Pattern Inspection of EUV Masks Using DUV Light
NASA Astrophysics Data System (ADS)
Liang, Ted; Tejnil, Edita; Stivers, Alan R.
2002-12-01
Inspection of extreme ultraviolet (EUV) lithography masks requires reflected light and this poses special challenges for inspection tool suppliers as well as for mask makers. Inspection must detect all the printable defects in the absorber pattern as well as printable process-related defects. Progress has been made under the NIST ATP project on "Intelligent Mask Inspection Systems for Next Generation Lithography" in assessing the factors that impact the inspection tool sensitivity. We report in this paper the inspection of EUV masks with programmed absorber defects using 257nm light. All the materials of interests for masks are highly absorptive to EUV light as compared to deep ultraviolet (DUV) light. Residues and contamination from mask fabrication process and handling are prone to be printable. Therefore, it is critical to understand their EUV printability and optical inspectability. Process related defects may include residual buffer layer such as oxide, organic contaminants and possible over-etch to the multilayer surface. Both simulation and experimental results will be presented in this paper.
Because exposure to ultraviolet (UV) radiation is an ecosystem stressor and poses a human health risk, the National Exposure Research Laboratory (NERL) has undertaken a research program to measure the intensity of UV-B radiation at various locations throughout the U.S. In Septem...
Stabilized Alkali-Metal Ultraviolet-Band-Pass Filters
NASA Technical Reports Server (NTRS)
Mardesich, Nick; Fraschetti, George A.; Mccann, Timothy; Mayall, Sherwood D.; Dunn, Donald E.; Trauger, John T.
1995-01-01
Layers of bismuth 5 to 10 angstrom thick incorporated into alkali-metal ultraviolet-band-pass optical filters by use of advanced fabrication techniques. In new filters layer of bismuth helps to reduce surface migration of sodium. Sodium layer made more stable and decreased tendency to form pinholes by migration.
Gao, Na; Lin, Wei; Chen, Xue; Huang, Kai; Li, Shuping; Li, Jinchai; Chen, Hangyang; Yang, Xu; Ji, Li; Yu, Edward T; Kang, Junyong
2014-12-21
Ultra-short-period (AlN)m/(GaN)n superlattices with tunable well and barrier atomic layer numbers were grown by metal-organic vapour phase epitaxy, and employed to demonstrate narrowband deep ultraviolet photodetection. High-resolution transmission electron microscopy and X-ray reciprocal space mapping confirm that superlattices containing well-defined, coherently strained GaN and AlN layers as thin as two atomic layers (∼ 0.5 nm) were grown. Theoretical and experimental results demonstrate that an optical absorption band as narrow as 9 nm (210 meV) at deep-ultraviolet wavelengths can be produced, and is attributable to interband transitions between quantum states along the [0001] direction in ultrathin GaN atomic layers isolated by AlN barriers. The absorption wavelength can be precisely engineered by adjusting the thickness of the GaN atomic layers because of the quantum confinement effect. These results represent a major advance towards the realization of wavelength selectable and narrowband photodetectors in the deep-ultraviolet region without any additional optical filters.
Photochemical cutting of fabrics
Piltch, Martin S.
1994-01-01
Apparatus for the cutting of garment patterns from one or more layers of fabric. A laser capable of producing laser light at an ultraviolet wavelength is utilized to shine light through a pattern, such as a holographic phase filter, and through a lens onto the one or more layers of fabric. The ultraviolet laser light causes rapid photochemical decomposition of the one or more layers of fabric, but only along the pattern. The balance of the fabric of the one or more layers of fabric is undamaged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorgensen, Gary; Gee, Randall C.; White, David
Provided are reflective thin film constructions including a reduced number of layers, which provides for increased solar-weighted hemispherical reflectance and durability. Reflective films include those comprising an ultraviolet absorbing abrasion resistant coating over a metal layer. Also provided are ultraviolet absorbing abrasion resistant coatings and methods for optimizing the ultraviolet absorption of an abrasion resistant coating. Reflective films disclosed herein are useful for solar reflecting, solar collecting, and solar concentrating applications, such as for the generation of electrical power.
NASA Astrophysics Data System (ADS)
Yang, Hae In; Park, Seonyoung; Choi, Woong
2018-06-01
We report the modification of the optoelectronic properties of mechanically-exfoliated single layer MoS2 by ultraviolet-ozone exposure. Photoluminescence emission of pristine MoS2 monotonically decreased and eventually quenched as ultraviolet-ozone exposure time increased from 0 to 10 min. The reduction of photoluminescence emission accompanied reduction of Raman modes, suggesting structural degradation in ultraviolet-ozone exposed MoS2. Analysis with X-ray photoelectron spectroscopy revealed that the formation of Ssbnd O and Mosbnd O bonding increases with ultraviolet-ozone exposure time. Measurement of electrical transport properties of MoS2 in a bottom-gate thin-film transistor configuration suggested the presence of insulating MoO3 after ultraviolet-ozone exposure. These results demonstrate that ultraviolet-ozone exposure can significantly influence the optoelectronic properties of single layer MoS2, providing important implications on the application of MoS2 and other two-dimensional materials into optoelectronic devices.
Super sensitive UV detector using polymer functionalized nanobelts
Wang, Zhong L; Lao, Changshi; Zhou, Jun
2012-10-23
An ultraviolet light sensor includes an elongated metal oxide nanostructure, a layer of an ultraviolet light-absorbing polymer, a current source and a current detector. The elongated metal oxide nanostructure has a first end and an opposite second end. The layer of an ultraviolet light-absorbing polymer is disposed about at least a portion of the metal oxide nanostructure. The current source is configured to provide electrons to the first end of the metal oxide nanostructure. The current detector is configured to detect an amount of current flowing through the metal oxide nanostructure. The amount of current flowing through the metal oxide nanostructure corresponds to an amount of ultraviolet light impinging on the metal oxide nanostructure.
NASA Technical Reports Server (NTRS)
Dever, Joyce; deGroh, Kim K.
2002-01-01
Bellows-type thermal shields were used on the bi-stems of replacement solar arrays installed on the Hubble Space Telescope (HST) during the first HST servicing mission (SMI) in December 1993. These thermal shields helped reduce the problem of thermal gradient- induced jitter observed with the original HST solar arrays during orbital thermal cycling and have been in use on HST for eight years. This paper describes ground testing of the candidate solar array bi-stem thermal shield materials including backside aluminized Teflon(R)FEP (fluorinated ethylene propylene) with and without atomic oxygen (AO) and ultraviolet radiation protective surface coatings for durability to AO and combined AO and vacuum ultraviolet (VOV) radiation. NASA Glenn Research Center (GRC) conducted VUV and AO exposures of samples of candidate thermal shield materials at HST operational temperatures and pre- and post-exposure analyses as part of an overall program coordinated by NASA Goddard Space Flight Center (GSFC) to determine the on-orbit durability of these materials. Coating adhesion problems were observed for samples having the AO- and combined AO/UV-protective coatings. Coating lamination occurred with rapid thermal cycling testing which simulated orbital thermal cycling. This lack of adhesion caused production of coating flakes from the material that would have posed a serious risk to HST optics if the coated materials were used for the bi-stem thermal shields. No serious degradation was observed for the uncoated aluminized Teflon(R) as evaluated by optical microscopy, although atomic force microscopy (AFM) microhardness testing revealed that an embrittled surface layer formed on the uncoated Teflon(R) surface due to vacuum ultraviolet radiation exposure. This embrittled layer was not completely removed by AO erosion, No cracks or particle flakes were produced for the embrittled uncoated material upon exposure to VUV and AO at operational temperatures to an equivalent exposure of approximately five years in the HST environment. Uncoated aluminized FEP Teflon(R) was determined to be the most appropriate thermal shield material and was used on the bi-stems of replacement solar arrays installed on HST during SMI in December 1993. The SMI -installed solar arrays air scheduled to be replaced during MST's fourth servicing mission (SM3B) in early 2002.
Damage of multilayer optics with varying capping layers induced by focused extreme ultraviolet beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jody Corso, Alain; Nicolosi, Piergiorgio; Nardello, Marco
2013-05-28
Extreme ultraviolet Mo/Si multilayers protected by capping layers of different materials were exposed to 13.5 nm plasma source radiation generated with a table-top laser to study the irradiation damage mechanism. Morphology of single-shot damaged areas has been analyzed by means of atomic force microscopy. Threshold fluences were evaluated for each type of sample in order to determine the capability of the capping layer to protect the structure underneath.
[The relationship between the ozone layer and skin cancer].
Sánchez C, Francisca
2006-09-01
In the recent decades, a sustained increase in the worldwide incidence of skin cancer has been observed and Chile is not the exception. The most important risk factor is the exaggerated and repeated exposure to ultraviolet radiation coming from the sun. The ozone layer restricts the transmission of type B and C ultraviolet light. Since 1980, a sustained depletion of stratospheric ozone levels is occurring, specially in middle latitudes (-30 to -60). Along with this depletion, the amount of ultraviolet light that reaches the earth surface is increasing. This article reviews some basic concepts about the ozone layer and the association between its depletion and skin cancer. The general population should be informed about the risks of inadequate and exaggerated exposure to sunlight.
NASA Astrophysics Data System (ADS)
Cho, Chu-Young; Choe, Minhyeok; Lee, Sang-Jun; Hong, Sang-Hyun; Lee, Takhee; Lim, Wantae; Kim, Sung-Tae; Park, Seong-Ju
2013-03-01
We report on gold (Au)-doped multi-layer graphene (MLG), which can be used as a transparent conducting layer in near-ultraviolet light-emitting diodes (NUV-LEDs). The optical output power of NUV-LEDs with thermally annealed Au-doped MLG was increased by 34% compared with that of NUV-LEDs with a bare MLG. This result is attributed to the reduced sheet resistance and the enhanced current injection efficiency of NUV-LEDs by the thermally annealed Au-doped MLG film, which shows high transmittance in NUV and UV regions and good adhesion of Au-doped MLG on p-GaN layer of NUV-LEDs.
STS-93 Tognini and Hawley pose with the SWUIS on the middeck of Columbia
2013-11-18
STS093-347-027 (23-27 July 1999) --- Astronauts Steven A. Hawley (left) and Michel Tognini, mission specialists, are pictured with the Southwest Ultraviolet Imaging System (SWUIS) on the middeck of the Space Shuttle Columbia. SWUIS was used during the mission to image planets and other solar system bodies in order to explore their atmospheres and surfaces in ultraviolet (UV) region of the spectrum, which astronomers value for diagnostic work. Tognini represents the Centre National d'Etudes Spatiales (CNES) of France.
Passivating overcoat bilayer for multilayer reflective coatings for extreme ultraviolet lithography
Montcalm, Claude; Stearns, Daniel G.; Vernon, Stephen P.
1999-01-01
A passivating overcoat bilayer is used for multilayer reflective coatings for extreme ultraviolet (EUV) or soft x-ray applications to prevent oxidation and corrosion of the multilayer coating, thereby improving the EUV optical performance. The overcoat bilayer comprises a layer of silicon or beryllium underneath at least one top layer of an elemental or a compound material that resists oxidation and corrosion. Materials for the top layer include carbon, palladium, carbides, borides, nitrides, and oxides. The thicknesses of the two layers that make up the overcoat bilayer are optimized to produce the highest reflectance at the wavelength range of operation. Protective overcoat systems comprising three or more layers are also possible.
Introduction of pre-etch deposition techniques in EUV patterning
NASA Astrophysics Data System (ADS)
Xiang, Xun; Beique, Genevieve; Sun, Lei; Labonte, Andre; Labelle, Catherine; Nagabhirava, Bhaskar; Friddle, Phil; Schmitz, Stefan; Goss, Michael; Metzler, Dominik; Arnold, John
2018-04-01
The thin nature of EUV (Extreme Ultraviolet) resist has posed significant challenges for etch processes. In particular, EUV patterning combined with conventional etch approaches suffers from loss of pattern fidelity in the form of line breaks. A typical conventional etch approach prevents the etch process from having sufficient resist margin to control the trench CD (Critical Dimension), minimize the LWR (Line Width Roughness), LER (Line Edge Roughness) and reduce the T2T (Tip-to-Tip). Pre-etch deposition increases the resist budget by adding additional material to the resist layer, thus enabling the etch process to explore a wider set of process parameters to achieve better pattern fidelity. Preliminary tests with pre-etch deposition resulted in blocked isolated trenches. In order to mitigate these effects, a cyclic deposition and etch technique is proposed. With optimization of deposition and etch cycle time as well as total number of cycles, it is possible to open the underlying layers with a beneficial over etch and simultaneously keep the isolated trenches open. This study compares the impact of no pre-etch deposition, one time deposition and cyclic deposition/etch techniques on 4 aspects: resist budget, isolated trench open, LWR/LER and T2T.
NASA Astrophysics Data System (ADS)
Okada, Shuichi; Nakahara, Yoshio; Uno, Kazuyuki; Tanaka, Ichiro
2018-04-01
Pentacene thin-film transistors (TFTs) were fabricated with ultraviolet-light (UV)-cured polysilsesquioxane (PSQ) gate dielectric layers using cross-linker molecules with or without ester groups. To polymerize PSQ without ester groups, thiol-ene reaction was adopted. The TFTs fabricated with PSQ layers comprising ester-free cross-linkers showed a higher carrier mobility than the TFTs with PSQ layers cross-linked with ester groups, which had large electric dipole moments that limited the carrier mobility. It was demonstrated that the thiol-ene reaction is more suitable than the conventional radical reaction for UV-cured PSQ with small dielectric constant.
Intercalation of anionic organic ultraviolet ray absorbers into layered zinc hydroxide nitrate.
Cursino, Ana Cristina Trindade; Gardolinski, José Eduardo Ferreira da Costa; Wypych, Fernando
2010-07-01
Layered zinc hydroxide nitrate (ZHN) was synthesized and nitrate ions were topotactically exchanged with three different anionic species of commercial organic ultraviolet (UV) ray absorbers: 2-mercaptobenzoic acid, 2-aminobenzoic acid, and 4-aminobenzoic acid. The exchange reactions were confirmed by X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible (UV-Vis) spectroscopy, and thermal analysis (thermogravimetry, TGA, and differential thermal analysis, DTA). In all the anionic exchanged products, evidence of grafting of the organic species onto the inorganic matrix was obtained. In general, after intercalation/grafting, the UV absorption ability was improved in relation to the use of the parent organic material, showing that layered hydroxide salts (LHS) can be good alternative matrixes for the immobilization of organic species with UV-blocking properties in cosmetic products. Copyright 2010 Elsevier Inc. All rights reserved.
Design and fabrication of a reflection far ultraviolet polarizer and retarder
NASA Technical Reports Server (NTRS)
Kim, Jongmin; Zukic, Muamer; Wilson, Michele M.; Torr, Douglas G.
1993-01-01
New methods have been developed for the design of a far ultraviolet multilayer reflection polarizer and retarder. A MgF2/Al/MgF2 three-layer structure deposited on a thick opaque Al film (substrate) is used for the design of polarizers and retarders. The induced transmission and absorption method is used for the design of a polarizer and layer-by-layer electric field calculation method is used for the design of a quarterwave retarder. In order to fabricate these designs in a conventional high vacuum chamber, we have to minimize the oxidation of the Al layers and somehow characterize the oxidized layer. X-ray photoelectron spectroscopy is used to investigate the amount and profile of oxidation. Depth profiling results and a seven layer oxidation model are presented.
Single-crystalline aluminum film for ultraviolet plasmonic nanolasers
Chou, Bo-Tsun; Chou, Yu-Hsun; Wu, Yen-Mo; Chung, Yi-Cheng; Hsueh, Wei-Jen; Lin, Shih-Wei; Lu, Tien-Chang; Lin, Tzy-Rong; Lin, Sheng-Di
2016-01-01
Significant advances have been made in the development of plasmonic devices in the past decade. Plasmonic nanolasers, which display interesting properties, have come to play an important role in biomedicine, chemical sensors, information technology, and optical integrated circuits. However, nanoscale plasmonic devices, particularly those operating in the ultraviolet regime, are extremely sensitive to the metal and interface quality. Thus, these factors have a significant bearing on the development of ultraviolet plasmonic devices. Here, by addressing these material-related issues, we demonstrate a low-threshold, high-characteristic-temperature metal-oxide-semiconductor ZnO nanolaser that operates at room temperature. The template for the ZnO nanowires consists of a flat single-crystalline Al film grown by molecular beam epitaxy and an ultrasmooth Al2O3 spacer layer synthesized by atomic layer deposition. By effectively reducing the surface plasmon scattering and metal intrinsic absorption losses, the high-quality metal film and the sharp interfaces formed between the layers boost the device performance. This work should pave the way for the use of ultraviolet plasmonic nanolasers and related devices in a wider range of applications. PMID:26814581
UV RADIATION MEASUREMENTS/ATMOSPHERIC CHARACTERIZATION
Because exposure to ultraviolet (UV) radiation is an ecosystem stressor and poses a human health risk, the National Exposure Research Laboratory (NERL) has undertaken a research program to measure the intensity of UV-B radiation at various locations throughout the U.S. In Septem...
Duarte, Ida Alzira Gomes; Hafner, Mariana de Figueiredo Silva; Malvestiti, Andrey Augusto
2015-01-01
The frequent human exposure to various types of indoor lamps, as well as other light sources (television monitors, tablets and computers), raises a question: are there risks for the population? In the present study the emission of UVA and UVB radiation by lamps and screens of electronic devices were measured in order to determine the safe distance between the emitting source and the individual. We concluded that the lamps and electronic devices do not emit ultraviolet radiation; so they pose no health risk for the population.
Duarte, Ida Alzira Gomes; Hafner, Mariana de Figueiredo Silva; Malvestiti, Andrey Augusto
2015-01-01
The frequent human exposure to various types of indoor lamps, as well as other light sources (television monitors, tablets and computers), raises a question: are there risks for the population? In the present study the emission of UVA and UVB radiation by lamps and screens of electronic devices were measured in order to determine the safe distance between the emitting source and the individual. We concluded that the lamps and electronic devices do not emit ultraviolet radiation; so they pose no health risk for the population. PMID:26375236
Li, H K; Chen, T P; Hu, S G; Li, X D; Liu, Y; Lee, P S; Wang, X P; Li, H Y; Lo, G Q
2015-10-19
Ultraviolet photodetector with p-n heterojunction is fabricated by magnetron sputtering deposition of n-type indium gallium zinc oxide (n-IGZO) and p-type nickel oxide (p-NiO) thin films on ITO glass. The performance of the photodetector is largely affected by the conductivity of the p-NiO thin film, which can be controlled by varying the oxygen partial pressure during the deposition of the p-NiO thin film. A highly spectrum-selective ultraviolet photodetector has been achieved with the p-NiO layer with a high conductivity. The results can be explained in terms of the "optically-filtering" function of the NiO layer.
GaN ultraviolet p-i-n photodetectors with enhanced deep ultraviolet quantum efficiency
NASA Astrophysics Data System (ADS)
Wang, Guosheng; Xie, Feng; Wang, Jun; Guo, Jin
2017-10-01
GaN ultraviolet (UV) p-i-n photodetectors (PDs) with a thin p-AlGaN/GaN contact layer are designed and fabricated. The PD exhibits a low dark current density of˜7 nA/cm2 under -5 V, and a zero-bias peak responsivity of ˜0.16 A/W at 360 nm, which corresponds to a maximum quantum efficiency of 55%. It is found that, in the wavelength range between 250 and 365 nm, the PD with thin p-AlGaN/GaN contact layer exhibits enhanced quantum efficiency especially in a deep-UV wavelength range, than that of the control PD with conventional thin p-GaN contact layer. The improved quantum efficiency of the PD with thin p-AlGaN/GaN contact layer in the deep-UV wavelength range is mainly attributed to minority carrier reflecting properties of thin p-AlGaN/GaN heterojunction which could reduce the surface recombination loss of photon-generated carriers and improve light current collection efficiency.
... age spots are caused by exposure to the sun. This is because the damage caused by the sun is permanent. ... The two types of sun rays that can injure the skin are ultraviolet A (UVA) and ultraviolet B (UVB). UVA affects the deep layers of ...
NASA Technical Reports Server (NTRS)
Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cruden, Brett A.; Bogdanoff, David W.
2010-01-01
The Electric Arc Shock Tube (EAST) facility and Hypervelocity Free Flight Aerodynamic Facility (HFFAF, an aeroballistic range) at NASA Ames support basic research in aerothermodynamic phenomena of atmospheric entry, specifically shock layer radiation spectroscopy, convective and radiative heat transfer, and transition to turbulence. Innovative optical instrumentation has been developed and implemented to meet the challenges posed from obtaining such data in these impulse facilities. Spatially and spectrally resolved measurements of absolute radiance of a travelling shock wave in EAST are acquired using multiplexed, time-gated imaging spectrographs. Nearly complete spectral coverage from the vacuum ultraviolet to the near infrared is possible in a single experiment. Time-gated thermal imaging of ballistic range models in flight enables quantitative, global measurements of surface temperature. These images can be interpreted to determine convective heat transfer rates and reveal transition to turbulence due to isolated and distributed surface roughness at hypersonic velocities. The focus of this paper is a detailed description of the optical instrumentation currently in use in the EAST and HFFAF.
MoRu/Be multilayers for extreme ultraviolet applications
Bajt, Sasa C.; Wall, Mark A.
2001-01-01
High reflectance, low intrinsic roughness and low stress multilayer systems for extreme ultraviolet (EUV) lithography comprise amorphous layers MoRu and crystalline Be layers. Reflectance greater than 70% has been demonstrated for MoRu/Be multilayers with 50 bilayer pairs. Optical throughput of MoRu/Be multilayers can be 30-40% higher than that of Mo/Be multilayer coatings. The throughput can be improved using a diffusion barrier to make sharper interfaces. A capping layer on the top surface of the multilayer improves the long-term reflectance and EUV radiation stability of the multilayer by forming a very thin native oxide that is water resistant.
Near unity ultraviolet absorption in graphene without patterning
NASA Astrophysics Data System (ADS)
Zhu, Jinfeng; Yan, Shuang; Feng, Naixing; Ye, Longfang; Ou, Jun-Yu; Liu, Qing Huo
2018-04-01
Enhancing the light-matter interaction of graphene is an important issue for related photonic devices and applications. In view of its potential ultraviolet applications, we aim to achieve extremely high ultraviolet absorption in graphene without any nanostructure or microstructure patterning. By manipulating the polarization and angle of incident light, the ultraviolet power can be sufficiently coupled to the optical dissipation of graphene based on single-channel coherent perfect absorption in an optimized multilayered thin film structure. The ultraviolet absorbance ratios of single and four atomic graphene layers are enhanced up to 71.4% and 92.2%, respectively. Our research provides a simple and efficient scheme to trap ultraviolet light for developing promising photonic and optoelectronic devices based on graphene and potentially other 2D materials.
USDA-ARS?s Scientific Manuscript database
The accumulation of bacterial biofilms and consequent clogging of screens, pipes, and heat exchanger equipment is problematic for water supply systems contaminated with iron bacteria and other slime forming bacteria. Despite the ubiquitous threat posed by iron bacteria contamination in groundwater s...
Large area ultraviolet photodetector on surface modified Si:GaN layers
NASA Astrophysics Data System (ADS)
Anitha, R.; R., Ramesh; Loganathan, R.; Vavilapalli, Durga Sankar; Baskar, K.; Singh, Shubra
2018-03-01
Unique features of semiconductor based heterostructured photoelectric devices have drawn considerable attention in the recent past. In the present work, large area UV photodetector has been fabricated utilizing interesting Zinc oxide microstructures on etched Si:GaN layers. The surface of Si:GaN layer grown by metal organic chemical vapor deposition method on sapphire has been modified by chemical etching to control the microstructure. The photodetector exhibits response to Ultraviolet light only. Optimum etching of Si:GaN was required to exhibit higher responsivity (0.96 A/W) and detectivity (∼4.87 × 109 Jones), the two important parameters for a photodetector. Present method offers a tunable functionality of photodetector through modification of top layer microstructure. A comparison with state of art materials has also been presented.
Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems
NASA Technical Reports Server (NTRS)
Worrest, R. C.; Vandyke, H.
1978-01-01
Reduction of the earth's ozone layer, with a resultant increase in transmission of solar ultraviolet radiation in the 290 to 320nm waveband (UV-B), via space shuttle operations through the stratosphere is considered. It is shown that simulated solar ultraviolet radiation can, under experimental conditions, detrimentally affect the marine organisms that form the base of the food web of oceanic and estuarine ecosystems. Whether a small increase in biologically harmful ultraviolet radiation might overwhelm these mechanisms and produce changes that will have damaging consequences to the biosphere is discussed. The potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation and whether these ecosystems are highly stable or amenable to adaptive change is studied. Data are provided to assess the potential impact upon marine ecosystems if space shuttle operations contribute to a reduction of the stratospheric ozone layer and the sensitivity of key community components to increased UV-B radiation is examined.
Farci, Domenica; Slavov, Chavdar; Tramontano, Enzo; Piano, Dario
2016-01-01
Deinococcus radiodurans has the puzzling ability to withstand over a broad range of extreme conditions including high doses of ultraviolet radiation and deep desiccation. This bacterium is surrounded by a surface layer (S-layer) built of a regular repetition of several proteins, assembled to form a paracrystalline structure. Here we report that the deletion of a main constituent of this S-layer, the gene DR_2577, causes a decrease in the UVC resistance, especially in desiccated cells. Moreover, we show that the DR_2577 protein binds the carotenoid deinoxanthin, a strong protective antioxidant specific of this bacterium. A further spectroscopical characterization of the deinoxanthin-DR_2577 complex revealed features which could suggest a protective role of DR_2577. We propose that, especially under desiccation, the S-layer shields the bacterium from incident ultraviolet light and could behave as a first lane of defense against UV radiation. PMID:26909071
Farci, Domenica; Slavov, Chavdar; Tramontano, Enzo; Piano, Dario
2016-01-01
Deinococcus radiodurans has the puzzling ability to withstand over a broad range of extreme conditions including high doses of ultraviolet radiation and deep desiccation. This bacterium is surrounded by a surface layer (S-layer) built of a regular repetition of several proteins, assembled to form a paracrystalline structure. Here we report that the deletion of a main constituent of this S-layer, the gene DR_2577, causes a decrease in the UVC resistance, especially in desiccated cells. Moreover, we show that the DR_2577 protein binds the carotenoid deinoxanthin, a strong protective antioxidant specific of this bacterium. A further spectroscopical characterization of the deinoxanthin-DR_2577 complex revealed features which could suggest a protective role of DR_2577. We propose that, especially under desiccation, the S-layer shields the bacterium from incident ultraviolet light and could behave as a first lane of defense against UV radiation.
Lee, Keon Hwa; Moon, Yong-Tae; Song, June-O; Kwak, Joon Seop
2015-01-01
This study examined systematically the mechanism of light interaction in the sapphire/MgF2/Al triple-layer omnidirectional reflectors (ODR) and its effects on the light output power in near ultraviolet light emitting diodes (NUV-LEDs) with the ODR. The light output power of NUV-LEDs with the triple-layer ODR structure increased with decreasing surface roughness of the sapphire backside in the ODR. Theoretical modeling of the roughened surface suggests that the dependence of the reflectance of the triple-layer ODR structure on the surface roughness can be attributed mainly to light absorption by the Al nano-structures and the trapping of scattered light in the MgF2 layer. Furthermore, the ray tracing simulation based upon the theoretical modeling showed good agreement with the measured reflectance of the ODR structure in diffuse mode. PMID:26010378
Lee, Keon Hwa; Moon, Yong-Tae; Song, June-O; Kwak, Joon Seop
2015-05-26
This study examined systematically the mechanism of light interaction in the sapphire/MgF2/Al triple-layer omnidirectional reflectors (ODR) and its effects on the light output power in near ultraviolet light emitting diodes (NUV-LEDs) with the ODR. The light output power of NUV-LEDs with the triple-layer ODR structure increased with decreasing surface roughness of the sapphire backside in the ODR. Theoretical modeling of the roughened surface suggests that the dependence of the reflectance of the triple-layer ODR structure on the surface roughness can be attributed mainly to light absorption by the Al nano-structures and the trapping of scattered light in the MgF2 layer. Furthermore, the ray tracing simulation based upon the theoretical modeling showed good agreement with the measured reflectance of the ODR structure in diffuse mode.
Multilayer films with sharp, stable interfaces for use in EUV and soft X-ray application
Barbee, Jr., Troy W.; Bajt, Sasa
2002-01-01
The reflectivity and thermal stability of Mo/Si (molybdenum/silicon) multilayer films, used in soft x-ray and extreme ultraviolet region, is enhanced by deposition of a thin layer of boron carbide (e.g., B.sub.4 C) between alternating layers of Mo and Si. The invention is useful for reflective coatings for soft X-ray and extreme ultraviolet optics, multilayer for masks, coatings for other wavelengths and multilayers for masks that are more thermally stable than pure Mo/Si multilayers
Changes in the ozone layer over the past two decades have resulted in increases in solar ultraviolet radiation that reach the surface of North American aquatic environments. Concurrent changes in atmospheric CO2 are resulting in changes in stratification and precipitation that ar...
NASA Astrophysics Data System (ADS)
Zhang, Zhipeng; von Wenckstern, Holger; Lenzner, Jörg; Grundmann, Marius
2016-06-01
We report on ultraviolet photodiodes with integrated optical filter based on the wurtzite (Mg,Zn)O thin films. Tuning of the bandgap of filter and active layers was realized by employing a continuous composition spread approach relying on the ablation of a single segmented target in pulsed-laser deposition. Filter and active layers of the device were deposited on opposite sides of a sapphire substrate with nearly parallel compositional gradients. Ensure that for each sample position the bandgap of the filter layer blocking the high energy radiation is higher than that of the active layer. Different oxygen pressures during the two depositions runs. The absorption edge is tuned over 360 meV and the spectral bandwidth of photodiodes is typically 100 meV and as low as 50 meV.
The Analysis and Construction of Perfectly Matched Layers for the Linearized Euler Equations
NASA Technical Reports Server (NTRS)
Hesthaven, J. S.
1997-01-01
We present a detailed analysis of a recently proposed perfectly matched layer (PML) method for the absorption of acoustic waves. The split set of equations is shown to be only weakly well-posed, and ill-posed under small low order perturbations. This analysis provides the explanation for the stability problems associated with the split field formulation and illustrates why applying a filter has a stabilizing effect. Utilizing recent results obtained within the context of electromagnetics, we develop strongly well-posed absorbing layers for the linearized Euler equations. The schemes are shown to be perfectly absorbing independent of frequency and angle of incidence of the wave in the case of a non-convecting mean flow. In the general case of a convecting mean flow, a number of techniques is combined to obtain a absorbing layers exhibiting PML-like behavior. The efficacy of the proposed absorbing layers is illustrated though computation of benchmark problems in aero-acoustics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ristau, Detlev; Papernov, S.; Kozlov, A. A.
2015-11-23
The role of thin-film interfaces in the near-ultraviolet absorption and pulsed-laser–induced damage was studied for ion-beam–sputtered and electron-beam–evaporated coatings comprised from HfO 2 and SiO 2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage-threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO 2 single-layer film and for a film containing seven narrow HfO 2 layers separated by SiO 2 layers. The seven-layer film was designed to have a total optical thickness of HfO 2 layers, equal to one wave at 355 nm and an E-field peak and averagemore » intensity similar to a single-layer HfO 2 film. Absorption in both types of films was measured using laser calorimetry and photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces, as compared to HfO 2 film material. The relevance of obtained absorption data to coating near-ultraviolet, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO 2 film in both sputtered and evaporated coatings. Here, the results are explained through the similarity of interfacial film structure with structure formed during the co-deposition of HfO 2 and SiO 2 materials.« less
The Ideas of Greek High School Students about the "Ozone Layer."
ERIC Educational Resources Information Center
Boyes, Edward; Stanisstreet, Martin; Papantoniou, Vasso Spiliotopoulou
1999-01-01
Describes a study of Greek high school students' (n=116) perceptions of the ozone layer. Finds that students have a good understanding of the position and purpose of the ozone layer in terms of protection from ultraviolet rays, but students also hold misconceptions linking the ozone layer to the greenhouse effect and other forms of local…
Effect of p-GaN layer doping on the photoresponse of GaN-based p-i-n ultraviolet photodetectors
NASA Astrophysics Data System (ADS)
Wang, Jun; Guo, Jin; Xie, Feng; Wang, Wanjun; Wang, Guosheng; Wu, Haoran; Wang, Tanglin; Song, Man
2015-08-01
We report on two-dimensional (2D) numerical simulations of photoresponse characteristics for GaN based p-i-n ultraviolet (UV) photodetectors. Effects of doping density of p-GaN layer on the photoresponse have been investigated. In order to accurately simulate the device performance, the theoretical calculation includes doping-dependent mobility degradation by Arora model and high field saturation model. Theoretical modeling shows that the doping density of p- GaN layer can significantly affect the photoresponse of GaN based p-i-n UV photodetectors, especially at schottky contact. We have to make a suitable choice of the doping in the device design according to the simulation results.
NASA Technical Reports Server (NTRS)
Brinza, David E.; Stiegman, A. E.; Staszak, Paul R.; Laue, Eric G.; Liang, Ranty H.
1992-01-01
Examination of fluorinated ethylene propylene (FEP) copolymer specimens recovered from the Long Duration Exposure Facility (LDEF) provides evidence for degradation attributed to extended solar vacuum ultraviolet (VUV) irradiation. Scanning electron microscope (SEM) images of sheared FEP film edges reveal the presence of a highly embrittled layer on the exposed surface of specimens obtained from the trailing edge of the LDEF. Similar images obtained for leading edge and control FEP films do not exhibit evidence for such an embrittled layer. Laboratory VUV irradiation of FEP films is found to produce a damage layer similar to that witnessed in the LDEF trailing edge films. Spectroscopic analyses of irradiated films provide data to advance a photochemical mechanism for degradation.
Design and Fabrication of High-Efficiency CMOS/CCD Imagers
NASA Technical Reports Server (NTRS)
Pain, Bedabrata
2007-01-01
An architecture for back-illuminated complementary metal oxide/semiconductor (CMOS) and charge-coupled-device (CCD) ultraviolet/visible/near infrared- light image sensors, and a method of fabrication to implement the architecture, are undergoing development. The architecture and method are expected to enable realization of the full potential of back-illuminated CMOS/CCD imagers to perform with high efficiency, high sensitivity, excellent angular response, and in-pixel signal processing. The architecture and method are compatible with next-generation CMOS dielectric-forming and metallization techniques, and the process flow of the method is compatible with process flows typical of the manufacture of very-large-scale integrated (VLSI) circuits. The architecture and method overcome all obstacles that have hitherto prevented high-yield, low-cost fabrication of back-illuminated CMOS/CCD imagers by use of standard VLSI fabrication tools and techniques. It is not possible to discuss the obstacles in detail within the space available for this article. Briefly, the obstacles are posed by the problems of generating light-absorbing layers having desired uniform and accurate thicknesses, passivation of surfaces, forming structures for efficient collection of charge carriers, and wafer-scale thinning (in contradistinction to diescale thinning). A basic element of the present architecture and method - the element that, more than any other, makes it possible to overcome the obstacles - is the use of an alternative starting material: Instead of starting with a conventional bulk-CMOS wafer that consists of a p-doped epitaxial silicon layer grown on a heavily-p-doped silicon substrate, one starts with a special silicon-on-insulator (SOI) wafer that consists of a thermal oxide buried between a lightly p- or n-doped, thick silicon layer and a device silicon layer of appropriate thickness and doping. The thick silicon layer is used as a handle: that is, as a mechanical support for the device silicon layer during micro-fabrication.
Andrade, A.D.; Galbraith, L.K.
1979-10-01
The disclosure relates to a laminated negative dry-film photoresist for the production of thick, as well as thin, patterns with vertical sidewalls. Uniform depthwise exposure in a photoresist layer is effected by the use of an ultraviolet filtering top layer.
Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua
2016-04-28
Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe(2+) and Fe(3+) are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What's more, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3.
Experimental Determination of Ultraviolet Radiation Protection of Common Materials
ERIC Educational Resources Information Center
Tavares, Susana C. A.; da Silva, Joaquim C. G. Esteves; Paiva, Joao
2007-01-01
Aiming at a better understanding of the problems associated with the depletion of the ozone layer, we propose several experiments to be performed by students of different levels: secondary and first-year undergraduate students. The oxidation of iodide induced by ultraviolet (UV) radiation, generated by a mercury lamp, is used as an indicator for…
Chien, Jui-Fen; Liao, Hua-Yang; Yu, Sheng-Fu; Lin, Ray-Ming; Shiojiri, Makoto; Shyue, Jing-Jong; Chen, Miin-Jang
2013-01-23
Remote plasma in situ atomic layer doping technique was applied to prepare an n-type nitrogen-doped ZnO (n-ZnO:N) layer upon p-type magnesium-doped GaN (p-GaN:Mg) to fabricate the n-ZnO:N/p-GaN:Mg heterojuntion light-emitting diodes. The room-temperature electroluminescence exhibits a dominant ultraviolet peak at λ ≈ 370 nm from ZnO band-edge emission and suppressed luminescence from GaN, as a result of the decrease in electron concentration in ZnO and reduced electron injection from n-ZnO:N to p-GaN:Mg because of the nitrogen incorporation. The result indicates that the in situ atomic layer doping technique is an effective approach to tailoring the electrical properties of materials in device applications.
NASA Astrophysics Data System (ADS)
Wang, C. K.; Wang, Y. W.; Chiou, Y. Z.; Chang, S. H.; Jheng, J. S.; Chang, S. P.; Chang, S. J.
2017-06-01
In this study, the properties of 370-nm InGaN/AlGaN ultraviolet light emitting diodes (UV LEDs) with different thicknesses of un-doped Al0.3Ga0.7N insertion layer (IL) between the last quantum barrier and electron blocking layer (EBL) have been numerically simulated by Advance Physical Model of Semiconductor Devices (APSYS). The results show that the LEDs using the high Al composition IL can effectively improve the efficiency droop, light output power, and internal quantum efficiency (IQE) compared to the original structure. The improvements of the optical properties are mainly attributed to the energy band discontinuity and offset created by IL, which increase the potential barrier height of conduction band to suppress the electron overflow from the active region to the p-side layer.
Deep UV Native Fluorescence Imaging of Antarctic Cryptoendolithic Communities
NASA Technical Reports Server (NTRS)
Storrie-Lombardi, M. C.; Douglas, S.; Sun, H.; McDonald, G. D.; Bhartia, R.; Nealson, K. H.; Hug, W. F.
2001-01-01
An interdisciplinary team at the Jet Propulsion Laboratory Center for Life Detection has embarked on a project to provide in situ chemical and morphological characterization of Antarctic cryptoendolithic microbial communities. We present here in situ deep ultraviolet (UV) native fluorescence and environmental scanning electron microscopy images transiting 8.5 mm into a sandstone sample from the Antarctic Dry Valleys. The deep ultraviolet imaging system employs 224.3, 248.6, and 325 nm lasers to elicit differential fluorescence and resonance Raman responses from biomolecules and minerals. The 224.3 and 248.6 nm lasers elicit a fluorescence response from the aromatic amino and nucleic acids. Excitation at 325 nm may elicit activity from a variety of biomolecules, but is more likely to elicit mineral fluorescence. The resultant fluorescence images provide in situ chemical and morphological maps of microorganisms and the associated organic matrix. Visible broadband reflectance images provide orientation against the mineral background. Environmental scanning electron micrographs provided detailed morphological information. The technique has made possible the construction of detailed fluorescent maps extending from the surface of an Antarctic sandstone sample to a depth of 8.5 mm. The images detect no evidence of microbial life in the superficial 0.2 mm crustal layer. The black lichen component between 0.3 and 0.5 mm deep absorbs all wavelengths of both laser and broadband illumination. Filamentous deep ultraviolet native fluorescent activity dominates in the white layer between 0.6 mm and 5.0 mm from the surface. These filamentous forms are fungi that continue into the red (iron-rich) region of the sample extending from 5.0 to 8.5 mm. Using differential image subtraction techniques it is possible to identify fungal nuclei. The ultraviolet response is markedly attenuated in this region, apparently from the absorption of ultraviolet light by iron-rich particles coating the filaments. Below 8.5 mm the filamentous morphology of the upper layers gives way to punctate 1-2 micron particles evidencing fluorescent activity following excitation at both deep ultraviolet wavelengths.
High extraction efficiency ultraviolet light-emitting diode
Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.
2015-11-24
Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al tahtamouni, T. M., E-mail: talal@yu.edu.jo; Lin, J. Y.; Jiang, H. X.
2014-04-15
Mg-doped AlN/AlGaN superlattice (Mg-SL) and Mg-doped AlGaN epilayers have been investigated in the 284 nm deep ultraviolet (DUV) light emitting diodes (LEDs) as electron blocking layers. It was found that the use of Mg-SL improved the material quality of the p-GaN contact layer, as evidenced in the decreased density of surface pits and improved surface morphology and crystalline quality. The performance of the DUV LEDs fabricated using Mg-SL was significantly improved, as manifested by enhanced light intensity and output power, and reduced turn-on voltage. The improved performance is attributed to the enhanced blocking of electron overflow, and enhanced hole injection.
Properties of the Boltzmann equation in the classical approximation
Epelbaum, Thomas; Gelis, François; Tanji, Naoto; ...
2014-12-30
We examine the Boltzmann equation with elastic point-like scalar interactions in two different versions of the the classical approximation. Although solving numerically the Boltzmann equation with the unapproximated collision term poses no problem, this allows one to study the effect of the ultraviolet cutoff in these approximations. This cutoff dependence in the classical approximations of the Boltzmann equation is closely related to the non-renormalizability of the classical statistical approximation of the underlying quantum field theory. The kinetic theory setup that we consider here allows one to study in a much simpler way the dependence on the ultraviolet cutoff, since onemore » has also access to the non-approximated result for comparison.« less
Aranibar, Ligia; Cabrera, Sergio; Honeyman, Juan
2003-09-01
During the recent 10 years the ozone layer has decreased while ultraviolet radiation has increased in Santiago, Chile. To determine whether the number of sunburns in children correlate with ultraviolet radiation in Santiago. During six Austral Summers (1996-2001) children below 15 years old, consulting for sunburn, were evaluated at the "Corporation for the Aid of Burned Children" (COANIQUEM) in Santiago (33.5 degrees S). The number of children with sunburns during each Summer was compared with the corresponding UV-B radiation and the ozone thickness, to establish a probable relation between a geophysical change and its consequences in skin health. The ozone layer values were obtained from the NASA WEB-page and the ultraviolet radiation was measured with a four-channel medium resolution radiometer. In each Summer there was a predominance of sunburns among boys and among ages between 6 and 10 years. During the 96-97 Austral Summer, the highest number of children with sunburns (63) was diagnosed. That Summer also had the highest mean UV-305 nm radiation with an important amount of days with ozone < or = 260 Dobson Units. Only during that Summer an inverse correlation between ozone and UV-305 nm radiation was detected. At the same time the maximal values of Erythemal Dose Rate (33 muWatt cm2), UV Index (13) and Erythemal Daily Dose (7.500 Joule m2) were observed. In Santiago, Summers with a higher number of days with low ozone protection seem to reappear every 3 years. Understanding the interaction of physical processes that control the ozone layer, may help to design better photo-protection programs for human health.
Ultraviolet radiation (UVR) is a naturally occurring stressor to most forms of life. The sole relevant source of this stressor is the sun. The Earth's stratospheric ozone layer reduces the amount of UVR that reaches the Earth's surface. The potential for continued depletion of th...
Inhibition of seagrass photosynthesis by ultraviolet-B radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trocine, R.P.; Rice, J.D.; Wells, G.N.
1981-07-01
Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme (Kuetz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated. Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. Syringodium appeared to rely primarily on a thick epidermal cellmore » layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species. Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation.« less
Tunable UV-visible absorption of SnS2 layered quantum dots produced by liquid phase exfoliation.
Fu, Xiao; Ilanchezhiyan, P; Mohan Kumar, G; Cho, Hak Dong; Zhang, Lei; Chan, A Sattar; Lee, Dong J; Panin, Gennady N; Kang, Tae Won
2017-02-02
4H-SnS 2 layered crystals synthesized by a hydrothermal method were used to obtain via liquid phase exfoliation quantum dots (QDs), consisting of a single layer (SLQDs) or multiple layers (MLQDs). Systematic downshift of the peaks in the Raman spectra of crystals with a decrease in size was observed. The bandgap of layered QDs, estimated by UV-visible absorption spectroscopy and the tunneling current measurements using graphene probes, increases from 2.25 eV to 3.50 eV with decreasing size. 2-4 nm SLQDs, which are transparent in the visible region, show selective absorption and photosensitivity at wavelengths in the ultraviolet region of the spectrum while larger MLQDs (5-90 nm) exhibit a broad band absorption in the visible spectral region and the photoresponse under white light. The results show that the layered quantum dots obtained by liquid phase exfoliation exhibit well-controlled and regulated bandgap absorption in a wide tunable wavelength range. These novel layered quantum dots prepared using an inexpensive method of exfoliation and deposition from solution onto various substrates at room temperature can be used to create highly efficient visible-blind ultraviolet photodetectors and multiple bandgap solar cells.
Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua
2016-01-01
Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1−xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe2+ and Fe3+ are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What’s more, the Ga2O3/(Ga1−xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3. PMID:27121446
Inhibition of seagrass photosynthesis by ultraviolet-B radiation.
Trocine, R P; Rice, J D; Wells, G N
1981-07-01
Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme Kütz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated.Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. This mechanism effectively attenuated photosynthetic inhibition induced by ultraviolet-B dose rates and dosages in excess of natural conditions. Syringodium appeared to rely primarily on a thick epidermal cell layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species.Observations obtained in this study seem to suggest the possibility of anthocyanin and/or other flavonoid synthesis as an adaptation to long term ultraviolet-B irradiation by these species. In addition, Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation.
Turbulent mixing layers in the interstellar medium of galaxies
NASA Technical Reports Server (NTRS)
Slavin, J. D.; Shull, J. M.; Begelman, M. C.
1993-01-01
We propose that turbulent mixing layers are common in the interstellar medium (ISM). Injection of kinetic energy into the ISM by supernovae and stellar winds, in combination with density and temperature inhomogeneities, results in shear flows. Such flows will become turbulent due to the high Reynolds number (low viscosity) of the ISM plasma. These turbulent boundary layers will be particularly interesting where the shear flow occurs at boundaries of hot (approximately 10(exp 6) K) and cold or warm (10(exp 2) - 10(exp 4) K) gas. Mixing will occur in such layers producing intermediate-temperature gas at T is approximately equal to 10(exp 5.0) - 10(exp 5.5) that radiates strongly in the optical, ultraviolet, and EUV. We have modeled these layers under the assumptions of rapid mixing down to the atomic level and steady flow. By including the effects of non-equilibrium ionization and self-photoionization of the gas as it cools after mixing, we predict the intensities of numerous optical, infrared, and ultraviolet emission lines, as well as absorption column densities of C 4, N 5, Si 4, and O 6.
Modified band alignment effect in ZnO/Cu2O heterojunction solar cells via Cs2O buffer insertion
NASA Astrophysics Data System (ADS)
Eom, Kiryung; Lee, Dongyoon; Kim, Seunghwan; Seo, Hyungtak
2018-02-01
The effects of a complex buffer layer of cesium oxide (Cs2O) on the photocurrent response in oxide heterojunction solar cells (HSCs) were investigated. A p-n junction oxide HSC was fabricated using p-type copper (I) oxide (Cu2O) and n-type zinc oxide (ZnO); the buffer layer was inserted between the Cu2O and fluorine-doped tin oxide (FTO). Ultraviolet-visible (UV-vis) and x-ray and ultraviolet photoelectron spectroscopy analyses were performed to characterize the electronic band structures of cells, both with and without this buffer layer. In conjunction with the measured band electronic structures, the significantly improved visible-range photocurrent spectra of the buffer-inserted HSC were analyzed in-depth. As a result, the 1 sun power conversion efficiency was increased by about three times by the insertion of buffer layer. The physicochemical origin of the photocurrent enhancement was mainly ascribed to the increased photocarrier density in the buffer layer and modified valence band offset to promote the effective hole transfer at the interface to FTO on the band-alignment model.
Incorporation of multiple cloud layers for ultraviolet radiation modeling studies
NASA Technical Reports Server (NTRS)
Charache, Darryl H.; Abreu, Vincent J.; Kuhn, William R.; Skinner, Wilbert R.
1994-01-01
Cloud data sets compiled from surface observations were used to develop an algorithm for incorporating multiple cloud layers into a multiple-scattering radiative transfer model. Aerosol extinction and ozone data sets were also incorporated to estimate the seasonally averaged ultraviolet (UV) flux reaching the surface of the Earth in the Detroit, Michigan, region for the years 1979-1991, corresponding to Total Ozone Mapping Spectrometer (TOMS) version 6 ozone observations. The calculated UV spectrum was convolved with an erythema action spectrum to estimate the effective biological exposure for erythema. Calculations show that decreasing the total column density of ozone by 1% leads to an increase in erythemal exposure by approximately 1.1-1.3%, in good agreement with previous studies. A comparison of the UV radiation budget at the surface between a single cloud layer method and a multiple cloud layer method presented here is discussed, along with limitations of each technique. With improved parameterization of cloud properties, and as knowledge of biological effects of UV exposure increase, inclusion of multiple cloud layers may be important in accurately determining the biologically effective UV budget at the surface of the Earth.
STS-85 crew poses at LC 39A during TCDT
NASA Technical Reports Server (NTRS)
1997-01-01
The STS-85 flight crew poses at Launch Pad 39A during a break in Terminal Countdown Demonstration Test (TCDT) activities for that mission. They are (back row, from left): Pilot Kent V. Rominger; Payload Commander N. Jan Davis; Mission Specialist Stephen K. Robinson; Payload Specialist Bjarni V. Tryggvason; Mission Specialist Robert L. Curbeam, Jr.; and Commander Curtis L. Brown, Jr. The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-2 (CRISTA-SPAS-2). Other payloads on the 11- day mission include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.
Highly efficient and stable ultraviolet photocathode based on nanodiamond particles
NASA Astrophysics Data System (ADS)
Velardi, L.; Valentini, A.; Cicala, G.
2016-02-01
Nanodiamond (ND) layers on silicon substrate are deposited by the pulsed spray technique starting from nanoparticles of about 250 nm dispersed in 1,2-dichloroethane solvent. The aim of this letter is to investigate the quantum efficiency (QE) of photocathodes based on ND particles in the vacuum ultraviolet spectral range. Various ND layers are examined employing as-received and hydrogenated nanoparticles. As expected, the hydrogen plasma treatment improves strongly the photoemission of the layer giving a QE of 22% at 146 nm. Indeed, this efficiency value is achieved only if the particles are treated in H2 microwave plasma before the growth of the sprayed layer rather than to hydrogenate the already formed one. These QE values are higher than those of photocathodes based on plasma chemical vapor deposition diamond films, but with the advantage of being much stable, too. The highest QE values are explained to be due to the intrinsic chemical and structural features of utilized ND particles.
Exciplex formation and electroluminescent absorption in ultraviolet organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Zhang, Qi; Zhang, Hao; Zhang, Xiao-Wen; Xu, Tao; Wei, Bin
2015-02-01
We investigated the formation of exciplex and electroluminescent absorption in ultraviolet organic light-emitting diodes (UV OLEDs) using different heterojunction structures. It is found that an energy barrier of over 0.3 eV between the emissive layer (EML) and adjacent transport layer facilitates exciplex formation. The electron blocking layer effectively confines electrons in the EML, which contributes to pure UV emission and enhances efficiency. The change in EML thickness generates tunable UV emission from 376 nm to 406 nm. In addition, the UV emission excites low-energy organic function layers and produces photoluminescent emission. In UV OLED, avoiding the exciplex formation and averting light absorption can effectively improve the purity and efficiency. A maximum external quantum efficiency of 1.2% with a UV emission peak of 376 nm is realized. Project supported by the National Natural Science Foundation of China (Grant Nos. 61136003 and 61275041) and the Guangxi Provincial Natural Science Foundation, China (Grant No. 2012GXNSFBA053168).
Hubble Space Telescope observations of the dwarf Nova Z Chamaeleontis through two eruption cycles
NASA Technical Reports Server (NTRS)
Robinson, E. L.; Wood, Janet H.; Bless, R. C.; Clemens, J. C.; Dolan, J. F.; Elliot, J. L.; Nelson, M. J.; Percival, J. W.; Taylor, M. J.; Van Citters, G. W.
1995-01-01
We have obtained the first high-speed photometry of the eclipsing dwarf nova Z Cha at ultraviolet wavelengths with the Hubble Space Telescope (HST). We observed the eclipse roughly every 4 days over two cycles of the normal eruptions of Z Cha, giving a uniquely complete coverage of its outburst cycle. The accretion disk dominated the ultraviolet light curve of Z Cha at the peak of an eruption; the white dwarf, the bright spot on the edge of the disk, and the boundary layer were all invisible. We were able to obtain an axisymmetric map of the accretion disk at this time only by adopting a flared disk with an opening angle of approximately 8 deg. The run of brightness temperature with radius in the disk at the peak of the eruption was too flat to be consistent with a steady state, optically thick accretion disk. The local rate of mass flow through the disk was approximately 5 x 10(exp -10) solar masses/yr near the center of the disk and approximately 5 x 10(exp -9) solar masses/yr near the outer edge. The white dwarf, the accretion disk, and the boundary layer were all significant contributors to the ultraviolet flux on the descending branches of the eruptions. The temperature of the white dwarf during decline was 18,300 K less than T(sub wd) less than 21,800 K, which is significantly greater than at minimum light. Six days after the maximum of an eruption Z Cha has faded to near minimum light at ultraviolet wavelenghts, but was still approximately 70% brighter at minimum light in the B band. About one-quarter of the excess flux in the B band came from the accretion disk. Thus, the accretion disk faded and became invisible at ultraviolet wavelengths before it faded at optical wavelenghts. The disk did, however, remain optically thick and obscured the lower half of the white dwarf at ultraviolet and possibly at optical wavelenghts for 2 weeks after the eruption ended. By the third week after eruptiuons the eclipse looked like a simple occultation of an unobscured, spherical white dwarf by a dark secondary star. The center of the accretion disk was, therfore, optically thin at ultraviolet wavelenghts and the boundary layer was too faint to be visible.
1992-06-01
characterized with infrared and ultraviolet/visible spectroscopy , nuclear magnetic resonance analysis and gas and thin-layer chromatography. These...comparison gas chromatographic major peak profile of diisopropyl methylphosphonate. In brief, infrared and ultraviolet/visible spectroscopy and nuclear...An aliquot of this batch was analyzed by MRI, Kansas City, MO. The characterization consisted of determination of physical properties, spectroscopy
Durable Corrosion and Ultraviolet-Resistant Silver Mirror
Jorgensen, G. J.; Gee, R.
2006-01-24
A corrosion and ultra violet-resistant silver mirror for use in solar reflectors; the silver layer having a film-forming protective polymer bonded thereto, and a protective shield overlay comprising a transparent multipolymer film that incorporates a UV absorber. The corrosion and ultraviolet resistant silver mirror retains spectral hemispherical reflectance and high optical clarity throughout the UV and visible spectrum when used in solar reflectors.
Ruffner, Judith Alison
1999-01-01
A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet ("DUV") and Extreme Ultra-Violet ("EUV") wavelengths. The method results in a product with minimum feature sizes of less than 0.10-.mu.m for the shortest wavelength (13.4-nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R.sup.2 factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates.
Near-ultraviolet micro-Raman study of diamond grown on GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazari, M., E-mail: m-n79@txstate.edu; Hancock, B. L.; Anderson, J.
2016-01-18
Ultraviolet (UV) micro-Raman measurements are reported of diamond grown on GaN using chemical vapor deposition. UV excitation permits simultaneous investigation of the diamond (D) and disordered carbon (DC) comprising the polycrystalline layer. From line scans of a cross-section along the diamond growth direction, the DC component of the diamond layer is found to be highest near the GaN-on-diamond interface and diminish with characteristic length scale of ∼3.5 μm. Transmission electron microscopy (TEM) of the diamond near the interface confirms the presence of DC. Combined micro-Raman and TEM are used to develop an optical method for estimating the DC volume fraction.
Compositionally graded relaxed AlGaN buffers on semipolar GaN for mid-ultraviolet emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Erin C.; Wu Feng; Haeger, Daniel A.
In this Letter, we report on the growth and properties of relaxed, compositionally graded Al{sub x}Ga{sub 1-x}N buffer layers on freestanding semipolar (2021) GaN substrates. Continuous and step compositional grades with Al concentrations up to x = 0.61 have been achieved, with emission wavelengths in the mid-ultraviolet region as low as 265 nm. Coherency stresses were relaxed progressively throughout the grades by misfit dislocation generation via primary (basal) slip and secondary (non-basal) slip systems. Threading dislocation densities in the final layers of the grades were less than 10{sup 6}/cm{sup 2} as confirmed by plan-view transmission electron microscopy and cathodoluminescence studies.
Shibao, Hideto; Nakahara, Yoshio; Uno, Kazuyuki; Tanaka, Ichiro
2016-04-01
Polysilsesquioxane (PSQ) comprising 3-methacryloxypropyl groups was investigated as an ultraviolet (UV)-light curable gate dielectric-material for pentacene thin film transistors (TFTs). The surface of UV-light cured PSQ films was smoother than that of thermally cured ones, and the pentacene layers deposited on the UV-Iight cured PSQ films consisted of larger grains. However, carrier mobility of the TFTs using the UV-light cured PSQ films was lower than that of the TFTs using the thermally cured ones. It was shown that the cross-linker molecules, which were only added to the UV-light cured PSQ films, worked as a major mobility-limiting factor for the TFTs.
Compositionally graded relaxed AlGaN buffers on semipolar GaN for mid-ultraviolet emission
NASA Astrophysics Data System (ADS)
Young, Erin C.; Wu, Feng; Romanov, Alexey E.; Haeger, Daniel A.; Nakamura, Shuji; Denbaars, Steven P.; Cohen, Daniel A.; Speck, James S.
2012-10-01
In this Letter, we report on the growth and properties of relaxed, compositionally graded AlxGa1 - xN buffer layers on freestanding semipolar (202¯1) GaN substrates. Continuous and step compositional grades with Al concentrations up to x = 0.61 have been achieved, with emission wavelengths in the mid-ultraviolet region as low as 265 nm. Coherency stresses were relaxed progressively throughout the grades by misfit dislocation generation via primary (basal) slip and secondary (non-basal) slip systems. Threading dislocation densities in the final layers of the grades were less than 106/cm2 as confirmed by plan-view transmission electron microscopy and cathodoluminescence studies.
Cullen, Anthony P
2011-07-01
To describe he role played by the United Nations Environmental Effects Panel with respect to the ocular effects of stratospheric ozone depletion and present the essence of the Health Chapter of the 2010 Assessment. A consideration of solar ultraviolet radiation (UVR) at the Earth's surface as it is affected by atmospheric changes and how these influence sunlight-related eye diseases. A review of the current Assessment with emphasis on pterygium, cataract, ocular melanoma, and age-related macular degeneration. Although the ozone layer is projected to recover slowly in the coming decades, continuing vigilance is required regarding exposure to the sun. Evidence implicating solar UVR, especially UVB, in every tissue of the eye continues to be amassed. The need for ocular UV protection existed before the discovery of the depletion of the ozone layer and will continue even when the layer fully recovers in approximately 2100.
Inhibition of Seagrass Photosynthesis by Ultraviolet-B Radiation 1
Trocine, Robert P.; Rice, John D.; Wells, Gary N.
1981-01-01
Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme Kütz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated. Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. This mechanism effectively attenuated photosynthetic inhibition induced by ultraviolet-B dose rates and dosages in excess of natural conditions. Syringodium appeared to rely primarily on a thick epidermal cell layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species. Observations obtained in this study seem to suggest the possibility of anthocyanin and/or other flavonoid synthesis as an adaptation to long term ultraviolet-B irradiation by these species. In addition, Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation. Images PMID:16661893
Advanced ultraviolet-resistant silver mirrors for use in solar reflectors
Jorgensen, Gary J [Pine, CO; Gee, Randy [Arvada, CO
2009-11-03
A silver mirror construction that maintains a high percentage of hemispherical reflectance throughout the UV and visible spectrum when used in solar reflectors, comprising:a) a pressure sensitive adhesive layer positioned beneath a silver overlay;b) a polymer film disposed on the silver overlay;c) an adhesive layer positioned on the polymer film; andd) a UV screening acrylic film disposed on the adhesive layer.
Uusikivi, Jari; Vähätalo, Anssi V.; Granskog, Mats A.; Sommaruga, Ruben
2010-01-01
In the Baltic Sea ice, the spectral absorption coefficients for particulate matter (PM) were about two times higher at ultraviolet wavelengths than at photosynthetically available radiation (PAR) wavelengths. PM absorption spectra included significant absorption by mycosporine-like amino acids (MAAs) between 320 and 345 nm. In the surface ice layer, the concentration of MAAs (1.37 μg L−1) was similar to that of chlorophyll a, resulting in a MAAs-to-chlorophyll a ratio as high as 0.65. Ultraviolet radiation (UVR) intensity and the ratio of UVR to PAR had a strong relationship with MAAs concentration (R2 = 0.97, n = 3) in the ice. In the surface ice layer, PM and especially MAAs dominated the absorption (absorption coefficient at 325 nm: 0.73 m−1). In the columnar ice layers, colored dissolved organic matter was the most significant absorber in the UVR (< 380 nm) (absorption coefficient at 325 nm: 1.5 m−1). Our measurements and modeling of UVR and PAR in Baltic Sea ice show that organic matter, both particulate and dissolved, influences the optical properties of sea ice and strongly modifies the UVR exposure of biological communities in and under snow-free sea ice. PMID:20585592
Witoonchart, Peerajak; Chongstitvatana, Prabhas
2017-08-01
In this study, for the first time, we show how to formulate a structured support vector machine (SSVM) as two layers in a convolutional neural network, where the top layer is a loss augmented inference layer and the bottom layer is the normal convolutional layer. We show that a deformable part model can be learned with the proposed structured SVM neural network by backpropagating the error of the deformable part model to the convolutional neural network. The forward propagation calculates the loss augmented inference and the backpropagation calculates the gradient from the loss augmented inference layer to the convolutional layer. Thus, we obtain a new type of convolutional neural network called an Structured SVM convolutional neural network, which we applied to the human pose estimation problem. This new neural network can be used as the final layers in deep learning. Our method jointly learns the structural model parameters and the appearance model parameters. We implemented our method as a new layer in the existing Caffe library. Copyright © 2017 Elsevier Ltd. All rights reserved.
1995-03-18
The Space Shuttle Endeavour (STS-67) lands at Edwards Air Force Base in southern California after successfully completing NASA's longest plarned shuttle mission. The seven-member crew conducted round-the-clock observations with the ASTRO-2 observatory, a trio of telescopes designed to study the universe of ultraviolet astronomy. Because of Earth's protective ozone layer ultraviolet light from celestial objects does not reach gound-based telescopes, and such studies can only be conducted from space.
Durable silver coating for mirrors
Wolfe, Jesse D.; Thomas, Norman L.
2000-01-01
A durable multilayer mirror includes reflective layers of aluminum and silver and has high reflectance over a broad spectral range from ultraviolet to visible to infrared. An adhesion layer of a nickel and/or chromium alloy or nitride is deposited on an aluminum surface, and a thin layer of silver is then deposited on the adhesion layer. The silver layer is protected by a passivation layer of a nickel and/or chromium alloy or nitride and by one or more durability layers made of metal oxides and typically a first layer of metal nitride. The durability layers may include a composite silicon aluminum nitride and an oxinitride transition layer to improve bonding between nitride and oxide layers.
STS-85 crew poses in the white room at LC 39A during TCDT
NASA Technical Reports Server (NTRS)
1997-01-01
The STS-85 flight crew poses in the white room at Launch Pad 39A during a break in Terminal Countdown Demonstration Test (TCDT) activities for that mission. They are (from left): Payload Commander N. Jan Davis; Payload Specialist Bjarni V. Tryggvason; Commander Curtis L. Brown, Jr.; Mission Specialist Stephen K. Robinson; Pilot Kent V. Rominger; and Mission Specialist Robert L. Curbeam, Jr. The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-2 (CRISTA-SPAS-2). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH- 2) experiments.
Atomic layer deposition and etching methods for far ultraviolet aluminum mirrors
NASA Astrophysics Data System (ADS)
Hennessy, John; Moore, Christopher S.; Balasubramanian, Kunjithapatham; Jewell, April D.; Carter, Christian; France, Kevin; Nikzad, Shouleh
2017-09-01
High-performance aluminum mirrors at far ultraviolet wavelengths require transparent dielectric materials as protective coatings to prevent oxidation. Reducing the thickness of this protective layer can result in additional performance gains by minimizing absorption losses, and provides a path toward high Al reflectance in the challenging wavelength range of 90 to 110 nm. We have pursued the development of new atomic layer deposition processes (ALD) for the metal fluoride materials of MgF2, AlF3 and LiF. Using anhydrous hydrogen fluoride as a reactant, these films can be deposited at the low temperatures required for large-area surface-finished optics and polymeric diffraction gratings. We also report on the development and application of an atomic layer etching (ALE) procedure to controllably etch native aluminum oxide. Our ALE process utilizes the same chemistry used in the ALD of AlF3 thin films, allowing for a combination of high-performance evaporated Al layers and ultrathin ALD encapsulation without requiring vacuum transfer. Progress in demonstrating the scalability of this approach, as well as the environmental stability of ALD/ALE Al mirrors are discussed in the context of possible future applications for NASA LUVOIR and HabEx mission concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martens, M.; Kuhn, C.; Ziffer, E.
2016-04-11
Current injection into AlGaN-based laser diode structures with high aluminum mole fractions for deep ultraviolet emission is investigated. The electrical characteristics of laser diode structures with different p-AlGaN short period superlattice (SPSL) cladding layers with various aluminum mole fractions are compared. The heterostructures contain all elements that are needed for a current-injection laser diode including cladding and waveguide layers as well as an AlGaN quantum well active region emitting near 270 nm. We found that with increasing aluminum content in the p-AlGaN cladding, the diode turn-on voltage increases, while the series resistance slightly decreases. By introducing an SPSL instead of bulkmore » layers, the operating voltage is significantly reduced. A gain guided broad area laser diode structure with transparent p-Al{sub 0.70}Ga{sub 0.30}N waveguide layers and a transparent p-cladding with an average aluminum content of 81% was designed for strong confinement of the transverse optical mode and low optical losses. Using an optimized SPSL, this diode could sustain current densities of more than 4.5 kA/cm{sup 2}.« less
NASA Astrophysics Data System (ADS)
Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Li, Luping; Bi, Wengang; Zhang, Zi-Hui
2018-01-01
This work proposes the [0001] oriented AlGaN-based deep ultraviolet (DUV) light-emitting diode (LED) possessing a specifically designed p-electron blocking layer (p-EBL) to achieve the high internal quantum efficiency. Both electrons and holes can be efficiently injected into the active region by adopting the Al0.60Ga0.40N/Al0.50Ga0.50N/Al0.60Ga0.40N structured p-EBL, in which a p-Al0.50Ga0.50N layer is embedded into the p-EBL. Moreover, the impact of different thicknesses for the p-Al0.50Ga0.50N insertion layer on the hole and electron injections has also been investigated. Compared with the DUV LED with the bulk p-Al0.60Ga0.40N as the EBL, the proposed LED architectures improve the light output power if the thickness of the p-Al0.50Ga0.50N insertion layer is properly designed.
Atiwongsangthong, Narin
2012-08-01
The purpose of this research, the nanoporous silicon layer were fabricated and investigated the physical properties such as photoluminescence and the electrical properties in order to develop organic vapor sensor by using nanoporous silicon. The Changes in the photoluminescence intensity of nanoporous silicon samples are studied during ultraviolet illumination in various ambient gases such as nitrogen, oxigen and vacuum. In this paper, the nanoporous silicon layer was used as organic vapor adsorption and sensing element. The advantage of this device are simple process compatible in silicon technology and usable in room temperature. The structure of this device consists of nanoporous silicon layer which is formed by anodization of silicon wafer in hydrofluoric acid solution and aluminum electrode which deposited on the top of nanoporous silicon layer by evaporator. The nanoporous silicon sensors were placed in a gas chamber with various organic vapor such as ethanol, methanol and isopropyl alcohol. From studying on electrical characteristics of this device, it is found that the nanoporous silicon layer can detect the different organic vapor. Therefore, the nanoporous silicon is important material for organic vapor sensor and it can develop to other applications about gas sensors in the future.
NASA Astrophysics Data System (ADS)
Tani, Tadaaki; Inami, Yoshiyasu
2000-09-01
Ultraviolet photoelectron spectroscopy has been successfully used to measure the heights of the tops of the valence bands of the surfaces of AgBr layers on Ag substrates for the verification of the space charge layer model. According to this model, the positive space charge layer (composed of negative charges with excess negative kink sites on the surface and corresponding positive charges with interstitial silver ions in the interior) is formed in silver halides, causing the difference in the electronic energy levels between their surface and interior. The depression of the positive space charge layer of AgBr caused by such adsorbates as photographic stabilizers and antifoggants was estimated from the decrease in the ionic conductivity of cubic AgBr microcrystals by the adsorbates. It was confirmed by the decrease in the heights of the tops of the valence bands of the surfaces of AgBr layers caused by the adsorbates in the presence of thin gelatin membranes on their surfaces. This result provided the explanation for the fact that the adsorbates increased the number of the microcrystals which formed latent image centers on the surface and decreased the number of the microcrystals, which formed latent image centers in the interior.
On the Hole Injection for III-Nitride Based Deep Ultraviolet Light-Emitting Diodes.
Li, Luping; Zhang, Yonghui; Xu, Shu; Bi, Wengang; Zhang, Zi-Hui; Kuo, Hao-Chung
2017-10-24
The hole injection is one of the bottlenecks that strongly hinder the quantum efficiency and the optical power for deep ultraviolet light-emitting diodes (DUV LEDs) with the emission wavelength smaller than 360 nm. The hole injection efficiency for DUV LEDs is co-affected by the p-type ohmic contact, the p-type hole injection layer, the p-type electron blocking layer and the multiple quantum wells. In this report, we review a large diversity of advances that are currently adopted to increase the hole injection efficiency for DUV LEDs. Moreover, by disclosing the underlying device physics, the design strategies that we can follow have also been suggested to improve the hole injection for DUV LEDs.
NASA Astrophysics Data System (ADS)
Cho, H. K.; Krüger, O.; Külberg, A.; Rass, J.; Zeimer, U.; Kolbe, T.; Knauer, A.; Einfeldt, S.; Weyers, M.; Kneissl, M.
2017-12-01
We report on a chip design which allows the laser lift-off (LLO) of the sapphire substrate sustaining the epitaxial film of flip-chip mounted deep ultraviolet light emitting diodes. A nanosecond pulsed excimer laser with a wavelength of 248 nm was used for the LLO. A mechanically stable chip design was found to be the key to prevent crack formation in the epitaxial layers and material chipping during the LLO process. Stabilization was achieved by introducing a Ti/Au leveling layer that mechanically supports the fragile epitaxial film. The electrical and optical characterization of devices before and after the LLO process shows that the device performance did not degrade by the LLO.
On the Hole Injection for III-Nitride Based Deep Ultraviolet Light-Emitting Diodes
Li, Luping; Zhang, Yonghui; Kuo, Hao-Chung
2017-01-01
The hole injection is one of the bottlenecks that strongly hinder the quantum efficiency and the optical power for deep ultraviolet light-emitting diodes (DUV LEDs) with the emission wavelength smaller than 360 nm. The hole injection efficiency for DUV LEDs is co-affected by the p-type ohmic contact, the p-type hole injection layer, the p-type electron blocking layer and the multiple quantum wells. In this report, we review a large diversity of advances that are currently adopted to increase the hole injection efficiency for DUV LEDs. Moreover, by disclosing the underlying device physics, the design strategies that we can follow have also been suggested to improve the hole injection for DUV LEDs. PMID:29073738
Tolerance of an albino fish to ultraviolet-B radiation
Fabacher, David L.; Little, Edward E.; Ostrander, Gary K.
1999-01-01
We exposed albino and pigmented medakaOryzias latipes to simulated solar ultraviolet-B (UVB) radiation to determine if albino medaka were less tolerant of UVB radiation than medaka pigmented with melanin. There was no difference in the number of albino and pigmented medaka that died during the exposure period. Spectrophotometric analyses of the outer dorsal skin layers from albino and pigmented medaka indicated that, prior to exposure, both groups of fish had similar amounts of an apparent colorless non-melanin photoprotective substance that appears to protect other fish species from UVB radiation. Our results indicate that albino medaka were as tolerant of UVB radiation as pigmented medaka because they had similar amounts of this photoprotective substance in the outer layers of the skin.
Bae, Jin-Hyuk; Lee, Sin-Doo; Choi, Jong Sun; Park, Jaehoon
2012-05-01
We report on the multi-dimensional alignment of pentacene molecules on a poly(methyl methacrylate)-based photosensitive polymer (PMMA-polymer) and its effect on the electrical performance of the pentacene-based field-effect transistor (FET). Pentacene molecules are shown to be preferentially aligned on the linearly polarized ultraviolet (LPUV)-exposed PMMA-polymer layer, which is contrast to an isotropic alignment on the bare PMMA-polymer layer. Multi-dimensional alignment of pentacene molecules in the film could be achieved by adjusting the direction of LPUV exposed to the PMMA-polymer. The control of pentacene molecular alignment is found to be promising for the field-effect mobility enhancement in the pentacene FET.
Fabrication of a Graphene/ZnO based p-n junction device and its ultraviolet photoresponse properties
NASA Astrophysics Data System (ADS)
Kwon, Young-Tae; Kang, Sung-Oong; Cheon, Ji-Ae; Song, Yoseb; Lee, Jong-Jin; Choa, Yong-Ho
2017-09-01
Graphene with a zero-bandgap energy is easily doped using a chemical dopant, and a shift upwards or downwards in the Fermi level is generated. Moreover, the integration of inorganic material into the doped graphene changes the physical and chemical properties of the material. For this purpose, we successfully fabricated a p-n junction device by depositing an n-typed ZnO layer on p-doped graphene and studied the ultraviolet (UV) photoresponse properties under a photocurrent (UV light on) and a dark current (UV light off). Two devices, lateral and vertical, were developed by alternating the thickness of the ZnO layer, and the photoresponse mechanisms were described on the basis of the contact potential difference.
Acute sun damage and photoprotective responses in whales
Martinez-Levasseur, Laura M.; Gendron, Diane; Knell, Rob J.; O'Toole, Edel A.; Singh, Manuraj; Acevedo-Whitehouse, Karina
2011-01-01
Rising levels of ultraviolet radiation (UVR) secondary to ozone depletion are an issue of concern for public health. Skin cancers and intraepidermal dysplasia are increasingly observed in individuals that undergo chronic or excessive sun exposure. Such alterations of skin integrity and function are well established for humans and laboratory animals, but remain unexplored for mammalian wildlife. However, effects are unlikely to be negligible, particularly for species such as whales, whose anatomical or life-history traits force them to experience continuous sun exposure. We conducted photographic and histological surveys of three seasonally sympatric whale species to investigate sunburn and photoprotection. We find that lesions commonly associated with acute severe sun damage in humans are widespread and that individuals with fewer melanocytes have more lesions and less apoptotic cells. This suggests that the pathways used to limit and resolve UVR-induced damage in humans are shared by whales and that darker pigmentation is advantageous to them. Furthermore, lesions increased significantly in time, as would be expected under increasing UV irradiance. Apoptosis and melanocyte proliferation mirror this trend, suggesting that whales are capable of quick photoprotective responses. We conclude that the thinning ozone layer may pose a risk to the health of whales and other vulnerable wildlife. PMID:21068035
Trainee Primary Teachers' Ideas about the Ozone Layer.
ERIC Educational Resources Information Center
Boyes, Edward; And Others
1995-01-01
Survey results reveal trainee primary teachers are well informed about the nature and location of the ozone layer and appreciated that it screens the earth from ultraviolet (UV) rays, although some thought that it protects the earth from acid rain. Identifies themes in students' thinking and groups of students with different concepts. (LZ)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jae-Min; Kim, Doyoung; Kim, Hyungjun
We investigated the ultraviolet (UV) light photostability of plasma-enhanced and thermal atomic layer deposition of ZnO thin film transistor (TFT). The negative shift of threshold voltage was similarly observed in both cases by UV exposure due to the increment of carrier concentration. Additionally, the transfer curves of TFT using thermal ALD ZnO:N active layer were exhibited recovery characteristics.
Analysis and design of the ultraviolet warning optical system based on interference imaging
NASA Astrophysics Data System (ADS)
Wang, Wen-cong; Hu, Hui-jun; Jin, Dong-dong; Chu, Xin-bo; Shi, Yu-feng; Song, Juan; Liu, Jin-sheng; Xiao, Ting; Shao, Si-pei
2017-10-01
Ultraviolet warning technology is one of the important methods for missile warning. It provides a very effective way to detect the target for missile approaching alarm. With the development of modern technology, especially the development of information technology at high speed, the ultraviolet early warning system plays an increasingly important role. Compared to infrared warning, the ultraviolet warning has high efficiency and low false alarm rate. In the modern warfare, how to detect the threats earlier, prevent and reduce the attack of precision-guided missile has become a new challenge of missile warning technology. Because the ultraviolet warning technology has high environmental adaptability, the low false alarm rate, small volume and other advantages, in the military field applications it has been developed rapidly. For the ultraviolet warning system, the optimal working waveband is 250 nm 280 nm (Solar Blind UV) due to the strong absorption of ozone layer. According to current application demands for solar blind ultraviolet detection and warning, this paper proposes ultraviolet warning optical system based on interference imaging, which covers solar blind ultraviolet (250nm-280nm) and dual field. This structure includes a primary optical system, an ultraviolet reflector array, an ultraviolet imaging system and an ultraviolet interference imaging system. It makes use of an ultraviolet beam-splitter to achieve the separation of two optical systems. According to the detector and the corresponding application needs of two visual field of the optical system, the calculation and optical system design were completed. After the design, the MTF of the two optical system is more than 0.8@39lp/mm.A single pixel energy concentration is greater than 80%.
UV photography of the earth and the moon
NASA Technical Reports Server (NTRS)
1973-01-01
The fundamental aim of this experiment was the acquisition of ultraviolet photographs of the earth and the moon that could be used to interpret similar imagery of Mars and Venus. Venus shows no markings whatever when viewed in visible light, a phenomenon that is in keeping with its immensely thick atmosphere and perpetual cloud cover, but in the near ultraviolet, the planet exhibits low contrast markings which vary in position and appearance with time. Mars posed just the opposite problem from Venus at wavelengths below 4500 A, Mars shows very little detail, sometimes none at all, whereas at longer wavelengths, the surface is clearly visible. Occasionally observers have reported that this obscuration has lifted and the ground has become visible at the shorter wavelengths as well. Such events have been labeled blue clearings and led to the suggestion that the ultraviolet obscuration was caused by an atmospheric haze. Mariner 6 and 7 observations of Mars failed to find such a haze and lent support to the alternative view that ascribed the absence of detail on UV photographs to a simple lack of contrast between Martian surface features at these wavelengths.
Ruffner, J.A.
1999-06-15
A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet (DUV) and Extreme Ultra-Violet (EUV) wavelengths. The method results in a product with minimum feature sizes of less than 0.10 [micro]m for the shortest wavelength (13.4 nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R[sup 2] factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates. 15 figs.
Method and tool to reverse the charges in anti-reflection films used for solar cell applications
Sharma, Vivek; Tracy, Clarence
2017-01-31
A method is provided for making a solar cell. The method includes providing a stack including a substrate, a barrier layer disposed on the substrate, and an anti-reflective layer disposed on the barrier layer, where the anti-reflective layer has charge centers. The method also includes generating a corona with a charging tool and contacting the anti-reflective layer with the corona thereby injecting charge into at least some of the charge centers in the anti-reflective layer. Ultra-violet illumination and temperature-based annealing may be used to modify the charge of the anti-reflective layer.
Ultraviolet Radiative Transfer Modeling of Nearby Galaxies with Extraplanar Dusts
NASA Astrophysics Data System (ADS)
Shinn, Jong-Ho; Seon, Kwang-Il
2015-12-01
In order to examine their relation to the host galaxy, the extraplanar dusts of six nearby galaxies are modeled, employing a three-dimensional Monte Carlo radiative transfer code. The targets are from the highly inclined galaxies that show dust-scattered ultraviolet halos, and the archival Galaxy Evolution Explorer FUV band images were fitted with the model. The observed images are generally well-reproduced by two dust layers and one light source layer, whose vertical and radial distributions have exponential profiles. We obtained several important physical parameters, such as star formation rate (SFRUV), face-on optical depth, and scale-heights. Three galaxies (NGC 891, NGC 3628, and UGC 11794) show clear evidence for the existence of an extraplanar dust layer. However, it is found that the remaining three targets (IC 5249, NGC 24, and NGC 4173) do not necessarily need a thick dust disk to model the ultraviolet (UV) halo, because its contribution is too small and the UV halo may be caused by the wing part of the GALEX point spread function. This indicates that the galaxy samples reported to have UV halos may be contaminated by galaxies with negligible extraplanar (halo) dust. The galaxies showing evidence of an extraplanar dust layer fall within a narrow range on the scatter plots between physical parameters such as SFRUV and extraplanar dust mass. Several mechanisms that could possibly produce the extraplanar dust are discussed. We also found a hint that the extraplanar dust scale-height might not be much different from the polycyclic aromatic hydrocarbon emission characteristic height.
NASA Astrophysics Data System (ADS)
Goto, Takeyoshi; Kinugasa, Tomoya
2018-05-01
The first electronic transition (A˜ ← X˜) and the hydrogen bonding state of an ultra-thin water layer of nanometer thickness between two α-alumina surfaces (0.5-20 nm) were studied using far-ultraviolet (FUV) spectroscopy in the wavelength range 140-180 nm. The ultra-thin water layer of nanometer thickness was prepared by squeezing a water droplet ( 1 μL) between a highly polished α-alumina prism and an α-alumina plate using a high pressure clamp ( 4.7 MPa), and the FUV spectra of the water layer at different thicknesses were measured using the attenuated total reflection method. As the water layer became thinner, the A˜ ← X˜ bands were gradually shifted to higher or lower energy relative to that of bulk water; at thicknesses smaller than 4 nm, these shifts were substantial (0.1-0.2 eV) in either case. The FUV spectra of the water layer with thickness < 4 nm indicate the formation of structured ice-like hydrogen bond (H-bond) layers for the higher energy shifts or the formation of slightly weaker H-bond layers as compared to those in the bulk liquid state for lower energy shifts. In either case, the H-bond structure of bulk liquid water is nearly lost at thicknesses below 4 nm, because of steric hydration forces between the α-alumina surfaces.
Oro, J; Holzer, G
1979-01-01
The analysis of the top layer of the Martian regolith at the two Viking landing sites did not reveal any indigenous organic compounds. However the existence of such compounds at deeper layers cannot be ruled out. Cosmochemical considerations indicate various potential sources for organic matter on Mars, such as comets and meteorites. Its disappearance from the top layer could be caused by degradation processes on the surface of the planet. Possible destructive agents include ultraviolet light, oxygen and metal oxides. In this study we tested the stability of a sample of the Murchison meteorite and various organic substances which have been detected in carbonaceous chondrites, such as glycine, adenine and naphthalene, to the action of ultraviolet light. The compounds were adsorbed on powdered quartz and on California desert soil and were irradiated in the presence or absence of oxygen. The organic content, before and after irradiation, was measured by carbon elementary analysis, UV-absorption, amino acid analysis or pyrolysis-gas chromatography-mass spectrometry. In the absence of oxygen, adenine and glycine appear to be stable over the given period of irradiation. A definite degradation was noticed in the case of naphthalene and the Murchison meteorite. In the presence of oxygen in amounts comparable to those on Mars all compounds were degraded. The degree of degradation was influenced by the irradiation time, temperature and oxygen content.
Contamination control approach for the Extreme Ultraviolet Explorer satellite instrumentation
NASA Technical Reports Server (NTRS)
Mrowka, Stan; Jelinsky, Sharon; Jelinsky, Patrick; Malina, Roger F.
1987-01-01
The Extreme Ultraviolet Explorer will perform an all-sky survey and spectroscopic observations over the wavelength range 80-900A. Hydrocarbon and particulate contamination will potentially affect the throughput and signal to noise ratio of the signal detected by the instruments. A witness sample program is here used to investigate and monitor the effects of specific contaminants on EUV reflectivity. Witness samples were intentionally contaminated with thin layers of pump oil. An oil layer 150 A thick was applied and found to evaporate over 8 hours. The EUV reflectivity and imaging properties were then measured and found to be acceptable for grazing angles between 5 and 30 deg. In a second test, layers 500 A thick were deposited and then allowed to evaporate in vacuum; once the oil had evaporated to at least 350 A, the final sample reflectivity was degraded less than 10 percent, but the image was degraded severely by scattering. An outline of the contamination control program is also presented.
Ultraviolet Thomson Scattering from Direct-Drive Coronal Plasmas in Multilayer Targets
NASA Astrophysics Data System (ADS)
Henchen, R. J.; Goncharov, V. N.; Michel, D. T.; Follett, R. K.; Katz, J.; Froula, D. H.
2014-10-01
Ultraviolet (λ4 ω = 263 nm) Thomson scattering (TS) was used to probe ion-acoustic waves (IAW's) and electron plasma waves (EPW's) from direct-drive coronal plasmas. Fifty-nine drive beams (λ3 ω = 351 nm) illuminate a spherical target with a radius of ~ 860 μ m. A series of experiments studied the effect of higher electron temperature near the 3 ω quarter-critical surface (~ 2 . 5 ×1021 cm-3) on laser-plasma interactions resulting from a Si layer in the target. Electron temperatures and densities were measured from 150 to 400 μm from the initial target surface. Standard CH shells were compared to two-layered shells of CH and Si and three-layered shells of CH, Si, and CH. These multilayer targets have less hot-electron energy than standard CH shells as a result of higher electron temperature in the coronal plasmas. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Isolation, Separation, and Identification of Synthetic Food Colors.
ERIC Educational Resources Information Center
Dixon, E. A.; Renyk, G.
1982-01-01
Describes a simple, inexpensive experiment for extraction of synthetic dyes permitted in foodstuffs, and their separation and identification using thin-layer chromatography and ultraviolet/visible spectroscopy. (Author/SK)
Kim, Kyeong Heon; Kim, Su Jin; Park, Sang Young; Kim, Tae Geun
2015-10-01
The effect of hydrogen post-annealing on the electrical and optical properties of ITO/Ga2O bi-layer films, deposited by RF magnetron sputtering, is investigated for potential applications to transparent conductive electrodes of ultraviolet (UV) light-emitting diodes. Three samples--an as-deposited sample and two samples post-annealed in N2 gas and N2-H2 gas mixture--were prepared and annealed at different temperatures ranging from 100 °C to 500 °C for comparison. Among these samples, the sample annealed at 300 °C in a mixture of N2 and H2 gases shows the lowest sheet resistance of 301.3 Ω/square and a high UV transmittance of 87.1% at 300 nm.
Implementation of Ultraviolet Radiation Safety Measures for Outdoor Workers.
Maguire, Erin; Spurr, Alison
Ultraviolet radiation (UVR) poses a major risk for outdoor workers, putting them at greater risk for skin cancer. In the general population, the incidence of both melanoma and nonmelanoma skin cancers is increasing. It is estimated that 90% of skin cancers in Canada are directly attributable to UVR exposure, making this cancer largely preventable with the appropriate precautions. A scoping review was conducted on the barriers and facilitators to UVR safety in outdoor workers to elucidate why these precautions are not in use currently. We discuss these results according to the Hierarchy of Controls as a means to outline effective and feasible prevention strategies for outdoor workers. In doing so, this review may be used to inform the design of future workplace interventions for UVR safety in outdoor workers to decrease the risk of skin cancer in this vulnerable population.
White dwarf stars with chemically stratified atmospheres
NASA Technical Reports Server (NTRS)
Muchmore, D.
1982-01-01
Recent observations and theory suggest that some white dwarfs may have chemically stratified atmospheres - thin layers of hydrogen lying above helium-rich envelopes. Models of such atmospheres show that a discontinuous temperature inversion can occur at the boundary between the layers. Model spectra for layered atmospheres at 30,000 K and 50,000 K tend to have smaller decrements at 912 A, 504 A, and 228 A than uniform atmospheres would have. On the basis of their continuous extreme ultraviolet spectra, it is possible to distinguish observationally between uniform and layered atmospheres for hot white dwarfs.
Diagnosis of energy transport in iron buried layer targets using an extreme ultraviolet laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahzad, M.; Culfa, O.; Rossall, A. K.
2015-02-15
We demonstrate the use of extreme ultra-violet (EUV) laboratory lasers in probing energy transport in laser irradiated solid targets. EUV transmission through targets containing a thin layer of iron (50 nm) encased in plastic (CH) after irradiation by a short pulse (35 fs) laser focussed to irradiances 3 × 10{sup 16} Wcm{sup −2} is measured. Heating of the iron layer gives rise to a rapid decrease in EUV opacity and an increase in the transmission of the 13.9 nm laser radiation as the iron ionizes to Fe{sup 5+} and above where the ion ionisation energy is greater than the EUV probe photon energy (89 eV).more » A one dimensional hydrodynamic fluid code HYADES has been used to simulate the temporal variation in EUV transmission (wavelength 13.9 nm) using IMP opacity values for the iron layer and the simulated transmissions are compared to measured transmission values. When a deliberate pre-pulse is used to preform an expanding plastic plasma, it is found that radiation is important in the heating of the iron layer while for pre-pulse free irradiation, radiation transport is not significant.« less
Body Parts Dependent Joint Regressors for Human Pose Estimation in Still Images.
Dantone, Matthias; Gall, Juergen; Leistner, Christian; Van Gool, Luc
2014-11-01
In this work, we address the problem of estimating 2d human pose from still images. Articulated body pose estimation is challenging due to the large variation in body poses and appearances of the different body parts. Recent methods that rely on the pictorial structure framework have shown to be very successful in solving this task. They model the body part appearances using discriminatively trained, independent part templates and the spatial relations of the body parts using a tree model. Within such a framework, we address the problem of obtaining better part templates which are able to handle a very high variation in appearance. To this end, we introduce parts dependent body joint regressors which are random forests that operate over two layers. While the first layer acts as an independent body part classifier, the second layer takes the estimated class distributions of the first one into account and is thereby able to predict joint locations by modeling the interdependence and co-occurrence of the parts. This helps to overcome typical ambiguities of tree structures, such as self-similarities of legs and arms. In addition, we introduce a novel data set termed FashionPose that contains over 7,000 images with a challenging variation of body part appearances due to a large variation of dressing styles. In the experiments, we demonstrate that the proposed parts dependent joint regressors outperform independent classifiers or regressors. The method also performs better or similar to the state-of-the-art in terms of accuracy, while running with a couple of frames per second.
NASA Astrophysics Data System (ADS)
Gupta, Rohini Bhardwaj; Nagpal, Swati; Arora, Swati; Bhatnagar, Pramod Kumar; Mathur, Parmatma Chandra
2011-01-01
Ultraviolet (UV) light-emitting diode using salmon deoxyribonucleic acid (sDNA)-cetyltrimethylammonium complex as an electron blocking layer and zinc oxide (ZnO) nanorods as emissive material was fabricated. UV emission, which was blue shifted up to 335 nm with respect to the band edge emission of 390 nm, was observed. This blue shift was caused due to accumulation of electrons in the conduction band of ZnO because of a high potential barrier existing at the sDNA/ZnO interface.
Ill-posedness in modeling mixed sediment river morphodynamics
NASA Astrophysics Data System (ADS)
Chavarrías, Víctor; Stecca, Guglielmo; Blom, Astrid
2018-04-01
In this paper we analyze the Hirano active layer model used in mixed sediment river morphodynamics concerning its ill-posedness. Ill-posedness causes the solution to be unstable to short-wave perturbations. This implies that the solution presents spurious oscillations, the amplitude of which depends on the domain discretization. Ill-posedness not only produces physically unrealistic results but may also cause failure of numerical simulations. By considering a two-fraction sediment mixture we obtain analytical expressions for the mathematical characterization of the model. Using these we show that the ill-posed domain is larger than what was found in previous analyses, not only comprising cases of bed degradation into a substrate finer than the active layer but also in aggradational cases. Furthermore, by analyzing a three-fraction model we observe ill-posedness under conditions of bed degradation into a coarse substrate. We observe that oscillations in the numerical solution of ill-posed simulations grow until the model becomes well-posed, as the spurious mixing of the active layer sediment and substrate sediment acts as a regularization mechanism. Finally we conduct an eigenstructure analysis of a simplified vertically continuous model for mixed sediment for which we show that ill-posedness occurs in a wider range of conditions than the active layer model.
Ultraviolet weathering of HDPE/wood-flour composites coextruded with a clear HDPE cap layer
Laurent M. Matuana; Shan Jin; Nicole M. Stark
2011-01-01
This study examined the effect coextruding a clear HDPE cap layer onto HDPE/wood-flour composites has on the discoloration of coextruded composites exposed to accelerated UV tests. Chroma meter, FTIRATR, XPS, SEM, and UV vis measurements accounted for the analysis of discoloration, functional groups, and degree of oxidation of both uncapped (control) and coextruded...
Lee, Tae Ho; Kim, Kyeong Heon; Lee, Byeong Ryong; Park, Ju Hyun; Schubert, E Fred; Kim, Tae Geun
2016-12-28
Nitride-based ultraviolet light-emitting diodes (UV LEDs) are promising replacements for conventional UV lamps. However, the external quantum efficiency of UV LEDs is much lower than for visible LEDs due to light absorption in the p-GaN contact and electrode layers, along with p-AlGaN growth and doping issues. To minimize such absorption, we should obtain direct ohmic contact to p-AlGaN using UV-transparent ohmic electrodes and not use p-GaN as a contact layer. Here, we propose a glass-based transparent conductive electrode (TCE) produced using electrical breakdown (EBD) of an AlN thin film, and we apply the thin film to four (Al)GaN-based visible and UV LEDs with thin buffer layers for current spreading and damage protection. Compared to LEDs with optimal ITO contacts, our LEDs with AlN TCEs exhibit a lower forward voltage, higher light output power, and brighter light emission for all samples. The ohmic transport mechanism for current injection and spreading from the metal electrode to p-(Al)GaN layer via AlN TCE is also investigated by analyzing the p-(Al)GaN surface before and after EBD.
NASA Astrophysics Data System (ADS)
Chang, Kuo-Hua; Sheu, Jinn-Kong; Lee, Ming-Lun; Tu, Shang-Ju; Yang, Chih-Ciao; Kuo, Huan-Shao; Yang, J. H.; Lai, Wei-Chih
2010-07-01
Inverted Al0.25Ga0.75N/GaN ultraviolet (UV) p-i-n photodiodes (PDs) were grown by selective-area regrowth on p-GaN template. The inverted devices with low-resistivity n-type AlGaN top-contact layers exhibited a typical zero-bias peak responsivity of 66.7 mA/W at 310 nm corresponding to the external quantum efficiency of 26.6%. The typical UV-to-visible (310/400 nm) spectral rejection ratio at zero-bias was over three orders of magnitude. The differential resistance and detectivity were obtained at approximately 6.2×1012 Ω and 3.4×1013 cm Hz1/2 W-1, respectively. Compared with conventional AlGaN/GaN-based UV p-i-n PDs, the proposed device structure can potentially achieve solar-blind AlGaN/GaN-based p-i-n PDs with low-aluminum content or aluminum-free p-contact layer and reduce excessive tensile strain due to the lattice mismatch between AlGaN and GaN layers.
Sertsu, M G; Nardello, M; Giglia, A; Corso, A J; Maurizio, C; Juschkin, L; Nicolosi, P
2015-12-10
Accurate measurements of optical properties of multilayer (ML) mirrors and chemical compositions of interdiffusion layers are particularly challenging to date. In this work, an innovative and nondestructive experimental characterization method for multilayers is discussed. The method is based on extreme ultraviolet (EUV) reflectivity measurements performed on a wide grazing incidence angular range at an energy near the absorption resonance edge of low-Z elements in the ML components. This experimental method combined with the underlying physical phenomenon of abrupt changes of optical constants near EUV resonance edges enables us to characterize optical and structural properties of multilayers with high sensitivity. A major advantage of the method is to perform detailed quantitative analysis of buried interfaces of multilayer structures in a nondestructive and nonimaging setup. Coatings of Si/Mo multilayers on a Si substrate with period d=16.4 nm, number of bilayers N=25, and different capping structures are investigated. Stoichiometric compositions of Si-on-Mo and Mo-on-Si interface diffusion layers are derived. Effects of surface oxidation reactions and carbon contaminations on the optical constants of capping layers and the impact of neighboring atoms' interactions on optical responses of Si and Mo layers are discussed.
Peng, Guang; Ye, Ning; Lin, Zheshuai; Kang, Lei; Pan, Shilie; Zhang, Min; Lin, Chensheng; Long, Xifa; Luo, Min; Chen, Yu; Tang, Yu-Huan; Xu, Feng; Yan, Tao
2018-05-12
KBe 2 BO 3 F 2 (KBBF) is still the only practically usable crystal that can generate deep-ultraviolet (DUV) coherent light by direct second harmonic generation (SHG). However, applications are hindered by layering, leading to difficulty in the growth of thick crystals and compromised mechanical integrity. Despite efforts, it is still a great challenge to discover new nonlinear optical (NLO) materials that overcome the layering while keeping the DUV SHG available. Now, two new DUV NLO beryllium borates have been successfully designed and synthesized, NH 4 Be 2 BO 3 F 2 (ABBF) and γ-Be 2 BO 3 F (γ-BBF), which not only overcome the layering but also can be used as next-generation DUV NLO materials with the shortest type I phase-matching second-harmonic wavelength down to 173.9 nm and 146 nm, respectively. Significantly, γ-BBF is superior to KBBF in all metrics and would be the most outstanding DUV NLO crystal. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Cahalan, Robert
2002-01-01
We provide an overview of the impact of the Sun on the Earth atmosphere and climate system, focused on heating of Earth's atmosphere and oceans. We emphasize the importance of the spectral measurements of SIM and SOLSTICE- that we must know how solar variations are distributed over ultraviolet, visible, and infrared wavelengths, since these have separate characteristic influences on Earth's ozone layer, clouds, and upper layers of the oceans. Emphasis is also given to understanding both direct and indirect influences of the Sun on the Earth, which involve feedbacks between Earth's stratosphere, troposphere, and oceans, each with unique time scales, dynamics, chemistry, and biology, interacting non-linearly. Especially crucial is the role of all three phases of water on Earth, water vapor being the primary greenhouse gas in the atmosphere, the importance of trace gases such as CO2 arising from their absorption in the "water vapor window" at 800 - 1250/cm (12.5 to 8 microns). Melting of polar ice is one major response to the post-industrial global warming, enhanced due to "ice-albedo" feedback. Finally, water in liquid form has a major influence due to cloud albedo feedback, and also due to the oceans' absorption of solar radiation, particularly at visible wavelengths, through the visible "liquid water window" that allows penetration of visible light deep into the mixed layer, while nearby ultraviolet and infrared wavelengths do not penetrate past the upper centimeter ocean surface skin layer. A large fraction of solar energy absorbed by the oceans goes into the latent heat of evaporation. Thus the solar heating of the atmosphere-ocean system is strongly coupled through the water cycle of evaporation, cloud formation, precipitation, surface runoff and ice formation, to Earth's energy budget and climate, each different climate component responding to variations in different solar spectral bands, at ultraviolet, visible and infrared wavelengths.
Role of HfO 2/SiO 2 thin-film interfaces in near-ultraviolet absorption and pulsed laser damage
Papernov, Semyon; Kozlov, Alexei A.; Oliver, James B.; ...
2016-07-15
Here, the role of thin-film interfaces in the near-ultraviolet (near-UV) absorption and pulsed laser-induced damage was studied for ion-beam-sputtered and electron-beam-evaporated coatings comprised from HfO 2 and SiO 2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO 2 single-layer film and for a film containing seven narrow HfO 2 layers separated by SiO 2 layers. The seven-layer film was designed to have a total optical thickness of HfO 2 layers, equal to one wave at 355 nm and anmore » E-field peak and average intensity similar to a single-layer HfO 2 film. Absorption in both types of films was measured using laser calorimetry and photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces as compared to HfO 2 film material. The relevance of obtained absorption data to coating near-UV, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO 2 film in both sputtered and evaporated coatings. The results are explained through the similarity of interfacial film structure with structure formed during the codeposition of HfO 2 and SiO 2 materials.« less
Fabricating PFPE Membranes for Capillary Electrophoresis
NASA Technical Reports Server (NTRS)
Lee, Michael C.; Willis, Peter A.; Greer, Frank; Rolland, Jason
2009-01-01
A process has been developed for fabricating perfluoropolyether (PFPE) membranes that contain microscopic holes of precise sizes at precise locations. The membranes are to be incorporated into laboratory-on-a-chip microfluidic devices to be used in performing capillary electrophoresis. The present process is a modified version of part of the process, described in the immediately preceding article, that includes a step in which a liquid PFPE layer is cured into solid (membrane) form by use of ultraviolet light. In the present process, one exploits the fact that by masking some locations to prevent exposure to ultraviolet light, one can prevent curing of the PFPE in those locations. The uncured PFPE can be washed away from those locations in the subsequent release and cleaning steps. Thus, holes are formed in the membrane in those locations. The most straightforward way to implement the modification is to use, during the ultraviolet-curing step, an ultraviolet photomask similar to the photomasks used in fabricating microelectronic devices. In lieu of such a photomask, one could use a mask made of any patternable ultraviolet-absorbing material (for example, an ink or a photoresist).
Interband Tunneling for Hole Injection in III-Nitride Ultraviolet Emitters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuewei; Krishnamoorthy, Sriram; Johnson, Jared M.
Low p-type conductivity and high contact resistance remain a critical problem in wide band gap AlGaN-based ultraviolet light emitters due to the high acceptor ionization energy. In this work, interband tunneling is demonstrated for non-equilibrium injection of holes through the use of ultra-thin polarization-engineered layers that enhance tunneling probability by several orders of magnitude over a PN homojunction. Al 0.3Ga 0.7N interband tunnel junctions with a lowresistance of 5.6 × 10 -4 Ω cm 2 were obtained and integrated on ultraviolet light emitting diodes.Tunnel injection of holes was used to realize GaN-free ultraviolet light emitters with bottom and top n-typemore » Al 0.3Ga 0.7N contacts. At an emission wavelength of 327 nm, stable output power of 6 W/cm 2 at a current density of 120 A/cm 2 with a forward voltage of 5.9 V was achieved. Our demonstration of efficient interband tunneling could enable device designs for higher efficiency ultraviolet emitters.« less
NASA Astrophysics Data System (ADS)
Liu, W. Z.; Xu, H. Y.; Zhang, L. X.; Zhang, C.; Ma, J. G.; Wang, J. N.; Liu, Y. C.
2012-10-01
Localized surface plasmon (LSP)-enhanced ultraviolet light-emitting diodes were manufactured by introducing Ag nanoparticles and MgO spacer layer into n-ZnO/i-ZnO/p-GaN heterostructures. By optimizing the MgO thickness, which can suppress the undesired charge transfer and nonradiative Förster resonant energy transfer between Ag and ZnO, a 7-fold electroluminescence enhancement was achieved. Time-resolved and temperature-dependent photoluminescence measurements reveal that both spontaneous emission rate and internal quantum efficiency are increased as a result of coupling between ZnO excitons and Ag LSPs, and simple calculations, based on experimental data, also indicate that most of LSP's energy can be converted into the photon energy.
NASA Astrophysics Data System (ADS)
Liu, Mengling; Zhou, Shengjun; Liu, Xingtong; Gao, Yilin; Ding, Xinghuo
2018-03-01
Experimental and simulation studies of high-power AlGaN-based 353 nm ultraviolet (UV) flip-chip (FC) and top-emitting (TE) light-emitting diodes (LEDs) are performed here. To improve the optical and electrical properties of ultraviolet LEDs, we fabricate high-power FC-UV LEDs with Ta2O5/SiO2 distributed Bragg reflectors (DBRs) and a strip-shaped SiO2 current blocking layer (CBL). The reflectance of fourteen pairs of Ta2O5/SiO2 DBRs is 96.4% at 353 nm. The strip-shaped SiO2 CBL underneath the strip-shaped p-electrode can prevent the current concentrating in regions immediately adjacent to the p-electrode where the overlying opaque p-electrode metal layer absorbs the emitted UV light. Moreover, two-level metallization electrodes are used to improve current spreading. Our numerical results show that FC-UV LED has a more favorable current spreading uniformity than TE-UV LED. The light output power of 353 nm FC-UV LED was 23.22 mW at 350 mA, which is 24.7% higher than that of TE-UV LED.
Photoprotective substance occurs primarily in outer layers of fish skin
Fabacher, D.L.; Little, E.E.
1998-01-01
Methanol extracts of dorsal skin layers, eyes, gills, and livers from ultraviolet-B (UVB) radiation-sensitive and UVB-tolerant species of freshwater fish were examined for a substance that appears to be photoprotective. Significantly larger amounts of this substance were found in extracts of outer dorsal skin layers from both UVB-sensitive and UVB-tolerant fish when compared with extracts of inner dorsal skin layers. This substance occurred in minor amounts or was not detected in eye, gill, and liver extracts. The apparent primary function of this substance in fish is to protect the cells in outer dorsal skin layers from harmful levels of UVB radiation.
Photoprotective substance occurs primarily in outer layers of fish skin.
Fabacher, D L; Little, E E
1998-01-01
Methanol extracts of dorsal skin layers, eyes, gills, and livers from ultraviolet-B (UVB) radiation-sensitive and UVB-tolerant species of freshwater fish were examined for a substance that appears to be photoprotective. Significantly larger amounts of this substance were found in extracts of outer dorsal skin layers from both UVB-sensitive and UVB-tolerant fish when compared with extracts of inner dorsal skin layers. This substance occurred in minor amounts or was not detected in eye, gill, and liver extracts. The apparent primary function of this substance in fish is to protect the cells in outer dorsal skin layers from harmful levels of UVB radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perng, Dung-Ching, E-mail: dcperng@ee.ncku.edu.tw; Center for Micro/Nano Science and Technology, National Cheng Kung University, One University Road, Tainan 701, Taiwan; Lin, Hsueh-Pin
This study reports a high-performance hybrid ultraviolet (UV) photodetector with visible-blind sensitivity fabricated by inserting a poly-(N-vinylcarbazole) (PVK) intermediate layer between low-cost processed Cu{sub 2}O film and ZnO nanorods (NRs). The PVK layer acts as an electron-blocking/hole-transporting layer between the n-ZnO and p-Cu{sub 2}O films. The Cu{sub 2}O/PVK/ZnO NR photodetector exhibited a responsivity of 13.28 A/W at 360 nm, a high detectivity of 1.03 × 10{sup 13} Jones at a low bias of −0.1 V under a low UV light intensity of 24.9 μW/cm{sup 2}. The photo-to-dark current ratios of the photodetector with and without the PVK intermediate layer at a bias of −0.5 V are 1.34 × 10{supmore » 2} and 3.99, respectively. The UV-to-visible rejection ratios (R{sub 360 nm}/R{sub 450 nm}) are 350 and 1.735, respectively. Several features are demonstrated: (a) UV photo-generated holes at the ZnO NRs can effectively be transported through the PVK layer to the p-Cu{sub 2}O layer; (b) the insertion of a PVK buffer layer significantly minimizes the reverse-bias leakage current, which leads to a larger amplification of the photocurrent; and (c) the PVK buffer layer greatly improves the UV-to-visible responsivity ratio, allowing the device to achieve high UV detection sensitivity at a low bias voltage using a very low light intensity.« less
1970-01-01
This 1970 photograph shows Skylab's Ultraviolet (UV) Airglow Horizon Photography experiment. It was an astrophysics investigation designed to photograph the twilight airflow and Earth's ozone layer simultaneously in visible and UV wavelengths. These observations provided information on oxygen, nitrogen, and ozone layers in the Earth's atmosphere, and on their variation during night and day cycles. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.
Durable silver mirror with ultra-violet thru far infra-red reflection
Wolfe, Jesse D.
2010-11-23
A durable highly reflective silver mirror characterized by high reflectance in a broad spectral range of about 300 nm in the UV to the far infrared (.about.10000 nm), as well as exceptional environmental durability. A high absorptivity metal underlayer is used which prevents the formation of a galvanic cell with a silver layer while increasing the reflectance of the silver layer. Environmentally durable overcoat layers are provided to enhance mechanical and chemical durability and protect the silver layer from corrosion and tarnishing, for use in a wide variety of surroundings or climates, including harsh or extreme environments.
Ozone is a gas. It can be good or bad, depending on where it is. "Good" ozone occurs naturally about 10 to 30 miles above ... the sun's ultraviolet rays. Part of the good ozone layer is gone. Man-made chemicals have destroyed ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentinger, Paul M.; Cardinale, Gregory F.; Hunter, Luke L.
2003-12-01
We describe the fabrication and characterization of an electrode array test structure, designed for electrical probing of molecules and nanocrystals. We use Extreme Ultraviolet Lithography (EUVL) to define the electrical test platform features. As fabricated, the platform includes nominal electrode gaps of 0 nm, 40 nm, 60 nm, and 80 nm. Additional variation in electrode gap is achieved by controlling the exposure conditions, such as dose and focus. To enable EUVL based nanofabrication, we develop a novel bi-level photoresist process. The bi-level photoresist consists of a combination of a commercially available polydimethylglutarimide (PMGI) bottom layer and an experimental EUVL photoresistmore » top (imaging) layer. We measure the sensitivity of PMGI to EUV exposure dose as a function of photoresist pre-bake temperature, and using this data, optimize a metal lift-off process. Reliable fabrication of 700 Angstrom thick Au structures with sub-1000 Angstrom critical dimensions is achieved, even without the use of a Au adhesion layer, such as Ti. Several test platforms are used to characterize electrical properties of organic molecules deposited as self assembled monolayers.« less
NASA Astrophysics Data System (ADS)
Choudhury, F. A.; Nguyen, H. M.; King, S. W.; Lee, C. H.; Lin, Y. H.; Fung, H. S.; Chen, C. C.; Li, W.; Benjamin, D.; Blatz, J. M.; Nishi, Y.; Shohet, J. L.
2018-02-01
During plasma processing, low-k dielectrics are exposed to high levels of vacuum ultraviolet (VUV) radiation that can cause severe damage to dielectric materials. The degree and nature of VUV-induced damage depend on the VUV photon energies and fluence. In this work, we examine the VUV-absorption spectrum of low-k organosilicate glass using specular X-ray reflectivity (XRR). Low-k SiCOH films were exposed to synchrotron VUV radiation with energies ranging from 7 to 21 eV, and the density vs. depth profile of the VUV-irradiated films was extracted from fitting the XRR experimental data. The results show that the depth of the VUV-induced damage layer is a function of the photon energy. Between 7 and 11 eV, the depth of the damaged layer decreases sharply from 110 nm to 60 nm and then gradually increases to 85 nm at 21 eV. The maximum VUV absorption in low-k films occurs between 11 and 15 eV. The depth of the damaged layer was found to increase with film porosity.
2013-01-01
We propose a transparent conductive oxide electrode scheme of gallium oxide nanoparticle mixed with a single-walled carbon nanotube (Ga2O3 NP/SWNT) layer for deep ultraviolet light-emitting diodes using spin and dipping methods. We investigated the electrical, optical and morphological properties of the Ga2O3 NP/SWNT layers by increasing the thickness of SWNTs via multiple dipping processes. Compared with the undoped Ga2O3 films (current level 9.9 × 10-9 A @ 1 V, transmittance 68% @ 280 nm), the current level flowing in the Ga2O3 NP/SWNT increased by approximately 4 × 105 times and the transmittance improved by 9% after 15 times dip-coating (current level 4 × 10-4 A at 1 V; transmittance 77.0% at 280 nm). These improvements result from both native high transparency of Ga2O3 NPs and high conductivity and effective current spreading of SWNTs. PMID:24295342
The cuticle modulates ultraviolet reflectance of avian eggshells
Fecheyr-Lippens, Daphne C.; Igic, Branislav; D'Alba, Liliana; Hanley, Daniel; Verdes, Aida; Holford, Mande; Waterhouse, Geoffrey I. N.; Grim, Tomas; Hauber, Mark E.; Shawkey, Matthew D.
2015-01-01
ABSTRACT Avian eggshells are variedly coloured, yet only two pigments, biliverdin and protoporphyrin IX, are known to contribute to the dramatic diversity of their colours. By contrast, the contributions of structural or other chemical components of the eggshell are poorly understood. For example, unpigmented eggshells, which appear white to the human eye, vary in their ultraviolet (UV) reflectance, which may be detectable by birds. We investigated the proximate mechanisms for the variation in UV-reflectance of unpigmented bird eggshells using spectrophotometry, electron microscopy, chemical analyses, and experimental manipulations. We specifically tested how UV-reflectance is affected by the eggshell cuticle, the outermost layer of most avian eggshells. The chemical dissolution of the outer eggshell layers, including the cuticle, increased UV-reflectance for only eggshells that contained a cuticle. Our findings demonstrate that the outer eggshell layers, including the cuticle, absorb UV-light, probably because they contain higher levels of organic components and other chemicals, such as calcium phosphates, compared to the predominantly calcite-based eggshell matrix. These data highlight the need to examine factors other than the known pigments in studies of avian eggshell colour. PMID:25964661
Measurements of the Magnetic Field of the Upper Chromosphere with Polarimetry
NASA Technical Reports Server (NTRS)
Rachmeler, Laurel; Mckenzie, David; Winebarger, Amy; Kobayashi, Ken; Ishikawa, Ryohko; Kubo, Masahito; Narukage, Noriyuki; Bueno, Trujillo, Javier; Auchere, Frederic
2017-01-01
A major remaining challenge for heliophysics is to decipher the magnetic structure of the chromosphere. The chromosphere is the critical interface between the Sun's photosphere and corona: it contains more mass than the entire interplanetary heliosphere, requires a heating rate that is larger than that of the corona, and mediates all the energy driving the solar wind, solar atmospheric heating and solar eruptions. While measurements of the magnetic field in the photosphere are routine, the chromosphere poses several extra challenges. The magnetically sensitive lines formed in the upper chromosphere are in the ultraviolet, so space-based observations are required. The lines are often formed over a range of heights, sampling different plasma which complicates the inversion process. These lines are sensitive to the magnetic field via polarized light that is created or modified through the Hanle and Zeeman effects. There are a few observations of these lines, and a significant challenge remains in extracting the magnetic field from the polarization measurements, as detailed model atmospheres with advanced radiative transfer physics are needed. Real progress is obtained by a simultaneous improvement in both the observational side and the modeling side. We present information on the CLASP (Chromospheric LAyer Spectro-Polarimeter) sounding rocket program, and future prospects for these types of measurements.
Molecular and Evolutionary Mechanisms of Cuticular Wax for Plant Drought Tolerance.
Xue, Dawei; Zhang, Xiaoqin; Lu, Xueli; Chen, Guang; Chen, Zhong-Hua
2017-01-01
Cuticular wax, the first protective layer of above ground tissues of many plant species, is a key evolutionary innovation in plants. Cuticular wax safeguards the evolution from certain green algae to flowering plants and the diversification of plant taxa during the eras of dry and adverse terrestrial living conditions and global climate changes. Cuticular wax plays significant roles in plant abiotic and biotic stress tolerance and has been implicated in defense mechanisms against excessive ultraviolet radiation, high temperature, bacterial and fungal pathogens, insects, high salinity, and low temperature. Drought, a major type of abiotic stress, poses huge threats to global food security and health of terrestrial ecosystem by limiting plant growth and crop productivity. The composition, biochemistry, structure, biosynthesis, and transport of plant cuticular wax have been reviewed extensively. However, the molecular and evolutionary mechanisms of cuticular wax in plants in response to drought stress are still lacking. In this review, we focus on potential mechanisms, from evolutionary, molecular, and physiological aspects, that control cuticular wax and its roles in plant drought tolerance. We also raise key research questions and propose important directions to be resolved in the future, leading to potential applications of cuticular wax for water use efficiency in agricultural and environmental sustainability.
NASA Astrophysics Data System (ADS)
Abney, James R.; Scalettar, Bethe A.
1998-06-01
Recent scientific evidence suggests that chlorofluorocarbons have substantially depleted the ozone layer, the earth's primary filter for ultraviolet radiation. At the same time, medical evidence has accumulated which suggests that exposure to ultraviolet radiation is a major cause of prevalent human health disorders, including skin cancer and cataracts. For these reasons, consumer purchases of sunscreens and sunglasses, which provide protection from ultraviolet radiation, have soared, and manufacturer interest in improving these products has intensified. This article describes absorption spectroscopy experiments that illustrate the mechanism of action of sunscreens and sunglasses and that highlight the differences between different products. The experiments are well suited to incorporation into an undergraduate science laboratory and will expose students to absorption phenomena in a familiar context with substantial environmental and medical relevance.
1989-08-21
This picture of Neptune was produced from images taken through the ultraviolet, violet and green filters of the Voyager 2 wide-angle camera. This 'false' color image has been made to show clearly details of the cloud structure and to paint clouds located at different altitudes with different colors. Dark, deeplying clouds tend to be masked in the ultraviolet wavelength since overlying air molecules are particularly effective in scattering sunlight there which brightens the sky above them. Such areas appear dark blue in this photo. The Great Dark Spot (GDS) and the high southern latitudes have a deep bluish cast in this image, indication they are regions where visible light (but not ultraviolet light) may penetrate to a deeper layer of dark cloud or haze in Neptune's atmosphere. Conversely, the pinkish clouds may be positioned at high altitudes.
NASA Astrophysics Data System (ADS)
Park, Seoung-Hwan; Ahn, Doyeol
2018-05-01
Ultraviolet light emission characteristics of lattice-matched BxAlyGa1-x-y N/AlN quantum well (QW) structures with double AlGaN delta layers were investigated theoretically. In contrast to conventional single dip-shaped QW structure where the reduction effect of the spatial separation between electron and hole wave functions is negligible, proposed double dip-shaped QW shows significant enhancement of the ultraviolet light emission intensity from a BAlGaN/AlN QW structure due to the reduced spatial separation between electron and hole wave functions. The emission peak of the double dip-shaped QW structure is expected to be about three times larger than that of the conventional rectangular AlGaN/AlN QW structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, H. L.; Mei, Z. X.; Zhang, Q. H.
2011-05-30
High-quality wurtzite MgZnO film was deposited on Si(111) substrate via a delicate interface engineering using BeO, by which solar-blind ultraviolet photodetectors were fabricated on the n-MgZnO(0001)/p-Si(111) heterojunction. A thin Be layer was deposited on clean Si surface with subsequent in situ oxidation processes, which provides an excellent template for high-Mg-content MgZnO growth. The interface controlling significantly improves the device performance, as the photodetector demonstrates a sharp cutoff wavelength at 280 nm, consistent with the optical band gap of the epilayer. Our experimental results promise potential applications of this technique in integration of solar-blind ultraviolet optoelectronic device with Si microelectronic technologies.
NASA Astrophysics Data System (ADS)
Jiang, Junyan; Zhang, Yuantao; Chi, Chen; Shi, Zhifeng; Yan, Long; Li, Pengchong; Zhang, Baolin; Du, Guotong
2016-02-01
O-polar ZnO films were grown on N-polar p-GaN/sapphire substrates by photo-assisted metal-organic chemical vapor deposition, and further heterojunction light-emitting diodes based O-polar n-ZnO/N-polar p-GaN were proposed and fabricated. It is experimentally demonstrated that the interface polarization of O-polar n-ZnO/N-polar p-GaN heterojunction can shift the location of the depletion region from the interface deep into the ZnO side. When a forward bias is applied to the proposed diode, a strong and high-purity ultraviolet emission located at 385 nm can be observed. Compared with conventional Zn-polar n-ZnO/Ga-polar p-GaN heterostructure diode, the ultraviolet emission intensity of the proposed heterojunction diode is greatly enhanced due to the presence of polarization-induced inversion layer at the ZnO side of the heterojunction interface. This work provides an innovative path for the design and development of ZnO-based ultraviolet diode.
NASA Astrophysics Data System (ADS)
Davy, Nicholas C.; Sezen-Edmonds, Melda; Gao, Jia; Lin, Xin; Liu, Amy; Yao, Nan; Kahn, Antoine; Loo, Yueh-Lin
2017-08-01
Current smart window technologies offer dynamic control of the optical transmission of the visible and near-infrared portions of the solar spectrum to reduce lighting, heating and cooling needs in buildings and to improve occupant comfort. Solar cells harvesting near-ultraviolet photons could satisfy the unmet need of powering such smart windows over the same spatial footprint without competing for visible or infrared photons, and without the same aesthetic and design constraints. Here, we report organic single-junction solar cells that selectively harvest near-ultraviolet photons, produce open-circuit voltages eclipsing 1.6 V and exhibit scalability in power generation, with active layers (10 cm2) substantially larger than those typical of demonstration organic solar cells (0.04-0.2 cm2). Integration of these solar cells with a low-cost, polymer-based electrochromic window enables intelligent management of the solar spectrum, with near-ultraviolet photons powering the regulation of visible and near-infrared photons for natural lighting and heating purposes.
Zhang, Zi-Hui; Huang Chen, Sung-Wen; Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Bi, Wengang; Kuo, Hao-Chung
2018-04-24
This work reports a nearly efficiency-droop-free AlGaN-based deep ultraviolet light-emitting diode (DUV LED) emitting in the peak wavelength of 270 nm. The DUV LED utilizes a specifically designed superlattice p-type electron blocking layer (p-EBL). The superlattice p-EBL enables a high hole concentration in the p-EBL which correspondingly increases the hole injection efficiency into the multiple quantum wells (MQWs). The enhanced hole concentration within the MQW region can more efficiently recombine with electrons in the way of favoring the radiative recombination, leading to a reduced electron leakage current level. As a result, the external quantum efficiency for the proposed DUV LED structure is increased by 100% and the nearly efficiency-droop-free DUV LED structure is obtained experimentally.
Method for fabricating an ultra-low expansion mask blank having a crystalline silicon layer
Cardinale, Gregory F.
2002-01-01
A method for fabricating masks for extreme ultraviolet lithography (EUVL) using Ultra-Low Expansion (ULE) substrates and crystalline silicon. ULE substrates are required for the necessary thermal management in EUVL mask blanks, and defect detection and classification have been obtained using crystalline silicon substrate materials. Thus, this method provides the advantages for both the ULE substrate and the crystalline silicon in an Extreme Ultra-Violet (EUV) mask blank. The method is carried out by bonding a crystalline silicon wafer or member to a ULE wafer or substrate and thinning the silicon to produce a 5-10 .mu.m thick crystalline silicon layer on the surface of the ULE substrate. The thinning of the crystalline silicon may be carried out, for example, by chemical mechanical polishing and if necessary or desired, oxidizing the silicon followed by etching to the desired thickness of the silicon.
Kaygin, Bulent; Akgun, Emre
2008-01-01
The long-term durability of varnished wooden surfaces used in either indoors or outdoors environments depends on the resistance of varnish layers on these surfaces against potential physical, mechanical and chemical effects to which they may be exposed. In this study, “Nanolacke ultraviolet varnish”, developed by a Turkish dying and varnish industry company and widely accepted as a 21st century technology has been compared to other conventional varnish systems widely used in the industry in terms of dry film resistance properties. In this study, cellulosic, polyurethane, polyester, synthetic and Nanolacke ultraviolet varnish have been applied on beech (Fagus orientalis L.) and oak (Quercus robur L.) wood samples which had been prepared according to the industry standards. Then, the hardness and adhesion resistance of these layers have been determined according to ASTM D 4366 and ASTM D 3359-2 standards, respectively. PMID:19325763
Park, Seonyoung; Kim, Seong Yeoul; Choi, Yura; Kim, Myungjun; Shin, Hyunjung; Kim, Jiyoung; Choi, Woong
2016-05-11
We report the interface properties of atomic-layer-deposited Al2O3 thin films on ultraviolet/ozone (UV/O3)-treated multilayer MoS2 crystals. The formation of S-O bonds on MoS2 after low-power UV/O3 treatment increased the surface energy, allowing the subsequent deposition of uniform Al2O3 thin films. The capacitance-voltage measurement of Au-Al2O3-MoS2 metal oxide semiconductor capacitors indicated n-type MoS2 with an electron density of ∼10(17) cm(-3) and a minimum interface trap density of ∼10(11) cm(-2) eV(-1). These results demonstrate the possibility of forming a high-quality Al2O3-MoS2 interface by proper UV/O3 treatment, providing important implications for their integration into field-effect transistors.
NASA Astrophysics Data System (ADS)
Shelton, Robin L.
2018-06-01
High velocity clouds (HVCs) and turbulent mixing layers (TMLs) emit light across a wide range of wavelengths. In order to aid in the detection of their ultraviolet emission, we predict the UV emission line intensities emitted by C II, C III, C IV, N II, N III, N IV, N V, O III, O IV, O V, O VI, Si II, Si III, and Si IV in a variety of simulated HVCs and TMLs. These predictions are based on detailed hydrodynamic simulations made with the FLASH code and employing non-equilibrium ionization calculations for carbon, nitrogen, oxygen, and silicon. The results are compared with FUSE and SPEAR/FIMS observations and with predictions from other models of hot/cool interfaces. We also present methods for scaling the results so that they can be applied to more or less dense environments.
Ultraviolet photodetectors based on ZnO sheets: The effect of sheet size on photoresponse properties
NASA Astrophysics Data System (ADS)
Ghasempour Ardakani, Abbas; Pazoki, Meysam; Mahdavi, Seyed Mohammad; Bahrampour, Ali Reza; Taghavinia, Nima
2012-05-01
In this work, ultraviolet photodetectors based on electrodeposited ZnO sheet thin films were fabricated on a glass substrate. Before electrodeposition, a thin buffer layer of ZnO was deposited on the glass by pulsed laser deposition method. This layer not only acted as a nucleation site for ZnO sheet growth, but also made it possible to use cheap glass substrate instead of conventional fluorine-doped tin oxide (FTO) substrate. Our results showed that photoresponse properties of the photodetectors strongly depend on the sheet sizes. The smaller sheets exhibited enhanced photosensitivity, shortened fall times and decreased gain compared to larger ones. We showed that photodetectors based on ZnO sheets have a faster response than ones based on polycrystalline films. It was also shown that even less response time could be obtained by using comb-like electrodes instead of two-electrode.
NASA Astrophysics Data System (ADS)
Zhang, Zi-Hui; Huang Chen, Sung-Wen; Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Bi, Wengang; Kuo, Hao-Chung
2018-04-01
This work reports a nearly efficiency-droop-free AlGaN-based deep ultraviolet light-emitting diode (DUV LED) emitting in the peak wavelength of 270 nm. The DUV LED utilizes a specifically designed superlattice p-type electron blocking layer (p-EBL). The superlattice p-EBL enables a high hole concentration in the p-EBL which correspondingly increases the hole injection efficiency into the multiple quantum wells (MQWs). The enhanced hole concentration within the MQW region can more efficiently recombine with electrons in the way of favoring the radiative recombination, leading to a reduced electron leakage current level. As a result, the external quantum efficiency for the proposed DUV LED structure is increased by 100% and the nearly efficiency-droop-free DUV LED structure is obtained experimentally.
MCP detector development for UV space missions
NASA Astrophysics Data System (ADS)
Conti, Lauro; Barnstedt, Jürgen; Hanke, Lars; Kalkuhl, Christoph; Kappelmann, Norbert; Rauch, Thomas; Stelzer, Beate; Werner, Klaus; Elsener, Hans-Rudolf; Schaadt, Daniel M.
2018-04-01
We are developing imaging and photon counting UV-MCP detectors, which are sensitive in the wavelength range from far ultraviolet to near ultraviolet. A good quantum efficiency, solar blindness and high spatial resolution is the aim of our development. The sealed detector has a Cs-activated photoactive layer of GaN (or similarly advanced photocathode), which is operated in semitransparent mode on (001)-MgF2. The detector comprises a stack of two long-life MCPs and a coplanar cross strip anode with advanced readout electronics. The main challenge is the flawless growth of the GaN photocathode layer as well as the requirements for the sealing of the detector, to prevent a degradation of the photocathode. We present here the detector concept and the experimental setup, examine in detail the status in the production and describe the current status of the readout electronics development.
A sensitive ultraviolet light photodiode based on graphene-on-zinc oxide Schottky junction
NASA Astrophysics Data System (ADS)
Zhang, Teng-Fei; Wu, Guo-An; Wang, Jiu-Zhen; Yu, Yong-Qiang; Zhang, Deng-Yue; Wang, Dan-Dan; Jiang, Jing-Bo; Wang, Jia-Mu; Luo, Lin-Bao
2017-08-01
In this study, we present a simple ultraviolet (UV) light photodiode by transferring a layer of graphene film on single-crystal ZnO substrate. The as-fabricated heterojunction exhibited typical rectifying behavior, with a Schottky barrier height of 0.623 eV. Further optoelectronic characterization revealed that the graphene-ZnO Schottky junction photodiode displayed obvious sensitivity to 365-nm light illumination with good reproducibility. The responsivity and photoconductive gain were estimated to be 3×104 A/W and 105, respectively, which were much higher than other ZnO nanostructure-based devices. In addition, it was found that the on/off ratio of the present device can be considerably improved from 2.09 to 12.1, when the device was passivated by a layer of AlOx film. These results suggest that the present simply structured graphene-ZnO UV photodiode may find potential application in future optoelectronic devices.
Dai, W W; Marsili, P M; Martinez, E; Morucci, J P
1994-05-01
This paper presents a new version of the layer stripping algorithm in the sense that it works essentially by repeatedly stripping away the outermost layer of the medium after having determined the conductivity value in this layer. In order to stabilize the ill posed boundary value problem related to each layer, we base our algorithm on the Hilbert uniqueness method (HUM) and implement it with the boundary element method (BEM).
NASA Technical Reports Server (NTRS)
Hoenk, Michael E. (Inventor); Greer, Frank (Inventor); Nikzad, Shouleh (Inventor)
2014-01-01
A back-illuminated silicon photodetector has a layer of Al2O3 deposited on a silicon oxide surface that receives electromagnetic radiation to be detected. The Al2O3 layer has an antireflection coating deposited thereon. The Al2O3 layer provides a chemically resistant separation layer between the silicon oxide surface and the antireflection coating. The Al2O3 layer is thin enough that it is optically innocuous. Under deep ultraviolet radiation, the silicon oxide layer and the antireflection coating do not interact chemically. In one embodiment, the silicon photodetector has a delta-doped layer near (within a few nanometers of) the silicon oxide surface. The Al2O3 layer is expected to provide similar protection for doped layers fabricated using other methods, such as MBE, ion implantation and CVD deposition.
NASA Astrophysics Data System (ADS)
Wang, Jun; Guo, Jin; Xie, Feng; Wang, Guosheng; Wu, Haoran; Song, Man; Yi, Yuanyuan
2016-10-01
This paper presents the comparative analysis of influence of doping level and doping profile of the active region on zero bias photoresponse characteristics of GaN-based p-i-n ultraviolet (UV) photodetectors operating at front- and back-illuminated. A two dimensional physically-based computer simulation of GaN-based p-i-n UV photodetectors is presented. We implemented GaN material properties and physical models taken from the literature. It is shown that absorption layer doping profile has notable impacts on the photoresponse of the device. Especially, the effect of doping concentration and distribution of the absorption layer on photoresponse is discussed in detail. In the case of front illumination, comparative to uniform n-type doping, the device with n-type Gaussian doping profiles at absorption layer has higher responsivity. Comparative to front illumination, back illuminated detector with p-type doping profiles at absorption layer has higher maximum photoresponse, while the Gaussian doping profiles have a weaker ability to enhance the device responsivity. It is demonstrated that electric field distribution, mobility degradation, and recombinations are jointly responsible for the variance of photoresponse. Our work enriches the understanding and utilization of GaN based p-i-n UV photodetectors.
Tunnel-injected sub 290 nm ultra-violet light emitting diodes with 2.8% external quantum efficiency
NASA Astrophysics Data System (ADS)
Zhang, Yuewei; Jamal-Eddine, Zane; Akyol, Fatih; Bajaj, Sanyam; Johnson, Jared M.; Calderon, Gabriel; Allerman, Andrew A.; Moseley, Michael W.; Armstrong, Andrew M.; Hwang, Jinwoo; Rajan, Siddharth
2018-02-01
We report on the high efficiency tunnel-injected ultraviolet light emitting diodes (UV LEDs) emitting at 287 nm. Deep UV LED performance has been limited by the severe internal light absorption in the p-type contact layers and low electrical injection efficiency due to poor p-type conduction. In this work, a polarization engineered Al0.65Ga0.35N/In0.2Ga0.8N tunnel junction layer is adopted for non-equilibrium hole injection to replace the conventionally used direct p-type contact. A reverse-graded AlGaN contact layer is further introduced to realize a low resistance contact to the top n-AlGaN layer. This led to the demonstration of a low tunnel junction resistance of 1.9 × 10-3 Ω cm2 obtained at 1 kA/cm2. Light emission at 287 nm with an on-wafer peak external quantum efficiency of 2.8% and a wall-plug efficiency of 1.1% was achieved. The measured power density at 1 kA/cm2 was 54.4 W/cm2, confirming the efficient hole injection through interband tunneling. With the benefits of the minimized internal absorption and efficient hole injection, a tunnel-injected UV LED structure could enable future high efficiency UV emitters.
Forming aspheric optics by controlled deposition
Hawryluk, A.M.
1998-04-28
An aspheric optical element is disclosed formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin ({approx}100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application. 4 figs.
Forming aspheric optics by controlled deposition
Hawryluk, Andrew M.
1998-01-01
An aspheric optical element formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin (.about.100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klochko, N. P., E-mail: klochko-np@mail.ru; Klepikova, K. S.; Kopach, V. R.
The possibility of fabricating highly hydrophobic nanostructured zinc-oxide layers by the inexpensive method of pulsed electrodeposition from aqueous solutions without water-repellent coatings, adapted for large-scale production, is shown. The conditions of the deposition of highly hydrophobic nanostructured zinc-oxide layers exhibiting the “rose-petal” effect with specific morphology, optical properties, crystal structure and texture are determined. The grown ZnO nanostructures are promising for micro- and nanoelectronics as an adaptive material able to reversibly transform to the hydrophilic state upon exposure to ultraviolet radiation.
Molecular films associated with LDEF
NASA Technical Reports Server (NTRS)
Crutcher, E. R.; Warner, K. J.
1992-01-01
The molecular films deposited on the surface of the Long Duration Exposure Facility (LDEF) originated from the paints and room-temperature-vulcanized (RTV) silicone materials intentionally used on the satellite and not from residual contaminants. The high silicone content of most of the films and the uniformity of the films indicates a homogenization process in the molecular deposition and suggests a chemically most favored composition for the final film. The deposition on interior surfaces and vents indicated multiple bounce trajectories or repeated deposition-reemission cycles. Exterior surface deposits indicated a significant return flux. Ultraviolet light exposure was required to fix the deposited film as is indicated by the distribution of the films on interior surfaces and the thickness of films at the vent locations. Thermal conditions at the time of exposure to ultraviolet light seems to be an important factor in the thickness of the deposit. Sunrise facing (ram direction) surfaces always had the thicker film. These were the coldest surfaces at the time of their exposure to ultraviolet light. The films have a layered structure suggesting cyclic deposition. As many as 34 distinct layers were seen in the films. The cyclic nature of the deposition and the chemical uniformity of the film one layer to the next suggest an early deposition of the films though there is evidence for the deposition of molecular films throughout the nearly six year exposure of the satellite. A final 'spray' of an organic material associated with water soluble salts occurred very late in the mission. This may have been the result of one of the shuttle dump activities.
Neurons innervating the lamina in the butterfly, Papilio xuthus.
Hamanaka, Yoshitaka; Shibasaki, Hiromichi; Kinoshita, Michiyo; Arikawa, Kentaro
2013-05-01
The butterfly Papilio xuthus has compound eyes with three types of ommatidia. Each type houses nine spectrally heterogeneous photoreceptors (R1-R9) that are divided into six spectral classes: ultraviolet, violet, blue, green, red, and broad-band. Analysis of color discrimination has shown that P. xuthus uses the ultraviolet, blue, green, and red receptors for foraging. The ultraviolet and blue receptors are long visual fibers terminating in the medulla, whereas the green and red receptors are short visual fibers terminating in the lamina. This suggests that processing of wavelength information begins in the lamina in P. xuthus, unlike in flies. To establish the anatomical basis of color discrimination mechanisms, we examined neurons innervating the lamina by injecting neurobiotin into this neuropil. We found that in addition to photoreceptors and lamina monopolar cells, three distinct groups of cells project fibers into the lamina. Their cell bodies are located (1) at the anterior rim of the medulla, (2) between the proximal surface of the medulla and lobula plate, and (3) in the medulla cell body rind. Neurobiotin injection also labeled distinct terminals in medulla layers 1, 2, 3, 4 and 5. Terminals in layer 4 belong to the long visual fibers (R1, 2 and 9), while arbors in layers 1, 2 and 3 probably correspond to terminals of three subtypes of lamina monopolar cells, respectively. Immunocytochemistry coupled with neurobiotin injection revealed their transmitter candidates; neurons in (1) and a subset of neurons in (2) are immunoreactive to anti-serotonin and anti-γ-aminobutyric acid, respectively.
Jin, Peng; Gao, Kunshan; Villafañe, Virginia E; Campbell, Douglas A; Helbling, E Walter
2013-08-01
Mixing of seawater subjects phytoplankton to fluctuations in photosynthetically active radiation (400-700 nm) and ultraviolet radiation (UVR; 280-400 nm). These irradiance fluctuations are now superimposed upon ocean acidification and thinning of the upper mixing layer through stratification, which alters mixing regimes. Therefore, we examined the photosynthetic carbon fixation and photochemical performance of a coccolithophore, Gephyrocapsa oceanica, grown under high, future (1,000 μatm) and low, current (390 μatm) CO₂ levels, under regimes of fluctuating irradiances with or without UVR. Under both CO₂ levels, fluctuating irradiances, as compared with constant irradiance, led to lower nonphotochemical quenching and less UVR-induced inhibition of carbon fixation and photosystem II electron transport. The cells grown under high CO₂ showed a lower photosynthetic carbon fixation rate but lower nonphotochemical quenching and less ultraviolet B (280-315 nm)-induced inhibition. Ultraviolet A (315-400 nm) led to less enhancement of the photosynthetic carbon fixation in the high-CO₂-grown cells under fluctuating irradiance. Our data suggest that ocean acidification and fast mixing or fluctuation of solar radiation will act synergistically to lower carbon fixation by G. oceanica, although ocean acidification may decrease ultraviolet B-related photochemical inhibition.
Early work on the stratospheric ozone depletion-CFC issue
NASA Astrophysics Data System (ADS)
Molina, M.
2012-12-01
I became involved with the atmospheric chemistry of chlorofluorocarbons (CFCs) shortly after joining Sherry Rowland's research group at the University of California, Irvine, in 1973. CFCs had been detected in the troposphere by James Lovelock in 1971, and the question we set out to answer was the fate of these compounds of industrial origin in the environment, as well as possibly identifying any consequences of their accumulation in the atmosphere. After examining many potential sinks for these compounds we realized that because of their unusual stability the most likely destruction process was photolysis in the stratosphere. I carried out measurements of the absorption spectra of these compounds in the near ultraviolet; previous work involved only spectra in the far ultraviolet, not relevant for atmospheric chemistry. The results indicated that photolysis would take place in the upper stratosphere. I subsequently carried out calculations using one-dimensional atmospheric models to estimate their atmospheric residence times, which turned out to be many decades. We realized that the chlorine atoms generated by photolysis of the CFCs would participate in a catalytic chain reaction that would efficiently destroy ozone. Furthermore, we estimated that the amount of CFCs produced industrially was comparable to the amount of nitric oxide produced naturally in the stratosphere by the decomposition of nitrous oxide; work by Paul Crutzen and Harold Johnston had indicated that the abundance of ozone in the stratosphere was controlled by nitric oxide. We then formulated the hypothesis that the continued release of CFCs to the environment posed a threat to the stability of the ozone layer, and published our results in the journal Nature in 1974. The publication was noticed almost exclusively by the community of experts in stratospheric chemistry, and hence Sherry Rowland and I decided at that time that it was our responsibility to communicate this finding to society at large, and particularly to decision makers in government, while at the same time promoting additional scientific research to test the validity of our hypothesis.
Improved conversion efficiency of amorphous Si solar cells using a mesoporous ZnO pattern
2014-01-01
To provide a front transparent electrode for use in highly efficient hydrogenated amorphous silicon (a-Si:H) thin-film solar cells, porous flat layer and micro-patterns of zinc oxide (ZnO) nanoparticle (NP) layers were prepared through ultraviolet nanoimprint lithography (UV-NIL) and deposited on Al-doped ZnO (AZO) layers. Through this, it was found that a porous micro-pattern of ZnO NPs dispersed in resin can optimize the light-trapping pattern, with the efficiency of solar cells based on patterned or flat mesoporous ZnO layers increased by 27% and 12%, respectively. PMID:25276101
Coupled multiview autoencoders with locality sensitivity for three-dimensional human pose estimation
NASA Astrophysics Data System (ADS)
Yu, Jialin; Sun, Jifeng; Luo, Shasha; Duan, Bichao
2017-09-01
Estimating three-dimensional (3D) human poses from a single camera is usually implemented by searching pose candidates with image descriptors. Existing methods usually suppose that the mapping from feature space to pose space is linear, but in fact, their mapping relationship is highly nonlinear, which heavily degrades the performance of 3D pose estimation. We propose a method to recover 3D pose from a silhouette image. It is based on the multiview feature embedding (MFE) and the locality-sensitive autoencoders (LSAEs). On the one hand, we first depict the manifold regularized sparse low-rank approximation for MFE and then the input image is characterized by a fused feature descriptor. On the other hand, both the fused feature and its corresponding 3D pose are separately encoded by LSAEs. A two-layer back-propagation neural network is trained by parameter fine-tuning and then used to map the encoded 2D features to encoded 3D poses. Our LSAE ensures a good preservation of the local topology of data points. Experimental results demonstrate the effectiveness of our proposed method.
Yuan, Yongbo; Dong, Qingfeng; Yang, Bin; Guo, Fawen; Zhang, Qi; Han, Ming; Huang, Jinsong
2013-01-01
High sensitivity photodetectors in ultraviolet (UV) and infrared (IR) range have broad civilian and military applications. Here we report on an un-cooled solution-processed UV-IR photon counter based on modified organic field-effect transistors. This type of UV detectors have light absorbing zinc oxide nanoparticles (NPs) sandwiched between two gate dielectric layers as a floating gate. The photon-generated charges on the floating gate cause high resistance regions in the transistor channel and tune the source-drain output current. This "super-float-gating" mechanism enables very high sensitivity photodetectors with a minimum detectable ultraviolet light intensity of 2.6 photons/μm(2)s at room temperature as well as photon counting capability. Based on same mechansim, infrared photodetectors with lead sulfide NPs as light absorbing materials have also been demonstrated.
Radiation environment study of near space in China area
NASA Astrophysics Data System (ADS)
Fan, Dongdong; Chen, Xingfeng; Li, Zhengqiang; Mei, Xiaodong
2015-10-01
Aerospace activity becomes research hotspot for worldwide aviation big countries. Solar radiation study is the prerequisite for aerospace activity to carry out, but lack of observation in near space layer becomes the barrier. Based on reanalysis data, input key parameters are determined and simulation experiments are tried separately to simulate downward solar radiation and ultraviolet radiation transfer process of near space in China area. Results show that atmospheric influence on the solar radiation and ultraviolet radiation transfer process has regional characteristic. As key factors such as ozone are affected by atmospheric action both on its density, horizontal and vertical distribution, meteorological data of stratosphere needs to been considered and near space in China area is divided by its activity feature. Simulated results show that solar and ultraviolet radiation is time, latitude and ozone density-variant and has complicated variation characteristics.
Linear Instability Analysis of non-uniform Bubbly Mixing layer with Two-Fluid model
NASA Astrophysics Data System (ADS)
Sharma, Subash; Chetty, Krishna; Lopez de Bertodano, Martin
We examine the inviscid instability of a non-uniform adiabatic bubbly shear layer with a Two-Fluid model. The Two-Fluid model is made well-posed with the closure relations for interfacial forces. First, a characteristic analysis is carried out to study the well posedness of the model over range of void fraction with interfacial forces for virtual mass, interfacial drag, interfacial pressure. A dispersion analysis then allow us to obtain growth rate and wavelength. Then, the well-posed two-fluid model is solved using CFD to validate the results obtained with the linear stability analysis. The effect of the void fraction and the distribution profile on stability is analyzed.
Photon extraction from nitride ultraviolet light-emitting devices
Schowalter, Leo J; Chen, Jianfeng; Grandusky, James R
2015-02-24
In various embodiments, a rigid lens is attached to a light-emitting semiconductor die via a layer of encapsulant having a thickness insufficient to prevent propagation of thermal expansion mismatch-induced strain between the rigid lens and the semiconductor die.
The BUSS spectrum of Beta Lyrae. [Balloon-borne Ultraviolet Stellar Spectrograph
NASA Technical Reports Server (NTRS)
Hack, M.; Sahade, J.; De Jager, C.; Kondo, Y.
1983-01-01
The spectrum of Beta Lyrae from about 1975 to 3010 A taken with the Balloon-borne ultraviolet Stellar Spectrograph experiment in May 1976 at phase 0.61 P is analyzed. Results show the presence of N II semi-forbidden emission and provide evidence for about the same location, in the outer envelope of the system, of the layers responsible for the resonance Mg II doublet emissions and for the "narrow" H-alpha emission. In addition, three sets of absorption lines, P Cygni profiles of Fe III and broad Beals Type III emissions of Mg II, are found to be present.
Wang, Xiao-Dong; Chen, Bo; Wang, Hai-Feng; He, Fei; Zheng, Xin; He, Ling-Ping; Chen, Bin; Liu, Shi-Jie; Cui, Zhong-Xu; Yang, Xiao-Hu; Li, Yun-Peng
2015-01-01
Application of π-multilayer technology is extended to high extinction coefficient materials, which is introduced into metal-dielectric filter design. Metal materials often have high extinction coefficients in far ultraviolet (FUV) region, so optical thickness of metal materials should be smaller than that of the dielectric material. A broadband FUV filter of 9-layer non-periodic Al/MgF2 multilayer was successfully designed and fabricated and it shows high reflectance in 140–180 nm, suppressed reflectance in 120–137 nm and 181–220 nm. PMID:25687255
Observation of room-temperature high-energy resonant excitonic effects in graphene
NASA Astrophysics Data System (ADS)
Santoso, I.; Gogoi, P. K.; Su, H. B.; Huang, H.; Lu, Y.; Qi, D.; Chen, W.; Majidi, M. A.; Feng, Y. P.; Wee, A. T. S.; Loh, K. P.; Venkatesan, T.; Saichu, R. P.; Goos, A.; Kotlov, A.; Rübhausen, M.; Rusydi, A.
2011-08-01
Using a combination of ultraviolet-vacuum ultraviolet reflectivity and spectroscopic ellipsometry, we observe a resonant exciton at an unusually high energy of 6.3 eV in epitaxial graphene. Surprisingly, the resonant exciton occurs at room temperature and for a very large number of graphene layers N≈75, thus suggesting a poor screening in graphene. The optical conductivity (σ1) of a resonant exciton scales linearly with the number of graphene layers (up to at least 8 layers), implying the quantum character of electrons in graphene. Furthermore, a prominent excitation at 5.4 eV, which is a mixture of interband transitions from π to π* at the M point and a π plasmonic excitation, is observed. In contrast, for graphite the resonant exciton is not observable but strong interband transitions are seen instead. Supported by theoretical calculations, for N⩽ 28 the σ1 is dominated by the resonant exciton, while for N> 28 it is a mixture between exitonic and interband transitions. The latter is characteristic for graphite, indicating a crossover in the electronic structure. Our study shows that important elementary excitations in graphene occur at high binding energies and elucidate the differences in the way electrons interact in graphene and graphite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cicek, E.; McClintock, R.; Cho, C. Y.
2013-10-28
We report on Al{sub x}Ga{sub 1−x}N-based solar-blind ultraviolet (UV) photodetector (PD) grown on Si(111) substrate. First, Si(111) substrate is patterned, and then metalorganic chemical vapor deposition is implemented for a fully-coalesced ∼8.5 μm AlN template layer via a pulsed atomic layer epitaxial growth technique. A back-illuminated p-i-n PD structure is subsequently grown on the high quality AlN template layer. After processing and implementation of Si(111) substrate removal, the optical and electrical characteristic of PDs are studied. Solar-blind operation is observed throughout the array; at the peak detection wavelength of 290 nm, 625 μm{sup 2} area PD showed unbiased peak externalmore » quantum efficiency and responsivity of ∼7% and 18.3 mA/W, respectively, with a UV and visible rejection ratio of more than three orders of magnitude. Electrical measurements yielded a low-dark current density below 1.6 × 10{sup −8} A/cm{sup 2} at 10 V reverse bias.« less
EVALUATING A COMPOSITE CARTRIDGE FOR SMALL SYSTEM DRINKING WATER TREATMENT
A multi-layer, cartridge-based system that combines physical filtration with carbon adsorption and ultraviolet (UV) light disinfection has been developed to perform as a water treatment security device to protect homes against accidental or intentional contaminant events. A seri...
Patwardhan, Juilee; Bhatt, Purvi
2015-10-01
The exposure of skin to ultraviolet-B (UV-B) radiations leads to deoxyribonucleic acid (DNA) damage and can induce production of free radicals which imbalance the redox status of the cell and lead to increased oxidative stress. Clove has been traditionally used for its analgesic, anti-inflammatory, anti-microbial, anti-viral, and antiseptic effects. To evaluate the UV-B protective activity of flavonoids from Eugenia caryophylata (clove) buds on human dermal fibroblast cells. Protective ability of flavonoid-enriched (FE) fraction of clove was studied against UV-B induced cytotoxicity, anti-oxidant regulation, oxidative DNA damage, intracellular reactive oxygen species (ROS) generation, apoptotic morphological changes, and regulation of heme oxygenase-1 (HO-1) gene through nuclear factor E2-related factor 2 antioxidant response element (Nrf2 ARE) pathway. FE fraction showed a significant antioxidant potential. Pretreatment of cells with FE fraction (10-40 μg/ml) reversed the effects of UV-B induced cytotoxicity, depletion of endogenous enzymatic antioxidants, oxidative DNA damage, intracellular ROS production, apoptotic changes, and overexpression of Nrf2 and HO-1. The present study demonstrated for the first time that the FE fraction from clove could confer UV-B protection probably through the Nrf2-ARE pathway, which included the down-regulation of Nrf2 and HO-1. These findings suggested that the flavonoids from clove could potentially be considered as UV-B protectants and can be explored further for its topical application to the area of the skin requiring protection. Pretreatment of human dermal fibroblast with flavonoid-enriched fraction of Eugenia caryophylata attenuated effects of ultraviolet-B radiationsIt also conferred protection through nuclear factor E2-related factor 2-antioxidant response pathway and increased tolerance of cells against oxidative stressFlavonoid-enriched fraction can be explored further for topical application to the skin as a ultraviolet-B protectant. Abbreviations used: ABTS: 2,2'-azino-bis-(3-ethylbenzothiazoline- 6-sulphonic acid), AO: Acridine orange, Analysis of variance, ARE: Antioxidant response elements, BSA: Bovine serum albumin, CAPE: Caffeic acid phenethyl ester, CAT: Catalase, DCFH-DA: 2',7'-dichlorofluorescein diacetate, DMEM: Dulbecco's Modified Eagle's Medium, DMSO: Dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DPBS: Dulbecco's phosphate buffered saline, DPPH: 2,2-diphenyl-1-picrylhydrazyl, ECL: Enhanced chemiluminescence, EDTA: Ethylenediaminetetraacetic acid, ELISA: Enzyme-linked immunesorbent assay, EtBr: Ethidium bromide, FBS: Fetal bovine serum, FE fraction: Flavonoid-enriched fraction, FRAP: Ferric reducing antioxidant power, GPx: Glutathione peroxidase, GR: Glutathione reductase, GST: Glutathione-S-transferase, GSH: Reduced glutathione, GSSG: Oxidized glutathione, HDF: Human dermal fibroblast, HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid, HRP: Horseradish peroxidase, HO-1: Heme oxygenase-1, HPTLC: High-performance thin layer chromatography, Keap-1: Kelch-like ECH-associated protein-1, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, NaCl: Sodium chloride, NFDM: Nonfat dry milk, Nrf2: Nuclear factor E2-related factor 2, NQO1: NAD (P) H: Quinine oxidoreductase 1, OH: Hydroxyl ions, PBST: Phosphate buffered saline with 0.1% tween 20, PCR: Polymerase chain reaction, PMSF: Phenylmethanesulfonyl fluoride, Rf: Retention factor, ROS: Reactive oxygen species, rRNA: Ribosomal ribonucleic acid, SDS: Sodium dodecyl sulfate, SOD: Superoxide dismutase, TLC: Thin layer chromatography, TLC-DPPH: Thin layer chromatography-2,2-diphenyl-1-picrylhydrazyl, UV: Ultraviolet, UV-A: Ultraviolet-A, UV-B: Ultraviolet-B, UV-C: Ultraviolet-C, and qPCR: Quantitative polymerase chain reaction.
Nitride Semiconductors for Ultraviolet Detection
1992-12-01
intrinsic n- and p-type doped GaN, (4) deposition of monocrystalline GaN via atomic layer epitaxy, (5) the initial conduct of studies regarding the ion...crystalline quality of the films; it indicated that all the films for x ranging from I to 0 to be monocrystalline . The Al/Ga composition ratios in the...shown in Figure 1. An analysis of these RHEED patterns indicated that both the AIN buffer layer and the GaN film are monocrystalline films. The RHEED
Dahlin, Jakob; Berne, Berit; Dunér, Kari; Hosseiny, Sara; Matura, Mihály; Nyman, Gunnar; Tammela, Monica; Isaksson, Marléne
2016-09-01
Ultraviolet (UV)-curing nail polishes based on acrylates or methacrylates are currently also available for non-professional use. The Swedish Medical Products Agency recently prohibited one brand of UV-curing polish, because several consumers reported undesirable effects after using it. To investigate whether consumers with undesirable effects after using the UV-curing nail polish that was later prohibited were contact allergic to the polish and its individual ingredients. Eight patients who had reported severe skin reactions after the use of the UV-curing polish were patch tested with two coatings of the nail polish and its ingredients at five dermatology departments in Sweden. All patients tested except one showed contact allergic reactions to one or several of the acrylate-based or methacrylate-based ingredients in the nail polish. The non-professional use of UV-curing nail polishes poses a risk of sensitization from acrylates and methacrylates. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ultraviolet laser effects on the cornea
NASA Astrophysics Data System (ADS)
Zuclich, Joseph A.
1990-07-01
Ultraviolet radiation in the ambient environment or from artificial sources may pose both acute and chronic hazards to the skin and the ocular tissues. In general terrestrial conditions have evolved such that there are only narrow safety margins between ambient UV levels and exposure levels harmful to the human. Obvious examples of acute consequences ofUV overexposure are sunburn and snowblindness as well as analogous conditions induced by artificial sources such as the welder''s arc mercury vapor lamps and UV-emitting lasers. Further chronic UV exposure is strongly implicated as a causative agent in certain types of cataract and skin cancer. This presentation will summarize a number of specific cases where UV radiation affected the primate cornea. Data presented will include the action spectra for far- and near-UV induced ocular damage the pulsewidth and total energy dependencies of ocular thresholds studies of cumulative effects of repeated UV exposures and quantitative determinations of tissue repair or recovery rates. Depending on the exposure parameters utilized photochemical thermal or photoablative damage mechanisms may prevail. 1.
Jin, Peng; Gao, Kunshan; Villafañe, Virginia E.; Campbell, Douglas A.; Helbling, E. Walter
2013-01-01
Mixing of seawater subjects phytoplankton to fluctuations in photosynthetically active radiation (400–700 nm) and ultraviolet radiation (UVR; 280–400 nm). These irradiance fluctuations are now superimposed upon ocean acidification and thinning of the upper mixing layer through stratification, which alters mixing regimes. Therefore, we examined the photosynthetic carbon fixation and photochemical performance of a coccolithophore, Gephyrocapsa oceanica, grown under high, future (1,000 μatm) and low, current (390 μatm) CO2 levels, under regimes of fluctuating irradiances with or without UVR. Under both CO2 levels, fluctuating irradiances, as compared with constant irradiance, led to lower nonphotochemical quenching and less UVR-induced inhibition of carbon fixation and photosystem II electron transport. The cells grown under high CO2 showed a lower photosynthetic carbon fixation rate but lower nonphotochemical quenching and less ultraviolet B (280–315 nm)-induced inhibition. Ultraviolet A (315–400 nm) led to less enhancement of the photosynthetic carbon fixation in the high-CO2-grown cells under fluctuating irradiance. Our data suggest that ocean acidification and fast mixing or fluctuation of solar radiation will act synergistically to lower carbon fixation by G. oceanica, although ocean acidification may decrease ultraviolet B-related photochemical inhibition. PMID:23749851
Multimodal Deep Autoencoder for Human Pose Recovery.
Hong, Chaoqun; Yu, Jun; Wan, Jian; Tao, Dacheng; Wang, Meng
2015-12-01
Video-based human pose recovery is usually conducted by retrieving relevant poses using image features. In the retrieving process, the mapping between 2D images and 3D poses is assumed to be linear in most of the traditional methods. However, their relationships are inherently non-linear, which limits recovery performance of these methods. In this paper, we propose a novel pose recovery method using non-linear mapping with multi-layered deep neural network. It is based on feature extraction with multimodal fusion and back-propagation deep learning. In multimodal fusion, we construct hypergraph Laplacian with low-rank representation. In this way, we obtain a unified feature description by standard eigen-decomposition of the hypergraph Laplacian matrix. In back-propagation deep learning, we learn a non-linear mapping from 2D images to 3D poses with parameter fine-tuning. The experimental results on three data sets show that the recovery error has been reduced by 20%-25%, which demonstrates the effectiveness of the proposed method.
Two-Band, Low-Loss Microwave Window
NASA Technical Reports Server (NTRS)
Britcliffe, Michael; Franco, Manuel
2007-01-01
A window for a high-sensitivity microwave receiving system allows microwave radiation to pass through to a cryogenically cooled microwave feed system in a vacuum chamber, while keeping ambient air out of the chamber and helping to keep the interior of the chamber cold. The microwave feed system comprises a feed horn and a low-noise amplifier, both of which are required to be cooled to a temperature of 15 K during operation. The window is designed to exhibit very little microwave attenuation in two frequency bands: 8 to 9 GHz and 30 to 40 GHz. The window is 15 cm in diameter. It includes three layers (see figure): 1) The outer layer is made of a poly(tetrafluoroethylene) film 0.025 mm thick. This layer serves primarily to reflect and absorb solar ultraviolet radiation to prolong the life of the underlying main window layer, which is made of a polyimide that becomes weakened when exposed to ultraviolet. The poly(tetrafluoroethylene) layer also protects the main window layer against abrasion. Moreover, the inherent hydrophobicity of poly(tetrafluoroethylene) helps to prevent the highly undesirable accumulation of water on the outer surface. 2) The polyimide main window layer is 0.08 mm thick. This layer provides the vacuum seal for the window. 3) A 20-mm-thick layer of ethylene/ propylene copolymer foam underlies the main polyimide window layer. This foam layer acts partly as a thermal insulator: it limits radiational heating of the microwave feed horn and, concomitantly, limits radiational cooling of the window. This layer has high compressive strength and provides some mechanical support for the main window layer, reducing the strength required of the main window layer. The ethylene/propylene copolymer foam layer is attached to an aluminum window ring by means of epoxy. The outer poly(tetrafluoroethylene) film and the main polyimide window layer are sandwiched together and pressed against the window ring by use of a bolted clamp ring. The window has been found to introduce a microwave loss of only about 0.4 percent. The contribution of the window to the noise temperature of the microwave feed system has been found to be less than 1 K at 32 GHz and 0.2 K at 8.4 GHz.
NASA Astrophysics Data System (ADS)
Wang, Hanyu; Zhou, Jie; Wang, Xu; Lu, Zhiyun; Yu, Junsheng
2014-08-01
A high performance organic integrated device (OID) with ultraviolet photodetective and electroluminescent (EL) properties was fabricated by using a charge-transfer-featured naphthalimide derivative of 6-{3,5-bis-[9-(4-t-butylphenyl)-9H-carbazol-3-yl]-phenoxy}-2-(4-t-butylphenyl)-benzo[de]isoquinoline-1,3-dione (CzPhONI) as the active layer. The results showed that the OID had a high detectivity of 1.5 × 1011 Jones at -3 V under the UV-350 nm illumination with an intensity of 0.6 mW/cm2, and yielded an exciplex EL light emission with a maximum brightness of 1437 cd/m2. Based on the energy band diagram, both the charge transfer feature of CzPhONI and matched energy level alignment were responsible for the dual ultraviolet photodetective and EL functions of OID.
A model for the origin of photosynthesis--III. The ultraviolet photochemistry of uroporphyrinogen
NASA Technical Reports Server (NTRS)
Mercer-Smith, J. A.; Raudino, A.; Mauzerall, D. C.
1985-01-01
The photochemical ramifications of the high ultraviolet flux on the primordial earth prior to the formation of the ozone layer have been considered in a study of the ultraviolet photochemistry of uroporphyrinogen (urohexahydroporphyrin), a colorless compound which absorbs strongly at wavelengths less than 220 nanometers. Urohexahydroporphyrin was investigated since it is the first macrocycle formed on the biosynthetic pathway of chlorophyll and can be used to test the hypothesis that the biosynthetic pathway to chlorophyll recapitulates the evolutionary history of photosynthesis. When urohexahydroporphyrin is illuminated in aqueous anaerobic solution, hydrogen gas is produced. More hydrogen gas is produced in the presence of a colloidal platinum catalyst. The products of the photooxidation of urohexahydroporphyrin are urotetrahydroporphyrin (uroporphomethene) and uroporphyrin. This research shows how the oxidation of uroporphyrinogen to uroporphyrin, the first biogenetic porphyrin, could have occurred anaerobically and abiotically on the primordial earth.
NASA Astrophysics Data System (ADS)
Lu, Yanghua; Wu, Zhiqian; Xu, Wenli; Lin, Shisheng
2016-12-01
A ZnO quantum dot photo-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity of more than 1915 A W-1 and detectivity of more than 1.02 × 1013 Jones (Jones = cm Hz1/2 W-1) has been demonstrated. The interfaced h-BN layer increases the barrier height at the graphene/GaN heterojunction, which decreases the dark current and improves the on/off current ratio of the device. The photo-doping effect increases the barrier height and carrier concentration at the graphene/h-BN/GaN heterojunction, thus the responsivity is improved from 1473 A W-1 to 1915 A W-1 and the detectivity is improved from 5.8 × 1012 to 1.0 × 1013 Jones. Moreover, all of the responsivity and detectivity values are the highest values among all the graphene-based ultraviolet photodetectors.
ERIC Educational Resources Information Center
Yarrow, Ruth
1982-01-01
Environmental educators are worried about the ultimate ecological threat--nuclear war, which could burn thousands of square miles, sterilize the soil, destroy 70 percent of the ozone layer letting in lethal ultraviolet rays, and cause severe radiation sickness. Educators must inform themselves, teach others, contact government representatives, and…
NASA Astrophysics Data System (ADS)
Muhtadi, S.; Hwang, S.; Coleman, A.; Asif, F.; Lunev, A.; Chandrashekhar, M. V. S.; Khan, A.
2017-04-01
We report on AlGaN field effect transistors over AlN/sapphire templates with selective area grown n-Al0.5Ga0.5N channel layers for which a field-effect mobility of 55 cm2/V-sec was measured. Using a pulsed plasma enhanced chemical vapor deposition deposited 100 A thick SiO2 layer as the gate-insulator, the gate-leakage currents were reduced by three orders of magnitude. These devices with or without gate insulators are excellent solar-blind ultraviolet detectors, and they can be operated either in the photoconductive or the photo-voltaic modes. In the photo-conductive mode, gain arising from hole-trapping in the depletion region leads to steady-state photoresponsivity as high as 1.2 × 106A/W at 254 nm, which drops sharply below 290 nm. A hole-trapping limited detector response time of 34 ms, fast enough for real-time flame-detection and imaging applications, was estimated.
Hot electron generation by aluminum oligomers in plasmonic ultraviolet photodetectors.
Ahmadivand, Arash; Sinha, Raju; Vabbina, Phani Kiran; Karabiyik, Mustafa; Kaya, Serkan; Pala, Nezih
2016-06-13
We report on an integrated plasmonic ultraviolet (UV) photodetector composed of aluminum Fano-resonant heptamer nanoantennas deposited on a Gallium Nitride (GaN) active layer which is grown on a sapphire substrate to generate significant photocurrent via formation of hot electrons by nanoclusters upon the decay of nonequilibrium plasmons. Using the plasmon hybridization theory and finite-difference time-domain (FDTD) method, it is shown that the generation of hot carriers by metallic clusters illuminated by UV beam leads to a large photocurrent. The induced Fano resonance (FR) minimum across the UV spectrum allows for noticeable enhancement in the absorption of optical power yielding a plasmonic UV photodetector with a high responsivity. It is also shown that varying the thickness of the oxide layer (Al2O3) around the nanodisks (tox) in a heptamer assembly adjusted the generated photocurrent and responsivity. The proposed plasmonic structure opens new horizons for designing and fabricating efficient opto-electronics devices with high gain and responsivity.
Park, Dong-Wook; Schendel, Amelia A.; Mikael, Solomon; Brodnick, Sarah K.; Richner, Thomas J.; Ness, Jared P.; Hayat, Mohammed R.; Atry, Farid; Frye, Seth T.; Pashaie, Ramin; Thongpang, Sanitta; Ma, Zhenqiang; Williams, Justin C.
2014-01-01
Neural micro-electrode arrays that are transparent over a broad wavelength spectrum from ultraviolet to infrared could allow for simultaneous electrophysiology and optical imaging, as well as optogenetic modulation of the underlying brain tissue. The long-term biocompatibility and reliability of neural micro-electrodes also require their mechanical flexibility and compliance with soft tissues. Here we present a graphene-based, carbon-layered electrode array (CLEAR) device, which can be implanted on the brain surface in rodents for high-resolution neurophysiological recording. We characterize optical transparency of the device at >90% transmission over the ultraviolet to infrared spectrum and demonstrate its utility through optical interface experiments that use this broad spectrum transparency. These include optogenetic activation of focal cortical areas directly beneath electrodes, in vivo imaging of the cortical vasculature via fluorescence microscopy and 3D optical coherence tomography. This study demonstrates an array of interfacing abilities of the CLEAR device and its utility for neural applications. PMID:25327513
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennessy, John, E-mail: hennessy@caltech.edu; Jewell, April D.; Greer, Frank
2015-01-15
A new process has been developed to deposit magnesium fluoride (MgF{sub 2}) thin films via atomic layer deposition (ALD) for use as optical coatings in the ultraviolet. MgF{sub 2} was deposited in a showerhead style ALD reactor using bis(ethylcyclopentadienyl)magnesium and anhydrous hydrogen fluoride (HF) as precursors at substrate temperatures from 100 to 250 °C. The use of HF was observed to result in improved morphology and reduced impurity content compared to other reported MgF{sub 2} ALD approaches that use metal fluoride precursors as the fluorine-containing chemistry. Characterization of these films has been performed using spectroscopic ellipsometry, atomic force microscopy, and x-raymore » photoelectron spectroscopy for material deposited on silicon substrates. Films at all substrate temperatures were transparent at wavelengths down to 190 nm and the low deposition temperature combined with low surface roughness makes these coatings good candidates for a variety of optical applications in the far ultraviolet.« less
Surface hole gas enabled transparent deep ultraviolet light-emitting diode
NASA Astrophysics Data System (ADS)
Zhang, Jianping; Gao, Ying; Zhou, Ling; Gil, Young-Un; Kim, Kyoung-Min
2018-07-01
The inherent deep-level nature of acceptors in wide-band-gap semiconductors makes p-ohmic contact formation and hole supply difficult, impeding progress for short-wavelength optoelectronics and high-power high-temperature bipolar electronics. We provide a general solution by demonstrating an ultrathin rather than a bulk wide-band-gap semiconductor to be a successful hole supplier and ohmic contact layer. Free holes in this ultrathin semiconductor are assisted to activate from deep acceptors and swept to surface to form hole gases by a large electric field, which can be provided by engineered spontaneous and piezoelectric polarizations. Experimentally, a 6 nm thick AlN layer with surface hole gas had formed p-ohmic contact to metals and provided sufficient hole injection to a 280 nm light-emitting diode, demonstrating a record electrical-optical conversion efficiency exceeding 8.5% at 20 mA (55 A cm‑2). Our approach of forming p-type wide-band-gap semiconductor ohmic contact is critical to realizing high-efficiency ultraviolet optoelectronic devices.
Enhanced performance of perovskite solar cells by ultraviolet-ozone treatment of mesoporous TiO2
NASA Astrophysics Data System (ADS)
Wang, Zengze; Fang, Jin; Mi, Yang; Zhu, Xiaoyang; Ren, He; Liu, Xinfeng; Yan, Yong
2018-04-01
The performance of a semiconductor electronic or photonic device depends greatly on the properties of the interface. In a typical perovskite solar cell (PSC), the interface between electron transport layer (ETL) and perovskites is found to significantly influence the power conversion efficiency (PCE). Herein, Ultraviolet-ozone (UVO) treatment, a technique commonly used to clean a device substrate, is applied on ETL, specially, mesoporous/compact TiO2 layer. This treatment increases the conductivity of ETL and removes the residual organics at the surface. Consequently, an improved interface between mesoporous TiO2 and perovskite is achieved to enhance the performance of PSC. For example, the fill factor (FF) increases by ∼13%, the short-circuit current density (Jsc) and open-circuit voltage (Voc) increase by ∼2%, and the PCE finally enhances by ∼20% with 15 min of UVO treatment. With this method, the PCE of the best cell reaches to 20.43% under the illumination of AM 1.5 (100 mW cm-2) simulated sunlight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata, E-mail: tsom@iopb.res.in
Using conductive atomic force microscopy and Kelvin probe force microscopy, we study local electrical transport properties in aluminum-doped zinc oxide (ZnO:Al or AZO) thin films. Current mapping shows a spatial variation in conductivity which corroborates well with the local mapping of donor concentration (∼10{sup 20 }cm{sup −3}). In addition, a strong enhancement in the local current at grains is observed after exposing the film to ultra-violet (UV) light which is attributed to persistent photocurrent. Further, it is shown that UV absorption gives a smooth conduction in AZO film which in turn gives rise to an improvement in the bulk photoresponsivity ofmore » an n-AZO/p-Si heterojunction diode. This finding is in contrast to the belief that UV absorption in an AZO layer leads to an optical loss for the underneath absorbing layer of a heterojunction solar cell.« less
The altitude distribution of the Venus ultraviolet nightglow and implications on vertical transport
NASA Technical Reports Server (NTRS)
Gerard, J. C.; Stewart, A. I. F.; Bougher, S. W.
1981-01-01
The altitude distribution of the nitric oxide nightglow was measured with an ultraviolet spectrometer on board Pioneer Venus, in order to study the effects of the distribution on the Venus nightside lower thermosphere transport properties. Limb profiles were obtained with an 8 ms integration period on several orbits near periapsis. The observations were made between P minus 2 min and P plus 4 min, where altitude ranges between 150 and 350 km, and latitude varies from 24 degrees N to 9 degrees S. A method independent of the spacecraft attitude data was used to fit the observed limb profiles, and to find the altitude of the maximum of the layer (115 plus or minus 2 km), and the topside scale height (about 3 km). It is shown that downward transport by diffusion alone is not sufficient, and if vertical motion is parameterized by eddy diffusion, an eddy diffusion coefficient is deduced from the altitude of the layer.
PTX-loaded three-layer PLGA/CS/ALG nanoparticle based on layer-by-layer method for cancer therapy.
Wang, Fang; Yuan, Jian; Zhang, Qian; Yang, Siqian; Jiang, Shaohua; Huang, Chaobo
2018-05-17
Poly (lactic-co-glycolic acid) (PLGA) nanoparticles are an ideal paclitaxel (PTX)-carrying system due to its biocompatibility and biodegradability. But it possessed disadvantage of drug burst release. In this research, a layer-by-layer deposition of chitosan (CS) and sodium alginate (ALG) was applied to modify the PLGA nanoparticles. The surface charges and morphology of the PLGA, PLGA/CS and PLGA/CS/ALG particles was measured by capillary electrophoresis and SEM and TEM, respectively. The drug encapsulation and loading efficiency were confirmed by ultraviolet spectrophotometer. The nanoparticles were stable and exhibited controlled drug release performance, with good cytotoxicity to human lung carcinoma cells (HepG 2). Cumulatively, our research suggests that this kind of three-layer nanoparticle with LbL-coated shield has great properties to act as a novel drug-loaded system.
GaN membrane MSM ultraviolet photodetectors
NASA Astrophysics Data System (ADS)
Muller, A.; Konstantinidis, G.; Kostopoulos, A.; Dragoman, M.; Neculoiu, D.; Androulidaki, M.; Kayambaki, M.; Vasilache, D.; Buiculescu, C.; Petrini, I.
2006-12-01
GaN exhibits unique physical properties, which make this material very attractive for wide range of applications and among them ultraviolet detection. For the first time a MSM type UV photodetector structure was manufactured on a 2.2 μm. thick GaN membrane obtained using micromachining techniques. The low unintentionally doped GaN layer structure was grown by MOCVD on high resistivity (ρ>10kΩcm) <111> oriented silicon wafers, 500μm thick. The epitaxially grown layers include a thin AlN layer in order to reduce the stress in the GaN layer and avoid cracking. Conventional contact lithography, e-gun Ni/Au (10nm /200nm) evaporation and lift-off techniques were used to define the interdigitated Schottky metalization on the top of the wafer. Ten digits with a width of 1μm and a length of 100μm were defined for each electrode. The distance between the digits was also 1μm. After the backside lapping of the wafer to a thickness of approximately 150μm, a 400nm thick Al layer was patterned and deposited on the backside, to be used as mask for the selective reactive ion etching of silicon. The backside mask, for the membrane formation, was patterned using double side alignment techniques and silicon was etched down to the 2.2μm thin GaN layer using SF 6 plasma. A very low dark current (30ρA at 3V) was obtained. Optical responsivity measurements were performed at 1.5V. A maximum responsivity of 18mA/W was obtained at a wavelength of 370nm. This value is very good and can be further improved using transparent contacts for the interdigitated structure.
Capturing latent fingerprints from metallic painted surfaces using UV-VIS spectroscope
NASA Astrophysics Data System (ADS)
Makrushin, Andrey; Scheidat, Tobias; Vielhauer, Claus
2015-03-01
In digital crime scene forensics, contactless non-destructive detection and acquisition of latent fingerprints by means of optical devices such as a high-resolution digital camera, confocal microscope, or chromatic white-light sensor is the initial step prior to destructive chemical development. The applicability of an optical sensor to digitalize latent fingerprints primarily depends on reflection properties of a substrate. Metallic painted surfaces, for instance, pose a problem for conventional sensors which make use of visible light. Since metallic paint is a semi-transparent layer on top of the surface, visible light penetrates it and is reflected off of the metallic flakes randomly disposed in the paint. Fingerprint residues do not impede light beams making ridges invisible. Latent fingerprints can be revealed, however, using ultraviolet light which does not penetrate the paint. We apply a UV-VIS spectroscope that is capable of capturing images within the range from 163 to 844 nm using 2048 discrete levels. We empirically show that latent fingerprints left behind on metallic painted surfaces become clearly visible within the range from 205 to 385 nm. Our proposed streakiness score feature determining the proportion of a ridge-valley pattern in an image is applied for automatic assessment of a fingerprint's visibility and distinguishing between fingerprint and empty regions. The experiments are carried out with 100 fingerprint and 100 non-fingerprint samples.
Fiber-Optic Coupled Lidar Receiver System to Measure Stratospheric Ozone
NASA Technical Reports Server (NTRS)
Harper, David Brent; Elsayed-Ali, Hani
1998-01-01
The measurement of ozone in the atmosphere has become increasingly important over the past two decades. Significant increases of ozone concentrations in the lower atmosphere, or troposphere, and decreases in the upper atmosphere, or stratosphere, have been attributed to man-made causes. High ozone concentrations in the troposphere pose a health hazard to plants and animals and can add to global warming. On the other hand, ozone in the stratosphere serves as a protective barrier against strong ultraviolet (UV) radiation from the sun. Man-made CFC's (chlorofluorocarbons) act as a catalyst with a free oxygen atom and an ozone molecule to produce two oxygen molecules therefore depleting the protective layer of ozone in the stratosphere. The beneficial and harmful effects of ozone require the study of ozone creation and destruction processes in the atmosphere. Therefore, to provide an accurate model of these processes, an ozone lidar system must be able to be used frequently with as large a measurement range as possible. Various methods can be used to measure atmospheric ozone concentrations. These include different airborne and balloon measurements, solar occulation satellite techniques, and the use of lasers in lidar (high detection and ranging,) systems to probe the atmosphere. Typical devices such as weather balloons can only measure within the direct vicinity of the instrument and are therefore used infrequently. Satellites use solar occulation techniques that yield low horizontal and vertical resolution column densities of ozone.
NASA Technical Reports Server (NTRS)
Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.; Terhune, R. W.; Fattahi, Masoud; Tseng, Hsin-Fu
1992-01-01
Low-temperature silicon molecular beam epitaxy is used to grow a delta-doped silicon layer on a fully processed charge-coupled device (CCD). The measured quantum efficiency of the delta-doped backside-thinned CCD is in agreement with the reflection limit for light incident on the back surface in the spectral range of 260-600 nm. The 2.5 nm silicon layer, grown at 450 C, contained a boron delta-layer with surface density of about 2 x 10 exp 14/sq cm. Passivation of the surface was done by steam oxidation of a nominally undoped 1.5 nm Si cap layer. The UV quantum efficiency was found to be uniform and stable with respect to thermal cycling and illumination conditions.
Remote high-temperature insulatorless heat-flux gauge
Noel, B.W.
1993-12-28
A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge. 3 figures.
Remote high-temperature insulatorless heat-flux gauge
Noel, Bruce W.
1993-01-01
A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge.
Gaballah, A E H; Nicolosi, P; Ahmed, Nadeem; Jimenez, K; Pettinari, G; Gerardino, A; Zuppella, P
2018-01-01
The knowledge and the manipulation of light polarization state in the vacuum ultraviolet and extreme ultraviolet (EUV) spectral regions play a crucial role from materials science analysis to optical component improvements. In this paper, we present an EUV spectroscopic ellipsometer facility for polarimetry in the 90-160 nm spectral range. A single layer aluminum mirror to be used as a quarter wave retarder has been fully characterized by deriving the optical and structural properties from the amplitude component and phase difference δ measurements. The system can be suitable to investigate the properties of thin films and optical coatings and optics in the EUV region.
Global Ultraviolet Imager (GUVI) investigation
NASA Technical Reports Server (NTRS)
Christensen, Andrew B.
1995-01-01
This report covers the activities performed under NAS5-32572. The results of those activities are included in this Final Report. TIMED Science Objectives: (1) To determine the temperature, density, and wind structure of the MLTI (mixed layer thermal inertia), including the seasonal and latitudinal variations; and (2) To determine the relative importance of the various radiative, chemical, electrodynamical, and dynamical sources and sinks of energy for the thermal structure of the MLTI. GUVI Science Goals: (1) Determine the spatial and temporal variations of temperature and constituent densities in the lower thermosphere; and (2) Determine the importance of auroral energy sources and solar EUV (extreme ultraviolet) to the energy balance of the region.
Pukenas, Laurynas; Prompinit, Panida; Nishitha, Boda; Tate, Daniel J; Singh, N D Pradeep; Wälti, Christoph; Evans, Stephen D; Bushby, Richard J
2017-05-31
Under a layer of 0.1 M HCl in isopropanol, soft ultraviolet (UV) (365 nm) photolysis of the thiol-on-gold self-assembled monolayer (SAM) derived from the lipoic acid ester of α-hydroxy-1-acetylpyrene results in the expected removal of the acetylpyrene protecting group. When photolyzing through a mask, this can be used to produce a patterned surface and, at a controlled electrochemical potential, it is then possible to selectively and reversibly electrodeposit copper on the photolyzed regions. Rather surprisingly, under these photolysis conditions, there is not only the expected photodeprotection of the ester but also partial removal of the lipoic acid layer which has been formed. In further studies, it is shown that this type of acid-catalyzed photoremoval of SAM layers by soft UV is a rather general phenomenon and results in the partial removal of the thiol-on-gold SAM layers derived from other ω-thiolated carboxylic acids. However, this phenomenon is chain-length dependent. Under conditions in which there is a ∼60% reduction in the thickness of the SAM derived from dithiobutyric acid, the SAM derived from mercaptoundecanoic acid is almost unaffected. The process by which the shorter-chain SAM layers are partially removed is not fully understood because these compounds do not absorb significantly in the 365 nm region of the spectrum! Significantly, this study shows that acid catalysis photolysis of thiol-on-gold SAMs needs to be used with caution.
Tulsani, Srikanth Reddy; Rath, Arup Kumar
2018-07-15
The solution-processed quantum dot (QD) solar cell technology has seen significant advancements in recent past to emerge as a potential contender for the next generation photovoltaic technology. In the development of high performance QD solar cell, the surface ligand chemistry has played the important role in controlling the doping type and doping density of QD solids. For instance, lead sulfide (PbS) QDs which is at the forefront of QD solar cell technology, can be made n-type or p-type respectively by using iodine or thiol as the surfactant. The advancements in surface ligand chemistry enable the formation of p-n homojunction of PbS QDs layers to attain high solar cell performances. It is shown here, however, that poor Fermi level alignment of thiol passivated p-type PbS QD hole transport layer with the n-type PbS QD light absorbing layer has rendered the photovoltaic devices from realizing their full potential. Here we develop a control surface oxidation technique using facile ultraviolet ozone treatment to increase the p-doping density in a controlled fashion for the thiol passivated PbS QD layer. This subtle surface modification tunes the Fermi energy level of the hole transport layer to deeper values to facilitate the carrier extraction and voltage generation in photovoltaic devices. In photovoltaic devices, the ultraviolet ozone treatment resulted in the average gain of 18% in the power conversion efficiency with the highest recorded efficiency of 8.98%. Copyright © 2018 Elsevier Inc. All rights reserved.
INTERACTIONS OF SOLAR UV RADIATION AND DISSOLVED ORGANIC MATTER IN AQUATIC ENVIRONMENTS
Changes in the ozone layer over the past two decades have resulted in increases in solar ultraviolet (UV) radiation that reaches the surface of aquatic environments. Recent studies have demonstrated that these UV increases cause changes in photochemical reactions that affect the...
Exploring Mercury's Surface in UltraViolet from Orbit
NASA Astrophysics Data System (ADS)
Izenberg, N.
2017-12-01
The MESSENGER Mission's Ultraviolet and Visible Spectrometer (UVVS) component of its Mercury Atmosphere and Surface Composition Spectrometer (MASCS) instrument obtained approximately 4600 point observations of Mercury's surface in middle ultraviolet (MUV; 210 nm - 300 nm) and far ultraviolet (FUV; 119.1 - 122.5 nm and 129.2 - 131.5 nm) wavelengths over the course of its orbital mission, mostly in Mercury's southern hemisphere. Given the very low (<1 to 2 wt %) average abundance of iron in the silicates of Mercury observed by multiple MESSENGER instruments, the near- to middle-ultraviolet wavelengths encompassing the oxygen metal charge transfer band (<400 nm), which is more sensitive to the presence of iron than the classic 1 micron absorption band, provides potentially useful additional compositional insight into the top layer of Mercury's regolith. The presence of nano- and microphase carbon also has potentially significant expression in the ultraviolet, and the interplay and variation between carbon and iron in mercury surface materials is an active area of investigation. Analysis of middle-UV surface reflectance and parameters appear to support the presence of varying amounts of carbon in different spectral or geologic units on Mercury. Far-UV reflectance data is currently under-utilized, but analysis of lunar surface by the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) indicate that the data are sensitive to both composition and space weathering. The far-UV reflectance from MASCS may provide similar information for the Mercury surface, complementing results from longer wavelengths. MESSENGER data products for surface reflectance include middle-UV reflectance spectra, ultraviolet far-UV reflectance values, combined middle-UV through near-infrared spectra (210 nm - 1450 nm), a global `spectral cube' of near-UV to near-IR, and an upcoming UV spectral cube.
EOS CHEM: A Mission to Study Ozone and Climate
NASA Technical Reports Server (NTRS)
Schoeberl, Mark
1998-01-01
The Earth's stratosphere contains the ozone layer, which shields us from the Sun@ harmful ultraviolet (UV) radiation. Ozone is destroyed through chemical reactions involving natural and man-made nitrogen, hydrogen, bromine, and chlorine compounds. The release of chlorofluoro-carbons CFCs) has caused a dramatic decrease in the protective stratospheric ozone layer during the last two decades. Detection of stratospheric ozone depletion led to regulation and phase-out of CFC production worldwide. As a result, man-made chlorine levels in the atmosphere are slowly beginning to decrease. CHEM will be able to determine whether the stratospheric ozone layer is now recovering, as predicted by scientific models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chenggong; Wang, Congcong; Kauppi, John
2015-08-28
Ultra-thin layer molybdenum oxide doping of fullerene has been investigated using ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS). The highest occupied molecular orbital (HOMO) can be observed directly with UPS. It is observed that the Fermi level position in fullerene is modified by ultra-thin-layer molybdenum oxide doping, and the HOMO onset is shifted to less than 1.3 eV below the Fermi level. The XPS results indicate that charge transfer was observed from the C{sub 60} to MoO{sub x} and Mo{sup 6+} oxides is the basis as hole dopants.
Oxidation preventative capping layer for deep-ultra-violet and soft x-ray multilayers
Prisbrey, Shon T.
2004-07-06
The invention uses iridium and iridium compounds as a protective capping layer on multilayers having reflectivity in the deep ultra-violet to soft x-ray regime. The iridium compounds can be formed in one of two ways: by direct deposition of the iridium compound from a prepared target or by depositing a thin layer (e.g., 5-50 angstroms) of iridium directly onto an element. The deposition energy of the incoming iridium is sufficient to activate the formation of the desired iridium compound. The compounds of most interest are iridium silicide (IrSi.sub.x) and iridium molybdenide (IrMo.sub.x).
A boron and gallium co-doped ZnO intermediate layer for ZnO/Si heterojunction diodes
NASA Astrophysics Data System (ADS)
Lu, Yuanxi; Huang, Jian; Li, Bing; Tang, Ke; Ma, Yuncheng; Cao, Meng; Wang, Lin; Wang, Linjun
2018-01-01
ZnO (Zinc oxide)/Si (Silicon) heterojunctions were prepared by depositing n-type ZnO films on p-type single crystal Si substrates using magnetron sputtering. A boron and gallium co-doped ZnO (BGZO) high conductivity intermediate layer was deposited between aurum (Au) electrodes and ZnO films. The influence of the BGZO layer on the properties of Au/ZnO contacts and the performance of ZnO/Si heterojunctions was investigated. The results show an improvement in contact resistance by introducing the BGZO layer. Compared with the ZnO/Si heterojunction, the BGZO/ZnO/Si heterojunction exhibits a larger forward current, a smaller turn-on voltage and higher ratio of ultraviolet (UV) photo current/dark current.
2000-01-31
Ten-year-old Jonathan Pierce (second from right), who is garbed in a protective cooling suit, without the helmet, which was designed by NASA, poses with (left to right) NASA Administrator Dan Goldin, Mrs. Goldin, and astronaut Doug Wheelock. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS-99
2000-01-31
Ten-year-old Jonathan Pierce (second from right), who is garbed in a protective cooling suit, without the helmet, which was designed by NASA, poses with (left to right) NASA Administrator Dan Goldin, Mrs. Goldin, and astronaut Doug Wheelock. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS-99
STS-95 Payload Specialist Mukai poses with NASDA president
NASA Technical Reports Server (NTRS)
1998-01-01
STS-95 Payload Specialist Chiaki Mukai, M.D. (center), with the National Space Development Agency of Japan (NASDA), poses for a photograph with NASDA President Isao Uchida (left). Behind her at the right is a representative of the European Space Agency (ESA). Mukai was one of a crew of seven aboard orbiter Discovery, which landed at KSC at 12:04 p.m. EST, after a successful mission spanning nine days and 3.6 million miles. The other crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialists Stephen K. Robinson; Scott E. Parazynski and Pedro Duque of Spain, with the European Space Agency; and Payload Specialist John H. Glenn Jr., senator from Ohio. The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.
STS-95 Payload Specialist Glenn and his wife pose before their return flight to JSC
NASA Technical Reports Server (NTRS)
1998-01-01
At the Skid Strip at Cape Canaveral Air Station, STS-95 Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts, poses with his wife Annie before their return flight to the Johnson Space Center in Houston, Texas. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The STS-95 crew also includes Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.
Tunnel-injected sub-260 nm ultraviolet light emitting diodes
NASA Astrophysics Data System (ADS)
Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; Bajaj, Sanyam; Allerman, Andrew A.; Moseley, Michael W.; Armstrong, Andrew M.; Rajan, Siddharth
2017-05-01
We report on tunnel-injected deep ultraviolet light emitting diodes (UV LEDs) configured with a polarization engineered Al0.75Ga0.25 N/In0.2Ga0.8 N tunnel junction structure. Tunnel-injected UV LED structure enables n-type contacts for both bottom and top contact layers. However, achieving Ohmic contact to wide bandgap n-AlGaN layers is challenging and typically requires high temperature contact metal annealing. In this work, we adopted a compositionally graded top contact layer for non-alloyed metal contact and obtained a low contact resistance of ρc = 4.8 × 10-5 Ω cm2 on n-Al0.75Ga0.25 N. We also observed a significant reduction in the forward operation voltage from 30.9 V to 19.2 V at 1 kA/cm2 by increasing the Mg doping concentration from 6.2 × 1018 cm-3 to 1.5 × 1019 cm-3. Non-equilibrium hole injection into wide bandgap Al0.75Ga0.25 N with Eg>5.2 eV was confirmed by light emission at 257 nm. This work demonstrates the feasibility of tunneling hole injection into deep UV LEDs and provides a structural design towards high power deep-UV emitters.
Deterioration of reflecting coatings by intermetallic diffusion.
Hunter, W R; Mikes, T L; Hass, G
1972-07-01
Gold diffraction gratings overcoated with Al + MgF(2) to increase their efficiency in the vacuum ultraviolet suffered a severe loss in efficiency within six months to a year after coating; for example, from 50% to 2% at lambda1216 A. The cause of this loss was assumed to be interdiffusion of Au and Al; therefore, a more complete study of Au-Al film combinations was performed. The coatings were aged at room and elevated temperatures. Reflectance measurements were made in the visible and vacuum ultraviolet spectral regions. For wavelengths longer than lambda900 A, the measurements show very little change until the diffusion boundary reaches the penetration depth of the radiation. If Al is the first surface layer, however, reflectance measurements at lambda584 A permit measuring the progress of the diffusion boundary toward the Al surface because of the low absorptance of Al at this wavelength. Interdiffusion can be effectively eliminated by the use of thin dielectric layers uch as SiO and the natural oxide of Al. Such protected coatings have been exposed for one week at a temperature of 170 degrees C with no visible sign of diffusion, whereas a similar coating without the barrier layer would become useless in less than 1 h. Some preliminary studies have been made with Pt-Al film combinations.
NASA Astrophysics Data System (ADS)
Chen, Miin-Jang; Yang, Jer-Ren; Shiojiri, Makoto
2012-07-01
We have investigated ZnO-based light-emitting diodes (LEDs) fabricated by atomic layer deposition (ALD), demonstrating that ALD is one of the noteworthy techniques to prepare high-quality ZnO required for ultraviolet (UV) photonic devices. Here, we review our recent investigations on different ZnO-based heterojunction LEDs such as n-ZnO/p-GaN LEDS, n-ZnO:Al/ZnO nanodots-SiO2 composite/p-GaN LEDS, n-ZnO/ZnO nanodots-SiO2 composite/p-AlGaN LEDs, n-ZnO:Al/i-ZnO/p-SiC(4H) LEDs, and also on ZnO-based nanostructures including ZnO quantum dots embedded in SiO2 nanoparticle layer, ZnO nanopillars on sapphire substrates, Al-doped ZnO films on sapphire substrate and highly (0 0 0 1)-oriented ZnO films on amorphous glass substrate. The latest investigation also demonstrated p-type ZnO:P films prepared on amorphous silica substrates, which allow us to fabricate ZnO-based homojunction LEDs. These devices and structures were studied by x-ray diffraction and various analytical electron microscopy observations as well as electric and electro-optical measurements.
ERIC Educational Resources Information Center
Novak, Igor
1997-01-01
Provides a description of an experiment in which students use a standard ultraviolet and intense blue (UV/VIS) spectrophotometer to measure the amount and energy of light. Explains how a simple measurement of the transmission spectrum of sunglasses can reveal differences between brands and can illustrate the destruction of the earth's ozone layer.…
Thin-film ultraviolet detector and spectrometer
NASA Technical Reports Server (NTRS)
Lewicki, G. W.; Maserjian, J.
1972-01-01
Typical metal-insulator-metal detector device is formed on quartz substrate. Base electrode is 3 to 6 nm aluminum layer, overcoated with 3 to 6 nm aluminum oxide or aluminum nitride, and capped with counter electrode of gold, lead, magnesium, or aluminum. Photoelectric yield data are given for Al-AlN-Au structure.
Changes in the ozone layer over the past two decades have resulted in increases in solar ultraviolet (UV) radiation that reaches the surface of aquatic environments. Recent studies have demonstrated that these UV increases cause changes in photochemical reactions that affect the...
Skyglow effects in UV and visible spectra: Radiative fluxes
NASA Astrophysics Data System (ADS)
Kocifaj, Miroslav; Solano Lamphar, Hector Antonio
2013-09-01
Several studies have tried to understand the mechanisms and effects of radiative transfer under different night-sky conditions. However, most of these studies are limited to the various effects of visible spectra. Nevertheless, the invisible parts of the electromagnetic spectrum can pose a more profound threat to nature. One visible threat is from what is popularly termed skyglow. Such skyglow is caused by injudiciously situated or designed artificial night lighting systems which degrade desired sky viewing. Therefore, since lamp emissions are not limited to visible electromagnetic spectra, it is necessary to consider the complete spectrum of such lamps in order to understand the physical behaviour of diffuse radiation at terrain level. In this paper, the downward diffuse radiative flux is computed in a two-stream approximation and obtained ultraviolet spectral radiative fluxes are inter-related with luminous fluxes. Such a method then permits an estimate of ultraviolet radiation if the traditionally measured illuminance on a horizontal plane is available. The utility of such a comparison of two spectral bands is shown, using the different lamp types employed in street lighting. The data demonstrate that it is insufficient to specify lamp type and its visible flux production independently of each other. Also the UV emissions have to be treated by modellers and environmental scientists because some light sources can be fairly important pollutants in the near ultraviolet. Such light sources can affect both the living organisms and ambient environment.
SiC Optically Modulated Field-Effect Transistor
NASA Technical Reports Server (NTRS)
Tabib-Azar, Massood
2009-01-01
An optically modulated field-effect transistor (OFET) based on a silicon carbide junction field-effect transistor (JFET) is under study as, potentially, a prototype of devices that could be useful for detecting ultraviolet light. The SiC OFET is an experimental device that is one of several devices, including commercial and experimental photodiodes, that were initially evaluated as detectors of ultraviolet light from combustion and that could be incorporated into SiC integrated circuits to be designed to function as combustion sensors. The ultraviolet-detection sensitivity of the photodiodes was found to be less than desired, such that it would be necessary to process their outputs using high-gain amplification circuitry. On the other hand, in principle, the function of the OFET could be characterized as a combination of detection and amplification. In effect, its sensitivity could be considerably greater than that of a photodiode, such that the need for amplification external to the photodetector could be reduced or eliminated. The experimental SiC OFET was made by processes similar to JFET-fabrication processes developed at Glenn Research Center. The gate of the OFET is very long, wide, and thin, relative to the gates of typical prior SiC JFETs. Unlike in prior SiC FETs, the gate is almost completely transparent to near-ultraviolet and visible light. More specifically: The OFET includes a p+ gate layer less than 1/4 m thick, through which photons can be transported efficiently to the p+/p body interface. The gate is relatively long and wide (about 0.5 by 0.5 mm), such that holes generated at the body interface form a depletion layer that modulates the conductivity of the channel between the drain and the source. The exact physical mechanism of modulation of conductivity is a subject of continuing research. It is known that injection of minority charge carriers (in this case, holes) at the interface exerts a strong effect on the channel, resulting in amplification of the photon-detection signal. A family of operating curves characterizing the OFET can be generated in a series of measurements performed at different intensities of incident ultraviolet light.
Composite metal foil and ceramic fabric materials
Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.
1992-03-24
The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.
Ultraviolet emission enhancement in ZnO thin films modified by nanocrystalline TiO2
NASA Astrophysics Data System (ADS)
Zheng, Gaige; Lu, Xi; Qian, Liming; Xian, Fenglin
2017-05-01
In this study, nanocrystalline TiO2 modified ZnO thin films were prepared by electron beam evaporation. The structural, morphological and optical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV-visible spectroscopy, fluorescence spectroscopy, respectively. The composition of the films was examined by energy dispersive X-ray spectroscopy (EDX). The photoluminescent spectrum shows that the pure ZnO thin film exhibits an ultraviolet (UV) emission peak and a strong green emission band. Surface analysis indicates that the ZnO thin film contains many oxygen vacancy defects on the surface. After the ZnO thin film is modified by the nanocrystalline TiO2 layer, the UV emission of ZnO is largely enhanced and the green emission is greatly suppressed, which suggests that the surface defects such as oxygen vacancies are passivated by the TiO2 capping layer. As for the UV emission enhancement of the ZnO thin film, the optimized thickness of the TiO2 capping layer is ∼16 nm. When the thickness is larger than 16 nm, the UV emission of the ZnO thin film will decrease because the TiO2 capping layer absorbs most of the excitation energy. The UV emission enhancement in the nanocrystalline TiO2 modified ZnO thin film can be attributed to surface passivation and flat band effect.
Understanding the Early Evolution of M dwarf Extreme Ultraviolet Radiation
NASA Astrophysics Data System (ADS)
Peacock, Sarah; Barman, Travis; Shkolnik, Evgenya
2015-11-01
The chemistry and evolution of planetary atmospheres depends on the evolution of high-energy radiation emitted by its host star. High levels of extreme ultraviolet (EUV) radiation can drastically alter the atmospheres of terrestrial planets through ionizing, heating, expanding, chemically modifying and eroding them during the first few billion years of a planetary lifetime. While there is evidence that stars emit their highest levels of far and near ultraviolet (FUV; NUV) radiation in the earliest stages of their evolution, we are currently unable to directly measure the EUV radiation. Most previous stellar atmosphere models under-predict FUV and EUV emission from M dwarfs; here we present new models for M stars that include prescriptions for the hot, lowest density atmospheric layers (chromosphere, transition region and corona), from which this radiation is emitted. By comparing our model spectra to GALEX near and far ultraviolet fluxes, we are able to predict the evolution of EUV radiation for M dwarfs from 10 Myr to a few Gyr. This research is the next major step in the HAZMAT (HAbitable Zones and M dwarf Activity across Time) project to analyze how the habitable zone evolves with the evolving properties of stellar and planetary atmospheres.
Forced vibrations of a two-layered shell in the case of viscous resistance
NASA Astrophysics Data System (ADS)
Aghalovyan, L. A.; Ghulghazaryan, L. G.
2018-04-01
Forced vibrations of a two-layered orthotropic shell are studied in the case of viscous resistance in the lower layer of the shell. Two versions of spatial boundary conditions on the upper surface of the shell are posed, and the displacement vector is given on the lower surface. An asymptotic method is used to solve the corresponding dynamic equations and relations of the three-dimensional problem of elasticity. The amplitudes of the forced vibrations are determined, and the resonance conditions are established.
Multispectral embedding-based deep neural network for three-dimensional human pose recovery
NASA Astrophysics Data System (ADS)
Yu, Jialin; Sun, Jifeng
2018-01-01
Monocular image-based three-dimensional (3-D) human pose recovery aims to retrieve 3-D poses using the corresponding two-dimensional image features. Therefore, the pose recovery performance highly depends on the image representations. We propose a multispectral embedding-based deep neural network (MSEDNN) to automatically obtain the most discriminative features from multiple deep convolutional neural networks and then embed their penultimate fully connected layers into a low-dimensional manifold. This compact manifold can explore not only the optimum output from multiple deep networks but also the complementary properties of them. Furthermore, the distribution of each hierarchy discriminative manifold is sufficiently smooth so that the training process of our MSEDNN can be effectively implemented only using few labeled data. Our proposed network contains a body joint detector and a human pose regressor that are jointly trained. Extensive experiments conducted on four databases show that our proposed MSEDNN can achieve the best recovery performance compared with the state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Huang, Siya; Matsubara, Kohei; Cheng, Jing; Li, Heping; Pan, Wei
2013-09-01
Precisely controlled Ni-doped SnO2 (NSO) nanobelt arrays are synthesized and assembled via electrospinning. In comparison to pristine SnO2 nanobelts, enhanced photosensitivity (˜103) as well as recovery speed (˜1 s) is obtained in NSO nanobelts. The mechanism is clarified by the compensation effect of acceptor impurity Ni, which not only promotes the oxygen-surface interaction but also introduces trapping centers in SnO2 matrix. The reduced grain size (˜4 nm) along with increased depletion layer thickness also benefits the photosensitivity of NSO nanobelts. These improved photoresponse properties make the NSO nanobelt a promising candidate for high-performance ultraviolet detectors.
NASA Technical Reports Server (NTRS)
Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.
2013-01-01
In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).
Forrest, Scott R; Elmore, Bill B; Palmer, James D
2005-01-01
Urease has been immobilized and layered onto the walls of manufactured silicon microchannels. Enzyme immobilization was performed using layer-by-layer nano self-assembly. Alternating layers of oppositely charged polyelectrolytes, with enzyme layers "encased" between them, were deposited onto the walls of the silicon microchannels. The polycations used were polyethylenimine (PEI), polydiallyldimethylammonium (PDDA), and polyallylamine (PAH). The polyanions used were polystyrenesulfonate (PSS) and polyvinylsulfate (PVS). The activity of the immobilized enzyme was tested by pumping a 1 g/L urea solution through the microchannels at various flow rates. Effluent concentration was measured using an ultraviolet/visible spectrometer by monitoring the absorbance of a pH sensitive dye. The architecture of PEI/PSS/PEI/urease/PEI with single and multiple layers of enzyme demonstrated superior performance over the PDDA and PAH architectures. The precursor layer of PEI/PSS demonstrably improved the performance of the reactor. Conversion rates of 70% were achieved at a residence time of 26 s, on d 1 of operation, and >50% at 51 s, on d 15 with a six-layer PEI/urease architecture.
NASA Astrophysics Data System (ADS)
Simpson, J. M.; Smail, Ian; Wang, Wei-Hao; Riechers, D.; Dunlop, J. S.; Ao, Y.; Bourne, N.; Bunker, A.; Chapman, S. C.; Chen, Chian-Chou; Dannerbauer, H.; Geach, J. E.; Goto, T.; Harrison, C. M.; Hwang, H. S.; Ivison, R. J.; Kodama, Tadayuki; Lee, C.-H.; Lee, H.-M.; Lee, M.; Lim, C.-F.; Michałowski, M. J.; Rosario, D. J.; Shim, H.; Shu, X. W.; Swinbank, A. M.; Tee, W.-L.; Toba, Y.; Valiante, E.; Wang, Junxian; Zheng, X. Z.
2017-07-01
The identification of high-redshift, massive galaxies with old stellar populations may pose challenges to some models of galaxy formation. However, to securely classify a galaxy as quiescent, it is necessary to exclude significant ongoing star formation, something that can be challenging to achieve at high redshifts. In this Letter, we analyze deep ALMA/870 μm and SCUBA-2/450 μm imaging of the claimed “post-starburst” galaxy ZF 20115 at z = 3.717 that exhibits a strong Balmer break and absorption lines. The rest-frame far-infrared imaging identifies a luminous starburst 0.″4 ± 0.″1 (˜3 kpc in projection) from the position of the ultraviolet/optical emission and is consistent with lying at the redshift of ZF 20115. The star-forming component, with an obscured star formation rate of {100}-70+15 {M}⊙ {{yr}}-1, is undetected in the rest-frame ultraviolet but contributes significantly to the lower angular resolution photometry at rest-frame wavelengths ≳3500 Å. This contribution from the obscured starburst, especially in the Spitzer/IRAC wavebands, significantly complicates the determination of a reliable stellar mass for the ZF 20015 system, and we conclude that this source does not pose a challenge to current models of galaxy formation. The multi-wavelength observations of ZF 20115 unveil a complex system with an intricate and spatially varying star formation history. ZF 20115 demonstrates that understanding high-redshift obscured starbursts will only be possible with multi-wavelength studies that include high-resolution observations, available with the James Webb Space Telescope, at mid-infrared wavelengths.
Electrochromic device containing metal oxide nanoparticles and ultraviolet blocking material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Guillermo; Koo, Bonil; Gregoratto, Ivano
An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant. The electrochromic device also includes nanoparticles containing one or more transparent conducting oxide (TCO), a solid state electrolyte, a counter electrode, and at least one protective layer to prevent degradation of the one or more nanostructured transition metal oxide bronze. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) and visible radiation as a function of an applied voltage to the device.
Alkali metal for ultraviolet band-pass filter
NASA Technical Reports Server (NTRS)
Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)
1993-01-01
An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.
XUV generation from the interaction of pico- and nanosecond laser pulses with nanostructured targets
NASA Astrophysics Data System (ADS)
Barte, Ellie Floyd; Lokasani, Ragava; Proska, Jan; Stolcova, Lucie; Maguire, Oisin; Kos, Domagoj; Sheridan, Paul; O'Reilly, Fergal; Sokell, Emma; McCormack, Tom; O'Sullivan, Gerry; Dunne, Padraig; Limpouch, Jiri
2017-05-01
Laser-produced plasmas are intense sources of XUV radiation that can be suitable for different applications such as extreme ultraviolet lithography, beyond extreme ultraviolet lithography and water window imaging. In particular, much work has focused on the use of tin plasmas for extreme ultraviolet lithography at 13.5 nm. We have investigated the spectral behavior of the laser produced plasmas formed on closely packed polystyrene microspheres and porous alumina targets covered by a thin tin layer in the spectral region from 2.5 to 16 nm. Nd:YAG lasers delivering pulses of 170 ps (Ekspla SL312P )and 7 ns (Continuum Surelite) duration were focused onto the nanostructured targets coated with tin. The intensity dependence of the recorded spectra was studied; the conversion efficiency (CE) of laser energy into the emission in the 13.5 nm spectral region was estimated. We have observed an increase in CE using high intensity 170 ps Nd:YAG laser pulses as compared with a 7 ns pulse.
Zhang, Kai; Ding, Jia; Lou, Zheng; Chai, Ruiqing; Zhong, Mianzeng; Shen, Guozhen
2017-10-19
Heterostructured ZnS/InP nanowires, composed of single-crystalline ZnS nanowires coated with a layer of InP shell, were synthesized via a one-step chemical vapor deposition process. As-grown heterostructured ZnS/InP nanowires exhibited an ultrahigh I on /I off ratio of 4.91 × 10 3 , a high photoconductive gain of 1.10 × 10 3 , a high detectivity of 1.65 × 10 13 Jones and high response speed even in the case of very weak ultraviolet light illumination (1.87 μW cm -2 ). The values are much higher than those of previously reported bare ZnS nanowires owing to the formation of core/shell heterostructures. Flexible ultraviolet photodetectors were also fabricated with the heterostructured ZnS/InP nanowires, which showed excellent mechanical flexibility, electrical stability and folding endurance besides excellent photoresponse properties. The results elucidated that the heterostructured ZnS/InP nanowires could find good applications in next generation flexible optoelectronic devices.
Lu, Yanghua; Wu, Zhiqian; Xu, Wenli; Lin, Shisheng
2016-12-02
A ZnO quantum dot photo-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity of more than 1915 A W -1 and detectivity of more than 1.02 × 10 13 Jones (Jones = cm Hz 1/2 W -1 ) has been demonstrated. The interfaced h-BN layer increases the barrier height at the graphene/GaN heterojunction, which decreases the dark current and improves the on/off current ratio of the device. The photo-doping effect increases the barrier height and carrier concentration at the graphene/h-BN/GaN heterojunction, thus the responsivity is improved from 1473 A W -1 to 1915 A W -1 and the detectivity is improved from 5.8 × 10 12 to 1.0 × 10 13 Jones. Moreover, all of the responsivity and detectivity values are the highest values among all the graphene-based ultraviolet photodetectors.
Matsuda, Yu; Nakahara, Yoshio; Michiura, Daisuke; Uno, Kazuyuki; Tanaka, Ichiro
2016-04-01
Polysilsesquioxane (PSQ) is a low-temperature curable polymer that is compatible with low-cost plastic substrates. We cured PSQ gate dielectric layers by irradiation with ultraviolet light at ~60 °C, and used them for 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) thin film transistors (TFTs). The fabricated TFTs have shown the maximum and average hole mobility of 1.3 and 0.78 ± 0.3 cm2V-1s-1, which are comparable to those of the previously reported transistors using single-crystalline TIPS-pentacene micro-ribbons for their active layers and thermally oxidized SiO2 for their gate dielectric layers. Itis therefore demonstrated that PSQ is a promising polymer gate dielectric material for low-cost organic TFTs.
Flexible, liquid core light guide with focusing and light shaping attachments
Wojcik, Randolph Frank; Majewski, Stanislaw; Zorn, Carl John; Kross, Brian
1999-01-01
A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. The end closures include a metal crimping arrangement that utilizes two layers of deformable materials to prevent cracking of endplugs.
Silicone Coating on Polyimide Sheet
NASA Technical Reports Server (NTRS)
Park, J. J.
1985-01-01
Silicone coatings applied to polyimide sheeting for variety of space-related applications. Coatings intended to protect flexible substrates of solar-cell blankets from degradation by oxygen atoms, electrons, plasmas, and ultraviolet light in low Earth orbit and outer space. Since coatings are flexible, generally useful in forming flexible laminates or protective layers on polyimide-sheet products.
[Most common skin disorders caused by excessive exposure to sunlight].
Zitás, Éva; Mészáros, Judit
2016-01-17
The healing properties of sunlight has been known for millennia, however the gradual deterioration of the ozone layer and the increased use of sun tanning beds in recent decades are causing an increase in skin damaging ultraviolet exposure. In this article the most common photodermatoses and the principles of their treatments are reviewed.
Changes in the ozone layer over the past three decades have resulted in increases in solar UV-B radiation (280-315 nm) that reach the surface of aquatic environments. These changes have been accompanied by unprecedented changes in temperature and precipitation patterns around the...
NASA Astrophysics Data System (ADS)
Kwon, M. R.; Park, T. H.; Lee, T. H.; Lee, B. R.; Kim, T. G.
2018-04-01
We propose a design for highly efficient AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) using a heart-shaped graded Al composition electron-blocking layer (EBL). This novel structure reduced downward band bending at the interface between the last quantum barrier and the EBL and flattened the electrostatic field in the interlayer between the barriers of the multi-quantum barrier EBL. Consequently, electron leakage was significantly suppressed and hole injection efficiency was found to have improved. The parameter values of simulation were extracted from the experimental data of the reference DUV LEDs. Using the SimuLED, we compared the electrical and optical properties of three structures with different Al compositions in the active region and the EBL. The internal quantum efficiency of the proposed structure was shown to exceed those of the reference DUV LEDs by a factor of 1.9. Additionally, the output power at 20 mA was found to increase by a factor of 2.1.
Thermal conduction properties of Mo/Si multilayers for extreme ultraviolet optics
NASA Astrophysics Data System (ADS)
Bozorg-Grayeli, Elah; Li, Zijian; Asheghi, Mehdi; Delgado, Gil; Pokrovsky, Alexander; Panzer, Matthew; Wack, Daniel; Goodson, Kenneth E.
2012-10-01
Extreme ultraviolet (EUV) lithography requires nanostructured optical components, whose reliability can be influenced by radiation absorption and thermal conduction. Thermal conduction analysis is complicated by sub-continuum electron and phonon transport and the lack of thermal property data. This paper measures and interprets thermal property data, and their evolution due to heating exposure, for Mo/Si EUV mirrors with 6.9 nm period and Mo/Si thickness ratios of 0.4/0.6 and 0.6/0.4. We use time-domain thermoreflectance and the 3ω method to estimate the thermal resistance between the Ru capping layer and the Mo/Si multilayers (RRu-Mo/Si = 1.5 m2 K GW-1), as well as the out-of-plane thermal conductivity (kMo/Si 1.1 W m-1 K-1) and thermal anisotropy (η = 13). This work also reports the impact of annealing on thermal conduction in a co-deposited MoSi2 layer, increasing the thermal conductivity from 1.7 W m-1 K-1 in the amorphous phase to 2.8 W m-1 K-1 in the crystalline phase.
Ultraviolet optical properties of aluminum fluoride thin films deposited by atomic layer deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennessy, John, E-mail: john.j.hennessy@jpl.nasa.gov; Jewell, April D.; Balasubramanian, Kunjithapatham
2016-01-15
Aluminum fluoride (AlF{sub 3}) is a low refractive index material with promising optical applications for ultraviolet (UV) wavelengths. An atomic layer deposition process using trimethylaluminum and anhydrous hydrogen fluoride has been developed for the deposition of AlF{sub 3} at substrate temperatures between 100 and 200 °C. This low temperature process has resulted in thin films with UV-optical properties that have been characterized by ellipsometric and reflection/transmission measurements at wavelengths down to 200 nm. The optical loss for 93 nm thick films deposited at 100 °C was measured to be less than 0.2% from visible wavelengths down to 200 nm, and additional microstructural characterization demonstrates thatmore » the films are amorphous with moderate tensile stress of 42–105 MPa as deposited on silicon substrates. X-ray photoelectron spectroscopy analysis shows no signature of residual aluminum oxide components making these films good candidates for a variety of applications at even shorter UV wavelengths.« less
NASA Astrophysics Data System (ADS)
Maeda, Noritoshi; Yun, Joosun; Jo, Masafumi; Hirayama, Hideki
2018-04-01
Improving the light-extraction efficiency (LEE) is a major issue for the development of deep-ultraviolet (DUV) light-emitting diodes (LEDs). For this improvement, we introduced a transparent p-AlGaN contact layer and a reflective p-type electrode. In this work, we investigated the improvements obtained by replacing conventional Ni/Au p-type electrodes with highly reflective Ni/Mg and Rh electrodes. The external quantum efficiencies (EQEs) of 279 nm DUV LEDs were increased from 4.2 to 6.6% and from 3.4 to 4.5% by introducing Ni/Mg and Rh p-type electrodes, respectively. The LEE enhancement factors for the Ni/Mg and Rh electrodes were 1.6 and 1.4, respectively. These results are explained by the fact that the measured reflectances of the Ni/Mg and Rh electrodes were approximately 80 and 55%, respectively. Moreover, it was concluded that a passivation layer is required for Ni/Mg electrodes to prevent the degradation of the LED properties by the oxidation of Mg.
Superhydrophobicity of electrospray-synthesized fluorinated silica layers.
Kim, Eun-Kyeong; Lee, Chul-Sung; Kim, Sang Sub
2012-02-15
The preparation of superhydrophobic SiO(2) layers through a combination of a nanoscale surface roughness and a fluorination treatment is reported. Electrospraying SiO(2) precursor solutions that had been prepared by a sol-gel chemical route produced very rough SiO(2) layers. Subsequent fluorination treatment with a solution containing trichloro(1H,1H,2H,2H-perfluorooctyl)silane resulted in highly rough, fluorinated SiO(2) layers. The fluorinated rough SiO(2) layers exhibited excellent repellency toward various liquid droplets. In particular, water repellency of 168° was observed. On the bases of Cassie-Baxter and Young-Dupre equations, the surface fraction and the work of adhesion of the rough, fluorinated SiO(2) layers were respectively estimated. In light of the durability in water, ultraviolet resistance, and thermal stability, the superhydrophobic SiO(2) layers prepared in this work hold promise in a range of practical applications. Copyright © 2011 Elsevier Inc. All rights reserved.
Ranjkesh, Amid; Park, Min-Kyu; Park, Do Hyuk; Park, Ji-Sub; Choi, Jun-Chan; Kim, Sung-Hoon; Kim, Hak-Rin
2015-01-01
We propose a highly oriented photochromic dye film for an ultraviolet (UV)-sensing layer, where spirooxazine (SO) derivatives are aligned with the liquid crystalline UV-curable reactive mesogens (RM) using a guest-host effect. For effective electrical UV sensing with a simple metal-insulator-metal structure, our results show that the UV-induced switchable dipole moment amount of the SO derivatives is high; however, their tilting orientation should be controlled. Compared to the dielectric layer with the nearly planar SO dye orientation, the photochromic dielectric layer with the moderately tilted dye orientation shows more than seven times higher the UV-induced capacitance variation. PMID:26729116
Ultraviolet random lasing action from highly disordered n-AlN/p-GaN heterojunction.
Yang, H Y; Yu, S F; Wong, J I; Cen, Z H; Liang, H K; Chen, T P
2011-05-01
Room-temperature random lasing is achieved from an n-AlN/p-GaN heterojunction. The highly disordered n-AlN layer, which was deposited on p-GaN:Mg layer via radio frequency magnetron sputtering, acts as a scattering medium to sustain coherent optical feedback. The p-GaN:Mg layer grown on sapphire provides optical amplification to the scattered light propagating along the heterojunction. Hence, lasing peaks of line width less than 0.4 nm are emerged from the emission spectra at round 370 nm for the heterojunction under forward bias larger than 5.1 V. Lasing characteristics of the heterojunction are in agreement with the behavior of random lasers.
Rowland, F. Sherwood
2006-01-01
Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290–320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime—the ‘Antarctic ozone hole’. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules. PMID:16627294
Planar field emitters and high efficiency photocathodes based on ultrananocrystalline diamond
Sumant, Anirudha V.; Baryshev, Sergey V.; Antipov, Sergey P.
2016-08-16
A method of forming a field emitter comprises disposing a first layer on a substrate. The first layer is seeded with nanodiamond particles. The substrate with the first layer disposed thereon is maintained at a first temperature and a first pressure in a mixture of gases which includes nitrogen. The first layer is exposed to a microwave plasma to form a nitrogen doped ultrananocrystalline diamond film on the first layer, which has a percentage of nitrogen in the range of about 0.05 atom % to about 0.5 atom %. The field emitter has about 10.sup.12 to about 10.sup.14 emitting sites per cm.sup.2. A photocathode can also be formed similarly by forming a nitrogen doped ultrananocrystalline diamond film on a substrate similar to the field emitter, and then hydrogen terminating the film. The photocathode is responsive to near ultraviolet light as well as to visible light.
Planar Field Emitters and High Efficiency Photocathodes Based on Ultrananocrystalline Diamond
NASA Technical Reports Server (NTRS)
Sumant, Anirudha V. (Inventor); Baryshev, Sergey V. (Inventor); Antipov, Sergey P. (Inventor)
2016-01-01
A method of forming a field emitter comprises disposing a first layer on a substrate. The first layer is seeded with nanodiamond particles. The substrate with the first layer disposed thereon is maintained at a first temperature and a first pressure in a mixture of gases which includes nitrogen. The first layer is exposed to a microwave plasma to form a nitrogen doped ultrananocrystalline diamond film on the first layer, which has a percentage of nitrogen in the range of about 0.05 atom % to about 0.5 atom %. The field emitter has about 10.sup.12 to about 10.sup.14 emitting sites per cm.sup.2. A photocathode can also be formed similarly by forming a nitrogen doped ultrananocrystalline diamond film on a substrate similar to the field emitter, and then hydrogen terminating the film. The photocathode is responsive to near ultraviolet light as well as to visible light.
Chang'e 3 and Jade Rabbit's: observations and the landing zone
NASA Astrophysics Data System (ADS)
Ping, Jinsong
Chang’E-3 was launched and landed on the near side of the Moon in December 2013. It is realizing the 2nd phase of Chinese lunar scientific exploration projects. Together with the various in-situ optical observations around the landing sites, the mission carried 4 kinds of radio science experiments, cover the various lunar scientific disciplines as well as lunar surface radio astronomy studies. The key payloads onboard the lander and rover include the near ultraviolet telescope, extreme ultraviolet cameras, ground penetrating radar, very low frequency radio spectrum analyzer, which have not been used in earlier lunar landing missions. Optical spectrometer, Alpha Paticle X-ray spectrometer and Gama Ray spectrometer is also used. The mission is using extreme ultraviolet camera to observe the sun activity and geomagnetic disturbances on geo-space plasma layer of extreme ultraviolet radiation, studying space weather in the plasma layer role in the process; the mission also carries the first time lunar base optical astronomical observations. Most importantly, the topography, landforms and geological structure has been explored in detail. Additionally, the very precise Earth-Moon radio phase ranging technique was firstly tested and realized in this mission. It may increase the study of lunar dyanmics together with LLR technique. Similar to Luna-Glob landers, together with the VLBI radio beacons, the radio transponders are also set on the Chang’E-3. Transponder will receive the uplink X band radio wave transmitted from the two newly constructed Chinese deep space stations, where the high quality hydrogen maser atomic clocks have been used as local time and frequency standard. Radio science receivers have been developed by updating the multi-channel open loop Doppler receiver developed for VLBI and Doppler tracking in Yinghuo-1 and Phobos-Glob Martian missions. This experiment will improve the study of lunar dynamics, by means of measuring the lunar physical liberations precisely together with LLR data.
Cassini limb images of hazes in Saturn’s northern hemisphere
NASA Astrophysics Data System (ADS)
Sanchez-Lavega, Agustin M.; Garcia, Daniel; del Rio-Gaztelurrutia, Teresa; Garcia-Muñoz, Antonio; Perez-Hoyos, Santiago; Hueso, Ricardo
2017-10-01
We have used high resolution Cassini ISS images of the limb of Saturn to study the vertical distribution, altitude location, thickness and optical properties of the haze layers in the northern hemisphere (1°S to 82°N) in 2013 and 2015. The images cover an ample spectral range from the ultraviolet (UV1 filter, 264 nm) to the near infrared (CB3 filter, 938 nm) including methane absorption bands at 619 nm, 724 nm and 890 nm. Spatial resolution ranges from 1.6 to 13 km/pixel depending on wavelength and latitude. Three latitude bands were selected for the analysis according to the background zonal wind profile measured at cloud level and known dynamical activity: (a) North Polar Region encompassing the Hexagon latitude (74°N) (b) Mid-latitudes (45°N-52°N), and (3) Equator (1°N-3°S). The best defined haze structures and most extended haze layers were found at the latitude of the Hexagon. Up to 6-8 haze layers extending up to 400 km in altitude above clouds (in the pressure range from about 0.7 bar to 0.1 mbar) were detected. The vertical thickness of the layers is in the range 3-15 km compared to the scale height which is about 40 km. The spectral reflectivity is relatively uniform between the layers in the blue and red continuum wavelengths coming from the backward light scattering from the haze particles, while the brightness in the methane bands (relative to red continuum) and in the ultraviolet shows the effects of methane absorption and Rayleigh scattering by the gas, respectively. At mid-latitudes 3-4 haze layers are found spanning up to altitudes 200 km above the clouds. At the Equator 5-6 layers are found extending up to altitudes 250 km above the clouds (up to 2 mbar in pressure level) in a region of great dynamical interest because of the particular structure of the zonal winds and their known oscillations. We comment on the possible nature of the haze layers on the basis of condensing species and photochemistry.
NASA Administrator Dan Goldin greets 10-year-old VIP.
NASA Technical Reports Server (NTRS)
2000-01-01
Ten-year-old Jonathan Pierce (second from right), who is garbed in a protective cooling suit, without the helmet, which was designed by NASA, poses with (left to right) NASA Administrator Dan Goldin, Mrs. Goldin, and astronaut Doug Wheelock. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS- 99.
Synchrotron DUV luminescence micro-imaging to identify and map historical organic coatings on wood.
Echard, Jean-Philippe; Thoury, Mathieu; Berrie, Barbara H; Séverin-Fabiani, Tatiana; Vichi, Alessandra; Didier, Marie; Réfrégiers, Matthieu; Bertrand, Loïc
2015-08-07
Deep ultraviolet (DUV) photoluminescence (PL) microimaging is an emerging approach to characterise materials from historical artefacts (see M. Thoury, J.-P. Echard, M. Réfrégiers, B. H. Berrie, A. Nevin, F. Jamme and L. Bertrand, Anal. Chem., 2011, 83, 1737-1745). Here we further assess the potential of the method to access a deeper understanding of multi-layered varnishes coating wooden violins and lutes. Cross-section micro samples from important 16(th)- to 18(th)-century instruments were investigated using synchrotron PL microimaging and microspectroscopy. Excitation was performed in the DUV and the near ultraviolet (NUV) regions, and emission recorded from the DUV to the visible region, at a submicrometric spatial resolution. Intercomparison of microspectroscopy and microimaging was made possible by radiometrically correcting PL spectra both in excitation and emission. Based on an optimised selection of emission and excitation bands, the specific PL features of the organic binding materials allowed a vastly enhanced discrimination between collagen-based sizing layers and oil/resin-based layers compared to epiluminescence microscopy. PL therefore appears to be a very promising analytical tool to provide new insights into the diversity of surface coating techniques used by instrument-makers. More generally, our results demonstrate the potential of synchrotron PL for studying complex heterogeneous materials beyond the core application of the technique to life sciences.
Structural properties of Al/Mo/SiC multilayers with high reflectivity for extreme ultraviolet light.
Hu, Min-Hui; Le Guen, Karine; André, Jean-Michel; Jonnard, Philippe; Meltchakov, Evgueni; Delmotte, Franck; Galtayries, Anouk
2010-09-13
We present the results of an optical and chemical, depth and surface study of Al/Mo/SiC periodic multilayers, designed as high reflectivity coatings for the extreme ultra-violet (EUV) range. In comparison to the previously studied Al/SiC system, the introduction of Mo as a third material in the multilayer structure allows us to decrease In comparison to the previously studied Al/SiC system with a reflectance of 37% at near normal incidence around 17 nm, the introduction of Mo as a third material in the multilayer structure allows us to decrease the interfacial roughness and achieve an EUV reflectivity of 53.4%, measured with synchrotron radiation. This is the first report of a reflectivity higher than 50% around 17 nm. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and x-ray photoelectron spectroscopy (XPS) measurements are performed on the Al/Mo/SiC system in order to analyze the individual layers within the stack. ToF-SIMS and XPS results give evidence that the first SiC layer is partially oxidized, but the O atoms do not reach the first Mo and Al layers. We use these results to properly describe the multilayer stack and discuss the possible reasons for the difference between the measured and simulated EUV reflectivity values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yu-Chang; Lee, Hsin-Ying, E-mail: hylee@ee.ncku.edu.tw; Lee, Tsung-Hsin
2016-01-15
In this study, zinc oxide (ZnO) films were deposited on sapphire substrates using a plasma-enhanced atomic layer deposition system. Prior to deposition, the substrates were treated with hydrogen peroxide (H{sub 2}O{sub 2}) in order to increase nucleation on the initial sapphire surface and, thus, enhance the quality of deposited ZnO films. Furthermore, x-ray diffraction spectroscopy measurements indicated that the crystallinity of ZnO films was considerably enhanced by H{sub 2}O{sub 2} pretreatment, with the strongest (002) diffraction peak occurring for the film pretreated with H{sub 2}O{sub 2} for 60 min. X-ray photoelectron spectroscopy also was used, and the results indicated that amore » high number of Zn–O bonds was generated in ZnO films pretreated appropriately with H{sub 2}O{sub 2}. The ZnO film deposited on a sapphire substrate with H{sub 2}O{sub 2} pretreatment for 60 min was applied to metal–semiconductor–metal ultraviolet photodetectors (MSM-UPDs) as an active layer. The fabricated ZnO MSM-UPDs showed improvements in dark current and ultraviolet–visible rejection ratios (0.27 μA and 1.06 × 10{sup 3}, respectively) compared to traditional devices.« less
Su, Hui-Wen; Lee, Mon-Juan; Lee, Wei
2015-05-01
Liquid crystal (LC)-based biosensing has attracted much attention in recent years. We focus on improving the detection limit of LC-based immunoassay techniques by surface modification of the surfactant alignment layer consisting of dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP). The cancer biomarker CA125 was detected with an array of anti-CA125 antibodies immobilized on the ultraviolet (UV)-modified DMOAP monolayer. Compared with a pristine counterpart, UV irradiation enhanced the binding affinity of the CA125 antibody and reproducibility of immunodetection in which a detection limit of 0.01 ng∕ml for the cancer biomarker CA125 was achieved. Additionally, the optical texture observed under a crossed polarized microscope was correlated with the analyte concentration. In a proof-of-concept experiment using CA125-spiked human serum as the analyte, specific binding between the CA125 antigen and the anti-CA125 antibody resulted in a distinct and concentration-dependent optical response despite the high background caused by nonspecific binding of other biomolecules in the human serum. Results from this study indicate that UVmodification of the alignment layer, as well as detection with LCs of large birefringence, contributes to the enhanced performance of the label-free LC-based immunodetection, which may be considered a promising alternative to conventional label-based methods.
NASA Astrophysics Data System (ADS)
Ohmori, Yutaka; Kajii, Hirotake; Terashima, Daiki; Kusumoto, Yusuke
2013-03-01
Organic field effect transistors (OFETs) have been extensively studied for flexible electronics. The characteristics of poly(9,9-dioctylfluorenyl-2,7-dyl) (F8) modified by thermal or light are strongly dependent on the carrier transport and optical characteristics. We investigate all solution-processed OFETs with Ag nano-ink as gate electrodes patterned by Vacuum Ultraviolet (VUV) (172 nm). Bi-layer gate insulators of amorphous fluoro-polymer CYTOP (Asahi Glass Corp.) and poly(methylmethacrylate) (PMMA) were used. Top-gate-type OFETs with ITO source/drain electrode utilizing F8 or poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) as an active layer were fabricated, and investigated the carrier conduction and emission characteristic. Without VUV irradiation, both OFETs showed the ambipolar and light-emitting characteristics. On the other hand, F8 devices with VUV exhibited only p-type conduction. The quenching centers were generated in F8 layer by VUV irradiation, which are related to the electron trap sites at the interface. OFETs with F8BT showed both p- and n-type conduction even after VUV. F8BT suffers less damage by VUV and maintain light emission. Light emitting transistors were realized utilizing F8BT patterned by VUV irradiation. This research was partially supported financially by MEXT. The authors thank Harima Chemicals Inc. for providing Ag nano-ink.
Peng, Ping-cai; Wang, Yan; Liu, Long-yong; Zou, Yong-de; Liao, Xin-di; Liang, Juan-boo; Wu, Yin-bao
2016-05-01
The excretion rates and ecological risk to the environment of three commonly used veterinary antibiotics (VAs), amoxicillin, ciprofloxacin, and doxycycline, in layer hen manure during the application and withdrawal periods were investigated in a study consisting of a control group fed with VA-free basal diet and nine treatment groups consisted of three levels (200 mg/kg, 100 mg/kg, and 50 mg/kg) of amoxicillin (AMX), ciprofloxacin (CIP), or doxycycline (DOC). Each treatment group was replicated seven times with three layer hens per replication. Results of the study showed that the average excretion rates of AMX in the 200, 100, and 50 mg/kg groups were 67.88, 55.82, and 66.15%, respectively, while those for CIP and DOC were 47.84, 51.85, and 44.87% and 82.67, 94.39, and 95.72%, respectively. The concentrations of the above veterinary drugs in manure decreased sharply in the withdrawal period (7, 28, and 10 d, respectively), for AMX, DOC, and CIP. Neither AMX nor DOC was detected in the manure after the withdrawal period. In contrast to AMX and DOC, the excretion rate of CIP was significantly lower and thus had a longer residence time. Ecological risk study, estimated using hazard quotient values, showed that AMX in the 100 and 50 mg/kg groups posed no risk to the environment after d 1 of withdrawal, while CIP in the 50 mg/kg group posed no risk to the environment from d 5 of withdrawal. CIP in the 200 and 100 mg/kg groups required 10 d withdrawal in order to pose no risk to the environment. In contrast, DOC residue during withdrawal in the manure posed no risk to the environment, thus making it more environmentally safe. © 2016 Poultry Science Association Inc.
NASA Tech Briefs, February 2004
NASA Technical Reports Server (NTRS)
2004-01-01
Topics include: Simulation Testing of Embedded Flight Software; Improved Indentation Test for Measuring Nonlinear Elasticity; Ultraviolet-Absorption Spectroscopic Biofilm Monitor; Electronic Tongue for Quantitation of Contaminants in Water; Radar for Measuring Soil Moisture Under Vegetation; Modular Wireless Data-Acquisition and Control System; Microwave System for Detecting Ice on Aircraft; Routing Algorithm Exploits Spatial Relations; Two-Finger EKG Method of Detecting Evasive Responses; Updated System-Availability and Resource-Allocation Program; Routines for Computing Pressure Drops in Venturis; Software for Fault-Tolerant Matrix Multiplication; Reproducible Growth of High-Quality Cubic-SiC Layers; Nonlinear Thermoelastic Model for SMAs and SMA Hybrid Composites; Liquid-Crystal Thermosets, a New Generation of High-Performance Liquid-Crystal Polymers; Formulations for Stronger Solid Oxide Fuel-Cell Electrolytes; Simulation of Hazards and Poses for a Rocker-Bogie Rover; Autonomous Formation Flight; Expandable Purge Chambers Would Protect Cryogenic Fittings; Wavy-Planform Helicopter Blades Make Less Noise; Miniature Robotic Spacecraft for Inspecting Other Spacecraft; Miniature Ring-Shaped Peristaltic Pump; Compact Plasma Accelerator; Improved Electrohydraulic Linear Actuators; A Software Architecture for Semiautonomous Robot Control; Fabrication of Channels for Nanobiotechnological Devices; Improved Thin, Flexible Heat Pipes; Miniature Radioisotope Thermoelectric Power Cubes; Permanent Sequestration of Emitted Gases in the Form of Clathrate Hydrates; Electrochemical, H2O2-Boosted Catalytic Oxidation System; Electrokinetic In Situ Treatment of Metal-Contaminated Soil; Pumping Liquid Oxygen by Use of Pulsed Magnetic Fields; Magnetocaloric Pumping of Liquid Oxygen; Tailoring Ion-Thruster Grid Apertures for Greater Efficiency; and Lidar for Guidance of a Spacecraft or Exploratory Robot.
Tiny Ultraviolet Polarimeter for Earth Stratosphere from Space Investigation
NASA Astrophysics Data System (ADS)
Nevodovskyi, P. V.; Morozhenko, O. V.; Vidmachenko, A. P.; Ivakhiv, O.; Geraimchuk, M.; Zbrutskyi, O.
2015-09-01
One of the reasons for climate change (i.e., stratospheric ozone concentrations) is connected with the variations in optical thickness of aerosols in the upper sphere of the atmosphere (at altitudes over 30 km). Therefore, aerosol and gas components of the atmosphere are crucial in the study of the ultraviolet (UV) radiation passing upon the Earth. Moreover, a scrupulous study of aerosol components of the Earth atmosphere at an altitude of 30 km (i.e., stratospheric aerosol), such as the size of particles, the real part of refractive index, optical thickness and its horizontal structure, concentration of ozone or the upper border of the stratospheric ozone layer is an important task in the research of the Earth climate change. At present, the Main Astronomical Observatory of the National Academy of Sciences (NAS) of Ukraine, the National Technical University of Ukraine "KPI"and the Lviv Polytechnic National University are engaged in the development of methodologies for the study of stratospheric aerosol by means of ultraviolet polarimeter using a microsatellite. So fare, there has been created a sample of a tiny ultraviolet polarimeter (UVP) which is considered to be a basic model for carrying out space experiments regarding the impact of the changes in stratospheric aerosols on both global and local climate.
The budget of biologically active ultraviolet radiation in the earth-atmosphere system
NASA Technical Reports Server (NTRS)
Frederick, John E.; Lubin, Dan
1988-01-01
This study applies the concept of a budget to describe the interaction of solar ultraviolet (UV) radiation with the earth-atmosphere system. The wavelength ranges of interest are the biologically relevant UV-B between 280 and 320 nm and the UV-A from 32000 to 400 nm. The Nimbus 7 solar backscattered ultraviolet (SBUV) instrument provides measurements of total column ozone and information concerning cloud cover which, in combination with a simple model of radiation transfer, define the fractions of incident solar irradiance absorbed in the atmosphere, reflected to space, and absorbed at the ground. Results for the month of July quantify the contribution of fractional cloud cover and cloud optical thickness to the radiation budget's three components. Scattering within a thick cloud layer makes the downward radiation field at the cloud base more isotropic than is the case for clear skies. For small solar zenith angles, typical of summer midday conditions, the effective pathlength of this diffuse irradiance through tropospheric ozone is greater than that under clear-sky conditions. The result is an enhanced absorption of UV-B radiation in the troposphere during cloud-covered conditions. Major changes in global cloud cover or cloud optical thicknesses could alter the ultraviolet radiation received by the biosphere by an amount comparable to that predicted for long-term trends in ozone.
Phosphor-free, white-light LED under alternating-current operation.
Yao, Yu-Feng; Chen, Hao-Tsung; Su, Chia-Ying; Hsieh, Chieh; Lin, Chun-Han; Kiang, Yean-Woei; Yang, C C
2014-11-15
A light-emitting diode structure, consisting of a p-GaN layer, a CdZnO/ZnO quantum-well (QW) structure, a high-temperature-grown ZnO layer, and a GaZnO layer, is fabricated. Under forward bias, the device effectively emits green-yellow light, from the QW structure, at the rim of device mesa. Under reverse bias, electrons in the valence band of the p-GaN layer move into the conduction band of the GaZnO layer, through a QW-state-assisted tunneling process, to recombine with the injected holes in the GaZnO layer, for emitting yellow-red and shallow ultraviolet light over the entire mesa area. Also, carrier recombination in the p-GaN layer produces blue light. By properly designing the thickness of the high-temperature grown ZnO layer, the emission intensity under forward bias can be controlled such that, under alternating-current operation at 60 Hz, the spatial and spectral mixtures of the emitted lights of complementary colors, under forward and reverse biases, result in white light generation based on persistence of vision.
Flexible, liquid core light guide with focusing and light shaping attachments
Wojcik, R.F.; Majewski, S.; Zorn, C.J.; Kross, B.
1999-04-20
A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. The end closures include a metal crimping arrangement that utilizes two layers of deformable materials to prevent cracking of endplugs. 19 figs.
ERIC Educational Resources Information Center
Heidorn, Keith C.; Torrie, Bruce
As a result of the decline in the thickness of the atmospheric ozone layer, the surface of the Earth will be exposed to increased levels of solar ultraviolet B radiation. This radiation has been shown to have harmful effects for life on Earth. These include damage to plants, animals, and materials. It has also been linked to many human health…
Plasma-assisted oxide removal from ruthenium-coated EUV optics
NASA Astrophysics Data System (ADS)
Dolgov, A.; Lee, C. J.; Bijkerk, F.; Abrikosov, A.; Krivtsun, V. M.; Lopaev, D.; Yakushev, O.; van Kampen, M.
2018-04-01
An experimental study of oxide reduction at the surface of ruthenium layers on top of multilayer mirrors and thin Ru/Si films is presented. Oxidation and reduction processes were observed under conditions close to those relevant for extreme ultraviolet lithography. The oxidized ruthenium surface was exposed to a low-temperature hydrogen plasma, similar to the plasma induced by extreme ultraviolet radiation. The experiments show that hydrogen ions are the main reducing agent. Furthermore, the addition of hydrogen radicals increases the reduction rate beyond that expected from simple flux calculations. We show that low-temperature hydrogen plasmas can be effective for reducing oxidized top surfaces. Our proof-of-concept experiments show that an in situ, EUV-generated plasma cleaning technology is feasible.
Channel catfish response to ultraviolet-B radiation
Ewing, M.S.; Blazer, V.S.; Fabacher, D.L.; Little, E.E.; Kocan, K.M.
1999-01-01
Fingerling channel catfish Ictalurus punctatus exposed to simulated ultraviolet-B radiation at an average daily dose of 2.9 J/cm2 were quite sensitive to the radiation. After a 24-h exposure, thinning of the most dorsal epidermis frequently was accompanied by edema. Compared with epidermis of unexposed fish, mucous cells in exposed fish were less superficial and club cells were less numerous both dorsally and high on the lateral surface of the body. Sunburn cells with pyknotic nuclei were evident in the epidermis of exposed fish. Among fish exposed for 48 h, focal necrosis and sloughing of the outer epidermal layer were widespread. A methanol-extractable skin substance that is associated with resistance to sunburn in other fish species was not detected in channel catfish.
Li, Jyun-Yi; Chang, Sheng-Po; Hsu, Ming-Hung; Chang, Shoou-Jinn
2017-01-01
We investigated the electrical and optoelectronic properties of a magnesium zinc oxide thin-film phototransistor. We fabricate an ultraviolet phototransistor by using a wide-bandgap MgZnO thin film as the active layer material of the thin film transistor (TFT). The fabricated device demonstrated a threshold voltage of 3.1 V, on–off current ratio of 105, subthreshold swing of 0.8 V/decade, and mobility of 5 cm2/V·s in a dark environment. As a UV photodetector, the responsivity of the device was 3.12 A/W, and the rejection ratio was 6.55 × 105 at a gate bias of −5 V under 290 nm illumination. PMID:28772487
Li, Jyun-Yi; Chang, Sheng-Po; Hsu, Ming-Hung; Chang, Shoou-Jinn
2017-02-04
We investigated the electrical and optoelectronic properties of a magnesium zinc oxide thin-film phototransistor. We fabricate an ultraviolet phototransistor by using a wide-bandgap MgZnO thin film as the active layer material of the thin film transistor (TFT). The fabricated device demonstrated a threshold voltage of 3.1 V, on-off current ratio of 10⁵, subthreshold swing of 0.8 V/decade, and mobility of 5 cm²/V·s in a dark environment. As a UV photodetector, the responsivity of the device was 3.12 A/W, and the rejection ratio was 6.55 × 10⁵ at a gate bias of -5 V under 290 nm illumination.
Versatile alignment layer method for new types of liquid crystal photonic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finnemeyer, V.; Bryant, D.; Lu, L.
2015-07-21
Liquid crystal photonic devices are becoming increasingly popular. These devices often present a challenge when it comes to creating a robust alignment layer in pre-assembled cells. In this paper, we describe a method of infusing a dye into a microcavity to produce an effective photo-definable alignment layer. However, previous research on such alignment layers has shown that they have limited stability, particularly against subsequent light exposure. As such, we further describe a method of utilizing a pre-polymer, infused into the microcavity along with the liquid crystal, to provide photostability. We demonstrate that the polymer layer, formed under ultraviolet irradiation ofmore » liquid crystal cells, has been effectively localized to a thin region near the substrate surface and provides a significant improvement in the photostability of the liquid crystal alignment. This versatile alignment layer method, capable of being utilized in devices from the described microcavities to displays, offers significant promise for new photonics applications.« less
Curtailing Perovskite Processing Limitations via Lamination at the Perovskite/Perovskite Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Hest, Marinus F; Moore, David; Klein, Talysa
Standard layer-by-layer solution processing methods constrain lead-halide perovskite device architectures. The layer below the perovskite must be robust to the strong organic solvents used to form the perovskite while the layer above has a limited thermal budget and must be processed in nonpolar solvents to prevent perovskite degradation. To circumvent these limitations, we developed a procedure where two transparent conductive oxide/transport material/perovskite half stacks are independently fabricated and then laminated together at the perovskite/perovskite interface. Using ultraviolet-visible absorption spectroscopy, external quantum efficiency, X-ray diffraction, and time-resolved photoluminesence spectroscopy, we show that this procedure improves photovoltaic properties of the perovskite layer.more » Applying this procedure, semitransparent devices employing two high-temperature oxide transport layers were fabricated, which realized an average efficiency of 9.6% (maximum: 10.6%) despite series resistance limitations from the substrate design. Overall, the developed lamination procedure curtails processing constraints, enables new device designs, and affords new opportunities for optimization.« less
Clean Air Slots Amid Atmospheric Pollution
NASA Technical Reports Server (NTRS)
Hobbs, Peter V.
2002-01-01
This article investigates the mechanism for those layers in the atmosphere that are free of air borne pollution even though the air above and below them carry pollutants. Atmospheric subsidence is posed as a mechanism for this phenomenon.
Spin Hall driven domain wall motion in magnetic bilayers coupled by a magnetic oxide interlayer
NASA Astrophysics Data System (ADS)
Liu, Yang; Furuta, Masaki; Zhu, Jian-Gang Jimmy
2018-05-01
mCell, previously proposed by our group, is a four-terminal magnetoresistive device with isolated write- and read-paths for all-spin logic and memory applications. A mCell requires an electric-insulating magnetic layer to couple the spin Hall driven write-path to the magnetic free layer of the read-path. Both paths are magnetic layers with perpendicular anisotropy and their perpendicularly oriented magnetization needs to be maintained with this insertion layer. We have developed a magnetic oxide (FeOx) insertion layer to serve for these purposes. We show that the FeOx insertion layer provides sufficient magnetic coupling between adjacent perpendicular magnetic layers. Resistance measurement shows that this magnetic oxide layer can act as an electric-insulating layer. In addition, spin Hall driven domain wall motion in magnetic bi-layers coupled by the FeOx insertion layer is significantly enhanced compared to that in magnetic single layer; it also requires low voltage threshold that poses possibility for power-efficient device applications.
High performance CaS solar-blind ultraviolet photodiodes fabricated by seed-layer-assisted growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Qing Lin; Lai, Ying Hoi; Sou, Iam Keong, E-mail: phiksou@ust.hk
CaS, with a direct bandgap of 5.38 eV, is expected to be a strong candidate as the active-layer of high performance solar-blind UV photodiodes that have important applications in both civilian and military sectors. Here, we report that a seed-layer-assisted growth approach via molecular beam epitaxy can result in high crystalline quality rocksalt CaS thin films on zincblende GaAs substrates. The Au/CaS/GaAs solar-blind photodiodes demonstrated , more than five orders in its visible rejection power, a photoresponse of 36.8 mA/w at zero bias and a corresponding quantum efficiency as high as 19% at 235 nm.
Cumulus cloud venting of mixed layer ozone
NASA Technical Reports Server (NTRS)
Ching, J. K. S.; Shipley, S. T.; Browell, E. V.; Brewer, D. A.
1985-01-01
Observations are presented which substantiate the hypothesis that significant vertical exchange of ozone and aerosols occurs between the mixed layer and the free troposphere during cumulus cloud convective activity. The experiments utilized the airborne Ultra-Violet Differential Absorption Lidar (UV-DIAL) system. This system provides simultaneous range resolved ozone concentration and aerosol backscatter profiles with high spatial resolution. Evening transects were obtained in the downwind area where the air mass had been advected. Space-height analyses for the evening flight show the cloud debris as patterns of ozone typically in excess of the ambient free tropospheric background. This ozone excess was approximately the value of the concentration difference between the mixed layer and free troposphere determined from independent vertical soundings made by another aircraft in the afternoon.
Hydrogen-Helium shock Radiation tests for Saturn Entry Probes
NASA Technical Reports Server (NTRS)
Cruden, Brett A.
2016-01-01
This paper describes the measurement of shock layer radiation in Hydrogen/Helium mixtures representative of that encountered by probes entering the Saturn atmosphere. Normal shock waves are measured in Hydrogen-Helium mixtures (89:11% by volume) at freestream pressures between 13-66 Pa (0.1-0.5 Torr) and velocities from 20-30 km/s. Radiance is quantified from the Vacuum Ultraviolet through Near Infrared. An induction time of several centimeters is observed where electron density and radiance remain well below equilibrium. Radiance is observed in front of the shock layer, the characteristics of which match the expected diffusion length of Hydrogen.
The STS-95 crew poses with a Mercury capsule model before returning to JSC
NASA Technical Reports Server (NTRS)
1998-01-01
Before returning to the Johnson Space Center in Houston, Texas, members of the STS-95 crew pose with a model of a Mercury capsule following a media briefing at the Kennedy Space Center Press Site Auditorium . From left to right are Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); Pilot Steven W. Lindsey; Mission Commander Curtis L. Brown Jr.; Friendship 7; Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts; Mission Specialist Scott E. Parazynski; and Mission Specialist Pedro Duque, with the European Space Agency (ESA). Also on the crew is Mission Specialist and Payload Commander Stephen K. Robinson (not shown). The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.
John H. Glenn Jr. poses with his family after arriving at KSC for launch
NASA Technical Reports Server (NTRS)
1998-01-01
STS-95 Payload Specialist John H. Glenn Jr. (second from right), senator from Ohio, poses (left to right) with his son, David, daughter, Lyn, and (far right) his wife, Annie, after landing at Kennedy Space Center's Shuttle Landing Facility aboard a T-38 jet. Glenn and other crewmembers flew into KSC to make final preparations for launch. Targeted for liftoff at 2 p.m. on Oct. 29, the STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. The mission is expected to last 8 days, 21 hours and 49 minutes, and return to KSC on Nov. 7. The other STS-95 crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA).
Zhao, Jin Hui; Chen, Wei; Zhao, Yaqian; Liu, Cuiyun; Liu, Ranbin
2015-01-01
The occurrence of carbon-bacteria complexes in activated carbon filtered water has posed a public health problem regarding the biological safety of drinking water. The application of combined process of ultraviolet radiation and nanostructure titanium dioxide (UV/TiO2) photocatalysis for the disinfection of carbon-bacteria complexes were assessed in this study. Results showed that a 1.07 Lg disinfection rate can be achieved using a UV dose of 20 mJ cm(-2), while the optimal UV intensity was 0.01 mW cm(-2). Particle sizes ≥8 μm decreased the disinfection efficiency, whereas variation in particle number in activated carbon-filtered water did not significantly affect the disinfection efficiency. Photoreactivation ratio was reduced from 12.07% to 1.69% when the UV dose was increased from 5 mJ cm(-2) to 20 mJ cm(-2). Laboratory and on-site pilot-scale experiments have demonstrated that UV/TiO2 photocatalytic disinfection technology is capable of controlling the risk posed by carbon-bacteria complexes and securing drinking water safety.
Bogerd, Cornelis Peter; Langenberg, Johannes Pieter; DenHartog, Emiel A
2018-02-13
Armed forces typically have personal protective clothing (PPC) in place to offer protection against chemical, biological, radiological and nuclear (CBRN) agents. The regular soldier is equipped with permeable CBRN-PPC. However, depending on the operational task, these PPCs pose too much thermal strain to the wearer, which results in a higher risk of uncompensable heat stress. This study investigates the possibilities of adjustable CBRN-PPC, consisting of different layers that can be worn separately or in combination with each other. This novel concept aims to achieve optimization between protection and thermal strain during operations. Two CBRN-PPC (protective) layers were obtained from two separate manufacturers: (i) a next-to-skin (NTS) and (ii) a low-burden battle dress uniform (protective BDU). In addition to these layers, a standard (non-CBRN protective) BDU (sBDU) was also made available. The effect of combining clothing layers on the levels of protection were investigated with a Man-In-Simulant Test. Finally, a mechanistic numerical model was employed to give insight into the thermal burden of the evaluated CBRN-PPC concepts. Combining layers results in substantially higher protection that is more than the sum of the individual layers. Reducing the airflow on the protective layer closest to the skin seems to play an important role in this, since combining the NTS with the sBDU also resulted in substantially higher protection. As expected, the thermal strain posed by the different clothing layer combinations decreases as the level of protection decreases. This study has shown that the concept of adjustable protection and thermal strain through multiple layers of CBRN-PPC works. Adjustable CBRN-PPC allows for optimization of the CBRN-PPC in relation to the threat level, thermal environment, and tasks at hand in an operational setting. © The Author(s) 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
NASA Technical Reports Server (NTRS)
Newchurch, M. J.; Grams, G. W.; Cunnold, D. M.; Deluisi, J. J.
1987-01-01
Using a spatially weighted average for the stratospheric aerosol and gas experiment 1 (SAGE 1) events derived from an autocorrelation analysis, 337 colocated SAGE 1 and Umkehr ozone profiles are found. The total column ozone in layers two through nine measured by SAGE 1 is found to be 4.6 + or - 1.3 percent higher at the 95 percent confidence level than the approximate total column ozone measured by Umkehr. Average layer ozone differences indicate that most of this discrepancy resides in the lower layers. Intercomparison of SAGE 1, Nimbus 7 solar backscattered ultraviolet (SBUV), and Umkehr ozone at stations north of 30 deg indicates that, in layer six, Umkehr values are consistently higher than both SAGE 1 and SBUV by about 10 percent. In layer eight, SBUV ozone is higher than both SAGE 1 and SBUV by about 10 percent. In the upper stratosphere, the SAGE 1-Umkehr ozone differences are small for low stratospheric aerosol optical depth cases, but vary from -3 percent in layer six to -8 percent in layer nine for high optical depth cases.
Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.; ...
2017-07-31
Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.
Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less
Dry etching technologies for reflective multilayer
NASA Astrophysics Data System (ADS)
Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Kase, Yoshihisa; Yoshimori, Tomoaki; Muto, Makoto; Nonaka, Mikio; Iwami, Munenori
2012-11-01
We have developed a highly integrated methodology for patterning Extreme Ultraviolet (EUV) mask, which has been highlighted for the lithography technique at the 14nm half-pitch generation and beyond. The EUV mask is characterized as a reflective-type mask which is completely different compared with conventional transparent-type of photo mask. And it requires not only patterning of absorber layer without damaging the underlying multi reflective layers (40 Si/Mo layers) but also etching multi reflective layers. In this case, the dry etch process has generally faced technical challenges such as the difficulties in CD control, etch damage to quartz substrate and low selectivity to the mask resist. Shibaura Mechatronics ARESTM mask etch system and its optimized etch process has already achieved the maximal etch performance at patterning two-layered absorber. And in this study, our process technologies of multi reflective layers will be evaluated by means of optimal combination of process gases and our optimized plasma produced by certain source power and bias power. When our ARES™ is used for multilayer etching, the user can choose to etch the absorber layer at the same time or etch only the multilayer.
Yu, Lu; Li, Qiuxiang; Shi, Zhenzhen; Liu, Hao; Wang, Yaping; Wang, Fuzhi; Zhang, Bing; Dai, Songyuan; Lin, Jun; Tan, Zhan'ao
2016-01-13
The insertion of an appropriate interfacial buffer layer between the photoactive layer and the contact electrodes makes a great impact on the performance of polymer solar cells (PSCs). Ideal interfacial buffer layers could minimize the interfacial traps and the interfacial barriers caused by the incompatibility between the photoactive layer and the electrodes. In this work, we utilized solution-processed hafnium(IV) acetylacetonate (Hf(acac)4) as an effective cathode buffer layer (CBL) in PSCs to optimize the energy level alignment between the photoactive layer and the cathode contact, with the short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF) all simultaneously improved with Hf(acac)4 CBL, leading to enhanced power conversion efficiencies (PCEs). Ultraviolet photoemission spectroscopy (UPS) and scanning Kelvin probe microscopy (SKPM) were performed to confirm that the interfacial dipoles were formed with the same orientation direction as the built-in potential between the photoactive layer and Hf(acac)4 CBL, benefiting the exciton separation and electron transport/extraction. In addition, the optical characteristics and surface morphology of the Hf(acac)4 CBL were also investigated.
NASA Astrophysics Data System (ADS)
Komiya, Shinji; Sakamoto, Kouta; Ohtsu, Naofumi
2014-03-01
The present study investigated the effect of anodization time, in constant current mode, on the anodic oxide layer formed on titanium (Ti). Anodization of the Ti substrate was carried out in a 0.1 M (NH4)2SO4 aqueous solution with reaction times of various durations, after which the characteristics and photocatalytic activity were investigated in detail. The TiO2 layer fabricated in a short duration exhibited comparatively flat surface morphology and an anatase-type crystal structure. This layer acted as a photocatalyst only under ultraviolet light (UV) illumination. Upon prolonging the anodization, the layer structure changed drastically. The surface morphology became rough, and the crystal structure changed to rutile-type TiO2. Furthermore, the layer showed photocatalytic activity both under UV and visible light illumination. Further anodization increased the amount of methylene blue (MB) adsorbed on the surface, but did not cause additional change to the structure of the anodic layer. The surface morphology and crystal structure of the anodic layer were predominantly controlled by the anodization time; thus, the anodization time is an important parameter for controlling the characteristics of the anodic layer.
A Fast Responsive Ultraviolet Sensor from mSILAR-Processed Sn-ZnO
NASA Astrophysics Data System (ADS)
Thomas, Deepu; Vijayalakshmi, K. A.; Sadasivuni, Kishor Kumar; Thomas, Ajith; Ponnamma, Deepalekshmi; Cabibihan, John-John
2017-11-01
Microwave-assisted successive ionic layer adsorption and reaction was employed to synthesize Sn-ZnO (tin-doped zinc oxide), and its sensitivity to ultraviolet radiation is compared with zinc oxide (ZnO). The sensing films were made by the dip-coated method on an indium titanium oxide glass substrate, and the sensing performance was monitored using the 300-700 nm wavelength of UV-Vis light. Excellent sensitivity and recovery were observed for the Sn-doped ZnO sensor device, especially at 380 nm wavelength of ultraviolet (UV) light (response and recovery time 2.26 s and 8.63 s, respectively, at 5 V bias voltage). The variation in photocurrent with respect to dark and light illumination atmosphere was well illustrated based on the Schottky and inter-particle network effects. Doping of Sn on ZnO nanoparticles varied the surface roughness and crystallite size as observed from scanning electron microscopic and x-ray diffraction studies. Here, we demonstrate a simple and economical fabrication technique for designing a high-performance UV light sensor. The developed device works at room temperature with high durability and stability.
Ultraviolet Thomson Scattering from Direct-Drive Coronal Plasmas
NASA Astrophysics Data System (ADS)
Henchen, R. J.; Goncharov, V. N.; Michel, D. T.; Follett, R. K.; Katz, J.; Froula, D. H.
2013-10-01
Ultraviolet (λ4 ω = 263 nm) Thomson scattering (TS) was used to probe ion-acoustic waves (IAW's) and electron plasma waves (EPW's) from direct-drive coronal plasmas. Fifty-nine drive beams (λ3 ω = 351 nm) illuminate a spherical target with a radius of ~860 μm. Advances in the ultraviolet (UV) TS diagnostic at the Omega Laser Facility provide the ability to detect deep UV photons (~190 nm) and allow access to scattered light from EPW's propagating near the 3 ω quarter-critical surface (~2.5 × 1021 cm-3) . A series of experiments studied the effects of ablator materials on coronal plasma conditions. Electron temperatures and densities were measured from 150 μm to 400 μm from the initial target surface. Standard CH shells were compared to three-layered shells consisting of Si doped CH, Si, and Be. Early analysis indicates that these multilayered targets have less hot-electron energy as a result of higher electron temperature in the coronal plasma. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Ultraviolet Laser Lithography of Titania Photonic Crystals for Terahertz-Wave Modulation.
Kirihara, Soshu; Nonaka, Koki; Kisanuki, Shoichiro; Nozaki, Hirotoshi; Sakaguchi, Keito
2018-05-18
Three-dimensional (3D) microphotonic crystals with a diamond structure composed of titania microlattices were fabricated using ultraviolet laser lithography, and the bandgap properties in the terahertz (THz) electromagnetic-wave frequency region were investigated. An acrylic resin paste with titania fine particle dispersions was used as the raw material for additive manufacturing. By scanning a spread paste surface with an ultraviolet laser beam, two-dimensional solid patterns were dewaxed and sintered. Subsequently, 3D structures with a relative density of 97% were created via layer lamination and joining. A titania diamond lattice with a lattice constant density of 240 µm was obtained. The properties of the electromagnetic wave were measured using a THz time-domain spectrometer. In the transmission spectra for the Γ-X direction, a forbidden band was observed from 0.26 THz to 0.44 THz. The frequency range of the bandgap agreed well with calculated results obtained using the plane⁻wave expansion method. Additionally, results of a simulation via transmission-line modeling indicated that a localized mode can be obtained by introducing a plane defect between twinned diamond lattice structures.
High purity silica reflective heat shield development
NASA Technical Reports Server (NTRS)
Blome, J. C.; Drennan, D. N.; Schmitt, R. J.
1974-01-01
Measurements were made of reflectance in the vacuum ultraviolet down to 0.15 micron. Scattering coefficients (S) and absorption coefficients (K) were also measured. These coefficients express the optical properties and are used directly in a thermodynamic analysis for sizing a heat shield. The effect of the thin silica melt layer formed during entry was also studied from the standpoint of trapped radiant energy.
1951-12-15
be irradiated. ?A liquid filter consisting of a 1 cm layer of 5% CUSO4 was used to remove most of the infrared. F. Cell Counts n f. The...Protein sulfhydryl groups and the reversible inactivation of the enzyme „our ease. The reducing groups of egg albumin and of urease . Jt
Shan Jin; Nicole M. Stark; Laurent M. Matuana
2013-01-01
The effect of light stabilizerâs addition method into wood-plastic composites (WPCs), i.e., surface versus bulk, on their photostability was evaluated. Blends of ultraviolet absorbers (benzotriazole or hydroxyphenyltriazine) with a hindered amine light stabilizer were used as the stabilizing additives. Both unstabilized and photostabilized uncapped (control) samples,...
Photoactive TiO2 antibacterial coating on surgical external fixation pins for clinical application
Villatte, Guillaume; Massard, Christophe; Descamps, Stéphane; Sibaud, Yves; Forestier, Christiane; Awitor, Komla-Oscar
2015-01-01
External fixation is a method of osteosynthesis currently used in traumatology and orthopedic surgery. Pin tract infection is a common problem in clinical practice. Infection occurs after bacterial colonization of the pin due to its contact with skin and the local environment. One way to prevent such local contamination is to create a specific coating that could be applied in the medical field. In this work, we developed a surface coating for external fixator pins based on the photocatalytic properties of titanium dioxide, producing a bactericidal effect with sufficient mechanical strength to be compatible with surgical use. The morphology and structure of the sol-gel coating layers were characterized using, respectively, scanning electron microscopy and X-ray diffraction. The resistance properties of the coating were investigated by mechanical testing. Photodegradation of acid orange 7 in aqueous solution was used as a probe to assess the photocatalytic activity of the titanium dioxide layers under ultraviolet irradiation. The bactericidal effect induced by the process was evaluated against two strains, ie, Staphylococcus aureus and multiresistant Staphylococcus epidermidis. The coated pins showed good mechanical strength and an efficient antibacterial effect after 1 hour of ultraviolet irradiation. PMID:26005347
Panich, Uraiwan; Sittithumcharee, Gunya; Rathviboon, Natwarath
2016-01-01
Skin is the largest human organ. Skin continually reconstructs itself to ensure its viability, integrity, and ability to provide protection for the body. Some areas of skin are continuously exposed to a variety of environmental stressors that can inflict direct and indirect damage to skin cell DNA. Skin homeostasis is maintained by mesenchymal stem cells in inner layer dermis and epidermal stem cells (ESCs) in the outer layer epidermis. Reduction of skin stem cell number and function has been linked to impaired skin homeostasis (e.g., skin premature aging and skin cancers). Skin stem cells, with self-renewal capability and multipotency, are frequently affected by environment. Ultraviolet radiation (UVR), a major cause of stem cell DNA damage, can contribute to depletion of stem cells (ESCs and mesenchymal stem cells) and damage of stem cell niche, eventually leading to photoinduced skin aging. In this review, we discuss the role of UV-induced DNA damage and oxidative stress in the skin stem cell aging in order to gain insights into the pathogenesis and develop a way to reduce photoaging of skin cells. PMID:27148370
Gallium nitride photocathodes for imaging photon counters
NASA Astrophysics Data System (ADS)
Siegmund, Oswald H. W.; Hull, Jeffrey S.; Tremsin, Anton S.; McPhate, Jason B.; Dabiran, Amir M.
2010-07-01
Gallium nitride opaque and semitransparent photocathodes provide high ultraviolet quantum efficiencies from 100 nm to a long wavelength cutoff at ~380 nm. P (Mg) doped GaN photocathode layers ~100 nm thick with a barrier layer of AlN (22 nm) on sapphire substrates also have low out of band response, and are highly robust. Opaque GaN photocathodes are relatively easy to optimize, and consistently provide high quantum efficiency (70% at 120 nm) provided the surface cleaning and activation (Cs) processes are well established. We have used two dimensional photon counting imaging microchannel plate detectors, with an active area of 25 mm diameter, to investigate the imaging characteristics of semitransparent GaN photocathodes. These can be produced with high (20%) efficiency, but the thickness and conductivity of the GaN must be carefully optimized. High spatial resolution of ~50 μm with low intrinsic background (~7 events sec-1 cm-2) and good image uniformity have been achieved. Selectively patterned deposited GaN photocathodes have also been used to allow quick diagnostics of optimization parameters. GaN photocathodes of both types show great promise for future detector applications in ultraviolet Astrophysical instruments.
[The research of UV-responsive sensitivity enhancement of fluorescent coating films by MgF2 layer].
Lu, Zhong-Rong; Ni, Zheng-Ji; Tao, Chun-Xian; Hong, Rui-Jin; Zhang, Da-Wei; Huang, Yuan-Shen
2014-03-01
A low cost and less complicated expansion approach of wavelength responses with a Lumogen phosphor coating was adopted, as they increased the quantum efficiency of CCD and CMOS detectors in ultra-violet by absorbing UV light and then re emitting visible light. In this paper, the sensitivity enhancement of fluorescence coatings was studied by adding an anti-reflection film or barrier film to reduce the loss of the scattering and reflection on the incident interface. The Lumogen and MgF2/Lumogen film were deposited on quartz glasses by physical vacuum deposition. The surface morphology, transmittance spectrum, reflectance spectrum and fluorescence emission spectrum were obtained by atomic force microscope (AFM), spectrophotometer and fluorescence spectrometer, respectively. The results indicated that MgF2 film had obvious positive effect on reducing scattering and reflection loss in 500-700 nm, and enhancing the absorption of Lumogen coating in ultraviolet spectrum. Meanwhile, the fluorescent emission intensity had a substantial increase by smoothing the film surface and thus reducing the light scattering. At the same time, the MgF2 layer could protect Lumogen coating from damaging and contamination, which give a prolong lifetime of the UV-responsive CCD sensors with fluorescent coatings.
NASA Astrophysics Data System (ADS)
Deng, Chaoxu; Shao, Bingyao; Zhao, Dan; Zhou, Dianli; Yu, Junsheng
2017-11-01
Organic optoelectronic integrated device (OID) with both ultraviolet (UV) detective and electroluminescent (EL) properties was fabricated by using a thermally activated delayed fluorescence (TADF) semiconductor of (4s, 6s)-2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) as an emitter. The effect of five kinds of n-type organic semiconductors (OSCs) on the enhancement of UV detective and EL properties of OID was systematically studied. The result shows that two orders of magnitude in UV detectivity from 109 to 1011 Jones and 3.3 folds of luminance from 2499 to 8233 cd m-2 could be achieved. The result shows that not only the difference of lowest unoccupied molecular orbital (LUMO) between active layer and OSC but also the variety of electron mobility have a significant effect on the UV detective and EL performance through adjusting electron injection/transport. Additionally, the optimized OSC thickness is beneficial to confine the leaking of holes from the active layer to cathode, leading to the decrease of dark current for high detective performance. This work provides a useful method on broadening OSC material selection and device architecture construction for the realization of high performance OID.
A Layered Approach for Robust Spatial Virtual Human Pose Reconstruction Using a Still Image
Guo, Chengyu; Ruan, Songsong; Liang, Xiaohui; Zhao, Qinping
2016-01-01
Pedestrian detection and human pose estimation are instructive for reconstructing a three-dimensional scenario and for robot navigation, particularly when large amounts of vision data are captured using various data-recording techniques. Using an unrestricted capture scheme, which produces occlusions or breezing, the information describing each part of a human body and the relationship between each part or even different pedestrians must be present in a still image. Using this framework, a multi-layered, spatial, virtual, human pose reconstruction framework is presented in this study to recover any deficient information in planar images. In this framework, a hierarchical parts-based deep model is used to detect body parts by using the available restricted information in a still image and is then combined with spatial Markov random fields to re-estimate the accurate joint positions in the deep network. Then, the planar estimation results are mapped onto a virtual three-dimensional space using multiple constraints to recover any deficient spatial information. The proposed approach can be viewed as a general pre-processing method to guide the generation of continuous, three-dimensional motion data. The experiment results of this study are used to describe the effectiveness and usability of the proposed approach. PMID:26907289
Effects of Chromium Dopant on Ultraviolet Photoresponsivity of ZnO Nanorods
NASA Astrophysics Data System (ADS)
Mokhtari, S.; Safa, S.; Khayatian, A.; Azimirad, R.
2017-07-01
Structural and optical properties of bare ZnO nanorods, ZnO-encapsulated ZnO nanorods, and Cr-doped ZnO-encapsulated ZnO nanorods have been investigated. Encapsulated ZnO nanorods were grown using a simple two-stage method in which ZnO nanorods were first grown on a glass substrate directly from a hydrothermal bath, then encapsulated with a thin layer of Cr-doped ZnO by dip coating. Comparative study of x-ray diffraction patterns showed that Cr was successfully incorporated into the shell layer of ZnO nanorods. Moreover, energy-dispersive x-ray spectroscopy confirmed presence of Cr in this sample. It was observed that the thickness of the shell layer around the core of the ZnO nanorods was at least about 20 nm. Transmission electron microscopy of bare ZnO nanorods revealed single-crystalline structure. Based on optical results, both the encapsulation process and addition of Cr dopant decreased the optical bandgap of the samples. Indeed, the optical bandgap values of Cr-doped ZnO-encapsulated ZnO nanorods, ZnO-encapsulated ZnO nanorods, and bare ZnO nanorods were 2.89 eV, 3.15 eV, and 3.34 eV, respectively. The ultraviolet (UV) parameters demonstrated that incorporation of Cr dopant into the shell layer of ZnO nanorods considerably facilitated formation and transportation of photogenerated carriers, optimizing their performance as a practical UV detector. As a result, the photocurrent of the Cr-doped ZnO-encapsulated ZnO nanorods was the highest (0.6 mA), compared with ZnO-encapsulated ZnO nanorods and bare ZnO nanorods (0.21 mA and 0.06 mA, respectively).
NASA Astrophysics Data System (ADS)
Mailhot, B.; Rivaton, A.; Gardette, J.-L.; Moustaghfir, A.; Tomasella, E.; Jacquet, M.; Ma, X.-G.; Komvopoulos, K.
2006-05-01
The chemical reactions resulting from ultraviolet radiation produce discoloration and significant changes in the surface properties of polycarbonate (PC). To prevent photon absorption from irradiation and oxygen diffusion and to enhance the surface nanomechanical properties of PC, thin ceramic coatings of ZnO and Al2O3 (both single- and multi-layer) were deposited on bulk PC by radio-frequency magnetron sputtering. The samples were irradiated at wavelengths greater than 300 nm, representative of outdoor conditions. Despite the effectiveness of ZnO to protect PC from irradiation damage, photocatalytic oxidation at the PC/ZnO interface was the limiting factor. To overcome this deficiency, a thin Al2O3 coating was used both as intermediate and top layer because of its higher hardness and wear resistance than ZnO. Therefore, PC/Al2O3/ZnO, PC/ZnO/Al2O3, and PC/Al2O3/ZnO/Al2O3 layered media were fabricated and their photodegradation properties were examined by infrared and ultraviolet-visible spectroscopy. It was found that the photocatalytic activity at the PC/ZnO interface was reduced in the presence of the intermediate Al2O3 layer that limited the oxygen permeability. Nanomechanical experiments performed with a surface force apparatus revealed that the previous coating systems enhanced both the surface nanohardness and the elastic modulus and reduced the coefficient of friction in the order of ZnO, Al2O3, and Al2O3/ZnO/Al2O3. Although irradiation increased the nanohardness and the elastic modulus of PC, the irradiation effect on the surface mechanical properties of ceramic-coated PC was secondary.
UV and NIR-Responsive Layer-by-Layer Films Containing 6-Bromo-7-hydroxycoumarin Photolabile Groups
2017-01-01
This paper describes polyelectrolyte multilayer films prepared by the layer-by-layer (LbL) technique capable of undergoing dissolution upon exposure to either ultraviolet or near-infrared light. Film dissolution is driven by photochemical deprotection of a random methacrylic copolymer with two types of side chains: (i) 6-bromo-7-hydroxycoumarinyl esters, photocleavable groups that are known to have substantial two-photon photolysis cross sections, and (ii) cationic residues from the commercially available monomer N,N-dimethylaminoethyl methacrylate (DMAEMA). In addition, the dependence of stability of both unirradiated and irradiated films on pH provides experimental evidence for the necessity of disrupting both ion-pairing and hydrophobic interactions between polyelectrolytes to realize film dissolution. This work therefore provides both new fundamental insight regarding photolabile LbL films and expands their applied capabilities to nonlinear photochemical processes. PMID:28967754
Chang, Jianjun; Chen, Dunjun; Yang, Lianhong; Liu, Yanli; Dong, Kexiu; Lu, Hai; Zhang, Rong; Zheng, Youdou
2016-01-01
To realize AlGaN-based solar-blind ultraviolet distributed Bragg reflectors (DBRs), a novel tri-layer AlGaN/AlInN/AlInGaN periodical structure that differs from the traditional periodically alternating layers of high- and low-refractive-index materials was proposed and grown on an Al0.5Ga0.5N template via metal-organic chemical vapour deposition. Because of the intentional design of the AlInGaN strain transition layer, a state-of-the-art DBR structure with atomic-level-flatness interfaces was achieved using an AlGaN template. The fabricated DBR exhibits a peak reflectivity of 86% at the centre wavelength of 274 nm and a stopband with a full-width at half-maximum of 16 nm. PMID:27381651
Mao, Xu; Zhang, Jia-Ning; Gao, Li-Hua; Su, Yu; Chen, Peng-Xia; Wang, Ke-Zhi
2016-04-01
An electrostatically self-assembled multilayer thin film consisting of alternating layers of Keggin polyoxometalate of Zn-substituted tungstoborate (BW11Zn) and Rhodamine B (RhB) has successfully been prepared on a quartz and indium-tin oxide (ITO) glass substrate. The ultraviolet-visible (UV-vis) absorption spectra demonstrated that the electrostatically self-assembled film of (BW11Zn/RhB)n was uniformly deposited layer by layer, and the RhB molecules in the film formed the J-aggregation. The photoelectrochemical investigations showed that the films generated stable cathodic photocurrents that originated from RhB, and the maximal cathodic photocurrent density generated by an eight-layer film was 4.9 µA/cm2 while the film was irradiated with 100 mW/cm2 polychromatic light of 730 nm > λ > 325 nm at an applied potential of 0 V versus a saturated calomel electrode.
NASA Astrophysics Data System (ADS)
Hao, Guo-Dong; Taniguchi, Manabu; Tamari, Naoki; Inoue, Shin-ichiro
2016-06-01
The current crowding is an especially severe issue in AlGaN-based deep-ultraviolet (DUV) light-emitting diodes (LEDs) because of the low conductivity of the n-AlGaN cladding layer that has a high Al fraction. We theoretically investigated the improvement in internal quantum efficiency and total resistances in DUV-LEDs with an emission wavelength of 265 nm by a well-designed p-electrode geometry to produce uniform current spreading. As a result, the wall-plug efficiency was enhanced by a factor of 60% at an injection current of 350 mA in the designed uniform-current-spreading p-electrode LED when compared with an LED with a conventional cross-bar p-electrode pattern.
Extreme Ultraviolet Solar Images Televised In-Flight with a Rocket-Borne SEC Vidicon System.
Tousey, R; Limansky, I
1972-05-01
A TV image of the entire sun while an importance 2N solar flare was in progress was recorded in the extreme ultraviolet (XUV) radiation band 171-630 A and transmitted to ground from an Aerobee-150 rocket on 4 November 1969 using S-band telemetry. The camera tube was a Westinghouse Electric Corporation SEC vidicon, with its fiber optic faceplate coated with an XUV to visible conversion layer of p-quaterphenyl. The XUV passband was produced by three 1000-A thick aluminum filters in series together with the platinized reflecting surface of the off-axis paraboloid that imaged the sun. A number of images were recorded with integration times between 1/30 see and 2 sec. Reconstruction of pictures was enhanced by combining several to reduce the noise.
Extreme-ultraviolet and electron beam lithography processing using water developable resist material
NASA Astrophysics Data System (ADS)
Takei, Satoshi
2017-08-01
In order to achieve the use of pure water in the developable process of extreme-ultraviolet and electron beam lithography, instead of conventionally used tetramethylammonium hydroxide and organic solvents, a water developable resist material was designed and developed. The water-developable resist material was derived from woody biomass with beta-linked disaccharide unit for environmental affair, safety, easiness of handling, and health of the working people. 80 nm dense line patterning images with exposure dose of 22 μC/cm2 and CF4 etching selectivity of 1.8 with hardmask layer were provided by specific process conditions. The approach of our water-developable resist material will be one of the most promising technologies ready to be investigated into production of medical device applications.
Welding processes and ocular hazards and protection.
Pabley, A S; Keeney, A H
1981-07-01
There are approximately 60 different forms of welding, but only six of these are commonly used. Shielded metal-arc or stick welding, gas metal-arc welding, and oxyacetylene welding are the most frequently used. All produce ultraviolet, visible, and infrared radiation at damaging levels. Conventional glass welding shields contain ultraviolet, visible, and infrared absorbers. Infrared absorbers, however, cause heating and secondary re-radiation. New polycarbonate lenses offer greater impact resistance, and have less tendency to welding spatter. Early abrasion-resistant and reflective coatings on plastics were ineffective. Thin layers of gold with proprietary coatings provide cool reflection and surface resistance. Thermal monitoring of welding indicated that these new shields reduce temperature rises above the ambient by 150% to 175% compared to green glass filter plates without interfering with the welder's vision.
NASA Astrophysics Data System (ADS)
Bekele Fayisa, Gabisa; Lee, Jong Won; Kim, Jungsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu
2017-09-01
An effective approach to overcome inherently poor light extraction efficiency of AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) is presented. We demonstrated the 5 × 5 array micro-ring DUV LED having an inclined sidewall at the outer perimeter and a p-GaN-removed inner circle of the micro-ring, together with MgF2/Al omnidirectional reflectors. The micro-ring array DUV LED shows remarkably higher light output power by 70% than the reference, consistent with the calculated result, as well as comparable turn-on and operational voltages, which are attributed to the effective extraction of strong transverse-magnetic polarized anisotropic emission and the reduction of the absorption loss by the p-GaN contact layer, simultaneously.
Liang, H K; Yu, S F; Yang, H Y
2010-02-15
An edge-emitting ultraviolet n-ZnO:Al/i-ZnO/p-GaN heterojunction light-emitting diode with a rib waveguide is fabricated by filtered cathodic vacuum arc technique at low deposition temperature (approximately 150 degrees C). Electroluminescence with emission peak at 387 nm is observed. Good correlation between electro- and photo- luminescence spectra suggests that the i-ZnO layer of the heterojunction supports radiative excitonic recombination. Furthermore, it is found that the emission intensity can be enhanced by approximately 5 times due to the presence of the rib waveguide. Only fundamental TE and TM polarizations are supported inside the rib waveguide and the intensity of TE polarization is approximately 2.2 time larger than that of TM polarization.
NASA Astrophysics Data System (ADS)
Dong, Peng; Yan, Jianchang; Wang, Junxi; Zhang, Yun; Geng, Chong; Wei, Tongbo; Cong, Peipei; Zhang, Yiyun; Zeng, Jianping; Tian, Yingdong; Sun, Lili; Yan, Qingfeng; Li, Jinmin; Fan, Shunfei; Qin, Zhixin
2013-06-01
We first report AlGaN-based deep ultraviolet light-emitting diodes (UV-LEDs) grown on nano-patterned sapphire substrates (NPSS) prepared through a nanosphere lithography technique. The AlN coalescence thickness on NPSS is only 3 μm due to AlN's nano-scaled lateral growth, which also leads to low dislocation densities in AlN and epi-layers above. On NPSS, the light-output power of a 282-nm UV-LED reaches 3.03 mW at 20 mA with external quantum efficiency of 3.45%, exhibiting 98% better performance than that on flat sapphire. Temperature-dependent photoluminescence reveals this significant enhancement to be a combination of higher internal quantum efficiency and higher light extraction efficiency.
High-performance metal mesh/graphene hybrid films using prime-location and metal-doped graphene.
Min, Jung-Hong; Jeong, Woo-Lim; Kwak, Hoe-Min; Lee, Dong-Seon
2017-08-31
We introduce high-performance metal mesh/graphene hybrid transparent conductive layers (TCLs) using prime-location and metal-doped graphene in near-ultraviolet light-emitting diodes (NUV LEDs). Despite the transparency and sheet resistance values being similar for hybrid TCLs, there were huge differences in the NUV LEDs' electrical and optical properties depending on the location of the graphene layer. We achieved better physical stability and current spreading when the graphene layer was located beneath the metal mesh, in direct contact with the p-GaN layer. We further improved the contact properties by adding a very thin Au mesh between the thick Ag mesh and the graphene layer to produce a dual-layered metal mesh. The Au mesh effectively doped the graphene layer to create a p-type electrode. Using Raman spectra, work function variations, and the transfer length method (TLM), we verified the effect of doping the graphene layer after depositing a very thin metal layer on the graphene layers. From our results, we suggest that the nature of the contact is an important criterion for improving the electrical and optical performance of hybrid TCLs, and the method of doping graphene layers provides new opportunities for solving contact issues in other semiconductor devices.
Shin, Dong Hee; Jang, Chan Wook; Lee, Ha Seung; Seo, Sang Woo; Choi, Suk-Ho
2018-01-31
Semitransparent flexible photovoltaic cells are advantageous for effective use of solar energy in many areas such as building-integrated solar-power generation and portable photovoltaic chargers. We report semitransparent and flexible organic solar cells (FOSCs) with high aperture, composed of doped graphene layers, ZnO, P3HT:PCBM, and PEDOT:PSS as anode/cathode transparent conductive electrodes (TCEs), electron transport layer, photoactive layer, and hole transport layer, respectively, fabricated based on simple solution processing. The FOSCs do not only harvest solar energy from ultraviolet-visible region but are also less sensitive to near-infrared photons, indicating semitransparency. For the anode/cathode TCEs, graphene is doped with bis(trifluoromethanesulfonyl)-amide or triethylene tetramine, respectively. Power conversion efficiency (PCE) of 3.12% is obtained from the fundamental FOSC structure, and the PCE is further enhanced to 4.23% by adding an Al reflective mirror on the top or bottom side of the FOSCs. The FOSCs also exhibit remarkable mechanical flexibilities through bending tests for various curvature radii.
Research on the electrical characteristics of the Pt/CdS Schottky diode
NASA Astrophysics Data System (ADS)
Ding, Jia-xin; Zhang, Xiang-feng; Yao, Guansheng
2013-08-01
With the development of technology, the demand for semiconductor ultraviolet detector is increasing day by day. Compared with the traditional infrared detector in missile guidance, ultraviolet/infrared dual-color detection can significantly improve the anti-interference ability of the missile. According to the need of missile guidance and other areas of the application of ultraviolet detector, the paper introduces a manufacture of the CdS Schottky barrier ultraviolet detector. By using the radio frequency magnetron sputtering technology, a Pt thin film layer is sputtered on CdS basement to form a Schottky contact firstly. Then the indium ohmic contact electrode is fabricated by thermal evaporation method, and eventually a Pt/CdS/In Schottky diode is formed. The I-V characteristic of the device was tested at room temperature, its zero bias current and open circuit voltage is -0.578nA and 130mV, respectively. Test results show that the the Schottky contact has been formed between Pt and CdS. The device has good rectifying characteristics. According to the thermionic emission theory, the I-V curve fitting analysis of the device was studied under the condition of small voltage. The ideality factor and Schottky barrier height is 1.89 and 0.61eV, respectively. The normalized spectral responsivity at zero bias has been tested. The device has peak responsivity at 500nm, and it cutoff at 510nm.
Alternating Current Driven Organic Light Emitting Diodes Using Lithium Fluoride Insulating Layers
Liu, Shang-Yi; Chang, Jung-Hung; -Wen Wu, I.; Wu, Chih-I
2014-01-01
We demonstrate an alternating current (AC)-driven organic light emitting diodes (OLED) with lithium fluoride (LiF) insulating layers fabricated using simple thermal evaporation. Thermal evaporated LiF provides high stability and excellent capacitance for insulating layers in AC devices. The device requires a relatively low turn-on voltage of 7.1 V with maximum luminance of 87 cd/m2 obtained at 10 kHz and 15 Vrms. Ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy are employed simultaneously to examine the electronic band structure of the materials in AC-driven OLED and to elucidate the operating mechanism, optical properties and electrical characteristics. The time-resolved luminance is also used to verify the device performance when driven by AC voltage. PMID:25523436
NASA Technical Reports Server (NTRS)
Underwood, J. H.; Barbee, T. W., Jr.
1981-01-01
The theory of X-ray diffraction by periodic structures is applied to the layered synthetic microstructures (LSMs) made possible by recent developments in thin film technology, and approximate formulas for estimating their performance are presented. A more complete computation scheme based on optical multilayer theory is also described, and it is shown that the diffracting properties may be tailored to specific applications by adjusting the refractive indices and thicknesses of the component layers. The theory may be modified to take account of imperfections in the LMS structure, and the properties of nonperiodic structures thereby computed. Structures with high integrated reflectivity constructed according to the methods defined have potential application in many areas of X-ray or EUV research and instrumentation.
NASA Astrophysics Data System (ADS)
Han, Tae-Hee; Kwon, Sung-Joo; Seo, Hong-Kyu; Lee, Tae-Woo
2016-03-01
Ultraviolet ozone (UVO) surface treatment of graphene changes its sp2-hybridized carbons to sp3-bonded carbons, and introduces oxygen-containing components. Oxidized graphene has a finite energy band gap, so UVO modification of the surface of a four-layered graphene anode increases its surface ionization potential up to ∼5.2 eV and improves the hole injection efficiency (η) in organic electronic devices by reducing the energy barrier between the graphene anode and overlying organic layers. By controlling the conditions of the UVO treatment, the electrical properties of the graphene can be tuned to improve η. This controlled surface modification of the graphene will provide a way to achieve efficient and stable flexible displays and solid-state lighting.
Patwardhan, Juilee; Bhatt, Purvi
2016-05-01
Ultraviolet-B (UV-B) radiation is a smaller fraction of the total radiation reaching the Earth but leads to extensive damage to the deoxyribonucleic acid (DNA) and other biomolecules through formation of free radicals altering redox homeostasis of the cell. Abelmoschus esculentus (okra) has been known in Ayurveda as antidiabetic, hypolipidemic, demulscent, antispasmodic, diuretic, purgative, etc. The aim of this study is to evaluate the protective effect of flavonoids from A. esculentus against UV-B-induced cell damage in human dermal fibroblasts. UV-B protective activity of ethyl acetate (EA) fraction of okra was studied against UV-B-induced cytotoxicity, antioxidant regulation, oxidative DNA damage, intracellular reactive oxygen species (ROS) generation, apoptotic morphological changes, and regulation of heme oxygenase-1 (HO-1) gene through nuclear factor E2-related factor 2-antioxidant response element (Nrf2-ARE) pathway. Flavonoid-rich EA fraction depicted a significant antioxidant potential also showing presence of rutin. Pretreatment of cells with EA fraction (10-30 μg/ml) prevented UV-B-induced cytotoxicity, depletion of endogenous enzymatic antioxidants, oxidative DNA damage, intracellular ROS production, apoptotic changes, and overexpression of Nrf2 and HO-1. Our study demonstrated for the 1(st) time that EA fraction of okra may reduce oxidative stress through Nrf2-ARE pathway as well as through endogenous enzymatic antioxidant system. These results suggested that flavonoids from okra may be considered as potential UV-B protective agents and may also be formulated into herbal sunscreen for topical application. Flavonoid-enriched ethyl acetate (EA) fraction from A. esculentus protected against ultraviolet-B (UV-B)-induced oxidative DNA damageEA fraction prevented UV-B-induced cytotoxicity, depletion of endogenous enzymatic antioxidants, and intracellular reactive oxygen species productionEA fraction could reduce oxidative stress through the Nrf2-ARE PathwayEA fraction was found to be nongenotoxic and prevented apoptotic changes. Flavonoids from Abelmoschus esculentus protected from ultraviolet-B-induced damageThey were capable of reducing oxidative stress through Nrf2-ARE PathwayThey are nongenotoxic and do not possess mutagenic potentialFlavonoids from A. esculentus can be studied and explored further for its topical application as sunscreen. Abbreviations used: ABTS: 2,2'-azino-bis-(3-ethylbenzothiazoline -6-sulphonic acid), AO: Acridine orange, Analysis of variance, ARE: Antioxidant response elements, BSA: Bovine serum albumin, CAPE: Caffeic acid phenethyl ester, CAT: Catalase, DCFH-DA: 2',7'-dichlorofluorescein diacetate, DMEM: Dulbecco's modified eagle's medium, DMSO: dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DPBS: Dulbecco's phosphate-buffered saline, DPPH: 2,2-diphenyl-1-picryl hydrazyl, ECL: Enhanced chemiluminescence, EDTA: Ethylenediaminetetraacetic acid, ELISA: Enzyme-linked immunosorbent assay, EtBr: Ethidium bromide, FBS: Fetal bovine serum, FE Fraction: Flavonoid-enriched fraction, FRAP: Ferric reducing antioxidant power, GPx: Glutathione peroxidase, GR: Glutathione reductase, GST: Glutathione-S-transferase, GSH: Reduced glutathione, GSSG: Oxidized glutathione, HDF: Human dermal fibroblast adult cells, HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid, HRP: Horseradish peroxidase, HO-1: Heme oxygenase-1, HPTLC: High-performance thin layer chromatography, Keap-1: Kelch-like ECH-associated protein-1, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, NaCl: sodium chloride, NFDM: nonfat dry milk, Nrf2: Nuclear factor E2-related factor 2, NQO1: NAD (P) H: Quinine oxidoreductase 1, OH: Hydroxyl ions, PBST: Phosphate-buffered saline with 0.1% tween 20, PCR: Polymerase chain reaction, PMSF: Phenylmethanesulfonyl fluoride, Rf: Retention factor, ROS: Reactive oxygen species, rRNA: Ribosomal ribonucleic acid, SDS: Sodium dodecyl sulfate, SOD: Superoxide dismutase, TLC: Thin layer chromatography, TLC-DPPH: Thin layer chromatography-2,2-diphenyl-1-picryl hydrazyl, UV: Ultraviolet, UV-A: Ultraviolet-A, UV-B: Ultraviolet-B, UV-C: Ultraviolet-C, qPCR: Quantitative polymerase chain reaction.
Photokeratitis induced by ultraviolet radiation in travelers: A major health problem
Izadi, M; Jonaidi-Jafari, N; Pourazizi, M; Alemzadeh-Ansari, MH; Hoseinpourfard, MJ
2018-01-01
Ultraviolet (UV) irradiation is one of the several environmental hazards that may cause inflammatory reactions in ocular tissues, especially the cornea. One of the important factors that affect how much ultraviolet radiation (UVR) humans are exposed to is travel. Hence, traveling is considered to include a more acute UVR effect, and ophthalmologists frequently evaluate and manage the ocular manifestations of UV irradiation, including UV-induced keratitis. The purpose of this paper is to provide an evidence-based analysis of the clinical effect of UVR in ocular tissues. An extensive review of English literature was performed to gather all available articles from the National Library of Medicine PubMed database of the National Institute of Health, the Ovid MEDLINE database, Scopus, and ScienceDirect that had studied the effect of UVR on the eye and its complications, between January 1970 and June 2014. The results show that UVR at 300 nm causes apoptosis in all three layers of the cornea and induces keratitis. Apoptosis in all layers of the cornea occurs 5 h after exposure. The effect of UVR intensity on the eye can be linked to numerous factors, including solar elevation, time of day, season, hemisphere, clouds and haze, atmospheric scattering, atmospheric ozone, latitude, altitude, longitudinal changes, climate, ground reflection, and geographic directions. The most important factor affecting UVR reaching the earth's surface is solar elevation. Currently, people do not have great concern over eye protection. The methods of protection against UVR include avoiding direct sunlight exposure, using UVR-blocking eyewear (sunglasses or contact lenses), and wearing hats. Hence, by identifying UVR intensity factors, eye protection factors, and public education, especially in travelers, methods for safe traveling can be identified. PMID:29067921
Photokeratitis induced by ultraviolet radiation in travelers: A major health problem.
Izadi, M; Jonaidi-Jafari, N; Pourazizi, M; Alemzadeh-Ansari, M H; Hoseinpourfard, M J
2018-01-01
Ultraviolet (UV) irradiation is one of the several environmental hazards that may cause inflammatory reactions in ocular tissues, especially the cornea. One of the important factors that affect how much ultraviolet radiation (UVR) humans are exposed to is travel. Hence, traveling is considered to include a more acute UVR effect, and ophthalmologists frequently evaluate and manage the ocular manifestations of UV irradiation, including UV-induced keratitis. The purpose of this paper is to provide an evidence-based analysis of the clinical effect of UVR in ocular tissues. An extensive review of English literature was performed to gather all available articles from the National Library of Medicine PubMed database of the National Institute of Health, the Ovid MEDLINE database, Scopus, and ScienceDirect that had studied the effect of UVR on the eye and its complications, between January 1970 and June 2014. The results show that UVR at 300 nm causes apoptosis in all three layers of the cornea and induces keratitis. Apoptosis in all layers of the cornea occurs 5 h after exposure. The effect of UVR intensity on the eye can be linked to numerous factors, including solar elevation, time of day, season, hemisphere, clouds and haze, atmospheric scattering, atmospheric ozone, latitude, altitude, longitudinal changes, climate, ground reflection, and geographic directions. The most important factor affecting UVR reaching the earth's surface is solar elevation. Currently, people do not have great concern over eye protection. The methods of protection against UVR include avoiding direct sunlight exposure, using UVR-blocking eyewear (sunglasses or contact lenses), and wearing hats. Hence, by identifying UVR intensity factors, eye protection factors, and public education, especially in travelers, methods for safe traveling can be identified.
NASA Astrophysics Data System (ADS)
Inagaki, S.; Sueoka, S.; Harafuji, K.
2017-06-01
Three surface modifications of indium tin oxide (ITO) are experimentally investigated to improve the performance of small-molecule organic solar cells (OSCs) with an ITO/anode buffer layer (ABL)/copper phthalocyanine (CuPc)/fullerene/bathocuproine/Ag structure. An ultrathin Ag ABL and ultraviolet (UV)-ozone treatment of ITO independently improve the durability of OSCs against illumination stress. The thin pentacene ABL provides good ohmic contact between the ITO and the CuPc layer, thereby producing a large short-circuit current. The combined use of the abovementioned three modifications collectively achieves both better initial performance and durability against illumination stress.
A spectroscopic study using line ratios of lithiumlike ions in a laser-produced plasma
NASA Astrophysics Data System (ADS)
Moreno, J. C.; Goldsmith, S.; Griem, H. R.
1989-02-01
Spectra of highly ionized titanium and calcium in the extreme ultraviolet region were observed in laser-produced plasmas using the OMEGA 24 beam (351 nm) laser system at the University of Rochester. The plasmas were produced using glass microballoon targets coated with a layer of a medium Z element and a layer of parylene (CH). Time-integrated electron temperatures and densities were obtained by comparing measured line intensity ratios of lithiumlike charge states of Ti and Ca to numerical calculations from a collisional-radiative model. The variation of line intensity ratios with electron density and temperature using the collisional-radiative model is discussed.
NASA Astrophysics Data System (ADS)
Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Sun, Kaikai; Hu, Xili; Wang, Yujiao; Xu, Xiaoqi
2014-10-01
Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.
NASA Astrophysics Data System (ADS)
Hong, J. P.; Kim, C. O.; Nahm, T. U.; Kim, C. M.
2000-02-01
Microcrystalline silicon films have been prepared on indium-coated glass utilizing a layer-by-layer technique with a plasma-enhanced chemical-vapor deposition system. The microcrystalline films were fabricated by varying the number of cycles from 10 to 60 under a fixed H2 time (t2) of 120 s, where the corresponding deposition time (t1) of amorphous silicon thin film was 60 s. Structural properties, such as the crystalline volume fraction (Xc) and grain sizes were analyzed by using Raman spectroscopy and a scanning electron microscopy. The carrier transport was characterized by the temperature dependence of dark conductivity, giving rise to the calculation of activation energy (Ea). Optical energy gaps (Eg) were also investigated using an ultraviolet spectrophotometer. In addition, the process under different hydrogen plasma time (t2) at a fixed number of 20 cycles was extensively carried out to study the dominant role of hydrogen atoms in layer-by-layer deposition. Finally, the correlation between structural and electrical properties has been discussed on the basis of experimental results.
EUVL mask patterning with blanks from commercial suppliers
NASA Astrophysics Data System (ADS)
Yan, Pei-Yang; Zhang, Guojing; Nagpal, Rajesh; Shu, Emily Y.; Li, Chaoyang; Qu, Ping; Chen, Frederick T.
2004-12-01
Extreme Ultraviolet Lithography (EUVL) reflective mask blank development includes low thermal expansion material fabrication, mask substrate finishing, reflective multi-layer (ML) and capping layer deposition, buffer (optional)/absorber stack deposition, EUV specific metrology, and ML defect inspection. In the past, we have obtained blanks deposited with various layer stacks from several vendors. Some of them are not commercial suppliers. As a result, the blank and patterned mask qualities are difficult to maintain and improve. In this paper we will present the evaluation results of the EUVL mask pattering processes with the complete EUVL mask blanks supplied by the commercial blank supplier. The EUVL mask blanks used in this study consist of either quartz or ULE substrates which is a type of low thermal expansion material (LTEM), 40 pairs of molybdenum/silicon (Mo/Si) ML layer, thin ruthenium (Ru) capping layer, tantalum boron nitride (TaBN) absorber, and chrome (Cr) backside coating. No buffer layer is used. Our study includes the EUVL mask blank characterization, patterned EUVL mask characterization, and the final patterned EUVL mask flatness evaluation.
Sun Savvy Students: Free Teaching Resources from EPA's SunWise Program
ERIC Educational Resources Information Center
Hall-Jordan, Luke
2008-01-01
With summer in full swing and the sun is naturally on our minds, what better time to take advantage of a host of free materials provided by the U.S. Environmental Protection Agency's Sun Wise program. Sun Wise aims to teach students and teachers about the stratospheric ozone layer, ultraviolet (UV) radiation, and how to be safe while in the Sun.…
ERIC Educational Resources Information Center
Rioseco, Marilu
This paper reports on the dilution effect of the ozone layer which jeopardizes a section of land in Chile from 53 degrees South latitude to 33 degrees South and the necessity of preparing the population for the possible ecological consequences of an increase in ultraviolet radiation. Scientists in Chile assume part of this task by studying the…
NASA Astrophysics Data System (ADS)
Zhang, Yifu; Zheng, Jiqi; Wang, Qiushi; Hu, Tao; Tian, Fuping; Meng, Changgong
2017-03-01
Layer-by-layer V2O5 structures self-assembly by quadrate sheets like "multilayer cake" were successfully synthesized using NH4VO3 as the vanadium sources by a facile hydrothermal route and combination of the calcination. The structure and composition were characterized by field emission scanning electron microscopy, energy-dispersive X-ray spectrometer, X-ray powder diffraction, Raman and Fourier transform infrared spectroscopy. The optical properties of the as-obtained V2O5 layer-by-layer structures were investigated by the Ultraviolet-visible spectroscopy and photoluminescence spectrum. The electrochemical properties of the as-obtained V2O5 layer-by-layer structures as electrodes in supercapacitor device were measured by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) both in the aqueous and organic electrolyte. The specific capacitance is 347 F g-1 at 1 A g-1 in organic electrolyte, which is improved by 46% compared with 238 F g-1 in aqueous electrolyte. During the cycle performance, the specific capacitances of V2O5 layer-by-layer structures after 100 cycles are 30% and 82% of the initial discharge capacity in the aqueous and organic electrolyte, respectively, indicating the cycle performance is significantly improved in organic electrolyte. Our results turn out that layer-by-layer V2O5 structures are an ideal material for supercapacitor electrode in the present work.
On testing of the photometer-polarimeter UVP layout using a telescope on Earth's surface
NASA Astrophysics Data System (ADS)
Nevodovskyi, P. V.; Vidmachenko, A. P.; Morozhenko, O. V.; Zbrutskyi, O.; Ivakhiv, O. V.
2016-08-01
One of the causes of climate change (changing of concentration of stratospheric ozone) - is variations due to aerosol optical thickness in the upper layers of Earth's atmosphere. To solve the problem is necessary to make a space experiment to receive polarization observational data. Their analysis will: determine the value of the real part of the refractive index, the size of the stratospheric aerosol, optical thickness of the stratospheric aerosol layer, investigate aerosol's layer horizontal structure and its changes over time. Main Astronomical Observatory of NAS of Ukraine jointly with the National Technical University of Ukraine "KPI" and National University "Lviv Polytechnic" for a long time working on the design of polarimeter to study the stratospheric layer of the Earth from board of artificial satellites. During this time accumulated a great experience in such work, and created a layout of compact board ultraviolet polarimeter UFP [1-4]. For testing of ground variant of layout of UFP, it is installed on the telescope AZT-2 of the Main Astronomical Observatory NAS of Ukraine (Kyiv). Using it we plan to investigate the possibility of determining the degree of polarization of the twilight glow of Earth's atmosphere, and implementation of this technique in the development of space experiment on investigation of the stratospheric aerosol from space. For this purpose we develop a special set of equipment that will adapt the layout for working of UFP with telescope AZT-2, and carry out the above mentioned work (see. in [5-7]). References. 1. P. Nevodovskyi, O. Morozhenko, A. Vidmachenko, O. Ivakhiv, M. Geraimchuk, O. Zbrutskyi. Tiny Ultraviolet Polarimeter for Earth Stratosphere from Space Investigation // Proceedings of 8th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS'2015). 24-26 September 2015, Proceedings. Warsaw, Poland. Vol.81, p. 28-32. 2. Nevodovsksiy P. V., Morozhenko A. V. Studies of stratospheric ozone layer from near-earth orbit utilizing ultraviolet polarimeter // Acta Astronautica. 2009, vol. 64, no 1, p. 54-58. 3. Nevodovskij P. V. Kvantakons and optimization of their parameters for astronomical observations Kinematika i Fizika Nebesnykh Tel. 2001, vol. 17, no. 3, p. 279-288. 4. A. P. Vid'machenko, P. V. Nevodovsky. A cooled photomultiplier with an InGaAs photocathode developed for the spectropolarimetry observations // Kinematika i Fizika Nebesnykh Tel. 2000. Suppl. 3, p. 283-285. 5. Morozhenko A. V., Vidmachenko A. P., Nevodovskiy P. V., Kostogryz N. M. On the efficiency of polarization measurements while studying aerosols in the terrestrial atmosphere // Kinematics and Physics of Celestial Bodies. 2014, vol. 30, no. 1, p. 11-21. 6. A.V. Morozhenko, A.P. Vidmachenko, P.V. Nevodovskyi. Aerosol in the upper layer of earth's atmosphere // Kinematics and Physics of Celestial Bodies. 2013, vol. 29, no. 5, p. 243-246. 7. Morozhenko A.V. Polarimetry of twilight sky and stratospheric aerosol // Kinematics and Physics of Celestial Bodies. 2010, vol. 26, no. 1, p. 36-38.
[Climatic changes in Scandinavia--consequences for public health].
Kanestrøm, I
1999-01-30
Atmospheric composition and climate conditions are of great importance for health. Increasing consumption of fossil fuels ever since the industrial revolution has resulted in higher contents of greenhouse gases in the atmosphere. Primarily, this will increase the global temperature. Secondarily, it may change the patterns of precipitation and droughts. Higher extreme temperatures will have a negative effect on health. Climate changes can also change the living conditions of undesirable insects and microbes. The ozone gas in the atmosphere acts as a shield against the harmful ultraviolet radiation from the sun. Chlorofluorocarbons contribute to reduction of the ozone layer and increase ultraviolet radiation. Increased exposure of the skin to this radiation may cause damage such as sunburn and skin cancer. In order to avoid damage, it is of importance to wear protective clothing or use effective sunshades.
Measuring the Density of States of the Inner and Outer Wall of Double-Walled Carbon Nanotubes.
Chambers, Benjamin A; Shearer, Cameron J; Yu, LePing; Gibson, Christopher T; Andersson, Gunther G
2018-06-19
The combination of ultraviolet photoelectron spectroscopy and metastable helium induced electron spectroscopy is used to determine the density of states of the inner and outer coaxial carbon nanotubes. Ultraviolet photoelectron spectroscopy typically measures the density of states across the entire carbon nanotube, while metastable helium induced electron spectroscopy measures the density of states of the outermost layer alone. The use of double-walled carbon nanotubes in electronic devices allows for the outer wall to be functionalised whilst the inner wall remains defect free and the density of states is kept intact for electron transport. Separating the information of the inner and outer walls enables development of double-walled carbon nanotubes to be independent, such that the charge transport of the inner wall is maintained and confirmed whilst the outer wall is modified for functional purposes.
IRIS Ultraviolet Spectral Properties of a Sample of X-Class Solar Flares
NASA Astrophysics Data System (ADS)
Butler, Elizabeth; Kowalski, Adam; Cauzzi, Gianna; Allred, Joel C.; Daw, Adrian N.
2018-06-01
The white-light (near-ultraviolet (NUV) and optical) continuum emission comprises the majority of the radiated energy in solar flares. However, there are nearly as many explanations for the origin of the white-light continuum radiation as there are white-light flares that have been studied in detail with spectra. Furthermore, there are rarely robust constraints on the time-resolved dynamics in the white-light emitting flare layers. We are conducting a statistical study of the properties of Fe II lines, Mg II lines, and NUV continuum intensity in bright flare kernels observed by the Interface Region Imaging Spectrograph (IRIS), in order to provide comprehensive constraints for radiative-hydrodynamic flare models. Here we present a new technique for identifying bright flare kernels and preliminary relationships among IRIS spectral properties for a sample of X-class solar flares.
Narrowband ultraviolet photodetector based on MgZnO and NPB heterojunction.
Hu, Zuofu; Li, Zhenjun; Zhu, Lu; Liu, Fengjuan; Lv, Yanwu; Zhang, Xiqing; Wang, Yongsheng
2012-08-01
An ultraviolet photodetector was fabricated based on Mg0.07Zn0.93O heterojunction. N, N'-bis (naphthalen-1-y1)-N, N'-bis(pheny) benzidine was selected as the hole transporting layer. I-V characteristic curves of the device were measured in the dark and under the illumination of 340 nm UV light with density of 1.33 mW/cm2. The device showed a low dark current of about 3×10(-10) A and a high photo-dark current ratio of 1×10(5) at -2 V bias. A narrowband photoresponse was observed from 300 to 400 nm and centered at 340 nm with a full width at half-maximum of only 30 nm. The maximum peak response is at 340 nm, which is 0.192 A/W at the bias of -1 V.
Ultraviolet photodetector with high internal gain enhanced by TiO₂/SrTiO₃ heterojunction.
Zhang, Min; Zhang, Haifeng; Lv, Kaibo; Chen, Weiyou; Zhou, Jingran; Shen, Liang; Ruan, Shengping
2012-03-12
In this letter, TiO₂ nanocrystalline film was prepared on SrTiO₃ (001) substrate to form an n-n heterojunction active layer. Interdigitated Au electrodes were deposited on the top of TiO₂ film to fabricate modified HMSM (heterojunction metal-semiconductor-metal) ultraviolet photodetector. At 10 V bias, the dark current of the detector was only 0.2 nA and the responsivity was 46.1 A/W at 260 nm. The rise and fall times of the device were 3.5 ms and 1.4 s, respectively. The TiO₂/SrTiO₃ heterojunction contributed a lot to the high responsivity and reduced the fall time, which improved the device performance effectively. These results demonstrate the excellent application of TiO₂/SrTiO₃ heterojunction in fabricating high performance UV photodetectors.
NASA Astrophysics Data System (ADS)
Tu, Wenbin; Chen, Zimin; Zhuo, Yi; Li, Zeqi; Ma, Xuejin; Wang, Gang
2018-05-01
Ultraviolet (UV)-transparent indium tin oxide (ITO) grown by metal–organic chemical vapor deposition (MOCVD) is used as the current-spreading layer for 368 nm AlGaN-based light-emitting diodes (LEDs). By performing in situ contact treatment on the LED/ITO interface, the morphology, resistivity, and contact resistance of electrodes become controllable. Resistivity of 2.64 × 10‑4 Ω cm and transmittance at 368 nm of 95.9% are realized for an ITO thin film grown with Sn-purge in situ treatment. Therefore, the high-power operating voltage decreases from 3.94 V (without treatment) to 3.83 V (with treatment). The improved performance is attributed to the lowering of the tunneling barrier at the LED/ITO interface.
NASA Astrophysics Data System (ADS)
Abe, Tomoki; Uchida, Shigeto; Tanaka, Keita; Fujisawa, Takanobu; Kasada, Hirofumi; Ando, Koshi; Akaiwa, Kazuaki; Ichino, Kunio
2018-05-01
We investigated device degradation in PEDOT:PSS/ZnSSe organic-inorganic hybrid ultraviolet avalanche photodiodes (UV-APDs). ZnSSe/n-GaAs wafers were grown by molecular beam epitaxy, and PEDOT:PSS window layers were formed by inkjet technique. We observed rapid degradation with APD-mode stress (˜ 30 V) in the N2 (4 N) atmosphere, while we observed no marked change in forward bias current stress and photocurrent stress. In the case of a vacuum condition, we observed no detectable degradation in the dark avalanche current with APD-mode stress. Therefore, the degradation in the PEDOT:PSS/ZnSSe interface under the APD-mode stress was caused by the residual water vapor or oxygen in the N2 atmosphere and could be controlled by vacuum packaging.
Improved Astronomical Instrumentation for the Far Ultra-Violet
NASA Astrophysics Data System (ADS)
Witt, Emily M.; Fleming, Brian; Egan, Arika; Tyler, Rachel; Wiley, James
2018-06-01
Recent technological advances have opened up new instrument capabilities in the ultraviolet. Of particular interest are advanced deposition processes that have made lithium fluoride (LiF) based mirrors more accessible, achieving greater than 80% broadband reflectivity down into the Lyman UV (100 nm). Traditional MgF2 protected aluminum mirrors cut off at 115 nm, missing crucial tracers of warm gas and molecules. The hygroscopic sensitivity of LiF, which adds mission risk and cost, has also been mitigated with a thin capping layer of a more durable substance, making LiF mirrors accessible without onerous environmental procedures. These advances open up a new paradigm in UV astronomy by enabling multi-reflection systems in the Lyman UV. We present recent progress in the testing of eLiF-based optics, and then discuss the potential scientific avenues this opens up in UV astronomy.
Observations of the Ca/+/ twilight airglow from intermediate layers of ionization
NASA Technical Reports Server (NTRS)
Tepley, C. A.; Meriwether, J. W., Jr.; Walker, J. C. G.; Mathews, J. D.
1981-01-01
Optical and incoherent scatter radar techniques are applied to detect the presence of Ca(+) in lower thermospheric intermediate layers over Arecibo. The Arecibo 430 MHz radar is used to measure electron densities, and the altitude distribution and density of the calcium ion is inferred from the variation of twilight resonant scattering with solar depression angle. Ca(+) and electron column densities are compared, and results indicate that the composition of low-altitude intermediate layers is 2% Ca(+), which is consistent with rocket mass spectrometer measurements. Fe(+) and Mg(+) ultraviolet resonance lines are not detected from the ground due to ozone absorbing all radiation short of 3000 A, and measurements of the neutral iron resonance line at 3860 A show that an atmospheric continuum may result in overestimations of emission rates at high solar depression angles.
Hoogeboom-Pot, Kathleen M; Turgut, Emrah; Hernandez-Charpak, Jorge N; Shaw, Justin M; Kapteyn, Henry C; Murnane, Margaret M; Nardi, Damiano
2016-08-10
We use short wavelength extreme ultraviolet light to independently measure the mechanical properties of disparate layers within a bilayer film for the first time, with single-monolayer sensitivity. We show that in Ni/Ta nanostructured systems, while their density ratio is not meaningfully changed from that expected in bulk, their elastic properties are significantly modified, where nickel softens while tantalum stiffens, relative to their bulk counterparts. In particular, the presence or absence of the Ta capping layer influences the mechanical properties of the Ni film. This nondestructive nanomechanical measurement technique represents the first approach to date able to distinguish the properties of composite materials well below 100 nm in thickness. This capability is critical for understanding and optimizing the strength, flexibility and reliability of materials in a host of nanostructured electronic, photovoltaic, and thermoelectric devices.
Composition, nanostructure, and optical properties of silver and silver-copper lusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradell, Trinitat; Pavlov, Radostin S.; Carolina Gutierrez, Patricia
2012-09-01
Lusters are composite thin layers of coinage metal nanoparticles in glass displaying peculiar optical properties and obtained by a process involving ionic exchange, diffusion, and crystallization. In particular, the origin of the high reflectance (golden-shine) shown by those layers has been subject of some discussion. It has been attributed to either the presence of larger particles, thinner multiple layers or higher volume fraction of nanoparticles. The object of this paper is to clarify this for which a set of laboratory designed lusters are analysed by Rutherford backscattering spectroscopy, transmission electron microscopy, x-ray diffraction, and ultraviolet-visible spectroscopy. Model calculations and numericalmore » simulations using the finite difference time domain method were also performed to evaluate the optical properties. Finally, the correlation between synthesis conditions, nanostructure, and optical properties is obtained for these materials.« less
Characterization of Mo/Si multilayer growth on stepped topographies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boogaard, A. J. R. vcan den; Louis, E.; Zoethout, E.
2011-08-31
Mo/Si multilayer mirrors with nanoscale bilayer thicknesses have been deposited on stepped substrate topographies, using various deposition angles. The multilayer morphology at the stepedge region was studied by cross section transmission electron microscopy. A transition from a continuous- to columnar layer morphology is observed near the step-edge, as a function of the local angle of incidence of the deposition flux. Taking into account the corresponding kinetics and anisotropy in layer growth, a continuum model has been developed to give a detailed description of the height profiles of the individual continuous layers. Complementary optical characterization of the multilayer system using amore » microscope operating in the extreme ultraviolet wavelength range, revealed that the influence of the step-edge on the planar multilayer structure is restricted to a region within 300 nm from the step-edge.« less
Chow, Robert; Loomis, Gary E.; Thomas, Ian M.
1999-01-01
Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (.about.1.10-1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm.
[Skin changes in albinism in persons of the Negroid race (light- and electron-microscopy studies].
Semkin, V I; Mikhaĭlov, I N
1984-01-01
The skin of the negroid race albinos is studied light- and electron-microscopically. Morphological alterations, as compared to control, consist of the horny layer thickening, increase of the cellularity in the epidermis, appearance of numerous pronounced tonofibrillar-keratohyaline complexes in the granular cells and a well developed network of dense bundles of tonofibrils in the spinous layer. Melanocytes and Langerhans cells are similar by their structure and number to those in the control. The protein skeletons of melanosomes in keratinocytes and melanocytes are practically unchanged but they are completely deprived of melanine biopolymer. The dermal macrophages do not contain a melanin pigment. The morphological features of the albinos epidermis, particularly the horny layer thickening, increase of the cellularity and the presence of pronounced tonofibrillar-keratohyaline complexes represent most likely a compensatory protective mechanism against ultraviolet radiation.
FRED, a Front End for Databases.
ERIC Educational Resources Information Center
Crystal, Maurice I.; Jakobson, Gabriel E.
1982-01-01
FRED (a Front End for Databases) was conceived to alleviate data access difficulties posed by the heterogeneous nature of online databases. A hardware/software layer interposed between users and databases, it consists of three subsystems: user-interface, database-interface, and knowledge base. Architectural alternatives for this database machine…
On the history of phyto-photo UV science (not to be left in skoto toto and silence).
Björn, Lars Olof
2015-08-01
This review of the history of ultraviolet photobiology focuses on the effects of UV-B (280-315 nm) radiation on terrestrial plants. It describes the early history of ultraviolet photobiology, the discovery of DNA as a major ultraviolet target and the discovery of photoreactivation and photolyases, and the later identification of Photosystem II as another important target for damage to plants by UV-B radiation. Some experimental techniques are briefly outlined. The insight that the ozone layer was thinning spurred the interest in physiological and ecological effects of UV-B radiation and resulted in an exponential increase over time in the number of publications and citations until 1998, at which time it was realized by the research community that the Montreal Protocol regulating the pollution of the atmosphere with ozone depleting substances was effective. From then on, the publication and citation rate has continued to rise exponentially, but with an abrupt change to lower exponents. We have now entered a phase when more emphasis is put on the "positive" effects of UV-B radiation, and with more emphasis on regulation than on damage and inhibition. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Replicated mesocosm study on the role of natural ultraviolet radiation in high CDOM, shallow lakes.
Pérez, A Patricia; Diaz, Mónica M; Ferraro, Marcela A; Cusminsky, Gabriela C; Zagarese, Horacio E
2003-02-01
The role of ultraviolet radiation on shallow, high CDOM (colored dissolved organic matter) lakes was investigated during two consecutive summers (1999 and 2000) in replicated mesocosms (rectangular fiberglass tanks). Each tank (volume: 300 L; depth: 40 cm) was covered with a layer (approximately 3 cm) of sediment from lake El Toro (40 degrees 14' S; 70 degrees 22' W) and filled with filtered water. The experimental design consisted of two treatments: full natural radiation (UV-exposed) and natural radiation without ultraviolet radiation (UV-shielded). UV-exposed and UV-shielded treatments differed in most studied variables as revealed by repeated measures ANOVA. UV-exposed tanks displayed lower CDOM levels (dissolved absorbance) of lower average molecular size (absorbance ratio between 250 and 365 nm), higher bacterial biomass, and lower chlorophyll a concentration. The effect on consumers (rotifers and crustaceans) was less noticeable. The results are consistent with UV stimulation of bacteria production mediated by higher rates of CDOM photobleaching, and the photoinhibition of planktonic algae. Thus, a major effect of UVR in shallow, high CDOM ecosystems appears to be the stimulation of heterotrophic pathways and a simultaneous inhibition of photoautotrophs.
Grandahl, Kasper; Mortensen, Ole Steen; Sherman, David Zim; Køster, Brian; Lund, Paul-Anker; Ibler, Kristina Sophie; Eriksen, Paul
2017-10-10
Exposure to solar ultraviolet radiation is a well-known cause of skin cancer. This is problematic for outdoor workers. In Denmark alone, occupational skin cancer poses a significant health and safety risk for around 400,000 outdoor workers. Objective measures of solar ultraviolet radiation exposure are needed to help resolve this problem. This can be done using personal ultraviolet radiation dosimeters. We consider technical and practical feasibility of measuring individual solar ultraviolet exposure at work and leisure in professions with different á priori temporal high-level outdoor worktime, using aluminium gallium nitride (AlGaN) photodiode detector based personal UV-B dosimeters. Essential technical specifications including the spectral and angular responsivity of the dosimeters are described and pre-campaign dosimeter calibration applicability is verified. The scale and conduct of dosimeter deployment and campaign in-field measurements including failures and shortcomings affecting overall data collection are presented. Nationwide measurements for more than three hundred and fifty workers from several different professions were collected in the summer of 2016. On average, each worker's exposure was measured for a 2-week period, which included both work and leisure. Data samples of exposure at work during a Midsummer day show differences across professions. A construction worker received high-level occupational UV exposure most of the working day, except during lunch hour, accumulating to 5.1 SED. A postal service worker was exposed intermittently around noon and in the afternoon, preceded by no exposure forenoon when packing mail, accumulating to 1.6 SED. A crane fitter was exposed only during lunch hour, accumulating to 0.7 SED. These findings are in line with our specialist knowledge as occupational physicians. Large-scale use of personal UV-B dosimeters for measurement of solar ultraviolet radiation exposure at work and leisure in Denmark is indeed feasible from a technical and practical viewpoint. Samples of exposure data shown support the presumption that the Danish campaign UV-B dosimeter measurement dataset can be used to sum and compare exposure between groups of professions with reliable results to be used in future analysis with clinical as well as epidemiological/questionnaire data. This was despite some dosimeter failures and shortcomings.
Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems
NASA Technical Reports Server (NTRS)
Vandyke, H.; Worrest, R. C.
1976-01-01
Data was provided to assess the potential impact upon marine ecosystems if space shuttle operations contribute to a reduction of the stratospheric ozone layer. The potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation was established. The sensitivity of key community components (the primary producers) to increased UV-B radiation was delineated.
Monolithic pattern-sensitive detector
Berger, Kurt W.
2000-01-01
Extreme ultraviolet light (EUV) is detected using a precisely defined reference pattern formed over a shallow junction photodiode. The reference pattern is formed in an EUV absorber preferably comprising nickel or other material having EUV- and other spectral region attenuating characteristics. An EUV-transmissive energy filter is disposed between a passivation oxide layer of the photodiode and the EUV transmissive energy filter. The device is monolithically formed to provide robustness and compactness.
Switchable antifouling coatings and uses thereof
Denton, Michele L. Baca; Dirk, Shawn M.; Johnson, Ross Stefan
2017-02-28
The present invention relates to antifouling coatings capable of being switched by using heat or ultraviolet light. Prior to switching, the coating includes an onium cation component having antimicrobial and antibacterial properties. Upon switching, the coating is converted to a conjugated polymer state, and the cationic component is released with any adsorbed biofilm layer. Thus, the coatings herein have switchable and releasable properties. Methods of making and using such coatings are also described.
Wavelength-dependent ultraviolet induction of cyclobutane pyrimidine dimers in the human cornea.
Mallet, Justin D; Rochette, Patrick J
2013-08-01
Exposition to ultraviolet (UV) light is involved in the initiation and the progression of skin cancer. The genotoxicity of UV light is mainly attributed to the induction of cyclobutane pyrimidine dimers (CPDs), the most abundant DNA damage generated by all UV types (UVA, B and C). The human cornea is also exposed to the harmful UV radiations, but no UV-related neoplasm has been reported in this ocular structure. The probability that a specific DNA damage leads to a mutation and eventually to cellular transformation is influenced by its formation frequency. To shed light on the genotoxic effect of sunlight in the human eye, we have analyzed CPD induction in the cornea and the iris following irradiation of ex vivo human eyes with UVA, B or C. The extent of CPD induction was used to establish the penetrance of the different UV types in the human cornea. We show that UVB- and UVC-induced CPDs are concentrated in the corneal epithelium and do not penetrate deeply beyond this corneal layer. On the other hand, UVA wavelengths penetrate deeper and induce CPDs in the entire cornea and in the first layers of the iris. Taken together, our results are undoubtedly an important step towards better understanding the consequences of UV exposure to the human eye.
Suresh Kumar, P; Sundaramurthy, J; Mangalaraj, D; Nataraj, D; Rajarathnam, D; Srinivasan, M P
2011-11-01
A simple and cost-effective successive ionic layer adsorption and reaction (SILAR) method was adopted to fabricate hydrophobic ZnO nanostructured surfaces on transparent indium-tin oxide (ITO), glass and polyethylene terephthalate (PET) substrates. ZnO films deposited on different substrates show hierarchical structures like spindle, flower and spherical shape with diameters ranging from 30 to 300 nm. The photo-induced switching behaviors of ZnO film surfaces between hydrophobic and hydrophilic states were examined by water contact angle and X-ray photoelectron spectroscopy (XPS) analysis. ZnO nanostructured films had contact angles of ~140° and 160°±2 on glass and PET substrates, respectively, exhibiting hydrophobic behavior without any surface modification or treatment. Upon exposure to ultraviolet (UV) illumination, the films showed hydrophilic behavior (contact angle: 15°±2), which upon low thermal stimuli revert back to its original hydrophobic nature. Such reversible and repeatable switching behaviors were observed upon cyclical exposure to ultraviolet radiation. These biomimetic ZnO surfaces exhibit good anti-reflective properties with lower reflectance of 9% for PET substrates. Thus, the present work is significant in terms of its potential application in switching devices, solar coatings and self-cleaning smart windows. Copyright © 2011 Elsevier Inc. All rights reserved.
Red-ultraviolet photoluminescence tuning by Ni nanocrystals in epitaxial SrTiO3 matrix
NASA Astrophysics Data System (ADS)
Xiong, Z. W.; Cao, L. H.
2018-07-01
In this work, the self-organized Ni nanocrystals (NCs) were embedded in the epitaxial SrTiO3 matrix using pulsed laser deposition method. With the in-situ monitoring of reflection high-energy electron diffraction, both matrix and NCs could be precisely engineered with desired qualities by regulating the growth conditions according to the full release of stress energy at the interfaces of Ni NCs and SrTiO3. We achieved a controllable strained system according to the transformation of growth modes from three dimensional (3D) islands of Ni NCs to 2D layer-by-layer of SrTiO3, corresponding to the (1 1 1) and (0 0 l) orientation for Ni and SrTiO3, respectively. With the increase of Ni NCs concentration, the absorption intensity is increasing in the regions of 190-300 nm, and the band gap is gradually decreased. Besides, photoluminescence (PL) spectra reveal that the energy levels of Ni 3d bands contribute to the different PL colors, further inducing the enhancement of PL intensity and red-shift of emission peaks. Compared with the pure SrTiO3 published in the literature, much wider ranges of PL emission from red to ultraviolet can be tuned by the Ni NCs.
Cai, Rui; Tao, Gang; Guo, Pengchao; Yang, Meirong; Ding, Chaoxiang; Zuo, Hua; Wang, Lingyan; Zhao, Ping; Wang, Yejing
2017-01-01
To develop silk sericin (SS) as a potential antibacterial biomaterial, a novel composite of polyelectrolyte multilayers (PEMs) coated sericin/poly(vinyl alcohol) (SS/PVA) film modified with silver nanoparticles (AgNPs) has been developed using a layer-by-layer assembly technique and ultraviolet-assisted AgNPs synthesis method. Ag ions were enriched by PEMs via the electrostatic attraction between Ag ions and PEMs, and then reduced to AgNPs in situ with the assistance of ultraviolet irradiation. PEMs facilitated the high-density growth of AgNPs and protected the synthesized AgNPs due to the formation of a 3D matrix, and thus endowed SS/PVA film with highly effective and durable antibacterial activity. Scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry, Fourier transfer infrared spectroscopy, water contact angle, mechanical property and thermogravimetric analysis were applied to characterize SS/PVA, PEMs-SS/PVA and AgNPs-PEMs-SS/PVA films, respectively. AgNPs-PEMs-SS/PVA film has exhibited good mechanical performance, hydrophilicity, water absorption capability as well as excellent and durable antibacterial activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and good stability and degradability. This study has developed a simple method to design and prepare AgNPs-PEMs-SS/PVA film for potential antibacterial application. PMID:28820482
NASA Technical Reports Server (NTRS)
Oro, J.; Holzer, G.
1979-01-01
The analysis of the top layer of the Martian regolith at the two Viking landing sites did not reveal any indigenous organic compounds. However, the existence of such compounds at deeper layers cannot be ruled out. Cosmochemical considerations indicate various potential sources for organic matter on Mars, such as comets and meteorites. The study tested the stability of a sample of the Murchison meteorite and various organic substances which have been detected in carbonaceous chondrites, such as glycine, adenine and naphthalene, to the action of ultraviolet light. The compounds were adsorbed on powdered quartz and on California desert soil and were irradiated in the presence or absence of oxygen. The organic content, before and after irradiation, was measured by carbon elementary analysis, UV-absorption, amino acid analysis or pyrolysis-gas chromatography-mass spectrometry. In the absence of oxygen, adenine and glycine appear to be stable over the given part of irradiation. A definite degradation was noticed in the case of naphtalene and the Murchison meteorite. In the presence of oxygen in amounts comparable to those on Mars all compounds were degraded. The degree of degradation was influenced by the irradiation time, temperature and oxygen content.
NASA Technical Reports Server (NTRS)
Kim, Jongmin; Zukic, Muamer; Wilson, Michele M.; Park, Jung Ho; Torr, Douglas G.
1994-01-01
Good theoretical designs of far ultraviolet polarizers have been reported using a MgF2/Al/MgF2 three layer structure on a thick Al layer as a substrate. The thicknesses were determined to induce transmission and absorption of p-polarized light. In these designs Al optical constants were used from films produced in ultrahigh vacuum (UHV: 10(exp -10) torr). Reflectance values for polarizers fabricated in a conventional high vacuum (p approx. 10(exp -6 torr)) using the UHV design parameters differed dramatically from the design predictions. Al is a highly reactive material and is oxidized even in a high vacuum chamber. In order to solve the problem other metals have been studied. It is found that a larger reflectance difference is closely related to higher amplitude and larger phase difference of Fresnel reflection coefficients between two polarizations at the boundary of MgF2/metal. It is also found that for one material a larger angle of incidence from the surface normal brings larger amplitude and phase difference. Be and Mo are found good materials to replace Al. Polarizers designed for 121.6 nm with Be at 60 deg and with Mo at 70 deg are shown as examples.
NASA Astrophysics Data System (ADS)
Guo, Junjie; Yang, Bingchu; Zheng, Zhouming; Jiang, Jie
2017-03-01
Mobility engineering through physical or chemical process is a fruitful approach for the atomically-layered two-dimensional electronic applications. Unfortunately, the usual process with either illumination or oxygen treatment would greatly deteriorate the mobility in two-dimensional MoS2 field-effect transistor (FET). Here, in this work, we report that the mobility can be abnormally enhanced to an order of magnitude by the synergy of ultraviolet illumination (UV) and ozone plasma treatment in multilayer MoS2 FET. This abnormal mobility enhancement is attributed to the trap passivation due to the photo-generated excess carriers during UV/ozone plasma treatment. An energy band model based on Schottky barrier modulation is proposed to understand the underlying mechanism. Raman spectra results indicate that the oxygen ions are incorporated into the surface of MoS2 (some of them are in the form of ultra-thin Mo-oxide) and can further confirm this proposed mechanism. Our results can thus provide a simple approach for mobility engineering in MoS2-based FET and can be easily expanded to other 2D electronic devices, which represents a significant step toward applications of 2D layered materials in advanced cost-effective electronics.
Assessing the deposition of radon progeny from a uranium glass necklace.
Hansen, M F; Moss, G R
2015-06-01
Could jewellery made from uranium glass beads pose an increased risk to skin cancer? The literature Eatough (Alpha-particle dosimetry for the basal layer of the skin and the radon progeny (218)Po and (214)Po. Phys. Med. Biol. 1997; 42: 1899-1911.) suggests that the alphas from the short-lived radon daughters, (218)Po and (214)Po, may reach the basal layer of the epidermis, which is believed to be important in the induction of skin cancers. The deposition of the alphas from the (218)Po and (214)Po daughters was investigated using PADC detector material. The expectation would be that no alpha particles would penetrate through the dead skin layer, assuming the average of 70 microns used in radiation protection, but the skin around the collar bone could potentially be thinner than the assumed average. It should be noticed that by inserting a slice of pig skin in between the necklace and the PADC, no great excess of alpha tracks were seen after 1 week of exposure in the freezer. There was, however, a clear signal through the pig skin from beta particles, confirming the potential of a uranium bead necklace posing a health risk. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
McPeters, Richard; Bhartia, P. K. (Technical Monitor)
2002-01-01
The US National Aeronautics and Space Administration (NASA) has been monitoring the ozone layer from space using optical remote sensing techniques since 1970. With concern over catalytic destruction of ozone (mid-1970s) and the development of the Antarctic ozone hole (mid-1980s), long term ozone monitoring has become the primary focus of NASA's series of ozone measuring instruments. A series of TOMS (Total Ozone Mapping Spectrometer) and SBUV (Solar Backscatter Ultraviolet) instruments has produced a nearly continuous record of global ozone from 1979 to the present. These instruments infer ozone by measuring sunlight backscattered from the atmosphere in the ultraviolet through differential absorption. These measurements have documented a 15 Dobson Unit drop in global average ozone since 1980, and the declines in ozone in the antarctic each October have been far more dramatic. Instruments that measure the ozone vertical distribution, the SBUV and SAGE (Stratospheric Aerosol and Gas Experiment) instruments for example, show that the largest changes are occurring in the lower stratosphere and upper troposphere. The goal of ozone measurement in the next decades will be to document the predicted recovery of the ozone layer as CFC (chlorofluorocarbon) levels decline. This will require a continuation of global measurements of total column ozone on a global basis, but using data from successor instruments to TOMS. Hyperspectral instruments capable of measuring in the UV will be needed for this purpose. Establishing the relative roles of chemistry and dynamics will require instruments to measure ozone in the troposphere and in the stratosphere with good vertical resolution. Instruments that can measure other chemicals important to ozone formation and destruction will also be needed.
Inactivation of bacterial biothreat agents in water, a review.
Rose, L J; Rice, E W
2014-12-01
Water supplies and water distribution systems have been identified as potential targets for contamination by bacterial biothreat agents. Since the 2001 Bacillus anthracis bioterrorist attacks, additional efforts have been aimed at research to characterize biothreat organisms in regards to their susceptibility to disinfectants and technologies currently in use for potable water. Here, we present a review of research relevant to disinfection of bacteria with the potential to pose a severe threat to public health and safety, and their potential surrogates. The efficacy of chlorine, monochloramine, chlorine dioxide, and ultraviolet light to inactivate each organism in suspension is described. The complexities of disinfection under varying water conditions and when the organisms are associated with biofilms in distribution systems are discussed.
Inactivation of bacterial biothreat agents in water, a review
Rice, E. W.
2016-01-01
Water supplies and water distribution systems have been identified as potential targets for contamination by bacterial biothreat agents. Since the 2001 Bacillus anthracis bioterrorist attacks, additional efforts have been aimed at research to characterize biothreat organisms in regards to their susceptibility to disinfectants and technologies currently in use for potable water. Here, we present a review of research relevant to disinfection of bacteria with the potential to pose a severe threat to public health and safety, and their potential surrogates. The efficacy of chlorine, monochloramine, chlorine dioxide, and ultraviolet light to inactivate each organism in suspension is described. The complexities of disinfection under varying water conditions and when the organisms are associated with biofilms in distribution systems are discussed. PMID:25473971
1998-09-02
During a break in the Crew Equipment Interface Test (CEIT) at KSC, Payload Specialist John H. Glenn Jr., a senator from Ohio, poses for a photo with Georgett Styers, United Space Alliance receiving scheduler, NASA Supply Logistics Depot, Cape Canaveral, Fla. The CEIT gives astronauts an opportunity for a hands-on look at the payloads and equipment with which they will be working on orbit. The launch of the STS-95 mission is scheduled for Oct. 29, 1998, on the Space Shuttle Discovery. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process
NASA Astrophysics Data System (ADS)
Sinha, Mukesh Kumar; Das, B. R.; Kumar, Kamal; Kishore, Brij; Prasad, N. Eswara
2017-06-01
The article reports a novel technique for functionization of nanoweb to develop ultraviolet (UV) radiation protective fabric. UV radiation protection effect is produced by combination of electrospinning and electrospraying technique. A nanofibrous web of polyvinylidene difluoride (PVDF) coated on polypropylene nonwoven fabric is produced by latest nanospider technology. Subsequently, web is functionalized by titanium dioxide (TiO2). The developed web is characterized for evaluation of surface morphology and other functional properties; mechanical, chemical, crystalline and thermal. An optimal (judicious) nanofibre spinning condition is achieved and established. The produced web is uniformly coated by defect free functional nanofibres in a continuous form of useable textile structural membrane for ultraviolet (UV) protective clothing. This research initiative succeeds in preparation and optimization of various nanowebs for UV protection. Field Emission Scanning Electron Microscope (FESEM) result reveals that PVDF webs photo-degradative behavior is non-accelerated, as compared to normal polymeric grade fibres. Functionalization with TiO2 has enhanced the photo-stability of webs. The ultraviolet protection factor of functionalized and non-functionalized nanowebs empirically evaluated to be 65 and 24 respectively. The developed coated layer could be exploited for developing various defence, para-military and civilian UV protective light weight clothing (tent, covers and shelter segments, combat suit, snow bound camouflaging nets). This research therefore, is conducted in an attempt to develop a scientific understanding of PVDF fibre coated webs for photo-degradation and applications for defence protective textiles. This technological research in laboratory scale could be translated into bulk productionization.
NASA Astrophysics Data System (ADS)
Yan, B. X.; Luo, S. Y.; Mao, X. G.; Shen, J.; Zhou, Q. F.
2013-01-01
Mo-doped TiO2 multilayer thin films were prepared by RF magnetron co-sputtering. Microstructures, crystallite parameters and the absorption band were investigated with atomic force microscopy, X-ray diffraction and ultraviolet-visible spectroscopy. Internal carrier transport characteristics and the photoelectric property of different layer-assemble modes were examined on an electrochemical workstation under visible light. The result indicates that the double-layer structure with an undoped surface layer demonstrated a red-shifted absorption edge and a much stronger photocurrent compared to the uniformly doped sample, signifying that the electric field implanted at the interface between particles in different layers accelerated internal charge transfer effectively. However, a heavily doped layer implanted at the bottom of the three-layer film merely brought about negative effects on the photoelectric property, mainly because of the Schottky junction existing above the substrate. Nevertheless, this obstacle was successfully eliminated by raising the Mo concentration to 1020 cm-3, where the thickness of the depletion layer fell into the order of angstroms and the tunneling coefficient manifested a dramatic increase. Under this circumstance, the Schottky junction disappeared and the strongest photocurrent was observed in the three-layer film.
Congenital erythropoietic porphyria in an African hedgehog (Atelerix albiventris).
Wolff, Carlos; Corradini, Paulina; Cortés, Galaxia
2005-06-01
A 6-mo-old, male African hedgehog (Atelerix albiventris) presented with a history of pink urine and demonstrating pink-colored teeth and mild hepatomegaly on examination. Urinalysis revealed no physical, chemical, or cellular abnormalities other than a pink color and fluorescence under ultraviolet light (UV). Also under UV, intense fluorescence of teeth, feet, and spines was noted. Porphyria was suspected. Spectrophotometric evaluation of urine showed extremely elevated levels of copro- and uroporphyrins. Analysis of the urine by thin-layer chromatography showed an abnormal pattern of excreted porphyrin intermediates. Urine high-performance thin-layer chromatography showed that excreted porphyrins were 90-95% of the type-I isomeric form, suggestive of congenital erythropoietic porphyria.
UV testing of solar cells: Effects of antireflective coating, prior irradiation, and UV source
NASA Technical Reports Server (NTRS)
Meulenberg, A.
1993-01-01
Short-circuit current degradation of electron irradiated double-layer antireflective-coated cells after 3000 hours ultraviolet (UV) exposure exceeds 3 percent; extrapolation of the data to 10(exp 5) hours (11.4 yrs.) gives a degradation that exceeds 10 percent. Significant qualitative and quantitative differences in degradation were observed in cells with double- and single-layer antireflective coatings. The effects of UV-source age were observed and corrections were made to the data. An additional degradation mechanism was identified that occurs only in previously electron-irradiated solar cells since identical unirradiated cells degrade to only 6 +/- 3 percent when extrapolated 10(exp 5) hours of UV illumination.
Uncovering Discovery Layer Services
ERIC Educational Resources Information Center
Kennedy, Sean P.
2014-01-01
Today's electronic information landscape is growing exponentially with no signs of slowing. This poses a significant challenge for academic libraries. Librarians must continually learn and adapt to harness this explosion of resources. To fulfill their claim as the leaders in the information field they must be effective in providing access and…
Protein deposition on field-emitter tips and its removal by UV radiation
NASA Astrophysics Data System (ADS)
Panitz, J. A.; Giaever, I.
1980-07-01
Protein deposition on field-emitter tips has been examined using Transmission Electron Microscopy to view the protein coated tip profile. A single layer of adsorbed protein is barely if at all detectable, but double and triple layers produced by the immunologic reaction can be directly observed. As a result, the thickness and morphology of antigen-antibody layers has been directly observed for the first time. Tips exposed first to Bovine Serum Albumin (BSA) and then to anti-BSA rabbit serum are covered with a reasonably uniform, double protein layer ≈130 Å thick. This layer can be built-up to a triple layer ≈275 Å thick by additional exposure to anti-rabbit IgG goat serum. Surface tension forces during the drying process which follows protein deposition appear to affect the thickness and morphology of the protein layers. The oxidation and subsequent change in the morphology of a protein layer exposed to ultraviolet radiation has also been observed using TEM. The destruction of a triple protein layer at a rate of ≈0.5 Å/s is observed for tungsten tips exposed to ≈6 W of UV radiation from a high-pressure mercury arc in laboratory ambient. These results are compared to those obtained from a simple, visual test for protein layer adsorption in which submonolayer coverages of protein can be detected with the unaided eye.
Method to adjust multilayer film stress induced deformation of optics
Mirkarimi, Paul B.; Montcalm, Claude
2000-01-01
A buffer-layer located between a substrate and a multilayer for counteracting stress in the multilayer. Depositing a buffer-layer having a stress of sufficient magnitude and opposite in sign reduces or cancels out deformation in the substrate due to the stress in the multilayer. By providing a buffer-layer between the substrate and the multilayer, a tunable, near-zero net stress results, and hence results in little or no deformation of the substrate, such as an optic for an extreme ultraviolet (EUV) lithography tool. Buffer-layers have been deposited, for example, between Mo/Si and Mo/Be multilayer films and their associated substrate reducing significantly the stress, wherein the magnitude of the stress is less than 100 MPa and respectively near-normal incidence (5.degree.) reflectance of over 60% is obtained at 13.4 nm and 11.4 nm. The present invention is applicable to crystalline and non-crystalline materials, and can be used at ambient temperatures.
Farci, Domenica; Slavov, Chavdar; Piano, Dario
2018-01-17
Deinococcus radiodurans is well known for its unusual resistance to different environmental stresses. Recently, we have described a novel complex composed of the surface (S)-layer protein DR_2577 and the carotenoid deinoxanthin. We also showed a role of this complex in the UV resistance under desiccation. Both these properties, UV and desiccation resistance, suggest a selective pressure generated by Sun irradiation. In order to confirm this hypothesis we checked whether this S-layer Deinoxanthin Binding Complex (SDBC) has features of thermo-resistance, a property also expected in proteins evolved under solar irradiative pressure. We performed the spectroscopic characterization of the SDBC by means of thermal shift assay, circular dichroism and related in silico analysis. Our findings identify a stability typical of thermo-adapted proteins and provide a new insight into the origin of specific S-layer types. The results are discussed in terms of co-evolutionary mechanisms related to Sun-induced desiccation and heat.
NASA Astrophysics Data System (ADS)
Lei, Hao; Wang, Meihan; Hoshi, Yoichi; Uchida, Takayuki; Kobayashi, Shinichi; Sawada, Yutaka
2013-11-01
Aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) was respectively bombarded and irradiated by Ar ions, oxygen ions, electron beam and ultraviolet light to confirm damages during the sputter-deposition of transparent conductive oxide (TCO) on organic layer. The degree of damage was evaluated by the photoluminescence (PL) spectra of BAlq. The results confirmed the oxygen ions led to a larger damage and were thought to play the double roles of bombardment to organic layer and reaction with organic layer as well. The comparative studies on PL spectra of BAlq after the deposition of TCO films by various sputtering systems, such as conventional magnetron sputtering (MS), low voltage sputtering (LVS) and kinetic-energy-control-deposition (KECD) system, facing target sputtering (FTS) were performed. Relative to MS, LVS and KECD system, FTS can completely suppress the bombardment of the secondary electrons and oxygen negative ions, and keep a higher deposition rate simultaneously, thus it is a good solution to attain a low-damage sputter-deposition.
Design of p-type cladding layers for tunnel-injected UV-A light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih
Here, we discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that the capacitance-voltage measurements can be used to estimate the compensation and doping in the p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62%, respectively, were achieved for the tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be usedmore » to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range.« less
Design of p-type cladding layers for tunnel-injected UV-A light emitting diodes
Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; ...
2016-11-09
Here, we discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that the capacitance-voltage measurements can be used to estimate the compensation and doping in the p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62%, respectively, were achieved for the tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be usedmore » to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range.« less
NASA Astrophysics Data System (ADS)
Kong, Bo Hyun; Cho, Hyung Koun; Kim, Mi Yang; Choi, Rak Jun; Kim, Bae Kyun
2011-07-01
For the fabrication of InGaN/GaN multiple quantum well-based blue light emitting diodes (LEDs) showing large area emission, transparent Al-doped ZnO (AZO) films grown by atomic layer deposition at relatively low temperatures were introduced as current spreading layers. These AZO films with an Al content of 3 at% showed a low electrical resistivity of <10 -3-10 -4 Ω cm, a high carrier concentration of >10 20 cm -3, and an excellent optical transmittance of ˜85%, in spite of the low growth temperature. The deposition of the AZO film induced an intense blue emission from the whole surface of the p-GaN and weak ultraviolet emission from the n-AZO and p-GaN junction. At an injection current of 50 mA, the output powers of the blue LEDs were 1760 and 1440 mcd for the samples with AZO thicknesses of 100 and 300 nm, respectively.
NASA Astrophysics Data System (ADS)
Sakorikar, Tushar; Kavitha, M. K.; Tong, Shi Wun; Vayalamkuzhi, Pramitha; Loh, Kian Ping; Jaiswal, Manu
2018-05-01
Graphene: polymer composite based electrically conducting films are realized by a facile solution processable method. Ultraviolet Photoelectron Spectroscopy (UPS) measurements on the composite films, reveal a low work function of reduced graphene oxide (rGO) obtained from hydrazine hydrate reduction of graphene oxide (GO). We suggest that the low work function could potentially make rGO: PMMA composite suitable for electron conducting layer in perovskite solar cells in place of traditionally used expensive PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) layer. Further, we demonstrate from the gravimetric experiments conducted on rGO: PMMA films, that the same coating is also resistant to moisture permeation. This latter property can be used to realize a protective coating layer for perovskite films, which are prone to moisture induced degradation. Thus, dual functionality of rGO-PMMA films is demonstrated towards integration with perovskite solar cells. Architecture of perovskite solar cell based on these concepts is proposed.
Optical properties of single and bilayer arsenene phases
NASA Astrophysics Data System (ADS)
Kecik, Deniz; Ciraci, Salim; Durgun, Engin
An extensive investigation of the optical properties of single-layer buckled and washboard arsenene and their bilayers was performed, starting from layered three-dimensional (3D) crystalline phase of arsenic using density functional and many-body perturbation theories combined with Random Phase Approximation. Electron-hole interactions were taken into account by solving the Bethe-Salpeter equation, suggesting first bound exciton energies on the order of 0.7 eV. Thus, many-body effects were found to be crucial for altering the optical properties of arsenene. The light absorption of single layer and bilayer arsenene structures in general falls within the visible-ultraviolet (UV) spectral regime. Moreover, directional anisotropy, varying the number of layers and applying homogeneous or uniaxial in-plane tensile strain were found to modify the optical properties of two-dimensional (2D) arsenene phases, which could be useful for diverse photovoltaic and optoelectronic applications. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No 115F088.
NASA Astrophysics Data System (ADS)
Gross, N. A.; Withers, P.; Sojka, J. J.
2014-12-01
The Chapman Layer Model is a "textbook" model of the ionosphere (for example, "Theory of Planetary Atmospheres" by Chamberlain and Hunten, Academic Press (1978)). The model use fundamental assumptions about the neutral atmosphere, the flux of ionizing radiation, and the recombination rate to calculation the ionization rate, and ion/electron density for a single species atmosphere. We have developed a "Chapman Layer Calculator" application that is deployed on the web using Java. It allows the user to see how various parameters control ion density, peak height, and profile of the ionospheric layer. Users can adjust parameters relevant to thermosphere scale height (temperature, gravitational acceleration, molecular weight, neutral atmosphere density) and to Extreme Ultraviolet solar flux (reference EUV, distance from the Sun, and solar Zenith Angle) and then see how the layer changes. This allows the user to simulate the ionosphere on other planets, by adjusting to the appropriate parameters. This simulation has been used as an exploratory activity for the NASA/LWS - Heliophysics Summer School 2014 and has an accompanying activity guide.
NASA Astrophysics Data System (ADS)
Ahmad, Shahab; Prakash, G. Vijaya
2014-01-01
Many varieties of layered inorganic-organic (IO) perovskite of type (MX4 (where R: organic moiety, M: divalent metal, and X: halogen) were successfully fabricated and characterized. X-ray diffraction data suggest that these inorganic and organic structures are alternatively stacked up along c-axis, where inorganic mono layers are of extended corner-shared MX6 octahedra and organic spacers are the bi-layers of organic entities. These layered perovskites show unusual room-temperature exciton absorption and photoluminescence due to the quantum and dielectric confinement-induced enhancement in the exciton binding energies. A wide spectral range of optical exciton tunability (350 to 600 nm) was observed experimentally from systematic compositional variation in (i) divalent metal ions (M=Pb, Sn, Hg), (ii) halides (X=I and Br-), and (iii) organic moieties (R). Specific photoluminescence features are due to the structure of the extended MX42- network and the eventual electronic band structure. The compositionally dependent photoluminescence of these IO hybrids could be useful in various photonic and optoelectronic devices.
RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds
NASA Technical Reports Server (NTRS)
Vogelmann, Andrew M.; McFarquhar, Greg M.; Ogren, John A.; Turner, David D.; Comstock, Jennifer M.; Feingold, Graham; Long, Charles N.; Jonsson, Haflidi H.; Bucholtz, Anthony; Collins, Don R.;
2012-01-01
Small boundary-layer clouds are ubiquitous over many parts of the globe and strongly influence the Earths radiative energy balance. However, our understanding of these clouds is insufficient to solve pressing scientific problems. For example, cloud feedback represents the largest uncertainty amongst all climate feedbacks in general circulation models (GCM). Several issues complicate understanding boundary-layer clouds and simulating them in GCMs. The high spatial variability of boundary-layer clouds poses an enormous computational challenge, since their horizontal dimensions and internal variability occur at spatial scales much finer than the computational grids used in GCMs. Aerosol-cloud interactions further complicate boundary-layer cloud measurement and simulation. Additionally, aerosols influence processes such as precipitation and cloud lifetime. An added complication is that at small scales (order meters to 10s of meters) distinguishing cloud from aerosol is increasingly difficult, due to the effects of aerosol humidification, cloud fragments and photon scattering between clouds.
Vitamin D and solar ultraviolet radiation in the risk and treatment of tuberculosis.
Ralph, Anna P; Ralph, Anna R; Lucas, Robyn M; Norval, Mary
2013-01-01
Improved understanding of the association between tuberculosis and vitamin D is needed to inform clinical practice. Vitamin D has both immunostimulatory and immunosuppressive effects relevant to human antimycobacterial responses. Ultraviolet radiation, the main source of vitamin D, also induces immunomodulation and could affect the relation between vitamin D and tuberculosis. Clinical trials of vitamin D supplementation in patients with tuberculosis have produced largely negative results, prompting the review of dosing regimens-an explanation for low 25-hydroxyvitamin D status in patients with active tuberculosis is also needed. The reporting of vitamin D deficiency needs to address assay inaccuracies, rising thresholds to define sufficiency, and scarce knowledge of the concentrations needed for optimum immune responses. Future research to measure the effect of the inflammatory setting on serum concentrations of 25-hydroxyvitamin D, at tuberculosis diagnosis and during recovery, could help to account for 25-hydroxyvitamin D changes in these concentrations in patients with tuberculosis. Studies into the role of vitamin D supplementation in latent tuberculosis justify clinical trials in this population, but pose methodological challenges. Vitamin D trials in patients with active tuberculosis should be done in well selected populations using adequate vitamin D doses, although such doses remain undefined. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Biao; Zhou, Keqing; Jiang, Saihua
Highlights: • Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method. • We prepare PMMA/LZnS nanocomposites by in situ bulk polymerization of MMA. • PMMA/LZnS nanocomposites were investigated by TGA, DSC, MCC, UV–vis and PL test. • The thermal stability, flame retardant and optical properties of PMMA are improved. - Abstract: Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method and poly(methyl methacrylate) (PMMA)/layered zinc sulfide nanocomposites were obtained by in situ bulk polymerization of methyl methacrylate (MMA). X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the as-synthesized layered zinc sulfide and PMMA/layered zincmore » sulfide nanocomposites. Microscale combustion calorimeter (MCC), differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA) were used to test the thermal properties of the composites. Ultraviolet visible (UV–vis) transmittance spectra and photoluminence (PL) spectra were obtained to investigate the optical properties of the composites. From the results, the thermal degradation temperature is increased by 20–50 °C, the peak of heat release rate (pHRR) and total heat release (THR) are both decreased by above 30%, and the photoluminence intensity is enhanced with the increasing loading of layered zinc sulfide.« less
Polishability of thin electrolytic and electroless NiP layers
NASA Astrophysics Data System (ADS)
Kinast, Jan; Beier, Matthias; Gebhardt, Andreas; Risse, Stefan; Tünnermann, Andreas
2015-10-01
Ultra-precise metal optics are key components of sophisticated scientific instrumentation in astronomy and space applications, covering a wide spectral range. Especially for applications in the visible or ultra-violet spectral ranges, a low roughness of the optics is required. Therefore, a polishable surface is necessary. State of the art is an amorphous nickel-phosphorus (NiP) layer, which enables several polishing techniques achieving a roughness of <1 nm RMS. Typically, these layers are approximately 30 μm to 60 μm thick. Deposited on Al6061, the bimetallic effect leads to a restricted operational temperature, caused by different coefficients of thermal expansion of Al6061 and NiP. Thinner NiP layers reduce the bimetallic effect. Hence, the possible operating temperature range. A deterministic shape correction via Magnetorheological Finishing of the substrate Al6061 leads to low shape deviations prior to the NiP deposition. This allows for depositing thin NiP-layers, which are polishable via a chemical mechanical polishing technique aiming at ultra-precise metal optics. The present article shows deposition processes and polishability of electroless and electrolytic NiP layers with thicknesses between 1 μm and 10 μm.
Opitz, Andreas; Wilke, Andreas; Amsalem, Patrick; Oehzelt, Martin; Blum, Ralf-Peter; Rabe, Jürgen P.; Mizokuro, Toshiko; Hörmann, Ulrich; Hansson, Rickard; Moons, Ellen; Koch, Norbert
2016-01-01
We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure – in the presence of Fermi-level pinning – at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fermi-level (EF) pinning of the first layer on the conductive polymer substrate modifies the work function encountered by the second layer such that it also becomes EF-pinned, however, at the interface towards the first molecular layer. This results in a charge transfer accompanied by a sheet charge density at the organic/organic interface. While molecules in the bulk of the films exhibit upright orientation, contact formation at the heterojunction results in an interfacial bilayer with lying and co-facial orientation. This interfacial layer is not EF-pinned, but provides for an additional density of states at the interface that is not present in the bulk. With reliable knowledge of the organic heterojunction’s electronic structure we can explain the poor performance of these in photovoltaic cells as well as their valuable function as charge generation layer in electronic devices. PMID:26887445
NASA Astrophysics Data System (ADS)
Arend, Mark; Campmier, Mark; Fernandez, Aris; Moshary, Fred
2018-04-01
The complexity of urban boundary layer dynamics poses challenges to those responsible for the design and regulation of buildings and structures in the urban environment. Lidar systems in the New York City Metropolitan region have been used extensively to study urban boundary layer dynamics. These systems, in conjunction with other sensing platforms can provide an observatory to perform research and analysis of turbulent and inclement weather patterns of interest to developers and agencies.
Wang, Zijiao; Ma, Qianli; Dong, Xiangting; Li, Dan; Xi, Xue; Yu, Wensheng; Wang, Jinxian; Liu, Guixia
2016-12-21
A two-dimensional (2D) bi-layered composite nanofibrous film assembled by one-dimensional (1D) nanofibers with trifunctionality of electrical conduction, magnetism and photoluminescence has been successfully fabricated by layer-by-layer electrospinning. The composite film consists of a polyaniline (PANI)/Fe 3 O 4 nanoparticle (NP)/polyacrylonitrile (PAN) tuned electrical-magnetic bifunctional layer on one side and a Tb(TTA) 3 (TPPO) 2 /polyvinylpyrrolidone (PVP) photoluminescent layer on the other side, and the two layers are tightly combined face-to-face together into the novel bi-layered composite film of trifunctionality. The brand-new film has totally different characteristics at the double layers. The electrical conductivity and magnetism of the electrical-magnetic bifunctional layer can be, respectively, tunable via modulating the PANI and Fe 3 O 4 NP contents, and the highest electrical conductivity can reach up to the order of 10 -2 S cm -1 , and predominant intense green emission at 545 nm is obviously observed in the photoluminescent layer under the excitation of 357 nm single-wavelength ultraviolet light. More importantly, the luminescence intensity of the photoluminescent layer remains almost unaffected by the electrical-magnetic bifunctional layer because the photoluminescent materials have been successfully isolated from dark-colored PANI and Fe 3 O 4 NPs. By comparing with the counterpart single-layered composite nanofibrous film, it is found that the bi-layered composite nanofibrous film has better performance. The novel bi-layered composite nanofibrous film with trifunctionality has potential in the fields of nanodevices, molecular electronics and biomedicine. Furthermore, the design conception and fabrication technique for the bi-layered multifunctional film provide a new and facile strategy towards other films of multifunctionality.
Using the transit of Venus to probe the upper planetary atmosphere.
Reale, Fabio; Gambino, Angelo F; Micela, Giuseppina; Maggio, Antonio; Widemann, Thomas; Piccioni, Giuseppe
2015-06-23
During a planetary transit, atoms with high atomic number absorb short-wavelength radiation in the upper atmosphere, and the planet should appear larger during a primary transit observed in high-energy bands than in the optical band. Here we measure the radius of Venus with subpixel accuracy during the transit in 2012 observed in the optical, ultraviolet and soft X-rays with Hinode and Solar Dynamics Observatory missions. We find that, while Venus's optical radius is about 80 km larger than the solid body radius (the top of clouds and haze), the radius increases further by >70 km in the extreme ultraviolet and soft X-rays. This measures the altitude of the densest ion layers of Venus's ionosphere (CO2 and CO), useful for planning missions in situ, and a benchmark case for detecting transits of exoplanets in high-energy bands with future missions, such as the ESA Athena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christians, Jeffrey A.; Schulz, Philip; Tinkham, Jonathan S.
Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughoutmore » the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.« less
Ultraviolet laser-induced lateral photovoltaic response in anisotropic black shale
NASA Astrophysics Data System (ADS)
Miao, Xinyang; Zhu, Jing; Zhao, Kun; Yue, Wenzheng
2017-12-01
The anisotropy of shale has significant impact on oil and gas exploration and engineering. In this paper, a-248 nm ultraviolet laser was employed to assess the anisotropic lateral photovoltaic (LPV) response of shale. Anisotropic angle-depending voltage signals were observed with different peak amplitudes ( V p) and decay times. We employed exponential models to explain the charge carrier transport in horizontal and vertical directions. Dependences of the laser-induced LPV on the laser spot position were observed. Owing to the Dember effect and the layered structure of shale, V p shows an approximately linear dependence with the laser-irradiated position for the 0° shale sample but nonlinearity for the 45° and 90° ones. The results demonstrate that the laser-induced voltage method is very sensitive to the structure of materials, and thus has a great potential in oil and gas reservoir characterization.
Benwadih, M; Coppard, R; Bonrad, K; Klyszcz, A; Vuillaume, D
2016-12-21
Amorphous, sol-gel processed, indium gallium zinc oxide (IGZO) transistors on plastic substrate with a printable gate dielectric and an electron mobility of 4.5 cm 2 /(V s), as well as a mobility of 7 cm 2 /(V s) on solid substrate (Si/SiO 2 ) are reported. These performances are obtained using a low temperature pulsed light annealing technique. Ultraviolet (UV) pulsed light system is an innovative technique compared to conventional (furnace or hot-plate) annealing process that we successfully implemented on sol-gel IGZO thin film transistors (TFTs) made on plastic substrate. The photonic annealing treatment has been optimized to obtain IGZO TFTs with significant electrical properties. Organic gate dielectric layers deposited on this pulsed UV light annealed films have also been optimized. This technique is very promising for the development of amorphous IGZO TFTs on plastic substrates.
Detection of early caries by laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji
2015-07-01
To improve sensitivity of dental caries detection by laser-induced breakdown spectroscopy (LIBS) analysis, it is proposed to utilize emission peaks in the ultraviolet. We newly focused on zinc whose emission peaks exist in ultraviolet because zinc exists at high concentration in the outer layer of enamel. It was shown that by using ratios between heights of an emission peak of Zn and that of Ca, the detection sensitivity and stability are largely improved. It was also shown that early caries are differentiated from healthy part by properly setting a threshold in the detected ratios. The proposed caries detection system can be applied to dental laser systems such as ones based on Er:YAG-lasers. When ablating early caries part by laser light, the system notices the dentist that the ablation of caries part is finished. We also show the intensity of emission peaks of zinc decreased with ablation with Er:YAG laser light.
Ultraviolet observations of the Saturnian north aurora and polar haze distribution with the HST-FOC
NASA Technical Reports Server (NTRS)
Gerard, J. C.; Dols, V.; Grodent, D.; Waite, J. H.; Gladstone, G. R.; Prange, R.
1995-01-01
Near simultaneous observations of the Saturnian H2 north ultraviolet aurora and the polar haze were made at 153 nm and 210 nm respectively with the Faint Object Camera on board the Hubble Space Telescope. The auroral observations cover a complete rotation of the planet and, when co-added, reveal the presence of an auroral emission near 80 deg N with a peak brightness of about 150 kR of total H2 emission. The maximum optical depth of the polar haze layer is found to be located approximately 5 deg equatorward of the auroral emission zone. The haze particles are presumably formed by hydrocarbon aerosols initiated by H2+ auroral production. In this case, the observed haze optical depth requires an efficiency of aerosol formation of about 6 percent, indicating that auroral production of hydrocarbon aerosols is a viable source of high-latitude haze.
Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol.
Chipperfield, M P; Dhomse, S S; Feng, W; McKenzie, R L; Velders, G J M; Pyle, J A
2015-05-26
Chlorine- and bromine-containing ozone-depleting substances (ODSs) are controlled by the 1987 Montreal Protocol. In consequence, atmospheric equivalent chlorine peaked in 1993 and has been declining slowly since then. Consistent with this, models project a gradual increase in stratospheric ozone with the Antarctic ozone hole expected to disappear by ∼2050. However, we show that by 2013 the Montreal Protocol had already achieved significant benefits for the ozone layer. Using a 3D atmospheric chemistry transport model, we demonstrate that much larger ozone depletion than observed has been avoided by the protocol, with beneficial impacts on surface ultraviolet. A deep Arctic ozone hole, with column values <120 DU, would have occurred given meteorological conditions in 2011. The Antarctic ozone hole would have grown in size by 40% by 2013, with enhanced loss at subpolar latitudes. The decline over northern hemisphere middle latitudes would have continued, more than doubling to ∼15% by 2013.
Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol
NASA Astrophysics Data System (ADS)
Chipperfield, M. P.; Dhomse, S. S.; Feng, W.; McKenzie, R. L.; Velders, G. J. M.; Pyle, J. A.
2015-05-01
Chlorine- and bromine-containing ozone-depleting substances (ODSs) are controlled by the 1987 Montreal Protocol. In consequence, atmospheric equivalent chlorine peaked in 1993 and has been declining slowly since then. Consistent with this, models project a gradual increase in stratospheric ozone with the Antarctic ozone hole expected to disappear by ~2050. However, we show that by 2013 the Montreal Protocol had already achieved significant benefits for the ozone layer. Using a 3D atmospheric chemistry transport model, we demonstrate that much larger ozone depletion than observed has been avoided by the protocol, with beneficial impacts on surface ultraviolet. A deep Arctic ozone hole, with column values <120 DU, would have occurred given meteorological conditions in 2011. The Antarctic ozone hole would have grown in size by 40% by 2013, with enhanced loss at subpolar latitudes. The decline over northern hemisphere middle latitudes would have continued, more than doubling to ~15% by 2013.
Ultra-fast switching of light by absorption saturation in vacuum ultra-violet region.
Yoneda, Hitoki; Inubushi, Yuichi; Tanaka, Toshihiro; Yamaguchi, Yuta; Sato, Fumiya; Morimoto, Shunsuke; Kumagai, Taisuke; Nagasono, Mitsuru; Higashiya, Atsushi; Yabashi, Makina; Ishikawa, Tetsuya; Ohashi, Haruhiko; Kimura, Hiroaki; Kitamura, Hikaru; Kodama, Ryosuke
2009-12-21
Advances in free electron lasers producing high energy photons [Nat. Photonics 2(9), 555-559 (2008)] are expected to open up a new science of nonlinear optics of high energy photons. Specifically, lasers of photon energy higher than the plasma frequency of a metal can show new interaction features because they can penetrate deeply into metals without strong reflection. Here we show the observation of ultra-fast switching of vacuum ultra-violet (VUV) light caused by saturable absorption of a solid metal target. A strong gating is observed at energy fluences above 6J/cm2 at wavelength of 51 nm with tin metal thin layers. The ratio of the transmission at high intensity to low intensity is typically greater than 100:1. This means we can design new nonlinear photonic devices such as auto-correlator and pulse slicer for the VUV region.
Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex
Tan, Zhongchao; Sun, Wenzhi; Chen, Tsai-Wen; Kim, Douglas; Ji, Na
2015-01-01
The mouse has become an important model for understanding the neural basis of visual perception. Although it has long been known that mouse lens transmits ultraviolet (UV) light and mouse opsins have absorption in the UV band, little is known about how UV visual information is processed in the mouse brain. Using a custom UV stimulation system and in vivo calcium imaging, we characterized the feature selectivity of layer 2/3 neurons in mouse primary visual cortex (V1). In adult mice, a comparable percentage of the neuronal population responds to UV and visible stimuli, with similar pattern selectivity and receptive field properties. In young mice, the orientation selectivity for UV stimuli increased steadily during development, but not direction selectivity. Our results suggest that, by expanding the spectral window through which the mouse can acquire visual information, UV sensitivity provides an important component for mouse vision. PMID:26219604
Diatom aggregation and dimethylsulfide production in phytoplankton blooms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crocker, K.M.
1994-01-01
Phytoplankton blooms are crucial links in many of the earth's biogeochemical cycles. Blooms take up atmospheric carbon through photosynthesis, and sequester it on the ocean floor by sinking. Aggregation of single cells into [open quote]marine snow[close quote] particles speeds up the sinking of algal cells. Laboratory studies investigating the process of aggregation show that some species have a higher probability of aggregating than others, and that there exist several mechanisms for causing aggregation. Field studies confirm that some species are more likely to be found in aggregates than in the surrounding seawater. High latitude Premnesiophyte blooms are found to producemore » large amounts of dimethylsulflde (DMS), believed to be an important chemical in global thermoregulation. DMS is found to vary diurnally, possibly due to photooxidation by ultraviolet light. This possibility links the effects of DMS on cloud formation with the effects of increased ultraviolet light penetrating the earths ozone layer.« less
Lin, Richeng; Zheng, Wei; Zhang, Dan; Zhang, Zhaojun; Liao, Qixian; Yang, Lu; Huang, Feng
2018-06-22
Solar-blind ultraviolet (SBUV) detection has important applications in wireless secure communication, early warning, and so forth. However, the desired key device for SBUV detection and high-sensitivity and low-noise "sandwich" photodetector with large detective area is difficult to be fabricated because it is usually hard for traditional wide band gap semiconductors to boast both high conductivity and high SBUV transparency. Here, we proposed to use graphene as the transparent conductive layer to form graphene/β-Ga 2 O 3 heterojunction. With the help of large-area graphene and hot carrier multiplication, a SBUV photodetector with large detective area, low dark current, and high sensitivity was successfully assembled. Its photoresponsivity is 1-3 orders of magnitude higher than that of the conventional SBUV photodetectors, and its response speed can rival the best device ever reported.
Pure ultraviolet emission from ZnO quantum dots-based/GaN heterojunction diodes by MgO interlayer
NASA Astrophysics Data System (ADS)
Chen, Cheng; Liang, Renli; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhao, Chong; Zhang, Wei; Dai, Jiangnan; Chen, Changqing
2017-07-01
We demonstrate the fabrication and characterization of ZnO/GaN-based heterojunction light-emitting diodes (LEDs) by using air-stable and solution-processable ZnO quantum dots (QDs) with a thin MgO interlayer acting as an electron blocking layer (EBL). The ZnO QDs/MgO/ p-GaN heterojunction can only display electroluminescence (EL) characteristic in reverse bias regime. Under sufficient reverse bias, a fairly pure ultraviolet EL emission located at 370 nm deriving from near band edge of ZnO with a full width at half maximum (FWHM) of 8.3 nm had been obtained, while the deep-level emission had been almost totally suppressed. The EL origination and corresponding carrier transport mechanisms were investigated qualitatively in terms of photoluminescence (PL) results and energy band diagram.[Figure not available: see fulltext.
Detection and modeling of leakage current in AlGaN-based deep ultraviolet light-emitting diodes
Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...
2015-03-01
Current-voltage (IV) characteristics of two AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) with differing densities of open-core threading dislocations (nanopipes) are analyzed. A three-diode circuit is simulated to emulate the IV characteristics of the DUV-LEDs, but is only able to accurately model the lower leakage current, lower nanopipe density DUV-LED. It was found that current leakage through the nanopipes in these structures is rectifying, despite nanopipes being previously established as inherently n-type. Using defect-sensitive etching, the nanopipes are revealed to terminate within the p-type GaN capping layer of the DUV-LEDs. The circuit model is modified to account for another p-nmore » junction between the n-type nanopipes and the p-type GaN, and an excellent fit to the IV characteristics of the leaky DUV-LED is achieved.« less
Solar Storm Triggers Whole-Planet Aurora at Mars
2017-09-29
These images show the sudden appearance of a bright aurora on Mars during a solar storm in September 2017. The purple-white color scheme shows the intensity of ultraviolet light seen on Mars' night side before (left) and during (right) the event. A simulated image of Mars for the same time and orientation has been added, with the dayside crescent visible on the right. The auroral emission appears brightest at the edges of the planet where the line of sight passes along the length of the glowing atmosphere layer. The data are from observations by the Imaging Ultraviolet Spectrograph instrument (IUVS) on NASA's Mars Atmosphere and Volatile Evolution orbiter, or MAVEN. Note that, unlike auroras on Earth, the Martian aurora is not concentrated at the planet's polar regions. This is because Mars has no strong magnetic field like Earth's to concentrate the aurora near the poles. https://photojournal.jpl.nasa.gov/catalog/PIA21855
NASA Technical Reports Server (NTRS)
Kim, Jongmin; Zukic, Muamer; Torr, Douglas G.
1993-01-01
An explanation of induced transmission for spectral regions excluding the far ultraviolet (FUV) is given to better understand how induced transmission and absorption can be used to design effective polarizers in the FUV spectral region. We achieve high s-polarization reflectance and a high degree of polarization (P equals (Rs-Rp)/(Rs+Rp)) by means of a MgF2/Al/MgF2 three layer structure on an opaque thick film of Al as the substrate. For example, our polarizer designed for the Lyman-alpha line (lambda equals 121.6 nm) has 87.95 percent reflectance for the s-polarization case and 0.43 percent for the p-polarization case, with a degree of polarization of 99.03 percent. If a double reflection polarizer is made with this design, it will have a degree of polarization of 99.99 percent and s-polarization throughput of 77.35 percent.
Liao, Yu-Kai; Tseng, Sheng-Hao
2014-01-01
Accurately determining the optical properties of multi-layer turbid media using a layered diffusion model is often a difficult task and could be an ill-posed problem. In this study, an iterative algorithm was proposed for solving such problems. This algorithm employed a layered diffusion model to calculate the optical properties of a layered sample at several source-detector separations (SDSs). The optical properties determined at various SDSs were mutually referenced to complete one round of iteration and the optical properties were gradually revised in further iterations until a set of stable optical properties was obtained. We evaluated the performance of the proposed method using frequency domain Monte Carlo simulations and found that the method could robustly recover the layered sample properties with various layer thickness and optical property settings. It is expected that this algorithm can work with photon transport models in frequency and time domain for various applications, such as determination of subcutaneous fat or muscle optical properties and monitoring the hemodynamics of muscle. PMID:24688828
Pak, Sang Woo; Chu, Dongil; Song, Da Ye; Lee, Seung Kyo; Kim, Eun Kyu
2017-11-24
We report an enhancement of near-infrared (NIR) detectability from amorphous InGaZnO (α-IGZO) thin film transistor in conjunction with randomly distributed molybdenum disulfide (MoS 2 ) flakes. The electrical characteristics of the α-IGZO grown by radio-frequency magnetron sputtering exhibit high effective mobility exceeding 15 cm 2 V -1 s -1 and current on/off ratio up to 10 7 . By taking advantages of the high quality α-IGZO and MoS 2 light absorbing layer, photodetection spectra are able to extend from ultra-violet to NIR range. The α-IGZO channel detector capped by MoS 2 show a photo-responsivity of approximately 14.9 mA W -1 at 1100 nm wavelength, which is five times higher than of the α-IGZO device without MoS 2 layer.
NASA Astrophysics Data System (ADS)
Pak, Sang Woo; Chu, Dongil; Song, Da Ye; Kyo Lee, Seung; Kim, Eun Kyu
2017-11-01
We report an enhancement of near-infrared (NIR) detectability from amorphous InGaZnO (α-IGZO) thin film transistor in conjunction with randomly distributed molybdenum disulfide (MoS2) flakes. The electrical characteristics of the α-IGZO grown by radio-frequency magnetron sputtering exhibit high effective mobility exceeding 15 cm2 V-1 s-1 and current on/off ratio up to 107. By taking advantages of the high quality α-IGZO and MoS2 light absorbing layer, photodetection spectra are able to extend from ultra-violet to NIR range. The α-IGZO channel detector capped by MoS2 show a photo-responsivity of approximately 14.9 mA W-1 at 1100 nm wavelength, which is five times higher than of the α-IGZO device without MoS2 layer.
Growth of delta-doped layers on silicon CCD/S for enhanced ultraviolet response
NASA Technical Reports Server (NTRS)
Hoenk, Michael E. (Inventor); Grunthaner, Paula J. (Inventor); Grunthaner, Frank J. (Inventor); Terhune, Robert W. (Inventor); Hecht, Michael H. (Inventor)
1994-01-01
The backside surface potential well of a backside-illuminated CCD is confined to within about half a nanometer of the surface by using molecular beam epitaxy (MBE) to grow a delta-doped silicon layer on the back surface. Delta-doping in an MBE process is achieved by temporarily interrupting the evaporated silicon source during MBE growth without interrupting the evaporated p+ dopant source (e.g., boron). This produces an extremely sharp dopant profile in which the dopant is confined to only a few atomic layers, creating an electric field high enough to confine the backside surface potential well to within half a nanometer of the surface. Because the probability of UV-generated electrons being trapped by such a narrow potential well is low, the internal quantum efficiency of the CCD is nearly 100% throughout the UV wavelength range. Furthermore, the quantum efficiency is quite stable.
Thin-layer chromatography and colorimetric analysis of multi-component explosive mixtures
Pagoria, Philip F.; Mitchell, Alexander R.; Whipple, Richard E.; Carman, M. Leslie
2014-08-26
A thin-layer chromatography method for detection and identification of common military and peroxide explosives in samples includes the steps of provide a reverse-phase thin-layer chromatography plate; prepare the plate by marking spots on which to deposit the samples by touching the plate with a marker; spot one micro liter of a first standard onto one of the spots, spot one micro liter of a second standard onto another of the spots, and spot samples onto other of spots producing a spotted plate; add eluent to a developing chamber; add the spotted plate to the developing chamber; remove the spotted plate from the developing chamber producing a developed plate; place the developed plate in an ultraviolet light box; add a visualization agent to a dip tank; dip the developed plate in the dip tank and remove the developed plate quickly; and detect explosives by viewing said developed plate.
Guillon, Samuel; Saya, Daisuke; Mazenq, Laurent; Costecalde, Jean; Rèmiens, Denis; Soyer, Caroline; Nicu, Liviu
2012-09-01
The advantage of using lead zirconate titanate (PbZr(0.54)Ti(0.46)O(3)) ceramics as an active material in nanoelectromechanical systems (NEMS) comes from its relatively high piezoelectric coefficients. However, its integration within a technological process is limited by the difficulty of structuring this material with submicrometer resolution at the wafer scale. In this work, we develop a specific patterning method based on optical lithography coupled with a dual-layer resist process. The main objective is to obtain sub-micrometer features by lifting off a 100-nm-thick PZT layer while preserving the material's piezoelectric properties. A subsequent result of the developed method is the ability to stack several layers with a lateral resolution of few tens of nanometers, which is mandatory for the fabrication of NEMS with integrated actuation and read-out capabilities.
Method of bonding silver to glass and mirrors produced according to this method
Pitts, J.R.; Thomas, T.M.; Czanderna, A.W.
1984-07-31
A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.
Method of bonding silver to glass and mirrors produced according to this method
Pitts, John R.; Thomas, Terence M.; Czanderna, Alvin W.
1985-01-01
A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.
Chow, R.; Loomis, G.E.; Thomas, I.M.
1999-03-16
Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (ca. 1.10--1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm. 2 figs.
Highly damped kinematic coupling for precision instruments
Hale, Layton C.; Jensen, Steven A.
2001-01-01
A highly damped kinematic coupling for precision instruments. The kinematic coupling provides support while causing essentially no influence to its nature shape, with such influences coming, for example, from manufacturing tolerances, temperature changes, or ground motion. The coupling uses three ball-cone constraints, each combined with a released flexural degree of freedom. This arrangement enables a gain of higher load capacity and stiffness, but can also significantly reduce the friction level in proportion to the ball radius divided by the distance between the ball and the hinge axis. The blade flexures reduces somewhat the stiffness of the coupling and provides an ideal location to apply constrained-layer damping which is accomplished by attaching a viscoelastic layer and a constraining layer on opposite sides of each of the blade flexures. The three identical ball-cone flexures provide a damped coupling mechanism to kinematically support the projection optics system of the extreme ultraviolet lithography (EUVL) system, or other load-sensitive apparatus.
Step-by-step seeding procedure for preparing HKUST-1 membrane on porous α-alumina support.
Nan, Jiangpu; Dong, Xueliang; Wang, Wenjin; Jin, Wanqin; Xu, Nanping
2011-04-19
Metal-organic framework (MOF) membranes have attracted considerable attention because of their striking advantages in small-molecule separation. The preparation of an integrated MOF membrane is still a major challenge. Depositing a uniform seed layer on a support for secondary growth is a main route to obtaining an integrated MOF membrane. A novel seeding method to prepare HKUST-1 (known as Cu(3)(btc)(2)) membranes on porous α-alumina supports is reported. The in situ production of the seed layer was realized in step-by-step fashion via the coordination of H(3)btc and Cu(2+) on an α-alumina support. The formation process of the seed layer was observed by ultraviolet-visible absorption spectroscopy and atomic force microscopy. An integrated HKUST-1 membrane could be synthesized by the secondary hydrothermal growth on the seeded support. The gas permeation performance of the membrane was evaluated. © 2011 American Chemical Society
Inclined dislocation arrays in AlGaN/AlGaN quantum well structures emitting at 290 nm
NASA Astrophysics Data System (ADS)
Chang, T. Y.; Moram, M. A.; McAleese, C.; Kappers, M. J.; Humphreys, C. J.
2010-12-01
We report on the structural and optical properties of deep ultraviolet emitting AlGaN/AlGaN multiple quantum wells (MQWs) grown on (0001) sapphire by metal-organic vapor phase epitaxy using two different buffer layer structures, one containing a thin (1 μm) AlN layer combined with a GaN interlayer and the other a thick (4 μm) AlN layer. Transmission electron microscopy analysis of both structures showed inclined arrays of dislocations running through the AlGaN layers at an angle of ˜30°, originating at bunched steps at the AlN surface and terminating at bunched steps at the surface of the MQW structure. In all layers, these inclined dislocation arrays are surrounded by AlGaN with a relatively higher Ga content, consistent with plan-view cathodoluminescence maps in which the bunched surface steps are associated with longer emission wavelengths. The structure with the 4 μm-thick AlN buffer layer had a dislocation density lower by a factor of 2 (at (1.7±0.1)×109 cm-2) compared to the structure with the 1 μm thick AlN buffer layer, despite the presence of the inclined dislocation arrays.
Zhang, Jiankai; Luo, Hui; Xie, Weijia; Lin, Xuanhuai; Hou, Xian; Zhou, Jianping; Huang, Sumei; Ou-Yang, Wei; Sun, Zhuo; Chen, Xiaohong
2018-03-28
Planar perovskite solar cells (PSCs) that use nickel oxide (NiO x ) as a hole transport layer have recently attracted tremendous attention because of their excellent photovoltaic efficiencies and simple fabrication. However, the electrical conductivity of NiO x and the interface contact properties of the NiO x /perovskite layer are always limited for the NiO x layer fabricated at a relatively low annealing temperature. Ferrocenedicarboxylic acid (FDA) was firstly introduced to modify a p-type NiO x hole transport layer in PSCs, which obviously improves the crystallization of the perovskite layer and hole transport and collection abilities and reduces carrier recombination. PSCs with a FDA modified NiO x layer reached a PCE of 18.20%, which is much higher than the PCE (15.13%) of reference PSCs. Furthermore, PSCs with a FDA interfacial modification layer show better UV durability and a hysteresis-free effect and still maintain the original PCE value of 49.8%after being exposed to UV for 24 h. The enhanced performance of the PSCs is attributed to better crystallization of the perovskite layer, the passivation effect of FDA, superior interface contact at the NiO x /perovskite layers and enhancement of the electrical conductivity of the FDA modified NiO x layer. In addition, PSCs with FDA inserted at the interface of the perovskite/PCBM layers can also improve the PCE to 16.62%, indicating that FDA have dual functions to modify p-type and n-type carrier transporting layers.
Effects of solar ultraviolet radiation on coral reef organisms.
Banaszak, Anastazia T; Lesser, Michael P
2009-09-01
Organisms living in shallow-water tropical coral reef environments are exposed to high UVR irradiances due to the low solar zenith angles (the angle of the sun from the vertical), the natural thinness of the ozone layer over tropical latitudes, and the high transparency of the water column. The hypothesis that solar ultraviolet radiation (UVR, 290-400 nm) is an important factor that affects the biology and ecology of coral reef organisms dates only to about 1980. It has been previously suggested that increased levels of biologically effective ultraviolet B radiation (UVB, 290-320 nm), which is the waveband primarily affected by ozone depletion, would have relatively small effects on corals and coral reefs and that these effects might be observed as changes in the minimum depths of occurrence of important reef taxa such as corals. This conclusion was based on predictions of increases in UVR as well as its attenuation with depth using the available data on UVR irradiances, ozone levels, and optical properties of the water overlying coral reefs. Here, we review the experimental evidence demonstrating the direct and indirect effects of UVR, both UVB and ultraviolet A (UVA, 320-400 nm) on corals and other reef associated biota, with emphasis on those studies conducted since 1996. Additionally, we re-examine the predictions made in 1996 for the increase in UVB on reefs with currently available data, assess whether those predictions were reasonable, and look at what changes might occur on coral reefs in the future as the multiple effects (i.e. increased temperature, hypercapnia, and ocean acidification) of global climate change continue.
Peng, Qi; Zhou, Qing
2009-12-01
The dynamic state of endogenous hormone content in soybean seedlings was investigated for a further demonstration of alleviating the damage of the ultraviolet ultraviolet-B (UV-B) radiation in the La(III)-treated soybean seedlings under UV-B stress. Using hydroponics culture, the effects of lanthanum(III) on the contents of endogenous hormone under elevated ultraviolet-B radiation (280–320 nm) was studied. The results showed that the content of indole-3-acetic acid (IAA) in soybean seedlings decreased initially and then increased when the seedlings underwent UV-B treatment during the stress and convalescent period; this was compared with a control; acetic acid oxidase (IAAO) activity increased at first (first to fifth day) and then decreased (sixth to 11th day). A similar change of abscisic acid content and IAAO content in soybean seedlings occurred; gibberellic acid (GA) content decreased during the experiment compared with control. The content of IAA and GA in soybean seedlings with La(III) + UV-B treatment was higher than those of UV-B treatment; IAAO activity and GA content in soybean seedlings with La (III) + UV-B treatment were lower than those of UV-B treatment. It suggested that the regulative effect of La(III) at the optimum concentration on endogenous hormone improved the ability of plant stress resistance, and its protective effect against low UV-B radiation was superior to high UV-B radiation. The defensive effect of La(III) on soybean seedlings under UV-B stress was carried out on the layer of defense system.
NASA Astrophysics Data System (ADS)
Liu, Cheng; Ooi, Yu Kee; Islam, S. M.; Xing, Huili Grace; Jena, Debdeep; Zhang, Jing
2017-02-01
III-nitride based ultraviolet (UV) light emitting diodes (LEDs) are of considerable interest in replacing gas lasers and mercury lamps for numerous applications. Specifically, AlGaN quantum well (QW) based LEDs have been developed extensively but the external quantum efficiencies of which remain less than 10% for wavelengths <300 nm due to high dislocation density, difficult p-type doping and most importantly, the physics and band structure from the three degeneration valence subbands. One solution to address this issue at deep UV wavelengths is by the use of the AlGaN-delta-GaN QW where the insertion of the delta-GaN layer can ensure the dominant conduction band (C) - heavyhole (HH) transition, leading to large transverse-electric (TE) optical output. Here, we proposed and investigated the physics and polarization-dependent optical characterizations of AlN-delta- GaN QW UV LED at 300 nm. The LED structure is grown by Molecular Beam Epitaxy (MBE) where the delta-GaN layer is 3-4 monolayer (QW-like) sandwiched by 2.5-nm AlN sub-QW layers. The physics analysis shows that the use of AlN-delta-GaN QW ensures a larger separation between the top HH subband and lower-energy bands, and strongly localizes the electron and HH wave functions toward the QW center and hence resulting in 30-time enhancement in TEpolarized spontaneous emission rate, compared to that of a conventional Al0.35Ga0.65N QW. The polarization-dependent electroluminescence measurements confirm our theoretical analysis; a dominant TE-polarized emission was obtained at 298 nm with a minimum transverse-magnetic (TM) polarized emission, indicating the feasibility of high-efficiency TEpolarized UV emitters based on our proposed QW structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yu-Chang; Lee, Hsin-Ying, E-mail: hylee@ee.ncku.edu.tw; Lee, Ching-Ting
2016-01-15
A plasma-enhanced atomic layer deposition (PE-ALD) system was used to deposit magnesium zinc oxide (Mg{sub x}Zn{sub 1−x}O) films with various Mg content (x). The Mg{sub x}Zn{sub 1-x}O films were applied to metal–semiconductor–metal ultraviolet (UV) photodetectors (MSM-UPDs) as an active layer. The Mg content in the Mg{sub x}Zn{sub 1-x}O films was modulated by adjusting the ZnO–MgO cycle ratios to 15:1, 12:1, and 9:1. Correspondingly, the Mg content in the Mg{sub x}Zn{sub 1-x}O films characterized using an energy dispersive spectrometer was 0.10, 0.13, and 0.16, respectively. The optical bandgap of the Mg{sub x}Zn{sub 1-x}O films increased from 3.56 to 3.66 eV withmore » an increase in Mg content from 0.10 to 0.16. The peak position of photoresponsivity for the Mg{sub x}Zn{sub 1-x}O MSM-UPDs was also shifted from 350 to 340 nm. The UV-visible rejection ratios of the Mg{sub x}Zn{sub 1-x}O MSM-UPDs were higher than 3 orders of magnitude. In addition, excellent detectivity and noise equivalent power for the Mg{sub x}Zn{sub 1-x}O MSM-UPDs were observed at a bias voltage of 5 V. The high performance of the Mg{sub x}Zn{sub 1-x}O MSM-UPDs was achieved by PE-ALD at a low temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szyszka, A., E-mail: szyszka@ihp-microelectronics.com, E-mail: adam.szyszka@pwr.wroc.pl; Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw; Lupina, L.
2014-08-28
Based on a novel double step oxide buffer heterostructure approach for GaN integration on Si, we present an optimized Metal-Semiconductor-Metal (MSM)-based Ultraviolet (UV) GaN photodetector system with integrated short-period (oxide/Si) Distributed Bragg Reflector (DBR) and leakage suppressing Metal-Oxide-Semiconductor (MOS) electrode contacts. In terms of structural properties, it is demonstrated by in-situ reflection high energy electron diffraction and transmission electron microscopy-energy dispersive x-ray studies that the DBR heterostructure layers grow with high thickness homogeneity and sharp interface structures sufficient for UV applications; only minor Si diffusion into the Y{sub 2}O{sub 3} films is detected under the applied thermal growth budget. Asmore » revealed by comparative high resolution x-ray diffraction studies on GaN/oxide buffer/Si systems with and without DBR systems, the final GaN layer structure quality is not significantly influenced by the growth of the integrated DBR heterostructure. In terms of optoelectronic properties, it is demonstrated that—with respect to the basic GaN/oxide/Si system without DBR—the insertion of (a) the DBR heterostructures and (b) dark current suppressing MOS contacts enhances the photoresponsivity below the GaN band-gap related UV cut-off energy by almost up to two orders of magnitude. Given the in-situ oxide passivation capability of grown GaN surfaces and the one order of magnitude lower number of superlattice layers in case of higher refractive index contrast (oxide/Si) systems with respect to classical III-N DBR superlattices, virtual GaN substrates on Si via functional oxide buffer systems are thus a promising robust approach for future GaN-based UV detector technologies.« less
NASA Astrophysics Data System (ADS)
Nakai, Hiroshi; Sugiyama, Mutsumi; Chichibu, Shigefusa F.
2017-05-01
Gallium nitride (GaN) and related (Al,Ga,In)N alloys provide practical benefits in the production of light-emitting diodes (LEDs) and laser diodes operating in ultraviolet (UV) to green wavelength regions. However, obtaining low resistivity p-type AlN or AlGaN of large bandgap energies (Eg) is a critical issue in fabricating UV and deep UV-LEDs. NiO is a promising candidate for useful p-type transparent-semiconducting films because its Eg is 4.0 eV and it can be doped into p-type conductivity of sufficiently low resistivity. By using these technologies, heterogeneous junction diodes consisting of a p-type transparent-semiconducting polycrystalline NiO film on an n-type single crystalline GaN epilayer on a low threading-dislocation density, free-standing GaN substrate were fabricated. The NiO film was deposited by using the conventional RF-sputtering method, and the GaN homoepitaxial layer was grown by metalorganic vapor phase epitaxy. They exhibited a significant photovoltaic effect under UV light and also exhibited an electroluminescence peak at 3.26 eV under forward-biased conditions. From the conduction and valence band (EV) discontinuities, the NiO/GaN heterointerface is assigned to form a staggered-type (TYPE-II) band alignment with the EV of NiO higher by 2.0 eV than that of GaN. A rectifying property that is consistent with the proposed band diagram was observed in the current-voltage characteristics. These results indicate that polycrystalline NiO functions as a hole-extracting and injecting layer of UV optoelectronic devices.
Real-time 3D human pose recognition from reconstructed volume via voxel classifiers
NASA Astrophysics Data System (ADS)
Yoo, ByungIn; Choi, Changkyu; Han, Jae-Joon; Lee, Changkyo; Kim, Wonjun; Suh, Sungjoo; Park, Dusik; Kim, Junmo
2014-03-01
This paper presents a human pose recognition method which simultaneously reconstructs a human volume based on ensemble of voxel classifiers from a single depth image in real-time. The human pose recognition is a difficult task since a single depth camera can capture only visible surfaces of a human body. In order to recognize invisible (self-occluded) surfaces of a human body, the proposed algorithm employs voxel classifiers trained with multi-layered synthetic voxels. Specifically, ray-casting onto a volumetric human model generates a synthetic voxel, where voxel consists of a 3D position and ID corresponding to the body part. The synthesized volumetric data which contain both visible and invisible body voxels are utilized to train the voxel classifiers. As a result, the voxel classifiers not only identify the visible voxels but also reconstruct the 3D positions and the IDs of the invisible voxels. The experimental results show improved performance on estimating the human poses due to the capability of inferring the invisible human body voxels. It is expected that the proposed algorithm can be applied to many fields such as telepresence, gaming, virtual fitting, wellness business, and real 3D contents control on real 3D displays.
Multifunctional Deployment Hinges Rigidified by Ultraviolet
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Simburger, Edward J.; Matusmoto, James; Giants, Thomas W.; Garcia, Alexander; Perry, Alan; Rawal, Suraj; Marshall, Craig; Lin, John Kun Hung; Day, Jonathan Robert;
2005-01-01
Multifunctional hinges have been developed for deploying and electrically connecting panels comprising planar arrays of thin-film solar photovoltaic cells. In the original intended application of these hinges, the panels would be facets of a 32-sided (and approximately spherical) polyhedral microsatellite (see figure), denoted a PowerSphere, that would be delivered to orbit in a compact folded configuration, then deployed by expansion of gas in inflation bladders. Once deployment was complete, the hinges would be rigidified to provide structural connections that would hold the panels in their assigned relative positions without backlash. Such hinges could also be used on Earth for electrically connecting and structurally supporting solar panels that are similarly shipped in compact form and deployed at their destinations. As shown in section A-A in the figure, a hinge of this type is partly integrated with an inflation bladder and partly integrated with the frame of a solar panel. During assembly of the hinge, strip extensions from a flexible circuit harness on the bladder are connected to corresponding thin-film conductors on the solar panel by use of laser welding and wrap-around contacts. The main structural component of the hinge is a layer of glass fiber impregnated with an ultraviolet-curable resin. After deployment, exposure to ultraviolet light from the Sun cures the resin, thereby rigidifying the hinge.
Solar ultraviolet radiation and its impact on aquatic systems of Patagonia, South America.
Villafañe, V E; Helbling, E W; Zagarese, H E
2001-03-01
Solar ultraviolet radiation (UVR, 280-400 nm) is known to cause a number of detrimental effects in aquatic organisms. The area of Patagonia, which is sometimes under the influence of the Antarctic ozone "hole", occasionally receives enhanced levels of ultraviolet B radiation (UV-B, 280-315 nm). Great efforts have been put into creating a database for UVR climatology by installing a variety of instruments in several localities in the region. However, no comparable effort has been made to determine the impact of normal and enhanced levels of solar UVR upon organisms. Most of the photobiological research in aquatic systems of Patagonia has focused on determining the effects of solar UVR in phytoplankton photosynthesis, DNA damage, and mortality, fecundity and repair mechanisms in zooplanktonic species. Some work has also been done with fish larvae and interactions between species at low trophic levels of the aquatic food web. The results of these studies indicate that in order to assess the overall impact of UVR in a certain waterbody, it is also necessary to consider other variables, such as changes in cloudiness, ozone concentrations, differential sensitivity of organisms, and depth of the upper mixed layer/epilimnion. All factors that can preclude or benefit the acclimation of species to solar radiation.
NASA Astrophysics Data System (ADS)
Zhang, Xiaowen; Zheng, Qinghong; Tang, Zhenyu; Li, Wanshu; Zhang, Yan; Xu, Kai; Xue, Xiaogang; Xu, Jiwen; Wang, Hua; Wei, Bin
2018-02-01
Polymeric carbon nitride (CNxHy) has been facilely synthesized from dicyandiamide and functions as a solution-processed hole injection layer in organic light-emitting diodes (OLEDs). The measurements using X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and impedance spectroscopy elucidate that CNxHy exhibits superior film morphology and extra electric properties such as tailored work function and tunable hole injection. The luminous efficiency of CNxHy-based OLED is found to improve by 76.6% in comparison to the counterpart using favorite solution-processed poly(ethylene dioxythiophene):poly(styrene sulfonate) as the hole injection layer. Our results also pave a way for broadening carbon nitride applications in organic electronics using the solution process.
NASA Technical Reports Server (NTRS)
Katsukawa, Yukio; Ishikawa, Ryoko; Kano, Ryohei; Kubo, Masahito; Noriyuki, Narukage; Kisei, Bando; Hara, Hirohisa; Yoshiho, Suematsu; Goto, Motouji; Ishikawa, Shinnosuke;
2017-01-01
The CLASP (Chromospheric Lyman-Alpha Spectro- Polarimeter) rocket experiment, in addition to the ultraviolet region of the Ly alpha emission line (121.57 nm), emission lines of Si III (120.65 nm) and OV (121.83 nm) is can be observed. These are optically thin line compared to a Ly alpha line, if Rarere captured its polarization, there is a possibility that dripping even a new physical diagnosis chromosphere-transition layer. In particular, OV bright light is a release from the transition layer, further, three P one to one S(sub 0) is a forbidden line (cross-triplet transition between lines), it was not quite know whether to polarization.
Effect of solution concentration on MEH-PPV thin films
NASA Astrophysics Data System (ADS)
Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.
2018-05-01
MEH-PPV thin films were prepared with a mixture of THF (tetrahydrofuran) solution deposited by spin coating method. The surface topology of MEH-PPV thin film were characterize by atomic force microscopy (AFM) and optical properties of absorption spectra were characterized by using Ultraviolet-visible-near-infrared (UV-Vis-NIR). The MEH-PPV concentration variation affects the surface and optical properties of the thin film where 0.5 mg/ml MEH-PPV concentration have a good surface topology provided the same film also gives the highest absorption coefficient were then deposited to a TiO2 thin film forming composite layer. The composite layer then shows low current flow of short circuit current of Isc = -5.313E-7 A.
NASA Technical Reports Server (NTRS)
Walberg, G.
1974-01-01
The present work describes a facility designed to validate the various aspects of radiative flow field theory, including the absorption of shock layer radiation by ablation products. The facility is capable of producing radiation with a spectrum similar to that of an entry vehicle shock layer and is designed to allow measurements at vacuum ultraviolet wavelengths where the most significant absorption by ablation products is predicted to occur. The design concept of the facility is presented along with results of theoretical analyses carried out to assess its research potential. Experimental data obtained during tests that simulated earth and Venusian entry and in which simulated ablation products were injected into the stagnation region flow field are discussed.
Ozone depletion - Ultraviolet radiation and phytoplankton biology in Antarctic waters
NASA Technical Reports Server (NTRS)
Smith, R. C.; Prezelin, B. B.; Baker, K. S.; Bidigare, R. R.; Boucher, N. P.; Coley, T.; Karentz, D.; Macintyre, S.; Matlick, H. A.; Menzies, D.
1992-01-01
The near-50-percent thinning of the stratospheric ozone layer over the Antarctic, with increased passage of mid-UV radiation to the surface of the Southern Ocean, has prompted concern over possible radiation damage to the near-surface phytoplankton communities that are the bases of Antarctic marine ecosystems. As the ozone layer thinned, a 6-week study of the marginal ice zone of the Bellingshousen Sea in the austral spring of 1990 noted sea-surface and depth-dependent ratios of mid-UV irradiance to total irradiance increased, and mid-UV inhibition of photosynthesis increased. A 6-12 percent reduction in primary production associated with ozone depletion was estimated to have occurred over the course of the present study.
Computational prediction of the electronic structure and optical properties of graphene-like β-CuN3.
Zhang, Xu; Zhao, Xudong; Jing, Yu; Wu, Dihua; Zhou, Zhen
2015-12-21
Recently, a new polymorph of the highly energetic phase β-CuN3 has been synthesized. By hybrid density functional computations, we investigated the structural, electronic and optical properties of β-CuN3 bulk and layers. Due to the quantum confinement effect, the band gap of the monolayer (2.39 eV) is larger than that of the bulk (2.23 eV). The layer number affects the configuration and the band gap. β-CuN3 shows both ionic and covalent characters, and could be stable in the infrared and visible spectrum and would decompose under ultraviolet light. The results imply that bulk β-CuN3 could be used as an energetic material.
Intrinsic white-light emission from layered hybrid perovskites.
Dohner, Emma R; Jaffe, Adam; Bradshaw, Liam R; Karunadasa, Hemamala I
2014-09-24
We report on the second family of layered perovskite white-light emitters with improved photoluminescence quantum efficiencies (PLQEs). Upon near-ultraviolet excitation, two new Pb-Cl and Pb-Br perovskites emit broadband "cold" and "warm" white light, respectively, with high color rendition. Emission from large, single crystals indicates an origin from the bulk material and not surface defect sites. The Pb-Br perovskite has a PLQE of 9%, which is undiminished after 3 months of continuous irradiation. Our mechanistic studies indicate that the emission has contributions from strong electron-phonon coupling in a deformable lattice and from a distribution of intrinsic trap states. These hybrids provide a tunable platform for combining the facile processability of organic materials with the structural definition of crystalline, inorganic solids.
NASA Astrophysics Data System (ADS)
Pepłowski, A.; Grudziński, D.; Raczyński, T.; Wróblewski, G.; Janczak, D.; Jakubowska, M.
2017-08-01
Electrodes for measuring pH of the solution were fabricated by the means of screen-printing technology. Potentiometric sensors' layers comprised of composite with polymer matrix and graphene nanoplatelets/ruthenium (IV) oxide nanopowder as functional phase. Transceivers were printed on the elastic PMMA foil. Regarding potential application of the sensors in the wearable devices, dynamic response of the electrodes to changing ultraviolet radiation levels was assessed, since RuO2 is reported to be UV-sensitive. Observed changes of the electrodes' potential were of sub-millivolt magnitude, being comparable to simultaneously observed signal drift. Given this stability under varying UV conditions and previously verified good flexibility, fabricated sensors meet the requirements for wearable applications.
Development of a TiO2/SiO2 waveguide-mode chip for an ultraviolet near-field fluorescence sensor.
Kuroda, Chiaki; Nakai, Midori; Fujimaki, Makoto; Ohki, Yoshimichi
2018-03-19
Aimed at detecting fluorescent-labeled biological substances sensitively, a sensor that utilizes near-field light has attracted much attention. According to our calculations, a planar structure composed of two dielectric layers can enhance the electric field of UV near-field light effectively by inducing waveguide-mode (WM) resonance. The fluorescence intensity obtainable by a WM chip with an optimized structure is 5.5 times that obtainable by an optimized surface plasmon resonance chip. We confirmed the above by making a WM chip consisting of TiO 2 and SiO 2 layers on a silica glass substrate and by measuring the fluorescence intensity of a solution of quantum dots dropped on the chip.
NASA Technical Reports Server (NTRS)
Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.
1999-01-01
Since the Hubble Space Telescope (HST) was deployed in low Earth orbit in April 1990, two servicing missions have been conducted to upgrade its scientific capabilities. Minor cracking of second-surface metalized Teflon FEP (DuPont; fluorinated ethylene propylene) surfaces from multilayer insulation (MLI) was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission, which was conducted 3.6 years after deployment. During the second HST servicing mission, 6.8 years after deployment, astronaut observations and photographic documentation revealed significant cracks in the Teflon FEP layer of the MLI on both the solar- and anti-solar-facing surfaces of the telescope. NASA Goddard Space Flight Center directed the efforts of the Hubble Space Telescope MLI Failure Review Board, whose goals included identifying the low-Earth-orbit environmental constituent(s) responsible for the cracking and embrittling of Teflon FEP which was observed during the second servicing mission. The NASA Lewis Research Center provided significant support to this effort. Because soft x-ray radiation from solar flares had been considered as a possible cause for the degradation of the mechanical properties of Teflon FEP (ref. 1), the effects of soft xray radiation and vacuum ultraviolet light on Teflon FEP were investigated. In this Lewisled effort, samples of Teflon FEP with a 100-nm layer of vapor-deposited aluminum (VDA) on the backside were exposed to synchrotron radiation of various vacuum ultraviolet and soft x-ray wavelengths between 18 nm (69 eV) and 0.65 nm (1900 eV). Synchrotron radiation exposures were conducted using the National Synchrotron Light Source at Brookhaven National Laboratory. Samples of FEP/VDA were exposed with the FEP surface facing the synchrotron beam. Doses and fluences were compared with those estimated for the 20-yr Hubble Space Telescope mission.
NASA Astrophysics Data System (ADS)
Wu, Bozhao; Liu, Xinghui; Yin, Jiuren; Lee, Hyoyoung
2017-09-01
Herein we report a prediction of a highly kinetic stable layered structure of tellurium (namely, bulk β-Te), which is similar to these layered bulk materials such as graphite, black phosphorus, and gray arsenic. Bulk β-Te turns out to be a semiconductor that has a band gap of 0.325 eV (HSE06: 0.605 eV), based on first-principles calculations. Moreover, the single-layer form of the bulk β-Te, called β-tellurene, is predicted to have a high stability. When the bulk β-Te is thinned to one atomic layer, an indirect semiconductor of band gap is changed to 1.265 eV (HSE06: 1.932 eV) with a very high kinetic stability. Interestingly, an increase of the number of the β-tellurene layers from one to three is accompanied by a shift from an indirect to direct band gap. Furthermore, the effective carrier masses, the optical properties and phonon modes of few-layer β-tellurenes are characterized. Few-layer β-tellurenes strongly absorb the ultraviolet and blue-violet visible lights. The dramatic changes in the electronic structure and excellent photo absorptivities are expected to pave the way for high speed ultrathin transistors, as well as optoelectronic devices working in the UV or blue-green visible regions.
Wang, Fuzhi; Sun, Gang; Li, Cong; Liu, Jiyan; Hu, Siqian; Zheng, Hua; Tan, Zhan'ao; Li, Yongfang
2014-06-25
Efficient polymer solar cells (PSCs) with enhanced open-circuit voltage (Voc) are fabricated by introducing solution-processed and UV-ozone (UVO)-treated nickel acetate (O-NiAc) as an anode buffer layer. According to X-ray photoelectron spectroscopy data, NiAc partially decomposed to NiOOH during the UVO treatment. NiOOH is a dipole species, which leads to an increase in the work function (as confirmed by ultraviolet photoemission spectroscopy), thus benefitting the formation of ohmic contact between the anode and photoactive layer and leading to increased Voc. In addition, the UVO treatment improves the wettability between the substrate and solvent of the active layer, which facilitates the formation of an upper photoactive layer with better morphology. Further, the O-NiAc layer can decrease the series resistance (Rs) and increase the parallel resistance (Rp) of the devices, inducing enhanced Voc in comparison with the as-prepared NiAc-buffered control devices without UVO treatment. For PSCs based on the P3HT:PCBM system, Voc increases from 0.50 to 0.60 V after the NiAc buffer layer undergoes UVO treatment. Similarly, in the P3HT:ICBA system, the Voc value of the device with a UVO-treated NiAc buffer layer increases from 0.78 to 0.88 V, showing an enhanced power conversion efficiency of 6.64%.
Phosphorus doping a semiconductor particle
Stevens, G.D.; Reynolds, J.S.
1999-07-20
A method of phosphorus doping a semiconductor particle using ammonium phosphate is disclosed. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried with the phosphorus then being diffused into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement. 1 fig.
Phosphorous doping a semiconductor particle
Stevens, Gary Don; Reynolds, Jeffrey Scott
1999-07-20
A method (10) of phosphorus doping a semiconductor particle using ammonium phosphate. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried (16, 18), with the phosphorus then being diffused (20) into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement.
NASA Astrophysics Data System (ADS)
Popovic, M. P.; Yang, Y.; Bolind, A. M.; Ozdol, V. B.; Olmsted, D. L.; Asta, M.; Hosemann, P.
2018-06-01
Liquid lead-bismuth eutectic (LBE) can serve as a heat transfer fluid for advanced nuclear applications as well as concentrated solar power but poses corrosion challenges for the structural materials at elevated temperatures. Oxide passivation of the surfaces of these materials during exposure to liquid LBE can inhibit such material degradation. In this study, transmission electron microscopy of oxides formed on Fe-Cr-Al alloy during exposure to low-oxygenated LBE at 800°C has been performed. A complex structure of the oxide film has been revealed, consisting of a homogeneous inner layer of mostly Al2O3 and a heterogeneous outer layer.
The test of the layout of polarimeter "UFP" on the telescope AZT-2
NASA Astrophysics Data System (ADS)
Levchenko, T. A.; Nevodovskyi, P. V.; Vidmachenko, A. P.; Morozhenko, O. V.; Saryboha, H. V.; Zbrutsky, O. V.; Ivakhiv, O. V.
2016-05-01
Main Astronomical Observatory of NAS of Ukraine in cooperation with the National Technical University of Ukraine "KPI" and National University "Lviv Polytechnic" for a long time working on the design of an optical polarimeter to study of the stratospheric layer of the Earth using of orbital satellite. During this time, was accumulated a large experience of such work, and was established a layout of compact ultraviolet polarimeter (UFP) on board of satellite
The Behavior of Systems in the Space Environment
1991-07-19
Environment edited by Robert N. DeWitt U.S. Department of Energy , Washington, D.C., U.S.A. Dwight Duston Strategic Defense Initiative Organization, The...originates in a thin layer of the solar chromosphere, contains most of the solar energy in the extreme ultraviolet, but it cannot ionize any major...constituents of the atmosphere, whereas Lyman alpha can ionize only the trace of’nitric oxide. Virtually all the energy delivered in Lyman alpha is dissipated
Atomic Layer Deposition Enabled Interconnect Technology for Vertical Nanowire Arrays
2009-06-01
Diodes”, Nano Lett., Vol. 5, No. 11, 2005. [5] Hwa-Mok Kim, Tae Won Kang and Kwan Soo Chung,“Nanoscale Ultraviolet-Light- Emitting Diodes Using Wide...Bandgap Gallium Nitride Nanorods”, Adv. Materi. 2003, 15, No. 7-8. [6] Candace K. Chan, Hailin Peng, Gao Liu, Kevin McIlwrath, Xiao Feng Zhang...Coatings”Adv. Mater. (Weinheim, Ger.) 19, 1801 2007. [13] Candace K. Chan, Hailin Peng, Gao Liu, Kevin McIlwrath, Xiao Feng Zhang, Robert A. Huggins
NASA Astrophysics Data System (ADS)
An, Yuehua; Zhi, Yusong; Wu, Zhenping; Cui, Wei; Zhao, Xiaolong; Guo, Daoyou; Li, Peigang; Tang, Weihua
2016-12-01
Deep ultraviolet photodetectors based on p-Si/ n-Ga2O3 and p-Si/ i-SiC/ n-Ga2O3 heterojunctions were fabricated by laser molecular beam epitaxial (L-MBE), respectively. In compare with p-Si/ n-Ga2O3 heterostructure-based photodetector, the dark current of p-Si/ i-SiC/ n-Ga2O3-based photodetector decreased by three orders of magnitude, and the rectifying behavior was tuned from reverse to forward. In order to improve the quality of the photodetector, we reduced the oxygen vacancies of p-Si/ i-SiC/ n-Ga2O3 heterostructures by changing the oxygen pressure during annealing. As a result, the rectification ratio ( I F/ I R) of the fabricated photodetectors was 36 at 4.5 V and the photosensitivity was 5.4 × 105% under the 254 nm light illumination at -4.5 V. The energy band structure of p-Si/ n-Ga2O3 and p-Si/ i-SiC/ n-Ga2O3 heterostructures was schematic drawn to explain the physic mechanism of enhancement of the performance of p-Si/ i-SiC/ n-Ga2O3 heterostructure-based deep UV photodetector by introduction of SiC layer.
Biocompatibility and light transmission of liposomal lenses.
Danion, Anne; Doillon, Charles J; Giasson, Claude J; Djouahra, Saliha; Sauvageau, Patrick; Paradis, Renée; Vermette, Patrick
2007-10-01
To validate the biocompatibility and transmittance properties of contact lenses bearing intact liposomes. These liposomal lenses loaded with therapeutics can be used as ophthalmic drug delivery systems. The biocompatibility of soft contact lenses, coated with liposomes was evaluated through in vitro direct and indirect cytocompatibility assays on human corneal epithelial cells, on reconstructed human corneas and on ex vivo rabbit corneas. The direct and indirect transmission spectra of liposome-covered lenses were also evaluated to test if they transmit all wavelengths of the ultraviolet-visible spectrum, to thereby fulfill their optical function, without gross alteration of the colors perception and with a minimum of light dispersion. Contact lenses bearing layers of stable liposomes did not induce any significant changes in cell viability and in cell growth, compared with lenses bearing no liposome. Elution assays revealed that no cytotoxic compound leaks from the lenses whether bearing liposomes or not. Histological analyses of reconstructed human corneas and ex vivo rabbit corneas directly exposed to liposomal lenses revealed neither alteration to the cell nor to the tissue structures. Contact lenses bearing layers of liposomes did not significantly affect light transmission compared with control lenses without liposome at the wavelength of maximal photopic sensitivity, i.e., 550 nm. In addition, the contact lenses afford more eye protection in the ultraviolet spectrum, compared with the control lenses. Liposomal contact lenses are biocompatible and their transmittance properties are not affected in the visible light range.
Effectiveness of eye drops protective against ultraviolet radiation.
Daxer, A; Blumthaler, M; Schreder, J; Ettl, A
1998-01-01
To test the effectiveness of commercially available ultraviolet (UV)-protective eye drops (8-hydroxy-1-methylchinolinium methylsulphate) which are recommended for protection against both solar and artificial UV radiation. The spectral transmission in the wavelength range from 250 to 500 nm was investigated in 1-nm steps using a high-resolution double monochromator with holographic gratings of 2,400 lines/mm and a 1,000-watt halogen lamp as light source. The transmission spectrum was measured for different values of the layer thickness. The transmission of a liquid layer of about 10 microns, which corresponds to the thickness of the human tear film, shows a cut-off at 290 nm with a transmission of about 25-50% at shorter wavelengths. For wavelengths longer than 290 nm the transmission is higher than 90%. The threshold time ratio for keratitis formation with and without eye drops is above 0.93 considering solar radiation on the earth's surface and above 0.65 considering radiation from arc-welding, respectively. The transmission spectrum of the eye drops under realistic conditions does not show a protective effect against solar UV radiation. However, there exists reduction of UVC radiation in the spectral range typical of artificial UV sources such as arc-welding. We cannot recommend the application of these eye drops as an UV-protective aid against eye damage by solar UV radiation.
Guo, Zhen; Zhou, Lianqun; Tang, Yuguo; Li, Lin; Zhang, Zhiqi; Yang, Hongbo; Ma, Hanbin; Nathan, Arokia; Zhao, Dongxu
2017-09-13
Surface/interface charge-carrier generation, diffusion, and recombination/transport modulation are especially important in the construction of photodetectors with high efficiency in the field of nanoscience. In the paper, a kind of ultraviolet (UV) detector is designed based on ZnO nanostructures considering photon-trapping, surface plasmonic resonance (SPR), piezophototronic effects, interface carrier-trapping/transport control, and collection. Through carefully optimized surface/interface carrier-transport modulation, a designed device with detectivity as high as 1.69 × 10 16 /1.71 × 10 16 cm·Hz 1/2 /W irradiating with 380 nm photons under ultralow bias of 0.2 V is realized by alternating nanoparticle/nanowire active layers, respectively, and the designed UV photodetectors show fast and slow recovery processes of 0.27 and 4.52 ms, respectively, which well-satisfy practical needs. Further, it is observed that UV photodetection could be performed within an alternative response by varying correlated key parameters, through efficient surface/interface carrier-transport modulation, spectrally resolved photoresponse of the detector revealing controlled detection in the UV region based on the ZnO nanomaterial, photodetection allowed or limited by varying the active layers, irradiation distance from one of the electrodes, standing states, or electric field. The detailed carrier generation, diffusion, and recombination/transport processes are well illustrated to explain charge-carrier dynamics contributing to the photoresponse behavior.
NASA Astrophysics Data System (ADS)
Liang, Feng-Xia; Wang, Jiu-Zhen; Wang, Yi; Lin, Yi; Liang, Lin; Gao, Yang; Luo, Lin-Bao
2017-12-01
In this study, we report on the fabrication of a sensitive ultraviolet photodetector (UVPD) by simply transferring single-layer graphene (SLG) on rutile titanium oxide cubic nanorod (TiO2NRs) array. The cubic TiO2NRs array with strong light trapping effect was grown on fluorine-doped tin oxide (FTO) glass through a hydrothermal approach. The as-assembled UVPD was very sensitive to UV light illumination, but virtually blind to white light illumination. The responsivity and specific detectivity were estimated to be 52.1 A/W and 4.3 × 1012 Jones, respectively. What is more, in order to optimize device performance of UVPD, a wet-chemistry treatment was then employed to reduce the high concentration of defects in TiO2NRs during hydrothermal growth. It was found that the UVPD after treatment showed obvious decrease in sensitivity, but the response speed (rise time: 80 ms, fall time: 160 ms) and specific detectivity were substantially increased. It is also found that the speicific detectivity was imporoved by six-fold to 3.2 × 1013 Jones, which was the best result in comparison with previously reported TiO2 nanostructures or thin film based UVPDs. This totality of this study shows that the present SLG/TiO2NR/FTO UVPD may find potential application in future optoelectronic devices and systems.
Dependence of nanomechanical modification of polymers on plasma-induced cross-linking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajima, S.; Komvopoulos, K.
2007-01-01
The nanomechanical properties of low-density polyethylene (LDPE) modified by inductively coupled, radio-frequency Ar plasma were investigated by surface force microscopy. The polymer surface was modified under plasma conditions of different ion energy fluences and radiation intensities obtained by varying the sample distance from the plasma power source. Nanoindentation results of the surface stiffness versus maximum penetration depth did not reveal discernible differences between untreated and plasma-treated LDPE, presumably due to the small thickness of the modified surface layer that resulted in a substrate effect. On the contrary, nanoscratching experiments demonstrated a significant increase in the surface shear resistance of plasma-modifiedmore » LDPE due to chain cross-linking. These experiments revealed an enhancement of cross-linking with increasing ion energy fluence and radiation intensity, and a tip size effect on the friction force and dominant friction mechanisms (adhesion, plowing, and microcutting). In addition, LDPE samples with a LiF crystal shield were exposed to identical plasma conditions to determine the role of vacuum ultraviolet (VUV) and ultraviolet (UV) radiation in the cross-linking process. The cross-linked layer of plasma-treated LDPE exhibited much higher shear strength than that of VUV/UV-treated LDPE. Plasma-induced surface modification of the nanomechanical properties of LDPE is interpreted in the context of molecular models of the untreated and cross-linked polymer surfaces derived from experimental findings.« less
Band-Bending of Ga-Polar GaN Interfaced with Al2O3 through Ultraviolet/Ozone Treatment.
Kim, Kwangeun; Ryu, Jae Ha; Kim, Jisoo; Cho, Sang June; Liu, Dong; Park, Jeongpil; Lee, In-Kyu; Moody, Baxter; Zhou, Weidong; Albrecht, John; Ma, Zhenqiang
2017-05-24
Understanding the band bending at the interface of GaN/dielectric under different surface treatment conditions is critically important for device design, device performance, and device reliability. The effects of ultraviolet/ozone (UV/O 3 ) treatment of the GaN surface on the energy band bending of atomic-layer-deposition (ALD) Al 2 O 3 coated Ga-polar GaN were studied. The UV/O 3 treatment and post-ALD anneal can be used to effectively vary the band bending, the valence band offset, conduction band offset, and the interface dipole at the Al 2 O 3 /GaN interfaces. The UV/O 3 treatment increases the surface energy of the Ga-polar GaN, improves the uniformity of Al 2 O 3 deposition, and changes the amount of trapped charges in the ALD layer. The positively charged surface states formed by the UV/O 3 treatment-induced surface factors externally screen the effect of polarization charges in the GaN, in effect, determining the eventual energy band bending at the Al 2 O 3 /GaN interfaces. An optimal UV/O 3 treatment condition also exists for realizing the "best" interface conditions. The study of UV/O 3 treatment effect on the band alignments at the dielectric/III-nitride interfaces will be valuable for applications of transistors, light-emitting diodes, and photovoltaics.
NASA Astrophysics Data System (ADS)
Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay
2010-02-01
Ultraviolet photoconductivity relaxation in ZnO thin films deposited by rf magnetron sputtering are investigated. Effect of oxygen partial pressure in the reactive gas mixture and film thickness on the photoconductivity transients is studied. A different photodetector configuration comprising ZnO thin film with an ultrathin overlayer of metals like Cu, Al, Sn, Au, Cr, and Te was designed and tested. Photoresponse signal were found to be stronger (four to seven times) in these configurations than the pure ZnO thin films. Sn(30 nm)/ZnO sample exhibits highest responsivity of ˜8.57 kV/W whereas Te(20 nm)/ZnO structure presents highest sensitivity of ˜31.3×103 compared to unloaded ZnO thin film. Enhancement in the photoresponse of ZnO thin films is attributed to the change in surface conductivity due to induced charge carriers at the interface because of the difference in work function and oxygen affinity values of metal overlayer with the underlying semiconducting layer. Charge carrier transfer from the metal layer to ZnO creates a surplus of electrons at the interface; a fraction of which are captured by the defect centers (traps) at the surface whereas the remaining one represents free carriers in the conduction band and are responsible for the enhanced photoconductivity.
Mirkarimi, P B; Baker, S L; Montcalm, C; Folta, J A
2001-01-01
Extreme-ultraviolet lithography requires expensive multilayer-coated Zerodur or ULE optics with extremely tight figure and finish specifications. Therefore it is desirable to develop methods to recover these optics if they are coated with a nonoptimum multilayer films or in the event that the coating deteriorates over time owing to long-term exposure to radiation, corrosion, or surface contamination. We evaluate recoating, reactive-ion etching, and wet-chemical techniques for the recovery of Mo/Si and Mo/Be multilayer films upon Zerodur and ULE test optics. The recoating technique was successfully employed in the recovery of Mo/Si-coated optics but has the drawback of limited applicability. A chlorine-based reactive-ion etch process was successfully used to recover Mo/Si-coated optics, and a particularly large process window was observed when ULE optics were employed; this is an advantageous for large, curved optics. Dilute HCl wet-chemical techniques were developed and successfully demonstrated for the recovery of Mo/Be-coated optics as well as for Mo/Si-coated optics when Mo/Be release layers were employed; however, there are questions about the extendability of the HCl process to large optics and multiple coat and strip cycles. The technique of using carbon barrier layers to protect the optic during removal of Mo/Si in HF:HNO(3) also showed promise.
Polymer bulk heterojunction solar cells with PEDOT:PSS bilayer structure as hole extraction layer.
Kim, Wanjung; Kim, Namhun; Kim, Jung Kyu; Park, Insun; Choi, Yeong Suk; Wang, Dong Hwan; Chae, Heeyeop; Park, Jong Hyeok
2013-06-01
A high current density obtained in a limited, nanometer-thick region is important for high efficiency polymer solar cells (PSCs). The conversion of incident photons to charge carriers only occurs in confined active layers; therefore, charge-carrier extraction from the active layer within the device by using solar light has an important impact on the current density and the related to power conversion efficiency. In this study, we observed a surprising result, that is, extracting the charge carrier generated in the active layer of a PSC device, with a thickness-controlled PEDOT:PSS bilayer that acted as a hole extraction layer (HEL), yielded a dramatically improved power conversion efficiency in two different model systems (P3HT:PC₆₀BM and PCDTBT:PC₇₀BM). To understand this phenomenon, we conducted optical strength simulation, photocurrent-voltage measurements, incident photon to charge carrier efficiency measurements, ultraviolet photoelectron spectroscopy, and AFM studies. The results revealed that approximately 60 nm was the optimum PEDOT:PSS bilayer HEL thickness in PSCs for producing the maximum power conversion efficiency. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Free and bound excitons in thin wurtzite GaN layers on sapphire
NASA Astrophysics Data System (ADS)
Merz, C.; Kunzer, M.; Kaufmann, U.; Akasaki, I.; Amano, H.
1996-05-01
Free and bound excitons have been studied by photoluminescence in thin (0268-1242/11/5/010/img8) wurtzite-undoped GaN, n-type GaN:Si as well as p-type GaN:Mg and GaN:Zn layers grown by metal-organic chemical vapour phase deposition (MOCVD). An accurate value for the free A exciton binding energy and an estimate for the isotropically averaged hole mass of the uppermost 0268-1242/11/5/010/img9 valence band are deduced from the data on undoped samples. The acceptor-doped samples reveal recombination lines which are attributed to excitons bound to 0268-1242/11/5/010/img10 and 0268-1242/11/5/010/img11 respectively. These lines are spectrally clearly separated and the exciton localization energies are in line with Haynes' rule. Whenever a comparison is possible, it is found that the exciton lines in these thin MOCVD layers are ultraviolet-shifted by 20 to 25 meV as compared to quasi-bulk (0268-1242/11/5/010/img12) samples. This effect is interpreted in terms of the compressive hydrostatic stress component which thin GaN layers experience when grown on sapphire with an AlN buffer layer.
The role of thin MgO(100) epilayer for polarized charge injection into top-emitting OLED
NASA Astrophysics Data System (ADS)
Kim, Tae Hee; Jong Lee, Nyun; Bae, Yu Jeong; Cho, Hyunduck; Lee, Changhee; Ito, Eisuke
2012-02-01
A new top-emitting OLED (TOLED) structure, which is formed on an Si(100) substrate and an epitaxial MgO(100)/Fe(100)/MgO(100) bottom electrode, was investigated. Our TOLED design included a semi-transparent cathode Al, a stack of conventional organic electroluminescent layers (α-NPD/Alq3/LiF) and a thin Cu-Phthalocyanine (CuPc) film to enhance the hole injection into the luminescent layers. At room temperature (RT), magnetoluminescence of ˜5 % was observed in low magnetic field up to 1 Tesla , which is obviously larger than that of the OLEDs with epitaxial and polycrystalline Fe anodes without MgO(100) covering layer. Our results indicate that the magnetic field effect on the electroluminescence could be strongly related to the magnetic properties of bottom electrode, more precisely the interfacial properties between CuPc layer and the anode. Therefore, we focused on understanding interface electronic states and energy alignment by using x-ray photoemission spectroscopy and ultraviolet photoemission spectroscopy. Our results showed that the use of appropriate oxide layers could represent a new interface engineering technique for improving reliability and functionality in organic semiconductor devices.
N-halamine biocidal coatings via a layer-by-layer assembly technique.
Cerkez, Idris; Kocer, Hasan B; Worley, S D; Broughton, R M; Huang, T S
2011-04-05
Two N-halamine copolymer precursors, poly(2,2,6,6-tetramethyl-4-piperidyl methacrylate-co-acrylic acid potassium salt) and poly(2,2,6,6-tetramethyl-4-piperidyl methacrylate-co-trimethyl-2-methacryloxyethylammonium chloride) have been synthesized and successfully coated onto cotton fabric via a layer-by-layer (LbL) assembly technique. A multilayer thin film was deposited onto the fiber surfaces by alternative exposure to polyelectrolyte solutions. The coating was rendered biocidal by a dilute household bleach treatment. The biocidal efficacies of tested swatches composed of treated fibers were evaluated against Staphylococcus aureus and Escherichia coli. It was determined that chlorinated samples inactivated both S. aureus and E. coli O157:H7 within 15 min of contact time, whereas the unchlorinated control samples did not exhibit significant biocidal activities. Stabilities of the coatings toward washing and ultraviolet light exposure have also been studied. It was found that the stability toward washing was superior, whereas the UVA light stability was moderate compared to previously studied N-halamine moieties. The layer-by-layer assembly technique can be used to attach N-halamine precursor polymers onto cellulose surfaces without using covalently bonding tethering groups which limit the structure designs. In addition, ionic precursors are very soluble in water, thus promising for biocidal coatings without the use of organic solvents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asib, N. A. M., E-mail: amierahasib@yahoo.com; Afaah, A. N.; Aadila, A.
Titanium dioxide (TiO{sub 2}) seed layer was prepared by using sol-gel spin-coating technique, followed by growth of 0.01 M of Zinc oxide (ZnO) nanostructures by solution-immersion. The molarities of TiO{sub 2} seed layer were varied from 1.1 M to 0.100 M on glass substrates. The nanostructures thin films were characterized by Field Emission Scanning Electrons Microscope (FESEM), Photoluminescence (PL) spectroscopy and Ultraviolet-Visible (UV-Vis) spectroscopy. FESEM images demonstrate that needle-like ZnO nanostructures are formed on all TiO{sub 2} seed layer. The smallest diameter of needle-like ZnO nanostructures (90.3 nm) were deposited on TiO{sub 2} seed layer of 0.100 M. PL spectramore » of the TiO{sub 2}: ZnO nanostructures thin films show the blue shifted emissions in the UV regions compared to the ZnO thin film. Meanwhile, UV-vis spectra of films display high absorption in the UV region and high trasparency in the visible region. The highest absorbance at UV region was recorded for sample which has 0.100 M of TiO{sub 2} seed layer.« less
NASA Astrophysics Data System (ADS)
Jiang, Fan; Chen, Jingwen; Bi, Han; Li, Luying; Jing, Wenkui; Zhang, Jun; Dai, Jiangnan; Che, Renchao; Chen, Changqing; Gao, Yihua
2018-01-01
Non-polar a-plane n-ZnO/p-AlGaN and n-ZnO/i-ZnO/p-AlGaN heterojunction film light-emitting diodes (LEDs) are fabricated with good crystalline quality. The optical measurements show obvious performance enhancement with i-ZnO layer insertion. Off-axis electron holography reveals a potential drop of ˜1.5 V across the heterojunctions with typical p-n junction characteristics. It is found that the electrostatic potentials are inclined and the corresponding electrostatic fields are opposite to each other in n-ZnO and p-AlGaN regions. The electrostatic fields are mainly attributed to strain induced piezoelectric polarizations. After an insertion of an i-ZnO layer into the p-n heterojunction, comparatively flat electrostatic potential generates in the intrinsic ZnO region and contributes to faster movements of the injected electrons and holes, making the i-ZnO layer more conductive to the radiative recombination with enhanced exciton recombination possibilities and at last the LED performance enhancement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dongcheng; Zhou, Hu; Cai, Ping
2014-02-03
A triazine- and pyridinium-containing water-soluble material of 1,1′,1″-(4,4′,4″-(1,3,5-triazine-2,4,6-triyl)tris(benzene-4,1-diyl)) tris(methylene)tripyridinium bromide (TzPyBr) was developed as an organic electron-selective layer in solution-processed inverted organic solar cells due to its strong anti-erosion capacity against non-polar organic solvents commonly used for the active layer. Ohmic-like contact with the adjacent active materials like fullerene derivatives is speculated to be formed, as confirmed by the work-function measurements with scanning Kelvin probe and ultraviolet photoelectron spectroscopy techniques. Besides, considering the deep highest occupied molecular orbital energy level of TzPyBr, excellent hole-blocking property of the electron-selective layer is also anticipated. The inverted organic photovoltaic devices based on themore » TzPyBr/ITO (indium tin oxide) bilayer cathode exhibit dramatically enhanced performance compared to the control devices with bare ITO as the cathode and even higher efficiency than the conventional type devices with ITO and Al as the electrodes.« less
Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate
2013-01-01
Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques. PMID:23448090
Triple/quadruple patterning layout decomposition via linear programming and iterative rounding
NASA Astrophysics Data System (ADS)
Lin, Yibo; Xu, Xiaoqing; Yu, Bei; Baldick, Ross; Pan, David Z.
2017-04-01
As the feature size of the semiconductor technology scales down to 10 nm and beyond, multiple patterning lithography (MPL) has become one of the most practical candidates for lithography, along with other emerging technologies, such as extreme ultraviolet lithography (EUVL), e-beam lithography (EBL), and directed self-assembly. Due to the delay of EUVL and EBL, triple and even quadruple patterning is considered to be used for lower metal and contact layers with tight pitches. In the process of MPL, layout decomposition is the key design stage, where a layout is split into various parts and each part is manufactured through a separate mask. For metal layers, stitching may be allowed to resolve conflicts, whereas it is forbidden for contact and via layers. We focus on the application of layout decomposition where stitching is not allowed, such as for contact and via layers. We propose a linear programming (LP) and iterative rounding solving technique to reduce the number of nonintegers in the LP relaxation problem. Experimental results show that the proposed algorithms can provide high quality decomposition solutions efficiently while introducing as few conflicts as possible.
Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate.
Wei, Xianqi; Zhao, Ranran; Shao, Minghui; Xu, Xijin; Huang, Jinzhao
2013-02-28
Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques.
Chemically exfoliating large sheets of phosphorene via choline chloride urea viscosity-tuning
NASA Astrophysics Data System (ADS)
Ng, A.; Sutto, T. E.; Matis, B. R.; Deng, Y.; Ye, P. D.; Stroud, R. M.; Brintlinger, T. H.; Bassim, N. D.
2017-04-01
Exfoliation of two-dimensional phosphorene from bulk black phosphorous through chemical means is demonstrated where the solvent system of choice (choline chloride urea diluted with ethanol) has the ability to successfully exfoliate large-area multi-layer phosphorene sheets and further protect the flakes from ambient degradation. The intercalant solvent molecules, aided by low-powered sonication, diffuse between the layers of the bulk black phosphorus, allowing for the exfoliation of the multi-layer phosphorene through breaking of the interlayer van der Waals bonds. Through viscosity tuning, the optimal parameters (1:1 ratio between the intercalant and the diluting solvent) at which the exfoliation takes place is determined. Our exfoliation technique is shown to produce multi-layer phosphorene flakes with surface areas greater than 3 μm2 (a factor of three larger than what has previously been reported for a similar exfoliation method) while limiting exposure to the ambient environment, thereby protecting the flakes from degradation. Characterization techniques such as optical microscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, and (scanning) transmission electron microscopy are used to investigate the quality, quantity, and thickness of the exfoliated flakes.
The structure and possible functions of the milkfish Chanos chanos adipose eyelid.
Chang, C-H; Chiao, C-C; Yan, H Y
2009-07-01
Basic histological sections (with different staining methods) and scanning electron microscopy (SEM) examinations showed that there were three distinctive layers in the adipose eyelid of milkfish Chanos chanos, which is found in the cephalie region and covers the entire eye. The outer and inner layers were epithelial tissues and the middle layer was composed of connective tissue formed by type I collagen fibrils. No adipose tissue was found in any of the three layers of the so-called adipose eyelid. Examination by transmission spectrophotometer showed that the adipose tissue could filter out ambient light with a wavelength shorter than 305 nm. A photoretinoscope was used to investigate whether the adipose eyelid influenced the mechanism of eye focusing. Eye diopter values did not differ before or after eyelid removal, which indicated that the adipose eyelid did not play a role in eye focusing. In light of these findings, it is suggested that the adipose eyelid serves to block exposure of harmful ultraviolet light into eyes and may also to offer some protection against impact to the eye in the aquatic environment.
Quantitative analysis of hydrogen in SiO{sub 2}/SiN/SiO{sub 2} stacks using atom probe tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunimune, Yorinobu, E-mail: yorinobu.kunimune.vz@renesas.com; Shimada, Yasuhiro; Sakurai, Yusuke
2016-04-15
We have demonstrated that it is possible to reproducibly quantify hydrogen concentration in the SiN layer of a SiO{sub 2}/SiN/SiO{sub 2} (ONO) stack structure using ultraviolet laser-assisted atom probe tomography (APT). The concentration of hydrogen atoms detected using APT increased gradually during the analysis, which could be explained by the effect of hydrogen adsorption from residual gas in the vacuum chamber onto the specimen surface. The amount of adsorbed hydrogen in the SiN layer was estimated by analyzing another SiN layer with an extremely low hydrogen concentration (<0.2 at. %). Thus, by subtracting the concentration of adsorbed hydrogen, the actualmore » hydrogen concentration in the SiN layer was quantified as approximately 1.0 at. %. This result was consistent with that obtained by elastic recoil detection analysis (ERDA), which confirmed the accuracy of the APT quantification. The present results indicate that APT enables the imaging of the three-dimensional distribution of hydrogen atoms in actual devices at a sub-nanometer scale.« less
A two-layer multiple-time-scale turbulence model and grid independence study
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Chen, C.-P.
1989-01-01
A two-layer multiple-time-scale turbulence model is presented. The near-wall model is based on the classical Kolmogorov-Prandtl turbulence hypothesis and the semi-empirical logarithmic law of the wall. In the two-layer model presented, the computational domain of the conservation of mass equation and the mean momentum equation penetrated up to the wall, where no slip boundary condition has been prescribed; and the near wall boundary of the turbulence equations has been located at the fully turbulent region, yet very close to the wall, where the standard wall function method has been applied. Thus, the conservation of mass constraint can be satisfied more rigorously in the two-layer model than in the standard wall function method. In most of the two-layer turbulence models, the number of grid points to be used inside the near-wall layer posed the issue of computational efficiency. The present finite element computational results showed that the grid independent solutions were obtained with as small as two grid points, i.e., one quadratic element, inside the near wall layer. Comparison of the computational results obtained by using the two-layer model and those obtained by using the wall function method is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eun-Kyeong; Yeong Kim, Ji; Sub Kim, Sang, E-mail: sangsub@inha.ac.kr
We describe the preparation of superhydrophobic SiO{sub 2} layers through a combination of surface roughness and fluorination. Electrospraying SiO{sub 2} precursor solutions that were prepared by a sol-gel route and included trichloro(1H,1H,2H,2H-perfluorooctyl)silane as a fluorination source produced highly rough, fluorinated SiO{sub 2} layers. In sharp contrast to the fluorinated flat SiO{sub 2} layer, the fluorinated rough SiO{sub 2} layer showed much enhanced repellency toward liquid droplets of different surface tensions. The surface fraction and the work of adhesion of the superhydrophobic SiO{sub 2} layers were determined, respectively, based on Cassie-Baxter and Young-Dupre equations. The satisfactory long-term stability for 30 days,more » the ultraviolet resistance and the thermal stability up to 400 {sup o}C of the superhydrophobic SiO{sub 2} layers prepared in this work confirm a promising practical application. - Graphical abstract: A schematic illustration of the electrospray deposition used for preparing SiO{sub 2} layers. Shapes of liquid droplets of water, glycerol, coffee, juice and milk created on the fluorinated rough SiO{sub 2} layer deposited on a silicon wafer. Highlights: Black-Right-Pointing-Pointer Superhydrophobic SiO{sub 2} layers are realized by a combination of surface roughness and fluorination. Black-Right-Pointing-Pointer The fluorinated rough SiO{sub 2} layer shows enhanced repellency toward various liquid droplets. Black-Right-Pointing-Pointer The wetting behavior is explained based on Cassie-Baxter and Young-Dupre equations. Black-Right-Pointing-Pointer The superhydrophobic SiO{sub 2} layers confirm a promising practical application.« less
NASA Astrophysics Data System (ADS)
Heinze, Rieke; Moseley, Christopher; Böske, Lennart Nils; Muppa, Shravan Kumar; Maurer, Vera; Raasch, Siegfried; Stevens, Bjorn
2017-06-01
Large-eddy simulations (LESs) of a multi-week period during the HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction) Observational Prototype Experiment (HOPE) conducted in Germany are evaluated with respect to mean boundary layer quantities and turbulence statistics. Two LES models are used in a semi-idealized setup through forcing with mesoscale model output to account for the synoptic-scale conditions. Evaluation is performed based on the HOPE observations. The mean boundary layer characteristics like the boundary layer depth are in a principal agreement with observations. Simulating shallow-cumulus layers in agreement with the measurements poses a challenge for both LES models. Variance profiles agree satisfactorily with lidar measurements. The results depend on how the forcing data stemming from mesoscale model output are constructed. The mean boundary layer characteristics become less sensitive if the averaging domain for the forcing is large enough to filter out mesoscale fluctuations.
Arctic Cold Weather Medicine and Accidental Hypothermia
1990-03-01
due to the rotor wash or behind air craft with prop wash causing vary high wind chill factors freezing exposed skin in seconds. The windchill 0hart in...references 7-9. 3. Snow blindness The ultraviolet rays of the sun, even on a cloudy day, reflect off the snow and can burn the outer layer of the eye...the cornea. Symptoms may not appear for 2 to 12 hours after exposure. Common symptoms are a burning or gritty sensation, excessive tearing, and eye
NASA Technical Reports Server (NTRS)
Shettle, E. P.; Green, A. E. S.
1974-01-01
An investigation is conducted regarding the increase in the UV radiation as a function of wavelength due to changes in the amounts of ozone and various other parameters affecting the radiation in the atmosphere. Attention is given to the methods that can be used to solve the problem of the transfer of radiation through an absorbing and scattering atmosphere which includes aerosols. The multiple channel solution reported by Mudgett and Richards' (1971) is extended to vertically inhomogeneous atmospheres.
Breakthroughs in photonics 2013: X-ray optics
Soufli, Regina
2014-04-01
Here, this review discusses the latest advances in extreme ultraviolet/X-ray optics development, which are motivated by the availability and demands of new X-ray sources and scientific and industrial applications. Among the breakthroughs highlighted are the following: i) fabrication, metrology, and mounting technologies for large-area optical substrates with improved figure, roughness, and focusing properties; ii) multilayer coatings with especially optimized layer properties, achieving improved reflectance, stability, and out-of-band suppression; and iii) nanodiffractive optics with improved efficiency and resolution.
Real-Time Biologically Inspired Action Recognition from Key Poses Using a Neuromorphic Architecture.
Layher, Georg; Brosch, Tobias; Neumann, Heiko
2017-01-01
Intelligent agents, such as robots, have to serve a multitude of autonomous functions. Examples are, e.g., collision avoidance, navigation and route planning, active sensing of its environment, or the interaction and non-verbal communication with people in the extended reach space. Here, we focus on the recognition of the action of a human agent based on a biologically inspired visual architecture of analyzing articulated movements. The proposed processing architecture builds upon coarsely segregated streams of sensory processing along different pathways which separately process form and motion information (Layher et al., 2014). Action recognition is performed in an event-based scheme by identifying representations of characteristic pose configurations (key poses) in an image sequence. In line with perceptual studies, key poses are selected unsupervised utilizing a feature-driven criterion which combines extrema in the motion energy with the horizontal and the vertical extendedness of a body shape. Per class representations of key pose frames are learned using a deep convolutional neural network consisting of 15 convolutional layers. The network is trained using the energy-efficient deep neuromorphic networks ( Eedn ) framework (Esser et al., 2016), which realizes the mapping of the trained synaptic weights onto the IBM Neurosynaptic System platform (Merolla et al., 2014). After the mapping, the trained network achieves real-time capabilities for processing input streams and classify input images at about 1,000 frames per second while the computational stages only consume about 70 mW of energy (without spike transduction). Particularly regarding mobile robotic systems, a low energy profile might be crucial in a variety of application scenarios. Cross-validation results are reported for two different datasets and compared to state-of-the-art action recognition approaches. The results demonstrate, that (I) the presented approach is on par with other key pose based methods described in the literature, which select key pose frames by optimizing classification accuracy, (II) compared to the training on the full set of frames, representations trained on key pose frames result in a higher confidence in class assignments, and (III) key pose representations show promising generalization capabilities in a cross-dataset evaluation.
Real-Time Biologically Inspired Action Recognition from Key Poses Using a Neuromorphic Architecture
Layher, Georg; Brosch, Tobias; Neumann, Heiko
2017-01-01
Intelligent agents, such as robots, have to serve a multitude of autonomous functions. Examples are, e.g., collision avoidance, navigation and route planning, active sensing of its environment, or the interaction and non-verbal communication with people in the extended reach space. Here, we focus on the recognition of the action of a human agent based on a biologically inspired visual architecture of analyzing articulated movements. The proposed processing architecture builds upon coarsely segregated streams of sensory processing along different pathways which separately process form and motion information (Layher et al., 2014). Action recognition is performed in an event-based scheme by identifying representations of characteristic pose configurations (key poses) in an image sequence. In line with perceptual studies, key poses are selected unsupervised utilizing a feature-driven criterion which combines extrema in the motion energy with the horizontal and the vertical extendedness of a body shape. Per class representations of key pose frames are learned using a deep convolutional neural network consisting of 15 convolutional layers. The network is trained using the energy-efficient deep neuromorphic networks (Eedn) framework (Esser et al., 2016), which realizes the mapping of the trained synaptic weights onto the IBM Neurosynaptic System platform (Merolla et al., 2014). After the mapping, the trained network achieves real-time capabilities for processing input streams and classify input images at about 1,000 frames per second while the computational stages only consume about 70 mW of energy (without spike transduction). Particularly regarding mobile robotic systems, a low energy profile might be crucial in a variety of application scenarios. Cross-validation results are reported for two different datasets and compared to state-of-the-art action recognition approaches. The results demonstrate, that (I) the presented approach is on par with other key pose based methods described in the literature, which select key pose frames by optimizing classification accuracy, (II) compared to the training on the full set of frames, representations trained on key pose frames result in a higher confidence in class assignments, and (III) key pose representations show promising generalization capabilities in a cross-dataset evaluation. PMID:28381998
Pollination Services at Risk: Asian Dust Poses a Threat on Pollinators' Navigation
NASA Astrophysics Data System (ADS)
Cho, Y.
2016-12-01
Beijing was hit by a massive sandstorm, which is known as Asian dust or Yellow sand phenomenon in April 2015. The city was enveloped by sand, and the reported visibility was less than 1 km. People could neither work outside nor drive. But can bees forage for their food in this sandy air? The hypothesis in this proposed study is as follows: honey bee (Apis mellifera)'s foraging activity is impeded when Asian dust is severe since the particulate matters dusted on flowers prevent the bees from noticing the ultraviolet marking of the flowers. In an experimental study, flowers dusted with PM 10 showed no specific ultraviolet nectar guides as they do in clear weather. The transport of sand and dust by wind is a powerful erosional force, fills the atmosphere with suspended dust aerosols. The dust, in the atmospheric science, generally refers to solid inorganic particles that can be readily suspended by wind. Once the bees fail to forage as this study hypothesized, they will starve to death, then plant-pollinator interaction will be threatened. Failure of bees' activity can result in loss of pollination services which could significantly affect the maintenance of the ecosystem stability as a whole. Though this research specifically studies the Asian phenomenon, it should be understood in a global context since the dust is believed to be transported one full circuit around the globe.
Osteoblast hydraulic conductivity is regulated by calcitonin and parathyroid hormone
NASA Technical Reports Server (NTRS)
Hillsley, M. V.; Frangos, J. A.
1996-01-01
It is our hypothesis that osteoblasts play a major role in regulating bone (re)modeling by regulating interstitial fluid (ISF) flow through individual bone compartments. We hypothesize that osteoblasts of the blood-bone membrane lining the bone surfaces are capable of regulating transosseous fluid flow. This regulatory function of the osteoblasts was tested in vitro by culturing a layer of rat calvarial osteoblasts on porous membranes. Such a layer of osteoblasts subjected to 7.3 mm Hg of hydrostatic pressure posed a significant resistance to fluid flow across the cell layer similar in magnitude to the resistance posed by endothelial monolayers in vitro. The hydraulic conductivity, the volumetric fluid flux per unit pressure drop, of the osteoblast layer was altered in response to certain hormones. Hydraulic conductivity decreased approximately 40% in response to 33 nM parathyroid hormone, while it exhibited biphasic behavior in response to calcitonin: increased 40% in response to 100 nM calcitonin and decreased 40% in response to 1000 nM calcitonin. Further, activation of adenylate cyclase by forskolin dramatically increased the hydraulic conductivity, while elevation of intracellular calcium, [Ca2+]i, by the calcium ionophore A23187 initially decreased the hydraulic conductivity at 5 minutes before increasing conductivity by 30 minutes. These results suggest that cyclic adenosine monophosphate (cAMP) and [Ca2+]i may mediate changes in the osteoblast hydraulic conductivity. The increase in hydraulic conductivity in response to 100 nM calcitonin and the decrease in response to PTH suggest that the stimulatory and inhibitory effects on bone formation of calcitonin and parathyroid hormone, respectively, may be due in part to alterations in bone fluid flow.
SR-71 Ship #1 - Ultraviolet Experiment
NASA Technical Reports Server (NTRS)
1994-01-01
NASA's SR-71 streaks into the twilight on a night/science flight from the Dryden Flight Research Center, Edwards, California. Mounted in the nose of the SR-71 was an ultraviolet video camera aimed skyward to capture images of stars, asteroids and comets. The science portion of the flight is a project of the Jet Propulsion Laboratory, Pasadena, California. Two SR-71 aircraft have been used by NASA as test beds for high-speed and high-altitude aeronautical research. One early research project flown on one of Dryden's SR-71s consisted of a proposal for a series of flights using the SR-71 as a science camera platform for the Jet Propulsion Laboratory (JPL) of the California Institute of Technology, which operates under contract to NASA in much the way that NASA centers do. In March 1993, an upward-looking ultraviolet (UV) video camera placed in the SR-71's nosebay studied a variety of celestial objects in the ultraviolet light spectrum. The SR-71 was proposed as a test bed for the experiment because it is capable of flying at altitudes above 80,000 feet for an extended length of time. Observation of ultraviolet radiation is not possible from the Earth's surface because the atmosphere's ozone layer absorbs UV rays. Study of UV radiation is important because it is known to cause skin cancer with prolonged exposure. UV radiation is also valuable to study from an astronomical perspective. Satellite study of ultraviolet radiation is very expensive. As a result, the South West Research Institute (SWRI) in Texas developed the hypothesis of using a high-flying aircraft such as the SR-71 to conduct UV observations. The SR-71 is capable of flying above 90 percent of the Earth's atmosphere. The flight program was also designed to test the stability of the aircraft as a test bed for UV observation. A joint flight program was developed between the JPL and NASA's Ames-Dryden Flight Research Facility (redesignated the Dryden Flight Research Center, Edwards, California, in 1994) in conjunction with SWRI to test the hypothesis. Dryden modified the nosebay of the SR-71, creating an upward-observing window to carry SWRI's ultraviolet CCD camera so it could make observations. According to Dryden's SR-71 Project Manager Dave Lux, a single flight of the aircraft confirmed the aircraft's capability and stability as a test bed for UV observations. SWRI's principle investigator was Dr. Allen Stern.
NASA Astrophysics Data System (ADS)
1989-01-01
A "NASA Tech Briefs" article describing an inspection tool and technique known as Optically Stimulated Electron Emission (OSEE) led to the formation of Photo Acoustic Technology, Inc. (PAT). PAT produces sensors and scanning systems which assure surface cleanliness prior to bonding, coating, painting, etc. The company's OP1000 series realtime pre-processing detection capability assures 100 percent surface quality testing. The technique involves brief exposure of the inspection surface to ultraviolet radiation. The energy interacts with the surface layer, causing free electrons to be emitted from the surface to be picked up by the detector. When contamination is present, it interferes with the electron flow in proportion to the thickness of the contaminant layer enabling measurement by system signal output. OP1000 systems operate in conventional atmospheres on all types of material and detect both organic and inorganic contamination.
Kuo, Yang; Su, Chia-Ying; Hsieh, Chieh; Chang, Wen-Yen; Huang, Chu-An; Kiang, Yean-Woei; Yang, C C
2015-09-15
The radiated power enhancement (suppression) of an in- (out-of-) plane-oriented radiating dipole at a desired emission wavelength in the deep-ultraviolet (UV) range when it is coupled with a surface plasmon (SP) resonance mode induced on a nearby Al nanoparticle (NP) is demonstrated. Also, it is found that the enhanced radiated power propagates mainly in the direction from the Al NP toward the dipole. Such SP coupling behaviors can be used for suppressing the transverse-magnetic (TM)-polarized emission, enhancing the transverse-electric-polarized emission, and reducing the UV absorption of the p-GaN layer in an AlGaN-based deep-UV light-emitting diode by embedding a sphere-like Al NP in its p-AlGaN layer.
NASA Technical Reports Server (NTRS)
Browell, E. V.; Shipley, S. T.; Butler, C. F.; Ismail, S.
1985-01-01
A detailed summary of the NASA Ultraviolet Differential Absorption Lidar (UV DIAL) data archive obtained during the EPA Persistent Elevated Pollution Episode/Northeast Regional Oxidant Study (PEPE/NEROS) Summer Field Experiment Program (July through August 1980) is presented. The UV dial data set consists of remote measurements of mixed layer heights, aerosol backscatter cross sections, and sequential ozone profiles taken during 14 long-range flights onboard the NASA Wallops Flight Center Electra aircraft. These data are presented in graphic and tabular form, and they have been submitted to the PEPE/NEROS data archive on digital magnetic tape. The derivation of mixing heights and ozone profiles from UV Dial signals is discussed, and detailed intercomparisons with measurements obtained by in situ sensors are presented.
Comparison of as-grown and annealed GaN/InGaN : Mg samples
NASA Astrophysics Data System (ADS)
Deng, Qingwen; Wang, Xiaoliang; Xiao, Hongling; Wang, Cuimei; Yin, Haibo; Chen, Hong; Lin, Defeng; Jiang, Lijuan; Feng, Chun; Li, Jinmin; Wang, Zhanguo; Hou, Xun
2011-08-01
Mg-doped InGaN was grown on unintentionally doped GaN layer, and Mg and defect behaviours in both GaN and InGaN : Mg were investigated through photoluminescence measurement at 7 K. Mg acceptor was found in unintentionally doped GaN after thermal annealing in N2 ambient, and Mg activation energy was estimated to be 200 meV and 110 meV for GaN and InGaN, respectively. Particularly, the ultraviolet band (3.0-3.2 eV) in the GaN layer was infrequently observed in the unannealed sample but quenched in the annealed sample; this band may be associated with oxygen-substituted nitrogen defects. Moreover, the measurement errors of photoluminescence and x-ray diffraction originated from strain were taken into account.
EPA attenuates ultraviolet radiation-induced downregulation of aquaporin-3 in human keratinocytes.
Jeon, Byoung-Kook; Kang, Moon-Kyung; Lee, Ghang-Tai; Lee, Kun-Kuk; Lee, Ho-Sub; Woo, Won-Hong; Mun, Yeun-Ja
2015-08-01
Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid (ω-3 PUFA) that protects against photodamage and photocarcinogenesis in mammals. Aquaporin-3 (AQP3) is a water/glycerol transport protein that is found in basal layer keratinocytes. In this study, we have investigated the protective effect of EPA against ultraviolet B (UVB)-induced AQP3 downregulation in human keratinocytes. EPA treatment was found to increase AQP3 gene and protein expression in human epidermal keratinocytes (HaCaT). Using a specific inhibitor, we observed that the effect of EPA on AQP3 expression was mediated by extracellular signal-regulated kinase (ERK) activation. UVB radiation induced AQP3 downregulation in HaCaT cells, and it was found that EPA treatment attenuated UVB-induced AQP3 reduction and the associated cell death. UVB-induced downregulation of AQP3 was blocked by EPA and p38 inhibitor SB203580. Collectively, the present results show that EPA increased AQP3 expression and that this led to a reduction UVB-induced photodamage.
Extreme ultraviolet patterning of tin-oxo cages
NASA Astrophysics Data System (ADS)
Haitjema, Jarich; Zhang, Yu; Vockenhuber, Michaela; Kazazis, Dimitrios; Ekinci, Yasin; Brouwer, Albert M.
2017-07-01
We report on the extreme ultraviolet (EUV) patterning performance of tin-oxo cages. These cage molecules were already known to function as a negative tone photoresist for EUV radiation, but in this work, we significantly optimized their performance. Our results show that sensitivity and resolution are only meaningful photoresist parameters if the process conditions are optimized. We focus on contrast curves of the materials using large area EUV exposures and patterning of the cages using EUV interference lithography. It is shown that baking steps, such as postexposure baking, can significantly affect both the sensitivity and contrast in the open-frame experiments as well as the patterning experiments. A layer thickness increase reduced the necessary dose to induce a solubility change but decreased the patterning quality. The patterning experiments were affected by minor changes in processing conditions such as an increased rinsing time. In addition, we show that the anions of the cage can influence the sensitivity and quality of the patterning, probably through their effect on physical properties of the materials.
NASA Astrophysics Data System (ADS)
So, Hongyun; Senesky, Debbie G.
2016-11-01
Rapid, cost-effective, and simple fabrication/packaging of microscale gallium nitride (GaN) ultraviolet (UV) sensors are demonstrated using zinc oxide nanorod arrays (ZnO NRAs) as an antireflective layer and direct bonding of aluminum wires to the GaN surface. The presence of the ZnO NRAs on the GaN surface significantly reduced the reflectance to less than 1% in the UV and 4% in the visible light region. As a result, the devices fabricated with ZnO NRAs and mechanically stable aluminum bonding wires (pull strength of 3-5 gf) showed higher sensitivity (136.3% at room temperature and 148.2% increase at 250 °C) when compared with devices with bare (uncoated) GaN surfaces. In addition, the devices demonstrated reliable operation at high temperatures up to 300 °C, supporting the feasibility of simple and cost-effective UV sensors operating with higher sensitivity in high-temperature conditions, such as in combustion, downhole, and space exploration applications.
Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...
2014-08-04
Electrical current transport through leakage paths in AlGaN-based deep ultraviolet (DUV) lightemitting diodes (LEDs) and their effect on LED performance are investigated. Open-core threading dislocations, or nanopipes, are found to conduct current through nominally insulating Al0.7Ga0.3N layers and limit the performance of DUV-LEDs. A defect-sensitive phosphoric acid etch reveals these opencore threading dislocations in the form of large, micron-scale hexagonal etch pits visible with optical microscopy, while closed-core screw-, edge-, and mixed-type threading dislocations are represented by smaller and more numerous nanometer-scale pits visible by atomic-force microscopy. The electrical and optical performances of DUV-LEDs fabricated on similar Si-doped Al0.7Ga0.3N templatesmore » are found to have a strong correlation to the density of these nanopipes, despite their small fraction (<0.1% in this study) of the total density of threading dislocations.« less
Liao, Wei-Chun; Liao, Shu-Wei; Chen, Kuo-Ju; Hsiao, Yu-Hao; Chang, Shu-Wei; Kuo, Hao-Chung; Shih, Min-Hsiung
2016-05-25
Circularly polarized laser sources with small footprints and high efficiencies can possess advanced functionalities in optical communication and biophotonic integrated systems. However, the conventional lasers with additional circular-polarization converters are bulky and hardly compatible with nanophotonic circuits, and most active chiral plasmonic nanostructures nowadays exhibit broadband emission and low circular dichroism. In this work, with spirals of gallium nitride (GaN) nanowires (NWRs) covered by a metal layer, we demonstrated an ultrasmall semiconductor laser capable of emitting circularly-polarized photons. The left- and right-hand spiral metal nanowire cavities with varied periods were designed at ultraviolet wavelengths to achieve the high quality factor circular dichroism metastructures. The dissymmetry factors characterizing the degrees of circular polarizations of the left- and right-hand chiral lasers were 1.4 and -1.6 (±2 if perfectly circular polarized), respectively. The results show that the chiral cavities with only 5 spiral periods can achieve lasing signals with the high degrees of circular polarizations.
Simulated Space Vacuum Ultraviolet (VUV) Exposure Testing for Polymer Films
NASA Technical Reports Server (NTRS)
Dever, Joyce A.; Pietromica, Anthony J.; Stueber, Thomas J.; Sechkar, Edward A.; Messer, Russell K.
2002-01-01
Vacuum ultraviolet (VUV) radiation of wavelengths between 115 and 200 nm produced by the sun in the space environment can cause degradation to polymer films producing changes in optical, mechanical, and chemical properties. These effects are particularly important for thin polymer films being considered for ultra-lightweight space structures, because, for most polymers, VUV radiation is absorbed in a thin surface layer. NASA Glenn Research Center has developed facilities and methods for long-term ground testing of polymer films to evaluate space environmental VUV radiation effects. VUV exposure can also be used as part of sequential simulated space environmental exposures to determine combined damaging effects. This paper will describe the effects of VUV on polymer films and the necessity for ground testing. Testing practices used at Glenn Research Center for VUV exposure testing will be described including characterization of the VUV radiation source used, calibration procedures traceable to the National Institute of Standards and Technology (NIST), and testing techniques for VUV exposure of polymer surfaces.
Attempts to probe the ozone layer and the ultraviolet-B levels of the past.
Björn, Lars Olof; McKenzie, Richard L
2007-07-01
To get a proper perspective on the current status of atmospheric ozone, which protects the biosphere from ultraviolet-B (UV-B; 280-315 nm) radiation, it would be of value to know how ozone and UV-B radiation have varied in the past. The record of worldwide ozone monitoring goes back only a few decades, and the record of reliable UV-B measurements is even shorter. Here we review indirect methods to assess their status further back in time. These include variations in the Sun's emission and how these affect the atmosphere, changes in the Earth's orbit, geologic imprints of atmospheric ozone, effects of catastrophic events such as volcanic eruptions, biological proxies of UV-B radiation, the spectral signature of terrestrial ozone in old recordings of star spectra, and the modeling of UV-B irradiance from ozone data and meteorological recordings. Although reliable reconstructions do not yet extend far into the past, there is some hope for future progress.
NASA Astrophysics Data System (ADS)
Retherford, Kurt D.; Bai, Yibin; Ryu, Kevin K.; Gregory, James A.; Welander, Paul B.; Davis, Michael W.; Greathouse, Thomas K.; Winters, Gregory S.; Suntharalingam, Vyshnavi; Beletic, James W.
2015-10-01
We report our progress toward optimizing backside-illuminated silicon P-type intrinsic N-type complementary metal oxide semiconductor devices developed by Teledyne Imaging Sensors (TIS) for far-ultraviolet (UV) planetary science applications. This project was motivated by initial measurements at Southwest Research Institute of the far-UV responsivity of backside-illuminated silicon PIN photodiode test structures, which revealed a promising QE in the 100 to 200 nm range. Our effort to advance the capabilities of thinned silicon wafers capitalizes on recent innovations in molecular beam epitaxy (MBE) doping processes. Key achievements to date include the following: (1) representative silicon test wafers were fabricated by TIS, and set up for MBE processing at MIT Lincoln Laboratory; (2) preliminary far-UV detector QE simulation runs were completed to aid MBE layer design; (3) detector fabrication was completed through the pre-MBE step; and (4) initial testing of the MBE doping process was performed on monitoring wafers, with detailed quality assessments.
Ultraviolet reflecting photonic microstructures in the King Penguin beak.
Dresp, Birgitta; Jouventin, Pierre; Langley, Keith
2005-09-22
King and emperor penguins (Aptenodytes patagonicus and Aptenodytes forsteri) are the only species of marine birds so far known to reflect ultraviolet (UV) light from their beaks. Unlike humans, most birds perceive UV light and several species communicate using the near UV spectrum. Indeed, UV reflectance in addition to the colour of songbird feathers has been recognized as an important signal when choosing a mate. The king penguin is endowed with several highly coloured ornaments, notably its beak horn and breast and auricular plumage, but only its beak reflects UV, a property considered to influence its sexual attraction. Because no avian UV-reflecting pigments have yet been identified, the origin of such reflections is probably structural. In an attempt to identify the structures that give rise to UV reflectance, we combined reflectance spectrophotometry and morphological analysis by both light and electron microscopy, after experimental removal of surface layers of the beak horn. Here, we characterize for the first time a multilayer reflector photonic microstructure that produces the UV reflections in the king penguin beak.
Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol
Chipperfield, M. P.; Dhomse, S. S.; Feng, W.; McKenzie, R. L.; Velders, G.J.M.; Pyle, J. A.
2015-01-01
Chlorine- and bromine-containing ozone-depleting substances (ODSs) are controlled by the 1987 Montreal Protocol. In consequence, atmospheric equivalent chlorine peaked in 1993 and has been declining slowly since then. Consistent with this, models project a gradual increase in stratospheric ozone with the Antarctic ozone hole expected to disappear by ∼2050. However, we show that by 2013 the Montreal Protocol had already achieved significant benefits for the ozone layer. Using a 3D atmospheric chemistry transport model, we demonstrate that much larger ozone depletion than observed has been avoided by the protocol, with beneficial impacts on surface ultraviolet. A deep Arctic ozone hole, with column values <120 DU, would have occurred given meteorological conditions in 2011. The Antarctic ozone hole would have grown in size by 40% by 2013, with enhanced loss at subpolar latitudes. The decline over northern hemisphere middle latitudes would have continued, more than doubling to ∼15% by 2013. PMID:26011106
Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability
Christians, Jeffrey A.; Schulz, Philip; Tinkham, Jonathan S.; ...
2017-11-28
Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughoutmore » the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.« less
Trap-assisted large gain in Cu{sub 2}O/C{sub 60} hybrid ultraviolet/visible photodetectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lan; Xi, Qiaoyue; Gao, Ge
2016-04-18
Photomultiplication-type ultraviolet (UV)/visible photodetectors (PDs) are demonstrated in an electrodeposited Cu{sub 2}O/C{sub 60} hybrid structure. These simple organic/inorganic hybrid PDs exhibit external quantum efficiencies (EQEs) of 1.1 × 10{sup 4}% under illumination of 365 nm UV light at −3 V, indicating a large gain of photocurrent for these devices. Such an EQE is one of the highest values among the reported organic/inorganic hybrid PDs at the same voltage. Cu{sub 2}O and C{sub 60} are found to play different roles in realizing the photomultiplication. Copper vacancies are proposed as the defects in the electrodeposited Cu{sub 2}O layers, which can trap photogenerated holes. Such trapped holesmore » will trigger the injection of multiple electrons and hence result in the photocurrent gain of the devices while C{sub 60} primarily acts as a light absorption media to provide free holes.« less
Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability
NASA Astrophysics Data System (ADS)
Christians, Jeffrey A.; Schulz, Philip; Tinkham, Jonathan S.; Schloemer, Tracy H.; Harvey, Steven P.; Tremolet de Villers, Bertrand J.; Sellinger, Alan; Berry, Joseph J.; Luther, Joseph M.
2018-01-01
Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughout the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.
NASA Astrophysics Data System (ADS)
Kajii, Hirotake; Terashima, Daiki; Kusumoto, Yusuke; Ikezoe, Ikuya; Ohmori, Yutaka
2013-04-01
We investigated the fabrication and electrical and optical properties of top-gate-type polymer light-emitting transistors with the surfaces of amorphous fluoropolymer insulators, CYTOP (Asahi Glass) modified by vacuum ultraviolet light (VUV) treatment. The surface energy of CYTOP, which has a good solution barrier property was increased by VUV irradiation, and the gate electrode was fabricated by solution processing on the CYTOP film using the Ag nano-ink. The influence of VUV irradiation on the optical properties of poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) films with various gate insulators was investigated to clarify the passivation effect of gate insulators. It was found that the poly(methyl methacrylate) (PMMA) film prevented the degradation of the F8BT layer under VUV irradiation because the PMMA film can absorb VUV. The solution-processed F8BT device with multilayer PMMA/CYTOP insulators utilizing a gate electrode fabricated using the Ag nano-ink exhibited both the ambipolar characteristics and yellow-green emission.
NASA Astrophysics Data System (ADS)
Iglesias, E. J.; Mitschker, F.; Fiebrandt, M.; Bibinov, N.; Awakowicz, P.
2017-08-01
Ultraviolet (UV) and vacuum ultraviolet (VUV) spectral irradiance is determined in low-pressure microwave-produced plasma, which is regularly used for polymer surface treatment. The re-emitted fluorescence in the UV/VIS spectral range from a sodium salicylate layer is measured. This fluorescence is related to VUV/UV radiation in different spectral bands based on cut-off filters. The background produced by direct emitted radiation in the fluorescence spectral region is quantified using a specific background filter, thus enabling the use of the whole fluorescence spectral range. A novel procedure is applied to determine the absolute value of the VUV/UV irradiance on a substrate. For that, an independent measurement of the absolute spectral emissivity of the plasma in the UV is performed. The measured irradiances on a substrate from a 25 Pa Ar/O2-produced plasma are in the range of 1015-1016 (photon~ s-1 cm-2). These values include the contribution from impurities present in the discharge.
NASA Astrophysics Data System (ADS)
Dong, Peng; Yan, Jianchang; Zhang, Yun; Wang, Junxi; Zeng, Jianping; Geng, Chong; Cong, Peipei; Sun, Lili; Wei, Tongbo; Zhao, Lixia; Yan, Qingfeng; He, Chenguang; Qin, Zhixin; Li, Jinmin
2014-06-01
We report high-performance AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates (NPSS) using metal-organic chemical vapor deposition. By nanoscale epitaxial lateral overgrowth on NPSS, 4-μm AlN buffer layer has shown strain relaxation and a coalescence thickness of only 2.5 μm. The full widths at half-maximum of X-ray diffraction (002) and (102) ω-scan rocking curves of AlN on NPSS are only 69.4 and 319.1 arcsec. The threading dislocation density in AlGaN-based multi-quantum wells, which are grown on this AlN/NPSS template with a light-emitting wavelength at 283 nm at room temperature, is reduced by 33% compared with that on flat sapphire substrate indicated by atomic force microscopy measurements, and the internal quantum efficiency increases from 30% to 43% revealed by temperature-dependent photoluminescent measurement.
Gras, Ronda; Luong, Jim; Shellie, Robert A
2015-11-17
We introduce a technique for the direct measurement of elemental mercury in light hydrocarbons such as natural gas. We determined elemental mercury at the parts-per-trillion level with high precision [<3% RSD (n = 20 manual injection)] using gas chromatography with ultraviolet photometric detection (GC-UV) at 254 nm. Our approach requires a small sample volume (1 mL) and does not rely on any form of sample preconcentration. The GC-UV separation employs an inert divinylbenzene porous layer open tubular column set to separate mercury from other components in the sample matrix. We incorporated a 10-port gas-sampling valve in the GC-UV system, which enables automated sampling, as well as back flushing capability to enhance system cleanliness and sample throughput. Total analysis time is <2 min, and the procedure is linear over a range of 2-83 μg/m(3) [correlation coefficient of R(2) = 0.998] with a measured recovery of >98% over this range.
Repair of localized defects in multilayer-coated reticle blanks for extreme ultraviolet lithography
Stearns, Daniel G [Los Altos, CA; Sweeney, Donald W [San Ramon, CA; Mirkarimi, Paul B [Sunol, CA
2004-11-23
A method is provided for repairing defects in a multilayer coating layered onto a reticle blank used in an extreme ultraviolet lithography (EUVL) system. Using high lateral spatial resolution, energy is deposited in the multilayer coating in the vicinity of the defect. This can be accomplished using a focused electron beam, focused ion beam or a focused electromagnetic radiation. The absorbed energy will cause a structural modification of the film, producing a localized change in the film thickness. The change in film thickness can be controlled with sub-nanometer accuracy by adjusting the energy dose. The lateral spatial resolution of the thickness modification is controlled by the localization of the energy deposition. The film thickness is adjusted locally to correct the perturbation of the reflected field. For example, when the structural modification is a localized film contraction, the repair of a defect consists of flattening a mound or spreading out the sides of a depression.
A 'crytic' microbial mat: A new model ecosystem for extant life on Mars
NASA Technical Reports Server (NTRS)
Rothschild, L. J.
1995-01-01
If life were present on Mars today, it would face potentially lethal environmental conditions such as a lack of water, frigid temperatures, ultraviolet radiation, and soil oxidants. In addition, the Viking missions did not detect near-surface organic carbon available for assimilation. Autotrophic organisms that lived under a protective layer of sand or gravel would be able to circumvent the ultraviolet radiation and lack of fixed carbon. Two terrestrial photosynthetic near-surface microbial communities have been identified, one in the inter- and supertidal of Laguna Ojo de Liebere (Baja California Sur, Mexico) and one in the acidic gravel near several small geysers in Yellowstone National Park (Wyoming, U.S.A.). Both communities have been studied with respect to their ability to fix carbon under different conditions, including elevated levels of inorganic carbon. Although these sand communities have not been exposed to the entire suite of Martian environmental conditions simultaneously, such communities can provide a useful model ecosystem for a potential extant Martian biota.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papernov, Semyon; Kozlov, Alexei A.; Oliver, James B.
Here, the role of thin-film interfaces in the near-ultraviolet (near-UV) absorption and pulsed laser-induced damage was studied for ion-beam-sputtered and electron-beam-evaporated coatings comprised from HfO 2 and SiO 2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO 2 single-layer film and for a film containing seven narrow HfO 2 layers separated by SiO 2 layers. The seven-layer film was designed to have a total optical thickness of HfO 2 layers, equal to one wave at 355 nm and anmore » E-field peak and average intensity similar to a single-layer HfO 2 film. Absorption in both types of films was measured using laser calorimetry and photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces as compared to HfO 2 film material. The relevance of obtained absorption data to coating near-UV, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO 2 film in both sputtered and evaporated coatings. The results are explained through the similarity of interfacial film structure with structure formed during the codeposition of HfO 2 and SiO 2 materials.« less
Dirac State in Giant Magnetoresistive Materials
NASA Astrophysics Data System (ADS)
Wu, Y.; Jo, N. H.; Ochi, M.; Huang, L.; Mou, D.; Kong, T.; Mun, E.; Wang, L.; Lee, Y.; Bud'Ko, S. L.; Canfield, P. C.; Trivedi, N.; Arito, R.; Kaminski, A.
We use ultrahigh resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the electronic properties of materials that recently were discovered to display titanic magnetoresistance. We find that that several of these materials have Dirac-like features in their band structure. In some materials those features are ``ordinary'' Dirac cones, while in others the linear Dirac dispersion of two crossing bands forms a linear object in 3D momentum space. Our observation poses an important question about the role of Dirac dispersion in the unusually high, non-saturating magnetoresistance of these materials. Research was supported by the US DOE, Office of Basic Energy Sciences under Contract No. DE-AC02-07CH11358; Gordon and Betty Moore Foundation EPiQS Initiative (Grant No. GBMF4411); CEM, a NSF MRSEC, under Grant No. DMR-1420451.
1997-05-08
Five NASA astronauts and a Canadian payload specialist pause from their training schedule to pose for the traditional crew portrait for their mission, STS-85. In front are astronauts Curtis L. Brown, Jr. (right), mission commander, and Kent V. Rominger, pilot. On the back row, from the left, are astronauts Robert L. Curbeam, Jr., Stephen K. Robinson, and N. Jan Davis, all mission specialists, along with the Canadian Space Agency’s (CSA) payload specialist, Bjarni Tryggvason. The five launched into space aboard the Space Shuttle Discovery on August 7, 1997 at 10:41:00 a.m. (EDT). Major payloads included the satellite known as Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 CRISTA-SPAS-02. CRISTA; a Japanese Manipulator Flight Development (MFD); the Technology Applications and Science (TAS-01); and the International Extreme Ultraviolet Hitchhiker (IEH-02).
Design of the Extreme Ultraviolet Explorer long-wavelength grazing incidence telescope optics
NASA Technical Reports Server (NTRS)
Finley, David S.; Jelinsky, Patrick; Bowyer, Stuart; Malina, Roger F.
1988-01-01
Designing optics for photometry in the long-wavelength portion of the EUV spectrum (400-900) A) poses different problems from those arising for optics, operating shortward of 400 A. The available filter materials which transmit radiation longward of 400 A are also highly transparent at wavelengths shortward of 100 A. Conventional EUV optics, with grazing engles of less than about 10 deg, have very high throughput in the EUV, which persists to wavelengths shortward of 100 A. Use of such optics with the longer-wavelength EUV filters thus results in an unacceptably large soft X-ray leak. This problem is overcome by developing a mirror design with larger graze angles of not less than 20 deg, which has high throughput at wavelengths longer than 400 A but at the same time very little throughput shortward of 100 A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shasti, M.; Mortezaali, A., E-mail: mortezaali@alzahra.ac.ir; Dariani, R. S.
2015-01-14
In this study, Aluminum doped Zinc Oxide (AZO) layer is deposited on p-type silicon (p-Si) by spray pyrolysis method to fabricate ultraviolet-visible (UV/Vis) photodetector as Al doping process can have positive effect on the photodetector performance. Morphology, crystalline structure, and Al concentration of AZO layer are investigated by SEM, XRD, and EDX. The goal of this study is to analyze the mechanism of carrier transport by means of current-voltage characteristics under UV/Vis illumination in two cases: (a) electrodes connected to the surface of AZO layer and (b) electrodes connected to cross section of heterojunction (AZO/p-Si). Measurements indicate that the AZO/p-Simore » photodiode exhibits a higher photocurrent and lower photoresponse time under visible illumination with respect to AZO photodetector; while under UV illumination, the above result is inversed. Besides, the internal junction field of AZO/p-Si heterojunction plays an important role on this mechanism.« less