45-minute MCAO. The prediction accuracy of early magnetic resonance imaging for infarct volumes depends on timing of magnetic resonance imaging and MCAO duration. Variability of the posterior communicating artery in C57Bl6 mice contributes to differences in prediction accuracy between short and long MCAO. Early ADC imaging may be used to reduce errors in the interpretation of post MCAO treatment effects on stroke volumes. © 2015 American Heart Association, Inc.
Wang, Jie; Wen, Chun-Yan; Cui, Cui-Cui; Xing, Ying
2015-01-01
We investigated the role of acid-sensing ion channel Ia (ASIC1a) expression and changes in intracellular Ca(2+) concentration ([Ca(2+)]) in focal cerebral ischemia after middle cerebral artery occlusion (MCAO) in a rat model of diabetes mellitus (DM). Male Wistar rats (n = 108) were divided into three groups: the MCAO, DM + MCAO, and DM + MCAO + fasudil groups (n = 36 each). Samples were obtained 1, 3, 6, and 24 h after ischemia induction (n = 9). Rats in the DM + MCAO + fasudil group were treated with 1 mg/kg fasudil, a Rho-kinase inhibitor, by caudal vein injection 30 min after MCAO was performed. ASIC1a expression gradually increased with time in the MCAO and DM + MCAO groups (0.71 ± 0.10 nM, 0.80 ± 0.11 nM, 0.86 ± 0.08 nM, 0.93 ± 0.09 nM; 0.86 ± 0.11 nM, 1.05 ± 0.51 nM, 2.42 ± 0.08 nM, 2.78 ± 0.04 nM; pairwise comparisons at each time point, P < 0.05), and was higher in the DM + MCAO than the MCAO group (P < 0.05). [Ca(2+)] gradually increased in the DM + MCAO group (106.32 ± 18.6 nM, 137.84 ± 14.32 nM, 151.94 ± 18.38 nM, 183.61 ± 7.96 nM, P < 0.05). ASIC1a expression and calcium currents were reduced in the DM + MCAO + fasudil group. The overload of intracellular [Ca(2+)] caused by ASIC1a activation could be one mechanism for the aggravation of focal cerebral ischemia in diabetes.
Wang, Jie; Wen, Chun-Yan; Cui, Cui-Cui; Xing, Ying
2015-01-01
We investigated the role of acid-sensing ion channel Ia (ASIC1a) expression and changes in intracellular Ca2+ concentration ([Ca2+]) in focal cerebral ischemia after middle cerebral artery occlusion (MCAO) in a rat model of diabetes mellitus (DM). Male Wistar rats (n = 108) were divided into three groups: the MCAO, DM + MCAO, and DM + MCAO + fasudil groups (n = 36 each). Samples were obtained 1, 3, 6, and 24 h after ischemia induction (n = 9). Rats in the DM + MCAO + fasudil group were treated with 1 mg/kg fasudil, a Rho-kinase inhibitor, by caudal vein injection 30 min after MCAO was performed. ASIC1a expression gradually increased with time in the MCAO and DM + MCAO groups (0.71 ± 0.10 nM, 0.80 ± 0.11 nM, 0.86 ± 0.08 nM, 0.93 ± 0.09 nM; 0.86 ± 0.11 nM, 1.05 ± 0.51 nM, 2.42 ± 0.08 nM, 2.78 ± 0.04 nM; pairwise comparisons at each time point, P < 0.05), and was higher in the DM + MCAO than the MCAO group (P < 0.05). [Ca2+] gradually increased in the DM + MCAO group (106.32 ± 18.6 nM, 137.84 ± 14.32 nM, 151.94 ± 18.38 nM, 183.61 ± 7.96 nM, P < 0.05). ASIC1a expression and calcium currents were reduced in the DM + MCAO + fasudil group. The overload of intracellular [Ca2+] caused by ASIC1a activation could be one mechanism for the aggravation of focal cerebral ischemia in diabetes. PMID:26722526
McBride, Devin W; Matei, Nathanael; Câmara, Justin R; Louis, Jean-Sébastien; Oudin, Guillaume; Walker, Corentin; Adam, Loic; Liang, Xiping; Hu, Qin; Tang, Jiping; Zhang, John H
2016-01-01
Stroke disproportionally affects diabetic and hyperglycemic patients with increased incidence and is associated with higher morbidity and mortality due to brain swelling. In this study, the intraluminal suture middle cerebral artery occlusion (MCAO) model was used to examine the effects of blood glucose on brain swelling and infarct volume in acutely hyperglycemic rats and normo-glycemic controls. Fifty-four rats were distributed into normo-glycemic sham surgery, hyperglycemic sham surgery, normo-glycemic MCAO, and hyperglycemic MCAO. To induce hyperglycemia, 15 min before MCAO surgery, animals were injected with 50 % dextrose. Animals were subjected to 90 min of MCAO and sacrificed 24 h after reperfusion for hemispheric brain swelling and infarct volume calculations using standard equations. While normo-glycemic and hyperglycemic animals after MCAO presented with significantly higher brain swelling and larger infarcts than their respective controls, no statistical difference was observed for either brain swelling or infarct volume between normo-glycemic shams and hyperglycemic shams or normo-glycemic MCAO animals and hyperglycemic MCAO animals. The findings of this study suggest that blood glucose does not have any significant effect on hemispheric brain swelling or infarct volume after MCAO in rats.
Solar multi-conjugate adaptive optics performance improvement
NASA Astrophysics Data System (ADS)
Zhang, Zhicheng; Zhang, Xiaofang; Song, Jie
2015-08-01
In order to overcome the effect of the atmospheric anisoplanatism, Multi-Conjugate Adaptive Optics (MCAO), which was developed based on turbulence correction by means of several deformable mirrors (DMs) conjugated to different altitude and by which the limit of a small corrected FOV that is achievable with AO is overcome and a wider FOV is able to be corrected, has been widely used to widen the field-of-view (FOV) of a solar telescope. With the assistance of the multi-threaded Adaptive Optics Simulator (MAOS), we can make a 3D reconstruction of the distorted wavefront. The correction is applied by one or more DMs. This technique benefits from information about atmospheric turbulence at different layers, which can be used to reconstruct the wavefront extremely well. In MAOS, the sensors are either simulated as idealized wavefront gradient sensors, tip-tilt sensors based on the best Zernike fit, or a WFS using physical optics and incorporating user specified pixel characteristics and a matched filter pixel processing algorithm. Only considering the atmospheric anisoplanatism, we focus on how the performance of a solar MCAO system is related to the numbers of DMs and their conjugate heights. We theoretically quantify the performance of the tomographic solar MCAO system. The results indicate that the tomographic AO system can improve the average Strehl ratio of a solar telescope by only employing one or two DMs conjugated to the optimum altitude. And the S.R. has a significant increase when more deformable mirrors are used. Furthermore, we discuss the effects of DM conjugate altitude on the correction achievable by the MCAO system, and present the optimum DM conjugate altitudes.
Lan, Xiaofang; Zhang, Meng; Yang, Wan; Zheng, Zongju; Wu, Yuan; Zeng, Qian; Liu, Shudong; Liu, Ke; Li, Guangqin
2014-05-01
It has been well documented that exercise promotes neurological rehabilitation in patients with cerebral ischemia. However, the exact mechanisms have not been fully elucidated. This study aimed to discuss the effect of treadmill exercise on expression levels of 5-HT, 5-HT1A receptor (5-HT1AR) and brain derived neurophic factor (BDNF) in rat brains after permanent middle cerebral artery occlusion (pMCAO). A total of 55 rats were randomly divided into 3 groups: pMCAO group, pMCAO and treadmill exercise (pMCAO + Ex) group, and sham-operated group. Rats in pMCAO + Ex group underwent treadmill exercise for 16 days. Neurological function was evaluated by modified Neurological Severity Scores (mNSS). High-performance liquid chromatography-electrochemical detection system was used to determine the content of 5-HT in cortex tissues. The protein levels of 5-HT1AR, BDNF and synaptophysin were measured by Western blot. The mNSS in pMCAO + Ex group was lower than that in pMCAO group on day 19 post-MCAO (p < 0.001). The content of 5-HT dropped to 3.81 ± 1.86 ng/ml in pMCAO group (43.84 ± 2.05 ng/ml in sham-operated group), but increased in pMCAO + Ex group (10.06 ± 1.80 ng/ml). The protein expressions levels of synaptophysin, 5-HT1AR and BDNF were downregulated after cerebral ischemia (p < 0.05), and upregulated after treadmill exercise (p < 0.05). These results indicate that treadmill exercise improves neurologic function, enhances neuronal plasticity and upregulates the levels of 5-HT, 5-HT1AR and BDNF in rats with pMCAO.
Kumas, Meltem; Altintas, Ozge; Karatas, Ersin; Kocyigit, Abdurrahim
2017-01-01
Background Remote ischemic preconditioning (IPreC) could provide tissue-protective effect at a remote site by anti-inflammatory, neuronal, and humoral signaling pathways. Objectives The aim of the study was to investigate the possible protective effects of remote IPreC on myocardium after transient middle cerebral artery occlusion (MCAo) in streptozotocin- induced diabetic (STZ) and non-diabetic rats. Methods 48 male Spraque Dawley rats were divided into eight groups: Sham, STZ, IPreC, MCAo, IPreC+MCAo, STZ+IPreC, STZ+MCAo and STZ+IPreC+MCAo groups. We induced transient MCAo seven days after STZ-induced diabetes, and performed IPreC 72 hours before transient MCAo. Remote myocardial injury was investigated histopathologically. Bax, Bcl2 and caspase-3 protein levels were measured by Western blot analysis. Total antioxidant status (TAS), total oxidant status (TOS) of myocardial tissue were measured by colorimetric assay. Oxidative stress index(OSI) was calculated as TOS-to-TAS ratio. For all statistical analysis, p values < 0.05 were considered significant. Results We observed serious damage including necrosis, congestion and mononuclear cell infiltration in myocardial tissue of the diabetic and ischemic groups. In these groups TOS and OSI levels were significantly higher; TAS levels were lower than those of IPreC related groups (p < 0.05). IPreC had markedly improved histopathological alterations and increased TAS levels in IPreC+MCAo and STZ+IPreC+MCAo compared to MCAo and STZ+MCAo groups (p < 0.05). In non-diabetic rats, MCAo activated apoptotic cell death via increasing Bax/Bcl2 ratio and caspase-3 levels. IPreC reduced apoptotic cell death by suppressing pro-apoptotic proteins. Diabetes markedly increased apoptotic protein levels and the effect did not reversed by IPreC. Conclusions We could suggest that IPreC attenuates myocardial injury via ameliorating histological findings, activating antioxidant mechanisms, and inducing antiapoptotic activity in diabetic rats. PMID:29160389
Optical Design for Extremely Large Telescope Adaptive Optics Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauman, Brian J.
2003-01-01
Designing an adaptive optics (AO) system for extremely large telescopes (ELT's) will present new optical engineering challenges. Several of these challenges are addressed in this work, including first-order design of multi-conjugate adaptive optics (MCAO) systems, pyramid wavefront sensors (PWFS's), and laser guide star (LGS) spot elongation. MCAO systems need to be designed in consideration of various constraints, including deformable mirror size and correction height. The y,{bar y} method of first-order optical design is a graphical technique that uses a plot with marginal and chief ray heights as coordinates; the optical system is represented as a segmented line. This method ismore » shown to be a powerful tool in designing MCAO systems. From these analyses, important conclusions about configurations are derived. PWFS's, which offer an alternative to Shack-Hartmann (SH) wavefront sensors (WFS's), are envisioned as the workhorse of layer-oriented adaptive optics. Current approaches use a 4-faceted glass pyramid to create a WFS analogous to a quad-cell SH WFS. PWFS's and SH WFS's are compared and some newly-considered similarities and PWFS advantages are presented. Techniques to extend PWFS's are offered: First, PWFS's can be extended to more pixels in the image by tiling pyramids contiguously. Second, pyramids, which are difficult to manufacture, can be replaced by less expensive lenslet arrays. An approach is outlined to convert existing SH WFS's to PWFS's for easy evaluation of PWFS's. Also, a demonstration of PWFS's in sensing varying amounts of an aberration is presented. For ELT's, the finite altitude and finite thickness of LGS's means that the LGS will appear elongated from the viewpoint of subapertures not directly under the telescope. Two techniques for dealing with LGS spot elongation in SH WFS's are presented. One method assumes that the laser will be pulsed and uses a segmented micro-electromechanical system (MEMS) to track the LGS light subaperture by subaperture as the light is returned from the upward-propagating laser pulse. A second method can be used if the laser is not pulsed. A lenslet array is described which creates ''pixels'' which are aligned with the axes of the elongated spot of each subaperture, without requiring special charge-coupled devices (CCD's).« less
Manzanero, Silvia; Erion, Joanna R; Santro, Tomislav; Steyn, Frederik J; Chen, Chen; Arumugam, Thiruma V; Stranahan, Alexis M
2014-05-01
Intermittent fasting (IF) is neuroprotective across a range of insults, but the question of whether extending the interval between meals alters neurogenesis after ischemia remains unexplored. We therefore measured cell proliferation, cell death, and neurogenesis after transient middle cerebral artery occlusion (MCAO) or sham surgery (SHAM) in mice fed ad libitum (AL) or maintained on IF for 3 months. IF was associated with twofold reductions in circulating levels of the adipocyte cytokine leptin in intact mice, but also prevented further reductions in leptin after MCAO. IF/MCAO mice also exhibit infarct volumes that were less than half those of AL/MCAO mice. We observed a 30% increase in basal cell proliferation in the hippocampus and subventricular zone (SVZ) in IF/SHAM, relative to AL/SHAM mice. However, cell proliferation after MCAO was limited in IF mice, which showed twofold increases in cell proliferation relative to IF/SHAM, whereas AL/MCAO mice exhibit fivefold increases relative to AL/SHAM. Attenuation of stroke-induced neurogenesis was correlated with reductions in cell death, with AL/MCAO mice exhibiting twice the number of dying cells relative to IF/MCAO mice. These observations indicate that IF protects against neurological damage in ischemic stroke, with circulating leptin as one possible mediator.
Manzanero, Silvia; Erion, Joanna R; Santro, Tomislav; Steyn, Frederik J; Chen, Chen; Arumugam, Thiruma V; Stranahan, Alexis M
2014-01-01
Intermittent fasting (IF) is neuroprotective across a range of insults, but the question of whether extending the interval between meals alters neurogenesis after ischemia remains unexplored. We therefore measured cell proliferation, cell death, and neurogenesis after transient middle cerebral artery occlusion (MCAO) or sham surgery (SHAM) in mice fed ad libitum (AL) or maintained on IF for 3 months. IF was associated with twofold reductions in circulating levels of the adipocyte cytokine leptin in intact mice, but also prevented further reductions in leptin after MCAO. IF/MCAO mice also exhibit infarct volumes that were less than half those of AL/MCAO mice. We observed a 30% increase in basal cell proliferation in the hippocampus and subventricular zone (SVZ) in IF/SHAM, relative to AL/SHAM mice. However, cell proliferation after MCAO was limited in IF mice, which showed twofold increases in cell proliferation relative to IF/SHAM, whereas AL/MCAO mice exhibit fivefold increases relative to AL/SHAM. Attenuation of stroke-induced neurogenesis was correlated with reductions in cell death, with AL/MCAO mice exhibiting twice the number of dying cells relative to IF/MCAO mice. These observations indicate that IF protects against neurological damage in ischemic stroke, with circulating leptin as one possible mediator. PMID:24549184
End-To-End performance test of the LINC-NIRVANA Wavefront-Sensor system.
NASA Astrophysics Data System (ADS)
Berwein, Juergen; Bertram, Thomas; Conrad, Al; Briegel, Florian; Kittmann, Frank; Zhang, Xiangyu; Mohr, Lars
2011-09-01
LINC-NIRVANA is an imaging Fizeau interferometer, for use in near infrared wavelengths, being built for the Large Binocular Telescope. Multi-conjugate adaptive optics (MCAO) increases the sky coverage and the field of view over which diffraction limited images can be obtained. For its MCAO implementation, Linc-Nirvana utilizes four total wavefront sensors; each of the two beams is corrected by both a ground-layer wavefront sensor (GWS) and a high-layer wavefront sensor (HWS). The GWS controls the adaptive secondary deformable mirror (DM), which is based on an DSP slope computing unit. Whereas the HWS controls an internal DM via computations provided by an off-the-shelf multi-core Linux system. Using wavefront sensor data collected from a prior lab experiment, we have shown via simulation that the Linux based system is sufficient to operate at 1kHz, with jitter well below the needs of the final system. Based on that setup we tested the end-to-end performance and latency through all parts of the system which includes the camera, the wavefront controller, and the deformable mirror. We will present our loop control structure and the results of those performance tests.
Lapergue, Bertrand; Dang, Bao Quoc; Desilles, Jean-Philippe; Ortiz-Munoz, Guadalupe; Delbosc, Sandrine; Loyau, Stéphane; Louedec, Liliane; Couraud, Pierre-Olivier; Mazighi, Mikael; Michel, Jean-Baptiste; Meilhac, Olivier; Amarenco, Pierre
2013-03-01
We have previously reported that intravenous injection of high-density lipoproteins (HDLs) was neuroprotective in an embolic stroke model. We hypothesized that HDL vasculoprotective actions on the blood-brain barrier (BBB) may decrease hemorrhagic transformation-associated with tissue plasminogen activator (tPA) administration in acute stroke. We used tPA alone or in combination with HDLs in vivo in 2 models of focal middle cerebral artery occlusion (MCAO) (embolic and 4-hour monofilament MCAO) and in vitro in a model of BBB. Sprague-Dawley rats were submitted to MCAO, n=12 per group. The rats were then randomly injected with tPA (10 mg/kg) or saline with or without human plasma purified-HDL (10 mg/kg). The therapeutic effects of HDL and BBB integrity were assessed blindly 24 hours later. The integrity of the BBB was also tested using an in vitro model of human cerebral endothelial cells under oxygen-glucose deprivation. tPA-treated groups had significantly higher mortality and rate of hemorrhagic transformation at 24 hours in both MCAO models. Cotreatment with HDL significantly reduced stroke-induced mortality versus tPA alone (by 42% in filament MCAO, P=0.009; by 73% in embolic MCAO, P=0.05) and tPA-induced intracerebral parenchymal hematoma (by 92% in filament MCAO, by 100% in embolic MCAO; P<0.0001). This was consistent with an improved BBB integrity. In vitro, HDLs decreased oxygen-glucose deprivation-induced BBB permeability (P<0.05) and vascular endothelial cadherin disorganization. HDL injection decreased tPA-induced hemorrhagic transformation in rat models of MCAO. Both in vivo and in vitro results support the vasculoprotective action of HDLs on BBB under ischemic conditions.
Hyperglycemia decreases expression of 14-3-3 proteins in an animal model of stroke.
Jeon, Seong-Jun; Sung, Jin-Hee; Koh, Phil-Ok
2016-07-28
Diabetes is a severe metabolic disorder and a major risk factor for stroke. Stroke severity is worse in patients with diabetes compared to the non-diabetic population. The 14-3-3 proteins are a family of conserved acidic proteins that are ubiquitously expressed in cells and tissues. These proteins are involved in many cellular processes including metabolic pathways, signal transduction, protein trafficking, protein synthesis, and cell cycle control. This study investigated 14-3-3 proteins expression in the cerebral cortex of animals with diabetes, cerebral ischemic injury and a combination of both diabetes and cerebral ischemic injury. Diabetes was induced by intraperitoneal injection of streptozotocin (40mg/kg) in adult male rats. After 4 weeks of treatment, middle cerebral artery occlusion (MCAO) was performed for the induction of focal cerebral ischemia and cerebral cortex tissue was collected 24h after MCAO. We confirmed that diabetes increases infarct volume following MCAO compared to non-diabetic animals. In diabetic animals with MCAO injury, reduction of 14-3-3 β/α, 14-3-3 ζ/δ, 14-3-3 γ, and 14-3-3 ε isoforms was detected. The expression of these proteins was significantly decreased in diabetic animals with MCAO injury compared to diabetic-only and MCAO-only animals. Moreover, Western blot analysis ascertained the decreased expression of 14-3-3 family proteins in diabetic animals with MCAO injury, including β/α, ζ/δ, γ, ε, τ, and η isoforms. These results show the changes of 14-3-3 proteins expression in streptozotocin-induced diabetic animals with MCAO injury. Thus, these findings suggest that decreases in 14-3-3 proteins might be involved in the regulation of 14-3-3 proteins under the presence of diabetes following MCAO. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Chu, Hannah X; Kim, Hyun Ah; Lee, Seyoung; Moore, Jeffrey P; Chan, Christopher T; Vinh, Antony; Gelderblom, Mathias; Arumugam, Thiruma V; Broughton, Brad RS; Drummond, Grant R; Sobey, Christopher G
2014-01-01
We tested whether significant leukocyte infiltration occurs in a mouse model of permanent cerebral ischemia. C57BL6/J male mice underwent either permanent (3 or 24 hours) or transient (1 or 2 hours+22- to 23-hour reperfusion) middle cerebral artery occlusion (MCAO). Using flow cytometry, we observed ∼15,000 leukocytes (CD45+high cells) in the ischemic hemisphere as early as 3 hours after permanent MCAO (pMCAO), comprising ∼40% lymphoid cells and ∼60% myeloid cells. Neutrophils were the predominant cell type entering the brain, and were increased to ∼5,000 as early as 3 hours after pMCAO. Several cell types (monocytes, macrophages, B lymphocytes, CD8+ T lymphocytes, and natural killer cells) were also increased at 3 hours to levels sustained for 24 hours, whereas others (CD4+ T cells, natural killer T cells, and dendritic cells) were unchanged at 3 hours, but were increased by 24 hours after pMCAO. Immunohistochemical analysis revealed that leukocytes typically had entered and widely dispersed throughout the parenchyma of the infarct within 3 hours. Moreover, compared with pMCAO, there were ∼50% fewer infiltrating leukocytes at 24 hours after transient MCAO (tMCAO), independent of infarct size. Microglial cell numbers were bilaterally increased in both models. These findings indicate that a profound infiltration of inflammatory cells occurs in the brain early after focal ischemia, especially without reperfusion. PMID:24326388
Quercetin attenuates neuronal cells damage in a middle cerebral artery occlusion animal model.
Park, Dong-Ju; Shah, Fawad-Ali; Koh, Phil-Ok
2018-04-27
Cerebral ischemia is a neurological disorder with high mortality. Quercetin is a flavonoid compound that is abundant in vegetables and fruits. It exerts anti-inflammatory and anti-apoptotic effects. This study investigated the neuroprotective effects of quercetin in focal cerebral ischemia. Male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) to induce focal cerebral ischemia. Quercetin or vehicle was injected 30 min before the onset of ischemia. A neurological function test, brain edema measurement, and 2,3,5-triphenyltetrazolium chloride staining were performed to elucidate the neuroprotective effects of quercetin. Western blot analysis was performed to observe caspase-3 and poly ADP-ribose polymerase (PARP) protein expression. MCAO leads to severe neuronal deficits and increases brain edema and infarct volume. However, quercetin administration attenuated the MCAO-induced neuronal deficits and neuronal degeneration. We observed increases in caspase-3 and PARP protein levels in MCAO-operated animals injected with vehicle, whereas quercetin administration attenuated these increases in MCAO injury. This study reveals the neuroprotective effect of quercetin in an MCAO-induced animal model and demonstrates the regulation of caspase-3 and PARP expression by quercetin treatment. These results suggest that quercetin exerts a neuroprotective effect through preventing the MCAO-induced activation of apoptotic pathways affecting caspase-3 and PARP expression.
Sung, Jin-Hee; Gim, Sang-Ah; Koh, Phil-Ok
2014-04-30
Ferulic acid, a phenolic phytochemical compound found in various plants, has a neuroprotective effect through its anti-oxidant and anti-inflammation functions. Peroxiredoxin-2 and thioredoxin play a potent neuroprotective function against oxidative stress. We investigated whether ferulic acid regulates peroxiredoxin-2 and thioredoxin levels in cerebral ischemia. Sprague-Dawley rats (male, 210-230g) were treated with vehicle or ferulic acid (100mg/kg) after middle cerebral artery occlusion (MCAO), and cerebral cortex tissues were collected 24h after MCAO. Decreases in peroxiredoxin-2 and thioredoxin levels were elucidated in MCAO-operated animals using a proteomics approach. We found that ferulic acid treatment prevented the MCAO-induced decrease in the expression of peroxiredoxin-2 and thioredoxin. RT-PCR and Western blot analyses confirmed that ferulic acid treatment attenuated the MCAO-induced decrease in peroxiredoxin-2 and thioredoxin levels. Moreover, immunoprecipitation analysis showed that the interaction between thioredoxin and apoptosis signal-regulating kinase 1 (ASK1) decreased during MCAO, whereas ferulic acid prevented the MCAO-induced decrease in this interaction. Our findings suggest that ferulic acid plays a neuroprotective role by attenuating injury-induced decreases in peroxiredoxin-2 and thioredoxin levels in neuronal cell injury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Sarajärvi, Timo; Lipsanen, Anu; Mäkinen, Petra; Peräniemi, Sirpa; Soininen, Hilkka; Haapasalo, Annakaisa; Jolkkonen, Jukka; Hiltunen, Mikko
2012-01-01
Alzheimer's disease (AD) and cerebral ischaemia share similar features in terms of altered amyloid precursor protein (APP) processing and β-amyloid (Aβ) accumulation. We have previously shown that Aβ and calcium deposition, and β-secretase activity, are robustly increased in the ipsilateral thalamus after transient middle cerebral artery occlusion (MCAO) in rats. Here, we investigated whether the non-selective calcium channel blocker bepridil, which also inhibits β-secretase cleavage of APP, affects thalamic accumulation of Aβ and calcium and in turn influences functional recovery in rats subjected to MCAO. A 27-day bepridil treatment (50 mg/kg, p.o.) initiated 2 days after MCAO significantly decreased the levels of soluble Aβ40, Aβ42 and calcium in the ipsilateral thalamus, as compared with vehicle-treated MCAO rats. Expression of seladin-1/DHCR24 protein, which is a potential protective factor against neuronal damage, was decreased at both mRNA and protein levels in the ipsilateral thalamus of MCAO rats. Conversely, bepridil treatment restored seladin-1/DHCR24 expression in the ipsilateral thalamus. Bepridil treatment did not significantly affect heme oxygenase-1- or NAD(P)H quinone oxidoreductase-1-mediated oxidative stress or inflammatory responses in the ipsilateral thalamus of MCAO rats. Finally, bepridil treatment mitigated MCAO-induced alterations in APP processing in the ipsilateral thalamus and improved contralateral forelimb use in MCAO rats. These findings suggest that bepridil is a plausible therapeutic candidate in AD or stroke owing to its multifunctional role in key cellular events that are relevant for the pathogenesis of these diseases. PMID:22805236
Nagel, Simon; Papadakis, Michalis; Chen, Ruoli; Hoyte, Lisa C; Brooks, Keith J; Gallichan, Daniel; Sibson, Nicola R; Pugh, Chris; Buchan, Alastair M
2011-01-01
Dimethyloxalylglycine (DMOG) is an inhibitor of prolyl-4-hydroxylase domain (PHD) enzymes that regulate the stability of hypoxia-inducible factor (HIF). We investigated the effect of DMOG on the outcome after permanent and transient middle cerebral artery occlusion (p/tMCAO) in the rat. Before and after pMCAO, rats were treated with 40 mg/kg, 200 mg/kg DMOG, or vehicle, and with 40 mg/kg or vehicle after tMCAO. Serial magnetic resonance imaging (MRI) was performed to assess infarct evolution and regional cerebral blood flow (rCBF). Both doses significantly reduced infarct volumes, but only 40 mg/kg improved the behavior after 24 hours of pMCAO. Animals receiving 40 mg/kg were more likely to maintain rCBF values above 30% from the contralateral hemisphere within 24 hours of pMCAO. DMOG after tMCAO significantly reduced the infarct volumes and improved behavior at 24 hours and 8 days and also improved the rCBF after 24 hours. A consistent and significant upregulation of both mRNA and protein levels of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) was associated with the observed neuroprotection, although this was not consistently related to HIF-1α levels at 24 hours and 8 days. Thus, DMOG afforded neuroprotection both at 24 hours after pMCAO and at 24 hours and 8 days after tMCAO. This effect was associated with an increase of VEGF and eNOS and was mediated by improved rCBF after DMOG treatment. PMID:20407463
Li, Ce; Zhang, Tingting; Yu, Kewei; Xie, Hongyu; Bai, Yulong; Zhang, Li; Wu, Yi; Wang, Nianhong
2017-10-01
Acupuncture is a traditional method that has been widely used in various fields of medicine with therapeutic effect. However, evidence of effectiveness to support the application of electroacupuncture (EA) during the process of ischaemia is scarce. To investigate dynamic changes in hypoxia-inducible factor (HIF)-1α expression as well as its association with neurological status in rats subjected to acute ischaemic stroke and EA intervention. Forty adult male rats were randomly divided into three groups that received sham surgery (Control group, n=10) or underwent middle cerebral artery occlusion and EA (MCAO+EA group, n=15) or minimal acupuncture as a control treatment (MCAO+MA group, n=15). The rats in the MCAO+EA and MCAO+MA groups received EA or acupuncture without any electrical current, respectively, during 90 min of ischaemia. Rats in the Control group received the same surgical procedure but without MCAO. EA involved electrical stimulation of needles inserted into the quadriceps at 50 Hz frequency and 3 mA current intensity. Neurological status was evaluated on postoperative day 1, and cerebral infarction volume (IV) and HIF-1α expression 24 hours later. Neurological scores were improved and cerebral IV was decreased in the MCAO+EA group compared to the MCAO+MA group (both p<0.05). Moreover, HIF-1α expression was higher in the MCAO+EA group versus the MCAO+MA group (p<0.05). EA enhanced recovery of neurological function, decreased cerebral IV and increased HIF-1α expression in ischaemic rats. Further research is needed to determine whether EA is effective for stroke treatment through the stimulation of muscle contraction. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Fumarate decreases edema volume and improves functional outcome after experimental stroke.
Clausen, Bettina Hjelm; Lundberg, Louise; Yli-Karjanmaa, Minna; Martin, Nellie Anne; Svensson, Martina; Alfsen, Maria Zeiler; Flæng, Simon Bertram; Lyngsø, Kristina; Boza-Serrano, Antonio; Nielsen, Helle H; Hansen, Pernille B; Finsen, Bente; Deierborg, Tomas; Illes, Zsolt; Lambertsen, Kate Lykke
2017-09-01
Oxidative stress and inflammation exacerbate tissue damage in the brain after ischemic stroke. Dimethyl-fumarate (DMF) and its metabolite monomethyl-fumarate (MMF) are known to stimulate anti-oxidant pathways and modulate inflammatory responses. Considering these dual effects of fumarates, we examined the effect of MMF treatment after ischemic stroke in mice. Permanent middle cerebral artery occlusion (pMCAO) was performed using adult, male C57BL/6 mice. Thirty minutes after pMCAO, 20mg/kg MMF was administered intravenously. Outcomes were evaluated 6, 24 and 48h after pMCAO. First, we examined whether a bolus of MMF was capable of changing expression of kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor (Nrf)2 in the infarcted brain. Next, we studied the effect of MMF on functional recovery. To explore mechanisms potentially influencing functional changes, we examined infarct volumes, edema formation, the expression of heat shock protein (Hsp)72, hydroxycarboxylic acid receptor 2 (Hcar2), and inducible nitric oxide synthase (iNOS) in the infarcted brain using real-time PCR and Western blotting. Concentrations of a panel of pro- and anti-inflammatory cytokines (IFNγ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, TNF) were examined in both the infarcted brain tissue and plasma samples 6, 24 and 48h after pMCAO using multiplex electrochemoluminiscence analysis. Administration of MMF increased the protein level of Nrf2 6h after pMCAO, and improved functional outcome at 24 and 48h after pMCAO. MMF treatment did not influence infarct size, however reduced edema volume at both 24 and 48h after pMCAO. MMF treatment resulted in increased Hsp72 expression in the brain 6h after pMCAO. Hcar2 mRNA levels increased significantly 24h after pMCAO, but were not different between saline- and MMF-treated mice. MMF treatment also increased the level of the anti-inflammatory cytokine IL-10 in the brain and plasma 6h after pMCAO, and additionally reduced the level of the pro-inflammatory cytokine IL-12p70 in the brain at 24 and 48h after pMCAO. A single intravenous bolus of MMF improved sensory-motor function after ischemic stroke, reduced edema formation, and increased the levels of the neuroprotective protein Hsp72 in the brain. The early increase in IL-10 and reduction in IL-12p70 in the brain combined with changes in systemic cytokine levels may also contribute to the functional recovery after pMCAO. Copyright © 2017. Published by Elsevier Inc.
Effects of intravenous dimethyl sulfoxide on ischemia evolution in a rat permanent occlusion model
Bardutzky, Juergen; Meng, Xianjun; Bouley, James; Duong, Timothy Q; Ratan, Rajiv; Fisher, Marc
2010-01-01
Dimethyl sulfoxide (DMSO) has a variety of biological actions that suggest efficacy as a neuroprotectant. We (1) tested the neuroprotective potential of DMSO at different time windows on infarct size using 2,3,5-triphenyltetrazolium staining and (2) investigated the effects of DMSO on ischemia evolution using quantitative diffusion and perfusion imaging in a permanent middle cerebral artery occlusion (MCAO) model in rats. In experiment 1, DMSO treatment (1.5 g/kg intravenously over 3 h) reduced infarct volume 24 h after MCAO by 65% (P<0.00001) when initiated 20 h before MCAO, by 44% (P=0.0006) when initiated 1 h after MCAO, and by 17% (P=0.11) when started 2 h after MCAO. Significant infarct reduction was also observed after a 3-day survival in animals treated 1 h after MCAO (P=0.005). In experiment 2, treatment was initiated 1 h after MCAO and maps for cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) were acquired before treatment and then every 30 mins up to 4 h. Cerebral blood flow characteristics and CBF-derived lesion volumes did not differ between treated and untreated animals, whereas the ADC-derived lesion volume essentially stopped progressing during DMSO treatment, resulting in a persistent diffusion/perfusion mismatch. This effect was mainly observed in the cortex. Our data suggest that DMSO represents an interesting candidate for acute stroke treatment. PMID:15744247
Li, Yiliang; Zhang, Jian; Chen, Li; Xing, Shihui; Li, Jingjing; Zhang, Yusheng; Li, Chuo; Pei, Zhong; Zeng, Jinsheng
2015-07-23
Previous studies have demonstrated that both oxidative stress and autophagy play important roles in secondary neuronal degeneration in the ipsilateral thalamus after distal middle cerebral artery occlusion (MCAO). This study aimed to investigate whether oxidative stress is associated with autophagy activation within the ipsilateral thalamus after distal MCAO. Sixty stroke-prone renovascular hypertensive rats were subjected to distal MCAO or sham operation, and were killed at 14 days after MCAO. Mn-SOD, LC3-II, Beclin-1 and p62 expression were evaluated by immunostaining and immunoblotting. Secondary damage in the thalamus was assessed with Nissl staining and immunostaining. The association of oxidative stress with autophagy activation was investigated by the antioxidant, ebselen. We found that treatment with ebselen at 24h after MCAO significantly reduced the expression of Mn-SOD in the ipsilateral thalamus at 14 days following focal cerebral infarction. In parallel, it prevented the elevation of LC3-II and Beclin-1, and the reduction of p62. Furthermore, ebselen attenuated the neuronal loss and gliosis in the ipsilateral thalamus. These results suggested that ebselen reduced oxidative stress, autophagy activation and secondary damage in the ipsilateral thalamus following MCAO. There are associations between oxidative stress, autophagy activation and secondary damage in the thalamus after MCAO. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Stubbe, Tobias; Ebner, Friederike; Richter, Daniel; Randolf Engel, Odilo; Klehmet, Juliane; Royl, Georg; Meisel, Andreas; Nitsch, Robert; Meisel, Christian; Brandt, Christine
2013-01-01
Local and peripheral immune responses are activated after ischemic stroke. In our present study, we investigated the temporal distribution, location, induction, and function of regulatory T cells (Tregs) and the possible involvement of microglia, macrophages, and dendritic cells after middle cerebral artery occlusion (MCAO). C57BL/6J and Foxp3EGFP transgenic mice were subjected to 30 minutes MCAO. On days 7, 14, and 30 after MCAO, Tregs and antigen presenting cells were analyzed using fluorescence activated cell sorting multicolor staining and immunohistochemistry. A strong accumulation of Tregs was observed on days 14 and 30 in the ischemic hemisphere accompanied by the elevated presence and activation of microglia. Dendritic cells and macrophages were found on each analyzed day. About 60% of Foxp3+ Tregs in ischemic hemispheres were positive for the proliferation marker Ki-67 on days 7 and 14 after MCAO. The transfer of naive CD4+ cells depleted of Foxp3+ Tregs into RAG1−/− mice 1 day before MCAO did not lead to a de novo generation of Tregs 14 days after surgery. After depletion of CD25+ Tregs, no changes regarding neurologic outcome were detected. The sustained presence of Tregs in the brain after MCAO indicates a long-lasting immunological alteration and involvement of brain cells in immunoregulatory mechanisms. PMID:22968321
Stubbe, Tobias; Ebner, Friederike; Richter, Daniel; Engel, Odilo; Randolf Engel, Odilo; Klehmet, Juliane; Royl, Georg; Meisel, Andreas; Nitsch, Robert; Meisel, Christian; Brandt, Christine
2013-01-01
Local and peripheral immune responses are activated after ischemic stroke. In our present study, we investigated the temporal distribution, location, induction, and function of regulatory T cells (Tregs) and the possible involvement of microglia, macrophages, and dendritic cells after middle cerebral artery occlusion (MCAO). C57BL/6J and Foxp3(EGFP) transgenic mice were subjected to 30 minutes MCAO. On days 7, 14, and 30 after MCAO, Tregs and antigen presenting cells were analyzed using fluorescence activated cell sorting multicolor staining and immunohistochemistry. A strong accumulation of Tregs was observed on days 14 and 30 in the ischemic hemisphere accompanied by the elevated presence and activation of microglia. Dendritic cells and macrophages were found on each analyzed day. About 60% of Foxp3(+) Tregs in ischemic hemispheres were positive for the proliferation marker Ki-67 on days 7 and 14 after MCAO. The transfer of naive CD4(+) cells depleted of Foxp3(+) Tregs into RAG1(-/-) mice 1 day before MCAO did not lead to a de novo generation of Tregs 14 days after surgery. After depletion of CD25(+) Tregs, no changes regarding neurologic outcome were detected. The sustained presence of Tregs in the brain after MCAO indicates a long-lasting immunological alteration and involvement of brain cells in immunoregulatory mechanisms.
Proposed Multiconjugate Adaptive Optics Experiment at Lick Observatory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauman, B J; Gavel, D T; Flath, L M
2001-08-15
While the theory behind design of multiconjugate adaptive optics (MCAO) systems is growing, there is still a paucity of experience building and testing such instruments. We propose using the Lick adaptive optics (AO) system as a basis for demonstrating the feasibility/workability of MCAO systems, testing underlying assumptions, and experimenting with different approaches to solving MCAO system issues.
Zvejniece, Liga; Svalbe, Baiba; Liepinsh, Edgars; Pulks, Eduards; Dambrova, Maija
2012-07-15
Middle cerebral artery occlusion (MCAO) is the most commonly used method to study the neurological and histological outcomes and the pathological mechanisms of ischaemic stroke. The current work compares sensorimotor and cognitive deficits and the infarct volume in rats following a transient 90- or 120-min MCAO, which allows the appropriate behavioural tests to be chosen based on the goal and design of the experiment. In the beam-walking test, we found significant differences between the 90- and 120-min MCAO groups in the number of foot faults made with the impaired hindlimb on post-stroke days 3, 7 and 14. In the cylinder test, a difference between the 90- and 120-min groups was observed on post-operation day 14. The responses to tactile and proprioceptive stimulation were impaired to a similar extent after 90- and 120-min MCAO in the vibrissae-evoked forelimb-placing and limb-placing tests. Moreover, we found significant memory impairment in the 120-min MCAO group 6 days after the acquisition trial. The brain tissue damage was significantly higher after 120-min occlusion of the MCA compared with 90-min occlusion; the infarct volumes were 13% and 25% of the contralateral hemispheres, respectively. In conclusion, both the 90- and 120-min occlusion models result in a significant impairment of sensorimotor, tactile and proprioceptive function, but memory impairment is only observed in the 120-min MCAO group. The beam-walking and cylinder tests detected neurological dysfunction after the 120-min MCAO, whereas the limb-placing and vibrissae-evoked forelimb-placing tests were able to evaluate the neurological dysfunction in rats after 90- and 120-min MCAO. Copyright © 2012 Elsevier B.V. All rights reserved.
Moroni, F; Cozzi, A; Chiarugi, A; Formentini, L; Camaioni, E; Pellegrini-Giampietro, DE; Chen, Y; Liang, S; Zaleska, MM; Gonzales, C; Wood, A; Pellicciari, R
2012-01-01
BACKGROUND AND PURPOSES Thienyl-isoquinolone (TIQ-A) is a relatively potent PARP inhibitor able to reduce post-ischaemic neuronal death in vitro. Here we have studied, in different stroke models in vivo, the neuroprotective properties of DAMTIQ and HYDAMTIQ, two TIQ-A derivatives able to reach the brain and to inhibit PARP-1 and PARP-2. EXPERIMENTAL APPROACH Studies were carried out in (i) transient (2 h) middle cerebral artery occlusion (tMCAO), (ii) permanent MCAO (pMCAO) and (iii) electrocoagulation of the distal portion of MCA in conjunction with transient (90 min) bilateral carotid occlusion (focal cortical ischaemia). KEY RESULTS In male rats with tMCAO, HYDAMTIQ (0.1–10 mg·kg−1) injected i.p. three times, starting 4 h after MCAO, reduced infarct volumes by up to 70%, reduced the loss of body weight by up to 60% and attenuated the neurological impairment by up to 40%. In age-matched female rats, HYDAMTIQ also reduced brain damage. Protection, however, was less pronounced than in the male rats. In animals with pMCAO, HYDAMTIQ administered 30 min after MCAO reduced infarct volumes by approximately 40%. In animals with focal cortical ischaemia, HYDAMTIQ treatment decreased post-ischaemic accumulation of PAR (the product of PARP activity) and the presence of OX42-positive inflammatory cells in the ischaemic cortex. It also reduced sensorimotor deficits for up to 90 days after MCAO. CONCLUSION AND IMPLICATIONS Our results show that HYDAMTIQ is a potent PARP inhibitor that conferred robust neuroprotection and long-lasting improvement of post-stroke neurological deficits. PMID:21913897
Methods of multi-conjugate adaptive optics for astronomy
NASA Astrophysics Data System (ADS)
Flicker, Ralf
2003-07-01
This work analyses several aspects of multi-conjugate adaptive optics (MCAO) for astronomy. The research ranges from fundamental and technical studies for present-day MCAO projects, to feasibility studies of high-order MCAO instruments for the extremely large telescopes (ELTs) of the future. The first part is an introductory exposition on atmospheric turbulence, adaptive optics (AO) and MCAO, establishing the framework within which the research was carried out The second part (papers I VI) commences with a fundamental design parameter study of MCAO systems, based upon a first-order performance estimation Monte Carlo simulation. It is investigated how the number and geometry of deformable mirrors and reference beacons, and the choice of wavefront reconstruction algorithm, affect system performance. Multi-conjugation introduces the possibility of optically canceling scintillation in part, at the expense of additional optics, by applying the phase correction in a certain sequence. The effects of scintillation when this sequence is not observed are investigated. As a link in characterizing anisoplanatism in conventional AO systems, images made with the AO instrument Hokupa'a on the Gemini-North Telescope were analysed with respect to the anisoplanatism signal. By model-fitting of simulated data, conclusions could be drawn about the vertical distribution of turbulence above the observatory site (Mauna Kea), and the significance to future AO and MCAO instruments with conjugated deformable mirrors is addressed. The problem of tilt anisoplanatism with MCAO systems relying on artificial reference beacons—laser guide stars (LGSs)—is analysed, and analytical models for predicting the effects of tilt anisoplanatism are devised. A method is presented for real-time retrieval of the tilt anisoplanatism point spread function (PSF), using control loop data. An independent PSF estimation of high accuracy is thus obtained which enables accurate PSF photometry and deconvolution. Lastly, a first-order performance estimation method is presented by which MCAO systems for ELTs may be studied efficiently, using sparse matrix techniques for wavefront reconstruction and a hybrid numerical/analytical simulation model. MCAO simulation results are presented for a wide range of telescope diameters up to 100 meters, and the effects of LGSs and a finite turbulence outer scale are investigated.
Liu, Chung-Hsiang; Lin, Yi-Wen; Tang, Nou-Ying; Liu, Hsu-Jan; Huang, Chih-Yang; Hsieh, Ching-Liang
2012-01-01
We investigated the curative effect of Pheretima aspergillum (earthworm, PA) on rats with middle cerebral artery occlusion (MCAo). The MCAo-induced cerebral infarction was established and its underlying mechanisms by counting the infarction areas and evaluating the rats' neurological status. Immunostaining was used to test the expression of NeuN, and glial fibrillary acidic (GFAP), S100B, and brain-derived neurotrophic factor (BDNF) proteins. Our results showed that oral administration of PA for two weeks to rats with MCAo successfully reduced cerebral infarction areas in the cortex and striatum, and also reduced scores of neurological deficit. The PA-treated MCAo rats showed greatly decreased neuronal death, glial proliferation, and S100B proteins in the penumbra area of the cortex and in the ischemic core area of the cortex, but BDNF did not changed. These results demonstrated novel and detailed cellular mechanisms underlying the neuroprotective effects of PA in MCAo rats.
Jickling, Glen C; Ander, Bradley P; Hull, Heather; Zhan, Xinhua; Cox, Christopher; Shroff, Natasha; Dykstra-Aiello, Cheryl; Stamova, Boryana; Sharp, Frank R
2015-01-01
Because our recent studies have demonstrated that miR-122 decreased in whole blood of patients and in whole blood of rats following ischemic stroke, we tested whether elevating blood miR-122 would improve stroke outcomes in rats. Young adult rats were subjected to a temporary middle cerebral artery occlusion (MCAO) or sham operation. A polyethylene glycol-liposome-based transfection system was used to administer a miR-122 mimic after MCAO. Neurological deficits, brain infarction, brain vessel integrity, adhesion molecule expression and expression of miR-122 target and indirect-target genes were examined in blood at 24 h after MCAO with or without miR-122 treatment. miR-122 decreased in blood after MCAO, whereas miR-122 mimic elevated miR-122 in blood 24 h after MCAO. Intravenous but not intracerebroventricular injection of miR-122 mimic decreased neurological deficits and brain infarction, attenuated ICAM-1 expression, and maintained vessel integrity after MCAO. The miR-122 mimic also down-regulated direct target genes (e.g. Vcam1, Nos2, Pla2g2a) and indirect target genes (e.g. Alox5, Itga2b, Timp3, Il1b, Il2, Mmp8) in blood after MCAO which are predicted to affect cell adhesion, diapedesis, leukocyte extravasation, eicosanoid and atherosclerosis signaling. The data show that elevating miR-122 improves stroke outcomes and we postulate this occurs via downregulating miR-122 target genes in blood leukocytes. PMID:26661204
Interventional bronchoscopy in malignant central airway obstruction by extra-pulmonary malignancy.
Shin, Beomsu; Chang, Boksoon; Kim, Hojoong; Jeong, Byeong-Ho
2018-03-13
Interventional bronchoscopy is considered an effective treatment option for malignant central airway obstruction (MCAO). However, there are few reports of interventional bronchoscopy in patients with MCAOs due to extra-pulmonary malignancy. Therefore, the objective of this study was to investigate treatment outcomes and prognostic factors for bronchoscopic intervention in patients with MCAO due to extra-pulmonary malignancy. We retrospectively analyzed consecutive 98 patients with MCAO due to extra-pulmonary malignancy who underwent interventional bronchoscopy between 2004 and 2014 at Samsung Medical Center (Seoul, Korea). The most common primary site of malignancy was esophageal cancer (37.9%), followed by thyroid cancer (16.3%) and head & neck cancer (10.2%). Bronchoscopic interventions were usually performed using a combination of mechanical debulking (84.7%), stent insertion (70.4%), and laser cauterization (37.8%). Of 98 patients, 76 (77.6%) patients had MCAO due to progression of malignancy, and 42 (42.9%) patients had exhausted all other anti-cancer treatment at the time of bronchoscopic intervention. Technical success was achieved in 89.9% of patients, and acute complications and procedure-related deaths occurred in 20.4% and 3.1% of patients, respectively. Reduced survival was associated with MCAO due to cancer other than thyroid cancer or lymphoma, mixed lesions, and not receiving adjuvant treatment after bronchoscopic intervention. Bronchoscopic intervention could be a safe and effective procedure for MCAO due to end-stage extra-pulmonary malignancies. In addition, we identified possible prognostic factors for poor survival after intervention, which could guide clinicians select candidates that will benefit from bronchoscopic intervention.
Zhang, Xiaolin; Zhang, Xiangjian; Wang, Chaohui; Li, Yanhua; Dong, Lipeng; Cui, Lili; Wang, Lina; Liu, Zongjie; Qiao, Huimin; Zhu, Chunhua; Xing, Yinxue; Cao, Xiaoyun; Ji, Ye; Zhao, Kang
2012-06-12
Berberine (BBR) has gained attention for its vast beneficial biological effects through immunomodulation, anti-inflammatory and anti-apoptosis properties. Inflammatory and apoptosis damage play an important role in cerebral ischemic pathogenesis and may represent a target for treatment. The aim of this study was to explore BBR's effect in ischemic injury and the role of the Akt/GSK (glycogen synthase kinase) signaling cascade in mediating the anti-apoptosis and anti-inflammatory effects in the rat brain of permanent middle cerebral artery occlusion (pMCAO). Male Sprague-Dawley rats were subjected to pMCAO and randomly assigned into four groups: Sham (sham-operated) group, pMCAO (pMCAO+0.9% saline) group, BBR-L (pMCAO+BBR 10 mg/kg) and BBR-H (pMCAO+BBR 40 mg/kg) group. BBR was administered immediately after pMCAO and the neuroprotection was detected. Phospho-Akt (pAkt), phospho-glycogen synthase kinase 3-β (pGSK3β), phospho-cAMP response element binding protein (pCREB), nuclear factor-kappa B (NF-κB) and claudin-5 in ischemic cerebral cortex were detected by immunohistochemistry, reverse transcription-polymerase chain reaction and western blotting. Compared with pMCAO group, BBR dramatically lessened neurological deficits scores, brain water contents and infarct sizes, upregulated the expression of pAkt, pGSK3β, pCREB and claudin-5, and decreased the nuclear accumulation of NF-κB (P<0.05) in ischemic brain. The results showed that BBR reduced ischemic brain injury after pMACO, and this effect may be via the increasing the activation of Akt/GSK signaling and claudin-5, and decreasing NF-κB expression. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Zhen-Kui; Xue, Li; Wang, Tao; Wang, Xiu-Jie; Su, Zhi-Qiang
2016-10-28
Invariant natural killer T (iNKT) cells are a unique subset of T cells that have been implicated in inflammation, atopy, autoimmunity, infections, and cancer. Although iNKT cells have been extensively studied over the past decade, its role in the pathogenesis of ischemic brain injury is still largely unknown. In our study, we determined whether iNKT cells infiltration occur in a mouse model of permanent cerebral ischemia. C57BL6/J male mice were treated with either alpha-galactosylceramide (α-GalCer) or vehicle control before undergoing permanent middle cerebral artery occlusion (pMCAO). α-GalCer, a glycolipid antigen, specifically activates iNKT cells by a CD1d-restricted mechanism. Using flow cytometry, 10,000 leukocytes (CD45 high cells) from the ischemic hemisphere and peripheral blood respectively were analyzed to determine the number of NK1.1 + CD3 + cells at 3, 12, 24 and 48h post-pMCAO. Cerebral infarct size, brain edema and morphological characteristics were measured at the stipulated time points by 2,3,5-triphenyltetrazolium chloride (TTC) staining, weighing, and H&E staining. The levels of IFN-γ and TNF-α in brain tissue and serum were assessed by immunohistochemistry and ELISA respectively. We found that the number of iNKT cells started increasing from 12h (PB sample) and 24h (ischemic hemisphere sample) respectively in the vehicle treated group. iNKT cells infiltration occurred at an earlier time-point compared in the α-GalCer treated group (T=3H vs T=12H in PB sample; T=12H vs T=24H in ischemic hemisphere sample). Brain water content at 12h and 24h was significantly higher in pMCAO+α-GalCer mice compared to pMCAO+vehicle mice which was in turn higher than mice that underwent sham surgery. Aggravated morphological abnormalities in HE-stained neurons and significantly increased neurons with pyknotic nuclei and cavitation in the ischemic region were observed at 24h in the pMCAO+α-GalCer and pMCAO+vehicle groups. Cerebral infarct volume, neurological deficit Scores and brain edema were significantly increased at 24h in the pMCAO+α-GalCer group compared to pMCAO+vehicle group. In the pMCAO+vehicle group, the serum concentrations of TNF-α and IFN-γ were increased at 12h and 24h post-pMCAO, and remained elevated up to 48h. In mice treated with pMCAO+α-GalCer, TNF-α and IFN-γ were both increased at 12h post-pMCAO, and remained elevated up to 48h. Immunohistochemistry showed that protein expression of TNF-α and IFN-γ in brain tissues was higher in α-GalCer-treated mice. Our results demonstrate that within 48h of focal permanent cerebral ischemia, iNKT cells infiltrate into the brain and contribute to brain infarction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Multi-conjugate AO for the European Solar Telescope
NASA Astrophysics Data System (ADS)
Montilla, I.; Béchet, C.; Le Louarn, M.; Tallon, M.; Sánchez-Capuchino, J.; Collados Vera, M.
2012-07-01
The European Solar Telescope (EST) will be a 4-meter diameter world-class facility, optimized for studies of the magnetic coupling between the deep photosphere and upper chromosphere. It will specialize in high spatial resolution observations and therefore it has been designed to incorporate an innovative built-in Multi-Conjugate Adaptive Optics system (MCAO). It combines a narrow field high order sensor that will provide the information to correct the ground layer and a wide field low order sensor for the high altitude mirrors used in the MCAO mode. One of the challenging particularities of solar AO is that it has to be able to correct the turbulence for a wide range of observing elevations, from zenith to almost horizon. Also, seeing is usually worse at day-time, and most science is done at visible wavelengths. Therefore, the system has to include a large number of high altitude deformable mirrors. In the case of the EST, an arrangement of 4 high altitude DMs is used. Controlling such a number of mirrors makes it necessary to use fast reconstruction algorithms to deal with such large amount of degrees of freedom. For this reason, we have studied the performance of the Fractal Iterative Method (FriM) and the Fourier Transform Reconstructor (FTR), to the EST MCAO case. Using OCTOPUS, the end-to-end simulator of the European Southern Observatory, we have performed several simulations with both algorithms, being able to reach the science requirement of a homogeneous Strehl higher that 50% all over the 1 arcmin field of view.
Bagheri, Abolqasem; Talei, Sahand; Hassanzadeh, Negar; Mokhtari, Tahmineh; Akbari, Mohammad; Malek, Fatemeh; Jameie, Seyed Behnamedin; Sadeghi, Yousef; Hassanzadeh, Gholamreza
2017-12-01
Cerebral ischemic stroke is a common leading cause of disability. Flaxseed is a richest plant-based source of antioxidants. In this study, the effects of flaxseed oil (FSO) pretreatment on functional motor recovery and gene expression and protein content of neurotrophic factors in motor cortex area in rat model of brain ischemia/reperfusion (I/R) were assessed. Transient middle cerebral artery occlusion (tMCAo) in rats was used as model brain I/R. Rats (6 in each group) were randomly divided into four groups of Control (Co+normal saline [NS]), Sham (Sh+NS), tMCAo+NS and tMCAo+FSO. After three weeks of pretreatment with vehicle or FSO (0.2 ml~800 mg/kg body weight), the rats were operated in sham and ischemic groups. Ischemia was induced for 1 h and then reperfused. After 24 h of reperfusion, neurological examination was performed, and animals were sacrificed, and their brains were used for molecular and histopathological studies. FSO significantly improved the functional motor recovery compared with tMCAo+NS group (P<0.05). A significant reduction in brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) mRNAs and protein levels were observed in the tMCAo+NS group compared with Co+NS and Sh+NS group (P<0.05). A significant increase of BDNF and GDNF mRNAs and proteins was recorded in the tMCAo+FSO group compared with Co+NS, Sh+NS and tMCAO+NS groups (P<0.05). The results of the current study demonstrated that pretreatment with FSO had neuroprotective effects on motor cortex area following cerebral ischemic stroke by increasing the neurotrophic factors (BDNF, GDNF).
Gupta, Sangeetha; Gupta, Yogendra Kumar
2017-02-02
Traditionally, Zizyphus jujuba is used for anticonvulsant, hypnotic-sedative, anxiolytic, tranquilizer, antioxidant and anti-inflammatory properties. Likewise silymarin is popularly used for its potent antioxidant and hepatoprotective effects. Stroke being a multifactorial disease with unsatisfactory treatment outcomes, necessitates development of multimodal therapeutic interventions. Thus, we evaluated the therapeutic benefits of herbal combination of Z. jujuba and silymarin in a focal cerebral ischemia model. To evaluate the neuroprotective potential of hydroalcoholic extract of Z. jujuba (HEZJ) fruit and silymarin alone and in combination in middle cerebral artery occlusion (MCAo) model of focal cerebral ischemia in rats. Male Wistar rats were pretreated with HEZJ (100, 250 and 500mg/kg, p.o.) or silymarin (250mg/kg, p.o.) for 3 days prior to induction of MCAo. Neurological deficit score, motor impairment and cerebral infarction were assessed 24h following MCAo. HEZJ (250mg/kg) co-administered with silymarin (250mg/kg) for 3 days prior to induction of MCAo was also evaluated for above parameters and oxidative stress. Malondialdehyde (MDA), nitric oxide (NO) and superoxide dismutase (SOD) levels in the cortex, striatum and hippocampal brain regions were estimated 24h post MCAo. Pretreatment with HEZJ and silymarin reduced the neurological deficit score, motor impairment and cerebral infarction volume. HEZJ and silymarin pretreatment also ameliorated the oxidative stress in different brain regions, which was evident from increased SOD levels, decreased MDA and NO levels as compared to MCAo control rats. Interestingly neuroprotective efficacy was potentiated by pretreatment with HEZJ and silymarin combination. Pretreatment with HEZJ and silymarin combination was observed to have better neuroprotection mediated via amelioration of oxidative stress in the focal cerebral ischemia model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Zhu, Baojie; Cao, Huiting; Sun, Limin; Li, Bo; Guo, Liwei; Duan, Jinao; Zhu, Huaxu; Zhang, Qichun
2018-04-24
Huang-Lian Jie-Du decoction (HLJDD), a traditional formula of Chinese medicine constituted with Rhizoma Coptidis, RadixScutellariae, CortexPhellodendri amurensis and Fructus Gardeniae, exhibits unambiguous therapeutic effect on cerebral ischemia via multi-targets action. Further investigation, however, is still required to explore the relationship between those mechanisms and targets through system approaches. Rats of cerebral ischemia were completed by middle cerebral artery occlusion (MCAO) with reperfusion. Following evaluation of pharmacological actions of HLJDD on MCAO rats, the plasma samples from rats of control, MCAO and HLJDD-treated MCAO groups were prepared strictly and subjected to ultra-performance liquid chromatography quadrupole time of flight mass spectrometry for metabolites analysis. The raw mass data were imported to MassLynx software for peak detection and alignment, and further introduced to EZinfo 2.0 software for orthogonal projection to latent structures analysis, principal component analysis and partial least-squares-discriminant analysis. The metabolic pathways assay of those potential biomarkers were performed with MetaboAnalyst through the online database, HMDB, Metlin, KEGG and SMPD. Those intriguing metabolic pathways were further investigated via biochemical assay. HLJDD ameliorated the MCAO-induce cerebral damage and blocked the severe inflammation response. There were nineteen different biomarkers identified among control, MCAO and HLJDD-treated MCAO groups. Ten metabolic pathways were proposed from these significant metabolites. Incorporation with the biochemical assay of cerebral tissue, modulation of metabolic stress, regulation glutamate/GABA-glutamine cycle and enhancement of cholinergic neurons function were explored that involved in the actions of HLJDD on cerebral ischemia. HLJDD achieves therapeutic action on cerebral ischemia via coordinating the basic pathophysiological network of metabolic stress, glutamate metabolism, and acetylcholine levels and function. Copyright © 2018 Elsevier B.V. All rights reserved.
Tan, Chengbo; Zhao, Songji; Higashikawa, Kei; Wang, Zifeng; Kawabori, Masahito; Abumiya, Takeo; Nakayama, Naoki; Kazumata, Ken; Ukon, Naoyuki; Yasui, Hironobu; Tamaki, Nagara; Kuge, Yuji; Shichinohe, Hideo; Houkin, Kiyohiro
2018-05-02
The potential application of bone marrow stromal cell (BMSC) therapy in stroke has been anticipated due to its immunomodulatory effects. Recently, positron emission tomography (PET) with [ 18 F]DPA-714, a translocator protein (TSPO) ligand, has become available for use as a neural inflammatory indicator. We aimed to evaluate the effects of BMSC administration after transient middle cerebral artery occlusion (MCAO) using [ 18 F]DPA-714 PET. The BMSCs or vehicle were administered intravenously to rat MCAO models at 3 h after the insult. Neurological deficits, body weight, infarct volume, and histology were analyzed. [ 18 F]DPA-714 PET was performed 3 and 10 days after MCAO. Rats had severe neurological deficits and body weight loss after MCAO. Cell administration ameliorated these effects as well as the infarct volume. Although weight loss occurred in the spleen and thymus, cell administration suppressed it. In both vehicle and BMSC groups, [ 18 F]DPA-714 PET showed a high standardized uptake value (SUV) around the ischemic area 3 days after MCAO. Although SUV was increased further 10 days after MCAO in both groups, the increase was inhibited in the BMSC group, significantly. Histological analysis showed that an inflammatory reaction occurred in the lymphoid organs and brain after MCAO, which was suppressed in the BMSC group. The present results suggest that BMSC therapy could be effective in ischemic stroke due to modulation of systemic inflammatory responses. The [ 18 F]DPA-714 PET/CT system can accurately demonstrate brain inflammation and evaluate the BMSC therapeutic effect in an imaging context. It has great potential for clinical application.
Koh, Phil-Ok
2013-01-01
Background Ferulic acid provides a neuroprotective effect during cerebral ischemia through its anti-oxidant function. Protein phosphatase 2A (PP2A) is a serine and threonine phosphatase that contributes broadly to normal brain function. This study investigated whether ferulic acid regulates PP2A subunit B in a middle cerebral artery occlusion (MCAO) animal model and glutamate toxicity-induced neuronal cell death. Methodology/Principal Findings MCAO was surgically induced to yield permanent cerebral ischemic injury in rats. The rats were treated with either vehicle or ferulic acid (100 mg/kg, i.v.) immediately after MCAO, and cerebral cortex tissues were collected 24 h after MCAO. A proteomics approach, RT-PCR, and Western blot analyses performed to identification of PP2A subunit B expression levels. Ferulic acid significantly reduced the MCAO-induced infarct volume of the cerebral cortex. A proteomics approach elucidated the reduction of PP2A subunit B in MCAO-induced animals, and ferulic acid treatment prevented the injury-induced reduction in PP2A subunit B levels. RT-PCR and Western blot analyses also showed that ferulic acid treatment attenuates the injury-induced decrease in PP2A subunit B levels. Moreover, the number of PP2A subunit B-positive cells was reduced in MCAO-induced animals, and ferulic acid prevented these decreases. In cultured neuronal cells, ferulic acid treatment protected cells against glutamate toxicity and prevented the glutamate-induced decrease in PP2A subunit B. Conclusions/Significance These results suggest that the maintenance of PP2A subunit B by ferulic acid in ischemic brain injury plays an important role for the neuroprotective function of ferulic acid. PMID:23349830
Cuomo, Ornella; Rispoli, Vincenzo; Leo, Antonio; Politi, Giovanni Bosco; Vinciguerra, Antonio; di Renzo, Gianfranco; Cataldi, Mauro
2013-01-01
The antiepileptic drug Levetiracetam (Lev) has neuroprotective properties in experimental stroke, cerebral hemorrhage and neurotrauma. In these conditions, non-convulsive seizures (NCSs) propagate from the core of the focal lesion into perilesional tissue, enlarging the damaged area and promoting epileptogenesis. Here, we explore whether Lev neuroprotective effect is accompanied by changes in NCS generation or propagation. In particular, we performed continuous EEG recordings before and after the permanent occlusion of the middle cerebral artery (pMCAO) in rats that received Lev (100 mg/kg) or its vehicle immediately before surgery. Both in Lev-treated and in control rats, EEG activity was suppressed after pMCAO. In control but not in Lev-treated rats, EEG activity reappeared approximately 30-45 min after pMCAO. It initially consisted in single spikes and, then, evolved into spike-and-wave and polyspike-and-wave discharges. In Lev-treated rats, only rare spike events were observed and the EEG power was significantly smaller than in controls. Approximately 24 hours after pMCAO, EEG activity increased in Lev-treated rats because of the appearance of polyspike events whose power was, however, significantly smaller than in controls. In rats sacrificed 24 hours after pMCAO, the ischemic lesion was approximately 50% smaller in Lev-treated than in control rats. A similar neuroprotection was observed in rats sacrificed 72 hours after pMCAO. In conclusion, in rats subjected to pMCAO, a single Lev injection suppresses NCS occurrence for at least 24 hours. This electrophysiological effect could explain the long lasting reduction of ischemic brain damage caused by this drug. PMID:24236205
Bodhankar, Sheetal; Chen, Yingxin; Vandenbark, Arthur A.; Murphy, Stephanie J.; Offner, Halina
2014-01-01
Clinical stroke induces inflammatory processes leading to cerebral and splenic injury and profound peripheral immunosuppression. IL-10 expression is elevated during major CNS diseases and limits inflammation in the brain. Recent evidence demonstrated that absence of B-cells led to larger infarct volumes and CNS damage after middle cerebral artery occlusion (MCAO) that could be prevented by transfer of IL-10+ B-cells. The purpose of this study was to determine if the beneficial immunoregulatory effects on MCAO of the IL-10+ B-cell subpopulation also extends to B-cell-sufficient mice that would better represent stroke subjects. CNS inflammation and infarct volumes were evaluated in male C57BL/6J (WT) mice that received either RPMI or IL-10+ B-cells and underwent 60 min of middle cerebral artery occlusion (MCAO) followed by 96 hours of reperfusion. Transfer of IL-10+ B-cells markedly reduced infarct volume in WT recipient mice when given 24 hours prior to or 4 hours after MCAO. B-cell protected MCAO mice had increased regulatory subpopulations in the periphery, reduced numbers of activated, inflammatory T-cells, decreased infiltration of T-cells and a less inflammatory milieu in the ischemic hemispheres of the IL-10+ B-cell-treated group. Moreover, transfer of IL-10+ B-cells 24 hours before MCAO led to a significant preservation of regulatory immune subsets in the IL-10+ B-cell protected group presumably indicating their role in immunomodulatory mechanisms, post-stroke. Our studies are the first to demonstrate a major immunoregulatory role for IL-10+ regulatory B-cells in preventing and treating MCAO in WT mice and also implicating their potential role in attenuating complications due to post-stroke immunosuppression. PMID:24374817
Pengyue, Zhang; Tao, Guo; Hongyun, He; Liqiang, Yang; Yihao, Deng
2017-06-01
Breviscapine is a flavonoid derived from a traditional Chinese herb Erigerin breviscapus (Vant.) Hand-Mazz, and has been extensively used in clinical treatment for cerebral stroke in China, but the underlying pharmacological mechanisms are still unclear. In present study, we investigated whether breviscapine could confer a neuroprotection against cerebral ischemia injury by targeting autophagy mechanisms. A cerebral stroke model in Sprague-Dawley rats was prepared by middle cerebral artery occlusion (MCAO), rats were then randomly divided into 5 groups: MCAO+Bre group, rats were treated with breviscapine; MCAO+Tat-Beclin-1 group, animals were administrated with specific autophagy inducer Tat-Beclin-1; MCAO+Bre+Tat-Beclin-1 group, rats were treated with both breviscapine and Tat-Beclin-1, MCAO+saline group, rats received the same volume of physiological saline, and Sham surgery group. The autophagy levels in infarct penumbra were evaluated by western blotting, real-time PCR and immunofluorescence 7days after the insult. Meanwhile, infarct volume, brain water content and neurological deficit score were assessed. The results illustrated that the infarct volume, brain water content and neurofunctional deficiency were significantly reduced by 7days of breviscapine treatment in MCAO+Bre group, compared with those in MCAO+saline group. Meanwhile, the western blotting, quantitative PCR and immunofluorescence showed that the autophagy in both neurons and astrocytes at the penumbra were markedly attenuated by breviscapine admininstration. Moreover, these pharmacological effects of breviscapine could be counteracted by autophagy inducer Tat-Beclin-1. Our study suggests that breviscapine can provide a neuroprotection against transient focal cerebral ischemia, and this biological function is associated with attenuating autophagy in both neurons and astrocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Zhang, Liying; Hu, Xiquan; Luo, Jing; Li, Lili; Chen, Xingyong; Huang, Ruxun; Pei, Zhong
2013-04-08
Physical exercise improves functional recovery after stroke through a complex mechanism that is not fully understood. Transient focal cerebral ischemia induces autophagy, apoptosis and neurogenesis in the peri-infarct region. This study is aimed to examine the effects of physical exercise on autophagy, apoptosis and neurogenesis in the peri-infarct region in a rat model of transient middle cerebral artery occlusion (MCAO). We found that autophagosomes, as labeled by microtubule-associated protein 1A light chain 3-II (LC3-II), were evident in the peri-infarct region at 3 days after 90-minute MCAO. Moreover, 44.6% of LC3-positive cells were also stained with TUNEL. The number of LC3 positive cells was significantly lower in physical exercise group than in control group at 14 and 21 days after MCAO. Suppression of autophagosomes by physical exercise was positively associated with improvement of neurological function. In addition, physical exercise significantly decreased the number of TUNEL-positive cells and increased the numbers of Ki67-positive, a proliferative marker, and insulin-like growth factor-1 (IGF-1) positive cells at 7, 14, and 21 days after MCAO. The present results demonstrate that physical exercise enhances neurological function possibly by reduction of autophagosome accumulation, attenuation of apoptosis and enhancement of neurogenesis in the peri-infarct region after transient MCAO in rats.
Oxygen therapy reduces secondary hemorrhage after thrombolysis in thromboembolic cerebral ischemia.
Sun, Li; Zhou, Wei; Mueller, Christian; Sommer, Clemens; Heiland, Sabine; Bauer, Alexander T; Marti, Hugo H; Veltkamp, Roland
2010-09-01
Hyperbaric oxygen (HBO) and normobaric hyperoxia (NBO) protect the brain parenchyma and the cerebral microcirculation against ischemia. We studied their effect on secondary hemorrhage after thrombolysis in two thromboembolic middle cerebral artery occlusion (MCAO) (tMCAO) models. Beginning 60 minutes after tMCAO with either thrombin-induced thromboemboli (TT) or calcium-induced thromboemboli (CT), spontaneously hypertensive rats (n=96) breathed either air, 100% O(2) (NBO), or 100% O(2) at 3 bar (HBO) for 1 hour. Immediately thereafter, recombinant tissue plasminogen activator (rt-PA, 9 mg/kg) was injected. Although significant reperfusion was observed after thrombolysis in TT-tMCAO, vascular occlusion persisted in CT-tMCAO. In TT-tMCAO, NBO and HBO significantly reduced diffusion-weighted imaging-magnetic resonance imaging (MRI) lesion volume and postischemic blood-brain barrier (BBB) permeability on postcontrast T1-weighted images. NBO and, significantly more potently, HBO reduced macroscopic hemorrhage on T2* MRI and on corresponding postmortem cryosections. Oxygen therapy lowered hemoglobin content and attenuated activation of matrix metalloproteinases in the ischemic hemisphere. In contrast, NBO and HBO failed to reduce infarct size in CT but both decreased BBB damage and microscopic hemorrhagic transformation. Only HBO reduced hemoglobin extravasation in the ischemic hemisphere. In conclusion, NBO and HBO decrease infarct size after thromboembolic ischemia only if recanalization is successful. As NBO and HBO also reduce postthrombolytic intracerebral hemorrhage, combining the two with thrombolysis seems promising.
Novel pharmacokinetic studies of the Chinese formula Huang-Lian-Jie-Du-Tang in MCAO rats.
Zhu, Huaxu; Qian, Zhilei; He, Feng; Liu, Mengzhu; Pan, Linmei; Zhang, Qichun; Tang, Yuping
2013-07-15
Our previous studies showed that after oral administration of an Huang-Lian-Jie-Du-Tang (HLJDT) decoction, there is a higher concentration of the pure components, berberine, baicalin and gardenoside in the plasma of Middle cerebral artery occlusion (MCAO) rats than in sham-operated rats, The aim of the present study was to determine whether these components could be reliably measured in MCAO rat tissues. First, the plasma concentration-time profiles of berberine, palmatine, baicalin, baicalein and gardenoside were characterised in MCAO rats after oral administration of the aqueous extract of HLJDT. Subsequently, liver, lung and kidney tissues were obtained from sudden death MCAO rats in the absorption phase (0.25 h), the distribution phase (1.0 h) and the elimination phase (8.0 h) after administration of the HLJDT aqueous extract. An HPLC method was developed and validated for the determination of the distribution characteristics of berberine, palmatine, baicalin, baicalein and gardenoside simultaneously from the above-mentioned rat tissues. The results indicated that berberine, palmatine, baicalin and baicalein distributed rapidly and accumulated at high levels in the lung, while gardenoside distributed widely in the lung and the kidney. To the best of our knowledge, this is the first report to describe the distribution of the active ingredients derived from HLJDT in MCAO rat tissues. The tissue distribution results provide a biopharmaceutical basis for the design of the clinic application of HLJDT in cerebrovascular disease. Copyright © 2012 Elsevier GmbH. All rights reserved.
Huang, Jing; Wang, Tao; Yu, Daorui; Fang, Xingyue; Fan, Haofei; Liu, Qiang; Yi, Guohui; Yi, Xinan; Liu, Qibin
2018-06-08
We investigated the therapeutic effects of l-homocarnosine against inflammation in a rat model of cerebral ischemia-reperfusion injury. Rats were grouped into control, middle cerebral artery occlusion (MCAO), 0.5 mM l-homocarnosine + MCAO, and 1 mM l-homocarnosine + MCAO treatment groups. Superoxide dismutase (SOD), glutathione peroxidase (Gpx), catalase, lipid peroxidation, and reduced glutathione (GSH) levels were measured. Neurological scores were assessed, and histopathology, scanning electron microscopy (SEM), and fluorescence microscopy analyses were conducted. The mRNA expression levels of nod-like receptor protein 3 (NLRP3), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) and protein expression levels of NLRP3 were assessed. l-Homocarnosine supplementation substantially increased SOD, catalase, Gpx, and GSH levels, whereas it reduced the levels of lipid peroxidation relative to MCAO rats. l-Homocarnosine significantly reduced the infarct area and neurological deficit score, as well as histopathological alteration, apoptosis, and necrosis in brain tissue. The mRNA expression levels of NLRP3, TNF-α, and IL-6 were increased in MCAO rats, whereas l-homocarnosine supplementation reduced mRNA expression by >40%, and NLRP3 protein expression was reduced by >30% in 1 mM l-homocarnosine-treated MCAO rats. We propose that l-homocarnosine exerts a protective effect in cerebral ischemia-reperfusion injury-induced rats by downregulating NLRP3 expression. Copyright © 2017. Published by Elsevier B.V.
Koh, Phil-Ok
2013-10-25
Ferulic acid exhibits neuroprotective effects against focal cerebral ischemia. PI3/K and Akt signaling pathways play an essential role in protecting against cerebral ischemia. Mammalian target of rapamycin (mTOR), a major downstream target of Akt, regulates p70S6 kinase and S6, both of which are involved in ribosomal biogenesis and protein synthesis. I investigated whether ferulic acid regulates mTOR, p70S6 kinase, and S6 phosphorylation during brain ischemic injury. Rats were treated immediately with vehicle or ferulic acid (100mg/kg, i.v.) after middle cerebral artery occlusion (MCAO). Brains tissues were removed at 24h after the onset of MCAO and the cerebral cortex regions were collected. Ferulic acid reduced the MCAO-induced infarct volume. I showed previously that ferulic acid prevents the MCAO injury-induced decrease of Akt phosphorylation. In this study, MCAO injury induced decreases in mTOR, p70S6 kinase, and S6 phosphorylation levels, while ferulic acid attenuated the injury-induced decreases. Immunohistochemical staining demonstrated that ferulic acid prevented the MCAO-induced reduction in the number of positive cells for phosphorylated p70S6 kinase and phosphorylated S6. These findings suggest that ferulic acid has a neuroprotective function against focal cerebral ischemia by modulating p70S6 kinase expression and S6 phosphorylation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Wen, Zhuoyu; Xu, Xiaomeng; Xu, Lili; Yang, Lian; Xu, Xiaohui; Zhu, Juehua; Wu, Li; Jiang, Yongjun; Liu, Xinfeng
2017-06-15
Intraluminal middle cerebral artery occlusion (MCAO) is the most widely used model of stroke. We aimed to predict the outcome of MCAO using a combination of fine behavioural tests for the prediction of unsuccessful surgery in mice leading to no infarction, haemorrhage and unexpected death. MCAO was performed on adult mice under the guidance of laser-Doppler flowmetry (LDF) to warrant a decrease in regional cerebral blood flow (rCBF) in the MCA territory. Four outcomes of MCAO were defined according to histological analysis: infarction, no infarction, haemorrhage and unexpected death (death within 24h post-surgery). Fine behavioural tests including the rotarod, modified neurological severity score (mNSS), Clark general and Clark focal tests were performed separately at 6h, 12h and 24h post-stroke. A total of 94 mice were included in the analysis. The infarction rate associated with MCAO was 58.5% (55/94). After optimization of the timing and behavioural tests, we found that higher Clark focal (>17.5) or higher mNSS scores (>10) were markedly related to early death, whereas a lower mNSS score (<3.5) was indicative of a tendency to show no infarction at 6h post-stroke. After 24h post-stroke, there was a positive correlation between the infarct volume and Clark focal results. Behavioural tests could help to predict the outcomes in the MCAO mouse model. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Na, Ji-Young; Song, Kibbeum; Lee, Ju-Woon; Kim, Sokho; Kwon, Jungkee
2016-10-05
6-Shogaol can be extracted from ginger and has been shown to exert anti-inflammatory and antioxidant activities, which are potentially relevant to the treatment of central nervous system disorders. Oxidative stress and inflammation are closely associated with ischemic injury and can eventually result in neuronal death. The aim of this study was to evaluate if 6-shogaol exerts neuroprotective activity. To this end, we determined its effects on oxidative stress and inflammation in a mouse model of middle cerebral artery occlusion (MCAO)-induced brain damage. In this model, MCAO was induced in C57BL/6 mice (30-35g, 9 weeks) for 1h, followed by 24h reperfusion. Mice were treated orally with 6-shogaol (0.1ml, 5 or 20mg/kg) once daily for 7 consecutive days prior to MCAO. We found that 6-shogaol significantly reduced neurological deficit scores and the mean infarct area. Moreover, 6-shogaol improved the behavioral deficits in the MCAO group. In addition, 6-shogaol pretreatment dampened MCAO-mediated production of reactive oxygen species and inflammatory cytokines. Mechanistic studies revealed that 6-shogaol inhibits the cysteinyl leukotriene 1 receptor (CysLT1R) and mitogen-activated protein kinase (MAPK) signaling proteins, thus providing a potential pharmacological mechanism for our observations. These results suggest that 6-shogaol can ameliorate the outcomes of MCAO and could thus be used as a potential preventive of stroke. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Jing-Jing; Xing, Shi-Hui; Zhang, Jian; Hong, Hua; Li, Yi-Liang; Dang, Chao; Zhang, Yu-Sheng; Li, Chuo; Fan, Yu-Hua; Yu, Jian; Pei, Zhong; Zeng, Jin-Sheng
2011-11-01
1. Whether damage to the blood-brain barrier (BBB) occurs in remote areas after a focal cortical lesion remains unknown. The present study investigated tight junction-related proteins and tight junction microstructure in the ipsilateral thalamus during the acute stage after middle cerebral artery occlusion (MCAO) and cortical aspiration lesion (CAL) in rats. 2. Thirty-six hypertensive and normotensive rats were subjected to MCAO or CAL; another 18 rats in each group were submitted to sham operation. Zonula Occluden (ZO)-1, occludin and albumin were detected by western blotting 12 and 24 h after surgery. Tight junction microstructure was evaluated using electron microscopy, whereas albumin location in the ipsilateral thalamus was determined using double immunostaining for albumin and occludin or albumin and neuronal nuclei (NeuN) 24 h after surgery. 3. Twenty-four hours after MCAO or CAL, occludin expression was reduced to 78.4% and 81.3%, respectively, compared with control. A reduction in ZO-1 expression in the ipsilateral thalamus (to 79%) was seen only after CAL (P < 0.05). Membrane contact at the tight junction was discontinuous in the ipsilateral thalamus in both MCAO and CAL rats. Albumin levels were 23.2% and 82.5% higher in the ipsilateral thalamus after MCAO and CAL, respectively (P < 0.05). The percentage of the albumin-positive area that coincided with the occludin-positive area in the MCAO and CAL groups was 76.8% and 64.6%, respectively, indicating that albumin was mainly localized around the microvessels. 4. The results of the present study suggest that tight junction integrity decreases during the acute stage in the ipsilateral thalamus after MCAO and CAL in rats. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.
Lv, Mei-Rong; Li, Bin; Wang, Ming-Guang; Meng, Fan-Guo; Yu, Jian-Jun; Guo, Feng; Li, Ye
2017-09-01
The central objective was to identify the role of the PI3K-Akt activation pathway on the neuroprotection of δ-opioid receptor agonist (DADLE) against cerebral ischemia-reperfusion (I/R) injury in a rat model. Fifty-five male Sprague-Dawley (SD) rats were included to establish a middle cerebral artery occlusion (MCAO) model which were then divided into the sham, MCAO, LY294002 (MCAO+DADLE+LY294002 [inhibitor of PI3K-Akt pathway]), DADLE (MCAO+DADLE) and DMSO (MCAO+DADLE+DMSO [dimethyl sulphoxide]) groups. The cerebral infarction (CI) volume and nerve cell apoptosis was determined using TTC and TUNEL staining. Quantitative real-time polymerase chain reaction (qRT-PCR), western blotting and immunohistochemistry staining were applied for the expressions of Bad, Bax, Bcl-2 and cleaved caspase-3. The MCAO group showed higher CI volume, nerve cell apoptosis and cleaved caspase-3 expressions than the DADLE and DMSO groups, which were also higher in the LY294002 group than the DADLE group. Compared with the MCAO group, the mRNA and protein expressions of PI3K and Bcl-2, and the protein expressions of p-Akt and p-Bad were elevated, while the mRNA and protein expressions of Bax were decreased in the DADLE and DMSO groups. Decreased mRNA and protein expressions of PI3K and Bcl-2, reduced protein expressions of p-Akt and p-Bad and elevated mRNA and protein expressions of Bax exhibited in the LY294002 group than the DADLE group. These results indicate that activation of PI3K-Akt pathway promotes the neuroprotection of DADLE against cerebral I/R injury in a rat model by decreasing nerve cells apoptosis. Copyright © 2017. Published by Elsevier Masson SAS.
Allen, Rachael S.; Sayeed, Iqbal; Oumarbaeva, Yuliya; Morrison, Katherine C.; Choi, Paul H.; Pardue, Machelle T.; Stein, Donald G.
2018-01-01
Background/Objective To determine whether inflammation increases in retina as it does in brain following middle cerebral artery occlusion (MCAO), and whether the neurosteroid progesterone, shown to have protective effects in both retina and brain after MCAO, reduces inflammation in retina as well as brain. Methods MCAO rats treated systemically with progesterone or vehicle were compared with shams. Protein levels of cytosolic NF-κB, nuclear NF-κB, phosphorylated NF-κB, IL-6, TNF-α, CD11b, progesterone receptor A and B, and pregnane × receptor were assessed in retinas and brains at 24 and 48 h using western blots. Results Following MCAO, significant increases were observed in the following inflammatory markers: pNF-κB and CD11b at 24 h in both brain and retina, nuclear NF-κB at 24 h in brain and 48 h in retina, and TNF-α at 24 h in brain. Progesterone treatment in MCAO animals significantly attenuated levels of the following markers in brain: pNF-κB, nuclear NF-κB, IL-6, TNF-α, and CD11b, with significantly increased levels of cytosolic NF-κB. Retinas from progesterone-treated animals showed significantly reduced levels of nuclear NF-κB and IL-6 and increased levels of cytosolic NF-κB, with a trend for reduction in other markers. Post-MCAO, progesterone receptors A and B were upregulated in brain and downregulated in retina. Conclusion Inflammatory markers increased in both brain and retina after MCAO, with greater increases observed in brain. Progesterone treatment reduced inflammation, with more dramatic reductions observed in brain than retina. This differential effect may be due to differences in the response of progesterone receptors in brain and retina after injury. PMID:27802245
Allen, Rachael S; Sayeed, Iqbal; Oumarbaeva, Yuliya; Morrison, Katherine C; Choi, Paul H; Pardue, Machelle T; Stein, Donald G
2016-11-22
To determine whether inflammation increases in retina as it does in brain following middle cerebral artery occlusion (MCAO), and whether the neurosteroid progesterone, shown to have protective effects in both retina and brain after MCAO, reduces inflammation in retina as well as brain. MCAO rats treated systemically with progesterone or vehicle were compared with shams. Protein levels of cytosolic NF-κB, nuclear NF-κB, phosphorylated NF-κB, IL-6, TNF-α, CD11b, progesterone receptor A and B, and pregnane X receptor were assessed in retinas and brains at 24 and 48 h using western blots. Following MCAO, significant increases were observed in the following inflammatory markers: pNF-κB and CD11b at 24 h in both brain and retina, nuclear NF-κB at 24 h in brain and 48 h in retina, and TNF-α at 24 h in brain.Progesterone treatment in MCAO animals significantly attenuated levels of the following markers in brain: pNF-κB, nuclear NF-κB, IL-6, TNF-α, and CD11b, with significantly increased levels of cytosolic NF-κB. Retinas from progesterone-treated animals showed significantly reduced levels of nuclear NF-κB and IL-6 and increased levels of cytosolic NF-κB, with a trend for reduction in other markers. Post-MCAO, progesterone receptors A and B were upregulated in brain and downregulated in retina. Inflammatory markers increased in both brain and retina after MCAO, with greater increases observed in brain. Progesterone treatment reduced inflammation, with more dramatic reductions observed in brain than retina. This differential effect may be due to differences in the response of progesterone receptors in brain and retina after injury.
Chang, Chih-Zen; Kwan, Aij-Lie; Howng, Shen-Long
2010-08-01
A bursting cascade of inflammation imposes progressive neurological deterioration after experimental stroke has been demonstrated. In our study, 6-mercaptopurine (6-mp) has been successful in alleviating cerebral infarct in a rodent permanent middle cerebral artery occlusion (pMCAO) model. The present study was aimed to examine the effect of 6-mp on cytokine levels in experimental stroke. The rodent pMCAO model was employed. A dose of 2 mg/kg 6-mp or vehicle (0.1 mol/L PBS) was administered intraperitoneally 30 min after the induction of pMCAO. Neurological score, serum, and cerebrospinal fluid (CSF) cytokines such as IL-1beta, IL-6, and TNF-alpha and infarct volume were determined 48 h after pMCAO. Cerebral infarction volume was significantly decreased in animals treated with 6-mp (74.3%, p < 0.01), and the ratio of tissue edema was also decreased in 6-mp-treated groups (71%). Animals receiving 6-mp thus showed a significant decrease in IL-1 and TNF-alpha (18/43% and 48/64% in CSF/serum, respectively) when compared with the pMCAO groups (p < 0.01). This study demonstrates that 6-mp interposes the production of IL-1 and TNF-alpha in CSF and serum, attenuates ischemic brain injury, and thus alleviates neurological deficits in the pMCAO animals. These findings also offer first evidence that 6-mp may attenuate TNF-alpha-related neuron apoptosis and also support the notion that 6-mp and other anti-inflammatory agents could potentially have therapeutic uses in cases of cerebral infarct.
Mori, Takashi; Tan, Jun; Arendash, Gary W.; Koyama, Naoki; Nojima, Yoshiko; Town, Terrence
2009-01-01
Background and Purpose We have previously demonstrated that augmented and prolonged activation of astrocytes detrimentally influences both the subacute and chronic phases of cerebral ischemia. Furthermore, we have suggested that the astrocyte-derived protein S100B may be important in these pathogenic events. However, the causal relationship between S100B and exacerbation of brain damage in vivo remains to be elucidated. Methods Using transgenic mice overexpressing human S100B (Tg huS100B mice), we examined whether S100B plays a cardinal role in aggravation of brain damage after permanent middle cerebral artery occlusion (pMCAO). Results Tg huS100B mice had significantly larger infarct volumes and worse neurological deficits at any time point examined after pMCAO as compared with CD-1 background strain-matched control mice. Infarct volumes in Tg huS100B mice were significantly increased from 1 to 3 and 5 days after pMCAO (delayed infarct expansion), whereas those in control mice were not significantly altered. S100, glial fibrillary acidic protein, and Iba1 burdens in the periinfarct area were significantly increased through to 7 days after pMCAO in Tg huS100B mice, whereas those in control mice reached a plateau at 3 days after pMCAO. Conclusions These results provide genetic evidence that overexpression of human S100B acts to exacerbate brain damage and periinfarct reactive gliosis (astrocytosis and microgliosis) during the subacute phase of pMCAO. PMID:18451356
Ma, Junqiang; Ma, Yonglie; Dong, Bin; Bandet, Mischa V; Shuaib, Ashfaq; Winship, Ian R
2017-08-01
Collateral circulation is a key variable determining prognosis and response to recanalization therapy during acute ischemic stroke. Remote ischemic perconditioning (RIPerC) involves inducing peripheral ischemia (typically in the limbs) during stroke and may reduce perfusion deficits and brain damage due to cerebral ischemia. In this study, we directly investigated pial collateral flow augmentation due to RIPerC during distal middle cerebral artery occlusion (MCAo) in rats. Blood flow through pial collaterals between the anterior cerebral artery (ACA) and the MCA was assessed in male Sprague Dawley rats using in vivo laser speckle contrast imaging (LSCI) and two photon laser scanning microscopy (TPLSM) during distal MCAo. LSCI and TPLSM revealed that RIPerC augmented collateral flow into distal MCA segments. Notably, while control rats exhibited an initial dilation followed by a progressive narrowing of pial arterioles 60 to 150-min post-MCAo (constricting to 80-90% of post-MCAo peak diameter), this constriction was prevented or reversed by RIPerC (such that vessel diameters increased to 105-110% of post-MCAo, pre-RIPerC diameter). RIPerC significantly reduced early ischemic damage measured 6 h after stroke onset. Thus, prevention of collateral collapse via RIPerC is neuroprotective and may facilitate other protective or recanalization therapies by improving blood flow in penumbral tissue.
Koh, Phil-Ok
2015-02-19
Ferulic acid provides neuroprotective effects against a middle cerebral artery occlusion (MCAO)-induced cerebral ischemia. Mitogen-activated protein kinases can regulate extensive intracellular processes including cell differentiation, growth, and death. This study further investigated whether ferulic acid modulates a protective mechanism through the activation of Raf-MEK-ERK and its downstream targets, including 90 ribosomal S6 kinase (p90RSK) and Bad during cerebral ischemic injury. Male Sprague-Dawley rats were treated with ferulic acid (100mg/kg) or vehicle after the onset of MCAO and brain tissues were collected 24h after MCAO. These results indicated that ferulic acid decreases the volume of the infarct area and the number of cells positive in terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Although MCAO injury induces a decrease in the phosphorylation of Raf-1, MEK1/2, and ERK1/2, ferulic acid treatment prevents the injury-induced decrease in these phosphorylation levels. Ferulic acid also attenuates the injury-induced decrease in p90RSK and Bad phosphorylation levels. These findings suggest that ferulic acid prevents MCAO-induced neuronal cell death and that the MEK-ERK-p90RSK-Bad signaling pathway is involved in these neuroprotective effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Wang, Fang; Liang, Zhijian; Hou, Qinghua; Xing, Shihui; Ling, Li; He, Meixia; Pei, Zhong; Zeng, Jinsheng
2007-05-07
We investigate whether Nogo-A is involved in the secondary axonal degeneration in the thalamus after distal middle cerebral artery occlusion (MCAO) in stroke-prone renovascular hypertensive rats (RHRSP). The expression of Nogo-A in ipsilateral ventroposterior nucleus (VPN) of the thalamus in RHRSP was observed at 1, 2 and 4 weeks after distal MCAO. In addition, intracerebroventricular infusion of NEP1-40, a Nogo-66 receptor (NgR) antagonist peptide, was administered starting 24 h after MCAO and continued for 1, 2 and 4 weeks, respectively. Axonal damage and regeneration were evaluated by analysis of the immunoreactivity (IR) of amyloid betaA4 precursor protein (APP), growth associated protein 43 (GAP-43) and microtubule associated protein 2 (MAP-2) in ipsilateral VPN of the thalamus at 1, 2 and 4 weeks after distal MCAO. Following ischemia, the expression of Nogo-A in oligodendrocytes increased persistently and its localization became redistributed around damaged axons and dendrites. Administration of NEP1-40 downregulated the expression of Nogo-A, reduced axonal injury and enhanced axonal regeneration. Our data suggest that Nogo-A is involved in secondary axonal degeneration and that inhibition of Nogo-A can reduce neuronal damage in the thalamus after distal MCAO.
Korean red ginseng protects against neuronal damage induced by transient focal ischemia in rats
BAN, JU YEON; KANG, SUNG WOOK; LEE, JONG SEOK; CHUNG, JOO-HO; KO, YOUNG GWAN; CHOI, HAN SUNG
2012-01-01
In the present study, we investigated the neuroprotective effect of Korean red ginseng (KRG) following focal brain ischemia/reperfusion injury, in relation to its antioxidant activities. The middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats was employed. The KRG extract (100 mg/kg, perorally) was administered once daily for 7 days following MCAO/R. The elevated levels of lipid peroxidation in the MCAO/R group were attenuated significantly in the KRG-administered group. The significantly depleted activity of the antioxidant enzymes glutathione peroxidase, superoxide dismutase and catalase was prevented in the KRG-administered group. In the neurobehavioral evaluation expressed as the modified neurological severity score and corner-turn test, the daily intake of KRG showed consistent and significant improvement in the neurological deficits for 7 days following MCAO/R injury. These results indicate that KRG has a neuroprotective effect against ischemia/reperfusion brain injury by reducing the level of lipid peroxidation and increasing the endogenous antioxidant enzymatic activity. PMID:22969953
Xu, Zhen-Feng; Wu, Gen-Cheng; Cao, Xiao-Ding
2002-01-01
It has been reported that interleukin-1beta (IL-1beta ) play a key role in the pathogenesis of cerebral ischemia. Acupuncture is an effective traditional medical therapy in China. The aim of present study was to evaluate the effect of electroacupuncture (EA) on IL-1beta mRNA expression after middle cerebral artery occlusion (MCAO) in rats. Using in situ hybridization technique, it was found that in the MCAO group the expression of IL-1beta mRNA was significantly increased at 2h, 6h, 12h after reperfusion in cerebral ischemic cortex compared with normal group. In EA+ MCAO group the expression of IL-1beta mRNA was significantly decreased at 2h, 6h and 12h in ischemic cortex compared with MCAO group. The results indicated that EA might decrease the IL-1beta protein expression by reducing the IL-beta mRNA expression in ischemic cortex.
Simulation of DKIST solar adaptive optics system
NASA Astrophysics Data System (ADS)
Marino, Jose; Carlisle, Elizabeth; Schmidt, Dirk
2016-07-01
Solar adaptive optics (AO) simulations are a valuable tool to guide the design and optimization process of current and future solar AO and multi-conjugate AO (MCAO) systems. Solar AO and MCAO systems rely on extended object cross-correlating Shack-Hartmann wavefront sensors to measure the wavefront. Accurate solar AO simulations require computationally intensive operations, which have until recently presented a prohibitive computational cost. We present an update on the status of a solar AO and MCAO simulation tool being developed at the National Solar Observatory. The simulation tool is a multi-threaded application written in the C++ language that takes advantage of current large multi-core CPU computer systems and fast ethernet connections to provide accurate full simulation of solar AO and MCAO systems. It interfaces with KAOS, a state of the art solar AO control software developed by the Kiepenheuer-Institut fuer Sonnenphysik, that provides reliable AO control. We report on the latest results produced by the solar AO simulation tool.
Chang, Chih-Zen; Wu, Shu-Chuan
2016-05-01
A bursting inflammation has been observed that compromises neurologic function in patients who experience stroke. We sought to examine the neuroprotective efficacy of 4'-O-β-D-glucosyl-5-O-methylvisamminol (OGOMV), a novel histone H3 phosphorylation epigenetic suppressor) in a transient middle cerebral artery occlusion (tMCAO). A rodent tMCAO model was used. Administration with 400 μg/kg/day OGOMV was initiated 12 hours before (prevention) and 1 hour after animals were subjected to tMCAO (reversal). The cerebral cortex was harvested to examine protein kinase B (PI3D/Akt), 5-bromo-2'-deoxyuridine (Western blot), and caspases (reverse-transcription polymerase chain reaction). In addition, cerebrospinal fluid samples were collected to examine interleukin 1-β, interleukin-6, monocyte chemoattractant protein-1, and tumor necrosis factor-α (reverse-transcription polymerase chain reaction). Cortical 5-bromo-2'-deoxyuridine and phospho-PI3D/Akt were reduced in tMCAO animals, compared with the healthy controls but increased in the OGOMV treatment and prevention groups. Activated cortical caspase-3,-6, and -9a as well as increased IL-1β and TNF-α levels were observed in the tMCAO animals (P < 0.05). Both prevention and treatment with OGOMV significantly reduced cleaved caspase-3 and -9a groups, but no significant change in caspase-6 was noted. Perifosine, an Akt inhibitor, was added to reduce the bioexpression of phospho-P13D/Akt, and Bcl-2 level and increased cleaved caspase-9a level in both OGOMV prevention and treatment tMCAO groups (P > 0.05). Our study suggests that OGOMV could exert a neuroprotective effect by inhibiting the P13D/Akt protein, attenuating inflammation, and cleaved caspase-3- and -9a-related apoptosis. This study also lends credence to support the notion that the prevention of OGOMV could attenuate proinflammatory cytokine mRNA and late-onset caspases in tMCAO and merits further study. Copyright © 2016 Elsevier Inc. All rights reserved.
Neuroprotective effects of bisperoxovanadium on cerebral ischemia by inflammation inhibition.
Mao, Lun-Lin; Hao, Dong-Lin; Mao, Xiao-Wei; Xu, Yuan-Feng; Huang, Ting-Ting; Wu, Bo-Na; Wang, Li-Hui
2015-08-18
PTEN is a dual specificity phosphatase and is implicated in inflammation and apoptosis of cerebral ischemia and reperfusion (I/R) injury. Bisperoxovanadium (Bpv), a specific inhibitor of PTEN's phosphatase activity, has demonstrated powerful neuroprotective properties. We investigated the neuroprotective roles of Bpv in the rat model of middle cerebral artery occlusion (MCAO) cerebral I/R injury, and explored the modulation of inflammatory mediators and PI3K/Akt/GSK-3β pathways by Bpv. Our results showed that treatment with Bpv (0.2 mg/kg/day) significantly decreased neurological deficit scores at 7 days after MCAO and infarct volume at 4 days after MCAO. The IL-10 concentration was increased and TNF-α concentration was decreased in the ischemic boundary zone of the cerebral cortex at 4 days after MCAO by Bpv. Furthermore, Bpv (0.2 mg/kg/day) treatment significantly reduced PTEN mRNA and protein levels and increased PI3K, Akt and p-GSK-3β proteins expression in the ischemic boundary zone of the cerebral cortex at 4 days after MCAO. In conclusions, Bpv treatment demonstrates neuroprotective effects on cerebral ischemia and reperfusion injury of ischemic stroke rats and is associated with its modulation of inflammatory mediator production and up-regulation of PTEN downstream proteins PI3K, Akt and p-GSK-3β. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Stroke treatment in rats with tail temperature increase by 40-min moxibustion.
Chen, Ri-Xin; Lv, Zhi-Mai; Chen, Ming-Ren; Yi, Fan; An, Xin; Xie, Ding-Yi
2011-10-03
The distant heat induced by suspended moxibustion (SM) for 40 min is confirmed to have a favorable effect in treating diseases such as ischemic brain injury in the clinical setting, but its precise mechanism remains to be explained. Since a similar reaction to the phenomenon of distant heat is found in some transient middle cerebral artery occlusion (tMCAO) rats treated by a 40-min SM session with tail temperature increase (TTI), we hereby study its mechanism by comparing the neuroprotective effect of 40 min's SM with TTI to those without. The experimental results show that 40 min's SM with TTI can significantly reduce the infarct volume and neurological deficit score in tMCAO rats. Western blot demonstrates that a reduction in the levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) expression in tMCAO rats with TTI is more striking than that of the rats without TTI. The expression of caspase-3 protein is inhibited in tMCAO rats with TTI. The results suggest that the efficacy of SM for 40 min with TTI is higher than that without. Although neuroprotective effects present in tMCAO rats with and without TTI, those with TTI revealed a higher level of anti-inflammation effect and exhibited an anti-apoptosis effect. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Neuroprotection by baicalein in ischemic brain injury involves PTEN/AKT pathway.
Liu, Chao; Wu, Jiliang; Xu, Kui; Cai, Fei; Gu, Jun; Ma, Liqun; Chen, Jianguo
2010-03-01
Recently more evidences support baicalein (Bai) is neuroprotective in models of ischemic stroke. This study was conducted to determine the molecular mechanisms involved in this effect. Either permanent or transient (2 h) middle cerebral artery occlusion (MCAO) was induced in rats in this study. Permanent MCAO led to larger infarct volumes in contrast to transient MCAO. Only in transient MCAO, Bai administration significantly reduced infarct size. Baicalein also markedly reduced apoptosis in the penumbra of transient MCAO rats. Additionally, oxygen and glucose deprivation (OGD) was used to mimic ischemic insult in primary cultured cortical neurons. A rapid increase in the intracellular reactive oxygen species level and nitrotyrosine formation induced by OGD was counteracted by Bai, which is parallel with attenuated cell injury. The reduction of phosphorylation Akt and glycogen synthase kinase-3beta (GSK3beta) induced by OGD was restored by Bai, which was associated with preserved levels of phosphorylation of PTEN, the phophatase that negatively regulates Akt. As a consequence, Bcl-2/Bcl-xL-associated death protein phosphorylation was increased and the protein level of Bcl-2 in motochondria was maintained, which subsequently antagonize cytochrome c released in cytosol. LY294002 blocked the increase in phospho-AKT evoked by Bai and abolished the associated protective effect. Together, these findings provide evidence that Bai protects neurons against ischemia injury and this neuroprotective effect involves PI3K/Akt and PTEN pathway.
2010-01-01
Permanent middle cerebral artery (MCA) occlusion (pMCAO) by electrocoagulation is a commonly used model but with potential traumatic lesions. Early MRI monitoring may assess pMCAO for non-specific brain damage. The surgical steps of pMCAO were evaluated for traumatic cerebral injury in 22 Swiss mice using diffusion and T2-weighted MRI (7T) performed within 1 h and 24 h after surgery. Temporal muscle cauterization without MCA occlusion produced an early T2 hyperintensity mimicking an infarct. No lesion was visible after temporal muscle incision or craniotomy. Early MRI monitoring is useful to identify non-specific brain injury that could hamper neuroprotective drugs assessment. PMID:20298536
PD-L1 mAb Treats Ischemic Stroke by Controlling CNS Inflammation
Bodhankar, Sheetal; Chen, Yingxin; Lapato, Andrew; Dotson, Abby L.; Wang, Jianming; Vandenbark, Arthur A.; Saugstad, Julie A.; Offner, Halina
2015-01-01
Background and Purpose Both pathogenic and regulatory immune processes are involved in the middle cerebral artery occlusion (MCAO) model of experimental stroke, including interactions involving the Programmed Death 1 (PD-1) receptor and its two ligands, PD-L1 and PD-L2. Although PD-1 reduced stroke severity, PD-L1 and PD-L2 appeared to play pathogenic roles, suggesting use of anti-PD-L monoclonal Ab (mAb) therapy for MCAO. Methods Male C57BL/6 mice were treated with a single dose of anti-PD-L1 mAb 4 h after MCAO and evaluated for clinical, histological and immunological changes after 96 h reperfusion. Results Blockade of the PD-L1 checkpoint using a single injection of 200μg anti-PD-L1 mAb given i.v. 4 h after occlusion significantly reduced MCAO infarct volumes and improved neurological outcomes after 96 h reperfusion. Treatment partially reversed splenic atrophy and decreased CNS infiltrating immune cells concomitant with enhanced appearance of CD8+ regulatory T cells in the lesioned CNS hemisphere. Conclusions This study demonstrates for the first time the beneficial therapeutic effects of PD-L1 checkpoint blockade on MCAO, thus validating proposed mechanisms obtained in our previous studies using PD-1 and PD-L deficient mice. These results provide strong support for use of available humanized anti-PD-L1 antibodies for treatment of human stroke subjects. PMID:26306753
Effects of gemfibrozil on outcome after permanent middle cerebral artery occlusion in mice
Guo, Qingmin; Wang, Guangming; Liu, Xiaowei; Namura, Shobu
2009-01-01
Fibrates are lipid lowering drugs and found as ligands for peroxisome proliferator-activated receptors (PPARs). A clinical study has shown that one type of fibrate gemfibrozil reduces stroke incidence in men. However, it remains unknown whether gemfibrozil improves outcome after stroke. We hypothesized that prophylactic administration of gemfibrozil improves outcome after ischemic stroke. In this study, we measured the impact of gemfibrozil in two permanent middle cerebral artery occlusion (MCAO) models in young adult male mice on normal diet. First, we tested gemfibrozil in a filamentous MCAO model. Pretreatment with gemfibrozil (30 mg/kg) for 7 days moderately but significantly reduced infarct size at 24 h after MCAO. A higher dose (120 mg/kg) did not attenuate infarct size. Rather, it tended to increase brain swelling. Second, we tested in a distal MCAO model. Gemfibrozil (30 mg/kg) for 7 days before and after stroke significantly attenuated cortical lesion size at 7 days after MCAO. Cortical blood flow measured by laser speckle imaging was improved by gemfibrozil in the ischemic hemisphere. In non-stroke animals gemfibrozil also altered gene expression levels of PPARs in both the aorta and brain in organ specific manners; however, endothelial nitric oxide synthase (eNOS) was not significantly affected. These findings suggested the possibility that the observed infarct reductions and cortical blood flow improvements in ischemic brains were not through eNOS-mediated mechanisms. Further investigations may be meritorious to examine whether prophylactic usage of gemfibrozil against stroke is beneficial. PMID:19427843
Effects of gemfibrozil on outcome after permanent middle cerebral artery occlusion in mice.
Guo, Qingmin; Wang, Guangming; Liu, Xiaowei; Namura, Shobu
2009-07-07
Fibrates are lipid lowering drugs and found as ligands for peroxisome proliferator-activated receptors (PPARs). A clinical study has shown that one type of fibrate gemfibrozil reduces stroke incidence in men. However, it remains unknown whether gemfibrozil improves outcome after stroke. We hypothesized that prophylactic administration of gemfibrozil improves outcome after ischemic stroke. In this study, we measured the impact of gemfibrozil in two permanent middle cerebral artery occlusion (MCAO) models in young adult male mice on normal diet. First, we tested gemfibrozil in a filamentous MCAO model. Pretreatment with gemfibrozil (30 mg/kg) for 7 days moderately but significantly reduced infarct size at 24 h after MCAO. A higher dose (120 mg/kg) did not attenuate infarct size. Rather, it tended to increase brain swelling. Second, we tested in a distal MCAO model. Gemfibrozil (30 mg/kg) for 7 days before and after stroke significantly attenuated cortical lesion size at 7 days after MCAO. Cortical blood flow measured by laser speckle imaging was improved by gemfibrozil in the ischemic hemisphere. In non-stroke animals gemfibrozil also altered gene expression levels of PPARs in both the aorta and brain in organ specific manners; however, endothelial nitric oxide synthase (eNOS) was not significantly affected. These findings suggested the possibility that the observed infarct reductions and cortical blood flow improvements in ischemic brains were not through eNOS-mediated mechanisms. Further investigations may be meritorious to examine whether prophylactic usage of gemfibrozil against stroke is beneficial.
Progesterone Treatment in Two Rat Models of Ocular Ischemia
Allen, Rachael S.; Olsen, Timothy W.; Sayeed, Iqbal; Cale, Heather A.; Morrison, Katherine C.; Oumarbaeva, Yuliya; Lucaciu, Irina; Boatright, Jeffrey H.; Pardue, Machelle T.; Stein, Donald G.
2015-01-01
Purpose. To determine whether the neurosteroid progesterone, shown to have protective effects in animal models of traumatic brain injury, stroke, and spinal cord injury, is also protective in ocular ischemia animal models. Methods. Progesterone treatment was tested in two ocular ischemia models in rats: a rodent anterior ischemic optic neuropathy (rAION) model, which induces permanent monocular optic nerve stroke, and the middle cerebral artery occlusion (MCAO) model, which causes transient ischemia in both the retina and brain due to an intraluminal filament that blocks the ophthalmic and middle cerebral arteries. Visual function and retinal histology were assessed to determine whether progesterone attenuated retinal injury in these models. Additionally, behavioral testing and 2% 2,3,5-triphenyltetrazolium chloride (TTC) staining in brains were used to compare progesterone's neuroprotective effects in both retina and brain using the MCAO model. Results. Progesterone treatment showed no effect on visual evoked potential (VEP) reduction and retinal ganglion cell loss in the permanent rAION model. In the transient MCAO model, progesterone treatment reduced (1) electroretinogram (ERG) deficits, (2) MCAO-induced upregulation of glutamine synthetase (GS) and glial fibrillary acidic protein (GFAP), and (3) retinal ganglion cell loss. As expected, progesterone treatment also had significant protective effects in behavioral tests and a reduction in infarct size in the brain. Conclusions. Progesterone treatment showed protective effects in the retina following MCAO but not rAION injury, which may result from mechanistic differences with injury type and the therapeutic action of progesterone. PMID:26024074
Involvement of brain-gut axis in treatment of cerebral infarction by β-asaron and paeonol.
He, Xiaogang; Cai, Qiufang; Li, Jianxiang; Guo, Weifeng
2018-02-14
Cerebral infarction (CI) causes severe brain damage with high incidence. This study aimed to investigate the involvement of brain-gut axis in the treatment of CI by combined administration of β-asaron and paeonol. Rat middle cerebral artery occlusion (MCAO) model was established, the interleukin-1beta (IL-1β) and tumor necrosis factor α (TNF-α) in the rat peripheral blood were determined by ELISA assay, and brain tissue damage was evaluated by TUNNEL assay. The correlation of cholecystokinin (CCK) and nuclear factor-kappaB (NF-κB) signaling components between intestinal mucosa and prefrontal cortex of MCAO rats treated with β-asaron and paeonol were analyzed by quantitative RT-PCR and western blotting. In vitro transwell co-culture was performed to confirm the correlated expression. The expression of CCK and NF-κB signaling components were closely correlated between the intestinal mucosa and prefrontal cortex of MCAO rats treated with β-asaron and paeonol. The combined administration also regulates the IL-1β and TNF-α in the MCAO rat peripheral blood and ameliorate the brain damage in MCAO rats. Elevated expression of related genes was observed in the cortical neurons co-cultured with intestinal mucosal epithelial cells treated by β-asaron and paeonol. The brain-gut axis mediates the therapeutic effect of β-asaron and paeonol for cerebral infarction through CCK and NF-κB signaling. Copyright © 2017 Elsevier B.V. All rights reserved.
Nakano, Takafumi; Irie, Keiichi; Hayakawa, Kazuhide; Sano, Kazunori; Nakamura, Yoshihiko; Tanaka, Masayoshi; Yamashita, Yuta; Satho, Tomomitsu; Fujioka, Masayuki; Muroi, Carl; Matsuo, Koichi; Ishikura, Hiroyasu; Futagami, Kojiro; Mishima, Kenichi
2015-10-22
Tissue plasminogen activator (tPA) is the only approved therapy for acute ischemic stroke. However, delayed tPA treatment increases the risk of cerebral hemorrhage and can result in exacerbation of nerve injury. ADAMTS13, a von Willebrand factor (VWF) cleaving protease, has a protective effect against ischemic brain injury and may reduce bleeding risk by cleaving VWF. We examined whether ADAMTS13 has a longer therapeutic time window in ischemic stroke than tPA in mice subjected to middle cerebral artery occlusion (MCAO). ADAMTS13 (0.1mg/kg) or tPA (10mg/kg) was administered i.v., immediately after reperfusion of after 2-h or 4-h MCAO for comparison of the therapeutic time windows in ischemic stroke. Infarct volume, hemorrhagic volume, plasma high-mobility group box1 (HMGB1) levels and cerebral blood flow were measured 24h after MCAO. Both ADAMTS13 and tPA improved the infarct volume without hemorrhagic complications in 2-h MCAO mice. On the other hand, ADAMTS13 reduced the infarct volume and plasma HMGB1 levels, and improved cerebral blood flow without hemorrhagic complications in 4-h MCAO mice, but tPA was not effective and these animals showed massive intracerebral hemorrhage. These results indicated that ADAMTS13 has a longer therapeutic time window in ischemic stroke than tPA, and ADAMTS13 may be useful as a new therapeutic agent for ischemic stroke. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, Weilin; Wang, Xian; Yang, Shanli; Huang, Jia; Xue, Xiehua; Zheng, Yi; Shang, Guanhao; Tao, Jing; Chen, Lidian
2016-04-15
Electroacupuncture (EA) is one of the safety and effective therapies for improving neurological and sensorimotor impairment via blockade of inappropriate inflammatory responses. However, the mechanisms of anti-inflammation involved is far from been fully elucidated. Focal cerebral ischemic stroke was administered by the middle cerebral artery occlusion and reperfusion (MCAO/R) surgery. The MCAO/R rats were accepted EA treatment at the LI 11 and ST 36 acupoints for consecutive 3days. The neurological outcome, animal behaviors test and molecular biology assays were used to evaluate the MCAO/R model and therapeutic effect of EA. EA treatment for MCAO rats showed a significant reduction in the infarct volumes accompanied by functional recovery in mNSS outcomes, motor function performances. The possible mechanisms that EA treatment attenuated the over-activation of Iba-1 and ED1 positive microglia in the peri-infract sensorimotor cortex. Simultaneously, both tissue and serum protein levels of the tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were decreased by EA treatment in MCAO/R injured rats. The levels of inflammatory cytokine tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) were decreased in the peri-infract sensorimotor cortex and blood serum of MCAO/R injured rats after EA treatment. Furthermore, we found that EA treatment prevented from the nucleus translocation of NF-κB p65 and suppressed the expression of p38 mitogen-activated protein kinase (p38 MAPK) and myeloid differentiation factor 88 (MyD88) in the peri-infract sensorimotor cortex. The findings from this study indicated that EA improved the motor impairment via inhibition of microglia-mediated neuroinflammation that invoked NF-κB p65, p38 MAPK and MyD88 produced proinflammatory cytokine in the peri-infract sensorimotor cortex of rats following ischemic stroke. Copyright © 2016 Elsevier Inc. All rights reserved.
Glatiramer Acetate administration does not reduce damage after cerebral ischemia in mice.
Poittevin, Marine; Deroide, Nicolas; Azibani, Feriel; Delcayre, Claude; Giannesini, Claire; Levy, Bernard I; Pocard, Marc; Kubis, Nathalie
2013-01-15
Inflammation plays a key role in ischemic stroke pathophysiology: microglial/macrophage cells and type-1 helper cells (Th1) seem deleterious, while type-2 helper cells (Th2) and regulatory T cells (Treg) seem protective. CD4 Th0 differentiation is modulated by microglial cytokine secretion. Glatiramer Acetate (GA) is an immunomodulatory drug that has been approved for the treatment of human multiple sclerosis by means of a number of mechanisms: reduced microglial activation and pro-inflammatory cytokine production, Th0 differentiation shifting from Th2 to Th2 and Treg with anti-inflammatory cytokine production and increased neurogenesis. We induced permanent (pMCAo) or transient middle cerebral artery occlusion (tMCAo) and GA (2 mg) or vehicle was injected subcutaneously immediately after cerebral ischemia. Mice were sacrificed at D3 to measure neurological deficit, infarct volume, microglial cell density and qPCR of TNFα and IL-1β (pro-inflammatory microglial cytokines), IFNγ (Th2 cytokine), IL-4 (Th2 cytokine), TGFβ and IL-10 (Treg cytokines), and at D7 to evaluate neurological deficit, infarct volume and neurogenesis assessment. We showed that in GA-treated pMCAo mice, infarct volume, microglial cell density and cytokine secretion were not significantly modified at D3, while neurogenesis was enhanced at D7 without significant infarct volume reduction. In GA-treated tMCAo mice, microglial pro-inflammatory cytokines IL-1β and TNFα were significantly decreased without modification of microglial/macrophage cell density, cytokine secretion, neurological deficit or infarct volume at D3, or modification of neurological deficit, neurogenesis or infarct volume at D7. In conclusion, Glatiramer Acetate administered after cerebral ischemia does not reduce infarct volume or improve neurological deficit in mice despite a significant increase in neurogenesis in pMCAo and a microglial pro-inflammatory cytokine reduction in tMCAo. Copyright © 2012 Elsevier B.V. All rights reserved.
Human Neural Stem Cell Extracellular Vesicles Improve Recovery in a Porcine Model of Ischemic Stroke
Webb, Robin L.; Kaiser, Erin E.; Jurgielewicz, Brian J.; Spellicy, Samantha; Scoville, Shelley L.; Thompson, Tyler A.; Swetenburg, Raymond L.; Hess, David C.; West, Franklin D.
2018-01-01
Background and Purpose— Recent work from our group suggests that human neural stem cell–derived extracellular vesicle (NSC EV) treatment improves both tissue and sensorimotor function in a preclinical thromboembolic mouse model of stroke. In this study, NSC EVs were evaluated in a pig ischemic stroke model, where clinically relevant end points were used to assess recovery in a more translational large animal model. Methods— Ischemic stroke was induced by permanent middle cerebral artery occlusion (MCAO), and either NSC EV or PBS treatment was administered intravenously at 2, 14, and 24 hours post-MCAO. NSC EV effects on tissue level recovery were evaluated via magnetic resonance imaging at 1 and 84 days post-MCAO. Effects on functional recovery were also assessed through longitudinal behavior and gait analysis testing. Results— NSC EV treatment was neuroprotective and led to significant improvements at the tissue and functional levels in stroked pigs. NSC EV treatment eliminated intracranial hemorrhage in ischemic lesions in NSC EV pigs (0 of 7) versus control pigs (7 of 8). NSC EV–treated pigs exhibited a significant decrease in cerebral lesion volume and decreased brain swelling relative to control pigs 1-day post-MCAO. NSC EVs significantly reduced edema in treated pigs relative to control pigs, as assessed by improved diffusivity through apparent diffusion coefficient maps. NSC EVs preserved white matter integrity with increased corpus callosum fractional anisotropy values 84 days post-MCAO. Behavior and mobility improvements paralleled structural changes as NSC EV–treated pigs exhibited improved outcomes, including increased exploratory behavior and faster restoration of spatiotemporal gait parameters. Conclusions— This study demonstrated for the first time that in a large animal model novel NSC EVs significantly improved neural tissue preservation and functional levels post-MCAO, suggesting NSC EVs may be a paradigm changing stroke therapeutic. PMID:29650593
Goyagi, Toru; Bhardwaj, Anish; Koehler, Raymond C; Traystman, Richard J; Hurn, Patricia D; Kirsch, Jeffrey R
2003-02-01
The in vivo signaling of ischemic neuroprotection provided by sigma-receptor ligands remains unclear. Catecholamines have been implicated in the propagation of ischemic neuronal injury, and previous in vitro studies suggest that sigma ligands modulate dopaminergic neurotransmission. In this study, we tested the hypothesis that the potent sigma(1)-receptor ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) attenuates the increase of extracellular dopamine in ischemic striatum. Under controlled physiological conditions, a microdialysis probe was implanted in right caudoputamen (CP) complex of adult male Wistar rats. Rats were subjected to 2 h of transient middle cerebral artery occlusion (MCAO) by the intraluminal suture technique. In a blinded, randomized fashion, rats were divided into five treatment groups: Group 1 (n = 8; saline-saline) continuous i.v. infusion of saline vehicle 30 min before MCAO followed by saline at reperfusion until the end of the experiment; Group 2 (n = 8; PPBP-PPBP) i.v. PPBP 30 min before MCAO followed by 1 micromol x kg(-1) x h(-1) of PPBP; Group 3 (n = 8; saline-PPBP) i.v. saline before MCAO followed by PPBP; Group 4 (n = 4) surgical shams (saline-saline); and Group 5 (n = 4) surgical shams (PPBP-PPBP). Infarction volume at 22 h of reperfusion in the CP complex (percentage of ipsilateral structure) was significantly attenuated in rats treated with PPBP-PPBP (27.3% +/- 9.1%) and saline-PPBP (27.8% +/- 12.7%) compared with saline-saline (59.3% +/- 7.3%) treatment. There was a three- to fourfold increase in dopamine concentrations in the microdialysates within 40 min of the onset of MCAO. Dopamine and its metabolites dihydroxy phenylacetic acid and homovallinic acid levels were similar among the three groups subjected to MCAO. Therefore, PPBP provides significant ischemic neuroprotection in the CP complex without altering the acute accumulation of dopamine in vivo during transient focal ischemia in the rat.
Li, Wei; Suwanwela, Nijasri C; Patumraj, Suthiluk
2016-07-01
Oxidation, inflammation, and apoptosis are three critical factors for the pathogenic mechanism of cerebral ischemia/reperfusion (I/R) injury. Curcumin exhibits substantial biological properties via anti-oxidation, anti-inflammation and anti-apoptotic effects; however, the molecular mechanism underlying the effects of curcumin against cerebral I/R injury remains unclear. To investigate the effects of curcumin on cerebral I/R injury associated with water content, infarction volume, and the expression of nuclear factor-kappa-B (NF-κB) and nuclear factor-erythroid-related factor-2 (Nrf2). Middle cerebral artery occlusion (MCAO, 1-hour occlusion and 24-hour reperfusion) was performed in male Wistar rats (n=64) as a cerebral I/R injury model. In the MCAO+CUR group, the rats were administered curcumin (300mg/kg BW, i.p.) at 30min after occlusion. The same surgical procedures were performed in SHAM rats without MCAO occlusion. At 24h post-operation, the parameters, including neurological deficit scores, blood brain barrier (BBB) disruption, water content, and infarction volume, were determined. Brain tissue NF-κB and Nrf2 expression levels were assayed through immunohistochemistry. Compared with the SHAM group, BBB disruption, neurological deficit, and increased brain water content and infarction volume were markedly demonstrated in the MCAO group. NF-κB expression was enhanced in the MCAO group. However, in the MCAO+CUR group, the upregulation of Nrf2, an anti-oxidation related protein, was consistent with a significant decline in the water content, infarction volume, and NF-κB expression. The protective effects of curcumin against cerebral I/R injury reflect anti-oxidation, anti-inflammation and anti-apoptotic activities, resulting in the elevation of Nrf2 and down-regulation of NF-κB. Copyright © 2015 Elsevier Inc. All rights reserved.
Kelsen, Jesper; Larsen, Marianne H; Sørensen, Jens Christian; Møller, Arne; Frøkiaer, Jørgen; Nielsen, Søren; Nyengaard, Jens R; Mikkelsen, Jens D; Rønn, Lars Christian B
2010-04-06
We are currently investigating microglial activation and neuronal precursor cell (NPC) proliferation after transient middle cerebral artery occlusion (tMCAo) in rats. This study aimed: (1) to investigate differences in hippocampal NPC proliferation in outbred male spontaneously hypertensive rats (SHRs) and Sprague-Dawley rats (SDs) one week after tMCAo; (2) to present the practical use of the optical fractionator and 2D nucleator in stereological brain tissue analyses; and (3) to report our experiences with an intraluminal tMCAo model where the occluding filament is advanced 22 mm beyond the carotid bifurcation and the common carotid artery is clamped during tMCAo. Twenty-three SDs and twenty SHRs were randomized into four groups subjected to 90 minutes tMCAo or sham. BrdU (50 mg/kg) was administered intraperitoneally twice daily on Day 4 to 7 after surgery. On Day 8 all animals were euthanized. NeuN-stained tissue sections were used for brain and infarct volume estimation with the 2D nucleator and Cavalieri principle. Brains were studied for the presence of activated microglia (ED-1) and hippocampal BrdU incorporation using the optical fractionator. We found no significant difference or increase in post-ischemic NPC proliferation between the two strains. However, the response to remote ischemia may differ between SDs and SHRs. In three animals increased post-stroke NPC proliferation was associated with hippocampal ischemic injury. The mean infarct volume was 89.2 +/- 76.1 mm3 in SHRs and 16.9 +/- 22.7 mm3 in SDs (p < 0.005). Eight out of eleven SHRs had ischemic neocortical damage in contrast to only one out of 12 SDs. We observed involvement of the anterior choroidal and hypothalamic arteries in several animals from both strains and the anterior cerebral artery in two SHRs. We found no evidence of an early hippocampal NPC proliferation one week after tMCAo in both strains. Infarction within the anterior choroidal artery could induce hippocampal ischemia and increase NPC proliferation profoundly. NPC proliferation was not aggravated by the presence of activated microglia. Intraluminal tMCAo in SHRs gave a more reliable infarct with neocortical involvement, but affected territories supplied by the anterior cerebral, anterior choroidal and hypothalamic arteries.
A novel animal model of dysphagia following stroke.
Sugiyama, Naoto; Nishiyama, Eiji; Nishikawa, Yukitoshi; Sasamura, Takashi; Nakade, Shinji; Okawa, Katsumasa; Nagasawa, Tadashi; Yuki, Akane
2014-02-01
Patients who have an ischemic stroke are at high risk of swallowing disorders. Aspiration due to swallowing disorders, specifically delayed trigger of the pharyngeal stage of swallowing, predisposes such patients to pneumonia. In the present study, we evaluated swallowing reflex in a rat model of transient middle cerebral artery occlusion (tMCAO), which is one of the most common experimental animal models of cerebral ischemia, in order to develop a novel animal model of dysphagia following ischemic stroke. A swallowing reflex was elicited by a 10-s infusion of distilled water (DW) to the pharyngolaryngeal region in the tMCAO rat model. Swallowing reflex was estimated using the electromyographic activity of the mylohyoid muscle from 1 to 3 weeks after surgery. Two weeks after tMCAO, the number of swallows significantly decreased and the onset latency of the first swallow was prolonged compared with that of the sham group. The number of swallows in rats significantly increased by infusions of 10 mM citric acid and 0.6 μM capsaicin to the pharyngolaryngeal region compared with the number from infusion of DW. It has been reported that sensory stimulation of the pharyngolaryngeal region with citric acid, capsaicin, and L-menthol ameliorates hypofunction of pharyngeal-stage swallowing in dysphagia patients. Therefore, the tMCAO rat model may show some of the symptoms of pharyngeal-stage swallowing disorders, similar to those in patients with ischemic stroke. This rat tMCAO model has the potential to become a novel animal model of dysphagia following stroke that is useful for development of therapeutic methods and drugs.
Li, Jing; He, Jiaojun; Du, Yuanhao; Cui, Jingjun; Ma, Ying; Zhang, Xuezhu
2014-11-11
To investigate the effects and potential mechanism of electroacupuncture intervention on expressions of Angiotensin II and its receptors-mediated signaling pathway in experimentally induced cerebral ischemia. Totally 126 male Wistar rats were randomly divided into control group, model group and EA group. The latter two were further divided into ten subgroups (n = 6) following Middle Cerebral Artery Occlusion (MCAO). Changes in regional cerebral blood flow (rCBF) and expressions of Angiotensin II and its receptors (AT1R, AT2R), as well as effector proteins in phosphatidyl inositol signal pathway were monitored before and at different times after MCAO. MCAO-induced decline of ipsilateral rCBF was partially suppressed by electroacupuncture, and contralateral blood flow was also superior to that of model group. Angiotensin II level was remarkably elevated immediately after MCAO, while electroacupuncture group exhibited significantly lower levels at 1 to 3 h and the value was significantly increased thereafter. The enhanced expression of AT1R was partially inhibited by electroacupuncture, while increased AT2R level was further induced. Electroacupuncture stimulation attenuated and postponed the upregulated-expressions of Gq and CaM these upregulations. ELISA results showed sharply increased expressions of DAG and IP3, which were remarkably neutralized by electroacupuncture. MCAO induced significant increases in expression of Angiotensin II and its receptor-mediated signal pathway. These enhanced expressions were significantly attenuated by electroacupuncture intervention, followed by reduced vasoconstriction and improved blood supply in ischemic region, and ultimately conferred beneficial effects on cerebral ischemia.
Shah, Fawad-Ali; Park, Dong-Ju; Koh, Phil-Ok
2018-06-20
Cerebral ischemia is a major cause of death and neurological disability. It also leads to severe brain tissue damage by excessive generation of oxidative stress. Quercetin is a bioflavonoid substance that acts an antioxidant agent and exerts a neuroprotective effect against cerebral ischemia. The aim of this study was to detect specific proteins that are differentially expressed in response to quercetin treatment in focal cerebral ischemia. Adult male rats were intraperitoneally injected with vehicle or quercetin (10 mg/kg) 30 min prior to right middle cerebral artery occlusion (MCAO). Brain tissues were collected 24 h after MCAO surgery and right cerebral cortices proteins were identified by two-dimensional gel electrophoresis and mass spectrometry. MCAO leads to neurological behavior disorders, infarction, and histopathological change. However, quercetin treatment alleviated MCAO-induced neuronal deficits and damages. We identified specific proteins differentially expressed between vehicle- and quercetin-treated animals. Among these detected proteins, isocitrate dehydrogenase [NAD + ], adenosylhomocysteinase, pyruvate kinase, and ubiquitin carboxy terminal hydrolase L1 were decreased in vehicle-treated animals, while quercetin administration alleviated the MCAO-induced decreases in these proteins. However, 60 kDa heat shock protein and collapsin response mediator protein 2 were increased in the vehicle-treated animals, and quercetin treatment attenuated increases in these proteins. The expression changes in these proteins were confirmed by Western blot and reverse transcription-PCR analyses. These proteins are associated with cellular differentiation, metabolism, and oxidative stress related proteins. These results suggest that quercetin reduces ischemic injury by modulating the expression of various proteins in focal cerebral ischemia.
Tang, Ya Hui; Vital, Shantel; Russell, Janice; Seifert, Hilary; Granger, D. Neil
2015-01-01
Objective The cerebral microvasculature is rendered more vulnerable to thrombus formation following a brief (5.0 min) period of focal ischemia. This study examined the contribution of interleukin-6 (IL-6), a neuroprotective and prothrombotic cytokine produced by the brain, to transient ischemia-induced thrombosis in cerebral arterioles. Approach & results The middle cerebral artery of C57BL/6J mice was occluded for 5 minutes, followed by 24 hrs of reperfusion (MCAo/R). Intravital fluorescence microscopy was used to monitor thrombus development in cerebral arterioles induced by light/dye photoactivation. Thrombosis was quantified as the time of onset of platelet aggregation on the vessel wall and the time for complete blood flow cessation. MCAo/R in wild type (WT) mice yielded an acceleration of thrombus formation that was accompanied by increased IL-6 levels in plasma and in post-ischemic brain tissue. The exaggerated thrombosis response to MCAo/R was blunted in WT mice receiving an IL-6 receptor-blocking antibody and in IL-6 deficient (IL-6−/−) mice. Bone marrow chimeras, produced by transplanting IL-6−/− marrow into WT recipients, did not exhibit protection against MCAo/R-induced thrombosis. Conclusions The increased vulnerability of the cerebral vasculature to thrombus development after MCAo/R is mediated by IL-6, which is likely derived from brain cells rather than circulating blood cells. These findings suggest that anti-IL-6 therapy may reduce the likelihood of cerebral thrombus development after a transient ischemic attack. PMID:26054883
Amantea, Diana; Fratto, Vincenza; Maida, Simona; Rotiroti, Domenicantonio; Ragusa, Salvatore; Nappi, Giuseppe; Bagetta, Giacinto; Corasaniti, Maria Tiziana
2009-01-01
The effects of bergamot essential oil (BEO; Citrus bergamia, Risso) on brain damage caused by permanent focal cerebral ischemia in rat were investigated. Administration of BEO (0.1-0.5 ml/kg but not 1 ml/kg, given intraperitoneally 1 h before occlusion of the middle cerebral artery, MCAo) significantly reduced infarct size after 24 h permanent MCAo. The most effective dose (0.5 ml/kg) resulted in a significant reduction of infarct extension throughout the brain, especially in the medial striatum and the motor cortex as revealed by TTC staining of tissue slices. Microdialysis experiments show that BEO (0.5 ml/kg) did not affect basal amino acid levels, whereas it significantly reduced excitatory amino acid, namely aspartate and glutamate, efflux in the frontoparietal cortex typically observed following MCAo. Western blotting experiments demonstrated that these early effects were associated, 24 h after permanent MCAo, to a significant increase in the phosphorylation and activity of the prosurvival kinase, Akt. Indeed, BEO significantly enhanced the phosphorylation of the deleterious downstream kinase, GSK-3beta, whose activity is negatively regulated via phosphorylation by Akt.
NASA Astrophysics Data System (ADS)
Xuan, Li; He, Bin; Hu, Li-Fa; Li, Da-Yu; Xu, Huan-Yu; Zhang, Xing-Yun; Wang, Shao-Xin; Wang, Yu-Kun; Yang, Cheng-Liang; Cao, Zhao-Liang; Mu, Quan-Quan; Lu, Xing-Hai
2016-09-01
Multi-conjugation adaptive optics (MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view (FOV). The atmospheric tomographic phase reconstruction and projection of three-dimensional turbulence volume onto wavefront correctors, such as deformable mirrors (DMs) or liquid crystal wavefront correctors (LCWCs), is a very important step in the data processing of an MCAO’s controller. In this paper, a method according to the wavefront reconstruction performance of MCAO is presented to evaluate the optimized configuration of multi laser guide stars (LGSs) and the reasonable conjugation heights of LCWCs. Analytical formulations are derived for the different configurations and are used to generate optimized parameters for MCAO. Several examples are given to demonstrate our LGSs configuration optimization method. Compared with traditional methods, our method has minimum wavefront tomographic error, which will be helpful to get higher imaging resolution at large FOV in MCAO. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
Han, Jin; Wan, Hai-Tong; Yang, Jie-Hong; Zhang, Yu-Yan; Ge, Li-Jun; Bie, Xiao-Dong
2014-01-01
This study aimed to evaluate the effect of ligustrazine on levels of amino acid transmitters in the extracellular fluid of striatum following cerebral ischemia/reperfusion (I/R) in male Sprague-Dawley rats. A microdialysis cannula guide was implanted into the right striatum. After recovery, animals underwent a sham operation or middle cerebral artery occlusion (MCAO). Those that developed cerebral ischemia after MCAO were randomized to receive propylene glycol salt water and ligustrazine respectively. Striatal fluid samples were collected from all animals at 15-min intervals after treatment and were subjected to HPLC analysis of aspartic acid, glutamic acid, taurine, and γ-amino butyric acid. Upon the last sample collection, animals were sacrificed and brain tissue specimens were collected for triphenyltetrazolium chloride staining and NeuN staining. Compared with the sham operation, MCAO induced significant neurological deficits and increased striatal concentrations of the four neurotransmitters assessed in a time-dependent manner (P < 0.01). Ligustrazine effectively attenuated the detrimental effects of MCAO on the brain. These observations suggest that ligustrazine as a novel cerebral infarction-protective agent may have potential clinical implications for I/R-related brain damage.
Li, Jie; Ooi, Evelyn; Bloom, Jonathan; Poon, Carrie; Lax, Daniel; Rosenbaum, Daniel M.; Barone, Frank C.
2013-01-01
Persistent neurobehavioral deficits and brain changes need validation for brain restoration. Two hours middle cerebral artery occlusion (tMCAO) or sham surgery was performed in male Sprague-Dawley rats. Neurobehavioral and cognitive deficits were measured over 10 weeks included: (1) sensory, motor, beam balance, reflex/abnormal responses, hindlimb placement, forepaw foot fault and cylinder placement tests, and (2) complex active place avoidance learning (APA) and simple passive avoidance retention (PA). Electroretinogram (ERG), hemispheric loss (infarction), hippocampus CA1 neuronal loss and myelin (Luxol Fast Blue) staining in several fiber tracts were also measured. In comparison to Sham surgery, tMCAO surgery produced significant deficits in all behavioral tests except reflex/abnormal responses. Acute, short lived deficits following tMCAO were observed for forelimb foot fault and forelimb cylinder placement. Persistent, sustained deficits for the whole 10 weeks were exhibited for motor (p<0.001), sensory (p<0.001), beam balance performance (p<0.01) and hindlimb placement behavior (p<0.01). tMCAO produced much greater and prolonged cognitive deficits in APA learning (maximum on last trial of 604±83% change, p<0.05) but only a small, comparative effect on PA retention. Hemispheric loss/atrophy was measured 10 weeks after tMCAO and cross-validated by two methods (e.g., almost identical % ischemic hemispheric loss of 33.4±3.5% for H&E and of 34.2±3.5% for TTC staining). No visual dysfunction by ERG and no hippocampus neuronal loss were detected after tMCAO. Fiber tract damage measured by Luxol Fast Blue myelin staining intensity was significant (p<0.01) in the external capsule and striatum but not in corpus callosum and anterior commissure. In summary, persistent neurobehavioral deficits were validated as important endpoints for stroke restorative research in the future. Fiber myelin loss appears to contribute to these long term behavioral dysfunctions and can be important for cognitive behavioral control necessary for complex APA learning. PMID:23505432
Methods for correcting tilt anisoplanatism in laser-guide-star-based multiconjugate adaptive optics.
Ellerbroek, B L; Rigaut, F
2001-10-01
Multiconjugate adaptive optics (MCAO) is a technique for correcting turbulence-induced phase distortions in three dimensions instead of two, thereby greatly expanding the corrected field of view of an adaptive optics system. This is accomplished with use of multiple deformable mirrors conjugate to distinct ranges in the atmosphere, with actuator commands computed from wave-front sensor (WFS) measurements from multiple guide stars. Laser guide stars (LGSs) must be used (at least for the forseeable future) to achieve a useful degree of sky coverage in an astronomical MCAO system. Much as a single LGS cannot be used to measure overall wave-front tilt, a constellation of multiple LGSs at a common range cannot detect tilt anisoplanatism. This error alone will significantly degrade the performance of a MCAO system based on a single tilt-only natural guide star (NGS) and multiple tilt-removed LGSs at a common altitude. We present a heuristic, low-order model for the principal source of tilt anisoplanatism that suggests four possible approaches to eliminating this defect in LGS MCAO: (i) tip/tilt measurements from multiple NGS, (ii) a solution to the LGS tilt uncertainty problem, (iii) additional higher-order WFS measurements from a single NGS, or (iv) higher-order WFS measurements from both sodium and Rayleigh LGSs at different ranges. Sample numerical results for one particular MCAO system configuration indicate that approach (ii), if feasible, would provide the highest degree of tilt anisoplanatism compensation. Approaches (i) and (iv) also provide very useful levels of performance and do not require unrealistically low levels of WFS measurement noise. For a representative set of parameters for an 8-m telescope, the additional laser power required for approach (iv) is on the order of 2 W per Rayleigh LGS.
Cregan, E F; Peeling, J; Corbett, D; Buchan, A M; Saunders, J; Auer, R N; Gao, M; Mccarthy, D J; Eisman, M S; Campbell, T M; Murray, R J; Stagnitto, M L; Palmer, G C
1997-12-01
[(S)-Alpha-phenyl-2-pyridine-ethanamine dihydrochloride] (ARL 15896AR) is a low affinity uncompetitive N-methyl-D-aspartic acid receptor antagonist that was tested in animal models of anoxia and ischemia. Pretreatment of rodents with ARL 15896AR extended survival time during exposure to hypoxia. With the rat four-vessel occlusion model of global ischemia (20 min), oral dosing commencing at reflow, resulted in significant protection of the CA1 hippocampal neurons. ARL 15896AR was, however, ineffective in the rat two-vessel occlusion model and in the gerbil models of forebrain ischemia, the latter due to an inability to attain suitable plasma levels. In the spontaneously hypertensive rat model of middle cerebral artery occlusion (MCAO) (2 hr plus 22 hr reflow), acute dosing with ARL 15896AR (i.p.) beginning from 30 min before or up to 1 hr post-MCAO significantly reduced cortical infarct volume. The ability of ARL 15896AR to influence infarct size, as well as functional correlates was examined in SHR after 90 min of MCAO. T2 weighted magnetic resonance images taken at 2 and 6 days post-MCAO revealed significantly smaller lesion sizes in the group receiving injections with ARL 15896AR beginning 30 min after occlusion. Spontaneously hypertensive rats were subsequently tested (30-42 days post-MCAO) and found to be deficient in skilled use of the forepaws (staircase test). The contralateral forepaw was most severely impaired, however, ARL 15896AR treatment prevented motor impairment in only the ipsilateral forepaw. Histopathological examination of cortical infarct size was unremarkable between treated and control rats. The findings indicate that ARL 15896AR exhibits neuroprotection in global and focal models of ischemia
Splenectomy Fails to Provide Long-Term Protection Against Ischemic Stroke.
Ran, Yuanyuan; Liu, Zongjian; Huang, Shuo; Shen, Jiamei; Li, Fengwu; Zhang, Wenxiu; Chen, Chen; Geng, Xiaokun; Ji, Zhili; Du, Huishan; Hu, Xiaoming
2018-06-01
Splenectomy before or immediately after stroke provides early brain protection. This study aims to explore the effect of splenectomy on long-term neurological recovery after stroke, which is currently lacking in the field. Adult male rats were randomized into splenectomy or sham groups and then subjected to 90 min of middle cerebral artery occlusion (MCAO). Spleen was removed right upon reperfusion or 3d after MCAO. Infarct volume, neurological functions, and peripheral immune cell populations were assessed up to 28d after stroke. The results show that delayed removal of spleen did not reduce brain tissue loss and showed no effect on sensorimotor function (Rotarod, beam balance, forelimb placing, grid walk, and adhesive removal tests) or cognitive function (Morris water maze). Spleen removal immediately upon reperfusion, although significantly reduced the infarct size and immune cell infiltration 3d after MCAO, also failed to promote long-term recovery. Flow cytometry analysis demonstrated that immediate splenectomy after MCAO resulted in a prolonged decrease in the percentage of CD3 + CD4 + and CD3 + CD8 + T cells in total lymphocytes as compared to non-splenectomy MCAO rats. In contrast, the percentage of CD3 - CD45RA + B cells was significantly elevated after splenectomy. As a result, the ratio of T/B cells was significantly reduced in stroke rats with splenectomy. In conclusion, delayed splenectomy failed to provide long-term protection to the ischemic brain or improve functional recovery. The acute neuroprotective effect achieved by early splenectomy after stroke cannot last for long term. This loss of neuroprotection might be related to the prolonged disturbance in the T cell to B cell ratio.
Imahori, Taichiro; Hosoda, Kohkichi; Nakai, Tomoaki; Yamamoto, Yusuke; Irino, Yasuhiro; Shinohara, Masakazu; Sato, Naoko; Sasayama, Takashi; Tanaka, Kazuhiro; Nagashima, Hiroaki; Kohta, Masaaki; Kohmura, Eiji
2017-05-04
The metabolic pathophysiology underlying ischemic stroke remains poorly understood. To gain insight into these mechanisms, we performed a comparative metabolic and transcriptional analysis of the effects of cerebral ischemia on the metabolism of the cerebral cortex using middle cerebral artery occlusion (MCAO) rat model. Metabolic profiling by gas-chromatography/mass-spectrometry analysis showed clear separation between the ischemia and control group. The decreases of fructose 6-phosphate and ribulose 5-phosphate suggested enhancement of the pentose phosphate pathway (PPP) during cerebral ischemia (120-min MCAO) without reperfusion. Transcriptional profiling by microarray hybridization indicated that the Toll-like receptor and mitogen-activated protein kinase (MAPK) signaling pathways were upregulated during cerebral ischemia without reperfusion. In relation to the PPP, upregulation of heat shock protein 27 (HSP27) was observed in the MAPK signaling pathway and was confirmed through real-time polymerase chain reaction. Immunoblotting showed a slight increase in HSP27 protein expression and a marked increase in HSP27 phosphorylation at serine 85 after 60-min and 120-min MCAO without reperfusion. Corresponding upregulation of glucose 6-phosphate dehydrogenase (G6PD) activity and an increase in the NADPH/NAD + ratio were also observed after 120-min MCAO. Furthermore, intracerebroventricular injection of ataxia telangiectasia mutated (ATM) kinase inhibitor (KU-55933) significantly reduced HSP27 phosphorylation and G6PD upregulation after MCAO, but that of protein kinase D inhibitor (CID755673) did not affect HSP27 phosphorylation. Consequently, G6PD activation via ischemia-induced HSP27 phosphorylation by ATM kinase may be part of an endogenous antioxidant defense neuroprotection mechanism during the earliest stages of ischemia. These findings have important therapeutic implications for the treatment of stroke. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schirmer, Mischa; Garrel, Vincent; Sivo, Gaetano; Marin, Eduardo; Carrasco, Eleazar R.
2017-11-01
Multi-conjugated adaptive optics (MCAO) yield nearly diffraction-limited images at 2 μm wavelengths. Currently, Gemini Multi-Conjugate Adaptive Optics System (GeMS)/Gemini South Adaptive Optics Imager (GSAOI) at Gemini South is the only MCAO facility instrument at an 8-m telescope. Using real data, and for the first time, we investigate the gain in depth and signal-to-noise ratios (S/N) when MCAO is employed for Ks-band observations of distant galaxies. Our analysis is based on the Frontier Fields cluster MACS J0416.1-2403, observed with GeMS/GSAOI (near diffraction-limited) and compared against Very Large Telescope/HAWK-I (natural seeing) data. Using galaxy number counts, we show that the substantially increased thermal background and lower optical throughput of the MCAO unit are fully compensated for by the wavefront correction because the galaxy images can be measured in smaller apertures with less sky noise. We also performed a direct comparison of the S/N of sources detected in both data sets. For objects with intrinsic angular sizes corresponding to half the HAWK-I image seeing, the gain in S/N is 40 per cent. Even smaller objects experience a boost in S/N by up to a factor of 2.5 despite our suboptimal natural guide star configuration. The depth of the near diffraction limited images is more difficult to quantify than that of seeing limited images, due to a strong dependence on the intrinsic source profiles. Our results emphasize the importance of cooled MCAO systems for Ks-band observations with future, extremely large telescopes.
Lapato, Andrew; Vandenbark, Arthur A.; Murphy, Stephanie J.; Saugstad, Julie A.; Offner, Halina
2014-01-01
Clinical stroke induces inflammatory processes leading to cerebral and splenic injury and profound peripheral immunosuppression. IL-10 expression is elevated during major CNS diseases and limits inflammation in the brain. Recent evidence demonstrated that transfer of IL-10+ B-cells reduced infarct volume in male C57BL/6J (wild-type, WT) recipient mice when given 24 h prior to or 4 h after middle cerebral artery occlusion (MCAO). The purpose of this study was to determine if passively transferred IL-10+ B-cells can exert therapeutic and immunoregulatory effects when injected 24 hours after MCAO induction in B-cell-sufficient male WT mice. The results demonstrated that IL-10+ B-cell treated mice had significantly reduced infarct volumes in the ipsilateral cortex and hemisphere and improved neurological deficits vs. Vehicle-treated control mice after 60 min occlusion and 96 h of reperfusion. The MCAO-protected B-cell recipient mice had less splenic atrophy and reduced numbers of activated, inflammatory T-cells, decreased infiltration of T-cells and a less inflammatory milieu in the ischemic hemispheres compared with Vehicle-treated control mice. These immunoregulatory changes occurred in concert with the predominant appearance of IL-10-secreting CD8+CD122+ Treg cells in both the spleen and the MCAO-affected brain hemisphere. This study for the first time demonstrates a major neuroprotective role for IL-10+ B-cells in treating MCAO in male WT mice at a time point well beyond the ~4 h tPA treatment window, leading to the generation of a dominant IL-10+CD8+CD122+ Treg population associated with spleen preservation and reduced CNS inflammation. PMID:25537181
Identification of ischemic regions in a rat model of stroke.
Popp, Anke; Jaenisch, Nadine; Witte, Otto W; Frahm, Christiane
2009-01-01
Investigations following stroke first of all require information about the spatio-temporal dimension of the ischemic core as well as of perilesional and remote affected tissue. Here we systematically evaluated regions differently impaired by focal ischemia. Wistar rats underwent a transient 30 or 120 min suture-occlusion of the middle cerebral artery (MCAO) followed by various reperfusion times (2 h, 1 d, 7 d, 30 d) or a permanent MCAO (1 d survival). Brains were characterized by TTC, thionine, and immunohistochemistry using MAP2, HSP72, and HSP27. TTC staining reliably identifies the infarct core at 1 d of reperfusion after 30 min MCAO and at all investigated times following 120 min and permanent MCAO. Nissl histology denotes the infarct core from 2 h up to 30 d after transient as well as permanent MCAO. Absent and attenuated MAP2 staining clearly identifies the infarct core and perilesional affected regions at all investigated times, respectively. HSP72 denotes perilesional areas in a limited post-ischemic time (1 d). HSP27 detects perilesional and remote impaired tissue from post-ischemic day 1 on. Furthermore a simultaneous expression of HSP72 and HSP27 in perilesional neurons was revealed. TTC and Nissl staining can be applied to designate the infarct core. MAP2, HSP72, and HSP27 are excellent markers not only to identify perilesional and remote areas but also to discriminate affected neuronal and glial populations. Moreover markers vary in their confinement to different reperfusion times. The extent and consistency of infarcts increase with prolonged occlusion of the MCA. Therefore interindividual infarct dimension should be precisely assessed by the combined use of different markers as described in this study.
Identification of Ischemic Regions in a Rat Model of Stroke
Popp, Anke; Jaenisch, Nadine; Witte, Otto W.; Frahm, Christiane
2009-01-01
Background Investigations following stroke first of all require information about the spatio-temporal dimension of the ischemic core as well as of perilesional and remote affected tissue. Here we systematically evaluated regions differently impaired by focal ischemia. Methodology/Principal Findings Wistar rats underwent a transient 30 or 120 min suture-occlusion of the middle cerebral artery (MCAO) followed by various reperfusion times (2 h, 1 d, 7 d, 30 d) or a permanent MCAO (1 d survival). Brains were characterized by TTC, thionine, and immunohistochemistry using MAP2, HSP72, and HSP27. TTC staining reliably identifies the infarct core at 1 d of reperfusion after 30 min MCAO and at all investigated times following 120 min and permanent MCAO. Nissl histology denotes the infarct core from 2 h up to 30 d after transient as well as permanent MCAO. Absent and attenuated MAP2 staining clearly identifies the infarct core and perilesional affected regions at all investigated times, respectively. HSP72 denotes perilesional areas in a limited post-ischemic time (1 d). HSP27 detects perilesional and remote impaired tissue from post-ischemic day 1 on. Furthermore a simultaneous expression of HSP72 and HSP27 in perilesional neurons was revealed. Conclusions/Significance TTC and Nissl staining can be applied to designate the infarct core. MAP2, HSP72, and HSP27 are excellent markers not only to identify perilesional and remote areas but also to discriminate affected neuronal and glial populations. Moreover markers vary in their confinement to different reperfusion times. The extent and consistency of infarcts increase with prolonged occlusion of the MCA. Therefore interindividual infarct dimension should be precisely assessed by the combined use of different markers as described in this study. PMID:19274095
Zhang, Haitao; Bi, Feng; Xiao, Chunlan; Liu, Jianxia; Wang, Zhixia; Liu, Jian-Ning; Zhang, Jing
2010-08-01
Tissue plasminogen activator (TPA) showed brain-protective activity within the first 15 min after cerebral ischemia in rats. To understand its molecular mechanism, TPA derivates were intracerebroventricularly administered at 15 min before, and 15, 90, 120 min after middle cerebral artery occlusion (MCAO) in rats. The reduction in mortality and cerebral infarction at 24 h was seen only with TPA administered at 15 min after MCAO. The down-regulation of endogenous TPA by the intracerebroventricular injection of TPA was found to be responsible for the protective effect on the integrity of blood-brain barrier after MCAO, as well as for the reduction in mortality and cerebral infarction. Moreover, for the first time we have found that the Kringle-2 domain is essential for the brain-protective activity of TPA.
Zhonghang, Xu; Tongtong, Liu; Wanshu, Guo
2018-01-01
Background/Aims Epigallocatechin-3-gallate (EGCG) has neuroprotective effects and the ability to resist amyloidosis. This study observed the protective effect of EGCG against neuronal injury in rat models of middle cerebral artery occlusion (MCAO) and investigated the mechanism of action of PI3K/AKT/eNOS signaling pathway. Methods Rat models of permanent MCAO were established using the suture method. Rat behavior was measured using neurological deficit score. Pathology and apoptosis were measured using HE staining and TUNEL. Oxidative stress and brain injury markers were examined using ELISA. Apoptosis-related proteins and PI3K/AKT/eNOS signaling pathway were determined using western blot assay and immunohistochemistry. Results EGCG decreased neurological function score, protected nerve cells, inhibited neuronal apoptosis, and inhibited oxidative stress injury and brain injury markers level after MCAO. EGCG reduced the apoptotic rate of neurons, increased the expression of Bcl-2, and decreased the expression of Caspase-3 and Bax. After LY294002 suppressed the PI3K pathway, the protective effect of EGCG decreased after administration of PI3K inhibitors. Conclusion EGCG has a protective effect on rat brain injury induced by MCAO, possibly by modulating the PI3K/AKT/eNOS signaling pathway. PMID:29770336
Preventive Effect of Cashew-Derived Protein Hydrolysate with High Fiber on Cerebral Ischemia
Thukham-mee, Wipawee; Wannanon, Panakaporn; Tiamkao, Somsak
2017-01-01
This study aimed to determine the protective effect of cashew nut-derived protein hydrolysate with high dietary fiber (AO) in cerebral ischemic rats induced by the occlusion of right middle cerebral artery (Rt.MCAO). Acute toxicity was determined and data showed that LD50 of AO > 5000 mg/kg BW. To determine the cerebroprotective effect of AO, male Wistar rats were orally given AO at doses of 2, 10, and 50 mg/kg for 14 days and subjected to Rt.MCAO. Brain infarction volume, neurological score, spatial memory, serum lipid profiles, and C-reactive protein together with the brain oxidative stress status were assessed. All doses of AO significantly decreased brain infarction in cortex, hippocampus, and striatum together with the decreased oxidative stress status. The improvement of spatial memory and serum C-reactive protein were also observed in MCAO rats which received AO at all doses. In addition, the decreased serum cholesterol, TG, and LDL but increased HDL were observed in MCAO rats which received high dose of AO. Taken all together, AO is the potential protectant against cerebral ischemia. The improvement of oxidative stress, inflammation, and dyslipidemia might play roles in the actions. However, further researches are required to understand the precise underlying mechanism. PMID:29457029
McConnell, Douglas J.; Afzal, Aqeela; Mocco, J
2011-01-01
Stroke is the third leading cause of death and the leading cause of disability in the world, with an estimated cost of near $70 billion in the United States in 20091,2. The intraluminal middle cerebral artery occlusion (MCAO) model was developed by Koizumi4 in 1986 to simulate this impactful human pathology in the rat. A modification of the MCAO method was later presented by Longa3. Both techniques have been widely used to identify molecular mechanisms of brain injury resulting from ischemic stroke and potential therapeutic modalities5. This relatively noninvasive method in rats has been extended to use in mice to take advantage of transgenic and knockout strains6,7. To model focal cerebral ischemia, an intraluminal suture is advanced via the internal carotid artery to occlude the base of the MCA. Retracting the suture after a specified period of time mimics spontaneous reperfusion, but the suture can also be permanently retained. This video will be demonstrating the two major approaches for performing intraluminal MCAO procedure in mice in a stepwise fashion, as well as providing insights for potential drawbacks and pitfalls. The ischemic brain tissue will subsequently be stained by 2,3,5-triphenyltetrazolium chloride (TTC) to evaluate the extent of cerebral infarction8. PMID:21587164
[Focal cerebral ischemia in rats with estrogen deficiency and endothelial dysfunction].
Litvinov, A A; Volotova, E V; Kurkin, D V; Logvinova, E O; Darmanyan, A P; Tyurenkov, I N
2017-01-01
To assess an effect of ovariectomy (OE) on the cerebral blood flow, endothelium-dependent vasodilation, neurological, cognitive and locomotor deficit as markers of brain damage after focal ischemia in rats. The study was conducted in 48 female Wistar rats. Ovariectomy was performed with ovaries and uterine body extirpation, cerebral ischemia was performed by middle cerebral artery occlusion (MCAO) in rats. To assess brain damage, Combs and Garcia scores, 'open field' test (OFT), 'extrapolatory escape test' (EET), 'passive avoidance test' (PAT), 'beam-walking test' were used. Cerebral blood flow was measured using ultrasonic flowmetry. After 7 days of MCAO, the cerebral blood flow in ovarioectomized animals was reduced by 20% compared to sham-ovariectomized animals. Ovariectomized animals with MCAO showed a three-fold endothelium-dependent vasodilation reduction (the reaction of cerebral vessels to the introduction of acetylcholine and N-L-arginine), indicating the presence of severe endothelial dysfunction. In ovarioectomized animals, the cerebral blood flow was reduced by 34% compared to sham-operated animals. MCAO and OE taken together resulted in more than 2-fold increase in neurological, motor disturbances, 3-fold decrease in motor activity of the animals in the OP test. Focal ischemia in ovarioectomized animals with endothelial dysfunction led to memory decrease by 1/5 fold in PAT and by 2-fold in EET.
Ferulic acid prevents cerebral ischemic injury-induced reduction of hippocalcin expression.
Koh, Phil-Ok
2013-07-01
Intracellular calcium overload is a critical pathophysiological factor in ischemic injury. Hippocalcin is a neuronal calcium sensor protein that buffers intracellular calcium levels and protects cells from apoptotic stimuli. Ferulic acid exerts a neuroprotective effect in cerebral ischemia through its anti-oxidant and anti-inflammation activity. This study investigated whether ferulic acid contributes to hippocalcin expression during cerebral ischemia and glutamate exposure-induced neuronal cell death. Rats were immediately treated with vehicle or ferulic acid (100 mg/kg, i.v.) after middle cerebral artery occlusion (MCAO). Brain tissues were collected 24 h after MCAO and followed by assessment of cerebral infarct. Ferulic acid reduced MCAO-induced infarct regions. A proteomics approach elucidated a decrease in hippocalcin in MCAO-operated animals, ferulic acid attenuates the injury-induced decrease in hippocalcin expression. Reverse transcription-polymerase chain reaction and Western blot analyses confirmed that ferulic acid prevents the injury-induced decrease in hippocalcin. In cultured HT22 hippocampal cells, glutamate exposure increased the intracellular Ca(2+) levels, whereas ferulic acid attenuated this increase. Moreover, ferulic acid attenuated the glutamate toxicity-induced decrease in hippocalcin expression. These findings can suggest the possibility that ferulic acid exerts a neuroprotective effect through modulating hippocalcine expression and regulating intracellular calcium levels. Copyright © 2013 Wiley Periodicals, Inc.
Gim, Sang-A; Sung, Jin-Hee; Shah, Fawad-Ali; Kim, Myeong-Ok
2013-01-01
Ferulic acid, a component of the plants Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort, exerts a neuroprotective effect by regulating various signaling pathways. This study showed that ferulic acid treatment prevents the injury-induced increase of collapsin response mediator protein 2 (CRMP-2) in focal cerebral ischemia. Glycogen synthase kinase-3β (GSK-3β) regulates CRMP-2 function through phosphorylation of CRMP-2. Moreover, the pro-apoptotic activity of GSK-3β is inactivated by phosphorylation by Akt. This study investigated whether ferulic acid modulates the expression of CRMP-2 and its upstream targets, Akt and GSK-3β, in focal cerebral ischemia. Male rats were treated immediately with ferulic acid (100 mg/kg, i.v.) or vehicle after middle cerebral artery occlusion (MCAO), and then cerebral cortices were collected 24 hr after MCAO. MCAO resulted in decreased levels of phospho-Akt and phospho-GSK-3β, while ferulic acid treatment prevented the decrease in the levels of these proteins. Moreover, phospho-CRMP-2 and CRMP-2 levels increased during MCAO, whereas ferulic acid attenuated these injury-induced increases. These results demonstrate that ferulic acid regulates the Akt/GSK-3β/CRMP-2 signaling pathway in focal cerebral ischemic injury, thereby protecting against brain injury. PMID:23825478
Melatonin Ameliorates Injury and Specific Responses of Ischemic Striatal Neurons in Rats
Ma, Yuxin; Feng, Qiqi; Ma, Jing; Feng, Zhibo; Zhan, Mali; OuYang, Lisi; Mu, Shuhua; Liu, Bingbing; Jiang, Zhuyi; Jia, Yu; Li, Youlan
2013-01-01
Studies have confirmed that middle cerebral artery occlusion (MCAO) causes striatal injury in which oxidative stress is involved in the pathological mechanism. Increasing evidence suggests that melatonin may have a neuroprotective effect on cerebral ischemic damage. This study aimed to examine the morphological changes of different striatal neuron types and the effect of melatonin on striatal injury by MCAO. The results showed that MCAO induced striatum-related dysfunctions of locomotion, coordination, and cognition, which were remarkably relieved with melatonin treatment. MCAO induced severe striatal neuronal apoptosis and loss, which was significantly decreased with melatonin treatment. Within the outer zone of the infarct, the number of Darpp-32+ projection neurons and the densities of dopamine-receptor-1 (D1)+ and dopamine-receptor-2 (D2)+ fibers were reduced; however, both parvalbumin (Parv)+ and choline acetyltransferase (ChAT)+ interneurons were not significantly decreased in number, and neuropeptide Y (NPY)+ and calretinin (Cr)+ interneurons were even increased. With melatonin treatment, the loss of projection neurons and characteristic responses of interneurons were notably attenuated. The present study demonstrates that the projection neurons are rather vulnerable to ischemic damage, whereas the interneurons display resistance and even hyperplasia against injury. In addition, melatonin alleviates striatal dysfunction, neuronal loss, and morphological transformation of interneurons resulting from cerebral ischemia. PMID:23686363
Identification of proteins in hyperglycemia and stroke animal models.
Sung, Jin-Hee; Shah, Fawad-Ali; Gim, Sang-Ah; Koh, Phil-Ok
2016-01-01
Stroke is a major cause of disability and death in adults. Diabetes mellitus is a metabolic disorder that strongly increases the risk of severe vascular diseases. This study compared changes in proteins of the cerebral cortex during ischemic brain injury between nondiabetic and diabetic animals. Adult male rats were injected with streptozotocin (40 mg/kg) via the intraperitoneal route to induce diabetes and underwent surgical middle cerebral artery occlusion (MCAO) 4 wk after streptozotocin treatment. Cerebral cortex tissues were collected 24 h after MCAO and cerebral cortex proteins were analyzed by two-dimensional gel electrophoresis and mass spectrometry. Several proteins were identified as differentially expressed between nondiabetic and diabetic animals. Among the identified proteins, we focused on the following metabolism-related enzymes: isocitrate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, adenosylhomocysteinase, pyruvate kinase, and glucose-6-phosphate isomerase (neuroleukin). Expression of these proteins was decreased in animals that underwent MCAO. Moreover, protein expression was reduced to a greater extent in diabetic animals than in nondiabetic animals. Reverse transcription-polymerase chain reaction analysis confirmed that the diabetic condition exacerbates the decrease in expression of metabolism-related proteins after MCAO. These results suggest that the diabetic condition may exacerbate brain damage during focal cerebral ischemia through the downregulation of metabolism-related proteins. Copyright © 2016 Elsevier Inc. All rights reserved.
Im, Doo Soon; Jeon, Jeong Wook; Lee, Jin Soo; Won, Seok Joon; Cho, Sung Ig; Lee, Yong Beom; Gwag, Byoung Joo
2012-05-21
Excess activation of ionotropic glutamate receptors and iron is believed to contribute to free radical production and neuronal death following hypoxic ischemia. We examined the possibility that both NMDA receptor activation and iron overload determine spatial and temporal patterns of free radical production after transient middle cerebral artery occlusion (tMCAO) in male Sprague-Dawley rats. Mitochondrial free radical (MFR) levels were maximally increased in neurons in the core at 1 h and 24 h after tMCAO. Early MFR production was blocked by administration of MK-801, an NMDA receptor antagonist, but not deferoxamine, an iron chelator. Neither MK-801 nor deferoxamine attenuated late MFR production in the core. Increased MFRs were observed in penumbral neurons within 6 h and gradually increased over 24 h after tMCAO. Slowly-evolving MFRs in the core and penumbra were accompanied by iron overload. Deferoxamine blocked iron overload but reduced MFR production only in the penumbra. Combined MK-801/deferoxamine reduced late MFR production in both core and penumbra in an additive manner. Combination therapy significantly ameliorated infarction compared with monotherapy. These findings suggest that the NMDA receptor activation and iron overload mediate late MFR production and infarction after tMCAO. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuan, Lu; Li, Yao; Li, Hangdao; Lu, Hongyang; Tong, Shanbao
2015-09-01
Rodent middle cerebral artery occlusion (MCAO) model is commonly used in stroke research. Creating a stable infarct volume has always been challenging for technicians due to the variances of animal anatomy and surgical operations. The depth of filament suture advancement strongly influences the infarct volume as well. We investigated the cerebral blood flow (CBF) changes in the affected cortex using laser speckle contrast imaging when advancing suture during MCAO surgery. The relative CBF drop area (CBF50, i.e., the percentage area with CBF less than 50% of the baseline) showed an increase from 20.9% to 69.1% when the insertion depth increased from 1.6 to 1.8 cm. Using the real-time CBF50 marker to guide suture insertion during the surgery, our animal experiments showed that intraoperative CBF-guided surgery could significantly improve the stability of MCAO with a more consistent infarct volume and less mortality.
Thermoluminescence properties of CaO powder obtained from chicken eggshells
NASA Astrophysics Data System (ADS)
Nagabhushana, K. R.; Lokesha, H. S.; Satyanarayana Reddy, S.; Prakash, D.; Veerabhadraswamy, M.; Bhagyalakshmi, H.; Jayaramaiah, J. R.
2017-09-01
Eggshell wastage has created serious problem in disposal of the food processing industry which has been triggered the thoughts of researchers to use wasted eggshells as good source of calcium. In the present work, calcium oxide (CaO) has been synthesized by combustion process in furnace (F-CaO) and microwave oven (M-CaO) using the source of chicken eggshells. The obtained F-CaO and M-CaO are characterized by XRD, SEM with EDX and thermoluminescence (TL) technique. XRD pattern of both the samples show cubic phase with crystallite size 45-52 nm. TL glow curves are recorded for various gamma radiation dose (300-4000 Gy). Two TL glows, a small peak at 424 K and stronger peak at 597 K are observed. TL response of M-CaO is 2.67 times higher than F-CaO sample. TL kinetic parameters are calculated by computerized curve deconvolution analysis (CCDA) and discussed.
Rapamycin preconditioning attenuates transient focal cerebral ischemia/reperfusion injury in mice.
Yin, Lele; Ye, Shasha; Chen, Zhen; Zeng, Yaoying
2012-12-01
Rapamycin, an mTOR inhibitor and immunosuppressive agent in clinic, has protective effects on traumatic brain injury and neurodegenerative diseases. But, its effects on transient focal ischemia/reperfusion disease are not very clear. In this study, we examined the effects of rapamycin preconditioning on mice treated with middle cerebral artery occlusion/reperfusion operation (MCAO/R). We found that the rapamycin preconditioning by intrahippocampal injection 20 hr before MCAO/R significantly improved the survival rate and longevity of mice. It also decreased the neurological deficit score, infracted areas and brain edema. In addition, rapamycin preconditioning decreased the production of NF-κB, TNF-α, and Bax, but not Bcl-2, an antiapoptotic protein in the ischemic area. From these results, we may conclude that rapamycin preconditioning attenuate transient focal cerebral ischemia/reperfusion injury and inhibits apoptosis induced by MCAO/R in mice.
Observations of starburst galaxies: Science and supporting technology
NASA Astrophysics Data System (ADS)
Laag, Edward Aric
In chapter 1 we report on the development of wavefront reconstruction and control algorithms for multi-conjugate adaptive optics (MCAO) and the results of testing them in the laboratory under conditions that simulate an 8 meter class telescope. The UCO/Lick Observatory Laboratory for Adaptive Optics Multi-Conjugate testbed allows us to test wide field of view adaptive optics systems as they might be instantiated in the near future on giant telescopes. In particular, we have been investigating the performance of MCAO using five laser beacons for wavefront sensing and a minimum variance algorithm for control of two conjugate deformable mirrors. We have demonstrated improved Strehl ratio and enlarged field of view performance when compared to conventional AO techniques. We have demonstrated improved MCAO performance with the implementation of a routine that minimizes the generalized isoplanatism when turbulent layers do not correspond to deformable mirror conjugate altitudes. Finally, we have demonstrated suitability of the system for closed-loop operation when configured to feed back conditional mean estimates of wavefront residuals rather than the directly measured residuals. This technique has recently been referred to as the "pseudo-open-loop" control law in the literature. Chapter 2 introduces the Multi-wavelength Extreme Starburst Sample (MESS), a new catalog of 138 star-forming galaxies (0.1 < z < 0.3) optically selected from the SDSS using emission line strength diagnostics to have SFR ≥ 50 M⊙ yr-1 based on a Kroupa IMF. The MESS was designed to complement samples of nearby star forming galaxies such as the luminous infrared galaxies (LIRGs), and ultraviolet luminous galaxies (UVLGs). Observations using the multiband imaging photometer (MIPS; 24, 70, and 160mum channels) on the Spitzer Space Telescope indicate the MESS galaxies have IR luminosities similar to those of LIRGs, with an estimated median LTIR ˜ 3 x 1011 L⊙ . The selection criteria for the MESS suggests they may be less obscured than typical far-IR selected galaxies with similar estimated SFRs. We estimate the SFRs based directly on luminosities to determine the agreement for these methods in the MESS.
Kelsen, Jesper; Kjaer, Katrine; Chen, Gang; Pedersen, Michael; Røhl, Lisbeth; Frøkiaer, Jørgen; Nielsen, Søren; Nyengaard, Jens R; Rønn, Lars Christian B
2006-12-06
Anti-inflammatory treatment affects ischemic damage and neurogenesis in rodent models of cerebral ischemia. We investigated the potential benefit of COX-2 inhibition with parecoxib in spontaneously hypertensive rats (SHRs) subjected to transient middle cerebral artery occlusion (tMCAo). Sixty-four male SHRs were randomized to 90 min of intraluminal tMCAo or sham surgery. Parecoxib (10 mg/kg) or isotonic saline was administered intraperitoneally (IP) during the procedure, and twice daily thereafter. Nineteen animals were euthanized after 24 hours, and each hemisphere was examined for mRNA expression of pro-inflammatory cytokines and COX enzymes by quantitative RT-PCR. Twenty-three tMCAo animals were studied with diffusion and T2 weighted MRI within the first 24 hours, and ten of the SHRs underwent follow-up MRI six days later. Thirty-three SHRs were given 5-bromo-2'-deoxy-uridine (BrdU) twice daily on Day 4 to 7 after tMCAo. Animals were euthanized on Day 8 and the brains were studied with free-floating immunohistochemistry for activated microglia (ED-1), hippocampal granule cell BrdU incorporation, and neuronal nuclei (NeuN). Infarct volume estimation was done using the 2D nucleator and Cavalieri principle on NeuN-stained coronal brain sections. The total number of BrdU+ cells in the dentate gyrus (DG) of the hippocampus was estimated using the optical fractionator. We found a significant reduction in infarct volume in parecoxib treated animals one week after tMCAo (p < 0.03). Cortical ADC values in the parecoxib group were markedly less increased on Day 8 (p < 0.01). Interestingly, the parecoxib treated rats were segregated into two subgroups, suggesting a responder vs. non-responder phenomenon. We found indications of mRNA up-regulation of IL-1beta, IL-6, TNF-alpha and COX-2, whereas COX-1 remained unaffected. Hippocampal granule cell BrdU incorporation was not affected by parecoxib treatment. Presence of ED-1+ activated microglia in the hippocampus was related to an increase in BrdU uptake in the DG. IP parecoxib administration during tMCAo was neuroprotective, as evidenced by a large reduction in mean infarct volume and a lower cortical ADC increment. Increased pro-inflammatory cytokine mRNA levels and hippocampal granule cell BrdU incorporation remained unaffected.
Neuroprotective Efficacy of an Aminopropyl Carbazole Derivative P7C3-A20 in Ischemic Stroke.
Wang, Shu-Na; Xu, Tian-Ying; Wang, Xia; Guan, Yun-Feng; Zhang, Sai-Long; Wang, Pei; Miao, Chao-Yu
2016-09-01
NAMPT is a novel therapeutic target of ischemic stroke. The aim of this study was to investigate the effect of a potential NAMPT activator, P7C3-A20, an aminopropyl carbazole derivative, on ischemic stroke. In vitro study, neuron protection effect of P7C3-A20 was investigated by co-incubation with primary neurons subjected to oxygen-glucose deprivation (OGD) or oxygen-glucose deprivation/reperfusion (OGD/R) injury. In vivo experiment, P7C3-A20 was administrated in middle cerebral artery occlusion (MCAO) rats and infarct volume was examined. Lastly, the brain tissue nicotinamide adenine dinucleotide (NAD) levels were detected in P7C3-A20 treated normal or MCAO mice. Cell viability, morphology, and Tuj-1 staining confirmed the neuroprotective effect of P7C3-A20 in OGD or OGD/R model. P7C3-A20 administration significantly reduced cerebral infarction in MCAO rats. Moreover, brain NAD levels were elevated both in normal and MCAO mice after P7C3-A20 treatment. P7C3-A20 has neuroprotective effect in cerebral ischemia. The study contributes to the development of NAMPT activators against ischemic stroke and expands the horizon of the neuroprotective effect of aminopropyl carbazole chemicals. © 2016 John Wiley & Sons Ltd.
Vaas, Markus; Enzmann, Gaby; Perinat, Therese; Siler, Ulrich; Reichenbach, Janine; Licha, Kai; Kipar, Anja; Rudin, Markus; Engelhardt, Britta; Klohs, Jan
2017-08-01
Near-infrared fluorescence (NIRF) imaging enables non-invasive monitoring of molecular and cellular processes in live animals. Here we demonstrate the suitability of NIRF imaging to investigate the neutrophil response in the brain after transient middle cerebral artery occlusion (tMCAO). We established procedures for ex vivo fluorescent labelling of neutrophils without affecting their activation status. Adoptive transfer of labelled neutrophils in C57BL/6 mice before surgery resulted in higher fluorescence intensities over the ischaemic hemisphere in tMCAO mice with NIRF imaging when compared with controls, corroborated by ex vivo detection of labelled neutrophils using fluorescence microscopy. NIRF imaging showed that neutrophils started to accumulate immediately after tMCAO, peaking at 18 h, and were still visible until 48 h after reperfusion. Our data revealed accumulation of neutrophils also in extracranial tissue, indicating damage in the external carotid artery territory in the tMCAO model. Antibody-mediated inhibition of α4-integrins did reduce fluorescence signals at 18 and 24, but not at 48 h after reperfusion, compared with control treatment animals. Antibody treatment reduced cerebral lesion volumes by 19%. In conclusion, the non-invasive nature of NIRF imaging allows studying the dynamics of neutrophil recruitment and its modulation by targeted interventions in the mouse brain after transient experimental cerebral ischaemia.
Vaas, Markus; Enzmann, Gaby; Perinat, Therese; Siler, Ulrich; Reichenbach, Janine; Licha, Kai; Kipar, Anja; Rudin, Markus; Engelhardt, Britta
2016-01-01
Near-infrared fluorescence (NIRF) imaging enables non-invasive monitoring of molecular and cellular processes in live animals. Here we demonstrate the suitability of NIRF imaging to investigate the neutrophil response in the brain after transient middle cerebral artery occlusion (tMCAO). We established procedures for ex vivo fluorescent labelling of neutrophils without affecting their activation status. Adoptive transfer of labelled neutrophils in C57BL/6 mice before surgery resulted in higher fluorescence intensities over the ischaemic hemisphere in tMCAO mice with NIRF imaging when compared with controls, corroborated by ex vivo detection of labelled neutrophils using fluorescence microscopy. NIRF imaging showed that neutrophils started to accumulate immediately after tMCAO, peaking at 18 h, and were still visible until 48 h after reperfusion. Our data revealed accumulation of neutrophils also in extracranial tissue, indicating damage in the external carotid artery territory in the tMCAO model. Antibody-mediated inhibition of α4-integrins did reduce fluorescence signals at 18 and 24, but not at 48 h after reperfusion, compared with control treatment animals. Antibody treatment reduced cerebral lesion volumes by 19%. In conclusion, the non-invasive nature of NIRF imaging allows studying the dynamics of neutrophil recruitment and its modulation by targeted interventions in the mouse brain after transient experimental cerebral ischaemia. PMID:27789786
Deep-level traps in lightly Si-doped n-GaN on free-standing m-oriented GaN substrates
NASA Astrophysics Data System (ADS)
Yamada, H.; Chonan, H.; Takahashi, T.; Yamada, T.; Shimizu, M.
2018-04-01
In this study, we investigated the deep-level traps in Si-doped GaN epitaxial layers by metal-organic chemical vapor deposition on c-oriented and m-oriented free-standing GaN substrates. The c-oriented and m-oriented epitaxial layers, grown at a temperature of 1000 °C and V/III ratio of 1000, contained carbon atomic concentrations of 1.7×1016 and 4.0×1015 cm-3, respectively. A hole trap was observed at about 0.89 eV above the valence band maximum by minority carrier transient spectroscopy. The trap concentrations in the c-oriented and m-oriented GaN epitaxial layers were consistent with the carbon atomic concentrations from secondary ion mass spectroscopy and the yellow luminescence intensity at 2.21 eV from photoluminescence. The trap concentrations in the m-oriented GaN epitaxial layers were lower than those in the c-oriented GaN. Two electron traps, 0.24 and 0.61 eV below the conduction band (EC) minimum, were observed in the c-oriented GaN epitaxial layer. In contrast, the m-oriented GaN epitaxial layer was free from the electron trap at EC - 0.24 eV, and the trap concentration at EC - 0.61 eV in the m-oriented GaN epitaxial layer was lower than that in the c-oriented GaN epitaxial layer. The m-oriented GaN epitaxial layer exhibited fewer hole and electron traps compared to the c-oriented GaN epitaxial layers.
2013-01-01
Background Emerging studies have demonstrated that pretreatment with electroacupuncture (EA) induces significant tolerance to focal cerebral ischemia. The present study seeks to determine the involvement of monocyte chemotactic protein-induced protein 1 (MCPIP1), a recently identified novel modulator of inflammatory reactions, in the cerebral neuroprotection conferred by EA pretreatment in the animal model of focal cerebral ischemia and to elucidate the mechanisms of EA pretreatment-induced ischemic brain tolerance. Methods Twenty-four hours after the end of the last EA pretreatment, focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 90 minutes in male C57BL/6 mice and MCPIP1 knockout mice. Transcription and expression of MCPIP1 gene was monitored by qRT-PCR, Western blot and immunohistochemistry. The neurobehavioral scores, infarction volumes, proinflammatory cytokines and leukocyte infiltration in brain and NF-κB signaling were evaluated after ischemia/reperfusion. Results MCPIP1 protein and mRNA levels significantly increased specifically in mouse brain undergoing EA pretreatment. EA pretreatment significantly attenuated the infarct volume, neurological deficits, upregulation of proinflammatory cytokines and leukocyte infiltration in the brain of wild-type mice after MCAO compared with that of the non-EA group. MCPIP1-deficient mice failed to evoke EA pretreatment-induced tolerance compared with that of the control MCPIP1 knockout group without EA treatment. Furthermore, the activation of NF-κB signaling was significantly reduced in EA-pretreated wild-type mice after MCAO compared to that of the non-EA control group and MCPIP1-deficient mice failed to confer the EA pretreatment-induced inhibition of NF-κB signaling after MCAO. Conclusions Our data demonstrated that MCPIP1 deficiency caused significant lack of EA pretreatment-induced cerebral protective effects after MCAO compared with the control group and that MCPIP1 is involved in EA pretreatment-induced delayed brain ischemia tolerance. PMID:23663236
Dong, P; Zhao, J; Zhang, Y; Dong, J; Zhang, L; Li, D; Li, L; Zhang, X; Yang, B; Lei, W
2014-09-05
Aging is associated with exacerbated brain injury after ischemic stroke. Herein, we explored the possible mechanisms underlying the age-associated exacerbated brain injury after ischemic stroke and determined whether therapeutic intervention with anesthetic post-conditioning would provide neuroprotection in aged rats. Male Fisher 344 rats (young, 4 months; aged, 24 months) underwent 2h of middle cerebral artery occlusion (MCAO) followed by 24-h reperfusion, with or without sevoflurane post-conditioning for 15 min immediately at the onset of reperfusion. Compared with young rats, aged rats showed larger infarct size, worse neurological scores and more TUNEL-positive cells in the penumbral cerebral cortex at 24h after MCAO. However, edema formation and motor coordination were similar in both groups. Sevoflurane reduced the infarct size, edema formation, and TUNEL-positive cells, and improved the neurological outcome in young rats but not in aged rats. Molecular studies revealed that basal expression of the anti-apoptotic molecule B-cell lymphoma-2 (Bcl-2) in the brain was lower in aged rats compared with young rats before MCAO, while basal expression of the pro-apoptotic molecule Bcl-2-associated X protein (Bax) showed similar levels in both groups. MCAO reduced Bcl-2 expression and increased Bax expression in both groups; however, Bax increase was more pronounced in aged rats. In young rats, sevoflurane reversed the above MCAO-induced changes. In contrast, sevoflurane failed to enhance Bcl-2 expression but decreased Bax expression in aged rats. These findings suggest that aging-associated reduction in basal Bcl-2 expression in the brain contributes to increased neuronal injury by enhancing cell apoptosis after ischemic stroke. Sevoflurane post-conditioning failed to provide neuroprotection in aged rats, probably due to its inability to increase Bcl-2 levels and prevent apoptosis in the brain. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Kim, Sang-Ho; Chung, Dae-Kyoo; Lee, Young Joon; Song, Chang-Hyun; Ku, Sae-Kwang
2016-07-21
Dangui-Jakyak-San (DJ) is a traditional Korean medicinal polyherb, prescribed typically in patients with insufficient blood supply in Eastern Asia. The DJ also has been reported to have neuroprotective effects in vitro and in vivo studies. The therapeutic potential of DJ was examined in stroke rat model, in comparison with donepezil, a reversible acetylcholinesterase inhibitor. Ischemic stroke rat model was induced by surgery of permanent occlusion of middle cerebral artery (pMCAO). The model was orally administered with distilled water (pMCAO control), donepezil at 10mg/kg (Donepezil) and DJ at 200, 100 and 50mg/kg (DJ 200, DJ 100 and DJ 50, respectively). Sham had the same surgery excepting for the pMCAO, and it was administered with distilled water (sham control). After the administration for 28 days, the groups of DJ exhibited dose-dependent reduction in infarct/defect volumes with improvement in sensorimotor and cognitive motor function, comparing to pMCAO control. The DJ treatments seemed to enhance antiapoptotic and antioxidant effects; increases in antiapoptotic expressions (STAT3 and Pim-1) and decreases in lipid peroxidation (MDA) together with increases in contents of endogenous antioxidant (GSH) and activities of antioxidant enzymes (catalase and SOD). The histopathological analyses revealed significant reduction in neuronal apoptosis (caspase-3 and PARP) and neuronal degradation with atrophy and degeneration, in the DJ treatments. Furthermore, the oxidative stresses (nitrotyrosine as an iNOS factor and 4-HNE as a marker of lipid peroxidation) were observed mild. Although the similar neuroprotective effects were observed, the body weight loss was scarcely alleviated in Donepezil comparing to pMCAO control. These suggest that DJ ameliorate the neurological dysfunction of cerebral ischemia through augmentation of antioxidant defense system and up-regulation of STAT3 and Pim-1. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Niaspan increases axonal remodeling after stroke in type 1 diabetes rats✩
Yan, Tao; Chopp, Michael; Ye, Xinchun; Liu, Zhongwu; Zacharek, Alex; Cui, Yisheng; Roberts, Cynthia; Buller, Ben; Chen, Jieli
2012-01-01
Background and objective We investigated axonal plasticity in the bilateral motor cortices and the long term therapeutic effect of Niaspan on axonal remodeling after stroke in type-1 diabetic (T1DM) rats. Experimental approaches T1DM was induced in young adult male Wistar rats via injection of streptozotocin. T1DM rats were subjected to 2 h transient middle cerebral artery occlusion (MCAo) and were treated with 40 mg/kg Niaspan or saline starting 24 h after MCAo and daily for 28 days. Anterograde tracing using biotinylated dextran amine (BDA) injected into the contralateral motor cortex was performed to assess axonal sprouting in the ipsilateral motor cortex area. Functional outcome, SMI-31 (a pan-axonal microfilament marker), Bielschowsky silver and synaptophysin expression were measured. In vitro studies using primary cortical neuron (PCN) cultures and in vivo BDA injection into the brain to anterogradely label axons and terminals were employed. Results Niaspan treatment of stroke in T1DM–MCAo rats significantly improved functional outcome after stroke and increased SMI-31, Bielschowsky silver and synaptophysin expression in the ischemic brain compared to saline treated T1DM–MCAo rats (p<0.05). Using BDA to anterograde label axons and terminals, Niaspan treatment significantly increased axonal density in ipsilateral motor cortex in T1DM–MCAo rats (p<0.05, n=7/group). Niacin treatment of PCN significantly increased Ang1 expression under high glucose condition. Niacin and Ang1 significantly increased neurite outgrowth, and anti-Ang1 antibody marginally attenuated Niacin induced neurite outgrowth (p=0.06, n=6/group) in cultured PCN under high glucose condition. Conclusion Niaspan treatment increased ischemic brain Ang1 expression and promoted axonal remodeling in the ischemic brain as well as improved functional outcome after stroke. Ang1 may partially contribute to Niaspan-induced axonal remodeling after stroke in T1DM-rats. PMID:22266016
Vogel, Curtis R; Yang, Qiang
2006-08-21
We present two different implementations of the Fourier domain preconditioned conjugate gradient algorithm (FD-PCG) to efficiently solve the large structured linear systems that arise in optimal volume turbulence estimation, or tomography, for multi-conjugate adaptive optics (MCAO). We describe how to deal with several critical technical issues, including the cone coordinate transformation problem and sensor subaperture grid spacing. We also extend the FD-PCG approach to handle the deformable mirror fitting problem for MCAO.
Flake Orientation Effects On Physical and Mechanical Properties of Sweetgum Flakeboard
T.F. Shupe; Chung-Yun Hse; E.W. Price
2001-01-01
Research was initiated to determine the effect of flake orientation on the physical and mechanical properties offlakeboard. The panel fabrication techniques investigated were single-layer panels with random and oriented flake distribution, three-layer, five-layer, and seven-layer panels. Single-layer oriented panels had panel directional property ratios of 11.8 and 12....
Regulation of body temperature and neuroprotection by endogenous interleukin-6 in cerebral ischemia.
Herrmann, Oliver; Tarabin, Victoria; Suzuki, Shigeaki; Attigah, Nicolas; Coserea, Irinel; Schneider, Armin; Vogel, Johannes; Prinz, Simone; Schwab, Stefan; Monyer, Hannah; Brombacher, Frank; Schwaninger, Markus
2003-04-01
Although the function of fever is still unclear, it is now beyond doubt that body temperature influences the outcome of brain damage. An elevated body temperature is often found in stroke patients and denotes a bad prognosis. However, the pathophysiologic basis and treatment options of elevated body temperature after stroke are still unknown. Cerebral ischemia rapidly induced neuronal interleukin-6 (IL-6) expression in mice. In IL-6-deficient mice, body temperature was markedly decreased after middle cerebral artery occlusion (MCAO), but infarct size was comparable to that in control mice. If body temperature was controlled by external warming after MCAO, IL-6-deficient mice had a reduced survival, worse neurologic status, and larger infarcts than control animals. In cell culture, IL-6 exerted an antiapoptotic and neuroprotective effect. These data suggest that IL-6 is a key regulator of body temperature and an endogenous neuroprotectant in cerebral ischemia. Neuroprotective properties apparently compensate for its pyretic action after MCAO and enhance the safety of this endogenous pyrogen.
Sheu, Joen-Rong; Chen, Zhih-Cherng; Jayakumar, Thanasekaran; Chou, Duen-Suey; Yen, Ting-Lin; Lee, Hsing-Ni; Pan, Szu-Han; Hsia, Chih-Hsuan; Yang, Chih-Hao; Hsieh, Cheng-Ying
2017-01-01
Thrombosis and stroke are major causes of disability and death worldwide. However, the regular antithrombotic drugs may have unsatisfactory results and side effects. Platonin, a cyanine photosensitizing dye, has been used to treat trauma, ulcers and some acute inflammation. Here, we explored the neuroprotective effects of platonin against middle cerebral artery occlusion (MCAO)-induced ischemic stroke in mice. Platonin(200 μg/kg) substantially reduced cerebral infarct volume, brain edema, neuronal cell death and neurological deficit scores, and improved the MCAO-reduced locomotor activity and rotarod performance. Platonin(5–10 μM) potently inhibited platelet aggregation and c-Jun NH2-terminal kinase (JNK) phosphorylation in collagen-activated platelets. The antiaggregation effect did not affect bleeding time but increased occlusion time in platonin(100 and 200 μg/kg)-treated mice. Platonin(2–10 μM) was potent in diminishing collagen- and Fenton reaction-induced ∙OH formation. Platonin(5–10 μM) also suppressed the expression of nitric oxide, inducible nitric oxide synthase, cyclooxygenase-2, interleukin-1β, and JNK phosphorylation in lipopolysaccharide-stimulated macrophages. MCAO-induced expression of 3-nitrotyrosine and Iba1 was apparently attenuated in platonin(200 μg/kg)-treated mice. In conclusion, platonin exhibited remarkable neuroprotective properties against MCAO-induced ischemia in a mouse model through its antiaggregation, antiinflammatory and antiradical properties. The observed therapeutic efficacy of platonin may consider being a novel medcine against ischemic stroke. PMID:28165057
Gaowa, Saren; Bao, Narisi; Da, Man; Qiburi, Qiburi; Ganbold, Tsogzolmaa; Chen, Lu; Altangerel, Altanzul; Temuqile, Temuqile; Baigude, Huricha
2018-05-16
Eerdun Wurile (EW) is one of the key Mongolian medicines for treatment of neurological and cardiological disorders. EW is ranked most regularly used Mongolian medicine in clinic. Components of EW which mainly originate from natural products are well defined and are unique to Mongolian medicine. Although the recipe of EW contains known neuroactive chemicals originated from plants, its mechanism of action has never been elucidated at molecular level. The objective of the present study is to explore the mechanism of neuroregenerative activity of EW by focusing on the regulation of gene expression in the brain of rat model of stroke. Rat middle cerebral artery occlusion (MCAO) models were treated with EW for 15 days. Then, total RNAs from the cerebral cortex of rat MCAO models treated with either EW or control (saline) were extracted and analyzed by transcriptome sequencing. Differentially expressed genes were analyzed for their functions during the recovery of ischemic stroke. The expression level of significantly differentially expressed genes such as growth factors, microglia markers and secretive enzymes in the lesion was further validated by RT-qPCR and immunohistochemistry. Previously identified neuroactive compounds, such as geniposide (Yu et al., 2009), myristicin (Shin et al., 1988), costunolide (Okugawa et al., 1996), toosendanin (Shi and Chen, 1999) were detected in EW formulation. Bederson scale indicated that the treatment of rat MCAO models with EW showed significantly lowered neurological deficits (p < 0.01). The regional cerebral blood circulation was also remarkably higher in rat MCAO models treated with EW compared to the control group. A total of 186 genes were upregulated in the lesion of rat MCAO models treated with EW compared to control group. Among them, growth factors such as Igf1 (p < 0.05), Igf2 (p < 0.01), Grn (p < 0.01) were significantly upregulated in brain after treatment of rat MCAO models with EW. Meanwhile, greatly enhanced expression of microglia markers, as well as complementary components and secretive proteases were also detected. Our data collectively indicated that EW enhances expression of growth factors including Igf1 and Igf2 in neurons and microglia, and may stimulate microglia polarization in the brain. The consequences of such activity include stimulation of neuron growth, hydrolysis and clearance of cell debris at the lesion, as well as the angiogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.
ROLE OF ENDOTHELIAL NITRIC OXIDE SYNTHETASE IN ARTERIOGENESIS AFTER STROKE IN MICE
CUI, X.; CHOPP, M.; ZACHAREK, A.; ZHANG, C.; ROBERTS, C.; CHEN, J.
2009-01-01
Arteriogenesis supports restored perfusion in the ischemic brain and improves long-term functional outcome after stroke. We investigate the role of endothelial nitric oxide synthetase (eNOS) and an NO donor, [(Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) aminio] diazen-1-ium-1, 2-diolate (DETA-NONOate), in promoting arteriogenesis after stroke. Adult wild-type (WT, n=18) and eNOS-knockout (eNOS-/-, n=36) mice were subjected to transient (2.5 hours) right middle cerebral artery occlusion (MCAo) and were treated with or without DETA-NONOate (0.4 mg/kg) 24 hours after MCAo. Functional evaluation was performed. Animals were sacrificed 3 days after MCAo for arterial cell culture studies, or 14 days for immunohistochemical analysis. Consistent with previous studies, eNOS-/- mice exhibited a higher mortality rate (p<0.05, n=18/group) and more severe neurological functional deficit after MCAo than WT mice (p<0.05, n=12/group). Decreased arteriogenesis, was evident in eNOS-/- mice compared with WT mice, as demonstrated by reduced vascular smooth muscle cell (VSMC) proliferation, arterial density and diameter in the ischemic brain. eNOS-/- mice treated with DETA-NONOate had a significantly decreased mortality rate and improved functional recovery, and exhibited enhanced arteriogenesis identified by increased VSMC proliferation, and upregulated arterial density and diameter compared to eNOS-/- mice after stroke (p<0.05, n=12/group). To elucidate the mechanisms underlying eNOS/NO mediated arteriogenesis, VSMC migration was measured in vitro. Arterial cell migration significantly decreased in the cultured common carotid artery (CCA) derived from eNOS-/- mice 3 days after MCAo compared to WT arterial cells. DETA-NONOate-treatment significantly attenuated eNOS-/--induced decrease of arterial cell migration compared to eNOS-/- control artery (p<0.05. n=6/group). Using VSMC culture, DETA-NONOate significantly increased VSMC migration, while inhibition of NOS significantly decreased VSMC migration (p<0.05. n=6/group). Our data indicated that eNOS not only promotes vascular dilation but also increases VSMC proliferation and migration, and thereby enhances arteriogenesis after stroke. Therefore, increase eNOS may play an important role in regulating of arteriogenesis after stroke. PMID:19154781
Role of endothelial nitric oxide synthetase in arteriogenesis after stroke in mice.
Cui, X; Chopp, M; Zacharek, A; Zhang, C; Roberts, C; Chen, J
2009-03-17
Arteriogenesis supports restored perfusion in the ischemic brain and improves long-term functional outcome after stroke. We investigate the role of endothelial nitric oxide synthetase (eNOS) and a nitric oxide (NO) donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1, 2-diolate (DETA-NONOate), in promoting arteriogenesis after stroke. Adult wild-type (WT, n=18) and eNOS-knockout (eNOS(-/-), n=36) mice were subjected to transient (2.5 h) right middle cerebral artery occlusion (MCAo) and were treated with or without DETA-NONOate (0.4 mg/kg) 24 h after MCAo. Functional evaluation was performed. Animals were sacrificed 3 days after MCAo for arterial cell culture studies, or 14 days for immunohistochemical analysis. Consistent with previous studies, eNOS(-/-) mice exhibited a higher mortality rate (P<0.05, n=18/group) and more severe neurological functional deficit after MCAo than WT mice (P<0.05, n=12/group). Decreased arteriogenesis, was evident in eNOS(-/-) mice compared with WT mice, as demonstrated by reduced vascular smooth muscle cell (VSMC) proliferation, arterial density and diameter in the ischemic brain. eNOS(-/-) mice treated with DETA-NONOate had a significantly decreased mortality rate and improved functional recovery, and exhibited enhanced arteriogenesis identified by increased VSMC proliferation, and upregulated arterial density and diameter compared to eNOS(-/-) mice after stroke (P<0.05, n=12/group). To elucidate the mechanisms underlying eNOS/NO mediated arteriogenesis, VSMC migration was measured in vitro. Arterial cell migration significantly decreased in the cultured common carotid artery (CCA) derived from eNOS(-/-) mice 3 days after MCAo compared to WT arterial cells. DETA-NONOate-treatment significantly attenuated eNOS(-/-)-induced decrease of arterial cell migration compared to eNOS(-/-) control artery (P<0.05; n=6/group). Using VSMC culture, DETA-NONOate significantly increased VSMC migration, while inhibition of NOS significantly decreased VSMC migration (P<0.05; n=6/group). Our data indicated that eNOS not only promotes vascular dilation but also increases VSMC proliferation and migration, and thereby enhances arteriogenesis after stroke. Therefore, increase eNOS may play an important role in regulating of arteriogenesis after stroke.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chia-Che; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; Agricultural Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
2011-11-15
This study aimed to explore the mechanisms by which prodigiosin protects against hypoxia-induced oxidative/nitrosative brain injury induced by middle cerebral artery occlusion/reperfusion (MCAo/r) injury in mice. Hypoxia in vitro was modeled using oxygen-glucose deprivation (OGD) followed by reoxygenation of BV-2 microglial cells. Our results showed that treatment of mice that have undergone MCAo/r injury with prodigiosin (10 and 100 {mu}g/kg, i.v.) at 1 h after hypoxia ameliorated MCAo/r-induced oxidative/nitrosative stress, brain infarction, and neurological deficits in the mice, and enhanced their survival rate. MCAo/r induced a remarkable production in the mouse brains of reactive oxygen species (ROS) and a significantmore » increase in protein nitrosylation; this primarily resulted from enhanced expression of NADPH oxidase 2 (gp91{sup phox}), inducible nitric oxide synthase (iNOS), and the infiltration of CD11b leukocytes due to breakdown of blood-brain barrier (BBB) by activation of nuclear factor-kappa B (NF-{kappa}B). All these changes were significantly diminished by prodigiosin. In BV-2 cells, OGD induced ROS and nitric oxide production by up-regulating gp91{sup phox} and iNOS via activation of the NF-{kappa}B pathway, and these changes were suppressed by prodigiosin. In conclusion, our results indicate that prodigiosin reduces gp91{sup phox} and iNOS expression possibly by impairing NF-{kappa}B activation. This compromises the activation of microglial and/or inflammatory cells, which then, in turn, mediates prodigiosin's protective effect in the MCAo/r mice. -- Highlights: Black-Right-Pointing-Pointer Prodigiosin ameliorated brain infarction and deficits. Black-Right-Pointing-Pointer Prodigiosin protected against hypoxia/reperfusion-induced brain injury. Black-Right-Pointing-Pointer Prodigiosin diminished oxidative/nitrosativestress and leukocytes infiltration. Black-Right-Pointing-Pointer Prodigiosin reduced BBB breakdown. Black-Right-Pointing-Pointer Prodigiosin down-regulated gp91{sup phox} and iNOS by inhibiting NF-{kappa}B activation.« less
Huang, Y C; Tzeng, W S; Wang, C C; Cheng, B C; Chang, Y K; Chen, H H; Lin, P C; Huang, T Y; Chuang, T J; Lin, J W; Chang, C P
2013-09-01
This study aimed to further investigate the effects of agmatine on brain edema in the rats with middle cerebral artery occlusion (MCAO) injury using magnetic resonance imaging (MRI) monitoring and biochemical and histopathologic evaluation. Following surgical induction of MCAO for 90min, agmatine was injected 5min after beginning of reperfusion and again once daily for the next 3 post-operative days. The events during ischemia and reperfusion were investigated by T2-weighted images (T2WI), serial diffusion-weighted images (DWI), calculated apparent diffusion coefficient (ADC) maps and contrast-enhanced T1-weighted images (CE-T1WI) during 3h-72h in a 1.5T Siemens MAGNETON Avanto Scanner. Lesion volumes were analyzed in a blinded and randomized manner. Triphenyltetrazolium chloride (TTC), Nissl, and Evans Blue stainings were performed at the corresponding sections. Increased lesion volumes derived from T2WI, DWI, ADC, CE-T1WI, and TTC all were noted at 3h and peaked at 24h-48h after MCAO injury. TTC-derived infarct volumes were not significantly different from the T2WI, DWI-, and CE-T1WI-derived lesion volumes at the last imaging time (72h) point except for significantly smaller ADC lesions in the MCAO model (P<0.05). Volumetric calculation based on TTC-derived infarct also correlated significantly stronger to volumetric calculation based on last imaging time point derived on T2WI, DWI or CE-T1WI than ADC (P<0.05). At the last imaging time point, a significant increase in Evans Blue extravasation and a significant decrease in Nissl-positive cells numbers were noted in the vehicle-treated MCAO injured animals. The lesion volumes derived from T2WI, DWI, CE-T1WI, and Evans blue extravasation as well as the reduced numbers of Nissl-positive cells were all significantly attenuated in the agmatine-treated rats compared with the control ischemia rats (P<0.05). Our results suggest that agmatine has neuroprotective effects against brain edema on a reperfusion model after transient cerebral ischemia. Copyright © 2013 Elsevier Inc. All rights reserved.
Shimada, Yoshiaki; Shimura, Hideki; Tanaka, Ryota; Yamashiro, Kazuo; Koike, Masato; Uchiyama, Yasuo; Urabe, Takao; Hattori, Nobutaka
2018-01-01
Loss of integrity of the blood-brain barrier (BBB) in ischemic stroke victims initiates a devastating cascade of events causing brain damage. Maintaining the BBB is important to preserve brain function in ischemic stroke. Unfortunately, recombinant tissue plasminogen activator (tPA), the only effective fibrinolytic treatment at the acute stage of ischemic stroke, also injures the BBB and increases the risk of brain edema and secondary hemorrhagic transformation. Thus, it is important to identify compounds that maintain BBB integrity in the face of ischemic injury in patients with stroke. We previously demonstrated that intravenously injected phosphorylated recombinant heat shock protein 27 (prHSP27) protects the brains of mice with transient middle cerebral artery occlusion (tMCAO), an animal stroke-model. Here, we determined whether prHSP27, in addition to attenuating brain injury, also decreases BBB damage in hyperglycemic tMCAO mice that had received tPA. After induction of hyperglycemia and tMCAO, we examined 4 treatment groups: 1) bovine serum albumin (BSA), 2) prHSP27, 3) tPA, 4) tPA plus prHSP27. We examined the effects of prHSP27 by comparing the BSA and prHSP27 groups and the tPA and tPA plus prHSP27 groups. Twenty-four hours after injection, prHSP27 reduced infarct volume, brain swelling, neurological deficits, the loss of microvessel proteins and endothelial cell walls, and mortality. It also reduced the rates of hemorrhagic transformation, extravasation of endogenous IgG, and MMP-9 activity, signs of BBB damage. Therefore, prHSP27 injection attenuated brain damage and preserved the BBB in tPA-injected, hyperglycemic tMCAO experimental stroke-model mice, in which the BBB is even more severely damaged than in simple tMCAO mice. The attenuation of brain damage and BBB disruption in the presence of tPA suggests the effectiveness of prHSP27 and tPA as a combination therapy. prHSP27 may be a novel therapeutic agent for ischemic stroke patients whose BBBs are injured following tPA injections.
Oriented conductive oxide electrodes on SiO2/Si and glass
Jia, Quanxi; Arendt, Paul N.
2001-01-01
A thin film structure is provided including a silicon substrate with a layer of silicon dioxide on a surface thereof, and a layer of cubic oxide material deposited upon the layer of silicon dioxide by ion-beam-assisted-deposition, said layer of cubic oxide material characterized as biaxially oriented. Preferably, the cubic oxide material is yttria-stabilized zirconia. Additional thin layers of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide are deposited upon the layer of yttria-stabilized zirconia. An intermediate layer of cerium oxide is employed between the yttria-stabilized zirconia layer and the lanthanum strontium cobalt oxide layer. Also, a layer of barium strontium titanium oxide can be upon the layer of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide. Also, a method of forming such thin film structures, including a low temperature deposition of a layer of a biaxially oriented cubic oxide material upon the silicon dioxide surface of a silicon dioxide/silicon substrate is provided.
Lu, Yan; Zhao, Haijun; Wang, Yuan; Han, Bingbing; Wang, Tong; Zhao, Hong; Cui, Kemi; Wang, Shijun
2015-08-01
Cerebral ischemia is one of the common diseases treated by electro-acupuncture (EA). Although the clinical efficacy has been widely affirmed, the mechanisms of action leading to the health benefits are not understood. In this study, the role of EA in modulating the lactate energy metabolism and lactate transportation was explored on the middle cerebral artery occlusion (MCAO) ischemic rat model. Repeated EA treatments once daily for 7 days were applied to the MCAO rats and neurological function evaluation was performed. Brain tissues were harvested for lactate concentration examination, immunohistochemical staining, Western blot and qRT-PCR analyses for the expressions of lactate transporter (monocarboxylate transporter 1, MCT1) and glial fibrillary acidic protein (GFAP). The animal behavioral tests showed that the 7-day EA treatments significantly promoted the recovery of neurological deficits in the MCAO rats, which correlated with the enhanced lactate energy metabolism in the ischemic brain. In the cortical ischemic area of the MCAO rats, EA treatments led to the activation of astrocytes, and induced a further increase of lactate transporter (monocarboxylate transporter 1, MCT1) expression in astrocytes at both protein and mRNA levels. Our results suggest that the EA treatments activated lactate metabolism in the resident astrocytes around the ischemic area and up-regulated the expression of MCT1 in these astrocytes which facilitated the transfer of intracellular lactate to extracellular domain to be utilized by injured neurons to improve the neurological deficit. Copyright © 2015 Elsevier Inc. All rights reserved.
Harada, Shinichi; Fujita-Hamabe, Wakako; Tokuyama, Shogo
2010-09-10
5'-AMP-activated protein kinase (AMPK) is a serine/threonine kinase that plays a key role in energy homeostasis. Recently, it was reported that centrally activated AMPK is involved in the development of ischemic neuronal damage, while the effect of peripherally activated AMPK on ischemic neuronal damage is not known. In addition, we have previously reported that the development of post-ischemic glucose intolerance could be one of the triggers for the aggravation of neuronal damage. In this study, we focused on effect of activation of peripheral or central AMPK on the development of ischemic neuronal damage. Male ddY mice were subjected to 2 h of middle cerebral artery occlusion (MCAO). Neuronal damage was estimated by histological and behavioral analysis after MCAO. In the liver and skeletal muscle, AMPK activity was not affected by MCAO. But, application of intraperitoneal metformin (250 mg/kg), an AMPK activator, significantly suppressed the development of post-ischemic glucose intolerance and ischemic neuronal damage without alteration of central AMPK activity. On the other hand, application of intracerebroventricular metformin (25, 100 microg/mouse) significantly exacerbated the development of neuronal damage observed on day 1 after MCAO, in a dose-dependent manner. These effects were significantly blocked by compound C, a specific AMPK inhibitor. These results suggest that central AMPK was activated by ischemic stress per se, however, peripheral AMPK was not altered. Furthermore, the regulation of post-ischemic glucose intolerance by activation of peripheral AMPK is of assistance for the suppression of cerebral ischemic neuronal damage. 2010 Elsevier B.V. All rights reserved.
Surles-Zeigler, Monique C; Li, Yonggang; Distel, Timothy J; Omotayo, Hakeem; Ge, Shaokui; Ford, Byron D
2018-01-01
Ischemic stroke is a major cause of mortality in the United States. We previously showed that neuregulin-1 (NRG1) was neuroprotective in rat models of ischemic stroke. We used gene expression profiling to understand the early cellular and molecular mechanisms of NRG1's effects after the induction of ischemia. Ischemic stroke was induced by middle cerebral artery occlusion (MCAO). Rats were allocated to 3 groups: (1) control, (2) MCAO and (3) MCAO + NRG1. Cortical brain tissues were collected three hours following MCAO and NRG1 treatment and subjected to microarray analysis. Data and statistical analyses were performed using R/Bioconductor platform alongside Genesis, Ingenuity Pathway Analysis and Enrichr software packages. There were 2693 genes differentially regulated following ischemia and NRG1 treatment. These genes were organized by expression patterns into clusters using a K-means clustering algorithm. We further analyzed genes in clusters where ischemia altered gene expression, which was reversed by NRG1 (clusters 4 and 10). NRG1, IRS1, OPA3, and POU6F1 were central linking (node) genes in cluster 4. Conserved Transcription Factor Binding Site Finder (CONFAC) identified ETS-1 as a potential transcriptional regulator of NRG1 suppressed genes following ischemia. A transcription factor activity array showed that ETS-1 activity was increased 2-fold, 3 hours following ischemia and this activity was attenuated by NRG1. These findings reveal key early transcriptional mechanisms associated with neuroprotection by NRG1 in the ischemic penumbra.
Rapamycin ameliorates brain metabolites alterations after transient focal ischemia in rats.
Chauhan, Anjali; Sharma, Uma; Jagannathan, Naranamangalam R; Gupta, Yogendra Kumar
2015-06-15
Rapamycin has been shown to protect against middle cerebral artery occlusion (MCAo) induced ischemic injury. In this study, the neuroprotective effect of rapamycin on the metabolic changes induced by MCAo was evaluated using nuclear magnetic resonance (NMR) spectroscopy of brain tissues. MCAo in rats was induced by insertion of nylon filament. One hour after ischemia, rapamycin (250 µg/kg, i.p.) in dimethyl sulfoxide was administered. Reperfusion was done 2h after ischemia. Twenty-four hours after ischemia phospholipase A2 (PLA2) levels and metabolic changes were assessed. Perchloric acid extraction was performed on the brain of all animals (n=7; sham, vehicle; DMSO and rapamycin 250 µg/kg) and the various brain metabolites were assessed by NMR spectroscopy. In all 44 metabolites were assigned in the proton NMR spectrum of rat brain tissues. In the vehicle group, we observed increased lactate levels and decreased levels of glutamate/glutamine, choline containing compounds, creatine/phosphocreatine (Cr/PCr), taurine, myo-inositol, γ-amino butryic acid (GABA), N-aspartyl aspartate (NAA), purine and pyrimidine metabolites. In rapamycin treated rats, there was increase in the levels of choline containing compounds, NAA, myo-inositol, glutamate/glutamine, GABA, Cr/PCr and taurine as compared to those of vehicle control (P<0.05). Rapamycin treatment reduced PLA2 levels as compared to vehicle group (P<0.05). Our findings indicated that rapamycin reduced the increased PLA2 levels and altered brain metabolites after MCAo. These protective effects might be attributed to its effect on cell membrane metabolism; glutamate induced toxicity and calcium homeostasis in stroke. Copyright © 2015 Elsevier B.V. All rights reserved.
Sood, Abhilasha; Mehrotra, Arpit; Dhawan, Devinder K; Sandhir, Rajat
2018-04-18
Stroke is an increasingly prevalent clinical condition and second leading cause of death globally. The present study evaluated the therapeutic potential of Indian Ginseng, also known as Withania somnifera (WS), supplementation on middle cerebral artery occlusion (MCAO) induced mitochondrial dysfunctions in experimental model of ischemic stroke. Stroke was induced in animals by occluding the middle cerebral artery, followed by reperfusion injury. Ischemia reperfusion injury resulted in increased oxidative stress indicated by increased reactive oxygen species and protein carbonyl levels; compromised antioxidant system; in terms of reduced superoxide dismutase and catalase activity, along with reduction in GSH levels and the redox ratio, impaired mitochondrial functions and enhanced expression of apoptosis markers. Ischemia reperfusion injury induced mitochondrial dysfunctions in terms of (i) reduced activity of the mitochondrial respiratory chain enzymes, (ii) reduced histochemical staining of complex-II and IV, (iii) reduced in-gel activity of mitochondrial complex-I to V, (iv) mitochondrial structural changes in terms of increased mitochondrial swelling, reduced mitochondrial membrane potential and ultrastructural changes. Additionally, an increase in the activity of caspase-3 and caspase-9 was also observed, along with altered expression of apoptotic proteins Bcl-2 and Bax in MCAO animals. MCAO animals also showed significant impairment in cognitive functions assessed using Y maze test. WS pre-supplementation, on the other hand ameliorated MCAO induced oxidative stress, mitochondrial dysfunctions, apoptosis and cognitive impairments. The results show protective effect of WS pre-supplementation in ischemic stroke and are suggestive of its potential application in stroke management.
Kang, Byeong-Teck; Jang, Dong-Pyo; Gu, Su-Hyun; Lee, Jong-Hwan; Jung, Dong-In; Lim, Chae-Young; Kim, Ha-Jung; Kim, Young-Bo; Kim, Hyung-Joong; Woo, Eung-Je; Cho, Zang-Hee; Park, Hee-Myung
2009-01-01
The purpose of this study was to evaluate the diagnostic value of magnetic resonance imaging (MRI) and assess the correlation between the volume of the ischemic lesion and neurobehavioral status during the subacute stage of ischemic stroke. Ischemic stroke was induced in 6 healthy laboratory beagles through permanent occlusion of the middle cerebral artery (MCAO). T2-weighted and fluid-attenuated inversion recovery (FLAIR) imaging, diffusion-weighted imaging (DWI), measurement of the apparent diffusion coefficient (ADC) ratio, and neurobehavioral evaluation were performed 3 times serially by using a 1.5-T MR system: before and 3 and 10 d after MCAO. Ischemic lesions demonstrated T2 hyperintensity, FLAIR hyperintensity, and DWI hyperintensity. The ADC ratio was decreased initially but then was increased at 10 d after MCAO. Ischemic lesion volumes on T2-weighted and FLAIR imaging were not significantly different from those on DWI. The lesion volume and neurobehavioral score showed strong correlation. Our results suggest that conventional MRI may be a reliable diagnostic tool during the subacute stage of canine ischemic stroke. PMID:19887030
Kalman filter based control for Adaptive Optics
NASA Astrophysics Data System (ADS)
Petit, Cyril; Quiros-Pacheco, Fernando; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry
2004-12-01
Classical Adaptive Optics suffer from a limitation of the corrected Field Of View. This drawback has lead to the development of MultiConjugated Adaptive Optics. While the first MCAO experimental set-ups are presently under construction, little attention has been paid to the control loop. This is however a key element in the optimization process especially for MCAO systems. Different approaches have been proposed in recent articles for astronomical applications : simple integrator, Optimized Modal Gain Integrator and Kalman filtering. We study here Kalman filtering which seems a very promising solution. Following the work of Brice Leroux, we focus on a frequential characterization of kalman filters, computing a transfer matrix. The result brings much information about their behaviour and allows comparisons with classical controllers. It also appears that straightforward improvements of the system models can lead to static aberrations and vibrations filtering. Simulation results are proposed and analysed thanks to our frequential characterization. Related problems such as model errors, aliasing effect reduction or experimental implementation and testing of Kalman filter control loop on a simplified MCAO experimental set-up could be then discussed.
Calibration of the MCAO Canopus Bench
NASA Astrophysics Data System (ADS)
Garcia-Rissmann, Aurea; Rigaut, François; Bec, Matthieu; Boccas, Maxime; Galvez, Ramon; Gausachs, Gaston; Gratadour, Damien; Neichel, Benoit
The final phase of implementation of all optical components, as well as their integration and tests on the Canopus MCAO bench is currently underway. We present here a detailed description of the LGS and NGS WFS calibration sequences implemented through MYST (MCAO Yorick Smart Tool), a yorick+python+glade software package developed in-house which allows multiple users to control and monitor the bench remotely over the network using EPICS commands. A fine tuning of the optical setup and a better understanding of the flexure/temperature dependencies is being carried out and will allow us to build the many look-up tables to be eventually used by the system (e.g. telescope primary and secondary mirrors). Preliminary work on non-common path aberrations to account for the static aberrations in the central 60 arcsec science field of view (FoV) has been done iteratively using a science focal plane wavefront sensor and has shown good results both in individual directions as well as simultaneously over the entire FoV, the latter using the tomographic approach (presented in another paper in this conference).
Song, Chengfu; Zhao, Xiangdong
2018-05-15
In patients with cerebral infarction (CI), elevated serum uric acid (UA) level may exacerbate the occurrence and development of carotid atherosclerosis (AS). Our study intended to explore the underlying mechanism. We enrolled 86 patients with CI, and divided them into four groups: Non-AS, AS-mild, AS-moderate, and AS-severe groups; the levels of UA and oxidative stress-related factors in serum were detected. The middle cerebral artery occlusion (MCAO) model was used to stimulate CI in rats, and different doses of UA were administrated. The levels of oxidative stress-related factors in serum were detected. Hematoxylin & eosin (H&E) staining was used to observe the morphological alterations, and the apoptotic cell death detection kit was used to detect apoptotic cells. Increased UA concentration and enhanced oxidative stress were found in AS patients. H&E staining results showed that UA treatment exacerbated morphological damage in rats with MCAO, promoted oxidative stress, and enhanced vascular endothelial cell apoptosis in rats with MCAO. © 2017 The Author(s).
Large-scale fabrication of vertically aligned ZnO nanowire arrays
Wang, Zhong L; Das, Suman; Xu, Sheng; Yuan, Dajun; Guo, Rui; Wei, Yaguang; Wu, Wenzhuo
2013-02-05
In a method for growing a nanowire array, a photoresist layer is placed onto a nanowire growth layer configured for growing nanowires therefrom. The photoresist layer is exposed to a coherent light interference pattern that includes periodically alternately spaced dark bands and light bands along a first orientation. The photoresist layer exposed to the coherent light interference pattern along a second orientation, transverse to the first orientation. The photoresist layer developed so as to remove photoresist from areas corresponding to areas of intersection of the dark bands of the interference pattern along the first orientation and the dark bands of the interference pattern along the second orientation, thereby leaving an ordered array of holes passing through the photoresist layer. The photoresist layer and the nanowire growth layer are placed into a nanowire growth environment, thereby growing nanowires from the nanowire growth layer through the array of holes.
A morphological basis for orientation tuning in primary visual cortex.
Mooser, François; Bosking, William H; Fitzpatrick, David
2004-08-01
Feedforward connections are thought to be important in the generation of orientation-selective responses in visual cortex by establishing a bias in the sampling of information from regions of visual space that lie along a neuron's axis of preferred orientation. It remains unclear, however, which structural elements-dendrites or axons-are ultimately responsible for conveying this sampling bias. To explore this question, we have examined the spatial arrangement of feedforward axonal connections that link non-oriented neurons in layer 4 and orientation-selective neurons in layer 2/3 of visual cortex in the tree shrew. Target sites of labeled boutons in layer 2/3 resulting from focal injections of biocytin in layer 4 show an orientation-specific axial bias that is sufficient to confer orientation tuning to layer 2/3 neurons. We conclude that the anisotropic arrangement of axon terminals is the principal source of the orientation bias contributed by feedforward connections.
Substrate Structures For Growth Of Highly Oriented And/Or Epitaxial Layers Thereon
Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Jia, Quanxi
2005-07-26
A composite substrate structure including a substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer is provided together with additional layers such as one or more layers of a buffer material upon the oriented cubic oxide material layer. Jc's of 2.3×106 A/cm2 have been demonstrated with projected Ic's of 320 Amperes across a sample 1 cm wide for a superconducting article including a flexible polycrystalline metallic substrate, an inert oxide material layer upon the surface of the flexible polycrystalline metallic substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the layer of the inert oxide material, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer, a layer of a buffer material upon the oriented cubic oxide material layer, and, a top-layer of a high temperature superconducting material upon the layer of a buffer material.
Neuronal Sodium Channels in Neurodegeneration and Neuroprotection
2002-06-01
following 2 h MCAo/ reperfusion injury Group’ Baselineb 2 h 4 h 6 h $ 24 1h Vehicle 37.0±0.7 38.3±0.7 37.1 ±0.8 37.5 ±0.7 36.6±0.8 RS (0.01 mg/kg) 36.4-±0.3...brain injury caused by middle cerebral neuronal cell death caused by ischemia results from artery occlusion (MCAo) for 2h followed by reperfusion a...expression following cerebral ischemia study, was delayed post- injury (i.e. > 2 -6h post- involves the up-regulation of several gene families injury ). This
2014-01-01
Background our objective was to examine the plasma levels of three biological markers involved in cerebral ischemia (IL-6, glutamate and TNF-alpha) in stroke patients and compare them with two different rat models of focal ischemia (embolic stroke model- ES and permanent middle cerebral artery occlusion ligation model-pMCAO) to evaluate which model is most similar to humans. Secondary objectives: 1) to analyze the relationship of these biological markers with the severity, volume and outcome of the brain infarction in humans and the two stroke models; and 2) to study whether the three biomarkers are also increased in response to damage in organs other than the central nervous system, both in humans and in rats. Methods Multi-center, prospective, case-control study including acute stroke patients (n = 58) and controls (n = 19) with acute non-neurological diseases Main variables: plasma biomarker levels on admission and at 72 h; stroke severity (NIHSS scale) and clinical severity (APACHE II scale); stroke volume; functional status at 3 months (modified Rankin Scale [mRS] and Barthel index [BI]). Experimental groups: ES (n = 10), pMCAO (n = 6) and controls (tissue stress by leg compression) (n = 6). Main variables: plasma biomarker levels at 3 and 72 h; volume of ischemic lesion (H&E) and cell death (TUNEL). Results in stroke patients, IL-6 correlated significantly with clinical severity (APACHE II scale), stroke severity (NIHSS scale), infarct volume (cm3) and clinical outcome (mRS) (r = 0.326, 0.497, 0.290 and 0.444 respectively; P < 0.05). Glutamate correlated with stroke severity, but not with outcome, and TNF-alpha levels with infarct volume. In animals, The ES model showed larger infarct volumes (median 58.6% vs. 29%, P < 0.001) and higher inflammatory biomarkers levels than pMCAO, except for serum glutamate levels which were higher in pMCAO. The ES showed correlations between the biomarkers and cell death (r = 0.928 for IL-6; P < 0.001; r = 0.765 for TNF-alpha, P < 0.1; r = 0.783 for Glutamate, P < 0.1) and infarct volume (r = 0.943 for IL-6, P < 0.0001) more similar to humans than pMCAO. IL-6, glutamate and TNF-α levels were not higher in cerebral ischemia than in controls. Conclusions Both models, ES and pMCAO, show differences that should be considered when conducting translational studies. IL-6, Glutamate and TNF-α are not specific for cerebral ischemia either in humans or in rats. PMID:25086655
Zhang, Jiangsong; Lin, Xianming; Zhou, Hui; Chen, Yuanyuan; Xiao, Shuangkai; Jiao, Junyue; Zhao, Yibin; Di, Zhong
2018-06-14
To examine for an opening effect on the blood-brain barrier (BBB) in intact rats and rats with experimental ischaemia-reperfusion (I/R) during the recovery period after various electroacupuncture (EA) treatments with different time courses, and to determine whether there is a time-dependent effect. An additional objective was to determine whether this method could induce the penetration of nerve growth factor (NGF) through the BBB. A middle cerebral artery occlusion (MCAO) model was first established. We chose different stimulation time courses and observed the effects of EA treatment (100 Hz frequency; 2 mA intensity) at GV20 and GV26 on the BBB in rats recovering from MCAO 3 weeks after modelling. The rats were injected with 2% Evans blue (EB) saline. The brain water content was measured using a wet/dry weighing method. The degree of penetration of EB was detected using spectrophotometry and laser confocal microscopy. The rats were then injected with NGF, and the concentration of NGF in the brain tissues was measured using ELISA. The increase in the BBB permeability was most notable following the 8 min EA stimulation (P<0.05), which may be advantageous for the targeted delivery of drugs (such as NGF) into the brain. Additionally, this effect did not appear to cause brain oedema (P>0.05) in healthy or MCAO rats. EA treatment for a certain stimulation time at GV20 and GV26 in MCAO rats can increase BBB permeability. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
HSP27 Protects the Blood-Brain Barrier Against Ischemia-Induced Loss of Integrity
Leak, Rehana K.; Zhang, Lili; Stetler, R. Anne; Weng, Zhongfang; Li, Peiying; Atkins, G. Brandon; Gao, Yanqin; Chen, Jun
2014-01-01
Loss of integrity of the blood-brain barrier (BBB) in stroke victims initiates a devastating cascade of events including extravasation of blood-borne molecules, water, and inflammatory cells deep into brain parenchyma. Thus, it is important to identify mechanisms by which BBB integrity can be maintained in the face of ischemic injury in experimental stroke. We previously demonstrated that the phylogenetically conserved small heat shock protein 27 (HSP27) protects against transient middle cerebral artery occlusion (tMCAO). Here we show that HSP27 transgenic overexpression also maintains the integrity of the BBB in mice subjected to tMCAO. Extravasation of endogenous IgG antibodies and exogenous FITC-albumin into the brain following tMCAO was reduced in transgenic mice, as was total brain water content. HSP27 overexpression abolished the appearance of TUNEL-positive profiles in microvessel walls. Transgenics also exhibited less loss of microvessel proteins following tMCAO. Notably, primary endothelial cell cultures were rescued from oxygen-glucose deprivation (OGD) by lentiviral HSP27 overexpression according to four viability assays, supporting a direct effect on this cell type. Finally, HSP27 overexpression reduced the appearance of neutrophils in the brain and inhibited the secretion of five cytokines. These findings reveal a novel role for HSP27 in attenuating ischemia/reperfusion injury - the maintenance of BBB integrity. Endogenous upregulation of HSP27 after ischemia in wild-type animals may exert similar protective functions and warrants further investigation. Exogenous enhancement of HSP27 by rational drug design may lead to future therapies against a host of injuries, including but not limited to a harmful breach in brain vasculature. PMID:23469858
He, Meixia; Xing, Shihui; Yang, Bo; Zhao, Liqun; Hua, Haiying; Liang, Zhijian; Zhou, Wenliang; Zeng, Jinsheng; Pei, Zhong
2007-11-21
Oxidative DNA damage has been proposed to be a major contributor to focal cerebral ischemic injury. However, little is known about the role of oxidative DNA damage in remote damage secondary to the primary infarction. In the present study, we investigated oxidative damage within the ventroposterior nucleus (VPN) after distal middle cerebral artery occlusion (MCAO) in hypertensive rats. We also examined the possible protective effect of ebselen, one glutathione peroxidase mimic, on delayed degeneration in the VPN after distal MCAO. Neuronal damage in the ipsilateral VPN was examined by Nissl staining. Oxidative DNA damage and base repair enzyme activity were assessed by analyzing immunoreactivity of 8-hydroxy-2'-deoxyguanosine (8-ohdG) and 8-oxoguanine DNA glycosylase (OGG1), respectively. The number of intact neurons in the ipsilateral VPN decreased by 52% compared to the contralateral side in ischemia group 2 weeks after distal cerebral cortical infarction. The immunoreactivity of 8-ohdG significantly increased while OGG1 immunoreactivity significantly decreased in the ipsilateral VPN 2 weeks after distal cortical infarction (all p<0.01). Compared with vehicle treatment, ebselen significantly attenuated the neuron loss, ameliorated ischemia-induced increase in 8-ohdG level as well as decrease in OGG1 level within the ipsilateral VPN (all p<0.01). OGG1 was further demonstrated to mainly express in neurons. These findings strongly suggest that oxidative DNA damage may be involved in the delayed neuronal death in the VPN region following distal MCAO. Furthermore, ebselen protects against the delayed damage in the VPN when given at 24 h following distal MCAO.
Liang, Shengxiang; Lin, Yunjiao; Lin, Bingbing; Li, Jianhong; Liu, Weilin; Chen, Lidian; Zhao, Shujun; Tao, Jing
2017-09-01
To evaluate whether electro-acupuncture (EA) treatment at acupoints of Zusanli (ST 36) and Quchi (LI 11) could reduce motor impairments and enhance brain functional recovery in rats with ischemic stroke. A rat model of middle cerebral artery occlusion (MCAO) was established. EA at ST 36 and LI 11was started at 24 hours (MCAO + EA group) after ischemic stroke. The nontreatment (MCAO) and sham-operated control (SC) groups were included as controls. The neurologic deficits of all groups were assessed by Zea Longa scores and the modified neurologic severity scores on 24 hours and 8 days after MCAO. To further investigate the effect of EA on infract volume and brain function, magnetic resonance imaging was used to estimate the brain lesion and brain neural activities of each group at 8 days after ischemic stroke. Within 1 week after EA treatment, the neurologic deficits were significantly alleviated, and the cerebral infarctions were improved, including visual cortex, motor cortex, striatum, dorsal thalamus, and hippocampus. Furthermore, whole brain neural activities of auditory cortex, lateral nucleus group of dorsal thalamus, hippocampus, motor cortex, orbital cortex, sensory cortex, and striatum were decreased in MCAO group, whereas that of brain neural activities were increased after EA treatment, suggesting these brain regions are in accordance with the brain structure analysis. EA at ST 36 and LI 11 could enhance the neural activity of motor function-related brain regions, including motor cortex, dorsal thalamus, and striatum in rats, which is a potential treatment for ischemia stroke. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Protective Effect of Ad-VEGF-Bone Mesenchymal Stem Cells on Cerebral Infarction.
Chen, Bo; Zhang, Feng; Li, Qiao-Yu; Gong, Aihua; Lan, Qing
2016-01-01
To understand the mechanism of intracerebroventricular transplantation of vascular endothelial growth factor (VEGF) genemodified bone mesenchymal stem cells (BMSCs) in rats after cerebral infarction. The middle cerebral artery occlusion ischemia/reperfusion (MCAO I/R) model was established in rats using the Zea-Longa suture method. A recombinant adenovirus (Ad-VEGF) was engineered to express VEGF. The rats were divided into 3 groups. Control BMSC infected with control adenovirus (BMSC-Ad), BMSC infected by Ad-VEGF (BMSC-Ad-VEGF), and phosphate buffered saline (PBS) suspension were injected into the intracerebroventricular system of the rats in groups 1, 2 and 3 respectively, 24 hours after middle cerebral artery occlusion (MCAO). The neurological function of rats was evaluated with the modified Neurological Severity Scores (mNSS). The infarct volume of brain in rats was determined using 2,3,5-triphenyltetrazolium chloride (TTC) stain at 14 days. GFAP and pGSK3β expression of ischemic penumbra was determined using immunohistochemical method. GFAP, pAKT, AKT, and pGSK3β expressions were determined with Western blot. Functional improvement was accelerated in animals receiving BMSC-Ad, while improvement at all times between 7 days and 28 days post MCAO was significantly greater in animals transplanted with BMSC-Ad-VEGF than for other treated animals. The number of GFAP-labeled cells was prevented by post-ischemic BMSC-Ad-VEGF treatment; pMCAO activate the PI3K/AKT/GSK3β pathway to reduce reactive gliosis. Our findings demonstrate that PI3K/AKT/GSK3β pathway could reduce reactive gliosis, ameliorate neurological deficit, diminish the percentage of cerebral infarction volume in rats, and facilitate angiogenesis.
Sugidachi, Atsuhiro; Mizuno, Makoto; Ohno, Kousaku; Jakubowski, Joseph A; Tomizawa, Atsuyuki
2016-10-05
Previously, we showed preventive effects of prasugrel, a P2Y12 antagonist, in a non-human primate model of thrombotic middle cerebral artery occlusion (MCAO); however, it remains unclear if P2Y12 inhibition after MCAO reduces cerebral injury and dysfunction. Here we investigated the effects of R-138727, the major active metabolite of prasugrel, on ex vivo platelet aggregation at 5min, 15min, 60min, and 24h after administration to non-human primates (n=3). A single intravenous dose of R-138727 (0.03-0.3mg/kg) resulted in significant and sustained dose-related effects on platelets for up to 24h. R-138727 was administered 1h after MCAO induction, and its effects on thrombosis, cerebral infarction, and neurological deficits were determined (n=8-10). R-138727 (0.3mg/kg) significantly increased total patency rate of the MCA (P=0.0211). Although there was no effect on the patency rate before R-138727 dosing (P=0.3975), it increased 1h after dosing (P=0.0114). R-138727 significantly reduced total ischaemic infarction volumes (P=0.0147), including those of basal ganglia (P=0.0028), white matter (P=0.0393), and haemorrhagic infarction (P=0.0235). Additionally, treatment with R-138727 reduced overall neurological deficits (P=0.0019), including the subcategories of consciousness (P=0.0042), sensory system (P=0.0045), motor system (P=0.0079) and musculoskeletal coordination (P=0.0082). These findings support the possible utility of P2Y12 inhibition during early-onset MCAO to limit the progression and degree of cerebral ischaemia and infarction and also associated neurological deficits. Copyright © 2016 Elsevier B.V. All rights reserved.
Ji, Y Q; Zhang, R; Teng, L; Li, H Y; Guo, Y L
2017-07-18
Objective: Thecurrent study is to explore the neuron-protective mechanism of neuregulin1β (NRG1β) in a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) through inhibiting the c-Jun phosphorylation. Methods: After 24 h of MCAO/R (referring to Longa's method), neurobehavioral function was measured by modified neurological severity score (mNSS) test; the cerebral infarction volume was detected by triphenyltetrazolium chloride (TTC) staining; the blood brain barrier (BBB) permeability was measured by Evans Blue (EB); the neuron morphology of brain tissue was observed by Nissl stain; the ultra-structures of the neurons were observed by transmission electron microscopy (TEM); the apoptotic neurons were counted by in situ cell death detection kit colocalized with NeuN; the expressions of phospho-c-Jun was determined by immunofluorescent labeling and Western blot analysis. Results: Compared with the sham-operation rats, the rats receiving MCAO/R showed increased mNSS (9.7±1.2), cerebral infarction volume (41.4±3.0)%, permeability of BBB, deformation of neurons, ischemia-induced apoptosis (0.63±0.04), and enhanced expression of phospho-c-Jun protein (0.90±0.07) (all P <0.05). Our data indicated that NRG1β attenuated neurologic deficits (6.4±0.9), decreased the cerebral infarction volume (10.4±0.5), reduced EB extravasation (1.55±0.13) and the deformation of neurons, protected the ultra-structure of neurons, blocked ischemia-induced apoptosis (0.23±0.02), through down-regulated phospho-c-Jun expression (0.40±0.03) in MCAO/R rats ( P <0.05). Conclusion: NRG1β exerts neuron-protective effects against ischemia reperfusion-induced injury in rats through inhibiting the c-Jun phosphorylation.
Whitehead, Shawn N; Chan, Kenneth H N; Gangaraju, Sandhya; Slinn, Jacqueline; Li, Jianjun; Hou, Sheng T
2011-01-01
Gangliosides, a member of the glycosphingolipid family, are heterogeneously expressed in biological membranes and are particularly enriched within the central nervous system. Gangliosides consist of mono- or poly-sialylated oligosaccharide chains of variable lengths attached to a ceramide unit and are found to be intimately involved in brain disease development. The purpose of this study is to examine the spatial profile of ganglioside species using matrix-assisted laser desorption/ionization (MALDI) imaging (IMS) following middle cerebral artery occlusion (MCAO) reperfusion injury in the mouse. IMS is a powerful method to not only discriminate gangliosides by their oligosaccharide components, but also by their carbon length within their sphingosine base. Mice were subjected to a 30 min unilateral MCAO followed by long-term survival (up to 28 days of reperfusion). Brain sections were sprayed with the matrix 5-Chloro-2-mercaptobenzothiazole, scanned and analyzed for a series of ganglioside molecules using an Applied Biosystems 4800 MALDI TOF/TOF. Traditional histological and immunofluorescence techniques were performed to assess brain tissue damage and verification of the expression of gangliosides of interest. Results revealed a unique anatomical profile of GM1, GD1 and GT1b (d18:1, d20:1 as well as other members of the glycosphingolipid family). There was marked variability in the ratio of expression between ipsilateral and contralateral cortices for the various detected ganglioside species following MCAO-reperfusion injury. Most interestingly, MCAO resulted in the transient induction of both GM2 and GM3 signals within the ipsilateral hemisphere; at the border of the infarcted tissue. Taken together, the data suggest that brain region specific expression of gangliosides, particularly with respect to hydrocarbon length, may play a role in neuronal responses to injury.
Tabassum, Rizwana; Vaibhav, Kumar; Shrivastava, Pallavi; Khan, Andleeb; Ahmed, Mohd Ejaz; Ashafaq, Mohammad; Khan, M Badruzzaman; Islam, Farah; Safhi, Mohammed M; Islam, Fakhrul
2015-01-15
Perillyl alcohol (PA) is a monoterpene found in essential oils of mints, cherries, citreous fruits and lemon grass, reported to have antioxidant and anti-inflammatory properties. However, the role of PA in stroke is still illusive. Since oxidative stress and inflammation play a pivotal role in ischemia-reperfusion (I-R) injury, this study was designed to elucidate the potential effects of PA against I-R induced pathology in rat׳s brain. Middle cerebral artery occlusion (MCAO) for 2h followed by 22h reperfusion in Wistar male rats (250-280g, 14-16 weeks old) induced the behavioral and histological alterations along with exhausted antioxidant status and enhanced inflammatory mediators. However, PA administration (25, 50 and 100mg/kg b.wt orally once daily for 7 days) prior to MCAO significantly attenuated neurological deficits related to flexion test and spontaneous motor activity, improved grip strength and motor coordination in a dose dependent manner. PA treatment also inhibited oxidative stress in MCAO rats as evident from decreased lipid peroxidation and augmented level of reduced glutathione and restored activities of catalase, glutathione peroxidase, and glutathione reductase and thus, reduced infarct volume and protected the brain histology after I-R injury. Furthermore, PA markedly suppressed the level of proinflammatory cytokines (IL-1β, TNF α and IL-6) and down regulated expressions of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (NOS-2) and nuclear factor κB (NF-κB) in MCAO group. In conclusion, PA mediates neuroprotection against I-R injury via mitigation of oxidative stress and inflammation and thus, may be a good therapeutic approach in stroke prone patient. Copyright © 2014 Elsevier B.V. All rights reserved.
Back contact to film silicon on metal for photovoltaic cells
Branz, Howard M.; Teplin, Charles; Stradins, Pauls
2013-06-18
A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.
Laminar Neural Field Model of Laterally Propagating Waves of Orientation Selectivity
2015-01-01
We construct a laminar neural-field model of primary visual cortex (V1) consisting of a superficial layer of neurons that encode the spatial location and orientation of a local visual stimulus coupled to a deep layer of neurons that only encode spatial location. The spatially-structured connections in the deep layer support the propagation of a traveling front, which then drives propagating orientation-dependent activity in the superficial layer. Using a combination of mathematical analysis and numerical simulations, we establish that the existence of a coherent orientation-selective wave relies on the presence of weak, long-range connections in the superficial layer that couple cells of similar orientation preference. Moreover, the wave persists in the presence of feedback from the superficial layer to the deep layer. Our results are consistent with recent experimental studies that indicate that deep and superficial layers work in tandem to determine the patterns of cortical activity observed in vivo. PMID:26491877
Osthole prevents cerebral ischemia-reperfusion injury via the Notch signaling pathway.
Guan, Junhong; Wei, Xiangtai; Qu, Shengtao; Lv, Tao; Fu, Qiang; Yuan, Ye
2017-08-01
Stroke is a common cerebrovascular disease in aging populations, and constitutes the second highest principle cause of mortality and the principle cause of permanent disability, and ischemic stroke is the primary form. Osthole is a coumarin derivative extracted from the fruits of Cnidium monnieri (L.) Cusson. In this study, we established a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) in vivo and found that MCAO/R caused cerebral infarction, hippocampus neuronal injury and apoptosis, and also activated the Notch 1 signaling pathway. However, treatment with osthole further enhanced the activity of Notch 1 signaling and reduced the cerebral infarction as well as the hippocampus neuronal injury and apoptosis induced by MCAO/R in a dose-dependent manner. The same results were observed in a primary neuronal oxygen glucose deficiency/reperfusion (OGD/R) model in vitro, and the effect of osthole could be blocked by an inhibitor of Notch 1 signaling, N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine tert-butyl ester (DAPT). Therefore, we demonstrated that osthole injection prevented rat ischemia-reperfusion injury via activating the Notch 1 signaling pathway in vivo and in vitro in a dose-dependent manner, which may be significant for clinical treatment of ischemic stroke.
Pettigrew, L. Creed; Kryscio, Richard J.; Norris, Christopher M.
2016-01-01
The cytokine, tumor necrosis factor α (TNFα), is a key regulator of neuroinflammation linked to numerous neurodegenerative conditions and diseases. The present study used transgenic rats that overexpress a murine TNFα gene, under the control of its own promoter, to investigate the impact of chronically elevated TNFα on hippocampal synaptic function. Neuronal viability and cognitive recovery in TNFα Tg rats were also determined following an ischemic insult arising from reversible middle cerebral artery occlusion (MCAO). Basal CA3-CA1 synaptic strength, recorded in acute brain slices, was not significantly different between eight-week-old TNFα Tg rats and non-Tg rats. In contrast, slices from TNFα Tg rats showed significantly greater levels of long-term potentiation (LTP) in response to 100 Hz stimulation, suggesting that synaptic networks may be hyperexcitable in the context of elevated TNFα. Cognitive and motor deficits (assessed on the Morris Water Maze and Rotarod task, respectively) were present in TNFα Tg rats in the absence of significant differences in the loss of cortical and hippocampal neurons. TNF overexpression exacerbated MCAO-dependent deficits on the rotarod, but ameliorated cortical neuron loss in response to MCAO. PMID:27144978
Middle Cerebral Artery Occlusion Model of Stroke in Rodents: A Step-by-Step Approach
Shahjouei, Shima; Cai, Peter Y.; Ansari, Saeed; Sharififar, Sharareh; Azari, Hassan; Ganji, Sarah; Zand, Ramin
2016-01-01
Stroke is one of the leading causes of morbidity and mortality in developed countries and an immense amount of medical care resources are devoted to combat the poststroke debilitating consequences. The key to develop effective and clinically applicable treatment methodologies is a better understanding of the pathophysiology of the disease, including the root causes and targets for pharmacology. Developing these foundations requires the use of standard animal models that mimic the physicochemical process of the diseases that can reliably replicate results in order to test and fine-tune therapeutic modalities. Middle cerebral artery occlusion (MCAO), endothelin-1-induced ischemic stroke, photothrombosis, devascularization, embolization, and spontaneous infarction using hemorrhage are some examples of different animal models. Reliability of MCAO has been proved and due to the ability to induce reperfusion similar to tissue plasminogen activator (tPA) therapy, this model is widely used in preclinical studies. Here, we describe a detailed methodology on how to develop MCAO stroke in rodents using intra-arterial insertion of filament to occlude the middle cerebral artery. This approach allows for the study of a wide array of basic pathophysiology mechanisms, regenerative medicine and rehabilitation therapy. PMID:26958146
Oh, Tae Woo; Jung, Hyo Won; Shin, Gil Jo; Park, Yong-Ki
2014-01-28
To study the neuroprotective effect of the methylene chloride fraction from modified Boyang-Hwan-o-Tang (mBHT-MC), especially against neuronal apoptosis. mBHT-MC (10, 25 or 50 mg/kg) was orally administered once per day for 7 days in transient middle cerebral artery occlusion (MCAO)-induced ischemic rats. Infarction volumes was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining, neurological deficit score and the expression of apoptotic proteins such as Bcl-2, Bax and caspase-3 by Western blot in MCAO-induced ischemic brain. Neuronal apoptosis in ischemic phenumbra was also investigated by staining with hematoxylin and eosin, Nissl and Hoechst 33342. mBHT-MC administration in MCAO rats significantly decreased infarction volume and neurological deficit scores. mBHT-MC significantly enhanced Bcl-2 expression, and inhibited Bax and caspase-3 expression in ischemic brain. In addition, mBHT-MC significantly decreased the number of apoptotic neuronal cells in ischemic brains. mBHT-MC administration inhibits neuronal death induced by cerebral ischemia in rats, suggesting that mBHT-MC has a neuroprotective property in brain ischemia.
Vaas, Markus; Ni, Ruiqing; Rudin, Markus; Kipar, Anja; Klohs, Jan
2017-01-01
Middle cerebral artery occlusion is the most common model of focal cerebral ischemia in the mouse. In the surgical procedure, the external carotid artery (ECA) is ligated; however, its effect on the tissue supplied by the vessel has not been described so far. C57BL/6 mice underwent 1 h of transient MCAO (tMCAO) or sham surgery. Multi-spectral optoacoustic tomography was employed at 30 min after surgery to assess oxygenation in the temporal muscles. Microstructural changes were assessed with magnetic resonance imaging and histological examination at 24 h and 48 h after surgery. Ligation of the ECA resulted in decreased oxygenation of the left temporal muscle in most sham-operated and tMCAO animals. Susceptible mice of both groups exhibited increased T2 relaxation times in the affected muscle with histological evidence of myofibre degeneration, interstitial edema, and neutrophil influx. Ligatures had induced an extensive neutrophil-dominated inflammatory response. ECA ligation leads to distinct hypoxic degenerative changes in the tissue of the ECA territory and to ligature-induced inflammatory processes. An impact on outcome needs to be considered in this stroke model. PMID:28348545
Soluble TNF receptor 1-secreting ex vivo-derived dendritic cells reduce injury after stroke.
Works, Melissa G; Koenig, Jenny B; Sapolsky, Robert M
2013-09-01
Inflammation is a major factor in the progression of damage after stroke and in the clinic, current therapies treat the clot, not the resulting damage. We have developed a novel method of protein delivery that exploits the migration ability of leukocytes after ischemic stroke (transient middle cerebral artery occlusion; tMCAO). In our studies, ex vivo-derived dendritic cells (exDCs) migrate to the inflamed rat brain soon after tMCAO onset and the number of cells that remain in the brain after injection is significantly correlated with the amount of local inflammation at the injury site. In addition, exDCs transduced to overexpress soluble tumor necrosis factor (TNF) receptor1 (sTNFR1) produce functional cargo that is secreted and that blocks TNF-α bioavailability in vitro. When delivered at 6 hours post-tMCAO reperfusion, sTNFR1-exDC-treated rats show significantly smaller infarct size and decreased inflammation compared with animals treated with exDCs transduced with GFP lentivirus. These studies indicate that cell-mediated delivery of proteins may be a promising new approach to reduce brain damage after acute neurologic insult.
Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study.
Campos, Francisco; Sobrino, Tomás; Ramos-Cabrer, Pedro; Argibay, Bárbara; Agulla, Jesús; Pérez-Mato, María; Rodríguez-González, Raquel; Brea, David; Castillo, José
2011-06-01
As ischemic stroke is associated with an excessive release of glutamate into the neuronal extracellular space, a decrease in blood glutamate levels could provide a mechanism to remove it from the brain tissue, by increasing the brain-blood gradient. In this regard, the ability of glutamate oxaloacetate transaminase (GOT) to metabolize glutamate in blood could represent a potential neuroprotective tool for ischemic stroke. This study aimed to determine the neuroprotective effects of GOT in an animal model of cerebral ischemia by means of a middle cerebral arterial occlusion (MCAO) following the Stroke Therapy Academic Industry Roundtable (STAIR) group guidelines. In this animal model, oxaloacetate-mediated GOT activation inhibited the increase of blood and cerebral glutamate after MCAO. This effect is reflected in a reduction of infarct size, smaller edema volume, and lower sensorimotor deficits with respect to controls. Magnetic resonance spectroscopy confirmed that the increase of glutamate levels in the brain parenchyma after MCAO is inhibited after oxaloacetate-mediated GOT activation. These findings show the capacity of the GOT to remove glutamate from the brain by means of blood glutamate degradation, and suggest the applicability of this enzyme as an efficient and novel neuroprotective tool against ischemic stroke.
Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study
Campos, Francisco; Sobrino, Tomás; Ramos-Cabrer, Pedro; Argibay, Bárbara; Agulla, Jesús; Pérez-Mato, María; Rodríguez-González, Raquel; Brea, David; Castillo, José
2011-01-01
As ischemic stroke is associated with an excessive release of glutamate into the neuronal extracellular space, a decrease in blood glutamate levels could provide a mechanism to remove it from the brain tissue, by increasing the brain–blood gradient. In this regard, the ability of glutamate oxaloacetate transaminase (GOT) to metabolize glutamate in blood could represent a potential neuroprotective tool for ischemic stroke. This study aimed to determine the neuroprotective effects of GOT in an animal model of cerebral ischemia by means of a middle cerebral arterial occlusion (MCAO) following the Stroke Therapy Academic Industry Roundtable (STAIR) group guidelines. In this animal model, oxaloacetate-mediated GOT activation inhibited the increase of blood and cerebral glutamate after MCAO. This effect is reflected in a reduction of infarct size, smaller edema volume, and lower sensorimotor deficits with respect to controls. Magnetic resonance spectroscopy confirmed that the increase of glutamate levels in the brain parenchyma after MCAO is inhibited after oxaloacetate-mediated GOT activation. These findings show the capacity of the GOT to remove glutamate from the brain by means of blood glutamate degradation, and suggest the applicability of this enzyme as an efficient and novel neuroprotective tool against ischemic stroke. PMID:21266983
Huang, Jia; You, Xiaofang; Liu, Weilin; Song, Changming; Lin, Xiaomin; Zhang, Xiufeng; Tao, Jing; Chen, Lidian
2017-10-10
During ischemic stroke (IS), adenosine 5'-triphosphate (ATP) is released from damaged nerve cells of the infract core region to the extracellular space, invoking peri-infarct glial cellular P2 purinoceptors singling, and causing pro-inflammatory cytokine secretion, which is likely to initiate or aggravate motor and cognitive impairment. It has been proved that electroacupuncture (EA) is an effective and safe strategy used in anti-inflammation. However, EA for the role of purine receptors in the central nervous system has not yet been reported. Ischemia-reperfusion injured rat model was induced by middle cerebral artery occlusion and reperfusion (MCAO/R). EA treatment at the DU 20 and DU 24 acupoints treatment were conducted to rats from the 12 h after MCAO/R injury for consecutive 7 days. The neurological outcomes, infarction volumes and the level of astroglial and microglial/macrophage hyperplasia, inflammatory cytokine and P2X7R and P2Y1R expression in the peri-infarct hippocampal CA1and sensorimotor cortex were investigated after IS to evaluate the MCAO/R model and therapeutic mechanism of EA treatment. EA effectively reduced the level of pro-inflammatory cytokine interleukin-1β (IL-1β) as evidenced by reduction in astroglial and microglial/macrophage hyperplasia and the levels of P2X7R and ED1, P2X7R and GFAP, P2Y1R and ED1, P2Y1R and GFAP co-expression in peri-infarct hippocampal CA1 and sensorimotor cortex compared with that of MCAO/R model and Non-EA treatment, accompanied by the improved neurological deficit and the motor and memory impairment outcomes. Therefore, our data support the hypothesis that EA could exert its anti-inflammatory effect via inhibiting the astroglial and microglial/macrophage P2 purinoceptors (P2X7R and P2Y1R)-mediated neuroinflammation after MCAO/R injury. Astroglial and microglial/macrophage P2 purinoceptors-mediated neuroinflammation and hyperplasia in peri-infarct hippocampal CA1 and sensorimotor cortex were attenuated by EA treatment after ischemic stroke accompanied by the improved motor and memory behavior performance.
Effects of Sn Layer Orientation on the Evolution of Cu/Sn Interfaces
NASA Astrophysics Data System (ADS)
Sun, Menglong; Zhao, Zhangjian; Hu, Fengtian; Hu, Anmin; Li, Ming; Ling, Huiqin; Hang, Tao
2018-03-01
The effects of Sn layer orientation on the evolution of Cu/Sn joint interfaces were investigated. Three Sn layers possessing (112), (321) and (420) orientations were electroplated on polycrystalline Cu substrates respectively. The orientations of Sn layer preserved during reflowing at 250 °C for 10 s. After aging at 150 °C for different time, the interfacial microstructures were observed from the cross-section and top-view. The alignment between the c-axis of Sn and Cu diffusion direction significantly sped up the Cu diffusion, leading to the thickest intermetallic compound layer formed in (112) joint. Two types of voids, namely, intracrystalline voids and grain islanding caused intercrystalline voids generated at Cu/Cu3Sn interfaces due to the different interdiffusion coefficients of Cu and Sn (112) oriented Sn/Cu joint produced many more voids than (321) joint, and no voids were detected in (420) joint. Therefore, to enhance the reliability of solder joints, using (420) oriented Sn as solder layer could be an efficient way.
Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission.
Wasantha, P L P; Ranjith, P G; Shao, S S
2014-01-01
This paper investigates the mechanical behaviour and energy releasing characteristics of bedded-sandstone with bedding layers in different orientations, under uniaxial compression. Cylindrical sandstone specimens (54 mm diameter and 108 mm height) with bedding layers inclined at angles of 10°, 20°, 35°, 55°, and 83° to the minor principal stress direction, were produced to perform a series of Uniaxial Compressive Strength (UCS) tests. One of the two identical sample sets was fully-saturated with water before testing and the other set was tested under dry conditions. An acoustic emission system was employed in all the testing to monitor the acoustic energy release during the whole deformation process of specimens. From the test results, the critical joint orientation was observed as 55° for both dry and saturated samples and the peak-strength losses due to water were 15.56%, 20.06%, 13.5%, 13.2%, and 13.52% for the bedding orientations 10°, 20°, 35°, 55°, and 83°, respectively. The failure mechanisms for the specimens with bedding layers in 10°, 20° orientations showed splitting type failure, while the specimens with bedding layers in 55°, 83° orientations were failed by sliding along a weaker bedding layer. The failure mechanism for the specimens with bedding layers in 35° orientation showed a mixed failure mode of both splitting and sliding types. Analysis of the acoustic energy, captured from the acoustic emission detection system, revealed that the acoustic energy release is considerably higher in dry specimens than that of the saturated specimens at any bedding orientation. In addition, higher energy release was observed for specimens with bedding layers oriented in shallow angles (which were undergoing splitting type failures), whereas specimens with steeply oriented bedding layers (which were undergoing sliding type failures) showed a comparatively less energy release under both dry and saturated conditions. Moreover, a considerable amount of energy dissipation before the ultimate failure was observed for specimens with bedding layers oriented in shallow angles under both dry and saturated conditions. These results confirm that when rock having bedding layers inclined in shallow angles the failures could be more violent and devastative than the failures of rock with steeply oriented bedding layers. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ni, Ruiqing; Vaas, Markus; Ren, Wuwei; Klohs, Jan
2018-02-01
Matrix metalloproteinases (MMPs) play important roles in the pathophysiology of cerebral ischemia. Here we visualized in vivo MMP activity in the transient middle cerebral artery occlusion (tMCAO) mouse model using multispectral optoacoustic imaging (MSOT) with a MMP-activatable probe. MSOT data was co-registered with structural magnetic resonance imaging (MRI) obtained at 7 T for localization of signal distribution. We demonstrated upregulated MMP signal within the focal ischemic lesion in the tMCAO mouse model using MSOT/MRI multimodal imaging. This convenient non-invasive method will allow repetitive measurement following the time course of MMP-lesion development in ischemic stroke animal model.
Tuor, Ursula I; Qiao, Min
2017-04-01
To determine whether cumulative brain damage produced adjacent to a minor stroke that is followed by a mild transient ischemia is detectable with MRI and histology, and whether acute or chronic recovery between insults influences this damage. A minor photothrombotic (PT) stroke was followed acutely (1-2 days) or chronically (7 days) by a mild transient middle cerebral artery occlusion (tMCAO). MRI was performed after each insult, followed by final histology. The initial PT produced small hyperintense T 2 and DW infarct lesions and peri-lesion regions of scattered necrosis and modestly increased T 2 . Following tMCAO, in a slice and a region adjacent to the PT, a region of T 2 augmentation was observed when recovery between insults was acute but not chronic. Within the PT slice, a modest region of exacerbated T 2 change proximate to the PT was also observed in the chronic group. Corresponding histological changes within regions of augmented T 2 included increased vacuolation and cell death. Within regions adjacent to an experimental minor stroke, a recurrence of a mild transient cerebral ischemia augmented T 2 above increases produced by tMCAO alone, reflecting increased damage in this region. Exacerbation appeared broader with acute versus chronic recovery between insults.
Koh, Phil-Ok
2011-07-08
Nicotinamide protects cortical neuronal cells against cerebral ischemic injury through activation of various cytoprotective mechanisms. Here, this study confirmed the neuroprotective effects of nicotinamide in focal cerebral ischemic injury and investigated whether nicotinamide modulates a crucial survival pathway, Akt and its downstream targets. Adult male rats were treated with vehicle or nicotinamide (500 mg/kg) 2h after the onset of middle cerebral artery occlusion (MCAO). Brains were collected 24h after MCAO and infarct volumes were analyzed. Nicotinamide significantly reduced the infarct volume in the cerebral cortex. Potential activation was measured by phosphorylation of PDK1 at Ser(241), Akt at Ser(473), and Bad at Ser(136) using Western blot analysis. Nicotinamide prevented the injury-induced decrease of pPDK1, pAkt, and pBad levels. 14-3-3 levels were not different between vehicle- and nicotinamide-treated animals. However, pBad and 14-3-3 interaction levels decreased during MCAO, but were maintained in the presence of nicotinamide, compared to levels in control animals. These findings suggest that nicotinamide attenuates cell death due to focal cerebral ischemic injury and that neuroprotective effects are mediated through the Akt signaling pathway, thus enhancing neuronal survival. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Pirici, Ionica; Balsanu, Tudor Adrian; Bogdan, Catalin; Margaritescu, Claudiu; Divan, Tamir; Vitalie, Vacaras; Mogoanta, Laurentiu; Pirici, Daniel; Carare, Roxana Octavia; Muresanu, Dafin Fior
2017-12-23
Aquaporin-4 (AQP4) is the most abundant water channel in the brain, and its inhibition before inducing focal ischemia, using the AQP4 inhibitor TGN-020, has been showed to reduce oedema in imaging studies. Here, we aimed to evaluate, for the first time, the histopathological effects of a single dose of TGN-020 administered after the occlusion of the medial cerebral artery (MCAO). On a rat model of non-reperfusion ischemia, we have assessed vascular densities, albumin extravasation, gliosis, and apoptosis at 3 and 7 days after MCAO. TGN-020 significantly reduced oedema, glial scar, albumin effusion, and apoptosis, at both 3 and 7 days after MCAO. The area of GFAP-positive gliotic rim decreased, and 3D fractal analysis of astrocytic processes revealed a less complex architecture, possibly indicating water accumulating in the cytoplasm. Evaluation of the blood vessels revealed thicker basement membranes colocalizing with exudated albumin in the treated animals, suggesting that inhibition of AQP4 blocks fluid flow towards the parenchyma in the paravascular drainage pathways of the interstitial fluid. These findings suggest that a single dose of an AQP4 inhibitor can reduce brain oedema, even if administered after the onset of ischemia, and AQP4 agonists/antagonists might be effective modulators of the paravascular drainage flow.
Sung, Jin-Hee; Cho, Eun-Hae; Cho, Jae-Hyeon; Won, Chung-Kil; Kim, Myeong-Ok; Koh, Phil-Ok
2012-11-01
Ferulic acid plays a neuroprotective role in cerebral ischemia. The aim of this study was to identify the proteins that are differentially expressed following ferulic acid treatment during ischemic brain injury using a proteomics technique. Middle cerebral artery occlusion (MCAO) was performed to induce a focal cerebral ischemic injury in adult male rats, and ferulic acid (100 mg/kg) or vehicle was administered immediately after MCAO. Brain tissues were collected 24 hr after MCAO. The proteins in the cerebral cortex were separated using two-dimensional gel electrophoresis and were identified by mass spectrometry. We detected differentially expressed proteins between vehicle- and ferulic acid-treated animals. Adenosylhomocysteinase, isocitrate dehydrogenase [NAD(+)], mitogen-activated protein kinase kinase 1 and glyceraldehyde-3-phosphate dehydrogenase were decreased in the vehicle-treated group, and ferulic acid prevented the injury-induced decreases in these proteins. However, pyridoxal phosphate phosphatase and heat shock protein 60 were increased in the vehicle-treated group, while ferulic acid prevented the injury-induced increase in these proteins. It is accepted that these enzymes are involved in cellular metabolism and differentiation. Thus, these findings suggest evidence that ferulic acid plays a neuroprotective role against focal cerebral ischemia through the up- and down-modulation of specific enzymes.
Haller, Edward; Tajiri, Naoki; Thomson, Avery; Barretta, Jennifer; Williams, Stephanie N.; Haim, Eithan D.; Qin, Hua; Frisina-Deyo, Aric; Abraham, Jerry V.; Sanberg, Paul R.; Van Loveren, Harry; Borlongan, Cesario V.
2016-01-01
We previously demonstrated blood-brain barrier impairment in remote contralateral brain areas in rats at 7 and 30 days after transient middle cerebral artery occlusion (tMCAO), indicating ischemic diaschisis. Here, we focused on effects of subacute and chronic focal cerebral ischemia on the blood-spinal cord barrier (BSCB). We observed BSCB damage on both sides of the cervical spinal cord in rats at 7 and 30 days post-tMCAO. Major BSCB ultrastructural changes in spinal cord gray and white matter included vacuolated endothelial cells containing autophagosomes, pericyte degeneration with enlarged mitochondria, astrocyte end-feet degeneration and perivascular edema; damaged motor neurons, swollen axons with unraveled myelin in ascending and descending tracts and astrogliosis were also observed. Evans Blue dye extravasation was maximal at 7 days. There was immunofluorescence evidence of reduction of microvascular expression of tight junction occludin, upregulation of Beclin-1 and LC3B immunoreactivities at 7 days and a reduction of the latter at 30 days post-ischemia. These novel pathological alterations on the cervical spinal cord microvasculature in rats after tMCAO suggest pervasive and long-lasting BSCB damage after focal cerebral ischemia, and that spinal cord ischemic diaschisis should be considered in the pathophysiology and therapeutic approaches in patients with ischemic cerebral infarction. PMID:27283328
Omori, Yoshinori; Honmou, Osamu; Harada, Kuniaki; Suzuki, Junpei; Houkin, Kiyohiro; Kocsis, Jeffery D
2008-10-21
The systemic injection of human mesenchymal stem cells (hMSCs) prepared from adult bone marrow has therapeutic benefits after cerebral artery occlusion in rats, and may have multiple therapeutic effects at various sites and times within the lesion as the cells respond to a particular pathological microenvironment. However, the comparative therapeutic benefits of multiple injections of hMSCs at different time points after cerebral artery occlusion in rats remain unclear. In this study, we induced middle cerebral artery occlusion (MCAO) in rats using intra-luminal vascular occlusion, and infused hMSCs intravenously at a single 6 h time point (low and high cell doses) and various multiple time points after MCAO. From MRI analyses lesion volume was reduced in all hMSC cell injection groups as compared to serum alone injections. However, the greatest therapeutic benefit was achieved following a single high cell dose injection at 6 h post-MCAO, rather than multiple lower cell infusions over multiple time points. Three-dimensional analysis of capillary vessels in the lesion indicated that the capillary volume was equally increased in all of the cell-injected groups. Thus, differences in functional outcome in the hMSC transplantation subgroups are not likely the result of differences in angiogenesis, but rather from differences in neuroprotective effects.
Misoprostol, an anti-ulcer agent and PGE2 receptor agonist, protects against cerebral ischemia.
Li, Jun; Liang, Xibin; Wang, Qian; Breyer, Richard M; McCullough, Louise; Andreasson, Katrin
2008-06-20
Induction of COX-2 activity in cerebral ischemia results in increased neuronal injury and infarct size. Recent studies investigating neurotoxic mechanisms of COX-2 demonstrate both toxic and paradoxically protective effects of downstream prostaglandin receptor signaling pathways. We tested whether misoprostol, a PGE(2) receptor agonist that is utilized clinically as an anti-ulcer agent and signals through the protective PGE(2) EP2, EP3, and EP4 receptors, would reduce brain injury in the murine middle cerebral artery occlusion-reperfusion (MCAO-RP) model. Administration of misoprostol, at the time of MCAO or 2h after MCAO, resulted in significant rescue of infarct volume at 24 and 72h. Immunocytochemistry demonstrated dynamic regulation of the EP2 and EP4 receptors during reperfusion in neurons and endothelial cells of cerebral cortex and striatum, with limited expression of EP3 receptor. EP3-/- mice had no significant changes in infarct volume compared to control littermates. Moreover, administration of misoprostol to EP3+/+ and EP3-/- mice showed similar levels of infarct rescue, indicating that misoprostol protection was not mediated through the EP3 receptor. Taken together, these findings suggest a novel function for misoprostol as a protective agent in cerebral ischemia acting via the PGE(2) EP2 and/or EP4 receptors.
NASA Astrophysics Data System (ADS)
Itagaki, Norikazu; Saito, Shin; Takahashi, Migaku
2009-04-01
Through analyzing the growth mechanism of the Ru layer in a nonmagnetic intermediate layer (NMIL) for perpendicular magnetic recording media, a concept for the NMIL is proposed in order to realize a recording layer of small, highly c-plane oriented grains with no intergranular exchange coupling. It was found that (1) fast Fourier transform analysis of plan-view transmission electron microscopy lattice images of Ru layers revealed that hexagonal close packed Ru grains in a c-plane oriented film readily coalesce with each other due to the disappearance of low-angle tilt boundaries. (2) A promising candidate for a NMIL consists of three individual epitaxially grown functional layers: a large-grain seed layer with a highly oriented sheet texture, a first interlayer of small grains, and a second interlayer of nonmagnetic grains isolated by a segregated oxide. (3) The Ru-SiO2/Ru/Mg NMIL based on the proposed concept exhibited small (diameter: 4.8 nm) Ru grains while retaining a narrow orientation distribution of 4.1°.
High Temperature Superconducting Thick Films
Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Holesinger, Terry G.; Jia, Quanxi
2005-08-23
An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4×106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.
Cui, Xu; Chen, Jieli; Zacharek, Alex; Roberts, Cynthia; Yang, Yuping; Chopp, Michael
2009-01-01
We tested the hypothesis that a nitric oxide donor, DETA-NONOate, up-regulates stromal cell-derived factor-1 (SDF1) and angiopoietin 1 (Ang1) in the ischemic brain and their respective receptors chemokine CXC motif receptor 4 (CXCR4) and Tie2 in the subventricular zone (SVZ) and thereby promote SVZ neuroblast cell migration after stroke. C57BL/6J mice were subjected to middle cerebral artery occlusion (MCAo), and 24 hr later DETA-NONOate (0.4 mg/kg) or phosphate-buffered solution was intravenously administered. Mice were sacrificed at 14 days for histological assessment or sacrificed at 3 days for analysis by real-time polymerase chain reaction and migration after MCAo. To elucidate whether SDF1/CXCR4 and Ang1/Tie2 pathways mediate DETA-NONOate-induced SVZ migration after stroke, SDF1alpha, Ang1 peptide, a specific antagonist of CXCR4 (AMD3100), and a neutralizing antibody of Tie2 (anti-Tie2) were used in vitro. DETA-NONOate significantly increased the percentage area of doublecortin (DCX, a marker of migrating neuroblasts)-immunoreactive cells in the SVZ and ischemic boundary zone. DETA-NONOate significantly increased the expression of SDF1 and Ang1 in the ischemic border and up-regulated CXCR4 and Tie2 in the SVZ compared with MCAo control. DCX-positive cell migration from SVZ explants was significantly increased in the DETA-NONOate treatment group compared with MCAo-alone animals. In vitro, SDF1alpha and Ang1 significantly increased SVZ explants cell migration. In addition, inhibition of CXCR4 or Tie2 significantly attenuated DETA-NONOate-induced SVZ cell migration. Our data indicate that treatment of stroke with a nitric oxide donor up-regulates SDF1/CXCR4 and Ang1/Tie2 pathways and thereby likely increases SVZ neuroblast cell migration. 2008 Wiley-Liss, Inc.
Cui, Xu; Chen, Jieli; Zacharek, Alex; Roberts, Cynthia; Yang, Yuping; Chopp, Michael
2008-01-01
We tested the hypothesis that a nitric oxide donor, DETA-NONOate upregulates Stromal cell-Derived Factor-1 (SDF1) and Angiopoietin 1 (Ang1) in the ischemic brain and their, respective, receptors chemokine CXC motif receptor 4 (CXCR4) and Tie2 in the subventricular zone (SVZ) and thereby promote SVZ neuroblast cell migration after stroke. C57BL/6J mice were subjected to middle cerebral artery occlusion (MCAo) and 24 hours later DETA-NONOate (0.4 mg/kg) or phosphate buffered solution were intravenously administered. Mice were sacrificed at 14 days for histological assessment or sacrificed at 3 days for analysis real-time polymerase chain reaction and migration after MCAo. To elucidate whether SDF1/CXCR4 and Ang1/Tie2 pathways mediate DETA-NONOate induced SVZ migration after stroke, SDF1α, Ang1 peptide and a specific antagonist of CXCR4 (AMD3100) and a neutralizing antibody of Tie2 (anti-Tie2) were used in vitro. DETA-NONOate significantly increased the percent area of doublecortin (a marker of migrating neuroblasts) immunoreactive-cells in the SVZ and ischemic boundary zone. DETA-NONOate significantly increased the expression of SDF1 and Ang1 in the ischemic border and upregulated CXCR4 and Tie2 in the SVZ compared with MCAo control. DCX-positive cell migration from SVZ explants was significantly increased in the DETA-NONOate treatment group compared with MCAo alone animals. In vitro, SDF1α and Ang1 significantly increased SVZ explants cell migration. In addition, inhibition of CXCR4 or Tie2 significantly attenuated DETA-NONOate induced SVZ cell migration. Our data indicated that treatment of stroke with a nitric oxide donor upregulates SDF1/CXCR4 and Ang1/Tie2 pathways and thereby likely increases SVZ neuroblast cell migration. PMID:18711749
TRANSCUTANEOUS CERVICAL VAGUS NERVE STIMULATION AMELIORATES ACUTE ISCHEMIC INJURY IN RATS
Ay, Ilknur; Nasser, Rena; Simon, Bruce; Ay, Hakan
2016-01-01
Background Direct stimulation of the vagus nerve in the neck via surgically implanted electrodes is protective in animal models of stroke. We sought to determine the safety and efficacy of a non-invasive cervical VNS (nVNS) method using surface electrodes applied to the skin overlying the vagus nerve in the neck in a model of middle cerebral artery occlusion (MCAO). Methods nVNS was initiated variable times after MCAO hour in rats (n=33). Control animals received sham stimulation (n=33). Infarct volume and functional outcome were assessed on day 7. Brains were processed by immunohistochemistry for microglial activation and cytokine levels. The ability of nVNS to activate the nucleus tractus solitarius (NTS) was assessed using c-Fos immunohistochemistry. Results Infarct volume was 43.15±3.36 percent of the contralateral hemisphere (PCH) in control and 28.75±4.22 PCH in nVNS-treated animals (p<0.05). The effect of nVNS on infarct size was consistent when stimulation was initiated up to 4 hours after MCAO. There was no difference in heart rate and blood pressure between control and nVNS-treated animals. The number of c-Fos positive cells was 32.4±10.6 and 6.2±6.3 in the ipsilateral NTS (p<0.05) and 30.4±11.2 and 5.8±4.3 in the contralateral NTS (p<0.05) in nVNS-treated and control animals, respectively. nVNS reduced the number of Iba-1, CD68, and TNF-α positive cells and increased the number of HMGB1 positive cells. Conclusions nVNS inhibits ischemia-induced immune activation and reduces the extent of tissue injury and functional deficit in rats without causing cardiac or hemodynamic adverse effects when initiated up to 4 hours after MCAO. PMID:26723020
Kim, Joo Youn; Jeong, Ha Yeon; Lee, Hong Kyu; Kim, SeungHwan; Hwang, Bang Yeon; Bae, KiHwan; Seong, Yeon Hee
2012-01-15
Vitis amurensis (Vitaceae) has been reported to have anti-oxidant and anti-inflammatory activities. The present study investigated a methanol extract from the leaf and stem of V. amurensis for neuroprotective effects on cerebral ischemic damage in rats and on excitotoxicity induced by glutamate in cultured rat cortical neurons. Transient focal cerebral ischemia was induced by 2h middle cerebral artery occlusion followed by 24h reperfusion (MCAO/reperfusion) in rats. Orally administered V. amurensis (25-100 mg/kg) reduced MCAO/reperfusion-induced infarct and edema formation, neurological deficits, and neuronal death. Depletion of glutathione (GSH) level and lipid peroxidation induced by MCAO/reperfusion was inhibited by administration of V. amurensis. The increase of phosphorylated mitogen-activated protein kinases (MAPKs), cyclooxygenase-2 (COX-2), and pro-apoptotic proteins and the decrease of anti-apoptotic protein in MCAO/reperfusion rats were significantly inhibited by treatment with V. amurensis. Exposure of cultured cortical neurons to 500 μM glutamate for 12h induced neuronal cell death. V. amurensis (1-50 μg/ml) and (+)-ampelopsin A, γ-2-viniferin, and trans-ε-viniferin isolated from the leaf and stem of V. amurensis inhibited glutamate-induced neuronal death, the elevation of intracellular calcium ([Ca(2+)](i)), the generation of reactive oxygen species (ROS), and changes of apoptosis-related proteins in cultured cortical neurons, suggesting that the neuroprotective effect of V. amurensis may be partially attributed to these compounds. These results suggest that the neuroprotective effect of V. amurensis against focal cerebral ischemic injury might be due to its anti-apoptotic effect, resulting from anti-excitotoxic, anti-oxidative, and anti-inflammatory effects and that the leaf and stem of V. amurensis have possible therapeutic roles for preventing neurodegeneration in stroke. Copyright © 2011 Elsevier GmbH. All rights reserved.
Zhang, Qichun; Bian, Huimin; Li, Yu; Guo, Liwei; Tang, Yuping; Zhu, Huaxu
2014-06-11
Huang-Lian-Jie-Du-Tang (HLJDT) is a classical heat-clearing and detoxicating formula of traditional Chinese medicine that is widely used to treat stroke. The present study was designed to investigate the effects of HLJDT preconditioning on neurons under oxygen and glucose deprivation (OGD) and rats subjected to middle cerebral artery occlusion (MCAO). A stroke model of rats was obtained through MCAO. Following HLJDT preconditioning, the cerebral infarction volume, cerebral water content, and neurological deficient score were determined. Cerebral cortical neurons cultured in vitro were preconditioned with HLJDT and then subjected to OGD treatment. The release of lactate dehydrogenase (LDH) from neurons was detected. The levels of hypoxia-inducible factor-1α (HIF-1α) and PI3K/Akt signaling were analyzed by western blotting, and the levels of erythropoietin (EPO) and vascular endothelial growth factor (VEGF) in the supernatant of the neurons and the plasma of MCAO rats were measured through a radioimmunological assay. The apoptosis and proliferation of neurons were analyzed by immunohistochemistry. HLJDT preconditioning significantly reduced the cerebral infarction volume and cerebral water content and ameliorated the neurological deficient score of MCAO rats. In addition, HLJDT preconditioning protected neurons against OGD. Increased HIF-1α, EPO, and VEGF levels and the activation of PI3K/Akt signaling were observed as a result of HLJDT preconditioning. Furthermore, HLJDT preconditioning was found to inhibit ischemia-induced neuron apoptosis and to promote neuron proliferation under conditions of ischemia/reperfusion. Both rats and neurons subjected to HLJDT preconditioning were able to resist ischemia/reperfusion or hypoxia injury through the inhibition of apoptosis and the enhancement of proliferation, and these effects were primarily dependent on the activation of the PI3K/Akt signaling pathway and HIF-1α. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Huang, Lifa; Chen, Chengwei; Zhang, Xin; Li, Xu; Chen, Zupeng; Yang, Chao; Liang, Xiaolong; Zhu, Guochong; Xu, Zhen
2018-01-01
Curcumin, a polyphenolic compound extracted from Curcuma longa, has drawn attention for its effective bioactivities against ischemia-induced injury. This study aimed to evaluate the neuroprotective effect of curcumin and investigate the underlying mechanism that mediates autophagy and inflammation in an animal model of middle cerebral artery occlusion (MCAO) in rats. Curcumin was delivered to Sprague Dawley male rats at a dose of 200 mg/kg curcumin by intraperitoneal injection 30 min after ischemia-reperfusion (I/R). LY294002, a specific inhibitor of the PI3K/Akt/mTOR pathway, as well as anisomycin, an activator of TLR4/p38/MAPK, was administered by ventricle injection 30 min before MCAO. The same volume of saline was given as a control. Brain infarction and neurological function were determined 24 h post-MCAO. Immunoblotting and immunofluorescence were used to detect alterations in autophagy-relevant proteins Akt, p-Akt, mTOR, p-mTOR, LC3-II, and LC3-I, and inflammation-related proteins TLR4, p-38, p-p38, and IL-1 in the ipsilateral hemisphere. Cerebral I/R injury resulted in significant alterations of LC3-II/LC3-I, IL-1, TLR4, and p-p38. Curcumin in MCAO rats significantly improved brain damage and neurological function by upregulating p-Akt and p-mTOR and downregulating LC3-II/LC3-I, IL-1, TLR4, p-38, and p-p38. However, these protective effects against ischemia could be suppressed when LY294002 or anisomycin was included. Curcumin exerts neuroprotective effects by attenuating autophagic activities through mediating the PI3K/Akt/mTOR pathway, while also suppressing an inflammatory reaction by regulating the TLR4/p38/MAPK pathway. Furthermore, this study indicates that curcumin could be an effective therapy for patients afflicted with ischemia.
Conductive layer for biaxially oriented semiconductor film growth
Findikoglu, Alp T.; Matias, Vladimir
2007-10-30
A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.
Karube, Fuyuki; Sári, Katalin; Kisvárday, Zoltán F
2017-04-01
To uncover the functional topography of layer 6 neurons, optical imaging was combined with three-dimensional neuronal reconstruction. Apical dendrite morphology of 23 neurons revealed three distinct types. Type Aa possessed a short apical dendrite with many oblique branches, Type Ab was characterized by a short and less branched apical dendrite, whereas Type B had a long apical dendrite with tufts in layer 2. Each type had a similar number of boutons, yet their spatial distribution differed from each other in both radial and horizontal extent. Boutons of Type Aa and Ab were almost restricted to the column of the parent soma with a laminar preference to layer 4 and 5/6, respectively. Only Type B contributed to long horizontal connections (up to 1.5 mm) mostly in deep layers. For all types, bouton distribution on orientation map showed an almost equal occurrence at iso- (52.6 ± 18.8 %) and non-iso-orientation (oblique, 27.7 ± 14.9 % and cross-orientation 19.7 ± 10.9 %) sites. Spatial convergence of axons of nearby layer 6 spiny neurons depended on soma separation of the parent cells, but only weakly on orientation preference, contrary to orientation dependence of converging axons of layer 4 spiny cells. The results show that layer 6 connections have only a weak dependence on orientation preference compared with those of layers 2/3 (Buzás et al., J Comp Neurol 499:861-881, 2006) and 4 (Karube and Kisvárday, Cereb Cortex 21:1443-1458, 2011).
Preferential orientation of NV defects in CVD diamond films grown on (113)-oriented substrates
NASA Astrophysics Data System (ADS)
Lesik, M.; Plays, T.; Tallaire, A.; Achard, J.; Brinza, O.; William, L.; Chipaux, M.; Toraille, L.; Debuisschert, T.; Gicquel, A.; Roch, J. F.; Jacques, V.
2015-06-01
Thick CVD diamond layers were successfully grown on (113)-oriented substrates. They exhibited smooth surface morphologies and a crystalline quality comparable to (100) electronic grade material, and much better than (111)-grown layers. High growth rates (15-50 {\\mu}m/h) were obtained while nitrogen doping could be achieved in a fairly wide range without seriously imparting crystalline quality. Electron spin resonance measurements were carried out to determine NV centers orientation and concluded that one specific orientation has an occurrence probability of 73 % when (100)-grown layers show an equal distribution in the 4 possible directions. A spin coherence time of around 270 {\\mu}s was measured which is equivalent to that reported for material with similar isotopic purity. Although a higher degree of preferential orientation was achieved with (111)-grown layers (almost 100 %), the ease of growth and post-processing of the (113) orientation make it a potentially useful material for magnetometry or other quantum mechanical applications.
Study on preferred crystal orientations of Mg-Zr-O composite protective layer in AC-PDP
NASA Astrophysics Data System (ADS)
Bingang, G.; Chunliang, L.; Zhongxiao, S.; Liu, L.; Yufeng, F.; Xing, X.; Duowang, F.
2006-11-01
In order to study the preferred crystal orientations of Mg-Zr-O composite protective layers in PDP, Mg-Zr-O composite protective layers were deposited by Electron-beam Evaporator using (MgO+ZrO{2}) powder mixture as evaporation source material. X-ray diffractometer (XRD) was used to determine preferred crystal orientations of Mg-Zr-O composite protective layers, surface morphologies of films were analyzed by FESEM and voltage characteristics were examined in a testing macroscopic discharge cell of AC-PDP. On the basis of experimental analysis, the influence of oxide addition and deposition conditions on preferred orientations of Mg-Zr-O composite protective layers were investigated. The results showed that the preferred orientations of Mg-Zr-O films were determined by lattice distortion of MgO crystal. The deposition conditions have great effects on the preferred orientations of Mg-Zr-O films. The preferred orientations affect voltage characteristics through affecting surface morphology of Mg-Zr-O films. A small amount of Zr solution in MgO can decrease firing voltage compared with using pure MgO film. Firing voltage is closely related with the [ ZrO{2}/(MgO+ZrO{2})] ratio of evaporation source materials.
Embedded sensor having an identifiable orientation
Bennett, Thomas E.; Nelson, Drew V.
2002-01-01
An apparatus and method is described wherein a sensor, such as a mechanical strain sensor, embedded in a fiber core, is "flagged" to identify a preferred orientation of the sensor. The identifying "flag" is a composite material, comprising a plurality of non-woven filaments distributed in a resin matrix, forming a small planar tab. The fiber is first subjected to a stimulus to identify the orientation providing the desired signal response, and then sandwiched between first and second layers of the composite material. The fiber, and therefore, the sensor orientation is thereby captured and fixed in place. The process for achieving the oriented fiber includes, after identifying the fiber orientation, carefully laying the oriented fiber onto the first layer of composite, moderately heating the assembled layer for a short period in order to bring the composite resin to a "tacky" state, heating the second composite layer as the first, and assembling the two layers together such that they merge to form a single consolidated block. The consolidated block achieving a roughly uniform distribution of composite filaments near the embedded fiber such that excess resin is prevented from "pooling" around the periphery of the fiber.
Layer-oriented total pelvic exenteration for locally advanced primary colorectal cancer.
Koda, Keiji; Shuto, Kiyohiko; Matsuo, Kenichi; Kosugi, Chihiro; Mori, Mikito; Hirano, Atsushi; Hiroshima, Yukihiko; Tanaka, Kuniya
2016-01-01
The clinical outcomes of patients who have undergone total pelvic exenteration (TPE) for locally advanced primary colorectal cancer have not been satisfactory. For the last 13 years, we have performed layer-oriented, en bloc resection of tumor for which TPE is indicated, in the hope of improving postoperative outcomes. The clinical outcomes of these cases were retrospectively analyzed. A total of 54 patients who underwent TPE from 1986 to 2013 were retrospectively analyzed. Since 2002, a layer-oriented removal for clinical T4 colorectal cancer, as in T3 or less invasive tumors removed by total mesorectal excision, was applied to 23 cases for which TPE was indicated. Postoperative mortality, morbidity, overall survival (OS), and disease-free survival (DFS) were evaluated. On univariate analysis, good postoperative OS and DFS were associated with the layer-oriented operative maneuver, blood loss less than 2000 mL, negative nodal metastasis, and no preoperative radiation therapy. Male sex was the marginal determinant correlated with good OS and DFS. Depth of invasion to T3 was the marginal determinant correlated with good DFS. On multivariate analysis using the 4 factors identified on univariate analyses, the layer-oriented operative procedure was a significant determinant for both good OS and DFS, together with negative nodal metastases. Postoperative mortality and morbidity in the layer-oriented excision were acceptable. For primary colorectal cancers for which TPE is indicated, layer-oriented excision was a safe and effective procedure, and it may be recommended as one of the standard surgical approaches in TPE.
A frequency dependent preconditioned wavelet method for atmospheric tomography
NASA Astrophysics Data System (ADS)
Yudytskiy, Mykhaylo; Helin, Tapio; Ramlau, Ronny
2013-12-01
Atmospheric tomography, i.e. the reconstruction of the turbulence in the atmosphere, is a main task for the adaptive optics systems of the next generation telescopes. For extremely large telescopes, such as the European Extremely Large Telescope, this problem becomes overly complex and an efficient algorithm is needed to reduce numerical costs. Recently, a conjugate gradient method based on wavelet parametrization of turbulence layers was introduced [5]. An iterative algorithm can only be numerically efficient when the number of iterations required for a sufficient reconstruction is low. A way to achieve this is to design an efficient preconditioner. In this paper we propose a new frequency-dependent preconditioner for the wavelet method. In the context of a multi conjugate adaptive optics (MCAO) system simulated on the official end-to-end simulation tool OCTOPUS of the European Southern Observatory we demonstrate robustness and speed of the preconditioned algorithm. We show that three iterations are sufficient for a good reconstruction.
ARGOS - the Laser Star Adaptive Optics for LBT
NASA Astrophysics Data System (ADS)
Rabien, S.; Barl, L.; Beckmann, U.; Blümchen, T.; Bonaglia, M.; Borelli, J. L.; Brynnel, J.; Busoni, L.; Carbonaro, L.; Conot, C.; Davies, R.; Deysenroth, M.; Durney, O.; Elberich, M.; Esposito, S.; Gasho, V.; Gässler, W.; Gemperlein, H.; Genzel, R.; Green, R.; Haug, M.; Lloyd Hart, M.; Hubbard, P.; Kanneganti, S.; Kulas, M.; Noenickx, J.; Peter, D.; Quirrenbach, A.; Rademacher, M.; Rix, H. W.; Salinari, P.; Schwab, C.; Storm, J.; Strüder, L.; Thiel, M.; Weigelt, G.; Ziegleder, J.; Orban de Xivry, G.
2011-09-01
We will present the design and status of ARGOS - the Laser Guide Star adaptive optics facility for the Large Binocular Telescope. By projecting a constellation of multiple laser guide stars above each of the 8.4m primary mirrors of the LBT, ARGOS in its ground layer mode will enable a wide field adaptive optics correction for multi object spectroscopy. ARGOS implements high power pulsed green lasers and makes use of Rayleigh scattering for the guide star creation. The geometric relations of this setup in guide star height vs. primary diameter are quite comparable to an ELT with sodium guide stars. The use of LBT's adaptive secondary mirror, gated wavefront sensors, a prime focus calibration system and the laser constellation shows several aspects that may be used as pathfinding technology for the planned ELTs. In already planned upgrade steps with a hybrid Sodium-Rayleigh combination ARGOS will enable MCAO and MOAO implementations at LBT allowing unique astronomical observations.
The Gemini-South MCAO operational model: insights on a new era of telescope operation
NASA Astrophysics Data System (ADS)
Trancho, Gelys; Bec, Matthieu; Artigau, Etienne; d'Orgeville, Celine; Gratadour, Damien; Rigaut, Francois J.; Walls, Brian
2008-07-01
The Gemini Observatory is implementing a Multi-Conjugate Adaptive Optics (MCAO) system as a facility instrument for the Gemini South telescope (GeMS). The system will include 5 Laser Guide Stars, 3 Natural Guide Stars, and 3 deformable mirrors, optically conjugated at different altitudes, to achieve near-uniform atmospheric compensation over a one arc minute square field of view. This setup implies some level of operational complexity. In this paper we describe how GeMS will be integrated into the flow of Gemini operations, from the observing procedures necessary to execute the programs in the queue (telescope control software, observing tools, sequence executor) to the safety implementation needed such as spotters/ASCAM, space command and laser traffic control software.
Optical-resolution photoacoustic microscopy of ischemic stroke
NASA Astrophysics Data System (ADS)
Hu, Song; Gonzales, Ernie; Soetikno, Brian; Gong, Enhao; Yan, Ping; Maslov, Konstantin; Lee, Jin-Moo; Wang, Lihong V.
2011-03-01
A major obstacle in understanding the mechanism of ischemic stroke is the lack of a tool to noninvasively or minimally invasively monitor cerebral hemodynamics longitudinally. Here, we applied optical-resolution photoacoustic microscopy (OR-PAM) to longitudinally study ischemic stroke induced brain injury in a mouse model with transient middle cerebral artery occlusion (MCAO). OR-PAM showed that, during MCAO, the average hemoglobin oxygen saturation (sO2) values of feeder arteries and draining veins within the stroke core region dropped ~10% and ~34%, respectively. After reperfusion, arterial sO2 recovered back to the baseline; however, the venous sO2 increased above the baseline value by ~7%. Thereafter, venous sO2 values were close to the arterial sO2 values, suggesting eventual brain tissue infarction.
Calibrations for a MCAO Imaging System
NASA Astrophysics Data System (ADS)
Hibon, Pascale; B. Neichel; V. Garrel; R. Carrasco
2017-09-01
"GeMS, the Gemini Multi conjugate adaptive optics System installed at the Gemini South telescope (Cerro Pachon, Chile) started to deliver science since the beginning of 2013. GeMS is using the Multi Conjugate AdaptiveOptics (MCAO) technique allowing to dramatically increase the corrected field of view (FOV) compared to classical Single Conjugated Adaptive Optics (SCAO) systems. It is the first sodium-based multi-Laser Guide Star (LGS) adaptive optics system. It has been designed to feed two science instruments: GSAOI, a 4k×4k NIR imager covering 85"×85" with 0.02" pixel scale, and Flamingos-2, a NIR multi-object spectrograph. We present here an overview of the calibrations necessary for reducing and analysing the science datasets obtained with GeMS+GSAOI."
Critical CuI buffer layer surface density for organic molecular crystal orientation change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Kwangseok; Kim, Jong Beom; Lee, Dong Ryeol, E-mail: drlee@ssu.ac.kr
We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 −2) by a CuI buffer layer with a very low surface density, so low thatmore » a large proportion of the substrate surface is bare.« less
Removal of the Magnetic Dead Layer by Geometric Design
Guo, Er-jia; Roldan, Manuel; Charlton, Timothy R.; ...
2018-05-28
The proximity effect is used to engineer interface effects such as magnetoelectric coupling, exchange bias, and emergent interfacial magnetism. However, the presence of a magnetic “dead layer” adversely affects the functionality of a heterostructure. Here in this paper, it is shown that by utilizing (111) polar planes, the magnetization of a manganite ultrathin layer can be maintained throughout its thickness. Combining structural characterization, magnetometry measurements, and magnetization depth profiling with polarized neutron reflectometry, it is found that the magnetic dead layer is absent in the (111)-oriented manganite layers, however, it occurs in the films with other orientations. Quantitative analysis ofmore » local structural and elemental spatial evolutions using scanning transmission electron microscopy and electron energy loss spectroscopy reveals that atomically sharp interfaces with minimal chemical intermixing in the (111)-oriented superlattices. The polar discontinuity across the (111) interfaces inducing charge redistribution within the SrTiO 3 layers is suggested, which promotes ferromagnetism throughout the (111)-oriented ultrathin manganite layers. The approach of eliminating problematic magnetic dead layers by changing the crystallographic orientation suggests a conceptually useful recipe to engineer the intriguing physical properties of oxide interfaces, especially in low dimensionality.« less
Removal of the Magnetic Dead Layer by Geometric Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Er-jia; Roldan, Manuel; Charlton, Timothy R.
The proximity effect is used to engineer interface effects such as magnetoelectric coupling, exchange bias, and emergent interfacial magnetism. However, the presence of a magnetic “dead layer” adversely affects the functionality of a heterostructure. Here in this paper, it is shown that by utilizing (111) polar planes, the magnetization of a manganite ultrathin layer can be maintained throughout its thickness. Combining structural characterization, magnetometry measurements, and magnetization depth profiling with polarized neutron reflectometry, it is found that the magnetic dead layer is absent in the (111)-oriented manganite layers, however, it occurs in the films with other orientations. Quantitative analysis ofmore » local structural and elemental spatial evolutions using scanning transmission electron microscopy and electron energy loss spectroscopy reveals that atomically sharp interfaces with minimal chemical intermixing in the (111)-oriented superlattices. The polar discontinuity across the (111) interfaces inducing charge redistribution within the SrTiO 3 layers is suggested, which promotes ferromagnetism throughout the (111)-oriented ultrathin manganite layers. The approach of eliminating problematic magnetic dead layers by changing the crystallographic orientation suggests a conceptually useful recipe to engineer the intriguing physical properties of oxide interfaces, especially in low dimensionality.« less
The Effect of Tropopause Seeing on Solar Telescope Site Testing
NASA Astrophysics Data System (ADS)
Beckers, Jacques M.
2017-08-01
The site testing for and seeing correction planning of the 4-m solar telescopes has failed to take into account the significant amount of seeing at tropopause levels (10-20 km altitude).The worst aspect of that seeing layer is its small isoplanatic patch size which at low solar elevations can be significantly less than 1 arcsec. The CLEAR/ATST/DKIST SDIMM seeing monitor is insensitive to this type of seeing. A correction for this missed seeing significantly decreases the measured seeing qualities for the sites tested especially in the early morning and late afternoon. It clearly shows the lake site to be superior with mid-day observations much to be preferred. The small tropopause isoplanatic patch size values also complicate the implementation of the solar MCAO systems aimed at large field-of-view sun imaging. Currently planned systems only correct for lower-layer seeing for which the isoplanatic patch size is about one arc minute. To fully achieve the diffraction limit of the 4-meter class (0.025 arcsec at 500 nm), over a large enough field-of-view to be of scientific interest, complicated Multi-Conjugate Adaptive Optics systems will be needed.
Architecture for coated conductors
Foltyn, Stephen R.; Arendt, Paul N.; Wang, Haiyan; Stan, Liliana
2010-06-01
Articles are provided including a base substrate having a layer of an oriented cubic oxide material with a rock-salt-like structure layer thereon, and, a layer of epitaxial titanium nitride upon the layer of an oriented cubic oxide material having a rock-salt-like structure. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of epitaxial titanium nitride or upon a intermediate buffer layer upon the layer of epitaxial titanium nitride.
Jyske, Tuula; Fujiwara, Takeshi; Kuroda, Katsushi; Iki, Taiichi; Zhang, Chunhua; Jyske, Tuomas K; Abe, Hisashi
2014-08-01
To investigate the biological mechanism by which trees control the changes in microfibril (MF) orientation among secondary cell wall layers of conifer tracheids, we studied seasonal variation in the orientation of newly deposited MFs during tracheid cell wall development in Japanese cedar (Cryptomeria japonica D. Don) trees growing in Central Japan (36°36'N, 140°39'E). Sample blocks were repeatedly collected from four 16-year-old clones of different origins during the growing season of 2010 to investigate the hypotheses that changes in cellulose MF orientation between wall layers exhibited seasonal and clonal differences. The progressive change in the orientation of newly deposited MFs on the primary and secondary cell wall layers of tracheids was detected by field-emission-scanning electron microscopy. Tracheid production and differentiation was studied by light microscopy. We observed a decreasing trend in the orientation of deposited MFs from earlywood to latewood in the S2 and S1 layers, where MFs appeared in a Z-helix. In contrast, no seasonal pattern in the orientation of the MFs in the S-helix was observed. Minor clonal variation was observed in the phenology of tracheid production and differentiation. We concluded that a seasonal decreasing trend in the orientation of the MFs in the Z-helix in S1 and S2 was present, whereas the MFs in other layers exhibited minor random variations. Thus, the orientation of the MFs in S2 was affected by seasonal factors, whereas the MFs in other layers were more intrinsically controlled. The within-ring variations in the MF orientation and thus the resulting average MF angle might also be related to genotypic differences in the tracheid production and differentiation rate. However, our results do not exclude other intrinsic and environmental regulations in the change in MF orientation, which remains a topic for future studies. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Layer-oriented simulation tool.
Arcidiacono, Carmelo; Diolaiti, Emiliano; Tordi, Massimiliano; Ragazzoni, Roberto; Farinato, Jacopo; Vernet, Elise; Marchetti, Enrico
2004-08-01
The Layer-Oriented Simulation Tool (LOST) is a numerical simulation code developed for analysis of the performance of multiconjugate adaptive optics modules following a layer-oriented approach. The LOST code computes the atmospheric layers in terms of phase screens and then propagates the phase delays introduced in the natural guide stars' wave fronts by using geometrical optics approximations. These wave fronts are combined in an optical or numerical way, including the effects of wave-front sensors on measurements in terms of phase noise. The LOST code is described, and two applications to layer-oriented modules are briefly presented. We have focus on the Multiconjugate adaptive optics demonstrator to be mounted upon the Very Large Telescope and on the Near-IR-Visible Adaptive Interferometer for Astronomy (NIRVANA) interferometric system to be installed on the combined focus of the Large Binocular Telescope.
Jeong, Ji Heun; Yu, Kwang Sik; Bak, Dong Ho; Lee, Je Hun; Lee, Nam Seob; Jeong, Young Gil; Kim, Dong Kwan; Kim, Jwa-Jin; Han, Seung-Yun
2016-11-01
Previous studies have demonstrated that autophagy induced by caloric restriction (CR) is neuroprotective against cerebral ischemia. However, it has not been determined whether intermittent fasting (IF), a variation of CR, can exert autophagy-related neuroprotection against cerebral ischemia. Therefore, the neuroprotective effect of IF was evaluated over the course of two weeks in a rat model of focal cerebral ischemia, which was induced by middle cerebral artery occlusion and reperfusion (MCAO/R). Specifically, the role of autophagy modulation as a potential underlying mechanism for this phenomenon was investigated. It was demonstrated that IF reduced infarct volume and brain edema, improved neurobehavioral deficits, and rescued neuronal loss after MCAO/R. Furthermore, neuronal apoptosis was decreased by IF in the rat cortex. An increase in the number of autophagosomes (APs) was demonstrated in the cortices of IF-treated rats, using immunofluorescence staining and transmission electron microscopy. Using immunoblots, an IF-induced increase was detected in microtubule-associated protein 1 light chain 3 (LC3)-II, Rab7, and cathepsin D protein levels, which corroborated previous morphological studies. Notably, IF reduced the accumulation of APs and p62, demonstrating that IF attenuated the MCAO/R-induced disturbance of autophagic flux in neurons. The findings of the present study suggest that IF-induced neuroprotection in focal cerebral ischemia is due, at least in part, to the minimization of autophagic flux disturbance and inhibition of apoptosis.
Lin, Yun; Zhang, Jian-Cheng; Fu, Jun; Chen, Fang; Wang, Jie; Wu, Zhi-Lin; Yuan, Shi-Ying
2013-02-01
Hyperforin, a lipophilic constituent of medicinal herb St John's wort, has been identified as the main active ingredient of St John's wort extract for antidepressant action by experimental and clinical studies. Hyperforin is currently known to activate transient receptor potential canonical (subtype) 6 (TRPC6) channel, increase the phosphorylated CREB (p-CREB), and has N-methyl-D-aspartate receptor-antagonistic effect that convert potential neuroprotective effects in vitro. However, the protective effects of hyperforin on ischemic stroke in vivo remain controversial and its neuroprotective mechanisms are still unclear. This study was designed to examine the effects of intracerebroventricular (i.c.v.) injection of hyperforin on transient focal cerebral ischemia in rats. Hyperforin, when applied immediately after middle cerebral artery occlusion (MCAO) onset, significantly reduced infarct volumes and apoptotic cells, and also increased neurologic scores at 24 hours after reperfusion accompanied by elevated TRPC6 and p-CREB activity and decreased SBDP145 activity. When MEK or CaMKIV activity was specifically inhibited, the neuroprotective effect of hyperforin was attenuated, and we observed a correlated decrease in CREB activity. In conclusion, our results clearly showed that i.c.v. injection of hyperforin immediately after MCAO onset blocked calpain-mediated TRPC6 channels degradation, and then to stimulate the Ras/MEK/ERK and CaMKIV pathways that converge on CREB activation, contributed to neuroprotection.
Lin, Yun; Zhang, Jian-Cheng; Fu, Jun; Chen, Fang; Wang, Jie; Wu, Zhi-Lin; Yuan, Shi-Ying
2013-01-01
Hyperforin, a lipophilic constituent of medicinal herb St John's wort, has been identified as the main active ingredient of St John's wort extract for antidepressant action by experimental and clinical studies. Hyperforin is currently known to activate transient receptor potential canonical (subtype) 6 (TRPC6) channel, increase the phosphorylated CREB (p-CREB), and has N-methyl-𝒟-aspartate receptor-antagonistic effect that convert potential neuroprotective effects in vitro. However, the protective effects of hyperforin on ischemic stroke in vivo remain controversial and its neuroprotective mechanisms are still unclear. This study was designed to examine the effects of intracerebroventricular (ICV) injection of hyperforin on transient focal cerebral ischemia in rats. Hyperforin, when applied immediately after middle cerebral artery occlusion (MCAO) onset, significantly reduced infarct volumes and apoptotic cells, and also increased neurologic scores at 24 hours after reperfusion accompanied by elevated TRPC6 and p-CREB activity and decreased SBDP145 activity. When MEK or CaMKIV activity was specifically inhibited, the neuroprotective effect of hyperforin was attenuated, and we observed a correlated decrease in CREB activity. In conclusion, our results clearly showed that ICV injection of hyperforin immediately after MCAO onset blocked calpain-mediated TRPC6 channels degradation, and then to stimulate the Ras/MEK/ERK and CaMKIV pathways that converge on CREB activation, contributed to neuroprotection. PMID:23149561
Chaparro, Rafael E; Izutsu, Miwa; Sasaki, Toshihiro; Sheng, Huaxin; Zheng, Yi; Sadeghian, Homa; Qin, Tao; von Bornstadt, Daniel; Herisson, Fanny; Duan, Bin; Li, Jing-Song; Jiang, Kai; Pearlstein, Molly; Pearlstein, Robert D; Smith, David E; Goldberg, Itzhak D; Ayata, Cenk; Warner, David S
2015-01-01
Hepatocyte growth factor (HGF), efficacious in preclinical models of acute central nervous system injury, is burdened by administration of full-length proteins. A multiinstitutional consortium investigated the efficacy of BB3, a small molecule with HGF-like activity that crosses the blood–brain barrier in rodent focal ischemic stroke using Stroke Therapy Academic Industry Roundtable (STAIR) and Good Laboratory Practice guidelines. In rats, BB3, begun 6 hours after temporary middle cerebral artery occlusion (tMCAO) reperfusion, or permanent middle cerebral artery occlusion (pMCAO) onset, and continued for 14 days consistently improved long-term neurologic function independent of sex, age, or laboratory. BB3 had little effect on cerebral infarct size and no effect on blood pressure. BB3 increased HGF receptor c-Met phosphorylation and synaptophysin expression in penumbral tissue consistent with a neurorestorative mechanism from HGF-like activity. In mouse tMCAO, BB3 starting 10 minutes after reperfusion and continued for 14 days improved neurologic function that persisted for 8 weeks in some, but not all measures. Study in animals with comorbidities and those exposed to common stroke drugs are the next steps to complete preclinical assessment. These data, generated in independent, masked, and rigorously controlled settings, are the first to suggest that the HGF pathway can potentially be harnessed by BB3 for neurologic benefit after ischemic stroke. PMID:25712497
Wu, K W; Yang, P; Li, S S; Liu, C W; Sun, F Y
2015-07-09
We recently indicated that the vascular endothelial growth factor (VEGF) protects neurons against hypoxic death via enhancement of tyrosine phosphorylation of Kv1.2, an isoform of the delayed-rectifier potassium channels through activation of the phosphatidylinositol 3-kinase (PI3-K) signaling pathway. The present study investigated whether VEGF could attenuate ischemia-induced increase of the potassium currents in the hippocampal pyramidal neurons of rats after ischemic injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) to induce brain ischemia. The whole-cell patch-clamp technique was used to record the potassium currents of hippocampal neurons in brain slices from the ischemically injured brains of the rats 24h after MCAO. We detected that transient MCAO caused a significant increase of voltage-gated potassium currents (Kv) and outward delayed-rectifier potassium currents (IK), but not outward transient potassium currents (IA), in the ipsilateral hippocampus compared with the sham. Moreover, we found that VEGF could acutely, reversibly and voltage-dependently inhibit the ischemia-induced IK increase. This inhibitory effect of VEGF could be completely abolished by wortmannin, an inhibitor of PI3-K. Our data indicate that VEGF attenuates the ischemia-induced increase of IK via activation of the PI3-K signaling pathway. Published by Elsevier Ltd.
Ranjkesh, Amid; Park, Min-Kyu; Park, Do Hyuk; Park, Ji-Sub; Choi, Jun-Chan; Kim, Sung-Hoon; Kim, Hak-Rin
2015-01-01
We propose a highly oriented photochromic dye film for an ultraviolet (UV)-sensing layer, where spirooxazine (SO) derivatives are aligned with the liquid crystalline UV-curable reactive mesogens (RM) using a guest-host effect. For effective electrical UV sensing with a simple metal-insulator-metal structure, our results show that the UV-induced switchable dipole moment amount of the SO derivatives is high; however, their tilting orientation should be controlled. Compared to the dielectric layer with the nearly planar SO dye orientation, the photochromic dielectric layer with the moderately tilted dye orientation shows more than seven times higher the UV-induced capacitance variation. PMID:26729116
NASA Astrophysics Data System (ADS)
Yu, Yishan
The influence of various fillers, nucleating agents and ethylene propylene diene terpolymer (EPDM) additive on crystalline modification (alpha-, beta- and smectic forms) and crystalline orientation of polypropylene in die extrudates, melt spun filaments, thick rods, blow molded bottles and injection molded parts of isotactic polypropylene (PP), its blends/compounds and dynamically vulcanized polypropylene thermoplastic elastomers (TPEs) were experimentally studied under a range of cooling and processing conditions. The phenomena of crystallization, polymorphism and orientation in processing of both thin and thick samples (filaments, rods, bottles and injection molded parts) were simulated through transport laws incorporating polymer crystallization kinetics. Continuous cooling transformation (CCT) curves for the various material systems investigated were developed under quiescent and uniaxial stress conditions. We applied experimental data on polymorphism of thin sections to predict crystalline structure variation in thick parts. The predictions were consistent with experiments. For filaments, the polypropylene crystalline orientation-spinline stress relationship is generally similar for the neat PP, blends/compounds and TPEs. However, the blends and TPEs have much lower birefringence apparently due to a lack of orientation in the rubber phase. It was shown that the polypropylene contribution to the birefringence for the neat PP and its blends is the same at the same spinline stress. For bottles, the inflation pressures used have little effect on orientation of either polypropylene crystals or disc-shaped talc filler. The talc discs are highly oriented parallel to the bottle surface. For the bottles without talc, the orientation of polypropylene crystallographic axes are low. The polypropylene crystallographic b-axes in the talc filled bottles are more highly oriented. For injection molded parts, it was found that a low orientation layer exists between the part surface and an intermediate highly oriented layer in the parts of neat PP and its blends/compounds. The thickness of this layer increases as the injection pressure decreases. This layer was not formed in the TPE parts. This would seem to be associated with the TPEs exhibiting a yield stress in shear flow and not exhibiting fountain flow in mold filling. For all parts studied, the orientation characteristics of polypropylene crystallographic axes in the highly oriented layer are similar from sample to sample. The strong orientation of the c-axis parallel to the machine direction and the b-axis perpendicular to the machine direction are observed in the highly oriented layer. The talc discs in both the highly oriented layer and the intermediate position are highly oriented parallel to the part face due to melt flow. At intermediate position in the talc-filled parts, the polypropylene crystallographic (040) planes prefer to align themselves parallel to the part surface but are not so well oriented when the talc is absent.
High rate buffer layer for IBAD MgO coated conductors
Foltyn, Stephen R [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Arendt, Paul N [Los Alamos, NM
2007-08-21
Articles are provided including a base substrate having a layer of an oriented material thereon, and, a layer of hafnium oxide upon the layer of an oriented material. The layer of hafnium oxide can further include a secondary oxide such as cerium oxide, yttrium oxide, lanthanum oxide, scandium oxide, calcium oxide and magnesium oxide. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of hafnium oxide or layer of hafnium oxide and secondary oxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poletika, T. M., E-mail: poletm@ispms.tsc.ru; Girsova, S. L., E-mail: llm@ispms.tsc.ru; Meisner, L. L., E-mail: girs@ispms.tsc.ru
The structure of the surface and near-surface layers of single crystals of NiTi, differently oriented relative to the direction of ion beam treatment was investigated. The role of the crystallographic orientation in formation of structure of surface layers after ion-plasma alloying was revealed. It was found that the orientation effects of selective sputtering and channeling determine the thickness of the oxide and amorphous layers, the depth of penetration of ions and impurities, the distribution of Ni with depth.
Feasibility study of a layer-oriented wavefront sensor for solar telescopes.
Marino, Jose; Wöger, Friedrich
2014-02-01
Solar multiconjugate adaptive optics systems rely on several wavefront sensors, which measure the incoming turbulent phase along several field directions to produce a tomographic reconstruction of the turbulent phase. In this paper, we explore an alternative wavefront sensing approach that attempts to directly measure the turbulent phase present at a particular height in the atmosphere: a layer-oriented cross-correlating Shack-Hartmann wavefront sensor (SHWFS). In an experiment at the Dunn Solar Telescope, we built a prototype layer-oriented cross-correlating SHWFS system conjugated to two separate atmospheric heights. We present the data obtained in the observations and complement these with ray-tracing computations to achieve a better understanding of the instrument's performance and limitations. The results obtained in this study strongly indicate that a layer-oriented cross-correlating SHWFS is not a practical design to measure the wavefront at a high layer in the atmosphere.
NASA Astrophysics Data System (ADS)
Eckert, Andreas; Zhang, Weicheng
2016-02-01
The offshore Nile Delta displays sharply contrasting orientations of the maximum horizontal stress, SH, in regions above Messinian evaporites (suprasalt) and regions below Messinian evaporites (subsalt). Published stress orientation data predominantly show margin-normal suprasalt SH orientations but a margin-parallel subsalt SH orientation. While these data sets provide the first major evidence that evaporite sequences can act as mechanical detachment horizons, the cause for the stress orientation contrast remains unclear. In this study, 3D finite element analysis is used to investigate the causes for stress re-orientation based on two different hypotheses. The modeling study evaluates the influence of different likely salt geometries and whether stress reorientations are the result of basal drag forces induced by gravitational gliding or whether they represent localized variations due to mechanical property contrasts. The modeling results show that when salt is present as a continuous layer, gravitational gliding occurs and basal drag forces induced in the suprasalt layers result in the margin-normal principal stress becoming the maximum horizontal stress. With the margin-normal stress increase being confined to the suprasalt layers, the salt acts as a mechanical detachment horizon, resulting in different SH orientations in the suprasalt compared to the subsalt layers. When salt is present as isolated bodies localized stress variations occur due to the mechanical property contrasts imposed by the salt, also resulting in different SH orientations in the suprasalt compared to the subsalt layers. The modeling results provide additional quantitative evidence to confirm the role of evaporite sequences as mechanical detachment horizons.
Study Orientation Ply of Fiberglass on Blade Salt Water Pump Windmill using Abaqus
NASA Astrophysics Data System (ADS)
Badruzzaman, B.; Sifa, A.
2018-02-01
Windmill is one tool to generate energy from wind energy is converted into energy motion, salt production process still using traditional process by utilizing windmill to move sea water to salt field With a windmill driven water system, a horizontal axis type windmill with an average windmill height of 3-4 m, with a potential wind speed of 5-9 m / s, the amount of blade used for salt water pumps as much as 4 blades, one of the main factor of the windmill component is a blade, blade designed for the needs of a salt water pump by using fiberglass material. On layer orientation 0°,30°,45°,60° and 90° with layer number 10 and layer thickness 2 mm, the purpose of this study was to determine the strength of fiberglass that was influenced by the orientation of the layer, and to determine the orientation of fiberglass layer before making. This method used Finite Element Analysis method using ABAQUS, with homogenous and heterogeneous layer parameters. The simulation result shows the difference in von misses value at an angle of 0°, 30°, 45°,60° homogeneous value is greater than heterogeneous value, whereas in orientation 90 heterogeneous values have value 1,689e9 Pa, greater than homogenous 90 orientation value of 1,296e9 Pa.
Control of liquid crystal molecular orientation using ultrasound vibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taniguchi, Satoki; Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321; Koyama, Daisuke
2016-03-07
We propose a technique to control the orientation of nematic liquid crystals using ultrasound and investigate the optical characteristics of the oriented samples. An ultrasonic liquid crystal cell with a thickness of 5–25 μm and two ultrasonic lead zirconate titanate transducers was fabricated. By exciting the ultrasonic transducers, the flexural vibration modes were generated on the cell. An acoustic radiation force to the liquid crystal layer was generated, changing the molecular orientation and thus the light transmission. By modulating the ultrasonic driving frequency and voltage, the spatial distribution of the molecular orientation of the liquid crystals could be controlled. The distributionmore » of the transmitted light intensity depends on the thickness of the liquid crystal layer because the acoustic field in the liquid crystal layer is changed by the orientational film.« less
Ljubisavljevic, Milos R.; Javid, Asma; Oommen, Joji; Parekh, Khatija; Nagelkerke, Nico; Shehab, Safa; Adrian, Thomas E.
2015-01-01
Although repetitive Transcranial Magnetic Stimulation (rTMS) in treatment of stroke in humans has been explored over the past decade the data remain controversial in terms of optimal stimulation parameters and the mechanisms of rTMS long-term effects. This study aimed to explore the potential of different rTMS protocols to induce changes in gene expression in rat cortices after acute ischemic-reperfusion brain injury. The stroke was induced by middle cerebral artery occlusion (MCAO) with subsequent reperfusion. Changes in the expression of 96 genes were examined using low-density expression arrays after MCAO alone and after MCAO combined with 1Hz, 5Hz, continuous (cTBS) and intermittent (iTBS) theta-burst rTMS. rTMS over the lesioned hemisphere was given for two weeks (with a 2-day pause) in a single daily session and a total of 2400 pulses. MCAO alone induced significant upregulation in the expression of 44 genes and downregulation in 10. Two weeks of iTBS induced significant increase in the expression of 52 genes. There were no downregulated genes. 1Hz and 5Hz had no significant effects on gene expression, while cTBS effects were negligible. Upregulated genes included those involved in angiogenesis, inflammation, injury response and cellular repair, structural remodeling, neuroprotection, neurotransmission and neuronal plasticity. The results show that long-term rTMS in acute ischemic-reperfusion brain injury induces complex changes in gene expression that span multiple pathways, which generally promote the recovery. They also demonstrate that induced changes primarily depend on the rTMS frequency (1Hz and 5Hz vs. iTBS) and pattern (cTBS vs. iTBS). The results further underlines the premise that one of the benefits of rTMS application in stroke may be to prime the brain, enhancing its potential to cope with the injury and to rewire. This could further augment its potential to favorably respond to rehabilitation, and to restore some of the loss functions. PMID:26431529
Xin, Hongqi; Li, Yi; Liu, Zhongwu; Wang, Xinli; Shang, Xia; Cui, Yisheng; Zhang, Zheng Gang; Chopp, Michael
2013-01-01
To test, in vivo, the hypothesis that exosomes from multipotent mesenchymal stromal cells (MSCs) mediate microRNA 133b (miR-133b) transfer which promotes neurological recovery from stroke, we employed knock-in and knock-down technologies to up-regulate or down-regulate the miR-133b level in MSCs (miR-133b+MSCs or miR-133b−MSCs) and their corresponding exosomes, respectively. Rats were subjected to middle cerebral artery occlusion (MCAo) and were treated with naïve MSCs, miR-133b+MSCs, or miR-133b−MSC at one day after MCAo. Compared with controls, rats receiving naïve MSC treatment significantly improved functional recovery, and exhibited increased axonal plasticity and neurite remodeling in the ischemic boundary zone (IBZ) at day 14 after MCAo. The outcomes were significantly enhanced with miR-133b+MSC treatment, and were significantly decreased with miR-133b−MSC treatment, compared to naïve MSC treatment. The miR-133b level in exosomes collected from the cerebral spinal fluid was significantly increased after miR-133b+MSC treatment, and was significantly decreased after miR-133b−MSC treatment at day 14 after MCAo, compared to naïve MSC treatment. Tagging exosomes with green fluorescent protein demonstrated that exosomes-enriched extracellular particles were released from MSCs and transferred to adjacent astrocytes and neurons. The expression of selective targets for miR-133b, connective tissue growth factor and ras homolog gene family member A, were significantly decreased in the IBZ after miR-133b+MSC treatment, while their expression remained at similar elevated levels after miR-133b−MSC treatment, compared to naïve MSC treatment. Collectively, our data suggest that exosomes from MSCs mediate the miR-133b transfer to astrocytes and neurons, which regulate gene expression, subsequently benefit neurite remodeling and functional recovery after stroke. PMID:23630198
Andrabi, Syed Suhail; Parvez, Suhel; Tabassum, Heena
2017-06-01
Organelle damage and increases in mitochondrial permeabilization are key events in the development of cerebral ischemic tissue injury because they cause both modifications in ATP turnover and cellular apoptosis/necrosis. Early restoration of blood flow and improvement of mitochondrial function might reverse the situation and help in recovery following an onset of stroke. Mitochondria and related bioenergetic processes can be effectively used as pharmacological targets. Progesterone (P4), one of the promising neurosteroids, has been found to be neuroprotective in various models of neurological diseases, through a number of mechanisms. This influenced us to investigate the possible role of P4 in the mitochondria-mediated neuroprotective mechanism in an ischemic stroke model of rat. In this study, we have shown the positive effect of P4 administration on behavioral deficits and mitochondrial health in an ischemic stroke injury model of transient middle cerebral artery occlusion (tMCAO). After induction of tMCAO, the rats received an initial intraperitoneal injection of P4 (8 mg/kg body weight) or vehicle at 1 h post-occlusion followed by subcutaneous injections at 6, 12 and 18 h. Behavioral assessment for functional deficits included grip strength, motor coordination and gait analysis. Findings revealed a significant improvement with P4 treatment in tMCAO animals. Staining of isolated brain slices from P4-treated rats with 2,3,5-triphenyltetrazolium chloride (TTC) showed a reduction in the infarct area in comparison to the vehicle group, indicating the presence of an increased number of viable mitochondria. P4 treatment was also able to attenuate mitochondrial reactive oxygen species (ROS) production, as well as block the mitochondrial permeability transition pore (mPTP), in the tMCAO injury model. In addition, it was also able to ameliorate the altered mitochondrial membrane potential and respiration ratio in the ischemic animals, thereby suggesting that P4 has a positive effect on mitochondrial bioenergetics. In conclusion, these results demonstrate that P4 treatment is beneficial in preserving the mitochondrial functions that are altered in cerebral ischemic injury and thus can help in defining better therapies. © 2017. Published by The Company of Biologists Ltd.
Three-dimensional visual feature representation in the primary visual cortex
Tanaka, Shigeru; Moon, Chan-Hong; Fukuda, Mitsuhiro; Kim, Seong-Gi
2011-01-01
In the cat primary visual cortex, it is accepted that neurons optimally responding to similar stimulus orientations are clustered in a column extending from the superficial to deep layers. The cerebral cortex is, however, folded inside a skull, which makes gyri and fundi. The primary visual area of cats, area 17, is located on the fold of the cortex called the lateral gyrus. These facts raise the question of how to reconcile the tangential arrangement of the orientation columns with the curvature of the gyrus. In the present study, we show a possible configuration of feature representation in the visual cortex using a three-dimensional (3D) self-organization model. We took into account preferred orientation, preferred direction, ocular dominance and retinotopy, assuming isotropic interaction. We performed computer simulation only in the middle layer at the beginning and expanded the range of simulation gradually to other layers, which was found to be a unique method in the present model for obtaining orientation columns spanning all the layers in the flat cortex. Vertical columns of preferred orientations were found in the flat parts of the model cortex. On the other hand, in the curved parts, preferred orientations were represented in wedge-like columns rather than straight columns, and preferred directions were frequently reversed in the deeper layers. Singularities associated with orientation representation appeared as warped lines in the 3D model cortex. Direction reversal appeared on the sheets that were delimited by orientation-singularity lines. These structures emerged from the balance between periodic arrangements of preferred orientations and vertical alignment of same orientations. Our theoretical predictions about orientation representation were confirmed by multi-slice, high-resolution functional MRI in the cat visual cortex. We obtained a close agreement between theoretical predictions and experimental observations. The present study throws a doubt about the conventional columnar view of orientation representation, although more experimental data are needed. PMID:21724370
Three-dimensional visual feature representation in the primary visual cortex.
Tanaka, Shigeru; Moon, Chan-Hong; Fukuda, Mitsuhiro; Kim, Seong-Gi
2011-12-01
In the cat primary visual cortex, it is accepted that neurons optimally responding to similar stimulus orientations are clustered in a column extending from the superficial to deep layers. The cerebral cortex is, however, folded inside a skull, which makes gyri and fundi. The primary visual area of cats, area 17, is located on the fold of the cortex called the lateral gyrus. These facts raise the question of how to reconcile the tangential arrangement of the orientation columns with the curvature of the gyrus. In the present study, we show a possible configuration of feature representation in the visual cortex using a three-dimensional (3D) self-organization model. We took into account preferred orientation, preferred direction, ocular dominance and retinotopy, assuming isotropic interaction. We performed computer simulation only in the middle layer at the beginning and expanded the range of simulation gradually to other layers, which was found to be a unique method in the present model for obtaining orientation columns spanning all the layers in the flat cortex. Vertical columns of preferred orientations were found in the flat parts of the model cortex. On the other hand, in the curved parts, preferred orientations were represented in wedge-like columns rather than straight columns, and preferred directions were frequently reversed in the deeper layers. Singularities associated with orientation representation appeared as warped lines in the 3D model cortex. Direction reversal appeared on the sheets that were delimited by orientation-singularity lines. These structures emerged from the balance between periodic arrangements of preferred orientations and vertical alignment of the same orientations. Our theoretical predictions about orientation representation were confirmed by multi-slice, high-resolution functional MRI in the cat visual cortex. We obtained a close agreement between theoretical predictions and experimental observations. The present study throws a doubt about the conventional columnar view of orientation representation, although more experimental data are needed. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
1990-01-01
All vision systems, both human and machine, transform the spatial image into a coded representation. Particular codes may be optimized for efficiency or to extract useful image features. Researchers explored image codes based on primary visual cortex in man and other primates. Understanding these codes will advance the art in image coding, autonomous vision, and computational human factors. In cortex, imagery is coded by features that vary in size, orientation, and position. Researchers have devised a mathematical model of this transformation, called the Hexagonal oriented Orthogonal quadrature Pyramid (HOP). In a pyramid code, features are segregated by size into layers, with fewer features in the layers devoted to large features. Pyramid schemes provide scale invariance, and are useful for coarse-to-fine searching and for progressive transmission of images. The HOP Pyramid is novel in three respects: (1) it uses a hexagonal pixel lattice, (2) it uses oriented features, and (3) it accurately models most of the prominent aspects of primary visual cortex. The transform uses seven basic features (kernels), which may be regarded as three oriented edges, three oriented bars, and one non-oriented blob. Application of these kernels to non-overlapping seven-pixel neighborhoods yields six oriented, high-pass pyramid layers, and one low-pass (blob) layer.
Allison, J D; Bonds, A B
1994-01-01
Intracortical inhibition is believed to enhance the orientation tuning of striate cortical neurons, but the origin of this inhibition is unclear. To examine the possible influence of ascending inhibitory projections from the infragranular layers of striate cortex on the orientation selectivity of neurons in the supragranular layers, we measured the spatiotemporal response properties of 32 supragranular neurons in the cat before, during, and after neural activity in the infragranular layers beneath the recorded cells was inactivated by iontophoretic administration of GABA. During GABA iontophoresis, the orientation tuning bandwidth of 15 (46.9%) supragranular neurons broadened as a result of increases in response amplitude to stimuli oriented about +/- 20 degrees away from the preferred stimulus angle. The mean (+/- SD) baseline orientation tuning bandwidth (half width at half height) of these neurons was 13.08 +/- 2.3 degrees. Their mean tuning bandwidth during inactivation of the infragranular layers increased to 19.59 +/- 2.54 degrees, an increase of 49.7%. The mean percentage increase in orientation tuning bandwidth of the individual neurons was 47.4%. Four neurons exhibited symmetrical changes in their orientation tuning functions, while 11 neurons displayed asymmetrical changes. The change in form of the orientation tuning functions appeared to depend on the relative vertical alignment of the recorded neuron and the infragranular region of inactivation. Neurons located in close vertical register with the inactivated infragranular tissue exhibited symmetric changes in their orientation tuning functions. The neurons exhibiting asymmetric changes in their orientation tuning functions were located just outside the vertical register. Eight of these 11 neurons also demonstrated a mean shift of 6.67 +/- 5.77 degrees in their preferred stimulus orientation. The magnitude of change in the orientation tuning functions increased as the delivery of GABA was prolonged. Responses returned to normal approximately 30 min after the delivery of GABA was discontinued. We conclude that inhibitory projections from neurons within the infragranular layers of striate cortex in cats can enhance the orientation selectivity of supragranular striate cortical neurons.
Service-oriented Software Defined Optical Networks for Cloud Computing
NASA Astrophysics Data System (ADS)
Liu, Yuze; Li, Hui; Ji, Yuefeng
2017-10-01
With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.g., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). This paper proposes a new service-oriented software defined optical network architecture, including a resource layer, a service abstract layer, a control layer and an application layer. We then dwell on the corresponding service providing method. Different service ID is used to identify the service a device can offer. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit different services based on the service ID in the service-oriented software defined optical network.
The Effect of Layer Orientation on the Mechanical Properties and Microstructure of a Polymer
NASA Astrophysics Data System (ADS)
Vega, V.; Clements, J.; Lam, T.; Abad, A.; Fritz, B.; Ula, N.; Es-Said, O. S.
2011-08-01
Rapid Prototyping (RP) is a method used everywhere from the entertainment industry to healthcare. Layer orientation is an important aspect of the final product. The objective of this research was to evaluate the effect of layer orientation on the mechanical strength and toughness of a polymer. The polymer used was a combination of two materials, ZP 130 and ZB 58, fused together in the Z Corporation Spectrum Z510 Rapid Prototyping Machine. ZP 130 is a powder composed of vinyl polymer (2-20%), sulfate salt (0-5%), and plaster that contains <1% crystalline silica (50-95%). ZB 58 is a liquid composed of glycerol (1-10%), preservative (sorbic acid salt) (0-2%), surfactant (<1%), pigment (<1%), and water (85-95%). After removal from the machine the samples were sealed with Z bond 101 which is Beta-methoxyethyl cyanoacrylate (60-100%). The layer orientations studied were the crack arrestor, crack divider, and short transverse with various combinations of the three, for a total of seven orientations. The mechanical strength was evaluated using tensile testing and three-point bend testing. The toughness was evaluated by Izod impact testing. Five samples for tensile testing and three-point bend testing as well as 15 samples for the Izod impact test for each of the seven orientations were made. The total number of samples was 175. The crack arrestor orientation was the strongest main orientation for the tensile and three-point bend test. Weibull analysis was done on the Izod impact testing due to high variation in the results for the crack arrestor and short transverse directions. It was found that the layer orientation and surface roughness played a significant role in the penetration of the Z bond 101 coating and in the overall strength of the samples.
Intelligent vibration control of ELTs and large AO hardware
NASA Astrophysics Data System (ADS)
Pott, J.-U.; Kürster, M.; Trowitzsch, J.; Borelli, J.; Rohloff, R.-R.; Herbst, T.; Böhm, M.; Keck, A.; Ruppel, T.; Sawodny, O.
2012-07-01
MPIA leads the construction of the LINC-NIRVANA instrument, the MCAO-supported Fizeau imager for the LBT, serves as pathfinder for future ELT-AO imagers in terms of size and technology. In this contribution, we review recent results and significant progress made on the development of key items of our stratgey to achieve a piston stability of up to 100nm during a science exposure. We present an overview of our vibration control strategies for optical path and tip-tilt stabilization, involving accelerometer based real-time vibration measurements, vibration sensitive active control of actuators, and the development of a dynamical model of the LBT. MPIA also co-develops the E-ELT first-light NIR imager MICADO (both SCAO and MCAO assisted). Our experiences, made with LINC-NIRVANA, will be fed into the MICADO structural AO design to reach highest on-sky sensitivity.
Overexpression of caveolin-1 attenuates brain edema by inhibiting tight junction degradation.
Choi, Kang-Ho; Kim, Hyung-Seok; Park, Man-Seok; Lee, Eun-Bin; Lee, Jung-Kil; Kim, Joon-Tae; Kim, Ja-Hae; Lee, Min-Cheol; Lee, Hong-Joon; Cho, Ki-Hyun
2016-10-18
Cerebral edema from the disruption of the blood-brain barrier (BBB) after cerebral ischemia is a major cause of morbidity and mortality as well as a common event in patients with stroke. Caveolins (Cavs) are thought to regulate BBB functions. Here, we report for the first time that Cav-1 overexpression (OE) decreased brain edema from BBB disruption following ischemic insult. Edema volumes and Cav-1 expression levels were measured following photothrombosis and middle cerebral artery occlusion (MCAO). Endothelial cells that were transduced with a Cav-1 lentiviral expression vector were transplanted into rats. BBB permeability was quantified with Evans blue extravasation. Edema volume was determined from measures of the extravasation area, brain water content, and average fluorescence intensity after Cy5.5 injections. Tight junction (TJ) protein expression was measured with immunoblotting. Cav-1 expression levels and vasogenic brain edema correlated strongly after ischemic insult. Cav-1 expression and BBB disruption peaked 3 d after the MCAO. In addition, intravenous administration of endothelial cells expressing Cav-1 effectively increased the Cav-1 levels 3 d after the MCAO ischemic insult. Importantly, Cav-1 OE ameliorated the vasogenic edema by inhibiting the degradation of TJ protein expression in the acute phase of ischemic stroke. These results suggested that Cav-1 OE protected the integrity of the BBB mainly by preventing the degradation of TJ proteins in rats. These findings need to be confirmed in a clinical setting in human subjects.
SO2 inhalation contributes to the development and progression of ischemic stroke in the brain.
Sang, Nan; Yun, Yang; Li, Hongyan; Hou, Li; Han, Ming; Li, Guangke
2010-04-01
Epidemiological literatures show an association between air pollution and ischemic stroke, and effective pollutants may include SO(2), NO(x), O(3), CO, and particulates. However, existing experimental studies lack evidence as to the presence of effects for SO(2), which has been the focus in developing countries with increasing use of coal as the main resource. In the present study, we treated Wistar rats with SO(2) at various concentrations and determined endothelin-1 (ET-1), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and intercellular adhesion molecule 1 (ICAM-1) messenger RNA (mRNA) and protein expression in the cortex. The results show that SO(2) elevated the levels of ET-1, iNOS, COX-2, and ICAM-1 mRNA and protein in a concentration-dependent manner. Then, we set up rat model of ischemic stroke using middle cerebral artery occlusion (MCAO) and further treated the model rats with filtered air and lower concentration SO(2) for the same period. As expected, elevated expression of ET-1, iNOS, COX-2, and ICAM-1 occurred in the cortex of MCAO model rats exposed to filtered air, followed by increased activation of caspase-3 and cerebral infarct volume. Interestingly, SO(2) inhalation after MCAO significantly amplified above effects. It implies that SO(2) inhalation caused brain injuries similar to that of cerebral ischemia, and its exposure in atmospheric environment contributed to the development and progression of ischemic stroke.
Risk of bias reporting in the recent animal focal cerebral ischaemia literature.
Bahor, Zsanett; Liao, Jing; Macleod, Malcolm R; Bannach-Brown, Alexandra; McCann, Sarah K; Wever, Kimberley E; Thomas, James; Ottavi, Thomas; Howells, David W; Rice, Andrew; Ananiadou, Sophia; Sena, Emily
2017-10-15
Findings from in vivo research may be less reliable where studies do not report measures to reduce risks of bias. The experimental stroke community has been at the forefront of implementing changes to improve reporting, but it is not known whether these efforts are associated with continuous improvements. Our aims here were firstly to validate an automated tool to assess risks of bias in published works, and secondly to assess the reporting of measures taken to reduce the risk of bias within recent literature for two experimental models of stroke. We developed and used text analytic approaches to automatically ascertain reporting of measures to reduce risk of bias from full-text articles describing animal experiments inducing middle cerebral artery occlusion (MCAO) or modelling lacunar stroke. Compared with previous assessments, there were improvements in the reporting of measures taken to reduce risks of bias in the MCAO literature but not in the lacunar stroke literature. Accuracy of automated annotation of risk of bias in the MCAO literature was 86% (randomization), 94% (blinding) and 100% (sample size calculation); and in the lacunar stroke literature accuracy was 67% (randomization), 91% (blinding) and 96% (sample size calculation). There remains substantial opportunity for improvement in the reporting of animal research modelling stroke, particularly in the lacunar stroke literature. Further, automated tools perform sufficiently well to identify whether studies report blinded assessment of outcome, but improvements are required in the tools to ascertain whether randomization and a sample size calculation were reported. © 2017 The Author(s).
Wu, Chih-Jen; Chen, Jui-Tai; Yen, Ting-Lin; Jayakumar, Thanasekaran; Chou, Duen-Suey; Hsiao, George; Sheu, Joen-Rong
2011-01-01
Tao-Hong-Si-Wu-Tang (THSWT) is a famous traditional Chinese medicine (TMC). In the present study, oral administration of THSWT (0.7 and 1.4 g kg−1day−1) for 14 days before MCAO dose-dependently attenuated focal cerebral ischemia in rats. MCAO-induced focal cerebral ischemia was associated with increases in hypoxia-inducible factor (HIF)-1α, inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and active caspase-3 expressions in ischemic regions. These expressions were obviously inhibited by 0.7 g kg−1day−1 THSWT treatment. In addition, THSWT inhibited platelet aggregation stimulated by collagen in washed platelets. In an in vivo study, THSWT (16 g kg−1) significantly prolonged platelet plug formation in mice. However, THSWT (20 and 40 μg mL−1) did not significantly reduce the electron spin resonance (ESR) signal intensity of hydroxyl radical (OH•) formation. In conclusion, the most important findings of this study demonstrate for the first time that THSWT possesses potent neuroprotective activity against MCAO-induced focal cerebral ischemia in vivo. This effect may be mediated, at least in part, by the inhibition of both HIF-1α and TNF-α activation, followed by the inhibition of inflammatory responses (i.e., iNOS expression), apoptosis formation (active caspase-3), and platelet activation, resulting in a reduction in the infarct volume in ischemia-reperfusion brain injury. PMID:21076527
Ling, Li; Zeng, Jinsheng; Pei, Zhong; Cheung, Raymond T F; Hou, Qinghua; Xing, Shihui; Zhang, Suping
2009-09-01
Neurogenesis and angiogenesis in the subventricular zone and peri-infarct region have been confirmed. However, newly formed neuronal cells and blood vessels that appear in the nonischemic ipsilateral ventroposterior nucleus (VPN) of the thalamus with secondary damage after stroke has not been previously studied. Twenty-four stroke-prone renovascular hypertensive rats were subjected to distal right middle cerebral artery occlusion (MCAO) or sham operation. 5'-Bromo-2'-deoxyuridine (BrdU) was used to label cell proliferation. Rats were killed at 7 or 14 days after the operation. Neuronal nuclei (NeuN), OX-42, BrdU, nestin, laminin(+), BrdU(+)/nestin(+), BrdU(+)/NeuN(+), nestin(+)/GFAP(+)(glial fibrillary acidic protein), and BrdU(+)/laminin(+) immunoreactive cells were detected within the ipsilateral VPN. The primary infarction was confined to the right somatosensory cortex. Within the ipsilateral VPN of the ischemic rats, the number of NeuN(+) neurons decreased, the OX-42(+) microglia cells were activated, and BrdU(+) and nestin(+) cells were detected at day 7 after MCAO and increased in number at day 14. Moreover, BrdU(+)/nestin(+) cells and BrdU(+)/NeuN(+) cells were detected at day 14 after MCAO. In addition, the ischemic rats showed a significant increase in vascular density in the ipsilateral VPN compared with the sham-operated rats. These results suggest that secondary damage with neurogenesis and angiogenesis of the ipsilateral VPN of the thalamus occurs after focal cortical infarction.
MicroRNA-9 Mediates the Cell Apoptosis by Targeting Bcl2l11 in Ischemic Stroke.
Wei, Na; Xiao, Lin; Xue, Rui; Zhang, Dandan; Zhou, Jun; Ren, Huayan; Guo, Si; Xu, Jingjing
2016-12-01
Ischemic strokes occur as a result of an obstruction within a blood vessel supplying blood to the brain and accounts for about 87 % of all cases. During the cerebral ischemia, most of the neurons undergo the necrosis and apoptosis upon the exposure to the dramatic blood flow reduction. Although, it is known that both the intrinsic and extrinsic pathways are involved in the neuronal apoptosis of ischemic brain injury. The complex underlying mechanisms remains less known. MicroRNAs are a class of endogenous small non-coding RNAs and the role of miRNAs in the pathophysiology of stroke has been studied. In this study, we found that miR-9 is downregulated in the mice with middle cerebral artery occlusion (MCAO) brain and oxygen-glucose deprivation (OGD) neurons. Application of miR-9 gamer could restore the neurological scores and reduces the infarct volume, brain water content, and the behavioral impairments. Moreover, upregulation of miR-9 suppresses the neuronal apoptosis in MCAO brain and OGD neurons. Furthermore, we identified that Bcl2l11 as the direct target of miR-9 and manipulation of miR-9 induces the corresponding changing of Bcl2l11 protein level. Finally, we found that the protein level of Bcl2l11 is increased in the MCAO brain and OGD neurons. Our study demonstrated the critical role of miR-9 in the neuronal apoptosis of ischemic brain injury.
NASA Astrophysics Data System (ADS)
Nomoto, Junichi; Inaba, Katsuhiko; Kobayashi, Shintaro; Makino, Hisao; Yamamoto, Tetsuya
2017-06-01
A 10-nm-thick radio frequency magnetron-sputtered aluminum-doped zinc oxide (AZO) showing a texture with a preferential (0001) orientation on amorphous glass substrates was used as an interface layer for tailoring the orientation of 490-nm-thick polycrystalline AZO films subsequently deposited by direct current (DC) magnetron sputtering at a substrate temperature of 200 °C. Wide-angle X-ray diffraction pole figure analysis showed that the resulting 500-nm-thick AZO films showed a texture with a highly preferential c-axis orientation. This showed that DC-magnetron-sputtered AZO films grew along with the orientation matching that of the interface layer, whereas 500-nm-thick AZO films deposited on bare glass substrates by DC magnetron sputtering exhibited a mixed orientation of the c-plane and other planes. The surface morphology was also improved while retaining the lateral grain size by applying the interface layer as revealed by atomic force microscopy.
NASA Astrophysics Data System (ADS)
Dicken, Matthew J.; Diest, Kenneth; Park, Young-Bae; Atwater, Harry A.
2007-03-01
We have investigated the growth of barium titanate thin films on bulk crystalline and amorphous substrates utilizing biaxially oriented template layers. Ion beam-assisted deposition was used to grow thin, biaxially textured, magnesium oxide template layers on amorphous and silicon substrates. Growth of highly oriented barium titanate films on these template layers was achieved by molecular beam epitaxy using a layer-by-layer growth process. Barium titanate thin films were grown in molecular oxygen and in the presence of oxygen radicals produced by a 300 W radio frequency plasma. We used X-ray and in situ reflection high-energy electron diffraction (RHEED) to analyze the structural properties and show the predominantly c-oriented grains in the films. Variable angle spectroscopic ellipsometry was used to analyze and compare the optical properties of the thin films grown with and without oxygen plasma. We have shown that optical quality barium titanate thin films, which show bulk crystal-like properties, can be grown on any substrate through the use of biaxially oriented magnesium oxide template layers.
A new service-oriented grid-based method for AIoT application and implementation
NASA Astrophysics Data System (ADS)
Zou, Yiqin; Quan, Li
2017-07-01
The traditional three-layer Internet of things (IoT) model, which includes physical perception layer, information transferring layer and service application layer, cannot express complexity and diversity in agricultural engineering area completely. It is hard to categorize, organize and manage the agricultural things with these three layers. Based on the above requirements, we propose a new service-oriented grid-based method to set up and build the agricultural IoT. Considering the heterogeneous, limitation, transparency and leveling attributes of agricultural things, we propose an abstract model for all agricultural resources. This model is service-oriented and expressed with Open Grid Services Architecture (OGSA). Information and data of agricultural things were described and encapsulated by using XML in this model. Every agricultural engineering application will provide service by enabling one application node in this service-oriented grid. Description of Web Service Resource Framework (WSRF)-based Agricultural Internet of Things (AIoT) and the encapsulation method were also discussed in this paper for resource management in this model.
Aligned crystalline semiconducting film on a glass substrate and method of making
Findikoglu, Alp T.
2010-08-24
A semiconducting structure having a glass substrate. In one embodiment, the glass substrate has a softening temperature of at least about 750.degree. C. The structure includes a nucleation layer formed on a surface of the substrate, a template layer deposited on the nucleation layer by one of ion assisted beam deposition and reactive ion beam deposition, at least on biaxially oriented buffer layer epitaxially deposited on the template layer, and a biaxially oriented semiconducting layer epitaxially deposited on the buffer layer. A method of making the semiconducting structure is also described.
NASA Astrophysics Data System (ADS)
Miyazaki, Masumi; Sakanoue, Tomo; Takenobu, Taishi
2018-03-01
Uniaxially oriented poly(9,9-dioctylfluorene-co-bithiophene) (F8T2) films were prepared on rubbed polyimide substrates and applied to emitting layers of light-emitting electrochemical cells (LECs). The layered structure of the uniaxially oriented F8T2 film and ionic liquid electrolytes enabled us to demonstrate LEC operations with high anisotropic characteristics both in emission and charge transport. Polarized electroluminescence (EL) from electrochemically induced p-n junctions in the uniaxially oriented F8T2 was obtained. The dichroic ratios of EL were the same as those of photoluminescence, suggesting that the doping process into the oriented F8T2 did not interrupt the polymer ordering. This indicates the usefulness of the layered structure of the polymer/electrolyte for the fabrication of LECs based on highly oriented polymer films. In addition, uniaxially oriented F8T2 was found to show reduced threshold energy in optically pumped amplified spontaneous emission. These demonstrations suggest the advantage of uniaxially oriented polymer-based LECs for potential application in future electrically pumped lasers.
Mechanical model of suture joints with fibrous connective layer
NASA Astrophysics Data System (ADS)
Miroshnichenko, Kateryna; Liu, Lei; Tsukrov, Igor; Li, Yaning
2018-02-01
A composite model for suture joints with a connective layer of aligned fibers embedded in soft matrix is proposed. Based on the principle of complementary virtual work, composite cylinder assemblage (CCA) approach and generalized self-consistent micro-mechanical models, a hierarchical homogenization methodology is developed to systematically quantify the synergistic effects of suture morphology and fiber orientation on the overall mechanical properties of sutures. Suture joints with regular triangular wave-form serve as an example material system to apply this methodology. Both theoretical and finite element mechanical models are developed and compared to evaluate the overall normal stiffness of sutures as a function of wavy morphology of sutures, fiber orientation, fiber volume fraction, and the mechanical properties of fibers and matrix in the interfacial layer. It is found that generally due to the anisotropy-induced coupling effects between tensile and shear deformation, the effective normal stiffness of sutures is highly dependent on the fiber orientation in the connective layer. Also, the effective shear modulus of the connective layer and the stiffness ratio between the fiber and matrix significantly influence the effects of fiber orientation. In addition, optimal fiber orientations are found to maximize the stiffness of suture joints.
Growth of <111>-oriented Cu layer on thin TaWN films
NASA Astrophysics Data System (ADS)
Takeyama, Mayumi B.; Sato, Masaru
2017-07-01
In this study, we examine the growth of a <111>-oriented Cu layer on a thin TaWN ternary alloy barrier for good electromigration reliability. The strongly preferentially oriented Cu(111) layer is observed on a thin TaWN barrier even in the as-deposited Cu (100 nm)/TaWN (5 nm)/Si system. Also, this system tolerates annealing at 700 °C for 1 h without silicide reaction. It is revealed that the TaWN film is one of the excellent barriers with thermal stability and low resistivity. Simultaneously, the TaWN film is a candidate for a superior underlying material to achieve the Cu(111) preferential orientation.
NASA Astrophysics Data System (ADS)
Reade, R. P.; Mao, X. L.; Russo, R. E.
1991-08-01
The use of an intermediate layer is necessary for the growth of YBaCuO thin films on polycrystalline metallic alloys for tape conductor applications. A pulsed laser deposition process to grow controlled-orientation yttria-stabilized zirconia (YSZ) films as intermediate layers on Haynes Alloy No. 230 was developed and characterized. YBaCuO films deposited on these YSZ-coated substrates are primarily c-axis oriented and superconducting as deposited. The best YBaCuO films grow on (001)-oriented YSZ intermediate layers and have Tc (R = 0) = 86.0 K and Jc about 3000 A/sq cm at 77 K.
Process for ion-assisted laser deposition of biaxially textured layer on substrate
Russo, R.E.; Reade, R.P.; Garrison, S.M.; Berdahl, P.
1995-07-11
A process for depositing a biaxially aligned intermediate layer over a non-single crystal substrate is disclosed which permits the subsequent deposition thereon of a biaxially oriented superconducting film. The process comprises depositing on a substrate by laser ablation a material capable of being biaxially oriented and also capable of inhibiting the migration of substrate materials through the intermediate layer into such a superconducting film, while simultaneously bombarding the substrate with an ion beam. In a preferred embodiment, the deposition is carried out in the same chamber used to subsequently deposit a superconducting film over the intermediate layer. In a further aspect of the invention, the deposition of the superconducting layer over the biaxially oriented intermediate layer is also carried out by laser ablation with optional additional bombardment of the coated substrate with an ion beam during the deposition of the superconducting film. 8 figs.
Process for ion-assisted laser deposition of biaxially textured layer on substrate
Russo, Richard E.; Reade, Ronald P.; Garrison, Stephen M.; Berdahl, Paul
1995-01-01
A process for depositing a biaxially aligned intermediate layer over a non-single crystal substrate is disclosed which permits the subsequent deposition thereon of a biaxially oriented superconducting film. The process comprises depositing on a substrate by laser ablation a material capable of being biaxially oriented and also capable of inhibiting the migration of substrate materials through the intermediate layer into such a superconducting film, while simultaneously bombarding the substrate with an ion beam. In a preferred embodiment, the deposition is carried out in the same chamber used to subsequently deposit a superconducting film over the intermediate layer. In a further aspect of the invention, the deposition of the superconducting layer over the biaxially oriented intermediate layer is also carried out by laser ablation with optional additional bombardment of the coated substrate with an ion beam during the deposition of the superconducting film.
Wavelet methods in multi-conjugate adaptive optics
NASA Astrophysics Data System (ADS)
Helin, T.; Yudytskiy, M.
2013-08-01
The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory.
Luo, Li; Guo, Kaihua; Fan, Wenguo; Lu, Yinghong; Chen, Lizhi; Wang, Yang; Shao, Yijia; Wu, Gongxiong; Xu, Jie; Lü, Lanhai
2017-01-01
Niche astrocytes have been reported to promote neuronal differentiation through juxtacrine signaling. However, the effects of astrocytes on neuronal differentiation following ischemic stroke are not fully understood. In the present study, transplanted astrocytes and neural stem cells (NSCs) were transplanted into the ischemic striatum of transient middle cerebral artery occlusion (MCAO) model rats 48 h following surgery. It was observed that the co-transplantation of astrocytes and NSCs resulted in a higher ratio of survival and proliferation of the transplanted NSCs, and neuronal differentiation, in MCAO rats compared with NSC transplantation alone. These results demonstrate that the co-administration of astrocytes promotes the survival and neuronal differentiation of NSCs in the ischemic brain. These results suggest that the co-transplantation of astrocytes and NSCs is more effective than NSCs alone in the production of neurons following ischemic stroke in rats. PMID:28352345
NASA Astrophysics Data System (ADS)
Jin, Zhao-Hui; Li, Zhong-Yu; Kasatani, Kazuo; Okamoto, Hiroaki
2006-03-01
A squarylium dye is dissolved in 4-cyano-4'-pentylbiphenyl (5CB) and oriented by sandwiching mixtures between two pieces of rubbed glass plates. The optical absorption spectra of the oriented squarylium dye-5CB layers exhibit high anisotropy. The third-order nonlinear optical responses and susceptibilities χ(3)e of squarylium dye in 5CB are measured with light polarizations parallel and perpendicular to the orientational direction by the resonant femtosecond degenerate four-wave mixing (DFWM) technique. Temporal profiles of the DFWM signal of the oriented squarylium dye-5CB layers with light polarizations parallel and perpendicular to the orientational direction are measured with a time resolution of 0.3 ps (FWHM), and are found to consist of two components, i.e., the coherent instantaneous nonlinear response and slow response due to the formation of excited molecules. A high anisotropic ratio of χ(3)e, 10.8±1.2, is observed for the oriented layers.
Controlled placement and orientation of nanostructures
Zettl, Alex K; Yuzvinsky, Thomas D; Fennimore, Adam M
2014-04-08
A method for controlled deposition and orientation of molecular sized nanoelectromechanical systems (NEMS) on substrates is disclosed. The method comprised: forming a thin layer of polymer coating on a substrate; exposing a selected portion of the thin layer of polymer to alter a selected portion of the thin layer of polymer; forming a suspension of nanostructures in a solvent, wherein the solvent suspends the nanostructures and activates the nanostructures in the solvent for deposition; and flowing a suspension of nanostructures across the layer of polymer in a flow direction; thereby: depositing a nanostructure in the suspension of nanostructures only to the selected portion of the thin layer of polymer coating on the substrate to form a deposited nanostructure oriented in the flow direction. By selectively employing portions of the method above, complex NEMS may be built of simpler NEMSs components.
A bio-inspired microstructure induced by slow injection moulding of cylindrical block copolymers.
Stasiak, Joanna; Brubert, Jacob; Serrani, Marta; Nair, Sukumaran; de Gaetano, Francesco; Costantino, Maria Laura; Moggridge, Geoff D
2014-08-28
It is well known that block copolymers with cylindrical morphology show alignment with shear, resulting in anisotropic mechanical properties. Here we show that well-ordered bi-directional orientation can be achieved in such materials by slow injection moulding. This results in a microstructure, and anisotropic mechanical properties, similar to many natural tissues, making this method attractive for engineering prosthetic fibrous tissues. An application of particular interest to us is prosthetic polymeric heart valve leaflets, mimicking the shape, microstructure and hence performance of the native valve. Anisotropic layers have been observed for cylinder-forming block copolymers centrally injected into thin circular discs. The skin layers exhibit orientation parallel to the flow direction, whilst the core layer shows perpendicularly oriented domains; the balance of skin to core layers can be controlled by processing parameters such as temperature and injection rate. Heart valve leaflets with a similar layered structure have been prepared by injection moulding. Numerical modelling demonstrates that such complex orientation can be explained and predicted by the balance of shear and extensional flow.
NASA Astrophysics Data System (ADS)
Hayasaka, Takeshi; Yoshida, Shinya; Tanaka, Shuji
2017-07-01
This paper reports on the development of a novel buffer layer structure, (100)SrRuO3/(100)LaNiO3/(111)Pt/(111)CeO2, for the epitaxial growth of a (100)/(001)-oriented Pb(Zr,Ti)O3 (PZT)-based thin film on a (111)Si wafer. (111)Pt and (111)CeO2 were epitaxially grown on (111)Si straightforwardly. Then, the crystal orientation was forcibly changed from (111) to (100) at the LaNiO3 layer owing to its strong (100)-self-orientation property, which enabled the cube-on-cube epitaxial growth of the subsequent (100)SrRuO3 layer and preferentially (100)/(001)-oriented PZT-based thin film. The PZT-based epitaxial thin films were comprehensively characterized in terms of the crystallinity, in-plane epitaxial relationships, piezoelectricity, and so forth. This buffer layer structure for the epitaxial growth of PZT can be applied to piezoelectric micro-electro-mechanical systems (MEMS) vibrating ring gyroscopes.
NASA Astrophysics Data System (ADS)
Nürnberger, Philipp; Reinhardt, Hendrik M.; Kim, Hee-Cheol; Pfeifer, Erik; Kroll, Moritz; Müller, Sandra; Yang, Fang; Hampp, Norbert A.
2017-12-01
In this study we examined the formation of laser-induced periodic surface structures (LIPSS) on silicon (Si) in dependence on the thickness of silicon-dioxide (SiO2) on top. LIPSS were generated in air by linearly polarized ≈8 nanosecond laser pulses with a fluence per pulse of 2.41 J cm-2 at a repetition rate of 100 kHz. For SiO2 layers <80 nm, LIPSS oriented perpendicular to the laser polarization were obtained, but for SiO2 layers >120 nm parallel oriented LIPSS were observed. In both cases the periodicity was about 80-90% of the applied laser wavelength (λ0 = 532 nm). By variation of the SiO2 layer thickness in the range between 80 nm-120 nm, the dominating orientation changes. Even orthogonally superimposed LIPSS with a periodicity of only 60% of the laser wavelength were found. We show that the transition of the orientation direction of LIPSS is related to the penetration depth of surface plasmon polariton (SPP) fields into the oxide layer.
Cipolla, Marilyn J; Linfante, Italo; Abuchowski, Abe; Jubin, Ronald; Chan, Siu-Lung
2018-05-01
Similar to patients with chronic hypertension, spontaneously hypertensive rats (SHR) develop fast core progression during middle cerebral artery occlusion (MCAO) resulting in large final infarct volumes. We investigated the effect of Sanguinate™ (SG), a PEGylated carboxyhemoglobin (COHb) gas transfer agent, on changes in collateral and reperfusion cerebral blood flow and brain injury in SHR during 2 h of MCAO. SG (8 mL/kg) or vehicle ( n = 6-8/group) was infused i.v. after 30 or 90 min of ischemia with 2 h reperfusion. Multi-site laser Doppler probes simultaneously measured changes in core MCA and collateral flow during ischemia and reperfusion using a validated method. Brain injury was measured using TTC. Animals were anesthetized with choral hydrate. Collateral flow changed little in vehicle-treated SHR during ischemia (-8 ± 9% vs. prior to infusion) whereas flow increased in SG-treated animals (29 ± 10%; p < 0.05). In addition, SG improved reperfusion regardless of time of treatment; however, brain injury was smaller only with early treatment in SHR vs. vehicle (28.8 ± 3.2% vs. 18.8 ± 2.3%; p < 0.05). Limited collateral flow in SHR during MCAO is consistent with small penumbra and large infarction. The ability to increase collateral flow in SHR with SG suggests that this compound may be useful as an adjunct to endovascular therapy and extend the time window for treatment.
Jin, Rong; Zhu, Xiaolei; Liu, Lin; Nanda, Anil; Granger, D Neil; Li, Guohong
2013-01-01
Background and Purpose Statins are widely used in the primary and secondary prevention of ischemic stroke, but their effects on stroke-induced immunodeppression and post-stroke infections are elusive. We investigated effects of simvastatin treatment on stroke-induced splenic atrophy and lung susceptibility to bacterial infection in acute experimental stroke in mice. Methods Ischemic stroke was induced by transient occlusion of middle cerebral artery (MCAO) followed by reperfusion. In some experiments, splenectomies were performed 2 weeks prior to MCAO. Animals were randomly assigned to sham and MCAO groups treated subcutaneously with vehicle or simvastatin (20 mg/kg/day). Brain infarction, neurological function, brain interferon-γ expression, splenic atrophy and apoptosis, and lung infection were examined. Results Simvastatin reduced stroke-induced spleen atrophy and splenic apoptosis via increased mitochrondrial anti-apoptotic Bcl-2 expression and decreased pro-apoptotic Bax translocation from cytosol into mitochondria. Splenectomy reduced brain interferon-γ (3d) and infarct size (5d) after stroke and these effects were reversed by adoptive transfer of splenocytes. Simvastatin inhibited brain interferon-γ (3d) and reduced infarct volume and neurological deficits (5d) after stroke, and these protective effects were observed not only in naïve stroke mice but also in splenectomied stroke mice adoptively transferred with splenocytes. Simvastatin also decreased the stroke-associated lung susceptibility to spontaneous bacterial infection. Conclusions Results provide the first direct experimental evidence that simvastatin ameliorates stroke-induced peripheral immunodepression by attenuating spleen atrophy and lung bacterial infection. These findings contribute to a better understanding of beneficial effects of statins in the treatment of stroke. PMID:23391769
Bu, Xiangning; Zhang, Nan; Yang, Xuan; Liu, Yanyan; Du, Jianli; Liang, Jing; Xu, Qunyuan; Li, Junfa
2011-04-01
Hypoxic preconditioning (HPC) initiates intracellular signaling pathway to provide protection against subsequent cerebral ischemic injuries, and its mechanism may provide molecular targets for therapy in stroke. According to our study of conventional protein kinase C βII (cPKCβII) activation in HPC, the role of cPKCβII in HPC-induced neuroprotection and its interacting proteins were determined in this study. The autohypoxia-induced HPC and middle cerebral artery occlusion (MCAO)-induced cerebral ischemia mouse models were prepared as reported. We found that HPC reduced 6 h MCAO-induced neurological deficits, infarct volume, edema ratio and cell apoptosis in peri-infarct region (penumbra), but cPKCβII inhibitors Go6983 and LY333531 blocked HPC-induced neuroprotection. Proteomic analysis revealed that the expression of four proteins in cytosol and eight proteins in particulate fraction changed significantly among 49 identified cPKCβII-interacting proteins in cortex of HPC mice. In addition, HPC could inhibit the decrease of phosphorylated collapsin response mediator protein-2 (CRMP-2) level and increase of CRMP-2 breakdown product. TAT-CRMP-2 peptide, which prevents the cleavage of endogenous CRMP-2, could inhibit CRMP-2 dephosphorylation and proteolysis as well as the infarct volume of 6 h MCAO mice. This study is the first to report multiple cPKCβII-interacting proteins in HPC mouse brain and the role of cPKCβII-CRMP-2 in HPC-induced neuroprotection against early stages of ischemic injuries in mice. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
NASA Astrophysics Data System (ADS)
Qin, Jia; Shi, Lei; Dziennis, Suzan; Wang, Ruikang K.
2014-02-01
Ability to non-invasively monitor and quantify of blood flow, blood vessel morphology, oxygenation and tissue morphology is important for improved diagnosis, treatment and management of various neurovascular disorders, e.g., stroke. Currently, no imaging technique is available that can satisfactorily extract these parameters from in vivo microcirculatory tissue beds, with large field of view and sufficient resolution at defined depth without any harm to the tissue. In order for more effective therapeutics, we need to determine the area of brain that is damaged but not yet dead after focal ischemia. Here we develop an integrated multi-functional imaging system, in which SDW-LSCI (synchronized dual wavelength laser speckle imaging) is used as a guiding tool for OMAG (optical microangiography) to investigate the fine detail of tissue hemodynamics, such as vessel flow, profile, and flow direction. We determine the utility of the integrated system for serial monitoring afore mentioned parameters in experimental stroke, middle cerebral artery occlusion (MCAO) in mice. For 90 min MCAO, onsite and 24 hours following reperfusion, we use SDW-LSCI to determine distinct flow and oxygenation variations for differentiation of the infarction, peri-infarct, reduced flow and contralateral regions. The blood volumes are quantifiable and distinct in afore mentioned regions. We also demonstrate the behaviors of flow and flow direction in the arterials connected to MCA play important role in the time course of MCAO. These achievements may improve our understanding of vascular involvement under pathologic and physiological conditions, and ultimately facilitate clinical diagnosis, monitoring and therapeutic interventions of neurovascular diseases, such as ischemic stroke.
Isoflurane reduces the ischemia reperfusion injury surge: a longitudinal study with MRI.
Taheri, Saeid; Shunmugavel, Anandakumar; Clark, Danielle; Shi, Honglian
2014-10-24
Recent studies show neuroprotective benefits of isoflurane (ISO) administered during cerebral ischemia. However, the available studies evaluated cerebral injury only at a single time point following the intervention and thus the longitudinal effect of ISO on ischemic tissues remains to be investigated. The objective of the present study was to investigate the longitudinal effect of ISO treatment in counteracting the deleterious effect of ischemia by evoking the transcription factor, hypoxia inducible factor-1 (HIF-1), and vascular endothelial growth factor (VEGF). Focal cerebral ischemia was induced in 70 rats by filament medial cerebral artery occlusion (MCAo) method. MCAo rats were randomly assigned to control (90 min ischemia) and MCAo+ISO (90 min ischemia+2% ISO) groups. Infarct volume, edema, intracerebral hemorrhage (ICH), and regional cerebral blood flow (rCBF) were measured in eight in vivo sequential MR imaging sessions for 3 weeks. Western blot analysis and immunofluorescence were used to determine the expression level of HIF-1α (the regulatable subunit of HIF-1) and VEGF proteins. ISO inhalation during ischemia significantly decreased the surge of infarct volume, edema, ICH, and reduced the mortality rate (p<0.01). ISO transiently altered the rCBF, significantly enhanced the expression of HIF-1α and VEGF, and decreased the immune cell infiltration. Locomotor dysfunction was ameliorated at a significantly faster pace, and the benefit was seen to persist up to three weeks. Treatment with ISO during ischemia limits the deadly surge in the dynamics of ischemia reperfusion injury with no observed long-term inverse effect. Copyright © 2014 Elsevier B.V. All rights reserved.
Bråtane, Bernt Tore; Bastan, Birgul; Fisher, Marc; Bouley, James; Henninger, Nils
2009-07-07
Though diffusion weighted imaging (DWI) is frequently used for identifying the ischemic lesion in focal cerebral ischemia, the understanding of spatiotemporal evolution patterns observed with different analysis methods remains imprecise. DWI and calculated apparent diffusion coefficient (ADC) maps were serially obtained in rat stroke models (MCAO): permanent, 90 min, and 180 min temporary MCAO. Lesion volumes were analyzed in a blinded and randomized manner by 2 investigators using (i) a previously validated ADC threshold, (ii) visual determination of hypointense regions on ADC maps, and (iii) visual determination of hyperintense regions on DWI. Lesion volumes were correlated with 24 hour 2,3,5-triphenyltetrazoliumchloride (TTC)-derived infarct volumes. TTC-derived infarct volumes were not significantly different from the ADC and DWI-derived lesion volumes at the last imaging time points except for significantly smaller DWI lesions in the pMCAO model (p=0.02). Volumetric calculation based on TTC-derived infarct also correlated significantly stronger to volumetric calculation based on last imaging time point derived lesions on ADC maps than DWI (p<0.05). Following reperfusion, lesion volumes on the ADC maps significantly reduced but no change was observed on DWI. Visually determined lesion volumes on ADC maps and DWI by both investigators correlated significantly with threshold-derived lesion volumes on ADC maps with the former method demonstrating a stronger correlation. There was also a better interrater agreement for ADC map analysis than for DWI analysis. Ischemic lesion determination by ADC was more accurate in final infarct prediction, rater independent, and provided exclusive information on ischemic lesion reversibility.
Chen, Tong; Ma, Zhanqiang; Zhu, Lingpeng; Jiang, Wenjiao; Wei, Tingting; Zhou, Rui; Luo, Fen; Zhang, Kai; Fu, Qiang; Ma, Chunhua; Yan, Tianhua
2016-11-01
The purpose of the current study was to detect the effect of salidroside (Sal) on cerebral ischemia and explore its potential mechanism. Middle cerebral artery occlusion (MCAO) was performed to investigate the effects of Sal on cerebral ischemia. The rats were randomly divided into five groups: sham group, vehicle group, clopidogrel (7.5 mg/kg) group, Sal (20 mg/kg) group, and Sal (40 mg/kg) group. SH-SY5Y cells were exposed to ischemia-reperfusion (I/R) injury to verify the protective effect of Sal in vitro. We also built the stable receptor-interacting protein 140 (RIP140)-overexpressing SH-SY5Y cells. The results showed that Sal significantly reduces brain infarct size and cerebral edema. Sal could effectively decrease the levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in serum of the MCAO rats and supernatant of I/R-induced SH-SY5Y cells. Immunohistochemical and Western blot results demonstrated that Sal inhibited RIP140-mediated inflammation and apoptosis in the MCAO rats and SH-SY5Y cells. In addition, we further confirmed that RIP140/NF-κB signaling plays a crucial role by evaluating the protein expression in RIP140-overexpressing SH-SY5Y cells. Our findings suggested that Sal could be used as an effective neuroprotective agent for cerebral ischemia due to its significant effect on preventing neuronal cell injury after cerebral ischemia both in vivo and in vitro by the inhibitions of RIP140-mediated inflammation and apoptosis.
NASA Astrophysics Data System (ADS)
Oshima, Naoya; Uchiyama, Kiyoshi; Ehara, Yoshitaka; Oikawa, Takahiro; Ichinose, Daichi; Tanaka, Hiroki; Sato, Tomoya; Uchida, Hiroshi; Funakubo, Hiroshi
2017-10-01
A strongly {110}-oriented perovskite-type thin film of tetragonal Pb(Zr0.4Ti0.6)O3 (PZT) was successfully obtained on a (100)Si substrate using a {101}PdO//{111}Pd thin film as a buffer layer. The {101}PdO//{111}Pd thin film buffer layer was obtained by oxidizing {111}Pd after depositing {111}Pd on a {111}Pt/TiO x /SiO2/{100}Si substrate. Using this buffer layer, a {110} c -oriented SrRuO3 (SRO) thin film was deposited by sputtering as a bottom electrode of PZT thin films. Subsequently, the {110}-oriented PZT thin film can be deposited on a (110) c SRO thin film by metal-organic chemical deposition (MOCVD) and its properties can be compared with those of PZT thin films with other orientations of {100} and {111}. Among the {100}, {110}, {111}-oriented PZT films, the {100}-oriented one showed the largest remnant polarization, which is in good agreement with those of the PZTs epitaxially grown in the 〈100〉, 〈110〉, and 〈111〉 directions. The other properties, i.e., piezoelectricity and dielectric constants, also showed similar anisotropic tendencies, which is in good agreement with the data reported in the epitaxially grown PZTs.
Liao, S-J; Gong, Q; Chen, X-R; Ye, L-X; Ding, Q; Zeng, J-S; Yu, J
2013-02-12
Neurological deficit following cerebral infarction correlates with not only primary injury, but also secondary neuronal apoptosis in remote loci connected to the infarction. Netrin-1 is crucial for axonal guidance by interacting with its receptors, deleted in colorectal cancer (DCC) and uncoordinated gene 5H (UNC5H). DCC and UNC5H are also dependence receptors inducing cell apoptosis when unbound by netrin-1. The present study is to investigate the role of netrin-1 and its receptors in ipsilateral ventroposterior thalamic nucleus (VPN) injury secondary to stroke in hypertensive rats. Renovascular hypertensive Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAO). Continuous intracerebroventricular infusion of netrin-1 (600 ng/d for 7 days) or vehicle (IgG/Fc) was given 24h after MCAO. Neurological function was evaluated by postural reflex 8 and 14 days after MCAO. Then, immunoreactivity was determined in the ipsilateral VPN for NeuN, glial fibrillary acidic protein, netrin-1 and its receptors (DCC and UNC5H2), apoptosis was detected with Terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling (TUNEL) assay, and the expressions of caspase-3, netrin-1, DCC, and UNC5H2 were quantified by western blot analysis. MCAO resulted in the impaired postural reflex after 8 and 14 days, with decreased NeuN marked neurons and increased TUNEL-positive cells, as well as an up-regulation in the levels of cleaved caspase-3 and UNC5H2 protein in the ipsilateral VPN, without significant change in DCC or netrin-1 expression. By exogenous netrin-1 infusion, the number of neurons was increased in the ipsilateral VPN, and both TUNEL-positive cell number and caspase-3 protein level were reduced, while UNC5H2 expression remained unaffected, simultaneously, the impairment of postural reflex was improved. Taken together, the present study indicates that exogenous netrin-1 could rescue neuron loss by attenuating secondary apoptosis in the ipsilateral VPN after focal cerebral infarction, possibly via its receptor UNC5H2, suggesting that relative insufficiency of endogenous netrin-1 be an underlying mechanism of secondary injury in the VPN post stroke. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Xian, Jia Wen; Choi, Angus Yiu-Ting; Lau, Clara Bik-San; Leung, Wing Nang; Ng, Chun Fai; Chan, Chun Wai
2016-01-01
Gastrodia and Uncaria decoction (tianma gouteng yin) is commonly used in Chinese medicine to treat cerebral ischemia. The aim of this study was to investigate the neuroprotective effects of a water extract (GUW) of Gastrodia elata (tianma; GE) and Uncaria rhynchophylla (gouteng; UR) against ischemic insult using oxygen-glucose-deprived neuronal differentiated PC12 cells and rats subjected to middle cerebral artery occlusion (MCAO). GUW was prepared by boiling raw GE and UR in water, followed by the lyophilization of the resulting extract. Neuronal differentiated PC12 cells were subjected to oxygen-glucose deprivation with or without GUW. The neuroprotective effects of GUW were compared with those of the corresponding GE and UR extracts to tease apart the effects of the different herbs. The synergistic effect of GE and UR in GUW was measured using a modified version of Burgi's formulae. The neuroprotective mechanisms via Nrf2 and anti-apoptotic pathways were investigated using real time PCR and enzyme activity assays. The neuroprotective effects of GUW were studied in vivo using a rat MCAO model. Neurofunctional outcome and brain infarct volume we assessed. H&E staining, cresyl violet staining and immunohistochemistry were performed to assess the histological outcome. The results of lactate dehydrogenase assay showed that GUW protected cells in a concentration-dependent manner (P < 0.001). Moreover, the neuroprotective effects of GUW were greater than those of GE + UR (P = 0.018). Burgi's formula showed that the herbs in GUW acted synergistically to protect cells from ischemic injury. GUW significantly upregulated Bcl-2 expression (P = 0.0130) and reduced caspase-3 activity by 60 % (P < 0.001). GUW upregulated Nrf-2 expression (P = 0.0066) and the antioxidant response element pathway genes. The infarct volume was reduced by 55 % at day 7 of reperfusion (P < 0.001), and significant improvements were observed in the neurological deficit score and beam-walking test at 7 days (P < 0.001). H&E and cresyl violet staining revealed higher tissue integrity in the GUW treatment group compared with MCAO rats. GUW modulated the antioxidant system and antiapoptotic genes in oxygen-glucose deprived neuronal differentiated PC12 cells and MCAO sprague-dawley rats.
Buffer layers on metal alloy substrates for superconducting tapes
Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.
2004-06-29
An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected IC's of over 200 Amperes across a sample 1 cm wide.
Bakhshandeh-Navroud, Behzad; Abrari Vajari, Kambiz; Pilehvar, Babak; Kooch, Yahya
2018-06-26
This study investigated the interactions between tree-herb layer diversity and some physico-chemical and eco-physiological characteristics of soil in natural oriental beech stand in western Guilan, Iran. The data were collected from nine research sites (50 m × 50 m) which were described as a gradient from pure oriental beech (Fagus orientalis Lipsky) stands to mixed stands with up to nine deciduous tree species (n = 27) in Hyrcanian forest. Herbaceous plants were sampled within ten 1 m × 1 m sub-plots in two plots of 400 m 2 which were installed randomly in each research site. Composite soil samples were taken at five positions in each research site. We found that the increase in tree diversity in mature oriental beech stands brought about an increase in microbial biomass carbon, soil carbon content, and the ratio of microbial biomass carbon to the organic carbon (C mic /C org ). Increased soil organic carbon raised microbial biomass carbon through creating suitable environment for microorganisms. The findings also indicated that the ratio of microbial biomass carbon to the organic carbon (C mic /C org ) increased as a quantitative indicator of soil carbon dynamics that finally benefits soil fertility of mixed oriental beech stands compared to pure oriental beech stands. The results showed that humus layer and litter thickness were negatively correlated with tree layer richness. Generally, it can be stated that maintaining a mixture of tree layer species in natural oriental beech stands results in an increase in richness and diversity values of herb plants as well as carbon content and microbial biomass carbon of soil.
Method for improving performance of high temperature superconductors within a magnetic field
Wang, Haiyan; Foltyn, Stephen R.; Maiorov, Boris A.; Civale, Leonardo
2010-01-05
The present invention provides articles including a base substrate including a layer of an oriented cubic oxide material having a rock-salt-like structure layer thereon; and, a buffer layer upon the oriented cubic oxide material having a rock-salt-like structure layer, the buffer layer having an outwardly facing surface with a surface morphology including particulate outgrowths of from 10 nm to 500 run in size at the surface, such particulate outgrowths serving as flux pinning centers whereby the article maintains higher performance within magnetic fields than similar articles without the necessary density of such outgrowths.
Rhenium Dichalcogenides: Layered Semiconductors with Two Vertical Orientations.
Hart, Lewis; Dale, Sara; Hoye, Sarah; Webb, James L; Wolverson, Daniel
2016-02-10
The rhenium and technetium diselenides and disulfides are van der Waals layered semiconductors in some respects similar to more well-known transition metal dichalcogenides (TMD) such as molybdenum sulfide. However, their symmetry is lower, consisting only of an inversion center, so that turning a layer upside-down (that is, applying a C2 rotation about an in-plane axis) is not a symmetry operation, but reverses the sign of the angle between the two nonequivalent in-plane crystallographic axes. A given layer thus can be placed on a substrate in two symmetrically nonequivalent (but energetically similar) ways. This has consequences for the exploitation of the anisotropic properties of these materials in TMD heterostructures and is expected to lead to a new source of domain structure in large-area layer growth. We produced few-layer ReS2 and ReSe2 samples with controlled "up" or "down" orientations by micromechanical cleavage and we show how polarized Raman microscopy can be used to distinguish these two orientations, thus establishing Raman as an essential tool for the characterization of large-area layers.
NASA Astrophysics Data System (ADS)
Le Pourhiet, L.; Huet, B.; Labrousse, L.; Yao, K.; Agard, P.; Jolivet, L.
2013-04-01
We have designed a series of fully dynamic numerical simulations aimed at assessing how the orientation of mechanical layering in rocks controls the orientation of shear bands and the depth of penetration of strain in the footwall of detachment zones. Two parametric studies are presented. In the first one, the influence of stratification orientation on the occurrence and mode of strain localisation is tested by varying initial dip of inherited layering in the footwall with regard to the orientation of simple shear applied at the rigid boundary simulating a rigid hanging wall, all scaling and rheological parameter kept constant. It appears that when Mohr-Coulomb plasticity is being used, shear bands are found to localise only when the layering is being stretched. This corresponds to early deformational stages for inital layering dipping in the same direction as the shear is applied, and to later stages for intial layering dipping towards the opposite direction of shear. In all the cases, localisation of the strain after only γ=1 requires plastic yielding to be activated in the strong layer. The second parametric study shows that results are length-scale independent and that orientation of shear bands is not sensitive to the viscosity contrast or the strain rate. However, decreasing or increasing strain rate is shown to reduce the capacity of the shear zone to localise strain. In the later case, the strain pattern resembles a mylonitic band but the rheology is shown to be effectively linear. Based on the results, a conceptual model for strain localisation under detachment faults is presented. In the early stages, strain localisation occurs at slow rates by viscous shear instabilities but as the layered media is exhumed, the temperature drops and the strong layers start yielding plastically, forming shear bands and localising strain at the top of the shear zone. Once strain localisation has occured, the deformation in the shear band becomes extremely penetrative but the strength cannot drop since the shear zone has a finite thickness.
NASA Astrophysics Data System (ADS)
Liu, Shichen; Lang, Lihui; Sherkatghanad, Ehsan; Wang, Yao; Xu, Wencai
2018-04-01
Glass-reinforced aluminum laminate (GLARE) is a new class of fiber metal laminates (FMLs) which has the advantages such as high tensile strength, outstanding fatigue, impact resistance, and excellent corrosion properties. GLARE has been extensively applied in advanced aerospace and automobile industries. However, the deformation behavior of the glass fiber during forming must be studied to the benefits of the good-quality part we form. In this research, we focus on the effect of fiber layer orientation on the GLARE laminate formability in stamp forming process. Experimental and numerical analysis of stamping a hemisphere part in different fiber orientation is investigated. The results indicate that unidirectional and multi-directional fiber in the middle layer make a significant effect on the thinning and also surface forming quality of the three layer sheet. Furthermore, the stress-strain distribution of the aluminum alloy and the unique anisotropic property of the fiber layer exhibit that fiber layer orientation can also affect the forming depths as well as the fracture modes of the laminate. According to the obtained results, it is revealed that multi-directional fiber layers are a good alternative compared to the unidirectional fibers especially when a better formability is the purpose.
Effects of Monomer Structure on Their Organization and Polymerization in a Smectic Liquid Crystal
Guymon; Hoggan; Clark; Rieker; Walba; Bowman
1997-01-03
Photopolymerizable diacrylate monomers dissolved in fluid-layer smectic A and smectic C liquid crystal (LC) hosts exhibited significant spatial segregation and orientation that depend strongly on monomer structure. Small, flexible monomers such as 1,6-hexanediol diacrylate (HDDA) oriented parallel to the smectic layers and intercalated, whereas rod-shaped mesogen-like monomers such as 1,4-di-(4-(6-acryloyloxyhexyloxy)benzoyloxy)-2-methylbenzene (C6M) oriented normal to the smectic layers and collected within them. Such spatial segregation caused by the smectic layering dramatically enhanced photopolymerization rates; for HDDA, termination rates were reduced, whereas for C6M, both the termination and propagation rates were increased. These polymerization precursor structures suggest novel materials-design paradigms for gel LCs and nanophase-separated polymer systems.
Buffer layers on metal alloy substrates for superconducting tapes
Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.
2004-10-05
An article including a substrate, at least one intermediate layer upon the surface of the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the at least one intermediate layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected I.sub.c 's of over 200 Amperes across a sample 1 cm wide.
Feasibility study of a layer-oriented wavefront sensor for solar telescopes: reply.
Marino, Jose; Wöger, Friedrich
2014-11-10
We appreciate the thoughtful comments by Kellerer [Appl. Opt.53, 7643 (2014)10.1364/AO.53.007643] to our recent study [Appl. Opt.53, 685 (2014)10.1364/AO.53.000685] in which we evaluate the practicability of a layer-oriented wavefront sensing approach suggested for use in solar multiconjugate adaptive optics. After careful review of Kellerer's comment, we remain cautious about the feasibility of a solar-layer-oriented Shack-Hartmann wavefront sensor. However, we strongly encourage further analysis and proof-of-concept work that addresses the difficulties outlined in our original paper and that demonstrates the operating principles behind such an instrument.
First principle calculation in FeCo overlayer on GaAs substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Vishal, E-mail: vjain045@gmail.com; Lakshmi, N.; Jain, Vivek Kumar
In this work the first principle electronic structure calculation is reported for FeCo/GaAs thin film system to investigate the effect of orientation on the electronic structural properties. A unit cell describing FeCo layers and GaAs layers is constructed for (100), (110), (111) orientation with vacuum of 30Å to reduce dimensions. It is found that although the (110) orientation is energetically more favorable than others, the magnetic moment is quite large in (100) and (111) system compared to the (110) and is due to the total DOS variation with orientation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vu, Hien Thu; Nguyen, Minh Duc, E-mail: minh.nguyen@itims.edu.vn; Inorganic Materials Science
2015-12-15
Graphical abstract: The cross sections show a very dense structure in the (001)-oriented films (c,d), while an open columnar growth structure is observed in the case of the (110)-oriented films (a,b). The (110)-oriented PZT films show a significantly larger longitudinal piezoelectric coefficient (d33{sub ,f}), but smaller transverse piezoelectric coefficient (d31{sub ,f}) than the (001) oriented films. - Highlights: • We fabricate all-oxide, epitaxial piezoelectric PZT thin films on Si. • The orientation of the films can be controlled by changing the buffer layer stack. • The coherence of the in-plane orientation of the grains and grain boundaries affects the ferroelectricmore » properties. • Good cycling stability of the ferroelectric properties of (001)-oriented PZT thin films. The (110)-oriented PZT thin films show a larger d33{sub ,f} but smaller d31{sub ,f} than the (001)-oriented films. - Abstract: Epitaxial ferroelectric Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT) thin films were fabricated on silicon substrates using pulsed laser deposition. Depending on the buffer layers and perovskite oxide electrodes, epitaxial films with different orientations were grown. (110)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) films were obtained on YSZ-buffered Si substrates, while (001)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) were fabricated with an extra CeO{sub 2} buffer layer (CeO{sub 2}/YSZ/Si). There is no effect of the electrode material on the properties of the films. The initial remnant polarizations in the (001)-oriented films are higher than those of (110)-oriented films, but it increases to the value of the (001) films upon cycling. The longitudinal piezoelectric d33{sub ,f} coefficients of the (110) films are larger than those of the (001) films, whereas the transverse piezoelectric d31{sub ,f} coefficients in the (110)-films are less than those in the (001)-oriented films. The difference is ascribed to the lower density (connectivity between grains) of the former films.« less
Optical devices featuring nonpolar textured semiconductor layers
Moustakas, Theodore D; Moldawer, Adam; Bhattacharyya, Anirban; Abell, Joshua
2013-11-26
A semiconductor emitter, or precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.
Tunable photoelectric response in NiO-based heterostructures by various orientations
NASA Astrophysics Data System (ADS)
Luo, Yidong; Qiao, Lina; Zhang, Qinghua; Xu, Haomin; Shen, Yang; Lin, Yuanhua; Nan, Cewen
2018-02-01
We engineered various orientations of NiO layers for NiO-based heterostructures (NiO/Au/STO) to investigate their effects on the generation of hot electrons and holes. Our calculation and experimental results suggested that bandgap engineering and the orientation of the hole transport layer (NiO) were crucial elements for the optimization of photoelectric responses. The (100)-orientated NiO/Au/STO achieved the highest photo-current density (˜30 μA/cm2) compared with (111) and (110)-orientated NiO films, which was attributed to the (100) films's lowest effective mass of photogenerated holes (˜1.82 m0) and the highest efficiency of separating and transferring electron-holes of the (100)-orientated sample. Our results opened a direction to design a high efficiency photoelectric solar cell.
Kraft, Peter; Scholtyschik, Karolina; Schuhmann, Michael K; Kleinschnitz, Christoph
2017-01-01
While it has been shown that different T-cell subsets have a detrimental role in the acute phase of ischemic stroke, data on the impact of dendritic cells (DC) are missing. Classic DC can be characterized by the cluster of differentiation (CD)11c surface antigen. In this study, we depleted CD11c+ cells by using a CD11c-diphtheria toxin (DTX) receptor mouse strain that allows selective depletion of CD11c+ cells by DTX injection. For stroke induction, we used the model of transient middle cerebral artery occlusion (tMCAO) and analyzed stroke volume and functional outcome on days 1 and 3 as well as expression of prototypical pro- and anti-inflammatory cytokines on day 1 after tMCAO. Three different protocols for CD11c+ cell depletion, tMCAO duration, and readout time point were applied. Injection of DTX (5 or 100 ng/g) reliably depleted CD11c+ cells without influencing the fractions of other immune cell subsets. CD11c+ cell depletion had no impact on stroke volume, but mice with a longer DTX pretreatment performed worse than those with vehicle treatment. CD11c+ cell depletion led to a decrease in cortical interleukin (IL)-1β and IL-6 messenger ribonucleic acid levels. We show, for the first time, that CD11c+ cell depletion does not influence stroke volume in a mouse model of focal cerebral ischemia. Nevertheless, given the unspecificity of the CD11c surface antigen for DC, mouse models that allow a more selective depletion of DC are needed to investigate the role of DC in stroke pathophysiology. © 2017 S. Karger AG, Basel.
Dohare, Preeti; Hyzinski-García, María C.; Vipani, Aarshi; Bowens, Nicole H.; Nalwalk, Julia W.; Feustel, Paul J.; Keller, Richard W.; Jourd’heuil, David; Mongin, Alexander A.
2014-01-01
The contribution of oxidative stress to ischemic brain damage is well established. Nevertheless, for unknown reasons, several clinically tested antioxidant therapies failed to show benefits in human stroke. Based on our previous in vitro work, we hypothesized that the neuroprotective potency of antioxidants is related to their ability to limit release of the excitotoxic amino acids, glutamate and aspartate. We explored the effects of two antioxidants, tempol and edaravone, on amino acid release in the brain cortex, in a rat model of transient occlusion of the middle cerebral artery (MCAo). Amino acid levels were quantified using a microdialysis approach, with the probe positioned in the ischemic penumbra as verified by a laser Doppler technique. Two-hour MCAo triggered a dramatic increase in the levels of glutamate, aspartate, taurine and alanine. Microdialysate delivery of 10 mM tempol reduced the amino acid release by 60–80%, while matching levels of edaravone had no effect. In line with these latter data, an intracerebroventri-cular injection of tempol but not edaravone (500 nmols each, 15 minutes prior to MCAo) reduced infarction volumes by ~50% and improved neurobehavioral outcomes. In vitro assays showed that tempol was superior in removing superoxide anion, whereas edaravone was more potent in scavenging hydrogen peroxide, hydroxyl radical, and peroxynitrite. Overall, our data suggests that the neuroprotective properties of tempol are likely related to its ability to reduce tissue levels of the superoxide anion and pathological glutamate release, and, in such a way, limit progression of brain infarction within ischemic penumbra. These new findings may be instrumental in developing new antioxidant therapies for treatment of stroke. PMID:25224033
Diaz-Cañestro, Candela; Merlini, Mario; Bonetti, Nicole R; Liberale, Luca; Wüst, Patricia; Briand-Schumacher, Sylvie; Klohs, Jan; Costantino, Sara; Miranda, Melroy; Schoedon-Geiser, Gabriele; Kullak-Ublick, Gerd A; Akhmedov, Alexander; Paneni, Francesco; Beer, Jürg H; Lüscher, Thomas F; Camici, Giovanni G
2018-06-01
In acute ischemic stroke (AIS) patients, impaired blood-brain barrier (BBB) integrity is associated with hemorrhagic transformation and worsened outcome. Yet, the mechanisms underlying these relationships are poorly understood and consequently therapeutic strategies are lacking. This study sought to determine whether SIRT5 contributes to BBB damage following I/R brain injury. SIRT5 knockout (SIRT5 -/- ) and wild type (WT) mice underwent transient middle cerebral artery (MCA) occlusion (tMCAO) followed by 48h of reperfusion. Genetic deletion of SIRT5 decreased infarct size, improved neurological function and blunted systemic inflammation following stroke. Similar effects were also achieved by in vivo SIRT5 silencing. Immunohistochemical analysis revealed decreased BBB leakage and degradation of the tight junction protein occludin in SIRT5 -/- mice exposed to tMCAO as compared to WT. In primary human brain microvascular endothelial cells (HBMVECs) exposed to hypoxia/reoxygenation (H/R), SIRT5 silencing decreased endothelial permeability and upregulated occludin and claudin-5; this effect was prevented by the PI3K inhibitor wortmannin. Lastly, SIRT5 gene expression was increased in peripheral blood monocytes (PBMCs) of AIS patients at 6h after onset of stroke compared to sex- and age-matched healthy controls. SIRT5 is upregulated in PBMCs of AIS patients and in the MCA of WT mice exposed to tMCAO; SIRT5 mediates I/R-induced brain damage by increasing BBB permeability through degradation of occludin. This effect was reproduced in HBMVECs exposed to H/R, mediated by the PI3K/Akt pathway. Our findings shed new light on the mechanisms of I/R-dependent brain damage and suggest SIRT5 as a novel therapeutic target. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Kuo-Liang; Chen, Mei-Fang; Liao, Chia-Hsin; Pang, Cheng-Yoong; Lin, Py-Yu
2009-01-01
We have isolated human neuronal stem cells from exfoliated third molars (wisdom teeth) using a simple and efficient method. The cultured neuronal stem cells (designated tNSC) expressed embryonic and adult stem cell markers, markers for chemotatic factor and its corresponding ligand, as well as neuron proteins. The tNSC expressed genes of Nurr1, NF-M and nestin. They were used to treat middle cerebral artery occlusion (MCAO) surgery-inflicted Sprague-Dawley (SD) rats to assess their therapeutic potential for stroke therapy. For each tNSC cell line, a normal human impacted wisdom tooth was collected from a donor with consent. The tooth was cleaned thoroughly with normal saline. The molar was vigorously shaken or vortexed for 30 min in a 50-mL conical tube with 15-20mL normal saline. The mixture of dental pulp was collected by centrifugation and cultured in a 25-cm(2) tissue culture flask with 4-5mL Medium 199 supplemented with 5-10% fetal calf serum. The tNSC harvested from tissue culture, at a concentration of 1-2x10(5), were suspended in 3 microL saline solution and injected into the right dorsolateral striatum of experimental animals inflicted with MCAO. Behavioral measurements of the tNSC-treated SD rats showed a significant recovery from neurologic dysfunction after MCAO treatment. In contrast, a sham group of SD rats failed to recover from the surgery. Immunohistochemistry analysis of brain sections of the tNSC-treated SD rats showed survival of the transplanted cells. These results suggest that adult neuronal stem cells may be procured from third molars, and tNSC thus cultivated have potential for treatment of stroke-inflicted rats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turri, P.; McConnachie, A. W.; Stetson, P. B.
2015-10-01
The Extremely Large Telescopes currently under construction have a collecting area that is an order of magnitude larger than the present largest optical telescopes. For seeing-limited observations the performance will scale as the collecting area, but with the successful use of adaptive optics (AO), for many applications it will scale as D{sup 4} (where D is the diameter of the primary mirror). Central to the success of the ELTs, therefore, is the successful use of multi-conjugate adaptive optics (MCAO) which applies a high degree of correction over a field of view larger than the few arcseconds that limits classical AOmore » systems. In this Letter, we report on the analysis of crowded field images taken on the central region of the galactic globular cluster NGC 1851 in the K{sub s} band using the Gemini Multi-conjugate Adaptive Optics System (GeMS) at the Gemini South Telescope, the only science-grade MCAO system in operation. We use this cluster as a benchmark to verify the ability to achieve precise near-infrared photometry by presenting the deepest K{sub s} photometry in crowded fields ever obtained from the ground. We construct a color–magnitude diagram in combination with the F606W band from the Hubble Space Telescope/Advanced Camera for Surveys. As well as detecting the “knee” in the lower main sequence at K{sub s} ≃ 20.5, we also detect the double subgiant branch of NGC 1851, which demonstrates the high photometric accuracy of GeMS in crowded fields.« less
Sánchez-Blázquez, Pilar; Pozo-Rodrigálvarez, Andrea; Merlos, Manuel; Garzón, Javier
2018-06-01
The glutamate N-methyl-D-aspartate receptor (NMDAR) plays an essential role in the excitotoxic neural damage that follows ischaemic stroke. Because the sigma-1 receptor (σ1R) can regulate NMDAR transmission, exogenous and putative endogenous regulators of σ1R have been investigated using animal models of ischaemic stroke. As both agonists and antagonists provide some neural protection, the selective involvement of σ1Rs in these effects has been questioned. The availability of S1RA (E-52862/MR309), a highly selective σ1R antagonist, prompted us to explore its therapeutic potential in an animal model of focal cerebral ischaemia. Mice were subjected to right middle cerebral artery occlusion (MCAO), and post-ischaemic infarct volume and neurological deficits were determined across a range of intervals after the stroke-inducing surgery. Intracerebroventricular or intravenous treatment with S1RA significantly reduced the cerebral infarct size and neurological deficits caused by permanent MCAO (pMCAO). Compared with the control/sham-operated mice, the neuroprotective effects of S1RA were observed when delivered up to 5 h prior to surgery and 3 h after ischaemic onset. Interestingly, neither mice with the genetic deletion of σ1R nor wild-type mice that were pre-treated with the σ1R agonist PRE084 showed beneficial effects after S1RA administration with regard to stroke infarction. S1RA-treated mice showed faster behavioural recovery from stroke; this finding complements the significant decreases in matrix metalloproteinase-9 (MMP-9) expression and reactive astrogliosis surrounding the infarcted cortex. Our data indicate that S1RA, via σ1R, holds promising potential for clinical application as a therapeutic agent for ischaemic stroke.
Zhang, Qingxiu; Cheng, Hongyu; Rong, Rong; Yang, Hui; Ji, Qiuhong; Li, Qingjie; Rong, Liangqun; Hu, Gang; Xu, Yun
2015-12-01
The aim of the study was to explore the effect of PSD-93 deficiency on the expression of early inflammatory cytokines induced by cerebral ischemia/reperfusion injury. Ten- to twelve-week-old male PSD-93 knockout (PSD-93 KO) mice (C57BL/6 genetic background) and wild-type (WT) littermates were randomly divided into sham and ischemia/reperfusion (I/R) group. The focal cerebral I/R model was established by middle cerebral artery occlusion (MCAO) suture method. RT-PCR was used to detect the mRNA expression of IL-6, IL-10, Cox-2, iNOS, and TNF-α4h following reperfusion. Infarct volume at different time points after I/R was analyzed using 2,3,5-triphenyl tetrazolium staining, and neurological damage score (neurological severity scores, NSS) was used to evaluate the effect of PSD-93 gene knockout on the MCAO-induced neurological injury. In WT mice, early I/R injury led to the increase in the mRNA expression of proinflammatory cytokines IL-6, Cox-2, iNOS, and TNF-α that coincided with the decrease in the expression of anti-inflammatory cytokine IL-10, as compared to the sham group (P < 0.05). This effect was markedly attenuated by depleting PSD-93 levels by gene knockout. As compared to sham group, in PSD-93 KO mice I/R4h led to downregulation of Cox-2 and iNOS expression, and increase in the mRNA levels of IL-10 (P < 0.05). In addition, following MCAO, PSD-93 KO mice exhibited improved NSS and reduced infarct volumes, as compared with WT animals. PSD-93 knockout may play a neuroprotective role by mediating the early release of inflammatory cytokines induced by cerebral ischemia.
Pu, Hongjian; Jiang, Xiaoyan; Hu, Xiaoming; Xia, Jinchao; Hong, Dandan; Zhang, Wenting; Gao, Yanqin; Chen, Jun; Shi, Yejie
2016-12-01
Prophylactic dietary intake of omega-3 polyunsaturated fatty acids (n-3 PUFAs) has been shown to remarkably ameliorate ischemic brain injury. However, the therapeutic efficacy of n-3 PUFA administration post-stroke, especially its impact on neurovascular remodeling and long-term neurological recovery, has not been fully characterized thus far. In this study, we investigated the effect of n-3 PUFA supplementation, as well as in combination with docosahexaenoic acid (DHA) injections, on long-term stroke outcomes. Mice were subjected to transient middle cerebral artery occlusion (MCAO) before randomly assigned to four groups to receive the following: (1) low dose of n-3 PUFAs as the vehicle control, (2) intraperitoneal DHA injections, (3) n-3 PUFA dietary supplement, or (4) combined treatment of (2) and (3). Neurological deficits and brain atrophy, neurogenesis, angiogenesis, and glial scar formation were assessed up to 28 days after MCAO. Results revealed that groups 2 and 3 showed only marginal reduction in post-stroke tissue loss and attenuation of cognitive deficits. Interestingly, group 4 exhibited significantly reduced tissue atrophy and improved cognitive functions compared to groups 2 and 3 with just a single treatment. Mechanistically, the combined treatment promoted post-stroke neurogenesis and angiogenesis, as well as reduced glial scar formation, all of which significantly correlated with the improved spatial memory in the Morris water maze. These results demonstrate an effective therapeutic regimen to enhance neurovascular restoration and long-term cognitive recovery in the mouse model of MCAO. Combined post-stroke DHA treatment and n-3 PUFA dietary supplementation thus may be a potential clinically translatable therapy for stroke or related brain disorders.
Culman, Juraj; Jacob, Toni; Schuster, Sven O; Brolund-Spaether, Kjell; Brolund, Leonie; Cascorbi, Ingolf; Zhao, Yi; Gohlke, Peter
2017-09-01
The present study conducted in rats defines the requirements for neuroprotective effects of systemically administered AT1 receptor blockers (ARBs) in acute ischaemic stroke. The inhibition of central effects to angiotensin II (ANG II) after intravenous (i.v.) treatment with candesartan (0.3 and 3 mg/kg) or irbesartan and losartan (3 and 30 mg/kg) was employed to study the penetration of these ARBs across the blood-brain barrier. Verapamil and probenecid were used to assess the role of the transporters, P-glycoprotein and the multidrug resistance-related protein 2, in the entry of losartan and irbesartan into the brain. Neuroprotective effects of i.v. treatment with the ARBs were investigated after transient middle cerebral artery occlusion (MCAO) for 90 min. The treatment with the ARBs was initiated 3 h after the onset of MCAO and continued for two consecutive days. Blood pressure was continuously recorded before and during MCAO until 5.5 h after the onset of reperfusion. The higher dose of candesartan completely abolished, and the lower dose of candesartan and higher doses of irbesartan and losartan partially inhibited the drinking response to intracerebroventricular ANG II. Only 0.3 mg/kg candesartan improved the recovery from ischaemic stroke, and 3 mg/kg candesartan did not exert neuroprotective effects due to marked blood pressure reduction during reperfusion. Both doses of irbesartan and losartan had not any effect on the stroke outcome. An effective, long-lasting blockade of brain AT1 receptors after systemic treatment with ARBs without extensive blood pressure reductions is the prerequisite for neuroprotective effects in ischaemic stroke.
(-)-Phenserine inhibits neuronal apoptosis following ischemia/reperfusion injury.
Chang, Cheng-Fu; Lai, Jing-Huei; Wu, John Chung-Che; Greig, Nigel H; Becker, Robert E; Luo, Yu; Chen, Yen-Hua; Kang, Shuo-Jhen; Chiang, Yung-Hsiao; Chen, Kai-Yun
2017-12-15
Stroke commonly leads to adult disability and death worldwide. Its major symptoms are spastic hemiplegia and discordant motion, consequent to neuronal cell death induced by brain vessel occlusion. Acetylcholinesterase (AChE) is upregulated and allied with inflammation and apoptosis after stroke. Recent studies suggest that AChE inhibition ameliorates ischemia-reperfusion injury and has neuroprotective properties. (-)-Phenserine, a reversible AChE inhibitor, has a broad range of actions independent of its AChE properties, including neuroprotective ones. However, its protective effects and detailed mechanism of action in the rat middle cerebral artery occlusion model (MCAO) remain to be elucidated. This study investigated the therapeutic effects of (-)-phenserine for stroke in the rat focal cerebral ischemia model and oxygen-glucose deprivation/reperfusion (OGD/RP) damage model in SH-SY5Y neuronal cultures. (-)-Phenserine mitigated OGD/PR-induced SH-SY5Y cell death, providing an inverted U-shaped dose-response relationship between concentration and survival. In MCAO challenged rats, (-)-phenserine reduced infarction volume, cell death and improved body asymmetry, a behavioral measure of stoke impact. In both cellular and animal studies, (-)-phenserine elevated brain-derived neurotrophic factor (BDNF) and B-cell lymphoma 2 (Bcl-2) levels, and decreased activated-caspase 3, amyloid precursor protein (APP) and glial fibrillary acidic protein (GFAP) expression, potentially mediated through the ERK-1/2 signaling pathway. These actions mitigated neuronal apoptosis in the stroke penumbra, and decreased matrix metallopeptidase-9 (MMP-9) expression. In synopsis, (-)-phenserine significantly reduced neuronal damage induced by ischemia/reperfusion injury in a rat model of MCAO and cellular model of OGD/RP, demonstrating that its anti-apoptotic/neuroprotective/neurotrophic cholinergic and non-cholinergic properties warrant further evaluation in conditions of brain injury. Published by Elsevier B.V.
TDAG8 activation attenuates cerebral ischaemia-reperfusion injury via Akt signalling in rats.
Ma, X D; Hang, L H; Shao, D H; Shu, W W; Hu, X L; Luo, H
2017-07-01
T-cell death-associated gene 8 (TDAG8), a member of the proton-sensitive G-protein-coupled receptor (GPCR) class with an immune-specific expression profile, was recently shown to be expressed in the rat brain; however, its role in ischaemic stroke remains unknown. We initially confirmed the time-dependent expression of TDAG8 in rat brain tissue after ischaemic stroke and reperfusion. Further evaluations were performed to increase TDAG8 expression 6h prior to middle cerebral artery occlusion (MCAO) by injecting a specific agonist, BTB09089, into the lateral ventricle to increase TDAG8 expression. Twenty-four hours before MCAO, a specific small interfering RNA (siRNA) was introduced. The infarction volume, neurological deficit score and cleaved caspase-3 and Bcl-2 expression were used to assess the effects of TDAG8 on ischaemic stroke. Finally, the effects of TDAG8 on the development of primary cortical neurons exposed to oxygen-glucose deprivation (OGD) were investigated. TDAG8 expression increased both in vivo and in vitro. Pretreatment with BTB09089 up-regulated TDAG8 and Bcl-2 expression and down-regulated cleaved caspase-3 expression, while the infarction volume was reduced, and neurological deficits were ameliorated 24 and 72h after MCAO. However, the protective effects of TDAG8 were reversed when its level was reduced in TDAG8-deficient rats. More importantly, these findings are consistent with data from neurons subjected to OGD. TDAG8 plays an important neuroprotective role through inhibition of neuronal apoptosis and alleviation of neurological deficits by activating the Akt signalling pathway in rats. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhao, Shou-Cai; Wang, Chun; Xu, Heng; Wu, Wen-Qian; Chu, Zhao-Hu; Ma, Ling-Song; Zhang, Ying-Dong; Liu, Fudong
2017-11-01
Stroke is a disease that mainly affects the elderly. Since the age-related differences in stroke have not been well studied, modeling stroke in aged animals is clinically more relevant. The inflammatory responses to stroke are a fundamental pathological procedure, in which microglial activation plays an important role. Interferon regulatory factor-5 (IRF5) and IRF4 regulate M1 and M2 activation of macrophages, respectively, in peripheral inflammation; but it is unknown whether IRF5/IRF4 are also involved in cerebral inflammatory responses to stroke and whether age-related differences of the IRF5/IRF4 signaling exist in ischemic brain. Here, we investigated the influences of aging on IRF5/IRF4 signaling and post-stroke inflammation in mice. Both young (9-12 weeks) and aged (18 months) male mice were subjected to middle cerebral artery occlusion (MCAO). Morphological and biochemical changes in the ischemic brains and behavior deficits were assessed on 1, 3, and 7 d post-stroke. After MCAO, the aged mice showed smaller infarct sizes but higher neurological deficits and corner test scores than young mice. Young mice had higher levels of IRF4 and CD206 microglia in the ischemic brains, whereas the aged mice expressed more IRF5 and MHCII microglia. After MCAO, serum pro-inflammatory cytokines (TNF-α, iNOS, IL-6) were more prominently up-regulated in aged mice, whereas serum anti-inflammatory cytokines (TGF-β, IL-4, IL-10) were more prominently up-regulated in young mice. Our results demonstrate that aging has a significant influence on stroke outcomes in mice, which is probably mediated by age-specific inflammatory responses.
An Antioxidant Phytotherapy to Rescue Neuronal Oxidative Stress
Lin, Zhihong; Zhu, Danni; Yan, Yongqing; Yu, Boyang; Wang, Qiujuan; Shen, Pingniang; Ruan, Kefeng
2011-01-01
Oxidative stress is involved in the pathogenesis of ischemic neuronal injury. A Chinese herbal formula composed of Poria cocos (Chinese name: Fu Ling), Atractylodes macrocephala (Chinese name: Bai Zhu) and Angelica sinensis (Chinese names: Danggui, Dong quai, Donggui; Korean name: Danggwi) (FBD), has been proved to be beneficial in the treatment of cerebral ischemia/reperfusion (I/R).This study was carried out to evaluate the protective effect of FBD against neuronal oxidative stress in vivo and in vitro. Rat I/R were established by middle cerebral artery occlusion (MCAO) for 1 h, followed by 24 h reperfusion. MCAO led to significant depletion in superoxide dismutase and glutathione and rise in lipid peroxidation (LPO) and nitric oxide in brain. The neurological deficit and brain infarction were also significantly elevated by MCAO as compared with sham-operated group. All the brain oxidative stress and damage were significantly attenuated by 7 days pretreatment with the aqueous extract of FBD (250 mg kg−1, p.o.). Moreover, cerebrospinal fluid sampled from FBD-pretreated rats protected PC12 cells against oxidative insult induced by 0.2 mM hydrogen peroxide, in a concentration and time-dependent manner (IC50 10.6%, ET50 1.2 h). However, aqueous extract of FBD just slightly scavenged superoxide anion radical generated in xanthine–xanthine oxidase system (IC50 2.4 mg ml−1) and hydroxyl radical generated in Fenton reaction system (IC50 3.6 mg ml−1). In conclusion, FBD was a distinct antioxidant phytotherapy to rescue neuronal oxidative stress, through blocking LPO, restoring endogenous antioxidant system, but not scavenging free radicals. PMID:18955358
Wang, Lisheng; Huang, Yuwei; Wu, Junhong; Lv, Gengbin; Zhou, Liling; Jia, Jie
2013-12-01
The inhibitory effect of Buyang Huanwu decoction (BYHWD) on ischemic injury has been proven, but it is not clear how amino acid levels in cerebrospinal fluid (CSF) are associated with BYHWD treatment, nor the mechanism by which BYHWD protects the brain from ischemia/reperfusion injury. We investigated the effect of BYHWD on the amino acid content of CSF in rats during ischemia-reperfusion injury. Ischemia was imposed by right middle cerebral artery occlusion (MCAO). CSF was continuously collected from the striatum via brain microdialysis before and after ischemia/reperfusion. We used on-line derivatization combined with high-performance liquid chromatography with fluorescence detection (HPLC-FD) to determine levels of glutamate (Glu), aspartate (Asp), glycine (Gly), taurine (Tau), and γ-aminobutyric acid (GABA) in CSF. The MCAO model displayed an infarct lesion in the ipsilateral hemisphere and nerve injuries, as the left upper limb was unable to extend and turn leftward. Significant increases in excitatory and inhibitory amino acids were observed in the CSF of the ischemic rats relative to the sham-operated group (P<0.01). Treatment with BYHWD reduced the areas of cerebral infarction and improved the neurological behavior scores of rats after MCAO. BYHWD treatment was also associated with a significant decrease in excitatory amino acids and increase in inhibitory amino acids in the CSF. Only the higher dose of BYHWD (20mg/kg) affected all these levels significantly. Attenuated excitatory toxicity and reduced areas of cerebral infarction associated with BYHWD treatment might be due to a protective mechanism induced by BYHWD against ischemia/reperfusion injury. Copyright © 2013 Elsevier B.V. All rights reserved.
Kim, Hyeon Ju; Chuang, De-Maw
2014-01-01
White matter injury is an important component of stroke pathology, but its pathophysiology and potential treatment remain relatively elusive and underexplored. We previously reported that after permanent middle cerebral artery occlusion (pMCAO), sodium butyrate (SB) and trichostatin A (TSA) induced neurogenesis via histone deacetylase (HDAC) inhibition in multiple ischemic brain regions in rats; these effects-which depended on activation of brain-derived neurotrophic factor (BDNF)-TrkB signaling-contributed to behavioral improvement. The present study found that SB or TSA robustly protected against ischemia-induced loss of oligodendrocytes detected by confocal microscopy of myelin basic protein (MBP) immunostaining in the ipsilateral subventricular zone (SVZ), striatum, corpus callosum, and frontal cortex seven days post-pMCAO. Co-localization of 5-bromo-2’-deoxyuridine (BrdU)+ and MBP+ cells after SB treatment suggested the occurrence of oligodendrogenesis. SB also strongly upregulated vascular endothelial growth factor (VEGF), which plays a major role in neurogenesis, angiogenesis, and functional recovery after stroke. These SB-induced effects were markedly suppressed by blocking the TrkB signaling pathway with K252a. pMCAO-induced activation of microglia (OX42+) and macrophages/monocytes (ED1+)-which has been linked to white matter injury-was robustly suppressed by SB in a K252a-sensitive manner. In addition, SB treatment largely blocked caspase-3+ and OX42+ cells in ipsilateral brain regions. Our results suggest that HDAC inhibitor-mediated protection against ischemia-induced oligodendrocyte loss may involve multiple mechanisms including oligodendrogenesis, VEGF upregulation, anti-inflammation, and caspase-3 downregulation. Taken together, the results suggest that post-insult treatment with HDAC inhibitors is a rational strategy to mitigate white matter injury following ischemic stroke. PMID:24936215
Dihné, Marcel; Grommes, Christian; Lutzenburg, Michael; Witte, Otto W; Block, Frank
2002-12-01
After focal cerebral ischemia, depending on its localization and extent, secondary neuronal damage may occur that is remote from the initial lesion. In this study differences in secondary damage of the ventroposterior thalamic nucleus (VPN) and the reticular thalamic nucleus (RTN) were investigated with the use of different ischemia models. Transient middle cerebral artery occlusion (MCAO) leads to cortical infarction, including parts of the basal ganglia such as the globus pallidus, and to widespread edema. Photothrombotic ischemia generates pure cortical infarcts sparing the basal ganglia and with only minor edema. Neuronal degeneration was quantified within the ipsilateral RTN and VPN 14 days after ischemia. Glial reactions were studied with the use of immunohistochemistry. MCAO resulted in delayed neuronal cell loss of the ipsilateral VPN and RTN. Glial activation occurred in both nuclei beginning after 24 hours. Photothrombotic ischemia resulted in delayed neuronal cell loss only within the VPN. Even 2 weeks after photothrombotic ischemia, glial activation could only be seen within the VPN. Pure cortical infarcts after photothrombotic ischemia, without major edema and without effects on the globus pallidus of the basal ganglia, only lead to secondary VPN damage that is possibly due to retrograde degeneration. MCAO, which results in infarction of cortex and globus pallidus and which causes widespread edema, leads to secondary damage in the VPN and RTN. Thus, additional RTN damage may be due to loss of protective GABAergic input from the globus pallidus to the RTN or due to the extensive edema. Retrograde degeneration is not possible because the RTN, in contrast to the VPN, has no efferents to the cortex.
Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome.
Spychala, Monica S; Venna, Venugopal Reddy; Jandzinski, Michal; Doran, Sarah J; Durgan, David J; Ganesh, Bhanu Priya; Ajami, Nadim J; Putluri, Nagireddy; Graf, Joerg; Bryan, Robert M; McCullough, Louise D
2018-05-07
Objective Chronic systemic inflammation contributes to the pathogenesis of many age-related diseases. Although not well understood, alterations in the gut microbiota, or dysbiosis, may be responsible for age-related inflammation. Methods Using stroke as a disease model, we tested the hypothesis that a youthful microbiota, when established in aged mice, produces positive outcomes following ischemic stroke. Conversely, an aged microbiota, when established in young mice, produces negative outcomes after stroke. Young and aged male mice had either a young or an aged microbiota established by fecal transplant gavage (FTG). Mice were subjected to ischemic stroke (MCAO) or sham surgery. During the subsequent weeks, mice underwent behavioral testing and fecal samples were collected for 16S rRNA analysis of bacterial content. Results We found that the microbiota is altered after experimental stroke in young mice, and resembles the biome of uninjured aged mice. In aged mice, the ratio of Firmicutes to Bacteroidetes (F:B), two main bacterial phyla in gut microbiota, increased ∼9-fold (P<0.001) compared to young. This increased F:B ratio in aged mice is indicative of dysbiosis. Altering the microbiota in young by fecal gavage to resemble that of aged mice (∼6-fold increase in F:B ratio, P<0.001) increased mortality following MCAO, decreased performance in behavioral testing, and increased cytokine levels. Conversely, altering the microbiota in aged to resemble that of young (∼9-fold decrease in F:B ratio, P<0.001) increased survival and improved recovery following MCAO. Interpretation Aged biome increased the levels of systemic pro-inflammatory cytokines. We conclude that the gut microbiota can be modified to positively impact outcomes from age-related diseases. This article is protected by copyright. All rights reserved. © 2018 American Neurological Association.
Pérez-Mato, M; Ramos-Cabrer, P; Sobrino, T; Blanco, M; Ruban, A; Mirelman, D; Menendez, P; Castillo, J; Campos, F
2014-01-09
Blood glutamate scavenging is a novel and attractive protecting strategy to reduce the excitotoxic effect of extracellular glutamate released during ischemic brain injury. Glutamate oxaloacetate transaminase 1 (GOT1) activation by means of oxaloacetate administration has been used to reduce the glutamate concentration in the blood. However, the protective effect of the administration of the recombinant GOT1 (rGOT1) enzyme has not been yet addressed in cerebral ischemia. The aim of this study was to analyze the protective effect of an effective dose of oxaloacetate and the human rGOT1 alone and in combination with a non-effective dose of oxaloacetate in an animal model of ischemic stroke. Sixty rats were subjected to a transient middle cerebral artery occlusion (MCAO). Infarct volumes were assessed by magnetic resonance imaging (MRI) before treatment administration, and 24 h and 7 days after MCAO. Brain glutamate levels were determined by in vivo MR spectroscopy (MRS) during artery occlusion (80 min) and reperfusion (180 min). GOT activity and serum glutamate concentration were analyzed during the occlusion and reperfusion period. Somatosensory test was performed at baseline and 7 days after MCAO. The three treatments tested induced a reduction in serum and brain glutamate levels, resulting in a reduction in infarct volume and sensorimotor deficit. Protective effect of rGOT1 supplemented with oxaloacetate at 7 days persists even when treatment was delayed until at least 2 h after onset of ischemia. In conclusion, our findings indicate that the combination of human rGOT1 with low doses of oxaloacetate seems to be a successful approach for stroke treatment.
Pérez-Mato, M; Ramos-Cabrer, P; Sobrino, T; Blanco, M; Ruban, A; Mirelman, D; Menendez, P; Castillo, J; Campos, F
2014-01-01
Blood glutamate scavenging is a novel and attractive protecting strategy to reduce the excitotoxic effect of extracellular glutamate released during ischemic brain injury. Glutamate oxaloacetate transaminase 1 (GOT1) activation by means of oxaloacetate administration has been used to reduce the glutamate concentration in the blood. However, the protective effect of the administration of the recombinant GOT1 (rGOT1) enzyme has not been yet addressed in cerebral ischemia. The aim of this study was to analyze the protective effect of an effective dose of oxaloacetate and the human rGOT1 alone and in combination with a non-effective dose of oxaloacetate in an animal model of ischemic stroke. Sixty rats were subjected to a transient middle cerebral artery occlusion (MCAO). Infarct volumes were assessed by magnetic resonance imaging (MRI) before treatment administration, and 24 h and 7 days after MCAO. Brain glutamate levels were determined by in vivo MR spectroscopy (MRS) during artery occlusion (80 min) and reperfusion (180 min). GOT activity and serum glutamate concentration were analyzed during the occlusion and reperfusion period. Somatosensory test was performed at baseline and 7 days after MCAO. The three treatments tested induced a reduction in serum and brain glutamate levels, resulting in a reduction in infarct volume and sensorimotor deficit. Protective effect of rGOT1 supplemented with oxaloacetate at 7 days persists even when treatment was delayed until at least 2 h after onset of ischemia. In conclusion, our findings indicate that the combination of human rGOT1 with low doses of oxaloacetate seems to be a successful approach for stroke treatment PMID:24407245
Choi, Yookeum; Kim, Seul-Ki; Choi, In-Young; Ju, Chung; Nam, Kung-Woo; Hwang, Sunyoung; Kim, Byung-Woo; Yoon, Min Ji; Won, Moo-Ho; Park, Yong-Ki; Kim, Won-Ki
2011-05-01
Modified Bo-Yang-Hwan-O-Tang (mBHT) is an improved herbal formula of BHT, which has been widely used to treat ischaemic stroke in East Asia, by the addition of five herbs having anti-ischaemic properties. In this study, we investigated whether mBHT would reduce cerebral ischaemic injury in rats. Sprague-Dawley rats were subjected to a 90-min middle cerebral artery occlusion (MCAO) and subsequent 22-h reperfusion. mBHT was administered either intraperitoneally twice 15 min before and 15 min after, or orally once 30 min or 120 min after the onset of MCAO (50 or 200 mg/kg each). Intraperitoneal administration of mBHT markedly reduced the cerebral infarct size and neurological deficit caused by MCAO/reperfusion. mBHT treatment also significantly improved long-term survival rate after cerebral ischaemic injury. Oral administration of mBHT 30 min after ischaemia also markedly reduced the infarct size after cerebral ischaemia. The anti-ischaemic effect of mBHT was significantly, but not fully, reduced when mBHT-induced hypothermia was abolished. In cultured cortical neurons, we further found that mBHT decreased oxygen-glucose deprivation/re-oxygenation-evoked neuronal injury by inhibiting production of reactive oxygen species, decrease in mitochondrial transmembrane potential, and activation of caspase-3. However, mBHT did not inhibit N-Methyl-D-aspartate (NMDA) receptor-mediated excitotoxicity. Taken together, our data suggest that mBHT has multiple anti-ischaemic properties and would be a good therapeutic herbal prescription for the treatment of cerebral ischaemic stroke. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.
Akhtar, Mohammad; Maikiyo, Aliyu Muhammad; Najmi, Abul Kalam; Khanam, Razia; Mujeeb, Mohd; Aqil, Mohd
2013-01-01
PURPOSE: Stroke still remains a challenge for the researchers and scientists for developing ideal drug. Several new drugs are being evaluated showing excellent results in preclinical studies but when tested in clinical trials, they failed. Many herbal drugs in different indigenous system of medicine claim to have beneficial effects but not extensively evaluated for stroke (cerebral ischemia). AIM: The present study was undertaken to evaluate chloroform and petroleum ether extract of Nigella sativa seeds administered at a dose of 400 mg/kg, per orally for seven days in middle cerebral artery occluded (MCAO) rats for its neuroprotective role in cerebral ischemia. MATERIALS AND METHODS: Focal cerebral ischemia was induced by middle cerebral artery occlusion for two hours followed by reperfusion for 22 hours. After 24 hours, grip strength, locomotor activity tests were performed in different treatment groups of rats. After completing behavioral tests, animals were sacrificed; brains were removed for the measurement of infarct volume followed by the estimation of markers of oxidative stress. RESULTS: Both chloroform and petroleum ether extracts-pretreated rats showed improvement in locomotor activity and grip strength, reduced infarct volume when compared with MCAO rats. MCA occlusion resulted in the elevation of levels of thiobarbituric acid reactive substance (TBARS), while a reduction in the levels of glutathione (GSH) and antioxidant enzymes viz. superoxide dismutase (SOD) and catalase levels were observed. Pre-treatment of both extracts of Nigella sativa showed reduction in TBARS, elevation in glutathione, SOD, and catalase levels when compared with MCAO rats. CONCLUSION: The chloroform and petroleum ether extract of Nigella sativa showed the protective effects in cerebral ischemia. The present study confirms the antioxidant, free radical scavenging, and anti-inflammatory properties of Nigella sativa already reported. PMID:23833517
Carpenter, Randall S; Iwuchukwu, Ifeanyi; Hinkson, Cyrus L; Reitz, Sydney; Lee, Wonhee; Kukino, Ayaka; Zhang, An; Pike, Martin M; Ardelt, Agnieszka A
2016-05-15
Estrogens have previously been shown to protect the brain against acute ischemic insults, by potentially augmenting cerebrovascular function after ischemic stroke. The current study hypothesized that treatment with sustained release of high-dose 17β-estradiol (E2) at the time of reperfusion from middle cerebral artery occlusion (MCAO) in rats would attenuate reperfusion injury, augment post-stroke angiogenesis and cerebral blood flow, and attenuate lesion volume. Female Wistar rats underwent ovariectomy, followed two weeks later by transient, two-hour right MCAO (tMCAO) and treatment with E2 (n=13) or placebo (P; n=12) pellets starting at reperfusion. E2 treatment resulted in significantly smaller total lesion volume, smaller lesions within striatal and cortical brain regions, and less atrophy of the ipsilateral hemisphere after six weeks of recovery. E2-treated animals exhibited accelerated recovery of contralateral forelimb sensorimotor function in the cylinder test. Magnetic resonance imaging (MRI) showed that E2 treatment reduced the formation of lesion cysts, decreased lesion volume, and increased lesional cerebral blood flow (CBF). K(trans), a measure of vascular permeability, was increased in the lesions. This finding, which represents lesion neovascularization, was not altered by E2 treatment. Ischemic stroke-related angiogenesis and vessel formation was confirmed with immunolabeling of brain tissue and was not altered with E2 treatment. In summary, E2 treatment administered immediately following reperfusion significantly reduced lesion size, cyst formation, and brain atrophy while improving lesional CBF and accelerating recovery of functional deficits in a rat model of ischemic stroke. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Shaojing; Wu, Chuanhong; Zhu, Li; Gao, Jian; Fang, Jing; Li, Defeng; Fu, Meihong; Liang, Rixin; Wang, Lan; Cheng, Ming; Yang, Hongjun
2012-11-09
Ischemic stroke is a devastating disease with a complex pathophysiology. Galangin is a natural flavonoid isolated from the rhizome of Alpina officinarum Hance, which has been widely used as an antioxidant agent. However, its effects against ischemic stroke have not been reported and its related neuroprotective mechanism has not really been explored. In this study, neurological behavior, cerebral infarct volumes and the improvement of the regional cortical blood flow (rCBF) were used to evaluate the therapeutic effect of galangin in rats impaired by middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia. Furthermore, the determination of mitochondrial function and Western blot of apoptosis-related proteins were performed to interpret the neuroprotective mechanism of galangin. The results showed that galangin alleviated the neurologic impairments, reduced cerebral infarct at 24 h after MCAO and exerted a protective effect on the mitochondria with decreased production of mitochondrial reactive oxygen species (ROS). These effects were consistent with improvements in the membrane potential level (Dym), membrane fluidity, and degree of mitochondrial swelling in a dose-dependent manner. Moreover, galangin significantly improved the reduced rCBF after MCAO. Western blot analysis revealed that galangin also inhibited apoptosis in a dose-dependent manner concomitant with the up-regulation of Bcl-2 expression, down-regulation of Bax expression and the Bax/Bcl-2 ratio, a reduction in cytochrome c release from the mitochondria to the cytosol, the reduced expression of activated caspase-3 and the cleavage of poly(ADP-ribose) polymerase (PARP). All these data in this study demonstrated that galangin might have therapeutic potential for ischemic stroke and play its protective role through the improvement in rCBF, mitochondrial protection and inhibiting caspase-dependent mitochondrial cell death pathway for the first time.
Peachey, Nathaniel M.; Dye, Robert C.; Snow, Ronny C.; Birdsell, Stephan A.
1998-01-01
A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.
Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.
1998-04-14
A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.
2009-01-01
This paper describes an experimental study on field emission characteristics of individual graphene layers for vacuum nanoelectronics. Graphene layers were prepared by mechanical exfoliation from a highly oriented pyrolyzed graphite block and placed on an insulating substrate, with the resulting field emission behavior investigated using a nanomanipulator operating inside a scanning electron microscope. A pair of tungsten tips controlled by the nanomanipulator enabled electric connection with the graphene layers without postfabrication. The maximum emitted current from the graphene layers was 170 nA and the turn-on voltage was 12.1 V. PMID:20596315
Cell wall biogenesis in Oocystis: experimental alteration of microfibril assembly and orientation.
Montezinos, D; Brown, R M
1978-01-01
Cell wall biogenesis in the unicellular green alga Oocystis apiculata has been studied. Under normal growth conditions, a cell wall with ordered microfibrils is synthesized. In each layer there are rows of parallel microfibrils. Layers are nearly perpendicular to each other. Terminal linear synthesizing complexes are located in the plasma membrane, and they are capable of bidirectional synthesis of cellulose microfibrils. Granule bands associated with the inner leaflet of the plasma membrane appear to control the orientation of newly synthesized microfibrils. Subcortical microtubules also are present during wall synthesis. Patterns of cell wall synthesis were studied after treatment with EDTA and EGTA as well as divalent cations (MgSO4, CaSO4, Cacl2). 0.1 M EDTA treatment for 15 min results in the disassociation of the terminal complexes from the ends of microfibrils. EDTA-treated cells followed by 15 min treatment with MgSO4 results in reaggregation of the linear complexes into a paired state, remote from the original ends to which they were associated. After 90 min treatment with MgSO4, normal synthesis resumes. EGTA and calcium salts do not affect the linear complexes or microfibril orientation. Treatments with colchicine and vinblastine sulphate do not depolymerize the microtubles, but the wall microfibril orientation is altered. With colchicine or vinblastine, the change in orientation from layer to layer is inhibited. The process is reversible upon removal of the drugs. Lumicolchicine has no effect upon microfibril orientation, but granule bands are disorganized. Treatment with coumarin, a known inhibitor of cellulose synthesis, causes the loss of visualization of subunits of the terminal complexes. The possibility of the existence of a membrane-associated colchicine-sensitive orientation protein for cellulose microfibrils is discussed. Transmembrane modulation of microfibril synthesis and orientation is presented.
Dynamics of myelin content decrease in the rat stroke model
NASA Astrophysics Data System (ADS)
Kisel, A.; Khodanovich, M.; Atochin, D.; Mustafina, L.; Yarnykh, V.
2017-08-01
The majority of studies were usually focused on neuronal death after brain ischemia; however, stroke affects all cell types including oligodendrocytes that form myelin sheath in the CNS. Our study is focused on the changes of myelin content in the ischemic core and neighbor structures in early terms (1, 3 and 10 days) after stroke. Stroke was modeled with middle cerebral artery occlusion (MCAo) in 15 male rats that were divided into three groups by time points after operation. Brain sections were histologically stained with Luxol Fast Blue (LFB) for myelin quantification. The significant demyelination was found in the ischemic core, corpus callosum, anterior commissure, whereas myelin content was increased in caudoputamen, internal capsule and piriform cortex compared with the contralateral hemisphere. The motor cortex showed a significant increase of myelin content on the 1st day and a significant decrease on the 3rd and 10th days after MCAo. These results suggest that stroke influences myelination not only in the ischemic core but also in distant structures.
Neuroprotective effect of curcumin on transient focal cerebral ischemia in rats.
Zhao, Jing; Zhao, Yong; Zheng, Weiping; Lu, Yuyu; Feng, Gang; Yu, Shanshan
2008-09-10
Curcumin, a member of the curcuminoid family of compounds, is a yellow colored phenolic pigment obtained from the powdered rhizome of C. longa Linn. Recent studies have demonstrated that curcumin has protective effects against cerebral ischemia/reperfusion injury. However, little is known about its mechanism. Hence, in the present study the neuroprotective potential of curcumin was investigated in middle cerebral artery occlusion (MCAO) induced focal cerebral IR injury. Administration of curcumin 100 and 300 mg/kg i.p. 60 min after MCAO significantly diminished infarct volume, and improved neurological deficit in a dose-dependent manner. Nissl staining showed that the neuronal injury was significantly improved after being treated with curcumin. Curcumin significantly decreased the expression of caspase-3 protein. A higher number of TUNEL-positive cells were found in the vehicle group, but they were significantly decreased in the treated group. Taken together, these results suggest that the neuroprotective potentials of curcumin against focal cerebral ischemic injury are, at least in part, ascribed to its anti-apoptotic effects.
Muth, Marco; Schmid, Reiner P; Schnitzlein, Klaus
2016-04-01
Ellipsometric studies of very thin organic films suffer from the low refractive index contrast between layer and bulk substrate. We demonstrate that null ellipsometry can not only provide detailed information about the adsorption kinetics and surface excess values, but in addition on layer thicknesses with submonolayer resolution of a lipase from Thermomyces lanuginosus at the air-water interface. While measuring very close to the Brewster angle, refractive indices and layer-thicknesses can both be determined with a precision that is sufficiently high to make conclusions on the density and orientation of the molecules at the interface. The orientation was found to be concentration- and pH value-dependent. At the isoelectric point, the lipase was almost vertically oriented with respect to the surface, while for pure distilled water and low lipase concentration a rather horizontal alignment was found. Further experiments, varying the size of the interfacial area in a Langmuir trough, confirm the different layer structures. Copyright © 2015 Elsevier B.V. All rights reserved.
A microwave scattering model for layered vegetation
NASA Technical Reports Server (NTRS)
Karam, Mostafa A.; Fung, Adrian K.; Lang, Roger H.; Chauhan, Narinder S.
1992-01-01
A microwave scattering model was developed for layered vegetation based on an iterative solution of the radiative transfer equation up to the second order to account for multiple scattering within the canopy and between the ground and the canopy. The model is designed to operate over a wide frequency range for both deciduous and coniferous forest and to account for the branch size distribution, leaf orientation distribution, and branch orientation distribution for each size. The canopy is modeled as a two-layered medium above a rough interface. The upper layer is the crown containing leaves, stems, and branches. The lower layer is the trunk region modeled as randomly positioned cylinders with a preferred orientation distribution above an irregular soil surface. Comparisons of this model with measurements from deciduous and coniferous forests show good agreements at several frequencies for both like and cross polarizations. Major features of the model needed to realize the agreement include allowance for: (1) branch size distribution, (2) second-order effects, and (3) tree component models valid over a wide range of frequencies.
Zaltsman, Julia B.; Heimel, J. Alexander
2015-01-01
Classic studies of lateral geniculate nucleus (LGN) and visual cortex (V1) in carnivores and primates have found that a majority of neurons in LGN exhibit a center-surround organization, while V1 neurons exhibit strong orientation selectivity and, in many species, direction selectivity. Recent work in the mouse and the monkey has discovered previously unknown classes of orientation- and direction-selective neurons in LGN. Furthermore, some recent studies in the mouse report that many LGN cells exhibit pronounced orientation biases that are of comparable strength to the subthreshold inputs to V1 neurons. These results raise the possibility that, in rodents, orientation biases of individual LGN cells make a substantial contribution to cortical orientation selectivity. Alternatively, the size and contribution of orientation- or direction-selective channels from LGN to V1 may vary across mammals. To address this question, we examined orientation and direction selectivity in LGN and V1 neurons of a highly visual diurnal rodent: the gray squirrel. In the representation of central vision, only a few LGN neurons exhibited strong orientation or direction selectivity. Across the population, LGN neurons showed weak orientation biases and were much less selective for orientation compared with V1 neurons. Although direction selectivity was weak overall, LGN layers 3abc, which contain neurons that express calbindin, exhibited elevated direction selectivity index values compared with LGN layers 1 and 2. These results suggest that, for central visual fields, the contribution of orientation- and direction-selective channels from the LGN to V1 is small in the squirrel. As in other mammals, this small contribution is elevated in the calbindin-positive layers of the LGN PMID:25717157
NASA Astrophysics Data System (ADS)
Seo, Yeonwoo; Lee, Sanghwa; Jue, Miyeon; Yoon, Hansub; Kim, Chinkyo
2012-12-01
Over a wide range of growth conditions, GaN domains were grown on bare m-plane sapphire substrates by using hydride vapor phase epitaxy (HVPE), and the relation between these growth conditions and three possible preferred crystallographic orientations ([1100], [1103], [1122]) of GaN domains was investigated. In contrast with the previous reports by other groups, our results revealed that preferentially [1100]-oriented GaN domains were grown without low-temperature nitridation or a buffer layer, and that the growth condition of preferentially [1100]-oriented GaN was insensitive to V/III ratio.
NASA Astrophysics Data System (ADS)
Forbes Inskip, N.; Meredith, P. G.; Gudmundsson, A.
2017-12-01
While considerable effort has been expended on the study of fracture propagation in rocks in recent years, our understanding of how fractures propagate through sedimentary rocks composed of layers with different mechanical and elastic properties remains poor. Yet the mechanical layering is a key parameter controlling the propagation of fractures in sedimentary sequences. Here we report measurements of the contrasting properties of the Lower Lias at Nash Point, South Wales, which comprises a sequence of interbedded shale and limestone layers, and how those properties influence fracture propagation. The static Young's modulus (Estat) of both rock types has been measured parallel and normal to bedding. The shale is highly anisotropic, with Estat varying from 2.4 GPa, in the bedding-normal orientation, to 7.9 GPa, in the bedding-parallel orientation, yielding an anisotropy of 107%. By contrast the limestone has a very low anisotropy of 8%, with Estat values varying from 28.5 GPa, in the bedding-normal orientation, to 26.3 GPa in the bedding-parallel orientation. It follows that for a vertical fracture propagating in this sequence the modulus contrast is by a factor of about 12. This is important because the contrast in elastic properties is a key factor in controlling whether fractures arrest, deflect, or propagate across interfaces between layers in a sequence. Preliminary numerical modelling results (using a finite element modelling software) of induced fractures at Nash Point demonstrate a rotation of the maximum principal compressive stress across interfaces but also the concentration of tensile stress within the more competent (high Estat) limestone layers. The tensile strength (σT), using the Brazil-disk technique, and fracture toughness (KIc), using the semi-circular bend methodology, of both rock types have been measured. Measurements were made in the three principal orientations relative to bedding, Arrester, Divider, and Short-Transverse, and also at 15° intervals between these planes. Again, values for the shale show a high degree of anisotropy; with similar values in the Arrester and Divider orientations, but much lower values in the Short-Transverse orientation. σT and KIc values for the limestone are considerably higher than those for the shale and exhibit no significant anisotropy.
NASA Astrophysics Data System (ADS)
Zhang, Ziming; Zheng, Lu; Khurram, Muhammad; Yan, Qingfeng
2017-10-01
Few-layer black phosphorus, also known as phosphorene, is a new two-dimensional material which is of enormous interest for applications, mainly in electronics and optoelectronics. Herein, we for the first time employ phosphorene for directing the self-assembly of asymmetric polystyrene-block-polymethylmethacrylate (PS-b-PMMA) block copolymer (BCP) thin film to form the perpendicular orientation of sub-10 nm PS nanopore arrays in a hexagonal fashion normal to the interface. We experimentally demonstrate that none of the PS and PMMA blocks exhibit preferential affinity to the phosphorene-modified surface. Furthermore, the perpendicularly-oriented PS nanostructures almost stay unchanged with the variation of number of layers of few-layer phosphorene nanoflakes between 15-30 layers. Differing from the neutral polymer brushes which are widely used for chemical modification of the silicon substrate, phosphorene provides a novel physical way to control the interfacial interactions between the asymmetric PS-b-PMMA BCP thin film and the silicon substrate. Based on our results, it is possible to build a new scheme for producing sub-10 nm PS nanopore arrays oriented perpendicularly to the few-layer phosphorene nanoflakes. Furthermore, the nanostructural microdomains could serve as a promising nanolithography template for surface patterning of phosphorene nanoflakes.
Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets.
Mitzi, D B; Wang, S; Feild, C A; Chess, C A; Guloy, A M
1995-03-10
Single crystals of the layered organic-inorganic perovskites, [NH(2)C(I=NH(2)](2)(CH(3)NH(3))m SnmI3m+2, were prepared by an aqueous solution growth technique. In contrast to the recently discovered family, (C(4)H(9)NH(3))(2)(CH(3)NH(3))n-1SnnI3n+1, which consists of (100)-terminated perovskite layers, structure determination reveals an unusual structural class with sets of m <110>-oriented CH(3)NH(3)SnI(3) perovskite sheets separated by iodoformamidinium cations. Whereas the m = 2 compound is semiconducting with a band gap of 0.33 +/- 0.05 electron volt, increasing m leads to more metallic character. The ability to control perovskite sheet orientation through the choice of organic cation demonstrates the flexibility provided by organic-inorganic perovskites and adds an important handle for tailoring and understanding lower dimensional transport in layered perovskites.
Zhu, Xiaoyan; Fréchou, Magalie; Liere, Philippe; Zhang, Shaodong; Pianos, Antoine; Fernandez, Neïké; Denier, Christian; Mattern, Claudia; Schumacher, Michael; Guennoun, Rachida
2017-11-08
Treatment with progesterone protects the male and female brain against damage after middle cerebral artery occlusion (MCAO). However, in both sexes, the brain contains significant amounts of endogenous progesterone. It is not known whether endogenously produced progesterone enhances the resistance of the brain to ischemic insult. Here, we used steroid profiling by gas chromatography-tandem mass spectrometry (GC-MS/MS) for exploring adaptive and sex-specific changes in brain levels of progesterone and its metabolites after MCAO. We show that, in the male mouse brain, progesterone is mainly metabolized via 5α-reduction leading to 5α-dihydroprogesterone (5α-DHP), also a progesterone receptor (PR) agonist ligand in neural cells, then to 3α,5α-tetrahydroprogesterone (3α,5α-THP). In the female mouse brain, levels of 5α-DHP and 3α,5α-THP are lower and levels of 20α-DHP are higher than in males. After MCAO, levels of progesterone and 5α-DHP are upregulated rapidly to pregnancy-like levels in the male but not in the female brain. To assess whether endogenous progesterone and 5α-DHP contribute to the resistance of neural cells to ischemic damage, we inactivated PR selectively in the CNS. Deletion of PR in the brain reduced its resistance to MCAO, resulting in increased infarct volumes and neurological deficits in both sexes. Importantly, endogenous PR ligands continue to protect the brain of aging mice. These results uncover the unexpected importance of endogenous progesterone and its metabolites in cerebroprotection. They also reveal that the female reproductive hormone progesterone is an endogenous cerebroprotective neurosteroid in both sexes. SIGNIFICANCE STATEMENT The brain responds to injury with protective signaling and has a remarkable capacity to protect itself. We show here that, in response to ischemic stroke, levels of progesterone and its neuroactive metabolite 5α-dihydroprogesterone are upregulated rapidly in the male mouse brain but not in the female brain. An important role of endogenous progesterone in cerebroprotection was demonstrated by the conditional inactivation of its receptor in neural cells. These results show the importance of endogenous progesterone, its metabolites, and neural progesterone receptors in acute cerebroprotection after stroke. This new concept could be exploited therapeutically by taking into account the progesterone status of patients and by supplementing and reinforcing endogenous progesterone signaling for attaining its full cerebroprotective potential. Copyright © 2017 the authors 0270-6474/17/3710998-23$15.00/0.
NASA Technical Reports Server (NTRS)
Tsapatsis, Michael (Inventor); Lai, Zhiping (Inventor)
2008-01-01
In certain aspects, the invention features methods for forming crystalline membranes (e.g., a membrane of a framework material, such as a zeolite) by inducing secondary growth in a layer of oriented seed crystals. The rate of growth of the seed crystals in the plane of the substrate is controlled to be comparable to the rate of growth out of the plane. As a result, a crystalline membrane can form a substantially continuous layer including grains of uniform crystallographic orientation that extend through the depth of the layer.
Role of Cu layer thickness on the magnetic anisotropy of pulsed electrodeposited Ni/Cu/Ni tri-layer
NASA Astrophysics Data System (ADS)
Dhanapal, K.; Prabhu, D.; Gopalan, R.; Narayanan, V.; Stephen, A.
2017-07-01
The Ni/Cu/Ni tri-layer film with different thickness of Cu layer was deposited using pulsed electrodeposition method. The XRD pattern of all the films show the formation of fcc structure of nickel and copper. This shows the orientated growth in the (2 2 0) plane of the layered films as calculated from the relative intensity ratio. The layer formation in the films were observed from cross sectional view using FE-SEM and confirms the decrease in Cu layer thickness with decreasing deposition time. The magnetic anisotropy behaviour was measured using VSM with two different orientations of layered film. This shows that increasing anisotropy energy with decreasing Cu layer thickness and a maximum of -5.13 × 104 J m-3 is observed for copper deposited for 1 min. From the K eff.t versus t plot, development of perpendicular magnetic anisotropy in the layered system is predicted below 0.38 µm copper layer thickness.
Predicting bending stiffness of randomly oriented hybrid panels
Laura Moya; William T.Y. Tze; Jerrold E. Winandy
2010-01-01
This study was conducted to develop a simple model to predict the bending modulus of elasticity (MOE) of randomly oriented hybrid panels. The modeling process involved three modules: the behavior of a single layer was computed by applying micromechanics equations, layer properties were adjusted for densification effects, and the entire panel was modeled as a three-...
Comparison study of thickness swell performance of commercial oriented strandboard flooring products
Hongmei Gu; Siqun Wang; Trairat Neimsuwan; Sunguo Wang
2005-01-01
The multiple layer structure of oriented strandboard (OSB) has a significant influence on its performance, including thickness swell (TS). TS is recognized as an important performance property for OSB products. Optimization of TS through layer property ma- nipulation to achieve the lowest total TS while maintaining acceptable mechanical properties is attainable if the...
Wang, Wei; Itoh, Soichiro; Konno, Katsumi; Kikkawa, Takeshi; Ichinose, Shizuko; Sakai, Katsuyoshi; Ohkuma, Tsuneo; Watabe, Kazuhiko
2009-12-15
We have constructed a chitosan nonwoven nanofiber mesh tube consisting of oriented fibers by the electrospinning method. The efficacy of oriented nanofibers on Schwann cell alignment and positive effect of this tube on peripheral nerve regeneration were confirmed. The physical properties of the chitosan nanofiber mesh sheets prepared by electrospinning with or without fiber orientation were characterized. Then, immortalized Schwann cells were cultured on these sheets. Furthermore, the chitosan nanofiber mesh tubes with or without orientation, and bilayered chitosan mesh tube with an inner layer of oriented nanofibers and an outer layer of randomized nanofibers were bridgegrafted into rat sciatic nerve defect. As a result of fiber orientation, the tensile strength along the axis of the sheet increased. Because Schwann cells aligned along the nanofibers, oriented fibrous sheets could exhibit a Schwann cell column. Functional recovery and electrophysiological recovery occurred in time in the oriented group as well as in the bilayered group, and approximately matched those in the isograft. Furthermore, histological analysis revealed that the sprouting of myelinated axons occurred vigorously followed by axonal maturation in the isograft, oriented, and bilayered group in the order. The oriented chitosan nanofiber mesh tube may be a promising substitute for autogenous nerve graft.
High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film
Primo, Ana; Esteve-Adell, Ivan; Blandez, Juan F.; Dhakshinamoorthy, Amarajothi; Álvaro, Mercedes; Candu, Natalia; Coman, Simona M.; Parvulescu, Vasile I.; García, Hermenegildo
2015-01-01
Metal oxide nanoparticles supported on graphene exhibit high catalytic activity for oxidation, reduction and coupling reactions. Here we show that pyrolysis at 900 °C under inert atmosphere of copper(II) nitrate embedded in chitosan films affords 1.1.1 facet-oriented copper nanoplatelets supported on few-layered graphene. Oriented (1.1.1) copper nanoplatelets on graphene undergo spontaneous oxidation to render oriented (2.0.0) copper(I) oxide nanoplatelets on few-layered graphene. These films containing oriented copper(I) oxide exhibit as catalyst turnover numbers that can be three orders of magnitude higher for the Ullmann-type coupling, dehydrogenative coupling of dimethylphenylsilane with n-butanol and C–N cross-coupling than those of analogous unoriented graphene-supported copper(I) oxide nanoplatelets. PMID:26509224
NASA Astrophysics Data System (ADS)
Khanikar, Prasenjit
Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain-rate applications. The second major objective of this investigation was the use of recently developed dynamic fracture formulations to model and analyze the crack nucleation and propagation of aluminum layered composites subjected to high strain rate loading conditions and how microstructural effects, such as precipitates, dispersed particles, and GB orientations affect failure evolution. This dynamic fracture approach is used to investigate crack nucleation and crack growth as a function of the different microstructural characteristics of each alloy in layered composites with and without pre-existing cracks. The zigzag nature of the crack paths were mainly due to the microstructural features, such as precipitates and dispersed particles distributions and orientations ahead of the crack front, and it underscored the capabilities of the fracture methodology. The evolution of dislocation density and the formation of localized shear slip contributed to the blunting of the propagating crack. Extensive geometrical and thermal softening due to the localized plastic slip also affected crack path orientations and directions. These softening mechanisms resulted in the switching of cleavage planes, which affected crack path orientations. Interface delamination can also have an important role in the failure and toughening of the layered composites. Different scenarios of delamination were investigated, such as planar crack growth and crack penetration into the layers. The presence of brittle surface oxide platelets in the interface region also significantly influenced the interface delamination process. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Optical Microscopy (OM) characterization provided further physical insights and validation of the predictive capabilities. The inherent microstructural features of each alloy play a significant role in the dynamic fracture, shear strain localization, and interface delamination of the layered metallic composite. These microstructural features, such as precipitates, dispersed particles, and GB orientations and distributions can be optimized for desired behavior of metallic composites.
Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan
2014-09-09
A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.
Magnetic Control of MOF Crystal Orientation and Alignment.
Cheng, Fei; Marshall, Ellis S; Young, Adam J; Robinson, Peter J; Bouillard, Jean-Sebastien G; Adawi, Ali M; Vermeulen, Nicolaas A; Farha, Omar K; Reithofer, Michael R; Chin, Jia Min
2017-11-07
Most metal-organic frameworks (MOFs) possess anisotropic properties, the full exploitation of which necessitates a general strategy for the controllable orientation of such MOF crystals. Current methods largely rely upon layer-by-layer MOF epitaxy or tuning of MOF crystal growth on appropriate substrates, yielding MOFs with fixed crystal orientations. Here, the dynamic magnetic alignment of different MOF crystals (NH 2 -MIL-53(Al) and NU-1000) is shown. The MOFs were magnetized by electrostatic adsorption of iron oxide nanoparticles, dispersed in curable polymer resins (Formlabs 1+ clear resin/ Sylgard 184), magnetically oriented, and fixed by resin curing. The importance of crystal orientation on MOF functionality was demonstrated whereby magnetically aligned NU-1000/Sylgard 184 composite was excited with linearly polarized 405 nm light, affording an anisotropic fluorescence response dependent on the polarization angle of the excitation beam relative to NU-1000 crystal orientation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Object-Oriented Design for Sparse Direct Solvers
NASA Technical Reports Server (NTRS)
Dobrian, Florin; Kumfert, Gary; Pothen, Alex
1999-01-01
We discuss the object-oriented design of a software package for solving sparse, symmetric systems of equations (positive definite and indefinite) by direct methods. At the highest layers, we decouple data structure classes from algorithmic classes for flexibility. We describe the important structural and algorithmic classes in our design, and discuss the trade-offs we made for high performance. The kernels at the lower layers were optimized by hand. Our results show no performance loss from our object-oriented design, while providing flexibility, case of use, and extensibility over solvers using procedural design.
Modeling of layered anisotropic composite material based on effective medium theory
NASA Astrophysics Data System (ADS)
Bao, Yang; Song, Jiming
2018-04-01
In this paper, we present an efficient method to simulate multilayered anisotropic composite material with effective medium theory. Effective permittivity, permeability and orientation angle for a layered anisotropic composite medium are extracted with this equivalent model. We also derive analytical expressions for effective parameters and orientation angle with low frequency (LF) limit, which will be shown in detail. Numerical results are shown in comparing extracted effective parameters and orientation angle with analytical results from low frequency limit. Good agreements are achieved to demonstrate the accuracy of our efficient model.
A three-dimensional modelling of the layered structure of comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Penasa, L.; Massironi, M.; Naletto, G.; Simioni, E.; Ferrari, S.; Pajola, M.; Lucchetti, A.; Preusker, F.; Scholten, F.; Jorda, L.; Gaskell, R.; Ferri, F.; Marzari, F.; Davidsson, B.; Mottola, S.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J. L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; Deller, J.; Feller, C.; Fornasier, S.; Frattin, E.; Fulle, M.; Groussin, O.; Gutierrez, P. J.; Güttler, C.; Hofmann, M.; Hviid, S. F.; Ip, W. H.; Knollenberg, J.; Kramm, J. R.; Kührt, E.; Küppers, M.; La Forgia, F.; Lara, L. M.; Lazzarin, M.; Lee, J.-C.; Lopez Moreno, J. J.; Oklay, N.; Shi, X.; Thomas, N.; Tubiana, C.; Vincent, J. B.
2017-07-01
We provide a three-dimensional model of the inner layered structure of comet 67P based on the hypothesis of an extended layering independently wrapping each lobe. A large set of terrace orientations was collected on the latest shape model and then used as a proxy for the local orientation of the surfaces of discontinuity which defines the layers. We modelled the terraces as a family of concentric ellipsoidal shells with fixed axis ratios, producing a model that is completely defined by just eight free parameters. Each lobe of 67P has been modelled independently, and the two sets of parameters have been estimated by means of non-linear optimization of the measured terrace orientations. The proposed model is able to predict the orientation of terraces, the elongation of cliffs, the linear traces observed in the Wosret and Hathor regions and the peculiar alignment of boulder-like features which has been observed in the Hapi region, which appears to be related to the inner layering of the big lobe. Our analysis allowed us to identify a plane of junction between the two lobes, further confirming the independent nature of the lobes. Our layering models differ from the best-fitting topographic ellipsoids of the surface, demonstrating that the terraces are aligned to an internal structure of discontinuities, which is unevenly exposed on the surface, suggesting a complex history of localized material removal from the nucleus.
NASA Astrophysics Data System (ADS)
Zhu, Xiaoli; Todeschini, Matteo; Bastos da Silva Fanta, Alice; Liu, Lintao; Jensen, Flemming; Hübner, Jörg; Jansen, Henri; Han, Anpan; Shi, Peixiong; Ming, Anjie; Xie, Changqing
2018-09-01
The applications of Au thin films and their adhesion layers often suffer from a lack of sufficient information about the chemical states of adhesion layers and about the high-lateral-resolution crystallographic morphology of Au nanograins. Here, we demonstrate the in-depth evolution of the chemical states of adhesive layers at the interfaces and the crystal orientation mapping of gold nanograins with a lateral resolution of less than 10 nm in a Ti/Au/Cr tri-layer thin film system. Using transmission electron microscopy, the variation in the interdiffusion at Cr/Au and Ti/Au interfaces was confirmed. From X-ray photoelectron spectroscopy (XPS) depth profiling, the chemical states of Cr, Au and Ti were characterized layer by layer, suggesting the insufficient oxidation of the adhesive layers. At the interfaces the Au 4f peaks shift to higher binding energies and this behavior can be described by a proposed model based on electron reorganization and substrate-induced final-state neutralization in small Au clusters supported by the partially oxidized Ti layer. Utilizing transmission Kikuchi diffraction (TKD) in a scanning electron microscope, the crystal orientation of Au nanograins between two adhesion layers was non-destructively characterized with sub-10 nm spatial resolution. The results provide nanoscale insights into the Ti/Au/Cr thin film system and contribute to our understanding of its behavior in nano-optic and nano-electronic devices.
Hexatic smectic phase with algebraically decaying bond-orientational order
NASA Astrophysics Data System (ADS)
Agosta, Lorenzo; Metere, Alfredo; Dzugutov, Mikhail
2018-05-01
The hexatic phase predicted by the theories of two-dimensional melting is characterized by the power-law decay of the orientational correlations, whereas the in-layer bond orientational order in all the hexatic smectic phases observed so far was found to be long range. We report a hexatic smectic phase where the in-layer bond orientational correlations decay algebraically, in quantitative agreement with the hexatic ordering predicted by the theory for two dimensions. The phase was formed in a molecular dynamics simulation of a one-component system of particles interacting via a spherically symmetric potential. The present results thus demonstrate that the theoretically predicted two-dimensional hexatic order can exist in a three-dimensional system.
The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage.
Meng, Qingen; An, Shuqiang; Damion, Robin A; Jin, Zhongmin; Wilcox, Ruth; Fisher, John; Jones, Alison
2017-01-01
The highly inhomogeneous distribution of collagen fibrils may have important effects on the biphasic mechanics of articular cartilage. However, the effect of the inhomogeneity of collagen fibrils has mainly been investigated using simplified three-layered models, which may have underestimated the effect of collagen fibrils by neglecting their realistic orientation. The aim of this study was to investigate the effect of the realistic orientation of collagen fibrils on the biphasic mechanics of articular cartilage. Five biphasic material models, each of which included a different level of complexity of fibril reinforcement, were solved using two different finite element software packages (Abaqus and FEBio). Model 1 considered the realistic orientation of fibrils, which was derived from diffusion tensor magnetic resonance images. The simplified three-layered orientation was used for Model 2. Models 3-5 were three control models. The realistic collagen orientations obtained in this study were consistent with the literature. Results from the two finite element implementations were in agreement for each of the conditions modelled. The comparison between the control models confirmed some functions of collagen fibrils. The comparison between Models 1 and 2 showed that the widely-used three-layered inhomogeneous model can produce similar fluid load support to the model including the realistic fibril orientation; however, an accurate prediction of the other mechanical parameters requires the inclusion of the realistic orientation of collagen fibrils. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Farzadi, Arghavan; Solati-Hashjin, Mehran; Asadi-Eydivand, Mitra; Abu Osman, Noor Azuan
2014-01-01
Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z), on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity. PMID:25233468
Opitz, Andreas; Wilke, Andreas; Amsalem, Patrick; Oehzelt, Martin; Blum, Ralf-Peter; Rabe, Jürgen P.; Mizokuro, Toshiko; Hörmann, Ulrich; Hansson, Rickard; Moons, Ellen; Koch, Norbert
2016-01-01
We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure – in the presence of Fermi-level pinning – at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fermi-level (EF) pinning of the first layer on the conductive polymer substrate modifies the work function encountered by the second layer such that it also becomes EF-pinned, however, at the interface towards the first molecular layer. This results in a charge transfer accompanied by a sheet charge density at the organic/organic interface. While molecules in the bulk of the films exhibit upright orientation, contact formation at the heterojunction results in an interfacial bilayer with lying and co-facial orientation. This interfacial layer is not EF-pinned, but provides for an additional density of states at the interface that is not present in the bulk. With reliable knowledge of the organic heterojunction’s electronic structure we can explain the poor performance of these in photovoltaic cells as well as their valuable function as charge generation layer in electronic devices. PMID:26887445
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Sijun, E-mail: sluo1@tulane.edu; Riggs, Brian C.; Shipman, Joshua T.
Direct integration of proton conductor films on Pt-coated substrates opens the way to film-based proton transport devices. Columnar SrZr{sub 0.95}Y{sub 0.05}O{sub 3−δ} (SZY) films with dense microstructure were deposited on Pt-coated MgO(100) substrates at 830 °C by pulsed laser deposition. The optimal window of ambient O{sub 2} pressure for good crystallinity of SZY films is from 400 to 600 mTorr. The ambient O{sub 2} compresses the plasma plume of SZY and increases the deposition rate. The 10 nm thick Ti adhesion layer on MgO(100) greatly affects the orientation of the sputtered Pt layers. Pt deposited directly on MgO shows a highly (111)-preferredmore » orientation and leads to preferentially oriented SZY films while the addition of a Ti adhesion layer makes Pt show a less preferential orientation that leads to randomly oriented SZY films. The RMS surface roughness of preferentially oriented SZY films is larger than that of randomly oriented SZY films deposited under the same ambient O{sub 2} pressure. As the O{sub 2} pressure increased, the RMS surface roughness of preferentially oriented SZY films increased, reaching 45.7 nm (2.61% of film thickness) at 600 mTorr. This study revealed the ambient O{sub 2} pressure and orientation dependent surface roughness of SZY films grown on Pt-coated MgO substrates, which provides the potential to control the surface microstructure of SZY films for electrochemical applications in film-based hydrogen devices.« less
Orientation of surfactant self-assembled aggregates on graphite
NASA Astrophysics Data System (ADS)
Sammalkorpi, Maria; Hynninen, Antti-Pekka; Panagiotopoulos, Athanassios Z.; Haataja, Mikko
2007-03-01
Micellar aggregates on surfaces can provide a self-healing corrosion protection or lubrication layer. It has been observed experimentally that on a single crystal surface this layer often consists of oriented hemi-cylindrical micelles which are aligned with the underlying crystal lattice (``orientation effect''). A key feature of this self-assembly process is the interplay between detergent--detergent and detergent--surface interactions. Since the dimensions of the detergent molecules and the unit cell of the surface are typically quite different, the origins of this orientation effect remain unclear. Here we address the question and present the results of Molecular Dynamics simulations of sodium dodecyl sulfate (SDS) self-aggregation on graphite. We employ both single-molecule and multi-molecule simulations of SDS to unravel the origins of the orientation effect. We report that the underlying graphite surface is sufficient to impose orientational bias on individual SDS molecules diffusing on the surface. This produces collective effects that give rise to the oriented hemi-micelles.
Zeng, Fangxinyu; Chen, Jinyao; Yang, Feng; Kang, Jian; Cao, Ya; Xiang, Ming
2018-01-16
In this study, polyamide-aluminum foil-polypropylene (PA-Al-PP) composite films with different orientation status of the PP layer were prepared, and their morphology, tensile, peeling and heat seal behavior were studied. The comparative study of tensile and fracture behaviors of single-layer film of PA, Al and PP, as well as the composite films of PA-Al, PP-Al and PA-Al-PP revealed that in PA-Al-PP composite film, the PA layer with the highest tensile strength can share the tensile stress from the Al layer during stretching, while the PP layer with the lowest tensile strength can prevent further development of the small cracks on boundary of the Al layer during stretching. Moreover, the study of heat seal behavior suggested that both the orientation status and the heat seal conditions were important factors in determining the heat seal strength ( HSS ) and failure behavior of the sample. Four failure types were observed, and a clear correspondence between HSS and failure types was found. The results also elucidated that for the composite film, only in the cases where the tensile stress was efficiently released by each layer during HSS measurement could the composite film exhibit desired high HSS that was even higher than its tensile strength.
NASA Astrophysics Data System (ADS)
Islam, Nurul Kamariah Md Saiful; Harun, Wan Sharuzi Wan; Ghani, Saiful Anwar Che; Omar, Mohd Asnawi; Ramli, Mohd Hazlen; Ismail, Muhammad Hussain
2017-12-01
Selective Laser Melting (SLM) demonstrates the 21st century's manufacturing infrastructure in which powdered raw material is melted by a high energy focused laser, and built up layer-by-layer until it forms three-dimensional metal parts. SLM process involves a variation of process parameters which affects the final material properties. 316L stainless steel compacts through the manipulation of building orientation and powder layer thickness parameters were manufactured by SLM. The effect of the manipulated parameters on the relative density and dimensional accuracy of the 316L stainless steel compacts, which were in the as-build condition, were experimented and analysed. The relationship between the microstructures and the physical properties of fabricated 316L stainless steel compacts was investigated in this study. The results revealed that 90° building orientation has higher relative density and dimensional accuracy than 0° building orientation. Building orientation was found to give more significant effect in terms of dimensional accuracy, and relative density of SLM compacts compare to build layer thickness. Nevertheless, the existence of large number and sizes of pores greatly influences the low performances of the density.
NASA Astrophysics Data System (ADS)
Shandilya, Swati; Tomar, Monika; Sreenivas, K.; Gupta, Vinay
2009-05-01
Highly c-axis oriented LiNbO3 films are deposited using pulsed laser deposition on a silicon substrate using a transparent conducting Al doped ZnO layer. X-ray diffraction and Raman spectroscopic analysis show the fabrication of single phase and oriented LiNbO3 films under the optimized deposition condition. An extra peak at 905 cm-1 was observed in the Raman spectra of LiNbO3 film deposited at higher substrate temperature and higher oxygen pressure, and attributed to the presence of niobium antisite defects in the lattice. Dielectric constant and ac conductivity of oriented LiNbO3 films deposited under the static and rotating substrate modes have been studied. Films deposited under the rotating substrate mode exhibit dielectric properties close to the LiNbO3 single crystal. The cause of deviation in the dielectric properties of the film deposited under the static substrate mode, in comparison with the bulk, are discussed in the light of the possible formation of an interdiffusion layer at the interface of the LiNbO3 film and the Al : ZnO layer.
Fei, Yu-Xiang; Wang, Si-Qi; Yang, Li-Jian; Qiu, Yan-Ying; Li, Yi-Ze; Liu, Wen-Yuan; Xi, Tao; Fang, Wei-Rong; Li, Yun-Man
2017-07-31
Danshen is a crude herbal drug isolated from dried roots of Salvia miltiorrhiza Bunge. This plant is widely used in oriental medicine for the treatment of cardiovascular and cerebrovascular diseases. The supercritical CO 2 extract from Danshen (SCED) (57.85%, 5.67% and 4.55% for tanshinone IIA, tanshinone I and cryptotanshinone respectively) was studied in this article, whose potential molecular mechanism remains unclear, especially in anti-thrombosis. The present study was designed to observe the protective effect of SCED on ischemic stroke in rats and to explore the underlying anti-thrombosis mechanism. Following induction of cerebral ischemia in rats by permanent middle cerebral artery occlusion (pMCAO). Neurological defect score, cerebral blood flow, infarct size, and brain edema were measured to evaluate the injury. Arteriovenous shunt thrombosis model and adenosine 5'-diphosphate (ADP) induced acute pulmonary embolism model were conducted to estimate the antithrombotic effect of SCED. In order to investigate the effects of SCED on platelet aggregation, rat platelet-rich-plasma (PRP) were incubated with SCED prior to the addition of the stimuli (ADP or 9, 11-dideoxy-11α, 9α-epoxymethanoprostaglandin F2α (U46619)). Aggregation was monitored in a light transmission aggregometer. Inhibitory effect of SCED on thromboxane A2 (TXA 2 ) release was detected by ELISA kit. Phospholipase C (PLC)/ Protein kinase C (PKC) signaling pathway was analyzed by a Western blot technique. The effect of the SCED was also studied in vivo on bleeding time in mice. SCED improved the neurological defect score, increased cerebral blood flow, reduced infarct size and alleviated brain edema in rats exposed to pMCAO. After administration of SCED, thrombosis formation in arteriovenous shunt was inhibited and recovery time in pulmonary embolism was shortened. The inhibitory effect of SCED on platelet activation was further confirmed by TXB 2 ELISA kit and Western blot analysis of PLC/PKC signaling pathway. SCED attenuates cerebral ischemic injury. The possible mechanism is that SCED inhibits thrombosis formation, platelet aggregation and activation of PLC/PKC pathway. On this basis, this new extract could be a promising agent to inhibit thrombosis formation and protect against cerebral ischemia injury. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Reynolds, A.M; Reynolds, D.R; Riley, J.R
2008-01-01
Large migrating insects, such as noctuid moths and acridoid grasshoppers, flying within the stable nocturnal boundary layer commonly become concentrated into horizontal layers. These layers frequently occur near the top of the surface temperature inversion where warm fast-moving airflows provide good conditions for downwind migration. On some occasions, a layer may coincide with a higher altitude temperature maximum such as a subsidence inversion, while on others, it may seem unrelated to any obvious feature in the vertical profile of meteorological variables. Insects within the layers are frequently orientated, either downwind or at an angle to the wind, but the mechanisms involved in both layer formation and common orientation have remained elusive. Here, we show through the results of numerical simulations that if insects are treated as neutrally buoyant particles, they tend to be advected by vertical gusts (through the ‘turbophoretic’ mechanism) into layers in the atmosphere where the turbulent kinetic energy has local minima. These locations typically coincide with local maxima in the wind speed and/or air temperature, and they may also provide cues for orientation. However, the degree of layering predicted by this model is very much weaker than that observed in the field. We have therefore hypothesized that insects behave in a way that amplifies the turbophoretic effect by initiating climbs or descents in response to vertical gusts. New simulations incorporating this behaviour demonstrated the formation of layers that closely mimic field observations, both in the degree of concentration in layers and the rate at which they form. PMID:18611845
Reynolds, A M; Reynolds, D R; Riley, J R
2009-01-06
Large migrating insects, such as noctuid moths and acridoid grasshoppers, flying within the stable nocturnal boundary layer commonly become concentrated into horizontal layers. These layers frequently occur near the top of the surface temperature inversion where warm fast-moving airflows provide good conditions for downwind migration. On some occasions, a layer may coincide with a higher altitude temperature maximum such as a subsidence inversion, while on others, it may seem unrelated to any obvious feature in the vertical profile of meteorological variables. Insects within the layers are frequently orientated, either downwind or at an angle to the wind, but the mechanisms involved in both layer formation and common orientation have remained elusive. Here, we show through the results of numerical simulations that if insects are treated as neutrally buoyant particles, they tend to be advected by vertical gusts (through the 'turbophoretic' mechanism) into layers in the atmosphere where the turbulent kinetic energy has local minima. These locations typically coincide with local maxima in the wind speed and/or air temperature, and they may also provide cues for orientation. However, the degree of layering predicted by this model is very much weaker than that observed in the field. We have therefore hypothesized that insects behave in a way that amplifies the turbophoretic effect by initiating climbs or descents in response to vertical gusts. New simulations incorporating this behaviour demonstrated the formation of layers that closely mimic field observations, both in the degree of concentration in layers and the rate at which they form.
NASA Astrophysics Data System (ADS)
Dreher, L.; Donhauser, D.; Daeubler, J.; Glunk, M.; Rapp, C.; Schoch, W.; Sauer, R.; Limmer, W.
2010-06-01
Based on a detailed theoretical examination of the lattice distortion in high-index epilayers in terms of continuum mechanics, expressions are deduced that allow the calculation and experimental determination of the strain tensor for (hhl) -oriented (Ga,Mn)As layers. Analytical expressions are derived for the strain-dependent free-energy density and for the resistivity tensor for monoclinic and orthorhombic crystal symmetries, phenomenologically describing the magnetic anisotropy and anisotropic magnetoresistance by appropriate anisotropy and resistivity parameters, respectively. Applying the results to (113)A orientation with monoclinic crystal symmetry, the expressions are used to determine the strain tensor and the shear angle of a series of (113)A -oriented (Ga,Mn)As layers by high-resolution x-ray diffraction and to probe the magnetic anisotropy and anisotropic magnetoresistance at 4.2 K by means of angle-dependent magnetotransport. Whereas the transverse-resistivity parameters are nearly unaffected by the magnetic field, the parameters describing the longitudinal resistivity are strongly field dependent.
Chen, Alexander Z; Shiu, Michelle; Ma, Jennifer H; Alpert, Matthew R; Zhang, Depei; Foley, Benjamin J; Smilgies, Detlef-M; Lee, Seung-Hun; Choi, Joshua J
2018-04-06
Thin films based on two-dimensional metal halide perovskites have achieved exceptional performance and stability in numerous optoelectronic device applications. Simple solution processing of the 2D perovskite provides opportunities for manufacturing devices at drastically lower cost compared to current commercial technologies. A key to high device performance is to align the 2D perovskite layers, during the solution processing, vertical to the electrodes to achieve efficient charge transport. However, it is yet to be understood how the counter-intuitive vertical orientations of 2D perovskite layers on substrates can be obtained. Here we report a formation mechanism of such vertically orientated 2D perovskite in which the nucleation and growth arise from the liquid-air interface. As a consequence, choice of substrates can be liberal from polymers to metal oxides depending on targeted application. We also demonstrate control over the degree of preferential orientation of the 2D perovskite layers and its drastic impact on device performance.
Surface engineering with functional random copolymers for nanolithographic applications
NASA Astrophysics Data System (ADS)
Sparnacci, Katia; Antonioli, Diego; Gianotti, Valentina; Lupi, Federico Ferrarese; Giammaria, Tommaso Jacopo; Seguini, Gabriele; Perego, Michele; Laus, Michele
2016-05-01
Hydroxyl-terminated P(S-r-MMA) random copolymers with molecular weight ranging from 1.7 to 69 kg/mol and a styrene unit fraction of 61% were grafted onto a silicon oxide surface and subsequently used to study the orientation of domains with respect to the substrate, in cylinder-forming PS-b-PMMA block copolymer thin films. When the thickness (H) of the grafted layer is greater than 5-6 nm, a perpendicular orientation is always observed because of the efficient decoupling of the BCP film from the polar SiO2 surface. Conversely, if H is less than 5 nm, the critical thickness of the grafted layer, which allows the neutralization of the substrate and promotion of the perpendicular orientation of the nanodomains in the BCP film, is found to depend on the Mn of the RCP. In particular, when Mn = 1700, a 2.0 nm thick grafted layer is sufficient to promote the perpendicular orientation of the PMMA cylinders in the PS-b-PMMA BCP film.
Koh, Haeng-Deog; Kim, Mi-Jeong
2016-01-01
A photo-crosslinked polystyrene (PS) thin film is investigated as a potential guiding sub-layer for polystyrene-block-poly (methyl methacrylate) block copolymer (BCP) cylindrical nanopattern formation via topographic directed self-assembly (DSA). When compared to a non-crosslinked PS brush sub-layer, the photo-crosslinked PS sub-layer provided longer correlation lengths of the BCP nanostructure, resulting in a highly uniform DSA nanopattern with a low number of BCP dislocation defects. Depending on the thickness of the sub-layer used, parallel or orthogonal orientations of DSA nanopattern arrays were obtained that covered the entire surface of patterned Si substrates, including both trench and mesa regions. The design of DSA sub-layers and guide patterns, such as hardening the sub-layer by photo-crosslinking, nano-structuring on mesas, the relation between trench/mesa width, and BCP equilibrium period, were explored with a view to developing defect-reduced DSA lithography technology. PMID:28773768
Wu, Yaobin; Wang, Ling; Guo, Baolin; Ma, Peter X
2017-06-27
Mimicking the anisotropic cardiac structure and guiding 3D cellular orientation play a critical role in designing scaffolds for cardiac tissue regeneration. Significant advances have been achieved to control cellular alignment and elongation, but it remains an ongoing challenge for engineering 3D cardiac anisotropy using these approaches. Here, we present a 3D hybrid scaffold based on aligned conductive nanofiber yarns network (NFYs-NET, composition: polycaprolactone, silk fibroin, and carbon nanotubes) within a hydrogel shell for mimicking the native cardiac tissue structure, and further demonstrate their great potential for engineering 3D cardiac anisotropy for cardiac tissue engineering. The NFYs-NET structures are shown to control cellular orientation and enhance cardiomyocytes (CMs) maturation. 3D hybrid scaffolds were then fabricated by encapsulating NFYs-NET layers within hydrogel shell, and these 3D scaffolds performed the ability to promote aligned and elongated CMs maturation on each layer and individually control cellular orientation on different layers in a 3D environment. Furthermore, endothelialized myocardium was constructed by using this hybrid strategy via the coculture of CMs on NFYs-NET layer and endothelial cells within hydrogel shell. Therefore, these 3D hybrid scaffolds, containing NFYs-NET layer inducing cellular orientation, maturation, and anisotropy and hydrogel shell providing a suitable 3D environment for endothelialization, has great potential in engineering 3D cardiac anisotropy.
Wang, Xi; Kang, Kai; Wang, Shiquan; Yao, Jianhua; Zhang, Xijing
2016-10-01
OBJECTIVE The goal of this study was to demonstrate that repetitive pure oxygen exposure preconditioning (O 2 PC) for 8 hours per day for 3 or 7 days, a practicable preconditioning for clinical use, is able to induce cerebral ischemic tolerance (IT) and further clarify the accompanying changes in the blood-brain barrier (BBB) that may be involved. METHODS A total of 68 adult male Sprague-Dawley rats and eight 1-day-old rat pups were used in this study. The adult rats were exposed to pure O 2 (38 rats) 8 hours a day for 3 or 7 days or to room air (in an identical setup) for 8 hours a day for 7 days as controls (30 rats). Arterial O 2 tension (PaO 2 ) was measured in 6 rats exposed to O 2 and 3 controls. Focal cerebral ischemia was elicited by middle cerebral artery occlusion (MCAO) in 37 rats, of which 21 had been exposed to pure O 2 for 3 or 7 days and 16 to room air for 7 days as controls. Neurological behavior was scored with the Garcia score in 15 MCAO rats, of which 10 had been exposed to pure O 2 for 3 or 7 days and 5 to room air for 7 days as controls, and cerebral infarct volumes were assessed with TTC (2,3,5-triphenyltetrazolium chloride) staining in 10 rats (5 from each group) after 7 days of exposure. Formamide-extraction method was used to detect leakage of Evans blue (EB) dye in 7 rats exposed to pure O 2 for 7 days and 7 exposed to room air for 7 days. Fluorescence microscopy was used to analyze the leaked EB in the nonischemic areas of 4 rats exposed to pure O 2 for 7 days and 4 exposed to room air for 7 days before MCAO and the brain of the rats that had not been subjected to MCAO. Astrocyte changes associated with O 2 PC were evaluated by means of fluorescence microscopy and electron microscopy in 14 rats that were exposed to the same O 2 or control conditions as the MCAO rats but without MCAO. Astrocytes were also obtained from 8 rat pups and cultured; levels of AQP4 and VEGF were detected by Western blot and ELISA in cells with and without O 2 treatment. RESULTS A significant increase in PaO 2 was seen after O 2 PC. The neurological score was significantly increased in the O 2 PC groups (10.6 ± 0.6 in the 3-day O 2 PC group, p < 0.05; 12 ± 0.84 in the 7-day O 2 PC group, p < 0.05) compared with the control group (7 ± 0.55). The ratio of cerebral infarct volume to contralateral cerebral hemisphere volume was significantly lower in the O 2 PC group than in the control group (0.204 ± 0.03 vs 0.48 ± 0.05, p < 0.05). The amount of leaked EB in the ischemic cerebral hemisphere was also lower in the O 2 -treated rats than in controls (7.53 ± 1.4 vs 11.79 ± 3.3 μg EB/g brain weight, p < 0.05). However, fluorescence microscopy showed significantly greater BBB permeability in the nonischemic areas in the O 2 PC group than in controls (p < 0.05). More red fluorescence could be observed in the nonischemic areas in both the ipsilateral and contralateral sides of the ischemic brain in the O 2 PC animals than in the nonischemic areas in the corresponding sides of the controls. Further investigation of the effect of the O 2 PC itself on the BBB of rats that were not subjected to MCAO showed that there was no EB leakage in the brain parenchyma in the rats exposed to room air, but some red fluorescence patches were noticed in the normal brain from the rats in the O 2 PC group. Astrocytes, including those from areas around the BBB, were activated in the O 2 PC group. Levels of both aquaporin 4 (AQP4) and vascular endothelial growth factor (VEGF) were significantly increased in cultured astrocytes after O 2 PC. CONCLUSIONS These findings suggest that O 2 PC is able to induce IT, which makes it a strong candidate for clinical use. Moreover, O 2 PC can also promote BBB opening, which may contribute to the induction of IT as well as representing a possible strategy for promoting drug transportation into the CNS. Activated astrocytes are likely to be involved in these processes through astrocyte-derived factors, such as AQP4 and VEGF.
Taxel-addressable matrix of vertical nanowire piezotronic transistors
Wang, Zhong Lin; Wu, Wenzhuo; Wen, Xiaonan
2015-05-05
A tactile sensing matrix includes a substrate, a first plurality of elongated electrode structures, a plurality of vertically aligned piezoelectric members, an insulating layer infused into the piezoelectric members and a second plurality of elongated electrode structures. The first plurality of elongated electrode structures is disposed on the substrate along a first orientation. The vertically aligned piezoelectric members is disposed on the first plurality of elongated electrode structures and form a matrix having columns of piezoelectric members disposed along the first orientation and rows of piezoelectric members disposed along a second orientation that is transverse to the first orientation. The second plurality of elongated electrode structures is disposed on the insulating layer along the second orientation. The elongated electrode structures form a Schottky contact with the piezoelectric members. When pressure is applied to the piezoelectric members, current flow therethrough is modulated.
Nanomembrane structures having mixed crystalline orientations and compositions
Lagally, Max G.; Scott, Shelley A.; Savage, Donald E.
2014-08-12
The present nanomembrane structures include a multilayer film comprising a single-crystalline layer of semiconductor material disposed between two other single-crystalline layers of semiconductor material. A plurality of holes extending through the nanomembrane are at least partially, and preferably entirely, filled with a filler material which is also a semiconductor, but which differs from the nanomembrane semiconductor materials in composition, crystal orientation, or both.
Roxworthy, Brian J; Toussaint, Kimani C
2012-04-23
Using Au bowtie nanoantennas arrays (BNAs), we demonstrate that the performance and capability of plasmonic nanotweezers is strongly influenced by both the material comprising the thin adhesion layer used to fix Au to a glass substrate and the nanostructure orientation with respect to incident illumination. We find that a Ti adhesion layer provides up to 30% larger trap stiffness and efficiency compared to a Cr layer of equal thickness. Orientation causes the BNAs to operate as either (1) a 2D optical trap capable of efficient trapping and manipulation of particles as small as 300 nm in diameter, or (2) a quasi-3D trap, with the additional capacity for size-dependent particle sorting utilizing axial Rayleigh-Bénard convection currents caused by heat generation. We show that heat generation is not necessarily deleterious to plasmonic nanotweezers and achieve dexterous manipulation of nanoparticles with non-resonant illumination of BNAs. © 2012 Optical Society of America
LPE growth of crack-free PbSe layers on Si(100) using MBE-Grown PbSe/BaF2CaF2 buffer layers
NASA Astrophysics Data System (ADS)
Strecker, B. N.; McCann, P. J.; Fang, X. M.; Hauenstein, R. J.; O'Steen, M.; Johnson, M. B.
1997-05-01
Crack-free PbSe on (100)-oriented Si has been obtained by a combination of liquid phase epitaxy (LPE) and molecular beam epitaxy (MBE) techniques. MBE is employed first to grow a PbSe/BaF2/CaF2 buffer structure on the (100)-oriented Si. A 2.5 μm thick PbSe layer is then grown by LPE. The LPE-grown PbSe displays excellent surface morphology and is continuous over the entire 8×8 mm2 area of growth. This result is surprising because of the large mismatch in thermal expansion coefficients between PbSe and Si. Previous attempts to grow crack-free PbSe by MBE alone using similar buffer structures on (100)-oriented Si have been unsuccessful. It is speculated that the large concentration of Se vacancies in the LPE-grown PbSe layer may allow dislocation climb along higher order slip planes, providing strain relaxation.
Guo, Changhe; Lee, Youngmin; Lin, Yen -Hao; ...
2016-06-15
The electronic properties of organic semiconductors are strongly influenced by intermolecular packing. When cast as thin films, crystalline π-conjugated molecules are strongly textured, potentially leading to anisotropic charge transport. Consequently, it is hypothesized that the orientation of crystallites in the active layer plays an important role in charge extraction and organic photovoltaic device performance. Here we demonstrate orientation control of molecular packing from mostly face-on to edge-on configurations in the active layer of P3HT- b-PFTBT block copolymer photovoltaics using 1-chloronaphthalene as a solvent additive. The effect of molecular orientations in P3HT crystals on charge transport and solar cell performance ismore » examined. We find that optimized photovoltaic device performance is independent of the crystalline texture of P3HT. Our observations provide further insights into the molecular organization required for efficient charge transport and overall device efficiencies. That is, the dominant crystal orientation, whether face-on or edge-on, is not critical to organic solar cells. Furthermore, a broad distribution of crystallite orientations ensures pathways for charge transport in any direction and enables efficient charge extraction in photovoltaic devices.« less
Growth and Crystal Orientation of ZnTe on m-Plane Sapphire with Nanofaceted Structure
NASA Astrophysics Data System (ADS)
Nakasu, Taizo; Sun, Wei-Che; Kobayashi, Masakazu; Asahi, Toshiaki
2017-04-01
ZnTe thin films on sapphire substrate with nanofaceted structure have been studied. The nanofaceted structure of the m-plane (10-10) sapphire was obtained by heating the substrate at above 1100°C in air, and the r-plane (10-12) and S-plane (1-101) were confirmed. ZnTe layers were prepared on the nanofaceted m-plane sapphire substrates by molecular beam epitaxy (MBE). The effect of the nanofaceted structure on the orientation of the thin films was examined based on x-ray diffraction (XRD) pole figures. Transmission electron microscopy (TEM) was also employed to characterize the interface structures. The ZnTe layer on the nanofaceted m-plane sapphire substrate exhibited (331)-plane orientation, compared with (211)-plane without the nanofaceted structure. After thermal treatment, the m-plane surface vanished and (211) layer could not be formed because of the lack of surface lattice matching. On the other hand, (331)-plane thin film was formed on the nanofaceted m-plane sapphire substrate, since the (111) ZnTe domains were oriented on the S-facet. The orientation of the ZnTe epilayer depended on the atomic ordering on the surface and the influence of the S-plane.
NASA Astrophysics Data System (ADS)
Li, Yuandong; Choi, Woo June; Wang, Ruikang K.
2017-03-01
The adaptive growth of collateral vessels, termed "arteriogenesis", is crucial for maintaining regional blood supply during arterial obstruction and offsetting the adverse effect of tissue ischemia. Stimulation of arteriogenesis has been applied for the treatment of occlusive vascular diseases, and in vivo imaging of the progressive development of collateral vessel will facilitate a better understanding of the mechanism. We present using high-resolution OCT-based microangiography (OMAG) to image arteriogenesis process longitudinally in mouse cerebral cortex after middle cerebral artery occlusion (MCAO). We imaged the collateral arterioles at the arteriolo-arteriolar anastomosis (AAA) within 7-day period after MCAO to reveal key elements of collateral vessel remodeling, including alteration in vessel morphology, velocity and directionality of blood flow. The magnitudes of changes in these parameters matched the time course of the active building of collateral vessels stated in previous studies using histology. Hence, OMAG is a promising imaging tool for non-invasive longitudinal study of functional collateral vessel growth in small animal models and can be potentially applied in the experimental study of arteriogenesis stimulation.
Arctigenin protects focal cerebral ischemia-reperfusion rats through inhibiting neuroinflammation.
Fan, Tao; Jiang, Wei Long; Zhu, Jian; Feng Zhang, Yu
2012-01-01
Stroke is the third leading cause of death in industrialized countries and the most important cause of acquired adult disability. Many evidences suggest that inflammation accounts for the progression of cerebral ischemic injury. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignin isolated from certain plants, has shown anti-inflammatory activity against diabetes and Alzheimer's disease. In this study, we tested whether arctigenin can protect middle cerebral artery occluded (MCAO) rats. Male Sprague-Dawley rats were pretreated with arctigenin or vehicle for 7 d before being subjected to transient occlusion of middle cerebral artery and reperfusion. Rats were evaluated at 24 h after MCAO for neurological deficit scoring. Furthermore, the mechanism of the anti-inflammatory effect of arctigenin was investigated with a focus on inflammatory cells, proinflammatory cytokines, and transcriptional factors. Arctigenin significantly reduced cerebral infarction and improved neurological outcome. Arctigenin suppressed the activation of microglia and decreased the expression of interleukin (IL)- 1β and tumor necrosis factor (TNF)-α. These results revealed that arctigenin has a promising therapeutic effect in ischemic stroke treatment through an anti-inflammatory mechanism.
Lim, Chiyeon; Lim, Sehyun; Lee, Byoungho; Kim, Buyeo; Cho, Suin
2018-05-01
Licorice is extracted from the roots of plants in the Glycyrrhiza genus, especially Glycyrrhiza uralensis in China and Korea. It has several pharmacological activities, including neuro-protective, anti-fungal, and anti-cariogenic effects. Ischemia/reperfusion-induced brain injury is a leading cause of adult disability and death; thus, the identification of anti-apoptotic, neuro-protective therapeutic agents is viewed as an attractive drug development strategy. Infarct volumes and the expression of several apoptosis-related proteins, including Bcl-xL, Bcl-2, caspase-8, and caspase-9, were evaluated by western blotting in the brains of mice subjected to middle cerebral artery occlusion (MCAO). Three consecutive days of oral pretreatment with the methanol extract of licorice (GRex) significantly reduced infarct volumes 24 h after MCAO. In addition, GRex effectively inhibited the activation of caspase-9 by upregulating protein expression of Bcl-xL and Bcl-2. The neuro-protective effect of licorice was due to its regulation of apoptosis-related proteins. These data suggest that licorice could be a potential candidate for the treatment of ischemia-induced brain damage.
The neuroprotective effects of intravascular low level laser irradiation on cerebral ischemia rats
NASA Astrophysics Data System (ADS)
Qiu, Yongming; Lu, Zhaofeng; Wang, Zhongguang; Jiang, Jiyao
2005-07-01
The effects of intravascular low level laser irradiation of He-Ne on rat MCAo-induced cerebral injury were studied. The results showed that control rats (subjected to MCAo injury without laser treatment) at 7d exhibited striatal and cortical brain infarction in the right hemisphere from approximately 3 to 11mm from the front pole. the total infarct volume in this group was 34.5+/-8.1mm3. For experimental rats (with laser management), the total infarct volume was 29.0+/-9.0mm3. P was gained less than 0.05. The neurological score of control group was 4.7+/-0.6 and it was 5.2+/-1.0 in experimental group, comparison by statistical analysis showed P less than 0.05. The cerebral pathological damages in the control group were more severe than in experimental group. We concluded that the intravascular low level laser irradiation has no remarked complication and is helpful to reduce ischemic damage. There is clinically potential for the application of intravascular He-Ne low level laser irradiation in ischemia stroke.
Grossberg, Stephen; Seitz, Aaron
2003-08-01
How is development of cortical maps in V1 coordinated across cortical layers to form cortical columns? Previous neural models propose how maps of orientation (OR), ocular dominance (OD), and related properties develop in V1. These models show how spontaneous activity, before eye opening, combined with correlation learning and competition, can generate maps similar to those found in vivo. These models have not discussed laminar architecture or how cells develop and coordinate their connections across cortical layers. This is an important problem since anatomical evidence shows that clusters of horizontal connections form, between iso-oriented regions, in layer 2/3 before being innervated by layer 4 afferents. How are orientations in different layers aligned before these connections form? Anatomical evidence demonstrates that thalamic afferents wait in the subplate for weeks before innervating layer 4. Other evidence shows that ablation of the cortical subplate interferes with the development of OR and OD columns. The model proposes how the subplate develops OR and OD maps, which then entrain and coordinate the development of maps in other lamina. The model demonstrates how these maps may develop in layer 4 by using a known transient subplate-to-layer 4 circuit as a teacher. The model subplate also guides the early clustering of horizontal connections in layer 2/3, and the formation of the interlaminar circuitry that forms cortical columns. It is shown how layer 6 develops and helps to stabilize the network when the subplate atrophies. Finally the model clarifies how brain-derived neurotrophic factor (BDNF) manipulations may influence cortical development.
The Layer-Oriented Approach to Declarative Languages for Biological Modeling
Raikov, Ivan; De Schutter, Erik
2012-01-01
We present a new approach to modeling languages for computational biology, which we call the layer-oriented approach. The approach stems from the observation that many diverse biological phenomena are described using a small set of mathematical formalisms (e.g. differential equations), while at the same time different domains and subdomains of computational biology require that models are structured according to the accepted terminology and classification of that domain. Our approach uses distinct semantic layers to represent the domain-specific biological concepts and the underlying mathematical formalisms. Additional functionality can be transparently added to the language by adding more layers. This approach is specifically concerned with declarative languages, and throughout the paper we note some of the limitations inherent to declarative approaches. The layer-oriented approach is a way to specify explicitly how high-level biological modeling concepts are mapped to a computational representation, while abstracting away details of particular programming languages and simulation environments. To illustrate this process, we define an example language for describing models of ionic currents, and use a general mathematical notation for semantic transformations to show how to generate model simulation code for various simulation environments. We use the example language to describe a Purkinje neuron model and demonstrate how the layer-oriented approach can be used for solving several practical issues of computational neuroscience model development. We discuss the advantages and limitations of the approach in comparison with other modeling language efforts in the domain of computational biology and outline some principles for extensible, flexible modeling language design. We conclude by describing in detail the semantic transformations defined for our language. PMID:22615554
The layer-oriented approach to declarative languages for biological modeling.
Raikov, Ivan; De Schutter, Erik
2012-01-01
We present a new approach to modeling languages for computational biology, which we call the layer-oriented approach. The approach stems from the observation that many diverse biological phenomena are described using a small set of mathematical formalisms (e.g. differential equations), while at the same time different domains and subdomains of computational biology require that models are structured according to the accepted terminology and classification of that domain. Our approach uses distinct semantic layers to represent the domain-specific biological concepts and the underlying mathematical formalisms. Additional functionality can be transparently added to the language by adding more layers. This approach is specifically concerned with declarative languages, and throughout the paper we note some of the limitations inherent to declarative approaches. The layer-oriented approach is a way to specify explicitly how high-level biological modeling concepts are mapped to a computational representation, while abstracting away details of particular programming languages and simulation environments. To illustrate this process, we define an example language for describing models of ionic currents, and use a general mathematical notation for semantic transformations to show how to generate model simulation code for various simulation environments. We use the example language to describe a Purkinje neuron model and demonstrate how the layer-oriented approach can be used for solving several practical issues of computational neuroscience model development. We discuss the advantages and limitations of the approach in comparison with other modeling language efforts in the domain of computational biology and outline some principles for extensible, flexible modeling language design. We conclude by describing in detail the semantic transformations defined for our language.
Spatial and Feature-Based Attention in a Layered Cortical Microcircuit Model
Wagatsuma, Nobuhiko; Potjans, Tobias C.; Diesmann, Markus; Sakai, Ko; Fukai, Tomoki
2013-01-01
Directing attention to the spatial location or the distinguishing feature of a visual object modulates neuronal responses in the visual cortex and the stimulus discriminability of subjects. However, the spatial and feature-based modes of attention differently influence visual processing by changing the tuning properties of neurons. Intriguingly, neurons' tuning curves are modulated similarly across different visual areas under both these modes of attention. Here, we explored the mechanism underlying the effects of these two modes of visual attention on the orientation selectivity of visual cortical neurons. To do this, we developed a layered microcircuit model. This model describes multiple orientation-specific microcircuits sharing their receptive fields and consisting of layers 2/3, 4, 5, and 6. These microcircuits represent a functional grouping of cortical neurons and mutually interact via lateral inhibition and excitatory connections between groups with similar selectivity. The individual microcircuits receive bottom-up visual stimuli and top-down attention in different layers. A crucial assumption of the model is that feature-based attention activates orientation-specific microcircuits for the relevant feature selectively, whereas spatial attention activates all microcircuits homogeneously, irrespective of their orientation selectivity. Consequently, our model simultaneously accounts for the multiplicative scaling of neuronal responses in spatial attention and the additive modulations of orientation tuning curves in feature-based attention, which have been observed widely in various visual cortical areas. Simulations of the model predict contrasting differences between excitatory and inhibitory neurons in the two modes of attentional modulations. Furthermore, the model replicates the modulation of the psychophysical discriminability of visual stimuli in the presence of external noise. Our layered model with a biologically suggested laminar structure describes the basic circuit mechanism underlying the attention-mode specific modulations of neuronal responses and visual perception. PMID:24324628
NASA Astrophysics Data System (ADS)
Seo, Youngmi; Kim, Jung Hyeun
2011-06-01
Highly oriented ZnO nanorods are synthesized hydrothermally on ZnO and Pt seed layers, and they are dissolved in KOH solution. The rods grown on ZnO seed layer show uniform dissolution, but those grown on Pt seed layer are rod-selectively dissolved. The ZnO nanorods from both seed layers show the same crystalline structure through XRD and Raman spectrometer data. However, the surface potential analysis reveals big difference for ZnO and Pt seed cases. The surface potential distribution is very uniform for the ZnO seed case, but it is much fluctuated on the Pt seed case. It suggests that the rod-selective dissolution phenomena on Pt seed case are likely due to the surface energy difference.
NASA Astrophysics Data System (ADS)
Gann, Eliot; Caironi, Mario; Noh, Yong-Young; Kim, Yun-Hi; McNeill, Christopher R.
The depth dependence of crystalline structure within thin films is critical for many technological applications, but has been impossible to measure directly using common techniques. In this work, by monitoring diffraction peak intensity and location and utilizing the highly angle-dependent waveguiding effects of X-rays near grazing incidence we quantitatively measure the thickness, roughness and orientation of stratified crystalline layers within thin films of a high-performance semiconducting polymer. In particular, this diffractive X-ray waveguiding reveals a self-organized 5-nm-thick crystalline surface layer with crystalline orientation orthogonal to the underlying 65-nm-thick layer. While demonstrated for an organic semiconductor film, this approach is applicable to any thin film material system where stratified crystalline structure and orientation can influence important interfacial processes such as charge injection and field-effect transport.
Chemical mixing at “Al on Fe” and “Fe on Al” interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Süle, P.; Horváth, Z. E.; Kaptás, D.
2015-10-07
The chemical mixing at the “Al on Fe” and “Fe on Al” interfaces was studied by molecular dynamics simulations of the layer growth and by {sup 57}Fe Mössbauer spectroscopy. The concentration distribution along the layer growth direction was calculated for different crystallographic orientations, and atomically sharp “Al on Fe” interfaces were found when Al grows over (001) and (110) oriented Fe layers. The Al/Fe(111) interface is also narrow as compared to the intermixing found at the “Fe on Al” interfaces for any orientation. Conversion electron Mössbauer measurements of trilayers—Al/{sup 57}Fe/Al and Al/{sup 57}Fe/Ag grown simultaneously over Si(111) substrate by vacuummore » evaporation—support the results of the molecular dynamics calculations.« less
Han, Zhenying; Li, Li; Wang, Liang; Degos, Vincent; Maze, Mervyn; Su, Hua
2014-11-01
Bone fracture at the acute stage of stroke exacerbates stroke injury by increasing neuroinflammation. We hypothesize that activation of α-7 nicotinic acetylcholine receptor (α-7 nAchR) attenuates neuroinflammation and oxidative stress, and reduces brain injury in mice with bone fracture and stroke. Permanent middle cerebral artery occlusion (pMCAO) was performed in C57BL/6J mice followed by tibia fracture 1 day later. Mice were treated with 0.8 mg/kg PHA 568487 (PHA, α-7 nAchR-specific agonist), 6 mg/kg methyllycaconitine (α-7 nAchR antagonist), or saline 1 and 2 days after pMCAO. Behavior was tested 3 days after pMCAO. Neuronal injury, CD68(+) , M1 (pro-inflammatory) and M2 (anti-inflammatory) microglia/macrophages, phosphorylated p65 component of nuclear factor kappa b in microglia/macrophages, oxidative and anti-oxidant gene expression were quantified. Compared to saline-treated mice, PHA-treated mice performed better in behavioral tests, had fewer apoptotic neurons (NeuN(+) TUNEL(+) ), fewer CD68(+) and M1 macrophages, and more M2 macrophages. PHA increased anti-oxidant gene expression and decreased oxidative stress and phosphorylation of nuclear factor kappa b p65. Methyllycaconitine had the opposite effects. Our data indicate that α-7 nAchR agonist treatment reduces neuroinflammation and oxidative stress, which are associated with reduced brain injury in mice with ischemic stroke plus tibia fracture. Bone fracture at the acute stage of stroke exacerbates neuroinflammation, oxidative stress, and brain injury, and our study has shown that the α-7 nAchR agonist, PHA (PHA 568487), attenuates neuroinflammation, oxidative stress, and brain injury in mice with stroke and bone fracture. Hence, PHA could provide an opportunity to develop a new strategy to reduce brain injury in patients suffering from stroke and bone fracture. © 2014 International Society for Neurochemistry.
Kim, Eun Soo; Lee, Seung-Koo; Kwon, Mi Jung; Lee, Phil Hye; Ju, Young-Su; Yoon, Dae Young; Kim, Hye Jeong; Lee, Kwan Seop
2016-01-01
The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20℃) infusion group, and localized warm-saline (37℃) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min(-1) vs. 0.07 ± 0.02 min(-1), p = 0.661 for K(trans); 0.30 ± 0.05 min(-1) vs. 0.37 ± 0.11 min(-1), p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Localized brain cooling (20℃) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37℃) infusion group.
Jiang, T; Xu, R X; Zhang, A W; Di, W; Xiao, Z J; Miao, J Y; Luo, N; Fang, Y N
2012-12-13
The aim of this study was to investigate the effects of transcranial direct current stimulation (TDCS) on hemichannel pannexin-1 (PX1) in cortical neurons and neural plasticity, and explore the optimal time window of TDCS therapy after stroke. Adult male Sprague-Dawley rats (n=90) were randomly assigned to sham operation, middle cerebral artery occlusion (MCAO), and TDCS groups, and underwent sham operation, unilateral middle cerebral artery (MCA) electrocoagulation, and unilateral MCA electrocoagulation plus TDCS (daily anodal and cathodal 10 Hz, 0.1 mA TDCS for 30 min beginning day 1 after stroke), respectively. Motor function was assessed using the beam walking test (BWT), and density of dendritic spines (DS) and PX1 mRNA expression were compared among groups on days 3, 7, and 14 after stroke. Effects of PX1 blockage on DS in hippocampal neurons after hypoxia-ischemia were observed. TDCS significantly improved motor function on days 7 and 14 after stroke as indicated by reduced BWT scores compared with the MCAO group. The density of DS was decreased after stroke; the TDCS group had increased DS density compared with the MCAO group on days 3, 7, and 14 (all P<0.0001). Cerebral infarction induced increased PX1 mRNA expression on days 3, 7, and 14 (P<0.0001), and the peak PX1 mRNA expression was observed on day 7. TDCS did not decrease the up-regulated PX1 mRNA expression after stroke on day 3, but did reduce the increased post-stroke PX1 mRNA expression on days 7 and 14 (P<0.0001). TDCS increased the DS density after stroke, indicating that it may promote neural plasticity after stroke. TDCS intervention from day 7 to day 14 after stroke demonstrated motor function improvement and can down-regulate the elevated PX1 mRNA expression after stroke. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Fang, Qing; Yan, Xu; Li, Shaowu; Sun, Yilin; Xu, Lixin; Shi, Zhongfang; Wu, Min; Lu, Yi; Dong, Liping; Liu, Ran; Yuan, Fang; Yang, Shao-Hua
2016-01-01
The neuroprotective effect of methylene blue (MB) has been identified against various brain disorders, including ischemic stroke. In the present study, we evaluated the effects of MB on postischemic brain edema using magnetic resonance imaging (MRI) and transmission electron microscopy (TEM). Adult male rats were subjected to transient focal cerebral ischemia induced by 1 h middle cerebral artery occlusion (MCAO), followed by reperfusion. MB was infused intravenously immediately after reperfusion (3 mg/kg) and again at 3 h post-occlusion (1.5 mg/kg). Normal saline was administered as vehicle control. Sequential MRIs, including apparent diffusion coefficient (ADC) and T2-weighted imaging (T2WI), were obtained at 0.5, 2.5, and 48 h after the onset of stroke. Separated groups of animals were sacrificed at 2.5 and 48 h after stroke for ultrastructural analysis by TEM. In addition, final lesion volumes were analyzed by triphenyltetrazolium chloride (TTC) staining at 48 h after stroke. Ischemic stroke induced ADC lesion volume at 0.5 h during MCAOs that were temporally recovered at 1.5 h after reperfusion. No significant difference in ADC-defined lesion was observed between vehicle and MB treatment groups. At 48 h after stroke, MB significantly reduced ADC lesion and T2WI lesion volume and attenuated cerebral swelling. Consistently, MB treatment significantly decreased TTC-defined lesion volume at 48 h after stroke. TEM revealed remarkable swollen astrocytes, astrocytic perivascular end-feet, and concurrent shrunken neurons in the penumbra at 2.5 and 48 h after MCAO. MB treatment attenuated astrocyte swelling, the perivascular astrocytic foot process, and endothelium and also alleviated neuron degeneration. This study demonstrated that MB could decrease postischemic brain edema and provided additional evidence that future clinical investigation of MB for the treatment of ischemic stroke is warrented.
Ruscher, Karsten; Inácio, Ana R.; Kuric, Enida; Wieloch, Tadeusz
2012-01-01
Activation of the sigma-1 receptor (Sig-1R) improves functional recovery in models of experimental stroke and is known to modulate microglia function. The present study was conducted to investigate if Sig-1R activation after experimental stroke affects mediators of the inflammatory response in the ischemic hemisphere. Male Wistar rats were subjected to transient occlusion of the middle cerebral artery (MCAO) and injected with the specific Sig-1R agonist 1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine dihydrochloride (SA4503) or saline for 5 days starting on day 2 after MCAO. Treatment did not affect the increased levels of the pro-inflammatory cytokines interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), interleukin 4 (IL-4), interleukin 5 (IL-5), and interleukin 13 (IL-13) in the infarct core and peri-infarct area after MCAO. In addition, treatment with SA4503 did not affect elevated levels of nitrite, TNF-α and IL-1β observed in primary cultures of microglia exposed to combined Hypoxia/Aglycemia, while the unspecific sigma receptor ligand 1,3-di-o-tolylguanidine (DTG) significantly decreased the production of nitrite and levels of TNF-α. Analysis of the ischemic hemisphere also revealed increased levels of ionized calcium binding adaptor molecule 1 (Iba1) levels in the infarct core of SA4503 treated animals. However, no difference in Iba1 immunoreactivity was detected in the infarct core. Also, levels of the proliferation marker proliferating cell nuclear antigen (PCNA) and OX-42 were not increased in the infarct core in rats treated with SA4503. Together, our results suggest that sigma-1 receptor activation affects Iba1 expression in microglia/macrophages of the ischemic hemisphere after experimental stroke but does not affect post-stroke inflammatory mediators. PMID:23028794
Liberale, Luca; Diaz-Cañestro, Candela; Bonetti, Nicole R; Paneni, Francesco; Akhmedov, Alexander; Beer, Jürg H; Montecucco, Fabrizio; Lüscher, Thomas F; Camici, Giovanni G
2018-05-16
The CANTOS trial underscored the efficacy of selective antibody-based interleukin (IL)-1β inhibition with Canakinumab in secondary prevention of cardiovascular events. Despite the success of the trial, incidence of stroke was not reduced likely due to the low number of events and the relatively young age of patients enrolled. Given the established role of IL-1β in stroke, we tested the efficacy of the murine Canakinumab-equivalent antibody in a mouse model of ischaemic stroke. To mimic the clinical scenario of modern stroke management, IL-1β inhibition was performed post-ischaemically upon reperfusion as it would be the case in patients presenting to the emergency room and eligible for thrombolytic therapy. Transient middle cerebral artery occlusion (tMCAO) was performed in wild type mice; upon reperfusion, mice were randomly allocated to anti-IL-1β antibody or vehicle treatment. Following tMCAO, cerebral IL-1β levels, unlike tumour necrosis factor-α, were increased underscoring a role for this cytokine. Post-ischaemic treatment with IL-1β antibody reduced infarct size, cerebral oedema and improved neurological performance as assessed by 2,3,5-triphenyltetrazolium chloride staining, Bederson and RotaRod tests. Antibody-treated animals also exhibited a reduced neutrophil and matrix metalloproteinase (MMP)-2 but not MMP-9, activity in ipsilateral hemispheres as compared to vehicle-treated mice. Noteworthy, tMCAO associated vascular endothelial-cadherin reduction was blunted in IL-1β antibody-treated mice compared to vehicle-treated, likely providing the mechanistic explanation for the improved outcome. Our data for the first time demonstrate the efficacy of selective post-ischaemic IL-1β blockade in improving outcome following experimental ischaemia/reperfusion brain injury in the mouse and encourage further focused clinical studies assessing the potential of the approved IL-1β antibody Canakinumab, as an adjuvant therapy to thrombolysis in acute ischaemic stroke patients.
Diet-Induced Ketosis Protects Against Focal Cerebral Ischemia in Mouse.
Xu, Kui; Ye, Lena; Sharma, Katyayini; Jin, Yongming; Harrison, Matthew M; Caldwell, Tylor; Berthiaume, Jessica M; Luo, Yu; LaManna, Joseph C; Puchowicz, Michelle A
2017-01-01
Over the past decade we have consistently shown that ketosis is neuroprotective against ischemic insults in rats. We reported that diet-induced ketotic rats had a significant reduction in infarct volume when subjected to middle cerebral artery occlusion (MCAO), and improved survival and recovery after cardiac arrest and resuscitation. The neuroprotective mechanisms of ketosis (via ketogenic diet; KG) include (i) ketones are alternate energy substrates that can restore energy balance when glucose metabolism is deficient and (ii) ketones modulate cell-signalling pathways that are cytoprotective. We investigated the effects of diet-induced ketosis following transient focal cerebral ischemia in mice. The correlation between levels of ketosis and hypoxic inducible factor-1alpha (HIF-1α), AKT (also known as protein kinase B or PKB) and 5' AMP-activated protein kinase (AMPK) were determined. Mice were fed with KG diet or standard lab-chow (STD) diet for 4 weeks. For the MCAO group, mice underwent 60 min of MCAO and total brain infarct volumes were evaluated 48 h after reperfusion. In a separate group of mice, brain tissue metabolites, levels of HIF-1α, phosphorylated AKT (pAKT), and AMPK were measured. After feeding a KG diet, levels of blood ketone bodies (beta-hydroxyburyrate, BHB) were increased. There was a proportional decrease in infarct volumes with increased blood BHB levels (KG vs STD; 4.2 ± 0.6 vs 7.8 ± 2.2 mm 3 , mean ± SEM). A positive correlation was also observed with HIF-1α and pAKT relative to blood BHB levels. Our results showed that chronic ketosis can be induced in mice by KG diet and was neuroprotective against focal cerebral ischemia in a concentration dependent manner. Potential mechanisms include upregulation of cytoprotective pathways such as those associated with HIF-1α, pAKT and AMPK.
Kim, Eun Soo; Kwon, Mi Jung; Lee, Phil Hye; Ju, Young-Su; Yoon, Dae Young; Kim, Hye Jeong; Lee, Kwan Seop
2016-01-01
Objective The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Materials and Methods Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20℃) infusion group, and localized warm-saline (37℃) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Results Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min-1 vs. 0.07 ± 0.02 min-1, p = 0.661 for Ktrans; 0.30 ± 0.05 min-1 vs. 0.37 ± 0.11 min-1, p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Conclusion Localized brain cooling (20℃) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37℃) infusion group. PMID:27587960
Shih, Pei-Cheng; Yang, Yea-Ru; Wang, Ray-Yau
2013-01-01
Memory impairment is commonly noted in stroke survivors, and can lead to delay of functional recovery. Exercise has been proved to improve memory in adult healthy subjects. Such beneficial effects are often suggested to relate to hippocampal synaptic plasticity, which is important for memory processing. Previous evidence showed that in normal rats, low intensity exercise can improve synaptic plasticity better than high intensity exercise. However, the effects of exercise intensities on hippocampal synaptic plasticity and spatial memory after brain ischemia remain unclear. In this study, we investigated such effects in brain ischemic rats. The middle cerebral artery occlusion (MCAO) procedure was used to induce brain ischemia. After the MCAO procedure, rats were randomly assigned to sedentary (Sed), low-intensity exercise (Low-Ex), or high-intensity exercise (High-Ex) group. Treadmill training began from the second day post MCAO procedure, 30 min/day for 14 consecutive days for the exercise groups. The Low-Ex group was trained at the speed of 8 m/min, while the High-Ex group at the speed of 20 m/min. The spatial memory, hippocampal brain-derived neurotrophic factor (BDNF), synapsin-I, postsynaptic density protein 95 (PSD-95), and dendritic structures were examined to document the effects. Serum corticosterone level was also quantified as stress marker. Our results showed the Low-Ex group, but not the High-Ex group, demonstrated better spatial memory performance than the Sed group. Dendritic complexity and the levels of BDNF and PSD-95 increased significantly only in the Low-Ex group as compared with the Sed group in bilateral hippocampus. Notably, increased level of corticosterone was found in the High-Ex group, implicating higher stress response. In conclusion, after brain ischemia, low intensity exercise may result in better synaptic plasticity and spatial memory performance than high intensity exercise; therefore, the intensity is suggested to be considered during exercise training.
Bushi, Doron; Stein, Efrat Shavit; Golderman, Valery; Feingold, Ekaterina; Gera, Orna; Chapman, Joab; Tanne, David
2017-01-01
Brain thrombin activity is increased following acute ischemic stroke and may play a pathogenic role through the protease-activated receptor 1 (PAR1). In order to better assess these factors, we obtained a novel detailed temporal and spatial profile of thrombin activity in a mouse model of permanent middle cerebral artery occlusion (pMCAo). Thrombin activity was measured by fluorescence spectroscopy on coronal slices taken from the ipsilateral and contralateral hemispheres 2, 5, and 24 h following pMCAo ( n = 5, 6, 5 mice, respectively). Its spatial distribution was determined by punch samples taken from the ischemic core and penumbra and further confirmed using an enzyme histochemistry technique ( n = 4). Levels of PAR1 were determined using western blot. Two hours following pMCAo, thrombin activity in the stroke core was already significantly higher than the contralateral area (11 ± 5 vs. 2 ± 1 mU/ml). At 5 and 24 h, thrombin activity continued to rise linearly ( r = 0.998, p = 0.001) and to expand in the ischemic hemisphere beyond the ischemic core reaching deleterious levels of 271 ± 117 and 123 ± 14 mU/ml (mean ± SEM) in the basal ganglia and ischemic cortex, respectively. The peak elevation of thrombin activity in the ischemic core that was confirmed by fluorescence histochemistry was in good correlation with the infarcts areas. PAR1 levels in the ischemic core decreased as stroke progressed and thrombin activity increased. In conclusion, there is a time- and space-related increase in brain thrombin activity in acute ischemic stroke that is closely related to the progression of brain damage. These results may be useful in the development of therapeutic strategies for ischemic stroke that involve the thrombin-PAR1 pathway in order to prevent secondary thrombin related brain damage.
Akhoundzadeh, Kobar; Vakili, Abedin; Sameni, Hamid Reza; Vafaei, Abbas Ali; Rashidy-Pour, Ali; Safari, Manouchehr; Mohammadkhani, Razieh
2017-08-01
This study examined whether post-stroke bone marrow stromal cells (BMSCs) therapy combined with exercise (EX) and/or thyroid hormone (TH) could reduce brain damage in an experimental ischemic stroke in mice. Focal cerebral ischemia was induced under Laser Doppler Flowmetry (LDF) guide by 45 min of middle cerebral artery occlusion (MCAO), followed by 7 days of reperfusion in albino mice. BMSCs were injected into the right cerebral ventricle 24 h after MCAO, followed by daily injection of T3 (20 μg/100 g weight S.C) and 6 days of running on a treadmill. Infarct size, neurobehavioral test, TUNEL and BrdU positive cells were evaluated at 7 days after MCAO. Treatment with BMSCs and mild EX alone significantly reduced the infarct volume by 23% and 44%, respectively (both, p < 0.001). The BMSCs + TH, BMSCs + EX, and BMSCs + EX + TH combination therapies significantly reduced the infarct volume by 26%, 51%, and 70%, respectively (all, p < 0.001). A significant improvement in the neurobehavioral functioning was observed in the EX, BMSCs + EX, and BMSCs + EX+ TH groups (p < 0.001). The number of TUNEL-positive cells (a marker of apoptosis) was significantly reduced in the EX, BMSCs, BMSCs + EX, BMSCs + TH, and BMSCs + EX + TH groups (all, p < 0.001). Moreover, the combination therapy considerably increased BrdU-labeled cells in the subventricular zone (SVZ) (p < 0.01). Our findings indicated that the combined treatment of BMSCs with mild EX and TH more efficiently reduces the cerebral infarct size after stroke. More likely, these effects mediate via enchaining generation of new neuronal cells and the attenuation of apoptosis in ischemia stroke in young mice.
Yen, Ting-Lin; Chen, Ray-Jade; Jayakumar, Thanasekaran; Lu, Wan-Jung; Hsieh, Cheng-Ying; Hsu, Ming-Jen; Yang, Chih-Hao; Chang, Chao-Chien; Lin, Yen-Kuang; Lin, Kuan-Hung; Sheu, Joen-Rong
2016-04-01
Stroke pathogenesis involves complex oxidative stress-related pathways. The nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) pathways have been considered molecular targets in pharmacologic intervention for ischemic diseases. Andrographolide, a labdane diterpene, has received increasing attention in recent years because of its various pharmacologic activities. We determined that andrographolide modulates the mitogen-activated protein kinase (MAPK)-Nrf2-HO-1 signaling cascade in primary cerebral endothelial cells (CECs) to provide positive protection against middle cerebral artery occlusion (MCAO)-induced ischemic stroke in rats. In the present study, andrographolide (10 μM) increased HO-1 protein and messenger RNA expressions, Nrf2 phosphorylation, and nuclear translocation in CECs, and these activities were disrupted by a p38 MAPK inhibitor, SB203580, but not by the extracellular signal-regulated kinase inhibitor PD98059 or c-Jun amino-terminal kinase inhibitor SP600125. Similar results were observed in confocal microscopy analysis. Moreover, andrographolide-induced Nrf2 and HO-1 protein expressions were significantly inhibited by Nrf2 small interfering RNA. Moreover, HO-1 knockdown attenuated the protective effect of andrographolide against oxygen-glucose deprivation-induced CEC death. Andrographolide (0.1 mg/kg) significantly suppressed free radical formation, blood-brain barrier disruption, and brain infarction in MCAO-insulted rats, and these effects were reversed by the HO-1 inhibitor zinc protoporphyrin IX. The mechanism is attributable to HO-1 activation, as directly evidenced by andrographolide-induced pronounced HO-1 expression in brain tissues, which was highly localized in the cerebral capillary. In conclusion, andrographolide increased Nrf2-HO-1 expression through p38 MAPK regulation, confirming that it provides protection against MCAO-induced brain injury. These findings provide strong evidence that andrographolide could be a therapeutic agent for treating ischemic stroke or neurodegenerative diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
A Model with Ellipsoidal Scatterers for Polarimetric Remote Sensing of Anisotropic Layered Media
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Kwok, R.; Kong, J. A.; Shin, R. T.
1993-01-01
This paper presents a model with ellipsoidal scatterers for applications to polarimetric remote sensing of anisotropic layered media at microwave frequencies. The physical configuration includes an isotropic layer covering an anisotropic layer above a homogeneous half space. The isotropic layer consists of randomly oriented spheroids. The anisotropic layer contains ellipsoidal scatterers with a preferential vertical alignment and random azimuthal orientations. Effective permittivities of the scattering media are calculated with the strong fluctuation theory extended to account for the nonspherical shapes and the scatterer orientation distributions. On the basis of the analytic wave theory, dyadic Green's functions for layered media are used to derive polarimetric backscattering coefficients under the distorted Born approximation. The ellipsoidal shape of the scatterers gives rise to nonzero cross-polarized returns from the untilted anisotropic medium in the first-order approximation. Effects of rough interfaces are estimated by an incoherent addition method. Theoretical results and experimental data are matched at 9 GHz for thick first-year sea ice with a bare surface and with a snow cover at Point Barrow, Alaska. The model is then used to study the sensitivity of polarimetric backscattering coefficients with respect to correlation lengths representing the geometry of brine inclusions. Polarimetric signatures of bare and snow-covered sea ice are also simulated based on the model to investigate effects of different scattering mechanisms.
Chen, Jinyao; Yang, Feng; Kang, Jian; Cao, Ya; Xiang, Ming
2018-01-01
In this study, polyamide-aluminum foil-polypropylene (PA-Al-PP) composite films with different orientation status of the PP layer were prepared, and their morphology, tensile, peeling and heat seal behavior were studied. The comparative study of tensile and fracture behaviors of single-layer film of PA, Al and PP, as well as the composite films of PA-Al, PP-Al and PA-Al-PP revealed that in PA-Al-PP composite film, the PA layer with the highest tensile strength can share the tensile stress from the Al layer during stretching, while the PP layer with the lowest tensile strength can prevent further development of the small cracks on boundary of the Al layer during stretching. Moreover, the study of heat seal behavior suggested that both the orientation status and the heat seal conditions were important factors in determining the heat seal strength (HSS) and failure behavior of the sample. Four failure types were observed, and a clear correspondence between HSS and failure types was found. The results also elucidated that for the composite film, only in the cases where the tensile stress was efficiently released by each layer during HSS measurement could the composite film exhibit desired high HSS that was even higher than its tensile strength. PMID:29337881
NASA Astrophysics Data System (ADS)
Bhoomeeswaran, H.; Vivek, T.; Savithri, R.; Gowthaman, I.; Sabareesan, P.
2018-05-01
In this micromagnetic framework, Spin transfer torque induced magnetization switching in Co/Cu/Co nanopillar device is investigated numerically. The magnetization switching dynamics of the free layer in the nanopillar device is governed by the Landau Lifshitz Gilbert Slonczewski (LLGS) equation and solving it numerically by employing OOMMF, a micromagnetic software. Results are obtained by varying the fixed layer orientation (β) of our nanopillar device from in-plane to out-of-plane (i.e.) from 0° to 80° and the corresponding switching time is noted. Results of the micromagnetic simulation reveals that there is an extreme reduction of switching time in the free layer of our devised nanopillar, if we increase the fixed layer angle (β) from 0° to 80°. The corresponding switching time got shortened from 1651 picoseconds to 104.44 picoseconds and is obtained for an applied current density of 2.25×1011Am-2 with 0.05 T as applied bias field. For 90° (i.e.) out-of-plane orientation, the magnetization switching is not exist, because the free layer magnetization follows an oscillation state. Moreover, when we compare 0° to 80°, the switching time is reduced almost 16 times which solely provoked as a source of future spintronic devices for magnetic storage applications.
Li, Meng; Shi, Jialin; Liu, Lianqing; Yu, Peng; Xi, Ning; Wang, Yuechao
2016-01-01
Physical properties of two-dimensional materials, such as graphene, black phosphorus, molybdenum disulfide (MoS 2 ) and tungsten disulfide, exhibit significant dependence on their lattice orientations, especially for zigzag and armchair lattice orientations. Understanding of the atomic probe motion on surfaces with different orientations helps in the study of anisotropic materials. Unfortunately, there is no comprehensive model that can describe the probe motion mechanism. In this paper, we report a tribological study of MoS 2 in zigzag and armchair orientations. We observed a characteristic power spectrum and friction force values. To explain our results, we developed a modified, two-dimensional, stick-slip Tomlinson model that allows simulation of the probe motion on MoS 2 surfaces by combining the motion in the Mo layer and S layer. Our model fits well with the experimental data and provides a theoretical basis for tribological studies of two-dimensional materials.
Orientation of liquid crystalline blue phases on unidirectionally orienting surfaces
NASA Astrophysics Data System (ADS)
Takahashi, Misaki; Ohkawa, Takuma; Yoshida, Hiroyuki; Fukuda, Jun-ichi; Kikuchi, Hirostugu; Ozaki, Masanori
2018-03-01
Liquid crystalline cholesteric blue phases (BPs) continue to attract interest due to their fast response times and quasi-polarization-independent phase modulation capabilities. Various approaches have recently been proposed to control the crystal orientation of BPs on substrates; however, their basic orientation properties on standard, unidirectionally orienting alignment layers have not been investigated in detail. Through analysis of the azimuthal orientation of Kossel diagrams, we study the 3D crystal orientation of a BP material—with a phase sequence of cholesteric, BP I, and BP II—on unidirectionally orienting surfaces prepared using two methods: rubbing and photoalignment. BP II grown from the isotropic phase is sensitive to surface conditions, with different crystal planes orienting on the two substrates. On the other hand, strong thermal hysteresis is observed in BPs grown through a different liquid crystal phase, implying that the preceding structure determines the orientation. More specifically, the BP II-I transition is accompanied by a rotation of the crystal such that the crystal direction defined by certain low-value Miller indices transform into different directions, and within the allowed rotations, different azimuthal configurations are obtained in the same cell depending on the thermal process. Our findings demonstrate that, for the alignment control of BPs, the thermal process is as important as the properties of the alignment layer.
Active Materials for Photonic Systems (AMPS)
1998-04-13
titanium isopropoxide were used as metalorganic precursors. The PZT films grown on the (101) oriented Ru02 electrode layers are highly (001) oriented...fabrication it was noted mat adhesion loss occurred at the platinum/ titanium interface. This loss occurred during stripping of the photoresist layer used to...reveal that the titanium was present as titanium dioxide rather than as the original metal. This indicated that oxygen had diffused through the platinum
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Hongyu; Sannomiya, Takumi; Muraishi, Shinji
2015-03-15
To obtain strong perpendicular magnetic anisotropy (PMA) based on L1{sub 0} structure for magnetic storage devices, costly single crystalline substrates are generally required to achieve (001) texture. Recently, various studies also have focused on depositing different kinds of seed layers on glass or other amorphous substrates to promote (001) preferred orientation of L1{sub 0} CoPt and FePt. TiN is a very promising seed layer material because of its cubic crystalline structure (similar to MgO) and excellent diffusion barring property even at high temperatures. In the present work, highly (001) oriented L1{sub 0}-CoPt/TiN multilayer films have been successfully deposited on glassmore » substrates. After annealing at 700 °C, the film exhibits PMA, and a strong (001) peak is detected from the x-ray diffraction profiles, indicating the ordering transformation of CoPt layers from fcc (A1) to L1{sub 0} structure. It also is found that alternate deposition of cubic TiN and CoPt effectively improves the crystallinity and (001) preferred orientation of CoPt layers. This effect is verified by the substantial enhancement of (001) reflection and PMA with increasing the period number of the multilayer films.« less
Method of depositing epitaxial layers on a substrate
Goyal, Amit
2003-12-30
An epitaxial article and method for forming the same includes a substrate having a textured surface, and an electrochemically deposited substantially single orientation epitaxial layer disposed on and in contact with the textured surface. The epitaxial article can include an electromagnetically active layer and an epitaxial buffer layer. The electromagnetically active layer and epitaxial buffer layer can also be deposited electrochemically.
NASA Technical Reports Server (NTRS)
Wie, Yong-Sun
1990-01-01
A procedure for calculating 3-D, compressible laminar boundary layer flow on general fuselage shapes is described. The boundary layer solutions can be obtained in either nonorthogonal 'body oriented' coordinates or orthogonal streamline coordinates. The numerical procedure is 'second order' accurate, efficient and independent of the cross flow velocity direction. Numerical results are presented for several test cases, including a sharp cone, an ellipsoid of revolution, and a general aircraft fuselage at angle of attack. Comparisons are made between numerical results obtained using nonorthogonal curvilinear 'body oriented' coordinates and streamline coordinates.
The three-dimensional structure of anosteocytic lamellated bone of fish.
Atkins, Ayelet; Reznikov, Natalie; Ofer, Lior; Masic, Admir; Weiner, Steve; Shahar, Ron
2015-02-01
Fish represent the most diverse and numerous of the vertebrate clades. In contrast to the bones of all tetrapods and evolutionarily primitive fish, many of the evolutionarily more advanced fish have bones that do not contain osteocytes. Here we use a variety of imaging techniques to show that anosteocytic fish bone is composed of a sequence of planar layers containing mainly aligned collagen fibrils, in which the prevailing principal orientation progressively spirals. When the sequence of fibril orientations completes a rotation of around 180°, a thin layer of poorly oriented fibrils is present between it and the next layer. The thick layer of aligned fibrils and the thin layer of non-aligned fibrils constitute a lamella. Although both basic components of mammalian lamellar bone are found here as well, the arrangement is unique, and we therefore call this structure lamellated bone. We further show that the lamellae of anosteocytic fish bone contain an array of dense, small-diameter (1-4 μm) bundles of hypomineralized collagen fibrils that are oriented mostly orthogonal to the lamellar plane. Results of mechanical tests conducted on beams from anosteocytic fish bone and human cortical bone show that the fish bones are less stiff but much tougher than the human bones. We propose that the unique lamellar structure and the orthogonal hypomineralized collagen bundles are responsible for the unusual mechanical properties and mineral distribution in anosteocytic fish bone. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Cool, S M; Forwood, M R; Campbell, P; Bennett, M B
2002-02-01
In humans, age estimation from the adult skeleton represents an attempt to determine chronological age based on growth and maturational events. In teeth, such events can be characterized by appositional growth layers in midroot cementum. The purpose of this study was to determine the underlying cause of the layered microstructure of human midroot cementum. Whether cementum growth layers are caused by changes in relative mineralization, collagen packing and/or orientation, or by variations in organic matrix apposition was investigated by subjecting midroot sections of human canine teeth to analysis using polarized light and scanning electron microscopy (SEM). Polarized light was used to examine transverse midroot sections in both mineralized and demineralized states. Mineralized sections were also reexamined following subsequent decollagenization. Polarized light was additionally used in the examination of mineralized sections taken transversely, longitudinally, and obliquely from the same tooth root. From the birefringence patterns it was concluded that collagen orientation does not change with varying section plane. Instead, the mineral phase was most responsible for the birefringence of the cementum. SEM studies suggested that neither collagen packing nor collagen orientation change across the width of the cementum, confirming and validating the results of the polarized light examination. Also, SEM analysis using electron backscatter and the electron probe suggested no changes in the mean atomic number density, calcium, phosphate, and sulfur levels across the width of the cementum. Therefore, we conclude that crystalline orientation and/or size is responsible for the layered appearance of cementum.
Study of annealing effect on the growth of ZnO nanorods on ZnO seed layers
NASA Astrophysics Data System (ADS)
Sannakashappanavar, Basavaraj S.; Pattanashetti, Nandini A.; Byrareddy, C. R.; Yadav, Aniruddh Bahadur
2018-04-01
A zinc oxide (ZnO) seed layer was deposited on the SiO2/Si substrate by RF sputtering. To study the effect of annealing, the seed layers were classified into annealed and unannealed thin films. Annealing of the seed layers was carried at 450°C. Surface morphology of the seed layers were studied by Atomic force microscopy. ZnO nanorods were then grown on both the types of seed layer by hydrothermal method. The morphology and the structural properties of the nanorods were characterized by X-ray diffraction and Scanning electron microscopy. The effect of seed layer annealing on the growth and orientation of the ZnO nanorods were clearly examined on comparing with the nanorods grown on unannealed seed layer. The nanorods grown on annealed seed layers were found to be well aligned and oriented. Further, the I-V characteristic study was carried out on these aligned nanorods. The results supports positively for the future work to further enhance the properties of developed nanorods for their wide applications in electronic and optoelectronic devices.
Magnon Valve Effect between Two Magnetic Insulators.
Wu, H; Huang, L; Fang, C; Yang, B S; Wan, C H; Yu, G Q; Feng, J F; Wei, H X; Han, X F
2018-03-02
The key physics of the spin valve involves spin-polarized conduction electrons propagating between two magnetic layers such that the device conductance is controlled by the relative magnetization orientation of two magnetic layers. Here, we report the effect of a magnon valve which is made of two ferromagnetic insulators (YIG) separated by a nonmagnetic spacer layer (Au). When a thermal gradient is applied perpendicular to the layers, the inverse spin Hall voltage output detected by a Pt bar placed on top of the magnon valve depends on the relative orientation of the magnetization of two YIG layers, indicating the magnon current induced by the spin Seebeck effect at one layer affects the magnon current in the other layer separated by Au. We interpret the magnon valve effect by the angular momentum conversion and propagation between magnons in two YIG layers and conduction electrons in the Au layer. The temperature dependence of the magnon valve ratio shows approximately a power law, supporting the above magnon-electron spin conversion mechanism. This work opens a new class of valve structures beyond the conventional spin valves.
Magnon Valve Effect between Two Magnetic Insulators
NASA Astrophysics Data System (ADS)
Wu, H.; Huang, L.; Fang, C.; Yang, B. S.; Wan, C. H.; Yu, G. Q.; Feng, J. F.; Wei, H. X.; Han, X. F.
2018-03-01
The key physics of the spin valve involves spin-polarized conduction electrons propagating between two magnetic layers such that the device conductance is controlled by the relative magnetization orientation of two magnetic layers. Here, we report the effect of a magnon valve which is made of two ferromagnetic insulators (YIG) separated by a nonmagnetic spacer layer (Au). When a thermal gradient is applied perpendicular to the layers, the inverse spin Hall voltage output detected by a Pt bar placed on top of the magnon valve depends on the relative orientation of the magnetization of two YIG layers, indicating the magnon current induced by the spin Seebeck effect at one layer affects the magnon current in the other layer separated by Au. We interpret the magnon valve effect by the angular momentum conversion and propagation between magnons in two YIG layers and conduction electrons in the Au layer. The temperature dependence of the magnon valve ratio shows approximately a power law, supporting the above magnon-electron spin conversion mechanism. This work opens a new class of valve structures beyond the conventional spin valves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao Bo; Liu Hongrui; Avrutin, Vitaliy
2009-11-23
High quality (001)-oriented Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown on a-plane sapphire (1120) by rf magnetron sputtering using a double bridge layer consisting of (0001)-oriented ZnO (50 nm) and (001)-oriented MgO (10 nm) prepared by plasma-assisted molecular beam epitaxy. X-ray diffraction revealed the formation of three sets of in-plane BST domains, offset from one another by 30 deg., which is consistent with the in-plane symmetry of the MgO layer observed by in situ reflective high electron energy diffraction. The in-plane epitaxial relationship of BST, MgO, and ZnO has been determined to be BST [110]//MgO [110]//ZnO [1120]more » and BST [110]/MgO [110]//ZnO [1100]. Capacitance-voltage measurements performed on BST coplanar interdigitated capacitor structures revealed a high dielectric tunability of up to 84% at 1 MHz.« less
NASA Technical Reports Server (NTRS)
Iannicca, Dennis; Hylton, Alan; Ishac, Joseph
2012-01-01
Delay-Tolerant Networking (DTN) is an active area of research in the space communications community. DTN uses a standard layered approach with the Bundle Protocol operating on top of transport layer protocols known as convergence layers that actually transmit the data between nodes. Several different common transport layer protocols have been implemented as convergence layers in DTN implementations including User Datagram Protocol (UDP), Transmission Control Protocol (TCP), and Licklider Transmission Protocol (LTP). The purpose of this paper is to evaluate several stand-alone implementations of negative-acknowledgment based transport layer protocols to determine how they perform in a variety of different link conditions. The transport protocols chosen for this evaluation include Consultative Committee for Space Data Systems (CCSDS) File Delivery Protocol (CFDP), Licklider Transmission Protocol (LTP), NACK-Oriented Reliable Multicast (NORM), and Saratoga. The test parameters that the protocols were subjected to are characteristic of common communications links ranging from terrestrial to cis-lunar and apply different levels of delay, line rate, and error.
High strain rate deformation of layered nanocomposites
NASA Astrophysics Data System (ADS)
Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P.; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A.; Thomas, Edwin L.
2012-11-01
Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.
Crack-Free, Soft Wrinkles Enable Switchable Anisotropic Wetting.
Rhee, Dongjoon; Lee, Won-Kyu; Odom, Teri W
2017-06-01
Soft skin layers on elastomeric substrates are demonstrated to support mechano-responsive wrinkle patterns that do not exhibit cracking under applied strain. Soft fluoropolymer skin layers on pre-strained poly(dimethylsiloxane) slabs achieved crack-free surface wrinkling at high strain regimes not possible by using conventional stiff skin layers. A side-by-side comparison between the soft and hard skin layers after multiple cycles of stretching and releasing revealed that the soft skin layer enabled dynamic control over wrinkle topography without cracks or delamination. We systematically characterized the evolution of wrinkle wavelength, amplitude, and orientation as a function of tensile strain to resolve the crack-free structural transformation. We demonstrated that wrinkled surfaces can guide water spreading along wrinkle orientation, and hence switchable, anisotropic wetting was realized. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
High strain rate deformation of layered nanocomposites.
Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A; Thomas, Edwin L
2012-01-01
Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.
Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke; ...
2016-04-27
Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke
Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.
Electron mobility enhancement in epitaxial multilayer Si-Si/1-x/Ge/x/ alloy films on /100/Si
NASA Technical Reports Server (NTRS)
Manasevit, H. M.; Gergis, I. S.; Jones, A. B.
1982-01-01
Enhanced Hall-effect mobilities have been measured in epitaxial (100)-oriented multilayer n-type Si/Si(1-x)Ge(x) films grown on single-crystal Si substrates by chemical vapor deposition. Mobilities from 20 to 40% higher than that of epitaxial Si layers and about 100% higher than that of epitaxial SiGe layers on Si were measured for the doping range 8 x 10 to the 15th to 10 to the 17th/cu cm. No mobility enhancement was observed in multilayer p-type (100) films and n-type (111)-oriented films. Experimental studies included the effects upon film properties of layer composition, total film thickness, doping concentrations, layer thickness, and growth temperature.
Slab detachment under the Eastern Alps seen by seismic anisotropy
Qorbani, Ehsan; Bianchi, Irene; Bokelmann, Götz
2015-01-01
We analyze seismic anisotropy for the Eastern Alpine region by inspecting shear-wave splitting from SKS and SKKS phases. The Eastern Alpine region is characterized by a breakdown of the clear mountain-chain-parallel fast orientation pattern that has been previously documented for the Western Alps and for the western part of the Eastern Alps. The main interest of this paper is a more detailed analysis of the anisotropic character of the Eastern Alps, and the transition to the Carpathian–Pannonian region. SK(K)S splitting measurements reveal a rather remarkable lateral change in the anisotropy pattern from the west to the east of the Eastern Alps with a transition area at about 12°E. We also model the backazimuthal variation of the measurements by a vertical change of anisotropy. We find that the eastern part of the study area is characterized by the presence of two layers of anisotropy, where the deeper layer has characteristics similar to those of the Central Alps, in particular SW–NE fast orientations of anisotropic axes. We attribute the deeper layer to a detached slab from the European plate. Comparison with tomographic studies of the area indicates that the detached slab might possibly connect with the lithosphere that is still in place to the west of our study area, and may also connect with the slab graveyard to the East, at the depth of the upper mantle transition zone. On the other hand, the upper layer has NW–SE fast orientations coinciding with a low-velocity layer which is found above a more-or-less eastward dipping high-velocity body. The anisotropy of the upper layer shows large-scale NW–SE fast orientation, which is consistent with the presence of asthenospheric flow above the detached slab foundering into the deeper mantle. PMID:25843968
Slab detachment under the Eastern Alps seen by seismic anisotropy
NASA Astrophysics Data System (ADS)
Qorbani, Ehsan; Bianchi, Irene; Bokelmann, Götz
2015-01-01
We analyze seismic anisotropy for the Eastern Alpine region by inspecting shear-wave splitting from SKS and SKKS phases. The Eastern Alpine region is characterized by a breakdown of the clear mountain-chain-parallel fast orientation pattern that has been previously documented for the Western Alps and for the western part of the Eastern Alps. The main interest of this paper is a more detailed analysis of the anisotropic character of the Eastern Alps, and the transition to the Carpathian-Pannonian region. SK(K)S splitting measurements reveal a rather remarkable lateral change in the anisotropy pattern from the west to the east of the Eastern Alps with a transition area at about 12°E. We also model the backazimuthal variation of the measurements by a vertical change of anisotropy. We find that the eastern part of the study area is characterized by the presence of two layers of anisotropy, where the deeper layer has characteristics similar to those of the Central Alps, in particular SW-NE fast orientations of anisotropic axes. We attribute the deeper layer to a detached slab from the European plate. Comparison with tomographic studies of the area indicates that the detached slab might possibly connect with the lithosphere that is still in place to the west of our study area, and may also connect with the slab graveyard to the East, at the depth of the upper mantle transition zone. On the other hand, the upper layer has NW-SE fast orientations coinciding with a low-velocity layer which is found above a more-or-less eastward dipping high-velocity body. The anisotropy of the upper layer shows large-scale NW-SE fast orientation, which is consistent with the presence of asthenospheric flow above the detached slab foundering into the deeper mantle.
NASA Astrophysics Data System (ADS)
Shen, Huaxiang; Zhu, Guo-Zhen; Botton, Gianluigi A.; Kitai, Adrian
2015-03-01
The growth mechanisms of high quality GaN thin films on 6H-SiC by sputtering were investigated by X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). The XRD θ-2θ scans show that high quality ( 0002 ) oriented GaN was deposited on 6H-SiC by reactive magnetron sputtering. Pole figures obtained by 2D-XRD clarify that GaN thin films are dominated by ( 0002 ) oriented wurtzite GaN and { 111 } oriented zinc-blende GaN. A thin amorphous silicon oxide layer on SiC surfaces observed by STEM plays a critical role in terms of the orientation information transfer from the substrate to the GaN epilayer. The addition of H2 into Ar and/or N2 during sputtering can reduce the thickness of the amorphous layer. Moreover, adding 5% H2 into Ar can facilitate a phase transformation from amorphous to crystalline in the silicon oxide layer and eliminate the unwanted { 3 3 ¯ 02 } orientation in the GaN thin film. Fiber texture GaN thin films can be grown by adding 10% H2 into N2 due to the complex reaction between H2 and N2.
Theoretical characterization of a model of aragonite crystal orientation in red abalone nacre
NASA Astrophysics Data System (ADS)
Coppersmith, S N; Gilbert, P U P A; Metzler, R A
2009-03-01
Nacre, commonly known as mother-of-pearl, is a remarkable biomineral that in red abalone consists of layers of 400 nm thick aragonite crystalline tablets confined by organic matrix sheets, with the [0 0 1] crystal axes of the aragonite tablets oriented to within ±12° from the normal to the layer planes. Recent experiments demonstrate that greater orientational order develops over a distance of tens of layers from the prismatic boundary at which nacre formation begins. Our previous simulations of a model in which the order develops because of differential tablet growth rates (oriented tablets growing faster than misoriented ones) yield patterns of tablets that agree qualitatively and quantitatively with the experimental measurements. This paper presents an analytical treatment of this model, focusing on how the dynamical development and eventual degree of order depend on model parameters. Dynamical equations for the probability distributions governing tablet orientations are introduced whose form can be determined from symmetry considerations and for which substantial analytic progress can be made. Numerical simulations are performed to relate the parameters used in the analytic theory to those in the microscopic growth model. The analytic theory demonstrates that the dynamical mechanism is able to achieve a much higher degree of order than naive estimates would indicate.
NASA Astrophysics Data System (ADS)
Minemura, Yoshiki; Nagasaka, Kohei; Kiguchi, Takanori; Konno, Toyohiko J.; Funakubo, Hiroshi; Uchida, Hiroshi
2013-09-01
Nanosheet Ca2Nb3O20 (ns-CN) layers with pseudo-perovskite-type crystal configuration were applied on the surface of polycrystalline metal substrates to achieve preferential crystal orientation of Pb(Zr,Ti)O3 (PZT) films for the purpose of enhanced ferroelectricity comparable to that of epitaxial thin films. PZT films with tetragonal symmetry (Zr/Ti=0.40:0.60) were fabricated by chemical solution deposition (CSD) on ns-CN-buffered Inconel 625 and SUS 316L substrates, while ns-CN was applied on the the substrates by dip-coating. The preferential crystal growth on the ns-CN layer can be achieved by favorable lattice matching between (001)/(100)PZT and (001)ns-CN planes. The degree of (001) orientation was increased for PZT films on ns-CN/Inconel 625 and ns-CN/SUS 316L substrates, whereas randomly-oriented PZT films with a lower degree of (001) orientation were grown on bare and Inconel 625 films. Enhanced remanent polarization of 60 µC/cm2 was confirmed for the PZT films on ns-CN/metal substrates, ascribed to the preferential alignment of the polar [001] axis normal to the substrate surface, although it also suffered from higher coercive field above 500 kV/cm caused by PZT/metal interfacial reaction.
Boundary Layer Effect on Behavior of Discrete Models.
Eliáš, Jan
2017-02-10
The paper studies systems of rigid bodies with randomly generated geometry interconnected by normal and tangential bonds. The stiffness of these bonds determines the macroscopic elastic modulus while the macroscopic Poisson's ratio of the system is determined solely by the normal/tangential stiffness ratio. Discrete models with no directional bias have the same probability of element orientation for any direction and therefore the same mechanical properties in a statistical sense at any point and direction. However, the layers of elements in the vicinity of the boundary exhibit biased orientation, preferring elements parallel with the boundary. As a consequence, when strain occurs in this direction, the boundary layer becomes stiffer than the interior for the normal/tangential stiffness ratio larger than one, and vice versa. Nonlinear constitutive laws are typically such that the straining of an element in shear results in higher strength and ductility than straining in tension. Since the boundary layer tends, due to the bias in the elemental orientation, to involve more tension than shear at the contacts, it also becomes weaker and less ductile. The paper documents these observations and compares them to the results of theoretical analysis.
NASA Astrophysics Data System (ADS)
Jeong, Min-Woo; Na, Sekwon; Shin, Haishan; Park, Hong-Bum; Lee, Hoo-Jeong; Joo, Young-Chang
2018-07-01
Performance enhancement has been studied for thin-film thermoelectric materials for small-scale energy applications. The microstructural evolution of bismuth telluride (Bi2Te3) was investigated with respect to performance enhancement via in situ thermomechanical analysis due to the post-annealing process. The thermomechanical behavior of Bi2Te3 changes gradually at approximately 200 °C with the formation of a quintuple-layer structure, which was confirmed by X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It was found that highly oriented (006), (0015) was formed with a quintuple-layer structure parallel to the substrate, and the E g 2 Raman vibration mode of Bi2Te3 significantly increased after forming the layer structure with decreased defects. Therefore, the slope of the stress curve was affected by the longer atomic distance of the van der Waals bonds with the formation of (00 l) oriented layered-structure grain. The decreased number of defects in the layer structure affects the electrical and thermal properties of the Bi2Te3 thin film. Due to the microstructural evolution, the power factor of Bi2Te3 was enhanced by approximately 14.8 times by the quintuple-layer structure of Bi2Te3 formed during the annealing process, which contributed to a better understanding of the performance enhancement via post-annealing and to research on other highly oriented layer structure materials.
NASA Astrophysics Data System (ADS)
Jeong, Min-Woo; Na, Sekwon; Shin, Haishan; Park, Hong-Bum; Lee, Hoo-Jeong; Joo, Young-Chang
2018-04-01
Performance enhancement has been studied for thin-film thermoelectric materials for small-scale energy applications. The microstructural evolution of bismuth telluride (Bi2Te3) was investigated with respect to performance enhancement via in situ thermomechanical analysis due to the post-annealing process. The thermomechanical behavior of Bi2Te3 changes gradually at approximately 200 °C with the formation of a quintuple-layer structure, which was confirmed by X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It was found that highly oriented (006), (0015) was formed with a quintuple-layer structure parallel to the substrate, and the Eg 2Raman vibration mode of Bi2Te3 significantly increased after forming the layer structure with decreased defects. Therefore, the slope of the stress curve was affected by the longer atomic distance of the van der Waals bonds with the formation of (00l) oriented layered-structure grain. The decreased number of defects in the layer structure affects the electrical and thermal properties of the Bi2Te3 thin film. Due to the microstructural evolution, the power factor of Bi2Te3 was enhanced by approximately 14.8 times by the quintuple-layer structure of Bi2Te3 formed during the annealing process, which contributed to a better understanding of the performance enhancement via post-annealing and to research on other highly oriented layer structure materials.
Flexural Properties of PLA Components Under Various Test Condition Manufactured by 3D Printer
NASA Astrophysics Data System (ADS)
Jaya Christiyan, K. G.; Chandrasekhar, U.; Venkateswarlu, K.
2018-06-01
Rapid Prototyping (RP) technologies have emerged as a fabrication method to obtain engineering components in the resent past. Desktop 3D printing, also referred as an additive layer manufacturing technology is a powerful method of RP technique that can fabricate 3 dimensional engineering components. In this method, 3D digital data is converted into real product. In the present investigation, Polylactic Acid (PLA) was considered as a starting material. Flexural strength of PLA material was evaluated using 3-point bend test, as per ASTM D790 standard. Specimens with flat (0°) and vertical (90°) orientation were considered. Moreover, layer thicknesses of 0.2, 0.25, and 0.3 mm were considered. To fabricate these specimens, printing speed of 38 and 52 mm/s was maintained. Nozzle diameter of 0.4 mm with 40 % of infill density were used. Based on the experimental results, it was observed that 0° orientation, 38 mm/s printing speed, and 0.2 mm layer thickness resulted maximum flexural strength, as compared to all other specimens. The improved flexural strength was due to the lower layer thickness (0.2 mm) specimens, as compared with other specimens made of 0.25 and 0.30 mm layer thicknesses. It was concluded that flexural strength properties were greatly influenced by lower the layer thickness, printing speed, and orientation.
Shimizu, H; Bode, P M; Bode, H R
1995-12-01
In an adult hydra, the tissue of the body column is in a dynamic state. The epithelial cells of both layers are constantly in the mitotic cycle. As the tissue expands, it is continuously displaced along the body axis in either an apical or basal direction, but not in a circumferential direction. Using a modified whole mount method we examined the orientation of mitotic spindles to determine what role the direction of cell division plays in axial displacement. Surprisingly, the direction of cell division was found to differ in the two epithelial layers. In the ectoderm it was somewhat biased in an axial direction. In the endoderm it was strongly biased in a circumferential direction. For both layers, the directional biases occurred throughout the length of the body column, with some regional variation in its extent. As buds developed into adults, the bias in each layer increased from an almost random distribution to the distinctly different orientations of the adult. Thus, to maintain the observed axial direction of tissue displacement, rearrangement of the epithelial cells of both layers must occur continuously in the adult as well as in developing animals. How the locomotory and contractile behavior of the muscle processes of the epithelial cells may effect changes in cell shape, and thereby influence the direction of cell division in each layer, is discussed.
NASA Astrophysics Data System (ADS)
Gao, S. S.; Kong, F.; Wu, J.; Liu, L.; Liu, K. H.
2017-12-01
Seismic azimuthal anisotropy is measured at 83 stations situated at the southeastern margin of the Tibetan Plateau and adjacent regions based on shear-wave splitting analyses. A total of 1701 individual pairs of splitting parameters (fast polarization orientations and splitting delay times) are obtained using the PKS, SKKS, and SKS phases. The splitting parameters from 21 stations exhibit systematic back-azimuthal variations with a 90° periodicity, which is consistent with a two-layer anisotropy model. The resulting upper-layer splitting parameters computed based on a grid-search algorithm are comparable with crustal anisotropy measurements obtained independently based on the sinusoidal moveout of P-to-S conversions from the Moho. The fast orientations of the upper layer anisotropy, which is mostly parallel with major shear zones, are associated with crustal fabrics with a vertical foliation plane. The lower layer anisotropy and the station averaged splitting parameters at stations with azimuthally invariant splitting parameters can be adequately explained by the differential movement between the lithosphere and asthenosphere. The NW-SE fast orientations obtained in the northern part of the study area probably reflect the southeastward extruded mantle flow from central Tibet. In contrast, the NE-SW to E-W fast orientations observed in the southern part of the study area are most likely related to the northeastward to eastward mantle flow induced by the subduction of the Burma microplate.
NASA Astrophysics Data System (ADS)
Reber, J. E.; Schmalholz, S. M.; Burg, J.-P.
2010-10-01
Two orthogonal sets of veins, both orthogonal to bedding, form chocolate tablet structures on the limbs of folded quartzwackes of Carboniferous turbidites in SW Portugal. Structural observations suggest that (1) mode 1 fractures transverse to the fold axes formed while fold amplitudes were small and limbs were under layer-subparallel compression and (2) mode 1 fractures parallel to the fold axes formed while fold amplitudes were large and limbs were brought to be under layer-subparallel tension. We performed two- and three-dimensional numerical simulations investigating the evolution of stress orientations during viscous folding to test whether and how these two successive sets of fractures were related to folding. We employed ellipses and ellipsoids for the visualization and quantification of the local stress field. The numerical simulations show a change in the orientation of the local σ1 direction by almost 90° with respect to the bedding plane in the fold limbs. The coeval σ3 direction rotates from parallel to the fold axis at low fold amplitudes to orthogonal to the fold axis at high fold amplitudes. The stress orientation changes faster in multilayers than in single-layers. The numerical simulations are consistent with observation and provide a mechanical interpretation for the formation of the chocolate tablet structures through consecutive sets of fractures on rotating limbs of folded competent layers.
Statistical analysis of porosity of 17-4PH alloy processed by selective laser melting
NASA Astrophysics Data System (ADS)
Ponnusamy, P.; Masood, S. H.; Ruan, D.; Palanisamy, S.; Mohamed, O. A.
2017-07-01
Selective Laser Melting (SLM) is a powder-bed type Additive Manufacturing (AM) process, where parts are built layer-by-layer by laser melting of powder layers of metal. There are several SLM process parameters that affect the accuracy and quality of the metal parts produced by SLM. Therefore, it is essential to understand the effect of these parameters on the quality and properties of the parts built by this process. In this paper, using Taguchi design of experiments, the effect of four SLM process parameters namely laser power, defocus distance, layer thickness and build orientation are considered on the porosity of 17-4PH stainless steel parts built on ProX200 SLM direct metal printer. The porositywas found to be optimum at a defocus distance of -4mm and a laser power of 240 W with a layer thickness of 30 μm and using vertical build orientation.
Nucleation and Early Stages of Layer-by-Layer Growth of Metal Organic Frameworks on Surfaces
2015-01-01
High resolution atomic force microscopy (AFM) is used to resolve the evolution of crystallites of a metal organic framework (HKUST-1) grown on Au(111) using a liquid-phase layer-by-layer methodology. The nucleation and faceting of individual crystallites is followed by repeatedly imaging the same submicron region after each cycle of growth and we find that the growing surface is terminated by {111} facets leading to the formation of pyramidal nanostructures for [100] oriented crystallites, and triangular [111] islands with typical lateral dimensions of tens of nanometres. AFM images reveal that crystallites can grow by 5–10 layers in each cycle. The growth rate depends on crystallographic orientation and the morphology of the gold substrate, and we demonstrate that under these conditions the growth is nanocrystalline with a morphology determined by the minimum energy surface. PMID:26709359
Arendt, Paul N.; Foltyn, Stephen R.; Stan, Liliana; Usov, Igor O.; Wang, Haiyan
2010-06-15
Articles are provided including a base substrate having a layer of an IBAD oriented material thereon, and, a layer of barium-containing material selected from the group consisting of barium zirconate, barium hafnate, barium titanate, barium strontium titanate, barium dysprosium zirconate, barium neodymium zirconate and barium samarium zirconate, or a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the layer of an IBAD oriented material. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of barium-containing material selected from the group consisting of barium zirconate, barium hafnate, barium titanate, barium strontium titanate, barium dysprosium zirconate, barium neodymium zirconate and barium samarium zirconate, or a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates.
Li, Meng; Shi, Jialin; Liu, Lianqing; Yu, Peng; Xi, Ning; Wang, Yuechao
2016-01-01
Abstract Physical properties of two-dimensional materials, such as graphene, black phosphorus, molybdenum disulfide (MoS2) and tungsten disulfide, exhibit significant dependence on their lattice orientations, especially for zigzag and armchair lattice orientations. Understanding of the atomic probe motion on surfaces with different orientations helps in the study of anisotropic materials. Unfortunately, there is no comprehensive model that can describe the probe motion mechanism. In this paper, we report a tribological study of MoS2 in zigzag and armchair orientations. We observed a characteristic power spectrum and friction force values. To explain our results, we developed a modified, two-dimensional, stick-slip Tomlinson model that allows simulation of the probe motion on MoS2 surfaces by combining the motion in the Mo layer and S layer. Our model fits well with the experimental data and provides a theoretical basis for tribological studies of two-dimensional materials. PMID:27877869
MYST: a comprehensive high-level AO control tool for GeMS
NASA Astrophysics Data System (ADS)
Rigaut, F.; Neichel, B.; Bec, M.; Garcia-Rissman, A.
2010-07-01
Myst is the Gemini MCAO System (GeMS) high level control GUI. It is written in yorick, python and C. In this paper, we review the software architecture of Myst and its primary purposes, which are many: Real-time display, high level diagnostics, calibrations, and executor/sequencer of high level actions (closing the loop, coordinating dithers, etc).
Deguchi, Kentaro; Liu, Ning; Liu, Wentao; Omote, Yoshio; Kono, Syoichiro; Yunoki, Taijun; Deguchi, Shoko; Yamashita, Toru; Ikeda, Yoshio; Abe, Koji
2014-01-01
Pericytes play a pivotal role in contraction, mediating inflammation and regulation of blood flow in the brain. In this study, changes of pericytes in the neurovascular unit (NVU) were examined in relation to the effects of exogenous tissue plasminogen activator (tPA) and a free radical scavenger, edaravone. Immunohistochemistry and Western blot analyses showed that the overlap between platelet-derived growth factor receptor β-positive pericytes and N-acetylglucosamine oligomers (NAGO)-positive endothelial cells increased significantly at 4 days after 90 min of transient middle cerebral artery occlusion (tMCAO). The number of pericytes and the overlap with NAGO decreased with tPA but recovered with edaravone 4 days after tMCAO with proliferation. Thus, tPA treatment damaged pericytes, resulting in the detachment from astrocytes and a decrease in glial cell line-derived neurotrophic factor secretion. However, treatment with edaravone greatly improved tPA-induced damage to pericytes. The present study demonstrates that exogenous tPA strongly damages pericytes and destroys the integrity of the NVU, but edaravone treatment can greatly ameliorate such damage after acute cerebral ischemia in rats. © 2014 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc. PMID:24938625
Kaewkaen, Pratchaya; Tong-un, Terdthai; Wattanathorn, Jintanaporn; Muchimapura, Supaporn; Kaewrueng, Wiroje; Wongcharoenwanakit, Sathaporn
2012-01-01
Nowadays, the preventive strategy of vascular dementia, one of the challenge problems of elderly, has received attention due to the limitation of therapeutic efficacy. In this study, we aimed to determine the protective effect and possible mechanism of action of mulberry fruit extract on memory impairment and brain damage in animal model of vascular dementia. Male Wistar rats, weighing 300–350 g, were orally given mulberry extract at doses of 2, 10 and 50 mg/kg at a period of 7 days before and 21 days after the occlusion of right middle cerebral artery (Rt.MCAO). It was found that rats subjected to mulberry fruits plus Rt.MCAO showed the enhanced memory, the increased densities of neuron, cholinergic neuron, Bcl-2-immunopositive neuron together with the decreased oxidative stress in hippocampus. Taken all data together, the cognitive enhancing effect of mulberry fruit extract observed in this study might be partly associated with the increased cholinergic function and its neuroprotective effect in turn occurs partly via the decreased oxidative stress and apoptosis. Therefore, mulberry fruit is the potential natural cognitive enhancer and neuroprotectant. However, further researches are essential to elucidate the possible active ingredient. PMID:22952555
Involvement of arterial baroreflex in the protective effect of dietary restriction against stroke
Liu, Ai-Jun; Guo, Jin-Min; Liu, Wei; Su, Feng-Yun; Zhai, Qi-Wei; Mehta, Jawahar L; Wang, Wei-Zhong; Su, Ding-Feng
2013-01-01
Dietary restriction (DR) protects against neuronal dysfunction and degeneration, and reduces the risk of ischemic stroke. This study examined the role of silent information regulator T1 (SIRT1) and arterial baroreflex in the beneficial effects of DR against stroke, using two distinct stroke models: stroke-prone spontaneously hypertensive rats (SP-SHRs) and Sprague-Dawley (SD) rats with middle cerebral artery occlusion (MCAO). Sirt1 knockout (KO) mice were used to examine the involvement of sirt1. Sinoaortic denervation was used to inactivate arterial baroreflex. Dietary restriction was defined as 40% reduction of dietary intake. Briefly, DR prolonged the life span of SP-SHRs and reduced the infarct size induced by MCAO. Dietary restriction also improved the function arterial baroreflex, decreased the release of proinflammatory cytokines, and reduced end-organ damage. The beneficial effect of DR on stroke was markedly attenuated by blunting arterial baroreflex. Lastly, the infarct area in sirt1 KO mice was significantly larger than in the wild-type mice. However, the beneficial effect of DR against ischemic injury was still apparent in sirt1 KO mice. Accordingly, arterial baroreflex, but not sirt1, is important in the protective effect of DR against stroke. PMID:23443169
Diabetes synergistically exacerbates poststroke dementia and tau abnormality in brain.
Zhang, Ting; Pan, Bai-Shen; Sun, Guang-Chun; Sun, Xiao; Sun, Feng-Yan
2010-07-01
This study investigated whether exacerbation of poststroke dementia by diabetes associated abnormal tau phosphorylation and its mechanism. Streptozotocin (STZ) injection and/or a high fat diet (HFD) were used to treat rats to induce type 1 and 2 diabetes. Animals were randomly divided into STZ, HFD, STZ-HFD, and normal diet (NPD) groups. Focal ischemic stroke was induced by middle cerebral artery occlusion (MCAO). Cognitive function was tested by the Morris water maze. STZ or STZ-HFD treatment exacerbated ischemia-induced cognitive deficits, brain infarction and reduction of synaptophysin expression. Moreover, we found that diabetes further increased AT8, a marker of hyperphosphorylated tau, protein and immunopositive stained cells in the hippocampus of rats following MCAO while reduced the level of phosphorylated glycogen synthase kinase 3-beta at serine-9 residues (p-ser9-GSK-3beta), indicating activation of GSK-3beta. We conclude that diabetes further deteriorates ischemia-induced brain damage and cognitive deficits which may be associated with abnormal phosphorylation of tau as well as activation of GSK-3beta. These findings may be helpful for developing new strategies to prevent/delay formation of poststroke dementia in patients with diabetes. 2010 Elsevier Ltd. All rights reserved.
Shen, Zhe; Zheng, Yanrong; Wu, Jiaying; Chen, Ying; Wu, Xiaoli; Zhou, Yiting; Yuan, Yang; Lu, Shousheng; Jiang, Lei; Qin, Zhenghong; Chen, Zhong; Hu, Weiwei; Zhang, Xiangnan
2017-03-04
Prompt reperfusion after cerebral ischemia is critical for neuronal survival. Any strategies that extend the limited reperfusion window will be of great importance. Acidic postconditioning (APC) is a mild acidosis treatment that involves inhaling CO 2 during reperfusion following ischemia. APC attenuates ischemic brain injury although the underlying mechanisms have not been elucidated. Here we report that APC reinforces ischemia-reperfusion-induced mitophagy in middle cortical artery occlusion (MCAO)-treated mice, and in oxygen-glucose deprivation (OGD)-treated brain slices and neurons. Inhibition of mitophagy compromises neuroprotection conferred by APC. Furthermore, mitophagy and neuroprotection are abolished in Park2 knockout mice, indicating that APC-induced mitophagy is facilitated by the recruitment of PARK2 to mitochondria. Importantly, in MCAO mice, APC treatment extended the effective reperfusion window from 2 to 4 h, and this window was further extended to 6 h by exogenously expressing PARK2. Taken together, we found that PARK2-dependent APC-induced mitophagy renders the brain resistant to ischemic injury. APC treatment could be a favorable strategy to extend the thrombolytic time window for stroke therapy.
Zhu, Huaxu; Qian, Zhilei; Li, Huan; Guo, Liwei; Pan, Linmei; Zhang, Qichun; Tang, Yuping
2012-05-07
Huang-Lian-Jie-Du-Tang (HLJDT, or Oren-gedoku-to in Japanese), an important multi-herb remedy in China and other Asia countries, has been used clinically to treat cerebral ischemia for decades. According to the previous studies we have reported, an HPLC method was developed and validated for determination of berberine, palmatine, baicalin, baicalein and geniposide simultaneously in MCAO rat plasma after administration of HLJDT aqueous extract. A classified integral pharmacokinetic method was put forward after having compared the integrated concentration-time profile with that of single component. An AUC based weighting approach was used for integrated principle. The results indicated the classified integral pharmacokinetic profile of index components from HLJDT could reveal the pharmacokinetic behavior of original components, and was corresponding to the holistic pharmacological effects of anti-ischemia with HLJDT. This study was aimed to explore an approach that could be applied to integrate the pharmacokinetic behavior of different components derived from HLJDT. The integrated pharmacokinetic results also provided more information for further understanding of the clinical cerebrovascular disease in use of HLJDT. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Manwani, Bharti; Bentivegna, Kathryn; Benashski, Sharon E; Venna, Venugopal Reddy; Xu, Yan; Arnold, Arthur P; McCullough, Louise D
2015-02-01
Epidemiologic studies have shown sex differences in ischemic stroke. The four core genotype (FCG) mouse model, in which the testes determining gene, Sry, has been moved from Y chromosome to an autosome, was used to dissociate the effects of sex hormones from sex chromosome in ischemic stroke outcome. Middle cerebral artery occlusion (MCAO) in gonad intact FCG mice revealed that gonadal males (XXM and XYM) had significantly higher infarct volumes as compared with gonadal females (XXF and XYF). Serum testosterone levels were equivalent in adult XXM and XYM, as was serum estrogen in XXF and XYF mice. To remove the effects of gonadal hormones, gonadectomized FCG mice were subjected to MCAO. Gonadectomy significantly increased infarct volumes in females, while no change was seen in gonadectomized males, indicating that estrogen loss increases ischemic sensitivity. Estradiol supplementation in gonadectomized FCG mice rescued this phenotype. Interestingly, FCG male mice were less sensitive to effects of hormones. This may be due to enhanced expression of the transgene Sry in brains of FCG male mice. Sex differences in ischemic stroke sensitivity appear to be shaped by organizational and activational effects of sex hormones, rather than sex chromosomal complement.
Ma, Xiao-Hui; Gao, Qiang; Jia, Zhen; Zhang, Ze-Wei
2015-02-01
Hundreds of previous studies demonstrated the cytoprotective effect of trichostatin-A (TSA), a kind of histone deacetylases inhibitors (HDACIs), against cerebral ischemia/reperfusion insult. Meanwhile, phosphatidylinositol-3 kinase/Akt (PI3K/Akt) is a well-known, important signaling pathway that mediates neuroprotection. However, it should be remains unclear whether the neuroprotective capabilities of TSA against cerebral ischemia/reperfusion is mediated by activation of the PI3K/Akt signaling pathway. Five groups rats (n = 12 each), with middle cerebral artery occlusion (MCAO) except sham group, were used to investigate the neuroprotective effect of certain concentration (0.05 mg/kg) of TSA, and whether the neuroprotective effect of TSA is associated with activation of the PI3K/Akt signaling pathway through using of wortmannin (0.25 mg/kg). TSA significantly increased the expression of p-Akt protein, reduced infarct volume, and attenuated neurological deficit in rats with transient MCAO, wortmannin weakened such effect of TSA dramatically. TSA could significantly decrease the neurological deficit scores and reduce the cerebral infarct volume during cerebral ischemia/reperfusion injury, which was achieved partly by activation of the PI3K/Akt signaling pathway via upgrading of p-Akt protein.
Han, Bing; Zhang, Yuan; Zhang, Yanhong; Bai, Ying; Chen, Xufeng; Huang, Rongrong; Wu, Fangfang; Leng, Shuo; Chao, Jie; Zhang, John H; Hu, Gang; Yao, Honghong
2018-06-25
Circular RNAs (circRNAs) are highly expressed in the central nervous system and are involved in the regulation of physiological and pathophysiological processes. However, the potential role of circRNAs in stroke remains largely unknown. Here, using a circRNA microarray, we showed that circular RNA Hectd1 (circHectd1) levels were significantly increased in ischemic brain tissues in transient middle cerebral artery occlusion (tMCAO) mouse stroke models and further validated this finding in plasma samples from acute ischemic stroke (AIS) patients. Knockdown of circHectd1 expression significantly decreased infarct areas, attenuated neuronal deficits, and ameliorated astrocyte activation in tMCAO mice. Mechanistically, circHECTD1 functions as an endogenous MIR142 (microRNA 142) sponge to inhibit MIR142 activity, resulting in the inhibition of TIPARP (TCDD inducible poly[ADP-ribose] polymerase) expression with subsequent inhibition of astrocyte activation via macroautophagy/autophagy. Taken together, the results of our study indicate that circHECTD1 and its coupling mechanism are involved in cerebral ischemia, thus providing translational evidence that circHECTD1 can serve as a novel biomarker of and therapeutic target for stroke.
Zhang, Chun; Ling, Cheng-li; Pang, Liang; Wang, Qi; Liu, Jing-xin; Wang, Bing-shan; Liang, Jian-ming; Guo, Yi-zhen; Qin, Jing; Wang, Jian-xin
2017-01-01
Delivery of macromolecular drugs to the brain is impeded by the blood brain barrier. The recruitment of leukocytes to lesions in the brain, a typical feature of neuroinflammation response which occurs in cerebral ischemia, offers a unique opportunity to deliver drugs to inflammation sites in the brain. In the present study, cross-linked dendrigraft poly-L-lysine (DGL) nanoparticles containing cis-aconitic anhydride-modified catalase and modified with PGP, an endogenous tripeptide that acts as a ligand with high affinity to neutrophils, were developed to form the cl PGP-PEG-DGL/CAT-Aco system. Significant binding efficiency to neutrophils, efficient protection of catalase enzymatic activity from degradation and effective transport to receiver cells were revealed in the delivery system. Delivery of catalase to ischemic subregions and cerebral neurocytes in MCAO mice was significantly enhanced, which obviously reducing infarct volume in MCAO mice. Thus, the therapeutic outcome of cerebral ischemia was greatly improved. The underlying mechanism was found to be related to the inhibition of ROS-mediated apoptosis. Considering that neuroinflammation occurs in many neurological disorders, the strategy developed here is not only promising for treatment of cerebral ischemia but also an effective approach for various CNS diseases related to inflammation. PMID:28900508
Mesenchymal stem cells derived from peripheral blood protects against ischemia.
Ukai, Ryo; Honmou, Osamu; Harada, Kuniaki; Houkin, Kiyohiro; Hamada, Hirofumi; Kocsis, Jeffery D
2007-03-01
Intravenous delivery of mesenchymal stem cells (MSCs) prepared from bone marrow (BMSCs) reduces infarction volume and ameliorates functional deficits in a rat cerebral ischemia model. MSC-like multipotent precursor cells (PMSCs) have also been suggested to exist in peripheral blood. To test the hypothesis that treatment with PMSCs may have a therapeutic benefit in stroke, we compared the efficacy of systemic delivery of BMSCs and PMSCs. A permanent middle cerebral artery occlusion (MCAO) in rat was induced by intraluminal vascular occlusion with a microfilament. Rat BMSCs and PMSCs were prepared in culture and intravenously injected into the rats 6 h after MCAO. Lesion size was assessed at 6 h, and 1, 3, and 7 days using MR imaging and histology. The hemodynamic change of cerebral blood perfusion on stroke was assessed the same times using perfusion-weighted image (PWI). Functional outcome was assessed using the treadmill stress test. Both BMSCs and PMSCs treated groups had reduced lesion volume, improved regional cerebral blood flow, and functional improvement compared to the control group. The therapeutic benefits of both MSC-treated groups were similar. These data suggest that PMSCs derived from peripheral blood could be an important cell source of cell therapy for stroke.
Work Function Variations in Twisted Graphene Layers
Robinson, Jeremy T.; Culbertson, James; Berg, Morgann; ...
2018-01-31
By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene’s layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36–129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measuredmore » work function of 4.4 eV for graphene is consistent with doping levels on the order of 10 12cm -2. Here, we find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm -1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene’s Fermi energy in the ‘high’ doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.« less
Work Function Variations in Twisted Graphene Layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Jeremy T.; Culbertson, James; Berg, Morgann
By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene’s layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36–129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measuredmore » work function of 4.4 eV for graphene is consistent with doping levels on the order of 10 12cm -2. Here, we find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm -1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene’s Fermi energy in the ‘high’ doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.« less
Biaxially textured composite substrates
Groves, James R.; Foltyn, Stephen R.; Arendt, Paul N.
2005-04-26
An article including a substrate, a layer of a metal phosphate material such as an aluminum phosphate material upon the surface of the substrate, and a layer of an oriented cubic oxide material having a rock-salt-like structure upon the metal phosphate material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon a layer of a buffer material such as a SrTi.sub.x Ru.sub.1-x O.sub.3 layer.
Orientation filtering for crystalline films
Smith, Henry I.; Atwater, Harry A.; Thompson, Carl V.; Geis, Michael W.
1986-12-30
A substrate is coated with a film to be recrystallized. A pattern of crystallization barriers is created in the film, for example, by etching voids in the film. An encapsulation layer is generally applied to protect the film, fill the voids and otherwise enhance a recrystallization process. Recrystallization is carried out such that certain orientations pass preferentially through the barrier, generally as a result of growth-velocity anisotropy. The result is a film of a specific predetermined crystallographic orientation, a range of orientations or a set of discrete orientations.
Large-scale trench-normal mantle flow beneath central South America
NASA Astrophysics Data System (ADS)
Reiss, M. C.; Rümpker, G.; Wölbern, I.
2018-01-01
We investigate the anisotropic properties of the fore-arc region of the central Andean margin between 17-25°S by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. With partly over ten years of recording time, the data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements suggest two anisotropic layers located within the crust and mantle beneath the stations, respectively. The teleseismic measurements show a moderate change of fast polarizations from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, are oriented mostly perpendicular to the trench. Shear-wave splitting measurements from local earthquakes show fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow origin. Comparisons between fast polarization directions from local earthquakes and the strike of the local fault systems yield a good agreement. To infer the parameters of the lower anisotropic layer we employ an inversion of the teleseismic waveforms based on two-layer models, where the anisotropy of the upper (crustal) layer is constrained by the results from the local splitting. The waveform inversion yields a mantle layer that is best characterized by a fast axis parallel to the absolute plate motion which is more-or-less perpendicular to the trench. This orientation is likely caused by a combination of the fossil crystallographic preferred orientation of olivine within the slab and entrained mantle flow beneath the slab. The anisotropy within the crust of the overriding continental plate is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel to the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab.
NASA Astrophysics Data System (ADS)
Feng, H.; Liu, J.
2017-12-01
During the Early Cretaceous tectonic lithosphere extension, the pre-mesozoic rocks from the Western Hills in the central part of the North China Craton suffered from weak metamorphism but intense shear deformation. The prominent features of the deformation structures are the coexisting layer-parallel shear zones and intrafolia folds, and the along-strike thickness variations of the marble layers from the highly sheared Mesoproterozoic Jing'eryu Formation. Platy marbles are well-developed in the thinner layers, while intrafolia folds are often observed in the thicker layers. Most folds are tight recumbent folds and their axial planes are parallel to the foliations and layerings of the marbles. The folds are A-type folds with hinges being always paralleling to the stretching lineations consistently oriented at 130°-310° directions throughout the entire area. SPO and microstructural analyses of the sheared marbles suggest that the thicker layers suffered from deformations homogeneously, while strain localization can be distinguished in the thinner layers. Calcite twin morphology and CPO analysis indicate that the deformation of marbles from both thinner and thicker layers happened at temperatures of 300 to 500°C. The above analysis suggests that marbles in the thicker layers experienced a progressive sequence of thermodynamic events: 1) regional metamorphism, 2) early ductile deformation dominated by relatively higher temperature conditions, during which all the mineral particles elongated and oriented limitedly and the calcite grains are deformed mainly by mechanical twinning, and 3) late superimposition of relatively lower temperature deformation and recrystallization, which superposed the early deformation, and made the calcites finely granulated, elongated and oriented by dynamical recrystallization along with other grains. Marbles from the thinner layers, however, experienced a similar, but different sequence of thermo-dynamic events, i.e. regional metamorphism, early ductile deformation and weak superimposition by subsequent deformation, which caused the development of the strain localization. It is also shown that the intensity of progressive superimposition deformation contributed to the thinning and thickening of the marble layers.
Effect of substrates on the molecular orientation of silicon phthalocyanine dichloride thin films
NASA Astrophysics Data System (ADS)
Deng, Juzhi; Baba, Yuji; Sekiguchi, Tetsuhiro; Hirao, Norie; Honda, Mitsunori
2007-05-01
Molecular orientations of silicon phthalocyanine dichloride (SiPcCl2) thin films deposited on three different substrates have been measured by near-edge x-ray absorption fine structure (NEXAFS) spectroscopy using linearly polarized synchrotron radiation. The substrates investigated were highly oriented pyrolitic graphite (HOPG), polycrystalline gold and indium tin oxide (ITO). For thin films of about five monolayers, the polarization dependences of the Si K-edge NEXAFS spectra showed that the molecular planes of SiPcCl2 on three substrates were nearly parallel to the surface. Quantitative analyses of the polarization dependences revealed that the tilted angle on HOPG was only 2°, which is interpreted by the perfect flatness of the HOPG surface. On the other hand, the tilted angle on ITO was 26°. Atomic force microscopy (AFM) observation of the ITO surface showed that the periodicity of the horizontal roughness is of the order of a few nanometres, which is larger than the molecular size of SiPcCl2. It is concluded that the morphology of the top surface layer of the substrate affects the molecular orientation of SiPcCl2 molecules not only for mono-layered adsorbates but also for multi-layered thin films.
Plastic strain arrangement in copper single crystals in sliding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumaevskii, Andrey V., E-mail: tch7av@gmail.com; Lychagin, Dmitry V., E-mail: dvl-tomsk@mail.ru; Tarasov, Sergei Yu., E-mail: tsy@ispms.tsc.ru
2014-11-14
Deformation of tribologically loaded contact zone is one of the wear mechanisms in spite of the fact that no mass loss may occur during this process. Generation of optimal crystallographic orientations of the grains in a polycrystalline materials (texturing) may cause hardening and reducing the deformation wear. To reveal the orientation dependence of an individual gain and simplify the task we use copper single crystals with the orientations of the compression axis along [111] and [110]. The plastic deformation was investigated by means of optical, scanning electron microscopy and EBSD techniques. It was established that at least four different zonesmore » were generated in the course of sliding test, such as non-deformed base metal, plastic deformation layer sliding, crystalline lattice reorientation layer and subsurface grain structure layer. The maximum plastic strain penetration depth was observed on [110]-single crystals. The minimum stability of [111]-crystals with respect to rotation deformation mode as well as activation of shear in the sliding contact plane provide for rotation deformation localization below the worn surface. The high-rate accumulation of misorientations and less strain penetration depth was observed on [111]-crystals as compared to those of [110]-oriented ones.« less
Parallel heater system for subsurface formations
Harris, Christopher Kelvin [Houston, TX; Karanikas, John Michael [Houston, TX; Nguyen, Scott Vinh [Houston, TX
2011-10-25
A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.
Ureter smooth muscle cell orientation in rat is predominantly longitudinal.
Spronck, Bart; Merken, Jort J; Reesink, Koen D; Kroon, Wilco; Delhaas, Tammo
2014-01-01
In ureter peristalsis, the orientation of the contracting smooth muscle cells is essential, yet current descriptions of orientation and composition of the smooth muscle layer in human as well as in rat ureter are inconsistent. The present study aims to improve quantification of smooth muscle orientation in rat ureters as a basis for mechanistic understanding of peristalsis. A crucial step in our approach is to use two-photon laser scanning microscopy and image analysis providing objective, quantitative data on smooth muscle cell orientation in intact ureters, avoiding the usual sectioning artifacts. In 36 rat ureter segments, originating from a proximal, middle or distal site and from a left or right ureter, we found close to the adventitia a well-defined longitudinal smooth muscle orientation. Towards the lamina propria, the orientation gradually became slightly more disperse, yet the main orientation remained longitudinal. We conclude that smooth muscle cell orientation in rat ureter is predominantly longitudinal, though the orientation gradually becomes more disperse towards the proprial side. These findings do not support identification of separate layers. The observed longitudinal orientation suggests that smooth muscle contraction would rather cause local shortening of the ureter, than cause luminal constriction. However, the net-like connective tissue of the ureter wall may translate local longitudinal shortening into co-local luminal constriction, facilitating peristalsis. Our quantitative, minimally invasive approach is a crucial step towards more mechanistic insight into ureter peristalsis, and may also be used to study smooth muscle cell orientation in other tube-like structures like gut and blood vessels.
Zbik, Marek S; Frost, Ray L
2010-06-15
The structure-building phenomena within clay aggregates are governed by forces acting between clay particles. Measurements of such forces are important to understand in order to manipulate the aggregate structure for applications such as dewatering of mineral processing tailings. A parallel particle orientation is required when conducting XRD investigation on the oriented samples and conduct force measurements acting between basal planes of clay mineral platelets using atomic force microscopy (AFM). To investigate how smectite clay platelets were oriented on silicon wafer substrate when dried from suspension range of methods like SEM, XRD and AFM were employed. From these investigations, we conclude that high clay concentrations and larger particle diameters (up to 5 microm) in suspension result in random orientation of platelets in the substrate. The best possible laminar orientation in the clay dry film, represented in the XRD 001/020 intensity ratio of 47 was obtained by drying thin layers from 0.02 wt.% clay suspensions of the natural pH. Conducted AFM investigations show that smectite studied in water based electrolytes show very long-range repulsive forces lower in strength than electrostatic forces from double-layer repulsion. It was suggested that these forces may have structural nature. Smectite surface layers rehydrate in water environment forms surface gel with spongy and cellular texture which cushion approaching AFM probe. This structural effect can be measured in distances larger than 1000 nm from substrate surface and when probe penetrate this gel layer, structural linkages are forming between substrate and clay covered probe. These linkages prevent subsequently smooth detachments of AFM probe on way back when retrieval. This effect of tearing new formed structure apart involves larger adhesion-like forces measured in retrieval. It is also suggested that these effect may be enhanced by the nano-clay particles interaction. 2010 Elsevier Inc. All rights reserved.
Wang, Yong-Lei; Golets, Mikhail; Li, Bin; Sarman, Sten; Laaksonen, Aatto
2017-02-08
Atomistic molecular dynamics simulations have been performed to study microscopic the interfacial ionic structures, molecular arrangements, and orientational preferences of trihexyltetradecylphosphonium-bis(mandelato)borate ([P 6,6,6,14 ][BMB]) ionic liquid confined between neutral and charged gold electrodes. It was found that both [P 6,6,6,14 ] cations and [BMB] anions are coabsorbed onto neutral electrodes at different temperatures. The hexyl and tetradecyl chains in [P 6,6,6,14 ] cations lie preferentially flat on neutral electrodes. The oxalato and phenyl rings in [BMB] anions are characterized by alternative parallel-perpendicular orientations in the mixed innermost ionic layer adjacent to neutral electrodes. An increase in temperature has a marginal effect on the interfacial ionic structures and molecular orientations of [P 6,6,6,14 ][BMB] ionic species in a confined environment. Electrifying gold electrodes leads to peculiar changes in the interfacial ionic structures and molecular orientational arrangements of [P 6,6,6,14 ] cations and [BMB] anions in negatively and positively charged gold electrodes, respectively. As surface charge density increases (but lower than 20 μC/cm 2 ), the layer thickness of the mixed innermost interfacial layer gradually increases due to a consecutive accumulation of [P 6,6,6,14 ] cations and [BMB] anions at negatively and positively charged electrodes, respectively, before the formation of distinct cationic and anionic innermost layers. Meanwhile, the molecular orientations of two oxalato rings in the same [BMB] anions change gradually from a parallel-perpendicular feature to being partially characterized by a tilted arrangement at an angle of 45° from the electrodes and finally to a dominant parallel coordination pattern along positively charged electrodes. Distinctive interfacial distribution patterns are also observed accordingly for phenyl rings that are directly connected to neighboring oxalato rings in [BMB] anions.
NASA Technical Reports Server (NTRS)
Tsang, L.; Kubacsi, M. C.; Kong, J. A.
1981-01-01
The radiative transfer theory is applied within the Rayleigh approximation to calculate the backscattering cross section of a layer of randomly positioned and oriented small ellipsoids. The orientation of the ellipsoids is characterized by a probability density function of the Eulerian angles of rotation. The radiative transfer equations are solved by an iterative approach to first order in albedo. In the half space limit the results are identical to those obtained via the approach of Foldy's and distorted Born approximation. Numerical results of the theory are illustrated using parameters encountered in active remote sensing of vegetation layers. A distinctive characteristic is the strong depolarization shown by vertically aligned leaves.
Investigation of Body Force Effects on Flow Boiling Critical Heat Flux
NASA Technical Reports Server (NTRS)
Zhang, Hui; Mudawar, Issam; Hasan, Mohammad M.
2002-01-01
The bubble coalescence and interfacial instabilities that are important to modeling critical heat flux (CHF) in reduced-gravity systems can be sensitive to even minute body forces. Understanding these complex phenomena is vital to the design and safe implementation of two-phase thermal management loops proposed for space and planetary-based thermal systems. While reduced gravity conditions cannot be accurately simulated in 1g ground-based experiments, such experiments can help isolate the effects of the various forces (body force, surface tension force and inertia) which influence flow boiling CHF. In this project, the effects of the component of body force perpendicular to a heated wall were examined by conducting 1g flow boiling experiments at different orientations. FC-72 liquid was boiled along one wall of a transparent rectangular flow channel that permitted photographic study of the vapor-liquid interface at conditions approaching CHF. High-speed video imaging was employed to capture dominant CHF mechanisms. Six different CHF regimes were identified: Wavy Vapor Layer, Pool Boiling, Stratification, Vapor Counterflow, Vapor Stagnation, and Separated Concurrent Vapor Flow. CHF showed great sensitivity to orientation for flow velocities below 0.2 m/s, where very small CHF values where measured, especially with downflow and downward-facing heated wall orientations. High flow velocities dampened the effects of orientation considerably. Figure I shows representative images for the different CHF regimes. The Wavy Vapor Layer regime was dominant for all high velocities and most orientations, while all other regimes were encountered at low velocities, in the downflow and/or downward-facing heated wall orientations. The Interfacial Lift-off model was modified to predict the effects of orientation on CHF for the dominant Wavy Vapor Layer regime. The photographic study captured a fairly continuous wavy vapor layer travelling along the heated wall while permitting liquid contact only in wetting fronts, located in the troughs of the interfacial waves. CHF commenced when wetting fronts near the outlet were lifted off the wall. The Interfacial Lift-off model is shown to be an effective tool for predicting the effects of body force on CHF at high velocities.
NASA Astrophysics Data System (ADS)
Muslimin, A. N.; Sugiarti, E.; Aritonang, T.; Purawiardi, R. I.; Desiati, R. D.
2018-03-01
Ni-based superalloy is widely used for high performance components in power generation turbine due to its excellent mechanical properties. However, Ni-based superalloy has low oxidation resistantance. Therefore, surface coating is required to improve oxidation resistance at high temperatures. Al-Si as a coting material was successfully co-deposited on Ni-based substrate by pack cementation method at 900 °C for about 4 hours. The oxidation test was carried out at high temperature of 1000 °C for 100 hours. Micro structural characterization and analysis on crystal orientation were perfomed by using Field Emission Scanning Electron Microscope (FE-SEM) and Electron Back Scatter Diffraction (EBSD) technique, respectively. The results showed that the coating layer with a homogenous layer and had a thickness of 53 μm consisting of β-NiAl with cubic structure and Ni2Al3 with hexagonal structure. TGO layer was developed after oxidation and had a thickness of about 5 μm consisting of α-Al2O3 and spinel NiCr2O4. The phase composition map and crystal orientation acquired by EBSD technique was also discussed both in TGO and coating layers.
Sharma, Akhil; Verheijen, Marcel A; Wu, Longfei; Karwal, Saurabh; Vandalon, Vincent; Knoops, Harm C M; Sundaram, Ravi S; Hofmann, Jan P; Kessels, W M M Erwin; Bol, Ageeth A
2018-05-10
Low-temperature controllable synthesis of monolayer-to-multilayer thick MoS2 with tuneable morphology is demonstrated by using plasma enhanced atomic layer deposition (PEALD). The characteristic self-limiting ALD growth with a growth-per-cycle of 0.1 nm per cycle and digital thickness control down to a monolayer are observed with excellent wafer scale uniformity. The as-deposited films are found to be polycrystalline in nature showing the signature Raman and photoluminescence signals for the mono-to-few layered regime. Furthermore, a transformation in film morphology from in-plane to out-of-plane orientation of the 2-dimensional layers as a function of growth temperature is observed. An extensive study based on high-resolution transmission electron microscopy is presented to unravel the nucleation mechanism of MoS2 on SiO2/Si substrates at 450 °C. In addition, a model elucidating the film morphology transformation (at 450 °C) is hypothesized. Finally, the out-of-plane oriented films are demonstrated to outperform the in-plane oriented films in the hydrogen evolution reaction for water splitting applications.
Boundary Layer Effect on Behavior of Discrete Models
Eliáš, Jan
2017-01-01
The paper studies systems of rigid bodies with randomly generated geometry interconnected by normal and tangential bonds. The stiffness of these bonds determines the macroscopic elastic modulus while the macroscopic Poisson’s ratio of the system is determined solely by the normal/tangential stiffness ratio. Discrete models with no directional bias have the same probability of element orientation for any direction and therefore the same mechanical properties in a statistical sense at any point and direction. However, the layers of elements in the vicinity of the boundary exhibit biased orientation, preferring elements parallel with the boundary. As a consequence, when strain occurs in this direction, the boundary layer becomes stiffer than the interior for the normal/tangential stiffness ratio larger than one, and vice versa. Nonlinear constitutive laws are typically such that the straining of an element in shear results in higher strength and ductility than straining in tension. Since the boundary layer tends, due to the bias in the elemental orientation, to involve more tension than shear at the contacts, it also becomes weaker and less ductile. The paper documents these observations and compares them to the results of theoretical analysis. PMID:28772517
Buckling reversal of the Si(111) bilayer termination of 2-dimensional ErSi2 upon H dosing
NASA Astrophysics Data System (ADS)
Wetzel, P.; Pirri, C.; Gewinner, G.
1997-05-01
Hydrogen-induced reconstruction of 2-dimensional (2D) ErSi2 epitaxially grown on Si(111) is studied by Auger-electron diffraction (AED) and low-energy electron diffraction (LEED). The intensity of the Er MNN Auger line is measured vs. polar angle along the [1 - 2 1] and [- 1 2 - 1] azimuths for clean and H-saturated (1 × 1) ErSi2 silicides. The atomic structure of clean 2D silicide, previously established by AED as well as other techniques, consists of a hexagonal monolayer of Er located underneath a buckled Si layer comparable to the Si(111) substrate double layers. Moreover, for clean 2D ErSi2 only the B-type orientation is observed, i.e. the buckled Si top layer is always rotated by 180° around the surface normal relative to the relevant double layers of the substrate. After atomic H saturation, AED reveals drastic changes in the silicide structure involving a major most remarkable reconstruction of the Si bilayer termination. The latter is found to switch from B-type to A-type orientation upon H dosing, i.e. H-saturated 2D ErSi2 exhibits a buckled Si top layer oriented in the same way as the substrate double layers. A comparison with single scattering cluster simulations demonstrates that the latter phenomenon is accompanied by a large expansion of the Er-Si interlayer spacing close to 0.3 Å.
Vibration control of multiferroic fibrous composite plates using active constrained layer damping
NASA Astrophysics Data System (ADS)
Kattimani, S. C.; Ray, M. C.
2018-06-01
Geometrically nonlinear vibration control of fiber reinforced magneto-electro-elastic or multiferroic fibrous composite plates using active constrained layer damping treatment has been investigated. The piezoelectric (BaTiO3) fibers are embedded in the magnetostrictive (CoFe2O4) matrix forming magneto-electro-elastic or multiferroic smart composite. A three-dimensional finite element model of such fiber reinforced magneto-electro-elastic plates integrated with the active constrained layer damping patches is developed. Influence of electro-elastic, magneto-elastic and electromagnetic coupled fields on the vibration has been studied. The Golla-Hughes-McTavish method in time domain is employed for modeling a constrained viscoelastic layer of the active constrained layer damping treatment. The von Kármán type nonlinear strain-displacement relations are incorporated for developing a three-dimensional finite element model. Effect of fiber volume fraction, fiber orientation and boundary conditions on the control of geometrically nonlinear vibration of the fiber reinforced magneto-electro-elastic plates is investigated. The performance of the active constrained layer damping treatment due to the variation of piezoelectric fiber orientation angle in the 1-3 Piezoelectric constraining layer of the active constrained layer damping treatment has also been emphasized.
Keratin-lipid structural organization in the corneous layer of snake.
Ripamonti, Alberto; Alibardi, Lorenzo; Falini, Giuseppe; Fermani, Simona; Gazzano, Massimo
2009-12-01
The shed epidermis (molt) of snakes comprises four distinct layers. The upper two layers, here considered as beta-layer, contain essentially beta-keratin. The following layer, known as mesos-layer, is similar to the human stratum corneum, and is formed by thin cells surrounded by intercellular lipids. The latter layer mainly contains alpha-keratin. In this study, the molecular assemblies of proteins and lipids contained in these layers have been analyzed in the scale of two species of snakes, the elapid Tiger snake (TS, Notechis scutatus) and the viperid Gabon viper (GV, Bitis gabonica). Scanning X-ray micro-diffraction, FTIR and Raman spectroscopies, thermal analysis, and scanning electron microscopy experiments confirm the presence of the three layers in the GV skin scale. Conversely, in the TS molt a typical alpha-keratin layer appears to be absent. In the latter, experimental data suggest the presence of two domains similar to those found in the lipid intercellular matrix of stratum corneum. X-ray diffraction data also allow to determine the relative orientation of keratins and lipids. The keratin fibrils are randomly oriented inside the layers parallel to the surface of scales while the lipids are organized in lamellar structures having aliphatic chains normal to the scale surface. The high ordered lipid organization in the mature mesos layer probably increases its effectiveness in limiting water-loss.
Callegary, J.B.; Ferré, T.P.A.; Groom, R.W.
2007-01-01
Vertical spatial sensitivity and effective depth of exploration (d e) of low-induction-number (LIN) instruments over a layered soil were evaluated using a complete numerical solution to Maxwell's equations. Previous studies using approximate mathematical solutions predicted a vertical spatial sensitivity for instruments operating under LIN conditions that, for a given transmitter-receiver coil separation (s), coil orientation, and transmitter frequency, should depend solely on depth below the land surface. When not operating under LIN conditions, vertical spatial sensitivity and de also depend on apparent soil electrical conductivity (??a) and therefore the induction number (??). In this new evaluation, we determined the range of ??a and ?? values for which the LIN conditions hold and how de changes when they do not. Two-layer soil models were simulated with both horizontal (HCP) and vertical (VCP) coplanar coil orientations. Soil layers were given electrical conductivity values ranging from 0.1 to 200 mS m-1. As expected, de decreased as ??a increased. Only the least electrically conductive soil produced the de expected when operating under LIN conditions. For the VCP orientation, this was 1.6s, decreasing to 0.8s in the most electrically conductive soil. For the HCP orientation, de decreased from 0.76s to 0.51s. Differences between this and previous studies are attributed to inadequate representation of skin-depth effect and scattering at interfaces between layers. When using LIN instruments to identify depth to water tables, interfaces between soil layers, and variations in salt or moisture content, it is important to consider the dependence of de on ??a. ?? Soil Science Society of America.
Hoffmann, Susanne; Vega-Zuniga, Tomas; Greiter, Wolfgang; Krabichler, Quirin; Bley, Alexandra; Matthes, Mariana; Zimmer, Christiane; Firzlaff, Uwe; Luksch, Harald
2016-11-01
The midbrain superior colliculus (SC) commonly features a retinotopic representation of visual space in its superficial layers, which is congruent with maps formed by multisensory neurons and motor neurons in its deep layers. Information flow between layers is suggested to enable the SC to mediate goal-directed orienting movements. While most mammals strongly rely on vision for orienting, some species such as echolocating bats have developed alternative strategies, which raises the question how sensory maps are organized in these animals. We probed the visual system of the echolocating bat Phyllostomus discolor and found that binocular high acuity vision is frontally oriented and thus aligned with the biosonar system, whereas monocular visual fields cover a large area of peripheral space. For the first time in echolocating bats, we could show that in contrast with other mammals, visual processing is restricted to the superficial layers of the SC. The topographic representation of visual space, however, followed the general mammalian pattern. In addition, we found a clear topographic representation of sound azimuth in the deeper collicular layers, which was congruent with the superficial visual space map and with a previously documented map of orienting movements. Especially for bats navigating at high speed in densely structured environments, it is vitally important to transfer and coordinate spatial information between sensors and motor systems. Here, we demonstrate first evidence for the existence of congruent maps of sensory space in the bat SC that might serve to generate a unified representation of the environment to guide motor actions. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Epitaxial growth of single-orientation high-quality MoS2 monolayers
NASA Astrophysics Data System (ADS)
Bana, Harsh; Travaglia, Elisabetta; Bignardi, Luca; Lacovig, Paolo; Sanders, Charlotte E.; Dendzik, Maciej; Michiardi, Matteo; Bianchi, Marco; Lizzit, Daniel; Presel, Francesco; De Angelis, Dario; Apostol, Nicoleta; Das, Pranab Kumar; Fujii, Jun; Vobornik, Ivana; Larciprete, Rosanna; Baraldi, Alessandro; Hofmann, Philip; Lizzit, Silvano
2018-07-01
We present a study on the growth and characterization of high-quality single-layer MoS2 with a single orientation, i.e. without the presence of mirror domains. This single orientation of the MoS2 layer is established by means of x-ray photoelectron diffraction. The high quality is evidenced by combining scanning tunneling microscopy with x-ray photoelectron spectroscopy measurements. Spin- and angle-resolved photoemission experiments performed on the sample revealed complete spin-polarization of the valence band states near the K and -K points of the Brillouin zone. These findings open up the possibility to exploit the spin and valley degrees of freedom for encoding and processing information in devices that are based on epitaxially grown materials.
NASA Astrophysics Data System (ADS)
Saha, Shibu; Mehan, Navina; Sreenivas, K.; Gupta, Vinay
2009-08-01
Temperature dependent optical properties of c-axis oriented ZnO thin film were investigated using surface plasmon resonance (SPR) technique. SPR data for double layer (prism-Au-ZnO-air) and single layer (prism-Au-air) systems were taken over a temperature range (300-525 K). Dielectric constant at optical frequency and real part of refractive index of the ZnO film shows an increase with temperature. The bandgap of the oriented ZnO film was found to decrease with rise in temperature. The work indicates a promising application of the system as a temperature sensor and highlights an efficient scientific tool to study optical properties of thin film under varying ambient conditions.
Xin, Hongqi; Wang, Fengjie; Li, Yanfeng; Lu, Qing-E; Cheung, Wing Lee; Zhang, Yi; Zhang, Zheng Gang; Chopp, Michael
2017-01-01
We previously demonstrated that multipotent mesenchymal stromal cells (MSCs) that overexpress microRNA 133b (miR-133b) significantly improve functional recovery in rats subjected to middle cerebral artery occlusion (MCAO) compared with naive MSCs and that exosomes generated from naive MSCs mediate the therapeutic benefits of MSC therapy for stroke. Here we investigated whether exosomes isolated from miR-133b-overexpressing MSCs (Ex-miR-133b+) exert amplified therapeutic effects. Rats subjected to 2 h of MCAO were intra-arterially injected with Ex-miR-133b+, exosomes from MSCs infected by blank vector (Ex-Con), or phosphate-buffered saline (PBS) and were sacrificed 28 days after MCAO. Compared with the PBS treatment, both exosome treatment groups exhibited significant improvement of functional recovery. Ex-miR-133b+ treatment significantly increased functional improvement and neurite remodeling/brain plasticity in the ischemic boundary area compared with the Ex-Con treatment. Treatment with Ex-miR-133b+ also significantly increased brain exosome content compared with Ex-Con treatment. To elucidate mechanisms underlying the enhanced therapeutic effects of Ex-miR-133b+, astrocytes cultured under oxygen- and glucose-deprived (OGD) conditions were incubated with exosomes harvested from naive MSCs (Ex-Naive), miR-133b downregulated MSCs (Ex-miR-133b−), and Ex-miR-133b+. Compared with the Ex-Naive treatment, Ex-miR-133b+ significantly increased exosomes released by OGD astrocytes, whereas Ex-miR-133b− significantly decreased the release. Also, exosomes harvested from OGD astrocytes treated with Ex-miR-133b+ significantly increased neurite branching and elongation of cultured cortical embryonic rat neurons compared with the exosomes from OGD astrocytes subjected to Ex-Con. Our data suggest that exosomes harvested from miR-133b-overexpressing MSCs improve neural plasticity and functional recovery after stroke with a contribution from a stimulated secondary release of neurite-promoting exosomes from astrocytes. PMID:27677799
Liu, Yu-Cheng; Lee, Yu-Da; Wang, Hwai-Lee; Liao, Kate Hsiurong; Chen, Kuen-Bao; Poon, Kin-Shing; Pan, Yu-Ling; Lai, Ted Weita
2017-01-01
Blood-brain barrier (BBB) disruption is thought to facilitate the development of cerebral infarction after a stroke. In a typical stroke model (such as the one used in this study), the early phase of BBB disruption reaches a peak 6 h post-ischemia and largely recovers after 8-24 h, whereas the late phase of BBB disruption begins 48-58 h post-ischemia. Because cerebral infarct develops within 24 h after the onset of ischemia, and several therapeutic agents have been shown to reduce the infarct volume when administered at 6 h post-ischemia, we hypothesized that attenuating BBB disruption at its peak (6 h post-ischemia) can also decrease the infarct volume measured at 24 h. We used a mouse stroke model obtained by combining 120 min of distal middle cerebral arterial occlusion (dMCAo) with ipsilateral common carotid arterial occlusion (CCAo). This model produced the most reliable BBB disruption and cerebral infarction compared to other models characterized by a shorter duration of ischemia or obtained with dMCAO or CCAo alone. The BBB permeability was measured by quantifying Evans blue dye (EBD) extravasation, as this tracer has been shown to be more sensitive for the detection of early-phase BBB disruption compared to other intravascular tracers that are more appropriate for detecting late-phase BBB disruption. We showed that a 1 h-long treatment with isoflurane-anesthesia induced marked hypothermia and attenuated the peak of BBB disruption when administered 6 h after the onset of dMCAo/CCAo-induced ischemia. We also demonstrated that the inhibitory effect of isoflurane was hypothermia-dependent because the same treatment had no effect on ischemic BBB disruption when the mouse body temperature was maintained at 37°C. Importantly, inhibiting the peak of BBB disruption by hypothermia had no effect on the volume of brain infarct 24 h post-ischemia. In conclusion, inhibiting the peak of BBB disruption is not an effective neuroprotective strategy, especially in comparison to the inhibitors of the neuronal death signaling cascade; these, in fact, can attenuate the infarct volume measured at 24 h post-ischemia when administered at 6 h in our same stroke model.
Cui, Yiran; Liu, Xin; Li, Xianyu; Yang, Hongjun
2017-01-01
Stroke is the second most common cause of death worldwide. A systematic description and characterization of the strokes and the effects induced in the hippocampus have not been performed so far. Here, we analysed the protein expression in the hippocampus 24 h after cerebral ischaemic injury and repair. Drug intervention using Danhong injection (DHI), which has been reported to have good therapeutic effects in a clinical setting, was selected for our study of cerebral ischaemia repair in rat models. A larger proteome dataset and total 4091 unique proteins were confidently identified in three biological replicates by combining tissue extraction for rat hippocampus and LC-MS/MS analysis. A label-free approach was then used to quantify the differences among the four experimental groups (Naive, Sham, middle cerebral artery occlusion (MCAO) and MCAO + DHI groups) and showed that about 2500 proteins on average were quantified in each of the experiment group. Bioinformatics analysis revealed that in total 280 unique proteins identified above were differentially expressed (P < 0.05). By combining the subcellular localization, hierarchical clustering and pathway information with the results from injury and repair phase, 12 significant expressed proteins were chosen and verified with respect to their potential as candidates for cerebral ischaemic injury by Western blot. The primary three signalling pathways of the candidates related may be involved in molecular mechanisms related to cerebral ischaemic injury. In addition, a glycogen synthase kinase-3β (Gsk-3β) inhibitor of the candidates with the best corresponding expression trends between western blotting (WB) and label-free quantitative results were chosen for further validation. The results of Western blot analysis of protein expression and 2,3,5- chloride three phenyl tetrazole (TTC) staining of rat brains showed that DHI treatment and Gsk-3β inhibitor are both able to confer protection against ischaemic injury in rat MCAO model. The observations of the present study provide a novel understanding regarding the regulatory mechanism of cerebral ischaemic injury. PMID:28672812
Wang, Jianping; Liu, Xi; Lu, Hong; Jiang, Chao; Cui, Xiaobing; Yu, Lie; Fu, Xiaojie; Li, Qian; Wang, Jian
2015-03-01
Cell-based therapy is considered to be a promising therapeutic strategy for stroke treatment. Although unfractionated bone marrow mononuclear cells (BMMNCs) have been tried in both preclinical and clinical trials, the effective subpopulations need to be identified. In this study, we used fluorescence-activated cell sorting to harvest the CXCR4(+)CD45(+) and CXCR4(+)CD45(-) BMMNC subpopulations from transgenic mice that express enhanced green fluorescent protein. We then allogeneically grafted unfractionated BMMNCs or a subpopulation into mice subjected to transient middle cerebral artery occlusion (tMCAO) and compared the effects on stroke outcomes. We found that CXCR4(+)CD45(-) BMMNCs, but not CXCR4(+)CD45(+) BMMNCs, more effectively reduced infarction volume and neurologic deficits than did unfractionated BMMNCs. Brain tissue from the ischemic hemisphere of mice treated with CXCR4(+)CD45(-) BMMNCs had higher levels of vascular endothelial growth factor and lower levels of TNF-α than did tissue from mice treated with unfractionated BMMNCs. In contrast, CXCR4(+)CD45(+) BMMNCs showed an increase in TNF-α. Additionally, CXCR4(+)CD45(+) and CXCR4(+)CD45(-) populations exhibited more robust migration into the lesion areas and were better able to express cell-specific markers of different linages than were the unfractionated BMMNCs. Endothelial and astrocyte cell markers did not colocalize with eGFP(+) cells in the brains of tMCAO mice that received CXCR4(+)CD45(+) BMMNCs. In vitro, the CXCR4(+)CD45(-) BMMNCs expressed significantly more Oct-4 and Nanog mRNA than did the unfractionated BMMNCs. However, we did not detect gene expression of these two pluripotent markers in CXCR4(+)CD45(+) BMMNCs. Taken together, our study shows for the first time that the CXCR4(+)CD45(-) BMMNC subpopulation is superior to unfractionated BMMNCs in ameliorating cerebral damage in a mouse model of tMCAO and could represent a new therapeutic approach for stroke treatment. Copyright © 2014 Elsevier Inc. All rights reserved.
Orientation control of barium titanate films using metal oxide nanosheet layer
NASA Astrophysics Data System (ADS)
Uchida, Hiroshi; Oi, Tomotake; Noguchi, Keito; Moki, Shota; Kim, Jin Woon; Shima, Hiromi; Nishida, Ken; Kiguchi, Takanori; Akama, Akihiko; Konno, Toyohiko J.; Funakubo, Hiroshi
2016-10-01
In the present work, we aim to achieve the preferred crystal orientation of chemical solution deposition (CSD)-derived BaTiO3 films on ubiquitous Si wafers with the assistance of Ca2Nb3O10 nanosheet (ns-CN) template layers. The ns-CN on platinized Si (Pt/Si) substrates aligned the BaTiO3(100) plane to the substrate surface, because of the favorable lattice matching of the ns-CN (001) plane. The CSD process in air required a high crystallization temperature of 900 °C for the preferred crystal orientation of BaTiO3(100) because of the BaCO3 byproduct generated during the combustion reaction of the precursor gel. The processing in vacuum to remove CO2 species enhanced the crystal orientation even at the crystallization temperature of 800 °C, although it can generate oxygen vacancies (\\text{V}\\text{O}{} \\bullet \\bullet ) that cause distorted polarization behavior under an applied field higher than approximately 150 kV/cm. The relative dielectric constant (εr) of the (100)-oriented BaTiO3 film on the ns-CN-supported Pt/Si substrate (ns-CN/Pt/Si) was generally larger than that of the randomly oriented film on Pt/Si, depending on the degree of crystal orientation.
Orientation filtering for crystalline films
Smith, H.I.; Atwater, H.A.; Thompson, C.V.; Geis, M.W.
1986-12-30
A substrate is coated with a film to be recrystallized. A pattern of crystallization barriers is created in the film, for example, by etching voids in the film. An encapsulation layer is generally applied to protect the film, fill the voids and otherwise enhance a recrystallization process. Recrystallization is carried out such that certain orientations pass preferentially through the barrier, generally as a result of growth-velocity anisotropy. The result is a film of a specific predetermined crystallographic orientation, a range of orientations or a set of discrete orientations. 7 figs.
Aragonite pseudomorphs in high-pressure marbles of Syros, Greece
NASA Astrophysics Data System (ADS)
Brady, John B.; Markley, Michelle J.; Schumacher, John C.; Cheney, John T.; Bianciardi, Grace A.
2004-01-01
Numerous rod-shaped calcite crystals occur in the blueschist to eclogite facies marbles of Syros, Greece. The rods show a shape-preferred orientation, and the long axes of the rods are oriented at a large angle to foliation. The crystals also have a crystallographic-preferred orientation: calcite c-axes are oriented parallel to the long axes of the rods. Based on their chemical composition, shape, and occurrence in high-pressure marbles, these calcite crystals are interpreted as topotactic pseudomorphs after aragonite that developed a crystallographic-preferred orientation during peak metamorphism. This interpretation is consistent with deformation of aragonite by dislocation creep, which has been observed in laboratory experiments but has not been previously reported on the basis of field evidence. Subsequent to the high-pressure deformation of the aragonite marbles, the aragonite recrystallized statically into coarse rod-shaped crystals, maintaining the crystallographic orientation developed during deformation. During later exhumation, aragonite reverted to calcite, and the marbles experienced little further deformation, at least in the pseudomorph-rich layers. Some shearing of pseudomorph-bearing marble layers did occur and is indicated by twinning of calcite and by a variable inclination of the pseudomorphs relative to foliation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persson, P. O. A.; Ryves, L.; Tucker, M. D.
2008-10-01
Ti/C and TiC/C multilayers with periods ranging from 2 to 18 nm were grown by filtered high current pulsed cathodic arc. The growth was monitored in situ by ellipsometry and cantilever stress measurements. The ellipsometry results reveal that the optical properties of the carbon vary as a function of thickness. Correspondingly, the stress in each carbon layer as measured in situ exhibits two well defined values: initially the stress is low and then takes on a higher value for the remainder of the layer. Transmission electron microscopy shows that the initial growth of carbon on Ti or TiC layer ismore » oriented with graphitic basal planes aligned parallel to the interface. After 2-4 nm of growth, the graphitic structure transforms to amorphous carbon. Electron energy loss spectroscopy shows that the carbon layer simultaneously undergoes a transition from sp{sup 2} rich to sp{sup 3} rich material.« less
In situ analysis of the organic framework in the prismatic layer of mollusc shell.
Tong, Hua; Hu, Jiming; Ma, Wentao; Zhong, Guirong; Yao, Songnian; Cao, Nianxing
2002-06-01
A novel in situ analytic approach was constructed by means of ion sputtering, decalcification and deprotein techniques combining with scanning electron microscopy (SEM) and transmission electron microscope (TEM) ultrastructural analysis. The method was employed to determine the spatial distribution of the organic framework outside and the inner crystal and organic/inorganic interface spatial geometrical relationship in the prismatic layer of cristaris plicate (leach). The results show that there is a substructure of organic matrix in the intracrystalline region. The prismatic layer forms according to strict hierarchical configuration of regular pattern. Each unit of organic template of prismatic layer can uniquely determine the column crystal growth direction, spatial orientation and size. Cavity templates are responsible for supporting. limiting size and shape and determining the crystal growth spatial orientation, while the intracrystal organic matrix is responsible for providing nucleation point and inducing the nucleation process of calcite. The stereo hierarchical fabrication of prismatic layer was elucidated for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, W.L.; Eddy, M.M.; Hammond, R.B.
1991-12-10
This patent describes a method for producing a superconducting article comprising an oriented metal oxide superconducting layer containing thallium, optionally calcium, barium and copper, the layer being at least 30 {Angstrom} and having a c-axis oriented normal to a crystalline substrate surface. It comprises coating the crystalline substrate surface with a solution of thallium, optionally calcium, barium and copper carboxylate soaps dispersed in a medium of hydrocarbons of halohydrocarbons with a stoichiometric metal ratio to form the oxide superconducting layer, prepyrolyzing the soaps coated on the substrate at a temperature of 350{degrees} C. or less in an oxygen containing atmosphere,more » and pyrolyzing the soaps at a temperature in the range of 800{degrees} - 900{degrees} C. in the presence of oxygen and an overpressure of thallium for a sufficient time to produce the superconducting layer on the substrate, wherein usable portions of the superconducting layer are epitaxial to the substrate.« less
Perret, Edith; Highland, M. J.; Stephenson, G. B.; ...
2014-08-04
Non-polar orientations of III-nitride semiconductors have attracted significant interest due to their potential application in optoelectronic devices with enhanced efficiency. Using in-situ surface x-ray scattering during metal-organic vapor phase epitaxy (MOVPE) of GaN on non-polar (m-plane) and polar (c-plane) orientations of single crystal substrates, we have observed the homoepitaxial growth modes as a function of temperature and growth rate. On the m-plane surface we observe all three growth modes (step-flow, layer-by-layer, and three-dimensional) as conditions are varied. In contrast, the +c-plane surface exhibits a direct cross over between step-flow and 3-D growth, with no layer-by-layer regime. The apparent activation energymore » of 2.8 ± 0.2 eV observed for the growth rate at the layer-by-layer to step-flow boundary on the m-plane surface is consistent with those observed for MOVPE growth of other III-V compounds, indicating a large critical nucleus size for islands.« less
Saghafinia, Ali; Ping, Hew Wooi; Uddin, Mohammad Nasir
2013-01-01
Physical sensors have a key role in implementation of real-time vector control for an induction motor (IM) drive. This paper presents a novel boundary layer fuzzy controller (NBLFC) based on the boundary layer approach for speed control of an indirect field-oriented control (IFOC) of an induction motor (IM) drive using physical sensors. The boundary layer approach leads to a trade-off between control performances and chattering elimination. For the NBLFC, a fuzzy system is used to adjust the boundary layer thickness to improve the tracking performance and eliminate the chattering problem under small uncertainties. Also, to eliminate the chattering under the possibility of large uncertainties, the integral filter is proposed inside the variable boundary layer. In addition, the stability of the system is analyzed through the Lyapunov stability theorem. The proposed NBLFC based IM drive is implemented in real-time using digital signal processor (DSP) board TI TMS320F28335. The experimental and simulation results show the effectiveness of the proposed NBLFC based IM drive at different operating conditions.
NASA Technical Reports Server (NTRS)
Green, A. K.
1973-01-01
The influence of substrate imperfections on the nucleation and growth of fcc metals on alkali halides is discussed. Films deposited on well characterized substrated under well defined vacuum evaporation conditions are investigated. The experimental results of this work are correlated with similar work by other investigators. Models which have been proposed by various authors to explain experimental results are critically examined and areas of difficulty are pointed out. The influence of defects on nucleation rate and the orientation of the film is emphasized. Specific examples of impurity effects, irradiation effects and the influence of amorphous layers are discussed in detail. Evidence is shown that the formation of multiply twinned particles is a result of coalescence and growth. The only consistent model for the orienting influence of impurities is shown to be a chemical reaction effect. It is demonstrated that an alkali metal impurity is very likely responsible for the orienting influence of both water vapor exposure and irradiation. A negative result is found for the reported possibility of an orienting influence being transmitted through an amorphous layer.
NASA Astrophysics Data System (ADS)
Yang, H. F.; Liu, Z. T.; Fan, C. C.; Yao, Q.; Xiang, P.; Zhang, K. L.; Li, M. Y.; Liu, J. S.; Shen, D. W.
2016-08-01
By means of the state-of-the-art reactive oxide molecular beam epitaxy, we synthesized (001)- and (111)-orientated polar LaNiO3 thin films. In order to avoid the interfacial reconstructions induced by polar catastrophe, screening metallic Nb-doped SrTiO3 and iso-polarity LaAlO3 substrates were chosen to achieve high-quality (001)-orientated films in a layer-by-layer growth mode. For largely polar (111)-orientated films, we showed that iso-polarity LaAlO3 (111) substrate was more suitable than Nb-doped SrTiO3. In situ reflection high-energy electron diffraction, ex situ high-resolution X-ray diffraction, and atomic force microscopy were used to characterize these films. Our results show that special attentions need to be paid to grow high-quality oxide films with polar orientations, which can prompt the explorations of all-oxide electronics and artificial interfacial engineering to pursue intriguing emergent physics like proposed interfacial superconductivity and topological phases in LaNiO3 based superlattices.
Strain relaxation of thick (11–22) semipolar InGaN layer for long wavelength nitride-based device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jaehwan; Min, Daehong; Jang, Jongjin
2014-10-28
In this study, the properties of thick stress-relaxed (11–22) semipolar InGaN layers were investigated. Owing to the inclination of growth orientation, misfit dislocations (MDs) occurred at the heterointerface when the strain state of the (11–22) semipolar InGaN layers reached the critical point. We found that unlike InGaN layers based on polar and nonpolar growth orientations, the surface morphologies of the stress-relaxed (11–22) semipolar InGaN layers did not differ from each other and were similar to the morphology of the underlying GaN layer. In addition, misfit strain across the whole InGaN layer was gradually relaxed by MD formation at the heterointerface.more » To minimize the effect of surface roughness and defects in GaN layers on the InGaN layer, we conducted further investigation on a thick (11–22) semipolar InGaN layer grown on an epitaxial lateral overgrown GaN template. We found that the lateral indium composition across the whole stress-relaxed InGaN layer was almost uniform. Therefore, thick stress-relaxed (11–22) semipolar InGaN layers are suitable candidates for use as underlying layers in long-wavelength devices, as they can be used to control strain accumulation in the heterostructure active region without additional influence of surface roughness.« less
Boundary-layer effects on cold fronts at a coastline
NASA Astrophysics Data System (ADS)
Garratt, J. R.
1986-07-01
The present note discusses one physical mechanism which may contribute to cold air channelling, manifest as a frontal bulge on a surface-analysis chart, in the coastal region of Victoria in southeast Australia. This involves the modification of boundary-layer air in both offshore (prefrontal) and onshore (postfrontal) flow, and the effect on cross-frontal thermal contrast. The problem is discussed in terms of a north-south-oriented cold front behaving as an atmospheric gravity current, propagating along an east-west-oriented coastline, in the presence of a prefrontal offshore stream.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhoomeeswaran, H.; Sabareesan, P., E-mail: sendtosabari@gmail.com; Bharathi, B. Divya
2016-05-06
Magnetization switching driven by spin transfer torque in a ferromagnetic nanopillar by biasing the angular polarizer with different orientation has been studied. The free layer dynamics includes the spin torque from the oscillating free layer with magneto crystalline anisotropy and shape anisotropy, which is governed by the Landau-Lifshitsz-Gilbert-Slonczweski (LLGS) equation and solving it numerically by using embedded Runge Kutta fourth order method. Results of numerical simulation shows that there is a drastic reduction of switching time in the free layer by the orientation of angular polarizer of the nano pillar device. We fixed the angular polarizer as 0°, 30°, 60°,more » 90° and the corresponding switching time is 6.53 ns, 4.36 ns, 2.25 ns and 1.21 ns respectively for an applied current density of 5 × 10{sup 11} Am{sup −2}.« less
Cursory examination of the zeta potential behaviors of two optical materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesar, A.; Oja, T.
1992-01-02
When an oxide surface is placed in water, a difference in potential across the interface occurs due to dipole orientation. Hydroxyl groups or bound oxygen atoms on the oxide surface will orient adjacent water molecules which balance the dipole charge. This occurs over some small distance called the electrical double layer. Trace amounts of high field strength ions present in the vicinity of the double layer can have significant effects on the double layer. When there is movement of the oxide surface with respect to the water, a shearing of the double layer occurs. The electrical potential at this surfacemore » of shear is termed the zeta potential. The impetus for this study was to document the zeta potential behavior in water of two optical materials. (1) a multicomponent phosphate glass; and (2) Zerodur, a silicate glass-ceramic.« less
Free-standing oxide superconducting articles
Wu, X.D.; Muenchausen, R.E.
1993-12-14
A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer.
Zhang, Renjie; Möhwald, Helmuth; Kurth, Dirk G
2009-02-17
Hierarchical nanostructures are obtained directly on highly oriented pyrolytic graphite (HOPG) by spin coating of dilute chloroform solution of 9-Z-octadecenamide (oleamide), a natural lipid with cis-CdC- conformation, existing in the cerebrospinal fluid of mammal animals and being an additive for medical use and food packaging. Straight separated nanostripes with a length of 70-300 nm exist in the topmost layer and compact nanostripes in the bottom layer contacting HOPG. Compact nanostripes have a periodicity spacing of 3.8 nm, indicating H-bonding between two rows of oleamide molecules. The orientation of the hierarchical nanostructures differs by n60 degrees+/-8 degrees (n=1 or 2), reflecting the epitaxial ordering along theHOPGsubstrate. The nanostripes are stable against annealing.Amolecular packing scheme for the nanostructures is proposed, where the -C=C bond angle in oleamide is 120 degrees and the plane of the carbon skeleton lies parallel to the HOPG substrate. Nanostripes in the topmost layer are formed from separated rows of oleamide molecules, due to the short-range surface potential of the substrate. The scheme involves direct influence ofHOPGon the orientation of oleamide molecules to form nanostripes without any purposely added saturated alkanes and H-bonds between amide groups in adjacent two rows of oleamide molecules.
NASA Astrophysics Data System (ADS)
Zhang, Shuo; Bo, Zheng; Yang, Huachao; Yang, Jinyuan; Duan, Liangping; Yan, Jianhua; Cen, Kefa
2016-12-01
Organic electrolytes are widely used in electric double-layer capacitors (EDLCs). In this work, the microstructure of planar graphene-based EDLCs with different organic solvents are investigated with molecular dynamics simulations. Results show that an increase of solvent polarity could weaken the accumulation of counter-ions nearby the electrode surface, due to the screen of electrode charges and relatively lower ionic desolvation. It thus suggests that solvents with low polarity could be preferable to yield high EDL capacitance. Meanwhile, the significant effects of the size and structure of solvent molecules are reflected by non-electrostatic molecule-electrode interactions, further influencing the adsorption of solvent molecules on electrode surface. Compared with dimethyl carbonate, γ-butyrolactone, and propylene carbonate, acetonitrile with relatively small-size and linear structure owns weak non-electrostatic interactions, which favors the easy re-orientation of solvent molecules. Moreover, the shift of solvent orientation in surface layer, from parallel orientation to perpendicular orientation relative to the electrode surface, deciphers the solvent twin-peak behavior near negative electrode. The as-obtained insights into the roles of solvent properties on the interplays among particles and electrodes elucidate the solvent influences on the microstructure and capacitive behavior of EDLCs using organic electrolytes.
Henry, Christopher A; Joshi, Siddhartha; Xing, Dajun; Shapley, Robert M; Hawken, Michael J
2013-04-03
Neurons in primary visual cortex, V1, very often have extraclassical receptive fields (eCRFs). The eCRF is defined as the region of visual space where stimuli cannot elicit a spiking response but can modulate the response of a stimulus in the classical receptive field (CRF). We investigated the dependence of the eCRF on stimulus contrast and orientation in macaque V1 cells for which the laminar location was determined. The eCRF was more sensitive to contrast than the CRF across the whole population of V1 cells with the greatest contrast differential in layer 2/3. We confirmed that many V1 cells experience stronger suppression for collinear than orthogonal stimuli in the eCRF. Laminar analysis revealed that the predominant bias for collinear suppression was found in layers 2/3 and 4b. The laminar pattern of contrast and orientation dependence suggests that eCRF suppression may derive from different neural circuits in different layers, and may be comprised of two distinct components: orientation-tuned and untuned suppression. On average tuned suppression was delayed by ∼25 ms compared with the onset of untuned suppression. Therefore, response modulation by the eCRF develops dynamically and rapidly in time.
Liu, Xin; Li, Weiyi; Chong, Tzyy Haur; Fane, Anthony G
2017-03-01
Spacer design plays an important role in improving the performance of membrane processes for water/wastewater treatment. This work focused on a fundamental issue of spacer design, i.e., investigating the effects of spacer orientations on the fouling behavior during a membrane process. A series of fouling experiments with different spacer orientation were carried out to in situ characterize the formation of a cake layer in a spacer unit cell via 3D optical coherence tomography (OCT) imaging. The cake layers formed at different times were digitalized for quantitatively analyzing the variation in the cake morphology as a function of time. In particular, the local deposition rates were evaluated to determine the active regions where the instantaneous changes in deposit thickness were significant. The characterization results indicate that varying the spacer orientation could substantially change the evolution of membrane fouling by particulate foulants and thereby result in a cake layer with various morphologies; the competition between growth and erosion at different locations would instantaneously respond to the micro-hydrodynamic environment that might change with time. This work confirms that the OCT-based characterization method is a powerful tool for exploring novel spacer design. Copyright © 2016 Elsevier Ltd. All rights reserved.
Knebel, Alexander; Friebe, Sebastian; Bigall, Nadja Carola; Benzaqui, Marvin; Serre, Christian; Caro, Jürgen
2016-03-23
MIL-96(Al) layers were prepared as supported metal-organic frameworks membrane via reactive seeding using the α-alumina support as the Al source for the formation of the MIL-96(Al) seeds. Depending on the solvent mixture employed during seed formation, two different crystal morphologies, with different orientation of the transport-active channels, have been formed. This crystal orientation and habit is predefined by the seed crystals and is kept in the subsequent growth of the seeds to continuous layers. In the gas separation of an equimolar H2/CO2 mixture, the hydrogen permeability of the two supported MIL-96(Al) layers was found to be highly dependent on the crystal morphology and the accompanied channel orientation in the layer. In addition to the neat supported MIL-96(Al) membrane layers, mixed-matrix membranes (MMMs, 10 wt % filler loading) as a composite of MIL-96(Al) particles as filler in a continuous Matrimid polymer phase have been prepared. Five particle sizes of MIL-96(Al) between 3.2 μm and 55 nm were synthesized. In the preparation of the MIL-96(Al)/Matrimid MMM (10 wt % filler loading), the following preparation problems have been identified: The bigger micrometer-sized MIL-96(Al) crystals show a trend toward sedimentation during casting of the MMM, whereas for nanoparticles aggregation and recrystallization to micrometer-sized MIL-96(Al) crystals has been observed. Because of these preparation problems for MMM, the neat supported MIL-96(Al) layers show a relatively high H2/CO2 selectivity (≈9) and a hydrogen permeance approximately 2 magnitudes higher than that of the best MMM.
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Charette, R. F.
1987-01-01
To increase the effectiveness and efficiency of fiber-reinforced materials, the use of fibers in a curvilinear rather than the traditional straightline format is explored. The capacity of a laminated square plate with a central circular hole loaded in tension is investigated. The orientation of the fibers is chosen so that the fibers in a particular layer are aligned with the principle stress directions in that layer. Finite elements and an iteration scheme are used to find the fiber orientation. A noninteracting maximum strain criterion is used to predict load capacity. The load capacities of several plates with different curvilinear fibers format are compared with the capacities of more conventional straightline format designs. It is found that the most practical curvilinear design sandwiches a group of fibers in a curvilinear format between a pair of +/-45 degree layers. This design has a 60% greater load capacity than a conventional quasi-isotropic design with the same number of layers. The +/-45 degree layers are necessary to prevent matrix cracking in the curvilinear layers due to stresses perpendicular to the fibers in those layers. Greater efficiencies are achievable with composite structures than now realized.
NASA Astrophysics Data System (ADS)
Smith, J. V.; Marshall, B.
1992-12-01
The inverted Cobar Basin, within the Lachlan Fold Belt of New South Wales, Australia, comprises a mid-Palaeozoic cover sequence, originally deposited in a NNW-trending basin. The pattern of F 1 folding in the layered cover rocks changes from east to west; from tight well-cleaved folds parallel to the NNW-trending basin margin on the east, to open poorly cleaved en echelon folds at about 35° to the margin, further to the west. The change in fold trend and strain intensity has been repeatedly ascribed to the differing behaviour of discrete zones, decoupled across a north-trending strike-slip fault boundary. New field data show that the changes in orientation and strain intensity of F 1 structures are progressively developed, that an abrupt boundary between discrete zones cannot be substantiated, and that interpretations involving decoupled blocks are not supported by the evidence. Conversely, the data require coherent behaviour across the basin, such that the overall pattern of F 1 folding must be explained by strain compatible processes. This new interpretation of the F 1 deformation pattern has been modelled and quantitatively analysed. Theoretical predictions of the orientation of structures in unlayered isotropic material undergoing oblique contraction are inapplicable to layered anisotropic material. The style of deformation in layered material will reflect the interaction of the bulk strain pattern due to convergence together with the influence of the layering anisotropy. The orientations of the finite strain axes inferred from the folding need not match those of the bulk deformation; the amount of strain recorded by folding may be unrepresentative of that developed in the deformed tract. Oblique contraction at a range of convergence angles was simulated by models employing layers of wet tissue paper. Quantitative analysis of the strain patterns in this layered anisotropic material showed consistent departures from the theoretical predictions for isotropic material. The orientations of the principal finite horizontal extension proximal to the margin yielded higher convergence angles than those which were imposed; the orientations distal from the margin yielded substantially lower apparent convergence angles. This is because the layering anisotropy results in tight folds dissipating the normal component of the oblique convergence vector close to the margin. Whereas more open structures further from the margin show orientations controlled by the progressively more dominant shear component of the vergence vector. Modelling of D 1 the Cobar Basin shows that the F 1 pattern is consistent with dextral oblique convergence at 60° to the eastern margin of the basin. The deformation patterns, in both the model and the Cobar Basin, yield higher proximal and substantially lower distal apparent convergence angles. This is as expected from theoretical considerations and quantitative analysis of oblique contraction over a range of convergence angles. The rheological anisotropy of the cover sequence of the basin is replicated by that of the layered wet tissue paper. Wet-tissue modelling of the superposition of the second period of deformation (D 2) on F 1 demonstrates the way in which the tightness and orientation of early folds influence the type of fold interference pattern. At the eastern margin of the Cobar Basin, where D 1 was most intense, this resulted in major swings of the strike of bedding and cleavage, and of the trend of F 1 folds. Further west, open basin and dome patterns developed where D 1 was least intense. Principles developed in relation to the inversion of the Cobar Basin, are equally applicable to other basins in which layered cover rocks have undergone inversion by oblique contraction. Many basins in the Lachlan Fold Belt and in general would fall within this category.
Effect of Ply Orientation and Crack Location on SIFs in Finite Multilayers with Aligned Cracks
NASA Astrophysics Data System (ADS)
Chen, Linfeng; Pindera, Marek-Jerzy
2008-02-01
An exact elasticity solution is presented for arbitrarily laminated finite multilayers in a state of generalized plane deformation under horizontally pinned end constraints that are weakened by aligned cracks. Based on half-range Fourier series and the local/global stiffness matrix approach, the mixed boundary-value problem is reduced to Cauchy-type singular integral equations in the unknown displacement discontinuities. Solution to these equations is obtained using the approach developed by Erdogan and co-workers. Numerical results quantify the thus-far undocumented geometric and material effects on Mode I, II and III stress intensity factors in composite multilayers with interacting cracks under uniform vertical displacement. These effects include finite dimensions, crack location, material anisotropy due to a unidirectional fiber-reinforced layer/s orientation, and orientational grading.
Indium hexagonal island as seed-layer to boost a-axis orientation of AlN thin films
NASA Astrophysics Data System (ADS)
Redjdal, N.; Salah, H.; Azzaz, M.; Menari, H.; Manseri, A.; Guedouar, B.; Garcia-Sanchez, A.; Chérif, S. M.
2018-06-01
Highly a-axis oriented aluminum nitride films have been grown on Indium coated (100) Si substrate by DC reactive magnetron sputtering. It is shown that In incorporated layer improve the extent of preferential growth along (100) axis and form dense AlN films with uniform surface and large grains, devoid of micro-cracks. As revealed by SEM cross section images, AlN structure consists of oriented columnar grains perpendicular to the Si surface, while AlN/In structure results in uniformely tilted column. SEM images also revealed the presence of In hexagonal islands persistent throughout the entire growth. Micro -Raman spectroscopy of the surface and the cross section of the AlN/In grown films evidenced their high degree of homogeneity and cristallinity.
NASA Astrophysics Data System (ADS)
Chantana, J.; Watanabe, T.; Teraji, S.; Kawamura, K.; Minemoto, T.
2013-11-01
Cu(In,Ga)Se2 (CIGS) absorbers with various Ga/III, Ga/(In+Ga), profiles are prepared by the so-called "multi-layer precursor method" using multi-layer co-evaporation of material sources. It is revealed that open-circuit voltage (VOC) of CIGS solar cell is primarily dependent on averaged Ga/III near the surface of its absorber. This averaged Ga/III is well predicted by peak position of (220/204) preferred orientation of CIGS film near its surface investigated by glancing-incidence X-ray diffraction with 0.1° incident angle. Finally, the peak position of (220/204) preferred orientation is proposed as a measure of VOC before solar cell fabrication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, Seong-Jae, E-mail: jsjigst@ecei.tohoku.ac.jp; Saito, Shin; Hinata, Shintaro
Effect of bcc Cr{sub 80}Mn{sub 20} seed layer and Cr{sub 50}Ti{sub 50} amorphous texture inducing layer on the heteroepitaxy system in FePt-C granular film was studied by introducing a new concept of the layered structure. The concept suggested that the large grain seed layer in which the crystallographic texture was initially formed on an amorphous layer in the layered structure can reduce the angular distribution of (002) c-axis crystal orientation in the FePt-C granular film owing to heteroepitaxial growth. Structure analysis by X-ray diffraction revealed that (1) when the substrate heating temperature was elevated from 300 °C to 500 °C, grain sizemore » in the seed layer increased from 9.8 nm to 11.6 nm, and then decreased with further increasing the substrate temperature. The reduction of the grain size over 500 °C corresponds to the crystallization of the amorphous texture inducing layer, (2) when the grain size increased from 9.8 nm to 11.6 nm, the angular distribution of the (002) orientation in the seed layer dramatically decreased from 13.7° to 4.1°. It was shown that the large grain seed layer increased the perpendicular hysteresis in FePt-C granular film.« less
NASA Astrophysics Data System (ADS)
Gao, S. S.; Reed, C. A.; Yu, Y.; Liu, K. H.; Chindandali, P. R. N.; Mdala, H. S.; Massinque, B.; Mutamina, D. M.
2016-12-01
Measuring the magnitude and orientation of seismic anisotropy beneath actively extending rift zones provides invaluable estimates of the influence of numerous geodynamic parameters upon their evolution. In order to infer the character and origin of extensional forces acting upon the Malawi Rift Zone (MRZ) and Luangwa Rift Zone (LRZ) of southern Africa, we installed 33 Seismic Arrays For African Rift Initiation (SAFARI) three-component broadband seismic stations in Malawi, Mozambique, and Zambia between 2012-2014. Shear-wave splitting parameters, including the fast-component polarization orientation and the splitting time, are extracted from 142 events recorded during that time period for a total of 642 well-defined PKS, SKKS, and SKS phase measurements. Polarizations trend NE-SW along the western flank of the LRZ, whereupon they demonstrate an abrupt shift to N-S within the rift valley and the eastern flank. SWS orientations shift increasingly counterclockwise toward the east until, at 33°E, they shift from WNW-ESE to ENE-WSW, suggesting a systematic change in dominant mantle fabric orientation. The resulting fast orientations demonstrate remarkable variability within the MRZ, with E-W measurements in the north rotating counterclockwise toward the south to N-S within the southernmost MRZ. Measurements revert to E-W and NE-SW orientations toward the east in Mozambique, suggesting the presence of complex two-layer anisotropy. Azimuthal variations of SWS parameters recorded by stations within the central MRZ exhibit excellent 90° periodicity, further suggesting complex anisotropic layering. Lateral variation of measurements between the northern and southern MRZ imply the modulation of the mantle flow system beneath the active rift zone.
Neuroprotection Profile of the High Affinity NMDA Receptor Antagonist Conantokin-G
2002-01-01
antagonist dextromethorphan reduced infarction a maxi- TABLE 4 Physiological parameters for (0.5 nmol) Con-G and vehicle-treated rats with and without MCAo...experience, only AHN649, an analog of dextromethorphan , has produced comparable reductions in cerebral infarction (Tortella et al. 1999). Although...ischemia) and neurotoxicity (electroencephalographic) studies in rats with AHN649, a 3-amino analog of dextromethorphan and low-affinity N-methyl-D
Zinc translocation accelerates infarction after mild transient focal ischemia.
Lee, J-M; Zipfel, G J; Park, K H; He, Y Y; Hsu, C Y; Choi, D W
2002-01-01
Excess release of chelatable zinc (Zn(2+)) from central synaptic vesicles may contribute to the pathogenesis of selective neuronal cell death following transient forebrain ischemia, but a role in neurodegeneration after focal ischemia has not been defined. Adult male Long-Evans rats subjected to middle cerebral artery occlusion (MCAO) for 30 min followed by reperfusion developed delayed cerebral infarction reaching completion 3 days after the insult. One day after the insult, many degenerating cerebral neurons exhibited increased intracellular Zn(2+), and some labeled with the antibody against activated caspase-3. I.c.v. administration of the Zn(2+) chelator, EDTA saturated with equimolar Ca(2+) (CaEDTA), 15 min prior to ischemia attenuated subsequent Zn(2+) translocation into cortical neurons, and reduced infarct volume measured 3 days after ischemia. Although the protective effect of CaEDTA at this endpoint was substantial (about 70% infarct reduction), it was lost when insult severity was increased (from 30 to 60 min MCAO), or when infarct volume was measured at a much later time point (14 days instead of 3 days after ischemia). These data suggest that toxic Zn(2+) translocation, from presynaptic terminals to post-synaptic cell bodies, may accelerate the development of cerebral infarction following mild transient focal ischemia.
Zhu, Xiaoling; Yin, Jinbo; Li, Liaoliao; Ma, Lei; Tan, Hongying; Deng, Jiao; Chen, Shaoyang; Zuo, Zhiyi
2013-01-01
Electroacupuncture has been shown to induce a preconditioning effect in the brain. The mechanisms for this protection are not fully elucidated. We hypothesize that this protection is mediated by excitatory amino acid transporters (EAATs) that have been shown to be neuroprotective. To test this hypothesis, two-month old male Sprague-Dawley rats and EAAT type 3 (EAAT3) knockout mice received or did not receive 30-min electroacupuncture once a day for 5 consecutive days. They were subjected to a 120-min middle cerebral arterial occlusion (MCAO) at 24 h after the last electroacupuncture. Neurological outcome was assessed 2 days after the MCAO. Brain tissues were harvested at 24 h after the last electroacupuncture for Western blotting. Rats subjected to electroacupuncture at the Baihui acupoint had smaller brain infarct volumes and better neurological deficit scores than control rats. Electroacupuncture increased EAAT type 2 (EAAT2) in the cerebral cortex, tended to increase EAAT3 in the hippocampus, and had no effect on EAAT type 1 expression. Dihydrokainate, an EAAT2 inhibitor, worsened the neurological outcome of rats with electroacupuncture pretreatment. Electroacupuncture pretreatment at the Baihui acupoint increased EAAT2 in the cerebral cortex and improved the neurological outcome of EAAT3 knockout mice. Together, our results suggest that EAAT2 may mediate the electroacupuncture preconditioning-induced neuroprotection. PMID:23831620
AdapTube: Adaptive Optics animations for tutorial purpose
NASA Astrophysics Data System (ADS)
Dima, Marco; Ragazzoni, Roberto; Bergomi, Maria; Farinato, Jacopo; Magrin, Demetrio; Marafatto, Luca; Viotto, Valentina
2013-12-01
As it happens in most scientific fields, many Adaptive Optics concepts and instrumental layouts are not easily understandable. Both in outreach and in the framework of addressing experts, computer graphics (CG) and, in particular, animation can aid the speaker and the auditor to simplify concept description, translating them into a more direct message. This paper presents a few examples of how some instruments, as Shack-Hartmann and Pyramid wavefront sensors, or concepts, like MCAO and MOAO, have been depicted and sometimes compared in a more intuitive way, emphasizing differences, pros and cons. Some example linking animation to the real world are also outlined, pushing the boundaries of the way a complicated concept can be illustrated embedding complex drawings into the explanation of a human. The used CG software, which is completely open source and will be presented and briefly described, turns out to be a valid communication tool to highlight what, on a piece of paper, could seem obscure. This poster aims at showing how concepts, such as Pyramid WFS, GLAO, MCAO and GMCAO, sometimes very difficult to explain on paper, can be much more easily outlined by means of dedicated animation SW. Blender is a very powerful freeware SW, used by our group since years to make tutorial videos and explanatory movies, a few examples of which are presented here.
Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.
Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam
2015-05-01
Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.
Docosahexaenoic acid confers enduring neuroprotection in experimental stroke.
Hong, Sung-Ha; Belayev, Ludmila; Khoutorova, Larissa; Obenaus, Andre; Bazan, Nicolas G
2014-03-15
Recently we demonstrated that docosahexaenoic acid (DHA) is highly neuroprotective when animals were allowed to survive during one week. This study was conducted to establish whether the neuroprotection induced by DHA persists with chronic survival. Sprague-Dawley rats underwent 2h of middle cerebral artery occlusion (MCAo) and treated with DHA or saline at 3h after MCAo. Animals received neurobehavioral examination (composite neuroscore, rota-rod, beam walking and Y maze tests) followed by ex vivo magnetic resonance imaging and histopathology at 3 weeks. DHA improved composite neurologic score beginning on day 1 by 20%, which persisted throughout weeks 1-3 by 24-41% compared to the saline-treated group. DHA prolonged the latency in rota-rod on weeks 2-3 by 162-178%, enhanced balance performance in the beam walking test on weeks 1 and 2 by 42-51%, and decreased the number of entries in the Y maze test by 51% and spontaneous alteration by 53% on week 2 compared to the saline-treated group. DHA treatment reduced tissue loss (computed from T2-weighted images) by 24% and total and cortical infarct volumes by 46% and 54% compared to the saline-treated group. These results show that DHA confers enduring ischemic neuroprotection. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Langdon, Kristopher D; Maclellan, Crystal L; Corbett, Dale
2010-08-01
The incidence of infection among stroke patients is alarmingly high and both acute and delayed infections increase morbidity and mortality. Experimental studies support the acute clinical data, but little attention has focused on delayed systemic infections. Here, we investigated the effects of prolonged systemic inflammation either before or 24-h after ischemia. Systemic inflammation was induced by injecting rats with three separate doses of lipopolysaccharide (LPS; 50 mug/kg, i.p.) with core temperature monitoring for 48-h after middle cerebral artery occlusion (MCAo). Lipopolysaccharide injected before MCAo increased injury by approximately 30%, whereas delayed injection increased injury by approximately 85% (30-day survival). Proinflammatory cytokines assessed repeatedly for 72 h were significantly and persistently elevated with inflammation. This was accompanied by increases in microglia/macrophage and infiltrating leukocyte numbers in delayed LPS-treated animals. Behavioral assessments at 7 and 30 days revealed approximately 15% deficit in hindlimb function in animals treated with LPS 24-h after ischemia. Clearly, delayed and prolonged postischemic systemic inflammation has devastating effects on stroke outcome, in the absence of a prolonged febrile response. These findings, together with corroborative clinical data, emphasize the importance of early intervention to counteract the deleterious consequences of stroke-associated inflammation and infection.
Yousuf, Seema; Atif, Fahim; Sayeed, Iqbal; Tang, Huiling; Wang, Jun; Stein, Donald G
2015-01-01
Most pre-clinical stroke studies address the acute phase after injury, with less attention to long-term effects of injury, treatment, and experimental testing itself. We addressed these questions: 1) Will functional deficits persist up to 8 weeks following transient stroke in older animals? 2) Will functional deficits resolve spontaneously, with time and/or repeated behavioral testing? Male Sprague-Dawley rats (12 months) were pre-trained on behavioral tasks to provide baseline data and then underwent transient middle artery occlusion (tMCAO) or sham surgery. We measured motor, sensory, cognitive and gait impairments over 8 weeks, and the extent of hemispheric brain infarction. One cohort underwent behavioral testing once at 8 weeks post-stroke (LT); a second cohort (RLT) was tested at 3, 6 and 8 weeks post-stroke. Significant deficits were exhibited in all functional outcomes in both cohorts after 8 weeks. We observed some recovery in some behavioral parameters in both cohorts at 8 weeks. Deficits persist for at least 8 weeks after tMCAO. The greater spontaneous recovery seen in the RLT groups suggest that repeated testing did reduce the severity of these stroke-induced impairments. These findings have implications for designing future studies of agents to induce long-term functional recovery following stroke.
Human Recombinant Peptide Sponge Enables Novel, Less Invasive Cell Therapy for Ischemic Stroke
Miyamoto, Michiyuki; Yamauchi, Tomohiro; Kawabori, Masahito; Osanai, Toshiya; Sasaki, Tasuku; Houkin, Kiyohiro; Kuroda, Satoshi
2018-01-01
Bone marrow stromal cell (BMSC) transplantation has the therapeutic potential for ischemic stroke. However, it is unclear which delivery routes would yield both safety and maximal therapeutic benefits. We assessed whether a novel recombinant peptide (RCP) sponge, that resembles human collagen, could act as a less invasive and beneficial scaffold in cell therapy for ischemic stroke. BMSCs from green fluorescent protein-transgenic rats were cultured and Sprague–Dawley rats were subjected to permanent middle cerebral artery occlusion (MCAo). A BMSC-RCP sponge construct was transplanted onto the ipsilateral intact neocortex 7 days after MCAo. A BMSC suspension or vehicle was transplanted into the ipsilateral striatum. Rat motor function was serially evaluated and histological analysis was performed 5 weeks after transplantation. The results showed that BMSCs could proliferate well in the RCP sponge and the BMSC-RCP sponge significantly promoted functional recovery, compared with the vehicle group. Histological analysis revealed that the RCP sponge provoked few inflammatory reactions in the host brain. Moreover, some BMSCs migrated to the peri-infarct area and differentiated into neurons in the BMSC-RCP sponge group. These findings suggest that the RCP sponge may be a promising candidate for animal protein-free scaffolds in cell therapy for ischemic stroke in humans. PMID:29765415
Human Recombinant Peptide Sponge Enables Novel, Less Invasive Cell Therapy for Ischemic Stroke.
Miyamoto, Michiyuki; Nakamura, Kentaro; Shichinohe, Hideo; Yamauchi, Tomohiro; Ito, Masaki; Saito, Hisayasu; Kawabori, Masahito; Osanai, Toshiya; Sasaki, Tasuku; Houkin, Kiyohiro; Kuroda, Satoshi
2018-01-01
Bone marrow stromal cell (BMSC) transplantation has the therapeutic potential for ischemic stroke. However, it is unclear which delivery routes would yield both safety and maximal therapeutic benefits. We assessed whether a novel recombinant peptide (RCP) sponge, that resembles human collagen, could act as a less invasive and beneficial scaffold in cell therapy for ischemic stroke. BMSCs from green fluorescent protein-transgenic rats were cultured and Sprague-Dawley rats were subjected to permanent middle cerebral artery occlusion (MCAo). A BMSC-RCP sponge construct was transplanted onto the ipsilateral intact neocortex 7 days after MCAo. A BMSC suspension or vehicle was transplanted into the ipsilateral striatum. Rat motor function was serially evaluated and histological analysis was performed 5 weeks after transplantation. The results showed that BMSCs could proliferate well in the RCP sponge and the BMSC-RCP sponge significantly promoted functional recovery, compared with the vehicle group. Histological analysis revealed that the RCP sponge provoked few inflammatory reactions in the host brain. Moreover, some BMSCs migrated to the peri-infarct area and differentiated into neurons in the BMSC-RCP sponge group. These findings suggest that the RCP sponge may be a promising candidate for animal protein-free scaffolds in cell therapy for ischemic stroke in humans.
Fundamental limits on isoplanatic correction with multiconjugate adaptive optics
NASA Astrophysics Data System (ADS)
Lloyd-Hart, Michael; Milton, N. Mark
2003-10-01
We investigate the performance of a general multiconjugate adaptive optics (MCAO) system in which signals from multiple reference beacons are used to drive several deformable mirrors in the optical beam train. Taking an analytic approach that yields a detailed view of the effects of low-order aberration modes defined over the metapupil, we show that in the geometrical optics approximation, N deformable mirrors conjugated to different ranges can be driven to correct these modes through order N with unlimited isoplanatic angle, regardless of the distribution of turbulence along the line of sight. We find, however, that the optimal deformable mirror shapes are functions of target range, so the best compensation for starlight is in general not the correction that minimizes the wave-front aberration in a laser guide beacon. This introduces focal anisoplanatism in the wave-front measurements that can be overcome only through the use of beacons at several ranges. We derive expressions for the number of beacons required to sense the aberration to arbitrary order and establish necessary and sufficient conditions on their geometry for both natural and laser guide stars. Finally, we derive an expression for the residual uncompensated error by mode as a function of field angle, target range, and MCAO system geometry.
Weise, Gesa; Lorenz, Marlene; Pösel, Claudia; Maria Riegelsberger, Ute; Störbeck, Veronika; Kamprad, Manja; Kranz, Alexander; Wagner, Daniel-Christoph; Boltze, Johannes
2014-01-01
Previous studies have highlighted the enormous potential of cell-based therapies for stroke not only to prevent ischemic brain damage, but also to amplify endogenous repair processes. Considering its widespread availability and low immunogenicity human umbilical cord blood (HUCB) is a particularly attractive stem cell source. Our goal was to investigate the neurorestorative potential of cryopreserved HUCB mononuclear cells (MNC) after permanent middle cerebral artery occlusion (MCAO) in spontaneously hypertensive rats (SHR). Human umbilical cord blood MNC or vehicle solution was administered intravenously 24 hours after MCAO. Experimental groups were as follows: (1) quantitative polymerase chain reaction (PCR) of host-derived growth factors up to 48 hours after stroke; (2) immunohistochemical analysis of astroglial scarring; (3) magnetic resonance imaging (MRI) and weekly behavioral tests for 2 months after stroke. Long-term functional outcome and lesion development on MRI were not beneficially influenced by HUCB MNC therapy. Furthermore, HUCB MNC treatment did not change local growth factor levels and glial scarring extent. In summary, we could not demonstrate neurorestorative properties of HUCB MNC after stroke in SHR. Our results advise caution regarding a prompt translation of cord blood therapy into clinical stroke trials as long as deepened knowledge about its precise modes of action is missing. PMID:24169850
Zuo, Xialin; Hou, Qinghua; Jin, Jizi; Zhan, Lixuan; Li, Xinyu; Sun, Weiwen; Lin, Kunqin; Xu, En
2016-09-01
Secondary degeneration in areas beyond ischemic foci can inhibit poststroke recovery. The cysteine protease Cathepsin B (CathB) regulates cell death and intracellular protein catabolism. To investigate the roles of CathB in the development of secondary degeneration in the ventroposterior nucleus (VPN) of the ipsilateral thalamus after focal cerebral infarction, infarct volumes, immunohistochemistry and immunofluorescence, and Western blotting analyses were conducted in a distal middle cerebral artery occlusion (dMCAO) stroke model in adult rats. We observed marked neuron loss and gliosis in the ipsilateral thalamus after dMCAO, and the expression of CathB and cleaved caspase-3 in the VPN was significantly upregulated; glial cells were the major source of CathB. Although it had no effect on infarct volume, delayed intracerebroventricular treatment with the membrane-permeable CathB inhibitor CA-074Me suppressed the expression of CathB and cleaved caspase-3 in ipsilateral VPN and accordingly alleviated the secondary degeneration. These data indicate that CathB mediates a novel mechanism of secondary degeneration in the VPN of the ipsilateral thalamus after focal cortical infarction and suggest that CathB might be a therapeutic target for the prevention of secondary degeneration in patients after stroke. © 2016 American Association of Neuropathologists, Inc. All rights reserved.
Low voltage solid-state lateral coloration electrochromic device
Tracy, C.E.; Benson, D.K.; Ruth, M.R.
1984-12-21
A solid-state transition metal oxide device comprising a plurality of layers having a predisposed orientation including an electrochromic oxide layer. Conductive material including anode and cathode contacts is secured to the device. Coloration is actuated within the electrochromic oxide layer after the application of a predetermined potential between the contacts. The coloration action is adapted to sweep or dynamically extend across the length of the electrochromic oxide layer.
Epitaxial NbN/AlN/NbN tunnel junctions on Si substrates with TiN buffer layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Rui; University of Chinese Academy of Sciences, Beijing 100049; Makise, Kazumasa
We have developed epitaxial NbN/AlN/NbN tunnel junctions on Si (100) substrates with a TiN buffer layer. A 50-nm-thick (200)-oriented TiN thin film was introduced as the buffer layer for epitaxial growth of NbN/AlN/NbN trilayers on Si substrates. The fabricated NbN/AlN/NbN junctions demonstrated excellent tunneling properties with a high gap voltage of 5.5 mV, a large I{sub c}R{sub N} product of 3.8 mV, a sharp quasiparticle current rise with a ΔV{sub g} of 0.4 mV, and a small subgap leakage current. The junction quality factor R{sub sg}/R{sub N} was about 23 for the junction with a J{sub c} of 47 A/cm{supmore » 2} and was about 6 for the junction with a J{sub c} of 3.0 kA/cm{sup 2}. X-ray diffraction and transmission electron microscopy observations showed that the NbN/AlN/NbN trilayers were grown epitaxially on the (200)-orientated TiN buffer layer and had a highly crystalline structure with the (200) orientation.« less
The aortic valve microstructure: effects of transvalvular pressure.
Sacks, M S; Smith, D B; Hiester, E D
1998-07-01
We undertook this study to establish a more quantitative understanding of the microstructural response of the aortic valve cusp to pressure loading. Fresh porcine aortic valves were fixed at transvalvular pressures ranging from 0 mmHg to 90 mmHg, and small-angle light scattering (SALS) was used to quantify the gross fiber structure of the valve cusps. At all pressures the fiber-preferred directions coursed along the circumferential direction. Increasing transvalvular pressure induced the greatest changes in fiber alignment between 0 and 1 mmHg, with no detectable change past 4 mmHg. When the fibrosa and ventricularis layers of the cusps were re-scanned separately, the fibrosa layer revealed a higher degree of orientation while the ventricularis was more randomly oriented. The degree of fiber orientation for both layers became more similar once the transvalvular pressure exceeded 4 mmHg, and the layers were almost indistinguishable by 60 mmHg. It is possible that, in addition to retracting the aortic cusp during systole, the ventricularis mechanically may contribute to the diastolic cuspal stiffness at high transvalvular pressures, which may help to prevent over distention of the cusp. Our results suggest a complex, highly heterogeneous structural response to transvalvular pressure on a fiber level that will have to be duplicated in future bioprosthetic heart valve designs.
George, J P; Smet, P F; Botterman, J; Bliznuk, V; Woestenborghs, W; Van Thourhout, D; Neyts, K; Beeckman, J
2015-06-24
The electro-optical properties of lead zirconate titanate (PZT) thin films depend strongly on the quality and crystallographic orientation of the thin films. We demonstrate a novel method to grow highly textured PZT thin films on silicon using the chemical solution deposition (CSD) process. We report the use of ultrathin (5-15 nm) lanthanide (La, Pr, Nd, Sm) based intermediate layers for obtaining preferentially (100) oriented PZT thin films. X-ray diffraction measurements indicate preferentially oriented intermediate Ln2O2CO3 layers providing an excellent lattice match with the PZT thin films grown on top. The XRD and scanning electron microscopy measurements reveal that the annealed layers are dense, uniform, crack-free and highly oriented (>99.8%) without apparent defects or secondary phases. The EDX and HRTEM characterization confirm that the template layers act as an efficient diffusion barrier and form a sharp interface between the substrate and the PZT. The electrical measurements indicate a dielectric constant of ∼650, low dielectric loss of ∼0.02, coercive field of 70 kV/cm, remnant polarization of 25 μC/cm(2), and large breakdown electric field of 1000 kV/cm. Finally, the effective electro-optic coefficients of the films are estimated with a spectroscopic ellipsometer measurement, considering the electric field induced variations in the phase reflectance ratio. The electro-optic measurements reveal excellent linear effective pockels coefficients of 110 to 240 pm/V, which makes the CSD deposited PZT thin film an ideal candidate for Si-based active integrated nanophotonic devices.
Muhammed, M. M.; Roldan, M. A.; Yamashita, Y.; Sahonta, S.-L.; Ajia, I. A.; Iizuka, K.; Kuramata, A.; Humphreys, C. J.; Roqan, I. S.
2016-01-01
We demonstrate the high structural and optical properties of InxGa1−xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 107 cm−2) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1−xN epilayers can be achieved with high optical quality of InxGa1−xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design. PMID:27412372
Muhammed, M M; Roldan, M A; Yamashita, Y; Sahonta, S-L; Ajia, I A; Iizuka, K; Kuramata, A; Humphreys, C J; Roqan, I S
2016-07-14
We demonstrate the high structural and optical properties of InxGa1-xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 10(7) cm(-2)) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1-xN epilayers can be achieved with high optical quality of InxGa1-xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design.
NASA Astrophysics Data System (ADS)
Wang, Jingtao; Wang, Xiaoyong; Tai, Mo; Guan, Jing
2016-01-01
The rheological behaviors of multiple emulsions with an asymmetric internal structure in its third layer (grand-daughter droplets) under a modest extensional flow are investigated in this paper. The asymmetric structure will lead to the asymmetric circulation and pressure distribution inside the globule and eventually result in the oriented shift of its daughter droplet (in the second layer). The shift direction is affected not only by the structural asymmetry parameter As but also by some flow features including the capillary number Ca and viscosity ratio λ. Changes of these factors might cause the reverse of the shift direction, which are shown in three phase diagrams as a function of As, Ca, and λ. As the oriented shift of the daughter droplet would cause the oriented breakup of the multiple-emulsion globule, this phenomenon could be applied for the controlled release of the globule insertion by a hydrodynamic approach.
Otsubo, Kazuya; Haraguchi, Tomoyuki; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi
2012-06-13
Fabrication of a crystalline ordered thin film based on the porous metal-organic frameworks (MOFs) is one of the practical applications of the future functional nanomaterials. Here, we report the creation of a highly oriented three-dimensional (3-D) porous pillared-layer-type MOF thin film on a metal substrate using a step-by-step approach based on liquid-phase epitaxy. Synchrotron X-ray diffraction (XRD) study clearly indicates that the thin film is crystalline and its orientation is highly controlled in both horizontal and vertical directions relative to the substrate. This report provides the first confirmation of details of not only the crystallinity but also the orientation of 3-D MOF thin film using synchrotron XRD. Moreover, we also demonstrate its guest adsorption/desorption behavior by using in situ XRD measurements. The results presented here would promise useful insights for fabrication of MOF-based nanodevices in the future.