Compressional residual stress in Bastogne boudins revealed by synchrotron X-ray microdiffraction
Chen, Kai; Kunz, Martin; Li, Yao; ...
2016-06-22
Lattice distortions in crystals can be mapped at the micron scale using synchrotron X-ray Laue microdiffraction (μXRD). From lattice distortions the shape and orientation of the elastic strain tensor can be derived and interpreted in terms of residual stress. We apply the new method to vein quartz from the original boudinage locality at Bastogne, Belgium. Furthermore, a long-standing debate surrounds the kinematics of the Bastogne boudins. The μXRD measurements reveal a shortening residual elastic strain, perpendicular to the vein wall, corroborating the model that the Bastogne boudins formed by layer-parallel shortening and not by layer-parallel extension, as is in themore » geological community generally inferred by the process of boudinage.« less
NASA Astrophysics Data System (ADS)
Mount, Van S.; Wilkins, Scott; Comiskey, Cody S.
2017-12-01
The Tuscarora fold system (TFS) is located in the Pennsylvania salient in the foreland of the Valley and Ridge province. The TFS is imaged in high quality 3D seismic data and comprises a system of small-scale folds within relatively flat-lying Lower Silurian Tuscarora Formation strata. We characterize the TFS structures and infer layer parallel shortening (LPS) directions and magnitudes associated with deformation during the Alleghany Orogeny. Previously reported LPS data in our study area are from shallow Devonian and Carboniferous strata (based on outcrop and core analyses) above the shallowest of three major detachments recognized in the region. Seismic data allows us to characterize LPS at depth in strata beneath the shallow detachment. Our LPS data (orientations and inferred magnitudes) are consistent with the shallow data leading us to surmise that LPS during Alleghanian deformation fanned around the salient and was distributed throughout the stratigraphic section - and not isolated to strata above the shallow detachment. We propose that a NW-SE oriented Alleghanian maximum principal stress was perturbed by deep structure associated with the non-linear margin of Laurentia resulting in fanning of shortening directions within the salient.
NASA Astrophysics Data System (ADS)
Engelder, Terry; Haith, Benjamin F.; Younes, Amgad
2001-07-01
Some Alleghanian joints in black shales of the Geneseo and Middlesex Formations of the Catskill Delta complex, Finger Lakes district, New York, slipped horizontally up to 8 cm. Horizontal slip is measured by the offset of ENE-striking joints. Alleghanian joints striking 330-350° display a right-lateral slip with an average value of 1.9 cm, while joints striking 004-010° slip in the left-lateral sense with an average value of 1.3 cm. The maximum horizontal stress (SH) driving this slip falls between 350° and 004°, the orientation of local Alleghanian layer-parallel shortening as indicated by both disjunctive and pencil cleavage. By commonality of orientation, we infer that slip on Alleghanian joints is driven contemporaneously with layer-parallel shortening. If so, the offset ENE-striking joints predate the Alleghanian stress field. These observations mean that both pre-Alleghanian and early Alleghanian joints persist through a period of penetrative strain.
Geometry of an outcrop-scale duplex in Devonian flysch, Maine
Bradley, D.C.; Bradley, L.M.
1994-01-01
We describe an outcrop-scale duplex consisting of 211 exposed repetitions of a single bed. The duplex marks an early Acadian (Middle Devonian) oblique thrust zone in the Lower Devonian flysch of northern Maine. Detailed mapping at a scale of 1:8 has enabled us to measure accurately parameters such as horse length and thickness, ramp angles and displacements; we compare these and derivative values with those of published descriptions of duplexes, and with theoretical models. Shortening estimates based on line balancing are consistently smaller than two methods of area balancing, suggesting that layer-parallel shortening preceded thrusting. ?? 1994.
Clendenin, C.W.; Garihan, J.M.
2006-01-01
Four periods of deformation (D1-D4) are recognized in the Lion Park Road borrow pit near Marietta, South Carolina. Although each period is characterized by distinct structures, D3 produced two structural styles (D3a, D3b) resulting from layer-parallel shortening. D3a is characterized by detachment folding at the tip of an underlying thrust. D3b is a fold-to-fault progression that was localized by east-dipping, quartz-filled gash fractures. The fold-to-fault progression demonstrates the influence of a mechanical anisotropy on ramp development. The early stages of D3b were formed by deflection of northwest-directed, layer-parallel shortening and active, down-section propagation of folds and thrusts. Following connection with a splay of basal detachment, later D3b stages resulted from up-section movement that produced kink folding and a throughgoing thrust. This up-section movement deformed and modified the geometries of older, down-section structures. Detailed mesoscopic field observations, integrated with a combination of current thrust fault models, are used to interpret the D3b fold-to-fault progression. ?? 2006 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Paulsen, T.; Wilson, T. J.; Demosthenous, C.; Millan, C.; Jarrard, R. D.; Laufer, A.
2013-12-01
Strain analyses of mechanically twinned calcite in veins and faults hosted by Neogene (13.6 Ma to 4.3 Ma) sedimentary and volcanic rocks recovered within the ANDRILL AND-1B drill core from the Terror Rift in the southern Ross Sea, Antarctica, yield prolate and oblate ellipsoids with principal shortening and extension strains ranging from 0.1% to 8.5%. The majority of samples show homogeneous coaxial strain predominantly characterized by subvertical shortening, which we attribute to lithostatic loading in an Andersonian normal faulting stress regime during sedimentary and ice sheet burial of the stratigraphic sequence. The overall paucity of a non-coaxial layer-parallel shortening signal in the AND-1B twin populations suggests that horizontal compressive stresses predicted by Neogene transtensional kinematic models for the rift system have been absent or of insufficient magnitude to cause a widespread noncoaxial strain overprint. Limited numbers of oriented samples yield a possible average ESE extension direction for the rift that is subparallel to other indicators of Neogene extension. The lack of horizontal shortening in the twin data suggests the Neogene Terror Rift system either lacks a strong longitudinal strike-slip component, or that spatial partitioning of strain controls the maximum shortening axes seen in rocks of this age.
NASA Astrophysics Data System (ADS)
Stewart, L. K.
1997-11-01
An analytical method for determining amounts of cleavage-normal dissolution and cleavage-parallel shear movement that occurred between adjacent microlithons during crenulation cleavage seam formation within a deformed slate is developed for the progressive bulk inhomogeneous shortening (PBIS) mechanism of crenulation cleavage formation. The method utilises structural information obtained from samples where a diverging bed and vein are offset by a crenulation cleavage seam. Several samples analysed using this method produced ratios of relative, cleavage-parallel movement of microlithons to the material thickness removed by dissolution typically in the range of 1.1-3.4:1. The mean amount of solution shortening attributed to the formation of the cleavage seams examined is 24%. The results indicate that a relationship may exist between the width of microlithons and the amount of cleavage-parallel intermicrolithon-movement. The method presented here has the potential to help determine whether crenulation cleavage seams formed by the progressive bulk inhomogeneous shortening mechanism or by that involving cleavage-normal pressure solution alone.
Multiphase boudinage: a case study of amphibolites in marble in the Naxos migmatite core
NASA Astrophysics Data System (ADS)
Virgo, Simon; von Hagke, Christoph; Urai, Janos L.
2018-02-01
In multiply deformed terrains multiphase boudinage is common, but identification and analysis of these is difficult. Here we present an analysis of multiphase boudinage and fold structures in deformed amphibolite layers in marble from the migmatitic centre of the Naxos metamorphic core complex. Overprinting between multiple boudinage generations is shown in exceptional 3-D outcrop. We identify five generations of boudinage, reflecting the transition from high-strain high-temperature ductile deformation to medium- to low-strain brittle boudins formed during cooling and exhumation. All boudin generations indicate E-W horizontal shortening and variable direction of bedding parallel extension, evolving from subvertical extension in the earliest boudins to subhorizontal N-S extension during exhumation. Two phases of E-W shortening can be inferred, the first associated with lower crustal synmigmatic convergent flow and the second associated with exhumation and N-S extension, possibly related to movement of the North Anatolian Fault.
The role of nonlinear viscoelasticity on the functionality of laminating shortenings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macias-Rodriguez, Braulio A.; Peyronel, Fernanda; Marangoni, Alejandro G.
The rheology of fats is essential for the development of homogeneous and continuous layered structures of doughs. Here, we define laminating shortenings in terms of rheological behavior displayed during linear-to-nonlinear shear deformations, investigated by large amplitude oscillatory shear rheology. Likewise, we associate the rheological behavior of the shortenings with structural length scales elucidated by ultra-small angle x-ray scattering and cryo-electron microscopy. Shortenings exhibited solid-like viscoelastic and viscoelastoplastic behaviors in the linear and nonlinear regimes respectively. In the nonlinear region, laminating shortenings dissipated more viscous energy (larger normalized dynamic viscosities) than a cake bakery shortening. The fat solid-like network of laminatingmore » shortening displayed a three-hierarchy structure and layered crystal aggregates, in comparison to two-hierarchy structure and spherical-like crystal aggregates of a cake shortening. We argue that the observed rheology, correlated to the structural network, is crucial for optimal laminating performance of shortenings.« less
Deformation, crystal preferred orientations, and seismic anisotropy in the Earth's D″ layer
NASA Astrophysics Data System (ADS)
Tommasi, Andréa; Goryaeva, Alexandra; Carrez, Philippe; Cordier, Patrick; Mainprice, David
2018-06-01
We use a forward multiscale model that couples atomistic modeling of intracrystalline plasticity mechanisms (dislocation glide ± twinning) in MgSiO3 post-perovskite (PPv) and periclase (MgO) at lower mantle pressures and temperatures to polycrystal plasticity simulations to predict crystal preferred orientations (CPO) development and seismic anisotropy in D″. We model the CPO evolution in aggregates of 70% PPv and 30% MgO submitted to simple shear, axial shortening, and along corner-flow streamlines, which simulate changes in flow orientation similar to those expected at the transition between a downwelling and flow parallel to the core-mantle boundary (CMB) within D″ or between CMB-parallel flow and upwelling at the borders of the large low shear wave velocity provinces (LLSVP) in the lowermost mantle. Axial shortening results in alignment of PPv [010] axes with the shortening direction. Simple shear produces PPv CPO with a monoclinic symmetry that rapidly rotates towards parallelism between the dominant [100](010) slip system and the macroscopic shear. These predictions differ from MgSiO3 post-perovskite textures formed in diamond-anvil cell experiments, but agree with those obtained in simple shear and compression experiments using CaIrO3 post-perovskite. Development of CPO in PPv and MgO results in seismic anisotropy in D″. For shear parallel to the CMB, at low strain, the inclination of ScS, Sdiff, and SKKS fast polarizations and delay times vary depending on the propagation direction. At moderate and high shear strains, all S-waves are polarized nearly horizontally. Downwelling flow produces Sdiff, ScS, and SKKS fast polarization directions and birefringence that vary gradually as a function of the back-azimuth from nearly parallel to inclined by up to 70° to CMB and from null to ∼5%. Change in the flow to shear parallel to the CMB results in dispersion of the CPO, weakening of the anisotropy, and strong azimuthal variation of the S-wave splitting up to 250 km from the corner. Transition from horizontal shear to upwelling also produces weakening of the CPO and complex seismic anisotropy patterns, with dominantly inclined fast ScS and SKKS polarizations, over most of the upwelling path. Models that take into account twinning in PPv explain most observations of seismic anisotropy in D″, but heterogeneity of the flow at scales <1000 km is needed to comply with the seismological evidence for low apparent birefringence in D″.
NASA Astrophysics Data System (ADS)
Zulauf, J.; Zulauf, G.; Zanella, F.
2016-09-01
Dome and basin folds are structures with circular or slightly elongate outcrop patterns, which can form during single- and polyphase deformation in various tectonic settings. We used power-law viscous rock analogues to simulate single-phase dome-and-basin folding of rocks undergoing dislocation creep. The viscosity ratio between a single competent layer and incompetent matrix was 5, and the stress exponent of both materials was 7. The samples underwent layer-parallel shortening under bulk pure constriction. Increasing initial layer thickness resulted in a decrease in the number of domes and basins and an increase in amplitude, A, arc-length, L, wavelength, λ, and layer thickness, Hf. Samples deformed incrementally show progressive development of domes and basins until a strain of eY=Z = -30% is attained. During the dome-and-basin formation the layer thickened permanently, while A, L, and λ increased. A dominant wavelength was not attained. The normalized amplitude (A/λ) increased almost linearly reaching a maximum of 0.12 at eY=Z = -30%. During the last increment of shortening (eY=Z = -30 to -40%) the domes and basins did not further grow, but were overprinted by a second generation of non-cylindrical folds. Most of the geometrical parameters of the previously formed domes and basins behaved stable or decreased during this phase. The normalized arc-length (L/Hf) of domes and basins is significantly higher than that of 2D cylindrical folds. For this reason, the normalized arc length can probably be used to identify domes and basins in the field, even if these structures are not fully exposed in 3D.
NASA Astrophysics Data System (ADS)
Schmidt, Christopher; Whisner, S. Christopher; Whisner, Jennifer B.
2014-12-01
The inversion of the Middle Proterozoic Belt sedimentary basin during Late Cretaceous thrusting in Montana produced a large eastwardly-convex salient, the southern boundary of which is a 200 km-long oblique to lateral ramp subtended by a detachment between the Belt rocks and Archean basement. A 10 km-long lateral ramp segment exposes the upper levels of the detachment where hanging wall Belt rocks have moved out over the Paleozoic and Mesozoic section. The hanging wall structure consists of a train of high amplitude, faulted, asymmetrical detachment folds. Initial west-east shortening produced layer parallel shortening fabrics and dominantly strike slip faulting followed by symmetrical detachment folding. 'Lock-up' of movement on the detachment surface produced regional simple shear and caused the detachment folds to become asymmetrical and faulted. Folding of the detachment surface after lock-up modified the easternmost detachment folds further into a southeast-verging, overturned fold pair with a ramp-related fault along the base of the stretched mutual limb.
FOLDER: A numerical tool to simulate the development of structures in layered media
NASA Astrophysics Data System (ADS)
Adamuszek, Marta; Dabrowski, Marcin; Schmid, Daniel W.
2015-04-01
FOLDER is a numerical toolbox for modelling deformation in layered media during layer parallel shortening or extension in two dimensions. FOLDER builds on MILAMIN [1], a finite element method based mechanical solver, with a range of utilities included from the MUTILS package [2]. Numerical mesh is generated using the Triangle software [3]. The toolbox includes features that allow for: 1) designing complex structures such as multi-layer stacks, 2) accurately simulating large-strain deformation of linear and non-linear viscous materials, 3) post-processing of various physical fields such as velocity (total and perturbing), rate of deformation, finite strain, stress, deviatoric stress, pressure, apparent viscosity. FOLDER is designed to ensure maximum flexibility to configure model geometry, define material parameters, specify range of numerical parameters in simulations and choose the plotting options. FOLDER is an open source MATLAB application and comes with a user friendly graphical interface. The toolbox additionally comprises an educational application that illustrates various analytical solutions of growth rates calculated for the cases of folding and necking of a single layer with interfaces perturbed with a single sinusoidal waveform. We further derive two novel analytical expressions for the growth rate in the cases of folding and necking of a linear viscous layer embedded in a linear viscous medium of a finite thickness. We use FOLDER to test the accuracy of single-layer folding simulations using various 1) spatial and temporal resolutions, 2) time integration schemes, and 3) iterative algorithms for non-linear materials. The accuracy of the numerical results is quantified by: 1) comparing them to analytical solution, if available, or 2) running convergence tests. As a result, we provide a map of the most optimal choice of grid size, time step, and number of iterations to keep the results of the numerical simulations below a given error for a given time integration scheme. We also demonstrate that Euler and Leapfrog time integration schemes are not recommended for any practical use. Finally, the capabilities of the toolbox are illustrated based on two examples: 1) shortening of a synthetic multi-layer sequence and 2) extension of a folded quartz vein embedded in phyllite from Sprague Upper Reservoir (example discussed by Sherwin and Chapple [4]). The latter example demonstrates that FOLDER can be successfully used for reverse modelling and mechanical restoration. [1] Dabrowski, M., Krotkiewski, M., and Schmid, D. W., 2008, MILAMIN: MATLAB-based finite element method solver for large problems. Geochemistry Geophysics Geosystems, vol. 9. [2] Krotkiewski, M. and Dabrowski M., 2010 Parallel symmetric sparse matrix-vector product on scalar multi-core cpus. Parallel Computing, 36(4):181-198 [3] Shewchuk, J. R., 1996, Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator, In: Applied Computational Geometry: Towards Geometric Engineering'' (Ming C. Lin and Dinesh Manocha, editors), Vol. 1148 of Lecture Notes in Computer Science, pp. 203-222, Springer-Verlag, Berlin [4] Sherwin, J.A., Chapple, W.M., 1968. Wavelengths of single layer folds - a Comparison between theory and Observation. American Journal of Science 266 (3), p. 167-179
Ostojic, Ivan; Boll, Werner; Waterson, Michael J.; Chan, Tammy; Chandra, Rashmi; Pletcher, Scott D.; Alcedo, Joy
2014-01-01
In Caenorhabditis elegans, a subset of gustatory neurons, as well as olfactory neurons, shortens lifespan, whereas a different subset of gustatory neurons lengthens it. Recently, the lifespan-shortening effect of olfactory neurons has been reported to be conserved in Drosophila. Here we show that the Drosophila gustatory system also affects lifespan in a bidirectional manner. We find that taste inputs shorten lifespan through inhibition of the insulin pathway effector dFOXO, whereas other taste inputs lengthen lifespan in parallel to this pathway. We also note that the gustatory influence on lifespan does not necessarily depend on food intake levels. Finally, we identify the nature of some of the taste inputs that could shorten versus lengthen lifespan. Together our data suggest that different gustatory cues can modulate the activities of distinct signaling pathways, including different insulin-like peptides, to promote physiological changes that ultimately affect lifespan. PMID:24847072
Analysis of Variscan dynamics; early bending of the Cantabria-Asturias Arc, northern Spain
NASA Astrophysics Data System (ADS)
Kollmeier, J. M.; van der Pluijm, B. A.; Van der Voo, R.
2000-08-01
Calcite twinning analysis in the Cantabria-Asturias Arc (CAA) of northern Spain provides a basis for evaluating conditions of Variscan stress and constrains the arc's structural evolution. Twinning typically occurs during earliest layer-parallel shortening, offering the ability to define early conditions of regional stress. Results from the Somiedo-Correcilla region are of two kinds: early maximum compressive stress oriented layer-parallel and at high angles to bedding strike (D1 σ1) and later twin producing compression oriented sub-parallel to strike (D2 σ1). When all D1 compressions are rotated into a uniform east-west reference orientation, a quite linear, north-south trending fold-thrust belt results showing a slight deflection of the southern zone to the south-southeast. North-south-directed D2 σ1 compression was recorded prior to bending of the belt. Calcite twinning data elucidate earliest structural conditions that could not be obtained by other means, whereas the kinematics of arc tightening during D2 is constrained by paleomagnetism. A large and perhaps protracted D2 σ1 is suggested by our results, as manifested by approximately 50% arc tightening prior to acquisition of paleomagnetic remagnetizations throughout the CAA. Early east-west compression (D1 σ1) likely resulted from the Ebro-Aquitaine massif docking to Laurussia whereas the north-directed collision of Africa (D2 σ1) produced clockwise bending in the northern zone, radial folding in the hinge, and rotation of thrusts in the southern zone.
NASA Technical Reports Server (NTRS)
Razzaq, Zia; Prasad, Venkatesh
1988-01-01
The results of a detailed investigation of the distribution of stresses in aluminum and composite panels subjected to uniform end shortening are presented. The focus problem is a rectangular panel with two longitudinal stiffeners, and an inner stiffener discontinuous at a central hole in the panel. The influence of the stiffeners on the stresses is evaluated through a two-dimensional global finite element analysis in the absence or presence of the hole. Contrary to the physical feel, it is found that the maximum stresses from the glocal analysis for both stiffened aluminum and composite panels are greater than the corresponding stresses for the unstiffened panels. The inner discontinuous stiffener causes a greater increase in stresses than the reduction provided by the two outer stiffeners. A detailed layer-by-layer study of stresses around the hole is also presented for both unstiffened and stiffened composite panels. A parallel equation solver is used for the global system of equations since the computational time is far less than that using a sequential scheme. A parallel Choleski method with up to 16 processors is used on Flex/32 Multicomputer at NASA Langley Research Center. The parallel computing results are summarized and include the computational times, speedups, bandwidths, and their inter-relationships for the panel problems. It is found that the computational time for the Choleski method decreases with a decrease in bandwidth, and better speedups result as the bandwidth increases.
NASA Astrophysics Data System (ADS)
Robert, Romain; Robion, Philippe; Souloumiac, Pauline; David, Christian; Saillet, Elodie
2018-05-01
Strain localization in a porous calcarenite facies of the Aren formation in the Tremp basin was studied. This Maastrichtian syn-tectonic formation exposed in front of the Boixols thrust, in the Central South Pyrenean Zone, hosts bedding perpendicular deformation bands. These bands are organized in two major band sets, striking East-West and N-020 respectively. Both populations formed during early deformation stages linked to the growth of the fold and thrust. A magnetic fabric study (Anisotropy of Magnetic Susceptibility, AMS) was carried out to constrain the shortening direction responsible for the deformation bands development during the upper Cretaceous-Paleocene N-S contraction in the region, which allowed us to define populations of Pure Compaction Bands (PCB) and Shear Enhanced Compaction Bands (SECB) regarding their orientations compared to the shortening direction. Both sets are formed by cataclastic deformation, but more intense in the case of SECBs, which are also thinner than PCBs. The initial pore space is both mechanically reduced and chemically filled by several cementation phases. We propose a geomechanical model based on the regional context of layer parallel shortening, thrusting and strike-slip tectonics considering the burial history of the formation, in order to explain the development of both types of bands at remarkably shallow depths.
Failure in laboratory fault models in triaxial tests
Savage, J.C.; Lockner, D.A.; Byerlee, J.D.
1996-01-01
A model of a fault in the Earth is a sand-filled saw cut in a granite cylinder subjected to a triaxial test. The saw cut is inclined at an angle a to the cylinder axis, and the sand filling is intended to represent gouge. The triaxial test subjects the granite cylinder to a constant confining pressure and increasing axial stress to maintain a constant rate of shortening of the cylinder. The required axial stress increases at a decreasing rate to a maximum, beyond which a roughly constant axial stress is sufficient to maintain the constant rate of shortening: Such triaxial tests were run for saw cuts inclined at angles ?? of 20??, 25??, 30??, 35??, 40??, 45??, and 50?? to the cylinder axis, and the apparent coefficient of friction ??a (ratio of the shear stress to the normal stress, both stresses resolved onto the saw cut) at failure was determined. Subject to the assumption that the observed failure involves slip on Coulomb shears (orientation unspecified), the orientation of the principal compression axis within the gouge can be calculated as a function of ??a for a given value of the coefficient of internal friction ??i. The rotation of the principal stress axes within the gouge in a triaxial test can then be followed as the shear strain across the gouge layer increases. For ??i ??? 0.8, an appropriate value for highly sheared sand, the observed values ??a imply that the principal-axis of compression within the gouge rotates so as to approach being parallel to the cylinder axis for all saw cut angles (20?? < ?? < 50??). In the limiting state (principal compression axis parallel to cylinder axis) the stress state in the gouge layer would be the same as that in the granite cylinder, and the failure criterion would be independent of the saw cut angle.
NASA Astrophysics Data System (ADS)
Abramov, Rafail V.
2018-06-01
For the gas near a solid planar wall, we propose a scaling formula for the mean free path of a molecule as a function of the distance from the wall, under the assumption of a uniform distribution of the incident directions of the molecular free flight. We subsequently impose the same scaling onto the viscosity of the gas near the wall and compute the Navier-Stokes solution of the velocity of a shear flow parallel to the wall. Under the simplifying assumption of constant temperature of the gas, the velocity profile becomes an explicit nonlinear function of the distance from the wall and exhibits a Knudsen boundary layer near the wall. To verify the validity of the obtained formula, we perform the Direct Simulation Monte Carlo computations for the shear flow of argon and nitrogen at normal density and temperature. We find excellent agreement between our velocity approximation and the computed DSMC velocity profiles both within the Knudsen boundary layer and away from it.
Kou, Wenjun; Pandolfino, John E; Kahrilas, Peter J; Patankar, Neelesh A
2015-08-15
On the basis of a fully coupled active musculomechanical model for esophageal transport, we aimed to find the roles of circular muscle (CM) contraction and longitudinal muscle (LM) shortening in esophageal transport, and the influence of their coordination. Two groups of studies were conducted using a computational model. In the first group, bolus transport with only CM contraction, only LM shortening, or both was simulated. Overall features and detailed information on pressure and the cross-sectional area (CSA) of mucosal and the two muscle layers were analyzed. In the second group, bolus transport with varying delay in CM contraction or LM shortening was simulated. The effect of delay on esophageal transport was studied. For cases showing abnormal transport, pressure and CSA were further analyzed. CM contraction by itself was sufficient to transport bolus, but LM shortening by itself was not. CM contraction decreased the CSA and the radius of the muscle layer locally, but LM shortening increased the CSA. Synchronized CM contraction and LM shortening led to overlapping of muscle CSA and pressure peaks. Advancing LM shortening adversely influenced bolus transport, whereas lagging LM shortening was irrelevant to bolus transport. In conclusion, CM contraction generates high squeezing pressure, which plays a primary role in esophageal transport. LM shortening increases muscle CSA, which helps to strengthen CM contraction. Advancing LM shortening decreases esophageal distensibility in the bolus region. Lagging LM shortening no longer helps esophageal transport. Synchronized CM contraction and LM shortening seems to be most effective for esophageal transport. Copyright © 2015 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Kergaravat, Charlie; Ribes, Charlotte; Callot, Jean-Paul; Ringenbach, Jean-Claude
2017-09-01
The Central Sivas Basin (Turkey) provides an outcrop example of a minibasin province developed above a salt canopy within a foreland-fold and thrust belt. Several minibasins are examined to assess the influence of regional Oligo-Miocene shortening during the development of a minibasin province. The results are based on extensive field work, including regional and detailed outcrop mapping of at least 15 minibasin margins and analysis of the structural elements at all scales. This reveals a progressive increase in shortening and a decrease in salt tectonics during evolution of the province. The initiation of minibasins is driven mostly by the salt-induced accommodation forming a polygonal network of salt structures with mainly local halokinetic sequences (i.e. hooks and wedges). The initiation of shortening is marked by an abrupt increase in sedimentation rate within the flexural foreland basin causing burial of the preexisting salt structures. Subsequently, orogenic compression encourages the rejuvenation of linear salt structures oriented at right angle to the regional shortening direction. The influence of orogenic shortening during the last steps of the minibasin province evolution is clearly shown by: (i) the squeezing of salt structures to form welds which are developed both at right angle and oblique to the regional shortening direction, (ii) the emergence of thrust faults, (iii) the tilting and rotation of minibasins about vertical axis associated with the formation of strike-slip fault zones, and (iv) the extrusion of salt sheets. The pre-shortening geometry of the salt structures pattern, polygonal network of walls and diapirs versus linear and sub-parallel walls, influence the resultant structural style of the minibasin province subjected to shortening. Preexisting linear depocenter limited by sub-parallel walls accommodate preferentially the shortening compare to the preexisting sub-circular depocenter limited by polygonal network of salt walls and diapirs.
Post-extension shortening strains preserved in calcites of the Keweenawan rift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donnelly, K.; Craddock, J.; McGovern, M.
1993-02-01
The Keweenawan rift is part of failed triple junction system that underlies Lake Superior and the Michigan Basin. The rift experienced extensional stresses dating about 1.1 Ga, which were followed by compressional stresses from about 1,060 Ma to < 350 Ma. Associated with the rift are two thrust faults: the Douglas (dipping southeast) and the Keweenawan-Lake Owen (dipping northwest). To determine the direction of rifting, calcite twins were used to calculate strain ellipsoids (Groshong method) which are indicative of the intensity and direction of the stress applied to a rocks in a region at a given time. Rock samples whichmore » contain significant calcite within the zone of rifting were collected, slabbed, and made into thin sections. Calcite appears as amygdule, vein, and cement filings, as well as limestones. Analyses show that different calcite types show different stain orientations. Two principle directions of sub-horizontal shortening are present: one parallel to rift, and one normal to the rift, indicating that rifting motion varied out the time in which different calcite types were deposited. Shortening parallel to the rift is seen predominantly on the western margin while shortening normal to the rift is seen predominantly on the eastern margin.« less
Liu-Zeng, J.; Zhang, Z.; Wen, L.; Tapponnier, P.; Sun, Jielun; Xing, X.; Hu, G.; Xu, Q.; Zeng, L.; Ding, L.; Ji, C.; Hudnut, K.W.; van der Woerd, J.
2009-01-01
The Ms 8.0, Wenchuan earthquake, which devastated the mountainous western rim of the Sichuan basin in central China, produced a surface rupture over 200??km-long with oblique thrust/dextral slip and maximum scarp heights of ~ 10??m. It thus ranks as one of the world's largest continental mega-thrust events in the last 150??yrs. Field investigation shows clear surface breaks along two of the main branches of the NE-trending Longmen Shan thrust fault system. The principal rupture, on the NW-dipping Beichuan fault, displays nearly equal amounts of thrust and right-lateral slip. Basin-ward of this rupture, another continuous surface break is observed for over 70??km on the parallel, more shallowly NW-dipping Pengguan fault. Slip on this latter fault was pure thrusting, with a maximum scarp height of ~ 3.5??m. This is one of the very few reported instances of crustal-scale co-seismic slip partitioning on parallel thrusts. This out-of-sequence event, with distributed surface breaks on crustal mega-thrusts, highlights regional, ~ EW-directed, present day crustal shortening oblique to the Longmen Shan margin of Tibet. The long rupture and large offsets with strong horizontal shortening that characterize the Wenchuan earthquake herald a re-evaluation of tectonic models anticipating little or no active shortening of the upper crust along this edge of the plateau, and require a re-assessment of seismic hazard along potentially under-rated active faults across the densely populated western Sichuan basin and mountains. ?? 2009 Elsevier B.V.
Influence of vein fabric on strain distribution and fold kinematics
NASA Astrophysics Data System (ADS)
Torremans, Koen; Muchez, Philippe; Sintubin, Manuel
2014-05-01
Abundant pre-folding, bedding-parallel fibrous dolomite veins in shale are found associated with the Nkana-Mindola stratiform Cu-Co deposit in the Central African Copperbelt, Zambia. These monomineralic veins extend for several meters along strike, with a fibrous infill orthogonal to low-tortuosity vein walls. Growth morphologies vary from antitaxial with a pronounced median surface to asymmetric syntaxial, always with small but quantifiable growth competition. Subsequently, these veins were folded. In this study, we aim to constrain the kinematic fold mechanism by which strain is accommodated in these veins, estimate paleorheology at time of deformation and investigate the influence of vein fabric on deformation during folding. Finally, the influence of the deformation on known metallogenetic stages is assessed. Various deformation styles are observed, ultimately related to vein attitude across tight to close lower-order, hectometre-scale folds. In fold hinges, at low to average dips, veins are (poly-)harmonically to disharmonically folded as parasitic folds in single or multilayer systems. With increasing distance from the fold hinge, parasitic fold amplitude decreases and asymmetry increases. At high dips in the limbs, low-displacement duplication thrusts of veins at low angles to bedding are abundant. Slickenfibres and slickenlines are sub-perpendicular to fold hinges and shallow-dipping slickenfibre-step lineations are parallel to local fold hinge lines. A dip isogon analysis of reconstructed fold geometries prior to homogeneous shortening reveals type 1B parallel folds for the veins and type 1C for the matrix. Two main deformation mechanisms are identified in folded veins. Firstly, undulatory extinction, subgrains and fluid inclusions planes parallel the fibre long axis, with deformation intensity increasing away from the fold hinges, indicate intracrystalline strain accumulation. Secondly, intergranular deformation through bookshelf rotation of fibres, via collective parallel rotation of fibres and shearing along fibre grain boundaries, is clearly observed under cathodoluminescence. We analysed the internal strain distribution by quantifying simple shear strain caused by deflection of the initially orthogonal fibres relative to layer inclination at a given position across the fold. Shear angle, and thus shear strain, steadily increases towards the limbs away from the fold hinge. Comparison of observed shear strain to theoretical distribution for kinematic mechanisms, amongst other lines of evidence, clearly points to pure flexural flow followed by homogeneous shortening. As flexural flow is not the expected kinematic folding mechanism for competent layers in an incompetent shale matrix, our analysis shows that the internal vein fabric in these dolomite veins can exhibit a first-order influence on folding mechanisms. In addition, quantitative analysis shows that these veins acted as rigid objects with high viscosity contrast relative to the incompetent carbonaceous shale, rather than as semi-passive markers. Later folding-related syn-orogenic veins, intensely mineralised with Cu-Co sulphides, are strongly related to deformation of these pre-folding veins. The high viscosity contrast created by the pre-folding fibrous dolomite veins was therefore essential in creating transient permeability for subsequent mineralising stages in the veining history.
Imaging skin pathologies with polarized light: Empirical and theoretical studies
NASA Astrophysics Data System (ADS)
Ramella-Roman, Jessica C.
The use of polarized light imaging can facilitate the determination of skin cancer borders before a Mohs surgery procedure. Linearly polarized light that illuminates the skin is backscattered by superficial layers where cancer often arises and is randomized by the collagen fibers. The superficially backscattered light can be distinguished from the diffused reflected light using a detector analyzer that is sequentially oriented parallel and perpendicular to the source polarization. A polarized image pol = parallel - perpendicular / parallel + perpendicular is generated. This image has a higher contrast to the superficial skin layers than simple total reflectance images. Pilot clinical trials were conducted with a small hand-held device for the accumulation of a library of lesions to establish the efficacy of polarized light imaging in vivo. It was found that melanoma exhibits a high contrast to polarized light imaging as well as basal and sclerosing cell carcinoma. Mechanisms of polarized light scattering from different tissues and tissue phantoms were studied in vitro. Parameters such as depth of depolarization (DOD), retardance, and birefringence were studied in theory and experimentally. Polarized light traveling through different tissues (skin, muscle, and liver) depolarized after a few hundred microns. Highly birefringent materials such as skin (DOD = 300 mum 696nm) and muscle (DOD = 370 mum 696nm) depolarized light faster than less birefringent materials such as liver (DOD = 700 mum 696nm). Light depolarization can also be attributed to scattering. Three Monte Carlo programs for modeling polarized light transfer into scattering media were implemented to evaluate these mechanisms. Simulations conducted with the Monte Carlo programs showed that small diameter spheres have different mechanisms of depolarization than larger ones. The models also showed that the anisotropy parameter g strongly influences the depolarization mechanism. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Ukar, Estibalitz; Lopez, Ramiro G.; Gale, Julia F. W.; Laubach, Stephen E.; Manceda, Rene
2017-11-01
In the Late Jurassic-Early Cretaceous Vaca Muerta Formation, previously unrecognized yet abundant structures constituting a new category of kinematic indicator occur within bed-parallel fibrous calcite veins (BPVs) in shale. Domal shapes result from localized shortening and thickening of BPVs and the intercalation of centimeter-thick, host-rock shale inclusions within fibrous calcite beef, forming thrust fault-bounded pop-up structures. Ellipsoidal and rounded structures show consistent orientations, lineaments of interlayered shale and fibrous calcite, and local centimeter-scale offset thrust faults that at least in some cases cut across the median line of the BPV and indicate E-W shortening. Continuity of crystal fibers shows the domal structures are contemporaneous with BPV formation and help establish timing of fibrous vein growth in the Late Cretaceous, when shortening directions were oriented E-W. Differences in the number of opening stages and the deformational style of the different BPVs indicate they may have opened at different times. The new domal kinematic indicators described in this study are small enough to be captured in core. When present in the subsurface, domal structures can be used to either infer paleostress orientation during the formation of BPVs or to orient core in cases where the paleostress is independently known.
Boudinage in nature and experiment
NASA Astrophysics Data System (ADS)
Marques, Fernando O.; Fonseca, Pedro D.; Lechmann, Sarah; Burg, Jean-Pierre; Marques, Ana S.; Andrade, Alexandre J. M.; Alves, Carlos
2012-03-01
Deformation of rocks produces structures at all scales that are in many cases periodic (folding or boudinage), with variable amplitude and wavelength. Here we focus on boudinage, a process of primordial importance for tectonics. In the present study, we carried out measurements of natural boudins and experimentally tested the effects of two variables on boudinage: layer thickness and compression rate. The models were made of a competent layer (mostly brittle, as in nature) of either elastic (soft paper) or viscoelastoplastic (clay) material embedded in a ductile matrix of linear viscous silicone putty. The competent layer lied with its greatest surface normal to the principal shortening axis and greatest length parallel to the principal stretching axis. The model was then subjected to pure shear at constant piston velocity and variable competent layer thickness (Model 1), or at different piston velocity and constant layer thickness (Model 2). The results of Model 1 show an exponential dependence of boudin width on competent layer thickness, in disagreement with data from the studied natural occurrence. This indicates that variables other than competent layer thickness are hidden in the linear relationship obtained for the natural boudinage. The results of Model 2 show that the higher the velocity the smaller the boudin width, following a power-law with exponent very similar to that of analytical predictions. The studied natural boudinage occasionally occurs in two orthogonal directions. This chocolate tablet boudinage can be the result of two successive stages of deformation: buckling followed by stretching of competent sandstone layers, or buckling followed by rotation of reverse limbs into the extensional field of simple shear.
Fusi, Luca; Percario, Valentina; Brunello, Elisabetta; Caremani, Marco; Bianco, Pasquale; Powers, Joseph D; Reconditi, Massimo; Lombardi, Vincenzo; Piazzesi, Gabriella
2017-02-15
Myosin filament mechanosensing determines the efficiency of the contraction by adapting the number of switched ON motors to the load. Accordingly, the unloaded shortening velocity (V 0 ) is already set at the end of latency relaxation (LR), ∼10 ms after the start of stimulation, when the myosin filament is still in the OFF state. Here the number of actin-attached motors per half-myosin filament (n) during V 0 shortening imposed either at the end of LR or at the plateau of the isometric contraction is estimated from the relation between half-sarcomere compliance and force during the force redevelopment after shortening. The value of n decreases progressively with shortening and, during V 0 shortening starting at the end of LR, is 1-4. Reduction of n is accounted for by a constant duty ratio of 0.05 and a parallel switching OFF of motors, explaining the very low rate of ATP utilization found during unloaded shortening. The maximum velocity at which a skeletal muscle can shorten (i.e. the velocity of sliding between the myosin filament and the actin filament under zero load, V 0 ) is already set at the end of the latency relaxation (LR) preceding isometric force generation, ∼10 ms after the start of electrical stimulation in frog muscle fibres at 4°C. At this time, Ca 2+ -induced activation of the actin filament is maximal, while the myosin filament is in the OFF state characterized by most of the myosin motors lying on helical tracks on the filament surface, making them unavailable for actin binding and ATP hydrolysis. Here, the number of actin-attached motors per half-thick filament during V 0 shortening (n) is estimated by imposing, on tetanized single fibres from Rana esculenta (at 4°C and sarcomere length 2.15 μm), small 4 kHz oscillations and determining the relation between half-sarcomere (hs) compliance and force during the force development following V 0 shortening. When V 0 shortening is superimposed on the maximum isometric force T 0 , n decreases progressively with the increase of shortening (range 30-80 nm per hs) and, when V 0 shortening is imposed at the end of LR, n can be as low as 1-4. Reduction of n is accounted for by a constant duty ratio of the myosin motor of ∼0.05 and a parallel switching OFF of the thick filament, providing an explanation for the very low rate of ATP utilization during extended V 0 shortening. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Transfer zones and fault reactivation in inverted rift basins: Insights from physical modelling
NASA Astrophysics Data System (ADS)
Konstantinovskaya, Elena A.; Harris, Lyal B.; Poulin, Jimmy; Ivanov, Gennady M.
2007-08-01
Lateral transfer zones of deformation and fault reactivation were investigated in multilayered silicone-sand models during extension and subsequent co-axial shortening. Model materials were selected to meet similarity criteria and to be distinguished on CT scans; this approach permitted non-destructive visualisation of the progressive evolution of structures. Transfer zones were initiated by an orthogonal offset in the geometry of a basal mobile aluminium sheet and/or by variations of layer thickness or material rheology in basal layers. Transfer zones affected rift propagation and fault kinematics in models. Propagation and overlapping rift culminations occurred in transfer zones during extension. During shortening, deviation in the orientation of frontal thrusts and fold axes occurred within transfer zones in brittle and ductile layers, respectively. CT scans showed that steep (58-67°) rift-margin normal faults were reactivated as reverse faults. The reactivated faults rotated to shallower dips (19-38°) with continuing shortening after 100% inversion. Rotation of rift phase faults appears to be due to deep level folding and uplift during the inversion phase. New thrust faults with shallow dips (20-34°) formed outside the inverted graben at late stages of shortening. Frontal ramps propagated laterally past the transfer structure during shortening. During inversion, the layers filling the rift structures underwent lateral compression at the depth, the graben fill was pushed up and outwards creating local extension near the surface. Sand marker layers in inverted graben have showed fold-like structures or rotation and tilting in the rifts and on the rift margins. The results of our experiments conform well to natural examples of inverted graben. Inverted rift basins are structurally complex and often difficult to interpret in seismic data. The models may help to unravel the structure and evolution of these systems, leading to improved hydrocarbon exploration assessments. Model results may also be used to help predict the location of basement discontinuities which may have focused hydrothermal fluids during basin formation and inversion.
NASA Astrophysics Data System (ADS)
Chardon, Dominique; Gapais, Denis; Cagnard, Florence; Jayananda, Mudlappa; Peucat, Jean-Jacques
2010-05-01
Reassessment of structural / metamorphic properties of ultra-hot Precambrian orogens and shortening of model weak lithospheres support a syn-convergence flow mode on an orogen scale, with a large component of horizontal finite elongation parallel to the orogen. This orogen-scale flow mode combines distributed shortening, gravity-driven flow, lateral escape, and three-dimensional mass redistribution of buried supracrustal rocks, magmas and migmatites in a thick fluid lower crust. This combination preserves a nearly flat surface and Moho. The upper crust maintains a nearly constant thickness by real-time erosion and near-field clastic sedimentation and by ablation at its base by burial of pop-downs into the lower crust. Steady state regime of these orogens is allowed by activation of an attachment layer that maintains kinematic compatibility between the thin and dominantly plastic upper crust and a thick "water bed" of lower crust. Because very thin lithospheres of orogenic plateaux and Precambrian hot orogens have similar thermomechanical structures, bulk orogenic flow comparable to that governing Precambrian hot orogens should actually operate through today's orogenic plateaux as well. Thus, syn-convergence flow fabrics documented on exposed crustal sections of ancient hot orogens that have not undergone collapse may be used to infer the nature of flow fabrics that are imaged by geophysical techniques beneath orogenic plateaux. We provide a detailed geological perspective on syn-convergence crustal flow in relation to magma emplacement and partial melting on a wide oblique crustal transition of the Neoarchean ultra-hot orogen of Southern India. We document sub-horizontal bulk longitudinal flow of the partially molten lower crust over a protracted period of 60 Ma. Bulk flow results from the interplay of (1) pervasive longitudinal transtensional flow of the partially molten crust, (2) longitudinal coaxial flow on flat fabrics in early plutons, (3) distributed, orogen-normal shortening, (4) emplacement of late prolate shape plutons in the direction of flow, and (5) late, conjugate strike-slip shearing. The macroscopic- to regional scale tectonoplutonic pattern produced by longitudinal flow forms a flat composite anisotropy throughout the lower crust. In the light of GPS data, these results suggest that bulk longitudinal flow accounts for observed deformation of the Tibetan plateau as well as for its seismic structure. This flow mode may be preferred to lateral, east-directed channel flow because it combines both lateral gravity-driven thinning and distributed, orogen-normal shortening of the crust. These results further suggest that lower crustal seismic reflectivity in orogenic belts may not necessarily images fabrics produced by extensional tectonics, as commonly thought, but crustal layering produced by syn-convergence lateral flow.
NASA Astrophysics Data System (ADS)
Gavillot, Y. G.; Meigs, A.; Rittenour, T. M.; Malik, M. O. A.
2016-12-01
In Kashmir, the Himalayan Frontal thrust (HFT) is blind, characterized by a broad fold, the Suruin-Mastargh anticline, and displays no emergent faults cutting either limb. A lack of knowledge of the rate of shortening and structural framework of the Suruin-Mastargh anticline hampers quantifying the earthquake potential for the deformation front. Our study utilized the geomorphic expression of dated deformed terraces on the Ujh River in Kashmir. Six terraces are recognized, and four yield multiple optically stimulated luminescence (OSL) and depth profiles terrigenous cosmogenic nuclides (TCN) ages between 53 ka and 0.4 ka. Vector fold restoration of long terrace profiles indicates a deformation pattern characterized by regional uplift across the anticlinal axis and back-limb, and by fold limb rotation on the forelimb. Differential uplift across the fold trace suggests localized deformation. Dip data and stratigraphic thicknesses suggest that a duplex structure is emplaced at depth along the basal décollement, folding the overlying roof thrust and Siwalik-Murree strata into a detachment-like fold. Localized faulting at the fold axis explains the asymmetrical fold geometry. Folding of the oldest dated terrace, suggests rock uplift rates across the Suruin-Mastargh anticline range between 1.8-2.5 mm/yr. Assuming a 25° dipping ramp for the blind structure on the basis of dip data constraints, the shortening rates across the Suruin-Mastargh anticline range between 3.8-5.4 mm/yr since 53 ka. Geodetic data indicate that an 11-12 mm/yr arc-normal shortening rate characterizes the interseismic strain accumulation across the plate boundary due to India-Tibet convergence. These data combined with rates of other active internal faults in the Kashmir Himalaya indicate that the Riasi fault accounts for the remainder 60% of the convergence not taken up by the Suruin-Mastargh anticline. We attribute a non-emergent thrust at the deformation front to reflect deformation controlled by pre-existing basin architecture in Kashmir. Blind thrusting reflects some combination of layer-parallel shortening, high stratigraphic overburden, relative youth of the HFT, and/or sustained low shortening rate on 10^5 yrs to longer timescales.
Unfolding single- and multilayers
NASA Astrophysics Data System (ADS)
Llorens, Maria-Gema; Bons, Paul D.; Griera, Albert; Gomez-Rivas, Enrique
2014-05-01
When planar structures (e.g. sedimentary layers, veins, dykes, cleavages, etc.) are subjected to deformation, they have about equal chances to be shortened or stretched. The most common shortening and stretching structures are folds and boudinage, respectively. However, boudinage requires additional deformation mechanisms apart from viscous flow, like formation of fractures or strain localization. When folded layers are subjected to extension, they could potentially unfold back to straight layers. Although probably not uncommon, this would be difficult to recognize. Open questions are whether folded layers can unfold, what determines their mechanical behaviour and how we can recognize them in the field. In order to approach these questions, we present a series of numerical experiments that simulate stretching of previously folded single- and multi-layers in simple shear, using the two dimensional numerical modelling platform ELLE, including the finite element module BASIL that calculates viscous deformation. We investigate the parameters that affect a fold train once it rotates into the extensional field. The results show that the unfolding process strongly depends on the viscosity contrast between the layer and matrix (Llorens et al., 2013). Layers do not completely unfold when they experience softening before or during the stretching process or when other neighbouring competent layers prevent them from unfolding. The foliation refraction patterns are the main indicators of unfolded folds. Additionally, intrafolial folds and cusp-like folds adjacent to straight layers, as well as variations in fold amplitudes and limb lengths of irregular folds can also be used as indicators of stretching of a layer after shortening and folding. References: Llorens, M-.G., Bons, P.D., Griera, A. and Gomez-Rivas, E. 2013. When do folds unfold during progressive shear?. Geology, 41, 563-566.
Kinematics of fault-related folding derived from a sandbox experiment
NASA Astrophysics Data System (ADS)
Bernard, Sylvain; Avouac, Jean-Philippe; Dominguez, StéPhane; Simoes, Martine
2007-03-01
We analyze the kinematics of fault tip folding at the front of a fold-and-thrust wedge using a sandbox experiment. The analog model consists of sand layers intercalated with low-friction glass bead layers, deposited in a glass-sided experimental device and with a total thickness h = 4.8 cm. A computerized mobile backstop induces progressive horizontal shortening of the sand layers and therefore thrust fault propagation. Active deformation at the tip of the forward propagating basal décollement is monitored along the cross section with a high-resolution CCD camera, and the displacement field between pairs of images is measured from the optical flow technique. In the early stage, when cumulative shortening is less than about h/10, slip along the décollement tapers gradually to zero and the displacement gradient is absorbed by distributed deformation of the overlying medium. In this stage of detachment tip folding, horizontal displacements decrease linearly with distance toward the foreland. Vertical displacements reflect a nearly symmetrical mode of folding, with displacements varying linearly between relatively well defined axial surfaces. When the cumulative slip on the décollement exceeds about h/10, deformation tends to localize on a few discrete shear bands at the front of the system, until shortening exceeds h/8 and deformation gets fully localized on a single emergent frontal ramp. The fault geometry subsequently evolves to a sigmoid shape and the hanging wall deforms by simple shear as it overthrusts the flat ramp system. As long as strain localization is not fully established, the sand layers experience a combination of thickening and horizontal shortening, which induces gradual limb rotation. The observed kinematics can be reduced to simple analytical expressions that can be used to restore fault tip folds, relate finite deformation to incremental folding, and derive shortening rates from deformed geomorphic markers or growth strata.
Parallel telomere shortening in multiple body tissues owing to malaria infection.
Asghar, Muhammad; Palinauskas, Vaidas; Zaghdoudi-Allan, Nadège; Valkiūnas, Gediminas; Mukhin, Andrey; Platonova, Elena; Färnert, Anna; Bensch, Staffan; Hasselquist, Dennis
2016-08-17
Several studies have shown associations between shorter telomere length in blood and weakened immune function, susceptibility to infections, and increased risk of morbidity and mortality. Recently, we have shown that malaria accelerates telomere attrition in blood cells and shortens lifespan in birds. However, the impact of infections on telomere attrition in different body tissues within an individual is unknown. Here, we tested whether malarial infection leads to parallel telomere shortening in blood and tissue samples from different organs. We experimentally infected siskins (Spinus spinus) with the avian malaria parasite Plasmodium ashfordi, and used real-time quantitative polymerase chain reaction (PCR) to measure telomere length in control and experimentally infected siskins. We found that experimentally infected birds showed faster telomere attrition in blood over the course of infection compared with control individuals (repeatedly measured over 105 days post-infection (DPI)). Shorter telomeres were also found in the tissue of all six major organs investigated (liver, lungs, spleen, heart, kidney, and brain) in infected birds compared with controls at 105 DPI. To the best of our knowledge, this is the first study showing that an infectious disease results in synchronous telomere shortening in the blood and tissue cells of internal organs within individuals, implying that the infection induces systemic stress. Our results have far-reaching implications for understanding how the short-term effects of an infection can translate into long-term costs, such as organ dysfunction, degenerative diseases, and ageing. © 2016 The Author(s).
Folding kinematics expressed in fracture patterns: An example from the Anti-Atlas fold belt, Morocco
NASA Astrophysics Data System (ADS)
Ismat, Zeshan
2008-11-01
The Anti-Atlas fold belt, Morocco, formed during the same Variscan collisional event that produced the Valley-and-Ridge fold-thrust belt of the Appalachian mountains. Both are external belts of the Appalachian-Ouachita-Mauritanides chain and at the map scale have very similar topographic expressions. The Anti-Atlas, however, consists of map-scale folds that are buckle-related, detachment folds, whereas the Valley-and-Ridge folds developed in response to imbricate thrusting. For this reason, the Anti-Atlas is referred to as a fold belt rather than a fold-thrust belt. This paper examines Variscan folding processes in the Anti-Atlas Mountains. Folding in some layers occurred by sliding along a penetrative network of mesoscale fractures, i.e. cataclastic flow, during buckling. Layer-parallel shortening fractures were reactivated in the later stages of folding to accommodate limb rotation. Although 'boutonnieres', i.e. basement uplifts, punctuate the fold belt, the fracture patterns indicate that the uplifts failed to provide any 'bending' component. Folding is also interpreted to occur under low to moderate confining pressures because the fracture network includes conjugate shear fractures with very small (˜20°) dihedral angles.
NASA Astrophysics Data System (ADS)
Gavillot, Y. G.; Meigs, A.; Yule, J. D.; Rittenour, T. M.; Malik, M. O. A.
2014-12-01
Active tectonics of a deformation front constrains the kinematic evolution and structural interaction between the fold-thrust belt and most-recently accreted foreland basin. In Kashmir, the Himalayan Frontal thrust (HFT) is blind, characterized by a broad fold, the Suruin-Mastargh anticline (SMA), and displays no emergent faults cutting either limb. A lack of knowledge of the rate of shortening and structural framework of the SMA hampers quantifying the earthquake potential for the deformation front. Our study utilized the geomorphic expression of dated deformed terraces on the Ujh River in Kashmir. Six terraces are recognized, and three yield OSL ages of 53 ka, 33 ka, and 0.4 ka. Vector fold restoration of long terrace profiles indicates a deformation pattern characterized by regional uplift across the anticlinal axis and back-limb, and by fold limb rotation on the forelimb. Differential uplift across the fold trace suggests localized deformation. Dip data and stratigraphic thicknesses suggest that a duplex structure is emplaced at depth along the basal décollement, folding the overlying roof thrust and Siwalik-Muree strata into a detachment-like fold. Localized faulting at the fold axis explains the asymmetrical fold geometry. Folding of the oldest dated terrace, suggest that rock uplift rates across the SMA range between 2.0-1.8 mm/yr. Assuming a 25° dipping ramp for the blind structure on the basis of dip data constraints, the shortening rate across the SMA ranges between 4.4-3.8 mm/yr since ~53 ka. Of that rate, ~1 mm/yr is likely absorbed by minor faulting in the near field of the fold axis. Given that Himalaya-India convergence is ~18.8-11 mm/yr, internal faults north of the deformation front, such as the Riasi thrust absorbs more of the Himalayan shortening than does the HFT in Kashmir. We attribute a non-emergent thrust at the deformation front to reflect deformation controlled by pre-existing basin architecture in Kashmir, in which the thick succession of foreland strata Murree-Siwalik (8-9 km) overlie a deepened basal décollement. Blind thrusting reflects some combination of layer-parallel shortening, high stratigraphic overburden, relative youth of the HFT, and/or sustained low shortening rate on 10^5 yrs to longer timescales.
NASA Astrophysics Data System (ADS)
Favaro, S.; Handy, M. R.; Scharf, A.; Schuster, R.
2017-06-01
The changing shape of indenting crustal blocks during northward motion of the Adriatic microplate induced migration of Miocene doming and orogen-parallel extension of orogenic crust in the Tauern Window. New structural and kinematic data indicate that initial shortening of the Penninic nappe pile in the Tauern Window by upright folding and strike-slip faulting was transitional to coeval north-south shortening and east-west extension; the latter was accommodated by normal faulting at the eastern and western margins of the window. Retrodeforming these post-nappe structures in map view yields a map-view reconstruction of the orogenic crust back to 30 Ma, including the onset of pronounced indentation at 21 Ma. This model supports the notion that indentation involved approximately equal amounts of north-south shortening and orogen-parallel stretching and extrusion toward the Pannonian Basin, as measured from the indenter tip to the European foreland in the north and Austroalpine units in the east. Comparison of areal denudation of the orogenic crust before and after indentation indicates that erosion associated with upright folding was the primary agent of denudation, whereas extensional unroofing and limited erosion along normal faults at the eastern and western ends of the Tauern Window accounted for only about a third of the total denudation.
Bland, Michael T.; McKinnon, William B; Schenk, Paul M.
2015-01-01
The Cassini spacecraft’s Composite Infrared Spectrometer (CIRS) has observed at least 5 GW of thermal emission at Enceladus’ south pole. The vast majority of this emission is localized on the four long, parallel, evenly-spaced fractures dubbed tiger stripes. However, the thermal emission from regions between the tiger stripes has not been determined. These spatially localized regions have a unique morphology consisting of short-wavelength (∼1 km) ridges and troughs with topographic amplitudes of ∼100 m, and a generally ropy appearance that has led to them being referred to as “funiscular terrain.” Previous analysis pursued the hypothesis that the funiscular terrain formed via thin-skinned folding, analogous to that occurring on a pahoehoe flow top (Barr, A.C., Preuss, L.J. [2010]. Icarus 208, 499–503). Here we use finite element modeling of lithospheric shortening to further explore this hypothesis. Our best-case simulations reproduce funiscular-like morphologies, although our simulated fold wavelengths after 10% shortening are 30% longer than those observed. Reproducing short-wavelength folds requires high effective surface temperatures (∼185 K), an ice lithosphere (or high-viscosity layer) with a low thermal conductivity (one-half to one-third that of intact ice or lower), and very high heat fluxes (perhaps as great as 400 mW m−2). These conditions are driven by the requirement that the high-viscosity layer remain extremely thin (≲200 m). Whereas the required conditions are extreme, they can be met if a layer of fine grained plume material 1–10 m thick, or a highly fractured ice layer >50 m thick insulates the surface, and the lithosphere is fractured throughout as well. The source of the necessary heat flux (a factor of two greater than previous estimates) is less obvious. We also present evidence for an unusual color/spectral character of the ropy terrain, possibly related to its unique surface texture. Our simulations demonstrate that producing the funiscular ridges via folding remains plausible, but the relatively extreme conditions required to do so leaves their origin open to further investigation. The high heat fluxes required to produce the terrain by folding, which equate to an endogenic blackbody temperature near 50 K, should be observable by future nighttime CIRS observations, if funiscular deformation is occurring today.
NASA Astrophysics Data System (ADS)
Bo, Zhang; Jinjiang, Zhang; Shuyu, Yan; Jiang, Liu; Jinhai, Zhang; Zhongpei, Zhang
2010-05-01
The phenomenon of Kink banding is well known throughout the engineering and geophysical sciences. Associated with layered structures compressed in a layer-parallel direction, it arises for example in stratified geological systems under tectonic compression. Our work documented it is also possible to develop super large-scale kink-bands in sedimentary sequences. We interpret the Bachu fold uplift belt of the central Tarim basin in western China to be composed of detachment folds flanked by megascopic-scale kink-bands. Those previous principal fold models for the Bachu uplift belt incorporated components of large-scale thrust faulting, such as the imbricate fault-related fold model and the high-angle, reverse-faulted detachment fold model. Based on our observations in the outcrops and on the two-dimension seismic profiles, we interpret that first-order structures in the region are kink-band style detachment folds to accommodate regional shortening, and thrust faulting can be a second-order deformation style occurring on the limb of the detachment folds or at the cores of some folds to accommodate the further strain of these folds. The belt mainly consists of detachment folds overlying a ductile decollement layer. The crests of the detachment folds are bounded by large-scale kink-bands, which are zones of angularly folded strata. These low-signal-tonoise, low-reflectivity zones observed on seismic profiles across the Bachu belt are poorly imaged sections, which resulted from steeply dipping bedding in the kink-bands. The substantial width (beyond 200m) of these low-reflectivity zones, their sub-parallel edges in cross section, and their orientations at a high angle to layering between 50 and 60 degrees, as well as their conjugate geometry, support a kink-band interpretation. The kink-band interpretation model is based on the Maximum Effective Moment Criteria for continuous deformation, rather than Mohr-Column Criteria for brittle fracture. Seismic modeling is done to identify the characteristics and natures of seismic waves within the kink-band and its fold structure, which supplies the further evidences for the kink-band interpretation in the region.
NASA Astrophysics Data System (ADS)
Hong, Ie-Hong; Hsu, Hsin-Zan
2018-03-01
The layered antiferromagnetism of parallel nanowire (NW) arrays self-assembled on Si(110) have been observed at room temperature by direct imaging of both the topographies and magnetic domains using spin-polarized scanning tunneling microscopy/spectroscopy (SP-STM/STS). The topographic STM images reveal that the self-assembled unidirectional and parallel NiSi NWs grow into the Si(110) substrate along the [\\bar{1}10] direction (i.e. the endotaxial growth) and exhibit multiple-layer growth. The spatially-resolved SP-STS maps show that these parallel NiSi NWs of different heights produce two opposite magnetic domains, depending on the heights of either even or odd layers in the layer stack of the NiSi NWs. This layer-wise antiferromagnetic structure can be attributed to an antiferromagnetic interlayer exchange coupling between the adjacent layers in the multiple-layer NiSi NW with a B2 (CsCl-type) crystal structure. Such an endotaxial heterostructure of parallel magnetic NiSi NW arrays with a layered antiferromagnetic ordering in Si(110) provides a new and important perspective for the development of novel Si-based spintronic nanodevices.
Multiple Causes of Fatigue during Shortening Contractions in Rat Slow Twitch Skeletal Muscle
Hortemo, Kristin Halvorsen; Munkvik, Morten; Lunde, Per Kristian; Sejersted, Ole M.
2013-01-01
Fatigue in muscles that shorten might have other causes than fatigue during isometric contractions, since both cross-bridge cycling and energy demand are different in the two exercise modes. While isometric contractions are extensively studied, the causes of fatigue in shortening contractions are poorly mapped. Here, we investigate fatigue mechanisms during shortening contractions in slow twitch skeletal muscle in near physiological conditions. Fatigue was induced in rat soleus muscles with maintained blood supply by in situ shortening contractions at 37°C. Muscles were stimulated repeatedly (1 s on/off at 30 Hz) for 15 min against a constant load, allowing the muscle to shorten and perform work. Fatigue and subsequent recovery was examined at 20 s, 100 s and 15 min exercise. The effects of prior exercise were investigated in a second exercise bout. Fatigue developed in three distinct phases. During the first 20 s the regulatory protein Myosin Light Chain-2 (slow isoform, MLC-2s) was rapidly dephosphorylated in parallel with reduced rate of force development and reduced shortening. In the second phase there was degradation of high-energy phosphates and accumulation of lactate, and these changes were related to slowing of muscle relengthening and relaxation, culminating at 100 s exercise. Slowing of relaxation was also associated with increased leak of calcium from the SR. During the third phase of exercise there was restoration of high-energy phosphates and elimination of lactate, and the slowing of relaxation disappeared, whereas dephosphorylation of MLC-2s and reduced shortening prevailed. Prior exercise improved relaxation parameters in a subsequent exercise bout, and we propose that this effect is a result of less accumulation of lactate due to more rapid onset of oxidative metabolism. The correlation between dephosphorylation of MLC-2s and reduced shortening was confirmed in various experimental settings, and we suggest MLC-2s as an important regulator of muscle shortening. PMID:23977116
DOE Office of Scientific and Technical Information (OSTI.GOV)
Water, Steven van de, E-mail: s.vandewater@erasmusmc.nl; Kooy, Hanne M.; Heijmen, Ben J.M.
2015-06-01
Purpose: To shorten delivery times of intensity modulated proton therapy by reducing the number of energy layers in the treatment plan. Methods and Materials: We have developed an energy layer reduction method, which was implemented into our in-house-developed multicriteria treatment planning system “Erasmus-iCycle.” The method consisted of 2 components: (1) minimizing the logarithm of the total spot weight per energy layer; and (2) iteratively excluding low-weighted energy layers. The method was benchmarked by comparing a robust “time-efficient plan” (with energy layer reduction) with a robust “standard clinical plan” (without energy layer reduction) for 5 oropharyngeal cases and 5 prostate cases.more » Both plans of each patient had equal robust plan quality, because the worst-case dose parameters of the standard clinical plan were used as dose constraints for the time-efficient plan. Worst-case robust optimization was performed, accounting for setup errors of 3 mm and range errors of 3% + 1 mm. We evaluated the number of energy layers and the expected delivery time per fraction, assuming 30 seconds per beam direction, 10 ms per spot, and 400 Giga-protons per minute. The energy switching time was varied from 0.1 to 5 seconds. Results: The number of energy layers was on average reduced by 45% (range, 30%-56%) for the oropharyngeal cases and by 28% (range, 25%-32%) for the prostate cases. When assuming 1, 2, or 5 seconds energy switching time, the average delivery time was shortened from 3.9 to 3.0 minutes (25%), 6.0 to 4.2 minutes (32%), or 12.3 to 7.7 minutes (38%) for the oropharyngeal cases, and from 3.4 to 2.9 minutes (16%), 5.2 to 4.2 minutes (20%), or 10.6 to 8.0 minutes (24%) for the prostate cases. Conclusions: Delivery times of intensity modulated proton therapy can be reduced substantially without compromising robust plan quality. Shorter delivery times are likely to reduce treatment uncertainties and costs.« less
NASA Astrophysics Data System (ADS)
von Hagke, C.; Virgo, S.; Urai, J. L.
2016-12-01
Boudins are periodic structures in mechanically layered rocks deformed by layer parallel extension. At first sight, 2D sections of boudinaged layers are similar although 3D boudin patterns can be dramatically different. We aim to develop criteria to infer 3D strain from 2D outcrop observation of boudins. In marble quarries in the high grade complex on Naxos, Greece, we studied spectacular outcrops of amphibolite and pegmatite boudins, in combination with serial slicing of quarried blocks to reconstruct the 3D boudin structures. We identified multiple boudin generations, with early, high grade pinch and swell boudins followed by two generations of brittle shearband and torn boudins formed along the retrograde path under greenschist facies conditions. This shows how the rheological contract between marble and amphibolite changes from amphibolite to greenschist facies and suggests E-W shortening and N-S stretching in the footwall of the Naxos detachment. The later phases of boudinage interact with existing boudin geometries, producing complex structures in 3D. In 2D section the complexity is not directly apparent and reveals itself only in statistical analysis of long continuous sections. Our findings highlight the importance of 3D characterization of boudinage structures for boudin classification. The insights we gain from the analysis of multiphase boudinage structures on Naxos are the basis for quantitative boudin analysis to infer rheology, effective stress, vorticity and strain and establish a mechanics-based boudin classification scheme.
Patel, Nirali; Jiang, Yanfen; Mittal, Ravinder K.; Kim, Tae Ho; Ledgerwood, Melissa
2015-01-01
Esophageal axial shortening is caused by longitudinal muscle (LM) contraction, but circular muscle (CM) may also contribute to axial shortening because of its spiral morphology. The goal of our study was to show patterns of contraction of CM and LM layers during peristalsis and transient lower esophageal sphincter (LES) relaxation (TLESR). In rats, esophageal and LES morphology was assessed by histology and immunohistochemistry, and function with the use of piezo-electric crystals and manometry. Electrical stimulation of the vagus nerve was used to induce esophageal contractions. In 18 healthy subjects, manometry and high frequency intraluminal ultrasound imaging during swallow-induced esophageal contractions and TLESR were evaluated. CM and LM thicknesses were measured (40 swallows and 30 TLESRs) as markers of axial shortening, before and at peak contraction, as well as during TLESRs. Animal studies revealed muscular connections between the LM and CM layers of the LES but not in the esophagus. During vagal stimulated esophageal contraction there was relative movement between the LM and CM. Human studies show that LM-to-CM (LM/CM) thickness ratio at baseline was 1. At the peak of swallow-induced contraction LM/CM ratio decreased significantly (<1), whereas the reverse was the case during TLESR (>2). The pattern of contraction of CM and LM suggests sliding of the two muscles. Furthermore, the sliding patterns are in the opposite direction during peristalsis and TLESR. PMID:26045610
First results of high-resolution modeling of Cenozoic subduction orogeny in Andes
NASA Astrophysics Data System (ADS)
Liu, S.; Sobolev, S. V.; Babeyko, A. Y.; Krueger, F.; Quinteros, J.; Popov, A.
2016-12-01
The Andean Orogeny is the result of the upper-plate crustal shortening during the Cenozoic Nazca plate subduction beneath South America plate. With up to 300 km shortening, the Earth's second highest Altiplano-Puna Plateau was formed with a pronounced N-S oriented deformation diversity. Furthermore, the tectonic shortening in the Southern Andes was much less intensive and started much later. The mechanism of the shortening and the nature of N-S variation of its magnitude remain controversial. The previous studies of the Central Andes suggested that they might be related to the N-S variation in the strength of the lithosphere, friction coupling at slab interface, and are probably influenced by the interaction of the climate and tectonic systems. However, the exact nature of the strength variation was not explored due to the lack of high numerical resolution and 3D numerical models at that time. Here we will employ large-scale subduction models with a high resolution to reveal and quantify the factors controlling the strength of lithospheric structures and their effect on the magnitude of tectonic shortening in the South America plate between 18°-35°S. These high-resolution models are performed by using the highly scalable parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model). This code is based on finite difference staggered grid approach and employs massive linear and non-linear solvers within the PETSc library to complete high-performance MPI-based parallelization in geodynamic modeling. Currently, in addition to benchmark-models we are developing high-resolution (< 1km) 2D subduction models with application to Nazca-South America convergence. In particular, we will present the models focusing on the effect of friction reduction in the Paleozoic-Cenozoic sediments above the uppermost crust in the Subandean Ranges. Future work will be focused on the origin of different styles of deformation and topography evolution in Altiplano-Puna Plateau and Central-Southern Andes through 3D modeling of large-scale interaction of subducting and overriding plates.
Early Miocene shortening in the lower Comondú Group in Baja California Sur (México)
NASA Astrophysics Data System (ADS)
Bonini, Marco; Cerca, Mariano; Moratti, Giovanna; López-Martínez, Margarita; Corti, Giacomo; Gracia-Marroquín, Diego
2017-11-01
The Late Oligocene-Early Miocene volcaniclastic deposits of Baja California Sur form most of the exposed western margin of the Gulf of California rift. In some places these deposits, collectively referred to as Comondú Group, show complex deformation patterns given by the coexistence of tectonic and gravitational features. The area north of La Paz is characterized by the occurrence of several slump bodies, which are displaced by normal faults connected with the rift opening. In some places we have identified 100's m scale thrust-related folds and reverse faults that we have interpreted as shortening features. The latter displace the slump layers and are offset by the normal faults. If confirmed, this would represent the first report of a shortening event in the Early Miocene volcaniclastic deposits of Baja California Sur. The observed shortening has modest magnitude (ca 3-5% bulk shortening), and has been detected in a sector extending over 100 km north from La Paz. New 40Ar-39*Ar ages, integrated with existing radiometric age datasets, constrain the timing of this shortening episode. The rocks affected by shortening have ages between 24 and 21 Ma, and are capped by undeformed volcanic rocks with ages spanning between 19.4 and 17.2 Ma. These relationships define an intra-Early Miocene unconformity, which we interpret to be related to the shortening deformation. The available timing constraints allow us to infer that a main ENE-to-ESE-trending shortening was short-lived, possibly ca. 19.4-21 Ma. The account of this shortening event may shed some light on the complex subduction and microplate processes that preceded the continental rifting of the Gulf of California.
Parallel processing optimization strategy based on MapReduce model in cloud storage environment
NASA Astrophysics Data System (ADS)
Cui, Jianming; Liu, Jiayi; Li, Qiuyan
2017-05-01
Currently, a large number of documents in the cloud storage process employed the way of packaging after receiving all the packets. From the local transmitter this stored procedure to the server, packing and unpacking will consume a lot of time, and the transmission efficiency is low as well. A new parallel processing algorithm is proposed to optimize the transmission mode. According to the operation machine graphs model work, using MPI technology parallel execution Mapper and Reducer mechanism. It is good to use MPI technology to implement Mapper and Reducer parallel mechanism. After the simulation experiment of Hadoop cloud computing platform, this algorithm can not only accelerate the file transfer rate, but also shorten the waiting time of the Reducer mechanism. It will break through traditional sequential transmission constraints and reduce the storage coupling to improve the transmission efficiency.
Urrego, Diana; Troncoso, Julieta; Múnera, Alejandro
2015-01-01
This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1). It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans. PMID:26064916
NASA Astrophysics Data System (ADS)
Callot, J.-P.; Robion, P.; Sassi, W.; Guiton, M. L. E.; Faure, J.-L.; Daniel, J.-M.; Mengus, J.-M.; Schmitz, J.
2010-12-01
This study provides an original example of exploitation of Anisotropy of Magnetic Susceptibility (AMS) for rocks with weak magnetic susceptibility. Within the upper Weber Sandstone at Split Mountain, Utah, 430 cores from 31 sites were collected for magnetic characterization. The magnetic susceptibility ranges from -10 to 10 μSI, indicating a mostly diamagnetic matrix, with degree of anisotropy up to 1.6. Specific treatment of magnetic susceptibility allows using diamagnetic data. The fabrics are fairly clustered and triaxial. Sedimentary magnetic fabrics show a foliation plane parallel to the lamina of the sand dunes, without defined lineation. Apart from sedimentary fabrics (< 30%), most of the sites display intermediate to tectonic fabrics related to variable degree of strain (> 70%). Magnetic fabric patterns averaged for sites distributed on the anticline are well defined in sub-groups related to the major structural domains of the anticline. The fracture network at Split Mountain is composed of a dominant N120 set and a secondary N035 set. A scenario of strain record is proposed based on the correlation of (1) fracture sets orientation, (2) diagenetic cementation, (3) paleostresses and (4) distribution of magnetic susceptibility anisotropy. Following the Sevier orogeny and N120 fracture set emplacement, the N035 fracture network and AMS signal were recorded during the Laramide Layer Parallel Shortening phase, with local deviation along pre-existing structures, and recorded a partitioning of the strain during early folding, with a maximum horizontal stress axis perpendicular to the fold bounding faults within the fold.
Parallel MR imaging: a user's guide.
Glockner, James F; Hu, Houchun H; Stanley, David W; Angelos, Lisa; King, Kevin
2005-01-01
Parallel imaging is a recently developed family of techniques that take advantage of the spatial information inherent in phased-array radiofrequency coils to reduce acquisition times in magnetic resonance imaging. In parallel imaging, the number of sampled k-space lines is reduced, often by a factor of two or greater, thereby significantly shortening the acquisition time. Parallel imaging techniques have only recently become commercially available, and the wide range of clinical applications is just beginning to be explored. The potential clinical applications primarily involve reduction in acquisition time, improved spatial resolution, or a combination of the two. Improvements in image quality can be achieved by reducing the echo train lengths of fast spin-echo and single-shot fast spin-echo sequences. Parallel imaging is particularly attractive for cardiac and vascular applications and will likely prove valuable as 3-T body and cardiovascular imaging becomes part of standard clinical practice. Limitations of parallel imaging include reduced signal-to-noise ratio and reconstruction artifacts. It is important to consider these limitations when deciding when to use these techniques. (c) RSNA, 2005.
Methodology of modeling and measuring computer architectures for plasma simulations
NASA Technical Reports Server (NTRS)
Wang, L. P. T.
1977-01-01
A brief introduction to plasma simulation using computers and the difficulties on currently available computers is given. Through the use of an analyzing and measuring methodology - SARA, the control flow and data flow of a particle simulation model REM2-1/2D are exemplified. After recursive refinements the total execution time may be greatly shortened and a fully parallel data flow can be obtained. From this data flow, a matched computer architecture or organization could be configured to achieve the computation bound of an application problem. A sequential type simulation model, an array/pipeline type simulation model, and a fully parallel simulation model of a code REM2-1/2D are proposed and analyzed. This methodology can be applied to other application problems which have implicitly parallel nature.
Parallel simulation of tsunami inundation on a large-scale supercomputer
NASA Astrophysics Data System (ADS)
Oishi, Y.; Imamura, F.; Sugawara, D.
2013-12-01
An accurate prediction of tsunami inundation is important for disaster mitigation purposes. One approach is to approximate the tsunami wave source through an instant inversion analysis using real-time observation data (e.g., Tsushima et al., 2009) and then use the resulting wave source data in an instant tsunami inundation simulation. However, a bottleneck of this approach is the large computational cost of the non-linear inundation simulation and the computational power of recent massively parallel supercomputers is helpful to enable faster than real-time execution of a tsunami inundation simulation. Parallel computers have become approximately 1000 times faster in 10 years (www.top500.org), and so it is expected that very fast parallel computers will be more and more prevalent in the near future. Therefore, it is important to investigate how to efficiently conduct a tsunami simulation on parallel computers. In this study, we are targeting very fast tsunami inundation simulations on the K computer, currently the fastest Japanese supercomputer, which has a theoretical peak performance of 11.2 PFLOPS. One computing node of the K computer consists of 1 CPU with 8 cores that share memory, and the nodes are connected through a high-performance torus-mesh network. The K computer is designed for distributed-memory parallel computation, so we have developed a parallel tsunami model. Our model is based on TUNAMI-N2 model of Tohoku University, which is based on a leap-frog finite difference method. A grid nesting scheme is employed to apply high-resolution grids only at the coastal regions. To balance the computation load of each CPU in the parallelization, CPUs are first allocated to each nested layer in proportion to the number of grid points of the nested layer. Using CPUs allocated to each layer, 1-D domain decomposition is performed on each layer. In the parallel computation, three types of communication are necessary: (1) communication to adjacent neighbours for the finite difference calculation, (2) communication between adjacent layers for the calculations to connect each layer, and (3) global communication to obtain the time step which satisfies the CFL condition in the whole domain. A preliminary test on the K computer showed the parallel efficiency on 1024 cores was 57% relative to 64 cores. We estimate that the parallel efficiency will be considerably improved by applying a 2-D domain decomposition instead of the present 1-D domain decomposition in future work. The present parallel tsunami model was applied to the 2011 Great Tohoku tsunami. The coarsest resolution layer covers a 758 km × 1155 km region with a 405 m grid spacing. A nesting of five layers was used with the resolution ratio of 1/3 between nested layers. The finest resolution region has 5 m resolution and covers most of the coastal region of Sendai city. To complete 2 hours of simulation time, the serial (non-parallel) computation took approximately 4 days on a workstation. To complete the same simulation on 1024 cores of the K computer, it took 45 minutes which is more than two times faster than real-time. This presentation discusses the updated parallel computational performance and the efficient use of the K computer when considering the characteristics of the tsunami inundation simulation model in relation to the characteristics and capabilities of the K computer.
The Musculature of Coleoid Cephalopod Arms and Tentacles
Kier, William M.
2016-01-01
The regeneration of coleoid cephalopod arms and tentacles is a common occurrence, recognized since Aristotle. The complexity of the arrangement of the muscle and connective tissues of these appendages make them of great interest for research on regeneration. They lack rigid skeletal elements and consist of a three-dimensional array of muscle fibers, relying on a type of skeletal support system called a muscular hydrostat. Support and movement in the arms and tentacles depends on the fact that muscle tissue resists volume change. The basic principle of function is straightforward; because the volume of the appendage is essentially constant, a decrease in one dimension must result in an increase in another dimension. Since the muscle fibers are arranged in three mutually perpendicular directions, all three dimensions can be actively controlled and thus a remarkable diversity of movements and deformations can be produced. In the arms and tentacles of coleoids, three main muscle orientations are observed: (1) transverse muscle fibers arranged in planes perpendicular to the longitudinal axis; (2) longitudinal muscle fibers typically arranged in bundles parallel to the longitudinal axis; and (3) helical or obliquely arranged layers of muscle fibers, arranged in both right- and left-handed helixes. By selective activation of these muscle groups, elongation, shortening, bending, torsion and stiffening of the appendage can be produced. The predominant muscle fiber type is obliquely striated. Cross-striated fibers are found only in the transverse muscle mass of the prey capture tentacles of squid and cuttlefish. These fibers have unusually short myofilaments and sarcomeres, generating the high shortening velocity required for rapid elongation of the tentacles. It is likely that coleoid cephalopods use ultrastructural modifications rather than tissue-specific myosin isoforms to tune contraction velocities. PMID:26925401
NASA Astrophysics Data System (ADS)
Seiler, Christian; Fletcher, John
2013-04-01
Large-scale fault corrugations or megamullions are a common feature of detachment faults and form either as original fault grooves, displacement-gradient folds or constrictional folds parallel to the extension direction. In highly oblique extensional settings such as the Gulf of California, horizontal shortening perpendicular to the extension direction is an inherent part of the regional stress field and likely forms a key factor during the development of extension-parallel fault corrugations. However, the amount of horizontal shortening absorbed by megamullions is difficult to quantify, and constrictional folding is not normally thought to accommodate significant strike-slip deformation. The Las Cuevitas and Santa Rosa detachments are two low-angle normal fault systems exposed on the Gulf of California rifted margin in northeastern Baja California, Mexico. The two detachments accommodate between ~7-9km of SE-directed extension and represent the next significant set of faults in direction of transport from the rift breakaway fault. Fault kinematics are highly complex, but suggest integrated normal, oblique- and strike-slip faulting, with kinematics controlled by the orientation of faults with respect to the regional transtensional stress field. Both fault systems are strongly corrugated, with megamullion amplitudes of ~4-7km and half wavelenghts of between ~15 to 20km. Differential folding of the syntectonic basin-fill of the supradetachment basins strongly suggest that the observed megamullions formed largely, though not exclusively, due to constrictional folding associated with the transtensional stress regime of the plate boundary. This is consistent with basin-scale facies variations that record differential uplift and subsidence in antiformal and synformal megamullion domains, respectively. Compared to the two detachments, the San Pedro Martir fault - the master fault of the rift system at this latitude - shows more subtle fault corrugations with amplitudes of <3km. Unlike the Las Cuevitas and Santa Rosa detachments, though, there is no evidence for constrictional folding on the San Pedro Martir fault. Instead, the observed corrugations likely represent original grooves of the fault plane, formed as adjacent fault nuclei joined along-strike during fault growth. Comparison between the sinuosity of the San Pedro Martir fault (1.08), attributed entirely to original fault asperities, with the sinuosity of the two detachment systems (Las Cuevitas detachment: 1.17, Santa Rosa detachment: 1.22), suggests that about 10% of shortening occurred on each of the two detachments due to synextensional constrictional folding. This corresponds to a combined total of ~8km of N-S shortening, or ~10km of dextral shear resolved in direction of the relative plate motion, and occurs in addition to ~21km of right-lateral strain accommodated by clockwise vertical-axis block rotations. Thus, strain in this part of the rift system was partitioned between discrete extensional faulting on the two detachment systems, and significant right-lateral shear accommodated by distributed volume deformation.
Superposed ridges of the Hesperia Planum area on Mars
NASA Technical Reports Server (NTRS)
Raitala, Jouko
1988-01-01
Mare ridges of the Hesperia Planum area form linear, reticular and circular structures. The main factors effective in mare ridge formation have been: (1) a large areal, or maybe even global, shortening and compression, (2) major crustal tectonics, and (3) the moderation of tectonic movements by the megaregolith discontinuity layer(s) between surface lavas and the bedrock leaving the compressional thrust to dominate over other fault movements in surface tectonics.
NASA Astrophysics Data System (ADS)
Scharf, A.; Handy, M. R.; Favaro, S.; Schmid, S. M.; Bertrand, A.
2013-09-01
The Tauern Window exposes a Paleogene nappe stack consisting of highly metamorphosed oceanic (Alpine Tethys) and continental (distal European margin) thrust sheets. In the eastern part of this window, this nappe stack (Eastern Tauern Subdome, ETD) is bounded by a Neogene system of shear (the Katschberg Shear Zone System, KSZS) that accommodated orogen-parallel stretching, orogen-normal shortening, and exhumation with respect to the structurally overlying Austroalpine units (Adriatic margin). The KSZS comprises a ≤5-km-thick belt of retrograde mylonite, the central segment of which is a southeast-dipping, low-angle extensional shear zone with a brittle overprint (Katschberg Normal Fault, KNF). At the northern and southern ends of this central segment, the KSZS loses its brittle overprint and swings around both corners of the ETD to become subvertical, dextral, and sinistral strike-slip faults. The latter represent stretching faults whose displacements decrease westward to near zero. The kinematic continuity of top-east to top-southeast ductile shearing along the central, low-angle extensional part of the KSZS with strike-slip shearing along its steep ends, combined with maximum tectonic omission of nappes of the ETD in the footwall of the KNF, indicates that north-south shortening, orogen-parallel stretching, and normal faulting were coeval. Stratigraphic and radiometric ages constrain exhumation of the folded nappe complex in the footwall of the KSZS to have begun at 23-21 Ma, leading to rapid cooling between 21 and 16 Ma. This exhumation involved a combination of tectonic unroofing by extensional shearing, upright folding, and erosional denudation. The contribution of tectonic unroofing is greatest along the central segment of the KSZS and decreases westward to the central part of the Tauern Window. The KSZS formed in response to the indentation of wedge-shaped blocks of semi-rigid Austroalpine basement located in front of the South-Alpine indenter that was part of the Adriatic microplate. Northward motion of this indenter along the sinistral Giudicarie Belt offsets the Periadriatic Fault and triggered rapid exhumation of orogenic crust within the entire Tauern Window. Exhumation involved strike-slip and normal faulting that accommodated about 100 km of orogen-parallel extension and was contemporaneous with about 30 km of orogen-perpendicular, north-south shortening of the ETD. Extension of the Pannonian Basin related to roll-back subduction in the Carpathians began at 20 Ma, but did not affect the Eastern Alps before about 17 Ma. The effect of this extension was to reduce the lateral resistance to eastward crustal flow away from the zone of greatest thickening in the Tauern Window area. Therefore, we propose that roll-back subduction temporarily enhanced rather than triggered exhumation and orogen-parallel motion in the Eastern Alps. Lateral extrusion and orogen-parallel extension in the Eastern Alps have continued from 12 to 10 Ma to the present and are driven by northward push of Adria.
Lateral parabrachial nucleus mediates shortening of expiration during hypoxia.
Song, Gang; Poon, Chi-Sang
2009-01-01
Acute hypoxia elicits complex time-dependent responses including rapid augmentation of inspiratory drive, shortening of inspiratory and expiratory durations (T(I), T(E)), and short-term potentiation and depression. The central pathways mediating these varied effects are largely unknown. Here, we show that the lateral parabrachial nucleus (LPBN) of the dorsolateral pons specifically mediates T(E)-shortening during hypoxia and not other hypoxic response components. Twelve urethane-anesthetized and vagotomized adult Sprague-Dawley rats were exposed to 1-min poikilocapnic hypoxia before and after unilateral kainic acid or bilateral electrolytic lesioning of the LPBN. Bilateral lesions resulted in a significant increase in baseline T(E) under hyperoxia. After unilateral or bilateral lesions, the decrease in T(E) during hypoxia was markedly attenuated without appreciable changes in all other hypoxic response components. These findings add to the mounting evidence that the central processing of peripheral chemoafferent inputs is segregated into parallel integrator and differentiator (low-pass and high-pass filter) pathways that separately modulate inspiratory drive, T(I), T(E) and resultant short-term potentiation and depression.
Hatakeyama, Hitoshi; Yamazaki, Hiromi; Nakamura, Ken-Ichi; Izumiyama-Shimomura, Naotaka; Aida, Junko; Suzuki, Hiroetsu; Tsuchida, Shuichi; Matsuura, Masaaki; Takubo, Kaiyo; Ishikawa, Naoshi
2016-01-01
Telomere shortening occurs when cells divide, both in vitro and in vivo. On the other hand, telomerase is able to maintain telomere length in cells by adding TTAGGG repeats to the ends of telomeres. However, the interrelationships existing among telomere length, telomerase activity and growth in vertebrates remain to be clarified. In the present study we measured telomere length (terminal restriction fragment length), telomerase activity and body growth of Oryzias latipes from the embryo stage until senescence. During the rapid growth stage (age 0–7 months), telomeres shortened in parallel with decreasing telomerase activity. Then, during adolescence (age 7 months – 1 year), telomeres lengthened quickly as growth slowed and telomerase activity increased. In the adult stage (age 1–4 years) characterized by little growth, telomerase activity decreased gradually and telomeres shortened. Our data indicate that telomere attrition and restoration are linked to growth and telomerase activity, and suggest that critical loss of telomere homeostasis is associated with mortality in this animal. PMID:26789258
Correlation between spectral-domain OCT findings and visual acuity in X-linked retinoschisis.
Yang, Hyun Seung; Lee, Jung Bok; Yoon, Young Hee; Lee, Joo Yong
2014-05-08
To investigate the tomographic characteristics of the outer retina and choroid and their relationship with visual acuity in X-linked juvenile retinoschisis (XLRS) patients using spectral-domain optical coherence tomography (SD-OCT). In this retrospective, observational, case-control study, we analyzed 20 eyes of 10 patients with XLRS using SD-OCT. The clinical and tomographic features of the outer retina, including the external limiting membrane (ELM), inner segment/outer segment (IS/OS) junction, cone cell outer segment tips (COST) line, photoreceptor outer segment (PROS) length, and choroid, were evaluated. As controls, 40 age-, sex-, and refraction-matched healthy eyes (1:2 matched) were randomly selected and imaged in parallel. The most prevalent area of abnormality in the outer retina layer of our patients was the outer plexiform layer (OPL; 60% of all affected eyes) and COST line (75% of all affected eyes). On average, the subfoveal choroid and PROS lengths were 35 μm thicker and 19 μm thinner, respectively, in XLRS patients (P = 0.084 and P < 0.001, respectively). A dominant IS/OS junction, COST line defects, and PROS length were related to patient best-corrected visual acuity (BCVA; P = 0.029, P = 0.001, and P < 0.001, respectively) by univariate analysis. Cone cell outer segment tips line defect and PROS length were the only factors related to BCVA in multivariate analysis (P = 0.028 and 0.003, respectively). Outer plexiform layer and photoreceptor microstructure defects are frequent in XLRS patients. Cone cell outer segment tips line defects and shortened PROS lengths as well as other photoreceptor microstructure defects may be closely related to poor vision in XLRS.
Megavolt parallel potentials arising from double-layer streams in the Earth's outer radiation belt.
Mozer, F S; Bale, S D; Bonnell, J W; Chaston, C C; Roth, I; Wygant, J
2013-12-06
Huge numbers of double layers carrying electric fields parallel to the local magnetic field line have been observed on the Van Allen probes in connection with in situ relativistic electron acceleration in the Earth's outer radiation belt. For one case with adequate high time resolution data, 7000 double layers were observed in an interval of 1 min to produce a 230,000 V net parallel potential drop crossing the spacecraft. Lower resolution data show that this event lasted for 6 min and that more than 1,000,000 volts of net parallel potential crossed the spacecraft during this time. A double layer traverses the length of a magnetic field line in about 15 s and the orbital motion of the spacecraft perpendicular to the magnetic field was about 700 km during this 6 min interval. Thus, the instantaneous parallel potential along a single magnetic field line was the order of tens of kilovolts. Electrons on the field line might experience many such potential steps in their lifetimes to accelerate them to energies where they serve as the seed population for relativistic acceleration by coherent, large amplitude whistler mode waves. Because the double-layer speed of 3100 km/s is the order of the electron acoustic speed (and not the ion acoustic speed) of a 25 eV plasma, the double layers may result from a new electron acoustic mode. Acceleration mechanisms involving double layers may also be important in planetary radiation belts such as Jupiter, Saturn, Uranus, and Neptune, in the solar corona during flares, and in astrophysical objects.
Parallel architecture for rapid image generation and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nerheim, R.J.
1987-01-01
A multiprocessor architecture inspired by the Disney multiplane camera is proposed. For many applications, this approach produces a natural mapping of processors to objects in a scene. Such a mapping promotes parallelism and reduces the hidden-surface work with minimal interprocessor communication and low-overhead cost. Existing graphics architectures store the final picture as a monolithic entity. The architecture here stores each object's image separately. It assembles the final composite picture from component images only when the video display needs to be refreshed. This organization simplifies the work required to animate moving objects that occlude other objects. In addition, the architecture hasmore » multiple processors that generate the component images in parallel. This further shortens the time needed to create a composite picture. In addition to generating images for animation, the architecture has the ability to decompose images.« less
NASA Astrophysics Data System (ADS)
Roma, Maria; Pla, Oriol; Butillé, Mireia; Roca, Eduard; Ferrer, Oriol
2015-04-01
The widespread extensional deformation that took place during Jurassic to Cretaceous times in the Western Europe and north-Atlantic realm resulted in the formation of several rift systems. Some of the basins associated to these rifts show broad syncline-shapes filled by thick sedimentary successions deposited overlying a hyperextended crust (i.e., Parentis, Cameros, Organyà or Columbrets basins in Iberia). The development of these syncline basins has been associated to the slip of low-angle lithospheric-scale extensional faults with ramp/flat geometries. The shape and kinematics of such faults have been usually established using the architecture of syn-kinematic layers and assuming a complete coupling of the hangingwall rocks and a layer parallel flexural slip deformation mechanism. However almost all these basins include pre-kinematic Upper Triassic salt layers which undubtoufully acted as an effective detachment decoupling the structure of sub- and suprasalt units. The presence of this salt is denoted by the growth of salt structures as diapirs or salt walls at the edges of these basins where the overburden was thinner. During latest Cretaceous and Cenozoic these basins were partially inverted and often incorporated into thrust-and-fold belts as the Pyrenees . Contractional deformation resulted in the reactivation of major extensional faults and, above the salt, the squeezing of pre-existent salt structures. The pre-kinematic salt clearly acted again as as a major detachment decoupling the contractional deformation. Using an experimental approach (scaled sand-box models) the aim of our research is threefold: 1) to determine the geometrical features of the hangingwall above a convex upwards ramp of a low angle extensional fault with and without pre-kinematic salt, and consequently; 2) to decipher the role played by a pre-kinematic viscous layer, such as salt, in the development of these syncline basins; and 3) to characterize the contractional deformation that took place in them during a later contractional inversion. To achieve this goal an experimental program including seven different sand-box models has been carried out. The experimental results show that fault shape controls the geometry and the kinematic evolution of the ramp synclines formed on the hangingwall during extension and subsequent inversion. Regarding this, the experiments also demonstrate that the presence of a viscous layer changed significantly the kinematic of the basin developing two clearly different structural styles above and below the polymer. The kinematic of this basin during extension change dramatically when the silicone layer was depleted with the formation of primary welds. Since this moment model's kinematic becomes similar to the models without silicone. During the inversion, models show that low shortening produced the contractional reactivation of the major fault arched and uplifted the basin. In this scenario, if salt is rather continuous, took place an incipient reactivation of the silicone layer as a contractional detachment. By contrast, high shortening produces the total inversion of the detachment faults and the pop-up of the extensional basin. Finally, models are compared with different natural analogues from Iberia validating previous published interpretations or proposing new interpretations inferring the geometry of the major fault, specially if the presence of a salt interlayer in the deformed rocks is known or suspected.
NASA Astrophysics Data System (ADS)
Hawemann, Friedrich; Mancktelow, Neil; Wex, Sebastian; Pennacchioni, Giorgio; Camacho, Alfredo
2016-04-01
The Davenport shear zone in Central Australia is a strike-slip ductile shear zone developed during the Petermann Orogeny (~ 550 Ma). The conditions of shearing are estimated to be amphibolite-eclogite facies (650 °C, 1.2 GPa). The up to seven kilometre thick mylonite zone encloses several large low strain domains with excellent exposure, thus allowing a thorough study of the initiation of shear zones. Quartzo-feldspathic gneisses and granitoids inherit a suite of lithological heterogeneities such as quartz-rich pegmatites, mafic layers and dykes. When in a favourable orientation to the shortening direction, these rheologically different pre-existing layers might be expected to localize deformation. However, with the singular exception of long, continuous and fine-grained dolerite dykes, this is not observed. Quartz-rich pegmatites are mostly unsheared, even if in a favourable orientation, and sometimes boudinaged or folded. There are instead many shear zones only a few mm to cm in width, extending up to tens of metres, which are in fact oriented at a very high angle to the shortening direction. Parallel to these, a network of little to moderately overprinted brittle fractures are observed, commonly marked by pseudotachylyte (pst) and sometimes new biotite. Shear reactivation of these precursor fractures is generally limited to the length of the initial fracture and typically re-uses and shears the pst. The recrystallized mineral assemblage in the sheared pst consists of Cpx+Grt+Fsp±Ky and is the same to that in the adjacent sheared gneiss, with the same PT estimates (650 °C, 1.2 GPa). In some cases, multiple generations of cross-cutting and sheared pst demonstrate alternating fracture and flow during progressive shear zone development and a clear tendency for subsequent pst formation to also localize in the existing shear zone. The latest pst may be both unsheared and unrecrystallized (no grt) and is probably related to a late stage, still localized within the same shear zone. The observation that pst is preferentially sheared indicates that it is weaker than the host rock, although their bulk compositions are about the same, suggesting that the governing factors for localization are the finer grain size and the elongate, nearly planar geometry of the original pst generation zone. The same may be true of the sheared dolerite dykes, which are long, narrow and generally finer grained than the surrounding gneiss or granite. Although quartz-rich pegmatites are not preferred sites of localization, quartzo-feldspathic mylonites are fully recrystallized with a relatively coarse grain size (typically > 50 microns) typical of rather low long-term flow stress. We therefore propose that localization in the lower crust only occurs on long planar layers with a finer grain size that can promote weakening by grain-size sensitive creep. Coarser-grained lithological layers and boundaries are not exploited during the initiation of a shear zone and, in particular, quartz-rich layers are not preferentially sheared.
NASA Technical Reports Server (NTRS)
Schunk, Richard Gregory; Chung, T. J.
2001-01-01
A parallelized version of the Flowfield Dependent Variation (FDV) Method is developed to analyze a problem of current research interest, the flowfield resulting from a triple shock/boundary layer interaction. Such flowfields are often encountered in the inlets of high speed air-breathing vehicles including the NASA Hyper-X research vehicle. In order to resolve the complex shock structure and to provide adequate resolution for boundary layer computations of the convective heat transfer from surfaces inside the inlet, models containing over 500,000 nodes are needed. Efficient parallelization of the computation is essential to achieving results in a timely manner. Results from a parallelization scheme, based upon multi-threading, as implemented on multiple processor supercomputers and workstations is presented.
Kardel, Troels
2008-01-01
Muscular movement is the result of fibre shortening. How did this basic insight arise? Based on several of his observations, Nicolaus Steno in 1664 and 1667 proposed that muscles shorten when fibres shorten, and that skeletal muscles consist of uniform motor fibres layered as pennate structures. The basis for a new myology was provided in a geometrical model of the movement of the muscles. But fibre shortening was incompatible with the dominant ancient theory of contraction by inflation that was favoured by Descartes and by Steno's contemporaries William Croone, Thomas Willis, John Mayow, and Giovanni Borelli due to their adherence to the Aristotelian axiom: "Anything which moves is moved by something else". The inflation theory blindfolded researchers well into the eighteenth century for skeletal and heart muscles. When the shortening of motor fibres was eventually visualised by microscopy, this inflation theory was no longer tenable. Steno's structural claim on skeletal muscles was also rejected by Borelli and by later commentators. Pennate muscles were only rarely displayed until 1981 when macro-anatomical studies showed the morphology of most skeletal muscles to be similar to that described by Steno. Steno's proposals on muscles have since become a common-place in computer models applied in the study of human and animal motion.
Tranter, Michael; Helsley, Robert N.; Paulding, Waltke R.; McGuinness, Michael; Brokamp, Cole; Haar, Lauren; Liu, Yong; Ren, Xiaoping; Jones, W. Keith
2011-01-01
Heat shock protein 70 (Hsp70) is well documented to possess general cytoprotective properties in protecting the cell against stressful and noxious stimuli. We have recently shown that expression of the stress-inducible Hsp70.3 gene in the myocardium in response to ischemic preconditioning is NF-κB-dependent and necessary for the resulting late phase cardioprotection against a subsequent ischemia/reperfusion injury. Here we show that the Hsp70.3 gene product is subject to post-transcriptional regulation through parallel regulatory processes involving microRNAs and alternative polyadenylation of the mRNA transcript. First, we show that cardiac ischemic preconditioning of the in vivo mouse heart results in decreased levels of two Hsp70.3-targeting microRNAs: miR-378* and miR-711. Furthermore, an ischemic or heat shock stimulus induces alternative polyadenylation of the expressed Hsp70.3 transcript that results in the accumulation of transcripts with a shortened 3′-UTR. This shortening of the 3′-UTR results in the loss of the binding site for the suppressive miR-378* and thus renders the alternatively polyadenylated transcript insusceptible to miR-378*-mediated suppression. Results also suggest that the alternative polyadenylation-mediated shortening of the Hsp70.3 3′-UTR relieves translational suppression observed in the long 3′-UTR variant, allowing for a more robust increase in protein expression. These results demonstrate alternative polyadenylation of Hsp70.3 in parallel with ischemic or heat shock-induced up-regulation of mRNA levels and implicate the importance of this process in post-transcriptional control of Hsp70.3 expression. PMID:21757701
DOE Office of Scientific and Technical Information (OSTI.GOV)
Protzman, G.M.; Mitra, G.
The emplacement history of a thrust sheet is recorded by the strain accumulated in its hanging wall and footwall. Detailed studies of second order structures and analysis of strain due to pressure solution and plastic deformation allow the authors to determine the deformation history of the Meade thrust in the Idaho - Wyoming thrust belt. Emplacement of the Meade thrust was accompanied by the formation of a series of second order in echelon folds in the footwall. Temporal relations based on detailed structural studies show that these folds, which are confined to the Jurassic Twin Creek Formation, formed progressively inmore » front of the advancing Meade thrust and were successively truncated and overridden by footwall imbricates of the Meade thrust. The Twin Creek Formation in both the hanging wall and footwall of the Meade thrust is penetratively deformed, with a well developed pressure solution cleavage. In addition, plastic strain is recorded by deformed Pentacrinus within fossil hash layers in the Twin Creek. Much of this penetrative deformation took place early in the history of the thrust sheet as layer parallel shortening, and the cleavage and deformed fossils behaved passively during subsequent folding and faulting. The later stages of deformation may be sequentially removed through balancing techniques to track successive steps in the deformation. This strain history, which is typical of an internal thrust sheet, is partly controlled by the lithologies involved, timing between successive thrusts, and the amount of interaction between major faults.« less
Jackin, Boaz Jessie; Watanabe, Shinpei; Ootsu, Kanemitsu; Ohkawa, Takeshi; Yokota, Takashi; Hayasaki, Yoshio; Yatagai, Toyohiko; Baba, Takanobu
2018-04-20
A parallel computation method for large-size Fresnel computer-generated hologram (CGH) is reported. The method was introduced by us in an earlier report as a technique for calculating Fourier CGH from 2D object data. In this paper we extend the method to compute Fresnel CGH from 3D object data. The scale of the computation problem is also expanded to 2 gigapixels, making it closer to real application requirements. The significant feature of the reported method is its ability to avoid communication overhead and thereby fully utilize the computing power of parallel devices. The method exhibits three layers of parallelism that favor small to large scale parallel computing machines. Simulation and optical experiments were conducted to demonstrate the workability and to evaluate the efficiency of the proposed technique. A two-times improvement in computation speed has been achieved compared to the conventional method, on a 16-node cluster (one GPU per node) utilizing only one layer of parallelism. A 20-times improvement in computation speed has been estimated utilizing two layers of parallelism on a very large-scale parallel machine with 16 nodes, where each node has 16 GPUs.
Fast parallel algorithm for slicing STL based on pipeline
NASA Astrophysics Data System (ADS)
Ma, Xulong; Lin, Feng; Yao, Bo
2016-05-01
In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved.
Song, Xiufeng; Liu, Xuhai; Yu, Dejian; Huo, Chengxue; Ji, Jianping; Li, Xiaoming; Zhang, Shengli; Zou, Yousheng; Zhu, Gangyi; Wang, Yongjin; Wu, Mingzai; Xie, An; Zeng, Haibo
2018-01-24
Transition metal dichalcogenides (TMDs) are promising candidates for flexible optoelectronic devices because of their special structures and excellent properties, but the low optical absorption of the ultrathin layers greatly limits the generation of photocarriers and restricts the performance. Here, we integrate all-inorganic perovskite CsPbBr 3 nanosheets with MoS 2 atomic layers and take the advantage of the large absorption coefficient and high quantum efficiency of the perovskites, to achieve excellent performance of the TMD-based photodetectors. Significantly, the interfacial charge transfer from the CsPbBr 3 to the MoS 2 layer has been evidenced by the observed photoluminescence quenching and shortened decay time of the hybrid MoS 2 /CsPbBr 3 . Resultantly, such a hybrid MoS 2 /CsPbBr 3 photodetector exhibits a high photoresponsivity of 4.4 A/W, an external quantum efficiency of 302%, and a detectivity of 2.5 × 10 10 Jones because of the high efficient photoexcited carrier separation at the interface of MoS 2 and CsPbBr 3 . The photoresponsivity of this hybrid device presents an improvement of 3 orders of magnitude compared with that of a MoS 2 device without CsPbBr 3 . The response time of the device is also shortened from 65.2 to 0.72 ms after coupling with MoS 2 layers. The combination of the all-inorganic perovskite layer with high photon absorption and the carrier transport TMD layer may pave the way for novel high-performance optoelectronic devices.
Magnetic behaviour of multisegmented FeCoCu/Cu electrodeposited nanowires
NASA Astrophysics Data System (ADS)
Núñez, A.; Pérez, L.; Abuín, M.; Araujo, J. P.; Proenca, M. P.
2017-04-01
Understanding the magnetic behaviour of multisegmented nanowires (NWs) is a major key for the application of such structures in future devices. In this work, magnetic/non-magnetic arrays of FeCoCu/Cu multilayered NWs electrodeposited in nanoporous alumina templates are studied. Contrarily to most reports on multilayered NWs, the magnetic layer thickness was kept constant (30 nm) and only the non-magnetic layer thickness was changed (0 to 80 nm). This allowed us to tune the interwire and intrawire interactions between the magnetic layers in the NW array creating a three-dimensional (3D) magnetic system without the need to change the template characteristics. Magnetic hysteresis loops, measured with the applied field parallel and perpendicular to the NWs’ long axis, showed the effect of the non-magnetic Cu layer on the overall magnetic properties of the NW arrays. In particular, introducing Cu layers along the magnetic NW axis creates domain wall nucleation sites that facilitate the magnetization reversal of the wires, as seen by the decrease in the parallel coercivity and the reduction of the perpendicular saturation field. By further increasing the Cu layer thickness, the interactions between the magnetic segments, both along the NW axis and of neighbouring NWs, decrease, thus rising again the parallel coercivity and the perpendicular saturation field. This work shows how one can easily tune the parallel and perpendicular magnetic properties of a 3D magnetic layer system by adjusting the non-magnetic layer thickness.
A fully resolved fluid-structure-muscle-activation model for esophageal transport
NASA Astrophysics Data System (ADS)
Kou, Wenjun; Bhalla, Amneet P. S.; Griffith, Boyce E.; Johnson, Mark; Patankar, Neelesh A.
2013-11-01
Esophageal transport is a mechanical and physiological process that transfers the ingested food bolus from the pharynx to the stomach through a multi-layered esophageal tube. The process involves interactions between the bolus, esophageal wall composed of mucosal, circular muscle (CM) and longitudinal muscle (LM) layers, and neurally coordinated muscle activation including CM contraction and LM shortening. In this work, we present a 3D fully-resolved model of esophageal transport based on the immersed boundary method. The model describes the bolus as a Newtonian fluid, the esophageal wall as a multi-layered elastic tube represented by springs and beams, and the muscle activation as a traveling wave of sequential actuation/relaxation of muscle fibers, represented by springs with dynamic rest lengths. Results on intraluminal pressure profile and bolus shape will be shown, which are qualitatively consistent with experimental observations. Effects of activating CM contraction only, LM shortening only or both, for the bolus transport, are studied. A comparison among them can help to identify the role of each type of muscle activation. The support of grant R01 DK56033 and R01 DK079902 from NIH is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Whisner, Stephen C.; Schmidt, Christopher J.; Whisner, Jennifer B.
2014-12-01
The Helena salient is a prominent craton-convex curve in the Cordillera thrust belt of Montana, USA. The Lombard thrust sheet is the primary sheet in the salient. Structural analysis of fold trends, cleavage attitudes, and movement on minor faults is used to better understand both the geometry of the Lombard thrust and the kinematic development of the salient. Early W-E to WNW-ENE shortening directions in the Lombard sheet are indicated by fold trends in the center of the thrust sheet. The same narrow range of shortening directions is inferred from kinematic analysis of movement on minor faults and the orientations of unrotated cleavage planes along the southern lateral ramp boundary of the salient. As the salient developed, the amount and direction of shortening were locally modified as listric detachment faults rotated some tight folds to the NW, and as right-lateral simple shear, caused by lock-up and folding of the Jefferson Canyon fault above the lateral ramp, rotated other folds northeastward. Where the lateral ramp and frontal-oblique ramp intersect, folds were rotated back to the NW. Our interpretation of dominant W-E to WNW-ESE shortening in the Lombard sheet, later altered by local rotations, supports a model of salient formation by primary parallel transport modified by interactions with a lateral ramp.
A Theoretical Study of Cold Air Damming.
NASA Astrophysics Data System (ADS)
Xu, Qin
1990-12-01
The dynamics of cold air damming are examined analytically with a two-layer steady state model. The upper layer is a warm and saturated cross-mountain (easterly or southeasterly onshore) flow. The lower layer is a cold mountain-parallel (northerly) jet trapped on the windward (eastern) side of the mountain. The interface between the two layers represents a coastal front-a sloping inversion layer coupling the trapped cold dome with the warm onshore flow above through pressure continuity.An analytical expression is obtained for the inviscid upper-layer flow with hydrostatic and moist adiabatic approximations. Blackadar's PBL parameterization of eddy viscosity is used in the lower-layer equations. Solutions for the mountain-parallel jet and its associated secondary transverse circulation are obtained by expanding asymptotically upon a small parameter proportional to the square root of the inertial aspect ratio-the ratio between the mountain height and the radius of inertial oscillation. The geometric shape of the sloping interface is solved numerically from a differential-integral equation derived from the pressure continuity condition imposed at the interface.The observed flow structures and force balances of cold air damming events are produced qualitatively by the model. In the cold dome the mountain-parallel jet is controlled by the competition between the mountain-parallel pressure gradient and friction: the jet is stronger with smoother surfaces, higher mountains, and faster mountain-normal geostrophic winds. In the mountain-normal direction the vertically averaged force balance in the cold dome is nearly geostrophic and controls the geometric shape of the cold dome. The basic mountain-normal pressure gradient generated in the cold dome by the negative buoyancy distribution tends to flatten the sloping interface and expand the cold dome upstream against the mountain-normal pressure gradient (produced by the upper-layer onshore wind) and Coriolis force (induced by the lower-layer mountain-parallel jet). It is found that the interface slope increases and the cold dome shrinks as the Froude number and/or upstream mountain-parallel geostrophic wind increase, or as the Rossby number, upper-layer depth, and/or surface roughness length decrease, and vice versa. The cold dome will either vanish or not be in a steady state if the Froude number is large enough or the roughness length gets too small. The theoretical findings are explained physically based on detailed analyses of the force balance along the inversion interface.
Feng, Shuo
2014-01-01
Parallel excitation (pTx) techniques with multiple transmit channels have been widely used in high field MRI imaging to shorten the RF pulse duration and/or reduce the specific absorption rate (SAR). However, the efficiency of pulse design still needs substantial improvement for practical real-time applications. In this paper, we present a detailed description of a fast pulse design method with Fourier domain gridding and a conjugate gradient method. Simulation results of the proposed method show that the proposed method can design pTx pulses at an efficiency 10 times higher than that of the conventional conjugate-gradient based method, without reducing the accuracy of the desirable excitation patterns. PMID:24834420
Feng, Shuo; Ji, Jim
2014-04-01
Parallel excitation (pTx) techniques with multiple transmit channels have been widely used in high field MRI imaging to shorten the RF pulse duration and/or reduce the specific absorption rate (SAR). However, the efficiency of pulse design still needs substantial improvement for practical real-time applications. In this paper, we present a detailed description of a fast pulse design method with Fourier domain gridding and a conjugate gradient method. Simulation results of the proposed method show that the proposed method can design pTx pulses at an efficiency 10 times higher than that of the conventional conjugate-gradient based method, without reducing the accuracy of the desirable excitation patterns.
Shortening rate of the NW-Himalaya, across the Surin Mastgarh Anticline, Chenab Re-entrant, Jammu
NASA Astrophysics Data System (ADS)
Anilkumar, A.
2016-12-01
Within the foreland basin of NW Himalaya, a frontal fold, the Surin Mastgarh anticline, SMA extends continuously for about 180 km along strike, between River Beas in the east and River Munawartawi in the west. It extends for such a long distance without an emergent frontal thrust cutting the forelimb of SMA, depicting an unknown geometry with the underlying decollement. In the hinterland of the SMA the Medlicott-Wadia Thrust accommodates shortening at a rate of 11+3.8 mm/yr, Vassallo et al, 2015. Using the excess area method given by Hossack et al, Vassallo et al further estimated a 9+3.2mm/yr shortening rate for SMA in Reasi region. The sum of the total shortening rates between these active structures (Vassallo et al., 2015) however, exceeds the 16-mm/yr convergence rates reported by geodetic studies within Kashmir Himalaya (Schiffman et al, 2013; Kundu et al, 2014). Another parallel study by Gavillot et al, 2016) documents a 4-6 mm/year shortening interpreted from restored cross section taken across the SMA along River Chenab. Since, a discrepancy exits in the previously documented shortening rates for the SMA; we have utilized the morphology of the terraces of Chenab to estimate shortening within the SMA. We surveyed the terraces in the valley using Real Time Kinematic GPS for obtaining topographic profiles. The strath terraces were sampled for dating by Optically Stimulated Luminescence technique. The morphology of the terraces suggests that they are progressively folded and uplifted above the present course of River Chenab. We adapted the method given by Rockwell et al 2008. In this method the anticline is considered obeying a Sine function. The arc-length of the limb, L can be evaluated from two parameters; the horizontal distance of the limb-D and slope of curve at point of inflection point-θ. By using arc line method shortening amount of 124.85m is inferred. Consequently a geological shortening rate of 6.57+1.39 mm/yr is estimated for the SMA using abandonment ages of the terrace. This value falls well within the 16 mm/year convergence rate of Kashmir Himalaya and suggests that 30-40 % of this convergence is taken for shortening within the SMA. This anticline extends in the seismic gap of 1905 Kangra and 2005 Kashmir earthquakes, it holds a significant potential for hazard in a populated region of Jammu and Punjab.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LORENZ,JOHN C.; COOPER,SCOTT P.
2000-12-20
The Cretaceous strata that fill the San Juan Basin of northwestern New Mexico and southwestern Colorado were shortened in a generally N-S to NN13-SSW direction during the Laramide orogeny. This shortening was the result of compression of the strata between southward indentation of the San Juan Uplift at the north edge of the basin and northward to northeastward indentation of the Zuni Uplift from the south. Right-lateral strike-slip motion was concentrated at the eastern and western basin margins of the basin to form the Hogback Monocline and the Nacimiento Uplift at the same time, and small amounts of shear maymore » have been pervasive within the basin as well. Vertical extension fractures, striking N-S to NNE-SSW with local variations (parallel to the Laramide maximum horizontal compressive stress), formed in both Mesaverde and Dakota sandstones under this system, and are found in outcrops and in the subsurface of the San Juan Basin. The immature Mesaverde sandstones typically contain relatively long, irregular, vertical extension fractures, whereas the quartzitic Dakota sandstones contain more numerous, shorter, sub-parallel, closely spaced, extension fractures. Conjugate shear planes in several orientations are also present locally in the Dakota strata.« less
Rapid Parallel Calculation of shell Element Based On GPU
NASA Astrophysics Data System (ADS)
Wanga, Jian Hua; Lia, Guang Yao; Lib, Sheng; Li, Guang Yao
2010-06-01
Long computing time bottlenecked the application of finite element. In this paper, an effective method to speed up the FEM calculation by using the existing modern graphic processing unit and programmable colored rendering tool was put forward, which devised the representation of unit information in accordance with the features of GPU, converted all the unit calculation into film rendering process, solved the simulation work of all the unit calculation of the internal force, and overcame the shortcomings of lowly parallel level appeared ever before when it run in a single computer. Studies shown that this method could improve efficiency and shorten calculating hours greatly. The results of emulation calculation about the elasticity problem of large number cells in the sheet metal proved that using the GPU parallel simulation calculation was faster than using the CPU's. It is useful and efficient to solve the project problems in this way.
NASA Astrophysics Data System (ADS)
Adamuszek, Marta; Dabrowski, Marcin; Schmalholz, Stefan M.; Urai, Janos L.; Raith, Alexander
2015-04-01
Salt structures have been identified as a potential target for hydrocarbon, CO2, or radioactive waste storage. The most suitable locations for magazines are considered in the thick and relatively homogeneous rock salt layers. However, salt structures often consist of the evaporite sequence including rock salt intercalated with other rock types e.g.: anhydrite, gypsum, potassium and magnesium salt, calcite, dolomite, or shale. The presence of such heterogeneities causes a serious disturbance in the structure management. Detailed analysis of the internal architecture and internal dynamics of the salt structure are crucial for evaluating them as suitable repositories and also their long-term stability. The goal of this study is to analyse the influence of the presence of anhydrite layers on the internal dynamics of salt structures. Anhydrite is a common rock in evaporite sequences. Its physical and mechanical properties strongly differ from the properties of rock salt. The density of anhydrite is much higher than the density of salt, thus anhydrite is likely to sink in salt causing the disturbance of the surrounding structures. This suggestion was the starting point to the discussion about the long-term stability of the magazines in salt structures [1]. However, the other important parameter that has to be taken into account is the viscosity of anhydrite. The high viscosity ratio between salt and anhydrite can restrain the layer from sinking. The rheological behaviour of anhydrite has been studied in laboratory experiments [2], but the results only provide information about the short-term behaviour. The long-term behaviour can be best predicted using indirect methods e.g. based on the analysis of natural structures that developed over geological time scale. One of the most promising are fold structures, the shape of which is very sensitive to the rheological parameters of the deforming materials. Folds can develop in mechanically stratified materials during layer parallel shortening. Mechanical model have been developed to rigorously correlate rheological properties of rock to the fold shape. A quantitative fold shape analysis combined with the folding theory allows deciphering the rock rheology. In this study, we analyse anhydrite layers embedded in the rock salt from the Upper Permian Zechstein salt formation from Dutch offshore. The anhydrite layers are common intercalation in the sequence. Their thickness varies between few millimetres up to hundred meters. The layers are strongly deformed often forming fold structures, which can be observed on a wide range of scales: in core samples, mine galleries, and also in the seismic sections. For our analysis, we select single layer fold trains. Quantitative fold shape analysis is carried out using Fold Geometry Toolbox [3], which allows deciphering the viscosity ratio between anhydrite and salt. The results indicate that anhydrite layer is ca. 10 to 30 times more viscous than the embedding salt. Further, we use the estimated rheological parameters of anhydrite in the numerical analysis of the internal salt dynamics. We solve an incompressible Stokes equation in the presence of the gravity using the finite element method solver MILAMIN [4]. We show that the presence of denser and more viscous anhydrite layers in the tectonically stable regime is insignificant for the internal stability of the salt structures. [1] Chemia, Z., Koyi, H., Schmeling, H. 2008. Numerical modelling of rise and fall of a dense layer in salt diapirs. Geophysical Journal International, 172: 798-816. [2] Muller, W.H., Briegel, U. 1978. The rheological behaviour of polycrystalline Anhydrite. Eclogae Geol. Helv, 71(2): 397-407 [3] Adamuszek M., Schmid D.W., Dabrowski M. 2011. Fold geometry toolbox - Automated determination of fold shape, shortening, and material properties, Journal of Structural Geology, 33: 1406-1416. [4] Dabrowski, M., Krotkiewski, M., and Schmid, D. W. 2008. MILAMIN: MATLAB-based finite element method solver for large problems. Geochemistry Geophysics Geosystems, 9: Q04030.
Light trapping architecture for photovoltaic and photodector applications
Forrest, Stephen R.; Lunt, Richard R.; Slootsky, Michael
2016-08-09
There is disclosed photovoltaic device structures which trap admitted light and recycle it through the contained photosensitive materials to maximize photoabsorption. For example, there is disclosed a photosensitive optoelectronic device comprising: a first reflective layer comprising a thermoplastic resin; a second reflective layer substantially parallel to the first reflective layer; a first transparent electrode layer on at least one of the first and second reflective layer; and a photosensitive region adjacent to the first electrode, wherein the first transparent electrode layer is substantially parallel to the first reflective layer and adjacent to the photosensitive region, and wherein the device has an exterior face transverse to the planes of the reflective layers where the exterior face has an aperture for admission of incident radiation to the interior of the device.
Unsteady boundary-layer injection
NASA Technical Reports Server (NTRS)
Telionis, D. P.; Jones, G. S.
1981-01-01
The boundary-layer equations for two-dimensional incompressible flow are integrated numerically for the flow over a flat plate and a Howarth body. Injection is introduced either impulsively or periodically along a narrow strip. Results indicate that injection perpendicular to the wall is transmitted instantly across the boundary layer and has little effect on the velocity profile parallel to the wall. The effect is a little more noticeable for flows with adverse pressure gradients. Injection parallel to the wall results in fuller velocity profiles. Parallel and oscillatory injection appears to influence the mean. The amplitude of oscillation decreases with distance from the injection strip but further downstream it increases again in a manner reminiscent of an unstable process.
A three-dimensional spectral algorithm for simulations of transition and turbulence
NASA Technical Reports Server (NTRS)
Zang, T. A.; Hussaini, M. Y.
1985-01-01
A spectral algorithm for simulating three dimensional, incompressible, parallel shear flows is described. It applies to the channel, to the parallel boundary layer, and to other shear flows with one wall bounded and two periodic directions. Representative applications to the channel and to the heated boundary layer are presented.
NASA Astrophysics Data System (ADS)
Bland, M. T.; McKinnon, W. B.
2013-12-01
Cassini imaging and thermal data have demonstrated that Enceladus' four south-polar linear-fractures are the source of both Enceladus' cryovolcanic plume and its extreme thermal emission. These long (130 km), parallel 'tiger stripes' are located within a young, quasi-circular, south-polar depression characterized by extensive tectonic deformation that includes sets of both small-scale fractures (possibly relic tiger stripes) [Patthoff and Kattenhorn 2011], and large-amplitude circumferential ridges. Between the tiger stripes themselves are broad regions of periodic, low amplitude (50-100 m), short-wavelength (1 km) ridges (dubbed 'funiscular' terrain) that generally run parallel to the larger tiger stripe fractures but occasionally intersect them at small angles [Spencer et al. 2009]. The formation of the south polar terrain (SPT) may be related to localized melting of Enceladus' ice layer [e.g., Collins and Goodman, 2007] but the detailed formation kinematics of the SPT and its specific tectonic structures is far from certain. Here we constrain the formation of the SPT by simulating the development of funiscular terrain specifically. This terrain dominates the central portion of the SPT, including regions immediately adjacent to the tiger stripes. The stripes are, in effect, large-scale fractures imbedded within the funiscular terrain; thus, any kinematic or dynamic prescription for SPT formation must account for funiscular morphology. The simplest formation mechanism consistent with the funiscular ridges is that of low-amplitude, short-wavelength folding of a thin surface layer. Barr and Pruess [2010] demonstrated the plausibility of this mechanism using an analytical model developed for folds forming on lava flow tops. We extend their analysis using finite element modeling of the contraction of a thin, brittle lithosphere overlying ductile ice. We find fold morphologies consistent with the funiscular terrain (50-100 m amplitude, 1.5 km wavelengths) for lithospheric thicknesses of 250-500 m assuming weak (~100 kPa) near surface ice and 10% shortening. Creation of short wavelengths and tight fold hinges requires kinematic fold growth that shortens the fold wavelength subsequent to establishment of a longer, initial dominant wavelength. Thicker lithospheres (1 km) also reproduce the deformation if strains exceed 10%, though fold amplitudes are lower and wavelengths longer in this case. The thin lithosphere required to produce funiscular morphologies require exceedingly high heat flow if intact (low porosity) ice is assumed (≥1 W m-2). Significant lithospheric porosity that depresses the ice thermal conductivity (e.g., by a factor of ~3 for 30% porosity [Shoshany et al. 2002]) is likely required, and could decrease the necessary heat flux to ~300 mW m-2. The thin lithosphere necessary for its formation might account for the funiscular terrain's limited spatial extent adjacent to the tiger stripes, the locus of SPT thermal activity. A compressive stress regime between the tensile tiger stripes suggests local accommodation of strain in a dominantly extensional setting that is likely modulated by tidally-induced shear.
Plate collision and mounting building separated by long periods of time. Possible causes
NASA Astrophysics Data System (ADS)
Artyushkov, Eugene; Chekhovich, Peter; Massonne, Hans-Joachim
2017-04-01
According to a popular scheme of orogenesis, superposition of thick nappe on continental crust results in concomitant mountain building. In many cases plate collision was not accompanied by mountain building which actually occurred 10-100 Myr later. Thus in East Carpathians 12 Ma ago thick nappe was superimposed on the western margin of the East European Craton. The nappe remained near to sea level and mountain building began only 3 myr ago. In the Middle Urals collision developed in a number of phases during 70 Myr since the Late Devonian and until the earliest Permian; however, this produced no high topography. The formation of orogenic granitoids took place at the main stage of collision 306-300 Ma ago. High mountains were formed in the earliest Permian 10 Myr after the end of collision. In the Northern Tien Shan collision with intrusion of large granitic plutons occurred in the Late Ordovician-Middle Devonian. In the Southern Tien Shan these phenomena refer to the Late Carboniferous and Late Jurassic. In both regions collision was not accompanied by mountain building. High mountains were formed in the Tien Shan quite recently. Shortening of strong lithospheric layer becomes possible only at short epochs of its softening under infiltration of fluids from the mantle. The absence of large uplift during shortening and thickening of the crust indicates a concomitant density increase in this layer. As follows from the analysis of typical phase diagrams of crustal rocks this can be explained by metamorphic reactions taking place in a presence of fluids under the pressure increase due to the nappe emplacement. As follows from the absence of large crustal uplift in shortened regions mantle lithosphere remains preserved in them after plate collision. At the epochs of infiltration from the mantle of large volumes of fluids it becomes softened. This ensures a possibility of convective replacement by the asthenosphere of fertile and dense mantle lithosphere of the Phanerozoic age which should result in a strong isostatic crustal uplift. Pronounced asthenospheric upwelling is indeed observed under high mountains in many Phanerozoic fold belts. New temperature distribution arises in the thickened crust after its shortening. As a result retrograde metamorphism with expansion became possible in dense rocks which underwent deep metamorphism at the preceding epochs of collision. This is another mechanism of mountain building. Analysis of the data on the Tien Shan shows that both these mechanisms are responsible for its uplift by 2 km and more during the last 2 Myr. In the gravity field the force acting along the lithospheric layer that necessary to shorten the crust increases with the altitude of topography. Termination of shortening after reaching only a very low altitude indicates that the forces which ensure collision are not large. They can be estimated as 3 × 1012 N m which is comparable with the plate driving force of ridge push.
NASA Astrophysics Data System (ADS)
Reber, J. E.; Schmalholz, S. M.; Lechmann, S. M.
2009-04-01
We present field data and numerical modeling results which show the evolution of stress and strain patterns during 3D folding resulting in an orthogonal fracture system. The field area is located near Almograve, SW Portugal. The area is part of the Mira Formation which itself is part of the South Portuguese Zone (SPZ). The structural development of the SPZ is characterized by southwest vergent folding and thrust displacement. The metamorphism in the SPZ increases from diagenetic conditions in the southwest to greenschist-facies conditions to the northeast. The Mira Formation is composed of turbiditic layers of Carboniferous age with low sandstone to shale ratio. The data was gathered at three outcrops which show structures similar to chocolate tablet structures in the folded sandstone layers. Chocolate tablet structures are generated under simultaneous extension in two directions and show two fracture systems of the same age which are perpendicular to each other. However, the Mira Formation is located in a convergent area. Also, the outcrops near Almograve show two fracture systems of different age. The fractures orthogonal to the fold axis and the bedding are crosscut by fractures parallel to the fold axis and orthogonal to the bedding. Our hypothesis for the evolution of the observed fracture systems is as follows; the older fractures which are now orthogonal to the fold axis and to the bedding plane were generated during compression while the layers were still approximately horizontal. They are parallel to σ1(i.e. mode 1 fractures). The second and younger fracture family was generated in a phase where there is local extension in the fold limbs. These fractures are orthogonal to the far-field σ1, parallel to the fold axis and perpendicular to the bedding. The shortening direction is constant during the entire folding process. We test our hypothesis with numerical modeling. We use 2D and 3D finite element codes with a mixed formulation for incompressible flow and a viscous rheology. The stress and strain tensor components are calculated at each numerical nodal point. The stress and strain fields are visualized through ellipses and ellipsoids which are calculated using the eigenvalues of the respective tensors. The shortest main axis represents the direction of the smallest stress σ3 and the longest main axis represents the direction of the largest stress σ1. To generate two orthogonal fracture systems in the fold limbs we expect a relatively rapid change of the stress field in the fold limbs during folding. With a relatively slow change of the stress field we would expect to see more than two fracture systems with a wide range of fracture orientation which we did not observe in the field. The preliminary 2D results show, as expected, a sudden flip of the main axes of the stress ellipse which corresponds to a change from limb-parallel compression to extension. For the 3D model we expect similar results and we will investigate the impact of different deformation boundary conditions on the evolution of the 3D stress and strain fields.
Chu, Henry Shiu-Hung [Idaho Falls, ID; Lacy, Jeffrey M [Idaho Falls, ID
2008-04-01
An armor structure includes first and second layers individually containing a plurality of i-beams. Individual i-beams have a pair of longitudinal flanges interconnected by a longitudinal crosspiece and defining opposing longitudinal channels between the pair of flanges. The i-beams within individual of the first and second layers run parallel. The laterally outermost faces of the flanges of adjacent i-beams face one another. One of the longitudinal channels in each of the first and second layers faces one of the longitudinal channels in the other of the first and second layers. The channels of the first layer run parallel with the channels of the second layer. The flanges of the first and second layers overlap with the crosspieces of the other of the first and second layers, and portions of said flanges are received within the facing channels of the i-beams of the other of the first and second layers.
Parallel transmission RF pulse design for eddy current correction at ultra high field.
Zheng, Hai; Zhao, Tiejun; Qian, Yongxian; Ibrahim, Tamer; Boada, Fernando
2012-08-01
Multidimensional spatially selective RF pulses have been used in MRI applications such as B₁ and B₀ inhomogeneities mitigation. However, the long pulse duration has limited their practical applications. Recently, theoretical and experimental studies have shown that parallel transmission can effectively shorten pulse duration without sacrificing the quality of the excitation pattern. Nonetheless, parallel transmission with accelerated pulses can be severely impeded by hardware and/or system imperfections. One of such imperfections is the effect of the eddy current field. In this paper, we first show the effects of the eddy current field on the excitation pattern and then report an RF pulse the design method to correct eddy current fields caused by the RF coil and the gradient system. Experimental results on a 7 T human eight-channel parallel transmit system show substantial improvements on excitation patterns with the use of eddy current correction. Moreover, the proposed model-based correction method not only demonstrates comparable excitation patterns as the trajectory measurement method, but also significantly improves time efficiency. Copyright © 2012. Published by Elsevier Inc.
Embedded cluster metal-polymeric micro interface and process for producing the same
Menezes, Marlon E.; Birnbaum, Howard K.; Robertson, Ian M.
2002-01-29
A micro interface between a polymeric layer and a metal layer includes isolated clusters of metal partially embedded in the polymeric layer. The exposed portion of the clusters is smaller than embedded portions, so that a cross section, taken parallel to the interface, of an exposed portion of an individual cluster is smaller than a cross section, taken parallel to the interface, of an embedded portion of the individual cluster. At least half, but not all of the height of a preferred spherical cluster is embedded. The metal layer is completed by a continuous layer of metal bonded to the exposed portions of the discontinuous clusters. The micro interface is formed by heating a polymeric layer to a temperature, near its glass transition temperature, sufficient to allow penetration of the layer by metal clusters, after isolated clusters have been deposited on the layer at lower temperatures. The layer is recooled after embedding, and a continuous metal layer is deposited upon the polymeric layer to bond with the discontinuous metal clusters.
Implementation of a 3D mixing layer code on parallel computers
NASA Technical Reports Server (NTRS)
Roe, K.; Thakur, R.; Dang, T.; Bogucz, E.
1995-01-01
This paper summarizes our progress and experience in the development of a Computational-Fluid-Dynamics code on parallel computers to simulate three-dimensional spatially-developing mixing layers. In this initial study, the three-dimensional time-dependent Euler equations are solved using a finite-volume explicit time-marching algorithm. The code was first programmed in Fortran 77 for sequential computers. The code was then converted for use on parallel computers using the conventional message-passing technique, while we have not been able to compile the code with the present version of HPF compilers.
RF extraction issues in the relativistic klystron amplifiers
NASA Astrophysics Data System (ADS)
Serlin, Victor; Friedman, Moshe; Lampe, Martin; Hubbard, Richard F.
1994-05-01
Relativistic klystron amplifiers (RKAs) were successfully operated at NRL in several frequency regimes and power levels. In particular, an L-band RKA was optimized for high- power rf extraction into the atmosphere and an S-band RKA was operated, both in a two-beam and a single-beam configuration. At L-band the rf extraction at maximum power levels (>= 15 GW) was hindered by pulse shortening and poor repeatability. Preliminary investigation showed electron emission in the radiating horn, due to very high voltages associated with the multi-gigawatt rf power levels. This electron current constituted an electric load in parallel with the radiating antenna, and precipitated the rf pulse collapse. At S-band the peak extracted power reached 1.7 GW with power efficiency approximately 50%. However, pulse shortening limited the duration to approximately 50 nanoseconds. The new triaxial RKA promises to solve many of the existing problems.
Haraguchi, Yuji; Kagawa, Yuki; Hasegawa, Akiyuki; Kubo, Hirotsugu; Shimizu, Tatsuya
2018-01-18
Confluent cultured cells on a temperature-responsive culture dish can be harvested as an intact cell sheet by decreasing temperature below 32°C. A three-dimensional (3-D) tissue can be fabricated by the layering of cell sheets. A resulting 3-D multilayered cell sheet-tissue on a temperature-responsive culture dish can be also harvested without any damage by only temperature decreasing. For shortening the fabrication time of the 3-D multilayered constructs, we attempted to layer cell sheets on a temperature-responsive culture dish with centrifugation. However, when a cell sheet was attached to the culture surface with a conventional centrifuge at 22-23°C, the cell sheet hardly adhere to the surface due to its noncell adhesiveness. Therefore, in this study, we have developed a heating centrifuge. In centrifugation (55g) at 36-37°C, the cell sheet adhered tightly within 5 min to the dish without significant cell damage. Additionally, centrifugation accelerated the cell sheet-layering process. The heating centrifugation shortened the fabrication time by one-fifth compared to a multilayer tissue fabrication without centrifugation. Furthermore, the multilayered constructs were finally detached from the dishes by decreasing temperature. This rapid tissue-fabrication method will be used as a valuable tool in the field of tissue engineering and regenerative therapy. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.
Two-axis magnetic field sensor
NASA Technical Reports Server (NTRS)
Smith, Carl H. (Inventor); Nordman, Catherine A. (Inventor); Jander, Albrecht (Inventor); Qian, Zhenghong (Inventor)
2006-01-01
A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.
NASA Astrophysics Data System (ADS)
McDonough, Michael R.; Simony, Philip S.
1989-03-01
The Valemount strain zone (VSZ), a narrow zone of high orogen-parallel (OP) strain in pebble conglomerate of the Late Proterozoic Miette Group, is the footwall expression of a thrust fault on the western edge of the Rocky Mountain belt, marking the eastern limit of a wide zone of OP fabrics distributed through the Omineca crystalline and western Rocky Mountain belts of the southeastern Canadian Cordillera. Kinematic indicators from the VSZ and the adjacent Bear Foot thrust zone show that both thrust and dextral displacement are associated with folding and thrust motion in the Rocky Mountains, thereby linking the southern Rocky Mountain belt to the Omineca belt by an oblique-slip thrust regime that is tectonically unrelated to the Southern Rocky Mountain Trench. Transverse shortening of thrust sheets and subsequent distribution of OP shear are invoked to explain the parallelism of stretching lineations and fold axes. Strain and kinematic data and the thrust-belt geometry of the VSZ suggest that OP lineations are a product of a large amount of transverse shortening during slightly oblique A-type subduction. Thus, OP lineations are not representative of relative plate motions between North America and accreted terranes, but probably are a function of footwall buttressing of thrust sheets, a mechanism that may be widely applicable to the internal zones of collisional orogens.
Does Shortened Application Time Affect Long-Term Bond Strength of Universal Adhesives to Dentin?
Saikaew, P; Matsumoto, M; Chowdhury, Afma; Carvalho, R M; Sano, H
2018-04-09
This study evaluated the effect of shortened application time on long-term bond strength with universal adhesives. Three universal adhesives were used: Clearfil Universal Bond (CU, Kuraray Noritake Dental Inc, Tokyo, Japan), Scotchbond Universal Adhesive (SB, 3M ESPE, St Paul, MN, USA) or G-Premio Bond (GP, GC Corp, Tokyo, Japan). Sixty molars were cut to expose midcoronal dentin and prepared with a regular diamond bur. Each adhesive was applied either according to the manufacturer's instruction or with shortened time. Specimens were stored in distilled water at 37°C for 24 hours and then cut into resin-dentin sticks. Microtensile bond strength (μTBS) was tested after either 24 hours or 1 year of water storage. Data were analyzed by the three-way ANOVA and Duncan tests ( α=0.05). Fracture modes were analyzed under a scanning electron microscope (SEM). One dentin stick per group was selected after fracture mode analysis and further observed using transmission electron microscopy (TEM). Six additional dentin discs were prepared and conditioned with each adhesive under the different application time to observe the adhesive-smear layer interaction by SEM. Shortened application time affected the μTBS ( p<0.001) while storage time did not affect bond strength ( p=0.187). A significant effect of shortened application time on μTBS was observed in the CU at 1 year and in the GP at both storage times. One-year storage time had no effect on the μTBS of universal adhesives to bur-cut dentin. The performance of universal adhesives can be compromised when applied using a shortened application time.
Steady Boundary Layer Disturbances Created By Two-Dimensional Surface Ripples
NASA Astrophysics Data System (ADS)
Kuester, Matthew
2017-11-01
Multiple experiments have shown that surface roughness can enhance the growth of Tollmien-Schlichting (T-S) waves in a laminar boundary layer. One of the common observations from these studies is a ``wall displacement'' effect, where the boundary layer profile shape remains relatively unchanged, but the origin of the profile pushes away from the wall. The objective of this work is to calculate the steady velocity field (including this wall displacement) of a laminar boundary layer over a surface with small, 2D surface ripples. The velocity field is a combination of a Blasius boundary layer and multiple disturbance modes, calculated using the linearized Navier-Stokes equations. The method of multiple scales is used to include non-parallel boundary layer effects of O (Rδ- 1) ; the non-parallel terms are necessary, because a wall displacement is mathematically inconsistent with a parallel boundary layer assumption. This technique is used to calculate the steady velocity field over ripples of varying height and wavelength, including cases where a separation bubble forms on the leeward side of the ripple. In future work, the steady velocity field will be the input for stability calculations, which will quantify the growth of T-S waves over rough surfaces. The author would like to acknowledge the support of the Kevin T. Crofton Aerospace & Ocean Engineering Department at Virginia Tech.
NASA Astrophysics Data System (ADS)
Arzadún, Guadalupe; Tomezzoli, Renata N.; Cesaretti, Nora N.
2016-04-01
The Sierras Australes fold and thrust belt (Buenos Aires Province, Argentina) was in the southwestern Gondwanaland margin during the Paleozoic. The Tunas Formation (Permian) is exposed along the eastern part of it and continues eastward beneath the Claromecó Basin. Anisotropy of magnetic susceptibility (AMS) and compaction studies are described and compared with previous paleomagnetic studies with the aim of determining direction and magnitude of the main stresses acting during the sedimentation of the Tunas Formation. The anisotropy ellipsoids are triaxial with oblate or prolate shapes, reflecting different stages of layer parallel shortening during the evolution of the basin. Kmax axes trend NW-SE, parallel to the fold axes, while Kmin move from a horizontal (base) to a vertical orientation at the top of the succession, showing a change from a tectonic to almost a sedimentary fabric. The magnitude of anisotropy and compaction degree decreases toward the top of the succession. The AMS results are consistent with the outcrop structural observations and the compaction and paleomagnetic data. Regional pattern indicates a compression from the SW along this part of Gondwana, with a migration of the orogenic front and attenuation toward the NE in the foreland basin during the Upper Paleozoic. This deformation, locally assigned to the San Rafael noncollisional orogenic phase, is the result of the latitudinal movements toward the Equator of Gondwana (southern plates) and Laurentia (northern plates) during the Permian. This movement is the result of a rearrangement of the microplates that collided with Gondwana during the Late Devonian, to configure Pangea during the Triassic.
NASA Astrophysics Data System (ADS)
Amrouch, Khalid; Lacombe, Olivier; Bellahsen, Nicolas; Daniel, Jean-Marc; Callot, Jean-Paul
2010-02-01
In order to characterize and compare the stress-strain record prior to, during, and just after folding at the macroscopic and the microscopic scales and to provide insights into stress levels sustained by folded rocks, we investigate the relationship between the stress-strain distribution in folded strata derived from fractures, striated microfaults, and calcite twins and the development of the Laramide, basement-cored Sheep Mountain Anticline, Wyoming. Tectonic data were mainly collected in Lower Carboniferous to Permian carbonates and sandstones. In both rock matrix and veins, calcite twins recorded three different tectonic stages: the first stage is a pre-Laramide (Sevier) layer-parallel shortening (LPS) parallel to fold axis, the second one is a Laramide LPS perpendicular to the fold axis, and the third stage corresponds to Laramide late fold tightening with compression also perpendicular to the fold axis. Stress and strain orientations and regimes at the microscale agree with the polyphase stress evolution revealed by populations of fractures and striated microfaults, testifying for the homogeneity of stress record at different scales through time. Calcite twin analysis additionally reveals significant variations of differential stress magnitudes between fold limbs. Our results especially point to an increase of differential stress magnitudes related to Laramide LPS from the backlimb to the forelimb of the fold possibly in relation with motion of an underlying basement thrust fault that likely induced stress concentrations at its upper tip. This result is confirmed by a simple numerical model. Beyond regional implications, this study highlights the potential of calcite twin analyses to yield a representative quantitative picture of stress and strain patterns related to folding.
Modulation of porphyrin photoluminescence by nanoscale spacers on silicon substrates
NASA Astrophysics Data System (ADS)
Fang, Y. C.; Zhang, Y.; Gao, H. Y.; Chen, L. G.; Gao, B.; He, W. Z.; Meng, Q. S.; Zhang, C.; Dong, Z. C.
2013-11-01
We investigate photoluminescence (PL) properties of quasi-monolayered tetraphenyl porphyrin (TPP) molecules on silicon substrates modulated by three different nanoscale spacers: native oxide layer (NOL), hydrogen (H)-passivated layer, and Ag nanoparticle (AgNP) thin film, respectively. In comparison with the PL intensity from the TPP molecules on the NOL-covered silicon, the fluorescence intensity from the molecules on the AgNP-covered surface was greatly enhanced while that for the H-passivated surface was found dramatically suppressed. Time-resolved fluorescence spectra indicated shortened lifetimes for TPP molecules in both cases, but the decay kinetics is believed to be different. The suppressed emission for the H-passivated sample was attributed to the weaker decoupling effect of the monolayer of hydrogen atoms as compared to the NOL, leading to increased nonradiative decay rate; whereas the enhanced fluorescence with shortened lifetime for the AgNP-covered sample is attributed not only to the resonant excitation by local surface plasmons, but also to the increased radiative decay rate originating from the emission enhancement in plasmonic "hot-spots".
Multilayer insulation blanket, fabricating apparatus and method
Gonczy, John D.; Niemann, Ralph C.; Boroski, William N.
1992-01-01
An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.
Method of fabricating a multilayer insulation blanket
Gonczy, John D.; Niemann, Ralph C.; Boroski, William N.
1993-01-01
An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.
Method of fabricating a multilayer insulation blanket
Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.
1993-07-06
An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.
Multilayer insulation blanket, fabricating apparatus and method
Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.
1992-09-01
An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel. 7 figs.
When Boundary Layers Collide: Plumes v. Subduction Zones
NASA Astrophysics Data System (ADS)
Moresi, L. N.; Betts, P. G.; Miller, M. S.; Willis, D.; O'Driscoll, L.
2014-12-01
Many subduction zones retreat while hotspots remain sufficiently stable in the mantle to provide an approximate reference frame. As a consequence, the mantle can be thought of as an unusual convecting system which self-organises to promote frequent collisions of downgoing material with upwellings. We present three 3D numerical models of subduction where buoyant material from a plume head and an associated ocean-island chain or plateau produce flat slab subduction and deformation of the over-riding plate. We observe transient instabilities of the convergent margin including: contorted trench geometry; trench migration parallel with the plate margin; folding of the subducting slab and orocline development at the convergent margin; and transfer of the plateau to the overriding plate. The presence of plume material beneath the oceanic plateau causes flat subduction above the plume, resulting in a "bowed" shaped subducting slab. In the absence of a plateau at the surface, the slab can remain uncoupled from the over-riding plate during very shallow subduction and hence there is very little shortening at the surface or advance of the plate boundary. In plateau-only models, plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction re-establishes directly behind the trailing edge of the plateau. The plateau shortens during accretion and some plateau material subducts. In a plateau-plus-plume model, accretion is associated with rapid trench advance as the flat slab drives the plateau into the margin. This indentation stops once a new convergent boundary forms close to the original trench location. A slab window formed beneath the accreted plateau allows plume material to flow from beneath the subducting plate to the underside of the overriding plate. In all of these models the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate. The models provide a dynamic context for plateau and plume accretion in accretionary orogenic systems.
NASA Astrophysics Data System (ADS)
Wagner, Bianca; Leiss, Bernd; Stöpler, Ralf; Zahnow, Fabian
2017-04-01
Folded paleozoic sedimentary rocks of Upper Devonian to Lower Carboniferous age are very well exposed in the abandoned chert quarry of Lautenthal in the western Harz Mountains. The outcrop represents typical structures of the Rhenohercynian thrust and fold belt of the Variscan orogen and therefore allows quantitative studies for the understanding of e.g. fold mechanisms and the amount of shortening. The sequence is composed of alternating beds of cherts, shales and tuffites, which show varying thicknesses, undulating and thinning out of certain layers. Irregularly occurring lenses of greywackes are interpreted as sedimentary intrusions. The compressive deformation style is expressed by different similar and parallel fold structures at varying scales as well as small-scale reverse faults and triangle structures. An accurate mapping of the outcrop in the classical way is very challenging due to distant and unconnected outcrop parts with differing elevations and orientations. Furthermore, the visibility is limited because of nearby trees, diffuse vegetation cover and no available total view. Therefore, we used a FARO 120 3D laserscanner and Trimble GNSS device to generate a referenced and drawn to scale point cloud of the complete quarry. Based on the point cloud a geometric 3D model of prominent horizons and structural features of various sizes was constructed. Thereafter, we analyzed the structures in matters of orientation and deformation mechanisms. Finally, we applied a retrodeformation algorithm on the model to restore the original sedimentary sequence and to calculate shortening including the amount of pressure solution. Only digital mapping allows such a time-saving, accurate and especially complete 3D survey of this excellent study object. We demonstrated that such 3D-models enable spatial correlations with other complex structures cropping out in the area. Moreover, we confirmed that a structural upscaling to the 100 to 1000 m scale is much easier and much more instructive than it could have been done in the classical way.
NASA Technical Reports Server (NTRS)
Pitz, R. W.
1981-01-01
A premixed propane-air flame is stabilized in a turbulent free shear layer formed at a rearward-facing step. The mean and rms averages of the turbulent velocity flow field were determined by LDV for both reacting and non-reacting flows. The reaching flow was visualized by high speed schlieren photography. Large scale structures dominate the reacting shear layer. The growth of the large scale structures is tied to the propagation of the flame. The linear growth rate of the reacting shear layer defined by the mean velocity profiles is unchanged by combustion but the virtual origin is shifted downstream. The reacting shear layer based on the mean velocity profiles is shifted toward the recirculation zone and the reattachments lengths are shortened by 30%.
NASA Astrophysics Data System (ADS)
Bhattacharyya, Kathakali
The Darjeeling-Sikkim Himalaya lies in the eastern part of the Himalayan fold-thrust belt (FTB) in a zone of high arc-perpendicular convergence between the Indian and Eurasian plates. In this region two distinct faults form the Main Central thrust (MCT), the structurally higher MCT1 and the lower MCT2; both these faults have translated the Greater Himalayan hanging wall rocks farther towards the foreland than in the western Himalaya. The width of the sub-MCT Lesser Himalayan rocks progressively decreases from the western Himalaya to this part of the eastern Himalaya, and as a result, the width of the FTB is narrower in this region compared to the western Himalaya. Our structural analysis shows that in the Darjeeling-Sikkim Himalaya the sub-MCT Lesser Himalayan duplex is composed of two duplex systems and has a more complex geometry than in the rest of the Himalayan fold-thrust belt. The structurally higher Dating duplex is a hinterland-dipping duplex; the structurally lower Rangit duplex varies in geometry from a hinterland-dipping duplex in the north to an antiformal stack in the middle and a foreland-dipping duplex in the south. The MCT2 is the roof thrust of the Daling duplex and the Ramgarh thrust is the roof thrust of the Rangit duplex. In this region, the Ramgarh thrust has a complex structural history with continued reactivation during footwall imbrication. The foreland-dipping component of the Rangit duplex, along with the large displacement associated with the reactivation of the Ramgarh thrust accounts for the large translation of the MCT sheets in the Darjeeling-Sikkim Himalaya. The growth of the Lesser Himalayan duplex modified the final geometry of the overlying MCT sheets, resulting in a plunge culmination that manifests itself as a broad N-S trending "anticline" in the Darjeeling-Sikkim Himalaya. This is not a "river anticline" as its trace lies west of the Teesta river. A transport parallel balanced cross section across this region has accommodated a total minimum shortening of ˜502 km (˜82%) south of the South Tibetan Detachment system (STDS). Based on this shortening, the average long-term shortening rate is estimated to be ˜22mm/yr in this region. The available shortening estimates from different parts of the Himalayan arc show significant variations in shortening, but based on the present available data, it is difficult to evaluate the primary cause for this variation. The shortening in the Himalayan fold-thrust belt (FTB) is highest in the middle of the Himalayan arc (western Nepal) and progressively decreases towards the two syntaxes. Although the width of the Lesser Himalayan belt decreases in the eastern Himalaya, the Lesser Himalayan shortening percentage remains approximately similar to that in the Nepal Himalaya. In addition, the shortening accommodated within the Lesser Himalayan duplex progressively increases from the western to the eastern Himalaya where it accommodates nearly half of the total shortening. The regional restorations suggest that the width of the original Lesser Himalayan basin may have played an important role in partitioning the shortening in the Himalayan FTB. In addition, the retrodeformed cross section in the Darjeeling-Sikkim Himalaya provides insights into the palinspastic reconstruction of the Gondwana basin of Peninsular India, suggesting that this basin extended ˜150 km northward of its present northernmost exposure in this region. The balanced cross section suggests that each of the MCT sheets has undergone translation of ≥100km in this region. Although a regional scale flat-on-flat relationship is seen in the MCT sheets, there is a significant variation in overburden from the trailing portion to the leading edge of the MCT due to the geometry of the tapered crystalline orogenic wedge. Microstructural studies from three segments of the MCT2 fault zone suggest that the MCT2 zone has undergone strain softening by different mechanisms along different portions of its transport-parallel length, mainly as a result of changing overburden conditions. This regional strain softening provides a suitable explanation for the large translation of ≥100 km along a relatively thin MCT2 fault zone in the Darjeeling-Sikkim Himalaya.
Collisionless slow shocks in magnetotail reconnection
NASA Astrophysics Data System (ADS)
Cremer, Michael; Scholer, Manfred
The kinetic structure of collisionless slow shocks in the magnetotail is studied by solving the Riemann problem of the collapse of a current sheet with a normal magnetic field component using 2-D hybrid simulations. The collapse results in a current layer with a hot isotropic distribution and backstreaming ions in a boundary layer. The lobe plasma outside and within the boundary layer exhibits a large perpendicular to parallel temperature anisotropy. Waves in both regions propagate parallel to the magnetic field. In a second experiment a spatially limited high density beam is injected into a low beta background plasma and the subsequent wave excitation is studied. A model for slow shocks bounding the reconnection layer in the magnetotail is proposed where backstreaming ions first excite obliquely propagating waves by the electromagnetic ion/ion cyclotron instability, which lead to perpendicular heating. The T⊥/T∥ temperature anisotropy subsequently excites parallel propagating Alfvén ion cyclotron waves, which are convected into the slow shock and are refracted in the downstream region.
An S3-3 search for confined regions of large parallel electric fields
NASA Astrophysics Data System (ADS)
Boehm, M. H.; Mozer, F. S.
1981-06-01
S3-3 satellite passes through several hundred perpendicular shocks are searched for evidence of large, mostly parallel electric fields (several hundred millivolts per meter, total potential of several kilo-volts) in the auroral zone magnetosphere at altitudes of several thousand kilometers. The actual search criteria are that one or more E-field data points have a parallel component E sub z greater than 350 mV/m in general, or 100 mV/m for data within 10 seconds of a perpendicular shock, since double layers might be likely, in such regions. Only a few marginally convincing examples of the electric fields are found, none of which fits a double layer model well. From statistics done with the most unbiased part of the data set, upper limits are obtained on the number and size of double layers occurring in the auroral zone magnetosphere, and it is concluded that the double layers most probably cannot be responsible for the production of diffuse aurora or inverted-V events.
Large-scale trench-normal mantle flow beneath central South America
NASA Astrophysics Data System (ADS)
Reiss, M. C.; Rümpker, G.; Wölbern, I.
2018-01-01
We investigate the anisotropic properties of the fore-arc region of the central Andean margin between 17-25°S by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. With partly over ten years of recording time, the data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements suggest two anisotropic layers located within the crust and mantle beneath the stations, respectively. The teleseismic measurements show a moderate change of fast polarizations from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, are oriented mostly perpendicular to the trench. Shear-wave splitting measurements from local earthquakes show fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow origin. Comparisons between fast polarization directions from local earthquakes and the strike of the local fault systems yield a good agreement. To infer the parameters of the lower anisotropic layer we employ an inversion of the teleseismic waveforms based on two-layer models, where the anisotropy of the upper (crustal) layer is constrained by the results from the local splitting. The waveform inversion yields a mantle layer that is best characterized by a fast axis parallel to the absolute plate motion which is more-or-less perpendicular to the trench. This orientation is likely caused by a combination of the fossil crystallographic preferred orientation of olivine within the slab and entrained mantle flow beneath the slab. The anisotropy within the crust of the overriding continental plate is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel to the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab.
A comparison of energetic ions in the plasma depletion layer and the quasi-parallel magnetosheath
NASA Technical Reports Server (NTRS)
Fuselier, Stephen A.
1994-01-01
Energetic ion spectra measured by the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer (AMPTE/CCE) downstream from the Earth's quasi-parallel bow shock (in the quasi-parallel magnetosheath) and in the plasma depletion layer are compared. In the latter region, energetic ions are from a single source, leakage of magnetospheric ions across the magnetopause and into the plasma depletion layer. In the former region, both the magnetospheric source and shock acceleration of the thermal solar wind population at the quasi-parallel shock can contribute to the energetic ion spectra. The relative strengths of these two energetic ion sources are determined through the comparison of spectra from the two regions. It is found that magnetospheric leakage can provide an upper limit of 35% of the total energetic H(+) population in the quasi-parallel magnetosheath near the magnetopause in the energy range from approximately 10 to approximately 80 keV/e and substantially less than this limit for the energetic He(2+) population. The rest of the energetic H(+) population and nearly all of the energetic He(2+) population are accelerated out of the thermal solar wind population through shock acceleration processes. By comparing the energetic and thermal He(2+) and H(+) populations in the quasi-parallel magnetosheath, it is found that the quasi-parallel bow shock is 2 to 3 times more efficient at accelerating He(2+) than H(+). This result is consistent with previous estimates from shock acceleration theory and simulati ons.
NASA Technical Reports Server (NTRS)
Ergun, R. E.; Goodrich, K. A.; Wilder, F. D.; Holmes, J. C.; Stawarz, J. E.; Eriksson, S.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Torbert, R. B.;
2016-01-01
We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E (sub parallel)) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E (sub parallel) events near the electron diffusion region have amplitudes on the order of 100 millivolts per meter, which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E (sub parallel) events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E (sub parallel) events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.
Li, J; Guo, L-X; Zeng, H; Han, X-B
2009-06-01
A message-passing-interface (MPI)-based parallel finite-difference time-domain (FDTD) algorithm for the electromagnetic scattering from a 1-D randomly rough sea surface is presented. The uniaxial perfectly matched layer (UPML) medium is adopted for truncation of FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. This makes the parallel FDTD algorithm easier to implement. The parallel performance with different processors is illustrated for one sea surface realization, and the computation time of the parallel FDTD algorithm is dramatically reduced compared to a single-process implementation. Finally, some numerical results are shown, including the backscattering characteristics of sea surface for different polarization and the bistatic scattering from a sea surface with large incident angle and large wind speed.
Analyzing structural variations along strike in a deep-water thrust belt
NASA Astrophysics Data System (ADS)
Totake, Yukitsugu; Butler, Robert W. H.; Bond, Clare E.; Aziz, Aznan
2018-03-01
We characterize a deep-water fold-thrust arrays imaged by a high-resolution 3D seismic dataset in the offshore NW Borneo, Malaysia, to understand the kinematics behind spatial arrangement of structural variations throughout the fold-thrust system. The seismic volume used covers two sub-parallel fold trains associated with a series of fore-thrusts and back-thrusts. We measured fault heave, shortening value, fold geometries (forelimb dip, interlimb angle and crest depth) along strike in individual fold trains. Heave plot on strike projection allows to identify individual thrust segments showing semi-elliptical to triangular to bimodal patterns, and linkages of these segments. The linkage sites are marked by local minima in cumulative heave. These local heave minima are compensated by additional structures, such as small imbricate thrusts and tight folds indicated by large forelimb dip and small interlimb angle. Complementary profiles of the shortening amount for the two fold trains result in smoother gradient of total shortening across the structures. We interpret this reflects kinematic interaction between two fold-thrust trains. This type of along-strike variation analysis provides comprehensive understanding of a fold-thrust system and may provide an interpretative strategy for inferring the presence of complex multiple faults in less well-imaged parts of seismic volumes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadomsky, O. N., E-mail: gadomsky@mail.ru; Shchukarev, I. A., E-mail: blacxpress@gmail.com
2016-08-15
It is shown that external optical radiation in the 450–1200 nm range can be efficiently transformed under the action of bounded light beams to a surface wave that propagates along the external and internal boundaries of a plane-parallel layer with a quasi-zero refractive index. Reflection regimes with complex and real angles of refraction in the layer are considered. The layer with a quasi-zero refractive index in this boundary problem is located on a highly reflective metal substrate; it is shown that the uniform low reflection of light is achieved in the wavelength range under study.
Real-time SHVC software decoding with multi-threaded parallel processing
NASA Astrophysics Data System (ADS)
Gudumasu, Srinivas; He, Yuwen; Ye, Yan; He, Yong; Ryu, Eun-Seok; Dong, Jie; Xiu, Xiaoyu
2014-09-01
This paper proposes a parallel decoding framework for scalable HEVC (SHVC). Various optimization technologies are implemented on the basis of SHVC reference software SHM-2.0 to achieve real-time decoding speed for the two layer spatial scalability configuration. SHVC decoder complexity is analyzed with profiling information. The decoding process at each layer and the up-sampling process are designed in parallel and scheduled by a high level application task manager. Within each layer, multi-threaded decoding is applied to accelerate the layer decoding speed. Entropy decoding, reconstruction, and in-loop processing are pipeline designed with multiple threads based on groups of coding tree units (CTU). A group of CTUs is treated as a processing unit in each pipeline stage to achieve a better trade-off between parallelism and synchronization. Motion compensation, inverse quantization, and inverse transform modules are further optimized with SSE4 SIMD instructions. Simulations on a desktop with an Intel i7 processor 2600 running at 3.4 GHz show that the parallel SHVC software decoder is able to decode 1080p spatial 2x at up to 60 fps (frames per second) and 1080p spatial 1.5x at up to 50 fps for those bitstreams generated with SHVC common test conditions in the JCT-VC standardization group. The decoding performance at various bitrates with different optimization technologies and different numbers of threads are compared in terms of decoding speed and resource usage, including processor and memory.
Its Not a Big Truck: Examining Cyber Metaphors
2010-02-01
important to be mindful of as many hid- den metaphorical constructs as possible. So before we get too far down the line, we need to introduce a...location to visit. We talk about how it improves communication, lowers costs, and shortens timelines—those are attributes of a tool, not a location. Of...need not replace the concept of the Thing as a location. Rather, when pondered in parallel, they might help us get a better handle on what this Thing
Film and digital periapical radiographs for the measurement of apical root shortening.
El-Angbawi, Ahmed M F; McIntyre, Grant T; Bearn, David R; Thomson, Donald J
2012-12-01
The aim of this study was to compare the accuracy and agreement of scanned film and digital periapical radiographs for the measurement of apical root shortening. Twenty-four film and digital [phosphor plate sensor (PPS)] periapical radiographs were taken using the long-cone paralleling technique for six extracted teeth before and after 1mm of apical root trimming. All teeth were mounted using a typodont and the radiographs were recorded using a film holder and polysiloxane occlusal index for each tooth to ensure standardization during the different radiographic exposures. The film radiographs were scanned and the tooth length measurements for the scanned film and digital (PPS) images were calculated using Image-J-Link 1.4 software (http://rebweb.nih.gov/ij/index.html) for the two groups. The accuracy and agreement among the tooth length measurements from each group and the true tooth length measurements were calculated using intra-class correlation (ICC) tests and Bland and Altman plots. A high level of agreement was found between the true tooth length measurements and the scanned film measurements (ICC=0.979, limit of agreement 0.579 to -0.565) and the digital (PPS) radiograph measurements (ICC= 0.979, limit of agreement 0.596 to -0.763). Moreover, a high level of agreement was found between the scanned film and digital (PPS) radiographs for the measurement of tooth length ICC=0.991, limit of agreement 0.411-0.231. Film and digital (PPS) periapical radiographs are accurate methods for measuring apical root shortening with a high level of agreement. Key words:Root shortening, measurement, periapical radiographs, film, digital.
Thin Layer Drying Model of Bacterial Cellulose Film
NASA Astrophysics Data System (ADS)
Hadi Jatmiko, Tri; Taufika Rosyida, Vita; Wheni Indrianingsih, Anastasia; Apriyana, Wuri
2017-12-01
The bacterial cellulose film produced by Acetobacter xylinum using coconut water as a carbon source was dried at a temperature of 60 to 100 C. The drying process of bacterial cellulose film occur at falling rate drying period. Increasing drying temperature will shorten the drying time. The drying data fitted with thin layer drying models that widely used, Newton, Page and Henderson and Pabis models. All thin layer drying models describe the experimental data well, but Page model is better than the other models on all various temperature with coefficients of determination (R2) range from 0.9908 to 0.9979, chi square range from 0.000212 to 0.000851 and RMSE range from 0.014307 to 0.0289458.
Nanoscale lamellar photoconductor hybrids and methods of making same
Stupp, Samuel I; Goldberger, Josh; Sofos, Marina
2013-02-05
An article of manufacture and methods of making same. In one embodiment, the article of manufacture has a plurality of zinc oxide layers substantially in parallel, wherein each zinc oxide layer has a thickness d.sub.1, and a plurality of organic molecule layers substantially in parallel, wherein each organic molecule layer has a thickness d.sub.2 and a plurality of molecules with a functional group that is bindable to zinc ions, wherein for every pair of neighboring zinc oxide layers, one of the plurality of organic molecule layers is positioned in between the pair of neighboring zinc oxide layers to allow the functional groups of the plurality of organic molecules to bind to zinc ions in the neighboring zinc oxide layers to form a lamellar hybrid structure with a geometric periodicity d.sub.1+d.sub.2, and wherein d.sub.1 and d.sub.2 satisfy the relationship of d.sub.1.ltoreq.d.sub.2.ltoreq.3d.sub.1.
NASA Astrophysics Data System (ADS)
Frehner, Marcel; Reif, Daniel; Grasemann, Bernhard
2010-05-01
There are a large number of numerical finite element studies concerned with modeling the evolution of folded geological layers through time. This body of research includes many aspects of folding and many different approaches, such as two- and three-dimensional studies, single-layer folding, detachment folding, development of chevron folds, Newtonian, power-law viscous and more complex rheologies, influence of anisotropy, pure-shear, simple-shear and other boundary conditions and so forth. In recent years, studies of multilayer folding emerged, thanks to more advanced mesh generator software and increased computational power. Common to all of these studies is the fact that they consider a forward directed time evolution, as in nature. Very few studies use the finite element method for reverse-time simulations. In such studies, folded geological layers are taken as initial conditions for the numerical simulation. The folding process is reversed by changing the signs of the boundary conditions that supposedly drove the folding process. In such studies, the geometry of the geological layers before the folding process is searched and the amount of shortening necessary for the final folded geometry can be calculated. In contrast to a kinematic or geometric fold restoration procedure, the described approach takes the mechanical behavior of the geological layers into account, such as rheology and the relative strength of the individual layers. This approach is therefore called mechanical restoration of folds. In this study, the concept of mechanical restoration is applied to a two-dimensional 50km long NE-SW-cross-section through the Zagros Simply Folded Belt in Iraqi Kurdistan, NE from the city of Erbil. The Simply Folded Belt is dominated by gentle to open folding and faults are either absent or record only minor offset. Therefore, this region is ideal for testing the concept of mechanical restoration. The profile used is constructed from structural field measurements and digital elevation models using the dip-domain method for balancing the cross-section. The lithology consists of Cretaceous to Cenozoic sediments. Massive carbonate rock units act as the competent layers compared to the incompetent behavior of siltstone, claystone and marl layers. We show the first results of the mechanical restoration of the Zagros cross-section and we discuss advantages and disadvantages, as well as some technical aspects of the applied method. First results indicate that a shortening of at least 50% was necessary to create the present-day folded cross-section. This value is higher than estimates of the amount of shortening solely based on kinematic or geometric restoration. One particular problem that is discussed is the presence of (unnaturally) sharp edges in a balanced cross-section produced using the dip-domain method, which need to be eliminated for mechanical restoration calculations to get reasonable results.
NASA Astrophysics Data System (ADS)
French, M.; Wojtal, S. F.; Housen, B.
2006-12-01
In the Salton Trough, the trace of the San Andreas Fault (SAF) ends where it intersects the NNW-trending Brawley seismic zone at Durmid Hill (DH). The topographic relief of DH is a product of faulting and folding of Pleistocene Borrego Formation strata (Babcock, 1974). Burgmann's (1991) detailed mapping and analysis of the western part of DH showed that the folds and faults accommodate transpression. Key to Burgmann's work was the recognition that the ~2m thick Bishop Ash, a prominent marker horizon, has been elongated parallel to the hinges of folds and boudinaged. We are mapping in detail the eastern portion of DH, nearer to the trace of the SAF. Folds in the eastern part of DH are tighter and thrust faulting is more prominent, consistent with greater shortening magnitude oblique to the SAF. Boudinage of the ash layer again indicates elongation parallel to fold hinges and subparallel to the SAF. The Bishop Ash locally is <1m thick along fold limbs in eastern DH, suggesting that significant continuous deformation accompanied the development of map-scale features. We measured anisotropy of magnetic susceptibility (AMS) fabrics in the Bishop Ash in order to assess continuous deformation in the Ash at DH. Because the Bishop Ash at DH is altered, consisting mainly of silica glass and clay minerals, samples from DH have significantly lower magnetic susceptibilities than Bishop Ash samples from elsewhere in the Salton Trough. With such low susceptibilities, there is significant scatter in the orientation of magnetic foliation and lineation in our samples. Still, in some Bishop samples within 1 km of the SAF, magnetic foliation is consistent with fold-related flattening. Magnetic lineation in these samples is consistently sub-parallel to fold hinges, parallel to the elongation direction inferred from boudinage. Even close to the trace of the SAF, this correlation breaks down in map-scale zones where fold hinge lines change attitude, fold shapes change, and the distribution and orientations of fractures and veins changes. These zones of structural complication separate broader regions of more uniform deformation patterns. Together, the geometry of structures and AMS fabrics suggest that deformation in eastern DH occurs by the distortion and reorientation of more or less coherent blocks separated by narrow zones where structural elements change orientation.
NASA Astrophysics Data System (ADS)
Huang, Bo; Zhai, Yutao; Liu, Shaojun; Mao, Xiaodong
2018-03-01
Selective laser melting (SLM) is a promising way for the fabrication of complex reduced activation ferritic/martensitic steel components. The microstructure of the SLM built China low activation martensitic (CLAM) steel plates was observed and analyzed. The hardness, Charpy impact and tensile testing of the specimens in different orientations were performed at room temperature. The results showed that the difference in the mechanical properties was related to the anisotropy in microstructure. The planer unmelted porosity in the interface of the adjacent layers induced opening/tensile mode when the tensile samples parallel to the build direction were tested whereas the samples vertical to the build direction fractured in the shear mode with the grains being sheared in a slant angle. Moreover, the impact absorbed energy (IAE) of all impact specimens was significantly lower than that of the wrought CLAM steel, and the IAE of the samples vertical to the build direction was higher than that of the samples parallel to the build direction. The impact fracture surfaces revealed that the load parallel to the build layers caused laminated tearing among the layers, and the load vertical to the layers induced intergranular fracture across the layers.
A queueing network model to analyze the impact of parallelization of care on patient cycle time.
Jiang, Lixiang; Giachetti, Ronald E
2008-09-01
The total time a patient spends in an outpatient facility, called the patient cycle time, is a major contributor to overall patient satisfaction. A frequently recommended strategy to reduce the total time is to perform some activities in parallel thereby shortening patient cycle time. To analyze patient cycle time this paper extends and improves upon existing multi-class open queueing network model (MOQN) so that the patient flow in an urgent care center can be modeled. Results of the model are analyzed using data from an urgent care center contemplating greater parallelization of patient care activities. The results indicate that parallelization can reduce the cycle time for those patient classes which require more than one diagnostic and/ or treatment intervention. However, for many patient classes there would be little if any improvement, indicating the importance of tools to analyze business process reengineering rules. The paper makes contributions by implementing an approximation for fork/join queues in the network and by improving the approximation for multiple server queues in both low traffic and high traffic conditions. We demonstrate the accuracy of the MOQN results through comparisons to simulation results.
NASA Astrophysics Data System (ADS)
Maeno, Tsuyoshi; Ueyama, Hiroya; Iida, Michihira; Fujiwara, Osamu
It is well known that electromagnetic disturbances in vehicle-mounted radios are mainly caused by conducted noise currents flowing through wiring-harnesses from vehicle-mounted printed circuit boards (PCBs) with common ground patterns with slits. To suppress the noise current outflows from the PCBs of this kind, we previously measured noise current outflows from simple two-layer PCBs having two parallel signal traces and different ground patterns with/without slits, which revealed that making slits with open ends on the ground patterns in parallel with the traces can reduce the conducted noise currents. In the present study, with the FDTD simulation, we investigated reduction characteristics of the FM-band cross-talk noise levels between two parallel signal traces for eighteen PCBs, which have different ground patterns with/without slits parallel to the traces and dielectric layers with different thickness. As a result, we found that the cross-talk reduction effect due to slits is obtained by 3.6-5.3dB, while the cross-talks between signal traces are reduced in inverse proportion to the square of the dielectric-layer thickness and in proportion to the square of the trace interval and, which can quantitatively be explained from an inductive coupling theory.
NASA Astrophysics Data System (ADS)
Minkel, Donald Howe
Effects of gravity on buckle folding are studied using a Newtonian fluid finite element model of a single layer embedded between two thicker less viscous layers. The methods allow arbitrary density jumps, surface tension coefficients, resistance to slip at the interfaces, and tracking of fold growth to a large amplitudes. When density increases downward in two equal jumps, a layer buckles less and thickens more than with uniform density. When density increases upward in two equal jumps, it buckles more and thickens less. A low density layer with periodic thickness variations buckles more, sometimes explosively. Thickness variations form, even if not present initially. These effects are greater with; smaller viscosities, larger density jump, larger length scale, and slower shortening rate. They also depend on wavelength and amplitude, and these dependencies are described in detail. The model is applied to the explosive growth of the salt anticlines of the Paradox Basin, Colorado and Utah. There, shale (higher density) overlies salt (lower density). Methods for simulating realistic earth surface erosion and deposition conditions are introduced. Growth rates increase both with ease of slip at the salt-shale interface, and when earth surface relief stays low due to erosion and deposition. Model anticlines grow explosively, attaining growth rates and amplitudes close to those of the field examples. Fastest growing wavelengths are the same as seen in the field. It is concluded that a combination of partial-slip at the salt-shale interface, with reasonable earth surface conditions, promotes sufficiently fast buckling of the salt-shale interface due to density inversion alone. Neither basement faulting, nor tectonic shortening is required to account for the observed structures. Of fundamental importance is the strong tendency of gravity to promote buckling in low density layers with thickness variations. These develop, even if not present initially.
Hypersonic Boundary Layer Instability Over a Corner
NASA Technical Reports Server (NTRS)
Balakumar, Ponnampalam; Zhao, Hong-Wu; McClinton, Charles (Technical Monitor)
2001-01-01
A boundary-layer transition study over a compression corner was conducted under a hypersonic flow condition. Due to the discontinuities in boundary layer flow, the full Navier-Stokes equations were solved to simulate the development of disturbance in the boundary layer. A linear stability analysis and PSE method were used to get the initial disturbance for parallel and non-parallel flow respectively. A 2-D code was developed to solve the full Navier-stokes by using WENO(weighted essentially non-oscillating) scheme. The given numerical results show the evolution of the linear disturbance for the most amplified disturbance in supersonic and hypersonic flow over a compression ramp. The nonlinear computations also determined the minimal amplitudes necessary to cause transition at a designed location.
Neoclassical, semi-collisional tearing mode theory in an axisymmetric torus
NASA Astrophysics Data System (ADS)
Connor, J. W.; Hastie, R. J.; Helander, P.
2017-12-01
A set of layer equations for determining the stability of semi-collisional tearing modes in an axisymmetric torus, incorporating neoclassical physics, in the small ion Larmor radius limit, is provided. These can be used as an inner layer module for inclusion in numerical codes that asymptotically match the layer to toroidal calculations of the tearing mode stability index, \\prime $ . They are more complete than in earlier work and comprise equations for the perturbed electron density and temperature, the ion temperature, Ampère's law and the vorticity equation, amounting to a twelvth-order set of radial differential equations. While the toroidal geometry is kept quite general when treating the classical and Pfirsch-Schlüter transport, parallel bootstrap current and semi-collisional physics, it is assumed that the fraction of trapped particles is small for the banana regime contribution. This is to justify the use of a model collision term when acting on the localised (in velocity space) solutions that remain after the Spitzer solutions have been exploited to account for the bulk of the passing distributions. In this respect, unlike standard neoclassical transport theory, the calculation involves the second Spitzer solution connected with a parallel temperature gradient, because this stability problem involves parallel temperature gradients that cannot occur in equilibrium toroidal transport theory. Furthermore, a calculation of the linearised neoclassical radial transport of toroidal momentum for general geometry is required to complete the vorticity equation. The solutions of the resulting set of equations do not match properly to the ideal magnetohydrodynamic (MHD) equations at large distances from the layer, and a further, intermediate layer involving ion corrections to the electrical conductivity and ion parallel thermal transport is invoked to achieve this matching and allow one to correctly calculate the layer \\prime $ .
Periodic dielectric structure for production of photonic band gap and devices incorporating the same
Ho, Kai-Ming; Chan, Che-Ting; Soukoulis, Costas
1994-08-02
A periodic dielectric structure which is capable of producing a photonic band gap and which is capable of practical construction. The periodic structure is formed of a plurality of layers, each layer being formed of a plurality of rods separated by a given spacing. The material of the rods contrasts with the material between the rods to have a refractive index contrast of at least two. The rods in each layer are arranged with their axes parallel and at a given spacing. Adjacent layers are rotated by 90.degree., such that the axes of the rods in any given layer are perpendicular to the axes in its neighbor. Alternating layers (that is, successive layers of rods having their axes parallel such as the first and third layers) are offset such that the rods of one are about at the midpoint between the rods of the other. A four-layer periocity is thus produced, and successive layers are stacked to form a three-dimensional structure which exhibits a photonic band gap. By virtue of forming the device in layers of elongate members, it is found that the device is susceptible of practical construction.
Evolution of Kelvin-Helmholtz instability at Venus in the presence of the parallel magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, H. Y.; Key Laboratory of Planetary Sciences, Chinese Academy of Sciences, Nanjing 210008; Cao, J. B.
2015-06-15
Two-dimensional MHD simulations were performed to study the evolution of the Kelvin-Helmholtz (KH) instability at the Venusian ionopause in response to the strong flow shear in presence of the in-plane magnetic field parallel to the flow direction. The physical behavior of the KH instability as well as the triggering and occurrence conditions for highly rolled-up vortices are characterized through several physical parameters, including Alfvén Mach number on the upper side of the layer, the density ratio, and the ratio of parallel magnetic fields between two sides of the layer. Using these parameters, the simulations show that both the high densitymore » ratio and the parallel magnetic field component across the boundary layer play a role of stabilizing the instability. In the high density ratio case, the amount of total magnetic energy in the final quasi-steady status is much more than that in the initial status, which is clearly different from the case with low density ratio. We particularly investigate the nonlinear development of the case that has a high density ratio and uniform magnetic field. Before the instability saturation, a single magnetic island is formed and evolves into two quasi-steady islands in the non-linear phase. A quasi-steady pattern eventually forms and is embedded within a uniform magnetic field and a broadened boundary layer. The estimation of loss rates of ions from Venus indicates that the stabilizing effect of the parallel magnetic field component on the KH instability becomes strong in the case of high density ratio.« less
NASA Astrophysics Data System (ADS)
Ebner, M.; Piazolo, S.; Koehn, D.
2009-04-01
In the present contribution we investigate the microstructure of bedding parallel and bedding normal stylolites in carbonate rocks. We focused our study on micro-stylolites which represent an initial stage of this localised pressure solution process as stylolite roughness amplitude is a function of strain. We use electron backscatter diffraction analysis (EBSD) and orientation contrast imaging to address the following issues: (i) What causes the initiation of stylolite interfaces at a submicroscopic scale, (ii) is there distributed deformation around the stylolite interface and (iii) what is the role of the interface (residuum)? Our findings demonstrate that the characteristic stylolite teeth are initiated at a pre-existing heterogeneity in the host-rock. This quenched noise in carbonate rocks is typically composed of clay particles in the submicron scale. In addition, qtz-grains are present along especially pronounced stylolite peaks. The stylolite interface evolves with increasing strain from individual clay particles separated by grain-grain contacts of calcite along the interface to a continuous layer of clay and oxides. Thickness variation of the residuum along the interface is inferred to be strongly influenced by the pre-existing distribution of pinning particles that are more resistant to dissolution. Another important observation is that a shaped preferred orientation (SPO) exists in a halo around the stylolite. This SPO increases with proximity to the stylolite interface. Within this halo, crystal plastic deformation is expressed by subgrain formation with subgrain boundaries usually aligned parallel to shortening direction. Bedding normal (tectonic) stylolites which overprint already compacted beds i.e. with a pre-existing sedimentary SPO parallel to the bedding plane exhibit a SPO at a high angle to the sedimentary SPO. We conclude that stylolite roughness is primarily caused by pre-existing heterogeneities in the host-rock which are more resistant to dissolution e.g. clay particles and/or qtz grains. Secondly, we demonstrate that stylolite formation is not a process that is restricted to the stylolite interface itself but a process that is active in a broader zone around the actual interface.
1991-01-01
visual and three-layer connectionist network, in that the input layer of memory processing is serial, and is likely to represent each module is... Selective attention gates visual University Press. processing in the extrastnate cortex. Science, 229:782-784. Treasman, A.M. (1985). Preartentive...AD-A242 225 A CONNECTIONIST SIMULATION OF ATTENTION AND VECTOR COMPARISON: THE NEED FOR SERIAL PROCESSING IN PARALLEL HARDWARE Technical Report AlP
NASA Astrophysics Data System (ADS)
Pak, Jinsu; Min, Misook; Cho, Kyungjune; Lien, Der-Hsien; Ahn, Geun Ho; Jang, Jingon; Yoo, Daekyoung; Chung, Seungjun; Javey, Ali; Lee, Takhee
2016-10-01
Photoswitching response times (rise and decay times) of a vertical organic and inorganic heterostructure with p-type copper phthalocyanine (CuPc) and n-type molybdenum disulfide (MoS2) semiconductors are investigated. By stacking a CuPc layer on MoS2 field effect transistors, better photodetection capability and fast photoswitching rise and decay phenomena are observed. Specifically, with a 2 nm-thick CuPc layer on the MoS2 channel, the photoswitching decay time decreases from 3.57 s to 0.18 s. The p-type CuPc layer, as a passivation layer, prevents the absorption of oxygen on the surface of the MoS2 channel layer, which results in a shortened photoswitching decay time because adsorbed oxygen destroys the balanced ratio of electrons and holes, leading to the interruption of recombination processes. The suggested heterostructure may deliver enhanced photodetection abilities and photoswitching characteristics for realizing ultra-thin and sensitive photodetectors.
Large-scale trench-perpendicular mantle flow beneath northern Chile
NASA Astrophysics Data System (ADS)
Reiss, M. C.; Rumpker, G.; Woelbern, I.
2017-12-01
We investigate the anisotropic properties of the forearc region of the central Andean margin by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. The data stems from the Integrated Plate boundary Observatory Chile (IPOC) located in northern Chile, covering an approximately 120 km wide coastal strip between 17°-25° S with an average station spacing of 60 km. With partly over ten years of data, this data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements yield two distinct anisotropic layers. The teleseismic measurements show a change of fast polarizations directions from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, given the geometry of absolute plate motion and strike of the trench, mostly perpendicular to the trench. Shear-wave splitting from local earthquakes shows fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow source. Comparisons between fast polarization directions and the strike of the local fault systems yield a good agreement. We use forward modelling to test the influence of the upper layer on the teleseismic measurements. We show that the observed variations of teleseismic measurements along the trench are caused by the anisotropy in the upper layer. Accordingly, the mantle layer is best characterized by an anisotropic fast axes parallel to the absolute plate motion which is roughly trench-perpendicular. This anisotropy is likely caused by a combination of crystallographic preferred orientation of the mantle mineral olivine as fossilized anisotropy in the slab and entrained flow beneath the slab. We interpret the upper anisotropic layer to be confined to the crust of the overriding continental plate. This is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab to the measurements.
Olanzapine induced Q-Tc shortening.
Shoja Shafti, Saeed; Fallah Jahromi, Parisa
2014-12-01
Prolongation of Q-Tc interval is commonly accepted as a surrogate marker for the ability of a drug to cause torsade de pointes. In the present study, safety of olanzapine versus risperidone was compared among a group of patients with schizophrenia to see the frequency of the electrocardiographic alterations induced by those atypical antipsychotics. Two hundred and sixty-eight female inpatients with schizophrenia entered in one of the two parallel groups to participate in an open study for random assignment to olanzapine (n = 148) or risperidone (n = 120). Standard 12-lead surface electrocardiogram (ECG) was taken from each patient at baseline, before initiation of treatment, and then at the end of management, just before discharge. The parameters that were assessed included heart rate (HR), P-R interval, QRS interval, Q-T interval (corrected = Q-Tc), ventricular activation time (VAT), ST segment, T wave, axis of QRS, and finally, interventricular conduction process. A total of 37.83% of cases in the olanzapine group and 30% in the risperidone group showed some Q-Tc changes; 13.51% and 24.32% of the patients in the olanzapine group showed prolongation and shortening of the Q-Tc, respectively, while changes in the risperidone group were restricted to only prolongation of Q-Tc. Comparison of means showed a significant increment in Q-Tc by risperidone (p = 0.02). Also, comparison of proportions in the olanzapine group showed significantly more cases with shortening of Q-Tc versus its prolongation (p = 0.01). No significant alterations with respect to other variables were evident. Olanzapine and risperidone had comparable potentiality for induction of Q-Tc changes, while production of further miscellaneous alterations in ECG was more observable in the olanzapine group compared with the risperidone group. Also shortening of Q-Tc was specific to olanzapine.
Shen, Jian-Bing; Shutt, Robin; Agosto, Mariela; Pappano, Achilles; Liang, Bruce T
2009-04-01
Binary cardiac transgenic (Tg) overexpression of P2X(4) receptors (P2X(4)R) improved the survival of the cardiomyopathic calsequestrin (CSQ) mice. Here we studied the mechanism of rescue using binary P2X(4)R/CSQ Tg and CSQ Tg mice as models. Cellular and intact heart properties were determined by simultaneous sarcomere shortening (SS) and Ca(2+) transients in vitro and echocardiography in vivo. Similar to a delay in death, binary mice exhibited a slowed heart failure progression with a greater left ventricular (LV) fractional shortening (FS) and thickness and a concomitant lesser degree of LV dilatation in both systole and diastole at 8 or 12 wk. By 16 wk, binary hearts showed similarly depressed FS and thinned out LV and equal enlargement of LV as did 12-wk-old CSQ hearts. Binary cardiac myocytes showed higher peak basal cell shortening (CS) and SS as well as greater basal rates of shortening and relaxation than did the CSQ myocytes at either 8 or 12 wk. Similar data were obtained in comparing the Ca(2+) transient. At 16 wk, binary myocytes were like the 12-wk-old CSQ myocytes with equally depressed CS, SS, and Ca(2+) transient. CSQ myocytes were longer than myocytes from wild-type and binary mice at 12 wk of age. At 16 wk, the binary myocyte length increased to that of the 12-wk-old CSQ myocyte, parallel to LV dilatation. The data suggest a unique mechanism, which involves a reversal of cardiac myocyte dysfunction and a delay in heart failure progression. It represents an example of targeting the abnormal failing myocyte in treating heart failure.
Magnetostatic effects on switching in small magnetic tunnel junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bapna, Mukund; Piotrowski, Stephan K.; Oberdick, Samuel D.
Perpendicular CoFeB/MgO/CoFeB magnetic tunnel junctions with diameters under 100 nm are investigated by conductive atomic force microscopy. Minor loops of the tunnel magnetoresistance as a function of applied magnetic field reveal the hysteresis of the soft layer and an offset due to the magnetostatic field of the hard layer. Within the hysteretic region, telegraph noise is observed in the tunnel current. Simulations show that in this range, the net magnetic field in the soft layer is spatially inhomogeneous, and that antiparallel to parallel switching tends to start near the edge, while parallel to antiparallel reversal favors nucleation in the interior ofmore » the soft layer. As the diameter of the tunnel junction is decreased, the average magnitude of the magnetostatic field increases, but the spatial inhomogeneity across the soft layer is reduced.« less
Some observations on rutherfordine
Clark, Joan R.; Christ, C.L.
1956-01-01
The optical properties of rutherfordine, UO2CO3, previously determined on microscopic crystals, have been redetermined on considerably larger crystals; and the relations among the indices of refraction, the morphology, and the crystal structure have been examined. Rutherfordine is orthorhombic, biaxial positive, with α = 1.715, β = 1.730, γ = 1.795, 2V = 53° (calc.); X = b, Y = c (elongation, Z = a. The crystal structure of UO2CO 3 consists of layers of carbonate groups parallel to (010) with linear (O-U-O) ions normal to the layers. The indices β and γ correspond to vibration directions parallel to layers; the unexpectedly large difference in value between β and γ is ascribed to the optical anisotropy of the uranium-oxygen bonding in the layer. Indexed X-ray powder data are given.
Erfani, Reza; Marefat, Fatemeh; Sodagar, Amir M; Mohseni, Pedram
2018-05-01
This paper reports on the modeling and characterization of capacitive elements with tissue as the dielectric material, representing the core building block of a capacitive link for wireless power transfer to neural implants. Each capacitive element consists of two parallel plates that are aligned around the tissue layer and incorporate a grounded, guarded, capacitive pad to mitigate the adverse effect of stray capacitances and shield the plates from external interfering electric fields. The plates are also coated with a biocompatible, insulating, coating layer on the inner side of each plate in contact with the tissue. A comprehensive circuit model is presented that accounts for the effect of the coating layers and is validated by measurements of the equivalent capacitance as well as impedance magnitude/phase of the parallel plates over a wide frequency range of 1 kHz-10 MHz. Using insulating coating layers of Parylene-C at a thickness of and Parylene-N at a thickness of deposited on two sets of parallel plates with different sizes and shapes of the guarded pad, our modeling and characterization results accurately capture the effect of the thickness and electrical properties of the coating layers on the behavior of the capacitive elements over frequency and with different tissues.
Analysis of folded pulse forming line operation.
Domonkos, M T; Watrous, J; Parker, J V; Cavazos, T; Slenes, K; Heidger, S; Brown, D; Wilson, D
2014-09-01
A compact pulse forming line (CPFL) concept based on a folded transmission line and high-breakdown strength dielectric was explored through an effort combining proof-of-principle experiments with electromagnetic modeling. A small-scale folded CPFL was fabricated using surface-mount ceramic multilayer capacitors. The line consisted of 150 capacitors close-packed in parallel and delivered a 300 ns flat-top pulse. The concept was carried to a 10 kV class device using a polymer-ceramic nanocomposite dielectric with a permittivity of 37.6. The line was designed for a 161 ns FWHM length pulse into a matched load. The line delivered a 110 ns FWHM pulse, and the pulse peak amplitude exceeded the matched load ideal. Transient electromagnetic analysis using the particle-in-cell code ICEPIC was conducted to examine the nature of the unexpected pulse shortening and distortion. Two-dimensional analysis failed to capture the anomalous behavior. Three-dimensional analysis replicated the pulse shape and revealed that the bends were largely responsible for the pulse shortening. The bends not only create the expected reflection of the incident TEM wave but also produce a non-zero component of the Poynting vector perpendicular to the propagation direction of the dominant electromagnetic wave, resulting in power flow largely external to the PFL. This analysis explains both the pulse shortening and the amplitude of the pulse.
Analysis of folded pulse forming line operation
NASA Astrophysics Data System (ADS)
Domonkos, M. T.; Watrous, J.; Parker, J. V.; Cavazos, T.; Slenes, K.; Heidger, S.; Brown, D.; Wilson, D.
2014-09-01
A compact pulse forming line (CPFL) concept based on a folded transmission line and high-breakdown strength dielectric was explored through an effort combining proof-of-principle experiments with electromagnetic modeling. A small-scale folded CPFL was fabricated using surface-mount ceramic multilayer capacitors. The line consisted of 150 capacitors close-packed in parallel and delivered a 300 ns flat-top pulse. The concept was carried to a 10 kV class device using a polymer-ceramic nanocomposite dielectric with a permittivity of 37.6. The line was designed for a 161 ns FWHM length pulse into a matched load. The line delivered a 110 ns FWHM pulse, and the pulse peak amplitude exceeded the matched load ideal. Transient electromagnetic analysis using the particle-in-cell code ICEPIC was conducted to examine the nature of the unexpected pulse shortening and distortion. Two-dimensional analysis failed to capture the anomalous behavior. Three-dimensional analysis replicated the pulse shape and revealed that the bends were largely responsible for the pulse shortening. The bends not only create the expected reflection of the incident TEM wave but also produce a non-zero component of the Poynting vector perpendicular to the propagation direction of the dominant electromagnetic wave, resulting in power flow largely external to the PFL. This analysis explains both the pulse shortening and the amplitude of the pulse.
NASA Astrophysics Data System (ADS)
Ghosh, Subhajit; Bose, Santanu; Mandal, Nibir; Das, Animesh
2018-03-01
This study integrates field evidence with laboratory experiments to show the mechanical effects of a lithologically contrasting stratigraphic sequence on the development of frontal thrusts: Main Boundary Thrust (MBT) and Daling Thrust (DT) in the Darjeeling-Sikkim Himalaya (DSH). We carried out field investigations mainly along two river sections in the DSH: Tista-Kalijhora and Mahanadi, covering an orogen-parallel stretch of 20 km. Our field observations suggest that the coal-shale dominated Gondwana sequence (sandwiched between the Daling Group in the north and Siwaliks in the south) has acted as a mechanically weak horizon to localize the MBT and DT. We simulated a similar mechanical setting in scaled model experiments to validate our field interpretation. In experiments, such a weak horizon at a shallow depth perturbs the sequential thrust progression, and causes a thrust to localize in the vicinity of the weak zone, splaying from the basal detachment. We correlate this weak-zone-controlled thrust with the DT, which accommodates a large shortening prior to activation of the weak zone as a new detachment with ongoing horizontal shortening. The entire shortening in the model is then transferred to this shallow detachment to produce a new sequence of thrust splays. Extrapolating this model result to the natural prototype, we show that the mechanically weak Gondwana Sequence has caused localization of the DT and MBT in the mountain front of DSH.
NASA Astrophysics Data System (ADS)
Zerr, Robert Joseph
2011-12-01
The integral transport matrix method (ITMM) has been used as the kernel of new parallel solution methods for the discrete ordinates approximation of the within-group neutron transport equation. The ITMM abandons the repetitive mesh sweeps of the traditional source iterations (SI) scheme in favor of constructing stored operators that account for the direct coupling factors among all the cells and between the cells and boundary surfaces. The main goals of this work were to develop the algorithms that construct these operators and employ them in the solution process, determine the most suitable way to parallelize the entire procedure, and evaluate the behavior and performance of the developed methods for increasing number of processes. This project compares the effectiveness of the ITMM with the SI scheme parallelized with the Koch-Baker-Alcouffe (KBA) method. The primary parallel solution method involves a decomposition of the domain into smaller spatial sub-domains, each with their own transport matrices, and coupled together via interface boundary angular fluxes. Each sub-domain has its own set of ITMM operators and represents an independent transport problem. Multiple iterative parallel solution methods have investigated, including parallel block Jacobi (PBJ), parallel red/black Gauss-Seidel (PGS), and parallel GMRES (PGMRES). The fastest observed parallel solution method, PGS, was used in a weak scaling comparison with the PARTISN code. Compared to the state-of-the-art SI-KBA with diffusion synthetic acceleration (DSA), this new method without acceleration/preconditioning is not competitive for any problem parameters considered. The best comparisons occur for problems that are difficult for SI DSA, namely highly scattering and optically thick. SI DSA execution time curves are generally steeper than the PGS ones. However, until further testing is performed it cannot be concluded that SI DSA does not outperform the ITMM with PGS even on several thousand or tens of thousands of processors. The PGS method does outperform SI DSA for the periodic heterogeneous layers (PHL) configuration problems. Although this demonstrates a relative strength/weakness between the two methods, the practicality of these problems is much less, further limiting instances where it would be beneficial to select ITMM over SI DSA. The results strongly indicate a need for a robust, stable, and efficient acceleration method (or preconditioner for PGMRES). The spatial multigrid (SMG) method is currently incomplete in that it does not work for all cases considered and does not effectively improve the convergence rate for all values of scattering ratio c or cell dimension h. Nevertheless, it does display the desired trend for highly scattering, optically thin problems. That is, it tends to lower the rate of growth of number of iterations with increasing number of processes, P, while not increasing the number of additional operations per iteration to the extent that the total execution time of the rapidly converging accelerated iterations exceeds that of the slower unaccelerated iterations. A predictive parallel performance model has been developed for the PBJ method. Timing tests were performed such that trend lines could be fitted to the data for the different components and used to estimate the execution times. Applied to the weak scaling results, the model notably underestimates construction time, but combined with a slight overestimation in iterative solution time, the model predicts total execution time very well for large P. It also does a decent job with the strong scaling results, closely predicting the construction time and time per iteration, especially as P increases. Although not shown to be competitive up to 1,024 processing elements with the current state of the art, the parallelized ITMM exhibits promising scaling trends. Ultimately, compared to the KBA method, the parallelized ITMM may be found to be a very attractive option for transport calculations spatially decomposed over several tens of thousands of processes. Acceleration/preconditioning of the parallelized ITMM once developed will improve the convergence rate and improve its competitiveness. (Abstract shortened by UMI.)
Distributed intelligence for supervisory control
NASA Technical Reports Server (NTRS)
Wolfe, W. J.; Raney, S. D.
1987-01-01
Supervisory control systems must deal with various types of intelligence distributed throughout the layers of control. Typical layers are real-time servo control, off-line planning and reasoning subsystems and finally, the human operator. Design methodologies must account for the fact that the majority of the intelligence will reside with the human operator. Hierarchical decompositions and feedback loops as conceptual building blocks that provide a common ground for man-machine interaction are discussed. Examples of types of parallelism and parallel implementation on several classes of computer architecture are also discussed.
Parallel heater system for subsurface formations
Harris, Christopher Kelvin [Houston, TX; Karanikas, John Michael [Houston, TX; Nguyen, Scott Vinh [Houston, TX
2011-10-25
A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.
Development of Cranial Bone Surrogate Structures Using Stereolithographic Additive Manufacturing
2017-09-29
shown in Fig. 5. With each cycle, a blade is passed across the platform to create a uniform layer of resin. The resin layer is exposed to a UV laser...due to the direction in which the layers are deposited. In both cases, the sequential layers run parallel to the loading direction of the tensile
Starn, J. Jeffrey; Stone, Janet Radway
2005-01-01
Generic ground-water-flow simulation models show that geohydrologic factors?fracture types, fracture geometry, and surficial materials?affect the size, shape, and location of source-water areas for bedrock wells. In this study, conducted by the U.S. Geological Survey in cooperation with the Connecticut Department of Public Health, ground-water flow was simulated to bedrock wells in three settings?on hilltops and hillsides with no surficial aquifer, in a narrow valley with a surficial aquifer, and in a broad valley with a surficial aquifer?to show how different combinations of geohydrologic factors in different topographic settings affect the dimensions and locations of source-water areas in Connecticut. Three principal types of fractures are present in bedrock in Connecticut?(1) Layer-parallel fractures, which developed as partings along bedding in sedimentary rock and compositional layering or foliation in metamorphic rock (dips of these fractures can be gentle or steep); (2) unroofing joints, which developed as strain-release fractures parallel to the land surface as overlying rock was removed by erosion through geologic time; and (3) cross fractures and joints, which developed as a result of tectonically generated stresses that produced typically near-vertical or steeply dipping fractures. Fracture geometry is defined primarily by the presence or absence of layering in the rock unit, and, if layered, by the angle of dip in the layering. Where layered rocks dip steeply, layer-parallel fracturing generally is dominant; unroofing joints also are typically well developed. Where layered rocks dip gently, layer-parallel fracturing also is dominant, and connections among these fractures are provided only by the cross fractures. In gently dipping rocks, unroofing joints generally do not form as a separate fracture set; instead, strain release from unroofing has occurred along gently dipping layer-parallel fractures, enhancing their aperture. In nonlayered and variably layered rocks, layer-parallel fracturing is absent or poorly developed; fracturing is dominated by well-developed subhorizontal unroofing joints and steeply dipping, tectonically generated fractures and (or) cooling joints. Cross fractures (or cooling joints) in nonlayered and variably layered rocks have more random orientations than in layered rocks. Overall, nonlayered or variably layered rocks do not have a strongly developed fracture direction. Generic ground-water-flow simulation models showed that fracture geometry and other geohydrologic factors affect the dimensions and locations of source-water areas for bedrock wells. In general, source-water areas to wells reflect the direction of ground-water flow, which mimics the land-surface topography. Source-water areas to wells in a hilltop setting were not affected greatly by simulated fracture zones, except for an extensive vertical fracture zone. Source-water areas to wells in a hillside setting were not affected greatly by simulated fracture zones, except for the combination of a subhorizontal fracture zone and low bedrock vertical hydraulic conductivity, as might be the case where an extensive subhorizontal fracture zone is not connected or is poorly connected to the surface through vertical fractures. Source-water areas to wells in a narrow valley setting reflect complex ground-water-flow paths. The typical flow path originates in the uplands and passes through either till or bedrock into the surficial aquifer, although only a small area of the surficial aquifer actually contributes water to the well. Source-water areas in uplands can include substantial areas on both sides of a river. Source-water areas for wells in this setting are affected mainly by the rate of ground-water recharge and by the degree of anisotropy. Source-water areas to wells in a broad valley setting (bedrock with a low angle of dip) are affected greatly by fracture properties. The effect of a given fracture is to channel the
NASA Astrophysics Data System (ADS)
Feng, H.; Liu, J.
2017-12-01
During the Early Cretaceous tectonic lithosphere extension, the pre-mesozoic rocks from the Western Hills in the central part of the North China Craton suffered from weak metamorphism but intense shear deformation. The prominent features of the deformation structures are the coexisting layer-parallel shear zones and intrafolia folds, and the along-strike thickness variations of the marble layers from the highly sheared Mesoproterozoic Jing'eryu Formation. Platy marbles are well-developed in the thinner layers, while intrafolia folds are often observed in the thicker layers. Most folds are tight recumbent folds and their axial planes are parallel to the foliations and layerings of the marbles. The folds are A-type folds with hinges being always paralleling to the stretching lineations consistently oriented at 130°-310° directions throughout the entire area. SPO and microstructural analyses of the sheared marbles suggest that the thicker layers suffered from deformations homogeneously, while strain localization can be distinguished in the thinner layers. Calcite twin morphology and CPO analysis indicate that the deformation of marbles from both thinner and thicker layers happened at temperatures of 300 to 500°C. The above analysis suggests that marbles in the thicker layers experienced a progressive sequence of thermodynamic events: 1) regional metamorphism, 2) early ductile deformation dominated by relatively higher temperature conditions, during which all the mineral particles elongated and oriented limitedly and the calcite grains are deformed mainly by mechanical twinning, and 3) late superimposition of relatively lower temperature deformation and recrystallization, which superposed the early deformation, and made the calcites finely granulated, elongated and oriented by dynamical recrystallization along with other grains. Marbles from the thinner layers, however, experienced a similar, but different sequence of thermo-dynamic events, i.e. regional metamorphism, early ductile deformation and weak superimposition by subsequent deformation, which caused the development of the strain localization. It is also shown that the intensity of progressive superimposition deformation contributed to the thinning and thickening of the marble layers.
3-D readout-electronics packaging for high-bandwidth massively paralleled imager
Kwiatkowski, Kris; Lyke, James
2007-12-18
Dense, massively parallel signal processing electronics are co-packaged behind associated sensor pixels. Microchips containing a linear or bilinear arrangement of photo-sensors, together with associated complex electronics, are integrated into a simple 3-D structure (a "mirror cube"). An array of photo-sensitive cells are disposed on a stacked CMOS chip's surface at a 45.degree. angle from light reflecting mirror surfaces formed on a neighboring CMOS chip surface. Image processing electronics are held within the stacked CMOS chip layers. Electrical connections couple each of said stacked CMOS chip layers and a distribution grid, the connections for distributing power and signals to components associated with each stacked CSMO chip layer.
Interlayer tunneling in double-layer quantum hall pseudoferromagnets.
Balents, L; Radzihovsky, L
2001-02-26
We show that the interlayer tunneling I-V in double-layer quantum Hall states displays a rich behavior which depends on the relative magnitude of sample size, voltage length scale, current screening, disorder, and thermal lengths. For weak tunneling, we predict a negative differential conductance of a power-law shape crossing over to a sharp zero-bias peak. An in-plane magnetic field splits this zero-bias peak, leading instead to a "derivative" feature at V(B)(B(parallel)) = 2 pi Planck's over 2 pi upsilon B(parallel)d/e phi(0), which gives a direct measurement of the dispersion of the Goldstone mode corresponding to the spontaneous symmetry breaking of the double-layer Hall state.
NASA Astrophysics Data System (ADS)
sugihara, K.; Nakatsugawa, M.
2013-12-01
The water quality characteristics of ice-covered, stagnant, eutrophic water bodies have not been clarified because of insufficient observations. It has been pointed out that climate change has been shortening the duration of ice-cover; however, the influence of climate change on water quality has not been clarified. This study clarifies the water quality characteristics of stagnant, eutrophic water bodies that freeze in winter, based on our surveys and simulations, and examines how climate change may influence those characteristics. We made fixed-point observation using self-registering equipment and vertical water sampling. Self-registering equipment measured water temperature and dissolved oxygen(DO).vertical water sampling analyzed biological oxygen demand(BOD), total nitrogen(T-N), nitrate nitrogen(NO3-N), nitrite nitrogen(NO2-N), ammonium nitrogen(NH4-N), total phosphorus(TP), orthophosphoric phosphorus(PO4-P) and chlorophyll-a(Chl-a). The survey found that climate-change-related increases in water temperature were suppressed by ice covering the water area, which also blocked oxygen supply. It was also clarified that the bottom sediment consumed oxygen and turned the water layers anaerobic beginning from the bottom layer, and that nutrient salts eluted from the bottom sediment. The eluted nutrient salts were stored in the water body until the ice melted. The ice-covered period of water bodies has been shortening, a finding based on the analysis of weather and water quality data from 1998 to 2008. Climate change was surveyed as having caused decreases in nutrient salts concentration because of the shortened ice-covered period. However, BOD in spring showed a tendency to increase because of the proliferation of phytoplankton that was promoted by the climate-change-related increase in water temperature. To forecast the water quality by using these findings, particularly the influence of climate change, we constructed a water quality simulation model that incorporates the freezing-over of water bodies. The constructed model shows good temporal and spatial reproducibility and enables water quality to be forecast throughout the year, including during the ice-covered period. The forecasts using the model agree well with the survey results of shortened ice period and climate-change-related increase in the BOD in spring. From the result of calculations and observations, it is suggested that water quality of spring has been deteriorate because of freezing period to be shortened due to temperature rising.
Crystallization of silicon-germanium by aluminum-induced layer exchange
NASA Astrophysics Data System (ADS)
Isomura, Masao; Yajima, Masahiro; Nakamura, Isao
2018-02-01
We have studied the crystallization of amorphous silicon-germanium (a-SiGe) by aluminum (Al)-induced layer exchange (ALILE) with a starting structure of glass/Al/Al oxide/a-SiGe. We examined ALILE at 450 °C, which is slightly higher than the eutectic temperature of Ge and Al, in order to shorten the ALILE time. We successfully produced c-SiGe films oriented in the (111) direction for 16 h without significant alloying. The thickness of Al layers should be 2800 Å or more to complete the ALILE for the a-SiGe layers of 2000-2800 Å thickness. When the Al layer is as thick as the a-SiGe layer, almost uniform c-SiGe is formed on the glass substrate. On the other hand, the islands of c-SiGe are formed on the glass substrate when the Al layer is thicker than the a-SiGe layer. The islands become smaller with thicker Al layers because more excess Al remains between the SiGe islands. The results indicate that the configuration of c-SiGe can be altered from a uniform structure to island structures of various sizes by changing the ratio of a-SiGe thickness to Al thickness.
Dispersoid separation method and apparatus
Winsche, Warren E.
1980-01-01
Improved separation of heavier material from a dispersoid of gas and heavier material entrained therein is taught by the method of this invention which advantageously uses apparatus embodied in an inertial separator having rotary partition means comprising wall members dividing a housing into a plurality of axially-extending through passages arranged in parallel. Simultaneously with the helical transit of a moving stream of the dispersoid through the parallel arrangement of axially-extending through passages at a constant angular velocity, the heavier material is driven radially to the collecting surfaces of the rotational wall members where it is collected while the wall members are rotating at the same angular velocity as the moving stream. The plurality of wall members not only provides an increased area of collecting surfaces but the positioning of each of the wall members according to the teaching of this invention also results in a shortened time-of-flight to the collecting surfaces.
Multidisciplinary systems optimization by linear decomposition
NASA Technical Reports Server (NTRS)
Sobieski, J.
1984-01-01
In a typical design process major decisions are made sequentially. An illustrated example is given for an aircraft design in which the aerodynamic shape is usually decided first, then the airframe is sized for strength and so forth. An analogous sequence could be laid out for any other major industrial product, for instance, a ship. The loops in the discipline boxes symbolize iterative design improvements carried out within the confines of a single engineering discipline, or subsystem. The loops spanning several boxes depict multidisciplinary design improvement iterations. Omitted for graphical simplicity is parallelism of the disciplinary subtasks. The parallelism is important in order to develop a broad workfront necessary to shorten the design time. If all the intradisciplinary and interdisciplinary iterations were carried out to convergence, the process could yield a numerically optimal design. However, it usually stops short of that because of time and money limitations. This is especially true for the interdisciplinary iterations.
Guthoff, Rudolf F; Wienss, Holger; Hahnel, Christian; Wree, Andreas
2005-07-01
Evaluation of a new method to visualize distribution and morphology of human corneal nerves (Adelta- and C-fibers) by means of fluorescence staining, confocal laser scanning microscopy, and 3-dimensional (3D) reconstruction. Trephinates of corneas with a diagnosis of Fuchs corneal dystrophy were sliced into layers of 200 microm thickness using a Draeger microkeratome (Storz, Germany). The anterior lamella was stained with the Life/Dead-Kit (Molecular Probes Inc.), examined by the confocal laser scanning microscope "Odyssey XL," step size between 0.5 and 1 microm, and optical sections were digitally 3D-reconstructed. Immediate staining of explanted corneas by the Life/Dead-Kit gave a complete picture of the nerves in the central human cornea. Thin nerves running parallel to the Bowman layer in the subepithelial plexus perforate the Bowman layer orthogonally through tube-like structures. Passing the Bowman layer, Adelta- and C-fibers can be clearly distinguished by fiber diameter, and, while running in the basal epithelial plexus, by their spatial arrangement. Adelta-fibers run straight and parallel to the Bowman layer underneath the basal cell layer. C-fibers, after a short run parallel to the Bowman layer, send off multiple branches penetrating epithelial cell layers orthogonally, ending blindly in invaginations of the superficial cells. In contrast to C-fibers, Adelta-fibers show characteristic bulbous formations when kinking into the basal epithelial plexus. Ex-vivo fluorescence staining of the cornea and 3D reconstructions of confocal scans provide a fast and easily reproducible tool to visualize nerves of the anterior living cornea at high resolution. This may help to clarify gross variations of nerve fiber patterns under various clinical and experimental conditions.
NASA Astrophysics Data System (ADS)
Zhang, Zhipeng; von Wenckstern, Holger; Lenzner, Jörg; Grundmann, Marius
2016-06-01
We report on ultraviolet photodiodes with integrated optical filter based on the wurtzite (Mg,Zn)O thin films. Tuning of the bandgap of filter and active layers was realized by employing a continuous composition spread approach relying on the ablation of a single segmented target in pulsed-laser deposition. Filter and active layers of the device were deposited on opposite sides of a sapphire substrate with nearly parallel compositional gradients. Ensure that for each sample position the bandgap of the filter layer blocking the high energy radiation is higher than that of the active layer. Different oxygen pressures during the two depositions runs. The absorption edge is tuned over 360 meV and the spectral bandwidth of photodiodes is typically 100 meV and as low as 50 meV.
NASA Astrophysics Data System (ADS)
Laó-Dávila, Daniel A.; Anderson, Thomas H.
2009-12-01
Faults and shear zones recorded in the Monte del Estado and Río Guanajibo serpentinite masses in southwestern Puerto Rico show previously unrecognized southwestward tectonic transport. The orientations of planar and linear structures and the sense of slip along faults and shear zones determined by offset rock layers, drag folds in foliations, and steps in slickensided surfaces and/or S-C fabrics from 1846 shear planes studied at more than 300 stations reveal two predominant groups of faults: 1) northwesterly-striking thrust faults and easterly-striking left-lateral faults and, 2) northwesterly-striking right-lateral faults and easterly-striking thrust faults. Shortening and extension (P and T) axes calculated for geographic domains within the serpentinite reveal early north-trending shortening followed by southwestward-directed movement during which older structures were re-activated. The SW-directed shortening is attributed to transpression that accompanied Late Eocene left-lateral shearing of the serpentinite. A third, younger, group comprising fewer faults consists of northwesterly-striking left-lateral faults and north-directed thrusts that also may be related to the latest transpressional deformation within Puerto Rico. Deformational events in Puerto Rico correlate to tectonic events along the Caribbean-North American plate boundary.
A train of kink folds in the surficial salt of Qom Kuh, Central Iran
NASA Astrophysics Data System (ADS)
Cosgrove, John W.; Talbot, Christopher J.; Aftabi, Pedram
2009-11-01
The many subaerial extrusions of salt current in Iran are smaller and faster versions of steady state extrusions of metamorphic rocks from crustal channels in mountain chains. The extruded salt develops a variety of internal folds as the salt accumulates ductile displacements that can reach metres a year. Weather-induced elastic strains de-stress the outer layers of salt extrusions to a brittle carapace of broken dilated salt. Qom Kuh, situated in Central Iran, is a comparatively small and slow example of a viscous salt fountain and, as a result, its brittle elastic carapace may be thicker than most. This may account for Qom Kuh being the only salt fountain known to have a train of 10 m scale kink folds in its surficial salt. We attribute these folds to lateral shortening and back-shear of a surface-parallel planar mechanical anisotropy in the surficial salt induced by gravitationally driven ductile flow of the underlying salt. When it is dry, the elastic carapace is relatively strong and acts as a stiff corset impeding gravity spreading of the underlying confined salt. However, the carapace weakens and kinks on wetting, allowing the underlying salt to gravity spread. These folds illustrate how the weather can affect gravity spreading of surficial salt masses and how complex the interplay of tectonic and climatic signals can be in "steady state" mountains.
NASA Astrophysics Data System (ADS)
Tavani, Stefano; Granado, Pablo; Cantanero, Irene; Balsamo, Fabrizio; Corradetti, Amerigo; Muñoz, Josep
2017-04-01
In this contribution we describe deformation bands developed due to the interplay between shearing and mechanical and chemical compaction in Paleocene quartz-rich calcarenites. The studied structures are located in the footwall of the Cotiella Thrust (Spanish Pyrennes) and form anastomosed, mm-thick tabular bands, composed of high concentration of quartz grains. The bands strike perpendicular to the local transport direction of the regional thrust sheet, thus indicating a tectonic origin, and are organized in three sets. One set is perpendicular to the shallow-dipping bedding surface, while the other two are roughly perpendicular to each other and form an angle of 45°, in opposite directions, with the bedding. No macroscopic evidence of shearing is found along these bands. Optical microscope and SEM investigations on both undeformed and deformed rocks indicate that the high concentration of quartz within the deformation bands was caused by the localized pressure-enhanced dissolution of calcite grains, which determined the enrichment of the less soluble quartz grains. Quartz grains fracturing, fragmentation and crushing was observed along in all deformation bands, whereas cataclasis and shear occurs only along oblique oblique-to-bedding sets. All these features indicate that studied deformation bands are hybrid structures most likely developed during layer-parallel shortening. In detail, bedding perpendicular and bedding oblique structures can be interpreted as pure compaction and shear-enhanced compaction bands, respectively.
NASA Astrophysics Data System (ADS)
Szaniawski, Rafał; Mazzoli, Stefano; Jankowski, Leszek
2017-10-01
Orogenic curvatures can have various origins and are widely debated worldwide. In the Poland-Ukraine border area, the Outer Western Carpathians are characterized by a marked curvature. The origin of this curvature was analysed by integrating stratigraphic information with structural constraints and anisotropy of the magnetic susceptibility (AMS) data. Hangingwall frontal ramp domains are characterized by a relatively simple deformation dominated by layer-parallel shortening and folding around a regional NW-SE trending axis, recorded by an AMS lineation with a similar trend. On the other hand, the N-S trending hangingwall oblique ramp domain is characterized by maximum AMS axes recording transpressional strain either dominated by simple shear (sub-horizontal AMS lineation) or pure shear (steeply plunging AMS lineation) components. Early Miocene basin inversion with two distinct depocentres created a number of different detachment surfaces and thickness variations for the sedimentary successions involved in thrusting. The main depocentre of the Lower-Middle Miocene foredeep was originally located in the recess area of the curved Carpathian front. On the other hand, the occurrence of a salient to the west resulted in the axial zone of the foreland flexure being filled with allochthonous units, thereby dramatically reducing the accommodation space for foredeep sediments in this area. Our results suggest that thrust-belt geometry was controlled by the inherited Mesozoic extensional basin architecture.
Memory access in shared virtual memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berrendorf, R.
1992-01-01
Shared virtual memory (SVM) is a virtual memory layer with a single address space on top of a distributed real memory on parallel computers. We examine the behavior and performance of SVM running a parallel program with medium-grained, loop-level parallelism on top of it. A simulator for the underlying parallel architecture can be used to examine the behavior of SVM more deeply. The influence of several parameters, such as the number of processors, page size, cold or warm start, and restricted page replication, is studied.
Memory access in shared virtual memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berrendorf, R.
1992-09-01
Shared virtual memory (SVM) is a virtual memory layer with a single address space on top of a distributed real memory on parallel computers. We examine the behavior and performance of SVM running a parallel program with medium-grained, loop-level parallelism on top of it. A simulator for the underlying parallel architecture can be used to examine the behavior of SVM more deeply. The influence of several parameters, such as the number of processors, page size, cold or warm start, and restricted page replication, is studied.
Parallel adaptive discontinuous Galerkin approximation for thin layer avalanche modeling
NASA Astrophysics Data System (ADS)
Patra, A. K.; Nichita, C. C.; Bauer, A. C.; Pitman, E. B.; Bursik, M.; Sheridan, M. F.
2006-08-01
This paper describes the development of highly accurate adaptive discontinuous Galerkin schemes for the solution of the equations arising from a thin layer type model of debris flows. Such flows have wide applicability in the analysis of avalanches induced by many natural calamities, e.g. volcanoes, earthquakes, etc. These schemes are coupled with special parallel solution methodologies to produce a simulation tool capable of very high-order numerical accuracy. The methodology successfully replicates cold rock avalanches at Mount Rainier, Washington and hot volcanic particulate flows at Colima Volcano, Mexico.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurin, Péter; Varga, Szabolcs
2015-06-14
We extend the transfer matrix method of one-dimensional hard core fluids placed between confining walls for that case where the particles can pass each other and at most two layers can form. We derive an eigenvalue equation for a quasi-one-dimensional system of hard squares confined between two parallel walls, where the pore width is between σ and 3σ (σ is the side length of the square). The exact equation of state and the nearest neighbor distribution functions show three different structures: a fluid phase with one layer, a fluid phase with two layers, and a solid-like structure where the fluidmore » layers are strongly correlated. The structural transition between differently ordered fluids develops continuously with increasing density, i.e., no thermodynamic phase transition occurs. The high density structure of the system consists of clusters with two layers which are broken with particles staying in the middle of the pore.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erkut, M. Hakan; Çatmabacak, Onur, E-mail: mherkut@gmail.com
The neutron stars in low-mass X-ray binaries (LMXBs) are usually thought to be weakly magnetized objects accreting matter from their low-mass companions in the form of a disk. Albeit weak compared to those in young neutron-star systems, the neutron-star magnetospheres in LMXBs can play an important role in determining the correlations between spectral and temporal properties. Parallel tracks appearing in the kilohertz (kHz) quasi-periodic oscillation (QPO) frequency versus X-ray flux plane can be used as a tool to study the magnetosphere–disk interaction in neutron-star LMXBs. For dynamically important weak fields, the formation of a non-Keplerian magnetic boundary layer at themore » innermost disk truncated near the surface of the neutron star is highly likely. Such a boundary region may harbor oscillatory modes of frequencies in the kHz range. We generate parallel tracks using the boundary region model of kHz QPOs. We also present the direct application of our model to the reproduction of the observed parallel tracks of individual sources such as 4U 1608–52, 4U 1636–53, and Aql X-1. We reveal how the radial width of the boundary layer must vary in the long-term flux evolution of each source to regenerate the parallel tracks. The run of the radial width looks similar for different sources and can be fitted by a generic model function describing the average steady behavior of the boundary region over the long term. The parallel tracks then correspond to the possible quasi-steady states the source can occupy around the average trend.« less
NASA Astrophysics Data System (ADS)
Erkut, M. Hakan; Çatmabacak, Onur
2017-11-01
The neutron stars in low-mass X-ray binaries (LMXBs) are usually thought to be weakly magnetized objects accreting matter from their low-mass companions in the form of a disk. Albeit weak compared to those in young neutron-star systems, the neutron-star magnetospheres in LMXBs can play an important role in determining the correlations between spectral and temporal properties. Parallel tracks appearing in the kilohertz (kHz) quasi-periodic oscillation (QPO) frequency versus X-ray flux plane can be used as a tool to study the magnetosphere-disk interaction in neutron-star LMXBs. For dynamically important weak fields, the formation of a non-Keplerian magnetic boundary layer at the innermost disk truncated near the surface of the neutron star is highly likely. Such a boundary region may harbor oscillatory modes of frequencies in the kHz range. We generate parallel tracks using the boundary region model of kHz QPOs. We also present the direct application of our model to the reproduction of the observed parallel tracks of individual sources such as 4U 1608-52, 4U 1636-53, and Aql X-1. We reveal how the radial width of the boundary layer must vary in the long-term flux evolution of each source to regenerate the parallel tracks. The run of the radial width looks similar for different sources and can be fitted by a generic model function describing the average steady behavior of the boundary region over the long term. The parallel tracks then correspond to the possible quasi-steady states the source can occupy around the average trend.
Bi-directional series-parallel elastic actuator and overlap of the actuation layers.
Furnémont, Raphaël; Mathijssen, Glenn; Verstraten, Tom; Lefeber, Dirk; Vanderborght, Bram
2016-01-27
Several robotics applications require high torque-to-weight ratio and energy efficient actuators. Progress in that direction was made by introducing compliant elements into the actuation. A large variety of actuators were developed such as series elastic actuators (SEAs), variable stiffness actuators and parallel elastic actuators (PEAs). SEAs can reduce the peak power while PEAs can reduce the torque requirement on the motor. Nonetheless, these actuators still cannot meet performances close to humans. To combine both advantages, the series parallel elastic actuator (SPEA) was developed. The principle is inspired from biological muscles. Muscles are composed of motor units, placed in parallel, which are variably recruited as the required effort increases. This biological principle is exploited in the SPEA, where springs (layers), placed in parallel, can be recruited one by one. This recruitment is performed by an intermittent mechanism. This paper presents the development of a SPEA using the MACCEPA principle with a self-closing mechanism. This actuator can deliver a bi-directional output torque, variable stiffness and reduced friction. The load on the motor can also be reduced, leading to a lower power consumption. The variable recruitment of the parallel springs can also be tuned in order to further decrease the consumption of the actuator for a given task. First, an explanation of the concept and a brief description of the prior work done will be given. Next, the design and the model of one of the layers will be presented. The working principle of the full actuator will then be given. At the end of this paper, experiments showing the electric consumption of the actuator will display the advantage of the SPEA over an equivalent stiff actuator.
Document Image Parsing and Understanding using Neuromorphic Architecture
2015-03-01
processing speed at different layers. In the pattern matching layer, the computing power of multicore processors is explored to reduce the processing...developed to reduce the processing speed at different layers. In the pattern matching layer, the computing power of multicore processors is explored... cortex where the complex data is reduced to abstract representations. The abstract representation is compared to stored patterns in massively parallel
Ng, C M
2013-10-01
The development of a population PK/PD model, an essential component for model-based drug development, is both time- and labor-intensive. A graphical-processing unit (GPU) computing technology has been proposed and used to accelerate many scientific computations. The objective of this study was to develop a hybrid GPU-CPU implementation of parallelized Monte Carlo parametric expectation maximization (MCPEM) estimation algorithm for population PK data analysis. A hybrid GPU-CPU implementation of the MCPEM algorithm (MCPEMGPU) and identical algorithm that is designed for the single CPU (MCPEMCPU) were developed using MATLAB in a single computer equipped with dual Xeon 6-Core E5690 CPU and a NVIDIA Tesla C2070 GPU parallel computing card that contained 448 stream processors. Two different PK models with rich/sparse sampling design schemes were used to simulate population data in assessing the performance of MCPEMCPU and MCPEMGPU. Results were analyzed by comparing the parameter estimation and model computation times. Speedup factor was used to assess the relative benefit of parallelized MCPEMGPU over MCPEMCPU in shortening model computation time. The MCPEMGPU consistently achieved shorter computation time than the MCPEMCPU and can offer more than 48-fold speedup using a single GPU card. The novel hybrid GPU-CPU implementation of parallelized MCPEM algorithm developed in this study holds a great promise in serving as the core for the next-generation of modeling software for population PK/PD analysis.
Photocapacitive image converter
NASA Technical Reports Server (NTRS)
Miller, W. E.; Sher, A.; Tsuo, Y. H. (Inventor)
1982-01-01
An apparatus for converting a radiant energy image into corresponding electrical signals including an image converter is described. The image converter includes a substrate of semiconductor material, an insulating layer on the front surface of the substrate, and an electrical contact on the back surface of the substrate. A first series of parallel transparent conductive stripes is on the insulating layer with a processing circuit connected to each of the conductive stripes for detecting the modulated voltages generated thereon. In a first embodiment of the invention, a modulated light stripe perpendicular to the conductive stripes scans the image converter. In a second embodiment a second insulating layer is deposited over the conductive stripes and a second series of parallel transparent conductive stripes perpendicular to the first series is on the second insulating layer. A different frequency current signal is applied to each of the second series of conductive stripes and a modulated image is applied to the image converter.
3-D Numerical Modelling of Oblique Continental Collisions with ASPECT
NASA Astrophysics Data System (ADS)
Karatun, L.; Pysklywec, R.
2017-12-01
Among the fundamental types of tectonic plate boundaries, continent-continent collision is least well understood. Deformation of the upper and middle crustal layers can be inferred from surface structures and geophysical imaging, but the fate of lower crustal rocks and mantle lithosphere is not well resolved. Previous research suggests that shortening of mantle lithosphere generally may be occurring by either: 1) a distributed thickening with a formation of a Raleigh-Tailor (RT) type instability (possibly accompanied with lithospheric folding); or 2) plate-like subduction, which can be one- or two-sided, with or without delamination and slab break-off; a combination of both could be taking place too. 3-D features of the orogens such as along-trench material transfer, bounding subduction zones can influence the evolution of the collision zone significantly. The current study was inspired by South Island of New Zealand - a young collision system where a block of continental crust is being shortened by the relative Australian-Pacific plate motion. The collision segment of the plate boundary is relatively small ( 800 km), and is bounded by oppositely verging subduction zones to the North and South. Here, we present results of 3-D forward numerical modelling of continental collision to investigate some of these processes. To conduct the simulations, we used ASPECT - a highly parallel community-developed code based on the Finite Element method. Model setup for three different sets of models featured 2-D vertical across strike, 3-D with periodic front and back walls, and 3-D with open front and back walls, with velocities prescribed on the left and right faces. We explored the importance of values of convergent velocity, strike-slip velocity and their ratio, which defines the resulting velocity direction relative to the plate boundary (obliquity). We found that higher strike-slip motion promotes strain localization, weakens the lithosphere close to the plate boundary and pushes the balance towards RT instability. Incorporation of the bounding subduction zones caused large amount of material to be pulled out through the sides of the model and into the subduction channel, with slab tear happening at high obliquity values.
Stress remagnetization in pyrrhotite-calcite synthetic aggregates
NASA Astrophysics Data System (ADS)
Robion, Philippe; Borradaile, Graham J.
2001-01-01
Stress-induced remagnetization has been applied to multidomain pyrrhotite-calcite synthetic aggregates in a triaxial rig. Experimental deformation used 150MPa confining pressure, a constant strain rate of 10-5 s-1 and applied differential stresses of up to 70MPa. New components of magnetization, parallel to the direction of the pressure vessel field, were added to the pre-deformational magnetization. The intensity of remagnetization (M'-M0) increases with the intensity of the applied differential stress and affects the coercivity fraction below 15mT. Bulk shortening is less than 8 per cent, thus grain rotation cannot explain selective remagnetization of the low-coercivity fraction. Remagnetization is thus attributed to deformational viscous remanent magnetization (DVRM). It is observed that high-coercivity (>15mT) grains do not remagnetize. There is, however, slight progressive rotation of pre-deformational magnetization with increasing strain up to 8 per cent of bulk shortening. The lack of piezoremanent magnetization in the high-coercivity range may be due to defects introduced in pyrrhotite during sample preparation. Experiments using synthetic pyrrhotite, expected to show low dislocation densities, would be necessary to test this effect.
Endoplasmic reticulum stress in wake-active neurons progresses with aging.
Naidoo, Nirinjini; Zhu, Jingxu; Zhu, Yan; Fenik, Polina; Lian, Jie; Galante, Ray; Veasey, Sigrid
2011-08-01
Fragmentation of wakefulness and sleep are expected outcomes of advanced aging. We hypothesize that wake neurons develop endoplasmic reticulum dyshomeostasis with aging, in parallel with impaired wakefulness. In this series of experiments, we sought to more fully characterize age-related changes in wakefulness and then, in relevant wake neuronal populations, explore functionality and endoplasmic reticulum homeostasis. We report that old mice show greater sleep/wake transitions in the active period with markedly shortened wake periods, shortened latencies to sleep, and less wake time in the subjective day in response to a novel social encounter. Consistent with sleep/wake instability and reduced social encounter wakefulness, orexinergic and noradrenergic wake neurons in aged mice show reduced c-fos response to wakefulness and endoplasmic reticulum dyshomeostasis with increased nuclear translocation of CHOP and GADD34. We have identified an age-related unfolded protein response injury to and dysfunction of wake neurons. It is anticipated that these changes contribute to sleep/wake fragmentation and cognitive impairment in aging. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.
Hairpin vortices in turbulent boundary layers
NASA Astrophysics Data System (ADS)
Eitel-Amor, G.; Örlü, R.; Schlatter, P.; Flores, O.
2015-02-01
The present work presents a number of parallel and spatially developing simulations of boundary layers to address the question of whether hairpin vortices are a dominant feature of near-wall turbulence, and which role they play during transition. In the first part, the parent-offspring regeneration mechanism is investigated in parallel (temporal) simulations of a single hairpin vortex introduced in a mean shear flow corresponding to either turbulent channels or boundary layers (Reτ ≲ 590). The effect of a turbulent background superimposed on the mean flow is considered by using an eddy viscosity computed from resolved simulations. Tracking the vortical structure downstream, it is found that secondary hairpins are only created shortly after initialization, with all rotational structures decaying for later times. For hairpins in a clean (laminar) environment, the decay is relatively slow, while hairpins in weak turbulent environments (10% of νt) dissipate after a couple of eddy turnover times. In the second part, the role of hairpin vortices in laminar-turbulent transition is studied using simulations of spatial boundary layers tripped by hairpin vortices. These vortices are generated by means of specific volumetric forces representing an ejection event, creating a synthetic turbulent boundary layer initially dominated by hairpin-like vortices. These hairpins are advected towards the wake region of the boundary layer, while a sinusoidal instability of the streaks near the wall results in rapid development of a turbulent boundary layer. For Reθ > 400, the boundary layer is fully developed, with no evidence of hairpin vortices reaching into the wall region. The results from both the parallel and spatial simulations strongly suggest that the regeneration process is rather short-lived and may not sustain once a turbulent background is developed. From the transitional flow simulations, it is conjectured that the forest of hairpins reported in former direct numerical simulation studies is reminiscent of the transitional boundary layer and may not be connected to some aspects of the dynamics of the fully developed wall-bounded turbulence.
NASA Astrophysics Data System (ADS)
Ozeren, M. S.; Sengor, A. M. C.; Acar, D.; Ülgen, S. C.; Onsel, I. E.
2014-12-01
Valles Marineris is the most significant near-linear depression on Mars. It is some 4000 km long, up to about 200 km wide and some 7 km deep. Although its margins look parallel at first sight, the entire structure has a long spindle shape with significant enlargement in its middle (Melas Chasma) caused by cuspate slope retreat mechanisms. Farther to its north is Hebes Chasma which is an entirely closed depression with a more pronounced spindle shape. Tithonium Chasma is a parallel, but much narrower depression to its northeast. All these chasmae have axes parallel with one another and such structures occur nowhere else on Mars. A scabland surface exists to the east of the Valles Marineris and the causative water mass seems to have issued from it. The great resemblance of these chasmae on mars to poljes in the karstic regions on earth have led us to assume that they owed their existence to dissolution of rock layers underlying them. We assumed that the dissolving layer consisted of water ice forming substantial layers, in fact entirely frozen seas of several km depth. We have simulated this geometry by using bentonite and flour layers (in different experiments) overlying layers of ice in which a resistant coil was used to simulate a dyke. We used different thicknesses of bentonite and flour overlying ice layers again of various thicknesses. The flour seems to simulate the Martian crust better because on Mars, g is only about 3/8ths of its value on Earth, so (for equal crustal density) the depth to which the cohesion term C remains important in the Mohr-Coulomb shear failure criterion is about 8/3 times greater. As examples we show two of those experiments in which both the rock analogue and ice layers were of 1.5 cm. thick. Perfect analogues of the Valles Marineris formed above the dyke analogue thermal source complete with the near-linear structure, overall flat spindle shape, cuspate margins, a central ridge, parallel side faults, parallel depressions resembling the Tithonium Chasma. When water was allowed to drain from the beginning, closed depressions formed that have an amazing resemblance to Hebes chasma. We postulate that the entire system of chasmae here discussed formed atop a major dyke swarm some 4000 km length, not dissimilar to the 3500 km long Mesoproterozoic (Ectasian) dyke swarm disrupting the Canadian Shield.
NASA Astrophysics Data System (ADS)
Morita, S.; Nakajima, T.; Goto, S.; Yamada, Y.; Kawamura, K.
2012-12-01
A great number of slump (submarine landslide) units have been identified by reflection seismic surveys performed off Shimokita Peninsula, NE Japan (Morita, et al., 2011). A 3-D seismic data revealed typical deformations caused by slumping and related dewatering in the Pliocene and upper formations. The slumping was generated primarily by layer-parallel slip in a very gentle (<1 degree) and flat continental slope. The size of slump units extends over 30 km in both width and slip direction in maximum. The slump units often exhibit an imbrication structure formed by repeated thrusting in the bottom layers, being mostly composed of the thrust blocks and little matrix. The dewatering structure is observed as widespread parallel dikes of which distribution is strongly dependent on the imbrication of the slump units. Slip planes of the slumps are traceable in seismic data because of the layer-parallel slip. The layers which correspond to the slip planes proved to be generally characterized as low-amplitude layers having some thickness, and some of the slip planes exhibit flattened features under the slump units of the imbrication structure accompanied by parallel dikes. This implies that excess fluid in the slip plane caused the lubrication to enhance the slumping and was drained through the parallel dikes during slumping. Some typical structures related to natural gas, e.g. enhanced reflection, gas chimney, have been identified in the seismic data. The shakedown cruise of D/V Chikyu in 2006 reported a recovery of gas hydrate in nearby area (Higuchi et al., 2009). A shallow sulfate-methane interface (SMI) of 3.5-12 mbsf has been reported in the survey area (Kotani et al., 2007). These features indicate that a high methane flux in the area is likely an important ground instability factor to cause the slumping and the dewatering phenomena. We recognize that the set of the slump units in the survey area is one of the most suitable targets to approach mechanism of submarine landslides so that we started exploring the feasibility of a scientific drilling in this survey area.
Dynamic topography in subduction zones: insights from laboratory models
NASA Astrophysics Data System (ADS)
Bajolet, Flora; Faccenna, Claudio; Funiciello, Francesca
2014-05-01
The topography in subduction zones can exhibit very complex patterns due to the variety of forces operating this setting. If we can deduce the theoretical isostatic value from density structure of the lithosphere, the effect of flexural bending and the dynamic component of topography are difficult to quantify. In this work, we attempt to measure and analyze the topography of the overriding plate during subduction compared to a pure shortening setting. We use analog models where the lithospheres are modeled by thin-sheet layers of silicone putty lying on low-viscosity syrup (asthenosphere). The model is shorten by a piston pushing an oceanic plate while a continental plate including a weak zone to localize the deformation is fixed. In one type of experiments, the oceanic plate bends and subducts underneath the continental one; in a second type the two plates are in contact without any trench, and thus simply shorten. The topography evolution is monitored with a laser-scanner. In the shortening model, the elevation increases progressively, especially in the weak zone, and is consistent with expected isostatic values. In the subduction model, the topography is characterized, from the piston to the back-wall, by a low elevation of the dense oceanic plate, a flexural bulge, the trench forming a deep depression, the highly elevated weak zone, and the continental upper plate of intermediate elevation. The topography of the upper plate is consistent with isostatic values for very early stages, but exhibits lower elevations than expected for later stages. For a same amount of shortening of the continental plate, the thickening is the same and the plate should have the same elevation in both types of models. However, comparing the topography at 20, 29 and 39% of shortening, we found that the weak zone is 0.4 to 0.6 mm lower when there is an active subduction. Theses values correspond to 2.6 to 4 km in nature. Although theses values are high, there are of the same order as dynamic topography and could represent the dynamic effect of the slab sinking into the asthenosphere and lowering the elevation of the upper plate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Easy, L., E-mail: le590@york.ac.uk; CCFE, Culham Science Centre, Abingdon OX14 3DB; Militello, F.
2016-01-15
The propagation of filaments in the Scrape Off Layer (SOL) of tokamaks largely determines the plasma profiles in the region. In a conduction limited SOL, parallel temperature gradients are expected, such that the resistance to parallel currents is greater at the target than further upstream. Since the perpendicular motion of an isolated filament is largely determined by balance of currents that flow through it, this may be expected to affect filament transport. 3D simulations have thus been used to study the influence of enhanced parallel resistivity on the dynamics of filaments. Filaments with the smallest perpendicular length scales, which weremore » inertially limited at low resistivity (meaning that polarization rather than parallel currents determines their radial velocities), were unaffected by resistivity. For larger filaments, faster velocities were produced at higher resistivities due to two mechanisms. First parallel currents were reduced and polarization currents were enhanced, meaning that the inertial regime extended to larger filaments, and second, a potential difference formed along the parallel direction so that higher potentials were produced in the region of the filament for the same amount of current to flow into the sheath. These results indicate that broader SOL profiles could be produced at higher resistivities.« less
Crustal flow at the margin of high plateaux: A lithospheric-scale experimental approach
NASA Astrophysics Data System (ADS)
Bajolet, Flora; Chardon, Dominique; Gapais, Denis; Martinod, Joseph; Kermarrec, Jean-Jacques
2010-05-01
A serie of analogue models was performed in order to explore the mechanisms of exhumation of high grade rocks at the margin of high plateaux. Experiments are scaled for gravity and simulate convergence between a hot, weak and thin lithosphere lacking a resistant mantle layer (high plateau, HP) and a cold and thick cratonic lithosphere (CL). The HP consists in a three-layer crust made of a low-viscosity silicone simulating partially molten lower crust (PMLC), overlaid by a medium-viscosity silicone simulating the middle crust, and a thin sand layer modelling the brittle upper crust. The CL is made of three layers, from bottom to top: a high-viscosity silicone (resistant mantle layer), a medium-viscosity silicone (lower crust) and a sand layer (upper crust). The model lithospheres float on a low-viscosity and dense solution of sodium polytungstate, simulating the asthenosphere. A set of laterally constrained experiments was run by changing the velocity of convergence, and the strength / thickness of the layers, to explore various degrees of coupling amongst lithospheric layers and between the two lithospheres. Several sets of experiments with comparable parameters were performed and stopped at different amounts of shortening, then frozen and cut for observation on serial cross-sections. For all experiments, the same kinematic scenario occurs. First, shortening affects preferentially the HP. Shortening proceeds by homogeneous thickening of the entire ductile crust and the formation of pop-downs of upper brittle crust after preferential development of HP-verging thrust faults. The crust rapidly acquired a double thickness under the HP, whereas the inner parts of the CL became moderately thickened as a continental subduction of CL mantle initiates under the HP. The part of the PMLC in contact with the CL starts to form a CL-verging antiform evolving into a wedge-shaped channel being injected into the lower crust of the CL. The channel is exhumed by slip along the reverse shear zone acting as the ramp accommodating subduction of the CL mantle below the HP. Injection of PMLC induces far field horizontal displacements of lower crust of the CL towards the foreland. The main foreland-verging thrusts affecting the CL form at that time. After a certain amount of injection and amplification, the roof of the antiform is horizontally sheared backward (i.e., toward the HP) along a flat shear zone whose upper wall coincides with the brittle-ductile transition. This shear zone emerges as the latest back thrust developed in the model, which bounds the outermost pop-down formed in the HP. These results suggest the amplification of a domal antiform resulting in injection of a non-cylindrical channel of PMLC from under HP into the crust of the CL, producing large finite exhumation of the PMLC even in the absence of erosion at the margin of HP. Erosion would favour greater exhumation ending with the formation of a dome of PMLC at the surface, accompanied by back tilting (and consecutive reorganization) of the flat shear zone accommodating return flow of mid/upper crust toward the HP above the channel. Analogy with the Himalayan-Tibet orogen suggests the South Tibetan detachment system may result from such a late reorganization in the exhumation of the Higher Himalaya Crystalline. The experiments provide constraints on the initiation stages of crustal flow at the margin of HP and may allow refining the channel flow model.
Long-time self-diffusion of charged spherical colloidal particles in parallel planar layers.
Contreras-Aburto, Claudio; Báez, César A; Méndez-Alcaraz, José M; Castañeda-Priego, Ramón
2014-06-28
The long-time self-diffusion coefficient, D(L), of charged spherical colloidal particles in parallel planar layers is studied by means of Brownian dynamics computer simulations and mode-coupling theory. All particles (regardless which layer they are located on) interact with each other via the screened Coulomb potential and there is no particle transfer between layers. As a result of the geometrical constraint on particle positions, the simulation results show that D(L) is strongly controlled by the separation between layers. On the basis of the so-called contraction of the description formalism [C. Contreras-Aburto, J. M. Méndez-Alcaraz, and R. Castañeda-Priego, J. Chem. Phys. 132, 174111 (2010)], the effective potential between particles in a layer (the so-called observed layer) is obtained from integrating out the degrees of freedom of particles in the remaining layers. We have shown in a previous work that the effective potential performs well in describing the static structure of the observed layer (loc. cit.). In this work, we find that the D(L) values determined from the simulations of the observed layer, where the particles interact via the effective potential, do not agree with the exact values of D(L). Our findings confirm that even when an effective potential can perform well in describing the static properties, there is no guarantee that it will correctly describe the dynamic properties of colloidal systems.
NASA Astrophysics Data System (ADS)
Petrović, Suzana; Peruško, D.; Kovač, J.; Panjan, P.; Mitrić, M.; Pjević, D.; Kovačević, A.; Jelenković, B.
2017-09-01
Formation of periodic nanostructures on the Ti/5x(Al/Ti)/Si multilayers induced by picosecond laser pulses is studied in order to better understand the formation of a laser-induced periodic surface structure (LIPSS). At fluence slightly below the ablation threshold, the formation of low spatial frequency-LIPSS (LSFL) oriented perpendicular to the direction of the laser polarization is observed on the irradiated area. Prolonged irradiation while scanning results in the formation of a high spatial frequency-LIPSS (HSFL), on top of the LSFLs, creating a co-existence parallel periodic structure. HSFL was oriented parallel to the incident laser polarization. Intermixing between the Al and Ti layers with the formation of Al-Ti intermetallic compounds was achieved during the irradiation. The intermetallic region was formed mostly within the heat affected zone of the sample. Surface segregation of aluminium with partial ablation of the top layer of titanium was followed by the formation of an ultra-thin Al2O3 film on the surface of the multi-layered structure.
NASA Astrophysics Data System (ADS)
Yue, L.; Suppe, J.
2007-12-01
The Chelungpu and Changhua thrust ramps in central Taiwan show contrasting hanging-wall structural geometries that suggest different kinematics, even though they involve the same stratigraphic section and basal detachment. The Chelungpu thrust shows a classic fault-bend folding geometry, which predicts folding solely by kink-band migration, whereas the hanging wall of the Changhua thrust demonstrates the characteristic geometry of a shear fault-bend folding, which predicts a progressive limb rotation with minor kink-band migration. We test the kinematic predictions of classic and shear fault-bend folding theories by analyzing deformed flights of terraces and coseismic displacements in the Mw=7.6 Chi-Chi earthquake. The Chelungpu terraces shows differences in uplift magnitudes across active axial surfaces that closely approximate the assumptions of classical fault-bend folding, including constant fault-parallel displacement, implying conservation of bed length, and hanging-wall uplift rates that are proportional to the sine of the fault dip. This provides a basis for precise determination of total fault slip since the formation of each terrace and combined with terrace dating gives long- term fault-slip rates for the Chelungpu thrust system. An estimation of the long term fault-slip rate of the Chelungpu thrust in the north Hsinshe terrace yields 15 mm/yr over the last 55 ka, which is similar to the combined shortening rate of 16 mm/y on the Chelungpu and Chushiang thrusts in the south estimated by Simoes et al. in 2006. Evan the coseismic displacements of 3 to 9m in the Chi-Chi earthquake are approximately fault-parallel but have additional transient components that are averaged out over the timescale of terrace deformation, which represents 10-100 large earthquakes. In contrast, terrace deformation in the hanging wall of the Changhua thrust ramp shows progressive limb rotation, as predicted from its shear fault-bend folding geometry, which combined with terrace dating allows an estimation of the long term fault-slip rate of 21 mm/yr over the last 31 ka. A combined shortening rate of 37 mm/yr is obtained for this part of the western Taiwan thrust belt, which is about 45 percent of the total plate-tectonic shortening rate across Taiwan. The Changhua shear fault-bend fold ramp is in the early stages of its development with only 1.7km total displacement whereas the Chelungpu classical fault-bend folding ramp in the same stratigraphy has nearly an order of magnitude more displacement (~14 km). We suggest that shear fault-bend folding may be favored mechanically at low displacement, whereas classical fault-bend folding would be favored at large displacement.
NASA Astrophysics Data System (ADS)
Yue, L.; Suppe, J.
2004-12-01
The Chelungpu and Changhua thrust ramps in central Taiwan show contrasting hanging-wall structural geometries that suggest different kinematics, even though they involve the same stratigraphic section and basal detachment. The Chelungpu thrust shows a classic fault-bend folding geometry, which predicts folding solely by kink-band migration, whereas the hanging wall of the Changhua thrust demonstrates the characteristic geometry of a shear fault-bend folding, which predicts a progressive limb rotation with minor kink-band migration. We test the kinematic predictions of classic and shear fault-bend folding theories by analyzing deformed flights of terraces and coseismic displacements in the Mw=7.6 Chi-Chi earthquake. The Chelungpu terraces shows differences in uplift magnitudes across active axial surfaces that closely approximate the assumptions of classical fault-bend folding, including constant fault-parallel displacement, implying conservation of bed length, and hanging-wall uplift rates that are proportional to the sine of the fault dip. This provides a basis for precise determination of total fault slip since the formation of each terrace and combined with terrace dating gives long- term fault-slip rates for the Chelungpu thrust system. An estimation of the long term fault-slip rate of the Chelungpu thrust in the north Hsinshe terrace yields 15 mm/yr over the last 55 ka, which is similar to the combined shortening rate of 16 mm/y on the Chelungpu and Chushiang thrusts in the south estimated by Simoes et al. in 2006. Evan the coseismic displacements of 3 to 9m in the Chi-Chi earthquake are approximately fault-parallel but have additional transient components that are averaged out over the timescale of terrace deformation, which represents 10-100 large earthquakes. In contrast, terrace deformation in the hanging wall of the Changhua thrust ramp shows progressive limb rotation, as predicted from its shear fault-bend folding geometry, which combined with terrace dating allows an estimation of the long term fault-slip rate of 21 mm/yr over the last 31 ka. A combined shortening rate of 37 mm/yr is obtained for this part of the western Taiwan thrust belt, which is about 45 percent of the total plate-tectonic shortening rate across Taiwan. The Changhua shear fault-bend fold ramp is in the early stages of its development with only 1.7km total displacement whereas the Chelungpu classical fault-bend folding ramp in the same stratigraphy has nearly an order of magnitude more displacement (~14 km). We suggest that shear fault-bend folding may be favored mechanically at low displacement, whereas classical fault-bend folding would be favored at large displacement.
Evidences of Silurian dextral transpression in the Scandinavian Caledonides
NASA Astrophysics Data System (ADS)
Torgersen, Espen; Viola, Giulio
2017-04-01
The Scandinavian Caledonides are classically interpreted as a fold and thrust belt resulting from the collision between Laurentia and Baltica during the Silurian, which involved the up-to-400 km ESE-wards translation of nappes onto the Baltoscandian platform. It has been suggested that the Caledonian fold and thrust belt formed through several distinct orogenic episodes, from early shortening in the Late Ordovician to orogenic collapse in the Devonian. The classic Caledonian, orogen-perpendicular ESE-ward nappe transport is constrained by abundant and consistently oriented stretching lineations across the entire orogen and unambiguous kinematic indicators. However, there is also a large number of NW-SE-trending and roughly orogen-parallel lineations, particularly in the upper ophiolite- and eclogite-bearing nappes, which are more challenging to interpret with the traditional orogeny evolution model. The analysis of the areal extent, spatial distribution and geometrical relationships of the Caledonian nappes in southern and central Norway, however, offers new insights and allows for new constraints on the bulk kinematic framework of the shortening history of the belt. Here we present new, first-order geological observations that demonstrate a two-fold compressional history and associated strain partitioning during Caledonian convergence. More specifically, we propose that Late Ordovician NNW-SSE shortening caused early compression, followed by WNW-ESE Early Silurian shortening, which resulted in strain partitioning along the planar fabrics and discontinuities from the earlier event. In detail, orogen-parallel dextral wrench tectonics caused significant lateral displacement along at least three, orogen-scale NE-SW striking corridors, wherein the nappes appear to be consistently displaced in a dextral fashion. We propose that the Møre-Trøndelag Fault Complex, which accommodated significant sinistral displacements during the later Devonian orogenic collapse, localized on one of these early dextral shear corridor. This is expressed by the asymptotic dragging of the nappes along it and also the significant morphological asymmetry of the central Norwegian coast line, which is not compatible with sinistral shearing. Along a southern corridor, which extends from the Hardangerfjord to the east of Folldal, the Caledonian foliation is asymptotically bent into the ENE-WSW orientation of the shear corridor, also consistent with an overall dextral kinematics. This is also confirmed by the gradual reorientation and increased strain toward these shear corridors of Ordovician to Silurian intrusive bodies, indicating that the dextral displacement is of Silurian age. Similar dextral displacements along NE-SW faults have previously been interpreted from potential field data offshore southern Norway. Large-scale dextral transpression in the Scandinavian Caledonides readily accounts for numerous geological features that are not as easily reconciled with the more classical model of only ESE-ward translation and/or sinistral transpression.
Application of a Flip-Flop Nozzle on Plume Mixing Enhancement
NASA Technical Reports Server (NTRS)
Schreck, Stefan; Michaelian, Mark; Ho, Chih-Ming
1999-01-01
Mach wave radiation is a major source of noise in high speed jets. It is created by turbulent eddies which travel at supersonic speed within the shear layer of the jet. Downstream of the potential core, the convection speed of the eddies decays and noise production is reduced. Once the convection speeds drops below the speed of sound, eddy Mach wave radiation ceases. Mach wave radiation may be reduced by shortening the core length of the jet. This requires a faster growth of the shear layer, i.e. enhanced mixing in the jet. We investigated the possibility of mixing enhancement by the excitation of the instability waves in a supersonic rectangular jet.
NASA Astrophysics Data System (ADS)
de Andrade, Rocelito Lopes; de Oliveira, Matheus Costa; Kohlrausch, Emerson Cristofer; Santos, Marcos José Leite
2018-05-01
This work presents a new and simple method for determining IPH (current source dependent on luminance), I0 (reverse saturation current), n (ideality factor), RP and RS, (parallel and series resistance) to build an electrical model for dye sensitized solar cells (DSSCs). The electrical circuit parameters used in the simulation and to generate theoretical curves for the single diode electrical model were extracted from I-V curves of assembled DSSCs. Model validation was performed by assembling five different types of DSSCs and evaluating the following parameters: effect of a TiO2 blocking/adhesive layer, thickness of the TiO2 layer and the presence of a light scattering layer. In addition, irradiance, temperature, series and parallel resistance, ideality factor and reverse saturation current were simulated.
Multi-thread parallel algorithm for reconstructing 3D large-scale porous structures
NASA Astrophysics Data System (ADS)
Ju, Yang; Huang, Yaohui; Zheng, Jiangtao; Qian, Xu; Xie, Heping; Zhao, Xi
2017-04-01
Geomaterials inherently contain many discontinuous, multi-scale, geometrically irregular pores, forming a complex porous structure that governs their mechanical and transport properties. The development of an efficient reconstruction method for representing porous structures can significantly contribute toward providing a better understanding of the governing effects of porous structures on the properties of porous materials. In order to improve the efficiency of reconstructing large-scale porous structures, a multi-thread parallel scheme was incorporated into the simulated annealing reconstruction method. In the method, four correlation functions, which include the two-point probability function, the linear-path functions for the pore phase and the solid phase, and the fractal system function for the solid phase, were employed for better reproduction of the complex well-connected porous structures. In addition, a random sphere packing method and a self-developed pre-conditioning method were incorporated to cast the initial reconstructed model and select independent interchanging pairs for parallel multi-thread calculation, respectively. The accuracy of the proposed algorithm was evaluated by examining the similarity between the reconstructed structure and a prototype in terms of their geometrical, topological, and mechanical properties. Comparisons of the reconstruction efficiency of porous models with various scales indicated that the parallel multi-thread scheme significantly shortened the execution time for reconstruction of a large-scale well-connected porous model compared to a sequential single-thread procedure.
Three-dimensional magnetic bubble memory system
NASA Technical Reports Server (NTRS)
Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor)
1994-01-01
A compact memory uses magnetic bubble technology for providing data storage. A three-dimensional arrangement, in the form of stacks of magnetic bubble layers, is used to achieve high volumetric storage density. Output tracks are used within each layer to allow data to be accessed uniquely and unambiguously. Storage can be achieved using either current access or field access magnetic bubble technology. Optical sensing via the Faraday effect is used to detect data. Optical sensing facilitates the accessing of data from within the three-dimensional package and lends itself to parallel operation for supporting high data rates and vector and parallel processing.
Parallel inhomogeneity and the Alfven resonance. 1: Open field lines
NASA Technical Reports Server (NTRS)
Hansen, P. J.; Harrold, B. G.
1994-01-01
In light of a recent demonstration of the general nonexistence of a singularity at the Alfven resonance in cold, ideal, linearized magnetohydrodynamics, we examine the effect of a small density gradient parallel to uniform, open ambient magnetic field lines. To lowest order, energy deposition is quantitatively unaffected but occurs continuously over a thickened layer. This effect is illustrated in a numerical analysis of a plasma sheet boundary layer model with perfectly absorbing boundary conditions. Consequences of the results are discussed, both for the open field line approximation and for the ensuing closed field line analysis.
Radiative instabilities in sheared magnetic field
NASA Technical Reports Server (NTRS)
Drake, J. F.; Sparks, L.; Van Hoven, G.
1988-01-01
The structure and growth rate of the radiative instability in a sheared magnetic field B have been calculated analytically using the Braginskii fluid equations. In a shear layer, temperature and density perturbations are linked by the propagation of sound waves parallel to the local magnetic field. As a consequence, density clumping or condensation plays an important role in driving the instability. Parallel thermal conduction localizes the mode to a narrow layer where K(parallel) is small and stabilizes short wavelengths k larger-than(c) where k(c) depends on the local radiation and conduction rates. Thermal coupling to ions also limits the width of the unstable spectrum. It is shown that a broad spectrum of modes is typically unstable in tokamak edge plasmas and it is argued that this instability is sufficiently robust to drive the large-amplitude density fluctuations often measured there.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foltyn, Stephen R; Jia, Quanxi; Arendt, Paul N
A superconducting tape having reduced AC losses. The tape has a high temperature superconductor layer that is segmented. Disruptive strips, formed in one of the tape substrate, a buffer layer, and the superconducting layer create parallel discontinuities in the superconducting layer that separate the current-carrying elements of the superconducting layer into strips or filament-like structures. Segmentation of the current-carrying elements has the effect of reducing AC current losses. Methods of making such a superconducting tape and reducing AC losses in such tapes are also disclosed.
Negroni, Jorge A.; Morotti, Stefano; Lascano, Elena C.; Gomes, Aldrin V.; Grandi, Eleonora; Puglisi, José L; Bers, Donald M.
2015-01-01
A five-state model of myofilament contraction was integrated into a well-established rabbit ventricular myocyte model of ion channels, Ca2+ transporters and kinase signaling to analyze the relative contribution of different phosphorylation targets to the overall mechanical response driven by β-adrenergic stimulation (β-AS). β-AS effect on sarcoplasmic reticulum Ca2+ handling, Ca2+, K+ and Cl− currents, and Na+/K+-ATPase properties were included based on experimental data. The inotropic effect on the myofilaments was represented as reduced myofilament Ca2+ sensitivity (XBCa) and titin stiffness, and increased cross-bridge (XB) cycling rate (XBcy). Assuming independent roles of XBCa and XBcy, the model reproduced experimental β-AS responses on action potentials and Ca2+ transient amplitude and kinetics. It also replicated the behavior of force-Ca2+, release-restretch, length-step, stiffness-frequency and force-velocity relationships, and increased force and shortening in isometric and isotonic twitch contractions. The β-AS effect was then switched off from individual targets to analyze their relative impact on contractility. Preventing β-AS effects on L-type Ca2+ channels or phospholamban limited Ca2+ transients and contractile responses in parallel, while blocking phospholemman and K+ channel (IKs) effects enhanced Ca2+ and inotropy. Removal of β-AS effects from XBCa enhanced contractile force while decreasing peak Ca2+ (due to greater Ca2+ buffering), but had less effect on shortening. Conversely, preventing β-AS effects on XBcy preserved Ca2+ transient effects, but blunted inotropy (both isometric force and especially shortening). Removal of titin effects had little impact on contraction. Finally, exclusion of β-AS from XBCa and XBcy while preserving effects on other targets resulted in preserved peak isometric force response (with slower kinetics) but nearly abolished enhanced shortening. β-AS effects on XBCa vs. XBcy have greater impact on isometric vs. isotonic contraction, respectively. PMID:25724724
Tetreault, J.; Jones, C.H.; Erslev, E.; Larson, S.; Hudson, M.; Holdaway, S.
2008-01-01
Significant fold-axis-parallel slip is accommodated in the folded strata of the Grayback monocline, northeastern Front Range, Colorado, without visible large strike-slip displacement on the fold surface. In many cases, oblique-slip deformation is partitioned; fold-axis-normal slip is accommodated within folds, and fold-axis-parallel slip is resolved onto adjacent strike-slip faults. Unlike partitioning strike-parallel slip onto adjacent strike-slip faults, fold-axis-parallel slip has deformed the forelimb of the Grayback monocline. Mean compressive paleostress orientations in the forelimb are deflected 15??-37?? clockwise from the regional paleostress orientation of the northeastern Front Range. Paleomagnetic directions from the Permian Ingleside Formation in the forelimb are rotated 16??-42?? clockwise about a bedding-normal axis relative to the North American Permian reference direction. The paleostress and paleomagnetic rotations increase with the bedding dip angle and decrease along strike toward the fold tip. These measurements allow for 50-120 m of fold-axis-parallel slip within the forelimb, depending on the kinematics of strike-slip shear. This resolved horizontal slip is nearly equal in magnitude to the ???180 m vertical throw across the fold. For 200 m of oblique-slip displacement (120 m of strike slip and 180 m of reverse slip), the true shortening direction across the fold is N90??E, indistinguishable from the regionally inferred direction of N90??E and quite different from the S53??E fold-normal direction. Recognition of this deformational style means that significant amounts of strike slip can be accommodated within folds without axis-parallel surficial faulting. ?? 2008 Geological Society of America.
Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection
Yin, Ming-jie; Huang, Bobo; Gao, Shaorui; Zhang, A. Ping; Ye, Xuesong
2016-01-01
An optical fiber sensor integrated microfluidic chip is presented for ultrasensitive detection of glucose. A long-period grating (LPG) inscribed in a small-diameter single-mode fiber (SDSMF) is employed as an optical refractive-index (RI) sensor. With the layer-by-layer (LbL) self-assembly technique, poly (ethylenimine) (PEI) and poly (acrylic acid) (PAA) multilayer film is deposited on the SDSMF-LPG sensor for both supporting and signal enhancement, and then a glucose oxidase (GOD) layer is immobilized on the outer layer for glucose sensing. A microfluidic chip for glucose detection is fabricated after embedding the SDSMF-LPG biosensor into the microchannel of the chip. Experimental results reveal that the SDSMF-LPG biosensor based on such a hybrid sensing film can ultrasensitively detect glucose concentration as low as 1 nM. After integration into the microfluidic chip, the detection range of the sensor is extended from 2 µM to 10 µM, and the response time is remarkablely shortened from 6 minutes to 70 seconds. PMID:27231643
Turbulent boundary layers with secondary flow
NASA Technical Reports Server (NTRS)
Grushwitz, E.
1984-01-01
An experimental analysis of the boundary layer on a plane wall, along which the flow occurs, whose potential flow lines are curved in plane parallel to the wall is discussed. According to the equation frequently applied to boundary layers in a plane flow, which is usually obtained by using the pulse law, a generalization is derived which is valid for boundary layers with spatial flow. The wall shear stresses were calculated with this equation.
NASA Astrophysics Data System (ADS)
Wendel, D. E.; Olson, D. K.; Hesse, M.; Karimabadi, H.; Daughton, W. S.
2013-12-01
We investigate the distribution of parallel electric fields and their relationship to the location and rate of magnetic reconnection of a large particle-in-cell simulation of 3D turbulent magnetic reconnection with open boundary conditions. The simulation's guide field geometry inhibits the formation of topological features such as separators and null points. Therefore, we derive the location of potential changes in magnetic connectivity by finding the field lines that experience a large relative change between their endpoints, i.e., the quasi-separatrix layer. We find a correspondence between the locus of changes in magnetic connectivity, or the quasi-separatrix layer, and the map of large gradients in the integrated parallel electric field (or quasi-potential). Furthermore, we compare the distribution of parallel electric fields along field lines with the reconnection rate. We find the reconnection rate is controlled by only the low-amplitude, zeroth and first-order trends in the parallel electric field, while the contribution from high amplitude parallel fluctuations, such as electron holes, is negligible. The results impact the determination of reconnection sites within models of 3D turbulent reconnection as well as the inference of reconnection rates from in situ spacecraft measurements. It is difficult through direct observation to isolate the locus of the reconnection parallel electric field amidst the large amplitude fluctuations. However, we demonstrate that a positive slope of the partial sum of the parallel electric field along the field line as a function of field line length indicates where reconnection is occurring along the field line.
Dong, L-R; Zhu, Y-M; Xu, Q; Cao, C-X; Zhang, B-Z
2012-01-01
This study investigated whether extraperitoneal colostomy without damaging the muscle layer of the abdominal wall is an improved surgical procedure compared with conventional sigmoid colostomy in patients undergoing abdominoperineal resection. Patients with rectal cancer undergoing abdominoperineal resection were selected and randomly divided into two groups: the study group received extraperitoneal colostomy without damaging the muscle layer of the abdominal wall and the control group received conventional colostomy. Clinical data from both groups were analysed. A total of 128 patients were included: 66 received extraperitoneal colostomy without damaging the muscle layer of the abdominal wall and 62 received conventional colostomy. Significant differences between the two groups were found in relation to colostomy operating time, defaecation sensation, bowel control and overall stoma-related complications. Duration of postoperative hospital stay was also significantly different between the study groups. Extraperitoneal colostomy without damaging the muscle layer of the abdominal wall was found to be an improved procedure compared with conventional sigmoid colostomy in abdominoperineal resection, and may reduce colostomy-related complications, shorten operating time and postoperative hospital stay, and potentially improve patients' quality of life.
Entropy generation in a parallel-plate active magnetic regenerator with insulator layers
NASA Astrophysics Data System (ADS)
Mugica Guerrero, Ibai; Poncet, Sébastien; Bouchard, Jonathan
2017-02-01
This paper proposes a feasible solution to diminish conduction losses in active magnetic regenerators. Higher performances of these machines are linked to a lower thermal conductivity of the Magneto-Caloric Material (MCM) in the streamwise direction. The concept presented here involves the insertion of insulator layers along the length of a parallel-plate magnetic regenerator in order to reduce the heat conduction within the MCM. This idea is investigated by means of a 1D numerical model. This model solves not only the energy equations for the fluid and solid domains but also the magnetic circuit that conforms the experimental setup of reference. In conclusion, the addition of insulator layers within the MCM increases the temperature span, cooling load, and coefficient of performance by a combination of lower heat conduction losses and an increment of the global Magneto-Caloric Effect. The generated entropy by solid conduction, fluid convection, and conduction and viscous losses are calculated to help understand the implications of introducing insulator layers in magnetic regenerators. Finally, the optimal number of insulator layers is studied.
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2015-12-01
Parallel E-fields play a crucial role for the acceleration of charged particles, creating discrete aurorae. However, once the parallel electric fields are produced, they will disappear right away, unless the electric fields can be continuously generated and sustained for a fairly long time. Thus, the crucial question in auroral physics is how to generate such a powerful and self-sustained parallel electric fields which can effectively accelerate charge particles to high energy during a fairly long time. We propose that nonlinear interaction of incident and reflected Alfven wave packets in inhomogeneous auroral acceleration region can produce quasi-stationary non-propagating electromagnetic plasma structures, such as Alfvenic double layers (DLs) and Charge Holes. Such Alfvenic quasi-static structures often constitute powerful high energy particle accelerators. The Alfvenic DL consists of localized self-sustained powerful electrostatic electric fields nested in a low density cavity and surrounded by enhanced magnetic and mechanical stresses. The enhanced magnetic and velocity fields carrying the free energy serve as a local dynamo, which continuously create the electrostatic parallel electric field for a fairly long time. The generated parallel electric fields will deepen the seed low density cavity, which then further quickly boosts the stronger parallel electric fields creating both Alfvenic and quasi-static discrete aurorae. The parallel electrostatic electric field can also cause ion outflow, perpendicular ion acceleration and heating, and may excite Auroral Kilometric Radiation.
A 32-channel lattice transmission line array for parallel transmit and receive MRI at 7 tesla.
Adriany, Gregor; Auerbach, Edward J; Snyder, Carl J; Gözübüyük, Ark; Moeller, Steen; Ritter, Johannes; Van de Moortele, Pierre-François; Vaughan, Tommy; Uğurbil, Kâmil
2010-06-01
Transmit and receive RF coil arrays have proven to be particularly beneficial for ultra-high-field MR. Transmit coil arrays enable such techniques as B(1) (+) shimming to substantially improve transmit B(1) homogeneity compared to conventional volume coil designs, and receive coil arrays offer enhanced parallel imaging performance and SNR. Concentric coil arrangements hold promise for developing transceiver arrays incorporating large numbers of coil elements. At magnetic field strengths of 7 tesla and higher where the Larmor frequencies of interest can exceed 300 MHz, the coil array design must also overcome the problem of the coil conductor length approaching the RF wavelength. In this study, a novel concentric arrangement of resonance elements built from capacitively-shortened half-wavelength transmission lines is presented. This approach was utilized to construct an array with whole-brain coverage using 16 transceiver elements and 16 receive-only elements, resulting in a coil with a total of 16 transmit and 32 receive channels. (c) 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Tao, Zhiqiang; Wang, Xin; Wei, Yuan; Lv, Li; Wu, Deyin; Yang, Mingli
2017-02-01
Molecular structure, vibrational and electronic absorption spectra, chemical reactivity of energetic compound FOX-7, one of the most widely used explosives, were studied computationally in presence of an electrostatic field of 0.01-0.05 a.u. The Csbnd N bond, which usually triggers the decomposition of FOX-7, is shortened/elongated under a parallel/antiparallel field. The Csbnd N bond activation energy varies with the external electric field, decreasing remarkably with the field strength in regardless of the field direction. This is attributed to two aspects: the bond weakening by the field parallel to the Csbnd N bond and the stabilization effect on the transition-state structure by the field antiparallel to the bond. The variations in the structure and property of FOX-7 under the electric fields were further analyzed with its distributional polarizability, which is dependent on the charge transfer characteristics through the Csbnd N bond.
NASA Astrophysics Data System (ADS)
Ajiatmo, Dwi; Robandi, Imam
2017-03-01
This paper proposes a control scheme photovoltaic, battery and super capacitor connected in parallel for use in a solar vehicle. Based on the features of battery charging, the control scheme consists of three modes, namely, mode dynamic irradian, constant load mode and constant voltage charging mode. The shift of the three modes can be realized by controlling the duty cycle of the mosffet Boost converter system. Meanwhile, the high voltage which is more suitable for the application can be obtained. Compared with normal charging method with parallel connected current limiting detention and charging method with dynamic irradian mode, constant load mode and constant voltage charging mode, the control scheme is proposed to shorten the charging time and increase the use of power generated from the PV array. From the simulation results and analysis conducted to determine the performance of the system in state transient and steady-state by using simulation software Matlab / Simulink. Response simulation results demonstrate the suitability of the proposed concept.
Mechanical development of folded chert beds in Monterey Formation, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, D.; Snyder, W.S.
1988-03-01
Small-scale folds in the upper siliceous facies of the Miocene Monterey Formation, at Lions Head, California (Santa Maria basin) are of tectonic origin. Folding is well developed in the chert-dominated zones and dies out rapidly in the adjacent siliceous mudstones. A tectonic origin is evidenced by the dominantly brittle deformation of the competent chert layers. Mechanically, the folds formed through a complex interrelationship between fracture and flexural slip. Opal-CT and quartz-chert layers display brittle fractures and rotated fracture blocks that responded to shortening. Thrusting of the chert layers is common in folds where fold propagation was impeded. Dilation breccia andmore » void space occur in the hinges and reflect room problems during development of these disharmonic folds. Subsequent diagenesis has partially healed the fractures and slip surfaces, creating the erroneous appearance that ductile deformation was an important factor in the formation of the folds.« less
An empirical model for polarized and cross-polarized scattering from a vegetation layer
NASA Technical Reports Server (NTRS)
Liu, H. L.; Fung, A. K.
1988-01-01
An empirical model for scattering from a vegetation layer above an irregular ground surface is developed in terms of the first-order solution for like-polarized scattering and the second-order solution for cross-polarized scattering. The effects of multiple scattering within the layer and at the surface-volume boundary are compensated by using a correction factor based on the matrix doubling method. The major feature of this model is that all parameters in the model are physical parameters of the vegetation medium. There are no regression parameters. Comparisons of this empirical model with theoretical matrix-doubling method and radar measurements indicate good agreements in polarization, angular trends, and k sub a up to 4, where k is the wave number and a is the disk radius. The computational time is shortened by a factor of 8, relative to the theoretical model calculation.
Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit
NASA Technical Reports Server (NTRS)
Smith, Robert A.
1987-01-01
The evolution and long-time stability of a double layer (DL) in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double layer potential structure. A simple model is presented in which this current redistribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double layer potential. The flank charging may be represented as that of a nonlinear transmission line. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a one-dimensional simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.
Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit
NASA Technical Reports Server (NTRS)
Smith, Robert A.
1987-01-01
The evolution and long-time stability of a double layer in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double-layer potential structure. A simple model is presented in which this current re-distribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double-layer potential. The flank charging may be represented as that of a nonlinear transmission. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a 1-d simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.
Convection and reaction in a diffusive boundary layer in a porous medium: nonlinear dynamics.
Andres, Jeanne Therese H; Cardoso, Silvana S S
2012-09-01
We study numerically the nonlinear interactions between chemical reaction and convective fingering in a diffusive boundary layer in a porous medium. The reaction enhances stability by consuming a solute that is unstably distributed in a gravitational field. We show that chemical reaction profoundly changes the dynamics of the system, by introducing a steady state, shortening the evolution time, and altering the spatial patterns of velocity and concentration of solute. In the presence of weak reaction, finger growth and merger occur effectively, driving strong convective currents in a thick layer of solute. However, as the reaction becomes stronger, finger growth is inhibited, tip-splitting is enhanced and the layer of solute becomes much thinner. Convection enhances the mass flux of solute consumed by reaction in the boundary layer but has a diminishing effect as reaction strength increases. This nonlinear behavior has striking differences to the density fingering of traveling reaction fronts, for which stronger chemical kinetics result in more effective finger merger owing to an increase in the speed of the front. In a boundary layer, a strong stabilizing effect of reaction can maintain a long-term state of convection in isolated fingers of wavelength comparable to that at onset of instability.
Formation mechanism of the graphite-rich protective layer in blast furnace hearths
NASA Astrophysics Data System (ADS)
Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Feng; Liang, Li-sheng
2016-01-01
A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase from hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face temperature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.
Predicting the stability of a compressible periodic parallel jet flow
NASA Technical Reports Server (NTRS)
Miles, Jeffrey H.
1996-01-01
It is known that mixing enhancement in compressible free shear layer flows with high convective Mach numbers is difficult. One design strategy to get around this is to use multiple nozzles. Extrapolating this design concept in a one dimensional manner, one arrives at an array of parallel rectangular nozzles where the smaller dimension is omega and the longer dimension, b, is taken to be infinite. In this paper, the feasibility of predicting the stability of this type of compressible periodic parallel jet flow is discussed. The problem is treated using Floquet-Bloch theory. Numerical solutions to this eigenvalue problem are presented. For the case presented, the interjet spacing, s, was selected so that s/omega =2.23. Typical plots of the eigenvalue and stability curves are presented. Results obtained for a range of convective Mach numbers from 3 to 5 show growth rates omega(sub i)=kc(sub i)/2 range from 0.25 to 0.29. These results indicate that coherent two-dimensional structures can occur without difficulty in multiple parallel periodic jet nozzles and that shear layer mixing should occur with this type of nozzle design.
The emergence of asymmetric normal fault systems under symmetric boundary conditions
NASA Astrophysics Data System (ADS)
Schöpfer, Martin P. J.; Childs, Conrad; Manzocchi, Tom; Walsh, John J.; Nicol, Andrew; Grasemann, Bernhard
2017-11-01
Many normal fault systems and, on a smaller scale, fracture boudinage often exhibit asymmetry with one fault dip direction dominating. It is a common belief that the formation of domino and shear band boudinage with a monoclinic symmetry requires a component of layer parallel shearing. Moreover, domains of parallel faults are frequently used to infer the presence of a décollement. Using Distinct Element Method (DEM) modelling we show, that asymmetric fault systems can emerge under symmetric boundary conditions. A statistical analysis of DEM models suggests that the fault dip directions and system polarities can be explained using a random process if the strength contrast between the brittle layer and the surrounding material is high. The models indicate that domino and shear band boudinage are unreliable shear-sense indicators. Moreover, the presence of a décollement should not be inferred on the basis of a domain of parallel faults alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, N.
1990-06-15
Artificially layered niobium-titanium (Nb-Ti) films with various thickness ratios (3/1--1/3) and periodicities (2--100 A) are made in an argon or in a mixed argon/nitrogen atmosphere by a dc magnetron sputtering method. Films with small periodicities (less than 30 A) have an artificial superlattice structure (ASL) with crystallographic coherence between constituent layers, where Nb and Ti grow epitaxially on the closest planes. The crystallographic structures of films are bcc with the (110) plane parallel to the film for films with the same or a thicker Nb layer than a Ti layer, and hcp with the (001) plane parallel to the filmmore » for films with a thinner Nb layer than a Ti layer. Films with large periodicities have an artificial superstructure (ASS) with only periodic stacking of constituent layers. Films deposited in the Ar/N atmosphere also have the artificially layered structures of ASL or ASS. The artificially layered structure is thermally stable at temperatures up to 500 {degree}C. The superconducting properties of the films depend strongly on the periodicity and thickness ratio of Nb and Ti layers. The dependence of the transition temperature on the periodicity and thickness ratio is qualitatively explained by a proximity effect with a three-region model. Films with periodicities less than 20 A, composed of the same or a thicker Nb layer than a Ti layer, show high transition temperatures (above 9.3 K). The highest {ital T}{sub {ital c}} of about 13.6 K is obtained in the film composed of monatomic layers of constituents deposited in an Ar atmosphere including 30 vol % N.« less
Methods and results of boundary layer measurements on a glider
NASA Technical Reports Server (NTRS)
Nes, W. V.
1978-01-01
Boundary layer measurements were carried out on a glider under natural conditions. Two effects are investigated: the effect of inconstancy of the development of static pressure within the boundary layer and the effect of the negative pressure difference in a sublaminar boundary layer. The results obtained by means of an ion probe in parallel connection confirm those results obtained by means of a pressure probe. Additional effects which have occurred during these measurements are briefly dealt with.
Spin-valve Josephson junctions for cryogenic memory
NASA Astrophysics Data System (ADS)
Niedzielski, Bethany M.; Bertus, T. J.; Glick, Joseph A.; Loloee, R.; Pratt, W. P.; Birge, Norman O.
2018-01-01
Josephson junctions containing two ferromagnetic layers are being considered for use in cryogenic memory. Our group recently demonstrated that the ground-state phase difference across such a junction with carefully chosen layer thicknesses could be controllably toggled between zero and π by switching the relative magnetization directions of the two layers between the antiparallel and parallel configurations. However, several technological issues must be addressed before those junctions can be used in a large-scale memory. Many of these issues can be more easily studied in single junctions, rather than in the superconducting quantum interference device (SQUID) used for phase-sensitive measurements. In this work, we report a comprehensive study of spin-valve junctions containing a Ni layer with a fixed thickness of 2.0 nm and a NiFe layer of thickness varying between 1.1 and 1.8 nm in steps of 0.1 nm. We extract the field shift of the Fraunhofer patterns and the critical currents of the junctions in the parallel and antiparallel magnetic states, as well as the switching fields of both magnetic layers. We also report a partial study of similar junctions containing a slightly thinner Ni layer of 1.6 nm and the same range of NiFe thicknesses. These results represent the first step toward mapping out a "phase diagram" for phase-controllable spin-valve Josephson junctions as a function of the two magnetic layer thicknesses.
Transpressive systems - 4D analogue modelling with X-ray computed tomography
NASA Astrophysics Data System (ADS)
Klinkmueller, M.; Schreurs, G.
2009-04-01
A series of 4D transpressional analogue models was analyzed with X-ray computed tomography (CT). A new modular sandbox with two base-plates was used to simulate strike-slip transpressional deformation and oblique basin inversion. The model itself is constructed on top of an assemblage made up of plexiglas- and foam-bars that enable strain distribution. Models consisted of a basal polydimethylsiloxane (PDMS) layer overlain by a quartz sand pack (Schreurs 1994; Schreurs & Colletta, 1998). The PDMS layer distributes the strike-slip shear component of deformation evenly over the entire model. The initial length of the model was 80 cm. The initial width of the model was 25 cm and was extended to maximal 27 cm to form graben structures. During extension a syn-sedimentary sequence of granular materials was added before transpression was started. Different ratios of shear strain rate and shortening strain rate were applied to investigate the influence on fault generation in both set-ups. To avoid side effects, our fault analysis focused on the central part of the model with a safety distance to the strike-slip orthogonal sidewalls of 20 cm. At low-angle transpression, strike-slip faults form predominantly during initial stages of deformation. They merge in part with pre-existing graben structures and form an anastomosing major fault zone that strikes subparallel to the long dimension of the model. At high-angle transpression, thrusts striking parallel to the long dimension of the model dominate. Thrust localisation is strongly controlled by the position of the pre-existing graben. REFERENCES Schreurs, G. (1994). Experiments on strike-slip faulting and block rotation. Geology, 22, 567-570. Schreurs, G. & Colletta, B. (1998). Analogue modelling of faulting in zones of continental transpression and transtension. In: Holdsworth, R.E., Strachan, R.A. & Dewey, J.F. (eds.). Continental Transpressional and Transtensional Tectonics. Geological Society, London, Special Publications, 135, 59-79.
NASA Astrophysics Data System (ADS)
Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Lecouty, Alexandre; Billi, Andrea; Aharonov, Einat; Parlangeau, Camille
2016-04-01
This contribution presents for the first time how quantitative stress estimates can be derived by combining calcite twinning and stylolite roughness stress fingerprinting techniques in a structure part of a complex fold and thrust belts. We report a high-resolution deformation and stress history that was experienced by Meso-Cenozoic limestone strata in the overturned Monte Nero Anticline during its late Miocene-Pliocene growth in the Umbria-Marche Arcuate Ridge (northern Apennines, Italy). New methodological development enables an easier use for the inversion technique of sedimentary and tectonic stylolite roughness. A stylolite-fracture network developed during layer-parallel shortening (LPS), as well as syn- and post-folding. Stress fingerprinting shows how stress builds up in the sedimentary strata during LPS with variations of differential stress before folding around a value of 50 MPa. The stress regime oscillated between strike-slip and compressional during LPS and became transiently extensional in limbs of developing fold due to a coeval increase of vertical stress related to local burial and decrease of maximum horizontal stress related to hinge development, before ultimately becoming strike-slip again during late stage fold tightening. Our case study shows that stress fingerprinting is possible and that this novel method can be used to unravel complex temporal relationships that relate to local variations within evolving regional orogenic stresses. Beyond regional implication, this study validates our approach as a new exciting toolbox to high-resolution stress fingerprinting in basins and orogens.
NASA Astrophysics Data System (ADS)
Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Lecouty, Alexandre; Billi, Andrea; Aharonov, Einat; Parlangeau, Camille
2016-07-01
In this study we show for the first time how quantitative stress estimates can be derived by combining calcite twinning and stylolite roughness stress fingerprinting techniques in a fold-and-thrust belt. First, we present a new method that gives access to stress inversion using tectonic stylolites without access to the stylolite surface and compare results with calcite twin inversion. Second, we use our new approach to present a high-resolution deformation and stress history that affected Meso-Cenozoic limestone strata in the Monte Nero Anticline during its late Miocene-Pliocene growth in the Umbria-Marche Arcuate Ridge (northern Apennines, Italy). In this area an extensive stylolite-joint/vein network developed during layer-parallel shortening (LPS), as well as during and after folding. Stress fingerprinting illustrates how stress in the sedimentary strata did build up prior to folding during LPS. The stress regime oscillated between strike slip and compressional during LPS before ultimately becoming strike slip again during late stage fold tightening. Our case study shows that high-resolution stress fingerprinting is possible and that this novel method can be used to unravel temporal relationships that relate to local variations of regional orogenic stresses. Beyond regional implications, this study validates our approach as a new powerful toolbox to high-resolution stress fingerprinting in basins and orogens combining joint and vein analysis with sedimentary and tectonic stylolite and calcite twin inversion techniques.
NASA Astrophysics Data System (ADS)
Gutiérrez-Alonso, Gabriel
1996-10-01
The Somiedo Nappe is a major thrust unit in the Cantabrian Zone, the external foreland fold and thrust belt of the North Iberian Variscan orogen. Exposed at the Narcea Tectonic Window are Precambrian rocks below the basal decollement of the Somiedo Nappe, which exhibit a different deformation style than the overlying Paleozoic rocks above the basal decollement. During Variscan deformation, folding and widespread subhorizontal, bedding-parallel decollements were produced in the hanging wall within the Paleozoic rocks. Vertical folding, with related axial-planar cleavage at a high angle to the decollement planes, developed simultaneously in the upper Proterozoic Narcea Slates of the footwall, below the detachment. The relative magnitude of finite strain, measured in the footwall rocks, diminishes towards the foreland. These observations indicate that (1) significant deformation may occur in the footwall of foreland fold and thrust belts, (2) the shortening mechanism in the footwall may be different from that of the hanging wall, and (3) in this particular case, the partitioning of the deformation implies the existence of a deeper, blind decollement surface contemporaneous with the first stages of the foreland development, that does not crop out in the region. This implies a significant shortening in the footwall, which must be taken into account when restoration and balancing of cross-sections is attempted. A sequential diagram of the evolution of the Narcea Tectonic Window with a minimum shortening of 85 km is proposed, explaining the complete Variscan evolution of the foreland to hinterland transition in the North Iberian Variscan orogen.
Segmented amplifier configurations for laser amplifier
Hagen, Wilhelm F.
1979-01-01
An amplifier system for high power lasers, the system comprising a compact array of segments which (1) preserves high, large signal gain with improved pumping efficiency and (2) allows the total amplifier length to be shortened by as much as one order of magnitude. The system uses a three dimensional array of segments, with the plane of each segment being oriented at substantially the amplifier medium Brewster angle relative to the incident laser beam and with one or more linear arrays of flashlamps positioned between adjacent rows of amplifier segments, with the plane of the linear array of flashlamps being substantially parallel to the beam propagation direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agosta, C. C.; Jin, J.; Coniglio, W. A.
We present upper critical field data for {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2} with the magnetic field close to parallel and parallel to the conducting layers. We show that we can eliminate the effect of vortex dynamics in these layered materials if the layers are oriented within 0.3-inch of parallel to the applied magnetic field. Eliminating vortex effects leaves one remaining feature in the data that corresponds to the Pauli paramagnetic limit (H{sub p}). We propose a semiempirical method to calculate the H{sub p} in quasi-2D superconductors. This method takes into account the energy gap of each of the quasi-2D superconductors, which ismore » calculated from specific-heat data, and the influence of many-body effects. The calculated Pauli paramagnetic limits are then compared to critical field data for the title compound and other organic conductors. Many of the examined quasi-2D superconductors, including the above organic superconductors and CeCoIn{sub 5}, exhibit upper critical fields that exceed their calculated H{sub p} suggesting unconventional superconductivity. We show that the high-field low-temperature state in {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2} is consistent with the Fulde-Ferrell-Larkin-Ovchinnikov state.« less
Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts
NASA Astrophysics Data System (ADS)
Skotheim, J. M.; Mahadevan, L.
2005-09-01
We study the lubrication of fluid-immersed soft interfaces and show that elastic deformation couples tangential and normal forces and thus generates lift. We consider materials that deform easily, due to either geometry (e.g., a shell) or constitutive properties (e.g., a gel or a rubber), so that the effects of pressure and temperature on the fluid properties may be neglected. Four different system geometries are considered: a rigid cylinder moving parallel to a soft layer coating a rigid substrate; a soft cylinder moving parallel to a rigid substrate; a cylindrical shell moving parallel to a rigid substrate; and finally a cylindrical conforming journal bearing coated with a thin soft layer. In addition, for the particular case of a soft layer coating a rigid substrate, we consider both elastic and poroelastic material responses. For all these cases, we find the same generic behavior: there is an optimal combination of geometric and material parameters that maximizes the dimensionless normal force as a function of the softness parameter η =hydrodynamicpressure/elasticstiffness=surfacedeflection/gapthickness, which characterizes the fluid-induced deformation of the interface. The corresponding cases for a spherical slider are treated using scaling concepts.
NASA Technical Reports Server (NTRS)
Borovsky, J. E.
1986-01-01
After examining the properties of Coulomb-collision resistivity, anomalous (collective) resistivity, and double layers, a hybrid anomalous-resistivity/double-layer model is introduced. In this model, beam-driven waves on both sides of a double layer provide electrostatic plasma-wave turbulence that greatly reduces the mobility of charged particles. These regions then act to hold open a density cavity within which the double layer resides. In the double layer, electrical energy is dissipated with 100 percent efficiency into high-energy particles, creating conditions optimal for the collective emission of polarized radio waves.
NASA Astrophysics Data System (ADS)
Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Tanabe, Akihito; Fukuda, Koichi; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Ota, Hiroyuki
2014-12-01
The performance of parallel electric field tunnel field-effect transistors (TFETs), in which band-to-band tunneling (BTBT) was initiated in-line to the gate electric field was evaluated. The TFET was fabricated by inserting an epitaxially-grown parallel-plate tunnel capacitor between heavily doped source wells and gate insulators. Analysis using a distributed-element circuit model indicated there should be a limit of the drain current caused by the self-voltage-drop effect in the ultrathin channel layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranjan, Alok, E-mail: alok.ranjan@us.tel.com; Wang, Mingmei; Sherpa, Sonam D.
2016-05-15
Atomic or layer by layer etching of silicon exploits temporally segregated self-limiting adsorption and material removal steps to mitigate the problems associated with continuous or quasicontinuous (pulsed) plasma processes: selectivity loss, damage, and profile control. Successful implementation of atomic layer etching requires careful choice of the plasma parameters for adsorption and desorption steps. This paper illustrates how process parameters can be arrived at through basic scaling exercises, modeling and simulation, and fundamental experimental tests of their predictions. Using chlorine and argon plasma in a radial line slot antenna plasma source as a platform, the authors illustrate how cycle time, ionmore » energy, and radical to ion ratio can be manipulated to manage the deviation from ideality when cycle times are shortened or purges are incomplete. Cell based Monte Carlo feature scale modeling is used to illustrate profile outcomes. Experimental results of atomic layer etching processes are illustrated on silicon line and space structures such that iso-dense bias and aspect ratio dependent free profiles are produced. Experimental results also illustrate the profile control margin as processes move from atomic layer to multilayer by layer etching. The consequence of not controlling contamination (e.g., oxygen) is shown to result in deposition and roughness generation.« less
Origin of Lamellar Magnetism (Invited)
NASA Astrophysics Data System (ADS)
McEnroe, S. A.; Robinson, P.; Fabian, K.; Harrison, R. J.
2010-12-01
The theory of lamellar magnetism arose through search for the origin of the strong and extremely stable remanent magnetization (MDF>100 mT) recorded in igneous and metamorphic rocks containing ilmenite with exsolution lamellae of hematite, or hematite with exsolution lamellae of ilmenite. Properties of rocks producing major remanent magnetic anomalies could not be explained by PM ilmenite or CAF hematite alone. Monte Carlo modeling of chemical and magnetic interactions in such intergrowths at high temperature indicated the presence of "contact layers" one cation layer thick at (001) interfaces of the two phases. Contact layers, with chemical composition different from layers in the adjacent phases, provide partial relief of ionic charge imbalance at interfaces, and can be common, not only in magnetic minerals. In rhombohedral Fe-Ti oxides, magnetic moments of 2 Fe2+Fe3+ contact layers (2 x 4.5µB) on both sides of a lamella, are balanced by the unbalanced magnetic moment of 1 Fe3+ hematite layer (1 x 5µB), to produce a net uncompensated ferrimagnetic "lamellar moment" of 4µB. Bulk lamellar moment is not proportional to the amount of magnetic oxide, but to the quantity of magnetically "in-phase" lamellar interfaces, with greater abundance and smaller thickness of lamellae, extending down to 1-2 nm. The proportion of "magnetically in-phase" lamellae relates to the orientation of (001) interfaces to the magnetizing field during exsolution, hence highest in samples with a strong lattice-preferred orientation of (001) parallel to the field during exsolution. The nature of contact layers, ~0.23 nm thick, with Fe2+Fe3+ charge ordering postulated by the Monte Carlo models, was confirmed by bond-valence and DFT calculations, and, their presence confirmed by Mössbauer measurements. Hysteresis experiments on hematite with nanoscale ilmenite at temperatures below 57 K, where ilmenite becomes AF, demonstrate magnetic exchange bias produced by strong coupling across phase interfaces. Interface coupling, with nominal magnetic moments perpendicular and parallel to (001), is facilitated by magnetic moments in hematite near interfaces that are a few degrees out of the (001) plane, proved by neutron diffraction experiments. When a ~b.y.-old sample, with a highly stable NRM, is ZF cooled below 57 K, it shows bimodal exchange bias, indicating the presence of two lamellar populations that are magnetically "out-of-phase", and incidentally proving the existence of lamellar magnetism. Lamellar magnetism may enhance the strength and stability of remanence in samples with magnetite or maghemite lamellae in pure hematite, or magnetite lamellae in ilmenite, where coarse magnetite or maghemite alone would be multi-domain. Here the "contact layers" should be a complex hybrid of 2/3-filled rhombohedral layers parallel to (001) and 3/4-filled cubic octahedral layers parallel to (111), with a common octahedral orientation confirmed by TEM observations. Here, because of different layer populations, the calculated lamellar moment may be higher than in the purely rhombohedral example.
Wheel-type magnetic refrigerator
Barclay, John A.
1983-01-01
The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.
Wheel-type magnetic refrigerator
Barclay, J.A.
1982-01-20
The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.
Reaction rates of graphite with ozone measured by etch decoration
NASA Technical Reports Server (NTRS)
Hennig, G. R.; Montet, G. L.
1968-01-01
Etch-decoration technique of detecting vacancies in graphite has been used to determine the reaction rates of graphite with ozone in the directions parallel and perpendicular to the layer planes. It consists essentially of peeling single atom layers off graphite crystals without affecting the remainder of the crystal.
CMUTs with high-K atomic layer deposition dielectric material insulation layer.
Xu, Toby; Tekes, Coskun; Degertekin, F
2014-12-01
Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (Six)Ny)) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2) such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD Six)Ny) and 100-nm HfO2) insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure.
Linear and nonlinear stability of the Blasius boundary layer
NASA Technical Reports Server (NTRS)
Bertolotti, F. P.; Herbert, TH.; Spalart, P. R.
1992-01-01
Two new techniques for the study of the linear and nonlinear instability in growing boundary layers are presented. The first technique employs partial differential equations of parabolic type exploiting the slow change of the mean flow, disturbance velocity profiles, wavelengths, and growth rates in the streamwise direction. The second technique solves the Navier-Stokes equation for spatially evolving disturbances using buffer zones adjacent to the inflow and outflow boundaries. Results of both techniques are in excellent agreement. The linear and nonlinear development of Tollmien-Schlichting (TS) waves in the Blasius boundary layer is investigated with both techniques and with a local procedure based on a system of ordinary differential equations. The results are compared with previous work and the effects of non-parallelism and nonlinearity are clarified. The effect of nonparallelism is confirmed to be weak and, consequently, not responsible for the discrepancies between measurements and theoretical results for parallel flow.
NASA Technical Reports Server (NTRS)
El-Hady, N. M.
1981-01-01
A computer program HADY-I for calculating the linear incompressible or compressible stability characteristics of the laminar boundary layer on swept and tapered wings is described. The eigenvalue problem and its adjoint arising from the linearized disturbance equations with the appropriate boundary conditions are solved numerically using a combination of Newton-Raphson interative scheme and a variable step size integrator based on the Runge-Kutta-Fehlburh fifth-order formulas. The integrator is used in conjunction with a modified Gram-Schmidt orthonormalization procedure. The computer program HADY-I calculates the growth rates of crossflow or streamwise Tollmien-Schlichting instabilities. It also calculates the group velocities of these disturbances. It is restricted to parallel stability calculations, where the boundary layer (meanflow) is assumed to be parallel. The meanflow solution is an input to the program.
Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors.
Chen, Ji; Sheng, Kaixuan; Luo, Peihui; Li, Chun; Shi, Gaoquan
2012-08-28
Graphene hydrogel/nickel foam composite electrodes for high-rate electrochemical capacitors are produced by reduction of an aqueous dispersion of graphene oxide in a nickel foam (upper half of figure). The micropores of the hydrogel are exposed to the electrolyte so that ions can enter and form electrochemical double-layers. The nickel framework shortens the distances of charge transfer. Therefore, the electrochemical capacitor exhibits highrate performance (see plots). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultracold Mixtures of Rubidium and Ytterbium for Open Quantum System Engineering
2014-06-01
was replaced with a standard nipple since the actual thermal conduction is comparable. Second, the collimation tube (5 mm ID x 15 cm length) was...Presumably, there is some sort of thin layer coating the Yb which must first be driven off. The helium buffer gas serves to shorten the mean free...path below the line-of-sight distance to the windows, and we can leave them at room temperature without coating them with Yb. The buffer gas causes
Ordering transitions of weakly anisotropic hard rods in narrow slitlike pores.
Aliabadi, Roohollah; Gurin, Péter; Velasco, Enrique; Varga, Szabolcs
2018-01-01
The effect of strong confinement on the positional and orientational ordering is examined in a system of hard rectangular rods with length L and diameter D (L>D) using the Parsons-Lee modification of the second virial density-functional theory. The rods are nonmesogenic (L/D<3) and confined between two parallel hard walls, where the width of the pore (H) is chosen in such a way that both planar (particle's long axis parallel to the walls) and homeotropic (particle's long axis perpendicular to the walls) orderings are possible and a maximum of two layers is allowed to form in the pore. In the extreme confinement limit of H≤2D, where only one-layer structures appear, we observe a structural transition from a planar to a homeotropic fluid layer with increasing density, which becomes sharper as L→H. In wider pores (2D
Klauke, Norbert; Smith, Godfrey L.; Cooper, Jon
2003-01-01
Microchannels (40-μm wide, 10-μm high, 10-mm long, 70-μm pitch) were patterned in the silicone elastomer, polydimethylsiloxane on a microscope coverslip base. Integrated within each microchamber were individually addressable stimulation electrodes (40-μm wide, 20-μm long, 100-nm thick) and a common central pseudo-reference electrode (60-μm wide, 500-μm long, 100-nm thick). Isolated rabbit ventricular myocytes were introduced into the chamber by micropipetting and subsequently capped with a layer of mineral oil, thus creating limited volumes of saline around individual myocytes that could be varied from 5 nL to 100 pL. Excitation contraction coupling was studied by monitoring myocyte shortening and intracellular Ca2+ transients (using Fluo-3 fluorescence) . The amplitude of stimulated myocyte shortening and Ca2+ transients remained constant for 90 min in the larger volume (5 nL) configuration, although the shortening (but not the Ca2+ transient) amplitude gradually decreased to 20% of control within 60 min in the low volume (100 pL) arrangement. These studies indicate a lower limit for the extracellular volume required to stimulate isolated adult cardiac myocytes. Whereas this arrangement could be used to create a screening assay for drugs, individual microchannels (100 pL) can also be used to study the effects of limited extracellular volume on the contractility of single cardiac myocytes. PMID:12944291
Olive Oil Based Emulsions in Frozen Puff Pastry Production
NASA Astrophysics Data System (ADS)
Gabriele, D.; Migliori, M.; Lupi, F. R.; de Cindio, B.
2008-07-01
Puff pastry is an interesting food product having different industrial applications. It is obtained by laminating layers of dough and fats, mainly shortenings or margarine, having specific properties which provides required spreading characteristic and able to retain moisture into dough. To obtain these characteristics, pastry shortenings are usually saturated fats, however the current trend in food industry is mainly oriented towards unsatured fats such as olive oil, which are thought to be safer for human health. In the present work, a new product, based on olive oil, was studied as shortening replacer in puff pastry production. To ensure the desired consistency, for the rheological matching between fat and dough, a water-in-oil emulsion was produced based on olive oil, emulsifier and a hydrophilic thickener agent able to increase material structure. Obtained materials were characterized by rheological dynamic tests in linear viscoelastic conditions, aiming to setup process and material consistency, and rheological data were analyzed by using the weak gel model. Results obtained for tested emulsions were compared to theological properties of a commercial margarine, adopted as reference value for texture and stability. Obtained emulsions are characterized by interesting rheological properties strongly dependent on emulsifier characteristics and water phase composition. However a change in process temperature during fat extrusion and dough lamination seems to be necessary to match properly typical dough rheological properties.
Quantitative comparisons of analogue models of brittle wedge dynamics
NASA Astrophysics Data System (ADS)
Schreurs, Guido
2010-05-01
Analogue model experiments are widely used to gain insights into the evolution of geological structures. In this study, we present a direct comparison of experimental results of 14 analogue modelling laboratories using prescribed set-ups. A quantitative analysis of the results will document the variability among models and will allow an appraisal of reproducibility and limits of interpretation. This has direct implications for comparisons between structures in analogue models and natural field examples. All laboratories used the same frictional analogue materials (quartz and corundum sand) and prescribed model-building techniques (sieving and levelling). Although each laboratory used its own experimental apparatus, the same type of self-adhesive foil was used to cover the base and all the walls of the experimental apparatus in order to guarantee identical boundary conditions (i.e. identical shear stresses at the base and walls). Three experimental set-ups using only brittle frictional materials were examined. In each of the three set-ups the model was shortened by a vertical wall, which moved with respect to the fixed base and the three remaining sidewalls. The minimum width of the model (dimension parallel to mobile wall) was also prescribed. In the first experimental set-up, a quartz sand wedge with a surface slope of ˜20° was pushed by a mobile wall. All models conformed to the critical taper theory, maintained a stable surface slope and did not show internal deformation. In the next two experimental set-ups, a horizontal sand pack consisting of alternating quartz sand and corundum sand layers was shortened from one side by the mobile wall. In one of the set-ups a thin rigid sheet covered part of the model base and was attached to the mobile wall (i.e. a basal velocity discontinuity distant from the mobile wall). In the other set-up a basal rigid sheet was absent and the basal velocity discontinuity was located at the mobile wall. In both types of experiments, models accommodated initial shortening by a forward- and a backward-verging thrust. Further shortening was taken up by in-sequence formation of forward-verging thrusts. In all experiments, boundary stresses created significant drag of structures along the sidewalls. We therefore compared the surface slope and the location, dip angle and spacing of thrusts in sections through the central part of the model. All models show very similar cross-sectional evolutions demonstrating reproducibility of first-order experimental observations. Nevertheless, there are significant along-strike variations of structures in map view highlighting the limits of interpretations of analogue model results. These variations may be related to the human factor, differences in model width and/or differences in laboratory temperature and especially humidity affecting the mechanical properties of the granular materials. GeoMod2008 Analogue Team: Susanne Buiter, Caroline Burberry, Jean-Paul Callot, Cristian Cavozzi, Mariano Cerca, Ernesto Cristallini, Alexander Cruden, Jian-Hong Chen, Leonardo Cruz, Jean-Marc Daniel, Victor H. Garcia, Caroline Gomes, Céline Grall, Cecilia Guzmán, Triyani Nur Hidayah, George Hilley, Chia-Yu Lu, Matthias Klinkmüller, Hemin Koyi, Jenny Macauley, Bertrand Maillot, Catherine Meriaux, Faramarz Nilfouroushan, Chang-Chih Pan, Daniel Pillot, Rodrigo Portillo, Matthias Rosenau, Wouter P. Schellart, Roy Schlische, Andy Take, Bruno Vendeville, Matteo Vettori, M. Vergnaud, Shih-Hsien Wang, Martha Withjack, Daniel Yagupsky, Yasuhiro Yamada
Pu, Juan; Komvopoulos, Kyriakos
2014-06-01
Bilayer fibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning, using a parallel-disk mandrel configuration that resulted in the sequential deposition of a layer with fibers aligned across the two parallel disks and a layer with randomly oriented fibers, both layers deposited in a single process step. Membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, bilayer membranes exhibited higher porosity than single-layer membranes consisting of randomly oriented fibers fabricated with a solid-drum collector. However, despite their higher porosity, bilayer membranes demonstrated generally higher elastic modulus, yield strength and toughness than single-layer membranes with random fibers. Bilayer membrane deformation at relatively high strain rates comprised multiple abrupt microfracture events characterized by discontinuous fiber breakage. Bilayer membrane elongation yielded excessive necking of the layer with random fibers and remarkable fiber stretching (on the order of 400%) in the layer with fibers aligned in the stress direction. In addition, fibers in both layers exhibited multiple localized necking, attributed to the nonuniform distribution of crystalline phases in the fibrillar structure. The high membrane porosity, good mechanical properties, and good biocompatibility and biodegradability of PLLA (demonstrated in previous studies) make the present bilayer membranes good scaffold candidates for a wide range of tissue engineering applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Exact coherent structures in an asymptotically reduced description of parallel shear flows
NASA Astrophysics Data System (ADS)
Beaume, Cédric; Knobloch, Edgar; Chini, Gregory P.; Julien, Keith
2015-02-01
A reduced description of shear flows motivated by the Reynolds number scaling of lower-branch exact coherent states in plane Couette flow (Wang J, Gibson J and Waleffe F 2007 Phys. Rev. Lett. 98 204501) is constructed. Exact time-independent nonlinear solutions of the reduced equations corresponding to both lower and upper branch states are found for a sinusoidal, body-forced shear flow. The lower branch solution is characterized by fluctuations that vary slowly along the critical layer while the upper branch solutions display a bimodal structure and are more strongly focused on the critical layer. The reduced equations provide a rational framework for investigations of subcritical spatiotemporal patterns in parallel shear flows.
Stability investigations of airfoil flow by global analysis
NASA Technical Reports Server (NTRS)
Morzynski, Marek; Thiele, Frank
1992-01-01
As the result of global, non-parallel flow stability analysis the single value of the disturbance growth-rate and respective frequency is obtained. This complex value characterizes the stability of the whole flow configuration and is not referred to any particular flow pattern. The global analysis assures that all the flow elements (wake, boundary and shear layer) are taken into account. The physical phenomena connected with the wake instability are properly reproduced by the global analysis. This enhances the investigations of instability of any 2-D flows, including ones in which the boundary layer instability effects are known to be of dominating importance. Assuming fully 2-D disturbance form, the global linear stability problem is formulated. The system of partial differential equations is solved for the eigenvalues and eigenvectors. The equations, written in the pure stream function formulation, are discretized via FDM using a curvilinear coordinate system. The complex eigenvalues and corresponding eigenvectors are evaluated by an iterative method. The investigations performed for various Reynolds numbers emphasize that the wake instability develops into the Karman vortex street. This phenomenon is shown to be connected with the first mode obtained from the non-parallel flow stability analysis. The higher modes are reflecting different physical phenomena as for example Tollmien-Schlichting waves, originating in the boundary layer and having the tendency to emerge as instabilities for the growing Reynolds number. The investigations are carried out for a circular cylinder, oblong ellipsis and airfoil. It is shown that the onset of the wake instability, the waves in the boundary layer, the shear layer instability are different solutions of the same eigenvalue problem, formulated using the non-parallel theory. The analysis offers large potential possibilities as the generalization of methods used till now for the stability analysis.
One-dimensional models of quasi-neutral parallel electric fields
NASA Technical Reports Server (NTRS)
Stern, D. P.
1981-01-01
Parallel electric fields can exist in the magnetic mirror geometry of auroral field lines if they conform to the quasineutral equilibrium solutions. Results on quasi-neutral equilibria and on double layer discontinuities were reviewed and the effects on such equilibria due to non-unique solutions, potential barriers and field aligned current flows using as inputs monoenergetic isotropic distribution functions were examined.
Air flow in the boundary layer near a plate
NASA Technical Reports Server (NTRS)
Dryden, Hugh L
1937-01-01
The published data on the distribution of speed near a thin flat plate with sharp leading edge placed parallel to the flow (skin friction plate) are reviewed and the results of some additional measurements are described. The purpose of the experiments was to study the basic phenomena of boundary-layer flow under simple conditions.
Resonant infrared detector with substantially unit quantum efficiency
NASA Technical Reports Server (NTRS)
Farhoomand, Jam (Inventor); Mcmurray, Robert E., Jr. (Inventor)
1994-01-01
A resonant infrared detector includes an infrared-active layer which has first and second parallel faces and which absorbs radiation of a given wavelength. The detector also includes a first tuned reflective layer, disposed opposite the first face of the infrared-active layer, which reflects a specific portion of the radiation incident thereon and allows a specific portion of the incident radiation at the given wavelength to reach the infrared-active layer. A second reflective layer, disposed opposite the second face of the infrared-active layer, reflects back into the infrared-active layer substantially all of the radiation at the given wavelength which passes through the infrared-active layer. The reflective layers have the effect of increasing the quantum efficiency of the infrared detector relative to the quantum efficiency of the infrared-active layer alone.
Generation of buckle folds in Naga fold thrust belt, north-east India
NASA Astrophysics Data System (ADS)
Saha, B.; Dietl, C.
2009-04-01
Naga fold thrust belt (NFTB), India, formed as a result of northward migration of the Indian plate initiated in Eocene and its subsequent collision with the Burmese plate during Oligocene. The NW-SE oriented compression generated a spectrum of structures; among them, we intend to focus on the folds- varying from gentle to tight asymmetric in geometry. Large recumbent folds are often associated with thrusting. Buckle folds forming under shallow crustal conditions are frequently reported from NFTB. Buckle folding occurs mainly within sandstones with intercalated shale layers which are in the study area typical for the Barail, Surma and Tipam Groups. We have tried to explain the controlling factors behind the variation of the buckle fold shapes and their varying wavelengths throughout the fold thrust belt with the aid of analogue (sand box) modelling. It is undoubted that competence contrast along with the layer parallel compressive stress are the major influencing factors in generation of buckle folds. Schmalholz and Podladchikov (1999) and Jeng et al. (2002) have shown that when low strain rate and low temperature are applicable, not only the viscosity contrast, but also the elasticity contrast govern the geometry of the developing buckle folds. Rocks deforming under high temperature and high pressure deform in pure viscous manner, whereas, rocks undergoing less confining stress and less temperature, are subjected to pure elastic deformation. However, they are the end members, and most of the deformations are a combination of these two end members, i.e. of viscoelastic nature. Our models are made up of sieved sand (0.5 mm grain size) and mica layers (1-5 mm) This interlayering imparts a mechanical anisotropy in the model. Mica is not a pure viscous material, rather it displays more elastic behaviour. The mica layers in the model produce bedding parallel slip during shortening through internal reorganization of the individual mica crystals leading to the thickening of the layer. The experiments are performed in a low stress and low temperature environment (ambient temperature being room temperature). The models produce a spectrum of fold shapes ranging from tight asymmetric to gentle. The folds generate initially as gentle folds with rounded hinges in the thick incompetent mica layers and box folds in the thin incompetent mica layers. Thrusts develop and grow by intersecting the existing fold limbs. With incremental compression, the folds become tighter. The thin mica layer is more affected by thrusting than the thicker layer. Our models have a clear advantage of using mixed layer models (sand + mica) over that of pure sand models, because mica accommodates the applied stress both by folding and thrusting. The pure sand models fail to reflect the subtle competence contrast and thus the buckle folds though they excellently simulate the upper crustal layer deformation through thrusting. From our experiments we infer that the difference in fold and thrust morphology is governed by the interplay of two main factors; namely: degree of competence contrast and thickness of competent unit. High mechanical anisotropy give rise to box folds with steep straight limbs, horizontal hinge and conjugate axial planes when the competent unit is a thick one; whereas comparatively low mechanical anisotropy generates rounded buckle fold when the competent unit is a thin one. The geometry of the buckle folds in the NFTB are in good agreement with our experimentally produced buckle folds. The competence contrast throughout the belt has been consistent, only minor variations of sand-shale content have been observed. The competence contrast remaining more or less constant throughout the region, the variable thickness of the stratigraphic units plays a significant role in determining the fold shape. The thicker incompetent units give rise to rounded tight folds and the thinner ones to open box shaped folds, both modified by simultaneously or later generated thrusts. This coexistence of folds as well as thrusts developing simultaneously has been well demonstrated with our models. Therefore, our modelling results give insight into the folding process and the occurrence of differing buckle fold geometry across the NFTB. Reference: Jeng F. S., Lin M.L., Lai Y.C., Teng M.H., 2002. Influence of strain rate on buckle folding of an elasto-viscous single layer. Journal of Structural Geology 24, 501-516. Schmalholz S.M., Podladchikov, Y.Y., 1999. Buckling versus folding: importance of viscoelasticity. Geophysical Research Letters 26, 2641-2644.
Li, Hongchao; Gao, Di; Xie, Senlin; Zou, Jianpeng
2016-11-04
Tungsten diselenide (WSe 2 ) film was obtained by rapid selenization of magnetron sputtered tungsten (W) film. To prevent WSe 2 film peeling off from the substrate during selenization, the W film was designed with a double-layer structure. The first layer was deposited at a high sputtering-gas pressure to form a loose structure, which can act as a buffer layer to release stresses caused by WSe 2 growth. The second layer was deposited naturally on the first layer to react with selenium vapour in the next step. The effect of the W film deposition parameters(such as sputtering time, sputtering-gas pressure and substrate bias voltage)on the texture and surface morphology of the WSe 2 film was studied. Shortening the sputtering time, increasing the sputtering-gas pressure or decreasing the substrate bias voltage can help synthesize WSe 2 films with more platelets embedded vertically in the matrix. The stress state of the W film influences the WSe 2 film texture. Based on the stress state of the W film, a model for growth of the WSe 2 films with different textures was proposed. The insertion direction of the van der Waals gap is a key factor for the anisotropic formation of WSe 2 film.
NASA Astrophysics Data System (ADS)
Bhoomeeswaran, H.; Vivek, T.; Savithri, R.; Gowthaman, I.; Sabareesan, P.
2018-05-01
In this micromagnetic framework, Spin transfer torque induced magnetization switching in Co/Cu/Co nanopillar device is investigated numerically. The magnetization switching dynamics of the free layer in the nanopillar device is governed by the Landau Lifshitz Gilbert Slonczewski (LLGS) equation and solving it numerically by employing OOMMF, a micromagnetic software. Results are obtained by varying the fixed layer orientation (β) of our nanopillar device from in-plane to out-of-plane (i.e.) from 0° to 80° and the corresponding switching time is noted. Results of the micromagnetic simulation reveals that there is an extreme reduction of switching time in the free layer of our devised nanopillar, if we increase the fixed layer angle (β) from 0° to 80°. The corresponding switching time got shortened from 1651 picoseconds to 104.44 picoseconds and is obtained for an applied current density of 2.25×1011Am-2 with 0.05 T as applied bias field. For 90° (i.e.) out-of-plane orientation, the magnetization switching is not exist, because the free layer magnetization follows an oscillation state. Moreover, when we compare 0° to 80°, the switching time is reduced almost 16 times which solely provoked as a source of future spintronic devices for magnetic storage applications.
Li, Hongchao; Gao, Di; Xie, Senlin; Zou, Jianpeng
2016-01-01
Tungsten diselenide (WSe2) film was obtained by rapid selenization of magnetron sputtered tungsten (W) film. To prevent WSe2 film peeling off from the substrate during selenization, the W film was designed with a double-layer structure. The first layer was deposited at a high sputtering-gas pressure to form a loose structure, which can act as a buffer layer to release stresses caused by WSe2 growth. The second layer was deposited naturally on the first layer to react with selenium vapour in the next step. The effect of the W film deposition parameters(such as sputtering time, sputtering-gas pressure and substrate bias voltage)on the texture and surface morphology of the WSe2 film was studied. Shortening the sputtering time, increasing the sputtering-gas pressure or decreasing the substrate bias voltage can help synthesize WSe2 films with more platelets embedded vertically in the matrix. The stress state of the W film influences the WSe2 film texture. Based on the stress state of the W film, a model for growth of the WSe2 films with different textures was proposed. The insertion direction of the van der Waals gap is a key factor for the anisotropic formation of WSe2 film. PMID:27812031
Deformation and fracture of explosion-welded Ti/Al plates: A synchrotron-based study
DOE Office of Scientific and Technical Information (OSTI.GOV)
E, J. C.; Huang, J. Y.; Bie, B. X.
Here, explosion-welded Ti/Al plates are characterized with energy dispersive spectroscopy and x-ray computed tomography, and exhibit smooth, well-jointed, interface. We perform dynamic and quasi-static uniaxial tension experiments on Ti/Al with the loading direction either perpendicular or parallel to the Ti/Al interface, using a mini split Hopkinson tension bar and a material testing system in conjunction with time-resolved synchrotron x-ray imaging. X-ray imaging and strain-field mapping reveal different deformation mechanisms responsible for anisotropic bulk-scale responses, including yield strength, ductility and rate sensitivity. Deformation and fracture are achieved predominantly in Al layer for perpendicular loading, but both Ti and Al layers asmore » well as the interface play a role for parallel loading. The rate sensitivity of Ti/Al follows those of the constituent metals. For perpendicular loading, single deformation band develops in Al layer under quasi-static loading, while multiple deformation bands nucleate simultaneously under dynamic loading, leading to a higher dynamic fracture strain. For parallel loading, the interface impedes the growth of deformation and results in increased ductility of Ti/Al under quasi-static loading, while interface fracture occurs under dynamic loading due to the disparity in Poisson's contraction.« less
Deformation and fracture of explosion-welded Ti/Al plates: A synchrotron-based study
E, J. C.; Huang, J. Y.; Bie, B. X.; ...
2016-08-02
Here, explosion-welded Ti/Al plates are characterized with energy dispersive spectroscopy and x-ray computed tomography, and exhibit smooth, well-jointed, interface. We perform dynamic and quasi-static uniaxial tension experiments on Ti/Al with the loading direction either perpendicular or parallel to the Ti/Al interface, using a mini split Hopkinson tension bar and a material testing system in conjunction with time-resolved synchrotron x-ray imaging. X-ray imaging and strain-field mapping reveal different deformation mechanisms responsible for anisotropic bulk-scale responses, including yield strength, ductility and rate sensitivity. Deformation and fracture are achieved predominantly in Al layer for perpendicular loading, but both Ti and Al layers asmore » well as the interface play a role for parallel loading. The rate sensitivity of Ti/Al follows those of the constituent metals. For perpendicular loading, single deformation band develops in Al layer under quasi-static loading, while multiple deformation bands nucleate simultaneously under dynamic loading, leading to a higher dynamic fracture strain. For parallel loading, the interface impedes the growth of deformation and results in increased ductility of Ti/Al under quasi-static loading, while interface fracture occurs under dynamic loading due to the disparity in Poisson's contraction.« less
HYDROGEN ELECTROLYZER FLOW DISTRIBUTOR MODEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadday, M
2006-09-28
The hybrid sulfur process (HyS) hydrogen electrolyzer consists of a proton exchange membrane (PEM) sandwiched between two porous graphite layers. An aqueous solution of sulfuric acid with dissolved SO{sub 2} gas flows parallel to the PEM through the porous graphite layer on the anode side of the electrolyzer. A flow distributor, consisting of a number of parallel channels acting as headers, promotes uniform flow of the anolyte fluid through the porous graphite layer. A numerical model of the hydraulic behavior of the flow distributor is herein described. This model was developed to be a tool to aid the design ofmore » flow distributors. The primary design objective is to minimize spatial variations in the flow through the porous graphite layer. The hydraulic data from electrolyzer tests consists of overall flowrate and pressure drop. Internal pressure and flow distributions are not measured, but these details are provided by the model. The model has been benchmarked against data from tests of the current electrolyzer. The model reasonably predicts the viscosity effect of changing the fluid from water to an aqueous solution of 30 % sulfuric acid. The permeability of the graphite layer was the independent variable used to fit the model to the test data, and the required permeability for a good fit is within the range literature values for carbon paper. The model predicts that reducing the number of parallel channels by 50 % will substantially improve the uniformity of the flow in the porous graphite layer, while maintaining an acceptable pressure drop across the electrolyzer. When the size of the electrolyzer is doubled from 2.75 inches square to 5.5 inches square, the same number of channels as in the current design will be adequate, but it is advisable to increase the channel cross-sectional flow area. This is due to the increased length of the channels.« less
Low temperature grown GaNAsSb: A promising material for photoconductive switch application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, K. H.; Yoon, S. F.; Wicaksono, S.
2013-09-09
We report a photoconductive switch using low temperature grown GaNAsSb as the active material. The GaNAsSb layer was grown at 200 °C by molecular beam epitaxy in conjunction with a radio frequency plasma-assisted nitrogen source and a valved antimony cracker source. The low temperature growth of the GaNAsSb layer increased the dark resistivity of the switch and shortened the carrier lifetime. The switch exhibited a dark resistivity of 10{sup 7} Ω cm, a photo-absorption of up to 2.1 μm, and a carrier lifetime of ∼1.3 ps. These results strongly support the suitability of low temperature grown GaNAsSb in the photoconductivemore » switch application.« less
Eap, Sandy; Ferrand, Alice; Schiavi, Jessica; Keller, Laetitia; Kokten, Tunay; Fioretti, Florence; Mainard, Didier; Ladam, Guy; Benkirane-Jessel, Nadia
2014-01-01
Implants triggering rapid, robust and durable tissue regeneration are needed to shorten recovery times and decrease risks of postoperative complications for patients. Here, we describe active living collagen implants with highly promising bone regenerative properties. Bioactivity of the implants is obtained through the protective and stabilizing layer-by-layer immobilization of a protein growth factor in association with a polysaccharide (chitosan), within the form of nanocontainers decorating the collagen nanofibers. All components of the implants are US FDA approved. From both in vitro and in vivo evaluations, the sophisticated strategy described here should enhance, at a reduced cost, the safety and efficacy of the therapeutic implants in terms of large bone defects repair compared with current simplistic approaches based on the soaking of the implants with protein growth factor.
Twelve Channel Optical Fiber Connector Assembly: From Commercial Off the Shelf to Space Flight Use
NASA Technical Reports Server (NTRS)
Ott, Melaine N.
1998-01-01
The commercial off the shelf (COTS) twelve channel optical fiber MTP array connector and ribbon cable assembly is being validated for space flight use and the results of this study to date are presented here. The interconnection system implemented for the Parallel Fiber Optic Data Bus (PFODB) physical layer will include a 100/140 micron diameter optical fiber in the cable configuration among other enhancements. As part of this investigation, the COTS 62.5/125 microns optical fiber cable assembly has been characterized for space environment performance as a baseline for improving the performance of the 100/140 micron diameter ribbon cable for the Parallel FODB application. Presented here are the testing and results of random vibration and thermal environmental characterization of this commercial off the shelf (COTS) MTP twelve channel ribbon cable assembly. This paper is the first in a series of papers which will characterize and document the performance of Parallel FODB's physical layer from COTS to space flight worthy.
Wheel-type magnetic refrigerator
Barclay, J.A.
1983-10-11
The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load. 7 figs.
Benard and Marangoni convection in multiple liquid layers
NASA Technical Reports Server (NTRS)
Koster, Jean N.; Prakash, A.; Fujita, D.; Doi, T.
1992-01-01
Convective fluid dynamics of immiscible double and triple liquid layers are considered. First results on multilayer convective flow, in preparation for spaceflight experiment aboard IML-2 (International Microgravity Laboratory), are discussed. Convective flow in liquid layers with one or two horizontal interfaces with heat flow applied parallel to them is one of the systems investigated. The second system comprises two horizontally layered immiscible liquids heated from below and cooled from above, that is, heat flow orthogonal to the interface. In this system convection results due to the classical Benard instability.
Rose, Klint Aaron; Kuntz, Joshua D.; Worsley, Marcus
2016-09-27
A ceramic, metal, or cermet according to one embodiment includes a first layer having a gradient in composition, microstructure and/or density in an x-y plane oriented parallel to a plane of deposition of the first layer. A ceramic according to another embodiment includes a plurality of layers comprising particles of a non-cubic material, wherein each layer is characterized by the particles of the non-cubic material being aligned in a common direction. Additional products and methods are also disclosed.
Jenkins, Edmund C; Marchi, Elaine J; Velinov, Milen T; Ye, Lingling; Krinsky-McHale, Sharon J; Zigman, Warren B; Schupf, Nicole; Silverman, Wayne P
2017-12-01
Telomere shortening was shown to parallel Alzheimer's disease (AD) associated dementia. By using a dual PNA Probe system we have developed a practical method for comparing telomere length in T-lymphocyte interphases from individuals with Down syndrome (DS) with and without "mild cognitive impairment" (MCI-DS) and demonstrated that telomere length can serve as a valid biomarker for the onset of MCI-DS in this high-risk population. To verify progressive cognitive decline we have now examined sequential changes in telomere length in 10 adults with DS (N = 4 Female, N = 6 Male) developing MCI-DS. Cases were selected blind to telomere length from a sample of adults with DS previously enrolled in a prospective longitudinal study at 18-month intervals with clinical and telomere assessments: (1) MCI-DS group data were collected approximately three years prior to development of MCI-DS; (2) 18 months later; (3) when MCI-DS was first observed. These telomere measures were compared to those from another 10 adults with DS matched by sex and approximate age but without indications of MCI-DS (Controls). PNA (peptide nucleic acid) probes for telomeres together with a chromosome two centromere probe were used. Findings indicated telomere shortening over time for both Cases and Controls. Group differences emerged by 18-months prior to recognition of MCI-DS onset and completely non-overlapping distributions of telomere measures were observed by the time of MCI-DS onset. This study adds to accumulating evidence of the value of telomere length, as an early biomarker of AD progression in adults with Down syndrome. © 2017 Wiley Periodicals, Inc.
Development of mpi_EPIC model for global agroecosystem modeling
Kang, Shujiang; Wang, Dali; Jeff A. Nichols; ...
2014-12-31
Models that address policy-maker concerns about multi-scale effects of food and bioenergy production systems are computationally demanding. We integrated the message passing interface algorithm into the process-based EPIC model to accelerate computation of ecosystem effects. Simulation performance was further enhanced by applying the Vampir framework. When this enhanced mpi_EPIC model was tested, total execution time for a global 30-year simulation of a switchgrass cropping system was shortened to less than 0.5 hours on a supercomputer. The results illustrate that mpi_EPIC using parallel design can balance simulation workloads and facilitate large-scale, high-resolution analysis of agricultural production systems, management alternatives and environmentalmore » effects.« less
NASA Astrophysics Data System (ADS)
Reitz, M.; Seeber, L.
2008-12-01
At 10-12 Ma, the continental fragment of Calabria separated from Sardinia and became the crystalline core of a forearc in a NW-directed subduction system that is being consuming the Mesozoic (Neo-Tethys) oceanic lithosphere. The southeastward rollback of this arc has left in its wake the Tyrrhenian Sea by back-arc spreading. This system is confined between the continental margins of Africa and its Apulian promontory and created matching oblique-collision orogens (Sicilian Maghrebides and Apennines, respectively) along the margins. These progressive collisions shortened the arc because the gap between the margins narrowed to the SE. However, the arc is now lengthening after passing the point of closest approach of Sicily and Apulia, probably in the Quaternary. We seek evidence of this and other neotectonic episodes in the evolution of the forearc in the Crotone basin, which is situated on the accretionary E side of Calabria. A widespread unconformity correlated with the onset of rollback marks a regional foundering controlled by multidirectional extensional growth faults. These faults are consistently capped by the Messinian evaporite sequence. This sequence ends with a widespread unconformity that marks the final desiccation of the Ionian Sea ~5Ma. Mechanical changes due to drop in pore pressure and backward tilting of the accretionary wedge due to flexural unloading may be responsible for the landward emplacement of an accretionary mélange on the NE side of the Crotone Basin and the deposition of a characteristic conglomerate that locally caps the evaporites. After a well known mid-Pliocene basin-forming extensional event, we find evidence for a basin- wide contraction affecting the entire Neogene sequence up to the mid-to-late Pliocene. Vergence ranges from N to NW from east to west across the basin and is consistent with longitudinal shortening of the forearc. The shortening structures are cut or reactivated(?) by extensional faulting which we associate with Late(?) Quaternary longitudinal extension manifested by several transverse basins across the Calabrian forearc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murayama, Chisato; Okabe, Momoko; Fukuda, Koichiro
We investigated the crystallographic structure of FePS{sub 3} with a layered structure using transmission electron microscopy and powder X-ray diffraction. We found that FePS{sub 3} forms a rotational twin structure with the common axis along the c*-axis. The high-resolution transmission electron microscopy images revealed that the twin boundaries were positioned at the van der Waals gaps between the layers. The narrow bands of dark contrast were observed in the bright-field transmission electron microscopy images below the antiferromagnetic transition temperature, T{sub N} ≈ 120 K. Low-temperature X-ray diffraction showed a lattice distortion; the a- and b-axes shortened and lengthened, respectively, as the temperature decreasedmore » below T{sub N.} We propose that the narrow bands of dark contrast observed in the bright-field transmission electron microscopy images are caused by the directional lattice distortion with respect to each micro-twin variant in the antiferromagnetic phase.« less
Studies of acoustic effects on a flow boundary layer in air
NASA Technical Reports Server (NTRS)
Mechel, F.; Schilz, W.
1986-01-01
Effects of sound fields on the flow boundary layer on a flat plate subjected to a parallel flow are studied. The boundary layer is influenced by controlling the stagnation point flow at the front edge of the plate. Depending on the Reynolds number and sound frequency, excitation or suppression of turbulent is observed. Measurements were taken at wind velocities between 10 and 30 m/sec and sound frequencies between 0.2 and 3.0 kHz.
NASA Technical Reports Server (NTRS)
Dahl, Milo D.
2000-01-01
An acoustic source inside of a 2-D jet excites an instability wave in the shear layer resulting in sound radiating away from the shear layer. Solve the linearized Euler equations to predict the sound radiation outside of the jet. The jet static pressure is assumed to be constant. The jet flow is parallel and symmetric about the x-axis. Use a symmetry boundary condition along the x-axis.
Heat Transfer in the Turbulent Boundary Layer of a Compressible Gas at High Speeds
NASA Technical Reports Server (NTRS)
Frankl, F.
1942-01-01
The Reynolds law of heat transfer from a wall to a turbulent stream is extended to the case of flow of a compressible gas at high speeds. The analysis is based on the modern theory of the turbulent boundary layer with laminar sublayer. The investigation is carried out for the case of a plate situated in a parallel stream. The results are obtained independently of the velocity distribution in the turbulent boundar layer.
CMUTs with High-K Atomic Layer Deposition Dielectric Material Insulation Layer
Xu, Toby; Tekes, Coskun; Degertekin, F. Levent
2014-01-01
Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (SixNy) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2 such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD SixNy and 100-nm HfO2 insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure. PMID:25474786
NASA Astrophysics Data System (ADS)
Rutte, D.; Ratschbacher, L.; Stübner, K.; Schneider, S.
2015-12-01
The gneisses of the Central Pamir Domes and their cover document crustal stacking of a ~10 km thick Ediacaran-Paleogene succession to a thickness of >35 km and their exhumation along bi-vergent, top-to-N and top-to S, normal-sense shear zones. The giant South Pamir Shakhdara-Alichur gneiss-dome system formed similarly by N-S extension along bivergent detachments. Prograde amphibolite-facies metamorphism in the domes and low-grade metamorphism in their hanging wall is dated at ~40 Ma (Lu-Hf garnet, U-Pb titanite) [Smit et al., 2014; Stearns et al., 2015] and ~33 Ma (K/Ar sericite). Retrograde metamorphism―driven by crustal extension―started at ~21 Ma (multi-method thermochronology; Stearns et al.[2013]). These Gneiss Domes offer a unique window into the Eocene-Miocene state of the Asian middle crust of the Pamir-Tibet Plateau. Top-to-N thrust stacking accommodated thickening in the upper crust, with displacements of single thrust sheets of > 30 and > 19 km. At depth, ductile flow formed km-scale recumbent fold nappes. We reconstruct their geometry by structural mapping and U-Pb zircon dating, documenting repetition of metatuffite, and paragneiss layers. In the interior of the domes, amphibolite-facies deformation fabrics with prograde kyanite define an E-W stretching lineation. Associated microstructures indicate top-to-E and top-to-W shear senses. Chocolate tablet boudinage indicate vertical flattening during bulk crustal thickening. We suggest that prograde E-W stretching relates to an early orogen-parallel flow component in the middle crust, contemporaneous with crustal stacking during bulk top-to-N convergence prior to ~21 Ma. Material likely evaded laterally out of the Pamir, contributing to >60 km thick crust in the Hindu Kush, west of the India-Asia frontal collision. In the Neogene crust extruded laterally from the Pamir Plateau to the west by dextral wrenching and E-W extension; this component of deformation is accommodated by E-W shortening in the Afghan-Tajik Depression.
NASA Astrophysics Data System (ADS)
Sato, Hiroshi; Ishiyama, Tatsuya; Kato, Naoko; Toda, Shigeru; Kawasaki, Shinji; Fujiwara, Akira; Tanaka, Yasuhisa; Abe, Susumu
2017-04-01
M7-class crustal earthquakes of overlying plate in subduction system have tendency to increase before megathrust earthquake events. Due to stress buildup by the upcoming Nankai Trough megathrust earthquake, SW Japan has being seismically active for last 20 years. In terms of the mitigation of earthquake and tsunami hazards, to construct seismogenic source fault models is first step for evaluating the strong ground motions and height of tsunamis. Since 2013, we performed intense seismic profiling in and around the southern part of the Sea of Japan. In 2016, a 180-km-long onshore -offshore seismic survey was carried out across the volcanic arc and back-arc basins (from Kurayoshi to the Yamato basin). Onshore section, CMP seismic reflection data were collected using four vibroseis trucks and fixed 1150 channel recorders. Offshore part we acquired the seismic reflection data using 1950 cu inch air-guns towing a 4-km-long streamer cable. We performed CMP reflection and refraction tomography analysis. Obtained seismic section portrays compressively deformed rifted continental crust and undeformed oceanic back-arc basin, reflecting the rheological features. These basic structures were formed during the opening of the Sea of Japan in early Miocene. The sub-horizontal Pliocene sediments unconformably cover the folded Miocene sediments. The opening and clock-wise rotation of SW Japan has been terminated at 15 Ma and contacted to the young Shikoku basin along the Nankai trough. Northward motion of Philippine Sea plate (PHS) and the high thermal regime in the Shikoku basin produced the strong resistance along the Nankai trough. The main shortening deformation observed in the seismic section has been formed this tectonic event. After the initiation of the subduction along the Nankai trough, the rate of shortening deformation was decreased and the folded strata were covered by sub-horizontal Pliocene sediments. The thrusting trending parallel to the arc has been continued from Pliocene to early Pleistocene along the limited fault system. The change in the direction of the motion of PHS at 1 Ma produced major change in stress regime from NS compression to EW compression in the back-arc. Following the change of stress regime, former reverse faults reactivated as strike-slip fault. Reuse of pre-existing faults are common, and crustal deformation concentrates relatively narrow zone in the back-arc failed rifts. Two-months after from our survey, Mw 6.2 Tottoriken-chubu earthquake occurred just beneath the onshore part of the seismic line. The source fault corresponds to the boundary of abrupt change in P-wave velocity, however there were no surface ruptures and distinctive geologic faults. The bottom of seismogenic layer corresponds to TWT 4.5 sec., which is almost the top horizon of reflective middle crust.
Double layer zinc-UDP coordination polymers: structure and properties.
Qiu, Qi-Ming; Gu, Leilei; Ma, Hongwei; Yan, Li; Liu, Minghua; Li, Hui
2018-05-17
A homochiral Zn-UDP coordination polymer with an alternating parallel ABAB sequence was constructed and studied by X-ray single crystal diffraction analysis. Its crystal structure shows that there are potentially open sites in the 2D layers. The activation of the sites makes the coordination polymer a fluorescent sensor for novel heterogeneous detection of amino acids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Song
CFD (Computational Fluid Dynamics) is a widely used technique in engineering design field. It uses mathematical methods to simulate and predict flow characteristics in a certain physical space. Since the numerical result of CFD computation is very hard to understand, VR (virtual reality) and data visualization techniques are introduced into CFD post-processing to improve the understandability and functionality of CFD computation. In many cases CFD datasets are very large (multi-gigabytes), and more and more interactions between user and the datasets are required. For the traditional VR application, the limitation of computing power is a major factor to prevent visualizing largemore » dataset effectively. This thesis presents a new system designing to speed up the traditional VR application by using parallel computing and distributed computing, and the idea of using hand held device to enhance the interaction between a user and VR CFD application as well. Techniques in different research areas including scientific visualization, parallel computing, distributed computing and graphical user interface designing are used in the development of the final system. As the result, the new system can flexibly be built on heterogeneous computing environment, dramatically shorten the computation time.« less
NASA Astrophysics Data System (ADS)
Lu, Qiheng; Feng, Xiaoyun
2013-03-01
After analyzing the working principle of the four-aspect fixed autoblock system, an energy-saving control model was created based on the dynamics equations of the trains in order to study the energy-saving optimal control strategy of trains in a following operation. Besides the safety and punctuality, the main aims of the model were the energy consumption and the time error. Based on this model, the static and dynamic speed restraints under a four-aspect fixed autoblock system were put forward. The multi-dimension parallel genetic algorithm (GA) and the external punishment function were adopted to solve this problem. By using the real number coding and the strategy of ramps divided into three parts, the convergence of GA was speeded up and the length of chromosomes was shortened. A vector of Gaussian random disturbance with zero mean was superposed to the mutation operator. The simulation result showed that the method could reduce the energy consumption effectively based on safety and punctuality.
Atmospheric tomography using a fringe pattern in the sodium layer.
Baharav, Y; Ribak, E N; Shamir, J
1994-02-15
We wish to measure and separate the contribution of atmospheric turbulent layers for multiconjugate adaptive optics. To this end, we propose to create a periodic fringe pattern in the sodium layer and image it with a modified Hartmann sensor. Overlapping sections of the fringes are imaged by a lenslet array onto contiguous areas in a large-format camera. Low-layer turbulence causes an overall shift of the fringe pattern in each lenslet, and high-attitude turbulence results in internal deformations in the pattern. Parallel Fourier analysis permits separation of the atmospheric layers. Two mirrors, one conjugate to a ground layer and the other conjugate to a single high-altitude layer, are shown to widen the field of view significantly compared with existing methods.
Cross-sectional aspect ratio modulated electronic properties in Si/Ge core/shell nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Nuo; Lu, Ning; Yao, Yong-Xin
2013-02-28
Electronic structures of (4, n) and (m, 4) (the NW has m layers parallel to the {1 1 1} facet and n layers parallel to {1 1 0}) Si/Ge core/shell nanowires (NWs) along the [1 1 2] direction with cross-sectional aspect ratio (m/n) from 0.36 to 2.25 are studied by first-principles calculations. An indirect to direct band gap transition is observed as m/n decreases, and the critical values of m/n and diameter for the transition are also estimated. The size of the band gap also depends on the aspect ratio. These results suggest that m/n plays an important role inmore » modulating the electronic properties of the NWs.« less
Spectral enstrophy budget in a shear-less flow with turbulent/non-turbulent interface
NASA Astrophysics Data System (ADS)
Cimarelli, Andrea; Cocconi, Giacomo; Frohnapfel, Bettina; De Angelis, Elisabetta
2015-12-01
A numerical analysis of the interaction between decaying shear free turbulence and quiescent fluid is performed by means of global statistical budgets of enstrophy, both, at the single-point and two point levels. The single-point enstrophy budget allows us to recognize three physically relevant layers: a bulk turbulent region, an inhomogeneous turbulent layer, and an interfacial layer. Within these layers, enstrophy is produced, transferred, and finally destroyed while leading to a propagation of the turbulent front. These processes do not only depend on the position in the flow field but are also strongly scale dependent. In order to tackle this multi-dimensional behaviour of enstrophy in the space of scales and in physical space, we analyse the spectral enstrophy budget equation. The picture consists of an inviscid spatial cascade of enstrophy from large to small scales parallel to the interface moving towards the interface. At the interface, this phenomenon breaks, leaving place to an anisotropic cascade where large scale structures exhibit only a cascade process normal to the interface thus reducing their thickness while retaining their lengths parallel to the interface. The observed behaviour could be relevant for both the theoretical and the modelling approaches to flow with interacting turbulent/nonturbulent regions. The scale properties of the turbulent propagation mechanisms highlight that the inviscid turbulent transport is a large-scale phenomenon. On the contrary, the viscous diffusion, commonly associated with small scale mechanisms, highlights a much richer physics involving small lengths, normal to the interface, but at the same time large scales, parallel to the interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yong-Liang; Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shang Luo University, Shang Luo 726000; Wu, Ya-Pan
2015-03-15
Two new interpenetrating Cu{sup II}/Ni{sup II} coordination polymers, based on a unsymmetrical bifunctional N/O-tectonic 3-(pyrid-4′-yl)-5-(4″-carbonylphenyl)-1,2,4-triazolyl (H{sub 2}pycz), ([Cu-(Hpycz){sub 2}]·2H{sub 2}O){sub n} (1) and ([Ni(Hpycz){sub 2}]·H{sub 2}O){sub n} (2), have been solvothermally synthesized and structure characterization. Single crystal X-ray analysis indicates that compound 1 shows 2-fold parallel interpenetrated 4{sup 4}-sql layers with the same handedness. The overall structure of 1 is achiral—in each layer of doubly interpenetrating nets, the two individual nets have the opposite handedness to the corresponding nets in the adjoining layers—while 2 features a rare 8-fold interpenetrating 6{sup 6}-dia network that belongs to class IIIa interpenetration. In addition,more » compounds 1 and 2 both show similar paramagnetic characteristic properties. - Graphical abstract: Two new Cu(II)/Ni(II) coordination polymers present 2D parallel 2-fold interpenetrated 4{sup 4}-sql layers and a rare 3D 8-fold interpenetrating 6{sup 6}-dia network. In addition, magnetic susceptibility measurements show similar paramagnetic characteristic for two complexes. - Highlights: • A new unsymmetrical bifunctional N/O-tectonic as 4-connected spacer. • A 2-fold parallel interpenetrated sql layer with the same handedness. • A rare 8-fold interpenetrating dia network (class IIIa)« less
van der Lans, Milou; Benito, Cristina; Wagstaff, Laura J.
2017-01-01
There is consensus that, distal to peripheral nerve injury, myelin and Remak cells reorganize to form cellular columns, Bungner's bands, which are indispensable for regeneration. However, knowledge of the structure of these regeneration tracks has not advanced for decades and the structure of the cells that form them, denervated or repair Schwann cells, remains obscure. Furthermore, the origin of these cells from myelin and Remak cells and their ability to give rise to myelin cells after regeneration has not been demonstrated directly, although these conversions are believed to be central to nerve repair. Using genetic lineage-tracing and scanning-block face electron microscopy, we show that injury of sciatic nerves from mice of either sex triggers extensive and unexpected Schwann cell elongation and branching to form long, parallel processes. Repair cells are 2- to 3-fold longer than myelin and Remak cells and 7- to 10-fold longer than immature Schwann cells. Remarkably, when repair cells transit back to myelinating cells, they shorten ∼7-fold to generate the typically short internodes of regenerated nerves. The present experiments define novel morphological transitions in injured nerves and show that repair Schwann cells have a cell-type-specific structure that differentiates them from other cells in the Schwann cell lineage. They also provide the first direct evidence using genetic lineage tracing for two basic assumptions in Schwann cell biology: that myelin and Remak cells generate the elongated cells that build Bungner bands in injured nerves and that such cells can transform to myelin cells after regeneration. SIGNIFICANCE STATEMENT After injury to peripheral nerves, the myelin and Remak Schwann cells distal to the injury site reorganize and modify their properties to form cells that support the survival of injured neurons, promote axon growth, remove myelin-associated growth inhibitors, and guide regenerating axons to their targets. We show that the generation of these repair-supportive Schwann cells involves an extensive cellular elongation and branching, often to form long, parallel processes. This generates a distinctive repair cell morphology that is favorable for the formation of the regeneration tracks that are essential for nerve repair. Remyelination, conversely, involves a striking cell shortening to form the typical short myelin cells of regenerated nerves. We also provide evidence for direct lineage relationships between: (1) repair cells and myelin and Remak cells of uninjured nerves and (2) remyelinating cells in regenerated nerves. PMID:28904214
Gomez-Sanchez, Jose A; Pilch, Kjara S; van der Lans, Milou; Fazal, Shaline V; Benito, Cristina; Wagstaff, Laura J; Mirsky, Rhona; Jessen, Kristjan R
2017-09-13
There is consensus that, distal to peripheral nerve injury, myelin and Remak cells reorganize to form cellular columns, Bungner's bands, which are indispensable for regeneration. However, knowledge of the structure of these regeneration tracks has not advanced for decades and the structure of the cells that form them, denervated or repair Schwann cells, remains obscure. Furthermore, the origin of these cells from myelin and Remak cells and their ability to give rise to myelin cells after regeneration has not been demonstrated directly, although these conversions are believed to be central to nerve repair. Using genetic lineage-tracing and scanning-block face electron microscopy, we show that injury of sciatic nerves from mice of either sex triggers extensive and unexpected Schwann cell elongation and branching to form long, parallel processes. Repair cells are 2- to 3-fold longer than myelin and Remak cells and 7- to 10-fold longer than immature Schwann cells. Remarkably, when repair cells transit back to myelinating cells, they shorten ∼7-fold to generate the typically short internodes of regenerated nerves. The present experiments define novel morphological transitions in injured nerves and show that repair Schwann cells have a cell-type-specific structure that differentiates them from other cells in the Schwann cell lineage. They also provide the first direct evidence using genetic lineage tracing for two basic assumptions in Schwann cell biology: that myelin and Remak cells generate the elongated cells that build Bungner bands in injured nerves and that such cells can transform to myelin cells after regeneration. SIGNIFICANCE STATEMENT After injury to peripheral nerves, the myelin and Remak Schwann cells distal to the injury site reorganize and modify their properties to form cells that support the survival of injured neurons, promote axon growth, remove myelin-associated growth inhibitors, and guide regenerating axons to their targets. We show that the generation of these repair-supportive Schwann cells involves an extensive cellular elongation and branching, often to form long, parallel processes. This generates a distinctive repair cell morphology that is favorable for the formation of the regeneration tracks that are essential for nerve repair. Remyelination, conversely, involves a striking cell shortening to form the typical short myelin cells of regenerated nerves. We also provide evidence for direct lineage relationships between: (1) repair cells and myelin and Remak cells of uninjured nerves and (2) remyelinating cells in regenerated nerves. Copyright © 2017 Gomez-Sanchez et al.
NASA Astrophysics Data System (ADS)
Brocard, G. Y.; Teyssier, C.; Dunlap, W. J.; Willenbring, J.; Simon-Labric, T.; Authemayou, C.
2008-12-01
Along transpressive orogens, both range-transverse and range-parallel motions influence drainage network evolution. Range-parallel motions promote stretching of drainage networks, river lengthening or shortening, and sudden shortenings by river capture. Range-transverse motions induce river course shortening or lengthening, and generates stronger rock uplift. River incision patterns are influenced by rock uplift and waves of incision resulting from drainage rearrangement. Thus, under steady conditions of wrenching, drainages evolve by continued deformation and discrete rearrangements. Therefore, a significant part of erosion can be achieved in a state of significant departure from dynamic equilibrium. The frequency, intensity, and duration of these events set the timescale over which their integrated effects can be regarded as the expression of a long-term dynamic equilibrium. We document the growth of a 103-104 km2 catchment drained by the Chixoy River in Guatemala. The catchment covers a large part of a 50 km wide orogen located astride the North American - Caribbean plates boundary (Sierra de las Minas - Sierra de Chuacus range). The range is wrenched by sinistral tectonics with a varying amount of transpression and transtension. On the northern flank of this range, the Polochic Fault (PF) accumulated 130 km of total strike-slip displacement, but the Chixoy River only displays a 25 km tectonic bend. Geological evidence indicates that the river probably experienced a diversion that reset earlier tectonic bending. Upstream, the catchment stands out as a large (110x30 km) zone of enhanced erosion (2500 km3 removed since the Middle Miocene). The catchment retains many paleovalleys that we use as markers to track drainage rearrangement, bedrock deformation and changes in erosion rates. Study of the paleovalleys includes: satellite image detection, field mapping of river deposits, analyses of grain-size, clast provenance, heavy mineral provenance, deposit architecture, geochemical analyses, Ar40 -Ar39 dating of volcanic tuffs, 10 Be-26 Al burial dating, and apatite He cooling ages of the bedrock. Coupled analyses of erosion and drainage rearrangement show that, in the studied case, catchment growth occurred over 107 years. Most of the catchment erosion and growth is attributable to uplift along the PF rather than strike-slip motion, although both motion types contribute to the rearrangement. Growth of the catchment is strongly catalyzed by a wealth of other factors, such as river avulsion, volcanism, karstic flow, phreatic flow, and aridity resulting from catchment deepening.
Ching, K.-E.; Rau, R.-J.; Zeng, Y.
2007-01-01
A coseismic source model of the 2003 Mw 6.8 Chengkung, Taiwan, earthquake was well determined with 213 GPS stations, providing a unique opportunity to study the characteristics of coseismic displacements of a high-angle buried reverse fault. Horizontal coseismic displacements show fault-normal shortening across the fault trace. Displacements on the hanging wall reveal fault-parallel and fault-normal lengthening. The largest horizontal and vertical GPS displacements reached 153 and 302 mm, respectively, in the middle part of the network. Fault geometry and slip distribution were determined by inverting GPS data using a three-dimensional (3-D) layered-elastic dislocation model. The slip is mainly concentrated within a 44 ?? 14 km slip patch centered at 15 km depth with peak amplitude of 126.6 cm. Results from 3-D forward-elastic model tests indicate that the dome-shaped folding on the hanging wall is reproduced with fault dips greater than 40??. Compared with the rupture area and average slip from slow slip earthquakes and a compilation of finite source models of 18 earthquakes, the Chengkung earthquake generated a larger rupture area and a lower stress drop, suggesting lower than average friction. Hence the Chengkung earthquake seems to be a transitional example between regular and slow slip earthquakes. The coseismic source model of this event indicates that the Chihshang fault is divided into a creeping segment in the north and the locked segment in the south. An average recurrence interval of 50 years for a magnitude 6.8 earthquake was estimated for the southern fault segment. Copyright 2007 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Zhang, Dongdong; Tan, Jianguo; Lv, Liang
2015-12-01
The mixing process has been an important issue for the design of supersonic combustion ramjet engine, and the mixing efficiency plays a crucial role in the improvement of the combustion efficiency. In the present study, nanoparticle-based planar laser scattering (NPLS), particle image velocimetry (PIV) and large eddy simulation (LES) are employed to investigate the flow and mixing characteristics of supersonic mixing layer under different forced vibration conditions. The indexes of fractal dimension, mixing layer thickness, momentum thickness and scalar mixing level are applied to describe the mixing process. Results show that different from the development and evolution of supersonic mixing layer without vibration, the flow under forced vibration is more likely to present the characteristics of three-dimensionality. The laminar flow region of mixing layer under forced vibration is greatly shortened and the scales of rolled up Kelvin-Helmholtz vortices become larger, which promote the mixing process remarkably. The fractal dimension distribution reveals that comparing with the flow without vibration, the turbulent fluctuation of supersonic mixing layer under forced vibration is more intense. Besides, the distribution of mixing layer thickness, momentum thickness and scalar mixing level are strongly influenced by forced vibration. Especially, when the forcing frequency is 4000 Hz, the mixing layer thickness and momentum thickness are 0.0391 m and 0.0222 m at the far field of 0.16 m, 83% and 131% higher than that without vibration at the same position, respectively.
Park, Janghoon; Kang, Hyi Jae; Shin, Kee-Hyun; Kang, Hyunkyoo
2016-01-01
We present fast sintering for silver (Ag) nanoparticle (NP) and flake layers printed using roll-to-roll (R2R) gravure printing. An infrared (IR) sintering module was applied to an R2R system to shorten the sintering duration of an R2R gravure-printed Ag layer. IR sintering of the conductive layer was improved by optimising the process condition. After printing of the Ag NP and Ag flake layers, additional IR sintering was performed in the R2R system. The lowest sheet resistance obtained in the Ag NP layer was 0.294 Ω/□, the distance between the substrate and lamp was 50-mm long, the IR lamp power was 500 W, and the sintering time was 5.4 s. The fastest sintering of 0.34 Ω/□ was achieved with 50-mm distance, 1,000-W IR lamp power, and 1.08-s sintering time. In the Ag flake layer, the lowest sheet resistance obtained was 0.288 Ω/□ with a 20-mm distance, 1,000-W IR lamp power, and 10.8-s sintering time. Meanwhile, the fastest sintering was obtained with a 3.83 Ω/□ sheet resistance, 20-mm distance, 1000-W IR lamp, and 1.08-s sintering time. Thus, the IR sintering module can easily be employed in an R2R system to obtain excellent layer sheet resistance. PMID:27713469
NASA Astrophysics Data System (ADS)
Reitelshöfer, Sebastian; Göttler, Michael; Schmidt, Philip; Treffer, Philipp; Landgraf, Maximilian; Franke, Jörg
2016-04-01
In this contribution we present recent findings of our efforts to qualify the so called Aerosol-Jet-Printing process as an additive manufacturing approach for stacked dielectric elastomer actuators (DEA). With the presented system we are able to print the two essential structural elements dielectric layer and electrode in one machine. The system is capable of generating RTV-2 silicone layers made of Wacker Elastosil P 7670. Therefore, two aerosol streams of both precursor components A and B are generated in parallel and mixed in one printing nozzle that is attached to a 4-axis kinematic. At maximum speed the printing of one circular Elastosil layer with a calculated thickness of 10 μm and a diameter of 1 cm takes 12 seconds while the process keeps stable for 4.5 hours allowing a quite high overall material output and the generation of numerous silicone layers. By adding a second printing nozzle and the infrastructure to generate a third aerosol, the system is also capable of printing inks with conductive particles in parallel to the silicone. We have printed a reduced graphene oxide (rGO) ink prepared in our lab to generate electrodes on VHB 4905, Elastosil foils and finally on Aerosol-Jet-Printed Elastosil layers. With rGO ink printed on Elastosil foil, layers with a 4-point measured sheet resistance as low as 4 kΩ can be realized leaving room for improving the electrode printing time, which at the moment is not as good as the quite good time-frame for printing the silicone layers. Up to now we have used the system to print a fully functional two-layer stacked DEA to demonstrate the principle of continuously 3D printing actuators.
NASA Astrophysics Data System (ADS)
Sepúlveda, J.; Roquer, T.; Arancibia, G.; Veloso, E. A.; Morata, D.; Molina Piernas, E.
2017-12-01
Oblique subduction between the Nazca and South American plates produces the Southern Volcanic Zone (33-46°S) (SVZ), an active tectono-magmatic-hydrothermal setting. Tectonics of the SVZ is controlled by the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). The LOFS is an active intra-arc 1200-km-long fault system, with dextral and dextral-normal faults that strike NS-NNE to NE-ENE. The ATF include a group of active NW-striking sinistral faults and morphotectonic lineaments. Here, deformation is partitioned into a margin-parallel and a margin-orthogonal components, accommodated along and across the arc and forearc, respectively. In the inter-seismic period, shortening in the arc is NE-trending, whereas in the co- and post-seismic periods shortening switches to NW-trending. In order to determine the kinematics and style of deformation in the northern termination of the LOFS and its interaction with the ATF, we measured 81 fault-slip data at the Liquiñe (39ºS) and Maihue (40ºS) areas. Here, hot springs occur above fractured granitic rocks, where structural permeability given by fracture meshes is the main hydraulic conductivity. Considering the high sensitivity of fault systems regarding the rupture under prevailing stress and/or fluid overpressure conditions, to stablish past and present strain conditions is critical to assess a potential fractured geothermal system. Results at Liquiñe display two strain regimes (P and T axes): 1) P=259/01, T=169/01; 2) P= 182/23, T= 275/07. Likewise, Maihue shows two regimes: 1) P= 143/12, T=235/07; 2) P=228/12, T= 136/07. In both areas, the first solutions agree with the regional regime within the SVZ, i.e. NE-trending shortening in the arc. However, the second solutions seem to be anomalous with respect to the regional strain regime. At Liquiñe, NS-trending shortening may be associated with a buttress effect at the northern termination of the LOFS. At Maihue, NW-trending shortening may be related to strain changes during the co-seismic period or it is a reminiscence of local strain switches. These anomalous strain solutions should be considered when constraining the tectonics of the SVZ and its role to enhance the subsurface hydraulic conductivity. ACKNOWLEDGEMENTS: FONDAP-CONICYT Project 15090013 (CEGA), VRI-PUENTE P1703/2017 Project.
Three dimensional interactive display
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
2005-01-01
A three-dimensional (3-D) interactive display and method of forming the same, includes a transparent capaciflector (TC) camera formed on a transparent shield layer on the screen surface. A first dielectric layer is formed on the shield layer. A first wire layer is formed on the first dielectric layer. A second dielectric layer is formed on the first wire layer. A second wire layer is formed on the second dielectric layer. Wires on the first wire layer and second wire layer are grouped into groups of parallel wires with a turnaround at one end of each group and a sensor pad at the opposite end. An operational amplifier is connected to each of the sensor pads and the shield pad biases the pads and receives a signal from connected sensor pads in response to intrusion of a probe. The signal is proportional to probe location with respect to the monitor screen.
NASA Astrophysics Data System (ADS)
Das, D.; Gopikrishna, P.; Singh, A.; Dey, A.; Iyer, P. K.
2016-04-01
Polymer light emitting diodes (PLEDs) with a device configuration of ITO/PEDOT:PSS/PFONPN01 [Poly [2,7-(9,9’-dioctylfluorene)-co-N-phenyl-1,8-naphthalimide (99:01)]/LiF/Al have been fabricated by varying the emissive layer (EML) thickness (40/65/80/130 nm) and the influence of EML thickness on the electrical characteristics of PLED has been studied. PLED can be modelled as a simple combination of resistors and capacitors. The impedance spectroscopy analysis showed that the devices with different EML thickness had different values of parallel resistance (RP) and the parallel capacitance (CP). The impedance of the devices is found to increase with increasing EML thickness resulting in an increase in the driving voltage. The device with an emissive layer thickness of 80nm, spin coated from a solution of concentration 15 mg/mL is found to give the best device performance with a maximum brightness value of 5226 cd/m2.
NASA Astrophysics Data System (ADS)
Jin, Zhao-Hui; Li, Zhong-Yu; Kasatani, Kazuo; Okamoto, Hiroaki
2006-03-01
A squarylium dye is dissolved in 4-cyano-4'-pentylbiphenyl (5CB) and oriented by sandwiching mixtures between two pieces of rubbed glass plates. The optical absorption spectra of the oriented squarylium dye-5CB layers exhibit high anisotropy. The third-order nonlinear optical responses and susceptibilities χ(3)e of squarylium dye in 5CB are measured with light polarizations parallel and perpendicular to the orientational direction by the resonant femtosecond degenerate four-wave mixing (DFWM) technique. Temporal profiles of the DFWM signal of the oriented squarylium dye-5CB layers with light polarizations parallel and perpendicular to the orientational direction are measured with a time resolution of 0.3 ps (FWHM), and are found to consist of two components, i.e., the coherent instantaneous nonlinear response and slow response due to the formation of excited molecules. A high anisotropic ratio of χ(3)e, 10.8±1.2, is observed for the oriented layers.
Shortened Conditioned Eyeblink Response Latency in Male but not Female Wistar-Kyoto Hyperactive Rats
Thanellou, Alexandra; Schachinger, Kira M.; Green, John T.
2014-01-01
Reductions in the volume of the cerebellum and impairments in cerebellar-dependent eyeblink conditioning have been observed in attention-deficit/hyperactivity disorder (ADHD). Recently, it was reported that subjects with ADHD as well as male spontaneously hypertensive rats (SHR), a strain that is frequently employed as an animal model in the study of ADHD, exhibit a parallel pattern of timing deficits in eyeblink conditioning. One criticism that has been posed regarding the validity of the SHR strain as an animal model for the study of ADHD is that SHRs are not only hyperactive but also hypertensive. It is conceivable that many of the behavioral characteristics seen in SHRs that seem to parallel the behavioral symptoms of ADHD are not solely due to hyperactivity but instead are the net outcome of the interaction between hyperactivity and hypertension. We used Wistar-Kyoto Hyperactive (WKHA) and Wistar-Kyoto Hypertensive (WKHT) rats (males and females), strains generated from recombinant inbreeding of SHRs and their progenitor strain, Wistar-Kyoto (WKY) rats, to compare eyeblink conditioning in strains that are exclusively hyperactive or hypertensive. We used a long-delay eyeblink conditioning task in which a tone conditioned stimulus was paired with a periorbital stimulation unconditioned stimulus (750-ms delay paradigm). Our results showed that WKHA and WKHT rats exhibited similar rates of conditioned response (CR) acquisition. However, WKHA males displayed shortened CR latencies (early onset and peak latency) in comparison to WKHT males. In contrast, female WKHAs and WKHTs did not differ. In subsequent extinction training, WKHA rats extinguished at similar rates in comparison to WKHT rats. The current results support the hypothesis of a relationship between cerebellar abnormalities and ADHD in an animal model of ADHD-like symptoms that does not also exhibit hypertension, and suggest that cerebellar-related timing deficits are specific to males. PMID:19485572
Is titin a 'winding filament'? A new twist on muscle contraction.
Nishikawa, Kiisa C; Monroy, Jenna A; Uyeno, Theodore E; Yeo, Sang Hoon; Pai, Dinesh K; Lindstedt, Stan L
2012-03-07
Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca(2+)-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a 'winding filament' mechanism for titin's role in active muscle. First, we hypothesize that Ca(2+)-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction.
Is titin a ‘winding filament’? A new twist on muscle contraction
Nishikawa, Kiisa C.; Monroy, Jenna A.; Uyeno, Theodore E.; Yeo, Sang Hoon; Pai, Dinesh K.; Lindstedt, Stan L.
2012-01-01
Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca2+-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a ‘winding filament’ mechanism for titin's role in active muscle. First, we hypothesize that Ca2+-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction. PMID:21900329
NASA Astrophysics Data System (ADS)
Karlstrom, K. E.; Williams, M. L.
1995-01-01
The syntectonic 1.70 Ga Crazy Basin Monzogranite provides an example of the complex spatial and temporal interactions between metamorphism, deformation, and plutonism. Synchronous plutonism and deformation is indicated by syn-shortening dikes, sills, and veins; parallel magmatic and solid state fabrics; fabrics in xenoliths; and a foliation triple point. Synchronous plutonism and metamorphism is indicated by a systematic increase from 400 °C to 630 °C towards the pluton at a constant pressure of 300 MPa (3 kb). Temperatures are consistent with a conductive cooling model in which a 700 °C pluton was emplaced into country rocks undergoing greenschist facies regional metamorphism. Synchronous deformation and metamorphism is indicated by porphyroblast inclusion geometries that document the synmetamorphic development of the S2 cleavage. The pluton was emplaced adjacent to the Shylock shear zone during progressive shortening. Emplacement of granite as NE-trending sheets was facilitated by temporal partitioning of transpressional convergence into strike-slip and dip-slip components. At the scale of the pluton's aureole and on the relatively rapid time scale of 10 3-10 6 y, regional deformation and metamorphism were punctuated by thermal softening and increased diffusion rates. Data suggests that accretion of Proterozoic arcs in Arizona involved diachronous pluton-enhanced deformation and associated high temperature-low pressure regional metamorphism.
NASA Astrophysics Data System (ADS)
Schumann, Kai; Stipp, Michael; Leiss, Bernd; Behrmann, Jan H.
2014-12-01
The petrophysical properties of fine-grained marine sediments to a large extent depend on the microstructure and crystallographic preferred orientations (CPOs). In this contribution we show that Rietveld-based synchrotron texture analysis is a new and valuable tool to quantify textures of water-saturated fine-grained phyllosilicate-rich sediments, and assess the effects of compaction and tectonic deformation. We studied the CPO of compositionally almost homogeneous silty clay drillcore samples from the Nankai Accretionary Prism slope and the incoming Philippine Sea plate, offshore SW Japan. Basal planes of phyllosilicates show bedding-parallel alignment increasing with drillhole depth, thus reflecting progressive burial and compaction. In some samples calcite and albite display a CPO due to crystallographically controlled non-isometric grain shapes, or nannofossil tests. Consolidated-undrained experimental deformation of a suite of thirteen samples from the prism slope shows that the CPOs of phyllosilicate and calcite basal planes develop normal to the experimental shortening axis. There is at least a qualitative relation between CPO intensity and strain magnitude. Scanning electron micrographs show concurrent evolution of preferred orientations of micropores and detrital illite flakes normal to axial shortening. This indicates that the microfabrics are sensitive strain gauges, and contribute to anisotropic physical properties along with the CPO.
NASA Astrophysics Data System (ADS)
Frehner, Marcel; Reif, Daniel; Grasemann, Bernhard
2012-06-01
This paper compares kinematical and mechanical techniques for the palinspastic reconstruction of folded cross sections in collision orogens. The studied area and the reconstructed NE-SW trending, 55.5 km long cross section is located in the High Folded Zone of the Zagros fold-and-thrust belt in the Kurdistan region of Iraq. The present-day geometry of the cross section has been constructed from field as well as remote sensing data. In a first step, the structures and the stratigraphy are simplified and summarized in eight units trying to identify the main geometric and mechanical parameters. In a second step, the shortening is kinematically estimated using the dip domain method to 11%-15%. Then the same cross section is used in a numerical finite element model to perform dynamical unfolding simulations taking various rheological parameters into account. The main factor allowing for an efficient dynamic unfolding is the presence of interfacial slip conditions between the mechanically strong units. Other factors, such as Newtonian versus power law viscous rheology or the presence of a basement, affect the numerical simulations much less strongly. If interfacial slip is accounted for, fold amplitudes are reduced efficiently during the dynamical unfolding simulations, while welded layer interfaces lead to unrealistic shortening estimates. It is suggested that interfacial slip and decoupling of the deformation along detachment horizons is an important mechanical parameter that controlled the folding processes in the Zagros High Folded Zone.
NASA Astrophysics Data System (ADS)
Frehner, M.; Reif, D.; Grasemann, B.
2012-04-01
Our study compares kinematical and mechanical techniques for the palinspastic reconstruction of folded cross-sections in collision orogens. The studied area and the reconstructed NE-SW-trending, 55.5 km long cross-section is located in the High Folded Zone of the Zagros fold-and-thrust belt in the Kurdistan Region of Iraq. The present-day geometry of the cross-section has been constructed from field, as well as remote sensing data. In a first step, the structures and the stratigraphy are simplified and summarized in eight units trying to identify the main geometric and mechanical parameters. In a second step, the shortening is kinematically estimated using the dip-domain method to 11%-15%. Then the same cross-section is used in a numerical finite-element model to perform dynamical unfolding simulations taking various rheological parameters into account. The main factor allowing for an efficient dynamic unfolding is the presence of interfacial slip conditions between the mechanically strong units. Other factors, such as Newtonian vs. power-law viscous rheology or the presence of a basement affect the numerical simulations much less strongly. If interfacial slip is accounted for, fold amplitudes are reduced efficiently during the dynamical unfolding simulations, while welded layer interfaces lead to unrealistic shortening estimates. It is suggested that interfacial slip and decoupling of the deformation along detachment horizons is an important mechanical parameter that controlled the folding processes in the Zagros High Folded Zone.
Spectral tuning of near-field radiative heat transfer by graphene-covered metasurfaces
NASA Astrophysics Data System (ADS)
Zheng, Zhiheng; Wang, Ao; Xuan, Yimin
2018-03-01
When two gratings are respectively covered by a layer of graphene sheet, the near-field radiative heat transfer between two parallel gratings made of silica (SiO2) could be greatly improved. As the material properties of doped silicon (n-type doping concentration is 1020 cm-3, marked as Si-20) and SiO2 differ greatly, we theoretically investigate the near-field radiative heat transfer between two parallel graphene-covered gratings made of Si-20 to explore some different phenomena, especially for modulating the spectral properties. The radiative heat flux between two parallel bulks made of Si-20 can be enhanced by using gratings instead of bulks. When the two gratings are respectively covered by a layer of graphene sheet, the radiative heat flux between two gratings made of Si-20 can be further enhanced. By tuning graphene chemical potential μ and grating filling factor f, due to the interaction between surface plasmon polaritons (SPPs) of graphene sheets and grating structures, the spectral properties of the radiative heat flux between two parallel graphene-covered gratings can be effectively regulated. This work will develop and supplement the effects of materials on the near-field radiative heat transfer for this kind of system configuration, paving a way to modulate the spectral properties of near-field radiative heat transfer.
Deformation along the leading edge of the Maiella thrust sheet in central Italy
NASA Astrophysics Data System (ADS)
Aydin, Atilla; Antonellini, Marco; Tondi, Emanuele; Agosta, Fabrizio
2010-09-01
The eastern forelimb of the Maiella anticline above the leading edge of the underlying thrust displays a complex system of fractures, faults and a series of kink bands in the Cretaceous platform carbonates. The kink bands have steep limbs, display top-to-the-east shear, parallel to the overall transport direction, and are brecciated and faulted. A system of pervasive normal faults, trending sub-parallel to the strike of the mechanical layers, accommodates local extension generated by flexural slip. Two sets of strike-slip faults exist: one is left-lateral at a high angle to the main Maiella thrust; the other is right-lateral, intersecting the first set at an acute angle. The normal and strike-slip faults were formed by shearing across bed-parallel, strike-, and dip-parallel pressure solution seams and associated splays; the thrust faults follow the tilted mechanical layers along the steeper limb of the kink bands. The three pervasive, mutually-orthogonal pressure solution seams are pre-tilting. One set of low-angle normal faults, the oldest set in the area, is also pre-tilting. All other fault/fold structures appear to show signs of overlapping periods of activity accounting for the complex tri-shear-like deformation that developed as the front evolved during the Oligocene-Pliocene Apennine orogeny.
Simulation of dispersion in layered coastal aquifer systems
Reilly, T.E.
1990-01-01
A density-dependent solute-transport formulation is used to examine ground-water flow in layered coastal aquifers. The numerical experiments indicate that although the transition zone may be thought of as an impermeable 'sharp' interface with freshwater flow parallel to the transition zone in homogeneous aquifers, this is not the case for layered systems. Freshwater can discharge through the transition zone in the confining units. Further, for the best simulation of layered coastal aquifer systems, either a flow-direction-dependent dispersion formulation is required, or the dispersivities must change spatially to reflect the tight thin confining unit. ?? 1990.
Improving parallel I/O autotuning with performance modeling
Behzad, Babak; Byna, Surendra; Wild, Stefan M.; ...
2014-01-01
Various layers of the parallel I/O subsystem offer tunable parameters for improving I/O performance on large-scale computers. However, searching through a large parameter space is challenging. We are working towards an autotuning framework for determining the parallel I/O parameters that can achieve good I/O performance for different data write patterns. In this paper, we characterize parallel I/O and discuss the development of predictive models for use in effectively reducing the parameter space. Furthermore, applying our technique on tuning an I/O kernel derived from a large-scale simulation code shows that the search time can be reduced from 12 hours to 2more » hours, while achieving 54X I/O performance speedup.« less
Magnetothermoelectric properties of layered structures for ion impurity scattering
NASA Astrophysics Data System (ADS)
Figarova, S. R.; Huseynov, H. I.; Figarov, V. R.
2018-05-01
In the paper, longitudinal and transverse thermoelectric powers are considered in a magnetic field parallel to the layer plane for scattering of charge carriers by weakly screened impurity ions. Based on the semiclassical approximation, it is obtained that, depending on the position of the Fermi level relative to the miniband top and superlattice period, the thermoelectric power can change sign and amplify.
Tunable Patch Antennas Using Microelectromechanical Systems
2011-05-11
Figure 28, was selected as most suitable to this application. MetalMUMPs is a surface micromachining process with polysilicon , silicon nitride, nickel...yields. MEMS Variable Capacitor Design The MEMS capacitors reported here were an original design that features nickel and polysilicon layers as...the movable plates of a variable parallel plate capacitor. The polysilicon layer was embedded in silicon nitride for electrical isolation and suspended
Parallel odor processing by mitral and middle tufted cells in the olfactory bulb.
Cavarretta, Francesco; Burton, Shawn D; Igarashi, Kei M; Shepherd, Gordon M; Hines, Michael L; Migliore, Michele
2018-05-16
The olfactory bulb (OB) transforms sensory input into spatially and temporally organized patterns of activity in principal mitral (MC) and middle tufted (mTC) cells. Thus far, the mechanisms underlying odor representations in the OB have been mainly investigated in MCs. However, experimental findings suggest that MC and mTC may encode parallel and complementary odor representations. We have analyzed the functional roles of these pathways by using a morphologically and physiologically realistic three-dimensional model to explore the MC and mTC microcircuits in the glomerular layer and deeper plexiform layer. The model makes several predictions. MCs and mTCs are controlled by similar computations in the glomerular layer but are differentially modulated in deeper layers. The intrinsic properties of mTCs promote their synchronization through a common granule cell input. Finally, the MC and mTC pathways can be coordinated through the deep short-axon cells in providing input to the olfactory cortex. The results suggest how these mechanisms can dynamically select the functional network connectivity to create the overall output of the OB and promote the dynamic synchronization of glomerular units for any given odor stimulus.
Yokohama, Noriya; Tsuchimoto, Tadashi; Oishi, Masamichi; Itou, Katsuya
2007-01-20
It has been noted that the downtime of medical informatics systems is often long. Many systems encounter downtimes of hours or even days, which can have a critical effect on daily operations. Such systems remain especially weak in the areas of database and medical imaging data. The scheme design shows the three-layer architecture of the system: application, database, and storage layers. The application layer uses the DICOM protocol (Digital Imaging and Communication in Medicine) and HTTP (Hyper Text Transport Protocol) with AJAX (Asynchronous JavaScript+XML). The database is designed to decentralize in parallel using cluster technology. Consequently, restoration of the database can be done not only with ease but also with improved retrieval speed. In the storage layer, a network RAID (Redundant Array of Independent Disks) system, it is possible to construct exabyte-scale parallel file systems that exploit storage spread. Development and evaluation of the test-bed has been successful in medical information data backup and recovery in a network environment. This paper presents a schematic design of the new medical informatics system that can be accommodated from a recovery and the dynamic Web application for medical imaging distribution using AJAX.
Differential encoding of spatial information among retinal on cone bipolar cells
Purgert, Robert J.
2015-01-01
The retina is the first stage of visual processing. It encodes elemental features of visual scenes. Distinct cone bipolar cells provide the substrate for this to occur. They encode visual information, such as color and luminance, a principle known as parallel processing. Few studies have directly examined whether different forms of spatial information are processed in parallel among cone bipolar cells. To address this issue, we examined the spatial information encoded by mouse ON cone bipolar cells, the subpopulation excited by increments in illumination. Two types of spatial processing were identified. We found that ON cone bipolar cells with axons ramifying in the central inner plexiform layer were tuned to preferentially encode small stimuli. By contrast, ON cone bipolar cells with axons ramifying in the proximal inner plexiform layer, nearest the ganglion cell layer, were tuned to encode both small and large stimuli. This dichotomy in spatial tuning is attributable to amacrine cells providing stronger inhibition to central ON cone bipolar cells compared with proximal ON cone bipolar cells. Furthermore, background illumination altered this difference in spatial tuning. It became less pronounced in bright light, as amacrine cell-driven inhibition became pervasive among all ON cone bipolar cells. These results suggest that differential amacrine cell input determined the distinct spatial encoding properties among ON cone bipolar cells. These findings enhance the known parallel processing capacity of the retina. PMID:26203104
Learning, memory, and the role of neural network architecture.
Hermundstad, Ann M; Brown, Kevin S; Bassett, Danielle S; Carlson, Jean M
2011-06-01
The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both acquisition and retention of information, thereby identifying tradeoffs between learning and memory processes. During the task of supervised, sequential function approximation, networks produce and adapt representations of external information. Performance is evaluated by statistically analyzing the error in these representations while varying the initial network state, the structure of the external information, and the time given to learn the information. We link performance to complexity in network architecture by characterizing local error landscape curvature. We find that variations in error landscape structure give rise to tradeoffs in performance; these include the ability of the network to maximize accuracy versus minimize inaccuracy and produce specific versus generalizable representations of information. Parallel networks generate smooth error landscapes with deep, narrow minima, enabling them to find highly specific representations given sufficient time. While accurate, however, these representations are difficult to generalize. In contrast, layered networks generate rough error landscapes with a variety of local minima, allowing them to quickly find coarse representations. Although less accurate, these representations are easily adaptable. The presence of measurable performance tradeoffs in both layered and parallel networks has implications for understanding the behavior of a wide variety of natural and artificial learning systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chekini, M.; Bierwagen, J.; Cunningham, A.
Localized surface plasmon resonances excited in metallic nanoparticles confine and enhance electromagnetic fields at the nanoscale. This is particularly pronounced in dimers made from two closely spaced nanoparticles. When quantum emitters, such as dyes, are placed in the gap of those dimers, their absorption and emission characteristics can be modified. Both processes have to be considered when aiming to enhance the fluorescence from the quantum emitters. This is particularly challenging for dimers, since the electromagnetic properties and the enhanced fluorescence sensitively depend on the distance between the nanoparticles. Here, we use a layer-by-layer method to precisely control the distances inmore » such systems. We consider a dye layer deposited on top of an array of gold nanoparticles or integrated into a central position of a double array of gold nanoparticles. We study the effect of the spatial arrangement and the average distance on the plasmon-enhanced fluorescence. We found a maximum of a 99-fold increase in the fluorescence intensity of the dye layer sandwiched between two gold nanoparticle arrays. The interaction of the dye layer with the plasmonic system also causes a spectral shift in the emission wavelengths and a shortening of the fluorescence life times. Our work paves the way for large-scale, high throughput, and low-cost self-assembled functionalized plasmonic systems that can be used as efficient light sources.« less
Automatic reconstruction of the muscle architecture from the superficial layer fibres data.
Kohout, Josef; Cholt, David
2017-10-01
Physiological cross-sectional area (PCSA) of a muscle plays a significant role in determining the force contribution of muscle fascicles to skeletal movement. This parameter is typically calculated from the lengths of muscle fibres selectively sampled from the superficial layer of the muscle. However, recent studies have found that the length of fibres in the superficial layer often differs significantly (p < 0.5) from the length of fibres in the deep layer. As a result, PCSA estimation is inaccurate. In this paper, we propose a method to automatically reconstruct fibres in the whole volume of a muscle from those selectively sampled on the superficial layer. The method performs a centripetal Catmull-Rom interpolation of the input fibres within the volume of a muscle represented by its 3D surface model, automatically distributing the fibres among multiple heads of the muscle and shortening the deep fibres to support large attachment areas with extremely acute angles. Our C++ implementation runs in a couple of seconds on commodity hardware providing realistic results for both artificial and real data sets we tested. The fibres produced by the method can be used directly to determine the personalised mechanical muscle functioning. Our implementation is publicly available for the researchers at https://mi.kiv.zcu.cz/. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Yishan
The influence of various fillers, nucleating agents and ethylene propylene diene terpolymer (EPDM) additive on crystalline modification (alpha-, beta- and smectic forms) and crystalline orientation of polypropylene in die extrudates, melt spun filaments, thick rods, blow molded bottles and injection molded parts of isotactic polypropylene (PP), its blends/compounds and dynamically vulcanized polypropylene thermoplastic elastomers (TPEs) were experimentally studied under a range of cooling and processing conditions. The phenomena of crystallization, polymorphism and orientation in processing of both thin and thick samples (filaments, rods, bottles and injection molded parts) were simulated through transport laws incorporating polymer crystallization kinetics. Continuous cooling transformation (CCT) curves for the various material systems investigated were developed under quiescent and uniaxial stress conditions. We applied experimental data on polymorphism of thin sections to predict crystalline structure variation in thick parts. The predictions were consistent with experiments. For filaments, the polypropylene crystalline orientation-spinline stress relationship is generally similar for the neat PP, blends/compounds and TPEs. However, the blends and TPEs have much lower birefringence apparently due to a lack of orientation in the rubber phase. It was shown that the polypropylene contribution to the birefringence for the neat PP and its blends is the same at the same spinline stress. For bottles, the inflation pressures used have little effect on orientation of either polypropylene crystals or disc-shaped talc filler. The talc discs are highly oriented parallel to the bottle surface. For the bottles without talc, the orientation of polypropylene crystallographic axes are low. The polypropylene crystallographic b-axes in the talc filled bottles are more highly oriented. For injection molded parts, it was found that a low orientation layer exists between the part surface and an intermediate highly oriented layer in the parts of neat PP and its blends/compounds. The thickness of this layer increases as the injection pressure decreases. This layer was not formed in the TPE parts. This would seem to be associated with the TPEs exhibiting a yield stress in shear flow and not exhibiting fountain flow in mold filling. For all parts studied, the orientation characteristics of polypropylene crystallographic axes in the highly oriented layer are similar from sample to sample. The strong orientation of the c-axis parallel to the machine direction and the b-axis perpendicular to the machine direction are observed in the highly oriented layer. The talc discs in both the highly oriented layer and the intermediate position are highly oriented parallel to the part face due to melt flow. At intermediate position in the talc-filled parts, the polypropylene crystallographic (040) planes prefer to align themselves parallel to the part surface but are not so well oriented when the talc is absent.
Faria, Mun Y; Ferreira, Nuno P; Mano, Sofia; Cristóvao, Diana M; Sousa, David C; Monteiro-Grillo, Manuel E
2018-05-01
To provide a spectral-domain optical coherence tomography (SD-OCT)-based analysis of retinal layers thickness and nasal displacement of closed macular hole after internal limiting membrane peeling in macular hole surgery. In this nonrandomized prospective interventional study, 36 eyes of 32 patients were subjected to pars plana vitrectomy and 3.5 mm diameter internal limiting membrane (ILM) peeling for idiopathic macular hole (IMH). Nasal and temporal internal retinal layer thickness were assessed with SD-OCT. Each scan included optic disc border so that distance between optic disc border and fovea were measured. Thirty-six eyes had a successful surgery with macular hole closure. Total nasal retinal thickening (p<0.001) and total temporal retinal thinning (p<0.0001) were observed. Outer retinal layers increased thickness after surgery (nasal p<0.05 and temporal p<0.01). Middle part of inner retinal layers (mIRL) had nasal thickening (p<0.001) and temporal thinning (p<0.05). The mIRL was obtained by deducting ganglion cell layer (GCL) and retinal nerve fiber layer (RNFL) thickness from overall thickness of the inner retinal layer. Papillofoveal distance was shorter after ILM peeling in macular hole surgery (3,651 ± 323 μm preoperatively and 3,361 ± 279 μm at 6 months; p<0.0001). Internal limiting membrane peel is associated with important alteration in inner retinal layer architecture, with thickening of mIRL and shortening of papillofoveal distance. These factors may contribute to recovery of disrupted foveal photoreceptor and vision improvement after IMH closure.
NASA Technical Reports Server (NTRS)
Corke, T. C.; Guezennec, Y.; Nagib, H. M.
1981-01-01
The effects of placing a parallel-plate turbulence manipulator in a boundary layer are documented through flow visualization and hot wire measurements. The boundary layer manipulator was designed to manage the large scale structures of turbulence leading to a reduction in surface drag. The differences in the turbulent structure of the boundary layer are summarized to demonstrate differences in various flow properties. The manipulator inhibited the intermittent large scale structure of the turbulent boundary layer for at least 70 boundary layer thicknesses downstream. With the removal of the large scale, the streamwise turbulence intensity levels near the wall were reduced. The downstream distribution of the skin friction was also altered by the introduction of the manipulator.
Frictional Magneto-Coulomb Drag in Graphene Double-Layer Heterostructures.
Liu, Xiaomeng; Wang, Lei; Fong, Kin Chung; Gao, Yuanda; Maher, Patrick; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Dean, Cory; Kim, Philip
2017-08-04
Coulomb interaction between two closely spaced parallel layers of conductors can generate the frictional drag effect by interlayer Coulomb scattering. Employing graphene double layers separated by few-layer hexagonal boron nitride, we investigate density tunable magneto- and Hall drag under strong magnetic fields. The observed large magnetodrag and Hall-drag signals can be related with Laudau level filling status of the drive and drag layers. We find that the sign and magnitude of the drag resistivity tensor can be quantitatively correlated to the variation of magnetoresistivity tensors in the drive and drag layers, confirming a theoretical formula for magnetodrag in the quantum Hall regime. The observed weak temperature dependence and ∼B^{2} dependence of the magnetodrag are qualitatively explained by Coulomb scattering phase-space argument.
The role of nonlinear critical layers in boundary layer transition
NASA Technical Reports Server (NTRS)
Goldstein, M.E.
1995-01-01
Asymptotic methods are used to describe the nonlinear self-interaction between pairs of oblique instability modes that eventually develops when initially linear spatially growing instability waves evolve downstream in nominally two-dimensional laminar boundary layers. The first nonlinear reaction takes place locally within a so-called 'critical layer', with the flow outside this layer consisting of a locally parallel mean flow plus a pair of oblique instability waves - which may or may not be accompanied by an associated plane wave. The amplitudes of these waves, which are completely determined by nonlinear effects within the critical layer, satisfy either a single integro-differential equation or a pair of integro-differential equations with quadratic to quartic-type nonlinearities. The physical implications of these equations are discussed.
Wang, Zhong L [Marietta, GA; Xu, Sheng [Atlanta, GA
2011-08-23
An electric power generator includes a first conductive layer, a plurality of semiconducting piezoelectric nanostructures, a second conductive layer and a plurality of conductive nanostructures. The first conductive layer has a first surface from which the semiconducting piezoelectric nanostructures extend. The second conductive layer has a second surface and is parallel to the first conductive layer so that the second surface faces the first surface of the first conductive layer. The conductive nanostructures depend downwardly therefrom. The second conductive layer is spaced apart from the first conductive layer at a distance so that when a force is applied, the semiconducting piezoelectric nanostructures engage the conductive nanostructures so that the piezoelectric nanostructures bend, thereby generating a potential difference across the at semiconducting piezoelectric nanostructures and also thereby forming a Schottky barrier between the semiconducting piezoelectric nanostructures and the conductive nanostructures.
Metaporous layer to overcome the thickness constraint for broadband sound absorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jieun; Lee, Joong Seok; Kim, Yoon Young, E-mail: yykim@snu.ac.kr
The sound absorption of a porous layer is affected by its thickness, especially in a low-frequency range. If a hard-backed porous layer contains periodical arrangements of rigid partitions that are coordinated parallel and perpendicular to the direction of incoming sound waves, the lower bound of the effective sound absorption can be lowered much more and the overall absorption performance enhanced. The consequence of rigid partitioning in a porous layer is to make the first thickness resonance mode in the layer appear at much lower frequencies compared to that in the original homogeneous porous layer with the same thickness. Moreover, appropriatemore » partitioning yields multiple thickness resonances with higher absorption peaks through impedance matching. The physics of the partitioned porous layer, or the metaporous layer, is theoretically investigated in this study.« less
NASA Astrophysics Data System (ADS)
Bekele, Zelalem Abebe; Meng, Kangkang; Zhao, Bing; Wu, Yong; Miao, Jun; Xu, Xiaoguang; Jiang, Yong
2017-08-01
Symmetry breaking provides new insight into the physics of spin-orbit torque (SOT) and the switching without a magnetic field could lead to significant impact. In this work, we demonstrate the robust zero-field SOT switching of a perpendicular ferromagnet (FM) layer where the symmetry is broken by a bilayer of heavy metals (HMs) with the strong spin-orbit coupling (SOC). We observed the change of coercivity value by 31% after inserting Co2FeAl in the multilayer structure. These two HM layers (Ta and Pt) are used to strengthen the SOC by linear combination. With different angles between the magnetization and the current (i.e. parallel and anti-parallel), the structures show different switching behaviors such as clockwise or counterclockwise.
Anisotropic Josephson-vortex dynamics in layered organic superconductors
NASA Astrophysics Data System (ADS)
Yasuzuka, S.; Uji, S.; Satsukawa, H.; Kimata, M.; Terashima, T.; Koga, H.; Yamamura, Y.; Saito, K.; Akutsu, H.; Yamada, J.
2010-06-01
To study the anisotropic Josephson-vortex dynamics in the d-wave superconductors, the interplane resistance has been measured on layered organic superconductors κ-(ET)2Cu(NCS)2 and β-(BDA-TTP)2SbF6 under magnetic fields precisely parallel to the conducting planes. For κ-(ET)2Cu(NCS)2, in-plane angular dependence of the Josephson-vortex flow resistance is mainly described by the fourfold symmetry and dip structures appear when the magnetic field is applied parallel to the b- and c-axes. The obtained results have a relation to the d-wave superconducting gap symmetry. However, the absence of in-plane fourfold anisotropy was found for β-(BDA-TTP)2SbF6. The different anisotropic behavior is discussed in terms of the interlayer coupling strength.
A charge inverter for III-nitride light-emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zi-Hui, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn; Zhang, Yonghui; Bi, Wengang, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn
In this work, we propose a charge inverter that substantially increases the hole injection efficiency for InGaN/GaN light-emitting diodes (LEDs). The charge inverter consists of a metal/electrode, an insulator, and a semiconductor, making an Electrode-Insulator-Semiconductor (EIS) structure, which is formed by depositing an extremely thin SiO{sub 2} insulator layer on the p{sup +}-GaN surface of a LED structure before growing the p-electrode. When the LED is forward-biased, a weak inversion layer can be obtained at the interface between the p{sup +}-GaN and SiO{sub 2} insulator. The weak inversion region can shorten the carrier tunnel distance. Meanwhile, the smaller dielectric constantmore » of the thin SiO{sub 2} layer increases the local electric field within the tunnel region, and this is effective in promoting the hole transport from the p-electrode into the p{sup +}-GaN layer. Due to the improved hole injection, the external quantum efficiency is increased by 20% at 20 mA for the 350 × 350 μm{sup 2} LED chip. Thus, the proposed EIS holds great promise for high efficiency LEDs.« less
Stability of parallel electroosmotic flow subject to an axial modulated electric field
NASA Astrophysics Data System (ADS)
Suresh, Vinod; Homsy, George
2001-11-01
The stability of parallel electroosmotic flow in a micro-channel subjected to an AC electric field is studied. A spatially uniform time harmonic electric field is applied along the length of a two-dimensional micro-channel containing a dilute electrolytic solution, resulting in a time periodic parallel flow. The top and bottom walls of the channel are maintained at constant potential. The base state ion concentrations and double layer potential are determined using the Poisson-Boltzmann equation in the Debye-Hückel approximation. Experiments by other workers (Santiago et. al., unpublished) have shown that such a system can exhibit instabilities that take the form of mixing motion occurring in the bulk flow outside the double layer. It is shown that such instabilities can potentially result from the coupling of disturbances in the ion concentrations or electric potential to the base state velocity or ion concentrations, respectively. The stability boundary of the system is determined using Floquet theory and its dependence on the modulation frequency and amplitude of the axial electric field is studied.
NASA Astrophysics Data System (ADS)
Park, George Ilhwan; Moin, Parviz
2016-01-01
This paper focuses on numerical and practical aspects associated with a parallel implementation of a two-layer zonal wall model for large-eddy simulation (LES) of compressible wall-bounded turbulent flows on unstructured meshes. A zonal wall model based on the solution of unsteady three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations on a separate near-wall grid is implemented in an unstructured, cell-centered finite-volume LES solver. The main challenge in its implementation is to couple two parallel, unstructured flow solvers for efficient boundary data communication and simultaneous time integrations. A coupling strategy with good load balancing and low processors underutilization is identified. Face mapping and interpolation procedures at the coupling interface are explained in detail. The method of manufactured solution is used for verifying the correct implementation of solver coupling, and parallel performance of the combined wall-modeled LES (WMLES) solver is investigated. The method has successfully been applied to several attached and separated flows, including a transitional flow over a flat plate and a separated flow over an airfoil at an angle of attack.
Multilayer perceptron architecture optimization using parallel computing techniques.
Castro, Wilson; Oblitas, Jimy; Santa-Cruz, Roberto; Avila-George, Himer
2017-01-01
The objective of this research was to develop a methodology for optimizing multilayer-perceptron-type neural networks by evaluating the effects of three neural architecture parameters, namely, number of hidden layers (HL), neurons per hidden layer (NHL), and activation function type (AF), on the sum of squares error (SSE). The data for the study were obtained from quality parameters (physicochemical and microbiological) of milk samples. Architectures or combinations were organized in groups (G1, G2, and G3) generated upon interspersing one, two, and three layers. Within each group, the networks had three neurons in the input layer, six neurons in the output layer, three to twenty-seven NHL, and three AF (tan-sig, log-sig, and linear) types. The number of architectures was determined using three factorial-type experimental designs, which reached 63, 2 187, and 50 049 combinations for G1, G2 and G3, respectively. Using MATLAB 2015a, a logical sequence was designed and implemented for constructing, training, and evaluating multilayer-perceptron-type neural networks using parallel computing techniques. The results show that HL and NHL have a statistically relevant effect on SSE, and from two hidden layers, AF also has a significant effect; thus, both AF and NHL can be evaluated to determine the optimal combination per group. Moreover, in the three study groups, it is observed that there is an inverse relationship between the number of processors and the total optimization time.
Global stability analysis of axisymmetric boundary layer over a circular cylinder
NASA Astrophysics Data System (ADS)
Bhoraniya, Ramesh; Vinod, Narayanan
2018-05-01
This paper presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of 2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.
Multilayer perceptron architecture optimization using parallel computing techniques
Castro, Wilson; Oblitas, Jimy; Santa-Cruz, Roberto; Avila-George, Himer
2017-01-01
The objective of this research was to develop a methodology for optimizing multilayer-perceptron-type neural networks by evaluating the effects of three neural architecture parameters, namely, number of hidden layers (HL), neurons per hidden layer (NHL), and activation function type (AF), on the sum of squares error (SSE). The data for the study were obtained from quality parameters (physicochemical and microbiological) of milk samples. Architectures or combinations were organized in groups (G1, G2, and G3) generated upon interspersing one, two, and three layers. Within each group, the networks had three neurons in the input layer, six neurons in the output layer, three to twenty-seven NHL, and three AF (tan-sig, log-sig, and linear) types. The number of architectures was determined using three factorial-type experimental designs, which reached 63, 2 187, and 50 049 combinations for G1, G2 and G3, respectively. Using MATLAB 2015a, a logical sequence was designed and implemented for constructing, training, and evaluating multilayer-perceptron-type neural networks using parallel computing techniques. The results show that HL and NHL have a statistically relevant effect on SSE, and from two hidden layers, AF also has a significant effect; thus, both AF and NHL can be evaluated to determine the optimal combination per group. Moreover, in the three study groups, it is observed that there is an inverse relationship between the number of processors and the total optimization time. PMID:29236744
Fabricating with crystalline Si to improve superconducting detector performance
NASA Astrophysics Data System (ADS)
Beyer, A. D.; Hollister, M. I.; Sayers, J.; Frez, C. F.; Day, P. K.; Golwala, S. R.
2017-05-01
We built and measured radio-frequency (RF) loss tangent, tan δ, evaluation structures using float-zone quality silicon-on-insulator (SOI) wafers with 5 μm thick device layers. Superconducting Nb components were fabricated on both sides of the SOI Si device layer. Our main goals were to develop a robust fabrication for using crystalline Si (c-Si) dielectric layers with superconducting Nb components in a wafer bonding process and to confirm that tan δ with c-Si dielectric layers was reduced at RF frequencies compared to devices fabricated with amorphous dielectrics, such as SiO2 and SixNy, where tan δ ∼ 10-3. Our primary test structure used a Nb coplanar waveguide (CPW) readout structure capacitively coupled to LC resonators, where the capacitors were defined as parallel-plate capacitors on both sides of a c-Si device layer using a wafer bonding process with benzocyclobutene (BCB) wafer bonding adhesive. Our control experiment, to determine the intrinsic tan δ in the SOI device layer without wafer bonding, also used Nb CPW readout coupled to LC resonators; however, the parallel-plate capacitors were fabricated on both sides of the Si device layer using a deep reactive ion etch (DRIE) to access the c-Si underside through the buried oxide and handle Si layers in the SOI wafers. We found that our wafer bonded devices demonstrated F· δ = (8 ± 2) × 10-5, where F is the filling fraction of two-level states (TLS). For the control experiment, F· δ = (2.0 ± 0.6) × 10-5, and we discuss what may be degrading the performance in the wafer bonded devices as compared to the control devices.
Wensveen, Paul J; Huijser, Léonie A E; Hoek, Lean; Kastelein, Ronald A
2016-01-01
Loudness perception can be studied based on the assumption that sounds of equal loudness elicit equal reaction time (RT; or "response latency"). We measured the underwater RTs of a harbor porpoise to narrowband frequency-modulated sounds and constructed six equal-latency contours. The contours paralleled the audiogram at low sensation levels (high RTs). At high-sensation levels, contours flattened between 0.5 and 31.5 kHz but dropped substantially (RTs shortened) beyond those frequencies. This study suggests that equal-latency-based frequency weighting can emulate noise perception in porpoises for low and middle frequencies but that the RT-loudness correlation is relatively weak for very high frequencies.
Brachytherapy next generation: robotic systems
Popescu, Tiberiu; Kacsó, Alex Cristian; Pisla, Doina
2015-01-01
In a field dominated by external beam radiation therapy (EBRT), both the therapeutic and technical possibilities of brachytherapy (BT) are underrated, shadowed by protons and intensity modulated radiotherapy. Decreasing expertise and indications, as well as increasing lack of specific BT training for radiation therapy (RT) residents led to the real need of shortening its learning curve and making it more popular. Developing robotic BT devices can be a way to mitigate the above issues. There are many teams working at custom-made robotic BT platforms to perfect and overcome the limitations of the existing systems. This paper provides a picture of the current state-of-the-art in robotic assisted BT, as it also conveys the author's solution to the problem, a parallel robot that uses CT-guidance. PMID:26816510
Montori, Victor M; Kim, Simon P; Guyatt, Gordon H; Shah, Nilay D
2012-05-01
In this paper, we explore the relative value that different methods offer in answering some stereotypical comparative effectiveness research questions with the goal of informing development of a 'translation table'--a selection tool for choosing appropriate methods for specific comparative effectiveness research questions. This paper was written as a parallel effort to Greenfield and Kaplan (also in this volume) to support the endeavor described in the manuscript by Tunis et al. (also in this volume). Originally based on four cases, the current article has been shortened to two cases for the current discussion. These cases represent research priorities proposed to orient the work of the Patient-Centered Outcomes Research Institute, comparative clinical effectiveness and comparative health services.
GPU accelerated FDTD solver and its application in MRI.
Chi, J; Liu, F; Jin, J; Mason, D G; Crozier, S
2010-01-01
The finite difference time domain (FDTD) method is a popular technique for computational electromagnetics (CEM). The large computational power often required, however, has been a limiting factor for its applications. In this paper, we will present a graphics processing unit (GPU)-based parallel FDTD solver and its successful application to the investigation of a novel B1 shimming scheme for high-field magnetic resonance imaging (MRI). The optimized shimming scheme exhibits considerably improved transmit B(1) profiles. The GPU implementation dramatically shortened the runtime of FDTD simulation of electromagnetic field compared with its CPU counterpart. The acceleration in runtime has made such investigation possible, and will pave the way for other studies of large-scale computational electromagnetic problems in modern MRI which were previously impractical.
Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction System
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)
2014-01-01
A novel full piezoelectric multilayer stacked hybrid actuation/transduction system. The system demonstrates significantly-enhanced electromechanical performance by utilizing the cooperative contributions of the electromechanical responses of multilayer stacked negative and positive strain components. Both experimental and theoretical studies indicate that for this system, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The system consists of at least 2 layers which include electromechanically active components. The layers are arranged such that when electric power is applied, one layer contracts in a transverse direction while the second layer expands in a transverse direction which is perpendicular to the transverse direction of the first layer. An alternate embodiment includes a third layer. In this embodiment, the outer two layers contract in parallel transverse directions while the middle layer expands in a transverse direction which is perpendicular to the transverse direction of the outer layers.
Reliability Analysis and Modeling of ZigBee Networks
NASA Astrophysics Data System (ADS)
Lin, Cheng-Min
The architecture of ZigBee networks focuses on developing low-cost, low-speed ubiquitous communication between devices. The ZigBee technique is based on IEEE 802.15.4, which specifies the physical layer and medium access control (MAC) for a low rate wireless personal area network (LR-WPAN). Currently, numerous wireless sensor networks have adapted the ZigBee open standard to develop various services to promote improved communication quality in our daily lives. The problem of system and network reliability in providing stable services has become more important because these services will be stopped if the system and network reliability is unstable. The ZigBee standard has three kinds of networks; star, tree and mesh. The paper models the ZigBee protocol stack from the physical layer to the application layer and analyzes these layer reliability and mean time to failure (MTTF). Channel resource usage, device role, network topology and application objects are used to evaluate reliability in the physical, medium access control, network, and application layers, respectively. In the star or tree networks, a series system and the reliability block diagram (RBD) technique can be used to solve their reliability problem. However, a division technology is applied here to overcome the problem because the network complexity is higher than that of the others. A mesh network using division technology is classified into several non-reducible series systems and edge parallel systems. Hence, the reliability of mesh networks is easily solved using series-parallel systems through our proposed scheme. The numerical results demonstrate that the reliability will increase for mesh networks when the number of edges in parallel systems increases while the reliability quickly drops when the number of edges and the number of nodes increase for all three networks. More use of resources is another factor impact on reliability decreasing. However, lower network reliability will occur due to network complexity, more resource usage and complex object relationship.
NASA Astrophysics Data System (ADS)
Mackowski, Daniel; Ramezanpour, Bahareh
2018-07-01
A formulation is developed for numerically solving the frequency domain Maxwell's equations in plane parallel layers of inhomogeneous media. As was done in a recent work [1], the plane parallel layer is modeled as an infinite square lattice of W × W × H unit cells, with W being a sample width of the layer and H the layer thickness. As opposed to the 3D volume integral/discrete dipole formulation, the derivation begins with a Fourier expansion of the electric field amplitude in the lateral plane, and leads to a coupled system of 1D ordinary differential equations in the depth direction of the layer. A 1D dyadic Green's function is derived for this system and used to construct a set of coupled 1D integral equations for the field expansion coefficients. The resulting mathematical formulation is considerably simpler and more compact than that derived, for the same system, using the discrete dipole approximation applied to the periodic plane lattice. Furthermore, the fundamental property variable appearing in the formulation is the Fourier transformed complex permittivity distribution in the unit cell, and the method obviates any need to define or calculate a dipole polarizability. Although designed primarily for random media calculations, the method is also capable of predicting the single scattering properties of individual particles; comparisons are presented to demonstrate that the method can accurately reproduce, at scattering angles not too close to 90°, the polarimetric scattering properties of single and multiple spheres. The derivation of the dyadic Green's function allows for an analytical preconditioning of the equations, and it is shown that this can result in significantly accelerated solution times when applied to densely-packed systems of particles. Calculation results demonstrate that the method, when applied to inhomogeneous media, can predict coherent backscattering and polarization opposition effects.
NASA Astrophysics Data System (ADS)
Hubble, Thomas; De Carli, Elyssa; Airey, David; Breakfree 2012-2013, Scientific Parties MV
2014-05-01
The peak of the recent prolonged 'Millennium Drought' (1997-2011) triggered an episode of widespread mass failure in the alluvial river-banks of the Lower Murray River in South Australia. Multi-beam surveying of the channel and submerged river-banks between Mannum and Murray Bridge and coring of the bank sediments has been undertaken in sections of the river where large bank failures threatened private housing or public infrastructure. This data demonstrates that the bank materials are soft, horizontally-layered muds and that translational, planar slab-slides have frequently occurred in permanently submerged portions of the Murray's river banks. Despite these riverine features being several orders of magnitude smaller than the translational submarine landslides of the continental margins, the submerged river-bank slides are strikingly similar in their morphology to their submarine equivalents. Intriguingly, the Murray River translational slide failure-surfaces are usually developed as river-floor-parallel features in a manner similar to many submarine landslides which present failure-surfaces that are developed on seafloor-parallel, bedding planes. In contrast however, the Murray's river-bank slides occur on steep slopes (>20o) and their failure surfaces must cut across the horizontal laminations and layering of the muds at a relative high angle which removes the possibility of a weak sediment layer being responsible for the occurrence of these failures. Modelling of the river-bank failures with classical soil mechanics methods and the measured physical properties of the river-bank materials indicates that the failures are probably a consequence of flood-flow scour removing the bank-slope toe in combination with pore-pressure effects related to river-level fluctuation (ie. drawdown). Nevertheless, the Murray's translational slab-slides provide a reliable example of slope-parallel planar failure in muds that does not require a stratigraphic weak layer to explain the occurrence of those failures.
A psychoanalyst views inception.
Clemens, Norman A
2013-05-01
The author, a psychoanalyst, discusses the 2010 film, Inception, discerning the parallels and differences between cinematic dreaming states as shown in the film and psychoanalytic processes. The movie presents the unknown and un-psychoanalytic phenomena of group shared dreaming, manipulation of other people's dreams with criminal intent, and multiple structured layers of dreaming. In parallel, however, the lead character appears to work through a complicated state of derealization, mourning, guilt, rage, and loss in the course of dreaming.
Ureter smooth muscle cell orientation in rat is predominantly longitudinal.
Spronck, Bart; Merken, Jort J; Reesink, Koen D; Kroon, Wilco; Delhaas, Tammo
2014-01-01
In ureter peristalsis, the orientation of the contracting smooth muscle cells is essential, yet current descriptions of orientation and composition of the smooth muscle layer in human as well as in rat ureter are inconsistent. The present study aims to improve quantification of smooth muscle orientation in rat ureters as a basis for mechanistic understanding of peristalsis. A crucial step in our approach is to use two-photon laser scanning microscopy and image analysis providing objective, quantitative data on smooth muscle cell orientation in intact ureters, avoiding the usual sectioning artifacts. In 36 rat ureter segments, originating from a proximal, middle or distal site and from a left or right ureter, we found close to the adventitia a well-defined longitudinal smooth muscle orientation. Towards the lamina propria, the orientation gradually became slightly more disperse, yet the main orientation remained longitudinal. We conclude that smooth muscle cell orientation in rat ureter is predominantly longitudinal, though the orientation gradually becomes more disperse towards the proprial side. These findings do not support identification of separate layers. The observed longitudinal orientation suggests that smooth muscle contraction would rather cause local shortening of the ureter, than cause luminal constriction. However, the net-like connective tissue of the ureter wall may translate local longitudinal shortening into co-local luminal constriction, facilitating peristalsis. Our quantitative, minimally invasive approach is a crucial step towards more mechanistic insight into ureter peristalsis, and may also be used to study smooth muscle cell orientation in other tube-like structures like gut and blood vessels.
NASA Astrophysics Data System (ADS)
Vásquez Serrano, Alberto; Tolson, Gustavo; Fitz Diaz, Elisa; Chávez Cabello, Gabriel
2018-04-01
The Mexican fold-thrust belt in central México excellently exposes relatively well preserved syntectonic deposits that overlay rocks with lateral lithostratigraphic changes across the belt. We consider the deformational effects of these changes by investigating the geometry, kinematics and strain distribution within syntectonic turbidites, which are deposited on top of Albian-Cenomanian shallow and deep water carbonate layers. Field observations and detailed structural analysis at different stratigraphic and structural levels of the Late Cretaceous syntectonic formation are compared with the deformation as a function of lithological and structural variations in the underlying carbonate units, to better understand the effect of these lithostratigraphic variations on deformation, kinematics, strain distribution and propagation of deformation. From our kinematic analyses, we conclude that the syntectonic strata are pervasively affected by folding in all areas and that deformation partitioning localized shear zones at the boundaries of this unit, particularly along the contact with massive carbonates. At the boundaries with massive platformal carbonates, the turbidites are strongly deformed by isoclinal folding with a pervasive sub-horizontal axial plane cleavage and 70-60% shortening. In contrast, contacts with thinly-bedded carbonate layers (basinal facies), do not show strain localization, and have horizontal shortening of 50-40% that is accommodated by buckle folds with a less pervasive, steeply dipping cleavage. The mechanical properties variations in the underlying pre-tectonic units as a function of changes in lithostratigraphy fundamentally control the deformation in the overlying syntectonic strata, which is an effect that could be expected to occur in any deformed sedimentary sequence with such variations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimoto, Keizo, E-mail: keizo.fujimoto@nao.ac.jp; Takamoto, Makoto
2016-01-15
We have investigated the ion and electron dynamics generating the Hall current in the reconnection exhaust far downstream of the x-line where the exhaust width is much larger than the ion gyro-radius. A large-scale particle-in-cell simulation shows that most ions are accelerated through the Speiser-type motion in the current sheet formed at the center of the exhaust. The transition layers formed at the exhaust boundary are not identified as slow mode shocks. (The layers satisfy mostly the Rankine-Hugoniot conditions for a slow mode shock, but the energy conversion hardly occurs there.) We find that the ion drift velocity is modifiedmore » around the layer due to a finite Larmor radius effect. As a result, the ions are accumulated in the downstream side of the layer, so that collimated ion jets are generated. The electrons experience two steps of acceleration in the exhaust. The first is a parallel acceleration due to the out-of-plane electric field E{sub y} which has a parallel component in most area of the exhaust. The second is a perpendicular acceleration due to E{sub y} at the center of the current sheet and the motion is converted to the parallel direction. Because of the second acceleration, the electron outflow velocity becomes almost uniform over the exhaust. The difference in the outflow profile between the ions and electrons results in the Hall current in large area of the exhaust. The present study demonstrates the importance of the kinetic treatments for collisionless magnetic reconnection even far downstream from the x-line.« less
Wang, Yong-Lei; Golets, Mikhail; Li, Bin; Sarman, Sten; Laaksonen, Aatto
2017-02-08
Atomistic molecular dynamics simulations have been performed to study microscopic the interfacial ionic structures, molecular arrangements, and orientational preferences of trihexyltetradecylphosphonium-bis(mandelato)borate ([P 6,6,6,14 ][BMB]) ionic liquid confined between neutral and charged gold electrodes. It was found that both [P 6,6,6,14 ] cations and [BMB] anions are coabsorbed onto neutral electrodes at different temperatures. The hexyl and tetradecyl chains in [P 6,6,6,14 ] cations lie preferentially flat on neutral electrodes. The oxalato and phenyl rings in [BMB] anions are characterized by alternative parallel-perpendicular orientations in the mixed innermost ionic layer adjacent to neutral electrodes. An increase in temperature has a marginal effect on the interfacial ionic structures and molecular orientations of [P 6,6,6,14 ][BMB] ionic species in a confined environment. Electrifying gold electrodes leads to peculiar changes in the interfacial ionic structures and molecular orientational arrangements of [P 6,6,6,14 ] cations and [BMB] anions in negatively and positively charged gold electrodes, respectively. As surface charge density increases (but lower than 20 μC/cm 2 ), the layer thickness of the mixed innermost interfacial layer gradually increases due to a consecutive accumulation of [P 6,6,6,14 ] cations and [BMB] anions at negatively and positively charged electrodes, respectively, before the formation of distinct cationic and anionic innermost layers. Meanwhile, the molecular orientations of two oxalato rings in the same [BMB] anions change gradually from a parallel-perpendicular feature to being partially characterized by a tilted arrangement at an angle of 45° from the electrodes and finally to a dominant parallel coordination pattern along positively charged electrodes. Distinctive interfacial distribution patterns are also observed accordingly for phenyl rings that are directly connected to neighboring oxalato rings in [BMB] anions.
Broadband Venetian-Blind Polarizer With Dual Vanes
NASA Technical Reports Server (NTRS)
Conroy, Bruce L.; Hoppe, Daniel J.
1995-01-01
Improved venetian-blind polarizer features optimized tandem, two-layer vane configuration reducing undesired reflections and deformation of radiation pattern below those of prior single-layer vane configuration. Consists of number of thin, parallel metal strips placed in path of propagating radio-frequency beam. Offers simple way to convert polarization from linear to circular or from circular to linear. Particularly useful for beam-wave-guide applications.
When interflow also percolates: downslope travel distances and hillsclope process zones
C. Rhett Jackson; Menberu Bitew; Enhao Du
2014-01-01
In hillslopes with soils characterized by deep regoliths, such as Ultisols, Oxisols, and Alfisols, interflow occurs episodically over impeding layers near and parallel to the soil surface such as low-conductivity B horizons (e.g.Newman et al., 1998; Buttle and McDonald, 2002; Du et al., In Review), till layers (McGlynn et al., 1999; Bishop et al., 2004), hardpans (...
Micro hollow cathode discharge jets utilizing solid fuel
NASA Astrophysics Data System (ADS)
Nikic, Dejan
2017-10-01
Micro hollow cathode discharge devices with a solid fuel layer embedded between the electrodes have demonstrated an enhanced jetting process. Outlined are series of experiments in various pressure and gas conditions as well as vacuum. Examples of use of these devices in series and parallel configurations are presented. Evidence of utilization of solid fuel is obtained through optical spectroscopy and analysis of remaining fuel layer.
NASA Astrophysics Data System (ADS)
Camara, N.; Zekentes, K.; Zelenin, V. V.; Abramov, P. L.; Kirillov, A. V.; Romanov, L. P.; Boltovets, N. S.; Krivutsa, V. A.; Thuaire, A.; Bano, E.; Tsoi, E.; Lebedev, A. A.
2008-02-01
Sublimation epitaxy under vacuum (SEV) was investigated as a method for growing 4H-SiC epitaxial structures for p-i-n diode fabrication. The SEV-grown 4H-SiC material was investigated with scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction, photo-luminescence spectroscopy (PL), cathodo-luminescence (CL) spectroscopy, photocurrent method for carrier diffusion length determination, electro-luminescence microscopy (EL), deep level transient spectroscopy (DLTS), C-V profiling and Hall-effect measurements. When possible, the same investigation techniques were used in parallel with similar layers grown by chemical vapour deposition (CVD) epitaxy and the physical properties of the two kind of epitaxied layers were compared. p-i-n diodes were fabricated in parallel on SEV and CVD-grown layers and showed close electrical performances in dc mode in term of capacitance, resistance and transient time switching, despite the lower mobility and the diffusion length of the SEV-grown layers. X-band microwave switches based on the SEV-grown p-i-n diodes have been demonstrated with insertion loss lower than 4 dB and an isolation higher than 17 dB. These single-pole single-throw (SPST) switches were able to handle a pulsed power up to 1800 W in isolation mode, similar to the value obtained with switches incorporating diodes with CVD-grown layers.
On the Lagrangian description of unsteady boundary-layer separation. I - General theory
NASA Technical Reports Server (NTRS)
Van Dommelen, Leon L.; Cowley, Stephen J.
1990-01-01
Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.
On the Lagrangian description of unsteady boundary layer separation. Part 1: General theory
NASA Technical Reports Server (NTRS)
Vandommelen, Leon L.; Cowley, Stephen J.
1989-01-01
Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.
Absolute/convective secondary instabilities and the role of confinement in free shear layers
NASA Astrophysics Data System (ADS)
Arratia, Cristóbal; Mowlavi, Saviz; Gallaire, François
2018-05-01
We study the linear spatiotemporal stability of an infinite row of equal point vortices under symmetric confinement between parallel walls. These rows of vortices serve to model the secondary instability leading to the merging of consecutive (Kelvin-Helmholtz) vortices in free shear layers, allowing us to study how confinement limits the growth of shear layers through vortex pairings. Using a geometric construction akin to a Legendre transform on the dispersion relation, we compute the growth rate of the instability in different reference frames as a function of the frame velocity with respect to the vortices. This approach is verified and complemented with numerical computations of the linear impulse response, fully characterizing the absolute/convective nature of the instability. Similar to results by Healey on the primary instability of parallel tanh profiles [J. Fluid Mech. 623, 241 (2009), 10.1017/S0022112008005284], we observe a range of confinement in which absolute instability is promoted. For a parallel shear layer with prescribed confinement and mixing length, the threshold for absolute/convective instability of the secondary pairing instability depends on the separation distance between consecutive vortices, which is physically determined by the wavelength selected by the previous (primary or pairing) instability. In the presence of counterflow and moderate to weak confinement, small (large) wavelength of the vortex row leads to absolute (convective) instability. While absolute secondary instabilities in spatially developing flows have been previously related to an abrupt transition to a complex behavior, this secondary pairing instability regenerates the flow with an increased wavelength, eventually leading to a convectively unstable row of vortices. We argue that since the primary instability remains active for large wavelengths, a spatially developing shear layer can directly saturate on the wavelength of such a convectively unstable row, by-passing the smaller wavelengths of absolute secondary instability. This provides a wavelength selection mechanism, according to which the distance between consecutive vortices should be sufficiently large in comparison with the channel width in order for the row of vortices to persist. We argue that the proposed wavelength selection criteria can serve as a guideline for experimentally obtaining plane shear layers with counterflow, which has remained an experimental challenge.
Settgast, Randolph R.; Fu, Pengcheng; Walsh, Stuart D. C.; ...
2016-09-18
This study describes a fully coupled finite element/finite volume approach for simulating field-scale hydraulically driven fractures in three dimensions, using massively parallel computing platforms. The proposed method is capable of capturing realistic representations of local heterogeneities, layering and natural fracture networks in a reservoir. A detailed description of the numerical implementation is provided, along with numerical studies comparing the model with both analytical solutions and experimental results. The results demonstrate the effectiveness of the proposed method for modeling large-scale problems involving hydraulically driven fractures in three dimensions.
Qu, Ting; Zhao, Yongbin; Li, Zongbo; Wang, Pingping; Cao, Shubo; Xu, Yawei; Li, Yayuan; Chen, Aihua
2016-02-14
The orientation transition from perpendicular to parallel alignment of PEO cylindrical domains of PEO-b-PMA(Az) films has been demonstrated by extruding the block copolymer (BCP) solutions through a micropore of a plastic gastight syringe. The parallelized orientation of PEO domains induced by this micropore extrusion can be recovered to perpendicular alignment via ultrasonication of the extruded BCP solutions and subsequent annealing. A plausible mechanism is proposed in this study. The BCP films can be used as templates to prepare nanowire arrays with controlled layers, which has enormous potential application in the field of integrated circuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Settgast, Randolph R.; Fu, Pengcheng; Walsh, Stuart D. C.
This study describes a fully coupled finite element/finite volume approach for simulating field-scale hydraulically driven fractures in three dimensions, using massively parallel computing platforms. The proposed method is capable of capturing realistic representations of local heterogeneities, layering and natural fracture networks in a reservoir. A detailed description of the numerical implementation is provided, along with numerical studies comparing the model with both analytical solutions and experimental results. The results demonstrate the effectiveness of the proposed method for modeling large-scale problems involving hydraulically driven fractures in three dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Chin; Corttrell, R. A.
This Technical Note provides an overview of high-performance parallel Big Data transfers with and without encryption for data in-transit over multiple network channels. It shows that with the parallel approach, it is feasible to carry out high-performance parallel "encrypted" Big Data transfers without serious impact to throughput. But other impacts, e.g. the energy-consumption part should be investigated. It also explains our rationales of using a statistics-based approach for gaining understanding from test results and for improving the system. The presentation is of high-level nature. Nevertheless, at the end we will pose some questions and identify potentially fruitful directions for futuremore » work.« less
2011-01-01
Background Seed shattering, or shedding, is an important fitness trait for wild and weedy grasses. U.S. weedy rice (Oryza sativa) is a highly shattering weed, thought to have evolved from non-shattering cultivated ancestors. All U.S. weedy rice individuals examined to date contain a mutation in the sh4 locus associated with loss of shattering during rice domestication. Weedy individuals also share the shattering trait with wild rice, but not the ancestral shattering mutation at sh4; thus, how weedy rice reacquired the shattering phenotype is unknown. To establish the morphological basis of the parallel evolution of seed shattering in weedy rice and wild, we examined the abscission layer at the flower-pedicel junction in weedy individuals in comparison with wild and cultivated relatives. Results Consistent with previous work, shattering wild rice individuals possess clear, defined abscission layers at flowering, whereas non-shattering cultivated rice individuals do not. Shattering weedy rice from two separately evolved populations in the U.S. (SH and BHA) show patterns of abscission layer formation and degradation distinct from wild rice. Prior to flowering, the abscission layer has formed in all weedy individuals and by flowering it is already degrading. In contrast, wild O. rufipogon abscission layers have been shown not to degrade until after flowering has occurred. Conclusions Seed shattering in weedy rice involves the formation and degradation of an abscission layer in the flower-pedicel junction, as in wild Oryza, but is a developmentally different process from shattering in wild rice. Weedy rice abscission layers appear to break down earlier than wild abscission layers. The timing of weedy abscission layer degradation suggests that unidentified regulatory genes may play a critical role in the reacquisition of shattering in weedy rice, and sheds light on the morphological basis of parallel evolution for shattering in weedy and wild rice. PMID:21235796
Thurber, Carrie S; Hepler, Peter K; Caicedo, Ana L
2011-01-14
Seed shattering, or shedding, is an important fitness trait for wild and weedy grasses. U.S. weedy rice (Oryza sativa) is a highly shattering weed, thought to have evolved from non-shattering cultivated ancestors. All U.S. weedy rice individuals examined to date contain a mutation in the sh4 locus associated with loss of shattering during rice domestication. Weedy individuals also share the shattering trait with wild rice, but not the ancestral shattering mutation at sh4; thus, how weedy rice reacquired the shattering phenotype is unknown. To establish the morphological basis of the parallel evolution of seed shattering in weedy rice and wild, we examined the abscission layer at the flower-pedicel junction in weedy individuals in comparison with wild and cultivated relatives. Consistent with previous work, shattering wild rice individuals possess clear, defined abscission layers at flowering, whereas non-shattering cultivated rice individuals do not. Shattering weedy rice from two separately evolved populations in the U.S. (SH and BHA) show patterns of abscission layer formation and degradation distinct from wild rice. Prior to flowering, the abscission layer has formed in all weedy individuals and by flowering it is already degrading. In contrast, wild O. rufipogon abscission layers have been shown not to degrade until after flowering has occurred. Seed shattering in weedy rice involves the formation and degradation of an abscission layer in the flower-pedicel junction, as in wild Oryza, but is a developmentally different process from shattering in wild rice. Weedy rice abscission layers appear to break down earlier than wild abscission layers. The timing of weedy abscission layer degradation suggests that unidentified regulatory genes may play a critical role in the reacquisition of shattering in weedy rice, and sheds light on the morphological basis of parallel evolution for shattering in weedy and wild rice.
Magnetohydrodynamic generator electrode
Marchant, David D.; Killpatrick, Don H.; Herman, Harold; Kuczen, Kenneth D.
1979-01-01
An improved electrode for use as a current collector in the channel of a magnetohydrodynamid (MHD) generator utilizes an elongated monolithic cap of dense refractory material compliantly mounted to the MHD channel frame for collecting the current. The cap has a central longitudinal channel which contains a first layer of porous refractory ceramic as a high-temperature current leadout from the cap and a second layer of resilient wire mesh in contact with the first layer as a low-temperature current leadout between the first layer and the frame. Also described is a monolithic ceramic insulator compliantly mounted to the frame parallel to the electrode by a plurality of flexible metal strips.
NASA Astrophysics Data System (ADS)
Wex, Sebastian; Mancktelow, Neil; Hawemann, Friedrich; Camacho, Alfredo; Pennacchioni, Giorgio
2014-05-01
The Musgrave Ranges in Central Australia provide excellent exposure of the shallowly south-dipping Woodroffe Thrust, which placed ~1200 Ma granulites onto amphibolite facies gneisses. This ~400 km long E-W structure developed under mid-crustal conditions during the intracratonic Petermann Orogeny around 550 Ma. From field observations and measurements, the shortening direction is constrained to be N-S and the movement sense top-to-north. Ductile deformation during this process almost entirely localized in the footwall rocks, developing a zone of mylonites, ultramylonites and sheared pseudotachylytes, several hundred metres wide, with pseudotachylyte abundance rapidly decreasing further into the footwall. In contrast, the hanging wall behaved in a predominantly brittle manner, producing significant volumes of pseudotachylyte breccia and isolated veins, but was otherwise mostly unaffected and only weakly foliated. The difference in rheological behaviour is reflected in the pseudotachylyte fabric, which is dominantly sheared in the footwall and largely unsheared in the hanging wall. Low-strain domains in the footwall show that localized shearing initiated along pseudotachylyte veins and that shear zones and mylonitic foliations were in turn exploited by subsequent pseudotachylyte veins. Neither phyllonitization nor synkinematic growth of new muscovite is observed. In contrast to models with a simple brittle-to-viscous transition, these observations show that a continuous cycle of brittle fracturing and shearing is active in dry mid-crustal environments. The products of multiple earthquakes and ductile overprint, repeatedly exploiting the same structural discontinuity, are composite layers of sheared pseudotachylyte. In the Woodroffe Thrust, these layers are numerous and frequently observed parallel to the foliation in the footwall mylonites. The thickest of these sheared pseudotachylyte horizons (~15 m thick) mark the immediate contact to the hanging wall and almost entirely consist of pseudotachylyte matrix. Particularly in the footwall, but locally also in the hanging wall, shear strain can additionally be concentrated along the margins of dolerite dykes, whose mineral assemblages will be studied to determine the metamorphic conditions that were active during development of the Woodroffe Thrust.
NASA Astrophysics Data System (ADS)
Mertineit, M.; Zulauf, G.; Peinl, M.; Zanella, F.; Bornemann, O.
2009-04-01
Anhydrite layers from Gorleben salt dome, embedded in a halite matrix from Asse salt dome, both northern Germany, were deformed under bulk plain strain using a thermomechenical apparatus (Zulauf et al., 2007, 2009). The initial layer thickness Hi ranges from 0.85 to 2.5 mm. Further deformation conditions were as follows: T =345Ë C, max=4.59 MPa, ezmax=-40%, Ä-=2*10-7s-1. During the deformation process, load cells record the stress along Y and Z. The displaced material could escape in X. The deformed samples were scanned using a computer tomograph at the Universitätsklinikum Frankfurt/Main. The CT data allow the generation of 3D-modells using the software Smoooth. We deformed six samples with the layer (S) perpendicular to the X-axis and four samples with the layer perpendicular to the Z-axis. Depending on the orientation of the layer (Sâ¥X or Sâ¥Z), the expected structures should be folds or boudins, respectively, the geometry of which should strongly depend on Hi. In cases were the layer was orientated parallel to the shortening axis (Sâ¥X), the anhydrite layer shows Mohr-Coulomb fractures. The fracture walls were thrust on top of each other. The space between hanging and foot wall is filled with salt. The angle between the fractures and the YZ-plain ranges from 10Ë to 25Ë , rarely up to 70Ë , dependent on the finite strain. In thin layers (Hi=0.85 and 1 mm) rarely non-cylindrical folds developed. In both cases (Sâ¥X and Sâ¥Z) the layer thickness did not significantly change during deformation. In cases were the layer was orientated perpendicular to the shortening axis (Sâ¥Z) boudins developed by extensional fracture. The number of boudins and their size depend strongly on the initial layer thickness Hi. With increasing layer thickness Hi the width of boudins Wa increases linearly. Wa = -0.2 + 1.4 * Hi (1) This relation between Hi and Wa is further compatible with equation (16.4) of Price and Cosgrove (1990) which also considers rheological parameters. Moreover experiments carried out under bulk constrictional strain (Zulauf et al., 2007, 2009) show a similar dependency of the initial layer thickness and boudin width. For microstructual investigations of the halite matrix, thin sections (XZ- and YZ-sections) were prepared and etched following the method of Urai et al. (1987). First microfabric data show that halite behaves viscous whereas anhydrite deforms by fracturing or rare folding under the chosen deformation conditions. Halite deforms by climb-controlled dislocation creep with strain hardening (Carter et al., 1993). Anhydrite, on the other hand, was deformed in the brittle-plastic regime, characterized by twinning, kinking and fracturing. The subgrain size of halite has been used to estimate the differential stress (Schléder & Urai, 2005, 2007), that was compared with the stress recorded by the load cells. The subgrain size of deformed halite varies between 0.04 and 0.07mm, resulting in differential stresses between 3.3 +1.5/-0.8 MPa (Sâ¥X) and 4.2 +3.0/-1.2 MPa (Sâ¥Z), although the conditions for piezometry are not completely fulfilled (e.g. lack of steady state during deformation in some samples). These stress values in the matrix fit with the stress values recorded during deformation. Close to rigid anhydrite the subgrain size decreases to values of 0.02 - 0.03 mm, reflecting peak stress up to 6.7 +3.7/-0.7 MPa. We do not know the reasons why folding of the anhydrite layer is largely lacking, although the viscosity contrast between halite and anhydrite should be appropriate for folding. Possible reasons are the lack in confining pressure or mechanical anisotropies in the undeformed anhydrite. Further investigations will focus on the texture of halite and on microfabrics of the anhydrite. References Carter, N.L., Horseman, S.T., Russel, J.E. & Handin, J (1993): Rheology of rocksalt, J. Struct. Geol., Vol. 15, No. 9/10, p. 1257-1271 Price, N.J.; Cosgrove, J.W. (1990): Analysis of Geological Structures, by Neville J. Price and John W. Cosgrove, pp. 516., Cambridge, UK: Cambridge University Press, August 1990 Schléder, Z. & Urai, J. L. (2005): Microstructual evolution of deformation-modified primary halite from the Middle Triassic Röt Formation at Hengelo, The Netherlands, Int. J. Earth Sci., 94, p. 941-955 Schléder, Z. & Urai, J. L. (2007): Deformation and recrystallization mechanisms in mylonitic shear zones in naturally deformed extrusive Eocene-Oligocene rocksalt from Eyvanekey plateau and Garmsar hills (central Iran), J. Struct. Geol., 29, p. 241-255 Urai, J. L., Spiers, C. J., Peach, C. J., Franssen, R. C. M. W. & Liezenberg, J. L. (1987): Deformation mechanisms operating in naturally deformed halite rocks as deducted from microstructural investigations, Geol. Mijnbouw, 66, p. 165-176 Zulauf, G., Zulauf, J. & Bornemann, O. (2007): Deformation of a halite-anhydrite sequence under bulk constriction: Preliminary results from thermomechanical experiments, in: Wallner, M, Lux, K.-H., Minkley, W. & Reginal Hardy jr., H. (Eds.). The mechanical behavior of salt-Understanding of THMC processes in salt, Taylor & Francies, London: 63-68 Zulauf, G., Zulauf, J., Bornemann, O., Kihm, N., Peinl, M., Zanella, F. (2009): Experimental deformation of a single-layer anhydrite in halite matrix under bulk constriction: 1. Geometric and kinematic aspects, J. Struct. Geol. (submitted)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamine, T.
1984-06-15
The effects of active layer thickness on the astigmatism, the angle of far-field pattern width parallel to the junction, and the spectral envelope width of a gain guided laser with a narrow stripe geometry have been investigated analytically and experimentally. It is concluded that a large level of astigmatism, a narrow far-field pattern width, and a rapid convergence of the spectral envelope width are inherent to the gain guided lasers with thin active layers.
2008-03-01
this roughness is important for numerical modeling and prediction of the Arctic air-ice-ocean system, which will play a significant role as the US Navy...is important for numerical modeling and prediction of the Arctic air-ice-ocean system, which will play a significant role as the US Navy increases... Model 1 is based on a sequence of plane parallel layers each with a constant gradient whereas Model 2 is based on a series of flat layers of
Separate the inseparable one-layer mapping
NASA Astrophysics Data System (ADS)
Hu, Chia-Lun J.
2000-04-01
When the input-output mapping of a one-layered perceptron (OLP) does NOT meet the PLI condition which is the if-and- only-if, or 'IFF, condition that the mapping can be realized by a OLP, then no matter what learning rule we use, a OLP just cannot realize this mapping at all. However, because of the nature of the PLI, one can still construct a parallel- cascaded, two-layered perceptron system to realize this `illegal' mapping. Theory and design example of this novel design will be reported in detail in this paper.
Stability of an oscillating boundary layer
NASA Technical Reports Server (NTRS)
Levchenko, V. Y.; Solovyev, A. S.
1985-01-01
Levchenko and Solov'ev (1972, 1974) have developed a stability theory for space periodic flows, assuming that the Floquet theory is applicable to partial differential equations. In the present paper, this approach is extended to unsteady periodic flows. A complete unsteady formulation of the stability problem is obtained, and the stability characteristics over an oscillating period are determined from the solution of the problem. Calculations carried out for an oscillating incompressible boundary layer on a plate showed that the boundary layer flow may be regarded as a locally parallel flow.
Electrostatic repulsive out-of-plane actuator using conductive substrate.
Wang, Weimin; Wang, Qiang; Ren, Hao; Ma, Wenying; Qiu, Chuankai; Chen, Zexiang; Fan, Bin
2016-10-07
A pseudo-three-layer electrostatic repulsive out-of-plane actuator is proposed. It combines the advantages of two-layer and three-layer repulsive actuators, i.e., fabrication requirements and fill factor. A theoretical model for the proposed actuator is developed and solved through the numerical calculation of Schwarz-Christoffel mapping. Theoretical and simulated results show that the pseudo-three-layer actuator offers higher performance than the two-layer and three-layer actuators with regard to the two most important characteristics of actuators, namely, driving force and theoretical stroke. Given that the pseudo-three-layer actuator structure is compatible with both the parallel-plate actuators and these two types of repulsive actuators, a 19-element two-layer repulsive actuated deformable mirror is operated in pseudo-three-layer electrical connection mode. Theoretical and experimental results demonstrate that the pseudo-three-layer mode produces a larger displacement of 0-4.5 μm for a dc driving voltage of 0-100 V, when compared with that in two-layer mode.
Electrostatic repulsive out-of-plane actuator using conductive substrate
Wang, Weimin; Wang, Qiang; Ren, Hao; Ma, Wenying; Qiu, Chuankai; Chen, Zexiang; Fan, Bin
2016-01-01
A pseudo-three-layer electrostatic repulsive out-of-plane actuator is proposed. It combines the advantages of two-layer and three-layer repulsive actuators, i.e., fabrication requirements and fill factor. A theoretical model for the proposed actuator is developed and solved through the numerical calculation of Schwarz-Christoffel mapping. Theoretical and simulated results show that the pseudo-three-layer actuator offers higher performance than the two-layer and three-layer actuators with regard to the two most important characteristics of actuators, namely, driving force and theoretical stroke. Given that the pseudo-three-layer actuator structure is compatible with both the parallel-plate actuators and these two types of repulsive actuators, a 19-element two-layer repulsive actuated deformable mirror is operated in pseudo-three-layer electrical connection mode. Theoretical and experimental results demonstrate that the pseudo-three-layer mode produces a larger displacement of 0–4.5 μm for a dc driving voltage of 0–100 V, when compared with that in two-layer mode. PMID:27713542
High-resolution parallel-detection sensor array using piezo-phototronics effect
Wang, Zhong L.; Pan, Caofeng
2015-07-28
A pressure sensor element includes a substrate, a first type of semiconductor material layer and an array of elongated light-emitting piezoelectric nanostructures extending upwardly from the first type of semiconductor material layer. A p-n junction is formed between each nanostructure and the first type semiconductor layer. An insulative resilient medium layer is infused around each of the elongated light-emitting piezoelectric nanostructures. A transparent planar electrode, disposed on the resilient medium layer, is electrically coupled to the top of each nanostructure. A voltage source is coupled to the first type of semiconductor material layer and the transparent planar electrode and applies a biasing voltage across each of the nanostructures. Each nanostructure emits light in an intensity that is proportional to an amount of compressive strain applied thereto.
Dynamical features and electric field strengths of double layers driven by currents. [in auroras
NASA Technical Reports Server (NTRS)
Singh, N.; Thiemann, H.; Schunk, R. W.
1985-01-01
In recent years, a number of papers have been concerned with 'ion-acoustic' double layers. In the present investigation, results from numerical simulations are presented to show that the shapes and forms of current-driven double layers evolve dynamically with the fluctuations in the current through the plasma. It is shown that double layers with a potential dip can form even without the excitation of ion-acoustic modes. Double layers in two-and one-half-dimensional simulations are discussed, taking into account the simulation technique, the spatial and temporal features of plasma, and the dynamical behavior of the parallel potential distribution. Attention is also given to double layers in one-dimensional simulations, and electrical field strengths predicted by two-and one-half-dimensional simulations.
Fast Whole-Engine Stirling Analysis
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako
2006-01-01
This presentation discusses the simulation approach to whole-engine for physical consistency, REV regenerator modeling, grid layering for smoothness, and quality, conjugate heat transfer method adjustment, high-speed low cost parallel cluster, and debugging.
NASA Astrophysics Data System (ADS)
Forbes Inskip, N.; Meredith, P. G.; Gudmundsson, A.
2017-12-01
While considerable effort has been expended on the study of fracture propagation in rocks in recent years, our understanding of how fractures propagate through sedimentary rocks composed of layers with different mechanical and elastic properties remains poor. Yet the mechanical layering is a key parameter controlling the propagation of fractures in sedimentary sequences. Here we report measurements of the contrasting properties of the Lower Lias at Nash Point, South Wales, which comprises a sequence of interbedded shale and limestone layers, and how those properties influence fracture propagation. The static Young's modulus (Estat) of both rock types has been measured parallel and normal to bedding. The shale is highly anisotropic, with Estat varying from 2.4 GPa, in the bedding-normal orientation, to 7.9 GPa, in the bedding-parallel orientation, yielding an anisotropy of 107%. By contrast the limestone has a very low anisotropy of 8%, with Estat values varying from 28.5 GPa, in the bedding-normal orientation, to 26.3 GPa in the bedding-parallel orientation. It follows that for a vertical fracture propagating in this sequence the modulus contrast is by a factor of about 12. This is important because the contrast in elastic properties is a key factor in controlling whether fractures arrest, deflect, or propagate across interfaces between layers in a sequence. Preliminary numerical modelling results (using a finite element modelling software) of induced fractures at Nash Point demonstrate a rotation of the maximum principal compressive stress across interfaces but also the concentration of tensile stress within the more competent (high Estat) limestone layers. The tensile strength (σT), using the Brazil-disk technique, and fracture toughness (KIc), using the semi-circular bend methodology, of both rock types have been measured. Measurements were made in the three principal orientations relative to bedding, Arrester, Divider, and Short-Transverse, and also at 15° intervals between these planes. Again, values for the shale show a high degree of anisotropy; with similar values in the Arrester and Divider orientations, but much lower values in the Short-Transverse orientation. σT and KIc values for the limestone are considerably higher than those for the shale and exhibit no significant anisotropy.
Accelerating semantic graph databases on commodity clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morari, Alessandro; Castellana, Vito G.; Haglin, David J.
We are developing a full software system for accelerating semantic graph databases on commodity cluster that scales to hundreds of nodes while maintaining constant query throughput. Our framework comprises a SPARQL to C++ compiler, a library of parallel graph methods and a custom multithreaded runtime layer, which provides a Partitioned Global Address Space (PGAS) programming model with fork/join parallelism and automatic load balancing over a commodity clusters. We present preliminary results for the compiler and for the runtime.
Ferrante, Michele; Shay, Christopher F.; Tsuno, Yusuke; William Chapman, G.; Hasselmo, Michael E.
2017-01-01
Abstract Medial entorhinal cortex Layer-II stellate cells (mEC-LII-SCs) primarily interact via inhibitory interneurons. This suggests the presence of alternative mechanisms other than excitatory synaptic inputs for triggering action potentials (APs) in stellate cells during spatial navigation. Our intracellular recordings show that the hyperpolarization-activated cation current (Ih) allows post-inhibitory-rebound spikes (PIRS) in mEC-LII-SCs. In vivo, strong inhibitory-post-synaptic potentials immediately preceded most APs shortening their delay and enhancing excitability. In vitro experiments showed that inhibition initiated spikes more effectively than excitation and that more dorsal mEC-LII-SCs produced faster and more synchronous spikes. In contrast, PIRS in Layer-II/III pyramidal cells were harder to evoke, voltage-independent, and slower in dorsal mEC. In computational simulations, mEC-LII-SCs morphology and Ih homeostatically regulated the dorso-ventral differences in PIRS timing and most dendrites generated PIRS with a narrow range of stimulus amplitudes. These results suggest inhibitory inputs could mediate the emergence of grid cell firing in a neuronal network. PMID:26965902
Liu, Xuefan; Han, Wei; Zhu, Yanxi; Xuan, Hongyun; Ren, Jiaoyu; Zhang, Jianhao; Ge, Liqin
2018-04-01
The consumption of fresh-cut fruits is limited because of the oxidation browning and pathogenic bacteria's growth on the fruit surface. Besides, crack of the fresh-keeping film may shorten the preservation time of fruit. In this work, polyelectrolyte multilayer (PEM) film was fabricated by layer-by-layer (LBL) electrostatic deposition method. The film was made by carboxy methylcellulose sodium (CMC) and chitosan (CS). The as-prepared PEM film had good anti-oxidative and antibacterial capability. It inhibited the growth of Gram-negative bacteria and the antibacterial rate was more than 95%. The stratified structure and linear increase of the absorbance in the film verified a linear increase of film thickness. The slight scratched film could self-heal rapidly after the stimulation of water whatever the layer number was. Moreover, the film could heal cracks whose width was far bigger than the thickness. The application of PEM film on fresh-cut apples showed that PEM film had good browning, weight loss and metabolic activity inhibition ability. These results showed that the PEM film is a good candidate as edible film in fresh-cut fruits applications.
E2F mediates enhanced alternative polyadenylation in proliferation.
Elkon, Ran; Drost, Jarno; van Haaften, Gijs; Jenal, Mathias; Schrier, Mariette; Oude Vrielink, Joachim A F; Agami, Reuven
2012-07-02
The majority of mammalian genes contain multiple poly(A) sites in their 3' UTRs. Alternative cleavage and polyadenylation are emerging as an important layer of gene regulation as they generate transcript isoforms that differ in their 3' UTRs, thereby modulating genes' response to 3' UTR-mediated regulation. Enhanced cleavage at 3' UTR proximal poly(A) sites resulting in global 3' UTR shortening was recently linked to proliferation and cancer. However, mechanisms that regulate this enhanced alternative polyadenylation are unknown. Here, we explored, on a transcriptome-wide scale, alternative polyadenylation events associated with cellular proliferation and neoplastic transformation. We applied a deep-sequencing technique for identification and quantification of poly(A) sites to two human cellular models, each examined under proliferative, arrested and transformed states. In both cell systems we observed global 3' UTR shortening associated with proliferation, a link that was markedly stronger than the association with transformation. Furthermore, we found that proliferation is also associated with enhanced cleavage at intronic poly(A) sites. Last, we found that the expression level of the set of genes that encode for 3'-end processing proteins is globally elevated in proliferation, and that E2F transcription factors contribute to this regulation. Our results comprehensively identify alternative polyadenylation events associated with cellular proliferation and transformation, and demonstrate that the enhanced alternative polyadenylation in proliferative conditions results not only in global 3' UTR shortening but also in enhanced premature cleavage in introns. Our results also indicate that E2F-mediated co-transcriptional regulation of 3'-end processing genes is one of the mechanisms that links enhanced alternative polyadenylation to proliferation.
[Penile augmentation using acellular dermal matrix].
Zhang, Jin-ming; Cui, Yong-yan; Pan, Shu-juan; Liang, Wei-qiang; Chen, Xiao-xuan
2004-11-01
Penile enhancement was performed using acellular dermal matrix. Multiple layers of acellular dermal matrix were placed underneath the penile skin to enlarge its girth. Since March 2002, penile augmentation has been performed on 12 cases using acellular dermal matrix. Postoperatively all the patients had a 1.3-3.1 cm (2.6 cm in average) increase in penile girth in a flaccid state. The penis had normal appearance and feeling without contour deformities. All patients gained sexual ability 3 months after the operation. One had a delayed wound healing due to tight dressing, which was repaired with a scrotal skin flap. Penile enlargement by implantation of multiple layers of acellular dermal matrix was a safe and effective operation. This method can be performed in an outpatient ambulatory setting. The advantages of the acellular dermal matrix over the autogenous dermal fat grafts are elimination of donor site injury and scar and significant shortening of operation time.
Impact of Ship Emissions on Marine Boundary Layer NO(x) and SO2 Distributions over the Pacific Basin
NASA Technical Reports Server (NTRS)
Davis, D. D.; Grodzinsky, G.; Kasibhatla, P.; Crawford, J.; Chen, G.; Liu, S.; Bandy, A.; Thornton, D.; Guan, H.; Sandholm, S.
2001-01-01
The impact of ship emissions on marine boundary layer (MBL) NO(x) and SO2 levels over the Pacific Ocean has been explored by comparing predictions (with and without ships) from a global chemical transport model (GCTM) against compiled airborne observations of MBL NO(x) and SO2. For latitudes above 15 N, which define that part of the Pacific having the heaviest shipping, this analysis revealed significant model over prediction for NOx and a modest under prediction for SO2 when ship emissions were considered. Possible reasons for the difference in NO(x) and SO2 were explored using a full-chemistry box model. These results revealed that for an actual plume setting the NO(x) lifetime could be greatly shortened by chemical processes promoted by ship plume emissions themselves. Similar chemical behavior was not found for SO2.
Ultraviolet photodetectors based on ZnO sheets: The effect of sheet size on photoresponse properties
NASA Astrophysics Data System (ADS)
Ghasempour Ardakani, Abbas; Pazoki, Meysam; Mahdavi, Seyed Mohammad; Bahrampour, Ali Reza; Taghavinia, Nima
2012-05-01
In this work, ultraviolet photodetectors based on electrodeposited ZnO sheet thin films were fabricated on a glass substrate. Before electrodeposition, a thin buffer layer of ZnO was deposited on the glass by pulsed laser deposition method. This layer not only acted as a nucleation site for ZnO sheet growth, but also made it possible to use cheap glass substrate instead of conventional fluorine-doped tin oxide (FTO) substrate. Our results showed that photoresponse properties of the photodetectors strongly depend on the sheet sizes. The smaller sheets exhibited enhanced photosensitivity, shortened fall times and decreased gain compared to larger ones. We showed that photodetectors based on ZnO sheets have a faster response than ones based on polycrystalline films. It was also shown that even less response time could be obtained by using comb-like electrodes instead of two-electrode.
Turbulence modeling of free shear layers for high performance aircraft
NASA Technical Reports Server (NTRS)
Sondak, Douglas
1993-01-01
In many flowfield computations, accuracy of the turbulence model employed is frequently a limiting factor in the overall accuracy of the computation. This is particularly true for complex flowfields such as those around full aircraft configurations. Free shear layers such as wakes, impinging jets (in V/STOL applications), and mixing layers over cavities are often part of these flowfields. Although flowfields have been computed for full aircraft, the memory and CPU requirements for these computations are often excessive. Additional computer power is required for multidisciplinary computations such as coupled fluid dynamics and conduction heat transfer analysis. Massively parallel computers show promise in alleviating this situation, and the purpose of this effort was to adapt and optimize CFD codes to these new machines. The objective of this research effort was to compute the flowfield and heat transfer for a two-dimensional jet impinging normally on a cool plate. The results of this research effort were summarized in an AIAA paper titled 'Parallel Implementation of the k-epsilon Turbulence Model'. Appendix A contains the full paper.
Pulsating Magnetic Reconnection Driven by Three-Dimensional Flux-Rope Interactions.
Gekelman, W; De Haas, T; Daughton, W; Van Compernolle, B; Intrator, T; Vincena, S
2016-06-10
The dynamics of magnetic reconnection is investigated in a laboratory experiment consisting of two magnetic flux ropes, with currents slightly above the threshold for the kink instability. The evolution features periodic bursts of magnetic reconnection. To diagnose this complex evolution, volumetric three-dimensional data were acquired for both the magnetic and electric fields, allowing key field-line mapping quantities to be directly evaluated for the first time with experimental data. The ropes interact by rotating about each other and periodically bouncing at the kink frequency. During each reconnection event, the formation of a quasiseparatrix layer (QSL) is observed in the magnetic field between the flux ropes. Furthermore, a clear correlation is demonstrated between the quasiseparatrix layer and enhanced values of the quasipotential computed by integrating the parallel electric field along magnetic field lines. These results provide clear evidence that field lines passing through the quasiseparatrix layer are undergoing reconnection and give a direct measure of the nonlinear reconnection rate. The measurements suggest that the parallel electric field within the QSL is supported predominantly by electron pressure; however, resistivity may play a role.
Infrared Transition Moment Directions in Smectic Liquid Crystals
NASA Astrophysics Data System (ADS)
Park, C. S.; Jang, W. G.; Coleman, D.; Glaser, M. A.; Clark, N. A.
1997-03-01
We have investigated the variation of absorbance with polarization for C=O, O-H, and phenyl stretch modes in aligned smectic liquid crystals, for IR radiation propagating parallel to the smectic layers. For the C=O stretch, maximum absorbance is generally observed for radiation polarized perpendicular to the layer normal in the smectic A phase, consistent with the assumption that the IR transition moment direction is coincident with the C=O bond (oriented at an angle of ~ 60^circ with respect to the molecular long axis). In certain cases, however, maximum absorbance is observed for incident polarization parallel to the layer normal, and in general observed dichroic ratios depend sensitively on the nature of the functional groups surrounding the carbonyl moiety. Similar chemical sensitivity is observed for the phenyl and O-H stretch modes. We have succeeding in interpreting these measurements by calculating IR transition moment directions for the most important vibrational modes of several model compounds using quantum chemical methods, including HF/6-311G SCF and B3LYP/6-311G and B3LYP/6-31G DFT calculations.
Thermally conductive lithium ion electrodes and batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevchenko, Elena; Sumant, Anirudha V.; Balandin, Alexander
A thermally conductive electrochemical cell comprises a lithium ion-containing liquid electrolyte contacting a cathode and anode. The cathode and anode are in the form of electroactive sheets separated from each other by a membrane that is permeable to the electrolyte. One or more of the cathode and anode comprises two or more layers of carbon nanotubes, one of which layers includes electrochemically active nanoparticles and/or microparticles disposed therein or deposited on the nanotubes thereof. The majority of the carbon nanotubes in each of the layers are oriented generally parallel to the layers. Optionally, one or more of the layers includesmore » an additional carbon material such as graphene, nanoparticulate diamond, microparticulate diamond, and a combination thereof.« less
Properties of dielectric dead layers for SrTiO3 thin films on Pt electrodes
NASA Astrophysics Data System (ADS)
Finstrom, Nicholas H.; Cagnon, Joel; Stemmer, Susanne
2007-02-01
Dielectric measurements as a function of temperature were used to characterize the properties of the dielectric dead layers in parallel-plate capacitors with differently textured SrTiO3 thin films and Pt electrodes. The apparent thickness dependence of the permittivity was described with low-permittivity passive (dead) layers at the interfaces connected in series with the bulk of the SrTiO3 film. Interfacial capacitance densities changed with the film microstructure and were weakly temperature dependent. Estimates of the dielectric dead layer thickness and permittivity were limited by the film surface roughness (˜5nm ). The consequences for the possible origins of dielectric dead layers that have been proposed in the literature are discussed.
Retrieval of phase information in neutron reflectometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Haan, V.; van Well, A.A.; Adenwalla, S.
Neutron reflectometry can determine unambiguously the chemical depth profile of a thin film if both phase and amplitude of the reflectance are known. The recovery of the phase information is achieved by adding to the unknown layered structure a known ferromagnetic layer. The ferromagnetic layer is magnetized by an external magnetic field in a direction lying in the plane of the layer and subsequently perpendicular to it. The neutrons are polarized either parallel or opposite to the magnetic field. In this way three measurements can be made, with different (and known) scattering-length densities of the ferromagnetic layer. The reflectivity obtainedmore » from each measurement can be represented by a circle in the (complex) reflectance plane. The intersections of these circles provide the reflectance.« less
[PVFS 2000: An operational parallel file system for Beowulf
NASA Technical Reports Server (NTRS)
Ligon, Walt
2004-01-01
The approach has been to develop Parallel Virtual File System version 2 (PVFS2) , retaining the basic philosophy of the original file system but completely rewriting the code. It shows the architecture of the server and client components. BMI - BMI is the network abstraction layer. It is designed with a common driver and modules for each protocol supported. The interface is non-blocking, and provides mechanisms for optimizations including pinning user buffers. Currently TCP/IP and GM(Myrinet) modules have been implemented. Trove -Trove is the storage abstraction layer. It provides for storing both data spaces and name/value pairs. Trove can also be implemented using different underlying storage mechanisms including native files, raw disk partitions, SQL and other databases. The current implementation uses native files for data spaces and Berkeley db for name/value pairs.
A gyrokinetic one-dimensional scrape-off layer model of an edge-localized mode heat pulse
Shi, E. L.; Hakim, A. H.; Hammett, G. W.
2015-02-03
An electrostatic gyrokinetic-based model is applied to simulate parallel plasma transport in the scrape-off layer to a divertor plate. We focus on a test problem that has been studied previously, using parameters chosen to model a heat pulse driven by an edge-localized mode in JET. Previous work has used direct particle-in-cellequations with full dynamics, or Vlasov or fluid equations with only parallel dynamics. With the use of the gyrokinetic quasineutrality equation and logical sheathboundary conditions, spatial and temporal resolution requirements are no longer set by the electron Debye length and plasma frequency, respectively. Finally, this test problem also helps illustratemore » some of the physics contained in the Hamiltonian form of the gyrokineticequations and some of the numerical challenges in developing an edge gyrokinetic code.« less
Exact simulation of polarized light reflectance by particle deposits
NASA Astrophysics Data System (ADS)
Ramezan Pour, B.; Mackowski, D. W.
2015-12-01
The use of polarimetric light reflection measurements as a means of identifying the physical and chemical characteristics of particulate materials obviously relies on an accurate model of predicting the effects of particle size, shape, concentration, and refractive index on polarized reflection. The research examines two methods for prediction of reflection from plane parallel layers of wavelength—sized particles. The first method is based on an exact superposition solution to Maxwell's time harmonic wave equations for a deposit of spherical particles that are exposed to a plane incident wave. We use a FORTRAN-90 implementation of this solution (the Multiple Sphere T Matrix (MSTM) code), coupled with parallel computational platforms, to directly simulate the reflection from particle layers. The second method examined is based upon the vector radiative transport equation (RTE). Mie theory is used in our RTE model to predict the extinction coefficient, albedo, and scattering phase function of the particles, and the solution of the RTE is obtained from adding—doubling method applied to a plane—parallel configuration. Our results show that the MSTM and RTE predictions of the Mueller matrix elements converge when particle volume fraction in the particle layer decreases below around five percent. At higher volume fractions the RTE can yield results that, depending on the particle size and refractive index, significantly depart from the exact predictions. The particle regimes which lead to dependent scattering effects, and the application of methods to correct the vector RTE for particle interaction, will be discussed.
Cross-talk between cardiac muscle and coronary vasculature.
Westerhof, Nico; Boer, Christa; Lamberts, Regis R; Sipkema, Pieter
2006-10-01
The cardiac muscle and the coronary vasculature are in close proximity to each other, and a two-way interaction, called cross-talk, exists. Here we focus on the mechanical aspects of cross-talk including the role of the extracellular matrix. Cardiac muscle affects the coronary vasculature. In diastole, the effect of the cardiac muscle on the coronary vasculature depends on the (changes in) muscle length but appears to be small. In systole, coronary artery inflow is impeded, or even reversed, and venous outflow is augmented. These systolic effects are explained by two mechanisms. The waterfall model and the intramyocardial pump model are based on an intramyocardial pressure, assumed to be proportional to ventricular pressure. They explain the global effects of contraction on coronary flow and the effects of contraction in the layers of the heart wall. The varying elastance model, the muscle shortening and thickening model, and the vascular deformation model are based on direct contact between muscles and vessels. They predict global effects as well as differences on flow in layers and flow heterogeneity due to contraction. The relative contributions of these two mechanisms depend on the wall layer (epi- or endocardial) and type of contraction (isovolumic or shortening). Intramyocardial pressure results from (local) muscle contraction and to what extent the interstitial cavity contracts isovolumically. This explains why small arterioles and venules do not collapse in systole. Coronary vasculature affects the cardiac muscle. In diastole, at physiological ventricular volumes, an increase in coronary perfusion pressure increases ventricular stiffness, but the effect is small. In systole, there are two mechanisms by which coronary perfusion affects cardiac contractility. Increased perfusion pressure increases microvascular volume, thereby opening stretch-activated ion channels, resulting in an increased intracellular Ca2+ transient, which is followed by an increase in Ca2+ sensitivity and higher muscle contractility (Gregg effect). Thickening of the shortening cardiac muscle takes place at the expense of the vascular volume, which causes build-up of intracellular pressure. The intracellular pressure counteracts the tension generated by the contractile apparatus, leading to lower net force. Therefore, cardiac muscle contraction is augmented when vascular emptying is facilitated. During autoregulation, the microvasculature is protected against volume changes, and the Gregg effect is negligible. However, the effect is present in the right ventricle, as well as in pathological conditions with ineffective autoregulation. The beneficial effect of vascular emptying may be reduced in the presence of a stenosis. Thus cardiac contraction affects vascular diameters thereby reducing coronary inflow and enhancing venous outflow. Emptying of the vasculature, however, enhances muscle contraction. The extracellular matrix exerts its effect mainly on cardiac properties rather than on the cross-talk between cardiac muscle and coronary circulation.
9 CFR 319.701 - Mixed fat shortening.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Mixed fat shortening. 319.701 Section... INSPECTION AND CERTIFICATION DEFINITIONS AND STANDARDS OF IDENTITY OR COMPOSITION Fats, Oils, Shortenings § 319.701 Mixed fat shortening. Shortening prepared with a mixture of meat fats and vegetable oils may...
9 CFR 319.701 - Mixed fat shortening.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Mixed fat shortening. 319.701 Section... INSPECTION AND CERTIFICATION DEFINITIONS AND STANDARDS OF IDENTITY OR COMPOSITION Fats, Oils, Shortenings § 319.701 Mixed fat shortening. Shortening prepared with a mixture of meat fats and vegetable oils may...
9 CFR 319.701 - Mixed fat shortening.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Mixed fat shortening. 319.701 Section... INSPECTION AND CERTIFICATION DEFINITIONS AND STANDARDS OF IDENTITY OR COMPOSITION Fats, Oils, Shortenings § 319.701 Mixed fat shortening. Shortening prepared with a mixture of meat fats and vegetable oils may...
NASA Astrophysics Data System (ADS)
Huang, Melin; Huang, Bormin; Huang, Allen H.
2014-10-01
The Weather Research and Forecasting (WRF) model provided operational services worldwide in many areas and has linked to our daily activity, in particular during severe weather events. The scheme of Yonsei University (YSU) is one of planetary boundary layer (PBL) models in WRF. The PBL is responsible for vertical sub-grid-scale fluxes due to eddy transports in the whole atmospheric column, determines the flux profiles within the well-mixed boundary layer and the stable layer, and thus provide atmospheric tendencies of temperature, moisture (including clouds), and horizontal momentum in the entire atmospheric column. The YSU scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. To accelerate the computation process of the YSU scheme, we employ Intel Many Integrated Core (MIC) Architecture as it is a multiprocessor computer structure with merits of efficient parallelization and vectorization essentials. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.4x. Furthermore, the same CPU-based optimizations improved the performance on Intel Xeon E5-2603 by a factor of 1.6x as compared to the first version of multi-threaded code.
A transient analysis of frost formation on a parallel plate evaporator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Frias, J.; Aceves, S.M.; Hernandez-Guerrero, A.
1996-12-31
This paper presents the development of a transient model for evaluating frost formation on a parallel plate evaporator for heat pump applications. The model treats the frost layer as a porous substance, and applies the equations of conservation of mass, momentum and energy to calculate the growth and densification of the frost layer. Empirical correlations for thermal conductivity and tortuosity as a function of density are incorporated from previous studies. Frost growth is calculated as a function of time, Reynolds number, longitudinal location, plate temperature, and ambient air temperature and humidity. The main assumptions are: ideal gas behavior for airmore » and water vapor, uniform frost density and thermal conductivity across the thickness of the frost layer; and quasi-steady conditions during the whole process. The mathematical model is validated by comparing the predicted values of frost thickness and frost density with results obtained in recent experimental studies. A good agreement was obtained in the comparison. The frost formation model calculates pressure drop and heat transfer resistance that result from the existence of the frost layer, and it can therefore be incorporated into a heat pump model to evaluate performance losses due to frosting as a function of weather conditions and time of operation since the last evaporator defrost.« less
Neutron Powder Diffraction Study on the Magnetic Structure of NdPd 5 Al 2
Metoki, Naoto; Yamauchi, Hiroki; Kitazawa, Hideaki; ...
2017-02-24
The magnetic structure of NdPd 5Al 2 has been studied by neutron powder diffraction. Here, we observed the magnetic reflections with the modulation vector q=(1/2,0,0)q=(1/2,0,0) below the ordering temperature T N. We also found a collinear magnetic structure with a Nd moment of 2.7(3) μB at 0.5 K parallel to the c-axis, where the ferromagnetically ordered a-planes stack with a four-Nd-layer period having a ++-- sequence along the a-direction with the distance between adjacent Nd layers equal to a/2 (magnetic space group P anma). This “stripe”-like modulation is very similar to that in CePd 5Al 2 with q=(0.235,0.235,0)q=(0.235,0.235,0) with themore » Ce moment parallel to the c-axis. These structures with in-plane modulation are a consequence of the two-dimensional nature of the Fermi surface topology in this family, originating from the unique crystal structure with a very long tetragonal unit cell and a large distance of >7 Å between the rare-earth layers separated by two Pd and one Al layers.« less
Crystal structure of dimanganese(II) zinc bis[orthophosphate(V)] monohydrate
Alhakmi, Ghaleb; Assani, Abderrazzak; Saadi, Mohamed; El Ammari, Lahcen
2015-01-01
The title compound, Mn2Zn(PO4)2·H2O, was obtained under hydrothermal conditions. The structure is isotypic with other transition metal phosphates of the type M 3− xM′x(PO4)2·H2O, but shows no statistical disorder of the three metallic sites. The principal building units are distorted [MnO6] and [MnO5(H2O)] octahedra, a distorted [ZnO5] square pyramid and two regular PO4 tetrahedra. The connection of the polyhedra leads to a framework structure. Two types of layers parallel to (-101) can be distinguished in this framework. One layer contains [Zn2O8] dimers linked to PO4 tetrahedra via common edges. The other layer is more corrugated and contains [Mn2O8(H2O)2] dimers and [MnO6] octahedra linked together by common edges. The PO4 tetrahedra link the two types of layers into a framework structure with channels parallel to [101]. The H atoms of the water molecules point into the channels and form O—H⋯O hydrogen bonds (one of which is bifurcated) with framework O atoms across the channels. PMID:25878806
NASA Astrophysics Data System (ADS)
Dev, B. N.; Banu, Nasrin; Fassbender, J.; Grenzer, J.; Schell, N.; Bischoff, L.; Groetzschel, R.; McCord, J.
2017-10-01
Fabrication of a multistrip magnetic/nonmagnetic structure in a thin sandwiched Ni layer [Si(5 nm)/Ni(15 nm)/Si] by a focused ion beam (FIB) irradiation has been attempted. A control experiment was initially performed by irradiation with a standard 30 keV Ga ion beam at various fluences. Analyses were carried out by Rutherford backscattering spectrometry, X-ray reflectivity, magnetooptical Kerr effect (MOKE) measurements and MOKE microscopy. With increasing ion fluence, the coercivity as well as Kerr rotation decreases. A threshold ion fluence has been identified, where ferromagnetism of the Ni layer is lost at room temperature and due to Si incorporation into the Ni layer, a Ni0.68Si0.32 alloy layer is formed. This fluence was used in FIB irradiation of parallel 50 nm wide stripes, leaving 1 µm wide unirradiated stripes in between. MOKE microscopy on this FIB-patterned sample has revealed interacting magnetic domains across several stripes. Considering shape anisotropy effects, which would favour an alignment of magnetization parallel to the stripe axis, the opposite behaviour is observed. Magneto-elastic effects introducing a stress-induced anisotropy component oriented perpendicular to the stripe axis are the most plausible explanation for the observed behaviour.
Neutron Powder Diffraction Study on the Magnetic Structure of NdPd 5 Al 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metoki, Naoto; Yamauchi, Hiroki; Kitazawa, Hideaki
The magnetic structure of NdPd 5Al 2 has been studied by neutron powder diffraction. Here, we observed the magnetic reflections with the modulation vector q=(1/2,0,0)q=(1/2,0,0) below the ordering temperature T N. We also found a collinear magnetic structure with a Nd moment of 2.7(3) μB at 0.5 K parallel to the c-axis, where the ferromagnetically ordered a-planes stack with a four-Nd-layer period having a ++-- sequence along the a-direction with the distance between adjacent Nd layers equal to a/2 (magnetic space group P anma). This “stripe”-like modulation is very similar to that in CePd 5Al 2 with q=(0.235,0.235,0)q=(0.235,0.235,0) with themore » Ce moment parallel to the c-axis. These structures with in-plane modulation are a consequence of the two-dimensional nature of the Fermi surface topology in this family, originating from the unique crystal structure with a very long tetragonal unit cell and a large distance of >7 Å between the rare-earth layers separated by two Pd and one Al layers.« less
NASA Technical Reports Server (NTRS)
Noerdlinger, P. D.
1981-01-01
The non-LTE radiative transfer problem for a two level atom with complete redistribution over a Doppler profile is solved for a plane parallel slab (overlying a radiating photosphere) that has a velocity field which rises symmetrically from zero at either face to a central maximum. Since the velocity gradient reverses, distant layers of the slab become coupled by radiation that jumps intervening layers. The Feautrier method is used, but an iterative variant is also employed as a check in cases where poorly conditioned matrices are encountered. Approximations are developed to explain some of the principal features. It is found that the source function S tends to have two plateaus with values near 2/3 I sub 0 and 1/3 I sub 0, where I sub 0 is the photospheric continuum incident from below; the larger value lies nearer the photosphere. The upper layers sometimes exhibit a rise in S owing to interconnection by radiation to the base. It is noted that the radiation force is largest at the two faces and the midplane. Some line profiles are found to have unusually steep absorptions at rest frequency because of the low excitation in the uppermost, stationary layers.
NASA Astrophysics Data System (ADS)
Pan, Jie; Zhang, Di; Xue, Zhen-Zhen; Wei, Li; Han, Song-De; Wang, Guo-Ming
2017-11-01
Three novel Zn(II)/Cd(II) coordination polymers, [Cd2(bip)2(m-bdc)2(H2O)2·3H2O]n (1), [Zn2(bip)2(p-bdc)2·2.5H2O]n (2) and [Zn(bip) (p-bdc)·3H2O]n (3), where bip = 3,5-bis(imidazole-1-yl)pyridine, m-H2bdc = 1,3-benzenedicarboxylic acid, p-H2bdc = 1,4-benzenedicarboxylic acid, have been successfully synthesized under solvothermal conditions. The linkage of different ligands with Cd(II) ions in compound 1 affords a (3,5)-connected layer. Furthermore, 2D→3D parallel polycatenation occurs wherein the layers are polycatenated with the adjacent two parallel layers to form a 3D framework. In 2 and 3, the polycarboxylates act as pillars to combine the metal-bip chains, yielding the layered structures. These 2D networks are extended to the final 3D supramolecular architectures by π-π stacking interactions. The results show that bip can act as a versatile building block for the construction of various coordination polymers. Moreover, the fluorescent properties of 1-3 in the solid state at room temperature have been investigated.
How rheological heterogeneities control the internal deformation of salt giants.
NASA Astrophysics Data System (ADS)
Raith, Alexander; Urai, Janos L.
2017-04-01
Salt giants, like the North European Zechstein, consist of several evaporation cycles of different evaporites with highly diverse rheologies. Common Potassium and Magnesium (K-Mg) salt are typically 10 to 100 times less viscous as halite while stringers consisting of anhydrite and carbonates are about 100 times more viscous. In most parts, these mechanically layered bodies experienced complex deformation, resulting in large scale internal folding with ruptured stringers and shear zones, as observed in seismic images. Furthermore, locally varying evaporation history produced different mechanical stratigraphies across the salt basin. Although most of these extraordinary soft or strong layers are rather thin (<100 m) compared to the dominating halite, we propose they have first order control on the deformation and the resulting structures inside salt bodies. Numerical models representing different mechanical stratigraphies of hard and soft layers inside a salt body were performed to analyze their influence on the internal deformation during lateral salt flow. The results show that a continuous or fractured stringer is folded and thrusted during salt contraction while soft K-Mg salt layers act as internal décollement. Depending on the viscosity of the fractured stringers, the shortening is mostly compensated by either folding or thrusting. This folding has large control over the internal structure of the salt body imposing a dominating wavelength to the whole structure during early deformation. Beside strong stringers, K-Mg salt layers also influence the deformation and salt flow inside the salt pillow. Strain is accumulated in the soft layers leading to stronger salt flow near these layers and extensive deformation inside of them. Thus, if a soft layer is present near a stringer, it will experience more deformation. Additionally, the strong strain concentration in the soft layers could decouple parts of the salt body from the main deformation.
Impurity-doped optical shock, detonation and damage location sensor
Weiss, J.D.
1995-02-07
A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack. 8 figs.
Li, Bowei; Jiang, Lei; Xie, Hua; Gao, Yan; Qin, Jianhua; Lin, Bingcheng
2009-09-01
A micropump-actuated negative pressure pinched injection method is developed for parallel electrophoresis on a multi-channel LIF detection system. The system has a home-made device that could individually control 16-port solenoid valves and a high-voltage power supply. The laser beam is excitated and distributes to the array separation channels for detection. The hybrid Glass-PDMS microfluidic chip comprises two common reservoirs, four separation channels coupled to their respective pneumatic micropumps and two reference channels. Due to use of pressure as a driving force, the proposed method has no sample bias effect for separation. There is only one high-voltage supply needed for separation without relying on the number of channels, which is significant for high-throughput analysis, and the time for sample loading is shortened to 1 s. In addition, the integrated micropumps can provide the versatile interface for coupling with other function units to satisfy the complicated demands. The performance is verified by separation of DNA marker and Hepatitis B virus DNA samples. And this method is also expected to show the potential throughput for the DNA analysis in the field of disease diagnosis.
Impurity-doped optical shock, detonation and damage location sensor
Weiss, Jonathan D.
1995-01-01
A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack.
Pham, Toan; Han, June-Chiew; Taberner, Andrew; Loiselle, Denis
2017-10-15
We designed a study to test whether velocity of shortening in right-ventricular tissue preparations is greater than that of the left side under conditions mimicking those encountered by the heart in vivo. Our experiments allowed us to explore whether greater velocity of shortening results in any energetic advantage. We found that velocity of shortening was higher in the rat right-ventricular trabeculae. These results at the tissue level seem paradoxical to the velocity of ventricular ejection at the organ level, and are not always in accord with shortening of unloaded cells. Despite greater velocity of shortening in right-ventricular trabeculae, they neither gained nor lost advantage with respect to both mechanical efficiency and the heat generated during shortening. Our study aimed to ascertain whether the interventricular difference of shortening velocity, reported for isolated cardiac tissues in vitro, affects interventricular mechano-energetic performance when tested under physiological conditions using a shortening protocol designed to mimic those in vivo. We isolated trabeculae from both ventricles of the rat, mounted them in a calorimeter, and performed experiments at 37°C and 5 Hz stimulus frequency to emulate conditions of the rat heart in vivo. Each trabecula was subjected to two experimental protocols: (i) isotonic work-loop contractions at a variety of afterloads, and (ii) isometric contractions at a variety of preloads. Velocity of shortening was calculated from the former protocol during the isotonic shortening phase of the contraction. Simultaneous measurements of force-length work and heat output allowed calculation of mechanical efficiency. The shortening-dependent thermal component was quantified from the difference in heat output between the two protocols. Our results show that both extent of shortening and velocity of shortening were higher in trabeculae from the right ventricle. Despite these differences, trabeculae from both ventricles developed the same stress, performed the same work, liberated the same amount of heat, and hence operated at the same mechanical efficiency. Shortening heat was also ventricle independent. The interventricular differences in velocity of shortening and extent of shortening of isolated trabeculae were not manifested in any index of energetics. These collective results underscore the absence of any mechano-energetic advantage or disadvantage conferred on right-ventricular trabeculae arising from their superior velocity of shortening. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
The mean and turbulent flow structure of a weak hydraulic jump
NASA Astrophysics Data System (ADS)
Misra, S. K.; Kirby, J. T.; Brocchini, M.; Veron, F.; Thomas, M.; Kambhamettu, C.
2008-03-01
The turbulent air-water interface and flow structure of a weak, turbulent hydraulic jump are analyzed in detail using particle image velocimetry measurements. The study is motivated by the need to understand the detailed dynamics of turbulence generated in steady spilling breakers and the relative importance of the reverse-flow and breaker shear layer regions with attention to their topology, mean flow, and turbulence structure. The intermittency factor derived from turbulent fluctuations of the air-water interface in the breaker region is found to fit theoretical distributions of turbulent interfaces well. A conditional averaging technique is used to calculate ensemble-averaged properties of the flow. The computed mean velocity field accurately satisfies mass conservation. A thin, curved shear layer oriented parallel to the surface is responsible for most of the turbulence production with the turbulence intensity decaying rapidly away from the toe of the breaker (location of largest surface curvature) with both increasing depth and downstream distance. The reverse-flow region, localized about the ensemble-averaged free surface, is characterized by a weak downslope mean flow and entrainment of water from below. The Reynolds shear stress is negative in the breaker shear layer, which shows that momentum diffuses upward into the shear layer from the flow underneath, and it is positive just below the mean surface indicating a downward flux of momentum from the reverse-flow region into the shear layer. The turbulence structure of the breaker shear layer resembles that of a mixing layer originating from the toe of the breaker, and the streamwise variations of the length scale and growth rate are found to be in good agreement with observed values in typical mixing layers. All evidence suggests that breaking is driven by a surface-parallel adverse pressure gradient and a streamwise flow deceleration at the toe of the breaker. Both effects force the shear layer to thicken rapidly, thereby inducing a sharp free surface curvature change at the toe.
Schnaiter, Johannes Walter; Roemer, Frank; McKenna-Kuettner, Axel; Patzak, Hans-Joachim; May, Matthias Stefan; Janka, Rolf; Uder, Michael; Wuest, Wolfgang
2018-03-01
Parallel imaging allows for a considerable shortening of examination times. Limited data is available about the diagnostic accuracy of an accelerated knee MRI protocol based on parallel imaging evaluating all knee joint compartments in a large patient population compared to arthroscopy. 162 consecutive patients with a knee MRI (1.5 T, Siemens Aera) and arthroscopy were included. The total MRI scan time was less than 9 minutes. Meniscus and cartilage injuries, cruciate ligament lesions, loose joint bodies and medial patellar plicae were evaluated. Sensitivity (SE), specificity (SP), positive predictive value (PPV), and negative predictive value (NPV), as well as diagnostic accuracy were determined. For the medial meniscus, the values were: SE 97 %, SP 88 %, PPV 94 %, and NPV 94 %. For the lateral meniscus the values were: SE 77 %, SP 99 %, PPV 98 %, and NPV 89 %. For cartilage injuries the values were: SE 72 %, SP 80 %, PPV 86 %, and NPV 61 %. For the anterior cruciate ligament the values were: SE 90 %, SP 94 %, PPV 77 %, and NPV 98 %, while all values were 100 % for the posterior cruciate ligament. For loose bodies the values were: SE 48 %, SP 96 %, PPV 62 %, and NPV 93 %, and for the medial patellar plicae the values were: SE 57 %, SP 88 %, PPV 18 %, and NPV 98 %. A knee MRI examination with parallel imaging and a scan time of less than 9 minutes delivers reliable results with high diagnostic accuracy. · An accelerated knee MRI protocol with parallel imaging allows for high diagnostic accuracy.. · Especially meniscal and cruciate ligament injuries are well depicted.. · Cartilage injuries seem to be overestimated.. · Schnaiter JW, Roemer F, McKenna-Kuettner A et al. Diagnostic Accuracy of an MRI Protocol of the Knee Accelerated Through Parallel Imaging in Correlation to Arthroscopy. Fortschr Röntgenstr 2018; 190: 265 - 272. © Georg Thieme Verlag KG Stuttgart · New York.
Internal viscoelastic loading in cat papillary muscle.
Chiu, Y L; Ballou, E W; Ford, L E
1982-01-01
The passive mechanical properties of myocardium were defined by measuring force responses to rapid length ramps applied to unstimulated cat papillary muscles. The immediate force changes following these ramps recovered partially to their initial value, suggesting a series combination of viscous element and spring. Because the stretched muscle can bear force at rest, the viscous element must be in parallel with an additional spring. The instantaneous extension-force curves measured at different lengths were nonlinear, and could be made to superimpose by a simple horizontal shift. This finding suggests that the same spring was being measured at each length, and that this spring was in series with both the viscous element and its parallel spring (Voigt configuration), so that the parallel spring is held nearly rigid by the viscous element during rapid steps. The series spring in the passive muscle could account for most of the series elastic recoil in the active muscle, suggesting that the same spring is in series with both the contractile elements and the viscous element. It is postulated that the viscous element might be coupled to the contractile elements by a compliance, so that the load imposed on the contractile elements by the passive structures is viscoelastic rather than purely viscous. Such a viscoelastic load would give the muscle a length-independent, early diastolic restoring force. The possibility is discussed that the length-independent restoring force would allow some of the energy liberated during active shortening to be stored and released during relaxation. Images FIGURE 7 FIGURE 8 PMID:7171707
Physico-chemical properties and performance of high oleic and palm-based shortenings.
Ramli, Muhamad Roddy; Lin, Siew Wai; Yoo, Cheah Kien; Idris, Nor Aini; Sahri, Miskandar Mat
2008-01-01
Solid fat from fractionation of palm-based products was converted into cake shortening at different processing conditions. High oleic palm stearin with an oleic content of 48.2 % was obtained from fractionation of high oleic palm oil which was produced locally. Palm product was blended with different soft oils at pre-determined ratio and further fractionated to obtain the solid fractions. These fractions were then converted into cake shortenings named as high oleic, N1 and N2 blends. The physico-chemical properties of the experimental shortenings were compared with those of control shortenings in terms of fatty acid composition (FAC), iodine value (IV), slip melting point (SMP), solid fat content (SFC) and polymorphic forms. Unlike the imported commercial shortenings as reported by other studies and the control, experimental shortenings were trans-free. The SMP and SFC of experimental samples, except for the N2 sample, fell within the ranges of commercial and control shortenings. The IV was higher than those of domestic shortenings but lower when compared to imported and control shortenings. They were also observed to be beta tending even though a mixture of beta and beta' was observed in the samples after 3 months of storage. The shortenings were also used in the making of pound cake and sensory evaluation showed the good performance of high oleic sample as compared to the other shortenings.
Leal-Oliva, A; Mora-Ríos, F G; Mejía-Rohenes, C; López-Marmnolejo, A; Acevedo-Cabrera, M J
2014-01-01
Clavicle fractures represent 2-15% of pediatric fractures. The literature suggests operating on patients over 9 years of age with major shortening or severe comminution in the fracture line. However, no one establishes shortening or angulation parameters for conservative treatment in children. In pediatric patients it is important to take into account relative shortening, that is, the one caused by a fracture when compared with the length of the healthy clavicle. To know the effect of relative clavicle shortening on movement in pediatric fractures treated conservatively. Retrospective, longitudinal, observational study. We radiographically measured the relative shortening of the fractured clavicle comparing it with the healthy side at the time of the fracture and after fracture healing. Shortening was expressed in percentages. The following views were used: comparative anteroposterior view of the shoulders and panoramic view of both shoulders. Patients were divided into 2 groups: under 9 years and 9-15 years of age. We analyzed 94 fractures; 31 in females and 63 in males. No pseudoarthrosis or symptomatic malunion occurred. The prognosis was good regardless of the initial shortening percentage. Age and shortening are proportionally related with the rehabilitation period and the restoration of painless ranges of motion. The value ranges recorded for shortening were 9.5 to 28%. The surgical indications for shortening resulting from pediatric clavicle fractures should be revised. We have observed good results despite major shortening and total displacement.
Fracture patterns in the Zagros fold-and-thrust belt, Kurdistan Region of Iraq
NASA Astrophysics Data System (ADS)
Reif, Daniel; Decker, Kurt; Grasemann, Bernhard; Peresson, Herwig
2012-11-01
Fracture data have been collected in the Kurdistan Region of Iraq, which is a poorly accessible and unexplored area of the Zagros. Pre to early folding NE-SW striking extensional fractures and NW-SE striking contractive elements represent the older set affecting the exposed multilayer of the area. These latter structures are early syn-folding and followed by folding-related mesostructural assemblages, which include elements striking parallel to the axial trend of major folds (longitudinal fractures). Bedding perpendicular joints and veins, and extensional faults belonging to this second fracture set are located in the outer arc of exposed anticlines, whilst longitudinal reverse faults locate in the inner arcs. Consistently, these elements are associated with syn-folding tangential longitudinal strain. The younger two sets are related to E-W extension and NNE-SSW to N-S shortening, frequently displaying reactivation of the older sets. The last shortening event, which is described along the entire Zagros Belt, probably relates with the onset of N-S compression induced by the northward movement of the Arabian plate relative to the Eurasian Plate. In comparison between the inferred palaeostrain directions and the kinematics of recent GPS measurements, we conclude that the N-S compression and the partitioning into NW-SE trending folds and NW to N trending strike-slip faults likely remained unchanged throughout the Neogene tectonic history of the investigated area.
A fault is born: The Landers-Mojave earthquake line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nur, A.; Ron, H.
1993-04-01
The epicenter and the southern portion of the 1992 Landers earthquake fell on an approximately N-S earthquake line, defined by both epicentral locations and by the rupture directions of four previous M>5 earthquakes in the Mojave: The 1947 Manix; 1975 Galway Lake; 1979 Homestead Valley: and 1992 Joshua Tree events. Another M 5.2 earthquake epicenter in 1965 fell on this line where it intersects the Calico fault. In contrast, the northern part of the Landers rupture followed the NW-SE trending Camp Rock and parallel faults, exhibiting an apparently unusual rupture kink. The block tectonic model (Ron et al., 1984) combiningmore » fault kinematic and mechanics, explains both the alignment of the events, and their ruptures (Nur et al., 1986, 1989), as well as the Landers kink (Nur et al., 1992). Accordingly, the now NW oriented faults have rotated into their present direction away from the direction of maximum shortening, close to becoming locked, whereas a new fault set, optimally oriented relative to the direction of shortening, is developing to accommodate current crustal deformation. The Mojave-Landers line may thus be a new fault in formation. During the transition of faulting from the old, well developed and wak but poorly oriented faults to the strong, but favorably oriented new ones, both can slip simultaneously, giving rise to kinks such as Landers.« less
Demonstration and Analysis of Materials Processing by Ablation Plasma Ion Implantation (APII)
NASA Astrophysics Data System (ADS)
Qi, B.; Gilgenbach, R. M.; Lau, Y. Y.; Jones, M. C.; Lian, J.; Wang, L. M.; Doll, G. L.; Lazarides, A.
2001-10-01
Experiments have demonstrated laser-ablated Fe ion implantation into Si substrates. Baseline laser deposited films (0 kV) showed an amorphous Fe-Si film overlying the Si substrate with a top layer of nanocrystalline Fe. APII films exhibited an additional Fe ion-induced damage layer, extending 7.6 nm below the Si surface. The overlying Fe-Si layer and Fe top layer were amorphized by fast ions. Results were confirmed by XPS vs Ar ion etching time for depth profile of the deposited films. XPS showed primarily Fe (top layer), transitioning to roughly equal Fe/Si , then mostly Si with lower Fe (implanted region). These data clearly prove Fe ion implantation into Si, verifying the feasibility of APII as an ion acceleration and implantation process [1]. SRIM simulations predict about 20 percent deeper Fe ion penetration than data, due to:(a) Subsequent ions must pass through the Fe film deposited by earlier ions, and (b) the bias voltage has a slow rise and fall time. Theoretical research has developed the scaling laws for APII [2]. Recently, a model has successfully explained the shortening of the decay time in the high voltage pulse with the laser ablation plasma. This reduces the theoretical RC time constant, which agrees with the experimental data. * Research supported by National Science Foundation Grant CTS-9907106 [1] Appl. Phys. Lett. 78, 3785 (2001) [2] Appl. Phys. Lett. 78, 706 (2001)),
NASA Astrophysics Data System (ADS)
Janecke, S. U.; Markowski, D.
2015-12-01
The overdue earthquake on the Coachella section, San Andreas fault (SAF), the model ShakeOut earthquake, and the conflict between cross-fault models involving the Extra fault array and mapped shortening in the Durmid Hill area motivate new analyses at the southern SAF tip. Geologic mapping, LiDAR, seismic reflection, magnetic and gravity datasets, and aerial photography confirm the existence of the East Shoreline strand (ESS) of the SAF southwest of the main trace of the SAF. We mapped the 15 km long ESS, in a band northeast side of the Salton Sea. Other data suggest that the ESS continues N to the latitude of the Mecca Hills, and is >35 km long. The ESS cuts and folds upper Holocene beds and appears to creep, based on discovery of large NW-striking cracks in modern beach deposits. The two traces of the SAF are parallel and ~0.5 to ~2.5 km apart. Groups of east, SE, and ENE-striking strike-slip cross-faults connect the master dextral faults of the SAF. There are few sinistral-normal faults that could be part of the Extra fault array. The 1-km wide ESS contains short, discontinuous traces of NW-striking dextral-oblique faults. These en-echelon faults bound steeply dipping Pleistocene beds, cut out section, parallel tight NW-trending folds, and produced growth folds. Beds commonly dip toward the ESS on both sides, in accord with persistent NE-SW shortening across the ESS. The dispersed fault-fold structural style of the ESS is due to decollements in faulted mud-rich Pliocene to Holocene sediment and ramps and flats along the strike-slip faults. A sheared ladder-like geometric model of the two master dextral strands of the SAF and their intervening cross-faults, best explains the field relationships and geophysical datasets. Contraction across >40 km2 of the southernmost SAF zone in the Durmid Hills suggest that interaction of active structures in the SAF zone may inhibit the nucleation of large earthquakes in this region. The ESS may cross the northern Coachella Valley to join the blind Palm Spring dextral fault- a source of microearthquakes and differential subsidence. The ESS may also continue north parallel to the margin of the Salton Trough or have both a NW and NE branch. The risk of a future large earthquake directly beneath the greater Palm Springs metropolitan area may be larger if the first or last options are correct.
Tectonic overprint on magnetic fabric of the Ordovician Thetford Mines Ophiolite (Canada)
NASA Astrophysics Data System (ADS)
Di Chiara, Anita; Morris, Antony; Anderson, Mark W.; Menegon, Luca
2017-04-01
Studies in modern oceanic settings suggest locally along low-spreading ridges both lower crust and upper mantle peridotites may be exhumed to the seafloor in features known as oceanic core complexes (OCC). Examples of OCC on geological record can be preserved in ophiolites, relict of oceanic crust obducted onto continental margins, as for example the Jurassic Mirdita Ophiolite (Albania), suggesting that this spreading mode was active in the past. In order to understand such dynamics further, we investigated the OCC preserved in the Thetford Mines Ophiolite (TMO). TMO is part of the Southern Quebec ophiolites in the Canadian Appalachians (Quebec region), divided into three lithotectonic assemblages: The Humber Zone, a remnant of the Laurentian continental margin; The Cambrian-Ordovician Dunnage Zone, a remnant of the Iapetus Ocean and including the TMO and other ophiolites; and Silurian-Devonian Gaspé Belt, the sedimentary cover sequence. These were subjected to polyphase deformation, experiencing two Paleozoic orogenies: The Ordovician Taconian Orogeny (the Humber and Dunnage zones were amalgamated) and the Devonian Acadian orogeny which deformed and metamorphosed both the Dunnage Zone and the overlying Gaspe Belt. Here we present results from 12 paleomagnetic sites sampled on Humber zone on pillow lavas, dykes, layered gabbros and serpentinized dunites. Our results from AMS experiments show that these rocks, formed by fundamentally different magmatic processes, share a common magnetic fabric, with a kmin axis NW-SE orientated and the kmax steeply plunging to the NE. Additional processing of acquired BSE images and chemical mapping analyses at the SEM show that the kmax of the magnetic fabric is parallel to the elongation of magnetic particles (Iron rich minerals). This remarkably consistent fabric has a tectonic origin and is consistent with shortening perpendicular to the regional trend of fold axes.
Turbine airfoil with dual wall formed from inner and outer layers separated by a compliant structure
Campbell,; Christian X. , Morrison; Jay, A [Oviedo, FL
2011-12-20
A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a compliant structure. The compliant structure may be configured such that the outer layer may thermally expand without limitation by the inner layer. The compliant structure may be formed from a plurality of pedestals positioned generally parallel with each other. The pedestals may include a first foot attached to a first end of the pedestal and extending in a first direction aligned with the outer layer, and may include a second foot attached to a second end of the pedestal and extending in a second direction aligned with the inner layer.
Characterization of BN rich layer on ammonia treated Nextel{trademark}312 fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khasgiwale, N.R.; Butler, E.P.; Tsakalakos, L.
A BN rich layer grown on Nextel{trademark}312 fibers by appropriate ammonia treatments was evaluated using various complimentary techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM)/Parallel Electron Energy Loss Spectroscopy (PEELS in TEM). Three different ammonia treatments were studied. Ammonia treatment resulted in crystallization of the Nextel{trademark}312 fiber. The BN rich surface layer formed due to ammonia treatment was clearly detected in XPS and PEELS both before and after oxidation. The layer thickness was estimated to be between 5--10 nm. The layer was stable after oxidation treatment at 600 C formore » 100 hours. High resolution TEM observations of the fiber surface revealed a variable BN rich layer thickness. Patches of turbostratic BN were observed under certain conditions, however mostly the layer appeared to be amorphous.« less
Koh, Haeng-Deog; Kim, Mi-Jeong
2016-01-01
A photo-crosslinked polystyrene (PS) thin film is investigated as a potential guiding sub-layer for polystyrene-block-poly (methyl methacrylate) block copolymer (BCP) cylindrical nanopattern formation via topographic directed self-assembly (DSA). When compared to a non-crosslinked PS brush sub-layer, the photo-crosslinked PS sub-layer provided longer correlation lengths of the BCP nanostructure, resulting in a highly uniform DSA nanopattern with a low number of BCP dislocation defects. Depending on the thickness of the sub-layer used, parallel or orthogonal orientations of DSA nanopattern arrays were obtained that covered the entire surface of patterned Si substrates, including both trench and mesa regions. The design of DSA sub-layers and guide patterns, such as hardening the sub-layer by photo-crosslinking, nano-structuring on mesas, the relation between trench/mesa width, and BCP equilibrium period, were explored with a view to developing defect-reduced DSA lithography technology. PMID:28773768
Chan, E L; Brandt, K; Horsman, G
1995-11-01
Seven hundred thirty-two female urogenital samples were collected for Chlamydia trachomatis testing by both the Sanofi Diagnostics Pasteur (Chaska, Minn.) Chlamydia Microplate EIA by the shortened protocol and the Syva (San Jose, Calif.) MicroTrak II EIA, and the results were compared with those obtained by cell culture. For the analysis of samples from female patients, the patients were divided into high- and low-risk categories. An additional 121 male urethral samples were collected and tested by the Sanofi Microplate EIA and cell culture; for the analysis of samples from male patients, the patients were divided into asymptomatic and symptomatic categories. All specimens positive by enzyme immunoassay (EIA) were confirmed by a blocking assay following the respective manufacturer's instructions. Specimens negative by EIA that fell within a gray zone 30% below the cutoff and negative cultures with one or more corresponding positive EIA results were tested further by cytocentrifugation and direct immunofluorescent assay. The overall sensitivity, specificity, positive predictive value, and negative predictive value for Syva versus culture were 94, 98.8, 85.5 and 99.6%, respectively. After resolution, the results were 94.5, 99.6, 94.5, and 99.6%, respectively. The parallel results for the Sanofi Microplate EIA versus culture were 94.0, 98.7, and 83.9, and 99.6%, respectively, and after being resolved, the results were 94.9, 100, 100, and 99.6%, respectively. In the small male population tested, the resolved results of the Sanofi Microplate EIA versus culture demonstrated sensitivity, specificity, positive predictive value, and negative predictive value of 100, 100, 100, and 100%, respectively. The present study demonstrated that the Sanofi Microplate EIA shortened protocol is highly sensitive and specific in comparison with cell culture and the Syva MicroTrak II EIA.
Pseudopotential SCF-MO studies of hypervalent compounds. II. XeF+5 and XeF6
NASA Astrophysics Data System (ADS)
Rothman, Michael J.; Bartell, Lawrence S.; Ewig, Carl S.; Van Wazer, John R.
1980-07-01
New evidence bearing upon the anomalous properties of xenon hexafluoride has been obtained via the ab initio molecular orbital approach applied successfully to the di- and tetrafluorides in paper I. Structures of both XeF+5 and XeF6 are governed by a stereochemically active lone pair. In the case of the square-pyramidal cation the Fax-Xe-Feq angle calculated for the bare ion is within 2° of the value observed in the crystalline complex. For the hexafluoride, however, the calculated deformation from Oh symmetry is appreciably greater than that deduced from electron diffraction intensities. Nevertheless, the results of calculations are in sufficient conformity with the Bartell-Gavin, Pitzer-Bernstein interpretation and at variance with the ''electronic-isomers'' interpretation to leave little doubt about the answer. With increasing fluorination in the XeFn series the HOMO-LUMO energy difference decreases and the second-order Jahn-Teller effect is enhanced. Increasing fluorination (and increased positive charge on Xe) also shortens bond lengths; calculated shortenings parallel observed shortenings. The deformation of XeF6 from Oh is along t1u bend and stretch coordinates to a C3v structure with long bonds adjacent to the lone pair, as expected according to the valence-shell-electron-pair-repulsion model. Pure t2g deformations are destabilizing but anharmonic t1u-t2g coupling significantly stabilizes the deformation. Steric aspects of the structure and force field are diagnosed and found to be minor. Values for the force constants f44, f55, f¯4444, f¯444'4', and f¯445 are derived and found to be of the magnitude forecast in the Bartell-Gavin and Pitzer-Bernstein treatments except that the calculations do not reproduce the delicate balances believed to lead to almost free pseudorotation in XeF6.
NASA Technical Reports Server (NTRS)
Ellison, Donald C.; Jones, Frank C.
1988-01-01
The electron heating required if protons scatter elastically in a parallel, collisionless shock is calculated. Near-elastic proton scattering off large amplitude background magnetic field fluctuations might be expected if the waves responsible for the shock dissipation are generated by the fire hose instability. The effects of an electrostatic potential jump in the shock layer are included by assuming that the energy lost by protons in traversing the potential jump is converted into electron thermal pressure. It is found that the electron temperature increase is a strong function of the potential jump. Comparison is made to the parallel shock plasma simulation of Quest (1987).
Data Parallel Line Relaxation (DPLR) Code User Manual: Acadia - Version 4.01.1
NASA Technical Reports Server (NTRS)
Wright, Michael J.; White, Todd; Mangini, Nancy
2009-01-01
Data-Parallel Line Relaxation (DPLR) code is a computational fluid dynamic (CFD) solver that was developed at NASA Ames Research Center to help mission support teams generate high-value predictive solutions for hypersonic flow field problems. The DPLR Code Package is an MPI-based, parallel, full three-dimensional Navier-Stokes CFD solver with generalized models for finite-rate reaction kinetics, thermal and chemical non-equilibrium, accurate high-temperature transport coefficients, and ionized flow physics incorporated into the code. DPLR also includes a large selection of generalized realistic surface boundary conditions and links to enable loose coupling with external thermal protection system (TPS) material response and shock layer radiation codes.
Binge-type behavior in rats consuming trans-fat-free shortening
Wojnicki, F.H.E.; Charny, G.; Corwin, R.L.W.
2009-01-01
Studies from this and another laboratory involving an animal model of binge-type behavior have used vegetable shortening containing trans-fats. Due to reformulations by vegetable shortening manufacturers to remove trans-fats from their products, only trans-fat-free shortenings are now available. The goal of the present study was to assess binge-type behavior in rats with trans-fat and trans-free vegetable shortening. Trans-fat-free shortening was provided to three different groups of non-food-deprived male Sprague Dawley rats on different schedules of access: continuous access (24 hr/day — 7days/week), daily access (1 hr every day), and intermittent access (1 hr on Mondays, Wednesdays, Fridays). Trans-fat shortening was provided to a fourth group on the intermittent access schedule. A fifth group had no shortening access (chow only). Both intermittent groups (trans-fat-free and trans-fat) consumed significantly more shortening during the 1-hr period of availability than did the daily group, and there was no difference in shortening intakes between the intermittent groups. These results are identical to previous reports of binge-type behavior in rats using this model. Thus, binge-type behavior in the present behavioral model depends upon the schedule of access, not the presence of trans fats in the shortening. PMID:18499201
Binge-type behavior in rats consuming trans-fat-free shortening.
Wojnicki, F H E; Charny, G; Corwin, R L W
2008-07-05
Studies from this and another laboratory involving an animal model of binge-type behavior have used vegetable shortening containing trans-fats. Due to reformulations by vegetable shortening manufacturers to remove trans-fats from their products, only trans-fat-free shortenings are now available. The goal of the present study was to assess binge-type behavior in rats with trans-fat and trans-free vegetable shortening. Trans-fat-free shortening was provided to three different groups of non-food-deprived male Sprague Dawley rats on different schedules of access: continuous access (24 h/day-7 days/week), daily access (1 h every day), and intermittent access (1 h on Mondays, Wednesdays, Fridays). Trans-fat shortening was provided to a fourth group on the intermittent access schedule. A fifth group had no shortening access (chow only). Both intermittent groups (trans-fat-free and trans-fat) consumed significantly more shortening during the 1-h period of availability than did the daily group, and there was no difference in shortening intakes between the intermittent groups. These results are identical to previous reports of binge-type behavior in rats using this model. Thus, binge-type behavior in the present behavioral model depends upon the schedule of access, not the presence of trans-fats in the shortening.
Sound-turbulence interaction in transonic boundary layers
NASA Astrophysics Data System (ADS)
Lelostec, Ludovic; Scalo, Carlo; Lele, Sanjiva
2014-11-01
Acoustic wave scattering in a transonic boundary layer is investigated through a novel approach. Instead of simulating directly the interaction of an incoming oblique acoustic wave with a turbulent boundary layer, suitable Dirichlet conditions are imposed at the wall to reproduce only the reflected wave resulting from the interaction of the incident wave with the boundary layer. The method is first validated using the laminar boundary layer profiles in a parallel flow approximation. For this scattering problem an exact inviscid solution can be found in the frequency domain which requires numerical solution of an ODE. The Dirichlet conditions are imposed in a high-fidelity unstructured compressible flow solver for Large Eddy Simulation (LES), CharLESx. The acoustic field of the reflected wave is then solved and the interaction between the boundary layer and sound scattering can be studied.
Thermocapillary convection in two immiscible liquid layers with free surface
NASA Technical Reports Server (NTRS)
Doi, Takao; Koster, Jean N.
1993-01-01
Thermocapillary convection is studied in two immiscible liquid layers with one free surface, one liquid/liquid interface, and differential heating applied parallel to the interfaces. An analytical solution is introduced for infinite horizontal layers. The defining parameter for the flow pattern is lambda, the ratio of the temperature coefficient of the interfacial tension to that of the surface tension. Four different flow patterns exist under zero gravity conditions. 'Halt' conditions which halt the fluid motion in the lower encapsulated liquid layer have been found. A numerical experiment is carried out to study effects of vertical end walls on the double layer convection in a 2D cavity. The halt condition obtained from the analytical study is found to be valid in the limit of small Reynolds numbers. The flow in the encapsulated liquid layer can be suppressed substantially.
Thermal Programmed Desorption of C32 H 66
NASA Astrophysics Data System (ADS)
Cisternas, M.; Del Campo, V.; Cabrera, A. L.; Volkmann, U. G.; Hansen, F. Y.; Taub, H.
2011-03-01
Alkanes are of interest as prototypes for more complex molecules and membranes. In this work we study the desorption kinetics of dotriacontane C32 adsorbed on Si O2 /Si substrate. We combine in our instrument High Resolution Ellipsometry (HRE) and Thermal Programmed Desorption (TPD). C32 monolayers were deposited in high vacuum from a Knudsen cell on the substrate, monitorizing sample thickness in situ with HRE. Film thickness was in the range of up to 100 AA, forming a parallel bilayer and perpendicular C32 layer. The Mass Spectrometer (RGA) of the TPD section was detecting the shift of the desorption peaks at different heating rates applied to the sample. The mass registered with the RGA was AMU 57 for parallel and perpendicular layers, due to the abundance of this mass value in the disintegration process of C32 in the mass spectrometers ionizer. Moreover, the AMU 57 signal does not interfere with other signals coming from residual gases in the vacuum chamber. The desorption energies obtained were ΔEdes = 11,9 kJ/mol for the perpendicular bilayer and ΔEdes = 23 ,5 kJ/mol for the parallel bilayer.
Cho, Seong Rae; Porte, Yoann; Kim, Yun Cheol; Myoung, Jae-Min
2018-03-21
Poly(9,9-dioctylfluorene) (PFO) has attracted significant interests owing to its versatility in electronic devices. However, changes in its optical properties caused by its various phases and the formation of oxidation defects limit the application of PFO in light-emitting diodes (LEDs). We investigated the effects of the addition of Triton X-100 (hereinafter shortened as TX) in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to induce interlayer diffusion between PEDOT:PSS and PFO to enhance the stability of the PFO phase and suppress its oxidation. Photoluminescence (PL) measurement on PFO/TX-mixed PEDOT:PSS layers revealed that, upon increasing the concentration of TX in the PEDOT:PSS layer, the β phase of PFO could be suppressed in favor of the glassy phase and the wide PL emission centered at 535 nm caused by ketone defects formed by oxidation was decreased considerably. LEDs were then fabricated using PFO as an emission layer, TX-mixed PEDOT:PSS as hole-transport layer, and zinc oxide (ZnO) nanorods as electron-transport layer. As the TX concentration reached 3 wt %, the devices exhibited dramatic increases in current densities, which were attributed to the enhanced hole injection due to TX addition, along with a shift in the dominant emission wavelength from a green electroluminescence (EL) emission centered at 518 nm to a blue EL emission centered at 448 nm. The addition of TX in PEDOT:PSS induced a better hole injection in the PFO layer, and through interlayer diffusion, stabilized the glassy phase of PFO and limited the formation of oxidation defects.
Superstrate sub-cell voltage-matched multijunction solar cells
Mascarenhas, Angelo; Alberi, Kirstin
2016-03-15
Voltage-matched thin film multijunction solar cell and methods of producing cells having upper CdTe pn junction layers formed on a transparent substrate which in the completed device is operatively positioned in a superstate configuration. The solar cell also includes a lower pn junction formed independently of the CdTe pn junction and an insulating layer between CdTe and lower pn junctions. The voltage-matched thin film multijunction solar cells further include a parallel connection between the CdTe pn junction and lower pn junctions to form a two-terminal photonic device. Methods of fabricating devices from independently produced upper CdTe junction layers and lower junction layers are also disclosed.
Bacterial Presence in Layered Rock Varnish-Possible Mars Analog?
NASA Astrophysics Data System (ADS)
Krinsley, D.; Rusk, B. G.
2000-08-01
Rock varnish from locations in Death Valley, California; Peru; Antarctica; and Hawaii reveal nanometer scale layering (less than 1 nm to about 75 nm) when studied with transmission electron microscopy (TEM). Parallel layers of clay minerals containing evidence of presumed bacteria were present in all samples. Samples range in age from a few thousand years to perhaps a million years. Diagenesis is relatively limited, as chemical composition is variable, both from top to bottom and along layers in these varnish samples. Also, occasional exotic minerals occur randomly in most varnish sections, and vary in size and hardness, again suggesting relative lack of diagenetic alteration. Additional information can be found in the original extended abstract.
The Dauki Thrust Fault and the Shillong Anticline: An incipient plate boundary in NE India?
NASA Astrophysics Data System (ADS)
Ferguson, E. K.; Seeber, L.; Steckler, M. S.; Akhter, S. H.; Mondal, D.; Lenhart, A.
2012-12-01
The Shillong Massif is a regional contractional structure developing across the Assam sliver of the Indian plate near the Eastern Syntaxis between the Himalaya and Burma arcs. Faulting associated with the Shillong Massif is a major source of earthquake hazard. The massif is a composite basement-cored asymmetric anticline and is 100km wide, >350km long and 1.8km high. The high relief southern limb preserves a Cretaceous-Paleocene passive margin sequence despite extreme rainfall while the gentler northern limb is devoid of sedimentary cover. This asymmetry suggests southward growth of the structure. The Dauki fault along the south limb builds this relief. From the south-verging structure, we infer a regional deeply-rooted north-dipping blind thrust fault. It strikes E-W and obliquely intersects the NE-SW margin of India, thus displaying three segments: Western, within continental India; Central, along the former passive margin; and Eastern, overridden by the west-verging Burma accretion system. We present findings from recent geologic fieldwork on the western and central segments. The broadly warped erosional surface of the massif defines a single anticline in the central segment, east of the intersection with the hinge zone of the continental margin buried by the Ganges-Brahmaputra Delta. The south limb of the anticline forms a steep topographic front, but is even steeper structurally as defined by the Cretaceous-Eocene cover. Below it, Sylhet Trap Basalts intrude and cover Precambrian basement. Dikes, presumably parallel to the rifted margin, are also parallel to the front, suggesting thrust reactivation of rift-related faults. Less competent Neogene clastics are preserved only near the base of the mountain front. Drag folds in these rocks suggest north-vergence and a roof thrust above a blind thrust wedge floored by the Dauki thrust fault. West of the hinge zone, the contractional structure penetrates the Indian continent and bifurcates. After branching into the Dapsi Fault, the Dauki Fault continues westward as the erosion-deposition boundary combined with a belt of N-S shortening. The Dapsi thrust fault strikes WNW across the Shillong massif and dips NNE. It is mostly blind below a topographically expressed fold involving basement and passive-margin cover. Recent fieldwork has shown that the fault is better exposed in the west, where eventually Archean basement juxtaposes folded and steeply dipping fluvial sediment. Both Dauki and Dapsi faults probably continue beyond the Brahmaputra River, where extreme fluvial processes mask them. The area between the two faults is a gentle southward monocline with little or no shortening. Thus uplift of this area stems from slip on the Dauki thrust fault, not from pervasive shortening. The Burma foldbelt overrides the Shillong Plateau and is warped but continuous across the eastern segment of the Dauki fault. The Haflong-Naga thrust front north of the Dauki merges with the fold-thrust belt in the Sylhet basin to the south, despite >150km of differential advance due to much greater advance of the accretionary prism in the basin. Where the Dauki and Haflong-Naga thrusts cross, the thrust fronts are nearly parallel and opposite vergence. We trace a Dauki-related topographic front eastward across the Burma Range. This and other evidence suggest that the Dauki Fault continues below the foldbelt.
NASA Astrophysics Data System (ADS)
Huang, Melin; Huang, Bormin; Huang, Allen H.
2014-10-01
For weather forecasting and research, the Weather Research and Forecasting (WRF) model has been developed, consisting of several components such as dynamic solvers and physical simulation modules. WRF includes several Land- Surface Models (LSMs). The LSMs use atmospheric information, the radiative and precipitation forcing from the surface layer scheme, the radiation scheme, and the microphysics/convective scheme all together with the land's state variables and land-surface properties, to provide heat and moisture fluxes over land and sea-ice points. The WRF 5-layer thermal diffusion simulation is an LSM based on the MM5 5-layer soil temperature model with an energy budget that includes radiation, sensible, and latent heat flux. The WRF LSMs are very suitable for massively parallel computation as there are no interactions among horizontal grid points. The features, efficient parallelization and vectorization essentials, of Intel Many Integrated Core (MIC) architecture allow us to optimize this WRF 5-layer thermal diffusion scheme. In this work, we present the results of the computing performance on this scheme with Intel MIC architecture. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.1x. Accordingly, the same CPU-based optimizations improved the performance on Intel Xeon E5- 2603 by a factor of 1.6x as compared to the first version of multi-threaded code.
NASA Astrophysics Data System (ADS)
Shu, Liangshu; Yin, Hongwei; Faure, Michel; Chen, Yan
2017-06-01
The Xu-Huai thrust-and-fold belt, located in the southeastern margin of the North China Block, consists mainly of thrust and folded pre-Mesozoic strata. Its geodynamic evolution and tectonic setting are topics of long debate. This paper provides new evidence from geological mapping, structural analysis, and making balance cross-sections, with restoration of cross-sections. Results suggest that this belt was subjected to two-phase deformation, including an early-phase regional-scale NW-ward thrust and fold, and a late-phase extension followed by the emplacement of dioritic, monzodioritic porphyrites dated at 131-135 Ma and locally strike-slip shearing. According to the mapping, field observations and drill-hole data, three structural units were distinguished, namely, (1) the pre-Neoproterozoic crystalline basement in the eastern segment, (2) the nappe unit or the thrust-and-fold zone in the central segment, which is composed of Neoproterozoic to Ordovician carbonate rocks and Carboniferous-Permian coal-bearing rocks, about 2600 m thick, and (3) the western frontal zone. A major decollement fault has also been identified in the base of the nappe unit, on which dozen-meter to km-scale thrust-and-fold bodies were commonly developed. All pre-Mesozoic depositional sequences were involved into a widespread thrust and fold event. Six uncompetent-rock layers with biostratigraphic ages (Nanjing University, 1996) have been recognized, and each uncompetent-rock layer occurred mainly in the top of the footwall, playing an important role in the development of the Xu-Huai thrust-and-fold belt. Geometry of the major decollement fault suggests that the nappe unit of this belt was rooted in its eastern side, near the Tan-Lu Fault Zone. Two geological cross-sections were chosen for structural balancing and restoration. From the balanced cross-sections, ramp-flat and imbricated faults as well as fault-related folds were identified. A shortening of 20.6-29.6 km was obtained from restoration of balanced sections, corresponding to a shortening rate of 43.6-46.4%. This shortening deformation was likely related to the SE-ward intracontinental underthrust of the North China Block beneath the South China Block during the Mesozoic.
Quaternary deformation of the Mushi thrust-related fold, northeastern margin of the Pamir
NASA Astrophysics Data System (ADS)
Li, T.; Chen, J.; Huang, D. M.; Thompson, J.; Xiao, P. W.; Yuan, D. Z.; Burbank, D. W.
2010-12-01
The Pamir salient defines the northwestern end of the Himalayan-Tibetan orogen and has overthrust the Tajik-Tarim basin to the north by ~300km along a late Cenozoic, south-dipping intracontinental subduction zone (Burtman and Molnar, 1993). The Quaternary deformation of the salient are concentrated on the outer margins: the sinistral Darvaz fault on the northwestern margin, the Trans-Alai thrust on the north margin and the northeast margin. The GPS-based plate tectonic model indicates the convergence rate is of 8-12mm/a in an N-S direction, nearly 1/4 of that between the Indian plate and the Eurasian plate (DeMets et al., 1990; Reigber et al., 2001; Yang et al., 2008). Previous studies focused on the northwestern margin and the north margin revel their spatial distribution, temporal evolution and kinematic patterns (Burtman and Molnar, 1993; Strecker et al., 1995; Arrowsmith and Strecker, 1999; Coutand et al., 2002). Deformed strata and GPS data indicate Quaternary deformations on the northeastern margin are concentrated on the PFT (the Pamir Front Thrust), the foreland thrust system generated by the latest advancing migration of the Pamir salient, whose kinematic patterns are still poor understood. Integrated by the Mushi thrust and the Mushi anticline, the Mushi thrust-related fold located at eastern end of the PFT. Simple structure, well outcrops and evident deformed terraces make it an excellent place to recognize deformation characters and kinematic patterns of the PFT. The Mushi thrust is north-vergent, roughly parallel with the anticline axis, and west part forming several subparallel fault scarps on the terrace surface and east part buried under the late-Quaternary deposits. The Mushi thrust is north-plunging, with a gentle south limb and a steep north limb. Combining field mapping data and neighboring seismic reflection profiles, following the cross-section balance principle, we can confine the Mushi thrust-related fold is a fault propagation fold evaluating from a detachment fold, the total shortening is ~0.7km, and the total uplift is ~1.5km. The shortening of the Mushi thrust-related fold is absorbed by strata folding and slipping along the thrust surface. According to the offset and the age of the terrace surface near the dam of the Kashi power station, the shortening rate of the Mushi thrust is ~0.7mm/a. On the basis of terraces deformation analysis, the Mushi anticline grows through limb rotation in late-Quaternary, and the minimum shortening rate is ~0.6mm/a. Then the total shortening rate is ~1.3mm/a. Although the growth strata cannot be found in the field work, the comfortable contacts between the Atushi formation and the Xiyu formation at both limbs indicate the growth inception of the Mushi thrust-related fold later than the base age of the Xiyu formation, which is ~1.6Ma (Chen et al., 2007). If the shortening rate is constant during growth of the thrust-related fold, the growth inception should be earlier than 0.5-0.6Ma.
NASA Technical Reports Server (NTRS)
Ergun, R. E.; Holmes, J. C.; Goodrich, K. A.; Wilder, F. D.; Stawarz, J. E.; Eriksson, S.; Newman, D. L.; Schwartz, S. J.; Goldman, M. V.; Sturner, A. P.;
2016-01-01
We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E(sub parallel)) with amplitudes on the order of 100 mV/m and display nonlinear characteristics that suggest a possible net E(sub parallel). These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (less than 10eV) plasma in the magnetosphere with warm (approximately 100eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.
Charon Toolkit for Parallel, Implicit Structured-Grid Computations: Functional Design
NASA Technical Reports Server (NTRS)
VanderWijngaart, Rob F.; Kutler, Paul (Technical Monitor)
1997-01-01
In a previous report the design concepts of Charon were presented. Charon is a toolkit that aids engineers in developing scientific programs for structured-grid applications to be run on MIMD parallel computers. It constitutes an augmentation of the general-purpose MPI-based message-passing layer, and provides the user with a hierarchy of tools for rapid prototyping and validation of parallel programs, and subsequent piecemeal performance tuning. Here we describe the implementation of the domain decomposition tools used for creating data distributions across sets of processors. We also present the hierarchy of parallelization tools that allows smooth translation of legacy code (or a serial design) into a parallel program. Along with the actual tool descriptions, we will present the considerations that led to the particular design choices. Many of these are motivated by the requirement that Charon must be useful within the traditional computational environments of Fortran 77 and C. Only the Fortran 77 syntax will be presented in this report.
Guo, L-X; Li, J; Zeng, H
2009-11-01
We present an investigation of the electromagnetic scattering from a three-dimensional (3-D) object above a two-dimensional (2-D) randomly rough surface. A Message Passing Interface-based parallel finite-difference time-domain (FDTD) approach is used, and the uniaxial perfectly matched layer (UPML) medium is adopted for truncation of the FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. This makes the parallel FDTD algorithm easier to implement. The parallel performance with different number of processors is illustrated for one rough surface realization and shows that the computation time of our parallel FDTD algorithm is dramatically reduced relative to a single-processor implementation. Finally, the composite scattering coefficients versus scattered and azimuthal angle are presented and analyzed for different conditions, including the surface roughness, the dielectric constants, the polarization, and the size of the 3-D object.
ARSENAL: A Cross Layer Architecture for Secure Resilient Tactical Mobile AdHoc Networks
2016-01-21
stations separated by 0.5 to 1 km can be coherently measured to a single mobile subscriber using LTE signaling. These are the first measurements of...undertake three parallel but inter-coupled tasks geared towards a) performing measurements via real deployments and enhancing our understanding of layer...dependencies and vulnerabilities in mobile ad hoc networks; these measurements will be on existing testbeds at The views, opinions and/or findings
ARSENAL: A Cross Layer Architecture for SecureResilient Tactical Mobile AdHoc Networks
2016-01-21
stations separated by 0.5 to 1 km can be coherently measured to a single mobile subscriber using LTE signaling. These are the first measurements of...undertake three parallel but inter-coupled tasks geared towards a) performing measurements via real deployments and enhancing our understanding of layer...dependencies and vulnerabilities in mobile ad hoc networks; these measurements will be on existing testbeds at The views, opinions and/or findings
Features of sound propagation through and stability of a finite shear layer
NASA Technical Reports Server (NTRS)
Koutsoyannis, S. P.
1976-01-01
The plane wave propagation, the stability and the rectangular duct mode problems of a compressible inviscid linearly sheared parallel, but otherwise homogeneous flow, are shown to be governed by Whittaker's equation. The exact solutions for the perturbation quantities are essentially Whittaker M-functions. A number of known results are obtained as limiting cases of exact solutions. For the compressible finite thickness shear layer it is shown that no resonances and no critical angles exist for all Mach numbers, frequencies and shear layer velocity profile slopes except in the singular case of the vortex sheet.
Bragg scattering of electromagnetic waves by microwave-produced plasma layers
NASA Technical Reports Server (NTRS)
Kuo, S. P.; Zhang, Y. S.
1990-01-01
A set of parallel plasma layers is generated by two intersecting microwave pulses in a chamber containing dry air at a pressure comparable to the upper atmosphere. The dependencies of breakdown conditions on the pressure and pulse length are examined. The results are shown to be consistent with the appearance of tail erosion of the microwave pulse caused by air breakdown. A Bragg scattering experiment, using the plasma layers as a Bragg reflector, is then performed. Both time domain and frequency domain measurements of wave scattering are conducted. The experimental results are found to agree very well with the theory.
Miyazaki, Celina M; Mishra, Rohit; Kinahan, David J; Ferreira, Marystela; Ducrée, Jens
2017-10-01
Antibody immobilization on polymeric substrates is a key manufacturing step for microfluidic devices that implement sample-to-answer automation of immunoassays. In this work, a simple and versatile method to bio-functionalize poly(methylmethacrylate) (PMMA), a common material of such "Lab-on-a-Chip" systems, is proposed; using the Layer-by-Layer (LbL) technique, we assemble nanostructured thin films of poly(ethylene imine) (PEI) and graphene oxide (GO). The wettability of PMMA surfaces was significantly augmented by the surface treatment with (PEI/GO) 5 film, with an 81% reduction of the contact angle, while the surface roughness increased by 600%, thus clearly enhancing wettability and antibody binding capacity. When applied to enzyme-linked immunosorbent assays (ELISAs), the limit of detection of PMMA surface was notably improved from 340pgmL -1 on commercial grade polystyrene (PS) and 230pgmL -1 on plain PMMA surfaces to 130pgmL -1 on (PEI/GO) 5 treated PMMA. Furthermore, the accelerated antibody adsorption kinetics on the LbL films of GO allowed to substantially shorten incubation times, e.g. for anti-rat IgG adsorption from 2h down to 15min on conventional and treated surfaces, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Improved performance in vertical GaN Schottky diode assisted by AlGaN tunneling barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Y.; Chu, R.; Li, R.
2016-03-14
In a vertical GaN Schottky barrier diode, the free electron concentration n in the 6-μm-thick drift layer was found to greatly impact the diode reverse leakage current, which increased from 2.1 × 10{sup −7} A to 3.9 × 10{sup −4} A as n increased from 7.5 × 10{sup 14 }cm{sup −3} to 6.3 × 10{sup 15 }cm{sup −3} at a reverse bias of 100 V. By capping the drift layer with an ultrathin 5-nm graded AlGaN layer, reverse leakage was reduced by more than three orders of magnitude with the same n in the drift layer. We attribute this to the increased Schottky barrier height with the AlGaN at the surface. Meanwhile, themore » polarization field within the graded AlGaN effectively shortened the depletion depth, which led to the formation of tunneling current at a relatively small forward bias. The turn-on voltage in the vertical Schottky diodes was reduced from 0.77 V to 0.67 V—an advantage in reducing conduction loss in power switching applications.« less
Anderson, R. Ernest; Beard, Sue; Mankinen, Edward A.; Hillhouse, John W.
2013-01-01
For more than two decades, the paradigm of large-magnitude (~250 km), northwest-directed (~N70°W) Neogene extensional lengthening between the Colorado Plateau and Sierra Nevada at the approximate latitude of Las Vegas has remained largely unchallenged, as has the notion that the strain integrates with coeval strains in adjacent regions and with plate-boundary strain. The paradigm depends on poorly constrained interconnectedness of extreme-case lengthening estimated at scattered localities within the region. Here we evaluate the soundness of the inferred strain interconnectedness over an area reaching 600 km southwest from Beaver, Utah, to Barstow, California, and conclude that lengthening is overestimated in most areas and, even if the estimates are valid, lengthening is not interconnected in a way that allows for published versions of province-wide summations.We summarize Neogene strike slip in 13 areas distributed from central Utah to Lake Mead. In general, left-sense shear and associated structures define a broad zone of translation approximately parallel to the eastern boundary of the Basin and Range against the Colorado Plateau, a zone we refer to as the Hingeline shear zone. Areas of steep-axis rotation (ranging to 2500 km2) record N-S shortening rather than unevenly distributed lengthening. In most cases, the rotational shortening and extension-parallel folds and thrusts are coupled to, or absorb, strike slip, thus providing valuable insight into how the discontinuous strike-slip faults are simply parts of a broad zone of continuous strain. The discontinuous nature of strike slip and the complex mixture of extensional, contractional, and steep-axis rotational structures in the Hingeline shear zone are similar to those in the Walker Lane belt in the west part of the Basin and Range, and, together, the two record southward displacement of the central and northern Basin and Range relative to the adjacent Colorado Plateau. Understanding this province-scale coupling is critical to understanding major NS shortening and westerly tectonic escape in the Lake Mead area.One north-elongate uplift in the Hingeline shear zone is a positive flower structure along a strike-slip fault, and we postulate that most other large uplifts are diapiric, resulting from extension-normal inflow of ductile substrate, rather than second-order isostatic responses to tectonic unloading. We also postulate that large steep-axis rotations, and some small ones as well, result from basal tractions imparted by gradients in southerly directed subjacent ductile flow rather than by shear coupling imparted by laterally variable elongation strains. The shortening strain recorded in the rotations and related structures probably matches or exceeds the magnitude of lengthening, even for the Lake Mead area where we do not question local large (~65 km) west-directed lengthening. We assess the results of extensive recent earth-science research in the Lake Mead area and conclude that previously published models of N-S convergence, westerly tectonic rafting, and N-S occlusion are valid and record unique tectonic escape accommodation for south-directed displacement of the Great Basin sector of the Basin and Range. Genetic ties between the south-directed displacement and plate-interaction forces are elusive, and we suggest the displacement results from body forces inherent in the Basin and Range.
Carbon Dioxide and Nitrogen Infused Compressed Air Foam for Depopulation of Caged Laying Hens.
Gurung, Shailesh; White, Dima; Archer, Gregory; Styles, Darrel; Zhao, Dan; Farnell, Yuhua; Byrd, James; Farnell, Morgan
2018-01-03
Depopulation of infected poultry flocks is a key strategy to control and contain reportable diseases. Water-based foam, carbon dioxide inhalation, and ventilation shutdown are depopulation methods available to the poultry industry. Unfortunately, these methods have limited usage in caged layer hen operations. Personnel safety and welfare of birds are equally important factors to consider during emergency depopulation procedures. We have previously reported that compressed air foam (CAF) is an alternative method for depopulation of caged layer hens. We hypothesized that infusion of gases, such as carbon dioxide (CO₂) and nitrogen (N₂), into the CAF would reduce physiological stress and shorten time to cessation of movement. The study had six treatments, namely a negative control, CO₂ inhalation, N₂ inhalation, CAF with air (CAF Air), CAF with 50% CO₂ (CAF CO₂), and CAF with 100% N₂ (CAF N₂). Four spent hens were randomly assigned to one of these treatments on each of the eight replication days. A total of 192 spent hens were used in this study. Serum corticosterone and serotonin levels were measured and compared between treatments. Time to cessation of movement of spent hens was determined using accelerometers. The addition of CO₂ in CAF significantly reduced the foam quality while the addition of N₂ did not. The corticosterone and serotonin levels of spent hens subjected to foam (CAF, CAF CO₂, CAF N₂) and gas inhalation (CO₂, N₂) treatments did not differ significantly. The time to cessation of movement of spent hens in the CAF N₂ treatment was significantly shorter than CAF and CAF CO₂ treatments but longer than the gas inhalation treatments. These data suggest that the addition of N₂ is advantageous in terms of shortening time to death and improved foam quality as compared to the CAF CO₂ treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahlenberg, Volker; Konzett, Juergen; Kaindl, Reinhard
High-pressure synthesis experiments in the system Na{sub 2}O-Y{sub 2}O{sub 3}-SiO{sub 2} revealed the existence of a previously unknown polymorph of NaYSi{sub 2}O{sub 6} or Na{sub 3}Y{sub 3}[Si{sub 3}O{sub 9}]{sub 2} which was quenched from 3.0 GPa and 1000 deg. C. Structural investigations on this modification have been performed using single-crystal X-ray diffraction data collected at ambient conditions. Furthermore, unpolarized micro-Raman spectra have been obtained from single-crystal material. The high-P modification of NaYSi{sub 2}O{sub 6} crystallizes in the centrosymmetric space group C2/c with 12 formula units per cell (a=8.2131(9) A, b=10.3983(14) A, c=17.6542(21) A, {beta}=100.804(9){sup o}, V=1481.0(3) A{sup 3}, R(|F|)=0.033 formore » 1142 independent observed reflections) and belongs to the group of cyclo-silicates. Basic building units are isolated three-membered [Si{sub 3}O{sub 9}] rings located in layers parallel to (010). Within a single layer the rings are concentrated in strings parallel to [100]. The sequence of directedness of up (U) or down (D) pointing tetrahedra of a single ring is UUU or DDD, respectively. Stacking of the layers parallel to b results in the formation of a three-dimensional structure in which yttrium and sodium cations are incorporated for charge compensation. In more detail, four non-tetrahedral cation positions can be differentiated which are coordinated by 6 and 8 oxygen ligands. Refinements of the site occupancies did not reveal any indication for mixed Na-Y populations on these positions. Finally, several geometrical parameters of rings occurring in cyclo-trisilicate structures have been compiled and are discussed. - Graphical abstract: Projection of the whole structure of high-P NaYSi{sub 2}O{sub 6} parallel to [100].« less
Femoral neck shortening after internal fixation of a femoral neck fracture.
Zielinski, Stephanie M; Keijsers, Noël L; Praet, Stephan F E; Heetveld, Martin J; Bhandari, Mohit; Wilssens, Jean Pierre; Patka, Peter; Van Lieshout, Esther M M
2013-07-01
This study assesses femoral neck shortening and its effect on gait pattern and muscle strength in patients with femoral neck fractures treated with internal fixation. Seventy-six patients from a multicenter randomized controlled trial participated. Patient characteristics and Short Form 12 and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores were collected. Femoral neck shortening, gait parameters, and maximum isometric forces of the hip muscles were measured and differences between the fractured and contralateral leg were calculated. Variables of patients with little or no shortening, moderate shortening, and severe shortening were compared using univariate and multivariate analyses. Median femoral neck shortening was 1.1 cm. Subtle changes in gait pattern, reduced gait velocity, and reduced abductor muscle strength were observed. Age, weight, and Pauwels classification were risk factors for femoral neck shortening. Femoral neck shortening decreased gait velocity and seemed to impair gait symmetry and physical functioning. In conclusion, internal fixation of femoral neck fractures results in permanent physical limitations. The relatively young and healthy patients in our study seem capable of compensating. Attention should be paid to femoral neck shortening and proper correction with a heel lift, as inadequate correction may cause physical complaints and influence outcome. Copyright 2013, SLACK Incorporated.
The influence of different nanostructured scaffolds on fibroblast growth
Chung, I-Cheng; Li, Ching-Wen; Wang, Gou-Jen
2013-01-01
Skin serves as a protective barrier, modulating body temperature and waste discharge. It is therefore desirable to be able to repair any damage that occurs to the skin as soon as possible. In this study, we demonstrate a relatively easy and cost-effective method for the fabrication of nanostructured scaffolds, to shorten the time taken for a wound to heal. Various scaffolds consisting of nanohemisphere arrays of poly(lactic-co-glycolic acid) (PLGA), polylactide and chitosan were fabricated by casting using a nickel (Ni) replica mold. The Ni replica mold is electroformed using the highly ordered nanohemisphere array of the barrier-layer surface of an anodic aluminum oxide membrane as the template. Mouse fibroblast cells (L929s) were cultured on the nanostructured polymer scaffolds to investigate the effect of these different nanohemisphere arrays on cell proliferation. The concentration of collagen type I on each scaffold was then measured through enzyme-linked immunosorbent assay to find the most effective scaffold for shortening the wound-healing process. The experimental data indicate that the proliferation of L929 is superior when a nanostructured PLGA scaffold with a feature size of 118 nm is utilized. PMID:27877586
NASA Astrophysics Data System (ADS)
Fedorin, Illia V.
2018-01-01
Electrodynamic properties of a photonic hypercrystal formed by periodically alternating two types of anisotropic metamaterials are studied. The first metamaterial consists of ferrite and dielectric layers, while the second metamaterial consists of semiconductor and dielectric layers. The system is assumed to be placed in an external magnetic field, which applied parallel to the boundaries of the layers. An effective medium theory which is suitable for calculation of properties of long-wavelength electromagnetic modes is applied in order to derive averaged expressions for effective constitutive parameters. It has been shown that providing a conscious choice of the constitutive parameters and material fractions of magnetic, semiconductor, and dielectric layers, the system under study shows hypercrystal properties for both TE and TM waves in the different frequency ranges.
Apparatus and Process for Controlled Nanomanufacturing Using Catalyst Retaining Structures
NASA Technical Reports Server (NTRS)
Nguyen, Cattien (Inventor)
2013-01-01
An apparatus and method for the controlled fabrication of nanostructures using catalyst retaining structures is disclosed. The apparatus includes one or more modified force microscopes having a nanotube attached to the tip portion of the microscopes. An electric current is passed from the nanotube to a catalyst layer of a substrate, thereby causing a localized chemical reaction to occur in a resist layer adjacent the catalyst layer. The region of the resist layer where the chemical reaction occurred is etched, thereby exposing a catalyst particle or particles in the catalyst layer surrounded by a wall of unetched resist material. Subsequent chemical vapor deposition causes growth of a nanostructure to occur upward through the wall of unetched resist material having controlled characteristics of height and diameter and, for parallel systems, number density.
Charge dissipative dielectric for cryogenic devices
NASA Technical Reports Server (NTRS)
Cantor, Robin Harold (Inventor); Hall, John Addison (Inventor)
2007-01-01
A Superconducting Quantum Interference Device (SQUID) is disclosed comprising a pair of resistively shunted Josephson junctions connected in parallel within a superconducting loop and biased by an external direct current (dc) source. The SQUID comprises a semiconductor substrate and at least one superconducting layer. The metal layer(s) are separated by or covered with a semiconductor material layer having the properties of a conductor at room temperature and the properties of an insulator at operating temperatures (generally less than 100 Kelvins). The properties of the semiconductor material layer greatly reduces the risk of electrostatic discharge that can damage the device during normal handling of the device at room temperature, while still providing the insulating properties desired to allow normal functioning of the device at its operating temperature. A method of manufacturing the SQUID device is also disclosed.
NASA Astrophysics Data System (ADS)
Olive, Jean-Arthur; Pearce, Frederick; Rondenay, Stéphane; Behn, Mark D.
2014-04-01
Many subduction zones exhibit significant retrograde motion of their arc and trench. The observation of fast shear-wave velocities parallel to the trench in such settings has been inferred to represent trench-parallel mantle flow beneath a retreating slab. Here, we investigate this process by measuring seismic anisotropy in the shallow Aegean mantle. We carry out shear-wave splitting analysis on a dense array of seismometers across the Western Hellenic Subduction Zone, and find a pronounced zonation of anisotropy at the scale of the subduction zone. Fast SKS splitting directions subparallel to the trench-retreat direction dominate the region nearest to the trench. Fast splitting directions abruptly transition to trench-parallel above the corner of the mantle wedge, and rotate back to trench-normal over the back-arc. We argue that the trench-normal anisotropy near the trench is explained by entrainment of an asthenospheric layer beneath the shallow-dipping portion of the slab. Toward the volcanic arc this signature is overprinted by trench-parallel anisotropy in the mantle wedge, likely caused by a layer of strained serpentine immediately above the slab. Arcward steepening of the slab and horizontal divergence of mantle flow due to rollback may generate an additional component of sub-slab trench-parallel anisotropy in this region. Poloidal flow above the retreating slab is likely the dominant source of back-arc trench-normal anisotropy. We hypothesize that trench-normal anisotropy associated with significant entrainment of the asthenospheric mantle near the trench may be widespread but only observable at shallow-dipping subduction zones where stations nearest the trench do not overlie the mantle wedge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cevallos, F. Alex; Stolze, Karoline; Cava, Robert J.
The single crystal growth, structure, and basic magnetic properties of ErMgGaO 4 are reported. The structure consists of triangular layers of magnetic ErO 6 octahedra separated by a double layer of randomly occupied non-magnetic (Ga,Mg)O 5 bipyramids. The Er atoms are positionally disordered. Magnetic measurements parallel and perpendicular to the c axis of a single crystal reveal dominantly antiferromagnetic interactions, with a small degree of magnetic anisotropy. A weighted average of the directional data suggests an antiferromagnetic Curie Weiss temperature of approximately -30 K. Below 10 K the temperature dependences of the inverse susceptibilities in the in-plane and perpendicular-to planemore » directions are parallel, indicative of an isotropic magnetic moment at low temperatures. In conclusion, no sign of magnetic ordering is observed above 1.8 K, suggesting that ErMgGaO 4 is a geometrically frustrated magnet.« less
High extraction efficiency ultraviolet light-emitting diode
Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.
2015-11-24
Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.
A Model of In vitro Plasticity at the Parallel Fiber—Molecular Layer Interneuron Synapses
Lennon, William; Yamazaki, Tadashi; Hecht-Nielsen, Robert
2015-01-01
Theoretical and computational models of the cerebellum typically focus on the role of parallel fiber (PF)—Purkinje cell (PKJ) synapses for learned behavior, but few emphasize the role of the molecular layer interneurons (MLIs)—the stellate and basket cells. A number of recent experimental results suggest the role of MLIs is more important than previous models put forth. We investigate learning at PF—MLI synapses and propose a mathematical model to describe plasticity at this synapse. We perform computer simulations with this form of learning using a spiking neuron model of the MLI and show that it reproduces six in vitro experimental results in addition to simulating four novel protocols. Further, we show how this plasticity model can predict the results of other experimental protocols that are not simulated. Finally, we hypothesize what the biological mechanisms are for changes in synaptic efficacy that embody the phenomenological model proposed here. PMID:26733856
Bis(1,3-dimethyl-1H-imidazolium) hexa-fluoro-silicate: the second monoclinic polymorph.
Tian, Chong; Nie, Wanli; Borzov, Maxim V
2013-01-01
The title compound, 2C5H9N2 (+)·SiF6 (2-), (I), crystallized as a new polymorph, different from the previously reported one (Ia) [Light et al. (2007 ▶) private communication (refcode: NIQFAV). CCDC, Cambridge, England]. The symmetry [space groups P21/n for (I) and C2/c for(Ia)] and crystal packing patterns are markedly different for this pair of polymorphs. In (I), all imidazolium cations in the lattice are nearly parallel to each other, whereas a herringbone arrangement can be found in (Ia). In (I), each SiF6 (2-) dianion forms four short C-H⋯F contacts with adjacent C5H9N2 (+) cations, resulting in the formation of layers parallel to the ac plane. In (Ia), the C-H⋯F contacts are generally longer and result in the formation of layers along the bc plane.
Cevallos, F. Alex; Stolze, Karoline; Cava, Robert J.
2018-03-23
The single crystal growth, structure, and basic magnetic properties of ErMgGaO 4 are reported. The structure consists of triangular layers of magnetic ErO 6 octahedra separated by a double layer of randomly occupied non-magnetic (Ga,Mg)O 5 bipyramids. The Er atoms are positionally disordered. Magnetic measurements parallel and perpendicular to the c axis of a single crystal reveal dominantly antiferromagnetic interactions, with a small degree of magnetic anisotropy. A weighted average of the directional data suggests an antiferromagnetic Curie Weiss temperature of approximately -30 K. Below 10 K the temperature dependences of the inverse susceptibilities in the in-plane and perpendicular-to planemore » directions are parallel, indicative of an isotropic magnetic moment at low temperatures. In conclusion, no sign of magnetic ordering is observed above 1.8 K, suggesting that ErMgGaO 4 is a geometrically frustrated magnet.« less
Reducing saturated fat with oleogel/shortening blends in a baked product.
Mert, Behic; Demirkesen, Ilkem
2016-05-15
Short dough cookie structure, characterized by its aerated and tender texture, depends on the presence of solid fat during kneading. The objective of this study was to investigate the potential application of Candelilla wax (CDW) containing oleogels for partial replacement of the shortening in cookies. Oleogels were prepared with different amounts of CDW and blended with a commercial bakery shortening. After crystallizing the oleogel/shortening blends by using a pilot scale crystallization unit, the blends were evaluated in a cookie formulations. When the shortening was completely replaced with oleogel softer products were obtained compared to liquid oil, but they were harder than the shortening containing products. On the other hand, partial replacement of shortening with oleogels provided much more acceptable dough and cookie characteristics. Results suggest that gradual replacement of shortening with oleogels may be a suitable approach for reduction of saturated fat in short dough products. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lemone, Margaret A.; Zipser, Edward J.; Trier, Stanley B.
1998-12-01
A collection of case studies is used to elucidate the influence of environmental soundings on the structure and evolution of the convection in the mesoscale convective systems sampled by the turboprop aircraft in the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmosphere Response Experiment (COARE). The soundings were constructed primarily from aircraft data below 5-6 km and primarily from radiosonde data at higher altitudes.The well-documented role of the vertical shear of the horizontal wind in determining the mesoscale structure of tropical convection is confirmed and extended. As noted by earlier investigators, nearly all convective bands occurring in environments with appreciable shear below a low-level wind maximum are oriented nearly normal to the shear beneath the wind maximum and propagate in the direction of the low-level shear at a speed close to the wind maximum; when there is appreciable shear at middle levels (800-400 mb), convective bands form parallel to the shear. With appreciable shear at both levels, the lower-level shear determines the orientation of the primary convective bands. If the midlevel shear is opposite the low-level shear, secondary bands parallel to the midlevel shear will extend rearward from the primary band in later stages of its evolution; if the midlevel shear is 90 degrees to the low-level shear, the primary band will retain its two-dimensional mesoscale structure. Convection has no obvious mesoscale organization on days with little shear or days with widespread convection.Environmental temperatures and humidities have no obvious effect on the mesoscale convective pattern, but they affect COARE convection in other ways. The high tops of COARE convection are related to high parcel equilibrium levels, which approach 100 mb in some cases. Convective available potential energies are larger than those in the GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment (GATE) mainly because of the higher equilibrium levels. The buoyancy integrated over the lowest 500 mb is similar for the two experiments. Convective inihibitions are small, enabling convection to propagate with only weak forcing. Comparison of slow-moving shear-parallel bands in COARE and GATE suggests that lower relative humidities between the top of the mixed layer and 500 mb can shorten their lifetimes significantly.COARE mesoscale organization and evolution differs from what was observed in GATE. Less-organized convection is more common in COARE. Of the convective bands observed, a greater fraction in COARE are faster-moving, shear-perpendicular squall lines. GATE slow-moving lines tend to be longer lived than those for COARE. The differences are probably traceable to differences in environmental shear and relative humidity, respectively.
NASA Astrophysics Data System (ADS)
Margheriti, L.; Ferulano, M. F.; Di Bona, M.
2006-11-01
Shear wave splitting is measured at 14 seismic stations in the Reggio Emilia region above local background seismicity and two sequences of seismic events. The good quality of the waveforms together with the favourable distribution of earthquake foci allows us to place strong constraints on the geometry and the depth of the anisotropic volume. It is about 60 km2 wide and located between 6 and 11 km depth, inside Mesozoic age carbonate rocks. The splitting results suggest also the presence of a shallower anisotropic layer about 1 km thick and few km wide in the Pliocene-Quaternary alluvium above the Mesozoic layer. The fast polarization directions (N30°E) are approximately parallel to the maximum horizontal stress (σ1 is SSW-NNE) in the region and also parallel to the strike of the main structural features in the Reggio Emilia area. The size of the delay times suggests about 4.5 per cent shear wave velocity anisotropy. These parameters agree with an interpretation of seismic anisotropy in terms of the extensive-dilatancy anisotropy model which considers the rock volume to be pervaded by fluid-saturated microcracks aligned by the active stress field. We cannot completely rule out the contribution of aligned macroscopic fractures as the cause of the shear wave anisotropy even if the parallel shear wave polarizations we found are diagnostic of transverse isotropy with a horizontal axis of symmetry. This symmetry is commonly explained by parallel stress-aligned microcracks.
Chen, Yao; Liu, Xiaojie; Vickstrom, Casey R; Liu, Michelle J; Zhao, Li; Viader, Andreu; Cravatt, Benjamin F; Liu, Qing-Song
2016-01-01
Endocannabinoids are diffusible lipophilic molecules that may spread to neighboring synapses. Monoacylglycerol lipase (MAGL) is the principal enzyme that degrades the endocannabinoid 2-arachidonoylglycerol (2-AG). Using knock-out mice in which MAGL is deleted globally or selectively in neurons and astrocytes, we investigated the extent to which neuronal and astrocytic MAGL limit the spread of 2-AG-mediated retrograde synaptic depression in cerebellar slices. A brief tetanic stimulation of parallel fibers in the molecular layer induced synaptically evoked suppression of excitation (SSE) in Purkinje cells, and both neuronal and astrocytic MAGL contribute to the termination of this form of endocannabinoid-mediated synaptic depression. The spread of SSE among Purkinje cells occurred only after global knock-out of MAGL or pharmacological blockade of either MAGL or glutamate uptake, but no spread was detected following neuron- or astrocyte-specific deletion of MAGL. The spread of endocannabinoid signaling was also influenced by the spatial pattern of synaptic stimulation, because it did not occur at spatially dispersed parallel fiber synapses induced by stimulating the granular layer. The tetanic stimulation of parallel fibers did not induce endocannabinoid-mediated synaptic suppression in Golgi cells even after disruption of MAGL and glutamate uptake, suggesting that heightened release of 2-AG by Purkinje cells does not spread the retrograde signal to parallel fibers that innervate Golgi cells. These results suggest that both neuronal and astrocytic MAGL limit the spatial diffusion of 2-AG and confer synapse-specificity of endocannabinoid signaling.
Parallel Selection Revealed by Population Sequencing in Chicken.
Qanbari, Saber; Seidel, Michael; Strom, Tim-Mathias; Mayer, Klaus F X; Preisinger, Ruedi; Simianer, Henner
2015-11-13
Human-driven selection during domestication and subsequent breed formation has likely left detectable signatures within the genome of modern chicken. The elucidation of these signatures of selection is of interest from the perspective of evolutionary biology, and for identifying genes relevant to domestication and improvement that ultimately may help to further genetically improve this economically important animal. We used whole genome sequence data from 50 hens of commercial white (WL) and brown (BL) egg-laying chicken along with pool sequences of three meat-type chicken to perform a systematic screening of past selection in modern chicken. Evidence of positive selection was investigated in two steps. First, we explored evidence of parallel fixation in regions with overlapping elevated allele frequencies in replicated populations of layers and broilers, suggestive of selection during domestication or preimprovement ages. We confirmed parallel fixation in BCDO2 and TSHR genes and found four candidates including AGTR2, a gene heavily involved in "Ascites" in commercial birds. Next, we explored differentiated loci between layers and broilers suggestive of selection during improvement in chicken. This analysis revealed evidence of parallel differentiation in genes relevant to appearance and production traits exemplified with the candidate gene OPG, implicated in Osteoporosis, a disorder related to overconsumption of calcium in egg-laying hens. Our results illustrate the potential for population genetic techniques to identify genomic regions relevant to the phenotypes of importance to breeders. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Y; Park, M; Kim, H
Purpose: This study aims to identify the feasibility of a novel cesium-iodine (CsI)-based flat-panel detector (FPD) for removing scatter radiation in diagnostic radiology. Methods: The indirect FPD comprises three layers: a substrate, scintillation, and thin-film-transistor (TFT) layer. The TFT layer has a matrix structure with pixels. There are ineffective dimensions on the TFT layer, such as the voltage and data lines; therefore, we devised a new FPD system having net-like lead in the substrate layer, matching the ineffective area, to block the scatter radiation so that only primary X-rays could reach the effective dimension.To evaluate the performance of this newmore » FPD system, we conducted a Monte Carlo simulation using MCNPX 2.6.0 software. Scatter fractions (SFs) were acquired using no grid, a parallel grid (8:1 grid ratio), and the new system, and the performances were compared.Two systems having different thicknesses of lead in the substrate layer—10 and 20μm—were simulated. Additionally, we examined the effects of different pixel sizes (153×153 and 163×163μm) on the image quality, while keeping the effective area of pixels constant (143×143μm). Results: In case of 10μm lead, the SFs of the new system (∼11%) were lower than those of the other system (∼27% with no grid, ∼16% with parallel grid) at 40kV. However, as the tube voltage increased, the SF of new system (∼19%) was higher than that of parallel grid (∼18%) at 120kV. In the case of 20μm lead, the SFs of the new system were lower than those of the other systems at all ranges of the tube voltage (40–120kV). Conclusion: The novel CsI-based FPD system for removing scatter radiation is feasible for improving the image contrast but must be optimized with respect to the lead thickness, considering the system’s purposes and the ranges of the tube voltage in diagnostic radiology. This study was supported by a grant(K1422651) from Institute of Health Science, Korea University.« less
Deposition of Boron in Possible Evaporite Deposits in Gale Crate
NASA Astrophysics Data System (ADS)
Gasda, P. J.; Peets, E.; Lamm, S. N.; Rapin, W.; Lanza, N.; Frydenvang, J.; Clark, B. C.; Herkenhoff, K. E.; Bridges, J.; Schwenzer, S. P.; Haldeman, E. B.; Wiens, R. C.; Maurice, S.; Clegg, S. M.; Delapp, D.; Sanford, V.; Bodine, M. R.; McInroy, R.
2017-12-01
Boron has been previously detected in Gale crater using the ChemCam instrument on board the NASA Curiosity rover within calcium sulfate fracture fill hosted by lacustrine mudstone and eolian sandstone units. Recent results show that up to 300 ppm B is present in the upper sections of the lacustrine unit. Boron has been detected in both the groundwater-emplaced calcium sulfate fracture fill materials and bedding-parallel calcium sulfate layers. The widespread bedding-parallel calcium sulfate layers within the upper strata of the lacustrine bedrock that Curiosity has encountered recently could be interpreted as primary evaporite deposits. We have two hypotheses for the history of boron in Gale crater. In both hypotheses, borates were first deposited as lake water evaporated, depositing primary evaporates that were later re-dissolved by groundwater, which redistributed the boron into secondary evaporitic calcium sulfate fracture fill deposits. In the first scenario, Gale crater may have undergone a period of perennial lake formation during a drier period of martian history, depositing layers of evaporitic minerals (including borates) among lacustrine mudstone layers. In the second scenario, lake margins could have become periodically exposed during cyclic drops in lake level and subsequently desiccated. Evaporites were deposited and desiccation features were formed in lowstand deposits. Either hypothetical scenario of evaporite deposition would promote prebiotic chemical reactions via wet-dry cycles. Boron may be an important prebiotic element, and as such, its presence in ancient martian surface and groundwater provides evidence that important prebiotic chemical reactions could occur on Mars if organics were present. The presence of boron in ancient Gale crater groundwater also provides additional evidence that a habitable environment existed in the martian subsurface well after the expected disappearance of liquid water on the surface of Mars. We will report on the most recent results for boron in relation to these bedding-parallel calcium sulfate layers and lowstand deposits. If a connection between observations of boron and lowstand lake features is found, this would suggest the existence of boron-bearing lake-deposited evaporites in Gale.
NASA Astrophysics Data System (ADS)
Zarian, P.; Casey, J. F.; Miller, J.
2002-12-01
One of the unconventional research efforts that have been directed to reveal the structure of the lower oceanic crust is the application of Formation MicroScanner log in an ultra-slow spreading environment. Hole 1105A was cored during ODP Leg 179 to a depth of 158m on the Atlantis Platform in the Southwest Indian Ridge with a relative high recovery of 82.8% of gabbroic rocks. Open-hole logs, including FMS borehole images were acquired after the coring operation. Detailed modal, grain size and microstructural analyses of 147 thin sections reveal the relationships between deformation intensity, modal composition and rheology. The microstructural analyses showed that the majority of the oxide-rich gabbros exhibit high deformation intensity textures, which are present only in a few of the oxide-free gabbros. The oxide-rich gabbros represent ductile deformation zones and control the location of major deformation zones within these rocks. Oxide-rich layers can be clearly identified on electrical images and enabled the identification of different deformation features.The calibration of borehole images with core data provides us with more detailed information about the geometry of these oxide-rich layers within the magma chamber such as the dip and true pseudo-stratigraphic thickness of these layers. Also within the intervals of no core recovery, electrical images provide valuable information of the borehole wall. Brittle deformation features such as natural mineralized fractures can be documented throughout the borehole. Statistical results show that oxide-rich layers are relatively steep with an average dip of about 50 degrees and have a dominant E-W strike which is parallel to the ridge. These layers may represent the insitu crystallization of cummulate layers on a magma chamber wall elongated parallel to the ridge, or they may represent shear zones associated with near surface high angle normal faults that cut the main low angle detachment surface which caused the unroofing of the lower oceanic crust at the inner corner of the Ridge-Transform Intersection. These ductile shear zones appear to strike in a ridge parallel orientation, may have acted as syntectonic permeable pathways for fractionated melts infiltrated during the unroofing. Core-log integration also demonstrates the capabilities of electrical borehole images for structural analyses within a hard rock environment.
Developing Information Power Grid Based Algorithms and Software
NASA Technical Reports Server (NTRS)
Dongarra, Jack
1998-01-01
This exploratory study initiated our effort to understand performance modeling on parallel systems. The basic goal of performance modeling is to understand and predict the performance of a computer program or set of programs on a computer system. Performance modeling has numerous applications, including evaluation of algorithms, optimization of code implementations, parallel library development, comparison of system architectures, parallel system design, and procurement of new systems. Our work lays the basis for the construction of parallel libraries that allow for the reconstruction of application codes on several distinct architectures so as to assure performance portability. Following our strategy, once the requirements of applications are well understood, one can then construct a library in a layered fashion. The top level of this library will consist of architecture-independent geometric, numerical, and symbolic algorithms that are needed by the sample of applications. These routines should be written in a language that is portable across the targeted architectures.
Self-sustained radial oscillating flows between parallel disks
NASA Astrophysics Data System (ADS)
Mochizuki, S.; Yang, W.-J.
1985-05-01
It is pointed out that radial flow between parallel circular disks is of interest in a number of physical systems such as hydrostatic air bearings, radial diffusers, and VTOL aircraft with centrally located downward-positioned jets. The present investigation is concerned with the problem of instability in radial flow between parallel disks. A time-dependent numerical study and experiments are conducted. Both approaches reveal the nucleation, growth, migration, and decay of annular separation bubbles (i.e. vortex or recirculation zones) in the laminar-flow region. A finite-difference technique is utilized to solve the full unsteady vorticity transport equation in the theoretical procedure, while the flow patterns in the experiments are visualized with the aid of dye-injection, hydrogen-bubble, and paraffin-mist methods. It is found that the separation and reattachment of shear layers in the radial flow through parallel disks are unsteady phenomena. The sequence of nucleation, growth, migration, and decay of the vortices is self-sustained.
Parallelization of implicit finite difference schemes in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Decker, Naomi H.; Naik, Vijay K.; Nicoules, Michel
1990-01-01
Implicit finite difference schemes are often the preferred numerical schemes in computational fluid dynamics, requiring less stringent stability bounds than the explicit schemes. Each iteration in an implicit scheme involves global data dependencies in the form of second and higher order recurrences. Efficient parallel implementations of such iterative methods are considerably more difficult and non-intuitive. The parallelization of the implicit schemes that are used for solving the Euler and the thin layer Navier-Stokes equations and that require inversions of large linear systems in the form of block tri-diagonal and/or block penta-diagonal matrices is discussed. Three-dimensional cases are emphasized and schemes that minimize the total execution time are presented. Partitioning and scheduling schemes for alleviating the effects of the global data dependencies are described. An analysis of the communication and the computation aspects of these methods is presented. The effect of the boundary conditions on the parallel schemes is also discussed.
Discrete sensitivity derivatives of the Navier-Stokes equations with a parallel Krylov solver
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Taylor, Arthur C., III
1994-01-01
This paper solves an 'incremental' form of the sensitivity equations derived by differentiating the discretized thin-layer Navier Stokes equations with respect to certain design variables of interest. The equations are solved with a parallel, preconditioned Generalized Minimal RESidual (GMRES) solver on a distributed-memory architecture. The 'serial' sensitivity analysis code is parallelized by using the Single Program Multiple Data (SPMD) programming model, domain decomposition techniques, and message-passing tools. Sensitivity derivatives are computed for low and high Reynolds number flows over a NACA 1406 airfoil on a 32-processor Intel Hypercube, and found to be identical to those computed on a single-processor Cray Y-MP. It is estimated that the parallel sensitivity analysis code has to be run on 40-50 processors of the Intel Hypercube in order to match the single-processor processing time of a Cray Y-MP.
Hellmann, B; Güntürkün, O
2001-01-01
Visual information processing within the ascending tectofugal pathway to the forebrain undergoes essential rearrangements between the mesencephalic tectum opticum and the diencephalic nucleus rotundus of birds. The outer tectal layers constitute a two-dimensional map of the visual surrounding, whereas nucleus rotundus is characterized by functional domains in which different visual features such as movement, color, or luminance are processed in parallel. Morphologic correlates of this reorganization were investigated by means of focal injections of the neuronal tracer choleratoxin subunit B into different regions of the nuclei rotundus and triangularis of the pigeon. Dependent on the thalamic injection site, variations in the retrograde labeling pattern of ascending tectal efferents were observed. All rotundal projecting neurons were located within the deep tectal layer 13. Five different cell populations were distinguished that could be differentiated according to their dendritic ramifications within different retinorecipient laminae and their axons projecting to different subcomponents of the nucleus rotundus. Because retinorecipient tectal layers differ in their input from distinct classes of retinal ganglion cells, each tectorotundal cell type probably processes different aspects of the visual surrounding. Therefore, the differential input/output connections of the five tectorotundal cell groups might constitute the structural basis for spatially segregated parallel information processing of different stimulus aspects within the tectofugal visual system. Because two of five rotundal projecting cell groups additionally exhibited quantitative shifts along the dorsoventral extension of the tectum, data also indicate visual field-dependent alterations in information processing for particular visual features. Copyright 2001 Wiley-Liss, Inc.
Manyscale Computing for Sensor Processing in Support of Space Situational Awareness
NASA Astrophysics Data System (ADS)
Schmalz, M.; Chapman, W.; Hayden, E.; Sahni, S.; Ranka, S.
2014-09-01
Increasing image and signal data burden associated with sensor data processing in support of space situational awareness implies continuing computational throughput growth beyond the petascale regime. In addition to growing applications data burden and diversity, the breadth, diversity and scalability of high performance computing architectures and their various organizations challenge the development of a single, unifying, practicable model of parallel computation. Therefore, models for scalable parallel processing have exploited architectural and structural idiosyncrasies, yielding potential misapplications when legacy programs are ported among such architectures. In response to this challenge, we have developed a concise, efficient computational paradigm and software called Manyscale Computing to facilitate efficient mapping of annotated application codes to heterogeneous parallel architectures. Our theory, algorithms, software, and experimental results support partitioning and scheduling of application codes for envisioned parallel architectures, in terms of work atoms that are mapped (for example) to threads or thread blocks on computational hardware. Because of the rigor, completeness, conciseness, and layered design of our manyscale approach, application-to-architecture mapping is feasible and scalable for architectures at petascales, exascales, and above. Further, our methodology is simple, relying primarily on a small set of primitive mapping operations and support routines that are readily implemented on modern parallel processors such as graphics processing units (GPUs) and hybrid multi-processors (HMPs). In this paper, we overview the opportunities and challenges of manyscale computing for image and signal processing in support of space situational awareness applications. We discuss applications in terms of a layered hardware architecture (laboratory > supercomputer > rack > processor > component hierarchy). Demonstration applications include performance analysis and results in terms of execution time as well as storage, power, and energy consumption for bus-connected and/or networked architectures. The feasibility of the manyscale paradigm is demonstrated by addressing four principal challenges: (1) architectural/structural diversity, parallelism, and locality, (2) masking of I/O and memory latencies, (3) scalability of design as well as implementation, and (4) efficient representation/expression of parallel applications. Examples will demonstrate how manyscale computing helps solve these challenges efficiently on real-world computing systems.
Cheong, Ling-Zhi; Tan, Chin-Ping; Long, Kamariah; Affandi Yusoff, Mohd Suria; Lai, Oi-Ming
2010-10-01
Diacylglycerol (DAG), which has health-enhancing properties, is sometimes added to bakery shortening to produce baked products with enhanced physical functionality. Nevertheless, the quantity present is often too little to exert any positive healthful effects. This research aimed to produce bakery shortenings containing significant amounts of palm diacyglycerol (PDG). Physicochemical, textural and viscoelastic properties of the PDG bakery shortenings during 3 months storage were evaluated and compared with those of commercial bakery shortening (CS). PDG bakery shortenings (DS55, DS64 and DS73) had less significant increments in slip melting point (SMP), solid fat content (SFC) and hardness during storage as compared to CS. Unlike CS, melting behaviour and viscoelastic properties of PDG bakery shortenings remained unchanged during storage. As for polymorphic transformation, CS contained only β crystals after 8 weeks of storage. PDG bakery shortenings managed to retard polymorphic transformation for up to 10 weeks of storage in DS55 and 12 weeks of storage in DS64 and DS73. PDG bakery shortenings had similar if not better storage stability as compared to CS. This is mainly due to the ability of DAG to retard polymorphic transformation from β' to β crystals. Thus, incorporation of DAG improved physical functionality of bakery shortening. Copyright © 2010 Society of Chemical Industry.
Nutrition and lysosomal activity
Moore, T.; Sharman, I. M.; Stanton, M. G.; Dingle, J. T.
1967-01-01
1. Experiments on rats were made to find whether the increased liability of the kidney-cortex tubules to autolysis post mortem, which is a well-established abnormality in vitamin E deficiency, can be correlated with changes in lysosomal activity. Parallel observations were made on the development of certain other abnormalities characteristic of avitaminosis E. 2. In rats killed after long periods (8–10 months) of subsistence on a standard vitamin E-deficient diet, containing lard, both the rate of kidney autolysis post mortem and the enzyme activity of lysosome preparations from the fresh tissues were much greater than in controls. A greater percentage difference was usually found in the `free' enzyme fraction than in `bound' or `total' activity. 3. In rats killed after graded periods (3–8 months) of deficiency, two abnormalities (decreased resistance of the erythrocytes to haemolysis, and brown discoloration of the uterus) were already evident at a stage (3–4 months) when the liability to rapid kidney autolysis had not begun. At this point the enzymic activity of kidney extracts differed little between deficient animals and controls given α-tocopherol. As the duration of deficiency advanced, parallel increases occurred in the rate of kidney autolysis and in lysosomal instability. 4. When cod-liver oil, rich in polyunsaturated fatty acids but freed from vitamin A, was substituted for lard in the diet, the time (1½ months) required for the inducement of both rapid kidney autolysis and decreased lysosomal stability was greatly shortened. The time for the inducement of brown discoloration of the uterus was not shortened and the kidney abnormalities appeared while the uterus was still normal. 5. Confirmation was thus obtained for the view that the various tissues of the rat respond differently to the relationship between the adequacy of the vitamin E status and the intake of polyunsaturated fatty acids. The kidney-cortex tubules, as evidenced by autolysis post mortem and the corresponding decrease in lysosomal stability, may be classed among those tissues that are most sensitive to the effect of high intakes of polyunsaturated acids. PMID:6049409
Suresh, P V; Jayanti, Sreenivas
2016-10-01
Adoption of hydrogen economy by means of using hydrogen fuel cells is one possible solution for energy crisis and climate change issues. Polymer electrolyte membrane (PEM) fuel cell, which is an important type of fuel cells, suffers from the problem of water management. Cross-flow is induced in some flow field designs to enhance the water removal. The presence of cross-flow in the serpentine and interdigitated flow fields makes them more effective in proper distribution of the reactants on the reaction layer and evacuation of water from the reaction layer than diffusion-based conventional parallel flow fields. However, too much of cross-flow leads to flow maldistribution in the channels, higher pressure drop, and membrane dehydration. In this study, an attempt has been made to quantify the amount of cross-flow required for effective distribution of reactants and removal of water in the gas diffusion layer. Unit cells containing two adjacent channels with gas diffusion layer (GDL) and catalyst layer at the bottom have been considered for the parallel, interdigitated, and serpentine flow patterns. Computational fluid dynamics-based simulations are carried out to study the reactant transport in under-the-rib area with cross-flow in the GDL. A new criterion based on the Peclet number is presented as a quantitative measure of cross-flow in the GDL. The study shows that a cross-flow Peclet number of the order of 2 is required for effective removal of water from the GDL. Estimates show that this much of cross-flow is not usually produced in the U-bends of Serpentine flow fields, making these areas prone to flooding.
Lewis, Richard A.
1980-01-01
A target for a proton beam which is capable of generating neutrons for absorption in a breeding blanket includes a plurality of solid pins formed of a neutron emissive target material disposed parallel to the path of the beam and which are arranged axially in a plurality of layers so that pins in each layer are offset with respect to pins in all other layers, enough layers being used so that each proton in the beam will strike at least one pin with means being provided to cool the pins. For a 300 mA, 1 GeV beam (300 MW), stainless steel pins, 12 inches long and 0.23 inches in diameter are arranged in triangular array in six layers with one sixth of the pins in each layer, the number of pins being such that the entire cross sectional area of the beam is covered by the pins with minimum overlap of pins.
Suttle, L. G.; Hare, J. D.; Lebedev, S. V.; ...
2016-05-31
We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counter-streaming, supersonic and magnetized aluminum plasma flows. The anti parallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure—two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T i~¯ZT e, with average ionization ¯Z=7). Lastly, analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilationmore » of the in-flowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suttle, L. G.; Hare, J. D.; Lebedev, S. V.
We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counter-streaming, supersonic and magnetized aluminum plasma flows. The anti parallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure—two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T i~¯ZT e, with average ionization ¯Z=7). Lastly, analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilationmore » of the in-flowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities.« less
The Physical Elements of Onset of the Magnetospheric Substorm
NASA Technical Reports Server (NTRS)
Erickson, Gary M.
1997-01-01
During this reporting period effort continued in the areas: (1) understanding the mechanisms responsible for substorm onset, and (2) application of a fundamental description of field-aligned currents and parallel electric fields to the plasma-sheet boundary layer.
Higher organization and histone modification of the plant nucleus and chromosome.
Wako, T; Fukui, K
2010-07-01
Plants have a wide range of genome sizes. The length of each DNA molecule is usually much longer than the diameter of the cell and the length of each metaphase chromosome is effectively shortened to progress through mitosis. Thus some questions arise, such as: How is genomic DNA folded and shortened into chromosomes? What kind of proteins and/or their modifications contribute to chromosome structure? Are there any upper limits for the ratio of DNA volume to nuclear volume? This review attempts to answer these questions based on recent advances in chromosome research. Genomic DNA is first folded into nucleosomal fibers and then superfolded into metaphase chromosomes to sufficiently shorten its length to less than the upper limit for normal progression of cell division. Nucleosomes play structural roles, not only for DNA folding, but also for determination of euchromatin, heterochromatin, and centromeres, together with post-translational modifications and replacement of core histones with histone variants, and for the regulation of their structure and transcriptional status. More than 200 proteins of human metaphase chromosomes have been identified, including 5 types of nucleosome histones. They are categorized into 4 groups, and a 4-layer model of the human metaphase chromosome has been developed. There are upper limits for DNA volume. In all plants examined to date the DNA volume does not exceed 3% of the nuclear volume. Histone modification also has an impact on the spatial distribution of chromosomes within a nucleus, which seems to be related to the plant genome size. These points are discussed as well, as they are essential to maintain proper nuclear functions. Copyright 2010 S. Karger AG, Basel.
E2F mediates enhanced alternative polyadenylation in proliferation
2012-01-01
Background The majority of mammalian genes contain multiple poly(A) sites in their 3' UTRs. Alternative cleavage and polyadenylation are emerging as an important layer of gene regulation as they generate transcript isoforms that differ in their 3' UTRs, thereby modulating genes' response to 3' UTR-mediated regulation. Enhanced cleavage at 3' UTR proximal poly(A) sites resulting in global 3' UTR shortening was recently linked to proliferation and cancer. However, mechanisms that regulate this enhanced alternative polyadenylation are unknown. Results Here, we explored, on a transcriptome-wide scale, alternative polyadenylation events associated with cellular proliferation and neoplastic transformation. We applied a deep-sequencing technique for identification and quantification of poly(A) sites to two human cellular models, each examined under proliferative, arrested and transformed states. In both cell systems we observed global 3' UTR shortening associated with proliferation, a link that was markedly stronger than the association with transformation. Furthermore, we found that proliferation is also associated with enhanced cleavage at intronic poly(A) sites. Last, we found that the expression level of the set of genes that encode for 3'-end processing proteins is globally elevated in proliferation, and that E2F transcription factors contribute to this regulation. Conclusions Our results comprehensively identify alternative polyadenylation events associated with cellular proliferation and transformation, and demonstrate that the enhanced alternative polyadenylation in proliferative conditions results not only in global 3' UTR shortening but also in enhanced premature cleavage in introns. Our results also indicate that E2F-mediated co-transcriptional regulation of 3'-end processing genes is one of the mechanisms that links enhanced alternative polyadenylation to proliferation. PMID:22747694
High Speed FETs Fabricated in GaAs/AlGaAs Layered Structures Prepared by Molecular Beam Epitaxy.
1984-01-01
but proper measures, such as improved ohmic con - tacts, metal conductors and small geometrics are useful. In digital circuit applications in addition to...heterointerface encounter reduced scattering by ionized donors located in AlGaAs layer, the current con - ducting channel must be parallel to the...ments apply to the velocity saturated MOSFET as well. For the MESFET, in con - trast, the transconductance increases with increasing gate biases, since
Chang, Yuan Jay; Chen, Kew-Yu
2012-01-01
In the title compound, C10H10O2, the 1-indanone unit is essentially planar (r.m.s. deviation = 0.028 Å). In the crystal, molecules are linked via C—H⋯O hydrogen bonds, forming layers lying parallel to the ab plane. This two-dimensional structure is stabilized by a weak C—H⋯π interaction. A second weak C—H⋯π interaction links the layers, forming a three-dimensional structure. PMID:23284398
An Object Oriented Extensible Architecture for Affordable Aerospace Propulsion Systems
NASA Technical Reports Server (NTRS)
Follen, Gregory J.; Lytle, John K. (Technical Monitor)
2002-01-01
Driven by a need to explore and develop propulsion systems that exceeded current computing capabilities, NASA Glenn embarked on a novel strategy leading to the development of an architecture that enables propulsion simulations never thought possible before. Full engine 3 Dimensional Computational Fluid Dynamic propulsion system simulations were deemed impossible due to the impracticality of the hardware and software computing systems required. However, with a software paradigm shift and an embracing of parallel and distributed processing, an architecture was designed to meet the needs of future propulsion system modeling. The author suggests that the architecture designed at the NASA Glenn Research Center for propulsion system modeling has potential for impacting the direction of development of affordable weapons systems currently under consideration by the Applied Vehicle Technology Panel (AVT). This paper discusses the salient features of the NPSS Architecture including its interface layer, object layer, implementation for accessing legacy codes, numerical zooming infrastructure and its computing layer. The computing layer focuses on the use and deployment of these propulsion simulations on parallel and distributed computing platforms which has been the focus of NASA Ames. Additional features of the object oriented architecture that support MultiDisciplinary (MD) Coupling, computer aided design (CAD) access and MD coupling objects will be discussed. Included will be a discussion of the successes, challenges and benefits of implementing this architecture.
NASA Astrophysics Data System (ADS)
Reber, J. E.; Schmalholz, S. M.; Burg, J.-P.
2010-10-01
Two orthogonal sets of veins, both orthogonal to bedding, form chocolate tablet structures on the limbs of folded quartzwackes of Carboniferous turbidites in SW Portugal. Structural observations suggest that (1) mode 1 fractures transverse to the fold axes formed while fold amplitudes were small and limbs were under layer-subparallel compression and (2) mode 1 fractures parallel to the fold axes formed while fold amplitudes were large and limbs were brought to be under layer-subparallel tension. We performed two- and three-dimensional numerical simulations investigating the evolution of stress orientations during viscous folding to test whether and how these two successive sets of fractures were related to folding. We employed ellipses and ellipsoids for the visualization and quantification of the local stress field. The numerical simulations show a change in the orientation of the local σ1 direction by almost 90° with respect to the bedding plane in the fold limbs. The coeval σ3 direction rotates from parallel to the fold axis at low fold amplitudes to orthogonal to the fold axis at high fold amplitudes. The stress orientation changes faster in multilayers than in single-layers. The numerical simulations are consistent with observation and provide a mechanical interpretation for the formation of the chocolate tablet structures through consecutive sets of fractures on rotating limbs of folded competent layers.
Novel Layered Supercell Structure from Bi 2AlMnO 6 for Multifunctionalities
Li, Leigang; Boullay, Philippe; Lu, Ping; ...
2017-10-02
Layered materials, e.g., graphene and transition metal (di)chalcogenides, holding great promises in nanoscale device applications have been extensively studied in fundamental chemistry, solid state physics and materials research areas. In parallel, layered oxides (e.g., Aurivillius and Ruddlesden–Popper phases) present an attractive class of materials both because of their rich physics behind and potential device applications. In this work, we report a novel layered oxide material with self-assembled layered supercell structure consisting of two mismatch-layered sublattices of [Bi 3O 3+δ] and [MO 2] 1.84 (M = Al/Mn, simply named BAMO), i.e., alternative layered stacking of two mutually incommensurate sublattices made ofmore » a three-layer-thick Bi–O slab and a one-layer-thick Al/Mn–O octahedra slab in the out-of-plane direction. Strong room-temperature ferromagnetic and piezoelectric responses as well as anisotropic optical property have been demonstrated with great potentials in various device applications. Furthermore, the realization of the novel BAMO layered supercell structure in this work has paved an avenue toward exploring and designing new materials with multifunctionalities.« less
Frequency dispersion analysis of thin dielectric MOS capacitor in a five-element model
NASA Astrophysics Data System (ADS)
Zhang, Xizhen; Zhang, Sujuan; Zhu, Huichao; Pan, Xiuyu; Cheng, Chuanhui; Yu, Tao; Li, Xiangping; Cheng, Yi; Xing, Guichao; Zhang, Daming; Luo, Xixian; Chen, Baojiu
2018-02-01
An Al/ZrO2/IL/n-Si (IL: interface layer) MOS capacitor has been fabricated by metal organic decomposition of ZrO2 and thermal deposition Al. We have measured parallel capacitance (C m) and parallel resistance (R m) versus bias voltage curves (C m, R m-V) at different AC signal frequency (f), and C m, R m-f curves at different bias voltage. The curves of C m, R m-f measurements show obvious frequency dispersion in the range of 100 kHz-2 MHz. The energy band profile shows that a large voltage is applied on the ZrO2 layer and IL at accumulation, which suggests possible dielectric polarization processes by some traps in ZrO2 and IL. C m, R m-f data are used for frequency dispersion analysis. To exclude external frequency dispersion, we have extracted the parameters of C (real MOS capacitance), R p (parallel resistance), C IL (IL capacitance), R IL (IL resistance) and R s (Si resistance) in a five-element model by using a three-frequency method. We have analyzed intrinsic frequency dispersion of C, R p, C IL, R IL and R s by studying the dielectric characteristics and Si surface layer characteristics. At accumulation, the dispersion of C and R p is attributed to dielectric polarization such as dipolar orientation and oxide traps. The serious dispersion of C IL and R IL are relative to other dielectric polarization, such as border traps and fixed oxide traps. The dispersion of R s is mainly attributed to contact capacitance (C c) and contact resistance (R c). At depletion and inversion, the frequency dispersion of C, R p, C IL, R IL, and R s are mainly attributed to the depletion layer capacitance (C D). The interface trap capacitance (C it) and interface trap resistance (R it) are not dominant for the dispersion of C, R p, C IL, R IL, and R s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, Brian; Brightwell, Ronald B.; Grant, Ryan
This report presents a specification for the Portals 4 networ k programming interface. Portals 4 is intended to allow scalable, high-performance network communication betwee n nodes of a parallel computing system. Portals 4 is well suited to massively parallel processing and embedded syste ms. Portals 4 represents an adaption of the data movement layer developed for massively parallel processing platfor ms, such as the 4500-node Intel TeraFLOPS machine. Sandia's Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4 is tarmore » geted to the next generation of machines employing advanced network interface architectures that support enh anced offload capabilities.« less
The Portals 4.0 network programming interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, Brian W.; Brightwell, Ronald Brian; Pedretti, Kevin
2012-11-01
This report presents a specification for the Portals 4.0 network programming interface. Portals 4.0 is intended to allow scalable, high-performance network communication between nodes of a parallel computing system. Portals 4.0 is well suited to massively parallel processing and embedded systems. Portals 4.0 represents an adaption of the data movement layer developed for massively parallel processing platforms, such as the 4500-node Intel TeraFLOPS machine. Sandias Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4.0 is targeted to the next generationmore » of machines employing advanced network interface architectures that support enhanced offload capabilities.« less
Fox, W.; Sciortino, F.; v. Stechow, A.; ...
2017-03-21
We report detailed laboratory observations of the structure of a reconnection current sheet in a two-fluid plasma regime with a guide magnetic field. We observe and quantitatively analyze the quadrupolar electron pressure variation in the ion-diffusion region, as originally predicted by extended magnetohydrodynamics simulations. The projection of the electron pressure gradient parallel to the magnetic field contributes significantly to balancing the parallel electric field, and the resulting cross-field electron jets in the reconnection layer are diamagnetic in origin. Furthermore, these results demonstrate how parallel and perpendicular force balance are coupled in guide field reconnection and confirm basic theoretical models ofmore » the importance of electron pressure gradients for obtaining fast magnetic reconnection.« less
Estimating amplitude ratios in boundary layer stability theory: a comparison between two approaches
NASA Astrophysics Data System (ADS)
Govindarajan, Rama; Narasimha, R.
2001-07-01
We first demonstrate that, if the contributions of higher-order mean flow are ignored, the parabolized stability equations (Bertolotti et al. 1992) and the ‘full’ non-parallel equation of Govindarajan & Narasimha (1995, hereafter GN95) are both equivalent to order R[minus sign]1 in the local Reynolds number R to Gaster's (1974) equation for the stability of spatially developing boundary layers. It is therefore of some concern that a detailed comparison between Gaster (1974) and GN95 reveals a small difference in the computed amplitude ratios. Although this difference is not significant in practical terms in Blasius flow, it is traced here to the approximation, in Gaster's method, of neglecting the change in eigenfunction shape due to flow non-parallelism. This approximation is not justified in the critical and the wall layers, where the neglected term is respectively O(R[minus sign]2/3) and O(R[minus sign]1) compared to the largest term. The excellent agreement of GN95 with exact numerical simulations, on the other hand, suggests that the effect of change in eigenfunction is accurately taken into account in that paper.
Subasri, S; Kumar, Timiri Ajay; Sinha, Barij Nayan; Jayaprakash, Venkatesan; Viswanathan, Vijayan; Velmurugan, Devadasan
2017-02-01
The title compounds, C 16 H 15 N 5 OS, (I), and C 12 H 12 FN 5 OS, (II), are [(di-amino-pyrimidine)-sulfan-yl]acetamide derivatives. In (I), the pyrimidine ring is inclined to the naphthalene ring system by 55.5 (1)°, while in (II), the pyrimidine ring is inclined to the benzene ring by 58.93 (8)°. In (II), there is an intra-molecular N-H⋯N hydrogen bond and a short C-H⋯O contact. In the crystals of (I) and (II), mol-ecules are linked by pairs of N-H⋯N hydrogen bonds, forming inversion dimers with R 2 2 (8) ring motifs. In the crystal of (I), the dimers are linked by bifurcated N-H⋯(O,O) and C-H⋯O hydrogen bonds, forming layers parallel to (100). In the crystal of (II), the dimers are linked by N-H⋯O hydrogen bonds, also forming layers parallel to (100). The layers are linked by C-H⋯F hydrogen bonds, forming a three-dimensional architecture.
Zhang, Yan; Foster, Christopher W; Banks, Craig E; Shao, Lidong; Hou, Hongshuai; Zou, Guoqiang; Chen, Jun; Huang, Zhaodong; Ji, Xiaobo
2016-11-01
Carbon dots inducing petal-like rutile TiO 2 wrapped by ultrathin graphene-rich layers are proposed to fabricate superior anodes for sodium-ion batteries, featuring high-rate capabilities and long-term cyclelife, benefiting from promoted electron transport and a shortened Na + diffusion length. High capacities of 144.4 mA h g -1 (at 837.5 mA g -1 ) after 1100 cycles and 74.6 mA h g -1 (at 3350 mA g -1 ) after 4000 cycles are delivered outstandingly. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guided elastic waves in a pre-stressed compressible interlayer
Sotiropoulos
2000-03-01
The propagation of guided elastic waves in a pre-stressed elastic compressible layer embedded in a different compressible material is examined. The waves propagate parallel to the planar layer interfaces as a superposed dynamic stress state on the statically pre-stressed layer and host material. The underlying stress condition in the two materials is characterized by equibiaxial in-plane deformations with common principal axes of strain, one of the axes being perpendicular to the layering. Both materials have arbitrary strain energy functions. The dispersion equation is derived in explicit form. Analysis of the dispersion equation reveals the propagation characteristics and their dependence on frequency, material parameters and stress parameters. Combinations of these parameters are also defined for which guided waves cannot propagate.
Sakaida, Shun; Haraguchi, Tomoyuki; Otsubo, Kazuya; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi
2017-07-17
We report the fabrication and characterization of the first example of a tetracyanonickelate-based two-dimensional-layered metal-organic framework, {Fe(py) 2 Ni(CN) 4 } (py = pyridine), thin film. To fabricate a nanometer-sized thin film, we utilized the layer-by-layer method, whereby a substrate was alternately soaked in solutions of the structural components. Surface X-ray studies revealed that the fabricated film was crystalline with well-controlled growth directions both parallel and perpendicular to the substrate. In addition, lattice parameter analysis indicated that the crystal system is found to be close to higher symmetry by being downsized to a thin film.
Magnetic spectral signatures in the Earth's magnetosheath and plasma depletion layer
NASA Technical Reports Server (NTRS)
Anderson, Brian J.; Fuselier, Stephen A.; Gary, S. Peter; Denton, Richard E.
1994-01-01
Correlations between plasma properties and magnetic fluctuations in the sub-solar magnetosheath downstream of a quasi-perpendicular shock have been found and indicate that mirror and ion cyclotronlike fluctuations correlate with the magnetosheath proper and plasma depletion layer, respectively (Anderson and Fueselier, 1993). We explore the entire range of magnetic spectral signatures observed from the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer (AMPTE/CCE)spacecraft in the magnetosheath downstream of a quasi-perpendicular shock. The magnetic spectral signatures typically progress from predominantly compressional fluctuations,delta B(sub parallel)/delta B perpendicular to approximately 3, with F/F (sub p) less than 0.2 (F and F (sub p) are the wave frequency and proton gyrofrequency, respectively) to predominantly transverse fluctuations, delta B(sub parallel)/delta B perpendicular to approximately 0.3, extending up to F(sub p). The compressional fluctuations are characterized by anticorrelation between the field magnitude and electron density, n(sub e), and by a small compressibility, C(sub e) identically equal to (delta n(sub e)/n(sub e)) (exp 2) (B/delta B(sub parallel)) (exp 2) approximately 0.13, indicative of mirror waves. The spectral characteristics of the transverse fluctuations are in agreement with predictions of linear Vlasov theory for the H(+) and He(2+) cyclotron modes. The power spectra and local plasma parameters are found to vary in concert: mirror waves occur for beta(s ub parallel p) (beta (sub parallel p) identically = 2 mu(sub zero) n(sub p) kT (sub parallel p) / B(exp 2) approximately = 2, A(sub p) indentically = T(sub perpendicular to p)/T(sub parallel p) - 1 approximately = 0.4, whereas cyclotron waves occur for beta (sub parallel p) approximately = 0.2 and A(sub p) approximately = 2. The transition from mirror to cyclotron modes is predicted by linear theory. The spectral characteristics overlap for intermediate plasma parameters. The plasma observations are described by A(sub p) = 0.85 beta(sub parallel P) (exp - 0.48) with a log regression coefficient of -0.74. This inverse A(sub p) - beta(sub parallel p) correlation corresponds closely to the isocontours of maximum ion anisotropy instability growth, gamma (sub m)/omega(sub p) = 0.01, for the mirror and cyclotron modes. The agreement of observed properties and predictions of local theory suggests that the spectral signatures reflect the local plasma environment and that the anisotropy instabilities regulate A(sub p). We suggest that the spectral characteristics may provide a useful basis for ordering observations in the magnetosheath and that the A(sub p) - beta(sub parallel p) inverse correlation may be used as a beta-dependent upper limit on the proton anisotropy to represent kinetic effects.
Xu, Duo; Zhu, Xuejiao; Xu, Yuan; Zhang, Liqing
2017-02-01
Objective Routine fasting (12 h) is always applied before laparoscopic cholecystectomy, but prolonged preoperative fasting causes thirst, hunger, and irritability as well as dehydration, low blood glucose, insulin resistance and other adverse reactions. We assessed the safety and efficacy of a shortened preoperative fasting period in patients undergoing laparoscopic cholecystectomy. Methods We searched PubMed, Embase and Cochrane Central Register of Controlled Trials up to 20 November 2015 and selected controlled trials with a shortened fasting time before laparoscopic cholecystectomy. We assessed the results by performing a meta-analysis using a variety of outcome measures and investigated the heterogeneity by subgroup analysis. Results Eleven trials were included. Forest plots showed that a shortened fasting time reduced the operative risk and patient discomfort. A shortened fasting time also reduced postoperative nausea and vomiting as well as operative vomiting. With respect to glucose metabolism, a shortened fasting time significantly reduced abnormalities in the ratio of insulin sensitivity. The C-reactive protein concentration was also reduced by a shortened fasting time. Conclusions A shortened preoperative fasting time increases patients' postoperative comfort, improves insulin resistance, and reduces stress responses. This evidence supports the clinical application of a shortened fasting time before laparoscopic cholecystectomy.
Effect of active shortening on the rate of ATP utilisation by rabbit psoas muscle fibres
Sun, Y-B; Hilber, K; Irving, M
2001-01-01
The rate of ATP utilisation during active shortening of single skinned fibres from rabbit psoas muscle at 10 °C was measured using an NADH-linked assay. Fibres were immersed in silicone oil and illuminated with 365 nm light. The amounts of NADH and carboxytetramethylrhodamine (CTMR) in the illuminated region of the fibre were measured simultaneously from fluorescence emission at 425–475 and 570–650 nm, respectively. The ratio of these two signals was used to determine the intracellular concentration of NADH, and thus the ATP utilisation, without interference from movements of the fibre with respect to the measuring light beam. The total extra ATP utilisation due to shortening (ΔATP) was determined by extrapolation of the steady isometric rates before and after shortening to the mid-point of the shortening period. ΔATP had a roughly linear dependence on the extent of shortening in the range 1–15% fibre length (L0) at a shortening velocity of 0.4 L0 s−1 from initial sarcomere length 2.7 μm. For shortening of 1%L0, ΔATP was 21 ± 1 μm (mean ±s.e.m., n = 3). The mean rate of ATP utilisation during ramp shortening of 10%L0 had a roughly linear dependence on shortening velocity in the range 0.05–1.2 L0 s−1. During unloaded shortening at 1.2 L0 s−1 the mean rate of ATP utilisation was 1.7 mm s−1, about 9 times the isometric rate. ΔATP was roughly independent of shortening velocity, and was 84 ± 9 μm (mean ±s.e.m., n = 6) for shortening of 10%L0. The implications of these results for mechanical-chemical coupling in muscle are discussed. The total ATP utilisation associated with shortening of 1%L0 is only about 17% of the concentration of the myosin heads in the fibre, suggesting that during isometric contraction either less than 17% of the myosin heads are attached to actin, or that heads can detach without commitment to ATP splitting. The fraction of myosin heads attached to actin during unloaded shortening is estimated from the rate of ATP utilisation to be less than 7%. PMID:11251058
Fabrication of wedged multilayer Laue lenses
Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; ...
2015-01-01
We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack.more » This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.« less
NASA Astrophysics Data System (ADS)
Chen, Biao; Zhao, Naiqin; Guo, Lichao; He, Fang; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Liu, Enzuo
2015-07-01
Uniform transition metal sulfide deposition on a smooth TiO2 surface to form a coating structure is a well-known challenge, caused mainly due to their poor affinities. Herein, we report a facile strategy for fabricating mesoporous 3D few-layered (<4 layers) MoS2 coated TiO2 nanosheet core-shell nanocomposites (denoted as 3D FL-MoS2@TiO2) by a novel two-step method using a smooth TiO2 nanosheet as a template and glucose as a binder. The core-shell structure has been systematically examined and corroborated by transmission electron microscopy, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy analyses. It is found that the resultant 3D FL-MoS2@TiO2 as a lithium-ion battery anode delivers an outstanding high-rate capability with an excellent cycling performance, relating to the unique structure of 3D FL-MoS2@TiO2. The 3D uniform coverage of few-layered (<4 layers) MoS2 onto the TiO2 can remarkably enhance the structure stability and effectively shortens the transfer paths of both lithium ions and electrons, while the strong synergistic effect between MoS2 and TiO2 can significantly facilitate the transport of ions and electrons across the interfaces, especially in the high-rate charge-discharge process. Moreover, the facile fabrication strategy can be easily extended to design other oxide/carbon-sulfide/oxide core-shell materials for extensive applications.Uniform transition metal sulfide deposition on a smooth TiO2 surface to form a coating structure is a well-known challenge, caused mainly due to their poor affinities. Herein, we report a facile strategy for fabricating mesoporous 3D few-layered (<4 layers) MoS2 coated TiO2 nanosheet core-shell nanocomposites (denoted as 3D FL-MoS2@TiO2) by a novel two-step method using a smooth TiO2 nanosheet as a template and glucose as a binder. The core-shell structure has been systematically examined and corroborated by transmission electron microscopy, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy analyses. It is found that the resultant 3D FL-MoS2@TiO2 as a lithium-ion battery anode delivers an outstanding high-rate capability with an excellent cycling performance, relating to the unique structure of 3D FL-MoS2@TiO2. The 3D uniform coverage of few-layered (<4 layers) MoS2 onto the TiO2 can remarkably enhance the structure stability and effectively shortens the transfer paths of both lithium ions and electrons, while the strong synergistic effect between MoS2 and TiO2 can significantly facilitate the transport of ions and electrons across the interfaces, especially in the high-rate charge-discharge process. Moreover, the facile fabrication strategy can be easily extended to design other oxide/carbon-sulfide/oxide core-shell materials for extensive applications. Electronic supplementary information (ESI) available: Supplementary SEM, TEM, XPS and EIS analyses. See DOI: 10.1039/c5nr03334a
Execution environment for intelligent real-time control systems
NASA Technical Reports Server (NTRS)
Sztipanovits, Janos
1987-01-01
Modern telerobot control technology requires the integration of symbolic and non-symbolic programming techniques, different models of parallel computations, and various programming paradigms. The Multigraph Architecture, which has been developed for the implementation of intelligent real-time control systems is described. The layered architecture includes specific computational models, integrated execution environment and various high-level tools. A special feature of the architecture is the tight coupling between the symbolic and non-symbolic computations. It supports not only a data interface, but also the integration of the control structures in a parallel computing environment.
Mg/Ti multilayers: Structural and hydrogen absorption properties
NASA Astrophysics Data System (ADS)
Baldi, A.; Pálsson, G. K.; Gonzalez-Silveira, M.; Schreuders, H.; Slaman, M.; Rector, J. H.; Krishnan, G.; Kooi, B. J.; Walker, G. S.; Fay, M. W.; Hjörvarsson, B.; Wijngaarden, R. J.; Dam, B.; Griessen, R.
2010-06-01
Mg-Ti alloys have uncommon optical and hydrogen absorbing properties, originating from a “spinodal-like” microstructure with a small degree of chemical short-range order in the atomic distribution. In the present study we artificially engineer short-range order by depositing Pd-capped Mg/Ti multilayers with different periodicities. Notwithstanding the large lattice mismatch between Mg and Ti, the as-deposited metallic multilayers show good structural coherence. On exposure to H2 gas a two-step hydrogenation process occurs with the Ti layers forming the hydride before Mg. From in situ measurements of the bilayer thickness Λ at different hydrogen pressures, we observe large out-of-plane expansions of Mg and Ti layers on hydrogenation, indicating strong plastic deformations in the films and a consequent shortening of the coherence length. On unloading at room temperature in air, hydrogen atoms remain trapped in the Ti layers due to kinetic constraints. Such loading/unloading sequence can be explained in terms of the different thermodynamic properties of hydrogen in Mg and Ti, as shown by diffusion calculations on a model multilayered systems. Absorption isotherms measured by hydrogenography can be interpreted as a result of the elastic clamping arising from strongly bonded Mg/Pd and broken Mg/Ti interfaces.
NASA Astrophysics Data System (ADS)
Villard, G.; Pelloquin, D.; Maignan, A.
1998-10-01
Superconducting crystals (Tc=88 K) of the `1201' mercury cuprate have been grown by using vanadium as stabilizer of the (HgOδ) mercury layer. Its shortened c-axis parameter, c=9.345 Å, is linked to the substitution of small VO4 tetrahedra for HgO2 stick deduced from the structural study. The regular layer stacking is confirmed by high resolution microscopy, and cationic analysis coupled to an electron microscope leads to the average formula Hg0.75V0.25Ba2CuO4+δ for these overdoped crystals in good agreement with the structural refinements. One of the major result of the structural part is the mobility of oxygens located at the [BaO]∞ layer level. The superconducting properties of crystals with typical 800×500×10 μm3 dimensions have been investigated by magnetic measurements. Well-marked fishtail features are exhibited on their M(H) curves. The corresponding second peak line differs from that of optimized 1201 crystals demonstrating the important consequences on the superconducting properties of the vanadium for mercury substitution.
Miller, C E; Majewski, J; Watkins, E B; Weygand, M; Kuhl, T L
2008-07-01
The structure of cholera toxin (CTAB(5)) bound to its putative ganglioside receptor, galactosyl-N-acetylgalactosaminyl (N-acetyl-neuraminyl) galactosylglucosylceramide (GM(1)), in a lipid monolayer at the air-water interface has been studied utilizing grazing incidence x-ray diffraction. Cholera toxin is one of very few proteins to be crystallized in two dimensions and characterized in a fully hydrated state. The observed grazing incidence x-ray diffraction Bragg peaks indicated cholera toxin was ordered in a hexagonal lattice and the order extended 600-800 A. The pentameric binding portion of cholera toxin (CTB(5)) improved in-plane ordering over the full toxin (CTAB(5)) especially at low pH. Disulfide bond reduction (activation of the full toxin) also increased the protein layer ordering. These findings are consistent with A-subunit flexibility and motion, which cause packing inefficiencies and greater disorder of the protein layer. Corroborative out-of-plane diffraction (Bragg rod) analysis indicated that the scattering units in the cholera layer with CTAB(5) shortened after disulfide bond reduction of the A subunit. These studies, together with Part I results, revealed key changes in the structure of the cholera toxin-lipid system under different pH conditions.
Peng, Kaung-Jay; Lin, Yung-Hsiang; Wu, Chung-Lun; Lin, Sheng-Fong; Yang, Chun-Yu; Lin, Shih-Meng; Tsai, Din-Ping; Lin, Gong-Ru
2015-01-01
The in-situ dissolution-and-reduction CVD synthesized few-layer graphene on ultra-thin nickel catalyst film is demonstrated at temperature as low as 550 °C, which can be employed to form transmission-type or reflection-type saturable absorber (SA) for mode-locking the erbium-doped fiber lasers (EDFLs). With transmission-type graphene SA, the EDFL shortens its pulsewidth from 483 to 441 fs and broadens its spectral linewidth from 4.2 to 6.1 nm with enlarging the pumping current from 200 to 900 mA. In contrast, the reflection-type SA only compresses the pulsewidth from 875 to 796 fs with corresponding spectral linewidth broadened from 2.2 to 3.3 nm. The reflection-type graphene mode-locker increases twice of its equivalent layer number to cause more insertion loss than the transmission-type one. Nevertheless, the reflection-type based saturable absorber system can generate stabilized soliton-like pulse easier than that of transmission-type system, because the nonlinearity induced self-amplitude modulation depth is simultaneously enlarged when passing through the graphene twice under the retro-reflector design. PMID:26328535
Microgravity Manufacturing Via Fused Deposition
NASA Technical Reports Server (NTRS)
Cooper, K. G.; Griffin, M. R.
2003-01-01
Manufacturing polymer hardware during space flight is currently outside the state of the art. A process called fused deposition modeling (FDM) can make this approach a reality by producing net-shaped components of polymer materials directly from a CAE model. FDM is a rapid prototyping process developed by Stratasys, Inc.. which deposits a fine line of semi-molten polymer onto a substrate while moving via computer control to form the cross-sectional shape of the part it is building. The build platen is then lowered and the process is repeated, building a component directly layer by layer. This method enables direct net-shaped production of polymer components directly from a computer file. The layered manufacturing process allows for the manufacture of complex shapes and internal cavities otherwise impossible to machine. This task demonstrated the benefits of the FDM technique to quickly and inexpensively produce replacement components or repair broken hardware in a Space Shuttle or Space Station environment. The intent of the task was to develop and fabricate an FDM system that was lightweight, compact, and required minimum power consumption to fabricate ABS plastic hardware in microgravity. The final product of the shortened task turned out to be a ground-based breadboard device, demonstrating miniaturization capability of the system.
Self bleaching photoelectrochemical-electrochromic device
Bechinger, Clemens S.; Gregg, Brian A.
2002-04-09
A photoelectrochemical-electrochromic device comprising a first transparent electrode and a second transparent electrode in parallel, spaced relation to each other. The first transparent electrode is electrically connected to the second transparent electrode. An electrochromic material is applied to the first transparent electrode and a nanoporous semiconductor film having a dye adsorbed therein is applied to the second transparent electrode. An electrolyte layer contacts the electrochromic material and the nanoporous semiconductor film. The electrolyte layer has a redox couple whereby upon application of light, the nanoporous semiconductor layer dye absorbs the light and the redox couple oxidizes producing an electric field across the device modulating the effective light transmittance through the device.
Features of sound propagation through and stability of a finite shear layer
NASA Technical Reports Server (NTRS)
Koutsoyannis, S. P.
1977-01-01
The plane wave propagation, the stability, and the rectangular duct mode problems of a compressible, inviscid, linearly sheared, parallel, homogeneous flow are shown to be governed by Whittaker's equation. The exact solutions for the perturbation quantities are essentially the Whittaker M-functions where the nondimensional quantities have precise physical meanings. A number of known results are obtained as limiting cases of the exact solutions. For the compressible finite thickness shear layer it is shown that no resonances and no critical angles exist for all Mach numbers, frequencies, and shear layer velocity profile slopes except in the singular case of the vortex sheet.
Analysis of the leading edge effects on the boundary layer transition
NASA Technical Reports Server (NTRS)
Chow, Pao-Liu
1990-01-01
A general theory of boundary layer control by surface heating is presented. Some analytical results for a simplified model, i.e., the optimal control of temperature fluctuations in a shear flow are described. The results may provide a clue to the effectiveness of the active feedback control of a boundary layer flow by wall heating. In a practical situation, the feedback control may not be feasible from the instrumentational point of view. In this case the vibrational control introduced in systems science can provide a useful alternative. This principle is briefly explained and applied to the control of an unstable wavepacket in a parallel shear flow.
Linear stability of three-dimensional boundary layers - Effects of curvature and non-parallelism
NASA Technical Reports Server (NTRS)
Malik, M. R.; Balakumar, P.
1993-01-01
In this paper we study the effect of in-plane (wavefront) curvature on the stability of three-dimensional boundary layers. It is found that this effect is stabilizing or destabilizing depending upon the sign of the crossflow velocity profile. We also investigate the effects of surface curvature and nonparallelism on crossflow instability. Computations performed for an infinite-swept cylinder show that while convex curvature stabilizes the three-dimensional boundary layer, nonparallelism is, in general, destabilizing and the net effect of the two depends upon meanflow and disturbance parameters. It is also found that concave surface curvature further destabilizes the crossflow instability.
Agrawal, Anurag; Weisshaar, James C
2018-04-22
The outermost layer of Gram negative bacteria is composed of a lipopolysaccharide (LPS) network that forms a dense protective hydrophilic barrier against entry of hydrophobic drugs. At low μM concentrations, a large family of cationic polypeptides known as antimicrobial peptides (AMPs) are able to penetrate the LPS layer and permeabilize the outer membrane (OM) and the cytoplasmic membrane (CM), causing cell death. Cecropin A is a well-studied cationic AMP from moth. Here a battery of time-resolved, single-cell microscopy experiments explores how deletion of sugar layers and/or phosphoryl negative charges from the core oligosaccharide layer (core OS) of K12 E. coli alters the timing of OM and CM permeabilization induced by Cecropin A. Deletion of sugar layers, or phosphoryl charges, or both from the core OS shortens the time to the onset of OM permeabilization to periplasmic GFP and also the lag time between OM permeabilization and CM permeabilization. Meanwhile, the 12-h minimum inhibitory concentration (MIC) changes only twofold with core OS alterations. The results suggest a two-step model in which the core oligosaccharide layers act as a kinetic barrier to penetration of Cecropin A to the lipid A outer leaflet of the OM. Once a threshold concentration has built up at the lipid A leaflet, nucleation occurs and the OM is locally permeabilized to GFP and, by inference, to Cecropin A. Whenever Cecropin A permeabilizes the OM, CM permeabilization always follows, and cell growth subsequently halts and never recovers on the 45 min observation timescale. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Guodong; Li, Hui; Liu, Xiaoqiang; Xu, Ding; Wang, Fang
2016-01-01
Abstract The aim of this study was to examine changes in photoreceptor ellipsoid zone (EZ) and postreceptor retinal layer in retinitis pigmentosa (RP) patients by ganglion cell analysis (GCA) combined with optical coherence tomography (OCT) imaging to evaluate the structure–function relationships between retinal layer changes and best corrected visual acuity (BCVA). Sixty-eight eyes of 35 patients with RP and 65 eyes of 35 normal controls were analyzed in the study. The average length of EZ was 911.1 ± 208.8 μm in RP patients, which was shortened with the progression of the disease on the OCT images. The average ganglion cell–inner plexiform layer thickness (GCIPLT) was 54.7 ± 18.9 μm in RP patients, while in normal controls it was 85.6 ± 6.8 μm. The GCIPLT in all quarters became significantly thinner along with outer retinal thinning. There was a significantly positive correlation between BCVA and EZ (r = −0.7622, P < 0.001) and GCIPLT (r = −0.452, P < 0.001). Therefore, we assess the retinal layer changes from a new perspective in RP patients, which suggests that EZ and GCIPLT obtained by GCA combined with OCT imaging are the direct and valid indicators to diagnosis and predict the pathological process of RP. PMID:28033301
Heterogeneous computing architecture for fast detection of SNP-SNP interactions.
Sluga, Davor; Curk, Tomaz; Zupan, Blaz; Lotric, Uros
2014-06-25
The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems.
Heterogeneous computing architecture for fast detection of SNP-SNP interactions
2014-01-01
Background The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. Results We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. Conclusions General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems. PMID:24964802
Regalia, Giulia; Biffi, Emilia; Achilli, Silvia; Ferrigno, Giancarlo; Menegon, Andrea; Pedrocchi, Alessandra
2016-02-01
Two binding requirements for in vitro studies on long-term neuronal networks dynamics are (i) finely controlled environmental conditions to keep neuronal cultures viable and provide reliable data for more than a few hours and (ii) parallel operation on multiple neuronal cultures to shorten experimental time scales and enhance data reproducibility. In order to fulfill these needs with a Microelectrode Arrays (MEA)-based system, we designed a stand-alone device that permits to uninterruptedly monitor neuronal cultures activity over long periods, overcoming drawbacks of existing MEA platforms. We integrated in a single device: (i) a closed chamber housing four MEAs equipped with access for chemical manipulations, (ii) environmental control systems and embedded sensors to reproduce and remotely monitor the standard in vitro culture environment on the lab bench (i.e. in terms of temperature, air CO2 and relative humidity), and (iii) a modular MEA interface analog front-end for reliable and parallel recordings. The system has been proven to assure environmental conditions stable, physiological and homogeneos across different cultures. Prolonged recordings (up to 10 days) of spontaneous and pharmacologically stimulated neuronal culture activity have not shown signs of rundown thanks to the environmental stability and have not required to withdraw the cells from the chamber for culture medium manipulations. This system represents an effective MEA-based solution to elucidate neuronal network phenomena with slow dynamics, such as long-term plasticity, effects of chronic pharmacological stimulations or late-onset pathological mechanisms. © 2015 Wiley Periodicals, Inc.
Chen, Jia; Xue, Jin; Ruan, Jingsong; Zhao, Juan; Tang, Beisha; Duan, Ranhui
2017-12-01
Mitochondrial kinase PTEN-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase Parkin function in a common pathway to regulate mitochondrial homeostasis contributing to the pathogenesis of Parkinson disease. The carboxyl terminus of Hsc70-interacting protein (CHIP) acts as a heat shock protein 70/heat shock protein 90 cochaperone to mediate protein folding or as an E3 ubiquitin ligase to target proteins for degradation. In this study, overexpression of Drosophila CHIP suppressed a range of Pink1 mutant phenotypes in flies, including abnormal wing posture, thoracic indentation, locomotion defects, muscle degeneration, and loss of dopaminergic neurons. Mitochondrial defects of Pink1 mutant, such as excessive fusion, reduced ATP content, and crista disorganization, were rescued by CHIP but not its ligase-dead mutants. Similar phenotypes and mitochondrial impairment were ameliorated in Parkin mutant flies by wild-type CHIP. Inactivation of CHIP with null fly mutants resulted in mitochondrial defects, such as reduced thoracic ATP content at 3 d old, decreased thoracic mitochondrial DNA content, and defective mitochondrial morphology at 60 d old. CHIP mutants did not exacerbate the phenotypes of Pink1 mutant flies but markedly shortened the life span of Parkin mutant flies. These results indicate that CHIP is involved in mitochondrial integrity and may act downstream of Pink1 in parallel with Parkin.-Chen, J., Xue, J., Ruan, J., Zhao, J., Tang, B., Duan, R. Drosophila CHIP protects against mitochondrial dysfunction by acting downstream of Pink1 in parallel with Parkin. © FASEB.